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INTRODUCTION




Semiconductor quantum structures have attracted growing attention during
the last two decades from scientists devoted both to basic research and applied
science. The field of semiconductor heterostructures covers a variety of aspects and
different systems of increasing complexity, ranging from the simple heterojunction,
i.e. the contact between two different semiconductors, to more complex multilayered
structures. High—quality semiconductor heterostructures are nowadays routinely
realizable thanks to the technological progress, and find application in new
optoelectronic and microelectronic devices.

From the point of view of basic physics, this activity has opened many new
problems. In the present work I focus the investigation on a particular one, i.e. the
electronic properties at an isolated interface between two different semiconductors,
and, in particular, to the valence and conduction band-edge offsets (VBO and CBO),
usually collectively referred to as the band offset. This problem is important first of
all from a fundamental point of view, since it is related to the basic question about
the existence of an absolute reference energy scale to be used for the energy-band
structures of all semiconductors. Furthermore, since the band discontinuities are
one of the key parameters governing the transport properties at the semiconductor
heterojunctions, it is very important for the technological consequences to know
the VBO and CBO values and the factors which influence them; a large number
of experimental data are now available but their spread reveals the difficulty of
precise and accurate measurements. The main question concerning the band lineup
is whether it is determined only by the bulk properties of the two constituents, or
if it is also related to some interface-specific phenomena (e.g. interface orientation,
substitutional disorder, atomic dislocations...) which critically affect it and could
therefore be used to tune it. A theoretical approach to the problem is necessary
not only to discriminate between contradictory experimental results, but also for a
general understanding of the problem.

The present work is limited to heterojunctions between materials having the
same lattice parameters, and the attention is focused in particular on the VBO.
The achievements of the present work can be summarized into two main points:
i) Accurate self-consistent (SCF) supercell calculations are performed in order to
obtain both the values of VBO for some systems and the general qualitative
features of isovalent and heterovalent heterojunctions. I will try to identify
similarities and differences between these classes of heterojunctions, in order
to achieve a general understanding of the interplay between bulk and interface
phenomena. As for the isovalent interfaces, previous studies for GaAs/AlAs —
where the two systems have the same anion— have suggested that the VBO
does not depend on the interface orientation nor on its abruptness, and it is
determined only by bulk properties. In order to check if this is the case also for
a general isovalent heterojunction, I have studied also the interface InP /GalnAs,
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where no common ions exist between the two materials: the investigation of this
system confirms the properties suggested by the previous calculations, and also
show a new aspect, i.e. the additivity of anionic and cationic effects. Conversely,
calculations performed for heterovalent heterojunctions show that for this class
of systems the VBO is critically affected by the interface details, but its value at
polar interfaces can be obtained from the one calculated for non-polar interfaces
once it is corrected by a classical electrostatic contribution easily evaluated from
bulk macroscopic quantities.

ii) The linear response method —only recently applied to the study of the
heterojunctions— is also based on SCF first—principles electronic calculations
techniques, but relates the problem of the interface to that of the response of
a crystal to the perturbation caused by a substitutional impurity. The method
is here analyzed in all its details and fully developed: in particular the most
suitable choice of the unperturbed reference system is discussed, together with
the importance of the terms of order higher than linear both in the charge
redistribution and in the VBO. The investigation of the method allows also to
analyze the spatial extension of the response to a single atomic substitution.
The linear-response method is proven to be a powerful tool not only to explain
the general qualitative properties of lattice—matched heterojunctions, but also,
if properly applied, to give quantitative results.

The thesis is organized as follows: Ch. 1is a brief introduction to the field of
the physics of semiconductor heterostructures: it contains a survey of the materials
studied in this thesis, and describes the various types of heterojunctions, with brief
comments about their structural characterization and growth techniques.

Ch. 2 is specifically devoted to the band-offset problem. After some preliminary
definitions, I present the most widely used methods for energy-level measurements,
and discuss the trends resulting from the experimental data.

A theoretical approach for a systematic study of the band-offset problem, aimed
at understanding the nature of the physical phenomena occurring at the interface, is
necessary. Ch. 3 highlights the general features and states a crucial problem common
to any theoretical approach, even if hidden under several different formulations: i.e.
the possible existence of an absolute energy scale to which the band structures of the
various materials may be referred. The most significant “model” theories are then
critically reviewed in this perspective. The results of some new calculations are also
reported in this Chapter; they are attempt of reformulating one of the models in order
to make it applicable to the more general case of lattice-matched heterojunctions.
The Chapter ends with a general discussion about this kind of model theories which
underlines their merits and limits, and stresses the necessity of a more accurate and
systematic ab-initio theoretical approach, to which the remaining part of the work
is devoted.




Ch. 4 explains the basic features of the self-consistent density—functional ab-
initio pseudopotential method, together with some technical details for its practical
implementation to the specific case of heterojunctions; the Chapter also contains a
short review of some recent self-consistent calculations which are comparable to the
new ones presented in this work.

The original results are mainly collected in the remaining Chapters 5 and 6. Ch.
5 reports the results of the self-consistent supercell calculations, with a description
of the technical details in the first part. I study some typical heterojunctions,
and more exactly one representative example for each of the following classes of
heterostructures, in order of increasing complexity:

a) isovalent common-anion: I choose GaAs/AlAs from the III-V group, since there
exists a large number of experimental data and theoretical predictions.

b) isovalent no-common—-ion: I choose as a prototype among the III-V group
InP/Ga;_,In.As, which has a great technological importance, it is lattice—
matched at the composition z = 0.53, and has been extensively studied from
an experimental point of view but not theoretically;

c) heterovalent: 1 study Ge/GaAs which, among the group IV — group IlI-V
heterojunctions, is the simplest and most studied.

Calculations are performed for the three main crystallographic orientations,
ie. (001), (110), and (111). For InP/Gag.a7lng.ssAs I also study separately the
anionic and cationic contribution to the VBO. This system also introduces a new
problem, i.e. the treatment of the alloy: the calculations are first performed using
the virtual-crystal approximation (VCA). These results are then compared with the
ones obtained by considering the “true” Ga and In atoms separately in the gallium-
indium arsenide region, necessarily in some ordered configuration. In particular the
case InP/(GaAs);(InAs); along the (001) direction is considered, since it is now
possible to grow it epitaxially. For this system, I present only some preliminar study;
here the presence of internal strains which are no longer negligible as in the treatment
of the alloy using the VCA, makes the calculations more difficult and the theoretical
study actually performed can just give an idea of the magnitude of the effects of
order and internal lattice relaxation. The self-consistent results allow to draw partial
conclusions, namely that the VBO is the same in the three main crystallographic
orientations for isovalent heterojunctions, and the additivity of anionic and cationic
effects in InP/Gag.47Ing.53As. However, whether the energy—band discontinuities are
a bulk or an interface property cannot be ascertained at this point.

Finally, in Ch. 6 I describe and discuss the linear response method. The
investigation with this method of the same systems studied in Ch. 5 sheds light
on several questions: it appears that for isovalent heterojunctions the energy-band
discontinuities are indeed a bulk property within the limit of validity of linear response
theory, whereas this is not true for the heterovalent systems in which the band offset
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can be divided into a “bulk” and an “interface-specific” contribution, the latter being
strongly dependent on the structural details of the interface. The validity of the linear
response method is also analyzed in this Chapter, by discussing the role of quadratic
and higher-order terms. The thesis is concluded with a general discussion about
the contribution given by the present work to the investigation of the band-offset

problem and with a description of open problems for future work.




Chapter 1

SEMICONDUCTOR
QUANTUM STRUCTURES:

MATERIALS AND PROPERTIES

The field of the semiconductor heterostructures is wide, and continuously
enriched by the increasing complezity of the structures nowadays realizable. Among
the large number of new interesting phenomena occurring in these artificial systems
—of which only a brief representative list is given in the Chapter— the problem of
the energy-band discontinuities plays a special role in basic interface physics, since
it 1s one of the cleanest, simplest and most well-defined interface problems. The
understanding of the basic physical phenomena occurring at the interface between
two different materials is of fundamental importance, and can be studied in simple
systems such as isolated heterojunctions, with a great advantage for computational
purposes.

This Chapter introduces the general problem of the contact between two
semiconductors, with some comments about the different types of interfaces, their
structural characterization, and a list of the most widely used growth techniques.




1.1 Semiconductor heterostructures:
general properties .

Semiconductor quantum structures:

heterojunctions, quantum wells, superlattices

The field of the semiconductor heterostructures includes many and different
systems, ranging from the simple heterojunction constituted by two thick slabs of
different materials, which presents only one interface, to the double heterojunction
showing quantum potential barriers for the charge carriers (quantum wells), up
to the repeated heterojunctions (multiple quantum wells and superlattices). The
improvement in the thin—film growth techniques such as Molecular~-Beam Epitaxy
(MBE)*! and Metal Organic Chemical Vapor Deposition (MOCVD)? has in fact made
possible to realize high—quality heterojunctions characterized by sharp interfaces,
and many new artificial structures® based on sequences of alternating different
semiconductor crystalline layers of varying thickness (10 ~ 1000 A).

The physics of these new materials is nowadays the subject of intensive
studies both for basic and applied science. Semiconductor heterostructures show
physical phenomena of quantum mechanical nature —some of them even not
possible in any “natural” bulk material—, and are largely used to realize new
optical and microelectronic devices based on band-gap and wavefunction engineering:
quantum-well lasers and other optical sources covering a large spectral range, high-
speed modulation—doped field—effect transistor, superlattice photodetectors in high—
efficiency solar cells are only some examples of the variety of devices which have been
demonstrated. The combination of controlled variations in the composition, possible
strain, thickness of the deposited layers provides the possibility of tuning electronic
and optical properties, giving to the heterostructures a great flexibility suitable for
the device design. For further details see for instance Refs. 4, 5, 6, and 7 and
references therein.

Contrary to what happens at the interface between two diﬁeren,tlyk doped slabs of
the same material (homojunction), in case of two different materials (heterojunctions)
the valence~ and the conduction-band edges are discontinuous because of the
difference in the two forbidden gaps (see Fig. 1.1).

The 3-D physical periodicity of the bulk material is broken in these structures.
In a double heterojunction the band discontinuities give rise to a square shaped
potential barrier for the charge carriers, as indicated in Fig. 1.2, confining electrons
and holes according to a quasi-2-D demnsity of states; the quantized confinement
energies depend on the effective mass of the charge carriers, on the width of the
confining layer, as well as on the band discontinuities. In case of thick barriers the
associated wavefunctions are very localized, with small tails in the adjacent layers;

in this case the system is called more precisely a quantum well (QW).
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Figure 1.1. Spatial variation, along the growth direction, of the energy—-band edges for
homojunctions (a) and heterojunctions (b).
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Figure 1.2. Energy-band barriers and quantized confined levels for electron and hole
wavefunctions in a quantum well.



Multilayered structures, e.g. multiple quantum wells (MQW) and superlattices
(SL), formed by repeated heterojunctions have different characteristics according to
the length scale on which they are realized. In particular the name of superlattices (see
Fig. 1.3) properly refers to the case in which the decay length of the wavefunction is
comparable with the width of the barrier, such that tunneling phenomena can occur

and the quantized levels spread into minibands.

Figure 1.3. Spatial variation, along the growth direction, of the energy—-band edges for a
MQW (a) and a SL (b). Electronic quantized confined levels and minibands are indicated
in (a) and (b) respectively, together with the corresponding wavefunctions.

In the semiconductor heterostructures two aspects are equally very important,
i.e. the electron behaviour both in the growth direction (determining the transport
properties), and in the potential wells parallel to the interface planes. Important
parameters are the penetration depth of the electron wavefunction, the mean free
path, the screening length. »

Space—charge effects can modify the band edge structures that we have seen
in the previous structures. The typical situation is that of a modulation doped
GaAs/GaAlAs SL, where the free electrons from the ionized donors in the AlGaAs
barriers are transferred to the undoped GaAs wells (see Fig. 1.4), where they form
a high-mobility (of the order of 10° c¢m?/Vs) 2-D electron gas, with interesting
quantum properties (e.g. Quantum Hall Effect®). The accumulation of opposite
charges on the two sides of the interface, and the resulting alternating sign of the
charge distribution, causes a curvature of the band edges. The charge redistribution
and the band bending is typical of long-length scales (isolated interfaces as in
the heterojunctions or QW with thick layers), whereas it does not occur in those
multilayered structures where the layer thickness is smaller or comparable to the
screening length of the semiconductor. The possibili‘ty of realizing quasi—2-D systems
of electrons and holes thus holds not only in multilayered structures but also at the
simple heterojunction, because of the roughly triangular potential well binding the
charge carriers (see Fig. 1.5).



nt

Al ,Ga;_4As
GaAs

Figure 1.4. Spatial variation of the energy-band edges in GaAs/GaAlAs doped SL. The

band bending results from the spatial separation of electrons from the ionized donors in
the GaAlAs barriers.
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Figure 1.5. Band-bending due to space—charge effects at an heterointerface. The case of
a quasi-triangular shaped potential well binding the electrons is shown.
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1.2 Semiconductor interfaces:
structural characterization and their classification

Classification of the semiconductor interfaces

It is useful to classify the semiconductor interfaces according to their structural
or chemical characteristics. The most important parameter which determines
the structure of the heterojunctions is of course the lattice constant of the two
different semiconductors (see Tab. 1.1). A great number of technologically
important heterojunctions are characterized by nearly identical lattice parameters
and consequently by a particularly simple and ideal structure, usually referred to as
“lattice-matched” heterojunctions. In particular, if all the bond lengths are the same,
the heterojunction has a perfectly ideal structure and the presence of the interface is
characterized only by a change in the atomic species filling the nodes of the crystal
lattice, and by no distortions. The prototype case is GaAs/AlAs, whose experimental
room-temperature lattice parameters are respectively 5.653 A and 5.660 A ie. they
differ only by 0.2 %. A number of other important lattice—matched hetero junctions

exists.
si 5.43 0
Ge 5.65 4 [¢]
GaRs{5.65 4 [} 0
AlAs|5.65 4 0 o] o
InAs[6.08 11 7 7 7 4]
GaP }5.43 o] 4 4 4 11 0
AlP 5.43 0 4 4 4 11 o] o]
InP |5.87 8 4 4 4 3 8 8 o
Gasb |6.08 11 7 7 7 o 11 11 3 [}
Alsb|6.08 11 7 7 7 0 11 11 3 0 o
Insb |6.48 18 14 14 14 6 18 18 10 6 & o
ZnSe [5.65 4 [¢] o] (4] 7 4 4 4 7 7 14 o]
2Zns |5.40 1 4 4 4 1z 1 1 8 12 12 18 4 0
ZnTe {6.08 11 7 7 7 o] 11 11 3 o] 0 6 7 12 0
CdTe {6.48 18 14 14 14 6 18 18 10 6 3 0 14 18 6 0
HgTe |6.48 18 14 14 14 6 18 18 10 6 6 o 14 18 & o} o
R si Ge GaAs AlAs InAs GaP AlP InP GaSb AlSb InSb ZnSe ZnS ZnTe CdTe HygTe
Table 1.1. Lattice parameters and. relative mismatching percentage for various

semiconductors with bulk diamond or zincblende structure in standard conditions of
temperature and pressure. The lattice parameters are given in A, the mismatch in units %.
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The case of “lattice-mismatched” heterojunctions, whose typical example is
Ge/Si, is more complicated: given a substrate, the material grown on it modifies its
structure and adjusts itself to the substrate. In particular, the deposited material can
assume along planes parallel to the growth surface the same structure of the substrate
lattice, with stretching of the chemical bonds and a completely different structure
with respect to the normal crystal; the lattice mismatch is thus accommodated with
a uniform lattice strain in case of sufficiently thin layers. The typical diamond or
zincblende structure of semiconductors is lost, and a distinction is usually made
between the “in-plane” lattice parameter a), that is the average lattice parameter
along planes parallel to the interfacial plane, and the “inter-plane” lattice parameter
ay (see Fig. 1.6): typically, a| accommodates in order to be equal to the lattice
parameter of the substrate, and a, is determined by the elastic properties of the
material.(*)

Figure 1.6. Interface formation between lattice-mismatched semiconductors.

) The flexibility of the new techniques for preparing interfaces has improved the possibility of
producing complex strongly lattice—mismatched heterostructures, i.e. strained-layer superlattices
(SLSL), with an accurate control during the growth in order to avoid defects such as misfit
dislocations. It is important to notice here the great flexibility of such structures: in general, if
a thin overlayer is grown on a substrate, the value of the “in—plane” lattice parameter is determined
by the substrate and can be varied using different substrates. Practical growth of SLSL with
dislocation~free interfaces is actually possible with layers under a certain critical thickness depending
on the degree of lattice mismatch. New interesting features in the band edges —i.e. energy-band
gap splittings and shifts studied for instance in Ref. 9— correspond to the increased structural
complexity.
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We can further distinguish “isovalent” and “heterovalent” interfaces, as indicated
in Fig. 1.7. “Isovalent” heterojunctions are constituted by two elemental, or two
binary or pseudobinary semiconductor compounds pertaining to the same group
(both to group IV, or III-V, or II-VI): isovalent meaning that anions (cations) in the
two materials have the same chemical valence. In particular, the isovalent “common—
anion” heterojunctions are constituted by two binary or pseudobinary semiconductor
compounds having the same anions, a typical system being GaAs/AlAs. The isovalent
“no—common-ion” heterojunctions are constituted by two binary or pseudobinary
semiconductors having both different anions and cations; in this class there are also
heterojunctions, like for instance InAs/GaSb and InP/Ga;_,In, As.

Conversely, the “heterovalent” heterojunctions are constituted by two semicon-
ductors which belong to two different groups among the IV, I1I-V, or II-VI—group,
the simplest and most studied case being Ge/GaAs. As already emphasized by other
authors '® such heterojunctions can present polar unstable interfaces with charge ac-
cumulation and unscreened electric fields; the interface is more complicated in such
cases, and its properties are determined by e.g. the stoichiometry (i.e. the number of
atoms of each type in the interface region), the order of the different types of atoms
in the interface plane, and finally the displacements of the atoms from their ideal

positions.

Interface formation:

growth techniques and structural characterization

The possibility of growing heterojunctions with good crystal quality is a quite
recent technological achievement. Parameters which can favour one technique with
respect to the others —at equal quality of the interface— are the background doping
and the possibility of controlling the thickness of the deposited layer. One of the
techniques first used is the liquid-phase epitaxy (LPE), introduce by Nelson!! at the
beginning of sixties and successively improved by Panish 2. More recent techniques,
largely used nowadays, are the metal-organic chemical vapor deposition (MOCVD)?
and the molecular beam epitaxy (MBE)!.

Whatever growth technique is chosen, the final quality of the interface can be
affected by several factors, as for instance: i) the quality of the starting substrate,
which is prepared with chemical polishing, vacuum annealing, and other surface
techniques to avoid the effects of surface contamination on the grown crystal 13,
ii) the growing time, which determines the evolution and the final microscopical
chemical structure of the interface *; iii) the substrate temperature during growth,
which is very important to control the atomic interdiffusion: for instance it has
been observed!* that an abrupt interface Ge/GaAs with an epitaxial Ge overlayer
is obtained when Ge is deposited over a GaAs substrate at 320°-360°C, whereas an
amorphous Ge overlayer is obtained if the substrate is at room temperature, and a
diffused interface is formed at higher temperatures; this observation also indicates

13
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Figure 1.7. Examples of isovalent common—cation (a), isovalent no~common-—ion (a), and
heterovalent (c) lattice-matched heterojunctions.

that for two semiconductors to be potential constituents of an heterojunction, their
temperature ranges of the crystalline phase must overlap.

Although a good improvement in the preparation techniques has been done,
several deviations from the “ideal” character of the interface are possible, which
may influence the actual charge distribution: chemiabsorption-bond dipoles,
microdiffusion of atoms across the interface, the presence of defects and/or
contaminants at the interface. It is important to point out the possible existence
of such microscopic defects, and the fact that a complete knowledge of the actual

structural situation at the interface is beyond our capabilities. Some progress in
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this sense —to provide direct information about the microscopic structural and
chemical properties of the interface also at the initial stage of formation— has already
been done, with the combined efforts of some surface—sensitive techniques such as
soft X-ray photoemission spectroscopy (SXPS), and other very recent techniques
like transmission electron microscopy (TEM, see Fig. 1.8)15, high-resolution X-
ray diffraction (HRXRD), Rutherford backscattering, reflected high—energy electron
diffraction (RHEED), ion channeling and ellipsometry.

GaAs

AlAs

Figure 1.8. High-resolution TEM micrograph of GaAs/AlAs SL projected on (110) plane
(from the cited Reference (b)).
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Chapter 2

THE BAND-OFFSET PROBLEM:
TRENDS
FROM EXPERIMENTAL DATA

The band-offset problem —which I introduce at the beginning of the present
Chapter— is of fundamental interest both for experimentalists and theoreticians, and
combined efforts are necessary to its understanding. It is beyond the purpose of the
present work to make a detailed and critical analysis of the experimental measurement
techniques, and a collection of the ezisting literature: few lines are devoted to the most
representative and nowadays largely used technigues.

The attention is rather focused on the general trends outcoming from the large
amount of ezperimental data available, and in particular to what can be concluded
about the main questions related to the lineup problem: wvalidity of commutativity
and transitivity rules, role of the interface structure. Ezperimental data show
that for a wide class of systems (i.e. mainly isovalent heterojunctions) the band
discontinuities show commutativity and transitivity properties, and do not depend
on the interface orientation; whether other interface details, such as abruptness,
dislocations, impurities... are important or not, it cannot be precisely ascertained
by the existing experimental data.

16



2.1 Energy-band discontinuities

The band lineup, a fundamental parameter for any heterostructure.

The present study concerns the energy—band discontinuities, which are important
parameters both for the isolated interface and for the repeated omnes in the
multilayered structures. The difference AE, = Ef — E;‘ of the minimum forbidden
gap in the two semiconductors is shared between the valence-band offset (VBO) and
the conduction-band offset (CBO), such that VBO+CBO=AE,. In the literature
—regarding both experimental measurements and theoretical calculations— are
reported either the values of VBO and CBO or their ratio, which also provides
their values once AE, is known. For computational reasons, since it is not trivial to
calculate accurately the minimum forbidden gap, I refer in this work to the two band-
discontinuities separately; in particular I focus the attention on the VBO, which can
be calculated more accurately than the CBO. The various parameters and symbols
are defined once and for all in F ig. 2.1; conventionally I consider positive a band
discontinuity in the heterojunction A /B if the energy~band edge of semiconductor B
is higher than the corresponding of semiconductor A.

The energy—band discontinuities and the related bending at the two sides of
the interfaces can form potential barriers Va and Vp for the charge carriers crossing
the interface, playing a different role for electrons and holes. The interest is further
restricted here to what happens in a limited region near the interface (1-10 A),
neglecting the band bending effect which requires a study of systems over a larger
scale (10%-10* A).

The importance of the band lineup problem is twofold: on one side an accurate
knowledge of the band offset values and the possibility of predicting them for a large
number of systems is appreciable for technological purposes; on the other hand the
description of what happens when two different semiconductors are put together
Is interesting in itself, being related to some fundamental questions, such as the
mechanism which governs the band alignment or the possibility of referring the band
structures of all semiconductors to a common energy scale.

Band discontinuities and interface characterization

The relative position of the energy bands at an interface between two
semiconductors can vary dramatically by substituting the components of the
heterojunction, as shown in F ig. 2.2 for four different possible situations.

The alignment of the energy bands may depend on both intrinsic and extrinsic,
structural and chemical characteristics of the two semiconductors. Bulk lattice
constants and bandgaps are examples of intrinsic factors, while extrinsic factors
include, among others, chemical impurities, structural defects, atomic interdiffusion
of the two materials.

17



1-104

Figure 2.1. Schematic diagram of the energy bands at semiconductor-semiconductor
heterojunction. Ef is the Fermi level; for each semiconductor: Ey, E¢, Eg are the valence-
band, the conduction-band and the the band gap; the band-gap difference between the
two semiconductors is shared between the valence-band (VBO) and the conduction-band
discontinuities (CBO); Vp; the built-in potential barrier. The spatial range to which the
calculations reviewed and the new ones presented in this work are referred is indicated in
the magnified picture.

All these microscopic factors determine the charge distribution in the hetero-
junction and therefore can in principle influence the band lineup. It is essential to
know which factors are really important and how much, i.e. whether the VBO is
determined and can be thus explained and predicted only using the different bulk
properties of the two materials, or if it is determined by specific interface details, and
can be varied also for a fixed couple of semiconductors. In summary, there are three
main questions to be investigated, as presented in Fig. 2.3:

i) the commutativity, i.e. whether VBO 4,5 = —VBOp,4. The expected answer
may seem trivial, but the experimental test has to be performed following two

18



i)

iii)
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Figure 2.2. Energy-band discontinuities at different type of heterojunction interfaces.

different interface growth processes, starting with one semiconductor or the other
as the substrate.

the transitivity rule, i.e. whether in case of three heterojunctions A/B, B/C, and
A/C, it occurs that

VBOA/B-FVBOB/C%VBOA/Q (21)

Note that if the VBO were a linear function of a given physical quantity £ for the
two semiconductors, i.e. VBO= g — {4, then commutativity and transitivity
would be consequences of that; viceversa, if such properties hold, this would
suggest that the VBO is related to bulk quantities.

the role of the interface details, and in particular whether the VBO does depend
or not on the interface orientation and abruptness. Note that if the microscopic
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interface details influence the band discontinuities, possible deviations from the
“ideal interface” configuration would constitute a powerful tool to control and
tune the band discontinuities according to the technological requests. The answer
to these crucial questions is related to the understanding of the nature of the
mechanism determining the band lineup.
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Figure 2.3. Schematization of the three main questions concerning the band-offset
problem: commutativity (a), transitivity (b), role of interface orientation and abruptness

(c).
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2.2 Energy—band discontinuity measurements

Photoemission measurements

I give here a brief survey of some experimental techniques for band discontinuities
measurements. More details can be found in Ref. 5 and references therein.

The photoemission spectroscopy is a very sensitive method for the band
discontinuity measurements. The system, constituted by the substrate and a
thin deposited overlayer, emits photoelectrons when bombarded with soft X-ray
(XPS, X-ray photoemission spectroscopy) or ultraviolet photons, obtained from
conventional or syncrotron radiation sources. A fundamental feature which makes
the photoemission techniques particularly suitable for interface studies is the short
mean—free path of the photoelectrons inside the two semiconductors, which is of
course related to their kinetic energy: a kinetic energy of 50-150 eV corresponds to
a minimum in the mean—free path less than 1 nm, so that detected photoelectrons
with that energy come from the thin overlayer and therefore from a region very close
to the interface.

The measured energy distribution of the photoelectrons roughly corresponds to
the local density of states at the interface. A direct measurement of the energy-band
discontinuity is often possible: if the VBO is not too small, its presence is directly
revealed by a double-edge structure in the photoelectron spectrum, as indicated in
Fig. 2.4.

If this is not the case, a less direct but more general method must be applied, by
measuring the distance between the two valence band edges relative to the distance
between core levels on each side of the interface (see Fig. 2.5).

The photoemission spectroscopy is the most suitable technique to monitor the
evolution of the interface formation: from valence-band spectra taken from the
covered—surface at consecutive overlayer thickness, one is able to observe at what
coverage the overlayer semiconductor electronic features are fully developed, i.e.
what is the extension of the interface effects. Two examples are shown in fig. 2.6:
in both cases we observe that the bulk features of the overlayer semiconductor are
completely recovered within a distance of 5-10 A from the interface. Unfortunately,
the high sensitivity of the photoemission measurements to the interface details does
not correspond to a very good accuracy: the estimated accuracy is in general about

0.1 eV.

Other optical measurements

The optical properties of QW and SL allow alternative methods of measuring
the energy-band discontinuities. The VBO and the CBO are two of the several
parameters determining the quantized energy levels for electrons and holes, revealed
by the presence of a particular series of peaks both in the infrared absorption
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Figure 2.4. The two steps of a photoemission measurement of the band discontinuity: on
the clean surface of the substrate (a), and when the overlayer has been deposited (b). After
absorption of photons with energy Av, photoelectrons are created whose energy spectrum
N(E) reflects the density of states of the substrate (a) or of the interface region (b), shifted
in energy of an amount equal to AV in both cases plus the band bending, different in
presence of surface or interface. From the double-edge structure of the second spectrum
the VBO can be directly measured; if it is not clearly visible, it is necessary to compare
the positions of the leading edge of N(E) in (a) and (b), corrected with the different band
bending. From Ref. 16.

spectral” and in the photoluminescence spectra'®. Unfortunately the energy levels
are not very sensitive to the band discontinuities,(*) although the experimental
accuracy reachable in optical experiments is very high.

Transport measurements

Indirect measurements of the valence-band discontinuity are possible by
estimating the built~in potential barrier, which is related to the VBO through the
band gap of one semiconductor and the bulk Fermi level positions as shown in F ig.
2.1 and according the following equation:

VBO+Vbi+5A+5B:E; (2.1)

The built~in potential Vj; is usually determined by studying the capacitance—
voltage (CV) characteristics *°. If one reasonably assumes the relationship:

C o (Vo — V)12 (2.2)

() The quantized levels of the charge carriers depend more strongly on the width of the potential
well —and are therefore very sensitive to the thickness of the alternating layers— rather than on
the band discontinuities.
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then a plot of C~2 versus V gives a straight line which intercepts the V-axis at
Vbi. An alternative but in general less applicable method is the measurement of the
current-voltage (IV) characteristics 29,

Admittance spectroscopy measurements

The admittance spectroscopy method also provides the determination of the
band discontinuities through the determination of the built—in potential which limits
the perpendicular transport at the interface, but it is different since it is a dynamic
technique. In fact it is based on the thermal activation of carriers over the potential
barrier formed by the heterojunction band offsets: a plot of the ac conductance
versus the temperature shows a peak corresponding to the situation when a typical
time RC of the junction (R is the series resistance of the sample, C' the depletion
layer capacitance) equals the inverse of the angular measurement frequency.
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2.3 Trends and open questions

Experimental data base

A large number of reliable data is avaliable now, thanks to the continuous
progress in the experimental techniques. As an example, I report in Tab. 2.1 the more
reliable experimental values of the VBO from measurements obtained with different
methods for the heterostructures studied in the present work, but the following

discussion takes into account the existing data base for several other systems.

VBO(eV) technique authors comments
AlAs/GaAs 0.45 charge transfer Wang and Stern (1985) M BE,(001)
0.40 photoemission Waldrop et al. (1981) Gads on Alds (110)
0.15 photoemission Weldrop et al. (1981) Alds on Gads (110)
0.38 photsemission Katnani and Bauer (1986) commutativity, (001)
Gads/Ge 0.48 photoemnission Waldrop et al. (1982) Ge on Gads(111)Ga
0.55 photoemission Waldrop et al. (1982) Ge on GaAs{001)Ga
0.56 photoemission Waldrop et al. (1982) Ge on Gads(110)
0.60 photoemission Waldrop et al. (1982) Ge on GaAs(100)As
0.60 photoemission Waldrop et al. (1982) Ge on GaAs(111)4s
InP/Gap.srlngs3As 0.37 c-V Forrest et al. (1984)
0.24 photolumninescence Brunemeier et al. (1985) QW, (001)
0.26 photoluminescence Temkin et al. (1985) QW and MQW grown by MBE
0.00 Cc-V Steiner et al. (1986)
0.38 optical spectroscopy Skolnick et al. (1986) QW grown by MOCVD
0.33 optical abs., photoluminescence Westland et al. (1987) MQW grown by MOCVD
0.35 admittance spectroscopy Lang et al. (1987) (001)

Table 2.1. VBO (in eV) for the different lattice-matched heterostructures studied in
the present work. See for instance Ref. 21 for GaAs/AlAs, Refs. 22, 23, 24, and 25 for
InP/GalnAs, Ref. 26 for Ge/GaAs; others in the review article by G. Margaritondo and
P. Perfetti in Ref. 5. A

It is not easy to estimate the accuracy and the reliability of the VBO
measurements, since different authors are often in contrast on this point, and the
spread of the data obtained with different techniques for the same material is rather
large with respect to the quoted accuracies of the single measurements. A significant
example is the one of Al,Ga;_-As/GaAs: fora long time, say from the early seventies,
it has been accepted the result of infrared measurements 17 giving a ratio of 15/85%
for VBO/CBO and thus supporting the “common—anion rule” which predicts a very
small VBO for heterojunctions with the same anion; other more recent optical data!®
as well as photoemission and other measurements have shown that the band-gap
discontinuity is practically shared with the same weight between the valence— and
the conduction-band discontinuities.

We should have in mind that the experimental accuracy achieved in measuring
the quantities directly accessible is different in general with respect to the final
accuracy of the estimate of VBO and CBO; the final result is obtained with some

model to link the directly measurable quantities to the band discontinuities, and
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hence it can be affected by some spurious contributions. According to some of the
best experts,® the typical accuracy of the experimental measurements of the VBO is
nowadays in general of the order of 0.15 €V; this does not exclude a better accuracy
in some particular case.

As far as the reliability of these experimental data is concerned, it should be
stressed that measurements performed on low—quality heterojunctions can give values
of VBO which are not representative of any ideal abrupt epitaxial interface: many
samples have interfaces which are not at all ideal and abrupt, but rather graded,
or with a strong degree of atomic interdiffusion, presence of foreign atoms,epitaxial
interface, epitaxial interface, internal lattice distortions and interfacial strains. A
certain spread of the experimental data can thus be explained by the deviations from
the abruptness, which are hardly detectable and can in principle strongly influence

the energy—band discontinuities.

Experimental measurements and theoretical works

Which general features can be extracted from the large amount of experimental
measurements? In particular, what do experiments say about commutativity,
transitivity, and role of the interface details? Commutativity rule is in general
satisfied: experimental tests performed for GaAs/AlAs and ZnSe/Ge *>7?® have shown
that the deviations from it are in general negligible, and however always smaller than
the accuracy of the single measurements. There is some evidence of transitivity for
a lot of systems; tests2? performed mainly for the group (GaAs, Ge, AlAs)?® have
given deviations from it of the order of 0.01-0.03 eV per interface, whereas other
groups such as (GaAs, Ge, CuBr) show significant deviations from it (= 0.2 eV per
interface).3% As far as the interface orientation dependence of the VBO is concerned,
results are in contrast on this point, ranging for different systems from the case of
GaAs/AlAs where the differences of the VBO in the three main crystallographic
orientations are negligible to the case of heterovalent interfaces such as Ge/GaAs
where the result strongly depend on the interface orientation (see Tab. 2.1). Again,
there is an evidence of linear behaviour of the VBO in those systems including an

alloy, such as Ga;_,Al;As/GaAs (see Fig. 2.7): the VBO is found to be a linear
function of the composition z.3!

In summary, experimental measurements suggest that the energy-band discon-
tinuity between two semiconductors can be expressed with a good approximation as
a linear function of some bulk quantities for a large class of systems, mainly for isova-
lent heterojunctions, whereas deviations from commutativity and transitivity tests of
the order of 0.2 eV —and however surely greater than the experimental accuracy—
are shown in other systems.

What can the experiments say about the importance of other interface details,
i.e. the possible deviations from the “ideal interface” configuration? The existing

experiments alone cannot ascertain this crucial question, i.e. whether these details
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Fe(2+) deep impurity level, as a function of the composition parameter z. From these
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the band—gap difference is given for Gaj_gAlz As/GaAs interfaces (from Ref. 5, p. 86);
(b) Energy-band alignment for the same heterojunction, proposed by J. Batey and S.L.
Wright ®! (dots indicate experimental data).

influence or not the VBO: the knowledge of the microscopic structural and chemical
details at the interface is still beyond our capabilities, so that we neither know to
which specific interface configuration some measurements are referred, nor we can
predict it with calculations; moreover the accuracy of the available experimental
data is often comparable to the effects one is looking at.

However some experiments indicate that the band discontinuities can be modified
by acting on the interface chemically. Some attempts of modifying the VBO by a
controlled contamination of the interface have been done by doping the interface
region 2 or introducing an entire monolayer of foreign atoms 33,34; these doping effects
have no influence at all in cases such as GaAs/Ge, whereas produce very large changes
in band lineups (= 0.5 eV for the VBO) for instance in case of Si/Si0O5 contaminated
with hydrogen; a change up to several tenths of an eV has been recently found in
GaP/Si and in ZnSe/Ge interfaces modified with the introduction of Au-diffusive
intralayers. 3°

In summary, a clear and complete understanding of the nature of the energy-
band discontinuities is not yet achieved, and many questions are unanswered. A
theoretical approach to the band-offset problem has become and is still necessary
not only to discriminate between the different experimental data and to determine
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the reliability of the measurements,**) but expecially to give a general systematic
understanding of the physical mechanisms responsible of the band offset. Moreover,
theoretical calculations —based on certain geometrical and structural assumptions—
also could provide predictions for heterojunctions not yet experimentally grown or
not well characterized, and would be very useful to focus new physical properties,
giving perspectives of future applications.

The physical understanding of the band lineup problem is the crucial question,
but a lot of efforts have still to be done both from experimentalists and theoreticians
also to strongly improve the accuracy of the values obtained: for technological
purposes an accuracy of the order of 1 meV is in fact necessary.

As a final challenge, there is some evidence that reducing the interface problem to
a one—dimensional problem is too much simplified: some experimentalists are trying
to explore the interfaces, with the help of the new syncrotron radiation technologies,
in their complete three—dimensional structure, without any spatial average, and to
understand if they are, as many of them seem to be, laterally inhomogeneous.

() However, the main goal of calculations could not be in any case to reproduce the experimental
data with excellent agreement, since a realistic description of the interface is not yet possible even
using the most sophisticated and most accurate theories available at present.
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Chapter 3

THE BAND-OFFSET PROBLEM:
THEORETICAL FORMULATION
AND CRITICAL REVIEW

OF EXISTING MODELS

A theoretical approach to the band-offset problem 1is necessary to answer
questions that cannot be ascertained by experiments only. In principle one might
expect that, being the heterojunction problem well defined, accurate theoretical
calculations of the band discontinuities are quite simple to be carried out. This is
not the case for the many uncertainties about the interface structure, but even if
one assumes to know all the crystallographic and stoichiometric details needed and
is able to make accurate calculations, the understanding of the problem does not find
immediate solution, and each possible theoretical approach gives a partial contribution.

Theoretical works can be classified mainly into two different sections. The first
one (discussed in the nexzt Chapter) includes accurate numerical calculations —first-
principles ab initio— giving information also on the electronic charge distribution at
the interface; all theories of the band lineup other than such ab inttio calculations can
be described as “model” theories, in that they make severe approzimations describing
the interface. These theories, which I am going to review in the present Chapter,
have the advantage of being easier to be performed, can be applied to a wide range of
materials, and tend to focus on the physical mechantsms which are believed to govern
the phenomenum rather than on the exact description of all the physical quantities

involved.
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3.1 The theoretical approach

The problem of the reference bulk level and the absolute energy scale

From a precise theoretical point of view, the band offset across the junction
between two semiinfinite crystals A/B is defined in terms of the local density of
states, n(e,r). Far from the interface on the two sides of the junction, n(e,r) is a
periodic function of r, and its spatial average in those regions yields the bulk densities
of states of the two materials, g4(¢) and gp(e). The VBO is ezactly defined as the
difference between the valence-band edges of the two densities of states calculated
as above described.

Different theoretical approaches have been proposed to calculate the band offset;
most of them avoid the calculation of the local density of states and use directly the
integrated density of states of the two materials, which is a more accessible quantity.
In terms of the integrated density of states the band offset is determined by a rigid
shift of the two bulk band structures (whose separate determination is a standard
problem of electronic structure calculations), and the problem of band lineup is thus
to determine such shift.

The use of the integrated bulk density of states poses however a problem, since
for instance in the usual framework of density~functional theory (DFT) the density
of states of the bulk infinite system is defined only up to an arbitrary constant
in the energy. One usually does not worry about it if he is interested on the
band structure of only one material, but this constitutes the critical point in the
heterojunction problem, since the band structures of the constituting semiconductors
are not “naturally” put on a common energy scale.

What is the reason of this indetermination? Can it be overcome? The common
description of the single—particle energies in DFT treats them as “removal” and not
“absolute” energies: as in an infinite system there is no “elsewhere” to remove an
electron, it would follow that single-particle eigenvalues are ill-defined quantities.
This argument is not completely true. In fact, were the interactions finite-range, the
removal energy from a macroscopic but finite sample would not depend on shape or
surface effects and would have therefore a well defined thermodynamic limit: in other
words we could extract from a finite system information for the infinite one without
using any specific feature about the “finiteness” of the sample. It is precisely the
long-rangeness of the Coulomb interaction which makes removal energies depend on
the detailed structure of the surface®® and hence ill-defined in the thermodynamic
limit.

Many model theories have implicitly or explicitly assumed that the VBO is
determined only by bulk properties, and hence neglected interface specific effects and
determined a “reference level” for each material: a long debate has been done on the
best criterion to fix it. Actually there exists a prescription to determine an absolute
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energy level to which refer the band structures of an infinite bulk semiconductor also
in the framework of DFT®"38: provided it can be described as made up of neutral
“building blocks”, the thermodynamic limit is well defined, and does not depend on
the specific features of the finite sample from which it is extracted.

An absolute energy scale to which refer the energy bands of semiconductors could
thus be constructed, and once all the semiconductors were placed on it, the relative
positions of their energy bands and hence the band discontinuity at an heterojunction
would be automatically determined. Let us make in fact the assumption that a
reference level F,. exists and is a well defined property of the bulk semiconductor.

Then the position of the valence-band maximum relative to E,. is:
E =FE,—E. (3.1)

If we consider now the heterojunction A/B, we must line up the reference levels of

the two semiconductors:
AE.=E.(A)—-E.(B)=0 (3.2)
so that we obtain for the valence-band offset:
VBO = E;(B) —E;(A) (3.3)

Note that this picture is valid only for ideal heterojunctions where the constituting
semiconductors are far away from each other or however not interacting, i.e. where
the interface details are not important. Commutativity and transitivity properties
(see Eq. (2.1)), which are satisfied in many cases according to the experimental
data, are direct consequences of Egs. (3.1-3.3), as well as the interface—orientation
independence.

In view of the experimental data, which clearly show that the VBO depend on
the interface orientation in some heterojunctions, the energy scale so defined seems
wrong. Some model theories have modified the concept, conserving the “universality”
for all the semiconductors, but not the “absoluteness” inside the same material:
semiconductors constituting the heterojunction are more properly considered as
semiinfinite systems, and for each one several different reference levels are established,
according to the specific surface orientation. This approach is not appropriate if one
considers real surfaces, with physical features very different with respect to those of
the ideal surfaces constituting the interface; it can be interesting if model surfaces
ideally joined to constitute the interface are considered. Note that this picture is still
in agreement with the commutativity and transitivity properties.

The effects of the interaction of the two surfaces put in contact and the role of
the interface details are taken into account semi-empirically by some model theories:
they start from the picture of an absolute energy scale with a rigid alignment of the
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band structures, and then, by modeling the rearrangement of the charge density at the
interface, they determine the additional potential shift which give the final energy-
band discontinuities; notice that this interface-dependent additional shift breaks the
concept of the absolute energy scale. Interface details are also taken into account by
the self-consistent ab-initio calculations which give an accurate description of the
electronic distribution at the interfaces, and which hence do not assume a priori the
existence of a common absolute energy scale; in such case the results obtained will
indicate whether the idea of a common reference energy scale is valid and can be
recovered, and will eventually suggest other models.

Band offsets vs. electrostatic potential lineup

We will see now how the relevant informations for the band offset problem can
be extracted from the electronic structure calculations: I face the question following
a general line, by focusing some concepts common to many different theoretical
approaches, both model and ab—initio theories.

We have identified the problem of the band offset with the determination of a
shift of the band structures of the two materials, when the integrated bulk density
of states is used. The average electrostatic potential for the electrons is a convenient
reference level for the band structures, since, even if one is not able to determine it in
an infinite bulk material, its difference across the interface between two semi-infinite
solids is, on the contrary, well defined.

It is easy to realize that the potential lineup is in general different from zero,
even in the equilibrium crystallographic and electronic structure. Let us consider
the heterojunction along the growth direction as made by charged planes, and start
in particular from a “false” homojunction constituted by the identical material on
the two sides: locally the solid is not neutral, and can be described as a continuum
of infinite microscopic planar capacitors; they globally neutralize each other, the
average electric field is zero, and the average electrostatic potential is constant. If
we consider now an heterojunction, because of the different charge distribution in
the two materials at the interface there is a microscopic capacitor whose effects are
not neutralized by the others: while the electric field outside is zero, the average
electrostatic potential jumps from one constant value on the left side of the capacitor
to a different value on the right side.

What one can thus exactly describe is the relative position of the band edges
in the heterojunction by adding separately the two bulk band structures to the
electrostatic potential lineup —as indicated in Fig. 3.1— rather than the absolute
position of the two bands separately.

The energy-band discontinuity can thus conveniently be written as a sum of two
different contributions(*), one strictly dependent only on the different bulk properties

() 1 stress that the splitting of the VBO into different contributions is arbitrary and not uniquely
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Planar and macroscopic averages

The question is now how the electrostatic potential lineup is related to the three—
dimensional distribution of the charge density, and to the corresponding electrostatic
potential obtained via Poisson equation. As an example, we show in Fig. 3.2 the
contour plots of the self-consistent electronic valence charge for the GaAs/AlAs (001)
heterojunction: there are two equivalent interfaces, one at the figure center and one
at the figure borders, but on this scale the presence of interfaces is hardly detectable.

Figure 3.2. Charge density of GaAs/AlAs (001) heterojunction: the plots are centered
at an interface anion; GaAs down; AlAs up. Left: (110) plane; middle: (110) plane; right:
(010) plane.

The physical quantities f(r) we are interested in —such as the electron density
n(r) or the electrostatic potential V(r)— are periodic in the planes perpendicular to
the growth direction (2 axis). Since the most interesting feature is the z dependence
of these three-dimensional quantities, it is convenient to define f(z) as the zy
planar average of f(r): f(z) = 3 [ f(z,y,2z)dedy, where S is the area of the two—
dimensional unit cell on the zy plane. From the three-dimensional electronic density
one thus gets the one-dimensional density 7(z) and potential V(z) shown in Fig.
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3.3(a) (in that case 5 = 9;‘;‘2’—).(*)

The function f(z) is nonperiodic in the interface region, and goes asymptotically
into two different periodic functions (having the same period L in the example shown
here of a lattice—matched heterojunction) far from the interface. Any interface effect
is due to the difference between these periodic functions and is barely visible on this
scale, being almost masked by bulk oscillations; for instance, the constant shift of the
average electrostatic potential, approximately sketched in Fig. 3.3(a) with a dotted
line, is very small with respect to the amplitude of the bulk oscillations.

In order to get rid of bulk effects and blow up interface features a new procedure
has been recently proposed *®, which avoids any definition of an ideal interface and its
use as a reference. Such a procedure is an application of the concept of macroscopic
average which is well known in classical electromagnetism. 39

Any macroscopic quantity f(m“"")(r) is related to its microscopic counterpart
f(miero) () through a convolution:

f(ma,cro)(r) — /w(r - r’)f(mi‘-""o)(r’) dr" (35)

where w(r) is real, nonzero in some neighborhood of r =0 and normalized to unity
over all the space®®. Itis a trivial matter to show that such an averaging commutes
with the space and time differentiation occurring in Maxwell equations. The choice
of the filter function w is largely arbitrary; however each macroscopic problem has its
own appropriate lower limit of relevant lengths and this sets the size of the w function
to be used ¥2. When studying electrostatics in crystalline materials, periodicity allows
to take length scale as small as QY/3 where Q is the unit cell volume.

As far as the semiconductor heterojunction problem is concerned, matters are
simple for interfaces between two lattice-matched materials, where the above defined
characteristic function w can be chosen as material-independent. Macroscopically
averaged quantities (charges, fields, potentials) show no microscopic oscillations on
ecither side of the interface and recover the macroscopic limit in the two bulks.
Conversely, deviations from the bulk macroscopic values define the interface region:
for instance the one relative to the electronic charge density defines unambigously an
interface dipole.

Before the concept of macroscopic average was introduced into the heterojunc-
tion problem *®, there has been a long-standing confusion about the nature of the
interfacial dipolar charge distribution which gives rise to the potential lineup, as it
will appear in Sect. 3.1. The macroscopic average, on the contrary, allows to define
an interface dipole and to blow up any genuine interface features using the interface

(*) Notice that, according to the definitions used here, the planar and macroscopical averaged
quantities have the same dimensions as the original quantities.
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charge as the only ingredient. The interface charge profile so obtained is related, via
the Poisson equation, to the potential lineup.

In practice, once we have the planar average of the quantity under study, the next
step to obtain the macroscopic average is to pass the function 7i(z) (or V) through
the (one-dimensional) filter defined by the convolution:

f(z) = %liijiz i(z') d2' = %/@(—g — |z — z'l)ﬁ(z') dz', (3.6)

where © is the step function and L is the period of planar averaged bulk quantities
(e.g. L = % for the GaAs/AlAs (001) heterojunction, illustrated here). The results
are shown in Fig. 3.3(b). As for the charge, the figure shows, on a magnified scale,
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Figure 3.4. Three-dimensional macroscopic average of the electron density in GaAs/AlAs
(001) heterojunction, projected onto the (110), (11 0), and (010) planes. A characteristic
function of the bulk Wigner-Seitz cell is used in this case as a filter function. The shaded
area indicates regions where the density is lower than eight electrons per cell. GaAs down,

AlAs up.

a dipole profile, localized in the neighborhood of the interface. The electrostatic
potential varies across the interface from a constant value to a different one, the
lineup A being related to the dipole moment of the charge profile through:

AV = 4re® /z(vzz(z) —n,) dz, (3.7)

where 7, is the average electronic density of the two bulks (eight electrons per cell, in
the case of elemental or binary semiconductors, whose unit cell is a zincblende cell).
It is important to notice that Eq. (3.7) allows to define unambiguously the concept

of interface dipole for any interface, and also, in particular, for a surface.
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The macroscopic averages shown so far have been built in two steps: first the
(z,y) planar average and then the one-dimensional convolution. It is easy to realize
that this construction is equivalent to the three-dimensional convolution of Eq. (3.5),
where the filter function w(r) has been taken as the characteristic function of a
suitably shaped (slab-adapted 36) unit cell of volume SL. Other choices are possible,
all giving the same macroscopic values but different resolution and different shapes of
the interface charge. Previously I have shown the planarly averaged interface profile;
suppose instead one wants to investigate on which sites this dipole charge is located.
To this aim, (z,y) resolution is needed: the natural and unbiased choice for the filter
function w is then the characteristic function of the bulk Wigner-Seitz cell.

Starting again from the three-dimensional charge of Fig. 3.2, one obtains the
macroscopically averaged charge shown in Fig. 3.4 using a magnified spacing between
contours. This kind of macroscopic average goes—as the previous one—to the
constant value n, in the two bulk regions; it deviates from n, in the neighborhood of
the interface, but this deviation is no longer (z,y) independent. Instead it is periodic
in the (z,y) planes and shows very clearly that the dipoles responsible for the lineup
are localized at the interface anions (and nearby bonds) for this (001) geometry. Such
a localization can be defined only to a resolution of Q1/3 intrinsic to the macroscopic

average itself.
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3.2 Existing models

The “common-—anion rule”

Before discussing the several models theories based on the concept of the
“reference level”, I just mention a completely different and very empirical model,
which is known as “common-anion rule”. It simply states that the valence—band
discontinuity between two semiconductors with the same anion is very small, the
reason being that the states at the valence~band maximum have primarily the anionic
contribution. It was thus believed for many years that the band-gap difference in
GaAs/AlAs is primarily absorbed by the CBO; recent precise measurements (see Tab.
2.1) have proved it to be wrong, and have shown that the physical picture which is at
the origin of such old and well established rule is too much simplified and misleading
in predicting band lineups.

Electron affinity rule: Anderson, Freeouf and Woodall, Harrison,
Frensley and Kroemer

The “common-anion rule” is just a qualitatively general assertion; quantitative
predictions can be extracted from other model theories and empirical rules involving
a minimum of computation, since they reduce the problem of band lineup to few
fundamental factors. A large group of model theories assumes that the vacuum level
(let us call it Eo) outside the surface of each semiconductor is the best reference level
to line up the bands in the two semiconductors: it is a well defined external reference,
constant throughout the junction in the absence of dipole layers (see Fig. 3.5).
These theories are collectively referred to as “electron affinity rule” theories, although
historically this name is for a particular one due to Anderson*!: the conduction—
band discontinuity is given by the difference in the electron affinities of the two
semiconductors. Once the band gap is known, it is equivalent to formulate the model
for the VBO: & is the ionization potential (positive) for each semiconductor; the
relative position of the valence~band edge is E7 = —®, so that

VBO = —A® = —(3p — & ,4) (3.8)

As long as the two semiconductors are separated by a vacuum region, as assumed
in Fig. 3.5, this picture is correct; the problem is that dramatic changes can occur
when the two semiconductors are put in contact. However, if the picture remains
valid and the valence-band maxima in the two semiconductors fall at an energy — @
with respect to the vacuum level, this theory would correctly predict the band lineup.

Moreover the ionization potential is not a true “bulk” reference level, but it
rather depends on the orientation and in general on the structure of the crystal

surface. The first non trivial problem is which ionization potentials have to be used.

39



Ty e E

Figure 3.5. Schematic diagram of the electronic structure of two semiconductor surfaces,
separated by a small vacuum region. The bold dashed line is the potential associated with
the two semiconductors, the dotted line is the vacuum level, and the horizontal solid lines
show the valence and conduction bands; symbols are explained in the text.

The experimental values are not appropriate: even if one considers the value for the
surface oriented as the corresponding interface, the real surface is not the best choice,
since the structural surface details which strongly influence the ionization potential
can be completely different at the interface or irrelevant for the heterojunction
problem. Reconstructions and relaxations for instance are not present when the
two surfaces are brought together, but instead different atomic displacements from
the ideal structure can occur because new kind of chemical bonds are present at the
interface.

It seems necessary to go beyond the empirical use of the experimental affinities or
lonization potentials, as made for instance by Freeouf and Woodall #2; the large spread
of data for electron affinities implies that even the choice of their experimental values
is very difficult, and the partially good results obtained for some systems would not
provide a significant test for the validity of the affinity rule itself. Electron affinities
or ionization potentials have to be calculated for the appropriate ideal semiconductor
surface.

The electron affinity rule works exactly if the interface charge density would
be equal to the superposition of the charge densities of the two surfaces for which
the ionization potentials are calculated; such “ad hoc” reference surfaces must be
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calculated for each pair of semiconductors, and this of course breaks the concept of
an absolute bulk reference level.

The differential charge density §n between the true interface charge distribution
and the superposition of the two reference surfaces originates an “interface dipole”
determining a different shift on the average electrostatic potential in the two bulks
and hence the possible variation of the relative position of the band edges; if that
the differential charge én is very small this electrostatic shift is negligible and the
electron affinity works well.

Harrison *® proposes a LCAO tight-binding approach, taking as the vacuum level
the one determined by the free atoms. Although he does not make use explicitly of
any reference surface, referring to the free—atom terms is equivalent to considering
the reference surface as superposition of isolated atoms. The predictions obtained
in this tight-binding framework agree with the experimental data within 0.2-0.4 eV;
the inclusion of the relativistic effects does not seem to improve much this kind of
agreement.

* point out that if the total charge density can be

Frensley and Kroemer
represented as a superposition of spherical charges, and if these are sufficiently
localized to guarantee a negligible charge density in the interstitial positions, then
the average electrostatic potential in the interstitial positions approximates well the
electrostatic potential at infinity for the surface made up by the superposition of
such spherical charge densities, and hence this interstitial average potential is a good
reference level. The position of the valence-band edges with respect to such reference
level is calculated using a self-consistent pseudopotential approach for the bulk
semiconductor. The severe approximations made in the actual implementation of the
model are perhaps responsible of the poor success of the model itself: a refinement of
the model might give good results. In any case it is a very convenient and computer—
time saving approach, since only a single calculation for the bulk potential is needed,

while others require “to build up” the (model) heterostructure.

Tersoff and the interface quantum dipoles

The basic idea of Tersoff**’s model is related to the affinity rule, but it
emphasizes the role of the interface dipole,(*) originated by the difference between the
charge distribution in the real heterojunction and in the “reference” heterojunction
formed by rigid juxtaposition of the two reference surfaces. The idea is that whenever
two different materials are brought together, there is a charge flow from the less

electronegative material to the more electronegative one.

(*) The term “interface dipole” is used to indicate both the charge density and the associated
electrostatic potential.
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To explain his theory, Tersoff starts with the metal-metal interface: in a metal
the Fermi level is well defined, and the workfunction measures the electronegativity
of the system. When two metals are brought together, charge flows until the two
Fermi levels are lined up, and this corresponds to the formation of an interface dipole
equal in magnitude to the difference between the two Fermi levels; the final self-
consistent lineup is independent on the starting reference surfaces, and is simply
obtained by aligning the two Fermi levels. Note that this serves as a true “bulk”
reference level. In case of contact between two highly insulating and non interacting
solids, such as rare-gas solids, there will be a very small charge flow starting from
the ideal “reference heterojunction” configuration.

For a semiconductor-semiconductor interface the situation is somewhat more
complicated and stays midway between these two extremes. Tersoff proposes the
existence of a “charge neutrality level” characteristic for each semiconductor and
playing a role analogous to the Fermi level for metals. I try first of all to explain the
concept from the point of view of macroscopic electrostatics, and then the microscopic

origin of the charge rearrangement.
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Figure 3.6. Relationship between interface dipole and alignment of the band structures.
(a): for two semiconductors separated by a small vacuum region, or in contact but
non interacting, or again before the charge density rearrangement occures (b): for two
semiconductors put together, after the charge rearrangement. Symbols are explained in
the text.
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The classical electrostatics which controls the phenomenum is explained in Fig.
3.6. Fig. 3.6(a), which refers to two semiconductors separated by a vacuum region
or non interacting, is actually similar to Fig. 3.5, except that the introduction of the
neutrality level here allows to express all the quantities also with respect to it.) The
superscripts 0 and n indicate respectively that quantities are measured with respect
to the vacuum level and to the neutrality level; absence of any superscript refers to
the situation where charge rearrangement has already occurred. ¢ is the interface
dipole which tends to reduce the relative difference between the two neutrality levels,

and it is proportional to the final difference:
§ =—aAE, (3.9)
Looking at Fig. 3.6(b) the VBO can be expressed as:
VBO = AE? +§ (3.10)

and rearranged with a little bit of algebra in the form:

1
Y AEY+ ——AE® (3.11)
1+« :

VBO =
1+«

In case of infinite susceptibility a we find VBO — AE7,i.e. the metallic case with the
alignment of the neutrality levels, whereas neglecting the dipole gives VB O — AE?,
the non-interacting case with the alignment of the vacuum levels and the affinity rule.
It is instructive to notice the correspondence between Eq. (3.10) and the one I usually
refer, namely Eq. (3.1), with AFE, and AE) having in practice the same role: AEY,
is a pure “bulk” contribution, (the difference between the two band edges referred
here to the respective zero level and to the zero of Hartree potential in my language);
§ is the electrostatic contribution which is in principle interface-dependent.

It is clear from this model that the electrostatic lineup —to use the language
defined in Sect. 3.1— is an essential part of the VBO: at this point I can stress that
the idea of referring to the vacuum level is not intrinsically wrong, but the problem
is to take into account the discontinuity of the vacuum level at the interface.

How in practice can the interface dipole be evaluated, or how can be evaluated
the quantities AE, or AE?? After the macroscopic point of view, we should
understand now the microscopic nature of the interface dipole and of the neutrality
levels. This is related to the gap states: bulk electronic states in one semiconductor
which fall energetically in the band gap of the other tunnel into the latter, and
this tunneling is responsible for the interface dipole. The reference situation for the

(*) This should suggest us a connection between the various reference level theories.
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definition of the interface dipole is the alignment of the neutrality levels, as shown
in Fig. 3.6(a); but the relationship can be usefully reversed, and the neutrality
levels defined in such a way that their alignment correspond to charge neutrality
at the interface; the gap states which can guarantee this condition are those —at
some effective midgap energy— crossing over from mainly valence- to conduction-
band character, and they can be determined with some Green’s function technique.
On the basis of macroscopic electrostatic arguments (macroscopic screening of the
dipole) Tersoff shows that o = 10 typically, thus according to Eq. (3.11) the case of
heterojunctions is near to the metallic case, and the simple alignment of the neutrality
level (without calculating explicitly neither AE? nor the self-consistent dipole §)
provides a good quantitative estimate of the VBO.

Compared to the previous works, the Tersoff’s model has the simplicity of the
other reference-level model theories but it includes the discontinuity of the vacuum
level on the two sides of the junction, which is essential for an adequate comprehension
of the problem and for a quantitative predictive power of the model itself.

Van de Walle and Martin

Van de Walle and Martin 7 have proposed a model which is again in the spirit of
the “reference level” theories, takes into account the discontinuity of the vacuum level
across the interface, and moreover is very well defined and conceptually clear. They
use the superposition of neutral atomic charge densities: the potential outside them
goes asymptotically to a zero level which is the vacuum level, and once these neutral
objects are put together to form the solid, the average electrostatic potential in the
solid is uniquely defined, being linear with respect to the charge density.(*) At this
point the concept of reference surface is useless, since the presence of a surface would
not modify the average electrostatic potential. However, this reference level is really
a well defined “bulk” property, with all the consequences that I have discussed before:
i.e. this model predicts a VBO strictly independent on the interface orientation (also
for heterovalent interfaces where, according to the present results, this seems not
to be true), and satisfies the transitivity rule within its numerical accuracy (about
0.05 eV). The total accuracy of the model can be estimated considering that the
agreement with the self-consistent ab—initio calculations (see next Chapter) is for a
large number of systems better than 0.1 eV, and always within 0.25 eV.

Why does this model work quite well, even it is not able to reproduce the bulk
charge density? The difference between the self-consistent bulk charge density and
the corresponding superposition of free atoms is a function with approximate bulk

(*) The total potential of the solid, which includes exchange and correlation contributions, is not
linear in the charge density, but this is not a problem since these contributions can be added a
posterior: being of “bulk” nature.
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periodicity; the difference between the self-consistent heterojunction charge density
and the correspondent superposition of free atoms has properly the periodicity of the
supercell used to describe the interface, but if it is dominated by a component with
bulk periodicity, as it is the case, it does not affect much the electrostatic potential
lineup.

Baldereschi, Baroni and Resta

On the same line of Van de Walle and Martin, Baldereschi, Baroni and Resta®®
have proposed a model in which the heterojunction is well described by “building
blocks” derived from the bulk charge densities of the conmstituents, using crystal
symmetry. For lattice-matched common-anion heterojunctions, they decompose the
bulk electronic densities into Wigner-Seitz cells (WSC) centered on the cations and
with fractions of anions at four corners, as shown in Fig. 3.7. They are neutral and by
symmetry do not have dipole nor quadrupole moments; i.e. the potential of WSC’s
is sufficiently short range not to produce macroscopic effects across the interface.

~

\
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Figure 3.7. Zincblende Wigner-Seitz unit cell (WSCQ) centered on a cationic site: there
are four anions at the corners with weight % for the geometry of the cell.

The same holds obviously for the WSC obtained from the difference of the two
bulk WSC’, AWSC=(WSCp—WSC4)/2, and for the one obtained as the average,
(WSC)=(WSCp+WSC4)/2; each of the two bulks is also exactly described by
superposing with the proper sign (4/— for B/A) the AWSC’s to a periodic reference
crystal which is the “average” bulk constituted by the juxtaposition of (WSC)’s. This
picture may suggest an alternative possible approach to the problem: I stress in fact

that, in order to extract the relevant informations for the electron charge distribution
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and the electrostatic potential, it is sufficient to model the difference between the
two sides of the heterojunction and not the complete heterojunction, since any
periodic reference crystal defined in this or in similar ways does not contribute with
macroscopic effects to the interface phenomenology.(*) For computational purposes
the two procedures are equivalent: in any case the model interface electronic density
or its difference from the reference periodic crystal is obtained simply by rigid
juxtaposition of WSC’s —which cover all the space without overlapping— according
to the cationic type at the center of the cell (proper sign for AWSC’s). The three-
dimensional model electron density has small discontinuities at the boundaries of
the WSC’s at the interface, while the corresponding potential is continuous. The
results obtained by applying the model are satisfactory, although a small electronic
rearrangement must occur in order to ensure at least charge continuity. The
agreement of the model with first-principles supercell calculations is extremely good,
at least for GaAs/AlAs —where it has been tested— as it can be seen in Fig.
3.8:() the spatial extent of the interface regions and the shape of the dipolar charge
distributions are well reproduced, and the VBO is within 0.01 eV, i.e. the numerical
accuracy of the calculations.

The formulation of the model is useful for understanding the nature of the VBO
and in particular the electrostatic potential lineup: its origin has to be searched in the
different electronic distributions around the As nucleus when the latter is surrounded
by different nearest neighbors: this is indeed indicated by the AWSC’s, which are
the building blocks actually contributing to the interface dipole.

Apart from this general observation, from the practical point of view of a
predictive power, this model has advantages and disadvantages with respect to
the Van de Walle and Martin’s model: on one side, it ezactly reproduces the
electronic density in the bulk, provides a more accurate description of density profiles
at the interface, and it is one order of magnitude more accurate and practically
coincides with first-principles calculations; on the other side it is less general since
in its present form it only applies to common-anion (or common-cation) lattice-
matched heterojunctions. Extensions of this simple model to more general interfaces
are possible: I will present in the last Section of the present Chapter a possible
reformulation of it and its application to the more general case of no—common-ion
lattice-matched heterojunctions.

(*) The macroscopic average of a periodic reference crystal is a constant, and the possible interface
dipole present are due to the deviations from it.

() The first~principles interface calculations are the subject of Ch. 4 and Ch. 5, but some results
are anticipated here to discuss the validity of the model under study; however, the density~functional
self-consistent ab-initio pseudopotential method is also used here to obtain the bulk ingredients.
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Figure 3.8. Macroscopic averages
of the electron density and the
electrostatic potential for GaAs/AlAs
interface along (001), (110), and
(111) orientation, obtained from first—
principles self-consistent calculations
(SCF) and from the WSC model
calculations.  Bach panel refers to
a system with two complementary
interfaces, one at the figure center and
one at the figure borders.



3.3 Other theoretical calculations

Beyond the neutrality—level rule: Tejedor and Flores’s theory

An approach similar to the one of Tersoff in the basic ideas of neutrality levels and
charge transfer is proposed by Tejedor and Flores*. For each heterojunction they
perform separately three self-consistent tight-binding calculations: i) one for each of
the two bulks separately, whose band structures are then put in a relative position
according to the empirical electron—affinity rule: this is taken as initial unperturbed
situation to calculate the initial lineup 6E, between the charge neutrality levels:
ii) one for the complete interface to obtain the final band offset and hence a final
difference §E,. The initial difference §E? is screened by a flow of charge from one
semiconductor to the other up to the final value 6E,, = SSEY. The screening factor
§ is obtained by comparing the calculated §E,, and §ET; it is directly related to the
susceptibility a appearing in the Tersoff’s model: S = (1+ a)-l.

The authors propose to calculate it from the dielectric behaviour of the two
semiconductors A and B in the heterojunction: to this purpose they define an
“effective interface dielectric constant” e#f for each semiconductor and rewrite the
screening factor in terms of such dielectric constants:

1, 1 1

&= 5(62,” * eiff)

(3.12)

By comparing different screening factors calculated self-consistently for several
systems and writing them according to eq. (3.12), the authors then give an estimate
of the corresponding effective interface dielectric constants e2/f. The authors also
perform an “ab-initio” calculation of such effective dielectric constants —along a
given direction only (one-dimensional model)— for a pure bulk or an interface
geometry; the only results which allow comparison reported by the authors are for
GaAs, i.e. eé{is ~ 7.5 from the pure bulk calculation, ~ 6.2 from a (110) interface
geometry (roughly speaking corresponding to the response of the semiinfinite crystal),
~ 5.3 from fitting of the self-consistent screening factors.

A general limit of the present approach is that it has been developed originally
for one dimension (both to calculate simply the charge neutrality level and to obtain
the dielectric response of the materials under study), and its generalization to the
three-dimensional case is something tricky and cannot say anything about the general
aspects of the problem, such as for instance the dependence of VBO on the interface
orientation and in general the bulk or interface features of the neutrality levels.
Tejedor and Flores only argue that the charge-neutrality level can slightly depend on
the interface orientation, having found a non negligible dependence of the VBO on the
interface orientation in some systems with nonpolar interfaces, such as CdTe/HgTe.
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Other calculations: Pickett, Louie and Cohen; Priester, Allan and
Lannoo; Kunc and Martin

Other than properly called “model theories” are those which explicitly employ
a specific interface calculation, i.e. a self-consistent study of the charge distribution,
but that are not ab-initio.

I just mention here the pioneering work of Pickett, Louie, and Cohen,*” with the
use of empirical local-pseudopotentials. It is very difficult to determine the accuracy
of such calculations; however there is generally a poor agreement with experiments
for interfaces between a II-VI semiconductor and a less polar one.

A charge-dependent tight-binding calculation of band-offset has been done by
Priester, Allan and Lannoo*®. The tight-binding matrix is determined by using the
parameters obtained from a fitting of the band structures for each bulk material;
intra-atomic terms are determined only up to an unknown additive constant within
each separate material. They assume that the possible charge transfer at the interface
and the consequent Coulomb potential induced affect only the diagonal matrix
elements of the Hamiltonian. The approximation introduced (local charge-neutrality
condition) is on the same spirit of the minimization of the charge-neutrality levels
in the Tersoff’s model and in the Tejedor and Flores’s theory. The authors find
that the screening in the materials studied (GaAs, AlAs, Ge, ZnSe, InAs, GaP) is
very efficient and three planes on each side at the interface are enough to take into
account the interfacial charge transfer. The application to the case of the non—polar
Ge/GaAs (110) interface in particular provides results in good agreement with the
experimental data.

The work of Kunc and Martin!® —again with the use of empirical pseudopo-
tentials— is expecially remarkable as a pioneering study of the polar interfaces: they
study in particular the Ge/GaAs (001) interface, and observe that in order to avoid
charge accumulation in the interface plane and thermodynamical instability only two
non-equivalent interfaces must be taken into account, i.e. with a mixed Ga-Ge or
As—Ge plane. They also find that the average VBO between these two possible (001)
interfaces equals the one for the nonpolar (110) case.
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3.4 Discussion and limits of model calculations

Generalized or alternative formulations of the Wigner—Seitz—cell
model

Among the models previously described, the Wigner-Seitz model proposed by
Baldereschi, Baroni, and Resta has the merit of being well defined, simple in the
application and very accurate at least for the case of GaAs/AlAs where it has
been tested, but its applicability is limited to the common-anion (common-cation)
heterojunctions. I have tried to generalize it to the more general heterojunction
where both anions and cations are different in the two materials, i.e. C1A;1/C2A,.
The idea is to decompose the difference between the charge densities in the two
bulks into WSC’s centered both on the anions and on the cations, by isolating
the two contributions. To this purpose I consider the two original bulks and the
other two (even if not really existing) obtained by interchanging the ionic types of
the two original ones: C;A;, C2Az, C1A,, and CzA;, at the lattice parameter of
the heterojunction. The difference between the two original bulks can be exactly
described as the juxtaposition of two types of WSC’s, one centered on the cationic
sites, i.e. in symbols:

AWSCe = % (AW5001A1/02A1 + AWSO(J*lAg/GzAz)

-1 (” 5Cc,4, = W5Cg,4, . WSCc,a, — WSC@M) (3.13)
T 9
2\

2 2 )

and the other on the anionic sites:

1
AWSCa = 5 (AWSCo,a,/c14, + AW SCos4,/0:45)

_ 1 (WSCClAl ~WSCo4, , WSCoya, = WSGC2A2> (3.14)
=3 . 2

The weight factor 1 accounts for the double filling of the whole space. The two
bulks are ezactly(*) obtained by juxtaposition over the whole space of the two types
of AWSC’s —centered on the anionic sites and on the cationic sites, and with the
proper sign, always positive or negative for a chosen bulk— on the periodic reference
crystal obtained as the average of the two bulks, as already described. In symbols:

CiAL = %(OlAl +Cadz) + Y AWSCo + Y AWSCy  (3.15(a))
' (o] A

CoA, = %(ClAl +Chdy) = > AWSCo— Y AWSCa  (3.15(b))
C A

) From Egs. (3.13-3.15) it comes out immediately that the contributions due to the two fictitious
“mixed” bulks cancel each other.
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In a similar way the heterojunction is described by juxtaposition on the same
reference periodic crystal of the two types of AWSC’s with their proper sign, changing
in the interface region; the criterion for the choice of the sign is undoubted, depending
on the ion present at the atomic site where the WSC has to be centered. Notice that
the original formulation of the WSC model is immediately recovered once C;=C; or
A,;=A, (common-anion or common—cation heterojunctions).

Because of the intrinsic structure of the model, so described the interface features
are limited in a small region close to the heterojunction, and bulk features are

suddenly exactly recovered (see Fig. 3.9).
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Figure 3.9. Schematic representation of the extension of the bulk and the interface
regions and of a single WSC in (001), (110), and (111) heterojunctions. For the (111)
heterojunction the two in principle non-equivalent interfaces are shown.

In case of no-common—ion heterojunctions for a given growth sequence
(e.g.  C1A;/CyA,) there exist in principle two different interfaces according
to the termination (anionic or cationic plane) of the substrate: ...A;C;A»C»..
or ...C1A;CyA,... Actually these two interfaces are equivalent, in that they
correspond to the same electrostatic potential lineup; in the supercell describing
the heterojunction they are both present, one in the atomic sequence described,
and the other in the inverse sequence. This equivalence is rigorously an identity in
the present model, because of the linear superposition of the building blocks. The

case of (111) oriented interface in no—common—ion heterojunctions is slightly more
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complicated, since two in principle really non-equivalent interfaces exist according
to whether the transition from the substrate to the overlayer is when the chemical
bonds are parallel to the growth direction or not. It is not difficult to check that the
linear character of this model (linear superposition of the building blocks) implies
not only the commutativity and the exact equivalence of complementary interfaces
in case of (001) and (111) directions, but even the equivalence of the two different
interfaces in (111) orientation: in each case the difference between the two interfaces
—in principle non equivalent— can be simply thought of as a rigid shift of all the
building blocks centered for instance on the cationic sites.

I apply here the model to the case of InP/Gag.47Ing 53As interface, for which
I anticipate some SCF results for comparison. In this case the GalnAs alloy is
treated in the virtual crystal approximation (VCA), taking all the cations equal to the
virtual one X=(Gag.47Ing 53 ) and thus using the zincblende structure. Unfortunately
the results for such system are not as satisfactory as those for GaAs/AlAs, when
compared with the self-consistent calculations: very small differences in the electronic
charge distribution, hardly detectable on the scale of the planar averages, cause
significant differences for the electrostatic potential lineup. The value obtained with
the model in the three main crystallographic orientations is always underestimated
by about 30% with respect to the SCF value (AV™°% = —0.17 eV versus AVS9F =
~0.25 eV, with the same convergence parameters), as it can be seen in Fig. 3.10.
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potential (b) for InP/Gag.47Ing.53As (001)
heterojunction obtained from first—principles
self-consistent calculations (SCF) (solid lines)
and from the WSC model calculations (dashed
lines). Each panel refers to a system with
two complementary interfaces, one at the figure
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At this point it may seem fortuitous the success of the model when applied to

the simple case of GaAs/AlAs; the reason why the model works so well in one case

and not in the other cannot be understood completely now, but many contributing

factors can be identified, e.g. the strong chemical difference between the anions,

which carry the largest part of the electron density.

I have made several attempts to define alternative building-block models, with

the hope to do something more general and a little more accurate, but the results

were not particularly satisfactory.

a)

b)

For instance I have tried to define as building blocks of the bulks the Wigner—
Seitz BCC cells (volume 3 of the FCC cell) centered on atomic or interstitial sites:
the filling criterion to construct the heterojunction was the kind of atom present
for BOC cells centered on atomic sites and a weighted average according to the
nearest neighbor atoms for those centered on the interstitial site. This model
appears more flexible than the WSC one since it allows in principle a larger
extension of the interface region, but on the other side it completely neglects
any interface detail since it simply reproduces the interface region as a uniform
average of the two bulks (see Fig. 3.12).

Another attempt was to use even smaller building blocks, i.e. the Wigner—Seitz
FOC cells centered on the middle of the chemical bonds or of their extension
in the interstitial regions (volume % of the unit WSC); in this case the filling
criterion to construct the heterojunction was a weighted average according to the
types of atoms or of interstitial sites joined with the bond or its extension. The
model again allows a larger extension of the interface region, and with respect
to the previous one it seems more flexible in describing the electronic structure
at the interface; however, the degree of complication is increasing as long as the
building blocks become smaller and smaller, and no improvements are obtained
in the results at least for the cases where it has been applied.

I also tried an alternative generalization of the original WSC model, considering
each WSC divided into four segments, according to the four ions at the corners;
each segment is uniquely identified by the bond contained inside: if it is
characteristic of one of the two bulks, then the segment can be immediately
extracted from the pure bulk, whereas, if it is not the case, some ad hoc WwSsC
should be considered in order to extract the segment of interest. Such a model
is not convenient since it requires some interface—specific inputs (such ad hoc
constructed FCC WSC’s); conversely, it has the merit of being applicable to
heterovalent interfaces.

Very approximate estimates of electrostatic potential lineup can be done

analytically following these models: one can calculate the total electronic charge

contained in each building block, consider it as concentrated at the center or smeared

out on the correspondent atomic or interstitial planes, and then calculate analytically
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the electrostatic potential lineup due to such charge distribution. This procedure may
be useful just for a first prediction of the electrostatic potential lineup between two
given semiconductors, once one has tabulated the electronic charges contained in the

building blocks for each of them.

The role of the model theories: successes and limits

The various attempts of establishing an absolute energy scale can be seen as
proposals of different “relative reference frames”. Some theories refer to a reference
level “external” to the system, e.g. the ionization potential or the electron affinity,
others to a reference level “internal”, as for instance the neutrality level in the
Tersoft’s model.

Some theories emphasize the importance of the charge distribution at the
interface, and some others completely neglect it. The physical concepts, such as
“reference heterojunction” or “reference surface”, “interface dipole”, “zero-dipole
condition”, “charge transfer”, are in many theories ill-defined; the concept of
“interface dipole” for instance was always related to a suitably but arbitrarily chosen
reference charge distribution, and for this reason different theories emphasizing or
neglecting the role of interface dipoles have given equivalent results.

As far as the description of the interface features is concerned, and in general
the contribution of the model theories to the pliysica,l understanding of the problem,
I think it is important to further examine here the WSC model in its original
formulation and successively in its generalization, since it qualitatively correctly
describes, although with few ingredients, what happens at the interface. It is actually
extremely important that this model allows and well reproduces the polarization of
the interface ions surrounded by different nearest neighbors. To better understand
this mechanism I refer to the simple case of GaAs/AlAs, where only the interface As
anions are polarized: the situation is visible in Fig. 3.11, where also the correspondent
picture obtained with full SCF interface calculations is reported for comparison. It is
thus clear why any other attempt to define different building blocks, neglecting the
possibility of polarization of the interface ions has been completely unsuccessful. Fig.
3.12 shows for instance the differential plot of the charge density at the GaAs/AlAs
heterojunction, obtained with the model using Wigner—Seitz BCC cells as elementary
bricks, with respect to the charge density of the average virtual crystal: comparison
with Fig. 3.11(a) and (c) indicates that the relevant mechanism responsible of the
interface dipole, i.e. the polarization of the interface anion, is completely neglected
by such model.

Perhaps the empirical optimization of the “reference level” theories rewritten by
Katnani and Margaritondo ? is the best version of them and of all the model theories
from the point of view of the accuracy: they use the VBO measured by soft x-ray
synchrotron radiation photoemission and a least—squares method to estimate the
absolute positions of the valence band edges, taking the germanium valence band as
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Figure 8.11. Differential plot on the (010) and (110) planes of the electron density
distribution of GaAs/AlAs (001) heterojunction with respect to that of a reference periodic
crystal, obtained according the WSC model (a,b) and with full SCF interface calculations
(c,d). The reference periodic crystals used in the two cases are slightly different: in (a,b)
the electron density is the average of those of two bulks, according to the procedure
indicated in the description of the model, whereas in (c,d) it is obtained self-consistently
for a fictitious crystal where the cations are equal to the virtual one <Ga.0_5 A10_5>.

the arbitrary zero. The results are shown in Tab. 3.1. Unfortunately the completely
empirical nature of such a theory does not contribute to the physical understanding
of the problem.

Successes and failures of the oldest and simplest model theories have however
contributed to focus finally one problem: a detailed investigation of the interfacial
charge distribution cannot be a prior: neglected. In almost all the existing model
theories —also where the physical concepts are well defined— the description of the
interface region is quite rough, and the accuracy of the results poor. More generally,
up to now the crucial question whether the band offset is a bulk or a specific-interface

property has actually not yet found a precise answer.

Perspectives beyond the model theories

The importance of the model theories must not be underestimated, since on
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Figure 3.12. Differential plot on the (010)
plane of the electron density distribution of
GaAs/AlAs (001) heterojunction with respect
to that of the reference average periodic
crystal, obtained according the model using
Wigner—Seitz BCC cells. The discontinuities
in the electron density due to the rigid

Jjuxtaposition of the building blocks are clearly
visible.

Material Empirical position Material Empirical position
‘ in energy of the ' in energy of the

valence-band edge valence-band edge
(in eV) (in eV)
Ge (Reference) Cds -1.74
Si -0.16 CdSe -1.33
a-Sn +0.22 CdTe -0.88
AlAs -0.78 ZnSe -1.40
AlSb -0.61 ZnTe -1.00
GaAs -0.35 PbTe —0.35
GaP —-0.89 HgTe -0.75
GaSb -0.21 CuBr —0.87
InAs ~0.28 GaSe ~0.95
InP -0.69 CulnSe, -0.33
InSb -0.09 CuGaSe, ~0.62
ZnSnP, —0.48

Table 3.1. Empirical estimate of the positions of the valence—band edges in several
semiconductors with respect to Ge, according to the fitting scheme of Katnani and

Margaritondo 49,

discontinuity V BQ
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one side it is very useful to have some simple recipes for a rapid estimates of the

band discontinuities in several systems, and, on the other side, I do not exclude that

a further progress in the model theories will shed more light on the mechanisms

governing the band offsets.

It appears clear the necessity of a large theoretical and experimental effort to
ascertain some still obscure points; as far as the theoretical approach is concerned, it
must be improved in particular with its roles of i) predictive power and ii) conceptual
scheme for the understanding of the experimental evidences and in general of the
phenomenum. To this purposes it may be useful both a systematic study and a more
precise investigation of some prototype systems.

These are the general motivations which urge to perform more accurate self—
consistent ab—initio calculations. In particular one should try:

i) to overcome the limits of applicability to restricted classes of heterojunctions,
which are present in several models;

ii) to prove the validity of the various model theories, to understand the implications
of the approximations involved and to estimate ab-initio their intrinsic accuracy
limit: a comparison restricted to the experimental work or among the model
theories themselves cannot solve this point;

i) to go beyond the crude and simple description of the interface which is the
only possible in the model theories: in principle it should be possible, starting
from a given structural and stoichiometric configuration at the interface, to
give accurately the electronic configuration and hence the band discontinuities;
intrinsic limits are due to the incomplete knowledge of the atomic—scale
crystallographic structure in complicated systems (not only interfaces, but also
alloys...);

iv) to analyze quantitatively the possible effects on the VBO due to different
structural details (orientation dependence, atomic displacements at the interface,
deviations from abruptness, atomic order and possible internal relaxation in the
bulk region of the two materials, introduction of isolated foreign atoms or thin
intralayers in the interface region); this would help the general understanding
of the problem and the identification of the main factors affecting the VBO,
and would also give an explanation of the discrepancies between different
experimental accurate data;

v) to treat in the same way all the semiconductors, without any fitting of
experimental data as it occurs in the self-consistent calculations which make
use of empirical pseudopotentials; the ab-initio procedure would give to the

theory predictive power.
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Chapter 4

FIRST-PRINCIPLES
SELF-CONSISTENT
CALCULATIONS

Most of the model theories I have ezamined before rely on information on
the individual bulks alone, and do not provide a description of the actual electron
distribution at the interface. In order to obtain a realistic picture of interface effects
one has to perform calculations in which the electrons are allowed to readjust to the
specific environment determined by the different ionic species at the heterojunction.
Density functional theory (DFT) provides a fundamental theoretical framework to
face this problem, with the reduction of the many-body problem to the single-particle
problem.

I present in this Chapter the general features of the DFT approach together
with some general tools necessary to solve in practice the single-particle problem
(e.g. local-density approzimation, pseudopotentials, plane-wave basis set, special-
point technique) and some others specific (e.g. supercells) for an actual application
of the method to the heterojunctions.

Even if the development of super—computers has only recently allowed full self-
consistent interface calculations, a lot of work has been already done and it is
reviewed in the present Chapter. It supports some trends (i.e. interface orientation
independence and transitivity of the VBO for a wide class of systems) appeared from
the existing ezperimental data, but new first-principles calculations will be necessary

for a complete understanding of the band-offset problem.

58



4.1 Formulation of the basic theory and methods

Density functional theory
The Schrédinger equation describing a system of N electrons in an external
potential V(r) is

HY(ry,r5,...,tn) = (T +V + U)¥ = E¥ (4.1)

Even if one is interested in the ground state only, it is practically impossible to
find a solution of it, since he has to treat a wavefunction of 3N coordinates. A
revolutionary idea, formally justified by Hoemberg and Kohn °° was the introduction
of the electron density n(r) —which is a function of three coordinates only— as
the basic variable: they demonstrated that the external potential V(r) (apart from
an irrelevant additive constant) is uniquely determined by the ground state density
n(r), and then any property of the system can be considered as a functional of n
rather then of V. Among these properties, the ground state ¥. One can introduce a
variational principle directly related to the density n(r). In fact it is well defined a
universal functional

Fln] = (¥|(T + U)|¥) (4.2)

which contains the kinetic energy and the electron—electron interaction contribution
to the total energy of the system. For a particular external potential V(r) we then
introduce the functional

Evln] = / V(r)n(r)dr + Fln) (4.3)

which has the minimum value, corresponding to the total energy of the system, when
n(r) is the ground-state charge density.

Separating in the functional F[n] the Hartree term, due to the classical electron-
electron interaction, and a kinetic term T'[n] corresponding to a system of non

interacting electrons with the same density, one rewrites Eq.(4.2) as:

P

Fln]=T[n]+ 521 /drdr'zl(ri)f—g"i—)— + Egcln] (4.4)

“exchange—

where E..[n] is a residual functional which contains the so—called
correlation energy” contributions, formally well defined but unknown. The solution
of the Schrédinger equation for the system of N electrons (Eq.(4.1)) is reduced to
the minimization of the total energy functional Ev [n] with respect to n(r) under the
condition [n(r)dr = N. This leads to a single-particle equation, first derived by

Kohn and Sham3!:
2
(__%v2 + V(I‘) + VH(r) -+ Ma:c) ¢i(l”) = Eiqﬁi(r) (45)
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where

v — 1’|
§ By -
Hzc (57’1,(1')’ (4{)
N
n(r) = |gi(r)I?, (4.8)
i=1

and the sum covers the lowest N energy eigenstates of Eq.(4.5).

Local-density approximation

The application of DFT to a real system requires an approximation for the
exchange—correlation energy Eoc[n] and its functional derivative psc(r). The most
commonly used approximation is the so called local-density approximation (LDA)
which assumes that the exchange-correlation energy per particle is locally equal to
the one of an ideal uniform electron gas with the density equal to the density of the

real system in the point considered:
ELPAn) = / £zc (n(r)) n(r)dr (4.9)

where €;.(n) is the exchange—correlation energy per particle of the uniform electron
gas; eq.(4.10) gives directly the exchange—correlation potential:

LDA n
P4(e) = T = e (4.10)

The LDA is exact in the limit of uniform density, and it is a good approximation
in the case of sufficiently slowly varying density. Application to a number of different
systems, i.e. atoms, molecules and solids, has shown that it gives good results even
if the density is not slowly varying.®? Up to now we have seen how in the framework
of DFT the many-body problem is reduced to the treatment of one-body equations;
for their solution powerful tools have been developed.

Reciprocal-space formalism and plane wave basis set

In several cases a formulation of the density functional theory in reciprocal
space®® is advantageous.

The actual implementation of Kohn-Sham equations (Eq. (4.5)) requires the
choice of a finite basis set to develop the wavefunctions. It is very convenient to use
as a finite basis set all the plane waves (PW) corresponding to a kinetic energy up

to a certain cutoff:

. X
k+G) = %JHG)'”, with (k + G)? < By (4.11)

m
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where k is in the Brillouin zone (BZ) and G is a reciprocal space vector. In this way
the accuracy can be improved by increasing the kinetic energy cutoff and consequently
the dimension of the basis set. In particular the expressions of the kinetic energy and

of the electrostatic energy are straightforward in this formulation.

Pseudopotentials

An accurate description of core electrons would require the use of very attractive
potentials, singular at the origin; the corresponding wavefunctions show strong
oscillations and need a large PW basis set to be described. In a solid, however,
the core electrons are localized as in the isolated atom configurations; they are well
separate in energy from all the valence states which are responsible of the formation
of the chemical bonding and which determine the majority of the properties of the
solid.

The basic idea of the pseudopotential theory °* is to avoid an accurate description
of the core electrons; weaker (not singular) effective potentials, taking into account
the orthogonality between valence and core states, are used to describe the valence
pseudowavefunctions, which are smooth and require a reasonably small PW basis set.

Basically the pseudopotential concept has been developed and implemented
in two different ways: in the first one, very simple atomic pseudopotentials are
empirically fitted to reproduce experimental energy bands,® but the validity is
of course limited to a precise atomic configuration and such pseudopotentials are
not able to describe the same atom in other environments. In the other way the
pseudopotentials are generated using only theoretical calculations on atoms,3%57
without introducing any fitting of experimental band structures or other properties
(they are thus referred to as “first—principles ab-initio” pseudopotentials). Recently
developed pseudopotentials, in particular those tabulated by Bachelet, Hamman and
Schliiter " —which I have actually used in my calculations—, have the following
properties: ‘

1) real and pseudo eigenvalues for occupied states are the same;
2) real and pseudo valence wavefunctions (and hence real and pseudo charge

densities) agree beyond a chosen “core radius” r.;

3) the integrals from 0 to r of the real and pseudo charge densities for each valence
state agree for » > r. (norm conservation);

4) the logarithmic derivatives of the real and pseudo wavefunctions and their first
energy derivatives agree for r > r.. '

Note that from the property 3) follows that, by the Gauss’s theorem, the
electrostatic potential produced outside 7. is identical for real and pseudo charge
distributions. Contrary to all-electron potentials, such pseudopotentials are not
singular at the origin, and they are “soft” enough to be well described in a Fourier
analysis with a reasonable number of plane waves: this is very important when one

has to deal with several atoms, as in the case of heterojunctions.
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Another important aspect of such pseudopotentials is that —since they do not
contain any empirical data— they provide the appropriate tool for calculations
giving reliable predictions in different fields, whereas with the empirical potential
the predictive power is limited to cases very similar to the ones used to extract the
fitting parameters. Moreover all the elements are treated in the same way, and this
is also very important in the study of the heterojunctions where one treats together
different kinds of materials.

The common used pseudopotentials are non—local, in the sense that they contain
a term which explicitly depend on the angular momentum [ of the wavefunction on
which it acts:

V(r)=VEx) + VVE(r) = VE(r) + > Vi(r)P, (4.12)
l

where the superscripts L and NL mean local and non-local respectively, and P; is
the projector on the angular momentum /.

Heterojunctions and supercells

The heterojunctions are actually described by periodically repeated supercells,
containing two complementary interfaces. I want to stress that supercells allow a
reciprocal space formulation of the problem and the use of PW, otherwise not possible
because of the loss of translational symmetry.

The supercells actually describe a multilayered structure, and the length scale
may be of the order of magnitude of the one of SL. But as far as the energy-band
discontinuities are concerned, the experience has shown that the relevant effects due
to the presence of a sharp neutral interface are confined in a small region, and
bulk features are completely recovered within few atomic units from the interface
(see for instance Fig. 2.6): this implies that the main interface features can be
studied using supercells with a reasonably small number of atoms, and the isolated
interface configuration is well represented, provided that the two adjacent interfaces
are sufficiently spatially separated in order not to interact.

Special-points technique

The integral of a periodic function over the BZ is in practice reduced to a
discrete sum over a set of k points. There are different techniques to generate a
set of representative k points.?3%® We follow here the mean value point technique
introduced by Baldereschi®®, then generalized by Chadi and Cohen %%, Monkorst and
Pack®!, and recently recovered by Froyen®? and Dow ®® and applied to the case of
superlattices. Let us consider a function f(k) which is totally symmetric and periodic
in k-space. It can formally be expanded into symmetrized linear combinations of
plane waves of symmetry I'; as follows:

&) =fo+ D fmGm(k) (4.13)
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where
Gm(k)= > &% (4.14)
Restar
and the star is that of the equivalent lattice vectors related to each other through

the operations of the lattice point group. Since

Q
— Gmk)dk =0 for m=1,2,...00 4.15
(27)® JBz (k) ( )
we have that QO
If it existed a point k* such that
Gm(k*)=0 for m=1,2,...00 (4.17)
we would immediately have
fo = f(k") (4.18)

Such a point does not exist, but we can find one satisfying Eq. (4.17) for m = 1,2, ..
up to a certain finite N. In general one selects a certain set of k points, say { ki, k3,
...k* } and relative weights w; (normalized to 1), such that:

> wiGm(k") =0 for m=1,2,..N (4.19)
1=1
so that a good approximation to the average (f) is given by:
() =Y wifm(k]) (4.20)
1=1

Such sets of k points form uniform grids covering the BZ, the choice depending on

the desired accuracy.

SCF cycles and diagonalization techniques

The Kohn-Sham equations (Eq. (4.5)) must be solved numerically in a self-
consistent cycle. The first iteration requires a trial potential: several choices are
possible, e.g. a ionic potential screened by the dielectric function of a free—electron
gas, or the potential corresponding to the superposition of free-atom charge densities.
Different mixing schemes to update the potential are also possible.

A very technical but important point is the diagonalization of the matrix
(U|H|¥), very expensive as far as the computer time is concerned: standard
diagonalization schemes require a number of operations scaling as N®, where N is
the dimension of the matrix. Substantial improvements have been obtained with non
standard diagonalization schemes: e.g. if only the first M eigenvectors of a very big
matrix are required, the application of some non standard diagonalization schemes
that scale as N2M allow to significantly reduce the consumed computer time.
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4.2 Existing first—principles SCF calculations

Van de Walle and Martin

A systematic study of the band-offset at semiconductor interfaces has been done
by Van de Walle and Martin ®": they perform SCF supercell calculations simulating
abrupt interfaces with all the atoms in their ideal zincblende or diamond structure
positions. In order to extract some general features of the lineup mechanism, they
study systematically a number of lattice-matched heterojunctions between group
IV, ITI-V, and II-VI compounds. They extract the average level of the supercell SCF
potential (sum of ionic, Hartree, and exchange—correlation potentials) in the bulk
regions on the two sides of the heterojunction;(*) they obtain finally the VBO by
adding the band structures calculated for the bulk materials to the potential shift.
Spin-orbit splitting effects on the bulk valence-bands are added a posterior: from
experimental data. I report in Tab. 4.1 their results for the systems studied here,
together with those obtained by other authors.

(@) (B (o) () (o (f)

AlAs/GaAds 0.37 0.53 0.42 0.50 0.54 0.45
Gads/Ge (110) 0.63 0.46 0.45 0.56
Alds/Ge (110)  1.05 1.03 1.07 1.07

InP/G—’a.)_47Ino_53As 0.35

Table 4.1. Self-consistent interface calculation for the VBO (in eV) performed by different
authors. The various columns refer to: (a) Van de Walle and Martin ", (b) Christensen %%,
(c) Wei and Zungerﬁs, (d) Massidda, Min, and Freeman %, (e) Lambrecht and Segall67,
(f) Bylander and Kleinman 8.

(%) They do not use the concept of macroscopic average, but calculate the average potential in the
central layer of the two bulk regions.
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They estimate a numerical accuracy of 0.05-0.10 eV on the final result, the main
sources of inaccuracy being the kinetic energy cutoff (6 Ryd for supercell calculations,
12 Ryd and in some cases 18 Ryd for bulk calculations), and the small number
of atoms (8 or 12) in the supercell; they argue that possible errors introduced by
the use of LDA both in the bulk band structure calculations and in the reference
potentials obtained from supercells calculations do not significantly affect the VBO
of the systems studied, as long as the semiconductors constituting the heterojunction
are similar.

The authors also perform DFT-total energy calculations for GaAs/AlAs in order
to derive the minimum-—energy structure: they find that the ideal structure (i.e. all
the atoms occupying zincblende or diamond structure sites) “is very close to the
minimum-—energy configuration, with very small forces acting on the atoms”, inducing
possible changes in the atomic positions smaller than 0.06 a.u.. The authors assert
that in general in non-polar interfaces displacements of the order of 0.1 a.u. may
occur, but their effects on the VBO are within the numerical accuracy of the results.

Let me make here two comments:

i) T agree with this sentence as far as the GaAs/AlAs is concerned, and in general
for all the heterojunctions constituted by elemental or binary semiconductors
having all the bond-lengths equal. This is net true in general, as for instance
in InP/GalnAs, where different bond lengths are present: in such a case, the
determination of the actual atomic positions is very delicate, and the assumption
of ideal bulk geometry is a serious approximations and a source of uncertainty
on the final result. Moreover, looking at atomic displacements of the order of 0.1
a.u. has no significance, since the fictitious theoretical lattice-mismatch induced
by the use of pseudopotentials is sometimes even greater, of the order of 0.1-0.2
a.u..

ii) The second comment concerns the choice of the kinetic energy cutofl in
performing the band calculations for the bulk materials: the authors say that “it
is not critical for deriving the valence-band lineups”, but I will show conversely
that VBO for GaAs/AlAs system is very sensitive to this parameter.

An important trend which has come out from the systematic work of Van de
Walle and Martin is a general independence of VBO on the interface orientation for
“a wide class of nonpolar interfaces”, as well as the transitivity rule, which is satisfied
to better than 0.06 eV, i.e. within the numerical accuracy of the calculations. Taking
into account these trends, Van de Walle and Martin suggest the possibility of deriving
the lineups by determining an absolute reference level for each semiconductor, and
lining up the bulk band structures according to these reference levels: the model-solid

theory proposed by the same authors was illustrated in Ch. 3.2.
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Christensen

Alternative first—principles self-consistent calculations for lattice-matched semi-
conductor heterostructures are those performed by Christensen and cooworkers ®4.
They use the relativistic linear—-muffin—tin—orbital (LMTO) method applied in the
supercell geometry. More precisely, the procedure followed can be schematized in
these steps: i) they use the atomic-sphere approximation (ASA) (i.e. space filling
is obtained with slightly overlapping spheres centered on atomic positions and con-
taining spherical potentials); ii) they perform supercell self~consistent calculations in
the framework of DFT-LDA; iii) they extract from each of the two bulk regions in
the supercell the central-layer potentials and places these on a bulk structure; iv) in
this structure they perform a single bulk-band calculation (“frozen—potential calcu-
lation”) for each of the two materials constituting the heterojunction, and finally V)
they determine the VBO by subtracting the two bulk valence-band maxima. Pos-
sible non-sphericity of “atomic” potentials in the heterojunction and intra—atomic
polarization (which is very important in the heterojunction problem, as discussed in
Sect. 3.4), are taken into account by non-equivalent empty spheres centered in the
tetrahedral interstitial positions.

The small basis set needed in LMTO calculations allows computations for
supercells bigger than those used in PW pseudopotential method. In particular,
Christensen considers cells with up to seven layers on each side (i.e. 28 atoms)
and studies the variation of the VBO with respect to the size of the supercell. He
finds that in general “a 5+5 supercell is sufficiently large to produce a reliable offset
value”. He finds important to include the outermost cation d-like states, which
hybridizing with the valence-band maximum influence the calculated VBO value,
and the higher conduction d states, which has opposite effects; the final VBO is
the average of two calculations separately performed for each heterojunction, with
and without the higher d states. These LMTO calculations show that generally
the VBO is independent on the interface orientation; transitivity rule is satisfied, a
part from significant deviations found for the group including CdTe, HgTe and CuBr

semiconductor compounds.

The model previously proposed by the same author (see Ch. 3) does not
include the effects of charge rearrangements at the interface. In order to estimate
the magnitude of these effects and to test the validity of his model, the author
calculates the quantity AFEq;,, defined as the difference between the VBO obtained
from the model and from the supercell SCF calculations: these dipole corrections are
negligible e.g. for GaAs/AlAs (~ 0.03 eV), and large if the ionicity of one of the
two semiconductors is large (e.g. = 0.3 eV for Ge/GaAs). The author then extracts
from the supercell calculations the “electron transfer” ANL—ER from the left side to
the right side of the interface, and notes —apart from a few exceptions— a trend
indicating that ANL—E s larger when AEg;, is.
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L—R is generally proportional to the

Moreover, the charge transfer AN
difference AVjys7 between the average muffin-tin potentials on the two sides of the
heterojunction. This idea of relating electron transfers as differences between the
individual semiconductor potentials, as well as the one relating deviations from
the transitivity rule to interface-specific features, are promising, but no further
consequences are derived. Moreover, the concept of interface dipole is here ill-
defined: the author considers in fact an “interface layer” formed by the last layer
of the left-side semiconductor and the first one of the right-side, and then gives a
physical meaning to the “excess charge” (with respect to neutrality) in the so~defined
interface layer, as illustrated in Fig. 4.1. This is, in my opinion, an arbitrary quantity,
since a thicker interface layer, considered for instance from the central layer on the left
side up to the one on the right side, necessarily guarantees charge neutrality and no
excess charge can be extracted from it. However, the author associates the presence
of this excess charge with the deviations from the proportionality between AVasr
and ANL™2 (he distinguishes between “normal” and “anomalous” charge transfer
according if there is proportionality or not), and with the formation of localized
interface states. This explains, according to the author, the anomalous results for
some heterojunctions containing CuBr, CdTe and HgTe compounds; he argues that
“there are certain semiconductor compounds that produce interface specific electronic
states that influence the offset”, and concludes that “the question whether the band

offset is a bulk property ... cannot be answered in general”.

Wei and Zunger

The role of d—orbitals in the VBO is emphasized also by Wei and Zunger®® in a
work which is limited to common—anion heterojunctions. They estimate the absolute
positions of the energy bands with respect to the deep impurity levels.

They calculate self-consistently the band structures of ZnTe, CdTe, HgTe, AlAs
and GaAs, treating core states relativistically and using the general-potential linear
augmented plane-waves method in LDA.

They divided the VBO into the “bulk” contribution AE% 5, (the correspondent
of AE,) reflecting the disparity between the valence-band maxima in the two bulks,
and the “interface specific” contribution AE¥g,, (like AV) which reflects chemical
events at the interface, but it is not clear the role of AE,,, being referred to the ill-
defined concept of interfacial charge—transfer (screening) effects. The authors argue
that the difference between the valence-band edges in two common-anion binary
semiconductors should contain the contribution of cation orbitals; they observe from
self-consistent band calculations an hybridization of cation d character in the I'is,
valence-band maximum state, which can in fact exist because in the tetrahedral
symmetry both the cation d and anion p states have a I';5 symmetry component
and hence can interact through the mixed potential matrix elements. The authors
conclude that the omission of cation d—orbitals rather than interface specific effects
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Figure 4.1. Excess electrons on each atomic layer of the 7+7 supercells calculations
performed by Christensen for GaAs/Ge (a) and AlAs/GaAs (b).

is responsible of the partial disagreement of the tight-binding calculations with the
experimental data and of the failure of the so—called “common-anion rule” which
would predict small values of VBO.

Massidda, Min, and Freeman

The work of Massidda, Min, and Freeman®® on (GaAs),(AlAs), (001)
superlattices contributes to the debate about the role of the shallow cation d-states.
The authors perform self-consistent full-potential linearized augmented—plane-wave
(FLAPW) calculations on the two bulk semiconductors and on the supercell; band
energies are calculated semirelativistically, whereas the core states are calculated fully
relativistically.

They use the core levels as reference energies to determine the relative alignment
of the valence-band edges, similarly to the procedure followed in the X-ray
photoemission measurements: the binding energies of the selected core levels relative
to the top of the valence bands (E! and E¢)) are derived from the bulk band
structures, whereas the superlattice calculation gives the binding energy differences
(AEg) of the same core levels on the two sides of the interface, so that VBO =
E! — E! — AEg. The authors find VBO=0.50+0.05 eV using anion core levels as
reference energies, and notice that this result is sensitive to the different treatment
of the Ga 3d states (i.e. as core or band states).
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Studying the variation of the VBO when passing from n = 1 to » = 2 and 3,
they find that the n = 1 value give an offset of ~0.11 eV lower, and relate this to the
interface charge redistribution. More precisely they calculate the dipole potential
AVy;p. from the first moment —in one dimension— of the charge density planar
average with respect to the As—interface plane: they find AVy;, = 0.14 eV when the
first moment is calculated in a region extending from the last As-plane on the left
side to the first one on the right side with respect to the interfacial one, and relate
it to a a charge transfer induced by the electronegativity difference. However, the
charge transfer is still ill-defined, being obtained by subtracting from the supercell
charge density the correspondent bulk charge density on the two sides of the junction,
and no relationship is established between AVy;,. and the VBO.

Lambrecht and Segall

Lambrecht and Segall 87 carry out supercell band-structure calculations starting
from the LMTO method with the ASA. The ingredients are similar to those in
the work of Christensen, but here self-consistency treatment is very limited. The
authors start from standard bulk band-structure calculations of the individual
semiconductors; the individual bulk solid ASA potentials are on an absolute energy
scale due to a well defined choice for charge density partitioning: the difference
between them gives a first contribution to the VBO, but then self-consistent cycles are
required to obtain the supercell potential starting from the bulk ASA potentials. This
procedure —which is performed here in a “frozen shape” approximation, allowing
only a constant potential shift layer by layer— causes a charge transfer which again
has no precise physical meaning because of the arbitrariness of the reference situation
(the authors have well in mind this point), but however provides a correction to the
VBO. The “dipole correction”, obtained by subtracting to the so—calculated VBO

the ASA term, is essentially dielectrically screened.

Bylander and Kleinman

Other self-consistent semirelativistic ab initio pseudopotential calculations for
interfaces between GaAs, AlAs and Ge have been performed by Bylander and
Kleinman, ®® who have investigated also their formation enthalpy. They construct
fully relativistic norm-conserving s, p, and d ionic non-local pseudopotentials for
Ga, Al, and As, and they use a Gaussian orbital expansion of the wavefunctions.

The supercell calculation provides the crystal potential average values in the two
bulk regions'*), and the valence-band offset is obtained by adding to them the energy

(*) The authors show that the final result for VBO does not change sensitively if the average
values of the crystal potential are taken from the central slab cell (bulk unit cell) or from the single
central plane; however, they consider the average of the VBO calculated in the two ways as the best
estimate.
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of the top of the valence band at T' relative to the average crystal potential in the
bulk semiconductors.

The authors then consider the difference between the planar average of the
supercell charge density and that of its constituents, and refer to this discontinuous
differential charge density profile as the interface dipole; they extract from it a
Coulomb potential difference Agip., to which is added the difference between the bulk
valence-band top edges calculated fixing the arbitrary zero of Coulomb potential as
the averaged potential from cutted slabs of bulk charge densities.

The authors claim an extremely high accuracy of their results —something of
the order of 1 meV—, giving for the VBO the values of -0.447 eV for GaAs/AlAs
(001) and (110), -0.558 eV for GaAs/Ge, and -1.073 eV for AlAs/Ge, thus finding a
failure of the transitivity rule that they attribute to the “large diamond-zincblende

interfacial mismatch”.
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4.3 Open problems

Conclusions from the existing theories

Some limits due to the excessive simplicity of most of the model theories
have been overcome in SCF ab-initio calculations. Let me summarize here some
achievements:

i) There is no restriction on the class of materials that can be treated, the limits
being those of the standard bulk calculations with some further computational
problems due to the large number of atoms and electrons in the supercells that
have to be used.

ii) The results of self-consistent calculations performed with different methods for
the same system are not the same; however the quoted accuracy is often better
than the experimental one, and the spread of the theoretical results is smaller for
a given interface. Because of this, the first—principles self-consistent calculations
provide a reliable reference for model calculations, even where experimental data
do not exist, or are very contradictory.

iii) Once the interface structure and stoichiometry are fixed, a full interface self-
consistent calculation provides the electronic structure of the heterojunction in
all its details.

iv) In principle it is possible to treat atomic displacements or substitutional defects
at the interface; moreover, the structural equilibrium configuration of the
interface can be predicted from first—principles. The estimate of the effects of
the interface details on the VBO is thus possible, although only Van de Walle
and Martin have presented results in this direction.

v) Finally, it is clear the predicting power of ab-initio self-consistent calculations,
which avoid any empirical input. :

Some general trends come out expecially from the accurate and systematic work
of Van de Walle and Martin: for instance the transitivity rule is found to be generally
satisfied within the quoted accuracy of the results; however the controversy is not yet
solved (see e.g. Bylander and Kleinmann for GaAs/Alas/Ge). Another important
point is the independence of the VBO on the interface orientation: this seems to
be a general property of all isovalent heterojunctions, although some authors do not
agree on this point: however, the claimed deviations are very small. The calculations
suggest that the deviations from this “linear” property has to be searched in the
interface—specific features (see e.g. Christensen ®*).

Open questions and necessity of new first—principles calculations

The crucial question whether the VBO is a bulk or an interface property has
not yet received a precise answer. The trends resulting from the existing first—

principles self-consistent calculations suggest that for a wide class of systems the
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band discontinuity should be related to differences between quantities intrinsic to
the bulks, but it should still be understood “to what” and “why”; furthermore,
the quantitative effects on the VBO of the various interface details have still to be
investigated.

A systematic work including a lot of different materials at this point is no
longer necessary; it seems rather more instructive to study some prototype systems
in order to isolate for which classes of materials some properties hold and others
do not, and thus to identify the important physical parameters. Note that it is
convenient to this purpose the precise separation of the VBO into a pure bulk
quantity (AE,), and another one (the electrostatic potential AV') which contains
all the possible interface-specific contributions. The accurate analysis of the nature
of the electrostatic potential lineup (e.g. what is the mechanism which makes it
different from zero, how is it influenced by atomic displacements near or far from the
interface) is the subject of the new first-principle calculations that I will present in
the next Chapter.
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Chapter 5
 NEW FIRST-PRINCIPLES RESULT!

I ezplain in the first part on the Chapter the technical ingredients used in the
present original work, discussing in some details the parameters chosen and the
approzimations made.

Results are then shown for some prototype systems which represent different
classes of heterojunctions, giving a first hint of the es.se’ntVial parameters governing
the mechanism of the band discontinuities. It comes out that the band offset at
isovalent interfaces (both common-anion and no-common-ion) is equal for the three
main crystallographic orientations, and the same holds separately for the cationic
and anionic contributions in which —in the general case of heterojunctions with no
common ions— the VBO can be ezactly decomposed. For heterovalent interfaces, the
offset depends on the details of the atomic arrangement at the interface; however,
once this arrangement is known, the interface-dependent contribution to the offset
can be calculated “on the back of an envelope” from such simple (and ezperimentally
accessible) quantities as the bulk lattice constant and dielectric constants of the

constituents.

73



5.1 Actual implementation of SCF methods
for real systems

SCF methods — LDA scheme

For all the systems under study T calculate the electronic structure using the
DFT-LDA self-consistent pseudopotential supercell method described in its general
features in the previous Chapter. The exchange—correlation effects are treated using
Ceperley and Alder®® data and the analytic expression of Perdew and Zunger; the
norm-conserving pseudopotentials tabulated by Bachelet, Hamman, and Schliiter 57
are used. I describe in the following some more technical details used for the new
calculations presented here.

Periodically repeated supercells used in the present work

Periodically repeated supercells suitably chosen are used to study differently
oriented interfaces. For instance the (001) oriented heterojunction is described by a
tetragonal supercell, the longest side corresponding to the growth direction (z axis)
of the heterojunction. In Fig. 5.1 are reported three isovolumic supercells used to
describe (001), (110), and (111) oriented heterojunctions; they all contain 12 atoms,
Le. three double layers of each of the two materials. I have checked that, for most
of the systems studied here and constituted by semiconductors with a bulk diamond
or zincblende structure, a 33 supercell is thick enough in order to reproduce bulk
features in the region midway two adjacent interfaces, also for the (110) oriented
supercell which is —keeping fix the number of atoms— the shortest one in the growth
direction.

To give a first idea of the size effects I show in Fig. 5.2(a) and (b) the differential
plots of the electron density of the (001) 343 supercell describing GaAs/AlAs
heterojunction with respect to the two correspondent bulks: it is evident that the
regions midway between two adjacent interfaces are bulk regions; similar informations
can be extracted by looking at the planar averages in Fig. 5.2(c). In order to check
more quantitatively how much the size of the supercell affects the accuracy of the final
result, I have performed and compared the calculations for (001) 2+2, 343 and 4-+4
tetragonal supercells for the InP/Gag 47Ing s3As heterojunction, as can be seen in
Fig. 5.3: whereas the 2+2 supercell allows only a rough estimate of the electrostatic
potential lineup, the result from the 343 case to the 444 case remains the same
within 0.01 eV.

I finally just mention here that in some cases it can be necessary to improve the
size of the supercell, mainly i) when the bulk structure of the materials constituting
the heterojunction is more complicated, as in the case of InP/(GaAs);(InAs); (001),
where the bulk unit cell of the material on the right side is a tetragonal one, and ii) in
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L ]
Ga Ga Ga Al Al Al
Figure 5.1. Supercell used for (001), (110), and (111) oriented heterojunctions, and

the corresponding basis vectors; the case on GaAs/AlAs is considered to exemplify the
distribution of the different ionic types in the anionic and cationic sublattice.
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Figure 5.2. (a): differential plots
obtained by subtracting to the electron
density of the heterojunction the one
of GaAs (a) and AlAs (b) in (001)

: 3+3 supercell; (c): planar averages
/ WYt B of the electron density of GaAs/AlAs
v J heterojunction (solid line) and of the
two pure materials GaAs (dashed line)
and AlAs (dotted line) in the same
geometry.
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case of heterovalent interfaces, such as Ge/GaAs, where the presence of the interface
has longer-range effects.

Random alloy approximated with VCA

To conclude the discussion on the methods used to describe an heterojunction,
I consider the case in which one of the materials constituting the system is an
alloy, choosing as a prototype the case of InP/Ga;_,In,As. The virtual crystal
approximation (VCA) can be used to describe the alloy, by defining a virtual cation
X=(Gaj_.In,), which is a properly weighted average of the two cationic species, and
considering all the atoms occupying the unrelaxed positions of a zincblende.

I point out that the VCA approximation is better justified when the bulk lattice
parameters of the pure materials constituting the alloy are equal, as in the case of
Ga;_rAl;As but not of Ga;_,In As. The real situation in case of an alloy formed
by lattice-mismatched components is nowadays well understood, thanks to EXAFS
measurements which allow to investigate the atomic—scale structural properties, such
as nearest-neighbor distances: internal lattice distortions are present in order to allow
the individual bond lengths to remain close to the ones of the corresponding pure
bulk materials, while the average lattice parameter (as deduced from usual X-ray
diffraction data) is close to a linear interpolation between the two bulk values. We
report in Fig. 5.4 the situation for Ga;_,In,As.®
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Figure 5.3. Macroscopic averages
of the electron density (solid lines)
and the corresponding electrostatic
potential (dashed lines) for the InP
/Gag.47Ing,53As (001) heterojunction
described with a 2+2 (a), 3+3 (b),
and 4+4 (c) supercells.
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Kinetic energy cutoff: convergence studies

Two more technical details will be discussed, i.e. PW and k special points, since
they control the accuracy of the results. Let us first consider the problem of the
number of plane waves, i.e. of the kinetic energy cutoff used. I take into account
both the problem of supercell calculations, from which I extract the self-consistent
charge density distribution in the heterojunction and consequently the electrostatic
potential lineup, and the problem of the bulk calculations to obtain AE,.

It is well known that the band-gap values are very sensitive to the size of the basis
set used, depending on the material, its lattice parameter, its dielectric constant. It
is also known that LDA predicts too small values for energy gaps, and moreover some
semiconductors are metals in LDA at the theoretical equilibrium lattice parameter.
Fortunately the valence bands, to which my attention is devoted, converge faster than
the conduction bands when varying the kinetic energy cutoff; moreover, the use of
the experimental lattice parameter usually avoids problems of closure of the gap and
hence of “metallization” of the system. I studied the variation of the bulk valence
band top edges and their difference with respect to the energy cutoff for GaAs/AlAs
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Figure 5.4. Experimental values of the nearest-neighbor distances and of the average
lattice parameters for Gaj_ InzAs alloy at different values of the composition T. The
experimental lattice parameters of pure GaAs and InAs are respectively 10.5 a.u. and 11.5
a.u., and the experimental lattice parameter of the alloy is with an excellent approximation
the linear interpolation between the two bulk valu‘es.

and for InP/Gag 47Ing 53As systems, and I report in Tab. 5.1 the results. We see that
in the case of GaAs/AlAs the valence top edges decrease as the cutoff increases, but
the relative difference obtained at 14 Ryd differs by few meV from the fully converged
result at 20 Ryd; for this system a kinetic energy cutoff of 14 Ryd —i.e. about 150
plane waves per atom— in all the calculations guarantees an accuracy of the order
of 10 meV for the results.

Unfortunately this is not the case for InP/Gag 47Ing 5s3As, where the same
accuracy would be obtained with a kinetic energy cutoff of at least 18 Ryd. Such
a high cutoff is not a serious problem for the bulk calculations, where the unit cell
used is small, but it is a problem for supercell calculations; hopefully, since the
interface features that are obtained from a supercell calculation are mainly described
by the long-wavelength Fourier components, that is by the small q-vectors, one might
expect that the electrostatic potential lineup is not so sensitive to improvements of
the energy cutoff. As a first estimate of the accuracy obtained by using 12 Ryd(*) I
compare the electron distribution in the two bulks InP and Gag 47Ing 53As separately,
calculated at 12, at 16 and 20 Ryd, and I report in Fig. 5.5 the contour plots of the
relative differences between the two extreme cases in a plane containing the bonds.

(*) Note that the lattice parameter of InP/Gag 47Ing 53As is 11 u.a. versus 10.5 of GaAs/AlAs,
and 12 Ryd cutoff already correspond to about 140 plane waves per atom.
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Eew(Ryd) 12 14 16 18 20 22

AlAs E, 5.162 5.125 5.118 5.127 5.117 5.107
E. 7.980 7.598 7.513 T7.515 7.500 7.489

Gads E, 5.185 5.173 5.160 5.170 5.160 5.150
E, 6.673 6.223 6.145 6.148 6.133 6.120

AE, |0.024 0048 0.042 0.043 0.044 0.044

InP E, 3.769 3.798 3.813 3.818 3.817 3.818
E. 5.168 5.103 5.022 4.969 4.893 4.888

Gap.arIng s3ds E, 4.236 4.260 4.258 4.250 4.237 4.238
E, 4.807 4777 4.704 4.675 4.642 4.642

AE, 0467 0461 0.446 0432 0.421 0.421

Table 5.1. Variation with the kinetic energy cutoff of the valence band top edges
of the bulk constituent and of the difference AF, for the systems GaAs/AlAs and
InP/Gag.47Ing.53As; the energy cutoff is in Ryd, the energy band eigenvalues in eV.
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Figure 5.5. Differential plots of the electron density distribution calculated at 12 Ryd
and at 20 Ryd for bulk InP (a) and Gag 47Ing 53As (b); the plots are on planes containing
the bond chains, and the anionic site is at the center of the figure.
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We see that the differences are mainly concentrated in a small region around
the anionic sites; since the electrostatic potential lineup is the interesting quantity,
I estimate the correction to it from the second moment of these bulk charge
distributions () and I find from 12 to 16 Ryd a difference of —0.03 eV for
Gag.47Ing 53As and of —0.01 eV for InP, on an absolute value of about 10 eV for
each one, and from 16 to 20 Ryd a further correction, smaller than —0.01 eV,
for Gag.47Ing.53As only. Consequently, the electrostatic potential lineup should be
corrected of a quantity equal to the difference of the corrections for the two bulks,
i.e. of about +0.03 eV. The validity of such estimate has been checked by performing
one supercell calculation at 16 Ryd: Fig. 5.6 shows the result compared with the one
at 12 Ryd, and the relative difference in a magnified scale in the right panel. The
difference of the electrostatic potential lineup obtained from these two calculations is
just of +0.02 eV (AV = —0.25 at 12 Ryd, and AV = —0.23 at 16 Ryd), as predicted
by the previous estimate.

Since AFE, from 12 to 16 Ryd has the same variation of AV, the total VBO
is unchanged; I have thus decided to perform all the calculations for this system
at 12 Ryd. being less than 0.01 eV the estimated uncertainty due to the not fully
convergence with respect to the kinetic energy cutoff.
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1 explain in details in Ch.5.1 the relationship between the average electrostatic potential and
the second moment of the electron density.
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Special points ‘

As last but not less important technical detail T discuss the application of the
special-point technique to perform k-space integration over the BZ.

As far as the bulk band structure calculations are concerned, in case of elemental
or binary semiconductors —for instance— which have a zincblende structure I exclude
the set of 2 Chadi~Cohen ®® points (see Tab. 5.2), and I usually use the set of 6 special
points corresponding to the (333) Monkhorst—Pack 8! grid; results obtained with the
10 Chadi—Cohen special points are the same within 0.01 eV, so I conclude that in any
case sets of special points somehow equivalent to the 6 ones for FCC BZ are enough

to guarantee the desired accuracy of 10-20 meV on the final result.

basis vectors: a(l,1,0), a(i,0,1), a(0,1,1)
z z Z

x vy z weight

grid (2,2,2) 1 0.250000000 0.250000000 0.250000000 1/4

2 0.750000000 0.250000000 0.250000000 3/4

grid (3,3,3) 1 0.166666667 -0.166666667 0.833333333 2/9
2 0.166666667 0.166666667 0.166666667 2/27

3 0.500000000 -0.166666667 -0.500000000 2/9

4 0.500000000 0.166666667 -0.166666667 2/9

5 0.500000000 0.500000000 0.500000000 1/27

6 0.833333333 0.500000000 0.166666667 2/9

grid (4,4,4) 1 0.125000000 0.125000000 0.125000000 1/32
2 0.375000000 0.125000000 0.125000000 3/32

3 0.375000000 0.375000000 0.125000000 3/32

4 0.375000000 0.375000000 0.375000000 1/32

5 0.625000000 0.125000000 0.125000000 3/32

6 0.625000000 0.375000000 0.125000000 3/16

7 0.625000000 0.375000000 0.375000000 3/32

8 0.625000000 0.625000000 0.125000000 3/32

9 0.875000000 0.125000000 0.125000000 3/32

10 0.875000000 0.375000000 0.125000000 3/16

Table 5.2. Set of 2, 6, and 10 special k points used for the Brillouin zone of the FCC
structure, corresponding respectively to the (222), (333), and (444) Monkhorst—Pack grids.

The case of supercells is not a textbook one, and I spend here few words about
it. One possible choice is to work independently for each supercell: to generate
different sets of special points, to do convergence tests and to select a proper one;
an alternative way is trying to select sets of special points commensurate for the
various structures (see Tab. 5.3): if it is possible, the physical quantities obtained

are directly comparable(®).

(*) This is fundamental in case one wants for instance differential charge density plots: the use of
non commensurate k point grids can produce spurious differences which have no physical meaning

and mask the real effects.
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FCC, (001)7,,,.}..",, (110)m+-m, (111)1n+m
1 2 3 4 1 2 3 4 1 2 3
(222) grid y y y n n y ¥ n n Yy n n
333) grid n n n J n y n n n n
g y )
(444) grid |y |y y n Y y y n Y Y y n

Table 5.3. Equivalence of special point sets for the FCC unit cell with those for the other
structures used in the present work.

Table 5.4. Special point sets (coordinates and relative weights) used in the present work.

x Y z veiqht
FCC grid (2,2,2) 1 0.500000000 0.500000000 0.500000000 1
SC grid (3,3,3) 1 0.166666667 0.166666667 0.166666667 8/27
2 0.500000000 0.166666667 0.166666667 4/9
3 0.500000000 0.500000000 0.166666667 2/9
4 0.500000000 0.500000000 0.500000000 1/27
(001) 3+3 grid (3,3,3) 1 0.000000000 0.166666667 0.117851130 2/9
2 0.333333333 0.166666667 0.117851130 2/9
3 0.166666667 0.333333333 0.117851130 2/9
4 0.000000000 0.500000000 0.117851130 1/9
5 0.333333333 0.500000000 0.117851130 2/9
(001) 4+4 grid (4,4,4) 1 0.000000000 0.125000000 0.088388348 1/8
2 0.250000000 0.125000000 0.088388348 1/8
3 0.125000000 0-250000000 0.088388348 1/8
4 0.000000000 0.375000000 0.088388348 1/8
5 0.375000000 0.250000000 0.088388348 1/8
6 0.250000000 0.375000000 0.088388348 1/8
7 0.125000000 0.500000000 0.088388348 1/8
8 0.375000000 0.500000000 0.088388348 1/8
(110) 3+3 grid (3,3,3) 1 0.166666667 0.000000000 0.117851130 2/9
2 0.166666667 0.000000000 0.353553391 1/9
3 0.000000000 0.166666667 0.117851130 1/9
4 0.000000000 0.166666667 0.353553391 1/18
5 0.500000000 0.000000000 0.117851130 1/9
6 0.500000000 0.000000000 0.353553391 1/18
7 0.333333333 0.166666667 0.117851130 2/9
8 0.333333333 0.166666667 0.353553391 1/9
N(Janack) =2 1 0.125000000 0.041700000 0.088400000 1/8
2 0.125000000 0.041700000 0.265200000 1/8
3 0.125000000 0.125000000 0.088400000 1/8
4 0.125000000 0.125000000 0.265200000 1/8
5 0.375000000 0.041700000 0.088400000 1/8
6 0.375000000 0.041700000 0.265200000 1/8
7 0.375000000 0.125000000 0.088400000 1/8
8 0.375000000 0.125000000 0.265200000 1/8
{110) 4+4 grid (4,4,4) 1 0.125000000 0.000000000 0.088388348 1/8
2 0.125000000 0.000000000 0.265165043 1/8
3 0.000000000 0.125000000 0.088388348 1/16
4 0.000000000 0.125000000 0.265165043 1/16
5 0.375000000 0.000000000 0.088388348 1/8
6 0.375000000 0.000000000 0.265165043 1/8
7 0.250000000 0.125000000 0.088388348 1/8
8 0.250000000 0.125000000 0.265165043 1/8
9 0.500000000 0.125000000 0.088388348 1/16
10 0.500000000 0.125000000 0.265165043 1/16
{(111) 3+3 N (Janack) =2 1 0.088388348 0.144300000 0.025500000 1/8
2 0.088388348 0.144300000 0.076500000 1/8
3 0.250000000 0.433000000 0.025500000 1/8
4 0.250000000 0.433000000 0.076500000 1/8
5 0.333333333 0.288700000 0.025500000 1/8
6 0.333333333 0.288700000 0.076500000 1/8
7 0.088388348 0.433000000 0,025500000 1/8
8 0.088388348 0.433000000 0.076500000 1/8
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Let us consider, for instance, the (001) 343 supercell: the 6 special points for the
FCC BZ can be exactly folded in this geometry, being the (333) Monkhorst-Pack grid
exactly commensurate in the two structures. Also for (110) 141 (or (001) 1+1 which
is equivalent) and for (110) 3+3 supercells a set of special points equivalent to the 6
ones for FCC BZ does exist, whereas this is not the case for any (111) supercell. The
(001) 444 supercell has a special point set equivalent to the 10 Chadi-Cohen points
for FCC BZ, i.e. the two structures are commensurate with a (444) Monkorst—Pack
grid.

I have also used alternative methods of generating special points for some test
calculations of in (110) supercells and in all cases for (111) supercells. In particular
the use of an n = 2 grid with Janack’s routines provides results of accuracy
comparable to that obtained with a (333) Monkorst-Pack grid. In Tab. 5.4 are
reported all the different special point sets used in the present work, including those

generated with Janack’s routines.
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5.2 Results

5.2.1 Isovalent common—anion heterojunctions: GaAs/AlAs

Previous first-principles calculations performed for this system 37%8 indicate that
(001), (110), and (111) interfaces have similar offsets; experiments indicate at most a
weak dependence on orientation and growth sequence?!. The present experimental
accuracy however is not high: the most reliable data for the valence-band offset in
GaAs/AlAs range from -0.40 to -0.55 eV (see Tab. 2.2).

SCF 3+3 supercell calculations have been performed for (111), (110) and (001)
interface orientations,” using the experimental equilibrium lattice parameter 10.5
a.u. at standard conditions of temperature and pressure. Fig. 5.7 shows both
the planar and macroscopic averages of the electron density and the electrostatic
potential. An inspection of the figures shows that the supercell is thick enough
to satisfactorily reproduce bulk features midway the two interfaces and that
computational noise is small even on the magnified scale of the Macroscopic averages.
Note that 74(z) has a typical dipolar shape around n, across the interface. The average
electrostatic potential shift produced by this dipolar distribution is independent on
the interface orientation; in fact, despite large.differences of the three~dimensional
electron density n(r) and of its planar average 7n(z) for the three interfaces, similar
shapes are obtained for 7i(z) and V(z) and the identical value AV =-0.41 eV for the
lineup.

When referring the band structure of each material to the average of its own
electrostatic potential, the top of the valence band in GaAs is 0.04 eV higher than in
AlAs. Adding to this quantity experimental spin-orbit data (0.03 eV) to the potential
lineups calculated above, one obtains for all the three interfaces the same VB0=-0.48
eV, in substantial agreement with the previous first—principles calculations for (001)
and (110) interfaces and well within the present experimental error bar (see Fig. 5.8).

The fact that the macroscopic dipole is the same for the interfaces oriented
along the three main crystallographic directions cannot be a priori extended to any
interface orientation; however it supports the idea that for GaAs /AlAs the lineup is
basically a bulk effect, confirming the validity of the WSC model when applied to
such system. Although up to now the independence on the interface orientation is
not completely justified, the present first—principles calculations shed some light on
the long debate about the importance of the interface details for the electrostatic
potential lineup: the important thing are not the microscopic interface details, but
their macroscopic effects; and the macroscopic effects may be the same even if the
electronic distribution at the interface is strongly dependent on the interface details,

as for instance on the interface orientation.
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Figure 5.7. Planar averages of the electron density (solid line) and potential (dashed
line) of (GaAs)3(AlAs)s superlattices. a: (001); b: (110); c: (111); d,e,f: corresponding
macroscopic averages.

5.2.2 Isovalent no—common—anion heterojunctions: InP/Ga;_.In As

The ternary alloy GazIn;_,As grown on InP substrates forms at the composition
x=0.47 a high—quality lattice-matched heterostructure —with the equilibrium lattice
parameter of 11 a.u.— which is presently the subject of intensive study given its
applications in optoelectronic devices®"?. Band offsets at this interface have been
measured using different techniques and contradictory results have been obtained
(see Tab. 2.2 and quoted references).

Contrary to the large amount of experimental data, no first—principles theoretical
investigation has been done for this system, not even at z = 0.47; the only theoretical
prediction of band offsets is due to Van de Walle ™® who found VBO=0.35 eV for this
composition within his model-solid scheme.*7

I use here the virtual-crystal approximation (VCA) for Gag.47Ing.ssAs T4
considering the anions and the virtual cations X=(Gap.a7Ing.53) at their ideal lattice

sites. I study first the (001) interface. I show in the left panels of Fig. 5.9 the planar
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Figure 5.8. Schematic band structure at GaAs/AlAs interfaces.

38 averages of the SCF supercell electron density and electrostatic

and macroscopic
potential; the corresponding value of the potential lineup is AV = —0.25 eV. Adding
to AV the quantity AE,=-+0.56 eV obtained from the bulk calculations corrected
with experimental spin-orbit data (+0.09 eV) "3, one obtains VBO=+0.31 eV. I have
also performed SCF calculations for 3+3 supercells oriented along (110) and (111).
In the mid and right panels of Fig. 5.9 I report the corresponding electron densities
and electrostatic potentials. The different amplitude of the oscillations in the planar
averages 7i(z) and V(z) reveals the different geometry of the three interfaces. The
simple typical dipolar shape already found in other materials"* can be recognized
in the macroscopic average 7(z) for the (110) oriented heterojunction, whereas the
charge distribution at (001) and (111) heterojunctions gives rise to more complicated
interface shapes. I stress that, despite the strong orientation dependence of the
density profiles, their integrals give the same electrostatic potential lineup within
our numerical accuracy, and therefore the same valence band offset, for all three
orientations (see Fig. 5.10).

The charge rearrangement at a general isovalent heterojunction with no common
ions comes from both anionic and cationic contributions which interfere differently
for different orientations. In order to isolate the anionic and cationic contributions,
I study the two ideal heterojunctions CP/CAs and InA /XA, where ‘C’ is a virtual
cation whose pseudopotential is the average between the cationic pseudopotentials of
the two bulks, i.e. C=(Ing.5X0.5) = (Ino.715Gag.2s5), and analogously for the virtual
anion A=(Pg.5Asp.5).

The results of SCF (001) supercell calculations for these two heterojunctions are
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Figure 5.9. Planar averages of the electron density (solid line) and potential (dashed line)
of InP/Gag.47Ing. 53 As heterojunctions. a: (001); b: (110); ¢: (111); d,e,f: corresponding
macroscopic averages.

reported in Fig. 5.11. The profiles of the anionic and cationic interface dipoles in
CP/CAs and InA/XA heterojunctions have the typical simple dipolar shape, and
the contributions to the electrostatic potential lineup are respectively AV, = —0.61
and AVg = 40.36 eV. Calculations performed for the common-anion and common-
cation (110) and (111) heterojunctions show similar macroscopic averages as in (001)
direction, and a complete orientation independence for the respective potential lineup,
within our numerical accuracy.

Not only is the total lineup the sum of the anionic and cationic contributions,
but even the fine details of the total charge-density profile are closely reproduced by
superimposing the density profiles of CP/CAs and InA/XAs interfaces centered at
the appropriate atomic planes (see Fig. 5.12). This explains the different shapes of
the macroscopically averaged charge densities obtained for different orientations: the
total density profile is the sum of dipoles opposite in sign and shifted one respect to
the other for (001) and (111) oriented heterojunctions, where anions and cations stay
on different planes perpendicular to the growth axis; opposite dipoles but centered
on the same atomic planes characterize instead the (110) orientation, where all the
planes contain both ionic species.
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Figure 5.11. Macroscopic average of
the supercell electron density (solid li-
ne) and electrostatic potential (dashed
line) of (001) oriented InA /XA (a) and
CP/CAs (b) ideal heterojunctions.



One may note that the contributions of anions and cations to the total potential
lineup are competing —the anionic one being larger and opposite in sign—, and this
explains the relative small AV in the present system where both cations and anions
differ on the two sides of the junction. A first hint of this competition comes just from
looking at the electronegativity scale where it appears-that P is more electronegative
with respect to As and Ga is with respect to In, so that one expects the electrons in
the interface regions flowing from P to As and from the cations in the alloy to In.
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Figure 5.12. Macroscopic interface dipole in InP/Gag.47Ing.53As (001), and its
decomposition into anionic and cationic contributions; circles (squares) indicate the
position of the cation (anion) planes.

5.2.3 Heterovalent heterojunctions: Ge/GaAs

I consider now the interface between two heterovalent semiconductors. 1 will
discuss in details the case of Ge/GaAs interfaces,”® oriented along (001) and (110)
directions. In the (001) direction, there exist two non—equivalent interfaces, according
to whether the GaAs region is Ga— or As-terminated: inspection of the corresponding
macroscopic averages, as indicated in Fig. 5.13, show that these interfaces are
charged and therefore thermodynamically unstable. In fact, a net interface charge
would give rise to macroscopic electric fields which would alter the bulk energy of the
system. Martin 7" has shown that the energy is lower when mixed Ga-Ge and/or As-
Ge layers are present, and in particular the lowest values correspond to completely
“compensated” mixture of atoms in the interface, when no free carriers are present.
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The simplest stoichiometric configurations in (001) direction which give rise to a
neutral interface are those where only one layer is mixed, and in particular it contains
50% Ga and 50% Ge atoms or 50% As and 50% Ge atoms; in any case, the equal
number of Ga-Ge and As-Ge bonds in the interface region implies absence of free
carriers. In the (110) direction atomic planes with two ions (one cation and one
anion) per unit surface cell are present, and no polar interface occurs.
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Figure 5.13. Distribution of planar charges for the succession of the atomic planes
of the Ge/GaAs heterojunction in (001) direction in case whether the GaAs region is
terminated with atomic planes containing only Ga (a), or As (b), or mixed planes of Ga-
Ge (c) or As—Ge (d). Arrows indicate the delta functions corresponding to the nuclear
charges; dashed line the macroscopic average of such point-like charge distribution with
the corresponding scale (electrons per cell) displayed on the left ¥ axis.

In Fig. 5.14 the macroscopic average of the electron charge density and of the
electrostatic potential of (001) and (110) interfaces are reported. One may notice
that the absolute value of the potential lineup is much larger in the (001) cases that
in the (110) one. In fact, only the electronic contribution is represented in the figure.
To this one must add the contribution of the bare point-charge (sketched in Fig.
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Figure 5.14. Macroscopic averages of the SCF charge densities (solid lines) and Hartree
potentials (dotted-dashed lines) of Ga-Ge~terminated (001), As-Ge-terminated (001), and
(110) Ge/GaAs 3+3 superlattices; left scale (charge) is electrons per zincblende cell; right
scale (potential) is mRyd. Dashed lines, barely distinguishable from the others, refer to
LRT calculations.

5.13) AVior = i;’:; = £4.08 eV, as it can be easily found by simple considerations
of classical macroscopic electrostatics (see Eq. 3.4), which is opposite in sign and
comparable in magnitude.

The total lineup is —0.22, +0.06, and —0.54 eV for the (110), (001)g,, and
(001) 45 interfaces. Note that, as already empirically observed by Kunc and Martin
a few years agol®, the (110) lineup coincides with the average value of the two
non-equivalent (001) interfaces. To obtain the band offsets, one has to add to the
potential lineups the difference in the bulk band edges, AF, = +0.76 eV: this gives a
VBO of 4+0.54, +0.82, and +0.22 eV respectively (see Fig. 5.15). The corresponding
experimental figures are +0.56, +0.55, and +0.60 eV 28,

The agreement between theory and experiment is very good for the (110) case
and poor for the (001) geometries. This may be a direct consequence of atomic
Intermixing occurring at the interface: we have in fact seen how sensitive is the

lineup to the actual atomic arrangement at polar interfaces: it is a simple exercise
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to find different geometries having very different lineups. It is still an open question
to determine the mechanisms responsible for the interface atomic arrangement in
epitaxial structures; whatever such mechanisms may be, our results show that—
for polar interfaces—the band offset is a very semsitive quantity to characterize the

quality of the interface.
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5.3 Analysis of first—principles results
and open questions

Inaccuracies of the present SCF calculations

The main sources of inaccuracies of the calculations presented here are 1)
the neglect of many-body effects in the bulk-band contributions to the offset,
AE,, ii) the use of the VCA for describing the gallium-indium arsenide alloy in
InP/Gag 47Ing 53 As hetero junctions, and iii) the neglect of possible lattice distortions
at the interface and in the alloy region. The first question is common to all the systems
studied here, whereas the lattice distortions can be actually neglected in GaAs /AlAs
and Ge/GaAs, where all the bond lengths are the same even at the interface. The
calculations performed for the InP /Gag.47Ing s3As heterojunction are affected by the
greatest number of approximations: I will discuss in detail for this system also the
corrections to the VCA.

Many—-body effects

Recent studies 787980 have shown that the many-body corrections to the LDA
valence-band maximum are negative and greater in more ionic materials. Few
results are available, namely for GaAs, AlAs, Si, diamond, and Ge; but even among
these, significant discrepancies are found by comparing the results obtained by
different authors for the same material 7®79. I should stress that the calculated
individual absolute values of the self-energy corrections are not very accurate; one
cannot therefore employ, for instance, results obtained by two different groups
for the two semiconductors constituting an heterojunction. the important point
is that fortunately differences required for the VBO problem can be considerably
more accurate than the individual absolute magnitudes, provided that the two bulk
calculations are comparably converged.

The only system for which informations are available in this sense is GaAs /AlAs.
In particular, S.B. Zhang and cooworkers® have shown that the correct treatment
of many-body effects increases the VBO in GaAs/AlAs by +0.12+0.02 eV, thus
bringing to -0.60 eV the VBO here obtained; a similar value (4+0.09 eV) is given by
Godby and cooworkers 2°,

It is important to estimate the many-body corrections to the VBO for
InP/Gag.47Ing 53As; no calculations are available for InP, nor for GalnAs. Thanks
to the similarities between GaAs/AlAs and InP/Gag.a7Ing 53As heterojunctions(*),

() The valence-band maximum in GaAs is higher than in AlAs, and in Gag.47Ing.53As higher
than in InP; GaAs and Gag 47Ing 53As are also the more ionic semiconductors in the respective
“heterojunctions.
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by scaling the corrections of Ref. 78 with the difference of the reciprocal dielectric
constants of the bulk materials®! one can estimate a correction of +0.08 +0.02 eV
to the VBO for the system under study.

As for Ge/GaAs, studies for the two semiconductors separately are available
(see Ref. 79 for Ge), but the numerics are not comparable, and no estimate can be
extracted for the correction to the calculated VBO. However we have seen that for
heterovalent heterojunctions the interface details can influence so strongly the VBO,

that the LDA is not the most serious approximation actually made.

Beyond VCA.: effects of structural order

InP/(InAs);(GaAs); (001) (undistorted monolayer superlattice)

In order to discuss the validity of the VCA to describe the galh'u‘m—indium
arsenide region in InP/Gag.47Ing.s3As, let us calculate the VBO between InP and
an ordered phase of the GalnAs alloy. I consider here the situation of extreme order
for the cation sublattice, i.e. the (InAs);(GaAs); monolayer superlattice. Progressin
epitaxial growth techniques has made possible now to grow monolayer superlattices
on (001) InP substrates®?, opening up possibilities for new devices®®; but also in
standard conditions some partial ordering is observed 3*.

I have performed SCF calculations using 4+4 (001) tetragonal supercells (see Fig.
5.16) and treating the gallium-indium arsenide region as (InAs);(GaAs); monolayer
unrelaxed superlattice, i.e. ordering the cationic sublattice but taking all the bond
lengths and angles frozen and equal to the VCA case; Gag.slng sAs random alloy
phase simulated using VCA, as already described, is also studied for comparison.(*)

The results of the SCF supercell calculations are shown in Fig. 5.17 (left and mid
panels), and a summary is given in Tab. 5.5. The total electrostatic potential lineup
is —0.25 eV and —0.19 eV for the random alloy and for the SL case respectively, i.e.
the use of “real” atoms instead of the VCA increases the calculated potential lineup
by +0.06 €V. Of course, corrections beyond the VCA not only affect the potential
lineup AV, but also the bulk-band contribution to the offset, AE,. A precise estimate
of the latter would require the study of disorder-induced self-energy corrections in
the bulk alloy, and is beyond the present work. A rough estimate of these self-energy
corrections is obtained comparing the top of the valence band in the virtual crystal

() The dielectric constants used are 10.9, 8.16, 12, and 9.61 for GaAs, AlAs, Gag.47Ing.53As and
InP respectively.

) One reasonably expects that this case practically coincides with the (001) 3+3 supercell
calculations already performed for the perfectly lattice-matched InP/XAs interface, because of the
very small difference in the alloy composition; however, new calculations are necessary in order to
compare the results in systems having exactly the same stoichiometry.
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Figure 5.18. Tetragonal 4+4 supercells used to describe InP/GalnAs (001) heterojunc-
tions when the GalnAs region is constituted by an alloy treated in VCA (a), (InAs);(GaAs);
monolayer unrelaxed superlattice (b), (InAs);(GaAs); monolayer relaxed superlattice (c).

XAs and in the (GaAs);(InAs); monolayer superlattice. The resulting correction
amount to &~ —0.04 eV. This partially cancels the correction to the potential lineup,
giving a total positive correction of & +0.02 eV to the VBO, which therefore goes
from +0.31 eV to +0.33 eV.
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Figure 5.17.

Planar (top panels) and macroscopic (down panels) averages of the

electron densities (solid lines) and the electrostatic potentials (dashed lines) for (001)
InP/GalnAs heterojunctions when the GalnAs region is constituted by an alloy treated
in VCA (a,d), (InAs);(GaAs); monolayer unrelaxed superlattice (b,e), (InAs); (GaAs);

monolayer relaxed superlattice (c,f).

Effects of lattice relaxation:

InP/(InAs);(GaAs); (001) (distorted monolayer superlattice)
A further correction to VCA predictions comes from internal distortions present
in the GalnAs alloy in order to allow the individual bonds to maintain the length they

To linear order in the displacements,

these effects cancel on the average in the bulk random alloy, but their balance is not
zero in case of ordered alloy and even more significant in case of the (InAs),(GaAs);
(001) monolayer SL. In any case, lattice distortions could give some nonnegligible
effects at the interface, due to incomplete cancellation.
Let me first discuss here the effects due to the internal lattice distortions;
according to previous studies3%®% regarding the stability of (InAs);(GaAs);
monolayer superlattice, in the equilibrium configuration the As—planes are rigidly
shifted by a certain amount {ao from In-planes towards Ga-planes, according to
the fact that the equilibrium lattice parameter in GaAs is smaller than in InAs
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(~10.5 a.u. versus ~11.5 a.u.), whereas cations remain at the ideal fcc sites (see
Fig. 5.16 (c)). The structural parameters are taken from the cited existing works:
more precisely the average lattice parameter is again 11 a.u., as considered for the
previous calculations; the equilibrium structural distortion parameter is ¢ = 0.017
(8% of the unrelaxed interplanar distance), whereas the tetragonal distortion of the
superlattice is here completely neglected being less than 1%. I note that this is
not the perfect equilibrium configuration for the 4+4 supercell here used: a rough
estimate, according to the forces acting on the atoms, indicates that the As—planes
should be actually displaced by a smaller quantity (¢ =~ 0.012), but this will not
change dramatically the present analysis.

The SCF supercell results for the InP/(InAs);(GaAs); (001) relaxed superlattice
are reported in the right panels of Fig. 5.17 (electronic contribution only): the
total electrostatic potential lineup results from two competing contributions, one
purely electronic (AVejectr. = +2.54 €V), and the other due to the dipole caused by
the displacement of bare As ions which is AV, = —3’5:5—25 = —2.64 eV, exactly
calculated in the framework of the classical electrostatics (see Eq. 3.4 and in Fig.
5.18(a) and (b)).

The change of the total electrostatic potential lineup due to the internal lattice
relaxation is thus +0.09 eV (AV from —0.19 eV to —0.10 eV). The magnitude of the
total effect (bare ions displacements screened by electronic rearrangement) can be
easily predicted using the effective charges: the total effect is that obtained displacing
of the same amount an effective charge ;—Zj:« This is briefly justified in the following. I
compare the derivative of the internal energy of a system with respect to the applied
electric field as described 1) in the framework of the macroscopic electrostatics:

ow 0 Q
—— = —D = —(F 5.1
OE  4r 47r( +4rP) (5-1)
where the polarization P is defined as P = é—z:el'ds, and ii) according to a
microscopic picture:
rel.
ow  Q x
~p = Bt Z eZ*u, (5.2)

where s labels the atomic sites, u, the atomic displacements from equilibrium, and
Z} is defined as the proportionality constant through which the electric field acts on
the atoms (nucleus plus electronic cloud), i.e. by the relationship F, = eZ’E. By
comparing now Eqs. (5.1) and (5.2) one obtains

rel.

Q Q
hid = “cE+ Y eZlu, (5.3
47r(E + 47P) o E + a eZ;u (5.3)
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and imposing D=0 (no external charges, which is the case for of periodically repeated
supercells) we obtain:

rel.

P= i—% : eZ:us (5.4)
which eventually indicates that the total dipole (nuclear and electronic) associated to
each atomic displacement is nothing but d, = ;‘—Z:::—us. In this particular case Z3 ~
~2.36%7 and £, ~ 128!, so that the variation in the electrostatic potential lineup due
to the lattice internal distortion is AVgistortion = ——%’-:S—f%f ~ +0.10 eV, reproducing
the value obtained from the SCF supercell calculations (~ +0.09 eV). Also the
bulk term AFE, changes, passing from +0.52 eV for the unrelaxed superlattice —
including the spin—orbit splitting "®>— to +0.56 eV in case of relaxation. Note that
the corrections to §V and AFE, are of the same sign in this case, and do not cancel
each other; I thus conclude that the VBO is slightly affected by the order in GalnAs
region passing from +0.31 eV to 4+0.33 eV, and a larger effect due to the internal

distortion of (InAs);(GaAs); superlattice further shifts the VBO to +0.46 eV.

AVelcctr. AV,‘O,, AVtot. AE;""‘ rel. vV BO™" rel. AAO AE;«:L VBOch

(Gag.5Ing.5)As
VCA -0.25 0 -0.25 +0.47 +0.22 +0.09 +0.56 +0.31
(Gads)1(Inds)1(001)
undistorted -0.19 0 -0.19 +0.43 +0.24 +0.09 +0.52  40.33
ef fects of alloy
internal order +0.06 0 +0.06 —0.04 +0.02 -0.04 +0.02
(GaAs)1(InAs)1(001)
distorted +2.54 —2.64 -0.10 +0.47 +0.37 +0.09 +40.56 +0.46

ef fects of superlattice ‘
internal distortion +0.09 +0.04 +0.13 +0.04 +0.13

Table 5.5. Contributions to the VBO in InP/GalnAs heterojunctions in the case
of a random Gag 5Ing 5As alloy treated in VCA, of (GaAs)i(InAs); (001) unrelaxed
superlattice, and of (GaAs);(InAs); (001) relaxed superlattice. The last row gives for
comparison the effects of the internal lattice distortion. The columns from the left to the
right show the electrostatic potential lineup due to the electrons, that due to the bare ions,
and the total one; the non relativistic A F, and VBO, the spin-orbit contribution 75, and
finally the relativistic AE, and VBO values. Units are eV.

Structural distortions will also occur at the interface. For instance there is some

very recent experimental evidence of intrinsic strain at InP/Gag.47Ing.53As (001)

8

interfaces %, in particular a negative strain at the ..InPInP/XAsXAs... interface
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Figure 5.18. Distribution of planar charges for the succession of the atomic planes of
the InP/(GaAs)1(InAs); (001) heterojunction in case of undistorted superlattice (a); the
bare ionic perturbation (shift of As planes) leading to the (GaAs)p (InAs); (001) distorted
superlattice is represented in (b), and analogously the total perturbation described in
terms of effective charges is in (c). Arrows indicate the delta functions corresponding to
the nuclear charges in (a) and (b) and to the atomic effective chargesin (c); dashed line the
macroscopic average of such point-like charge distribution with the corresponding scale
(electrons per cell) displayed on the left y axis; dotted line the corresponding electrostatic

potential,

and a positive complementary strain at the ...XAsXAs/InPInP... interface. This
configuration is easily reproduced by a simple model in which the distances between
the two adjacent atomic planes —which is %2 for the undistorted configuration— are
calculated from a weighted average of the relevant bulk bond lengths: whereas the

distance between adjacent planes in the two bulk regions is 121_ a.u., the one between
In and As planes is 1-14—5 a.u. and the one between P and X planes is 39;._5_ a.u.. An

estimate of the effects of such interface strain to the electrostatic potential lineup and

hence to the VBO can be obtained again trough the effective charges (see Fig. 5.19):
AViirgin = 7227 ¢~ 4£0.07 eV.(*) The interface strain is likely overestimated, and

Ap€nc

() In Fig. 5.19 the substrate InP is considered fixed, and the XAs region is shifted, but one
could also think of moving the InP region towards the XAs region. To take into account both the

situations, I consider the average of the effective charges and of the dielectric constant of XAs and
N AN L1 1 1 ~ 18T
InP: 27 ~2.48 and = = 3 [em(InP) + sN(XAs)] ~ 5.7
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Figure 5.19. Distribution of planar charges for the :succession of the atomic planes of the
InP/XAs (001) heterojunction in case of absence of interface strain (a); the perturbation
(shift of X and As planes) leading to the interface strain is represented in (b) in terms of
effective charges. Arrows indicate the delta functions corresponding to the nuclear charges
in (a) and to the atomic effective charges in (b); dashed line the macroscopic average
of such point-like charge distribution with the corresponding scale (electrons per cell)
displayed on the left ¥ axis; dotted line indicates the corresponding electrostatic potential.

consequently AV, ¢pqin may be smaller than the value here obtained.

Conclusions
In summary, the supercell SCF calculations here performed for some different
prototype systems have clearly show that:

i) the equal value of the VBO found for the three main crystallographic orientations
is a general characteristic of the isovalent interfaces, both common-anion (as
GaAs/AlAs) and no-common-ion (e.g. InP/GalnAs);

ii) in the general isovalent heterojunction with no common ions the anionic and
cationic effects which determine the charge arrangement at the interface are
additive: not only the total VBO can be exactly decomposed into anionic
and cationic contributions, but even the fine details of the charge density can
be explained in terms of linear superposition of anionic and cationic dipolar
distributions;

iii) in case of heterovalent interfaces, the electrostatic potential lineup (and hence the
VBO) is strongly dependent on the details of the interface (atomic arrangement

100



and even orientation), but the interface-dependent contribution can be isolated

and easily calculated, for a given structural configuration, in terms of bulk

macroscopic quantities; moreover, the (110) lineup coincides with the average
value of the two non-equivalent (001) interfaces;

iv) the effects on the VBO due to atomic order in case of presence of alloys seem
to be small (~0.01-0.02 eV): the estimate here extracted from the paradigmatic
case of extreme order, i.e. monolayer superlattice, may be further reduced for
real alloy;

v) more serious effects on the VBO (= 0.10 V) are produced by lattice internal
distortions, possible both at the interface and in the bulk regions in case of
compound materials; once the atomic displacements are known (but this question
is not trivial, and often beyond our capabilities), their effects on the potential
lineup and hence on the VBO can be roughly estimated by using the atomic
effective charges.

Despite these interesting conclusions, the question whether the VBO is really
a bulk quantity for the large class of isovalent interfaces is not yet completely
ascertained and still requires some further investigation: in particular I should prove
whether the VBO is the same in any interface orientation —and not only in (001),
(110), and (111)—, and whether it is affected or not by structural disorder at the
interface (i.e. deviation from abruptness). Also the effects of long-range structural
order in the bulk regions (e.g. in case of partially ordered alloy) have to be more
deeply investigated.

In general, a justification of these properties has to be found: why for the
isovalent heterojunctions the VBO is equal for different orientations? Why anionic
and cationic effects are exactly additive? Why ordering effects in the bulk regions
are so small? Why for heterovalent heterojunctions the lineup at the (110) non polar
interface is the average between the two non equivalent (001) interfaces?

The last part of the work will try to clarify these crucial questions.
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Chapter 6

LINEAR RESPONSE APPROACH

The smallness of the chemical differences between different semiconductors
suggests a new approach to the interface problem, based on low-order perturbation
theory. The heterojunction is described as a perturbation with respect to a reference
pertodic system (virtual crystal); the bare potential describing such a perturbation is
the sum of localized potentials which transform the ions of the virtual crystal into the
true tons of the two semiconductors.

The low-order electronic response to a general perturbation is studied, starting
from the response to an isolated perturbation, and the most suitable choice of the
reference unperturbed system is discussed. The analysis shows that linear-response
theory (LRT), if properly applied, gives results in excellent agreement with the SCF
results. Moreover, LRT 1is a powerful tool to explain the general qualitative trends
emerging from SCF calculations for the different classes of heterojunctions, and for
exztending their scope.

102



6.1 Formulation of the basic theory and methods

General considerations: infinite solid and electrostatic potential

As we have discussed in Ch. 3, the problem of determining the energy—band
discontinuities is related to the difficulty of defining the average electrostatic potential
in an infinite solid. From a more formal point of view, we observe that the average
potential in any finite system can be defined as:

(V) = 4me® im —T—Lﬂft—(—(—l) (6.1)

q—0 q?
In a periodic solid, Eq. (6.1) is meaningless because the lattice structure factor
makes the Fourier coefficients of the crystal density to be defined only at discrete
wavevectors. However, any prescription to interpolate between the discrete physical
values of Ticryst(q) With a continuous function allows to calculate the limit, provided it
exists. A recipe to decompose the crystal density into a sum of localized contributions
is equivalent to a prescription to interpolate between its Fourier coefficients, and
allows to give a precise meaning to Eq. (6.1). If we think of infinite systems as made
up of rigid atomic-like charge distributions:

Rerget(r) = 3 nioc(r = R), (6.2)

Eq. (6.1) can be rewritten as:

(V) = =5~ lim ”*";(q) (6.3)
where € is the volume of the unit cell. The limit exists —and therefore the average
potential inside the crystal is well defined— provided the long-wavelength behavior of
the localized charge distribution is Tioc(q) ~ ag® + O(g*). The absence of constant,
linear, and anisotropic quadratic terms in the long-wavelength behavior of nje. is
summarized by the property that it is neutral, bearing no dipole nor quadrupole. The
possibility of decomposing the solid into such a sum of elementary bricks, implies that
the potential drop across the surface of any semiinfinite sample would not depend on
the details of the surface structure. Intuitively, this is so because the prescription on
the localized charge distribution implicitly fixes all the relevant details of the surface
density profile (i.e. of the “surface dipole”).

Of course, the use of Eqs. (6.2-3) would also solve the lineup problem: the
potential lineup across a semiconductor interface would simply be the difference
between the average potentials of the two infinite solids, as calculated from Eq.
(6.3). As a consequence of that, the potential lineup and the band offset would
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be independent of the interface orientation and abruptness, and would also display
transitivity.(*)

Heterojunction as perturbation with respect to a reference crystal

As for the band-offset problem, one is interested in the difference AV =
(V)2— (V)1 between the electrostatic potential of the two semiconductors constituting
the heterojunction. It is not therefore necessary to decompose the full bulk densities
of the two semiconductors, but it is instead sufficient to decompose only their
difference.

Let us consider the general heterojunction C;A;/CyA,. The ionic bare
pseudopotentials of the two bulks are:

Vcorystl,z(r) = Z(vcl.z(r - R) + ’UAL’.?(I‘ -R - 6))7 (64)
R

where vy, , and vg, , are respectively the anionic and cationic potentials, and § is
the distance between the anionic and cationic sublattices.

It is convenient to consider the heterojunction as a perturbation with respect
to a suitable reference crystal, as for instance the virtual crystal whose ionic
pseudopotentials are the averages between the ionic pseudopotentials of the two bulks:

Viw(r) = D ((vo(r = R)) + (va(r =R - §))), (6.5)

R

where (v4) = 3 (va, + v4,) is the average of the anionic potentials, and analogously
(vo) is the average cationic potential.

Both the two bulks and the heterojunction can be described in terms of a bare
perturbation applied to the virtual crystal:

Vo(r) = Viin(r) + AV (x), (6.6)
where:
AVo(r) = (0§ Ave(r — R) + oalva(r — R — §)), (6.7)
R
Avgc = %(vAl‘g1 —v4,.0,), and O'é’c is an Ising-like variable whose value is +1

when an ion of crystal C1A; sits at site R, and —1 otherwise.

(*) The models of Van de Walle and Martin ®7 and of Baldereschi, Baroni, and Resta 38, previously
discussed, exploit the idea of Egs. (6.2-3): in the first one, Njoc are assumed to be neutral atomic
charge distributions, whereas in the second one they correspond to bulk crystal charge densities
limited to a single cation-centered (or anion-centered) Wigner-Seitz unit cell.
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Figure 6.1. Electron-density maps of GaAs/AlAs (001) heterojunction projected onto
the (010) plane (left panel), together with the corresponding virtual-crystal density (mid
panel), and their difference (right panel). The latter has been plotted with a magnified
level spacing (xX40). GaAs down; AlAs up.

Fig. 6.1 shows a comparison between the charge densities of the GaAs/AlAs
heterojunction and of the virtual crystal in the (001) supercell. The smallness of the
difference between the charge density of the physical system (the heterojunction is
this case) and that of the virtual crystal suggests that this difference can be accurately
described using low-order perturbation theory starting from the virtual-crystal. The

charge density response to the perturbation of Eq. (6.6) is
An(r) = /Xuirt(r,r')AV"(r')dr' Lofavey, (6.3)

where yyirt is the density-response function of the virtual crystal. According to Eq.
(6.7), the difference between the charge density of the physical system and that of the
virtual crystal is indeed—to linear order in the perturbation—the sum of localized

distributions:
An(r) ~ Z (erAng(r — R) + chAna(r — R —§)) (6.9(a))
R
Angco(r) = /Xm'rt(r,r')AvA,c(r')dr'. (6.9(b))

105



The Fourier transform of the Coulomb potential generated by the charge
distribution of Eq. (6.9(a)) is:

~ 1 oog 4Amer
AV(q) = > ok e9R Z Anold)
R

Ncfd
1 A iq(reb) 4mE
t — A 6.10
+NAQ ZR:O'R € qg nA(q) ( )

where No=N4=N is the number of cations (anions) in the crystal. From Eq.
(6.10) one can calculate (considering the limit limg_—.¢) the difference of the average
electrostatic potential of the physical system with respect to the virtual crystal and,
in case of the heterojunction, the difference between the two bulk regions.

Potential lineups from single localized perturbations

According to Eq. (6.3), the main ingredient to calculate the potential lineup from
Eq. (6.10) is the limit limg_.o A—niq"zﬁﬁq—). The localized electron density An(r) (Eq.
6.9(b)) induced by the isolated perturbation has the full point symmetry of the site
(T, for the elemental or binary semiconductors considered in the present work), being
the perturbing bare potential spherically symmietric. The long-wavelength behavior
of Anjec(q) is:

- . 1«
Afioe(q) = Q —id-q— =q- D -q + 4¢° + O(¢*), (6.11)
2

where @ is the net displaced charge, d is the induced dipole, Dg is the corresponding
quadrupole moment, and A is the second spherical moment of the induced charge:

Q= [ Aniar(r)is (6.12(a)
d= / rAngo(r)dr (6.12(5))
D = / (2ot — %rzéag)[lngoc(r)dr (6.12(c))
4= %/rmnloc(r)dr (6.12(d))

Because of symmetry, Anj,. does not carry dipole (d = 0) nor quadrupole (ﬁ =0)
moments, and therefore Eq. (6.11) reduces to:

ATiee(q) = Q@ + A¢” + O(¢*) (6.13)

The total (bare + screening) charge carried by the perturbation vanishes for

isovalent substitutions, whereas it is different from zero for heterovalent ones. This
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is obvious within LRT, because the total charge is ¢! times that of the bare
perturbation, where ¢, is the dielectric constant of the reference crystal. It is
convenient at this point to distinguish the isovalent from the heterovalent case, the
latter showing qualitatively different features.

i) Isovalent interfaces: Q=0
In isovalent interfaces Anj,. does not carry any net charge, and from Eq. (6.13)

one obtains for the isolated perturbation:

Clll_r_% 7 = A. (6.14)
Therefore, from Eq. (6.10), one has:
~ 4re? 4me?
im AV(q) = ¢4 4, e
lim AV(q) = og 4o % Rt g4 ZR: TR (8.15)

The potential drop across the interface C; A;/C5A» is therefore:

2
AV = 8’; (Ac + Aa) (6.16)

independent on the interface orientation and even abruptness. In general, in
the case of an interface between two alloys characterized for instance by different
concentrations = and y of the cations C; and O, say C;, Cgl_xA/ClyCzl_yA (e.g.
GapAl;_;As/GayAl;_yAs), the potential lineup is given by :

2
8me -

AV = a Ac(z —v). (6.17)

i1) Heterovalent interfaces: Q#0

The case of heterovalent interfaces (e.g. between semiconductors of IV and III-V
group) requires some care in handling net charges, since in this case Q #0.

To better understand this case, I refer to a specific example, i.e. Ge/GaAs. In
this case, the appropriate virtual crystal is an artificial zincblende—structure crystal
(Geg.5Gag.5)(Geo.5Asg.5), whose cation has valence charge zc = 3.5, and the anion
has valence charge z4 = 4.5. The relevant (bare) localized perturbations which

transform a virtual ion in a real one are:
1 1
A'vc - :E-i(vga - vge); AUA = :EE(UAS - UGe), (6.18)

where the upper sign transforms a virtual cation (anion) into a gallium (arsenic)
ion, whereas the lower one transforms both of them into germanium ions. The bare
perturbations of Eq. (6.18) carry a net charge Azs ¢ = £0.5, therefore ) = i—g{?.
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According to the previous discussions, the Fourier transform of the total charge

induced by one localized perturbation is:

~ Az
aacta) =+ (242 4 duor?) +Ola) (6.19)

oo

The potential lineup is the sum of two different contributions:
AV = AVg + AVjso. (6.20)

The latter contribution, AVi,, is due to neutral localized perturbations, and
it is independent on the orientation and abruptness of the interface. The former
contribution is due to the part of the perturbation related to the net difference
between the ionic charges, and comes from the constant term of Eq. (6.19). It
is the same one would obtain for a distribution of point charges of absolute value
-A—:fj—c—, centered on the atomic sites of the perturbations év4,c. It depends therefore
on the orientation and sharpness of the interface, but it can be calculated, once the
distribution of the localized perturbations is known, from elementary electrostatics.

Localized response to an isovalent perturbation

The estimate of the isovalent part of the potential lineup requires the knowledge
of the charge-density response to a localized Fperturbation and, in particular, the
calculation of its second spherical moment A (see Eq. (6.12(d)). The linear response
to any given perturbation can be calculated along the lines indicated in Ref. 89,
but I follow here a direct approach, by calculating the response from the difference
between two independent calculations for the perturbed and unperturbed reference
systems. In practice I calculate the SCF(™) charge density of the systems in a suitably
chosen unit cell, and the isolated perturbation consists in replacing only one of the
reference atoms in the cell with one of the real atoms: the response Anjo(r) is then
simply obtained by difference.

For the sake of definiteness I refer to the case of GaAs/AlAs, but the analysis
is valid for any kind of isovalent heterojunction. Following the general procedure
sketched before, let us consider the virtual crystal (Gao_sAlo,s)As as reference crystal
(unperturbed system). This is an artificial zincblende-structure crystal whose anion
is As and whose cation is represented by a pseudopotential which is the arithmetic
average of the Ga and Al potentials. I then consider the linear response of the
reference crystal to a single isovalent substitution, where a mixed cation <Gao,5Alo_5)
is replaced by a Ga (or Al) ion. The perturbations leading from the virtual cations

to the true ones are:
(UGa - 'UAZ)- (6.21)

(SR

Avge = —Avy =

() For the parameters used see Sect. 5.1.
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It is convenient to introduce a factor A to measure the strength of the applied
perturbation in terms of Avg,, for instance: A = +1 corresponds to Avg, and Avy
respectively, and A = 0 corresponds to the unperturbed case. By developing the

charge density response in terms of A, one formally has:
2 3

n(A) = n(0) + Mn'(0) + Sn"(0) +

" 22
; =" (0) + (6.22)

The charge density responses to Avg, and Avy; are Ang, and Ang;; they are equal
in magnitude and opposite in sign only at the linear order, and the differences are

due to higher—order terms:

Ang, = An(Gli + An(z) + An(s) . (6.23(a))

Ang = An) + ant) + an8) + .. (6.23(b))

From the two responses one can approximately extract the linear and the quadratic

terms, corresponding respectively to n' and %n":

Angge — An 4

An® = 4ARD) = _An(D) & - (6.24(a))
Anga + A
An® = +An®) = £ An?) ~ 216 '2* nAl (6.24(b))

Higher—order terms can be obtained, if necessary, by computing the response to the
perturbation with values of A other than +1.

Linear and quadratic terms are displayed in Fig. 6.2. The charge density
response was obtained from SCF calculations by substituting the central virtual
cation with Ga and Al in turn, in a FCC cell with basic vectors of double length
(FCC,) with respect to the unit zincblende cell, and hence containing 16 atoms. From
Figs. 6.2 and 6.3 we can see that the rearrangement of the electron density occurs
almost entirely within a bulk FCC Wigner-Seitz cell centered at the substitutional
site, but there are also some nonnegligible tails spilling out, more clearly visible in
the spherical-average plots. For InP/XAs the extension of the responses is slightly
larger.

The accuracy of the calculated value of the second spherical moment 4, Eq.
(6.12(d)), is mainly determined by two factors: i) the size of the supercell C where
the single substitution is actually made, which has to be large enough to describe
the isolated perturbation; ii) the size of the region R contained within C where the
integral is performed.

If C (and hence R) is not large enough, the tails of the response are necessarily
refolded within the supercell itself, and their inclusion in the integral is a source of
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error; on the other hand, if a too large integration region R is used, possible numerical
errors, even small, in Anj,.(r) significantly affect the value of A for r far from the
center, because of the r? weight. It is also important to check the charge neutrality
(i.e. the integrated charge response is zero), which is automatically guaranteed by
construction only if the integral is performed over all the supercell C. A compromise
for the choice of suitable supercells for C and R regions is therefore necessary to
minimize the inaccuracies. To this purpose, I have quantitatively analyzed the
extension of the charge density response by different tests: I have used as C both a
8—atom simple—cubic (SC) cell and a FCCj cell; in both cases I have then performed
the integrals 6.12(a) and (d) over regions R of increasing volume contained within
C. The results are reported for GaAs/AlAs in Tab. 6.1; the same test for InP/XAs

gives analogous results for the convergence.

C R Ant) | AV

FCC,| +0.01| —0.30
SC SC 0.00 | —0.39

FCCy| +0.01 | —-0.29
FCCy SC | —0.00 | —0.40
FCCy| 0.00 | —0.38

Table 6.1. Linear terms of the integrated localized electron density response
(electrons/unit bulk cell) and of the corresponding induced electrostatic potential lineup
(eV) calculated from the single isolated perturbations Avga, Av gl over (Ga.g_5 A10,5>As
in a SC and in a FCCy supercell; integrations are performed in different regions R.

In summary, I have checked that using the FCC, supercells the perturbations are
sufficiently far apart to allow an estimate of the potential lineup with the accuracy
of few ten meV (= 30 meV in the worst case, referring to the anionic perturbation
in InP/XAs); using such a cell, the second spherical moment of the charge density
response does not change (within ~ 10 meV) if calculated within a SC cell or over
the whole FCC, cell. All the results presented in the following refer to this geometry.
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6.2 Results

6.2.1 Isovalent common-anion heterojunctions: GaAs/AlAs

0. 1. 2. 3. 4. 5. 8. 7. a.
A r (a.u.)
Figure 8.2. Electron density response of the (Ga0_5A10.5>As virtual crystal to a single

<Gao_5 A10_5> — Ga cationic substitution. a: Contour plots of the linear term An(l)(r) in
the (110) plane (dashed lines indicate a negative density response); the intersection of the
plane with cation-centered 2-atoms and 16-atoms FCC Wigner-Seitz cells are indicated
with dashed and dotted lines. b: Radial spherical averages of the linear (solid line) and
quadratic (dashed line) density responses. The average radii of the Wigner-Seitz cell and
neighbor distances are also indicated.

I display in Fig. 6.2 the linear response to a single cationic substitution in
the virtual crystal (Gag.5Alp5)As as obtained by self-consistent (SCF) calculations
for a FCC; supercell where a virtual cation is replaced by Ga and Al in turn; the
quadratic term is also shown for comparison. The value of the LRT potential lineup
obtained according to Eq. (6.16) is 4+0.39 eV, independent on interface orientation,
in agreement with the value +0.41 eV obtained from SCF superlattice calculations.

It is interesting to check whether the LRT reproduces not only the value of the
SCF potential lineups, but also the electron-density and potential profiles. To this
purpose, it is convenient to study the response to the substitution of a whole atomic
plane in the (001), (110), and (111) directions rather than an isolated atom. I start
therefore from the virtual crystal XAs and substitute all the X atoms in a cationic
plane perpendicular to the growth direction with Ga atoms: the planar average of
the induced electron density is shown in Fig. 6.3. The computations have been
performed with a 14-5 superlattice geometry.

The electron density induced by a X— Al planar substitution is, to linear order,
equal and opposite to the one shown in Fig. 6.3; as for the isolated - substitution,
the linear term can be evaluated as one half the difference between the responses to
X—Ga and X— Al substitutions. The planar average of the charge density response
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Figure 6.3. Top panels: charge—density response of the virtual crystal (Ga,o_5 Alo_5>As to
a single planar cationic substitution. Bottom panel: macroscopic averages of the electron
charge densities of GaAs/AlAs. Continuous lines indicate results from full self-consistent
calculations, whereas dashed lines indicate results from LRT. Left panels: (001); center:
(110); right: (111).

1s the only ingredient necessary to build up the full supercell charge within LRT: one
starts from the virtual-crystal charge distribution and one simply superposes these
responses, centered at the appropriate planes and with the proper sign.

The charge density profiles obtained from SCF and LRT calculations are hardly
distinguishable. Note that even the very small oscillations of the charge density in
the (111) direction are well reproduced by LRT.(*

6.2.2 Isovalent no—common-ion heterojunctions: InP/Gag 47Ing s3As

For the linear-response treatment, I use the average cation C:(Ino,on's) =
(Ing 765 Gag.235) and the average anion A=(Py.5Asp.5) already defined for the study of
CP/CAs and InA/XA interfaces, and I consider the CA zincblende-structure virtual
crystal as the reference crystal. The actual interface is then recovered substituting C

(%) The WSC model reproduces pretty well for this system the charge density profiles, but not
these small oscillations, which are related, as we now can understand in the spirit of LRT, to the
outermost tails of the charge density response spilling out from the bulk Wigner—Seitz FCC unit
cell.
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with In on the left and X on the right of the interface, and analogously the anion A
with P and As; the corresponding bare atomic perturbations are respectively:

Avp, = —Avy = 0.235(v1n — "UGa) (6-25((1))
Avp = —Avg, = 0.500(vp — v4,) (6.25(b))
’ * a 3 b
2.
(6] === = @

Han(r)
|

r (a.u.)

0. 1. 2. 3. 4; 5. 8. 7; 8.
r (a.u.)

Figure 6.4. Electron density response of the <In0_5X0,5><Aso_5Pg_5) virtual crystal to

a single cation (a,b: (Ino_sxo_s) —In) or anion (c,d: <A50.5P0,5> —P substitution.

a,c: Contour plots of the linear term An(l)(r) in the (110) plane (dashed lines indicate a
negative density response); the intersections of the plane with cation-centered 2-atoms and
16-atoms FCC Wigner-Seitz cells are indicated with dashed and dotted lines. b,d: Radial
spherical averages of the linear (solid line) and quadratic (dashed line) density responses.
The average radii of the Wigner-Seitz cell and neighbor distances are also indicated.

In Fig. 6.4 I show a contour plot of the linear electron-density response of the
virtual crystal to single C—In and A—P substitutions. The spherical average of the
linear and quadratic density responses are also reported. From these charge responses
one can calculate the anionic and cationic contributions to the potential lineup: the
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results are AV = +0.34 eV, AV4 = —0.58 eV, AVior = —0.24 €V, independent on
orientation, and in excellent agreement with the values obtained by SCF calculations
on supercells (+0.36 eV, —0.61 eV, —0.25 eV respectively). Also for this system,
LRT is able to reproduce well even the tiny details of the electron—density profiles,
which are undistinguishable from those obtained with SCF supercell calculations (see
Fig. 5.11).

6.2.3 Heterovalent heterojunctions: Ge/GaAs

The presence of a constant term in the Fourier transform of the total charge
induced by a localized heterovalent substitution (see Eq. (6.13)), originates an
interface-dependent contribution AVg to the electrostatic potential lineup, and hence
one can expect new interesting features of the band-offsets in this class of systems.

I examine in some details the VBO at (110) and (001) Ge/GaAs interfaces.
In the (110) direction, the virtual crystal is made of atomic planes with two ions
(one cation and one anion) per unit surface cell: the average bare charge density is 8
electrons per unit surface cell, for the virtual crystal plane as well as for a plane of Ge
or of GaAs. The planar perturbations leading to the physical interface are therefore
neutral, and AVy vanishes. The LRT-potential lineup VBO at (110) interface is
therefore AV(LRT) = AV;so = —0.22 €V, in good agreement with the SCF result,
AV(SCF) = —0.22 V.

In the (001) direction, the virtual crystal is made of an alternating stack of
cationic and anionic planes, carrying a surface ionic bare charge density of 3.5 |e| and
4.5 |e| per unit surface cell. This is schematically shown in Fig. 6.5 for the two non-
equivalent Ga-Ge— or As-Ge—terminated interfaces. The heterovalent contribution to
the potential lineup, AV, is due to the planar charge distributions sketched in Fig.
6.5: it is calculated from their macroscopic average through Eq. (3.4), scaled by ¢}

to account for the electronic response.(*) Its value is AVg = :I:Z(:‘O‘io = +0.31eV,
and therefore the VBO at (001)g, and (001),4, interfaces is, within LRT and using
the value AV, given above for the non-polar (110) interface, +0.85 eV and +0.23
eV respectively; the corresponding results from full SCF supercell calculations were
+0.82 eV and +0.22 eV. Note that, according to the LRT formulation, the average
between the potential lineups of the two non—equivalent (001) interfaces is exactly
equal to the electrostatic potential lineup for the non—polar (110) interface. LRT
provides a natural and simple explanation of this feature, which was empirically
observed by Kunc and Martin several years ago 7.

The response to heterovalent substitutions corresponds to large charge densities
(see for instance in Fig. 5.14 their macroscopic average in the (001) interfaces, to

(

*) The dielectric constant €oo is taken as the average of the two bulks: % = :1; [;""(1'(';—5 +

1 ~ L.
m] ~ i3 from Ref. 81.
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Figure 6.5. (a): Distribution of planar charges for the succession of cationic planes of the
CA virtual crystal in the (001) direction. (b): Charge distribution for the perturbation
leading to a Ga-Ge—terminated interface. (c): Charge distribution for the perturbation
leading to an As-Ge—terminated interface. Arrows indicate delta functions. Dashed lines
indicate the macroscopic average of the point-like charge distributions: the corresponding
scale (electrons per cell) is displayed on the ¥ axis.

be compared with the corresponding data in the isovalent heterojunctions), and it
is more extended than in the isovalent cases studied before; tests performed in 1+5
(110) supercell geometry by substituting only one plane of the virtual crystal with
one of Ge or GaAs, have shown that the response extends —with non negligible
tails— over the entire supercell, whereas in the isovalent case it is practically limited
to the nearest-neighbour planes (see Fig. 6.2 and Fig. 6.3, center panels). Because
of this extension, in order to test the capability of LRT of reproducing the SCF
electron—density and potential profiles, I had to consider the substitution of a whole
atomic plane in a supercell geometry, rather than studying the isolated heterovalent
perturbation. Also in this case —as already found for the isovalent heterojunctions—
the LRT result is very similar to the full SCF calculation: the curves are practically
coincident (see Fig. 5.14), and the resulting VBO is 4+0.54 eV, +0.82 eV, and +0.22
eV for (110), (001)ga. and (001)4, interfaces respectively. The fact that the (110)
lineup is not exactly the average between the two values for the (001) interfaces is a
consequence of the finite thickness of the supercell used, an effect which is estimated

to be ~ +0.02 V.
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Figure 6.8. Planar average of the differences between the charge density of Ge/GaAs
and of GaAs (a) or Ge (b) in turn.

The problem of supercell thickness therefore does not affect dramaticaly the
convergence of the potential lineup in both LRT and SCF calculations, and it is only
barely visible in Fig. 5.14 because of the small scale; but inspection of Fig. 6.6 reveals
that in Ge/GaAs (110), GaAs bulk features are not ezactly recovered in the region
between two adjacent interfaces; the same has been found in (Gag.5Asg.5)/GaAs (Fig.
6.7(c)), and for AlAs in Ge/AlAs.

In order to study the dependence of such deviations on the thickness of the
supercell, I have performed further SCF supercell calculations; it appears that the
deviations are still present even considering a larger supercell (5+3 instead of 3+3):
this is illustrated in Figs. 6.7(a) and Fig. 6.7(b) for Ge/GaAs and Ge/AlAs
respectively.

It should be noticed that these deviations are mostly evident in the region with
the zincblende semiconductor, while bulk features are more easily recovered in the
region of the heterojunction with diamond structure.

In order to obtain the response of each one of the two semiconductors to the
substitution of one atomic layer of the other material, I have studied the following
7+1 (110) superlattices: seven Ge layers plus one layer of GaAs, and seven GaAs
layers plus one layer of Ge. The bare perturbing potentials transforming ions
into each other are: Avc = wvg, — vge, which transforms Ge atoms into Ga
atoms, and Avg = va,; — vge, which transforms Ge atoms into As atoms. The
perturbation transforming an entire layer of Ge into one of GaAs is the superposition
of perturbations Avc and Av, centered on the atomic sites of the layer, and
analogously the perturbation transforming an entire layer of GaAs into one of Ge is
the superposition of perturbations —Awve and —Awva: the bare plane perturbations
applied to Ge and GaAs are hence equal in magnitude and opposite in sign.

Figs. 6.8(a) and (d) show the macroscopic averages of electron—density response
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for both situations. Inspection of such figures reveals that, even if the bare perturbing
potentials are equal and opposite, the responses look different, reflecting the difference
of the two unperturbed systems: the response of bulk Ge to one layer of GaAs is quite
localized; conversely, in the case of bulk GaAs with one layer of Ge, the oscillations
of the electron-density response are not negligible, and not vanishing even four layers
away from the substituted one. One can easily check, e.g. by studying the response to
opposite perturbations, that such different behaviours mostly originate from linear
response effects. This result allows us to better understand our SCF data for the
GaAs/Ge 3+3 superlattice. We can in fact Imagine to construct the latter system
starting from a Ge crystal and periodically transforming three consecutive Ge layers
out of six into GaAs layers. Since the response to such perturbation is rather short—
range, we obtain that our 34-3 superlattice has a sufficiently thick Ge slab to recover
bulk Ge features in the middle of the slab itself. Constructing instead the superlattice
from a GaAs crystal and replacing three GaAs layers with Ge ones, the response
of GaAs has a quite long range and this explains why with both 34-3 and 5--3

superlattices have not been able to recover bulk features in the middle of the
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Figure 6.8. Macroscopic average of the electron density response (solid lines) and the
electrostatic potential (dashed lines) along the growth direction in a (110) supercell with 8
atomic layers for bulk Ge with one layer of GaAs (a), and the decomposition (see text for
details) into isovalent (b) and heterovalent (c) contributions; bulk GaAs with one layer
of Ge (d), and the decomposition into isovalent (e) and heterovalent (f) contributions.

GaAs slab.

To better investigate the nature of the different responses, it is convenient to
separate the perturbations Avy and Ave defined before into a heterovalent and an
isovalent part: such procedure is justified since most of the effect under study is
linear. To this purpose I introduce the average virtual atom (Gags5As5), and I

V(z) (eV)

|

>
C)
S
[

define the heterovalent part of the perturbation as Avietero = vGa — W Gag.sAsyg) =
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W Gap.sAses) —VAs = %(vAs ~VGa ), and the isovalent part as Av;,, = V(Gag.s Aso.s) —VGe-
The perturbation transforming Ge into Ga is thus Ave = Av,,, + AVpetero, and that
one transforming Ge into As is Avy = Aviso — AVpetero. One can now investigate
the response of the two semiconductors to the isovalent and to the heterovalent part
of the perturbations separately: bulk Ge with one layer perturbed with +Awv;,, (see
Fig. 6.8(b)) or +Avheter, (see Fig. 6.8(c)), and the complementary situations, i.e.
bulk GaAs with one layer perturbed with —Aw;,, (see Fig. 6.8(e)) or £Avperero (see
Fig. 6.8(f)). The separation into isovalent and heterovalent perturbations turns out
to be useful, since: i) it allows one to introduce symmetry considerations into the
problem, since the short-range part of the perturbation Av;,, is symmetric on cation
and anion sites whereas the relevant, long—range part Avposorg is antisymmetric; ii) .
it shows that the symmetric part Av,,, gives rise to a short-range response only,
confirming all the results for isovalent perturbations; iii) it gives a hint about the
physical origin of the deviations from bulk behaviour found in the GaAs region of
the heterojunction, i.e. the deviations are due to the heterovalent part Avpeporo of
the perturbation, which induces long-range responses, which extend at least over
four interplane distances away from the tranformed plane.

Considering now the heterovalent part of the perturbation, it is the non-—
equivalence (equivalence) of the cationic and anionic sites in a zinchblende (diamond)
semiconductor which determines the features of the response. In the (110) geometry,
the plane perturbation is constituted by alternating equal and opposite perturbations
EAVpetero on cation and anion sites. Its planar average therefore vanishes. When
the perturbation is applied to Ge, and in general to a semiconductor with diamond
structure, the equal and opposite perturbations are centered on equivalent sites: the
linear terms of the response are also opposite and their planar average vanishes,
and hence the leading terms of the electron density response to the perturbation
are the quadratic ones. Conversely, when the unperturbed system is GaAs or
a semiconductor with zinchlende structure, the cation and anion perturbations
+AvVpetero are centered on non—equivalent sites, and hence the responses are
completely different °°: consequently also a linear term is present in the plal}ar and

macroscopic average of the response to the planar perturbation.

I conclude mentioning some potential applications of the peculiarities of polar
interfaces to device design. The lineup between non-equivalent interfaces for a given
crystallographic orientation could be exploited to induce a potential drop within
different regions of a same material. Consider for instance a Ce crystal with an
atomic intralayer of GaAs oriented along (001), as represented in Fig. 6.9. From the
arguments given above, it is evident that an electrostatic potential lineup AV = fff%
is set up between the left and the right semiinfinite Ge crystals. The possibility of
obtaining such an effect depends very much on the sharpness of the GaAs intralayer,

and it is not evident whether the present epitaxial techniques allow one to an interface
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Figure 6.9. (a): Distribution of planar charges for Ge in the (001) direction. (b): Charge
distribution for the perturbation corresponding to a GaAs double layer. (¢): Electrostatic
potential generated by the charge distribution (b).

of sufficient quality(*); however, if this were the case, this would open new perspectives
for device design.

) Some attempts are under way at the University of Wisconsin (Madison), by G. Margaritondo
and cooworkers (private communication).
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6.3 Validity of the linear-response theory
and its consequences

Higher—order response

A complete formulation of the perturbative approach to the interface problem
requires also the knowledge of higher—order terms in the response, and a criterion to
choose the most convenient reference unperturbed system. For the sake of clarity,
I will refer in the following —if not otherwise specified— to GaAs/AlAs, and I will
separate the discussion into two points: i) magnitude of the terms of order higher
than linear in the charge density response, both for the atomic and the extended
sum of atomic perturbations leading from the virtual crystal to

accuracy of LRT in predicting

perturbations (i.e.
the heterojunction), and ii) effects of such terms, i.e.
the electrostatic potential lineup.

Non-linear terms in the charge density response

In order to examine higher—order terms present in
substitution, I consider the perturbation Av = Avg, = —Av 4 transforming the
(Gag.5A19_5) cation in (Ga0‘5A10,5)As into Al and Ga cations. From Fig. 6.2(b) (see
also Fig. 6.4(b) for InP/XAs) and Tab. 6.2 one can recognize that the quadratic
response to the perturbation is i) quite smaller than the linear term, ii) more localized
(practically confined within a bulk unit cell within the numerical accuracy of the

the isolated atomic

present calculations).

Table 6.2.
(electrons/unit bulk cell)
(eV) calculated from the single isolated
in a FCCy supercell; integrations are p

C

R

An(2)

AV (2)

FCC,

FCcc,
SC

~+0.003
0.000

—0.002
—0.038

FCCy

FCC,
SC
FCC,

+0.003
0.000
0.000

—0.001
—0.040
—0.034

localized response (see Eq. (6.23)

Quadratic terms of
and of the cor
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the integrated localized electron d
responding induced electrostatic potential lineup
perturbations AvGa, Av 4 over <Ga0_5Alo_5>As
erformed in different regions K.

Terms of order higher than quadratic can also be extracted from the total
): the results I have obtained indicate that cubic

ensity response



terms are much smaller than quadratic ones, and difficult to estimate since they are
of the same order of magnitude as the numerical noise.
How to recognize higher—order terms in the extended perturbation? The

quadratic terms neglected in Eq. (6.8) are:

Anﬁi;st(r)z Z aR,aRu//Xsyzi,),t(r;r',r")Av(r'~R')Av(r"-R")dr'dr" (6.27)
R”R”

The sum contains both terms of type (Av(r' — R'))* and Av(r' — R )Av(r" — R")
with R’ # R". The former (I call them diagonal terms) are the quadratic responses
to isolated perturbations: as observed before, they are not negligible, but have the
advantage that can be extracted and transferred from the isolated perturbation. The
latter terms (off-diagonal) cannot be extracted from the single atomic perturbations,
since they are properly due to the interference between responses to adjacent
perturbations.

In order to estimate the off-diagonal quadratic terms, I compare the full
response to adjacent perturbations with the superposition of the localized responses
to single perturbations. I consider e.g. in the (110) supercell geometry the
GaAs/AlAs heterojunction obtained from full SCF calculations and that obtained
with a superposition on the reference crystal (Ca,o,sAlg,s)As of responses to the
perturbation leading from a plane of (GagsAlg5) to a plane of Ga or Al (see Fig.
6.10). In the comparison, all the orders of the localized responses are included (in
particular also the diagonal quadratic terms), and the differences are only due to off-
diagonal terms.(*) Contrary to the diagonal quadratic terms, the off-diagonal terms
are very small and cannot be estimated since they are masked by the numerical
noise; their effects are negligible with respect to the numerical accuracy of the results
presented here.

These conclusions strictly apply only to the case of GaAs/AlAs, since the
magnitude of the off-diagonal terms depends on the extension of the localized
responses which may vary from one system to another: tests performed for instance
for InP /X As indicate that in such system the off-diagonal terms are again very small,
but are distinct from the numerical noise and are not completely negligible.

Effects of non-linear terms on the electrostatic potential lineup
Given that non-linear terms are present in the charge—density response, the

question arises of how much they can affect the electrostatic potential (and hence of

the VBO) obtained with the LRT.

(*) More precisely, the interference terms between responses to perturbations on the same anionic
plane are included in the response to a whole planar substitution, and the off>diagonal terms we
are looking at in this procedure are only interferences between planes.
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Figure 6.10. Macroscopic average of the electron density response (solid lines) to the
perturbations leading from a (110) plane of <Ga0_5 Alo‘5> in {Gag,g, Alo,5> As to a plane of
Al (a) or Ga (b), and induced electrostatic potential (dashed lines). (c): macroscopic
average of the electron density and electrostatic potential in the GaAs/AlAs (110)
heterojunction as obtained from full SCF supercell calculations and from the reference
(Gao,s Alo‘5>As crystal with superposition of the planar responses: on this scale the two
cases are not distinguishable.

As for the off-diagonal terms, if they were important, no low—order perturbative
approach starting from the isolated perturbation would provide meaningful results.
Fortunately this is not the case: we have seen in fact that they are small. However,
they can be different in magnitude according to the systems considered, and therefore
also their influence on the electrostatic potential lineup can vary: in the case of
GaAs/AlAs it is negligible and smaller than the accuracy limit, whereas in the case
of CP/CAs (which correspond to the strongest isovalent perturbation that I have
considered) it amounts to ~ +0.03 V.

As for the diagonal quadratic terms, they are not negligible, and it would
be desirable if one could define a reference system such that their contribution
to the lineup rigorously vanishes. One can easily check, for instance, that such
situation is indeed verified in GaAs/AlAs, considered as a perturbation with respect
to the average virtual crystal: the diagonal quadratic responses to single cation
perturbations are the same on every site —both in sign and in magnitude—, and
their contribution to the charge density response in the whole heterojunction has the
periodicity of the bulk and hence their effect on the electrostatic potential lineup
vanishes.

The situation described for GaAs/AlAs can be realized for a general heterojunc-
tion: provided one is able to choose a reference unperturbed system such that the
quadratic diagonal terms are identical on both sides of the interface, independently
of the sign og of the applied perturbation. This is always possible, and is guaranteed
if the reference crystal is the average, atom by atom, between the two solids forming

the interface. A way to construct properly the reference crystal for a n + n superlat-
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tice, is to consider the average, in terms of bare atomic potentials, of the supercell
representing the heterojunction and another one obtained from the former with a
shift of half the period along the growth axis. Such a reference crystal takes into
account both chemical and structural differences between the two semiconductors
constituting the heterojunction (see e.g. the case of Ge/GaAs).

I thus conclude that neglecting the diagonal quadratic terms may not give a very
good description of the 3-D details of the charge~density distribution, but fortunately
—provided the reference unperturbed system is properly chosen— this does not affect
the estimate of the electrostatic potential lineup. To stress again the importance of
the choice of the reference system, note that an effect which is linear with the use
of one reference unperturbed system may manifest itself as quadratic by changing
the reference; in this sense one cannot make the absolute claim that the quadratic
terms are negligible and that the linear order response is sufficient for the interface
problem, but, rather, that LRT works well with a suitable choice of the reference
system.

To clarify these comments, I discuss the validity of the VCA in the description
of the GalnAs alloy in the InP/{Gag.5Ing.5)As heterojunction. SCF calculations have
shown that the electrostatic potential lineup in InP/(Gag.5Ing.s)Asis —0.25 eV, while
the one in InP/(GaAs);(InAs); is —0.19 eV, i.e. they differ by 0.06 eV. Provided
that the transitivity rule holds, as it has been demonstrated for the class of isovalent
heterojunctions, the above difference of 0.06 eV should correspond to the electrostatic
potential lineup at the (Gag sIng.s)As/(GaAs);(InAs);, heterojunction. At a first
sight and using LRT, one expects the latter lineup to be zero. What is therefore
responsible for such an effect? Can it be predicted by a low—order perturbation
approach?

i) To answer this question, I consider the (Gag.s5Ing.5)As/(GaAs);(InAs); hetero-
junction(®), starting from the average virtual crystal C2 A, where Co=((Gao.5Ino.5)Ino.s)
=(Gag.25Ing.75). The perturbations transforming the reference cation C, into Ga, In,
and (Gag sIng.s) are 3Av, —Aw, and Av, respectively, where Av = %(Uca —vrn); the
extended cationic perturbation transforming C» A into (Gag.sIng.5)As/(GaAs)i(InAs);
heterojunction is shown in Fig. 6.11. The proper filter function for the macroscopic
average extends over the tetragonal cell containing four atoms, which is the unit cell
of the (GaAs);(InAs); monolayer superlattice. In each one of such cells, the linear
terms add up to the same total effect on the two sides of the heterojunction and do
not contribute to the lineup, but the diagonal quadratic terms An(lig are present with
different weights: +1 on all the (Gag.sIng.5) sites in the (Gag 5Ing.5)As region, while
in the (GaAs); (InAs); region they are +1 on the In site and 49 on the Ga site. They

() T compare the alloy with the (GaAs)i(InAs); monolayer superlattice, I consider here the
alloy with the composition 50% of both Ga and In, instead of 47% and 53% respectively.
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consequently cause a difference in the average electrostatic potential on the two sides
of the heterojunction AV(2) = 1—%’—6—2./1 = +0.05 eV (with 4 = %frzAngfc)(r)dr),
which agrees, within the numerical accuracy, with the full SCF supercell result. The
quadratic diagonal terms are thus responsible for the effect.

ii) Let us consider again the (Gag.sIng 5)As/(GaAs); (InAs), heterojunction, and
ask whether exists a reference system such that the effect of the diagonal terms on
the electrostatic potential lineup vanish. Such reference average periodic crystal is
a monolayer superlattice (C; As)1(C2As); with a tetragonal unit cell containing two
anions and the cations 01:({Ga0,51n0‘5)GaO'5>: (Gag.75Ing.25) and C, as defined
above. If I define as above Ay —= %(vGa — VIn), for instance, the bare atomic
perturbations transforming the virtual cations C: into Ga, In, and (Gao,5lno.5)
are Av, —3Av, and —Av respectively; the perturbations transforming the virtual
cations C; into Ga, In, and (Gag.sIngs) are 3Av, —Av, and Av respectively. By
considering carefully now the perturbation that transforms (C1As)1(C2As); into the
heterojunction (see Fig. 6.12), one can realize that the lineup due to the electronic
response to the perturbations on the C; atoms is not exactly cancelled by that on the
C2 atoms, since the perturbations are equal but they are centered on non-equivalent
atomic sites: the responses to a given perturbation centered on the site C; and on
the site C; will in general be different, and this is the reason of the non vanishing
electrostatic potential lineup at this interface.

|
C: A G Al o A C A
> —a———8
|
+Av +Aw {+3Av —Av
< < } < <
(Gao.5Ino,5> (Gao‘51n0‘5> I Ga In

Figure 6.11. Extended cationic perturbation transforming the average reference crystal
CaA (see text for the definitions) into (Gag‘slno_s)As/(GaAs)l(InAs)1 heterojunction.

Note that the low-order perturbation theory not only reproduces the SCF result,
but extends it to any alloy. In fact, the contribution of the diagonal quadratic terms
to the electrostatic potential lineup does not depend on the particular distribution
of the single atomic substitutions; the result is therefore the same for any other
configuration describing the real alloy, it does not depend on the particular cationic
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—Av +Av I +A0 ~Av
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<Gao.5ll’lo.5> (Ga0_51110_5) { G& In

Figure 6.12. Extended cationic perturbation transforming the average reference crystal
(C1As)1(C2As); (see text for the definitions) into <Gao,51ng,5)As/(GaAs)1(InAs)1
heterojunction.

ordering but only on the fact that real atoms and not virtual atoms have to be
considered.

I stress that the above considerations are limited to the electrostatic potential
lineup. I have shown —from SCF-LDA bulk calculations— that also the bulk band
contribution AE, to the VBO in InP/GalnAs heterojunctions is different in the two
situations, i.e. in the case of a gallium-indium arsenide alloy treated with the VCA,
and in the case of an ordered (GaAs);(InAs); monolayer superlattice.

Summary
I conclude mentioning the main achievements of the LRT study. Besides
reproducing quantitatively the SCF results, LRT allows to evidentiate a series of
general features governing the physics of VBO’s, namely:
i) independence of the VBO on interface orientation for isovalent hetero junctions;

ii) independence of the VBO on the abruptness of the interface region for the
isovalent heterojunctions;

iii) additivity of anionic and cationic effects in the isovalent heterojunctions with no
common ions;

iv) evidence of an interface-dependent contribution to the electrostatic potential
lineup in the heterovalent heterojunctions, and relationship between the VBO’s
at polar and non-polar interfaces;

v) importance of the choice of the reference system for the perturbative approach,
in order to neglect the quadratic terms in the response;

vi) effect on the electrostatic potential lineup of the VCA used instead of considering
real atoms in describing alloys, and independence on their configuration (random
or ordered).
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consequently cause a difference in the average electrostatic potential on the two sides
of the heterojunction AV(2) = 1—%“512—A = +0.05 eV (with 4 = %frzAngfz(r)dr),
which agrees, within the numerical accuracy, with the full SCF supercell result. The
quadratic diagonal terms are thus responsible for the effect.

ii) Let us consider again the (Gag.5Ing.5)As/(GaAs); (InAs); heterojunction, and
ask whether exists a reference system such that the effect of the diagonal terms on
the electrostatic potential lineup vanish. Such reference average periodic crystal is
a monolayer superlattice (C; As)1(C2As); with a tetragonal unit cell containing two
anions and the cations C1=({Gag.5sIng.5)Gags)= (Gag.75Ing.25) and C, as defined
above. If I define as above Ay — é(vaa ~ vrn), for instance, the bare atomic
perturbations transforming the virtual cations C: into Ga, In, and (Gag,5lno.5)
are Av, —3Av, and —Aw respectively; the perturbations transforming the virtual
cations C; into Ga, In, and (Gag.sIng.s) are 3Aw, —Av, and Av respectively. By
considering carefully now the perturbation that transforms (C1As)1(CyAs); into the
heterojunction (see Fig. 6.12), one can realize that the lineup due to the electronic
response to the perturbations on the C; atoms is not exactly cancelled by that on the
Cs atoms, since the perturbations are equal but they are centered on non—equivalent
atomic sites: the responses to a given perturbation centered on the site C; and on
the site C; will in general be different, and this is the reason of the non vanishing

electrostatic potential lineup at this interface.

02 A Cz A ] Cg A /9 A
|
+Av +Aw {+3Av —Aw
< < ; < <
I

<G&0.5In0,5> (Ga0'51n0,5) GEL In

Figure 6.11. Extended cationic perturbation transforming the average reference crystal
CaA (see text for the definitions) into (Gao_5In0_5>As/(GaAs)1 (InAs); heterojunction.

Note that the low—order perturbation theory not only reproduces the SCF result,
but extends it to any alloy. In fact, the contribution of the diagonal quadratic terms
to the electrostatic potential lineup does not depend on the particular distribution
of the single atomic substitutions; the result is therefore the same for any other
configuration describing the real alloy, it does not depend on the particular cationic
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Figure 6.12. Extended cationic perturbation transforming the average reference crystal
(C1As)1(C2As); (see text for the definitions) into (Gao,51n0.5>As/(GaAs)1(InAs)1
heterojunction.

ordering but only on the fact that real atoms and not virtual atoms have to be
considered.

I stress that the above considerations are limited to the electrostatic potential
lineup. I have shown —from SCF-LDA bulk calcylations— that also the bulk band
contribution AE, to the VBO in InP/GalnAs heterojunctions is different in the two
situations, i.e. in the case of a gallium-indium arsenide alloy treated with the VCA,
and in the case of an ordered (GaAs);(InAs); monolayer superlattice.

Summary
I conclude mentioning the main achievements of the LRT study. Besides
reproducing quantitatively the SCF results, LRT allows to evidentiate a series of
general features governing the physics of VBO'’s, namely:
i) independence of the VBO on interface orientation for isovalent heterojunctions;

ii) independence of the VBO on the abruptness of the interface region for the
isovalent heterojunctions;

iti) additivity of anionic and cationic effects in the isovalent hetero Jjunctions with no
common ions;

iv) evidence of an interface-dependent contribution to the electrostatic potential
lineup in the heterovalent heterojunctions, and relationship between the VBO’s
at polar and non—polar interfaces;

v) importance of the choice of the reference system for the perturbative approach,
in order to neglect the quadratic terms in the response;

vi) effect on the electrostatic potential lineup of the VCA used instead of considering
real atoms in describing alloys, and independence on their configuration (random
or ordered).
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CONCLUSIONS
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The present work has allowed to classify lattice-matched semiconductor
heterojunctions and to identify some general trends of the corresponding VBO’s. The
VBO has been proven to be independent on the interface orientation and abruptness
for the isovalent heterojunctions, even in the general case of heterojunctions with
no common ions; in the latter case, moreover, the interface dipole is the sum of
anionic and cationic contributions, which separately do not depend on the details
of the interface. On the other hand, the VBO at heterovalent heterojunctions
is strongly dependent on the interface details, and in particular the composition
of the interface layer strongly controls the stability of the interface itself and its
energy-band discontinuities; fortunately, the interface-dependent contribution can
be easily calculated, once the interface details are known, from simple macroscopic
quantities (bulk lattice parameters and dielectric constants of the constituents).
These properties, which are in agreement with experimental evidencies, have been
obtained from first-principles supercell calculations performed for prototype systems,
and have been justified and extended to entire classes of heterojunctions by the
LRT approach, which has been shown to be a fundamental tool in this problem of

semiconductor physics.

During this work some questions have been investigated only in a preliminar
way, and they require further study, both with the techniques developed in this work
and with new tools. For instance, the effects on the electrostatic potential lineup
of internal lattice distortions and interfacial strain have been obtained with simple
estimates based on effective—charge schemes; these results have to be accurately
checked with SCF calculations. More specifically, a quantitative analysis will require
the knowledge of the effective forces acting on the ions and the determination of their
equilibrium positions. No efforts in this direction has yet been done. Internal lattice
distortions are particularly important in the case of alloys. Internal distortions are
present in the real alloy in order to keep the bond lengths close to their values in the
respective bulks, and have to be taken into account in this problem. In particular one
should determine how much they affect the VBO at semiconductor heterojunctions
when one or both materials consist of a solid solution. Furthermore for alloys the
treatment of the electronic term is trivial within LRT, using the VCA, but a realistic

estimate requires also to take into account the localized quadratic responses.

In the present work, the case of mismatched heterojunctions and superlattices
has not been treated. It is closely related to the problem of the behaviour of the energy
bands under strain in a single semiconductor. The shifts of the bands under strain
are described through deformation potentials, which describe the relative change
in energy of different electronic states (e.g. band-gap changes under pressure), or

also changes in the band energies with respect to an absolute reference. The latter
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potentials are called absolute deformation potentials 7391 "and the problem of deriving
them is actually related to that of calculating the band offset at the interfaces, and
more generally to the existence of an absolute energy scale. It should be stressed
that the LRT approach can be applied also to the problem of lattice-mismatched
interfaces. One should start again from a reference periodic crystal, and then
consider two independent perturbations: substitution of the reference virtual atoms
with the real ones and inclusion of strain; in particular, the screened perturbation
describing the deformation potential is the superposition of perturbations induced by
the displacements of each ion separately. Some preliminar works in this direction 91
have indicated that for group-IV semiconductors, e.g. Si/Ge, when ionic effective
charges vanish, the band offset remains essentially a bulk property. It is not evident
at present if this result can be generalized to other systems.

Concerning lattice-mismatched interfaces, further studies are necessary for the
heterojunction InP/Ga; _,In,As, that I have studied here only for @ =53%, i.e. in
the case of lattice matching. In fact, it is nowadays possible to grow strained layers
of Gaj_,In,As on InP substrates over the entire range 0 < z < 1 of In composition;
in particular a type-I to type-II superlattice transition is observed at z ~0.2%. 92

Finally, the possibility to introduce intralayers in the interface region has been
considered recently 333435 How much these intralayers will affect the VBO has yet
to be determined. According to the LRT approach, the substitution itself should not
strongly affect the VBO in the case of isovalent materials, but a possible induced
interfacial strain might be important. On the other hand, intralayers of heterovalent
materials can dramaticaly change the electronic structure of the hetero Jjunction. On
this subject, I have given in this work an example showing the peculiarities of polar
interfaces and of heterovalent intralayers, and their possible use to tune the VBO
and to design devices with novel properties. This field, which is very promising, also

requires further investigations.
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