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INTRODUCTION

The many—body problem of interacting quantum particles has been a subject
of interest for many years. Unfortunately very few models which take the
correlation into consideration are analytically solvable and they all concern low
dimensionality and a very simplified form of the interaction.

The enormous growth of computer power in the last few decades has opened
a new possibility to solve the many body problem by numerical calculation. The
various techniques used can be classified in three main groups: exact, approximate
and statistical techniques.

The task of “exact diagonalization techniques” (full CI, Lanczos, conjugate
gradients) is the evaluation of the exact ground state o of a given hamiltonian H.
These calculations however face a very important difficulty because the number
of degrees of freedom of a many body wavefunction grows at least exponentially
with the size of the system and the number of electrons. Although recently it has
been very successful to handle up to 16 electrons! —* the possibility to extend these
methods to larger systems is clearly hopeless. )

A great development in these exact calculation techniques is provided in
principle by the density functional theory (DFT)®. In such scheme the problem
of calcvula,ting the ground state energy and ground state correlation functions is
mapped onto a minimization problem of a well defined functional which now
depends only on the electronic density at each spatial coordinate. It is clear

therefore that the number of variables used in this formulation is very much
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decreased. However the main difficulty of this approach is that the functional
that describes the theory is not known and it cannot be easily evaluated. In fact

only approximate expression of this functional have been used so far.

Another group of techniques are the approximate ones. Among these methods
it is worth mentioning the variational techniques like Hartree, Hartree Fork,
Gutzwiller, Jastrow®”, the methods using many body perturbation theory like
RPA®~19 and finally the Local Density Approximation (LDA)12 ) which is
a very convenient approximation of DFT. The limitation of all these methods
is that the approximations used are difficult to control systematically. As an
example in DFT any attempt to go beyond the LDA has not led to systematic
and substantial improvement. On the other hand the variational techniques are too
much dependent on the choice of the form of the variational wavefunction. When
the problem is pa.rticula.rly hard and simple minded approximations of the ground
state does not work, as for example in the Hubbard model?, these variational
methods are largely prejudiced by the assumed variational wavefunction.

The last group of techniques in the simulation of quantum systems deals with
the calculation of exact ground state properties using classical statistical method.
One of these is the so called Quantum Monte Carlo method QMC!¢~16, As in
many other techniques the ground state 1) of the Hamiltonian H is obtained
by filtering out from an initial trial wavefunction 37 its ground state component
by applying to 17 the imaginary time propagator e #? for large enough time t.
Yy = e Hpr > can be obtained as a solution of the imaginary time Schrodinger
equation. In order to decrease the prohibitive amount of variables contained in
P, the many body wavefunction is sampled using a statistical method. The

weight chosen for the statistical sampling has a direct relation with the many
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body wavefunction ®; (usually the weight is the absolute value of ;). It is
clear that the method works very well for bosons because 9, is always positive.
However there are still severe difficulties for fermions because the antisymmetry
of the fermion wavefunction determines regions of 1; with positive and negative
sign. This is the well known “fermion sign problem” that in this case has a very
clear physical meaning. In fact each part with definite sign ¥;" and #; of the
propagated wavefunction ¥, = #;" — ;" has a non vanishing component on the
more stable boson ground state. The calculation in this case becomes unstable
because, through the imaginary time propagation, each part of the wavefunction
¥ and <, is attracted by the bosonic ground state, until the fermionic component

becomes numerically undetectable.

“world line approach”!7—20

A similar instability occurs in the so called
although in this case the underlying more stable state is not exactly the boson
ground state. Instead of sampling a wavefunction a convenient basis is chosen
to write the matrix elements of the hamiltonian H. Then a finite temperature
partition function is statistically evaluated to achieve asymptotically the 0 K limit.
Even in this case “the fermion sign problem” appears when it is not possible to
choose a basis such that the off diagonal matrix elements of the hamiltonian have

a definite sign. This is indeed the case for fermion systems in 2D or 3D and non

trivial interactions.

New possibilities of approaching the many body electronic problem are dis-
cussed in the present thesis using a well known method: the Hubbard-Stratonovich
Transformation (HST). This transformation has been known for long time in many
branches of physics but only very recently it has been systematically applied to

numerical calculations?! 30,



The imaginary time evolution e~H* is convenient for numerical treatment
when the Hamiltonian contains only one body operators and no interaction term.
The HST is basically a method that allows to transform a many-body operator
into a coherent superposition of one-body operators, depending on a fluctuating
time dependent bosonic field o. In this way the HST transforms the many body
problem in a functional integral over the variables ¢. This functional integration
is performed by evaluating the propagation of a trial function |7 > in a time
dependent one body hamiltonian containing the integration variables o. As far

as the functional integral is concerned, it is calculated using a statistical method
which is well established in literature: the Langevin dynamic (LD).

Our method is similar to QMC, as far the imaginary time evolution of a trial
wave function is concerned, but at variance with QMC it has the considerable
advantage to preserve the antisymmetric property of the fermion wave-function at
any time of such evolution. In the present thesis we also show how to preserve

such property in a very efficient numerical way (see ch. 4).

Until now the most successful application of the HST was done by Hirsch and
Scalapino?®273%  using a discretized version of the HST in which the functional
integration is replaced with a trace over Ising variables (¢ assumes the values
+1 or —1). The goal of their calculation is to evaluate the finite-temperature
partition function of a short range interacting system of electrons. However the
discretized version of the HST is convenient only for short range interaction and
has therefore a limited applicability. Moreover until very recently this method

was unstable for low temperatures and only very recently?*:2%

it was possible
to generalize the special orthogonalization technique to stabilize the algorithm

in the low temperature regime. This technique was firstly used by Koonin2!:22
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using a different and less efficient algorithm, then we firstly pointed out®! that
the orthogonalization technique has to be used just for stabilizing the computer
simulation of Fermions at low temperatures.

In fact after our work a lot of progress has been achieved in the performances
of existing algorithms.

The most important difficulty in the application of this method is that the
statistical weight obtained by a straightforward application of the HST may be
not positive definite —the fermion sign problem reappears— and there may be an
instability of the method for large imaginary time similar to the one that occurs
for QMC and the world line approach.

In the first part of our thesis we analyze, as rigorously as possible, this “sign
problem” in the HST formulation. We show in fact that in many non trivial cases
the method is stable for arbitrary large imaginary time. Although this property
has not been proved to hold in general, the HST has opened new possibilities?4:26:32
for the simulation of interacting fermions.

In the second part we describe an algorithm that enables to use the LD for
the statistical sampling of weights with negative sign.

In the last part we show some of the results obtained with this new method.
We consider a simple, but very interesting model, the Hubbard model in 1 and 2D.
In 1D we found, quite surprisingly a very sharp jump, at the Fermi momentum
kr, in the momentum distribution function. This is especially evident at low
density. Then with a careful size scaling analysis we show that this jump is
only a finite size effect, and it is instead replaced, for the infinite system, by a
power low singularity close to kr, in agreement with previous argument based on

Renormalization Group Methods. This behaviour suggest that the 1D Hubbard
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model is a marginal conductor away from half filling because the quasi particle are
not Fermi-liquid like.

In 2D at half filling we studied the properties of the ground state in order
to understand if a possible Mott transition takes place by increasing the on—
site interaction U. We found that our numerical results for cluster up to 242
sites strongly suggest the existence of long range antiferromagnetic AF order even
for relatively weak interaction. We performed also a size scaling analysis of the
momentum distribution and we found no evidence of a Fermi surface at half filing.
Then our numerical simulation suggests that the ground state of the half filled
Hubbard model is an antiferromagnetic insulator even in the small coupling regime.

Away from half filling in 2D the main difficulty is that the statistical
weight obtained with the HST is non positive definite and its average sign can
reach‘ extremely small values for low temperatures. In this case we performed
calculations by using a different but related statistical weight which gives the same
ground state properties of the exact non positive weight provided the average sign
of the weight does not vanishes exponentially as the temperature is decreased.

It is not possible, at the moment, to verify numerically such a convexjgence
condition for such large size, because the statistical evaluation of the average sign is
prohibitive whenever this average sign is an extremely small number. In the present
numerical calculation, as in the calculation performed by other people, it is not
possible to distinguish whether the average sign is vanishing or converging to some
small constant. Tests on small size clusters, which can be exactly diagonalized,
show that the calculation performed in this way, i.e. neglecting the sign, can be
considered at least as a good approximation. Within this approximation we found

that away from half filling the 2D antiferromagnetic order is initially destroyed
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albeit without any clear Fermi liquid behaviour. Then it is possible that the 2D
Hubbard model away from half filling has a special kind of ground state which
may provide the basis for the understanding of High-T. superconductivity.

We are at the moment systematically improving our calculation away from

half-filling and for larger coupling constant.
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Chapter I

A functional integral formulation for interacting fermions

1.1 THE HUBBARD—STRATONOVICH TRANSFORMATION

AND THE PROJECTED TRIAL WAVEFUNCTION TECHNIQUE

In the following we describe a formalism to calculate ground state properties
of a many body system by using a classical statistical method. The scheme can
be applied to a large class of many body hamiltonians defined in finite lattice

containing N, sites:



H=K+7V (1.1.1)

where K is a one body operator which we call the kinetic term and V is a two
body interaction term.

For reason of simplicity we restrict our analysis to the well known Hubbard
model but all the following results are completely general and do not depend on the
particular choice of the Hamiltonian (1.1.1). In the Hubbard model one pictures
the electrons in a narrow energy band hopping between the localized states of
neighboring lattice sites with a repulsive interaction energy between two electrons
of opposite spins occupying the same lattice site. Consider a crystal (one, two,
or three-dimensional) of N, lattice sites with a total of N < 2N, electrons. It is
supposed that the electrons can hop between the Wannier states of neighboring
lattice sites, and that each site is capable of accommodating two electrons of
opposite spins, with an interaction energy U > 0. The hamiltonian to consider is

then H = K 4 V with:

Na
V = UzniTnil (1.1.2)
i=1
and
K =t Z c;}‘; Cja (1.1.3)
<>

where n;1 (n;]) is the fermion spin—up (spin—down) density operator at the site 1,
and U is the on-site interaction. Moreover the number of spin-up N; and spin-
down N| particles as well as the total N = N; + N is fixed, <t,7 > stands for
next neighbour sums and c;q, c‘-*; are the usual creation and annihilation operators

K2

of a particle at site 7 with spin «.




Following Koonin et al.?»?? instead of considering the thermodynamic
partition function Z = tr e P¥  where 8 indicates the inverse temperature -,}—,

we introduce a “pseudo” partition function

Q =<z |ePH |ypr> (1.1.4)

where 17 is a trial wavefunction and § can be thought of as an imaginary time. If
the ground state of H 1, has non vanishing overlap with the trial wavefunction ¥,
the imaginary time propagator e "#H for § — co projects from ¥ its component

along 19, and @ behaves asymptotically as the true partition function Z:

Q — <o |y >2 e PEo (1.1.5)

Moreover if the trial wavefunction is orthogonal to the lower n — 1 eigenstates of

H one has

Q — <t |yr>? e7FEn (1.1.6)

where 1, is the nth excited eigenstate of H non orthogonal to ¥ and E, the
corresponding energy. Unless otherwise specified we will restrict ourselves to
consideration of states belonging to a finite Hilbert space of dimension D and
such that <ol > # 0. In terms of @) the ground state energy is given by:

1

More general expression for other ground state expectation values are obtained
by differentiating eq. 1.1.7 with respect to appropriate external fields coupled

to the quantity of interest. In fact the Hellmann-Feyvnmann theorem allows to
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calculate the ground state expectation values of a generé,l operator < g O by >
by differentiating with respect to A the ground state energy of the corresponding
perturbed Hamiltonian H + A O:

d : G,
<'l/)0 O¢0 > = EX |A=0E0()\) = lim '53\" |)\_—:0 an (118)

1

oo B

Hence in this scheme the “pseudo” partition function ) can be considered as the
generator of all the ground state correlation functions.

In order to evaluate < wre P4 > we split the total imaginary time

propagator into a product of P short time propagators and apply the Trotter

approximation to each of them:

exp —HpB = (exp —ATH)?

AT ~ AT
~ (exp — TTK exp —ATV exp — —EZK)P + o(AT?) (1.1.9)

with Ar = %. The short time propagator exp —%I K exp —ATV exp -—~A—21 K

is clearly hermitian and positive definite. Then we can rewrite the approximated
short time propagator of the Hamiltonian H as an exact short time propagator of

an equivalent Hamiltonian H: -

- AT N AT
exp —H AT = exp — ~§Z K exp —ATV exp ——gtK (1.1.10)

and H differs by o(A7?) from the exact Hamiltonian H. All the calculations
obtained by using the Trotter approximation give exact ground state properties
of the effective Hamiltonian H which differ at most by o(A7?) from the desired

ground state properties of the Hamiltonian H.
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The evaluation of the propagator (1.1.10) is numerically tractable when the
Hamiltonian H contains only one body operators. In order to overcome the latter
difficulty it is worth mentioning that a very simple relation allows to write a
many-body operator

e 0 (1.1.11)

by means of an integral containing only one-body hermitian operators O:

/+OO do e_owré_%az
e 0F = fze : (1.1.12)

+oco _102
do e 2
-_—0

The last relation can be very easily verified by expanding the R.H.S. of the previous

equation in powers of O and using the value of the gaussian averages
<> = —2——— (1.1.13)

Equation (1.1.5) is very instructive and represents the fundamental step in the
Hubbard-Stratonovich transformation (HST) because it allows to write a many
body operator as a coherent superposition of single particle operators. This step,
as we shall see in the following, allows to write the propagator (1.1.1) in a numerical
feasible form. As it is also clear the previous transformation (1.1.5) can be applied
only for negative definite two-body operators contained in the hamiltonian H
unless considering imaginary a. While this property is certainly not true in general,
it can always be guaranteed to be so, as shown in app.1, for quite general two-body
fermionic operators.

We present here a generalization of the HST defined in (1.1.12), which is

convenient for the Hubbard model and may be extended to other models. In the
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present scheme only one classical-spin variable o.(t) for each site r and Trotter slice
i is used. These variables are independently distributed according to a probability
density p(o;) and are coupled to the local magnetic operator along the z axis at
the site 7 m; = n;; — n;;. Then, analogously to (1.1.5) we can write the many

body propagator as an integral containing only one body propagators:

N(l

UAT A
(Nt + Ny) H do p(o,) exp orm, (1.1.14)
r=1Y A

2

exp —VAT = exp —

2

In fact from the basic relation nj, = nis, coming from the usual fermionic

commutation rules, the exponential term in the previous expression can be

simplified as:

€Xp 0rMy = €XP TpNpy €XP —CrTlp]
= (1+(expor—1)npp) (1 + (exp —or — 1)nyy ) (1.1.15)

Then the identity (1.1.14) is easily verified if the probability density p(co) satisfies

the following relations:

A
/ C pede =1, pla) = (=0) (1.1.16a)

and:

UAT
2

A
/ p(o) cosh odo = exp (1.1.16Db)
—-A

where the value of A is implicitly defined by eqs.(1.1.16). We note in passing that
for U < 0 similar relations hold if magnetization m, is substituted with the density

nr-
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Note that for U < 0 it is enough to substitute in (1.1.14) the local magnetic
operator with the density operator at the site » and take the same definition of A
and p(0).

In this formalism the usual HST is obtained with infinite A by taking p(c) as

a gaussian weight.

1 FAUAT
T) = —=———— exp — 1.1.17
p(o) roas P 5 ( )
Another convenient distribution has been introduced by Hirsch?®:
1
pla) = 5 {6(c —A) + 6(c + A)} (1.1.18)

UAT
2

where from (1.1.13) A becomes finite: A = cosh™ exp . The basic advantage
of the previous distribution is that the variable o is bounded || < A and the
operator exp om, is always close to the identity for sufliciently small Trotter time
interval At (since A — 0 for AT — 0). However in order to get a finite A it is
not necessary to use a discrete distribution. An alternative choice intermediate
between eq. (1.1.17) and (1.1.18) is to take:

o0) = —— For |o|<A (1.1.19)

T A2 — o2

For A = V2UAT7 [1+ Y47)] one can satisfy eq.(1.1.13) up to o(A73). This

16

distribution is particularly indicated for methods of sampling®?~%® based on forces.
In fact with a simple change of variable ¢ = A cos 8, one get a uniform and smooth
probability density for the new variable 8 (p(o)do = %Z%) This will be our choice
in the most recent sets of calculation.

Using the identity (1.1.14-16) in equation (1.1.9) to express the full many

body propagator we can finally write the “pseudo” partition function @ in (1.1.2)

14



as a multi-dimensional integral over variables o,; where [ indicates each Trotter

time slice:

Q= /<¢T Ustpr > dppo (1.1.20)

P N,
dpe = H H plori)dos (1.1.21)

=1 r=1

and U, is the product of many positive definite one body propagators exp —Athy

defined at each [** time slice

Us = [] exp ATk (1.1.22)

where

. AT AT - UATN
exp —ATh; = exp —%Kexpzar,z(nﬂ ——nrl)exp—-—%K exp — 2T
(1.1.23)

Note that U, acts independently on each spin component and can be written as the

product of two propagators U, = U] Ul, each acting on separate spin subspaces.
It is also important to point out that, in case A is finite in (1.1.20), the fields o.; are
always constrained to be smaller than A and any short time propagator e~hidT
has always bounded eigenvalues. Hereafter we formally indicate with Enj, and

E.ax the minimum and the maximum eigenvalue of iz,i for any possible bounded

configuration of the fields.
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From (1.1.20) an estimate of Fuyin and Eyax is roughly

A
<
Brmax < N, (1 + —T)

(1.1.24)
A

Emin Z —dVg ~
N (1+AT)

16



- 1.2 MAPPING OF THE QUANTUM PROBLEM ONTO THAT

OF SAMPLING CLASSICAL PARTITION FUNCTIONS

In the previous section we introduced classical auxiliary fields o.(¢) by means
of the HST. Then a multi dimensional integral ¢ over these variables can be used
for the study of the ground state properties of the electronic system. Of course this
quantum problem would be solved if an exact numerical evaluation of this multi-
dimensional integral were possible. Unfortunately this is not the case because the
functional @) contains a prohibitively large number of variables. A very important
advantage can be obtained using a statistical mechanic approach interpreting the
functional @ as a classical partition function of the variables ¢. In this case in
fact one can use a statistical method for the evaluation of @) and related physical
quantities.

In fact if the integrand in (1.1.20) is always positive definite () can be thought
of as a classical ‘partition function of the variables ¢,.; that interact through a

potential

V(o) = —In <97 |Us |pr> . (1.2.1)

Then using eq.(1.1.8) a well defined classical average corresponds to the ground

state average of a given operator 0]

<Es(o)>q= Q! /dﬁLaEg(U) exp — Vo (1.2.2)
1 d \
Ep(o) = — 7 Irx=o In <9 UZ v7 > (1.2.3)
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where U2 is obtained by adding to the kinetic term a perturbation 20.

So far we have assumed that the integrand in expression (1.1.20) <% Us b1 >
is always positive definite. This is in general not true because the propagated
mé,ny body wavefunction U,¥r can have a negative overlap with the initial trial
wavefunction. However it is always possible to define a new classical partition

function:

Q) = [ dua] <z Uo(8,0)4r> | (1.2.4)

and the corresponding asymptotic energy:

Ey = ﬂ]iir; —% In Q% (%) (1.2.5)

In section 4 it will be analyzed in detail the existence of the limit (1.2.5) and its
dependence on the trial wavefunction.

Whenever the quantity < 7|Us|[¢r > is not positive definite the standard
procedure would be to relate averages in the Qu ensemble denoted by <...>xr to

the needed averages in the Q ensemble?” by:

cO>= <Eplc) x S>m
<S>m

(1.2.6)

where S = sgn <7 Uy 7 >. Forfinite 8 <5 >M = 'C}%? satisfies the inequalities:
0 < <S>up < 1since e PH is positive definite and Qpr > (. However difficulties
arise if the latter quantity < S >pr becomes an arbitrary small number when
B — oo.

As we will show in the next section < S >pr is either bounded from below

by |< o WJT>|2 or it vanishes exponentially with # for § — oo. In the latter

case the mapping of the quantum many body system onto a classical system

18



described by the o-variables is not well defined because expression (1.2.6), due
to the vanishing denominator, becomes singular in this limit. On the other hand
if <S>p > <o |1 >? from the asymptotic behaviour of @ it follows that Qps

can replace @ in the calculation of ground state properties because:

1 1
Ey = lim |—-=1nQ + =
N A R

This means that the actual value of the average sign does not affect the previous

In <5>MJ = Fy (1.2.7)

limit and it does not appear in the physical quantity obtained by differentiating
Ey with respect to some external field as in (1.1.8), if < S >p > < by |pr >2
holds independently from the external perturbation A\O. In fact by differentiating
Ep(A) with respect to ), instead of expression (1.2.6) we get a simplified and

convenient form which does not depend on the average sign < 5> p;:

2] _ o) >u (1.2.8)

This gives the same expectation values of the exact (1.2.6) if the average sign
does not vanishes even in presence of perturbations because Eo()A) is in this
case identically equal to Eps(A). In section 5 it will be shown that this further
requirement is not necessary in some cases. Therefore if < Sy >g >< gy | >2
the way to relate averages in the @ ensemble with those in the Q37 ensemble as
in (1.2.6) is an unnecessary complicated procedure.

Use of Qs as a classical partition function presents some technical difficulties

because the corresponding classical potential
VM = —In|<yr|U, [$r>| (1.2.9)

is singular along the nodal surface <7 U, ¥ > = 0. A more convenient “pseudo”

partition function®' is obtained by replacing in the integrand of the original

19



“pseudo” partition function @ the norm of the propagated wavefunction:

QX (¥r) = /d#a Us |1 >H (1.2.10)

Analogously the corresponding classical potential and the asymptotic energy are

defined as:

1
Ey = Iim —=

Jim — In Q%

(1.2.11)

V(o) = -1n|’0”1,|¢T >|} |

The weight in (1.2.10) never vanishes because the norm of the wavefunction
¥y = Uq(t,0)]pT > propagated at any given finite imaginary time ¢ is always
positive. In fact after the application of e~ hidT (1.1.23) to ®: the norm of
the propagated wavefunction ;- at the time ¢ + A1 cannot decrease faster
than e~ PmexAT (see 1.1.24) since h; has a maximum eigenvalue (||tiiar]|? =<
¢t|e"i"AT|1,/)t > > e 2BmaxAT) Then for any finite 4 the integrand of Qﬁ, has to
verify the bound:

| Uslor > || = e Founsf (1.2.12)
Analogously since h; has a minimum eigenvalue-(1.1.21):

[ Uslpr > || < e™Fminf (1.2.13)

Hence the classical potential Viy(o) is always finite and smooth because from

(1.2.12) and (1.2.13) satisfies:

:BEmin S VN(O') S ﬁEmax (1214)

20



It will be shown in section 3 that in any case Enxy = FEp. Hence Qu, as

well as Qpr, can be used to calculate ground state properties if the condition

<8>p5 > <ol >? is verified.
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Chapter II

Positiveness of the statistical weight

In this chapter we study, as rigorously as possible, the asymptotic properties
of the functionals Q(3), @m(8) and Qn(5) defined in the previous chapter, in the
low temperature limit. The weight Q(3) which was obtained by a straightforward
application of the HST is not always positive definite and there is a difficulty of
principle in interpreting it as a classical partition function. On the other hand
the functionals Qps and Qn obtained by a small modification of the previous
functional have always positive weight and do not present any difficulty in this
sense. The basic question we would like to answer in this chapter is: under which
conditions the asymptotic 8 — oo ground state properties can be calculated by
using these modified “classical partition functions” Qn(3) and Q(8).

We found that there are many non trivial cases where these positive “classical
partition functions” can be used instead of @) even when the weight appearing @

is not always positive definite.
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However it remains an open question whether this property is valid in general
as it will be discussed later, even though numerical cases have been found?* in

which this property does not seem to be satisfied.

2.1 AN EXACT STATEMENT ABOUT THE AVERAGE SIGN OF THE WEIGHT

IN THE ASYMPTOTIC T'= 0 LIMIT

The asymptotic properties of the average sign of the functional @ introduced
in section 1 can be related to the behaviour of @ and Qs in this limit.
First of all we simply consider that @ =< pre HPehr > expressed in terms of

the basis of the eigenstates v; of H is

Q=) e B <prfp;>? (2.1.1)
Since in the previous expression all the terms are positive @ can be bounded only

by the ground state term of the previous sum: -

Q ><tholtpr >* e TP (2.1.2)

Now let us consider the properties of le (1.2.4). Using the result (A2.4) of

app.2 for ¢; = ®; = |7 > one has that

(@3 < Qi (2.1.3)
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The previous relation is typically satisfied by usual classical partition function
and simply means that the Qﬁ/‘, behaves in an exponential way for 3 — co. More

rigorously we consider the sequence of “finite temperature free energies”:

_1
Br
for B = 2%y, then from (2.1.3) it follows that

Eun(k) = In Q%% (2.1.4)

EM(k -+ 1) < EM(k:) (2.1.5)

that is Eps(k) is a monotonically decreasing sequence. On the other hand from
the definition (1.2.4) the integrand in Qs (B) has always a maximum value for any

field configuration (see 1.1.24):

| <YprUshr>| < |Usldr >|| < exp —Eminf. (2.1.6)

By integrating both the positive sides of the previous inequality in [dus] and,
using that [[dus] = 1 (see 1.1.21), we find that Qﬁl < e BminB and therefore the
monotonic sequence E(k) is always greater than En,. Hence, for the elementary
convergence property of a bounded monotonic sequence, E(k) converges to a finite

limit say Ens and it is possible to define this quantity as: -

. 1
Epy = kh_{l;lo - E}:ln Q@ (Br) (2.1.7)

Then we can express for convenience Qﬁ} as a product of a function hpr(Bk) times

its asymptotic exponential factor:

Q% = har(Br)e EmP: (2.1.8)
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We now show that

hM(ﬂk) <1 Vk (2.1.9)

In fact substituting expression (2.1.8) in the inequality (2.1.3) the exponential

factors cancel and:

har(Brt1) = (har(Br))” (2.1.10)

Suppose now that (2.1.9) is not true and, for some ko, har(Br,) = e$ with § > 0.
We will show that this is not possible. In fact by iterating L times inequality
(2.1.10) from kg to ko + L:

oL
hat(Bro+r) > €8° (2.1.11)

As shown previously, the limit (2.1.7) converges to Enz, however from (2.1.11) and
the definition (2.1.8):

1 In h : §
Ey = lim ——Q% = lim _nha(Brorr) | gl < gy,

2.1.12
k—oo k L—oco ,Bko—i-L ko ( )

This is clearly not possible and (2.1.9) is proven.
It is now possible to characterize the asymptotic § — co limit of the average

sign. In fact from definition of <S>p = Q. only two cases are possible.

Qnr

a)
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If Epr # Ey the average sign exponentially vanishes with a well defined energy

scale

A = lim — IEI‘IHSM(ﬂk) = FEy— Epm (2.1.13)

k—oco k

b)
If Epr = Ey from the bounds (2.1.2) and (2.1.9)

<o YT >2
hae(Bk)

This also means that if for some finite 8 Spr(8) < <o|p7>? the average sign is

Sm(Br) > eTEHEMBE > <o lpr >E Vs (2.1.14)

exponentially vanishing with 5. On the other hand if case (b) applies @pr(8) can
replace @ for the calculation of ground state properties (1.2.7).

In general both in case (a) and (b) from the definitions (1.1.7) and (1.2.5)
Q%(sz) is always greater than the “pseudo” partition function QP(w7). This
means that

Ey < Ey (2.1.15)

and A > 0.

2.2 ASYMPTOTIC PROPERTY OF A DIFFERENT BUT RELATED

PARTITION FUNCTION

For practical and theoretical purpose it is useful to consider the “pseudo”

26



partition function Qu (1.2.10) which, as shown later, has the same asymptotic
behaviour of Qa;. In fact given an arbitrary orthonormal basis of vectors {®;}
with ®¢ = v, using the completeness of any basis, the following relation simply

holds:

10 |z >I* =Y I<erUs > < (3 ]<¢T|U01<I>i>|)2 (2.2.1)

and Qn (1.2.10) can be bounded by:
Qn(¥r) < z/1<¢T1UaI@j>| dpto (2.2.2)

Using the inequality (A2.4) of app.2 for ¢; = 7 and ¥; = @; for each term in
(2.2.2), we find that:

Qn (¥r) < D (/d#a |<¥r |Us(26,0) | ¥r >|>1/2 = D( ?x[;(?ﬁT))%- (2.2.3)

On the other hand ||U, |¥1r >|| > |<97|Us |97 >|. Then by integrating both
sides of the previous inequality and using (2.2.3) one easily obtains a two-sided

inequality satisfied by Qn:

Qm(B) < Qn(B) < D@y (28) (2:2.4)

It is therefore clear that:

lim ~% InQum(B) = lim -[—13— In Qn(5) (2.2.5)

B—c0 B—co
that is Epy = Epn as was already mentioned.
This is also an instructive example showing that the “pseudo” partition

function Qﬁj is essentially dominated by a well defined energy scale. This energy
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scale is not affected at all even though the norm of the propagated wavefunction in
Qﬁ, replaces the absolute value of its overlap with the initial trial wavefunction as
in Qﬁ,[ If this energy scale also dominates the asymptotic behavior of the original
QP “pseudo” partition function we are in Case (b) in (2.1.14) and it is possible
to define different but related “pseudo” partition functions such as Qp; and Qn
which are positive definite and give the same ground state properties of the many

body quantum system.

2.3 EXISTENCE OF THE T = 0 LIMIT

AND ITS DEPENDENCE ON THE TRIAL WAVEFUNCTION
The existence of the limit

1

gl Q7 (vr) (2.3.1)

E]\/[ = hm
p—+o0

was proven in Sect. 2 only for a particular sequence of the inverse temperature
Bk = 2F8y. The limit (2.3.1) in principle can also depend on the initial B in the
chosen sequence. With a more detailed proof we-show that the limit (2.3.1) is well
defined and how it depends on the trial wavefunction .

For this purpose we introduce two definitions which are standard in linear

algebra (see for example [37]).

A subspace D of H is called invariant under a family of operators {O;} if

O;% C D for each operator O; of the given family and all » € D.
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An invariant subspace D (under the family {O;}) is called irreducible if the

only invariant subspace contained in D (under the family {O;}) are {0} and D.

In app.3 it is shown that a subspace of H is irreducible under the family
of all the one body operators U,(8,0) (1.1.22,23) if and only if it is irreducible
under the family of all elementary hermitian one body operators which appear
in Us(B,0). For the specific HST chosen these operators are the kinetic term K
and the local magnetic operators m, used for the HST decoupling of the many
body term. The problem of finding the irreducible subspaces of the infinite set of
operators U,(f3,0) is therefore equivalent to find the irreducible subspaces of the
finite set of elementary one body operators m, and K. Since all such operators
are hermitian, to each irreducible subspace corresponds a complementary invariant
subspace H — D. In this case the total Hilbert space can be written as a direct

sum?38:

H=D:0D:®...9D, (2.3.2)
where each subspace D; is irreducible (and therefore invariant) under all the
elementary operators that appear in U,(5,0). From app.3 these subspaces are
irreducible also under all the family of propagators U,. We notice that an
irreducible subspace of any elementary operator (m, and K) is also an invariant
subspace of the Hamiltonian (1.1.1-3). In fact this Hamiltonian is simply written

in terms of the kinetic term K and Myt



U
H =K — 5 Zr:m,, + cost. (2.3.3)

and of course an invariant subspace for all such elementary operators is also an
invariant subspace of H. Hence the decomposition of the Hilbert space (2.3.2) also
factorizes the hamiltonian H in invariant subspaces containing one or more energy

levels.

The decomposition of the Hilbert space in the form (2.3.2) is useful to
understand the dependence of the limit (2.3.1) on the trial wavefunction 7.

In any irreducible subspace D, defined with dimension d < D, we can consider
a complete set of orthogonal vectors {®;}. For convenience we introduce more
manageable “pseudo” partition functions defined in this subspace by means of the

chosen complete set {®;}:

Qiu(B) = max Qf(8) (2.3.4)

1

where:

by = /duol<@ian(ﬂ,0)@j>l (2.3.5)

In app.4(a), we show that Q%,(8) can be written for sequence of 8, = 2*3, as a

bounded function A}, times an exponential asymptotic factor:

Qar(Br) = hy(Br)e Frobr (2.3.6)

with h};(8k) such that:



7= ha(Br) < 1 (2.3.7)
and
B, = lim - o-1n Q3(8) (2.3.8)

In app.4(b) we show that the asymptotic energy Ej3 (2.1.7) is independent of the
particular choice of By and let’s call this energy in the following E*. Therefore
using (2.3.6-7) for £ = 0 and By = f arbitrary

Qhr(B) = hi(B)e™ PP (2.3.9)

with ¥ < A? < 1. This in fact ensures the convergence of the asymptotic
d M

energy:

1
E* = lim — =
ﬁ—fnoo B

In Q3(B) (2.3.10)
without restriction on a particular sequence of inverse temperature Sy as in (2.1.7).
In fact after substitution of (2.3.9) in the limit (2.3.10) the bounded function A},(5)
gives a contribution that vanishes at least as % Moreover in app.4(c) we show that
the value of E* does not depend on the particutar choice of the basis {|®; >} in
D and this basis is not restricted to be an orthonormal basis.

At this point we need to relate the limit (2.3.10) with the original one (2.3.1)
defined with a given trial wavefunction ¢p. In app.5 we show that if ¥ belongs
to a given irreducible subspace D the limit (2.3.1) we are interested in, exists

and converges to the same value E* previously considered in (2.3.10). Thus since

E* does not depend on 97 in D the limit (2.3.1) does not depend on the trial
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wavefunction too. In general if the trial wavefunction has non zero component in
more than a single irreducible subspace we can write 17 as a sum:

Y =y |®; > (2.3.11)

1

with each |®; > belonging to a definite irreducible subspace. Since the propagator
U, always leaves orthogonal wavefunctions which belong to different irreducible

subspaces, Qpr (1) can be expressed as a simple sum:

Qh(¥r) = > Q4 (%) (2.3.12)

The limit (2.3.1) still is well defined and converges to the minimum possible
energy E corresponding to each irreducible subspace where 91 has non vanishing

component:
1
B

This property is analogous to the convergence property of the “pseudo” partition

Ey = ﬁlim — anﬁJ(zﬁT) = min E} (2.3.13)

function @. It is in fact dominated, as it is easily seen in in (2.1.1), by the
minimum possible eigenvalue of H such that 7 has non vanishing overlap with
the corresponding eigenstate. It should be noted however that, since U, mixes
many different states with different symmetries tonserved by the hamiltonian H,
the decomposition of the Hilbert space in irreducible subspace is usually trivial
(H = H) or at most containing only a few different subspaces which are therefore
much less than the total number of energy levels. The chosen HST (1.1.14)
obviously conserves the total number of particles and the total magnetization
along the z—axis. However it is very interesting that another kind of conserved

quantity is useful to classify the different irreducible subspaces. In fact the charge
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conjugation symmetry, also described later (2.4.14), applied only to the spin up
particles:

df = (-1)"cig (2.3.14)

turns the magnetic operators into density like operators m, = 1 — nd, if
the d operators are used (d-representation). On the other hand, due to the
factor (—1)* in (2.3.14) the kinetic term remains unchanged under the considered
transformation. In the d-representation it is easy to realize that the elementary
operators K and 1 — n? appearing in U, are spin independent and therefore the
total spin (S%)? and S¢ are conserved. Going back to the original c-representation
we find that correspondingly (5¢)? turns into a special kind of operator which
commutes with the hamiltonian:

(542 = (599 + ?12‘2(—1)"*" [eqeuclich + caencheli}  (2315)

ij ~

where S is simply LT-_JX Hence the irreducible representations of the chosen
HST can be labelled by the following quantum numbers: the total number of
particles N, the total magnetization NT — N! and the total spin s3(s? + 1)

corresponding to spin up holes and spin down particles. As an example in a

4 x 4 Hubbard model with 10 electrons and without z—magnetization the number

16
5

is equal to to the number of different eigenvalues of (S%)?, in the d-representation:

2
of eigenstates of H is ( ) ~ 2107, while the number of irreducible subspaces

si st +1) with s* = 3,4,...,8 (2.3.16)
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2.4 SOME TRACTABLE EXAMPLES

For some particular tractable cases it is possible to state rigorously if the
average sign saturates for infinite 3 (case (b) in 2.1.14) or it vanishes exponentially

(case (a) in 2.1.13).

Case (a)

1 Trial wavefunction orthogonal to the ground state

After all we give a simple example characterized by the exponential decay of
the average sign. The ground state of H is assumed non degenerate and, as usual,

we indicate with E; the first excited energy level.

As noted in the previous section the decomposition of the Hilbert space in
irreducible subspaces D; also factorizes the Hamiltonian H in invariant subspaces
containing one or more energy levels. Therefore within the factorization (2.3.2)
there exists an irreducible subspace Dy containing %, the ground state of H.
In most cases this irreducible subspace Dy contains several vectors, namely his
dimension dy is greater than one. In fact if the Spposite were true Us(B,0) |t >
would be always proportional to 1. This means that the ground state of H would
be an eigenstate of all the possible one-body propagators Us(8,0). Of course the
latter circumstance is very unlikely and trivial. For the chosen HST (1.1.14) this
indeed occurs for U = 0 or for the completely filled case with two electrons per site.
In this case the Hilbert space contains only one independent vector. Hereafter it

1s therefore assumed that dy > 1.
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Then we can choose a trial wavefunction 17 orthogonal to the ground state
1o but still having a non-zero component in Dy.
Since 7 is orthogonal to the ground state the “pseudo” partition function @

(2.1.1) behaves asymptotically at most as:

Q(8) < e“Elﬁ (2.4.1)

Therefore for a trial wavefunction orthogonal to the ground state and having some
component in the irreducible subspace Dy, the average sign given by < .5>5 = Q—%
decays exponentially with an exponent A that is greater than 0, namely from
(2.4.1) and (2.1.15):

A > E, — Ey (2.4.2)

This result shows that in the @ functional (1.1.20) the more stable components
of the ground state are cancelled out due to the sign changes of < YU, >.
However in the Qa7 — @ v ensemble these cancellation cannot occur and they behave
exponentially with a larger exponent. This in turns determines the vanishing of
the average sign Q% as § — oo.

We remark at the end of this section that it is a very important property of
the HST to preserve the antisymmetry of the propagated wavefunction. In fact we
can consider the fermion Hilbert space as a particular subspace of the many body
Hilbert space of distinguishable particles and define U, in this larger Hilbert space.
It is a non trivial property that the fermion subspace is left invariant by U, for any
o—configuration —the fermion subspace is an invariant subspace for all the family
of one body propagators U,—. In fact a Slater determinant remains a Slater

determinant trough the one-body propagation U,, that is the antisymmetry is

always preserved. From the linear property of U, the same holds for any generic
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antisymmetric wavefunction. This property seems to be the basic advantage of
the HST compared with other fermion QMC**~161% methods. As an example in
the GFMC the resulting exponential instability is determined by an energy scale
A (similar to 2.4.2) given by the difference between the boson and the fermion
ground state energy. On the contrary in the HST formulation the boson subspace
is always orthogonal to Uy97 and a possible exponential instability in the method

is by no means determined by the attraction to the underlying boson ground state.

Case (b)

In the following we describe a list of cases satisfying the condition (b) in
(2.1.14) i.e. the average sign is always bounded by a constant < |ty >2. For
all the cases (half filled, small U, one dimension, negative U Hubbard models) we

will show that:

for any element of a properly chosen complete set of wavefunctions {®;},

Q‘]BV_,(@Z') does not grow faster than exp(—BEy):

Qs (®:) < exp(—BEy) V&, (2.4.3)

This in fact ensures that for any trial wavefunction 1 non orthogonal to the

ground state, the quantity Sp;(8) is always bounded.

In fact let us consider a generic trial wavefunction 7 with non-zero overlap
with the ground state and the Qn “pseudo” partition function, introduced in the

previous section. In the integrand of Qjﬁv(dr;r-) we can express the trial wavefunction

36



as a linear combination of vectors of the chosen basis ¥ = > a; |®; >:

> ails(8,0)%; >

i

. (2.4.4)

Qnthr) = [ dus

So using the triangular inequality in the integrand of Qﬁ, and that Qn(v¥T) >
Qm(Yr), Q']B\/I('I,[)T) satisfies the following bound:

Qhr(¥r) < QR (#r) < > a:| QR (2:) (2.4.5)

Since by assumption Qp(®;) < e PPo, from (2.16) each Qﬁ,(@l) in the RHS of
the previous inequality is smaller than a constant times e~ PFo,
This means that the energy scale Ejs defined in (2.3.1) is not lower than Ey.

This together with the opposite bound (2.1.15) gives:
Ey=Em (2.4.6)

for any trial wavefunction non orthogonal to the ground state. Finally using the

result of Sect.2 (2.1.14) Sp(B) >< o |¥pr >? for any 3.

In principle this condition is not enough to ensure that the correlation
functions can be calculated by differentiating Eps with respect to some external
parameter as in (1.2.8). In fact the average sign could vanish as soon as the

perturbation AO is added to the kinetic term in UJ.

Whenever Sp(8) >< ol >? is satisfied a sufficient condition for calculating
correlation functions even in case <S> < 1 is that
(i) the trial wavefunction ¥ belongs to the irreducible subspace Dy containing

the ground state g, and

w
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(ii) Dy is also an irreducible subspace for all the family of propagators U2,

If Dy is irreducible under all the family of propagators U.(3,0) (see 1.1.22)
and ¥ belongs to Dy, Enr(A) does not depend on the particular chosen trial
wavefunction in Dy, as shown in Sect.3. In particular Epr()) will remains

unchanged even using ¥ as a trial wavefunction and:

OEnm(N) =" 8EMm(N) | (2.47)
A Yo A pr =1
On the other hand for any finite 3 one has (1.2.8):
Oy [=°
=M =<Ey(o)>n - (2.4.8)
oA Y=
T =%o

Since, Sp(B) = 1 from eq.(2.1.14), for 7 = b the Qas average denoted by <>

is exactly equivalent to the true average. Then for infinite 8 (2.4.8) gives the

ground state expectation value of the desired operator and therefore by (2.4.7):
AEM(N) =" 9B (M)

—n = M\ — < 1hg Orhg > (2.4.9)

P aA PYr =10

In the following in order to satisfy condition (2.4.3) we choose a basis set of
states ®; in the Hilbert space of fixed number of spin up N; and spin down N,
particles. Without loss of generality we choose each vector ® of this basis, as a

product of a spin up and a spin down part
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where

Yo = D falzr, 22, yzn)ed, o ey 0|00 > (2.4.11)

and |Oy > is the vacuum state of spin—« particles. Since U, is a simple product of
one spin component operators U, = U] U} the integrand in (1.1.20) can be written

as:

<OUB>=<pTUlpT> <ot UL ypt> (2.4.12)

Using the statement (2.4.3) we are going to examine separately each case
where the sign does not vanish for infinite # for any trial wavefunction non

orthogonal to the ground state.

1 Half filled case in a bipartite lattice
The basis set of states ®; are in this case the complete set obtained by all
the possible Slater determinants made up by orbitals defined in a given site: g

in this case is

— +
O [ (2.4.13)

where the corresponding f, (2.4.11) is non vanishing only for particular values
of z;. In particular the states belonging to this complete set which do not
contain double occupancy are invariant under the following charge conjugation

transformation which is possible for a bipartite lattice:

= (-1)’ci—0 (2.4.14)



Here in (2.4.14) it is understood that the factor (—1)* has definite sign on each
of the two different sublattices. Moreover in (2.4.13) the vacuum in the c-
representation must be substituted by the vacuum in the d-representation
Ng
0 >a= []ck10a> (2.4.15)

=1

More generally the previous tré,nsformation is defined in the Hilbert space of
fixed number of spin up N and spin down N! particles only when the condition
N: + N; = N, (half filled case) is fulfilled. Note that the hamiltonian H after
this transformation remains unchanged (apart for constant in this Hilbert space),
therefore the transformation (2.4.14) is a discrete symmetry of the considered half
filled Hubbard Hamiltonian.

By applying the transformation (2.4.14) to each spin up and spin down
component of <® U, ® > it is easily verified that for the invariant states without
double occupancy:

<yl U;¢T>: exp Za”'l <yt Ual¢l>

rl

P
XV}
i
ft
(o)

N

<PrULpt>=exp =) oy <pTUIYT>

[

and it follows that for such states the integrand in @ is always positive definite,

in fact:
<®U, ®>= exp ——Z or; <1 Ul >% = exp Zar,i <ty Ukapy >% (2.4.17)

Hence

Qhr(®:) = QF(8;) < ™7 ' (2.4.18)
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for any element of the basis {®;} not containing double occupancy.

Let us consider now a generic element of the chosen basis ®; without
restriction about double occupancy. Any element of the basis is not in
general invariant under the transformation (2.4.14). In fact given an arbitrary
determination of the spin up (spin down) part T (%bl), in order to have a
symmetric state the ¢! (¥T) part is univocally defined by (2.4.14) in the sites
which are not occupied by the spin up (spin down) particles. In the following we
formally indicate with 9| = ¢y (* = ¢c7) the spin down (up) part of the state
(2.4.10) obtained by applying the previous transformation (2.4.14) to the spin
up (down) part of the state (2.4.10). ¥ ® c3p! and cp! ® 1! are states without
double occupancy and ther’efore satisfying (2.4.18). Now it is shown in app.6 that
for any state ®; of the form (2.4.10-13) the “pseudo” partition function Qs is
bounded by the “pseudo” partition function @) of corresponding states with no

double occupancy:

Qu(¥T ® %) < 1/QWT @ c¥T)Q(ey! ® %7) (2.4.19)

Then, using (2.4.18), condition (2.4.3) is satisfied for any element of the chosen

basis.

2U <0 with Ny =N

Even in this case we apply the statement of this section for the particular
basis of Slater determinants ®; containing only localized orbitals.

The chosen Hubbard—Stratonovich transformation for I/ < 0 (see eqgs. 1.1.11-

13) determines a propagator U, = UJU} which acts in the same way on both
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the spin components. So we have that those states of the form (2.4.10) such that
1 and 9| are defined in the same sites (the opposite case with respect to the

half-filled case) always determine a positive integrand in @ . In fact in this case:
<YrUspr>=<ypT Ul ¢T>? (2.4.20)
is always positive for such trial wavefunctions. Analogously to the preceeding case

(see app.3), since Qu(¥T @ ¥!) < /QT @ ¥T)Q(#! @ 1), (2.3.14) is verified

too for any element of the chosen basis.

3 1D case

For wavefunctions of the form (2.3.8) we define f, in such a way that in the

region described by:

1 <eaf <z3 < ... < zRa (2.4.21)

f is always positive. All the other regions of the space are obtained by
antisymmetric permutation. So we restrict f, to have a given “nodal surface”.
We will show in the following that UZ does not modify such nodal surface of £,
and one has that < ¢ U, ¥ > is always positive for any field configuration. In
fact U is a product of operators diagonal in real space, that clearly do not change
the nodal surface of f, and kinetic short time propagators e~A7K that in principle
could change this nodal surface. However it is possible to show that, in 1D with
periodic boundary conditions, if both NT and N! are odd, —ATK f, is always
poéitive when f, is positive.

In fact after the application of —K A7 to a function of the form (2.4.10) the
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corresponding f, changes as (Lieb and Wu®7):

N(L
fo = DY D falwr . @igs.. Tya) (2.4.22)
=1 s=:1

Since the kinetic term is local the only possible change of sign in the RHS of
(2.4.22) occurs when the kinetic term hops electrons at the boundary z{* = 1 or
2% = N,. In this case the change of sign is completely determined by N® —1
permutation to obtain the same order: i.e. (——1)Na‘1. From the Taylor expansion
of the propagator e~ATK it also follows that e‘A"Kfa is always positive in the
region (2.4.21) if f, is positive. Hence we finally get that U2, has always the
same nodal surface and the overlap <¥,U%%4 > is clearly positive for any o.

It is in general possible to choose a complete set of states of the form (2.4.10)
with the restriction that fo > 0 in the region (2.4.21). For example we can choose
the complete set of localized states ®; considered before and pay attention to
the phase determination of each ®; in order to satisfy f, > 0. Also in this case
Qum(®;) = Q(®;) < e PP for any element of the basis and condition (2.4.3) is
verified.

Clearly the same statement holds for even number of Nt and N| particles
with antisymmetric boundary conditions or for any filling but with open chains.

In conclusion in one dimension, the possible vanishing of the average sign

only depend on the boundary conditions and therefore has no important physical

meaning.

4 small U for “closed shell”
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In the following we restrict our analysis to cases where:

i) The HST is real. This can be always obtained for general real fermion

hamiltonian with two body interaction (see app.1).

ii) The auxiliary fields used in the HST decomposition of the two body term are
defined in a bounded region |o| < A as for the particular HST (1.1.18-19). A
is arbitrary small for sufficiently weak interaction and fixed Trotter discrete

time A7 as in (1.1.15) and (1.1.16).

iii) The ground state of the kinetic term is non degenerate. This is the case for
particular number of electrons that, for a fixed size, fill the outermost “shell”
of the kinetic term. Hence we define Ax > 0 as the gap between the first

excited energy and the ground state Ex of the kinetic term K.

We will show in the following that, if the previous conditions are satisfied, the

o : Ua’(/BiO)IwT> :
normalized propagated wavefunction OB 0 erST 1S always close to the state ¥
if the trial wavefunction 7 is close to ¥x and U is sufficiently small.

If:

[T — x| < -{—2- (2.4.23)

2+/AN,

— ARAT <

1—e 2

%

(2.4.24)

which is possible from (ii) for sufficiently small U

then
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< V2 (2.4.25)

H Uslypr > _¢T
I

UcrhbT

or equivalently since the distance between two unit vectors is simply related to

their overlap one has that:

<Ypr|Uslpr>> 0 (2.4.26)

for any field configuration and ¢ satisfying (iv). It is clear that in a neighborhood
of ¥ it is always possible to choose a complete set of independent vectors {®;}
and for such wavefunctions we have from (2.4.26) that Qu(®;) = Q(®;) and
(2.4.3) is satisfied too.
. U, (3,0)|r> . . . . .
The propagation m at each trotter time slice {t} can be iteratively

calculated by applying a systematic evolution due to the kinetic term:

exp —ATK |g; >

il > = 2.4.27
Vot > = o AT R 0 o] (2.4.27)
and a stochastic evolution produced by the fields o, ;:
exp >  Orimp|thairy >
[h2i42 > = 2 (2.4.28)

llexp orime|aits >||

The assertion (2.4.25) is essentially based on the stability of the imaginary
time evolution in the sphere of unit real vectors. After the application of an
imaginary time propagator as e K any real wavefunction non orthogonal to the
ground state of K tends to become parallel to it in an exponential way. It is clear

therefore (see app.7) that, after the application of the iteration (2.4.27) and, if ¥,
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and ¥y are sufficiently close, the distance between 341 and ¥ decreases by a

factor a with respect to the distance between 12; and ¥

[h2i41 — Y|l < efltbei — ¥kl (2.4.29)
with a < e“%&"\"' if:
1
<thyilk > > 5 (2.4.30)

It is remarkable that this property does not hold for complex wavefunction
because after the propagation this wavefunction can acquire an extra phase factor.
This is the reason why we need a real HST (i) because in this case we can limit
ourselves to a real basis and a real trial wavefunction.

Using the property (2.4.29-30) we first show that the distance between the
ground state of K and the propagated wavefunction remains always small during
the propagation for sufficiently small value of the interaction. In fact suppose that
at a given time slice ¢

1
<oilpr > > 5 (2.4.31)

Then from the triangular inequality:

1202 = ¥ull < ll2ive — baipall + lb2ivs — Pl (2.4.32)

Using the property (2.4.29-30) the second term in the RHS of the previous relation

is easily bounded:

[aie1 — bxc|| < e TEAT|foho; — P (2.4.33)

We now have to estimate the first term in (2.4.32). The variables |o,| are always

bounded by A defined in (1.1.16) which is proportional to U AT, and therefore
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the operator exp 5 o.m, appearing in (2.4.28) has a maximum (< exp AN,) and
a minimum positive eigenvalue (> exp —AN,). Hence in the expression (2.4.32)

the distance ||th2;42 — ¥2:41]| is easily estimated:

<Paip1 €Xp Z TrMetaiyrs >

< 1aiqp1 €XP QZ OrMpP2it1 >%
< 2—2exp—2AN, < 4AN, (2.4.34)

l[2i+2 —¢2i+1“2 = 2 -2

Using the two previous bounds the inequality (2.4.32) now becomes a linear

relation that can be conveniently iterated:

si42 — brel| < e T2 lohas — || + 24/AN, (2.4.35)

In fact if U satisfies (v) one can apply the previous relation for each Trotter slice ¢

provided (iv) is satisfied by the initial trial wavefunction, namely after [ iterations
with ;=¢ = ¥r:

-1

A A ‘

|21 — Y]] < exp— 21‘: Atl|lr — Ykl + 24/ AN, E eXP—““‘z‘I‘:{‘ATj
j=0

24/ AN, 2
< < % (2.4.36)

< g = xl + -
1 —exp _TAT

where in the latter inequality we have used (iv) and (v).
Finally the main statement (2.4.25) and (2.4.24) follow from the triangular

inequality and (2.4.36), in fact:

21 — ¥rll < 2t — v |l + [$x —vbrl < -+ < V2 (2.4.37)

ol
oI5

For any imaginary time [.
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From (2.4.26) the exponential instability (A # 0) in the HST formulation is

surely not present for sufficiently small U say U < U, and
Ey = Ey for all U< U,. (2.4.38)

Therefore Eps has the same perturbative expansion of the true ground state energy.
This is a very remarkable property. In fact if for some U > U. the exponential
instability appears, it is a non perturbative effect that may be related to some

interesting feature of strongly correlated systems.
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Chapter 111

Stochastic approach and Langevin dynamic

3.1 IMPORTANCE SAMPLING

The problem of evaluating a multidimensional integral with a stochastic
approach is based on the idea of importance sampling.

A general integral
I = /[dcr] P(o) ' (3.1.1)
can be decomposed in a product of a weight function w(o) time another function
A(o):
P(o) = A(o)w(o) with/[do] w(es) =1 (3.1.2)

The decomposition P(c) = A(c)w(c) is arbitrary and w(c) could be chosen as a
uniform distribution. However in order to improve the efficiency of the numerical
calculation, it is important that w is large when the value of P is large. In this

way the configurations “randomly generated” of ¢ are concentrated in the region
y g yg g
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where w, and hopefully P, is large. This is the so-called “importance sampling”

strategy.

Thus the problem is the evaluation of a classical thermal average :

1¥:/W“5¥E“)

[ ol

where the potential V is defined up to a constant: V = — Inw(o) + const and T

(withT = 1) (3.1.3)

is an effective temperature of the classical system. With a statistical method we
can generate configuration of o according to the probability function w(s). For
this purpose one can use either a Monte—Carlo algorithm or a molecular—-dynamics
strategy: one simply consider the system with o-degrees of freedom in the fictitious
classical potential V. As it will be discussed in Sect.3.2 a convenient algorithm
consist in considering the variables o to be function of a formal continuous time
variable s. Then the relevant o configurations are generated by integrating the

Langevin equations (LE), i.e.:

do; 2%

T = ae T (3.14)

and 7., are gaussian random variables with zero mean and variance:

<Noi(8) Mo (s') > = 2T6i;6(s — 5') (3.1.5)

Using this property, the statistical evaluation of classical expectation values of
estimators E(o) depending on the variables ¢ can be sxpressed as a temporal

average.

50



/[da’]w(a)E(a) ' 1 S
-—-——)-/E(as)ds (3.1.6)

<E(o)>= = lim

Jlaoto(e) Ty

where sg is the time needed to reach equilibrium for the LD dynamic egs. or
the MC scheme. The rational behind this approach, first suggested by Parisi®?, is
that to the stochastic evolution described by (3.1.4,5) is associated a Focker—Plank

(FP) equation:

8,P(c) = TAP + V -(VV(c)) P

where P(c) is the probability that the stochastic trajectory associated to the
LD equations (3.1.4,5) generates a configuration {c}. In the limit s — oo
P(s) — e PV and one can use this property to sample the Boltzmann factor.
For infinite time s equ.(3.1.6) would lead to zero statistical error. In the practice
however this is not possible and one has to consider statistical errors. A naive

estimation would give

N

(kB> - <B>?)

AE ~ = (3.1.7)

where p is the number of sampled configurations. However strong correlation exists
between successive configurations.

- In order to correct for this, one usually measures the average interval ¢
between the statistically independent configurations. This should correct (3.1.7)

in the form
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(<E*> — <E>?)*
p

q

AFE ~

(3.1.8)

The underlying hypothesis is that at equilibrium E(c) is gaussianly distributed.
For our QMC calculations this is not always the case, and we measure the error by
dividing the measure into segments of sufficient length and comparing the averages
obtained in these intervals.

If the segments are long compared to the correlation time of the simulation the
sub-averages are roughly gaussian distributed, due to the central limit theorem.
An estimate of the error using (3.1.7), where p now representsin (3.1.7) the number
of sub-averages, is therefore correct and ensures the 68% of probability of finding

the exact value of E within the calculated uncertainty.

3.2 A STABILIZED DISCRETIZATION OF

THE LANGEVIN DYNAMIC EQUATIONS

The most important step for the practical solution of the L.D.E. is how

to introduce in a convenient way a discrete dynamical time which maps the
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dynamics of the {¢} variables onto a standard iterative scheme which can be

easily implemented. The simplest approach is to integrate the LDE between s and

s + As:
s+As s+As v s-+As
[or T oo Tuow omn

and neglects in the integration terms of order o(As?):

ov

oi(s + As) = oi(s) + (—5;> As 4+ zi(sV2As (3.2.2)

where z;(s) are defined in terms of the variables n, appearing in (3.1.5) as:

s+As
No(s')ds' =vV20sz(s) (3.2.3)

From the definition (3.2.3), z;(s) for discrete s = kAs are therefore uncorrelated
normal distributed numbers with mean < z;(s) > = 0 and variance < z;(s)* > =
1. These variables can be easily obtained by a deterministic machine, using the
so called “pseudo” random generator routines®?. It is possible also to improve the
accuracy of the scheme (3.2.2) with better approximations of the first term in the
RHS of eq.(3.2.1). As shown by Gunsteren and Berendsen*® one can formally take
a Taylor expansion in As of the RHS of eq.(3.2.1) and proceed as is usually done for
deterministic differential equations. In this case however, since the random force
7, appearing in (3.1.4) generates random trajectory which are not continuously
differentiable, these methods are not expected to give accurate results as far as
the sampling of the weight is concerned.

41,42

A better approach was obtained by several authors by optimizing the

error, due to discretization, on the sampling of the weight instead of finding
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improved approximation of the single LD trajectory which is clearly difficult. In
practice for large Langevin time s, even though the exact continuous (As — 0)
trajectory is completely different from the discretized one, this can give statistical
property of an effective weight w(o) which differ by o(As*) with respect to the
desired weight. In some calculation we have used this approach, while more
recently we have developed a new method described below.

The necessity of developing new methods for integrating LE arises from the
need to overcome some difficulties pointed out by Wilkins et al. These authors
have noted that if the weight is positive semi-definite —that is w(o) = 0 for some
configuration— the potential V(o) becomes infinite. Since a strict dynamical
classical motion cannot cross (for As — 0) an infinite potential barrier there may
be problems of sampling “ergodically” all the phase space. Moreover when the
potential has some singular behavior in a surface of the phase space (and this is
the case when w(c) is semi—positive definite) the discretized dynamic of the LDE
may be unstable close to this region showing also severe problems of equilibration
(Wilkins and White*?). We anticipate that a solution to this problem can be
simply obtained with an adaptive time step integrator of the LDE. This is in
fact useful because a very small time step As has to be used only when the LD
trajectory is very close to the mentioned singular region.

In order to avoid these possible drawbacks of the LD sampling, we start, to
find convenient approximations of the corresponding FP dynamic. We note that
the FPE is quite similar to the time dependent Schrodinger equation in imaginary

time of interacting particles:

~
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where the hamiltonian H is the sum of a kinetic term K which is diagonal in
momentum?® space K = %A and a potential term V' (z) which is diagonal in real
space. A useful method®? to solve the SE from a given initial condition ¥y—=¢ = Y7
is to consider both the simpler cases when V = 0 or K = 0. In these cases the time
dependent SE is easily solved by using the appropriate basis which diagonalizes
the corresponding Hamiltonian H in (3.2.4). Then in order to calculate e—I:It’![)T,
which is the formal solution of (3.2.4), the propagator e~ (E+V)t {5 divided in terms
of short time propagators containing only the kinetic term or the potential one,

as it is also shown in chapter I:

Yy = lim (exp —A7,Vexp —AT,K)" ¢r (3.2.5)

where Ar, = ;:— and in this form the Trotter error vanishes as n~'. In fact it is

easily verified that the short time propagator

e ATV mATE T Az (K +V) + o(Ar2) (3.2.6)

differs by o( At2) o n~2 respect to the desired e ™2™ (X+V) This approach is quite

—ATV or emA™ K taken separately,

general and is convenient if each propagation e
can be efficiently applied to any given wavefunction.
Systematic improvement of the Trotter approximation are also possible, e.g.

—ATE+V) _

em TV TATE o~V o(AT?) (3.2.7)

but for reason of simplicity we restrict in the following to the simplest Trotter
decomposition. However the following analysis can be easily generalized for more

accurate decomposition.
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We now apply the same kind of approximation for solving the FPE because
there are two limits for it that can be easily understood as in the mentioned SE

(3.2.4). In fact one can identify the probability density as a sort of wavefunction:

P(O',S) =

the kinetic term of the SE with the corresponding diffusive term of the FPE

K =-TA | (3.2.8)

and the analogous of the potential term as the operator

V =-AV, —VV,-V (3.2.9)
appearing in the FPE. This operators now act on probability functions instead of
wavefunctions and conserve separately the total probability.

Inspired by the methods of solution of time dependent SE we calculate the

evolution of P(c,s) as:

Ps(0) = lim (e78Vem2EN™ P4 0) (3.2.10)
where As, = 3, which is valid at o(As?) and expresses the total evolution as

product of elementary evolutions under the alternate action of the operator

e_ASﬂ,K' and e-—Aan' (3.2.11)

The first one (e72*¥) gives the evolution of a FP eq. without potential term.

To it one can then associate a purely stochastic LE of the type
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& = Noi(s) | (3.2.12)

which can be exactly integrated to give

ai(s +6s) = oi(s) + V2T Aszi(s). (3.2.13)

AsV instead corresponds to a FPE where the diffusive (kinetic)

The evolution e~
term is missing. In this case the associated LE is a purely deterministic*? first

order differential equation (see 3.1.4,5 for T' = 0).
v

b= 5 (3.2.14)

There are several methods, which have been well established in literature, to
obtain a first or higher order approximation of egs.(3.1.4) with respect to the

discretization time As. One of this is the simple discretization

oi(s + As) = As (_293 + oi(s) (3.2.15)

Analogously up to o(As), average quantities as in (3.1.6) can be written as:

s+As

& [ B = B + o(as) (3.2.16)

S

where now the error has a well defined meaning since all the time derivatives of
the trajectory o(s) are defined and depend only on the shape of the potential V.,
in the neighborhood of ¢(s). They do not depend in fact on the random force

which can in principle have arbitrary large variation in the short time As.
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Strictly speaking, as soon as the systematic equations (3.2.14) are discretized
it always remains a finite step error in representing the change of the probability
P produced by the operator e2*V. However the described change of variables
(3.2.15) can be thought as acting on the same probability distribution P(c,s) —
P(o,s + As) by means of an effective operator which differ by o(As?) from the
continuous evolution operator e “2*V P(o, s). Again within this approximation, due
to discretization, the scheme remains a first order algorithm in the time step As.
In fact the approximation (3.2.16) remains to the same order if one substitutes to

AsV another one differing at most by o( As?).

the operator e~
At this point we note that, combining eq.(3.2.15), for the systematic evolution
with eq.(3.2.13), for the diffusive motion of the variables, we get in a natural Wéy
the first order discretization of the LDE (see eq.3.2.2).
Since the potential V, may be not well behaved for some o configurations
—when for example w(¢s) = 0 in (3.2.2)— it is convenient to use during the

systematic evolution (3.2.14) an adaptive integration scheme. The interval s, s+As

is divided in many different subintervals

(s,8+As) = (s,s+As1),(s+As1,s+As; +As2), ey (s+As1 4.  Asp_g, s+ As)
(3.2.17)

with the condition that

< cAs (3.2.18)

and in each interval an integration scheme like (3.2.15) is followed. A similar

condition was already used by several authors in the solution of the LDE33:3¢,
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However we think that this trick can be rigorously applied only during the
systematic evolution and not in presence of the random force. Ounly in this
case in fact the error due to the discretization in the short time interval As is
systematically controlled by the adaptive condition (3.2.18). The constant c has
to be chosen conveniently. For As — 0 the LDE and consequently the FPE are
exactly integrated with an error which scales as (As).

This FPE, discretized using the Trotter approximation, would give an
equilibrium distribution for s — oo differing by o(As?) from the desired one.
To this FPE we can finally associate discrete LDE for evolving the variables {o}
from the time s to the time s+ As. These can be calculated in two different steps,

where we put 7' = 1 for simplicity:
(1) Firstly apply the diffusive term:

o = oi(s) +V2Asz;(s) (3.2.19)

(2) Solve adaptively up to o(As?) the 1°* order differential egs.:

F=— (%g)‘ (3.2.20)

from s to s + As with the initial condition &;(s) = o;.

In principle expectation values of physical quantities have to be calculated
even during the random evolution (3.2.20) but after equilibration for s — oo it
is not important when to calculate them and we preferred to update expectation
values only during the systematic evolution. This way of performing averages can

have some advantage if the potential V, is singular in some region of the phase
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space. This singular behaviour can be conveniently regularized using the adaptive
scheme described before (3.2.18). In fact when for example % is very large at some
time s the corresponding contribution to the expectation value of 4 is weighted

by a factor of the order of 6—17_

In order to show the eﬁgciency of the present discretization of the LDE we
apply it to the weight w(o) = | <9rUstr > | described in (1.1.16-19). For the
2D Hubbard model the weight w(o) used is not positive definite and can vanish
for some configuration {¢}. Even in this case however the previously described
scheme works very efficiently and accurately as it is shown in fig.3.1 for some

interesting exact results.

P>

0

Figure 3.1. Momentum distribution of the doped (6 holes) 2D 4x4 Hubbard model with U=8. The
continuous line connect the exact results obtained by direct diagonalization® and the triangles are the
results of the simulation for 3=10. The time step chosen for the discretization of the LDE was As=0.1

The path in the Brillouin zone is shown in the insect
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Figure 3.2. Average sign as a function of the discretization time As for the toy model discussed
in the text. The black dots are the results of the statistical simulation, using the adaptive first order

algorithm (3.2.23-24).

In fig.3.2 we plot the average sign as a function of As for a singular weight

w(f) = (1 —2cos?h) (3.2.21)

We see that using the scheme described in Ch.IV one can also use the Langevin
dynamic for sampling weight with negative sign.

A better approximation of the Trotter formula as in (3.2.7) is not convenient
because requires the calculation of the forces several times for each short time
interval propagation As and when the weight is non positive definite we expect to
have little or worse behaviour in the region of the nodal surface w(s) 2 0 with an
higher order algorithm.

In conclusion we have shown that the problem of the large moves occurring
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during the LD evolution when the potential has some singular behaviour can be
simply and rigorously solved by using the present adaptive scheme. As far as
the possible lack of ergodicity of the LDE, it is enough to note that during the
diffusion motion, (3.2.20) for any finite As, there is always a finite probability for
the variables {o} to reach an arbitrary configuration of the phase space. This
of course means that the discretized LDE are always ergodic and at most the
algorithm can become slower when As — 0 if the probability to cross different
regions separated by infinite potential barriers becomes smaller and smaller as
As — 0. In this case it is enough to use a Langevin simulation time that for any

fixed As is much longer than the average time to cross the barriers.
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Chapter IV’

The algorithm

In this chapter we present a newly developed scheme for sampling the weight
w(c) described in the previous chapters, using the Langevin dynamic approach.
As also pointed out in ref.[41] Langevin updating proves to be ideal here, largely
because the entire space-time lattice is updated simultaneously, rather than link
by link or site by site as in Monte Carlo calculations.

We found a way to calculate the forces which is stable and fairly convenient
since the most expansive part in the calculation of the forces grows quadratically
with the system size for fermions and linearly for bosoms. It should be
mentioned, however, that there exist methods, developed in QCD?*%*! demanding
a computational cost growing only linearly with the size. For QCD it seems not
important to reach very low temperatures while it is essential in condensed matter
physics to reach temperatures well below the Fermi one. We think therefore
thét these schemes used in QCD are unstable for low temperatures. In fact an

essential part to stabilize the calculation of the forces in the present approach
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is obtained by using the orthogonalization technique, which has considerably
improved the stability of existing Monte Carlo calculations based on the HST?24:25
This procedure (described in sect. (4.2)) is computationally quite expensive but
has to be used necessarily for a stable simulation of Fermions at low temperatures.
In fact dynamical methods based on the QCD approach®® are limited to very
high temperature so far. On the other hand our algorithm can be improved
efliciently using the so called Fourier accelerator and more efficient ways of

orthogonalizations.

4.1 CALCULATION OF THE FORCES

We now describe how to calculate the forces, corresponding to the weight

~

(1.1.20) in an efficient way. For a dynamical method of sampling based on forces

we have found that the most convenient way to perform the HST is to use the
distribution (1.1.19), because with this choice the fields {o} fluctuates in a finite

range

lon] < A (4.1.1)

with A =v2UA7 [1 + ZAT 4 o(A7?)]. In fact the imaginary time evolution in
this case is clearly more stable, because the operator e?"™" is always close to the

identity for sufficiently small Trotter time interval. After the change of variables:
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orl = Acosb, (4.1.2)

the weight in consideration assumes a particular simple form in which the
constraint (4.1.1) —which would be difficult to approximate with a dynamical
method— is no more present for the angular variables 6,;. In fact the weight

appearing in (1.1.20) can be written as:

Q = /dl-te w(9) (4.1.3)

where dpug from (1.1.21) is

P N,
=11 (d9”> (4.1.4)
=1 i=1 »
and the weight is simply given by:
w(0) = <yprUs(e)br > (4.1.5)

where U, is defined in (1.1.22) and (1.1.23). Using this angular variables 6,.; and,
the LDE described in chapter 3, the forces needed for sampling the weight w(8)

are given by:

0
ga,; " (70 = 7.,

F.(l) = — In <97 |Usgey 7> - (4.1.6)

We consider, for the trial wavefunction ¢ a single Slater determinant made
up by NT spin up and N* spin down orbitals. As mentioned before, U, acts

independently on spin up states ¢! and on spin down states ¢} .

el > |k > (4.1.7)
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Therefore we can write:

<pr|Us tpr >= det <! |Uy |0l > det <ok |Us|oh > (4.1.8)

and the problem of computing the forces is completely decoupled in spin space.

As a consequence:

In det <§01n } Uo-(e) {QDIL> + In det <‘Pvln I Uh-a((a) |(1011:L>

8 8
B0 = 5.0 86,.(1)

(4.1.9)

The derivative in the last expression affects only the propagator U, at the time
slice ¢. Such derivative, if calculated in the most straightforward way, requires
the computation of at least one determinant for each of the LN, degrees of
freedom amounting to a total of LN,N?® operations. However the total number of
operations can be significantly reduced by means of the following considerations.
Since the calculation is similar for both the spin component we will omit in

the following the spin labels T and | for the orbitals. Let us consider the matrix:
Amn(8) =<m | Us(o) on> (4.1.10)

Its determinant appearing in (4.1.9) can be formally written as:
det 4 = m 4 (4.1.11)

Therefore the terms appearing in the R.H.S. of eq.(4.1.9) for the calculation of

forces become:

Btr ln A 04 . o4 .
~ 50 = —tr aer(l)A = ;ﬂ {OGT(Z)}M AT (4.1.12)

The derivative =2~ A can be explicitly calculated by introducing the back and
36, (1) p

forth propagated orbitals at time (l — %) AT
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AT L
p>(l) = e K‘P>(ZAT)

(4.1.13)

_AT -
ec(l) = e T T (IAT)

where ¢« and ¢~ are the back and forth propagated orbitals for integer times:
&> (IAT) = Us(IAT,0)p0,m
(4.1.14)

¢<(IAT) = Us(IAT,B)po

and ¢.,(0) are the one particle orbitals corresponding to the trial function |¢p7>.
These propagated functions, as well as ¢ (ATl) @<(A7l) can be calculated using

iterative formulae:

2 Acos8,,éF &,
—-ATK
pomll) = ¢ K oo (1= 1) (41.15)

R ZA cos 0, (‘:j ér
Pem(l—1) = e 27K e 0< m(l) (4.1.16)

_Arg ) A7z
eem(L) = e T F0n(0) and ¢5 m(0) = €2 Fp,(0)  (4.1.17)
Since K contains operator diagonal in fourier space and the the random fields acts
over operator diagonal in real space a way to evaluate such iterative propagations
is obtained using the Fast Fourier Transform®*®. Another convenient way to apply
the kinetic propagation e~A7E 46 the orbitals can be obtained using the locality
—ATK

of the kinetic term. In fact by approximating e with
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AT?

I"”‘ATKQ"{" 5

K2, (4.1.18)

we still remain with a second order Trotter error and the propagation is efficient
because involves only multiplication of sparse matrices containing only few non
zero elements. |

By the knowledge of the back and forth propagated orbitals (4.1.15) and
(4.1.17) we thus find:

a .
{89,{[) }m’n = —A _Slngr’l <90T<’m(l) c+ c,,,go> 20> (4.1.19)

Such expression for each m,n becomes simply calculated in real space where
1t is the product of two real functions at the site point r.

In conclusion in order to compute the forces we need N?® operations to evaluate
A71,LNoN to propagate the orbitals for evaluating eq.(4.1.19), and finally N2LN,
operations to assemble this quantity into eq.(4.1.12). Therefore we have gained
a factor of IV relative to the direct approach. A further gain can be obtained by

rearranging the calculation as follows:

1

dtr In A ‘ S
79%%7 = > — Asinb. (1) <pZ ()& érlpsm(l)> (4.1.20)

where

ZAman (4.1.21)

Since this is a linear transformation <,of<r1 can be obtained by propagating

baékwards the vectors

oA (0) = > A7 0a(0) (4.1.22)

n
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as in formula (4.1.16). This transformation will reduce the number of operations
needed in the calculation of the trace in (4.1.12) from N?LN, to NLN, at the
only cost of adding N2 N, operations to evaluate goA—l(O). When all this factors
are taken into account we end up with an estimate of only N® + NN, + NLN,
operations to compute the forces with an overall gain of a factor VL with respect
to a brute force approach.

We write the explicit expression of the forces using eqs. (4.1.6, 4.1.20) and

taking in mind the discussed propagation scheme

. ATL e T :
Fr (1) = Asiné, [(Z <goT<,k ()&, e, Iga;k(z) >>
k

e Y .
(o 01 10 ) s

4,2 NUMERICAL STABILITY BY GRAM~SCHMIDT ORTHOGONALIZATION

Following the preceding steps the computer time required for thekevaluation
of the forces is very much reduced but the numerical stability is not taken into
account. The imaginary time propagation is not unitary and the orthonormality
conditions, initially satisfied by the orbitals, are not preserved during such
prdpagation. Therefore after repeating many times the step (4.1.15-16) an

orthogonal basis set ¢;(r) 7 = 1,..., N will no longer remain orthogonal. This
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circumstance can produce a numerical instability of the algorithm. In fact suppose

the orbitals are independently propagated through an imaginary time one-body

ht, The fermionic ground state can be considered as an excited

propagator e”
state (with the right symmetry) of a many-body hamiltonian; its true ground
state being a boson—-symmetric wavefunction. When the orbitals freely propagate,
after long time, they are spontaneously led to the bosonic ground state of h. In
this way the numerical information of the fermionic state is gradually lost until the
Slater determinant exactly vanishes when the N orbitals of the Slater determinant
are no longer linear independent within the given computer precision. Therefore,

in order to have a stable propagation, we have to rewrite, any few steps, the Slater

determinant which is at the time ¢:
b >t= det ¢! (7;) (4.2.1)
in terms of an orthogonal basis set. This is always possible with a transformation

Ol = > Umn @n (4.2.2)

. . . - - .
where the matrix I7,,, . is chosen in such a way that <3,.|¢,>=§,, ,. The matri

rd

Um,n is not univocally determined by the previous condition (4.2.2). A convenient
choice is to use the Gram- Schmidt orthogonalization scheme because, in this case,
Um,n 1s a triangular matrix.

Now from (4.2.1) and (4.2.2) |¢* > can be written as

|1 >= det [Z Un,n gén(rj)} = det(U)det [p}(r;)] (4.2.3)

where the latter equality simply follows by expanding the determinant of the

product of two square matrices: Uy, and @Z(r;). Hence we easily get that
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the Slater determinant can be written, up to a constant, by means of orthogonal
orbitals. Such a constant affects only the value of the propagated wavefunction
which can be independently updated. Therefore we again have to propagate a
Slater determinant, made up by orthogonal orbitals, and one can proceed as before
until the numerical stability will require another orthogonalization. Numerically
such a strategy is very useful and we can propagate for long time any function
without any numerical problem. However the computation time increases because
of the orthogonalization of the orbitals which costs an amount of N? N, floating
point operations. Moreover the formulas obtained in the previous section for the
calculation of the forces where derived under the assumption that the orbitals freely
propagate. Then eqs.(4.1.20-4.1.22) can only be used between two contiguous
orthogonalizations.

In fig.4.1 we plot a simple example to show the efficiency of the stabilization
technique which allows to perform stable imaginary time propagation.

In this fig.4.1 we see that without the orthogonalization technique the
logarithm of the determinant tends to increase with a faster exponent than the
true one and this happens because the matrix A becomes ill conditioned for large

imaginary time.
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Figure 4.1. Estimated number of significant digits P in the calculation of the logarithm of the
determinant as a function of the imaginary time 8. The continuous and the long dashed lines indicate
evaluations of P with or without the stabilization technique described in the test. The dotted line is the
evaluation of 1/10(logio det) without stabilization and the short dashed represent the same quantity
calculated with the stabilized algorithm. The data refer to a sample calculation for the 2D doped 6 ;

holes Hubbard model in a 4x4 lattice for U=8.

4.3 GROUND STATE EXPECTATION VALUE OF OPERATORS

The ground state expectation value of arbitrary operators O can be calculated
using the fundamental relation (1.1.18), (1.1.2), (1.2.3). After performing the
differentiation with respect to the external perturbation a well defined estimator

Ey(o) is obtained. This can be calculated by taking the imaginary time average
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of independent measurements at a fixed imaginary time ¢:
B
Folo) = = / dt B (o) (4.3.1)
& 0
where
Eg(o_) _ <yr | Ud(ﬂ,t) é Uo-(tvo) | Y >
<7 |Us(t,0) | >

The expectation value of the operator O is then obtained from the statistical

(4.3.2)

average for the estimator Eps(c) over the weight < YrUs(B,0)¢Yr >. In our
approach this statistical average is obtained by a temporal average over the LD
dynamics as in eq.(3.1.6).

Notice that in the evaluation of the estimator with the imaginary time
average (4.3.1) the contribution coming from imaginary time measurements close
to the initial ¢+ = 0 and the final imaginary time produce a slow convergence
of the physical quantities with respect to the inverse temperature. In fact such
measurements are too close to the trial wavefunction and give contribution which
vanishes as 1. It is péssible to improve systematically such convergence in 3
in the following way. Instead of averaging over all the imaginary time slices an
average over an interval which is far apart from the initial £ = 0 and the final time

t = [ is considered. In our calculations we used estimators given by:

w[w

Es(o) = EYo)dt (4.3.3)

I M

ME\ le

This kind of estimator can be formally obtained by taking the logarithmic
derivative of the partition function Q = <¢re ™ PHipp >:
o} 2

R __.....]_ —'Bﬁ'l[y 4:.- .4:
) ﬂn<1,bTe p > (3)
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where A acts as a time dependent perturbation H — H + )\té:

{M:A B<r<p-8

A=10  otherwise

and this gives as well for § — oo the ground state expectation value < Oy >
with an exponential convergence in f3.
Let us now consider two points equal time Green’s function. The correspond-

ing operator O reads:

O = &jnél (4.3.5)
In this case eq.(4.3.2) can be easily written as:

< Cij Us(t,8) % | CikUa(l‘-,O)‘tPT >
< Ua(tng) ¢T l Ua(t70)¢T>

Ei(o) = (4.3.6)

Therefore if 37 is a N-state single Slater determinant, eq.(4.3.6) involves the
scalar products of two IV 4 l-state determinants. Using the definition of the
forward and backward propagated wavefunction ¢< and ¢> (4.1.14) for integer
times and that the scalar product of two Slater determinants is the determinant

of the corresponding overlap matrix, eq.(4.3.6) becomes

det A%(7,k

where a =T or |, 4,(j,k) is a (M + 1) x (M + 1) matrix indexed by the single

particle wavefunction components with up or down spin projection:

_ [ ik @7(re)
.f_lm,n - <95T<n(7q]) Am,n A (438)

and A, , is the N X N overlap matrix:
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Aman =< @nlén > (4.3.9)

By letting the indices j and k assume all the possible values, we obtain N2 matrices
of the form (4.3.8). Therefore the full calculation of the two points Green’s function
requires the evaluation of 2N? determinants of order (N +1).

At first sight this would seem an impossible task. However the problem can be
greatly simplified by noting that the IV, 2 matrices differ one from another simply
by the exchange of one row and one column. It is convenient to formulate all the

calculation in terms of the quantities:

B(j, k) = > @mlre) Amin @n(75) (4.3.10)

m,m

Tt is well known that a determinant remains unchanged if one adds to a column
any linear combination of others. Hence we may add to the first column of the
matrix A a linear combination of the other columns, in order to make vanishing

all the elements of the first column but the one in the first row.

Sik  Palre) Sip— Lendnl(re)  Hr(re)
det <¢T<n(rj) Amm ) =det | <o) " S Annen Amn (4.311)

where in order to have:

95'r<n(71j) - ZAm,n Cn — 0 (4312)

one must take:

em = > AR @n(rs). (4.3.13)



Substituting (4.3.13) in the R.H.S. of (4.3.11) and using the definition (4.3.10) one

obtains:
oik — B(j,k) @7 (re)
, 0
., ->
TEE T I R Er—

b

0 Am,n

(4.3.14)
In the calculation of Ex(o) in (4.3.6) the factor det A cancels out in eq.(4.3.14)

with the denominator, yielding:

B i(o) = [6;x — B(j, k)] (4.3.15)

cje,
Summarizing, the ground state expectation value of any operator O deriving from
a suitable contraction of the 2—point equal-time Green’s function can be obtained
from the thermal statistical average of a classical field operator E4(0) (estimator
of the operator é) expressed in terms of the elements of two N, x N, matrices BT
and Bl at each time slice ¢.

The computation (4.3.10) of the matrices BT and B! requires the inversion of

NN
two ?X?

matrices AT and A! amounting N3 operations, a change of basis A=<
(N?N, operations) and remaining N multiplications for each different couple of
lattice sites (NV?) for which the matrices B%(7,5) are defined. In this way the
matrices B* can be updated with less than o(N?) operations.

For higher order correlation functions, by using standard properties of
determinants as before, it is easy to verify that Wick’s theorem applies and that

all the estimators Eo(c) can be also expressed in terms of the matrices B* at the

time ¢, i.e.:



<CjCjCZCl>=<CTCj><CZCl> + <c:.rcz><cjcz>. (4.3.16)

7

Here the brackets means the quantum expectation value over a fixed configuration
of o fields at a fixed time ¢t and each pair average in the R.H.S. is calculated by

means of eq.(4.3.15).
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Chapter V

Numerical results

5.1 — Havr FILLED 2D HUBBARD MODEL

The Hubbard model, already described in chapter I, represents a truly
interacting system. Without interaction (I = 0) one obtains a pure band
behaviour due to the small but finite overlap of the atomic wavefunctions. In
the atomic limit (¢ = 0) the particles are localized. So the Hubbard Hamiltonian
describes a system which allows for both these limits naturally, the intermediate
regime (t ~ U) is of particular interest, as in this range of parameters the
corﬁpetition between band effects and localization due to the correlation is most
important. So far only the one-dimensional case has been solved exactly®®*%45,
One finds a Mott transition in the ground state having strong antiferromagnetic

5

correlation*®. For higher dimension only approximation®® exists besides a few
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exact results within perturbation theory®??. Of particular interest are also some
exact result about the limit d — co*"*® where d is the physical dimensionality.

A major development in the understanding the physics of the Hubbard
model has been provided by use of computer simulation techniques. At half
filling Hirsch?%2® has shown, using 2 Hubbard-Stratonovich formulation, that it
is possible to study the half filled Hubbard model without any “Fermion sign
problem”. He found that, in agreement with spin wave theory the ground state
of the half filled Hubbard model is likely an antiferromagnetic insulator for all U.
Moreover he found a very simple description of his numerical results which we
describe briefly in the foﬂowing.

The Hartree Fock spin density wave theory (HF) of the Hubbard model

predicts a value of the staggered magnetization m that for small U behaves as:

i _s 7
myp & Z_]—e‘”r\/_ffj (5.1.1)

An important point is that within the HF theory there is a very simple relation

between the gap of the charge excitations Acs and the value of the magnetization

Ay = Um (5.1.2)

This simple relation is expected by Hirsch to remain valid even for the correlated
system.

For the 2D Half filled Hubbard model Hirsch found'?, (and quite recently®?
confirmed) that the value of the staggered magnetization at a given U can be

obtained by using the HF result and correcting it only by a factor o independent

of U
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m = amyr. (5.1.3)

For U — co the Hubbard model becomes a Heisenberg model and the value of m
for this model is quite well established (m = 0.60). Using this result together with
the assumption (5.1.3) the HF results can be scaled by a factor a = .60 in the
intermediate regime as well. Then, according to Hirsch, the physical properties of
the half filled model can be easily understood by a simple mean field spin density
wave picture, corrected only for spin—wave fluctuations.

We present here a numerical work on this subject, using the newly developed
technique presented in the previous chapters. At half filling, as it is proved in

chapter I, one can use, instead of the partition function

Q= /d#cr <PprUs (8, 0)r > (5.1.4)

coming from a straightforward application of the Hubbard—Stratonovich transfor-

mation, a well behaved partition function

s oA f e 1 1y ; \
In(p) = Ji Ao [|Ug T > | (5.1.5)
useful for the Langevin dynamics sampling (the weight is strictly positive definite).

As shown in Sect.(2.4) the quantity

1
Ey = lim —= InQ%(¢r) (5.1.6)
f—oo 3
is exactly the ground state energy for # — oo and any trial wavefunction non

orthogonal to the half filled ground state. Furthermore, by the Hellmann-—

Feynmann theorem, average expectation values of operators < 4gO1g| > can be
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calculated by differentiating the ground state energy of the Hamiltonian H in
presence of the perturbation AO with respect to A. Then we get a well defined

estimator of any given operator 0]

<O > = lim < Foo) > (5.1.7)

where the estimator Fq(o) is:

o 1
|y B

and U2 is obtained in (5.1.8) by adding the perturbation AO to the kinetic term.

Ey(o) = In || U2 (5.1.8)

If at half filling 7 is invariant under the charge conjugation transformation it
is also true that average quantities (5.1.7) converge to the desired ground state
expectation value.

Using numerical methods based on finite systems calculations the staggered
magnetization m can be evaluated by studying the spin—spin correlation function

for clusters of increasing size L X L

. L L
m = Lli-»moo 3C (?2“, "2“> (519)

or from the Fourier transform S(g) of the spin—spin correlation function C(r)

38
m = Gim /2207 (5.1.10)
L—oo L*
where C in our units is defined as:
4 — —
C(r) = 3 < Spr Sprgr > (5.1.11)



and the factor £ is used to match our convention with the usual definition. In

3
fact it is commonly used?%?* as a spin correlation function C (r) =<mpmpi,>
where only local magnetic operators along the z—axis appear. The two previous
definitions are equivalent for a singlet ground state but we used the symmetric
expression to reduce statistical errors in our calculation.

For a finite size scaling estimation of m by means of eqs.(5.1.9,10) it is useful
to have a guess about the finite size corrections on the mentioned quantity. This is
indeed possible because, according to spin-wave theory, the finite size corrections
to the staggered magnetization are expected?® to vanish as L~!.

In order to perform an accurate finite size scaling of the 2D Hubbard model
we restrict our simulations to the particular value of U = 3. Moreover we worked
with tilted lattices, as discussed by Oitmaa and Betts?, rotated by 45° with respect
to the normal coordinate axis. The number of sites was fixed 212 where [ is an
odd integer. This is convenient because the U = 0 solution at half filling is in this
case non degenerate and this allows more stable numerical simulations at least
for small U. We choose for this simulation a Trotter discrete time A+ = .08 and
AT = .16 as a test for the convergence, while the Langevin dynamic equations were
discretized with As = —1@. The last choice has been checked to produce systematic
error, that for all quantities studied, are negligible compared with the statistical
errors. A careful analysis has been performed for the convergence in the inverse
temperature 3. For each size we made several runs with different temperatures
until convergence has been reached within statistical error.

In fig.5.1 we plot the quantity C’(%—’, %) and S(;’ﬂ . The data fit quite good

a quadratic extrapolation in %, and this indicates an important size dependence

of these quantities on top of the spin-wave behaviour L='. After extrapolation,
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Figure 5.1. A plot of =5

(squares) and C(L/2,L/2) (triangles) against L™* for the 2D Hal{ filled
Hubbard model for U=3. The intercept is equal to mZ=m2/3 where m is the value of the staggered

magnetization. The curves are quadratic fits of the data.

which is fairly consistent for both measured quantities, we obtain a finite value of

the staggered magnetization (see egs. 5.1.3 and 5.1.4)

m = .24+ .02 for U =3 (5.1.12)

The value (5.1.12) is somewhat lower than the corrected HF theory described
before (see eq.5.1.3) which would give m = .35. Hence spin density wave HF
theory, even corrected with the empirical spin wave factor o, is not very accurate.
A possible mechanism in originating this decrease of magnetization is associated
with a finite charge gap A,y for finite U. Charge quantum fluctuations—somewhat
similar to doping— cause a reduction of this gap from its HF value. In view of the

qualitative connection (5.1.2), this can cause a further reduction of m.

3
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This close relation between spin-related and charge-related properties
suggests the necessity of studying the latter, which seems largely unexplored
in the 2D hubbard model. As a first step we have performed a detailed size
scaling analysis of the momentum distribution function, in order to characterize
the metallic or non metallic property of the ground state, which, as well known,
are directly related to the presence or the absence of a Fermi surface in the
thermodynamic limit of the momentum distribution:

ny = Zci,kca)k (5.1.13)

o1

For this study we have used a special analysis of data that we briefly describe
below and that can be obviously extended even away from half filling(see next
section) or in higher dimensionality. For reason of simplicity, we neglect in this
exposition the further complication that our cells are rotated.

As well known in 2D or in higher dimensionality the resolution in k space
increases very slowly with the size of the system and it is difficult to reach a
reasonable size to distinguish whether a Fermi surface is really defined for the
infinite system. Instead of considering directly the momentum distribution we

found convenient to consider the following related quantity:

/ E;Z—Wl)ié-nké(e(k) —€)

E % (5.1.14)

2 S(e(k) —
where €(k) = —2cos(k,;) — 2cos(ky) is the Fourier transform of the hoppin
v g

matrix. For a finite system all the vectors of the Brillouin zone can be divided into
different groups with a defined (k) = ¢ (see fig.5.2). For each group we calculate

the average value of the momentum distribution and represent 1t as a function of e.
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It is clear that for infinite size this function can be obtained by a surface integral

over surfaces Se = {k|e(k) = €} for —4 < e < 4 as in (5.1.14).

T

Equeal energy curves

Figure 5.2. Locus of k-points S, (continuous lines) with equal kinetic energy for a two-dimensional
Hubbard model with nearest-neighbour hopping only. e=~—2,—1,0 starting from the inner surface. The

dashed line represents an idealized Fermi surface at an arbitrary filling.

An illustrative example of this function n. is given by the HF spin density

wave results where the solution is possible*?:

1
“l1- ‘ (5.1.15)
2 €+ (Azch. )2

Within HF theory ne is a smooth function of € even at the Fermi energy ¢ = 0, thus
indicating the disappearance of the Fermi surface in the momentum distribution.

In fact in this case ny is easily related, in HF theory, to n:

NE = Tle(k) (5116)
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The derivative v of n. at the Fermi energy is finite and is simply related to the

gap Ac:
On. 1

T=-%r = i (5.1.17)

By doping the system, n. vanishes in a finite range of energy |¢| < ler|, thus

showing the same discontinuity of n; at the Fermi surface.

More generally, without restricting ourselves to mean field theory, if ny has a
Fermi surface that coincides with one of the possible surfaces S, for say € = €p,
as it is the case in the previous example, the function n(e) will exhibit a jump
in the thermodynamic limit. On the other hand if by Increasing € the surfaces
Se touch the Fermi surface only in some points, as it is the case for the dashed
surface shown in fig.5.2, n. will be discontinuous only in its first derivative. In
this way, by studying the property of this function for increasing size systems, it

is possible to understand the appearance of a Fermi surface with a much better

1

size

resolution (oc ), with respect to a direct analysis of the momentum distribution
in k-space. In fact in the interval —4 < e < 4 the number of possible values of the
discrete energies € is proportional to the finite size of the system.

We plot in fig.5.3 the function n, for all different sizes studied. The picture
show that this quantity, even for large system, smoothly depends on size and does
not appear to be singular for any value of e still in agreement with the absence of
a Fermi surface, typical of an insulating behaviour.

In order to describe systematically this property, for a finite system with size
L we consider the finite difference n(—er) — n(+er) of the function n(e) -in the
two symmetric values of the discrete energies ey, closest to 0. We plot in fig.5.4

this quantity as a function of the finite energy resolution 2¢; and we see that

this finite size jump clearly approaches 0 in a linear fashion for L2 > 78. This

36



? LI B B

i Sites ]
n 3V2x3Ve

1.5 — * 5V2x5V2
B o  NEZxTV2
" 11v2x 11v2 -
OB _
g [ i
B o

0 I | | | | B
—4 -3 -2 -1 0 1 2 3 4

€

Figure 5.3. A plot of n(e) for different sizes for a 2D Hubbard model at half filling

indicates that that the sharp nested Fermi surface occurring at U = 0 disappears
for large enough size due to the interaction. In the same picture it is also shown
for comparison the size dependence of the jump of n(k) in the (1,0) direction. Of
course in this way, that is choosing a direction and studying the size dependence
of ng, requires a much larger size to detect a Fermi surface discontinuity. This is

the reason why we preferred to study the possible singularity of n(e) (5.1.14).

Moreover this size scaling analysis shows a finite slope v of n. for ¢ = 0

(see fig.5.4), which as discussed before is consistent with the simple HF theory
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Figure 5.4. Plot of the maximum jump (full dots) of the function n(e) described in the text as
a function of the finite size resolution in energy for a 2D Half filled Hubbard model. The squares
indicates the plot of the jump of ny in the (1,0) direction as a function of the corresponding difference

of kinetic energies for the chosen k values.

(eq.5.1.17). Using the values shown in fig.5.4 we can estimate the value of this
slope, which is

v~ 2.3. (5.1.18)

This compared with the HF value v =~ .6 suggests, in view of eq.(5.1.17), a very
strong suppression of the charge gap due to quantum fluctuations.

We may compare this value (5.1.18) with “the one obtained by the simple
relation A.p, = Um, using the calculated value of m = .24 and, naively identifying

~ with ZICT (see 5.1.17). This gives
v~ 15 (5.1.19)

Although the previous calculation of v (given m) applies only within mean field

theory, the value obtained in this way is fairly in agreement with the previous
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independent estimate (5.1.18). This in turns shows that a corrected mean field
theory gives reasonable quantitative relations in this case.

In summary we described QMC results confirming that the half filled Hubbard
model is an antiferromagnetic insulator. The main new result concern 1) accurate

finite size scaling for the magnetism, which turns out to be, for U = 3, more like

SDwW
O.4A”{‘j that 0.6 Agf‘v as previously suggested!®!!; 2) a study of the momentum
distribution, and of the jump at the Fermi level, which is shown to scale to zero,
as expected for an insulator; 3) the effective (renormalized) charge gap Acp, which

for U =31is ~ ;1— of its Hartree—Fock value Af;?w.

5.2 DorED 2D HUBBARD MODEL

The physical properties of the Hubbard model away from half filling are of
extreme current interest also because of its possible relevance for understanding
the mechanisms responsible for high T, superconductivity.

It is generally believed that antiferromagnetic long-range order disappears
for v # 1, but the nature of the resulting state is at present controversial. In
particular, according to Anderson, a superconducting RVB phase should appear
in some region of doping ¢ (6§ = 1—v) as a result of large fluctuations in the number
of singlet pairs made possible by the presence of holes®®. Numerical simulations
by Hirsch have failed to detect any other significant feature than the breakdown
of antiferromagnetism away from § = 0 ?%2°. In particular Hirsch’s work seems

to suggest the existence of an ordinary paramagnetic metallic phase as soon as
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v # 1. However, existing simulations of the ground state of interacting fermions
are affected by a number of uncertainties due to i) small system size, i) non
zero temperature making extrapolation to the ground state problematic, and 1)
non positiveness of the statistical weight. Very recently the first two difficulties
are almost been solved by using stabilized and faster algorithms but the last one
still remains the main difficulty in Monte Carlo schemes, as we have discussed
in detail in Chapter II. We have seen that using the weight obtained with the
HST, there may be problems because the average sign can exponentially vanish
as the "effective” temperature §~! approaches the 0K limit. On the other hand,
according to the statements (2.1.13) and (2.1.14), it is also possible that the sign
changes of this weight depend only on the particularly chosen trial wavefunction
and the average sign approaches a constant for infinite 4. In this case, no matter
how small this constant is, numerical simulations are possible without sampling
directly the sign changes. Therefore the sampling of the sign is in fact not necessary
in this case (as is discussed in Ch. II). Since it is not possible to establish a ”priori®

the behaviour of the average sign one has to rely only on numerical simulation.

We have studied a number of small cluster for which an exact diagonalization
has been successfully obtained. In table 5.1 we show exact ground state
expectation values of different operators compared with results of numerical
simulation by neglecting the sign (i.e. using the Qx ensemble see eq.1.2.10). Quite
surprisingly we found a quite good agreement with exact results with very few
exception as it can be seen in table 5.1. It is noteworthy that even for two holes
(non closed shell case) total and kinetic ground state energy are correctly predicted.
However the magnetization is grossly underestimated. Also for 10 electrons in 16

sites the kinetic energy is slightly off. In spite of the overall encouraging pattern
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Size #e U E/N Erin/N  Smagn.(7,T)

2% 9 4 4 -1.406(5)  -1.880(6) 1.92(8)
(-1.414) (-1.867) (1.93)

3% 3 10 -0.700(1)  -1.626(86)
(-0.699) (-1.626)

4 x4 10 -1.227(3) -1.414(5) 0.73(1)
(-1.224) (-1.408) (0.73)

4 x4 10 -1.088(6)  -1.255(8) 0.76(2)
(-1.094) (-1.272) (0.75)

A x4 16 4 -0.848(5)  -1.324(6) 3.4(2)
(-0.8514) (-1.3118) ( 3.64)

4% 4 14 4 -0.988(3)  -1.331(4) 1.60(7)
(-0.9840) (-1.3366) (2.14)

Table 5.1. Comparison of the HST simulation and of exact diagonalization (in brackets) results. E/N
and Epin /N represent the total and kinetic energy respectively. Siag is the magnetic structure factor.

These results refer to ground state properties only.

the few exception found can only be explained with appearance of a finite A in the
B — oo limit (see eq.(2.1.13)). However table 5.1 indicates that, using the HST,
the fermion sign problem is considerably less severe than expected, so that it can
be considered a good approximation of the ground state properties to neglect the
sign. We don’t know whether this approximation is indeed exact away from half
filling, unless for very small U and closed shell (as shown in Sect. 2.4), but in all
numerical works it is not possible to distinguish if a quantity is exactly 0. It is
only possible to estimate a bound from above. Moreover even in case the average
sign exponentially vanishes one can relate exact ground state average of operators

to the averages of estimators (1.2.3) with the approximation of neglecting the sign.
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In fact from Epr = Fy — A and the Hellman—Feynman theorem, we have that:

. 0F, A
<PoOthg > = 3;‘ - —a—x (5.2.1)

Now if A smoothly depend on the external coupling A we can get good
approximation of ground state expectation values without sampling the sign.
Within this approximation, we now describe some of the results concerning the
physical property of the Hubbard model away from half filling. Then we make an
independent calculation, although for smaller but comparable sizes, by considering
the sign in the weight, and verify how good is the mentioned approximation.
The 2D antiferromagnetic order is readily destroyed by doping. In Fig.5.5 we
display the spin-spin correlation function C in the 16 x 16 lattice at U = 4 for
v =228 (§ =12%) and for v = 7= (6 = 71%). These results have been obtained
using a paramagnetic trial wavefunction. Th’e same results are also recovered
starting from an antiferromagnetic wavefunction. However in this case a longer
Langevin simulation is needed to reach equilibrium and melt the magnetic order.
The results of Fig.5.5 confirm the suggestion by Hirsch that away from
v = 1 the magnetic order is destroyed in the 2D Huhbard model. The question
whether spin correlations in this system decay expomnentially or as a power law
is however difficult to answer within the present numerical accuracy. In fact, the
corresponding spin—spin correlations for the U = 0 Fermi-liquid look quite similar.
In order to test the further conjecture that the disappearance of magnetic
order signals the onset of paramagnetic metallic behavior, we have measured the
momentum distribution n(k) for three values of the doping § = 1 — 1—\% Our

results, which are displayed in Fig.5.6, show that the mementum distribution for

the half-filled case is a smooth function consistent with the insulating character
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Figure 5.5. Spin-spin correlation function of a 2D 16 x16 Hubbard model for U=4, v= (continuous

line) and 1/:—2-75—45 (dashed line). The path in the unit cell is shown in the inset.

of the antiferromagnetic state. The momentum distribution of the half-filled AF
Hartree—Fock state, shown by the dashed line of Fig.5.7, is in fact rather similar
to that of the true ground state of Fig.5.6. The situation changes completely with
moderate doping, § = 12%. The new HF state displays a sharp dip corresponding
to a Fermi surface (Fig.5.7). The true ground state n(k) shown in Fig.5.6, however,
has no such dip, and roughly looks as though some kind of insulating character
were preserved, in spite of the fact that magnetic order is destroyed. For heavy

doping, finally (6§ = 71%) a sharp Fermi surface is clearly recovered.

After these results were obtained with the approximation that neglects the

sign we have considered tilted shell at 10% doping case with tilted PBC. For the

o

oo

sequence of site numbers 20,100,180 and orientation tan(f) = 3, 3, % respectively,

the kinetic term is non degenerate, and this ensures. as shown previously in
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Figure 5.6. Momentum distribution of the 2D 16 x16 Hubbard model with U=4,for V:%E;% (dashed

line), v=228 (dotted line), and v= % (continuous line). The path in the Brillouin zone is shown in

the inset. The imaginary time was T=12 (half filled) and T=24 (less than half filled).

chapter II, that for sufficiently small U the average sign is never vanishing
exponentially. Also at larger U we expect the sign problem to be less severe once
the degeneration of the kinetic energy term has been removed. Moreover in order
to improve the convergence in the inverse temperature we used the Gutzwiller
wavefunction as a trial wavefunction. This Gutzwiller wavefunction®4748 is
expected to be closer to the true ground state than a simple Slater determinant

and it is defined as follows:

E n”nil)

Yow = 6_%( | > (5.2.2)

<vew Higw >

. )
o e S and 7 is still a chosen

with o chosen in such a way to minimize

Slater determinant wavefunction. In fact within the HS formulation it is very
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simple to build the Gutzwiller operator exp —% 3" mipngy in terms of auxiliary

fields exactly in the same way as the many body term is treated in (1.1.14):

e~ VAT _ ~(UAT) Y nirmiy (5.2.3.)

After all a Qutzwiller wavefunction can be used as a trial wavefunction by
adding further 2N, auxiliary variables in the propagator U, defined in (1.1.23)
at the first and at the last discrete imaginary time slice. We considered in the
numerical calculation two different Gutzwiller trial wavefunctions with or without
antiferromagnetism in the free electron part 7 of Yow (5.2.2). The convenience
of the Gutzwiller wavefunction is illustrated in fig.5.8 where it is shown that the
estimated energy converges very soon to the ground state energy. In fact the

Gutzwiller variational parameter o remarkably improve the value of the energy
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Figure 5.8. Ground state energy per site for the doped (10 holes) 2D Hubbard model in a 87462
100-sites tilted lattice as a function of the effective inverse temperature. The triangles correspond to
simulations with a paramagnetic Gutzwiller trial wavefunction with o=1.0. The squares are instead
obtained with an antiferromagnetic Gutzwiller trial wavefunction with the same . In the last case the
value of the staggered magnetization was fixed to 1/2 the mean field value. The corresponding Hartree

Fock paramagnetic energy is indicated for comparison

with respect to the uncorrelated part. Exp = —.815, Eqw ~= —.94 while the

estimated ground state energy is around —1.00 £ .03.

In order to show the instability of the AF order obtained with a little amount
of doping, we show in fig.5.9. the dependence of the magnetic structure factor
at @) = (m,7) as a function of our “effective” temperature =1, for the two trial
wavefunctions considered. We clearly see in this picture that the temperature
dependence of S(7,7) is much more stable when the trial wavefunction is the
paramagnetic one, thus suggesting disappearance of AF order. Remarkable

is the comparison on the same system of the value obtained with the norm-—
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Figure 5.9. Magnetic structure factor S(g) at g=(m,n) for the doped (10 holes) 2D Hubbard model
in a 8%+4+6% 100-sites tilted lattice as a function of the effective inverse temperature. The triangles
correspond to simulations with a paramagnetic Gutzwiller trial wavefunction with a=1.0. The squares
are instead obtained with an antiferromagnetic Gutzwiller trial wavefunction with the same . In
the last case the value of the staggered magnetization was fixed to 1/2 the mean field value. The

corresponding value obtained at low temperature, using the Qn ensemble is indicated for comparison

approximation described before.

As far as the momentum distribution function is concerned we show in fig .5.10
the value of the jump n., —n._ at the Fermi energy. From fig.5.10 it is apparent
that the Gutzwiller wavefunction implies a finite jump in the Fermi surface even
in the thermodynamic limit. More difficult is to reach any definite conclusion
on the ground state obtained by HST simulation, due to statistical errors and
insufliciently large sizes and 3 values. The jump is much smaller than Gutzwiller,
but it is otherwise not clear what value it will take in the thermodynamic limit.

The fact that the maximum jump in n(e) occurs at the same value for which a
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Figure 5.10. Plot of the maximum jump of the function n(e¢) described in the text as a function of
the finite size resolution in energy for a 2D 10% doped Hubbard model(continuous line). The dotted
. line gives the corresponding jump for the Gutzwiller wavefunction, where o =2 and the single particle

determinant is paramagnetic.

free particle state at v = .9 has its largest discontinuity would indicate that, if
the Fermi surface survives at finite U its shape remains approximately inaltered.
Recent numerical studies?® are in agreement with this scenario.

For the 2D 10% doped Hubbard model however it is not possible to understand
the metallic or non metallic behaviour of the ground state since larger size are
prohibitive to simulate due to “sign problem ” for low temperatures and smaller
ones do not belong to the same class of “closed shell” filling.

In conclusion the ground state of the Hubbard model away from half filling
may show peculiar and interesting properties (as also shown by exact diagonal-
ization results in the next section), that makes still difficult its representation in

terms of classical Hubbard—-Stratonovich variables. However further technical im-
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the metallic or non metallic behaviour of the ground state since larger size are
prohibitive to simulate due to “sign problem ” for low temperatures and smaller
ones do not belong to the same class of “closed shell” filling.

In conclusion the ground state of the Hubbard model away from half filling
may show peculiar and interesting properties (as also shown by exact diagonal-
ization results in the next section), that makes still difficult its representation in

terms of classical Hubbard-Stratonovich variables. However further technical im-
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provements of the convergence in temperature or by a very good choice of the trial

wavefunction may lead to the final understanding of this very important topic.

5.3 D-WAVE, DIMER AND CHIRAL STATES IN THE 2D HUBBARD MODEL

Here we study the states of two holes in the 2D Hubbard model. This is the
only section where a method different from QMC is used. The reason is the need for
extreme accuracy (< 107%%) which is not permitted by the fermion sign problem,
and general convergence problems. We show, by detailed analysis of a small size
system, namely a 4 x 4 Hubbard lattice with 14 electrons, that very intere‘sting
information on the possible ground states is foreshadowed by the properties of the
low-lying states of the two-hole problem.

In particular, we find three uniform and one density—wave state within a
very small energy difference of one another. Arong the possible uniform states,
one closely resembles a dimer phase while another can be interpreted as a kind
of flux phase, or chiral spin liquid. We also find that all these and exclusively
these low lying states can be given an approximate representation in terms of
linear combinations of “Fermi level” hole creation operators acting onto the half
filled ground state. This form suggests new approximate wavefunctions for the 2D

Hubbard model at small but finite doping.
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We seek the lowest eigenvalues of the 4 x 4 Hubbard model with PBC by a

power method:

(A = H)Myr >
%o >= kh_.nio[](A — H)*|pr > |

where A is a sufficiently large, but otherwise arbitrary energy shift, and 7 is

(5.3.1)

a trial wavefunction. The iterative search for the ground state is supplemented
by a few Lanczos steps at the end in order to improve accuracy. This method,
although rather slow, minimizes memory requirements which are at present the
major limiting factor for this kind of calculations.

Special coding of the wavefunction and memory access techniques were used
to make the calculation feasible. In this calculation we have restricted our search

M(M-41)
2

to the subspace of S, = 0 and even total spin, whose size is where

M = (%‘;) In the present case N, = 16, Ny = 7, the size is ~ 7 x 107,
No explicit use has been made of the spatial symmetries of the lattice. The initial
vector ¥ of our iterative procedure has been taken to be an appropriate random
superposition of eigenvectors of the total momentum. This device permits the
simultaneous study of all possible symmetries and k-vectors. Each of them is
singled out after convergence by using a symmetry projector. We find that all the
low lying states, within our even S manifold, are singlets.

In Table 5.2 we show the resulting energies for each total k—vector along with
the magnetic structure factor Spqq(m, ™), the density structure factor Syen(m, ),
the single particle off-diagonal density matrix p, (where n denotes the n-th
neighbor) and, where defined, the rotational symmetry of the state. The energy
improvement upon doping, which is seen by comparison with the undoped case

in Table 5.2, is basically a kinetic energy gain, as indicated also by p;. Although

this is not surprising, it is interesting to note that the ground state does not have
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14 16/16 14/16

s s kis ™

Q (070) (070) (0,71') (7"77") (ifﬁtf) (7"’5)(0>’2“)
g s d P
E/N -0.8514  -0.9840  -0.9840  -0.9839 -0.9839  -0.922 -0.922
Eyin/N -1.3118  -1.3366  -1.3366  -1.3375 -1.3375  -1.24 -1.24
Smag(m™,m) 3.64 2.14 2.18 2.18 2.16
Sden(m,T) 0.385 0.4242  0.4242  0.4245 0.4245
P1 0.164 0.167 0.168 0.167 0.167
P2 0.0 5.410°% 7810”4 141078 7.7 1074
p3 0.0 561072 551072 541072 7107

— —_2 — — —
P4 481072 501072 511072 511072 .50 1072
s 0.0 511072 511072 511072 5 1072

Table 5.2. Exact diagonalization results for a 4x4 2D Hubbard model for different filling and

physical quantities (see text). The value of the on-site Hubbard interaction is fixed to U=4. These

results refer to ground state properties only except in the u‘:i—é— where the lowest excited states have

been identified.

the best kinetic energy. Clearly doping has a depressing effect on the magnetic

Smag(m, ), but do not affect so much the density response at the same wavevector.

The ground state is threefold degenerate (0,0), [(0,7), (7,0)]. This agrees
well with the existing ¢ — J model calculations.

The extra, non-rotational, degeneracy between (0,0) and (0,7) is due to an
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additional symmetry of the Hubbard hamiltonian, specific to the 4 x 4 lattice.
A new striking feature is the presence of extremely low-lying excited states with
(i%, :}:g) and at (m, 7). By contrast states at (O, g—), (71', g—) are found to be much
higher in energy. The density matrix indicates that electron hopping within the
same sublattice, strictly forbidden by charge conjugation symmetry at half-filling,

is allowed in a substantial amount in presence of holes.

. . ccgr. .
T T T TTT [T

O A B

Figure 5.11. Spin-spin correlations for U=4 along the path shown in the inset. Dashed line: half
filling. Solid line: two holes in the (0,0) state. The star at the maximum distance indicates the

corresponding Heisemberg value for the same lattice size.

We have also studied charge-charge and spin-spin correlation functions for

all the low-lying states. Rather surprisingly we find that all the low lying

states have similar correlations. The spin correlation ¢(R) =< $:(0)S:(R) > all

show evidence of tendency towards antiferromagnetic ordering which is however

substantially weakened with respect to the half filled case (see Fig.5.11 and
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also Siag(m,m) in Table 5.2). Remarkably, the hole-hole correlations h(R) =<
(1-nT(0))(1—nt(0))(1—nT(R))(1—nt(R)) > are slightly “repulsive” and not much
structured (Fig.5.12), i.e. the two holes tend to stay apart in all cases. Previous
t-J model studies found a crossover between repulsion and attraction for increasing
J, but seem to attach importance only to the attractive regime. In view of existing
suggestions that long range hole-hole correlations should show overall indifference

% or instead attraction®® it would be desirable to remove the short

if not repulsion®

range hole-hole hard core. If we take the undoped h(R) as representative of these

“bare” correlations then one would conclude (see Fig. 5.12) that the additional

correlations are repulsive at short range and seem to turn attractive at the largest

available distance.

In order to extract more information we analyse in detail the nature of the low

lying states.

(0,0): This state is even under z and y reflections and changes sign under %
rotation. Therefore the two holes are in a dzz_yz’relative state. The
symmetry of this state is the same as that of one of the proposed
d-wave RVB states. However we have not calculated the overlap
between the exact ground state and this class of functions. It is
interesting to note that the d,, stale is instead pushed up at higher
energy AE ~ .3¢.

(0,7);(7,0): This doublet can be combined to break translational Invariance,
while restoring rotational symmetry. The states thus obtained
exhibit neither charge nor spin density wave spatial modulation.
Rather, an order parameter distinguishing the two inequivalent

states of the doublet can be identified as a current fluctuation
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Figure 5.12. Hole-hole correlations for half filling and for the three uniform states at »=7/8. Note

that the two holes tend to stay apart (repulsivecorrelations).

operator: we find an interesting non homogeneous current pattern

which can be identified by measuring < xijXjkXkiXii >, the

circulation along the elementary square plaquettes of the operator

Xij = 2. c;HTc;’. This gives 0.18 and —0.008 along two non equivalent
o

neighboring plaquettes. This result rather resemble the pattern one
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Figure 5.13.
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Phases associated with several plaquettes of different areas () as found in the (m,n)

chiral state. The phase expected for a flux state with 1/2 flux per electron is also shown (solid line).

(m,m):

could expect for some superposition of dimer phases.

: This quartet of states can also be combined to give translationally

non invariant states with uniaxial symmetry. One thus finds two
pairs of states characterized by a weak CDW (An/n = 6.5107°
) arranged to form a two sublattice structure. Another feature of
this state is a weak asymmetry between < x;; > at right angles:
< Xiyji+z >= 0.3340, < xi,i+y >= 0.3347.

This is a doublet of translationally invariant states with p-like
rotational symmetry. The circularly polarized combination p, + 1Dy
have well defined chiralities. Therefore this state is a natural

candidate for a finite size realization of a “chiral spin liquid”. We

have investigated the circulation dependence on the plaquette area.
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For a long range chiral ordered state of the type proposed by Wen,
Wilczek and Zee, the phase of the circulation should increase with
the area. The flux states first introduced by Affleck and Marston
and by Kotliar imply 1/2 flux quantum per electron. The phase
of a flux state is predicted to depend upon doping in the simple
manner ¢ = vrA. The results for our (7, ) state given in Fig. 5.13
do show an increase of phase with plaquette area which compares
rather well, though not exactly, with the flux state values. This state
is characterized by a non zero chiral order parameter: < P(R) >=<
S;-S; x Sp >= 1.3 x 1072, where 4,7,k label the vertices of the
elementary triangle centered at R. This provides a first indication of
the rather small amount of parity symmetry breaking to be expected
for a Hubbard model as opposed to more “ad hoc” hamiltonians. If,
as it seems possible, the chiral long range order still shows up in the
thermodynamic limit, then statistical transmutation would necessary
follow. We have also studied the spatial correlations < P(0)P(R) >,
and found them still large, of order 1072 for the largest distance in
the cluster (R = +/8). Note that the uncorrelated value would be

(< P(0) >2=1.7107%). -

This exhausts the set of low lying states of the two holes. It seems remarkable
that, in spite of the obvious size limitation, so many different kinds of states already
show up in the two holes problem. It is clearly desirable at this stage to have a

simple description and rationalization of these states. A crucial clue is provided by
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Figure 5.14. Momentum distribution 12(k) for the two hole state (0,0) (o) as compared with the
half filled, zero hole, state (o).

the change in the momentum distribution function n(k) which we observe uplon
doping. As exemplified in the (0,0) case §n(k)) = n(k)|y=16/16 — 7(k)|y=14/16
shown in Fig. 5.14 is a very strongly peaked function at (0,7) (m,0) suggesting
that the main ingredients in this state are two holes at these k-vectors. This turns
out to be a general property for all the low lying states. For all of them, the true

eigenfunction can, approximately but accurately, be described by the form:

x> = > @k, ka)el e [¥n > (5.3.2)
kl,kz

where |¢y2_ > is the half filled ground state. The form of ®(ki,k,) is uniquely
determined by the following requirement: (1) k1 and ks should lie on the outermost

shell of the U = 0 Fermi surface at half filling, (ii) ki + k» should equal the

total momentum of the state, (iiz) the holes form a singlet state, (2v) the holes
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cannot sit on the same site. The latter two requirements prevent the holes from
being in a relative s-like state (i.e. ®(ry = ry) = 0 ). Although very simple,
the wavefunctions (2) reproduce very well the properties of all the true low-lying
states. It is to be noted that most of the correlations in {¢%_2 > derive from those
already present in the parent half filled state ]qﬁ%r_ >.

For the 4 x 4 lattice the Fermi surface consists of 6 points (:l:g,ig), (0,m),
(m,0). Out the 36 pair hole states that can be formed, 15 are triplets and 21
singlets. Out of the latter, 10 states satisfy the above criteria. We find that
nine of them are good approximations to the low lying states described above, as
anticipated.f

Summing up, the above analysis shows how to build approximate but
accurate, two—hole states, starting from the knowledge of the ground state at half
filling. It seems possible, although clearly speculative, at this stage, to generalize
this result to the many-hole, dilute limit. One such generalized wavefunction could

be, for example,

V=exp| S 8k, k)i cf, ’¢_IL> (5.3.3)
<k1;k2>

where the pair envelope function ¢, k, can be determined variationally, but must
obey the same rules as described above for two holes. The richness of different

states found in a tiny range of energy suggests that in the infinite size limit

t The 10" state has £ = (0,0) and it has symmetric d,, combination of holes
(ig, :i:g) A state of this symmetry has been found among the excited states at
a considerably higher energy (AE ~ 0.3t ). However we have found impossible to

represent it as in Eq.5.3.2.
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various scenarios are indeed possible. Translational invariance (charge and spin
uniformity) is equivalent to regarding k; + ks = Q = G/2, where G is a reciprocal
lattice vector. The symmetry of ®(k;,k,) will of course be reflected in the overall
symmetry of the corresponding ¥. We do not yet know, however, any other
property of these proposed states, including the presence of off-diagonal long-—
range order. We note, however, a certain similarity of our wavefunction (5.3.3)
with the spin-bag proposal by Schrieffer et al.?, which is recovered, in particular,
if W’% > is approximated by a spin density wave state and ®(k;,k;) is peaked
around pockets at the corners of the Fermi Surface. An alternative choice, valid
for large U, could be to use a Heisenberg state as ]1/)% > in Eq. (5.3.3).

In summary, we have presented a detailed study of the two hole problem in
the 2D Hubbard model, which uncovers a manifold of ground states (or very nearly
ground states) including a d-wave state, a dimer-like state and a chiral flux state.
From these exact states, approximate wavefunctions are constructed which permit

extension to the thermodynamic limit.
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5.4 SCALING OF THE 1D HUBBARD MODEL

TO THE TOMANAGA-LUTTINGER MODEL

One of the central issues which have come into focus in the physics of highly
correlated electron systems —of particular relevance in the modeling of # — T¢
superconductors® is the question whether in such systems the electron behaviour
is Fermi Liquid or not Fermi liquid like. In a Fermi Liquid, propagating electron
quasi-particles are well-defined which implies a) a non-zero quasi-particle pole

strength Z; in the single particle propagator

Z

koe) =
G(kse) ¢ —vp(k —kp)+ 16 sgn(k — kr)

+ Gincoh(k, f) (541)

(with standard notations) and b) a finite jump A of the momentum distribution
nE =< >, c}:ackg > at k = kp exactly equal to the quasiparticle amplitude
renormalizaation Z.

The vanishing of Z and then of A strongly indicates the need for a new
description, replacing the conventional Landau Fermi Liquid®?.

In a system of finite size L A(L) is anyway non-zero. His asymptotic

behaviour however can fall into one of three categories:

e~L/¢  insulator
A(L)p—co — { L™  marginal conductor (non-Fermi liquid) (5.4.2)
const normal conductor (Fermi liquid).

It is therefore in principle straightforward to determine whether a correlated

electron conductor model is a Fermi-liquid, provided finite—size scaling can be

done on A(L).
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Among the models of highly interacting electrons, the Hubbard model (HM)
achieved a very special status, for three main reasons. The first reason is of course
its ability to provide an idealized prototype for the Mott transition between a
metal and an antiferromagnetic insulator’®*®. A second reason has emerged more
recently, and is related with suggestions that the HM could contain the basic
ingredients for a new type of superconductivity®®. The third, and maybe the
principal reason is that the HM is one of few hard but well-posed problems (to use
Anderson’s terms), and has systematically defeated so far all perturbative, simple
minded approaches towards its solution.

Apart from its general importance, approximate realizations of the 1D HM
are found in antiferromagnetic salts like Cu C1,%%°* as well as in a larger class of
organic quasi one dimensional molecular crystals 5.

From a strictly mathematical point of view the one dimensional HM can be
regarded as exactly solved for all fillings. Lieb and Wu®® have given the formally
exact ground state wavefunction and a scheme for calculating energy and related
static quantitiéssﬁ“ﬁo. The half filling state is an insulator for all U, with strong
AF couplings but without LRO. Away from half filling, Lieb and Wu found the
U > 01D HM to be a “conductor”, (vanishing single-particle gap). Later, a scaling
to the Tomonaga model strongly suggested that this system could at best be a
“marginal” conductor, i.e., one without well-defined quasi particles, and thus not
a Fermi-liquid. More recent work, including variational®!'%2 and numerical®3:64,
while providing much new information on several important quantitative aspects
has not been able to attack directly the nature of the Fermi-level singularity in
this regime.

In this section we resolve this question, and provide a first numerical
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characterization of the non-Fermi liquid behaviour of the repulsive 1D HM, through
finite size scaling. This prototype 1D study thus paves the way for the future
applications to 2D models, where the Fermi-liquid issue is still entirely open.

The diagonalization method used was a simple power method scheme, in which
the operator A — H is repeatedly applied to |17 > . A is a sufficiently large, but
otherwise arbitrary energy shift.

The ground state properties of the Hubbard hamiltonian (1.1.2-3) for finite
size systems consisting of N electrons distributed on N, sites, have been
determined by using either exact diagonalization, or the newly developed quantum
Monte Carlo method presented in this thesis.

The convergence of the power method is rather poor, however this is
compensated by the reduced storage requirement, which grow very rapidly with
the number of electrons. Use of the sparseness of the Hamiltonian matrix and of
special memory access techniques has allowed us to treat Hilbert spaces as large
as 10® states®.

Each of our small systems is characterized by three parameters: size N,,
filling v = 5—%—“, and Hubbard repulsion U. We have focused essentially on U = 8,
although some results are also presented for U = 4. Omitting v = %, which
is trivial, we have chosen representative values” (the low doping regime v ~ %
presents additional difficulties and is omitted here) v = % (“quarter filled”), and
v = 75 (“low density” regime). Quite good convergence is achieved with N, < 36
for U = 8. The convergence of the QMC calculations (with respect to increasing 3,
reducing A7, and improving the accuracy of Langevin sampling) has been carefully
checked against both diagonalization (whose accuracy is AEy/Ey < 107°), and

against an accurate evaluation of Lieb and Wu’s Ey, for the finite system. In all
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cases presented here, we have an accuracy of Ej;, of better than 0.5%.
The typical appearance of the 1D Hubbard momentum distribution away from
half filling is shown in Fig.5.15. We notice several bumps, and also a non-monotonic

behaviour due to a small but clear feature near 2kz.

R |

0.0 T
k

Figure 5.15. Momentum distribution for the 1D Hubbard model with u=g for a 14 (continuous line)
and 35 (dashed) sites ring. The results for the smaller size system were obtained with the power method,
while for the larger ring we used the statistical method with a Gutzwiller type trial wavefunction (a=2,

see €q.5.2.2) and f=4

Most importantly, there is a very strong jamp A across kr. This jump is
quite similar to those we have reported before on the same system?®!:32. More
recently, the existence of this jump in the finite system has been confirmed by
several groups® %7 Tt is believed however®®, that the jump A(L) will eventually
scale to zero with increasing size L. This is expected to follow from the non-Fermi
liquid behaviour predicted by the renormalization group (RG) mapping on the

Tomonaga model®®:59,
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Figure 5.16. Logarithmic plots of the jump of the momentum distribution function at kr (continuous

line) and the density—density correlation functions at 4kr (dashed line). The two curves are fit only

of the power method data, using the interpolation described in the text.

In Fig. 5.16 we show bj explicit finite-size scaling that this prediction is
indeed correct, and that the 1D Hubbard model has non Fermi surface in the
thermodynamic limit. In order to extract accurately the exponents, it is necessary
to include also the higher order scaling corrections. They can be obtained from

the Tomonaga mapping in the form of an expansion in power of In L.

InZ(L) = —0lnL + alnlnL + b+ ¢/InL + ... (5.4.3)

This singular form is required by the especially slow approach of the RG fixed
point. From this fit, neglecting the Inln term in (5.4.3) that can be considered
approximately a constant, i.e. a redefinition of b, we extract the exponent &

which characterizes the singularity of n(k) near the Fermi level of a marginal
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68,69

conductor in the form:

n(k) = Alkp — k|’ sgn(kr — k) + B (5.4.4)

Within RG scaling further logarithmic corrections to the previous expression are
also possible, analogously to expression (5.4.3), e.g. (k —kp)?In"(k — kr), but we

neglect them in the present analysis.

Using the fit (5.4.3) we obtain (for U = 8) § = 0.08 for v = % and § = 0.10

4

L

for v = 5. Very recently Shiba®’ has provided an accurate evaluation of n(k)

for U = oo, and v = ;. Fitting his numbers with the form (5.4.3), we obtain
¢ = 0.126. It is interesting to observe that, inclusion of the higher order terms in
the expansion (5.4.3), does make an appreciate difference. Omitting them would

yield § = 0.11, 0.14, and 0.15 instead of 0.08, 0.10, 0.126 in the three cases
described.

These results confirm in qualitative agreement with expectations based on
RG?®5:88:8% and on perturbation theory’®, that 4 is an increasing function of % and
v .

of 1. However, the RG second order result § = T;; where v = (u/27tsin(7v)) is

clearly off already at % = 8.

Having thus established a clear quantitative deviation of the single particle
properties of the 1D HM from the Fermi-liquid behaviour, it seems interesting to
ask to what extent will the two-body correlation functions reflect this property.
Quite generally in a 1D conductor one can expect the large distance charge—charge

and spin—spin correlation to fall like power laws, neglecting possible logarithmic
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Figure 5.17. Spin-Spin correlation function for the 36 sites quarter filled Hubbard ring for U=0
(lower curve) and U=8 (upper curve). The latter results were obtained with the QMC method for

beta=20 and AT=0.03

corrections as before,:

<p(ro) p(7) >rmco — Kar™%cos2kpr + Kur~P cosdkpr + ...+

<5{(ry) » 8(r)>rmco — Har 7V cos2kpr (5.4.5)

In the non interacting case (U = 0), we have o = v = 2, Ky = 0. In order
to obtain the exponents for U > 0, we can in analogy with the above finite size
scaling of Ay (x), extract the slopes

dln

TE T T L

(Smag(2k5) — Smag(2kp + ?g— ) (5.4.6)

and a similar expression for « and 3. Here the density and spin structure factor

are defined as usual by
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1 el s
Saen(k) = 5 DT (cnni> — <ng><ng>) (5.4.7)

1 el s
Smag(k) = = D0 e cmimy > (5.4.8)
ij

where m; = n;; —n;, n; = nit + ngy.

.6 I I 1 I 1 ]
4 — —
)
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Figure 5.18. Charge—charge correlation function for the 36 sites quarter filled Hubbard ring for
U=0 (squares), U=co (dots), and for U=8. The latter results were obtained with the QMC method

for beta=20 and AT=0.03

As Figs.5.17 and 5.18 show (for U = 8, v = 1) that a non-zero U strongly
depresses the 2kp charge singularity, while enhancing the 2kp spin and the 4kp
charge singularities. This qualitative behaviour has been well-known e.g. from

QMC work®®. In Fig.5.16 we also show the finite-size scaline of the 4kp charge
g g g
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case and that of the 2kp spin case are plotted in Fig.5.19 (the 2kp charge case is
not feasible).

We find for %[ = 8andv = }Z B = 2.38. Surprisingly this compares favorably
with lowest order RG predictions Brg = 4 —v = 2.2, but (not surprisingly) much
less so with the second order result 4 — v + %vz = 5.89. The scaling of the
spin exponent « is much less clear cut at v = %, (see fig.5.19). This is due
to the exceedingly strong size dependence of Smqy(2ks), shown also by Shiba for
U = co. At U = oo, we note that the charge charge correlations must be identical
with those of spinless fermions, which implies 3 = 2. This result follows from the
known factorization into a charge and a spin part of the Lieb and Wu wavefunction
for U — c0®7. More work is clearly necessary to clarify this particular aspect.

In summary, finite-size scaling quantitatively demonstrates the non—Fermi
liquid nature of the marginal conducting state of the 1D Hubbard model away
from half filling. Scaling to the Lattinger model appears to be exact for U = oo,
and very plausible for all U > 0. According to the RG scaling to the Luttinger

Tomonaga model, all the exponents are related, in the form:

1 1
=3 (—*—/ft-— ‘_1)
1—2 3
8 =4 +w) (5.4.9)

1

. _ 14 1—33%
*=T= 1+=z

For U — oo B = 2 implies z = %, hence the prediction is § = %, v o= % This

result for 8 is in striking agreement with that obtained from our finite size scaling

of Shiba’s numbers (§ = 0.126), strongly suggesting that scaling to the Tomonaga
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Figure 5.19. Logarithimc plot of the finite difference of the magnetic structure factor Sinag relative
to the two k values closest to 2kp. The results without error bars comes from the power method while

the remaining ones are obtained using the statistical simulation.

model is exact, at least for U = oof.

If we accept that the model is also the exact fixed point for U < co we would

predict:

1 | é fr7 A 10N
+ 16 (5.4.15)
and B = 2.38 yields § = 0.07, to be compared with our actual value § = 0.08 for
U=8andv = %. Similarly 8 = 2.13 would imply # = 0.103, to be compared

with § = 0.10. The agreement seems very good within possible errors due to finite

size effects.

In conclusion, it seems at least possible that scaling to the Luttinger model

T An independent proof, based on Lieb and Wu wavefunction is being published

separately

119



is a universal feature for U > 0.
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Chapter VI

Conclusions

In the present thesis we have described in detail a new method for the
simulation of many electrons systems. As in any other method based on the
Hubbard-Stratonovich transformation (HST), direct electronic interactions are
replaced by coupling to auxiliary bosonic fields. Then, sums over these fields are
petformed statistically using the determinantal weights to guide the importance
sampling. Generally, this type of procedure has a low-T stability problem, due
to loss of orthogonality. We have described a recently developed method for
stabilizing the calculation at low temperatures, particularly efficient for algorithms
based on the HST. This stabilization technique allows to preserve efficiently the
spread of different energy scales that in a Fermion problem is particularly wide
due to the P;';Lu]i principle. As an example, in the one body picture, the electrons
occupy levels from the bottom of the band up to the Fermi level and this is basically
the physical origin of the so called “ill conditioned” determinants that now it can

be considered a solved problem.
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Alternative stable algorithms do exist for specialized problems 172 but at low
temperatures they remain very costly. In contrast, the overhead associated with
explicitly maintaining small scales is modest in the HST formulation. It is possible
to stabilize a variety of simulation algorithms in this manner. In the present work
we choose a particular implementation. We set up a scheme that, using a Force
based method of sampling, allows better performances compared to the usual MC
schemes, at the non trivial expense to introduce an extra source of systematic
error: the integration error of the Langevin Dynamic eqs. (see Ch.3.2). However
in all these statistical methods the most important problem is the minimization
of the statistical error. A faster algorithm allows a more accurate sampling of the
phase space with the same computational effort and consequently it gives smaller
statistical error.

Another problem which is usually believed to affect a dynamical way of
sampling is that for a dynamical trajectory it is difficult*? to sample correctly
the region around “nodal barriers” which divide the bosonic field space. We have
shown in the present thesis that an adaptive Langevin step scheme removes the
above difficulties and numerical simulations can be performed even in this case
with good accuracy.

In this way we have set up an efficient and stabilized algorithm which in
principle allows relatively inexpensive explorations of the low temperature phases
of a variety of models of strongly correlated electrons. We have concentrated in
particular the Hubbard model in 1D and 2D. In 1D we established quantitatively
that the Hubbard model away from half filling shares the same asymptotic
behaviour of the Lattinger-Tomonaga model. As was supposed earlier®® it is

always a paramagnetic metal , but with a very peculiar feature common to 1D
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systems: namely the absence of a well defined Fermi surface. The possibility of
studying the momentum distribution of 1D system was made possible by using
the present method.

In 2D, in the half filled case, we confirm that even for small U the system is
an antiferromagnetic insulator. As a new contribution we systematically studied
the momentum distribution for increasing system sizes and large imaginary time
(up to 242 sites with 8 = 20). We show that the Fermi jump clearly disappears
and is replaced by a seemingly analytic behaviour.

In spite of this successes important algorithmic difficulties remain for the
numerical study of fermions. Undoubtedly, the most important of this is the “
fermion sign problem”, a difficulty which appears also in the HST formulation.

In the present thesis we analyze theoretically the problem of deﬁning a
positive statistical weight using the Hubbard-Stratonovich transformation (the
weight obtained after a straightforward application of the HST is not always
positive definite). The study of this problem is very important not only from
a numerical point of view —the difficulty to sample non positive weight is well
known in Fermion simulations— but also for the understanding the physics of the
Hubbard-Stratonovich transformation.

In the present thesis we have shown rigoroilsly that the average sign of the
considered statistical weight is either bounded by a constant depending on the trial
wavefunction or it vanishes exponentially in the low temperature limit. Whenever
this exponential instability occurs, the method faces difficulties which are similar
to other Monte Carlo schemes. However in many cases such as a half filled and, or
a small positive U, or a negative U, or a 1D case, it is possible to find convenient

HST that rigorously allow the mapping of the quantum many body problem onto
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the one of simulating a classical system without any kind of instability in the low
temperature limit. We speculate, based on these theoretical results, that whenever
a mean field approximation is a good starting point of a considered model the sign
problem should be irrelevant in the sense described before. Unfortunately in more
than 1D and away from half filling, we were not able to find a rigorous proof on the
behaviour of the average sign for § — oo. There are however numerical accurate
calculations developed by E. Loh et al.>* implying that for 10 electrons and 14
electrons and 16 sites the average sign exponentially vanishes for an Ising type of
HSTt. Just away from half filling and for large U, where the physics is particularly
interesting, the vanishing of the average sign suggests that no conventional mean
field approximation is a good starting point due to the deeply correlated nature
of the state. In other words there may be a deep physical reason in the failure of
the HST when applied in this limit.

All the same we speculate that for a class of models larger than the simple
1D Half filled , small and negative U Hubbard model, the HST can be used for
the study of the low temperature properties without any “Fermion sign problem”.
In fact when the Hubbard—Stratonovich fields couples to physical quantities which
describe very well the physics of the system —in the sense that the mean field
approximation is a good starting point— it is likely that the sign problem is not
important (the average sign being bounded by a constant for § — 00).

The sign problem in the HST is therefore especially bafiling at this moment.
It has been suggested, for example, that the heart of the mechanism for high—T.

superconductivity could be contained inside the single-band Hubbard model.

t This is also confirmed by our calculations because we found that inequality

(2.1.14) is not satisfied in these cases
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However, the validity of such a theory cannot be checked yet with our numerical
method because, it is just near half filling (the only doping at which the repulsive
Hubbard model could superconduct), that the sign problem is worst.

In this regime we cannot hope to perform calculations that are well converged
in imaginary time, because of the prohibitive difficulty for sampling an extremely
small value of the average sign. Nevertheless in the present approach a possibility
to improve that convergence in temperature can be obtained by improving the
trial wavefunction. In fact the HST formulation allows the use of a large variety
of trial wavefunctions (e.g. the Gutzwiller wavefunctions has been used in Ch. V
Sect.3). A good trial wavefunction (that is close to the true ground state) reduces
the imaginary time needed for convergence and one can get information about the
ground state properties without reaching the region where the average sign is too
small.

Following this route we are at the moment systematically improving our

calculation away from half filling and larger coupling constant.
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APPENDIX I

THE H.S.T. FOR A GENERAL FERMIONIC OPERATOR

Consider a general interaction term :

> vij iy (A1.1)

iJ
where #; is the density operator of a fermion at a given site and for a defined spin

-~

projection. Then, using that n7 = n; for a Fermi-operator one can write:

v R R = vi: — A6 Ain; + AN | (A1.2
vJ 7 vJ yJ J Y

i,J 2%
where N is the total density operator. For-\ sufficiently large the matrix
v; ; = v;,; — Ad;,; in the preceding equation (A1.2) is negative definite. Therefore
one can apply the Hubbard-Stratonovich transformation (1.1.12) even in this case.

In fact, diagonalizing the symmetric negative-definite matrix (the matrix v can

generally be chosen symmetric in a quadratic form like A3.1)
viyj - Z Uk,i ai Uk,j (A13)
k
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one can decompose the quadratic form
D ovighin; =Y — a0} (A1.4)
where
Or = > Us;n; (A1.5)
J

are single particle commuting operators satisfying
[Ok,()j] —0 and [Ok,N} =0 Vk,j (A1.6)

Therefore the calculation of

——Z ”:,j i g .
e i = Heai ok using (A1.6)
k

-3 ofa O —% o'

= / [[doie (A1.7)
: |

Finally with the further change of variables:
=Y U0l (A18)
J

using eq.(A1.7) and definition (A1.3) -

Z v;,; i Ry ——Z 0';- ()\—'u)z Z %
e’ /Hda’k e ki ek

In practice it is convenient to choose A equal to the maximum eigenvalue of the

AN (A1.9)

matrix v. In this case, in fact we need one less integration variable in the previous

transformation.
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AppPENDIX II

Given a set of independent vectors ¥; which is a complete set in an arbitrary
invariant subspace D of the Hilbert space H under all U, propagators we define
the following quantities

the operator

Ui = /d#a sign < ¥; | Uy | > U, (A2.1)
and the functionals
MO) =< .05 0> = [ duo 1< 0|V 55 >, (A22)
We show that:
2
(@Y (8)" < Q¥ (28) (A2.3)

In fact from the definition (A2.1) and a general property of matrix, since the

chosen basis is complete in D:

<P UGy > << UF UF" o > (A2.4)
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one has clearly the bound for Qf‘f

QY (8)" =< UJ ¢y >* << U (U)o > (A2.5)

iJ
Then using the definition of ()‘E;’ the RHS of the previous inequality reads:

/[d#a] /[d#o'] <$:Us(B,0) Uer (0,8) i > sign < 9; Ustp; > sign < ¢; Ugrth; >
(A2.6)
that is by a further change of variable (which makes clearly sense even for discrete

imaginary time):

- d(B—-t) 0<t<p
7lt) = {0((t~ﬁ)> B<t<28 (A2.7)

The previous inequality (A2.6) becomes:

@4(8)" < [ldus) <4:U5(28,0)4; > sign < Us(0,8); >
sign < ¢ | Us(26,8) | ; >
< [ldue) 1< 4:U5(28,0) 4 >]
= QM (28) (A2.8)

And this proves the assertion of this appendix.
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AprENDIX III

A subspace D of H is irreducible under the family F, of operators Us(f3,0) if
and only if D is irreducible under all the family F. of the ”elementary” hermitian

one body operators appearing in U,((3,0).

We prove this statement for the particularly chosen HST where F. is the set
of elementary operators {m,} and K. In general for the validity of this statement

it is enough that all the elementary operators appearing in U, are hermitian.

Proof.

Suppose that D is irreducible under the family F, and it is not irreducible
under Fk.

We show that this is impossible, that is, D is irreducible under the family F;
if D is irreducible under the family F,. In fact if each {m,} and K belonging to
the family F. of operators has an invariant subspace different from {D} and {0}
say D, U.(8,0) has of course such an invariant subspace because is an algebraic
composition of operators m, and K which have this invariant subspace. Hence
D contains an invariant subspace D under all U,(3,0) therefore D is not an
irreducible subspace under the family Fo, and this is impossible.

On the other hand suppose that D is irreducible under the family F. and D

is not irreducible under the family F,. We show again that this is impossible that
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together with the previous statement proves the main assertion of this appendix.

In fact if D is not irreducible under the family Fsigma it is possible to find
a subspace D different from D and {0} which is left invariant by all U,(5,0)
defined in (1.1.22,23). In particular D is an invariant subspace of eAMATK which
is obtained when U,(8,0) defined in (1.1.22,23) contains only one Trotter slice
B =Arand [g. =1],,. Here M = NT — N! is the to total magnetization which
commutes with U,. .

Now since K is an hermitian operator D is also an invariant subspace of K.
Analogously, for the remaining {m,} operators of F, we can consider the same

one trotter slice propagator with only one variables flipped to —1:

!
or = =1, for r = r

or = 1 otherwise (A3.1)
Since D is an invariant subspace under F; it should be in particular also an
invariant subspace of the described operator:

—%’—R’ —2m/ —%I{eM (A32)

€ € Te

Now since e~ "% is a non singular operator (det e™ K = ¢~ tr 57K - 0) which
has D as an invariant subspace, e ™' for any 7' has also to leave invariant the
subspace D. Of course, since m!, is hermitian D is also invariant subspace of mu
for any 7'. D is therefore invariant for all the family of operators F. and this is

also impossible.
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APPENDIX IV

(a)
We consider Q%,(8) (2.3.4) defined in terms of a basis {®;} of a given irreducible

subspace D and we show in this part that:

Q3(Br) = h*(Br) exp —E"(Bo)0Bk (A4.1)
where h},(8) satisfies:
%z < hy(Be) <1 Vk (A4.2)

and d is the dimension of the irreducible subspace.

We consider (Q%;(8))*:
(QM(8))* = (max QY (8))’ (Ad.3)
Since as shown in app.2 ( f‘f(ﬁ))z < QM (2B) we can get for Q},(83) an inequality

similar to the one satisfied by Q?\/f (A2.3). In fact:

Qin(8) < [mexQl ()] < max0¥(29) < Qui8) (44

Moreover by inserting in the integrand of Q};(28) a complete set {®;} in D, one

can also easily show a further inequality satisfied by @ (25):
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Qu(28) = max /dﬂa

ij

D <UL(28,8)%: > < BUL(5,0)2; >
k

< max Y QM(A)QY() < 407 (8) (A45)
k

Collecting the two previous inequalities @3,(28) satisfies:

(@3(8))° < Qu(26) < d(Q*(8)° (A4.6)
Based on the two sided inequality (A4.6) the limit:

1

5@ (6 (A4.7)

7o) = Jim -

converges to a well defined quantity— E *(Bo)- that can in principle depend on 3.
Actually it will be shown later that this is not the case.

So far we write Q3},(83) as a function h31(B) times the exponential asymptotic

factor e=P»E"(Po),
Q" (Br) = h*(Br) exp —E*(Bo)Ps. (A4.8.)

Then after substitution of (A4.8) in inequality (A4.6) the exponential factors cancel
and:

he(B) < hig(26) < dhjy(8)? (A4.9)

Now from (A4.9) A},(8) has to be a bounded function (A4.2) in order to be
consistent with the definition of the limit (A4.7). In fact supposing that Ry
violates the bounds (A4.2), by iterating the inequalities (A4.9) as is done in the

text for har(B) (see 2.1.10-12) one gets that h}r vanishes or diverges exponentially

and this would contradict the limit (A4.7).
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(b)
We show in the following that

E*(By) defined in (A4.7) does not depend on (3o the initial inverse temperature

considered in the sequence B = 2*0,.

Suppose without loss of generality that for two different initial Bqo: B, B2

B*(8}) = B*(82) (44.10)

i

then for arbitrary large values of k we can decompose N*, defined as the integer

ka2
closest to 2—5—?2, in its binary representation containing c significant digits:
0

N* =) ok (A4.11)
1=1

with ¢ < loga(N™*). So far we can write 2k32 as:
265 = N*Bg+7 =) B2% +7 (A4.12)

i=1
with || < B}. Consider now Qf;f in the definition (A2.2), according to the
binary decomposition (A4.11) in the integrand of Q%(Zkﬁg) we can split up the
propagator into the product of many different ones that —apart the last one—

propagates the trial wavefunction for imaginary time intervals as large as a power

of two the initial inverse temperature 8 of the first sequence:

Us(2882,0) = U,(2"45,2"85 — 7)] | U-(3i, Bi-1) (A4.13)
i=1
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with Bo =0, 81 =258, B, = 81 + 2kl . 8, = N*3}

In this way, in the RHS of expression (A4.13), at each given imaginary time
Bi, we can insert a complete set of states in D and then we find the following
inequality

i (2°63) = / due D |< ®UL(2%62,8:)%;, > < ®; Us(Bey Bea1)®i,_, >

TLyeeeyle

e < @.ilUg(ﬁl,O)q)]’ >l
< 3 /du,|< Vs (2°65,82)®:, >| |< 8. U(BeyBer)s,_, >|

L1 yeveylc

e [< @il Ua(ﬂl,O)‘I)j >f (A4.14)

In the last inequality we can easily rewrite all the terms in the sum as suitable
products of different “pseudo” partition function Q% because, from the definition
of duu, (see 1.1.21) all the variables appearing in each propagator U, (841, 3;) are

decoupled each other. Then using the definition of Qs (2.3.4) we find
QY (2*83) < d°[] @*(2%81)Q*(r) (Ad.15)
=1

In the previous inequality (A4.15) we separately find a bound for each factor:

Q?\{[(T) S e_EminT S e"Emin/BS (a)

where E;, < 0 is defined in (1.1.24)

Q'(2fy) < e O (b)

from (A4.1) and (A4.2) and finally:



from the definition (A4.11).

Hence we conclude that for any k

8

Qiu(2"62) < et

OHIOM

J =B (B)2"B8 exp —2Fpmin B (A4.16)

In other words the asymptotic £ — oo limit of wa(2kﬁ§) is essentially
dominated by the exponential e~ B (B5)2" B3 apart for less relevant term in this

limit. In fact using the definition (A4.7):

) . 1
E*(By) = lm -

P MlﬂQ*(gkﬂg) > E"(Bs) (A4.17)

Since we have considered the case (A4.10) E*(83) < E*(B1) and we have obtained
E*(B%) > E*(B:1) it follows that

E*B3) = By(B5) Y Bo B (A4.18)

and therefore the limit (A34.7) does not depend on the initial inverse temperature

By as asserted in this appendix.

(c)
In this part we are going to show that E* defined in (2.3.10) does not depend on

the particular choice of the basis {®;} in D.

To this purpose we introduce an analogous "pseudo” partition function asin (2.3.4)

Qn(B) = n%gXQ?V(@) (A4.19)
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For any field configuration of or. and any couples of states ®;, & ; of the chosen

basis one has

< U2, > < |[Us]2; > < Y |< 8,0, 3; > (A4.20)

7

Hence by using the definition of @ and @4, it follows that:

Qu(B) < Qn(B) < dQ3(8) (A4.21)

From the previous one the infinite limit

1
By = Jim - 5 QN(8) (A4.22)

converges to the same value E* defined in (2.3.10).
In order to prove the assertion (c) it is enough to show that EX = E* does
not depend on the particular choice of the basis set in the irreducible subspace D.
We consider two complete set in D, {®}} and {®?} (that can be eventually

non orthonormal basis) and the corresponding asymptotic energy

, 1
E*z — ]_1 =
e B

where now the index 7 labels in (A4.23) the two different basis i = 1,2. Without

In Q% (A4.23)

loss of generality we can analyze the case with E*! > E*2. We will show that
also E** > E*! holds and therefore E*! — E*2,
In fact due to the completeness of the two basis any vector of the second basis can

be expressed as a linear combination of the first one

87 > = > ai|®) > (A4.24)
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The coeflicient a§ are finite because the subspace D has finite dimension and we

can define the constant:

Cmax = Max Iaé[ (A4.25)

2

For any vector of the second basis 7 we consider Qn(®;7), Their integrand
according to the change of basis (A4.23) can be easily bounded by use of the

triangular inequality:

[T-22]| < > lajl [Us25]] (A4.26)
J

By integrating both sides of the previous inequality and using the definition of Q%
(A4.19) and cpax (A4.25) we find:

Qn(®}) < ZlaleN(éi) < demaxQR(B)- (A4.27)

Therefore, since the last inequality is valid for arbitrary ¢ it is also in particular

valid for the state ®2 such that Qn(®3) = Q% and we find that:

Q™ (B) < demax @™ (8 © (A4.28)

From which Ej > E; holds and the statement (c) is proven.
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APPENDIX V

In this appendix we show that if
pr belongs to an irreducible subspace D; as defined in the test (see 2.3.2) the

actual value of

1

3 In Q% () (A5.1)

Fu(pr) = Jim — 12 Qf(¥r) = lim -

exists and is independent of 7 in the irreducible subspace D;.

PRELIMINARY STATEMENTS
Let us consider the subspace D{;T C 'H spanned by all the possible vectors
Us(6,0)]47 > obtained by propagating ¢r trough U, for any 8 < LAT (we assume
in the following a discretized imaginary time). By the definition Di:l D Dicp and

the dimension of these subspaces is bounded for any L :
dim{Dt } < D (A5.2)

because of the finite dimension D of the Hilbert space. From the previous two

properties it follows that exists a finite L, such that for any L > Ly

Dy, = DI (A5.3)
or formally
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* : L
D, = lim Df,. (A5.4)

(a)

D;,,. is an invariant subspace for all the family of propagators U,

In fact suppose ¢ € Dy, we have to prove that

Us(B,0)[¥ >€ Dy, Vo and B, and ¢ € Dy (A5.5)

A complete basis of vectors {¢;} in Dy, is by hypothesis a set of vectors generated

by propagating 1 for some configuration {¢}; and inverse temperature #; < LoAr

Vi = Uo}.(Bi, 0) 9o > (A5.6)

The “completeness” of this set of functions allows to write % as:

Y= ail > (A5.7)

for suitable a;. Hence V{o} configuration and ¥/ by the linearity of the propagator:

Uior(B,0)|¢ >= Y _a:U3(8,0)[p: > (A5.8)
Using the definition of ¢; (A5.6) the propagation of |¢; > through Us(#,0) can

be thought as a composite propagation acting on |7 > by :

Uiy (8,0)Usoy, (B, 0)[ibr > (A5.9)
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under a suitable {5}; = {e}U{o:} configuration of fields for a time interval 8+ ;.
Therefore from (A5.9)

Us(B,0)1 > = "a:U53,(8 + B:, 0) |y > (A5.10)

is again expressed in terms of a linear combination of vectors obtained by simply
propagating 1. This is again by definition belonging to Dyy, and this conclude

our proof.

As mentioned in Sect.4 the total Hilbert space can be decomposed in terms

of irreducible subspace D; under all the propagators U,(8,0) (see 2.3.2).

(b)
If 7 belongs to one of these irreducible subspace D; the subspace Dy,
(A5.4) (generated by propagating the trial wavefunction Y1 for sufficiently large

Imaginary time) must coincide with D;.

In fact, suppose that Dy, does not coincide with Dy, then D; contains a
subspace Dy, which is invariant from the previous statement (a) and different
from {0} because D* contains at least 1. Hence D; would not be irreducible

Py

and this contradicts its definition.

It is now possible to prove using (b) the main statement of this appendix.
We consider any function Y1 € D;, arbitrary 8 and 7 = LA, < LoAT (see A5.3)

and we restrict for simplicity to the discrete HST described by (1.1.18). From the
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simple identity

with ¥, = Ug(7,0)|1b7 > we have that V7 < LA~
ﬁ-i-f s 9—LN,
o) = S0} (% ”) w12 (a5

where the index {:} labels all the possible 25Ne wavefunctions i generated by
Us for a fixed propagation time + = LA~T. In the RHS of the previous expression
there is a sum of positive definite term, for large § and fixed 7 only the ones
with the faster exponential behaviour will be dominant in the sum. From this
property we notice that, at variance of the “pseudo” partition function @ where
different contributions can have opposite sign and cancel out each other, this
positive definite “pseudo” partition function may have —as we are going to show—
a quite different dependence on the trial wavefunction.

Since as shown in (1.2.12) [|¥%]| > exp —7 Emay one can write:

ib_u) (A5.13)

Q) 2 o (2

On the other hand:

1Us(B +7,0)lr >|| =

1Us(B +7,8)Us(8,0)[p7 >|| < exp —Eumia7 |Us (8,0)[br >|| (A5.14)

V7 < LyA7 and correspondingly by integrating in du, both sides of (A5.14):

QT (wr) < e “EminT QF (r) (A5.15)



From (A5.13) and (A5.15) it follows that for all ¥: with any 7 < LoAr

QX (ET) > exp —(Bmax — B )2 PV 05, ( ”';ff”>

2 exp —LoAT(Epay — Emin)Z—LOA"Qﬁ, (%) (A5.16)

The subspace generated by all the vectors {¥%} for all 7 < Ly D7 named (2
coincides, as shown in (b), with the given irreducible subspace D;, hence among
all the possible vectors generated by U, (r,0) for 7 < Ly AT it is possible to select

a complete set of independent vectors in the given irreducible subspace D;.
®; = {p}} (A5.17)

for some 7 < LyA7T and . In particular we choose among the overcomplete set of
vectors ¥% a complete set {®:} such that contains the trial wavefunction |1y >.
Using the previous inequality (A5.16) and the definition of @x (A4.19) with the

chosen basis {®;} we finally have that:

Lo @n(B) < QR (¥r) < Qu(B) (A5.18)

with

CLO — e"‘(Emax”‘Emin)LOAT ‘2_LOAT (As-lg)

Now having in mind the definition of By in (A4.22) and its independence of the

chosen basis app.4c the previous inequality finally gives that

1
B

Thus E* does not depend on %7 in any irreducible subspace D; and we finally

En = Jim — 2 Q¥(Wr) = Bl = B (A5.10)

have proved the statement of this appendix.
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APPENDIX VI

Given the definitions (2.4.13,16) in the text we are going to show

(a) Negative U

Qu¥' @) < 1/QWT @ 1Rt @ p1) (A6.1)
(b) Positive U
Qu(sT & ¥*) < \/QWT ® cp)Q(ctt @ p1) (46.2)
(2)
U<o0
By definition
QMwJ®W)=/@wK¢ﬂ%%><¢ﬂ%%>l (46.3)

Then by the Schwartz inequality:

QM(¢T ®¢l) < \//dﬂo < ¢TUG¢T >2 /d',“a < ‘l/’lUcr@bl >2

= QT ®¥1)Q! @ p) (A6.4)
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(b)U >0

Que(eT ® pt) = / dpta |< G1Ustpy >< p,Untp, >| (46.5)
_ /d,LLg Zar,i Za'r,i ‘

eXp = =57 <P1Usty >| lexp T <¥Ust >
Then applying the same Schwartz inequality as before, we have that

. 2
Qu(dT ® %) < \//d#a (eXp —Z—;—Z’i < PTUpap? >>

2
\/ [ (eXP L >) (A6.6)

We note that each factor in the RHS of the previous expression correspond to

Q1/2(C¢,T ® ¢,T) and Q1/2(¢l ® c¢i)

respectively (see eqs.(2.4.16,17) in the text)
and the statement (b) of the Appendix is proven.
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APPENDIX VII

In this appendix we prove the basic assertion (2.4.29,30) used in Sect.5 i.e.:

261 — bl < af|gpa; — v (A7.1a)

with a < e~ 227 if:

[2: — Y|l < V/2- 2 (A7.1b)

PRELIMINARY STATEMENT
First of all we show that during the systematic evolution (2.4.27) the

propagated wavefunction is attracted to the ground state of K at least as:

< Priyi|r > _ > bailx > N (AT.2)
1= < oip1|vbr > 1= < thailbge >*

In fact we rewrite the LHS of the previous inequality using eq.(2.4.27) for

Yait1:

< Yol >° < thaie AT e 2 (AT3)
1= < thoipavore >* ~ a1 AT oy > by ATy 52

We now express ts; in terms of the basis of eigenstates of the kinetic term

T/J}.(, 7=1,...,D —1 with % = ¥ the ground state:
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<Yoiqafhr > eTEOAT e 2
1= < hgiqa|pr >? Z e 2EIAT < ¢2il¢;{ >?
i#0
We notice that the denominator in the RHS of the previous expression is easily -

(AT.4)

bounded:

Ze-zEjAT < o, 2 e—z(Eo+AK)ATZ < agfipl > (A7.5)
30 770
= e THEFARAT (1 g by >2)

IA

where as mentioned Ag is the gap of the kinetic term.

Therefore one easily get the basic result (A7.2).

It is now possible to prove the basic assertion (AT7.1), that is to show that the
propagated wavefunction 5; and the ground state of K Vi became closer in an
exponential way after the systematic evolution (2.4.27), provided v,; is sufficiently
close to ¥ .

We notice that since ||ts; —Yr|® = 2—2 < y;Pbx > and l%2i — YK < V2

by assumption, the overlap of ¥y; with 1k is positive and such that

< Yoilpr > > % (A7.6)

On the other hand < Pai|tv > has the same sign of < v»;|vx > because from

the definition

< Yojthg > e EAT
[t

< oit1|Yx >=
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So we have that < vy;|tx > and < Yait1|tbx > are both positive. Moreover from

(A7.2) it follows that

< rip1lYr > 2> < dailhx > (AT.8)

On the other hand the same inequality (A7.2) can be written in the following way:

1— < tho|hge >2
L+ (2487 — 1) < ooy fbrc >7

From the bound < thg;|tprr >> + coming from the condition (A7.1) the

(A7.9)

1= <hoipalpre >* <
denominator in the left hand side of the previous eqs. is larger then ZXP2oarrl ZA;ZAT“
and (A7.9) becomes:

2
exp 2A Ar +1

1= < thoilpr >2 < [1— < poildbx >2] (A7.10)

Noting that 1— < Yol > = (1- < Yailhre >) (14 < Yai|x >) we can

rewrite the previous relation as:

| 9 | 14 < hailtpre >
1= <toigilpr > < 1+ exp2A Ar (1= <%alrc >) (1-%— <rit1ldx >)

2
< — 5 AT.11
S ey (1- <vYi|vr >) ( )

where the last inequality holds from (A7.8). Finally we use that, in the previous

~ inequality, 1—_-’_;5‘%5—5_ < exp —A At and that the distance between two unit vec-

tors is simply related to their overlap (Ht/)ng Y|l = V/2-2< Yaiv1|YK >).

Then (A7.1) holds from (A7.11).
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