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Chapter 1 |

Introduction

The main concern of this thesis is the study of an explicit realization of Zamolod-
chikov’s C-theorem [1,2,3] as provided by the most general four fermion quantum
field theory in two dimensions [32,34,47].

The interest in two dimensional four fermion models traces back to the by now
classical works of Thirring [11], Kleiber [12,13] and Johnson [14], and, more recently,
Gross and Neveu [21], and it was strongly motivated by the desire of gaining insights
in the general properties of quantum field theory starting from the simple situation
one faces in a two dimensional space. We may say that it was hoped to learn, in the
“gymnasium” of two dimensions, things that could have been applied and developed
in the real four dimensional world. If we consider for instance the case of the Thirring
model [11] we can easily imagine that its exact solvability made it a favourite test
bench for the new concepts arising in quantum field theory, as it is testified by the
example of the study of operator products at short distances [15,16,17).

As the study of two dimensional quantum field theories was deepened, it became
clear that two dimensional models would have a dignity of their own. The con-
nections with statistical mechanics (the example of the Ising model is reviewed in
refs.[56,57,58,59]) and their peculiar properties such as the equivalence of bosons and
fermions [19,22,36,37,38,48], motivated an increasing interest culminated with the re-
discovery of string theories [25,26,27] which put a strong emphasis on the conformal
properties of two dimensional theories [2,3,4,27]. The use of conformal symmetry
arguments (see ref.[18] for an example in the case of the Thirring model) has always
provided many insights both in quantum field theory and in statistical mechanics, and
Zamolodchikov’s theorem [1,2,3] can be considered as a deep and interesting result
in the study of conformal invariant quantum field theories. In particular it intro-
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4 Chapter 1. Introduction

duces a new point of view in the study of two dimensional lagrangian models, based
on the interplay between the quantum properties of the theory and the geometrical
characteristics of the coupling constants manifold [32,34]. Moreover it is the first
attempt to extend in some way the consequences of conformal invariance also outside
the renormaliztion group fixed point where it strictly holds [5,6].

This thesis is devoted to show the application of Zamolodchikov’s C-theorem to
four fermion models, and it presents some results [32,34] related to it. It is hoped
that, besides a check of its validity and consistency, it will also provide to the reader
an actual example of the new insights yielded by this theorem.

1.1 Outline

As already mentioned Zamolodchikov’s C-theorem is one of the most interesting de-
velopements obtained in the last few years [1,2,3,4] and consists in the discovery of
a close connection between two dimensional field theory and the structure of the
abstract manifold defined by the parameters appearing in the interaction lagrangian:

,CI:—ZgiOi (1.1.1)
=1

where {O;} is a set of dimension two operators. The n-dimensional manifold M we
want to analyze has the coupling constants g* as coordinates and is naturally equipped
with a Riemannian structure provided by a metric-like tensor Gi; defined in terms of
the correlation functions of the operators O; [1]:

Gi; « (0;0;) (1.1.2)

This definition suggests the possibility of a perturbative evaluation of this metric
tensor, and its study in the case of four fermion models will be one of the aims of this
work.

Zamolodchikov’s theorem [1] yields a link between G;; and the renormalization
group [-functions defining in a standard way a set of curves on the manifold M
describing the flow of renormalization group transformations

dg*
e = B'(9) (1.1.3)

and introducing a vector field on M. In fact it is possible to show that there exists a
scalar function C' defined on the space of parameters and related to the central charge
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of the model (that is to the response of the theory to two dimensional conformal
transformations) which satisfies the following remarkable property

dC -0 3 ;o
9 5l 0= 2q.pip 1.1.4
lu d/.l, agl 4 Jﬂ /8 ( )
If we notice that in two dimensions the existence of a Hilbert space with positive def-
inite norm insures that the metric G; is positive definite, we conclude that eq.(1.1.4)
signals a general monotonicity character in the flow of renormalization group!. Rela-
tion (1.1.4) naturally leads to the conjecture

0

_3mpi_2a

and, altough there is no clear proof of this relation to all orders of perturbation theory
(see also ref. [40,41]), a next to leading computation supports this result, which in
turn amounts to say that

fﬂidg" =0 (1.1.6)

or, equivalently, that the Maxwell tensor constructed from B; vanishes, and which
gives very strong constraints on the theory.

The above discussion give the general framework of this work, which essentially
tries to verify all these statements in a specific model. Before going on we must stress
that a crucial condition for the validity of our considerations is the absence of hidden
mass parameters in the theory, so that it must be free of infrared divergences, other-
wise the structure of eq.(1.1.4) changes [29]. A simple non trivial infrared convergent
model is the most general quartic interaction of N Dirac fermions [31,32,34,47], also
called generalized Thirring model

L1 = —gs5(B0) — g (B1°8) — gv 2 (Bra0879) (11.7)

We will give a description of the renormalization structure of this model up to two

loops using dimensional regularization, and, as the model (1.1.7) contains all the

known special cases (SU(N) Thirring models, Gross-Neveu model etc.) this will have
its own relevance [21,44,45].

We want to mention here the problem of “evanescent operators” [30,32,34,52,53,

54,55] which arises starting from the two loop level; its analysis, albeit a bit technical,

1 This aspect is believed to have some consequences also in string models [2,3].



6 Chapter 1. Introduction

can be a useful tool in the study of other models, expecially in the supersymmetric
case. The use of dimensional regularization implies that the theory has to be con-
sidered in d = 2 4 ¢ dimensions; in this case the Clifford algebra becomes infinite
dimensional [42,43], the three operators appearing in eq.(1.1.7) do not longer form a
complete set for the regularized model and an infinite series of “evanescent operators”
living in d — 2 dimensions, each generating its own £ function, is needed, so that a
renormalization group flow in an infinite dimensional space seems to appear. The
problem can be overcome by a suitable projection technique [30,32,34,52,53,54,55],
whose final outcome is given by the three relevant 8 functions. In this way the S
functions can be computed in the minimal subtraction scheme.

As usual at this stage there is a freedom due to finite renormalizations and this
can be used to preserve in an explicit way the symmetries of the model, without
changing its physical content. In particular a large class of symmetries is related to
the chiral nature of the classical theory and so it is formally obscured in the minimal
subtraction scheme. In the text it is shown how to perform the finite renormalization
needed to achieve an explicitly symmetric pattern for correlation functions. Being
aware that a well defined procedure of fixing finite renormalizations is given by the
study of Ward identities, it has been preferred to follow another approach which is
more algebraic and problably more intuitive: the direct study of the implications of
symmetries on the 8 functions and a check of the explicit computations against these
requirements. A detailed study of Ward identities is left to a future work.

The final result will be a set of “symmetric” 3 functions which are listed here

Bs = —% {(N —1)g% + gsgr — 29v(gs — gP)]
+ 5% [Nas(g2 + g2) — g(gs — gp) + 29v (g% — g2)
+2Ng} (g5 — 9p))] (1.1.8)
pp = —--71; (N —1)g% + gpgs — 20v(gp — g5)]

2

1 )
t 5= {NQP(HID +92) — g3(9p — g5) + 29v (g% — g3)

+2Ng(gp — gs)] (1.1.9)

1
Bv = —=gsgp
iy
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+ 571?5 (N = 1)gv(gs — gp)? + gs9p (g5 + g7)] (1.1.10)

After the study of the renormalization structure of the model the problem of
constructing the metric in the parameter space has been faced. While the leading
three loop calculation is quite trivial the next order requires some work, and also
in this computation a suitable choice of a symmetuc scheme” simplifies the result
which finally turns out to be

N 2N —1 1 -2
G = = 1 2N -1 =2 |+
i —2 —2 4N
N(N - 1)
2,.2
+ (1 + log(mp’z )+’)’E> T
(2N —1)gs + gp — 29v gs +gp — 2gv —2(gs — gp)
gs +gp —2g9v (2N —1)gp+9s—29v  2(gs — gp) (1.1.11)
—2(gs — gp) 2(gs — gp) 0

The choice of a finite renormalization amounts to a diffeomorphism of the metric and
so it does not affect any physical conclusion. As one can see from eq.(1.1.11) the O(g)
corrections to the metric disappear at a scale

z? = —1——6'(““) (1.1.12)
2 :

and moreover all the scale dependence can be expressed by a diffeomorphism driven
by the f functions. This means that with the coordinate choice (1.1.12) the metric is
given by the lowest order result, and, from a geometrical point of view, this amounts to
say that our coordinates are locally euclidean in the origin. This is by no means trivial
and it depends on the choice of the subtraction scheme; it signals a close connection
between the metric structure on the parameter space and the fulfulliment of Ward
identities in the two dimensional field theory. All these considerations are confirmed
by a thorough algebraic analysis: the implementation of symmetries essentially fixes
the form of the metric tensor G;;. An higher order computation would allow to
compute the curvature tensor of the manifold of parameters but this is beyond the

scope of the present work. Finally eq.(1.1.5) permits the reconstruction of C' by the
formula

C = %/01 g'Bi(tg)dt (1.1.13)
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and the final result is

N 3
— _ 2 - 3 3
872 64md N(N -1) [( N —1)(gs + gp) + 3gsgr(gs + gp)

—6gv(gs — gP)z}

C =

3 )
+ NIV 1) (2N = 1)(g% + g3)® + 4g59p(g% + g5 + gsgp)
—8gv(gs — gr)(95 — g3) + 89 (95 — gp)?
- —Z— [1+7e+ log(rp*a?)] G pO g0 (1.1.14)

while a direct perturbative evaluation would have required to consider Feynman dia-
grams up to the fifth loop order.

1.2 Summary

We now give a brief summary of the content of the various chapters.

o In chapter 2 we define the generalized Thirring model and list its classical
symmetries which can be studied with the help of the technique of abelian
bosonization, which is also sketched.

o In chapter 3 we outline the renormalization of the model with a particular em-
phasis on the problem of evanescent operators, whose solution is also surveied.
The computation of the one loop 8 functions is reported for completeness.

o In chapter 4 we give a detailed account of the calculation of the two loop
functions. The subject is quite technical and we give the explicit results for the
full list of relevant Feynman diagrams. It is also shown in detail how evanescent
operators disappear from the renormalization group equations. We give the
results for the § functions both in the minimal subtraction scheme and in a
“symmetric” scheme (these last results are summarized in table 6.3). Moreover
we study in an algebraic way the constraints imposed on the 8 functions by
the symmetries of the model and verify that the “symmetric” results satisfy all
these constraints.

¢ In chapter 5 we give an account of Zamolodchikov’s theorem. The proof is given
in the framework of the generalized Thirring model, but is by no means model
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dependent. Rather the aim is to state as clearly as possible all the hypotheses
involved. We also discuss briefly the problem of infrared divergences and point
out some relevant and interesting cosequences of the theorem both for the study
of our model and in the context of statistical mechanics.

In chapter 6 the computation of the three and four loops contributions to the
metric G;; of the manifold of coupling constants is presented. The algebraic
implications of symmetry properties on G;; are worked out and it is shown how
this analysis, together with Zamolodchikov’s theorem, puts severe constraints
on the § functions. Finally the five loops contribution to C is reported.

Chapter 7 contains the conclusions and some indication for future studies.

Several appendices are added in order to deal with technical problems. Ap-
pendix (C) in particular is devoted to an explicit analysis of SU(N) Thirring
model. This study has its own interest and can provide a check for the results
of chapter 4 and 6 .



Chapter 2

(GGeneral definitions

In this chapter we will survey the characteristics of the generalized Thirring model
[32,33,34,47] with a particular emphasis on its symmetry properties. Moreover we
will outline the technique of abelian bosonization [19,22,36,37,38,48], which is useful
in this kind of analysis.

2.1 General two-dimensional lagrangian

For the sake of clarity it is convenient to begin with the definition of the lagrangian
we have to consider. As discussed in the introduction we will study the most general
two dimensional four-fermion interaction involving N Dirac fermions and enjoying
U(N) symmetry. The problem has already been discussed in the literature and the
following massless lagrangian has been introduced

£ =50 = 505(F4)? = 50v(F3,0) = 3p(Br50)’ (2.1

where euclidean metric is adopted and summation over U(N) color indices is under-
stood. Our conventions for v matrices and Fierz identities are listed in appendix
A. Equation (2.1.1) requires some comments: apparently we have rejected a parity-
violating term

— 95(09) (Ps9) (2.1.2)

However as long as chiral transformations can be performed without generation of
anomalies, it is possible to eliminate the term (2.1.2) by such a transformation accom-
panied by a redefinition of the coupling. Let us indeed list the chiral transformation

10



2.2. Abelian bosonization 11

properties of fermion quadrilinear forms under the mapping

% — [exp 5l

P — Plexp = 57! (2.1.3)
We obtain
G0 + () — () + (s’
R ) o
(B9 = Brs)® — cos2al(F)? — (Fyoth)?) + sin 2a(2byse)
2@51&1#751& —  cos 2a(2¢pipys1h) — sin 2a[(¢¢)2 — (¢757/))2] (2.1.4)
Therefore the interaction
- {ES L) — B + 20s(Budrnt) (215)
can be chirally transformed to
ST 0 (B~ e (216)

without affecting the other terms in the lagrangian. We refer to the appendix for
the discussion of interaction terms explicitly depending on color generator matrices:
suffice it to say that they can all be reabsorbed in the lagrangian (2.1.1) by a Fierz
transformation.

2.2 Abelian bosonization

A very useful heuristic tool in the discussion of the symmetry properties of two-
dimensional fermion models is the abelian bosonization technique [19,22,36,37,38,48].
This is one of the most interesting features of field theories in two dimensions and
states the equivalence between theories constructed with fermions and theories con-
structed with bosons. A theory in which the basic field operator satisfies a manifest
anticommutation rule may be intrinsically related to a theory in which the field oper-
ator satisfies only a commutation relation. A well known example of that [19] is the
equivalence between the so called “quantum sine-Gordon” model, with lagrangian

Lo6 = 5(0u0 + greos(68) = 55
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and the massive Thirring model,

Lrn =% + %9(&%@2 — mapip.

This equivalence may be shown by comparing the perturbative expressions of the
Green’s functions of the two models; it is possible to identify them provided we
adjust the parameters in the following way:

4 g

FoLTE
o

m:-B—z—

It should be mentioned that there is also another method to establish equivalence
between a fermion and a boson model. It consists in the construction of an opera-
tor solution of the field equation in one theory in term of a nonlocal expression of
operators in the other. This procedure, also called boson representation, transforms
directly a theory of fermions into a theory of bosons, and their equivalence is a con-
sequence. In the case of our model (2.1.1), the boson representation of it is realized
on the basis of the following set of rules:

- 1
¢a7#¢a = - —ﬁeuuau ba

Ya(l £95)%a = :exptivirg, :
Tr/;a.@@ba - %‘auqﬁaauﬁéa (

o
bo
—
~—

and in this language the quadrilinear forms become:

(09)* + (brs9p)® = "‘71; D (0uda)® +23 " cos VAT (e — )

a>b

(D9)? — (ys1)® = 23 cos Var (¢, + )
a>b

2phhysy = 23 sinVian (¢, + )
a>b

(Pyav)? = —-71;(8,1 > ¢a)’ (2.2.2)
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while the chiral transformations are simply shifts in the scalar fields
o
Po — Go — _E

When put in its bosonic form, a fermion theory can be investigated in an easier
way for what concern its symmetry properties and connections with other fermion
theories, since many unusual and hidden features can become apparent in the boson
representation (see, e.g., [31]). In this respect, examples of particular interest are
provided by the boson formulation of fermion theories with chiral and internal sym-
metries, such as the SU(N) Thirring model [22,37,48]. Here we have the following
problem: the model possesses a U(1) chiral symmetry which should prevent fermions
from acquiring a mass. However a 1/N expansion seems to produce a spontaneous
breaking of chiral symmetry, while fermions become massive and a Goldstone boson
appears contradicting Coleman’s theorem on the absence of continuous symmetry
breaking in two dimensions [20]. Indeed a detailed analysis [22], which can be based
on the use of abelian bosonization [37,48], shows that the 1/N expansion, if treated
carefully, is a good guide to the properties of the model. As a matter of fact it can be
proven that the symmetry is not spontaneously broken and that the massless particle
which appears is not a Goldstone boson.

In order to have a feeling of what happens and to give a simple example of how
bosonization works we shall describe very briefly the case of a solvable model with
chiral U(1) symmetry [22,39], having the lagrangian

L=v9Py+ -%(@o)z — %A [B(1 +ys)pe + (1 - 75)¢e'i”] . (2.2.4)

(2.2.3)

4

Introducing the boson representation (2.2.1) involving a single scalar field ¢, and
considering the linear combinations

~ At +a/a,
¢ ~
Var +1/a?

dro — ¢/a
VAT +1/a?
the lagrangian (2.2.4) takes the form

(8,6)* — Acos (\/47(' “+ —C-Ll-;z— &)

Il

i

o

SR

1 2
L= 5(@@5) +
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thus describing a massless scalar & and a sine-Gordon field ¢, which gives a spectrum
containing a massive fermion and a massive antifermion. By writing the axial current
A, in terms of the field ¢ and & we can understand why fermions can acquire a mass
despite chiral symmetry: we have

A, = —\/—1— +4ma? 0,6
i

which involves only the field . This means that the field ¢, and therefore the fermions
associated with this field, are neutral under chirality; therefore they can have a mass
without any apparent contradiction. Finally, again by using the boson representation,
it can be shown that chirality violating Green functions vanish as required by Cole-
man’s theorem, so that the massless scalar of this model is not a decoupled Goldstone
boson: it is simply a non Goldstone massless boson.

Such kind of analysis can be generalized to more complicated cases, and in-
deed can be useful also for finding connections between different models; since la-
grangian (2.1.1) pretends to be a general theory of fermions in two dimensions, abelian
bosonization is profitable if we want to study its properties and symmetries. Therefore
we conclude this section by enumerating some results concerning our model that can

be established by making use of the boson representation and that will be emploied
in the following [22,31,38,48].

1. The equivalence of the model gs = gp = Ngv = g/2 with the SU(N) non-
abelian Thirring model.

L= 99 + (BT )" (2:25)

where T are the SU(N) generators in the fundamental representation.

[N

The decoupling of the U(1) Thirring model [50]

ro
o
=
pa—

1 -
Lr= —§5V(¢7u'¢’)2 (2.
from the above mentioned SU(N) Thirring model.

3. The O(2N) symmetry enjoyed by the model gp = gv = 0 (Gross-Neveu model)
and by the related model gs = gv = 0 [46].
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The quantum equivalence of all the N = 1 models, based on the Fierz identity
for U(1) fermions:

_ _ 1 ;
(Y9)? = (Pys9p)? = —5(1/)’7”1/1)“ (2.2.7)

and the vanishing of their S-functions [51].

The SO(4) symmetry of general SU(2) models with gy = gp/2 [31].

The quantum equivalence of U(3) Gross-Neveu and SU(4) Thirring models.
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Chapter 3

Renormalization properties

The purpose of this chapter is to illustrate the renormalization properties of the gener-
alized Thirring model (2.1.1). By power counting, lagrangian (2.1.1) is renormalizable
and free of infrared divergencies; however the regularization procedure we are going
to use, namely dimensional regularization, will pose some technical problems that
have to be solved. It is therefore useful, before attacking any actual calculation, to
settle the general framework in which they can be treated [32,34].

3.1 Regularization and renormalization in the
dimensional scheme

The general form of the lagrangian we are dealing with is
L=999 - Y60, (3.11)

where O; are the four-fermion operators of eq.(2.1.1). As usual the existence of the
renormalization group implies that renormalized n-point Green’s functions I'™ satisfy

the equation
0 p 0 1
— 4 B + —ny| T =0 3.1.2
”a#+’gagk+2m (3.1.2)
This means that a scale transformation can be seen as a flow governed by the vector
B in a parameter space that can be formally seen as a manifold whose coordinates are

the couplings ¢g'. Physics must be invariant under general coordinate transformations

g —g"(g) (3.1.3)

17
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From equation (3.1.2) we expect 8 to be a (contravariant) vector in the parameter
space, and therefore its transformation properties under (3.1.3) should be

173
BH(g') = %";— To(g)] (3.1.4)

Equations (3.1.3) and (3.1.4) have the following infinitesimal form
g* = ¢"+G¥g)

B5g) = BHo)+ [aGk

L ?_ﬁ_kgl] (3.1.5)

dg'
and this is the well known transformation law of the S-functions obtained by renor-
malization group arguments.

On the basis of the previous considerations one naively expects that a scale trans-
formation of our models may be expressed as a three-dimensional flow. However
this statemnents can hold without qualifications only as long as our renormalization
procedure does not enlarge the parameter space, that is as long as the lagrangian
is explicitly multiplicatively renormalizable. In practice, because of the presence of
the axial interaction, this condition is not satisfied and the reduction of the renor-
malization group flow to the three-dimensional parameter space requires a detailed
analysis. For definiteness we shall choose the standard dimensional regularization
scheme, that insures the fulfillment of the Ward identities of vector currents. In this
scheme the multiplicative renormalizability in the three-parameter space is immedi-
ately lost, since in d dimensions a complete basis of the Clifford algebra involves an
infinite number of operators O; [42,43]. An explicit form of this basis [42] is

Oy = %zﬁr“)w}f“w (3.1.6)

where
TE) =y, oy (3.1.7)

Even if we started with a lagrangian containing only the operators Oo, 01, 04, ta-
diative corrections would induce mixings with the “evanescent operators” O;,7 > 2
[52,53,54]. By the term “evanescent operators” we mean operators whose matrix el-
ements are all vanishing at the tree level; they will however give a contribution to
the Green’s functions when matching a divergence in a higher loop diagram. What
renders the renormalization of our model less awkward than it may seem is the fact
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that in the loop expansion only a finite number of evanescent operators will appear
at each order.

Figure 1
r® ro ™ r® rd r® ® r®
TN N
| I N/ [ | N/
R S B B
! | / \\ | ] // \\
e I /7N R A A
r® r® r® r® r® ro r® rd

For instance, the divergent part of the one loop diagrams in figure 1 can be shown
to be proportional to the operator

X (D ipap X (9)y) (3.1.8)

where the operator

X = 7@yer@) — pirp@) (3.1.9)

can be decomposed (see Appendix A) in the basis of the operators 0;,7 < 4.

The strategy we have to use in order to solve the problem of “evanescent operators”
[30,32,34,52,53,54,55] can be better understood if we consider, at first, a general
quantum field theory in two dimensions specified by the following tree level lagrangian

£T7‘ee = ZgiOi (3110)
i=1

As we have seen the regularization procedure will yield the appearance of an infinite
set of evanescent operators, which we mark with a bar, {0,}%2,, thus giving the
following general form of the renormalized action S

S = /dz,us{i:(gi + P(g,e))0; + 52 P*(g,e)0} (3.1.11)

where the counterterms P*, P* can be expanded in the number of loops L

[0}

3 > & 1 (L
Pi(g,e) = 303 2 PEA(g) (3.1.12)
L=1v=1

and the scale of mass, p, has been explicitly factored out in order to keep the dimen-
sions of the fields and the couplings at their canonical value for d = 2. We will make
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use of the notion of normal products or normal ordered operators N[O;], that in the
minimal subtraction scheme can be defined as follows

N[O] = 0+ 3 Xi(5,6)0; + 3 X¥(g,€)0% (3.1.13)

i=1 k=1

where X, X are the mixing or anomalous dimensions matrices. Equivalently it can
be seen that the zero momentum insertion of a normal product N[0;] into a Green’s
function of r fields ¢; can be written as

. 0
(f 4= W NIONn - 80) = 5 6r--- ) (3.114)
This implies for the renormalized action S, eq.(3.1.11), the relation
. oS8
/dZ# N[Ojl(z) = Erie

n 7 o0 Dk
= /dz,u [O + Zap 0;+ > oF Ok} (3.1.15)

a k=1 ag]

which shows that the quantity 2 5—1 is finite. On the other hand, since in eq.(3.1.11)
we have factored out the dependence on i, one can easily obtain

/dz,Lfa [Z(gi + PH0; + 3 Pk@k:l (3.1.16)
i=1 k=1

and hence the following relation holds

9 9 ; o Bk A
gy =5 505 = [ dee|u- DS POk -g )3P0 8117

It is apparent that the Lh.s. of this equation is finite, and so must be the r.h.s., which
can then be written in terms of normal operators; furthermore the explicit presence
in it of the cut off € assures that the only contributions we have to take into account
are those coming from the residues of the simple poles (r.s.p). Then we may write

gpes 5e)S = [arwelran{u-g 2irlao)

+r.5.p {(1 —-g- ég)Pk} N[Ok]} (3.1.18)
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Let us now consider the differential operator (1 — g - —a%) which corresponds to the

loop counting operator; when applied to the loop expansion of P? it yields

0\ i Pt (g)
. 2P — I 1.19
(1-g 52)P ; - (3.1.19)
and therefore
r.8.p. {(1 —-g- —Q—)Pi} = ZLPi(L’l)(g) (3.1.20)
g T

with an analogous relation for P*. One is led to take eq.(3.1.20) as the usual definition
of the f-function

Bi - _ZLPi(L,l)
L

pF = -3 LPHEY (3.1.21)
L

and hence it would turn out that

However, this is not the whole story. In fact the identification (3.1.21) of the
p-functions is not correct, since we have for the relevant couplings

dg* , .
— F 2
L 7 # [ (3.1.23)

because one does not take into account the effect of the evanescent operators?.
The solution of this problem is based on the existence of a reduction formula [53,54]
that allows to project the evanescent operators on the relevant ones and express,

!Indeed it can be easily seen that the scaling properties of a 1PI Green’s function depend also
on the evanescent operators N[Ok]kzl..m

u%(qsl---qzsm)lpf = [z 4 [FNI0061 - bm) + BNOLI61 -+~ gm)]
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order by order in the loop expansion, the finite contribution of the former in terms
of insertions of the latters; one obtains, as ¢ — 0

/ dz N[Oy] / iz 3 Cilg (3.1.24)

j=0

where the coefficients C’,z start at the quantum level. Therefore the A-functions that
give the correct renormalization group flow has to be defined as

g = F + 3B (3..25
k=1
and eq.(3.1.22) yields

0 0

=1

which, recalling eq.(3.1.15), becomes finally the renormalization group equation for
the action S

] ; A
( f“;ﬁag g)S = 0. (3.1.27)

After having reviewed the general framework in which the problem of evanescent
operators is set, let us now tackle the multiplicative renormalization of the model
(3.1.1) [30,32,34], by introducing the bare lagrangian

+oo
Lp=vpdvs - g5'0:" (3.1.28)

1=0
and the rescalings
Y = JZa 9 (3.1.29)
98' = p°lg' + Pi(g,e)] (3.1.30)
where, analogously to eq.(3.1.12) we have

v

co L 1 v
Zy = 1435 =28 ) (3.1.31)
L=1v=1¢

) o L 1
Plg,e) = >3 P& (3.1.32)
L=1v=1 '

o
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The renormalization group S and v functions can be found by means of a recursive
relation, and are

B = =5 LpEY(y) (3.1.33)
§ = =X 128" (3.1.34)
L=1

They appear in the standard renormalization group equation for an n-point 1PI
Green’s function I'l™

[ 8,u -I-ﬂ -+ Zn'y} M=o (3.1.35)

which, in this form, corresponds to a ﬂow in an infinite parameter space. The projec-
tion on the relevant physical parameters gs, gp, gv can be obtained by defining first
of all a “counting operator” N,, which counts the number of external fermion lines in
a Green’s function

= z/dN[ iy Z’}() (3.1.36)

Its insertion yields

Ny Drtpr - duthy) = r(aty -+ - brtly) (3.1.37)

and, recalling (3.1.28), its expression is
Nd) = N {z[»@;b—i—ZngOk] (3.1.38)
k=0

Therefore we can rewrite the renormalization group equation (3.1.35) as an operator
equation for the action S

,L—— /d7 Z@ N[O +4 N [W@b +2 ngok] (3.1.39)

and the reduction formula which eliminates the evanescent operators in this case is
2
[a=N04z) = [ [Z Cié (g) NO;)(2)
7=0

+ p®g) N [IZW + 2_2?9"0]} (2)} (3.1.40)

9x=0,k>2
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where k£ > 2. Our task is completed by defining the S-functions of the relevant
physical parameters, which will be computed in the next chapter; analogously to
eq.(3.1.25) this can be done by posing

oo

B (g0, 91,92) = B (g0, 91,92) + > B*(90, 91, 92) Ci’ (0,91, 92) (3.1.41)
- k=3

Moreover for the anomalous dimension we have

o0

7(g0, 91,92) = 7(90, 91, 92) + Z Bk(go,ghga)p(k)(go,gl,gz). (3.1.42)
k=3

Before discussing two-loop calculations it is useful to repeat the computation of the
one-loop contributions to the S-functions, in order to illustrate the previous discussion
and fix the notation.

In our representation of Feynman diagrams we shall draw the four-fermion vertex
by a dashed line joining two fermion lines

) beeed o g e1f

This allows for an automatic accounting of the different possible contractions between
fermions. At the tree level the four fermion vertex is simply

¢ er® (3.1.43)

where A is a set of antisymmetrized Lorentz indices and the sum over repeated A
indices is understood. At the one loop level there are three essentially different contri-
butions, drawn in diagrams (3a), (3b) and (3c), and the S-functions are determined
by the coefficients of the 1/¢ poles of these graphs. Since the theory is infrared fi-
nite, one can in principle compute the diagrams for arbitary external momenta and
massless propagators and extract the singular part.
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) ri-—~1® @ @ O ro
0 rd) P N/
I I | \/
) I | I //
I‘(1)l ! ! p ! / P \
r® @ r® rd r® ro
3a 3b 3c

In the actual calculation it is simpler to introduce a mass in the propagator and set
the external momenta to zero. Assuming the assignment of internal loop momenta
as shown in the figure we obtain the following contributions

1 , 1 ) .

_ T 10 & 10

(32) [ zp+m z‘p+m} 4 ®L5
' ) 1 . .
(30) = gg/ 9 rg ryery

z;b-l—m i}b-{—m

d 5 1 i y 1 ;
G = ¢ [ 55 { M e——TY o T ——T19

p +m P +m
ro 1 r(” T L r(“)}
i +m i +m

Let us now establish a number of useful relationships and definitions (see also ap-

pendix A):
iti=1) Tr(1]

1 N . .
iTr[rfgrg)] = 6645 v, v =(-1) 5 (3.1.44)
Zvufg)fyﬂ = c(i)Fg) (3.1.45)
o

SrPrry — gerd (3.1.46)
B

The two following products appear very often in the evaluation of Feynman integrals

Dy = 40 (3.1.47)
g = p) (3.1.48)
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Moreover we need to introduce the following tensor combinations of I'® matrices

rQy, 08 18,100 = x4 (3.1.49)
rOPY) 4 TOPO — v (3.1.50)

These tensors have a decomposition in the basis of the I'®) matrices, and it is conve-
nient to define the corresponding coeflicients by

iJ ij ij k
> x{,ox{ =S E*S I T (3.1.51)
AiBy# k C

The only one-loop integrals we need are

dép 1 1

/Wm = I — 5 ase — 0 (3.1.52)

d?p m? £

= L=—=1 3.1.
/ (27)? (p? + m?)? 2 9 (3.1.53)
In terms of the above defined quantities we obtain

(3a) = fV(gi)QTfi) ® Pg)[A(i)I + 001 (3.1.54)
(38) = —g'¢’TY @TQ (B 4 4[] (3.1.55)
(3¢) = Z[g’g’X%)u ® XY I+ 49V oYL (3.1.56)

Let us notice that all the terms proportional to I are finite effects due to the infrared
regularization and do not carry any contribution to the S-functions. The one- -loop
counterterms are obtained by taking the ¢ = 0 value of the functions A4, B, E (which
we denote by A, B E) times 1/2me. The one-loop SB-functions written in compact
form are therefore

p = "’%;[N/lm ()" = ‘?Bw)gigj + Z} X,;Ejkigjgk] (3.1.57)

g

and in standard notation the relevant components are [47]
fs = —%[(N —1)g5 + 9s9p — 29v(g9s — gp)] (3.1.58)
Be = =Z{(N = 1)gk + gsop — 20v(gr ~ 95) (3.1.59)

1
By = ——gsgp (3.1.60)
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3.2 The fate of evanescent operators

In this section we want to study the influence of evanescent operators on the renormal-
ization group flow. Let us recall that the divergent terms of the one loop diagrams
have been computed from the second order perturbation theory of the four point
function at zero external momentum. Disregarding the irrelevant contribution of the
mass term the result (3.1.54), (3.1.55), (3.1.56) can be recast in the compact form:

% (g [d20,(z) ¢ [d*0u()) =

= g¢* CuTQerPr=virQery 1 (3.2.1)
where the coefficients C'jki are explicitly given by

. . 1
Czjk = (N 6ij5ki A(z) — O B(”) -+ -_/IEJ';”') (3.2.2)

The counterterms and the B-functions are respectively given by

~Igg* Cij0; = -1V 0 (3.2.3)
B = (el) ¢?g*Cijy = (D) V° (3.2.4)

Clearly we have a contribution to 8¢ also for ¢ > 3, which comes from evanescent op-
erators. We notice that these operators, by definition, have vanishing matrix elements
in d = 2, and therefore if 7,k > 3,with 7 < 2 we must have

Cijk ~ £, (3.2.5)

as it can be explicitly checked. It is then convenient to distinguish the evanescent
operators by labelling them with a greek index, O, so that their renormalization
group flow terms are denoted by ‘
J
Jg*
As explained in section 3.1 the effect of the terms (3.2.6) can be studied by considering
the insertions of the operators %O, in the flow of the theory with g, = 0: in order
to express these insertions in terms of the usual three-parameter space we need a
reduction formula

B (3.2.6)

B Oa=7Y_ p° C;‘Oi (3.2.7)

i<2
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The nature of the evanescent operators O, is such that they can give matrix elements
different from zero only when considered in divergent diagrams; since at the one loop
level the only divergent graphs are those of the four point functions we will compute
the insertion in them of the equation (3.2.7). As usual we put the external momenta
to zero and make the computation in the theory with three couplings only: the result
is given by

(3 [d=670u() L [dug'Ou) v = 3 p= T 0LY  (329)
1<2

0,1 <2

By noticing that the Lh.s. of (3.2.8) is just proportional to the one loop term (3.2.1)
we can write it as follows:
; i T | o 0 1 ) i
28 ¢* Cl TV @TVI =5 o (virQery) 1

e=0

(3.2.9)

e=0

As stated before C?,; ~ ¢, therefore setting V* = Vi+e8V we obtain at the one-loop
level

- /3& (5v*) (e]) (3.2.10)

and hence we see that the evanescent operators induce a shift in the S-functions of
the relevant operators, given by

§8° = g~ aia 6V (el). (3.2.11)

But the story does not finish here, since in the computation of the two-loopS-
function we must consider counterterms induced at one-loop by the evanescent oper-
ators. According to the usual argument their contribution is the following

- (I g'g*Céy [ dz20. ¢* [ ayo; )
= —2lg¢* Cojug' Ol @ T, (3.2.12)

and, on the other hand, locality of the counterterms implies that the only combination
which can appear in two-loop diagrams with a double pole in 1/¢ is:

I* — aI]. (3.2.13)
Therefore genuine two-loops diagrams must give a contribution of the form

P ggh Cy g'ClalY @ TY. (3.2.14)
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Since C',; is proportional to €, both (3.2.12) and (3.2.14) contain only a simple pole:
collecting their contribution we see that the effect on S-function at two loops is

AR = —2gigkg® GOy e IP= —B~ C (3.2.15)
so that . .
ABPE 4 58 =0, (3.2.16)
Thus we can conclude that the contribution of the evanescent operators disappears
from the flow of the renormalization group; as a check of this claim we will have to
find a term
, 0
dg®

when computing the §-functions at the two-loop level.

AP = — g —_(§V*) (1) (3.2.17)



Chapter 4

Two loops p-functions

This chapter is devoted to illustrate the computation, up to two loops, of the -
functions of the model (2.1.1) [32,34]. While dealing with this technical subject,
we will see how the contribution of the evanescent operators can be identified, thus
allowing the definition of a “symmetric scheme” of subtraction in which the result
satisfies the symmetry properties discussed in chapter 2. On the other hand exactly
these symmetry requirements permit to envisage an alternative algebraic approach
that leads to an almost complete determination of the two loops B-functions.

4.1 Perturbative computation

This section reports the results of the computation of two loops diagrams contributing
to the 8 functions of the model described in eq.(2:1.1) [32,34].

The calculation of vertex diagrams has been performed at zero external momenta
introducing an infrared cutoff in the form of a mass term m v for the fermion field;
the fermion propagator will be written as

__ 1 _-ytm
5(?)—i]/5+m = e (4.1.1)

In each diagram the mass term in the numerator will give a contribution to the pole
term in 1/e, but on general grounds these terms do not contribute to 8 functions;
moreover the infrared finiteness of the theory insures that these terms must cancel
and it has been explicitely checked that this happens in the sum of each diagram and
its counterterm. This amounts to say that all calculations can be performed with an

30
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effective propagator

——i}b
S(p)= ——— 4.1.2
()= 7 (4.1.2)
We will give the results in terms of the propagator (4.1.2) and collect in appendix B
some examples of the cancellation of the mass terms.
The general topology of the four point two loops diagrams in momentum space is
given by the following graphs:

(3a) (3b)

so that we have to consider only two types of integrals

12 4+ m?2)2

ll llu ZZa ZBﬁ
3b : 1 vafl — / 9 £ 2 =
(30) uvel nt; (I3 + m2)2(13 + m?)(12 + m?)
€

(3a) : I, =/ SLVL VRN (4.1.3)
h( 2

I? I?
_'8_5uv5aﬁ - ‘?5‘ [6#015Uﬁ =+ 514351/0: - 5#1/501(3]
I? el?
= ——8—(5uy5ag —_ —3—5—5’””&;; (414)

where [ is the scalar integral defined in (3.1.52), and we have written only the relevant
divergent contributions.

To evaluate the £ functions we have to compute also the field renormalization Z,
which involves another type of integral, in this case at momentum p # 0, correspond-
ing to the topology:

oS
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So we meet a new integral whose divergent part is

(36) . / llu.l2ul3a
' iy (I +m?)2 (B + m?)(B +m?)
el?

= 5 (6wPa + buaps + 6u5p,) (4.1.5)

having put p =l + 5 + Is.
According to the notation defined in section 3.1 we denote the self energy, vertex
and ladder counterterms as follows:

=  —@New T @1

= -Ng?AVITP o 18 (4.1.6)
- %gigjd(ij) 810 T

= %gigjﬁ(“)f P erd (4.1.7)

T mmain) o utis
= “ZgingXﬂB])‘@Xﬁ%J)

H H -

1 PN

The symbol f as usual define the leading term in the Laurent expansion in ¢ of
the quantity f.

Let us start with the computation of Z;.The relevant diagrams are:

(1)
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.[3
e ~N o — /—\\
i @ AN yd /y\\ N
Sy \ v S Nig N
/ \ / / 3
(Z2A) (Z28B)

The one loop diagram (Z1) gives trivially zero. At two loops we have again zero
for the contribution of one loop vertex counterterm (its contribution has the same
structure of the graph (Z1)) and we have only the genuine two loops diagrams (Z2A)
and (Z2B)

(224) = —Ngyg; / rQ ST [TP5(1)rY S(~1)]
5] ;
= 16 r.(4 7/-LF(J)TI' [F.(A 7&F$3])7ﬁ] [5uapﬁ + 0upPa + 6aﬂpu]

Let us note that eI? is a simple pole, so for the computation of the pole it is sufficient
to perform the algebra of v matrices in two dimensions. An easy computation gives

. el? 9 ,
(724) = ip =N (6% + 9% +26%) (4.1.9)
For the graph (Z2B) we have
(22B) = gig; [ TYSHITPS(-L)rPs(ts)ry

el? i j i j
- nzﬁgigj [64aPp + Suppa + bopPy] F_(Ai)7urg)7ar£1)7ﬁrg)
el?
= —Wr [(gs —gp)" +4gv (g5 + QP)}

Summing up we obtain

el?

7 = — - N (g} +gb+24%)
el?
+ e [(QS - 9P)2 +4gy (gs + gP)] (4.1.10)

The vertex diagrams we have to consider come from the opening, in all the possible
ways, of the four fermion vertex in graphs (3a) and (3b); they are displayed in the



34

Chapter 4. Two loops B-functions

tables 4.1 and 4.2 at the end of this chapter, together with their counterterms. The
final results can be summarized as follows

D

—_~ —~ o~

(V)

Ng? [A9712 — 2404011 TY @ T

Ng2g; [_% AOBUEDT2 4 AG) _;;»(ij)] ) g ()

NgZg; [_A(i)B(ij)‘[2 + AORBGDFT 4 A(i)B(ij)jI] rg) ® I‘ﬁ)

:7-2V_ g9} [B AV + 2B AN T T @ T — 2N g3 e, ® 7,
-j\fgz—gj o [AD BT — 240 E;, 11 TP @ T)

4
—2Ngsgpgvel*y, ® 7,

%f-gjgz (B APT? — 2B, APTI T @ 1§

0959 {G_ Bl g 2 _ % BUR gl 7 I) (BEY B2 — g i)
<—%B<iS>EjksF + i-B(is)E“jksi_r)]rﬁP Tl

el’? [295 (gs + gp) - %gv (gs — gP)Z] Yo ® Vu

Gigeg: }zlL-PEjMB(J'” + %fJEj,ﬂ-B(ﬂ)] Tt g 0

el*gy (95 + gp) (gP1 @ 1 + gsvs ® 7s)

[ I? o, Larz ; ; i
99391 | =g Ewsi B @ 4+ 1B B (”)} rf ery

+eI%959p (95 + 9P) Ve ® 7
[ I? II . P
9;9kgi -'1—6"EkjsEsli - EEkjsEsli:I F‘(A) @ I“(‘i)

1
eI’ (g2 — g2) (9s1 ® 1 — gpys ® s)

(12 o e 1. T
9i9; 9k ZB(ZJ)B(”*) _ ;IIB(U)B(zk)j] FA(A) ® F‘(4)

Before collecting all terms together we can make a check on the structure of the
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double pole in 1/e. The § function at one loop is
oy A ap o 1.
ﬂz(l) =&l NA(z) 22 - B(”)gigj -+ ZEkjig;cgj (4111)

and it is easily checked that the sum of the coeflicients of double pole terms is given
by

i
L i 08
2 dg’
as prescribed by the renormalization group.
For what concern the proper calculation of the S-functions we notice first of all
that diagrams (A), (C) and (N) do not give rise to simple poles, as expected from

their factorized form. It is then convenient to set

(4.1.12)

AD = 4O 1 c540) (4.1.13)
B = BU) 4 5B (4.1.14)
Ez'jk = Eijk + 56Eijk (4:115)

Therefore the simple pole terms have the following form:

(B) = Nglg, <—%A(i)6]3("j) + %MMBW‘)) 270 @ T

(D) = Ngg? <__%5 AG) B 4 % AW B(n‘)) 270 g 1)
—2Ngiel*y, ® 7,

(E) = Ngggr G(SEJ-,C,-AU) - EjkiéA“)) el’r{ @ 7Y
—2Ngsgpgvel*y, ® v,

(F) = Ngg? (-}‘;E‘jkim(“ - 6Ejk,~A<‘°>) eI’V @ T

(@) = g (_;_ B 5 plik) _ %5 Bl Bk _ %5 Bl Bk

IR 1 ~u 29 (i ;
+§5B<”)Ejks - é-B(“)anks)eI?rg) @Il

1 )
+ [29?/ (95 +97) = 59v (95 = gp)z] el 7, ®@ v
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(H) = 'j:gjgkgz [5EkjiB(ﬂ) - EkﬁéB(ﬂ)] eI’rf @ rf
+2e1%gv (95 + gp) (gP1® 1+ gs7s @ s)
(L) = -é—gkgj 91 [Bji8 B®) = 6B, B TP @ 7§
+elgsgp (95 + 9p) 4 ® Y,
(M) = ‘l’lé‘gjgkgl [5EkjsEsli - Ekjs5Eszi] eI’19 @ Fg)
*:ﬁ-sjg (9% - 9%) (951 ® 1~ gpys ® 75) (4.1.16)

Let us now notice that all the contribution coming from the expansion of double
poles can be written as

1] .08 L0GT] 1
5| G5 — B = 1.
2 [G dg* Jdg* | € (4.1.17)
where )
G = (Sj) (N‘SAG)QZ? - 5B(ij)gi9j + Z5Ekjigkgj> (4.1.18)

So including the contribution of Z, which is the same for all form factor and is given
in eq.(4.1.10), the B functions can be written as

. s . (1) ) aGi :
ip@) o 98" iwdG
BTy ®ry = @, 597 B 57 T (4.1.19)
+ 5 [Ngs (9% + g3) — 9% (95 — gp) |
+2gv (9% — 92) +2Ng (95— gr)1 ® 1
1 2
T 53 [Ngp (g + 93) — g3 (9 — g5)
+2gv (9?9 - 912:) +2Ngy (97 — 95))7s ® 75
1 .
t 33 [(N — 1) gv (g5 — gp)* + gsgp (g5 + gp)] Y ® 7,

where we have used 2(ef)? =1/2x%

The contribution to the 3 functions in eq.(4.1.19) that does not depend on G* will
be denoted by Sv™) [32,34]
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a0 OG!
G = gj — B )a — + gl (4.1.20)

First of all let us analyze the contribution of evanescent couplings which we denote
here by greek letters; their contribution to 4 functions of relevant operators is given

by

) 0G*

. /61 (1) ol
AF =G p02s

09~

but the insertion of evanescent operators in one loop graph cannot give pole terms
and therefore 5! cannot depend on ¢g®. Hence

(4.1.21)

AR = ﬁa(l )9 (4.1.22)
dg°

This expression is exactly what we need in order to cancel the shift at two loops
coming from A% as explained in section 3.2; actually if we note that the expressions
for G* and (5V’€I) are the same, eq.(4.1.22) is easily seen to coincide with eq.(3.2.11).

This means that the renormalization group flow is tridimensional and we can
forget the contribution of evanescent operators in the expression (4.1.20). As it stands
eq.(4.1.20) gives B functions in the minimal scheme for any given choice of relevant
operators. We give here for completeness the G* functions in the basis defined by
eq.(3.1.6) [32,34]

1

Gg = ~5- [(N — 1) g% + 4gsgp — 4gsgv + 69V9P] (4.1.23)
1

Gp = —5- [ (N - 6) — gsgp + 49'P9V] (4.1.24)
™
1

Gy = 5 [—Ng%/ +gv (95 +gp) + 29591’} (4.1.25)

The form of the equation (4.1.20) suggests the possibility of performing a change
of variables

=g +G (4.1.26)

such that the resulting S-functions are simply

B = p) 4 plevm) (4.1.27)
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that in the usual components read

1
Bs = - [(N —1)g5 + gsgp — 29v(gs — gp)]
1 N 2 2y 20 9 2 _ 2
+ '2?[ 9s(95 + 97) — 95(9s — gp) + 29v (g% — g2)
+2Ng% (g5 — gp)|
1 2
pp = - {(N —1)gp + gpgs — 2gv(gp — gs)]
1
T o3 [NQP(QJ% + 9%) — 9p(g9p — gs) + 29v (9% — ¢3)
+2Ng(g9p — gs)]
1
Pv = —=gsgp
™
1
t 5 [(N —)gv(gs — gp)* + gsgr(gs + gp)] (4.1.28)

All special cases of equation (4.1.28) reproduce the known results for Gross-Neveu [28]
and Thirring [32,34,35) models. In sections 4.2 and 6.2 we shall show that eq.(4.1.28)
1s the unique form of the S-functions compatible with an explicit realization of the
classical symmetries.

4.2  Algebraic approach

In this section we shall take an alternative algebraic approach to the determination
of the A-functions. Its strategy is based on the assumption that all the classical
symmetries of the lagrangian (2.1.1) can be explicitly implemented in the quantum
realization of the model, that is there always exists a change of variables such that
these symmetries correspond to definite algebraic properties of the correlation func-
tions. As we shall show these algebraic conditions will be sufficient for an almost
complete determination of the symmetric two-loop 3-functions. By comparison with
our previous results we will be able to confirm explicitly, at the two-loop level, the
change of variables suggested in eq.(4.1.26).

We have already listed in section 2.2 all the classical symmetries of our model.
Let us now critically discuss them and present their consequences at the quantum
level. In the following it will be useful to introduce a slight change in notation, by
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defining .
9+ = 5(9s £ gp) (4.2.1)

and the corresponding components of the B vector

b = 5(8s % Bp). (122)

1. Chiral properties.

Since we have restricted our operator space to only three terms, the only rem-
nant of the covariance under global chiral transformations of the v fields are the
symmetry properties resulting from the discrete chiral transformation (o = 7 /2)

Y — 7 P

7 1+

v — 1P \/?2_ (4.2.3)
such that

PP = sy

1{”75%[’ - ‘_‘¢¢

Yy — Yy (4.2.4)

The operators Oy = 1[(1p1))? & (P51)?] are tespectively even and odd under
(4.2.3). Therefore all the correlation functions that are even or odd in O_ must
be even or odd functions of the corresponding coupling g_.

A trivial consequence of this statement leads to the following property of the
B-functions:

6+(g+ag—7gV) = ﬁ+(g+7_g-—7gV)
B-(9+,9-,9v) = —P-(9+,—9-,9v)
Bv(ge,9-,9v) = Pv(gs+,—g-,9v) (4.2.5)

Along with the corresponding symmetry properties of the metric, these condi-
tions put very strong constraints on the structure of the parameter space.
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. Thirring models.

The case of the Thirring model corresponds to the choice g_ = 0, implying from
eq.(4.2.5)
:3—(9+70,9V) =0 (426)

Making use of the bosonization technique one can very easily argue that the U/ (1)
factor appearing in general in the Thirring model must be completely decoupled
from the SU(N) factor, and have vanishing S-function [50]. Moreover from the
Fierz identities, which we assume to be explicitely realized in this formulation
of the model, we can establish the equivalence

Os + 370v = =5 (P T") (T") (427)
where 1 are the SU(NN) generators and
Tr(T°T*] = Ig6®® (4.2.8)
We can then reexpress the interaction lagrangian as
Lr = =g4(04 +3:0v) = (gv ~ 5:0:)0v
= —g94+0suwvy) — (gv — %g+)OU(1) (4.2.9)

The consequence of the abovementioned properties on the 8-functions can now
be sinthetized as follows

1
Br(9+,0,9v) = 7 P+(94,0,9v) = 0 (4.2.10)

9B+

——(94+,0, = 0. 4.2.11

agv(g+ gV) ( )

. Gross-Neveu models.

By choosing g+ = g— = g,g9v = 0 we restrict our model to the so called Gross-
Neveu model, which is known to be stable under renormalization. Therefore
this choice of couplings must be preserved by the renormalization group trans-
formations, and the g-functions must enjoy the properties

:B-i-(gvg’o) = 5—(9?970) (4212)
Bv(g,9,0) = 0 (4.2.13)
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As a byproduct of our knowledge about the Gross-Neveu model we can also
expect an overall multiplicative factor (/N — 1) to appear in the nonvanishing
functions.

Special symmetries of N =1 and N = 2 models.

The quantum equivalence of all N = 1 models, based on eq.(2.2.7) implies
simply the relationship

Bv(N =1)=pB+(N =1). (4.2.14)

In order to discuss N = 2 models, it is convenient to introduce a more natural
parametrization of the interaction terms (see ref.[31])

1 1
L1=—g. (04 +50v) = g (O — 50v) ~ w0y (4.2.15)

where 1 1
v = gv — 59+ + —2—g_ (4.2.16)

and the first two terms correspond to the decoupled antiself-dual and self-dual
parts of the standard decomposition O(4) = O(3) ® O(3). As already discussed
the U(1) singlet term 6y Oy couples only to the self-dual current interaction. As
a consequence, we can deduce the following properties of the N = 2 B-functions:

Be = Balgs) (42.17)
B- = B-(g-,6v), B-(g9-,0) = Ba(g-), B-(0,6v) =0 (4.2.18)
By = 5Bs— 56+ Bolgbv)  Bi(0,6v) =0 (4219

Obviously some of these conditions are just special cases of those previously
discussed.

. Group-theoretic factors and N dependence.

Let us first observe that U(/V) Gross-Neveu models are nothing but O(2N)
Thirring models (ref.[31]). From an analysis of current-current interactions
based on the formalism of non abelian bosonization [23,24] one is naturally
led to conjecture that the Thirring model S-functions can only depend on the
symmetry group through properly normalized Casimir invariants in the adjoint
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representation [34]. This statement can be explicitly shown to hold in one and
two-loops computations. Now, recalling that

csF™ = N Ci™M =N -2 (4.2.20)

we can reformulate egs.(4.2.10) (4.2.11) (4.2.12) and (4.2.13) in terms of a single
function of just one coupling C4f7(g; Ca), such that:

B+(g+,0,9v; N) = NPr(g+;N) (4.2.21)
Bv(9+,0,9viN) = Pr(gs+; N) (4.2.22)
B4(9,9,0;N) = 2(N —1)Br(g;2(N — 1)) (4.2.23)
B-(9,9,0;N) = 2(N —1)Br(g; 2(N — 1)) (4.2.24)

As a special case of egs.(4.2.21) (4.2.23) we obtain
B+(9,0,0;4) = B+(g,9,0;3) (4.2.26)

reflecting the quantum equivalence of U(3) Gross-Neveu and SU(4) Thirring
models at the level of B-functions.

Another useful hint comes from the diagrammatic analysis, performed in the 1 /N
expansion scheme, showing that the maximal power of N appearing in the coefficients
of the f-functions at the L-loop order is L — 1 for all L > 1. Therefore the power
series expansion of the function Ar is

Br(g; N) = big® + byg® + (b3 N + B)g* + O(N?g%) (4.2.27)

where the b; are N-independent numbers. The computation presented in the Ap-
pendix C allows us to fix the coefficients
1 1
bl =TT, 62 =

— 4.2.28
; = (4.225)
It is instructive to derive the most general allowable form of the one-loop S-functions
based on the previous results. A straightforward application of eqs.(4.2.5) (4.2.21)

(4.2.23) leads without any loss of generality to

B = b[Ng + (N —2)g?] (4.2.29)
BY = bi[2(N - )grg- + Agvg-] (4.2.30)
B = bilg? — g% (4.2.31)
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with only one free N-independent parameter left, apart the normalization factor b;.

Eqgs.(4.2.14), (4.2.17) are automatically satisfied, but we can still make use of the
special properties of N = 2 models embodied in eq.(4.2.18). The request that S_ be
a function of g_ and g, — 2gv only implies immediately

A= —4. (4.2.32)

Therefore the one-loop f-functions are completely determined from symmetry consid-
erations. Probably the most interesting consequence of this result does not reside in
the actual computation of the 8’s (the one-loop analysis in section 3.1 did not prove
so difficult after all ) but, because of the uniqueness of the result, in the fact that the
only allowable variable changes preserving all symmetries at the two-loop level are

g'i=qg+ B0 (4.2.33)

that is renormalization group transformations. Since these transformations, by def-
inition, do not change the form of the S-functions, what we have just proven is the
uniqueness of the symmetric form of the two loop S-functions.

The constraints implied by eqs.(4.2.5), (4.2.21-4.2.23), supplemented by eq.(4.2.27),
can also be applied to the two loop § functions. The resulting general parametrization
is ‘

P = b[Ngd + (N~ 2)g1g% + Hovg?] (4.

2.34)
B = bI(N—1)(¢% + )+ 7(62 — 62 )Pgvys +Tg¥lg-  (4.2.35)
,B‘(,z) = byfg4(g] — %) +Tavg’] (4.2.36)

where 7I,7,7,7,T are linear functions of N. The special symmetries of N = 1 and
N = 2 give further constraints whose implementation leads to the final result

Y = B[Ng 4+ (N —-2)g.g® + u(N —2)gvg?] (4.2.37)
BB = [ - 1)(93 +9%)9- —4g+9vg- +2Ngyg-

+6(93 — 92 — 4g1gv + 493 )9- + v(N —2)(g5 — 9°)g-
+p(N = 2)gvgg- +o(N —2)g3g-]
BY = blgr(gl —g2)+ 2N — gvg?
+u(N = 2)gvg?]
where the five numerical parameters p, v, p, o, § are still undetermined. By comparison

with eq(4.1.19), we know that the actual symmetric A’ correspond to vanishing
[ Vs Py 0, 6. '
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At this stage of our analysis we have not managed yet to identify the unique
form of the two-loop B-function by purely algebraic arguments. However, as we
shall show in section 6.1, more constraints can be obtained after having performed
an analogous algebraic construction of the three and four loop metric and imposing
Zamolodchikov’s equation. The final conclusion will amount to an almost complete
algebraic determination of the two loop A function.
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Table 4.1: Two loops vertex graphs and their counterterms
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Table 4.2: Two loops vertex graphs and their counterterms (cont.d)

Label Graph Counterterm
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Chapter 5

Ziamolodchikov’s C theorem

As anticipated in the introduction, one of the main motivations at the basis of this
work is to provide, by means of the generalized Thirring model (2.1.1), a simple but
non trivial explicit realization of Zamolodchikov’s theorem [1,2,3], in order to show
the close connection that it establishes between the two dimensional field theory and
the structure of the manifold in which the coupling constants live.

From this standpoint it is certainly useful to review some general aspects of the
theorem, and this chapter is intended as a brief survey of its proof, applications and
validity.

5.1 The proof

Consistently with the above discussion, we begin by recalling few renormalization
properties of the lagrangian (2.1.1). It is important to stress, however, that we will
report a derivation of the theorem which is by no means model dependent; rather we
wish to point out which are the general requirements fulfilled by the model (2.1.1)
that allow us to proof Zamolodchikov’s relation.

The generalized Thirring model is described by the lagrangian (2.1.1)

L=v9Jp—g'0;

and it is classically conformal invariant:

T{he = (5.1.1)

o
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At the quantum level the scale invariance of the theory is broken by the renormal-
1zation procedure and the trace of energy momentum tensor is no longer vanishing:

T* = B'N[0]] (5.1.2)

The renormalized operators N[O;] were defined in chapter 3: their zero momentum
insertion in each Green function is given by

(NOITT¥(e.) = [ DuDB [ d2N[0](2) [T (w.)e™ = %(H $(z.) (5.1.3)

Thus the renormalized form of [ d?2N[0O;] in the minimal scheme can be directly
seen from the definition of counterterms in the lagrangian. Power counting shows that
the renormalized unintegrated operators can at most differ from their zero momentum
insertion by a total derivative of dimension 1 operators; in the case of the model
(2.1.1) the only operator we can conceive is the vector current, which is conserved
and vanishes upon derivation. Therefore we conclude

9 PE(Lw)

N[O)] = p~ 0k |6F + > (5.1.4)
La=1

v

In eq.(5.1.4) and in the following we always understand possible additions propor-
tional to the equations of motion; we are not interested in them as they do not give
any contribution to the relations exploited below. From now on we omit for simplicity
the symbol N[ ] in our formulas. Eq.(5.1.4) gives immediately the behaviour of O;
under renormalization group transformation [1,30]

7, 0
where 95t
7 =ebf + —é% (5.1.6)

Let us now go back to the scale properties of the model. Following ref.[1] we
consider the correlations function of energy momentum tensor; in the basis
.
T = Y (

V2

+ Tty

RVE)

x

(14
—
-~
S
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they have the form

(Tirle) Turl0)) = 755 (5.1.8)

Tse) T (0) = (Tra(o) T-a0)) = 220 (5.1.9)
_ Aslg)

(Tae) T40) = ol (5.1.10)

Each form factor A; is a function of the coupling constants which can be evaluated
perturbatively, and Lorentz invariance implies that they are all scalars. The infrared
finiteness of our model insures that they can only depend on log(z*u?) at any order
of perturbation theory. As a trivial consequence:

1 0 -
é‘,ua—lul'Az = CL'+6+A2' =T a._Ai (5111)
Using the conservation of energy momentum tensor 0°Tos = 0 we can write
5‘}1,‘8%(141 -+ Ag) = w_B_Al + CE+0+A2 — (5112)
= 34x+ 2" %70 (Thi (2) Tyt (0) + 2% 2704 (Tui(2) T4 (0)) = 34,
and |
9 - +
Ay + 245 + 232720 (Ty 4 (2) T_1(0)) + z+30™ 0, (T_4(2) T_4(0)) =
Ag 4 24,

We now define the function C to be the following combination of A;’s

and on the basis of the above considerations we can see that it satisfies the equation
1 0
—u—C = —6A 5.1.15

Using
1 1 .
T.*._.. == §T: = :)-,BZO,' (5116)
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we can write )
Ay = $+2$"22ﬁiﬁj(0i($)0j(y)) (5.1.17)

and defining the metric-like tensor G;; by

(0i()0;(0)) = o2 (5.1.18)
egs. (5.1.15,5.1.17) yield :
,u-a%c = —%ﬂiﬂjaﬁ (5.1.19)

which is Zamolodchikov’s relation [1,2,3] expressing the effect of a scale transformation
on the function C'. Recalling the form of the operator D and the fact that the energy

momentum tensor has vanishing anomalous dimension, we deduce from eq.(5.1.19)
that

. 0 3
ﬂk“a‘bzc =BG (5.1.20)

Now, thanks to the absence of infrared divergences, we can notice that the met-
ric of our Hilbert space is positive definite, and therefore we conclude that relation
(5.1.19) implies a monotonic decrease of C' under the action of a renormalization group
transformation. Moreover we can also see from (5.1.19) that a stationarity point for
C is given by the renormalization group fixed point, where all the B functions vanish,

Bi(g) =0

At such a point the model is conformal invariant; from the definition of its central
charge ¢o, [4], and egs. (5.1.8), (5.1.14), it can be shown that the stationary value
of C(g) coincides with ¢p. In the case of our model where we have a fixed point at
g; = 0 a direct evaluation of the lowest order contribution to A1 gives

N

872’

Clg=0)=c = (5.1.21)
What we have just finished to proof can be summarized by stating the C-theorem:
we have shown that there exists a function C of the coupling constants which is non
increasing along renormalization group trajectories, which is stationary only at fixed
points, and which, at a fixed point, is equal to the value of the central charge of the
corresponding conformal invariant theory.
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An intuitive and pictorial interpretation of this statement is to say that the renor-
malization group flow goes “downhill”. From a more physical standpoint, the idea
behind this theorem is that renormalization group transformations, with their coarse
graining procedure, produce a loss of information about the degrees of freedom whose
wavelenght is of the same order as the cut-off. This feature is at the heart of the
irreversibility of the renormalization group flow, and there should exist some kind of
entropy function, like C(g), which measures this loss of information ( remember that
the central charge counts the degrees of freedom, and so does the C-function at any
particular length scale ).

This argument is general enough to be thought equally valid in any number of
dimension, so that one may ask whether a “C-like” theorem can be stated also for
d # 2 [5,9].Indeed it has been proposed [9] a generalization of the C-function for any
even d, in the case of a theory defined on a sphere S?, by posing, apart a normalization
factor which depends on d

Car ()2 [ (0)vAd%

where O is the trace of the stress energy tensor. Unfortunately it can only be proven
that such a function is monotonically decreasing up to the first non trivial order in
perturbation theory, while a general proof has not yet been worked out.

What we can say at least is that there are in fact some technical, if not conceptual,
reasons that make the generalization of the C-theorem so hard to be established. Ind
dimensions rotational invariance and parity, which lie at the basis of Zamolodchikov’s
theorem for d = 2, fix the two points function of the stress energy tensor to have the
form

A

(Tyu(x)T)\o-(O)> = -;m—‘i—:c“:c,,x,\xa

+ :—E—é—m(mumud\a + )2, 6,,)

K
+ W(muzl\é‘ua + xu$A5pa -+ xumaéuA + 3:/_1,3:0'611)\‘)

D E
+ ;:"2'26#116,\0' + -3—:53(5#,\5,,0 + 8,56,1)

As we can see the invariant amplitudes A, B, ... are more numerous than in the case
of d = 2, and the best one can do [9] is to define a function C
4

. 1 o1
C = ~ZZT1-[A+ §(d2 +d+2)B+(d+3)K + -z—d(d+ 1)D + (d + 1)E]
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for which
d+1

d ~
This situation resembles in some sense the one we encounter even in d = 2 when the
theory is affected by a bad infrared behavior; as we shall illustrate later on in the
text, in the case of the generalized o-model infrared divergences yield the appearance
of an extra term at the r.h.s. of eq.(5.1.19) which spoils the monotonicity conclusions
of the theorem [29].

Apart from these drawbacks, Zamolodchikov’s theorem is an important qualitative
result concerning two dimensional field theory, at least in two respects. First of all,
as we already mentioned and as we hope to clarify further in the next sections, it
provides a deep link between the quantum properties of a two dimensional model
and the geometric structure of the space of the interaction parameters of the model
[34]; eq.(5.1.19) indeed relates the renormalization group flow, represented by the
p-function, to the metric in the space of coupling constants, defined as a correlation
function of the interaction operators appearing in the lagrangian of a given theory.

On the other hand, while conformal invariance principles are valid only when we
are at a critical point, Zamolodchikov’s theorem has a significance that extends away
from criticality, and goes in the direction of relating the behavior of a theory at a
fixed point with its features in a neighborhood of it, or even at another fixed point
(5,6,7,8,9,10]. In the context of statistical mechanics, where the critical conditions
cannot be attained experimentally and only the scaling region around them can be
investigated, this last feature could lead to interesting predictions [7,8] which could
be, at least in principle, verified.

In the following, after reviewing briefly the problem of infrared divergences, which
modify the theorem [29], we will try to explain, with slightly more details, these last
two points.

5.2 The problem of infrared divergencies

One of the crucial properties which renders possible the proof of Zamolodchikov’s
theorem is the abscence of infrared divergencies in the theory; as we have seen in the
preceding section this yields the positivity of the correlation function which defines the
metric Gy;, and therefore the monotonicity of the C-function. It may be then natural
to ask what happens to the theorem if the requirement of infrared finiteness is not
fulfilled by the two dimensional field theory. The result, as we already mentioned in
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section 5.1, is that C is no longer decreasing since some extra terms appear at the
r.h.s. of eq.(5.1.19) thus spoiling the theorem [29]. The aim of this short section
is to provide a simple and qualitative discussion describing the situation we have in
the case of o-model [29], in order to give a feeling of the problems posed by infrared
divergences. As such, the following lines do not pretend to clarify technical issues,
nor to be a complete and thorough treatment of the subject. Rather, the reader who
wishes to obtain more informations on that is suggested to consult the paper [29]
which is the main reference throughout this section. Let us then consider the action
[29]
S= /dv [1 weBo,X0,X — L RAgE| L
B o7 Jig Ot Ov 4 2ma!
corresponding to the generalized o-model, where X* is a field with values in a target
space M, v* and R® are the metric and the curvature in the world sheet, respec-
tively, and @ is the dilaton field.
We know that in order to proof a C-theorem one has to consider a linear com-
bination of the stress energy correlations functions and show that its derivative is
proportional to the trace-trace correlation. In the case at hand these correlations can

be defined as follows

A

( . )__ 2 6 2 6 z
DAY AT e CO R AT E 2 oy R W
= (Taﬁ(x)Tuu(y» -+ 5—terms

where Z denotes the partition function. In momentum space it can be shown [49]
that the structure of A, ,, is fixed by the energy momentum tensor conservation as
follows ’

o 1
Aapu(p) = —Fy(p?) Eg(‘saﬁ — PaPp) (8w — Pupy) (5.2.1)

1
——Fg(p2)p-—2[(5a” - PaP#)(‘SﬁU - pﬁPU) + (5ow - PQPU)(‘Sﬁ/z - pﬁpu)]

Introducing light-cone coordinates in two dimensions

Pu = Nup- +mMupy (5.2.2)
where ) ‘ )
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and
p-=p-m pr=p-n (5.2.4)
it can be seen that Aagy;“., involves only one independent form factor, which we denote
F(p*); we have
F(p?)

Aap oy = _pg_sa(p)sﬁ(P)S#(P)Sv@) (5.2.5)
where
F(p*) = —=F,(p*) — 2F3(p*) (5.2.6)
and
Su(p) =nup_ —m,p, (5.2.7)
If we had no infrared divergences we could conclude that at each perturbative order
F(p*) depends only on L(p?) = log(p?/u?); in the demonstration of the theorem
this feature yields the relation
p——a—— =2z70, = 2270_ (5.2.8)
dp

which in turn allows to proof eq.(5.1.19). The problem we have to face in the cur-
rent situation is that the presence of infrared divergences involves, in general, the
appearance of another mass scale m besides the ultraviolet one, u.

Thus the functional dependence of F(p?) changes, and one has to take into ac-
count also the infrared cut-off m, appearing logarithmically as log(m?/u?); therefore
the naive scaling relation (5.2.8) does not hold any longer and the proof of Zamolod-
chikov’s theorem fails. Indeed the careful analysis performed in [29] has shown that
at the third loop level the form factor F'(p?) contains a term of the form

1 m?
L(m?) = 5 {109 <47F#2> ,"{"YEJ ,

and the whole result can be casted in terms of the various A-functions of the model
as follows

Fed { (1~ L)V (e - 5) + wmp?)} (529)

If we now try to proof the theorem in the usual way by considering the correlation
functions A;, A, A3 and by defining C as the combination (5.1.14), a direct conse-
quence of the appearance of L(m?) is that the relation

0
—C = —124;
'ué?,u 3
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is not verified, and actually implies a wrong relation between the Ricci tensor, the
curvature scalar and the dilaton field [29]. Hence the theorem is modified by the
presence of infrared divergences; relation (5.1.14) has to be corrected, and in fact it
can be shown [29] that the following equation holds up to three loops

3
1672

,LL—Q—C + 1245 = — -Oﬁvz(,@q, )
Op ° 2
This result contradicts both the monotonicity character of the C-function and the

quadratic dependence upon the B-functions of its derivative, so that Zamolodchikov’s
theorem is not valid in its original form, apart from those particular cases in which

V%(Bs — Bi*) vanishes [29].

5.3 Properties of the metric G,;.

As we have seen during the proof in section 5.1 an important ingredient of Zamolod-
chikov’s theorem is the metric function G;;, eq.(5.1.18), which will be the subject of
the following chapter.

Before passing to the explicit calculation of Gi;, it may be interesting to dwell
for a while upon its renormalization group properties; it is the aim of this section to
point out the interplay between the geometric properties of the coupling constants
manifold and renormalization aspects of two dimensional quantum field theory.

In the space of couplings in which the coordinates are g' the operators O; transform
as the tangent vector 8/9¢" and the metric transforms corlectly as a rank 2 covariant
tensor under coordinate transformation g — ¢’

;o _ 99" 9¢'
Giilg) = %Wakz(g) (5.3.1)

It is well known that #* transforms like a contravariant vector

dg'*

B(e) = 528"(0)  (5.3.2)

due to the definition )
gy _ 49"
B(g) = S (5.3.3)
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Therefore eq.(5.1.19) defines a quantity which is a scalar in parameter space. The

renormalization group properties of G;; can be examined using eq.(5.1.5) in thee — 0

limit which yields
(27)?

{% O0k(2)0;(0)) +75{0:(z)0x(0)) }

= ——(3:2)2 (5“3 ij + ajﬁ Gik) . (5'3'4)

After a little algebra we end up with

9
=p

Gij = — (azﬂkaj +0;85Gi + ﬂkﬁszj) (5.3.5)

This means that a scale transformation acts on the metric as a Lie derivative along
the vector 8
0
p
and the same interpretation can be given to eq.(5.1.5) for O;. Moreover we can note
that all these relations are independent of the (possible) Riemannian connection of
the manifold of parameters.
From a practical point of view eq.(5.3.5) can be used to fix all logarithms appearing
in the function Gj;(z; i). Setting

G,’j = —ﬁg(Gij) (536)

Z G log 1?) (5.3.7)

5=0

we obtain from eq.(5.3.5)
s 1 , ! :
G = 5 [a-ﬁ’“ij + 0;B* G + 5"&&3] (5.3.8)

so that what really matters is the form of G’( ), Factorizing all possible numerical
factors in a scale M o p we can erte ‘

Gy = G’,(-?) + Gg)log(mzj\/fz) + ... (5.3.9)

choosing = 1/M we can say that Gf-?) represents the real metric of the parameter
space.
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We want to stress that all relations we have written are covariant with respect to
a redefinition of the couplings

g =g +G (5.3.10)

that in particular implies that any choice of renormalization procedure gives equiva-
lent results and clearly does not mean that for every choice of couplings the physical
content is transparent.

In the following chapter we will report both an analitical and an algebraic com-
putation of the first nontrivial correction to the metric tensor G;; which arises from a
four loop correlation function and we extract the form of C using eq.(5.1.19) (a direct
evaluation would require a five loop computation). Even this relatively simple step
reveals some interesting aspects. For example the trivial fixed point of the theory
g* = 0 is locally euclidean (that is the Christoffel symbols are vanishing) only if the
subtraction procedure preserves the symmetries of the lagrangian.

Let us then discuss some properties of the function C. Using the fact that the
anomalous dimension of the energy momentum tensor is zero

DTs =0 (5.3.11)

eq.(5.1.19) can be recast in the form
8 3 . 3 . i
k = 283G, = L34
B —-———agkC’ 45 B G 4ﬁ B; (5.3.12)

As it stands eq.(5.3.12) must hold for every value of z and so we can choose the fixed
scale = 1/M and consider only the metric G’E?) in the following relations.
It is tempting to argue from eq.(5.3.12) the stronger relation

@cu225i (5.3.13)

Altough eq.(5.3.13) can be believed correct there is no clear proof of it (for a different
but related approach see ref.[40,41]) so we just conjecture its validity. A necessary
condition to be fulfilled is

8:8; — 9;8: =0 (5.3.14)

that is the form
Bidg' (5.3.15)
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must be closed. If eq.(5.3.14) holds, Poincaré lemma allows us to construct C from
eq.(5.3.13) in the perturbative expansion

3 1
C=Cot —/ 7' Bi(tg)ds. (5.3.16)
4 Jo

This is what will be done explicity in the following chapter; in particular the pertur-
bative evaluation of the metric will confirm the analysis we have done here, showing
that the contribution of the first non trivial order can be reabsorbed by a suitable
choice of the scale. As a final remark we may add that a five loop computation G;
would give some interesting informations about the space of parameters, expecially for
what concers its curvature; unfortunalelly this calculation is technically quite difficult
and therefore beyond the scope of this work.

5.4 Outside the fixed point

The last section of this chapter is devoted to a subject which, although lying slightly
apart the main concern of this thesis, is very stimulating for its interdisciplinary
character. As we already mentioned, an aspect of Zamolodchikov’s theorem which is
remarkably relevant, is that it relates the behaviour of a theory in a neighborhood
of a fixed point with the conformal anomaly number ¢, which is a critical quantity
[5,6,7]. Such issue may have greater importance for statistical mechanics systems
[7,8], expecially for the study of the scaling region around a critical point, and this is
what will be explained now.

In order to be as much general as possible in our argument, we consider the
situation in which a fixed point action S* is perturbed by some relevant operator ¢
so that the complete, perturbed action is

S=5"—) / é(r) d*r (5.4.1)

Supposing that the operator ¢ has scaling dimensions 24, the coupling constant A
has dimensions 2(1 — A), and therefore A must be less than one in order to have a
relevant perturbation. One of the first thing one can imagine to do with the action
(5.4.1) is to study its renormalization, for example around A = 0. If the action is
renormalizable, as we will assume, there will be introduced a certain, finite number
of counterterms which are needed to define renormalized operators. In the case of the
stress energy tensor, power counting shows that the renormalization procedure yields
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the appearance of at least one counterterm [5]; as a consequence quantum corrections
affect the trace © of the energy-momentum tensor by shifting its value from zero to

OF) =~ 4t A (1 —h) ¢(r) &+ (5.4.2)

neglecting higher orders in A. It is precisely at this point that the role of Zamolod-
chikov’s theorem become apparent; in fact eq.(5.1.15) relates the derivative of the
C-function to the correlation function of the trace ©, and, if we recall the functional
dependence on log(u?r?), implies

40—~ 32 eme ) (5.4.3)

dr~ 4 o
This result, and eq.(5.4.2) allow to express the total change of C from short to large
distances as

AC = —127% )2 (1 — h)? f” r($(r)$(0)) dr (5.4.4)

T1
thus relating the variation of the quantity C, which characterizes a conformally invari-
ant theory, to an integral of a correlation function computed away from the critical
point.
What we have found may have some interesting physical consequences, for instance
if we take the operator ¢(r) to be the energy density operator ¢(r), corresponding to
a coupling constant A which is the temperature difference

t:ﬁc_ﬁ

In such situation it usually happens that the renormalization group flows end at a
trivial high- or low-temperature fixed point with ¢ = 0 [5], and in the case of the Ising
model eq.(5.4.4) gives the central charge c at the critical point as the second moment
of the energy-energy correlations. Indeed the fixed point action of this model can be
formulated [4,56,57,58,59] in terms of a pair of free Majorana fermion fields 3 and 1,
as follows

§* = / ($0-9 + $0:9) (5.4.5)
while the energy density is given by
e(r) ~ i

so that moving away from the critical point corresponds to add a mass term

~ t/i/;zbdzr
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to 5. The energy-energy correlation can be computed with the aid of Wick theorem
and the form of the fermion propagators, and turns out to be [5]

t\?2 .
(eme(0)) = (5=) [I3r) — K]
Ko and K, being modified Bessel functions; therefore, after doing the integral, eq.(5.4.4)
reproduces the known [4] value of the central charge of the Ising model

1
T3
The kind of argument outlined above may provide a deeper insight in the universal
properties of two dimensional critical system; in fact one can try to calculate universal
combinations of amplitudes of quantities which become singular in the limit 7' — 7.
One of the most important [7,8] universal number is the singular part of the free
energy per correlation volume, which we denote f,£?, where f; is the singular part of
the free energy per unite volume and ¢ is the correlation length that can be defined as
the second moment of the connected correlation function of the energy density e(r)

[ r¥{ e(r)e(0) ), d*r
J { e(r)e(0) ), d3r
It is believed [7] that the product f,¢? tends to a constant as T' — T, while ¢ ~ Blt|~

and f; ~ At|*~*. We can now notice that the denominator in (5.4.6) is just the specific
heat per unit volume whose singular part is

- 2L e ey, (547)

¢ = (5.4.6)

Hence we can express f,£? as follows
FE2 ~ —[2=a)1 - )] 1 / r2( ¢(r)e(0) )o &Pr (5.4.8)

where the integral is related to the C-function as in eq.(5.4.4). Indeed it can be shown
[7] that the central charge at the critical fixed point can be computed as

c = 12 7 ¢ —(—2——_1—255/000 r3( e(r)e(0) ). dr (5.4.9)
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so that the universal amplitude we are studying can be related to ¢; we have, as t ~ 0

Cc

- a)(l-a)™ (5.4.10)

fsf2 = =

and this equation is independent of ¢ as expected.

The result we have obtained is a clear example of what was announced at the
beginning of this section: an amplitude which refers to the scaling region around a
critical point is expressed in terms of the critical number ¢ by virtue of Zamolod-
chikov’s theorem, and what is even more important is that a relation like (5.4.10)
can be, at least in principle, verified experimentally, for example in absorbed systems
[7,8].

As a final comment we may add that the approach to the perturbed action (5.4.1)
can yield also other interesting consequences. In fact another possible. application
[5,6,10] is the study of a slightly relevant perturbation given by an operator ¢ with
scaling dimension & ~ 1, as we have in the case of two very close fixed points: It is
then possible to analyze the characteristics of one fixed point in terms of the other,
and indeed relate the values of the central charge at the two pomts ina perturbatlve
way. The result, found in [10], is

i

3

¢ =c— Z—;; +oe ' (5.4.11)

where we see that the new central charge ¢’ depends upon the renormalization ‘group

eigenvalue y = 2 — 2h of ¢ and on the operator product expansion coefficient b in the
product ¢ ¢ ~ —bée.

These last remarks conclude the chapter devoted to the C-theorem. We hope

to have provided a sufficiently complete survey of the subject, before attacking the

computation of the metric G;; and the C-function in the case of the generalized

Thirring model (2.1.1), which will be performed in the next part of this work.



Chapter 6

The metric Gy; and the function ¢

As we have seen in the previous chapter the perturbative determination of Zamolod-
chikov’s C-function requires the knowledge of the f-functions of the model as well as
of the metric Gy; in the space of couplings. We will present [34] the computation of
Gi; for the generalized Thirring model, eq.(5.1.18, by using two different approaches
which are both in the framework of perturbation theory:

e an analytical approach, which amounts to the explicit calculation of the graphs
which are relevant for the metric, up to four-loop order;

e an algebraic approach, which exploits the symmetry and group-theoretic prop-
erties of our models in a way very similar to what we have done in the case of
f-functions.

6.1 Calculation of the metric Gij

We shall keep the notation introduced in chapter 3, which turns out to be very
convenient for the evaluation of Feynman graphs, and we will cast the final result
both in the basis gs,gp,gv and the one defined in eq.(4.2.1), where the algebraic
considerations are more natural. The following transformation rules allow to relate
the components of the metric in the two bases

Gi+r = Gss+2Gsp+ Gpp
Giv = Gsv £Gsp = Gyy
Gio = Gss—Gpp=G_y

62
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G___ = GSS—QGSP+GPP (611)

and

1

Gss = Z[G++ +2Gi-+G_]
1

Gsp = 7[Gys —G--]

1
Gsy = Z[G+V+G—V]

1
Gpy = Z[G-i-v -~ G_y]
’ 1
GPP = E[G++ - 2G+_ —|— G-_] (612)

Let us first describe the analytical approach, and start by recalling that the metric
is given by the correlation functions of four-fermion operators

(O(2)05(0)) = Gijlg,2)— (6.1.3)

The perturbative computation of these Green’s functions can be performed more
easily in coordinate space where the d-dimensional zero mass fermion propagator is
given by

ddp eip-z:
Sw) =7 / (2m)d p?
1 d. v -z
= _277‘5"“5) (m2)§ (6.1.4)
which reduces to the usual ]
Tz

for d = 2. It is apparent that the “tree” level calculation of the correlator in (6.1.3)
actually involves diagrams with the following three loop topology:
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We can read the corresponding graphs simply by opening the fermion vertices in all
possible ways: this amounts to the Wick contractions of the product O,(z)0;(0), and
we are left with only two diagrams of order N? and N respectively.

© <

Thus the first order computation of the metric is really a trivial matter, since there is
no integration to perform and the result of (a) and (b) is certainly finite. Nevertheless
we evaluate them keeping all the machinery introduced in section 3.1, in order to
provide a warming up exercise about its use, which is very profitable at the next
order. Recalling eq.(6.1.4) and paying attention to a combinatorial factor 2, the
expressions for (a) and (b) are the following

(@) = VTSI S@IT Y s@)rg )

1 L[ T+9)
- ZN [2(7(:1:2)“'
Tr[TGey - 2T - 4] (6.1.6)

() = —gNTAIPSEIYSEIYSErPse)

4
} Tr[0Y - 2l Py - 2]

:_}.N[”“%)

) 2(7ra:2)1+5

Summing up the two contributions we obtain

4
J Tr[]f‘g)'y - xfg):fy : wI‘S)'y . mfg)'y - z] (6.1.7)
(0i(2)0;(0)) =
1[Ta+9)1* . . . .
= {_(_j_iJ [ NQTT[PS)')/ ) xrg),), . w]TT[FE;),Y } zrg),y - 7]

2(7‘_:32)1+-;—

— IVTT[F§)7 . mfg)'y : xI‘g)'y - mfg)'y - 'c]] (6.1.8)
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This formula can be further reduced by making use of the property
- xfg)'y TR zfg)'y Lz = Fg) ® I‘g)(x2)2 (6.1.9)

which can be proven by symmetry arguments, and the traces can be evaluated with
the aid of eq(3.1.44), (3.1.46) and defining a quantity d"¥) as follows |

ST = g1 (6.1.10)
A
The result we obtain is
(0:(2)0;(0)) = .;_ (91)4 [4N2y<f>d<f)5ij ~ 2Nd<i>d<ff>] (6.1.11)
LT

and can be rewritten in a standard form by noticing that in two space time dimensions,
and in the basis §, P,V we have

d9 = (1,-1,2) (6.1.12)
v = (1,-1,1) (6.1.13)
- s l _—-1 2
d9dW) = | -1 1 2 (6.1.14)
2 2 0
It is then very easy to see that the final outcome of the first order computation of the
metric is
N 2N —1 1 -2
GO = =l A (6.1.15)
T -2 -2 4N
in the basis S, P,V; by using the transformation relations (6.1.1) we find
N 0 -1
N
¢="1V|o0o N-1 o0 (6.1.16)
S T R

in the basis +,—, V.

As a final comment we may say that all the symmetry properties, which have been
used in section 4.2 and will be the starting point of the algebraic derivation of the
metric, are trivially satisfied by this result.
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We can now start to present the computation of the metric at the second per-
turbative order. As in the previous case we have only one possible topology, of the
four-loop type, for the graphs we have to consider, and associated to that there is an
integration over a coordinate y.

Even though the Wick contractions generate seven different kinds of diagrams, re-
ported later on in the text, we have just one type of integral to evaluate, which
is

erﬁa‘r — /dd yayﬁ(m - y)U (CE - y)T

EE F(9 — (.’L‘G) [60105,67‘ + 6aﬁ60'r + 5@75ﬁd

‘?+3e

( oo LT + 6017'3703;[3 + 5ﬁa$a$7- + 5/37-xaxa)

(4 + 35)(2 + 3e¢)
(2 + 35)( g) 1

TaTpTolr

ot

;——(501/3:1301:1 + 6”:1:0,:1:/@)} (6.1.17)

Different graphs have a different structure of traces of the Dirac 4 matrices, with
which the integral J*%°T has to be contracted. They can be seen in the table at the
end of this section, where all the graphs are reported together with their expression.
Employing our notation and taking into account combinatorial and other factors,
such as the explicit N dependence of each diagram, we can write down the followmg
list where J%9°7 is factored out

gx  [T(1+%)
Jr = N3647r];:v4{ (27) Tr[I‘Eiv 2%y . z]

TT[F( )'ygf(c)fy.r]Tr[I‘(C '7QI‘ ]Jo‘ﬁ”
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g [T°(1+%) () )
Jo = “N264.7r6:z:4 [ (7r3:1:2): Trilyy -zl y - 2]

TrT0, T8, 197y T ) ] oo

I°(1+¢ .
5= “N264i]:sx4 [ (7&%2 ]{T’" (P57 2Dl 1] Tr DY 4T Ry - ]

Ty - T E T [T - Ty T ) ) goten

- _n2_ 9k F6(1+
Joo= =N 64784 { (w322

+TT[FE4)70I‘(614€)77]TT[F(1)N a:I‘g fyafc 'mI‘(J)’)' m]}JQﬁM
I'é(1+ ¢
J3 — —N gk [ ( + 2)

64m6zt | (w3z2)e

]{TTF 7ol gy - oLy Ty, Tr D8 7a T Y]

i i ] k afor
| 7rr0 - Ty - erPar e

oy [T0+3) Tr[Ty - D9y T,y . a7 0, TR, 1 ja807
64784 (71'3:1;2)5 A B lelc /Bt B A Yol o Yr
J1 64764 [ (7r3x2 {TT Ly wI‘B Yol'C ’)’oFA VL& T8y - )

HTHI Dy e1G)y - aT T TP o0 1} 15

At this point it is perhaps profitable to split the computation into two parts, one for
the terms which carry the singularity in 1/e, and one for the others. In fact if we
recall the form of the integral J*%°7 eq(6.1.17), we immediately see that there is a

set of form factors whose coefficients are regular as ¢ — 0; let us denote this part by
Faﬁcr‘r

FozﬁaT e 4 — [5005[37 + 6 '350-7- -+ 5a76ﬁg

e=0
2
_F(éwwﬁmT t 0arTo®p + 6goTals + 65, ToTy)

+8

LQZALoTor
T“] (6.1.18)
and proceed to contract it with the structure of each graph J; to J;. Since we are
dealing with finite quantities, this part of the computation can be performed in a
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way very similar to the evaluation of the first perturbative order, by considering
everything in two space-time dimensions. The result can be conveniently expressed
as the following matrix in the 4+, —, V basis

N +1)g (VN —1)g- 0
N(N -1 ( +
GSF) = ——-(‘)T) (N—-1)g- (N—=1)gy —29v —2g_ (6.1.19)
“r 0 —2g_ 0
or, in the S, P,V basis
N(N —-1) -
) _ a 6.1.20
et — (6.1.20)
(2N —1)gs +gp — 2gv gs +9p — 2gv —2(9s — gp)
gs +9p — 2g9v (2N —1)gp +9gs —29v  2(gs — gp)
—2(g9s — gp) 2(9s — gp) 0
and can be seen to be equal to
1)k HpMLk
0P _ _ |07 | (098 :
G; [G R + Gl a7 } . (6.1.21)
Let us now consider the remaining part of J*#°7 which is
Daﬁo"r _ & F(l + ) ( - %)
4z2 T'(2 — f) 2(2+¢) (z )5
2 2—-¢)1
l( i 36&):( e) —(bapzoz, + 5(,73:&3:5)} . (6.1.22)
72

Performing the various contractions and recalling the definitions (3.1.47) (3.1. 48) and
(3.1.51) we obtain this table of results

1+ )
3275 (7r4m8)§
Tr[%y - 2T @y - 2] Tr[Ty - 2TWy - o]

Mi+5) 1101 1 2 2
64m3x8(nigs)s [— TglET -2—Zog(r«,u ! )]

€
Tr[l_‘g)’y . mf‘g)'y . :c]Tr[F( )'y :EF(J) z]

Jo = —N3(AOg 4+ AU g).

I 1 1Z 9 o
[E—§7E_§Og(ﬂ'# x )}

Jg = NQ(B(ik)gk-FB(jk)gk)




6.1. Calculation of the metric G;; 69

1+ %) 1 1 1
2 2 2.2
1287328(mtz8)% [g T 97ET é_lOg(T'u * )]
A{BugiTr[08y - al Q- ] Tr[TQy - 2T Yy - 2]
+EiugeTr(TYy - 2T 9y - 2] 70y - 2T 0 - z]}
M14+£ 11 1 1 -
64m528(r428)z [g T9YET §log(7r,u * )}
{2(49g: + ADg)TrT Dy - oIy - 2Ty - 2Ty - 2]
+BM g Tr[IG)y - aT @y - 2] Tr[PEy - oY - 2]
+B(kj)ngr[Fgg)'y s :UI‘E;)'Y . :L']Tr[l_‘(c]f)fy . mfg)fy . w]}
r1+g) 11 1 1 2
647528 (riz8)s [E TR7ET ilog(ﬂ',u ? )]
{B(ki)ngT[Fg)'y . mI‘gc)'y . xfg)'y . :cl"(c]f)'y - ]
BX) g Tr[r Yy - o8y - al§y - aTHy - o]}
i+ 11 1 2 o
64:7r5x8(7r42ms)% [E ~5E T plog(mie )]
{BPgx + BRg)Tr0 Py - 2T Py - 2T Py - 2T - ]

1
~5 g Tr[T

J4 - N2

J1+J3 =

SR SO 2 P

1 i ! : I
-3 gk Tr(Ty - aT Gy - 2T Py - 2Ty z]}
We are now ready to sum up all the various contributions, and if we do that it is

easy to reconstruct and factor out a term which is the metric at the first perturbative
order (see eq.(6.1.8))

ey 14
69~ 3|3l ey gy o
Tr{ryy a5y - o]
—~NTT[I‘S)7 . :cl"‘g)’y : :El_‘g)*y . xf‘g)'y . m]] (6.1.23)
Therefore we can write the result of the computation of the graphs as follows

I 71 1 1
oo+ T = — Z 2 2,2y _ L ]
& ! 2wzt [E 2 og(ma’v’) 5 1B
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{2N(AYg; + AV g;) — (B™) g, + BUM g, )G
~BE) g4 — BE) g GY)

1
+§(Eiklng§'(1)) + EjkIQkG,(?))} (6.1.24)

where we have introduced a scale p. The corresponding result for the metric can
be put in an even more compact form by using the definition of the one-loop vertex

function W7 (cfr.(3.2.1))
. . 1 . . 1
elVi=Wi = —%[NA(J)g; ~ 5" BWMg.q + 7 2 Buigrail, (6.1.25)
k ki

whose € = 0 part gives exactly the -functions eq.(3;1.57), and its derivative

oW 1 N 0 . 1
55 “g[QNA( )g:6;; — B™g,6;; — BUg; + 5 Eiige] (6.1.26)

We then obtain simply

1 1 1
G = P slog(wa®p?) — 5”/}3} [G

(0) BYVI“ (0) aVVk
* g + Gy g7

The divergent part can be eliminated, as usual in the MS scheme, by subtracting the
counterterms, which are given by

;1] 008" | 008"
Recalling that, by definition from eq.(4.1.18), we have
W* — g% = eG* (6.1.29)

after the subtraction of the counterterms we are left with

1) _ [A00G" | ~0dG*

1 2,2 (0) ¢
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Collecting also the result eq.(6.1.21), the final outcome of the computation of the
second order metric is, in the MS scheme,

Gy = 6iP+ain

1 )0 0
= -3 {Zog(mzﬁ) + 5 + 1] [G(O aﬁz + G aﬂ]

+ {G(O)BG MY } : (6.1.31)

ag' % Bgi

We can improve this result if we recall that the last two terms can be reabsorbed by a
finite shift in the coupling constants: if we choose to change variables as in eq.(4.1.26)

9" =g"+G* (6.1.32)
it turns out that the metric changes by the amount
oG* oG*
56,y = —GU 006 6.1
Gij G T — G e (6.1.33)

so that the first two terms disappear and:

G = —% [log(rz?u?) + 75 + 1] [Gﬁ aaﬁ -+ GY) gﬂj] (6.1.34)
As already noticed, this turns out to be
G,(-Jl-) = [log(mz:z/f) +vE + 1] {_V_(_{Z\T%_)_
(N+1)gy  (N-—1)g- 0
((N ~1)g- (N —1)g+ —2gv —~2g_) (6.1.35)
0 —2g_ 0
in the +, —, V basis and
GS) = [Zog(mvz,uz) + v + 1] -&‘;\;—;}l (6.1.36)
(2N —1)gs + gp — 29v gs+gp — 29v —2(g9s — gp)
gs +gp — 2gv (2N —1)gp +9gs5 —29v  2(gs — gp)
—2(9s — gp) 2(9s — gp) 0

in the S, P,V basis. This concludes the computation of the first perturbative order.
For the sake of completeness we will report in the table 6.4 at the end of this chapter
the expressions of G;; = = Gj; © 4 G(l) in the two bases +,—,V and S, P, V.
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Table 6.1: Graphs contributing to the metric Gy;

—N3gi [ ddyTr[I‘g)S(x)I‘g)S(—x)]
Tr[0YS(z - y)rP s(y - 2)]

Trr % S(y)rY s(—y)

N2gy, [ dyTr[TPD5(2)TE)S(~2)]

TrTYS (@ — )T S() TP (=) TH 50y — 2]

Vg [ diy{ TrDPS(@)T P (- P S (y - 2)]

NI @*, 3 Tt 5 - TS SWIYS(-2)]
. +TrrS(@)0F S(—y)rES(y - 2)]-

Trr (@) s(—y)r e s(y - 21}
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Calculation of the metric G;

Table 6.2: Graphs contributing to the metric G;;(cont.d)

Negy [ cldy{Tr [FS)S(x)Fg)S(—m)FEi)S(x —y)-
TE5(y - )| - TrrP s ()rYs(-y)]

+Tr[TP ()T S () TP (1) T 5(—2)].

TrPS(z - y)IP Sy — z)]}

~Ngi [ dyTrTPS @)Y S(—y)rd sy - z)

T S(2)TP S(—y)rPs(y — 2)]

J2

~Ngi. [ dyTrTPS(2)r 5(—y)TH 5(—y)

TP5(-2)1P (e - TPty - )

4

—Ngi [ diy{TrTDS@)rPS(-y)rPs(y - 2)-
T8z — y)TW ()P s (—2)]
+Tr[TYS(2) T S (—a) TV S(y - z).-

TSI S(-nrPs(y - )}
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6.2 Metric and central charge in the symmetric
scheme

The algebraic approach [34] presented in section 4.2 can equally be applied to the
determination of the metric matrix elements.

Let us list the general properties of the metric in the symmetric scheme resulting
purely from symmetry considerations.

e Chiral properties.

The parity properties of O_ under the transformation (4.2.3) lead to the fol-

lowing properties of the metric:

Giy,Giv,Gyy,G_ are even functions of g_ (6.2.1)
Gy, Gy are odd functions of g (6.2.2)

e Thirring and Gross-Neveu models.

The group theoretic arguments that we have applied to the computation of the
g functions can be adapted and extended to the metric. The matrix elements of
the current-current interaction gOr can be parametrized in terms of a universal
function Fr:

Grr = da Fr(g;Ca) (6.2.3)

where U4 and d4 are the Casimir invariant and the dimension of the adjoint
representation of the symmetry group.

A further constraint can be obtained by recalling that in the g_ = 0 theory there
is a decoupled free field associated with the U(1) subgroup. The decoupling is
made apparent in the bosonized version of the theory.

Therefore starting from eq.(4.2.9) we easily obtain the following constraints:

1
e+ — _ 2.
(cv+ + NGVV>Q_=O 0 (6.2.4)
18 @ ‘
2 1 %)¢ ) 6.2.5
(N agV ag+> v g—=0 ( )
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Now by applying eq.(6.2.4) and (6.2.5) to SU(N) Thirring models we obtain:

2 1 1
Gy + "]\‘[‘G+V + —=Gvv =G+ j_\f"G““V = (N2 —1)Fr(g4; N)

2
N g—=0 g—=0

(6.2.6)
while in the case of Gross-Neveu models the corresponding condition is

Gip +2G4_ +G__ = N(2N —1)Fr(g;2(N — 1)) (6.2.7)
94 =g_=g
gy =0

Let us notice that the request of free-field behavior with canonical commutation
rules leads to the stronger costraint that Gyv(g- = 0) be independent of the
couplings and equal to its free field value.

Special symmetries of N=1 and N=2 models.
When N=1 the following constraints hold:

O_ =0 Oy=-0, (6.2.8)
as a consequence
Goe )Gy, G- ~ (N —1) (6.2.9)
and

Moreover the free field condition implies that G, and Gyy must have their
free theory value; this last condition can be expressed by the statement that
all perturbative corrections to all matrix elements must be proportional to the
factor (N-1).

In N=2 models we can make use of the special symmetries described in section
4.2 to obtain the following set of conditions

G +2Gy | = 0 (6.2.11)
2 N=2
1
Giv + -2~GVV = 0 (6.2.12)
N=2
1
G++ + —2'G+V = SFT(g+, 2) (6213)
N=2
1 : .
G__—-G_y+ ZGVV = 3FT(g_; 2) (6.2.14)
N=2
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Moreover the decoupling of the selfdual and antiselfdual components leads to the
further constraint that when the metric is expressed as a function of g, g_, v
only the matrix elements G4+ can have a dependence on g,.

e The last constraint on the metric concerns the dependence on N. A trivial
diagrammatic analysis shows that there is an overall factor of N in every matrix
element. Moreover from the 1/N expansion it is easily established that the
leading behavior of the coefficients at the l-loop order is ¢'~3N'~!. Further
constraints come from the fact that the metric is diagonal in the S,P,V basis in
the leading order in the 1/IV expansion [33].

As a trivial application of these results let’s first compute (up to a normalization
constant) the free field metric.
We parametrize the function Fr as

Fr(g;N) = fo+ (filN + f1)g + O(g?) (6.2.15)

where f; is independent of N and its actual value is

By simply applying the chiral properties and power counting in N we immediately
obtain )
N 0 -1
GO=Nf|0 N-1 0 (6.2.17)
-1 0 N

It is easy to check that all other conditions are automatically satisfied.

Let us now consider the 4-loop contribution to the metric. On general grounds,
by applying the chiral symmetry and the U(1) decoupling we can parametrize GS)
by

Ag+ -+ BQV C’g, g+ — JVgV
GP@)=aN| Cg. Dgy + Egy Fg._ (6.2.18)
g+ — Ngv Fg_ N%gy — Ng,

where a is a numerical coefficient and A-F are functions of N (at most quadratic)
and can depend linearly on log(z): however this dependence is fixed by the renormal-
ization group properties of G;;. We can now make use of the information about the
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dependence on N coming from the 1/N expansion and eq.(6.2.18) to write:

| Agy + bgv o(N —1)g- 9+ — Ngv
G(z) = aN | (N —1)g- (N —1)(dgs +egv) F(N—1)g- " (6.2.19)
g+ — Ngv F(N —1)g- N?gy — Ng,
where
A=0O(N?) bc,d=0ON) e f=0(1) (6.2.20)

Enforcing eqs.(6.2.6) and (6.2.7) leads to the relationships

aN [Ag+ + bgv + %;(g+ = Ngv)| = (N? =1)(AN + fi)g+ (6.2.21)
a[A+2e(N = 1) +d(N —1)] = 2N — 1)2A(N — 1) + f) (6.2.22)

Some manipulations lead to the following representation

gv — Ngy 0 9+ — Ngv
Gie) = —fAN| 0 (N-1)(2v—gs) 0
9+ — Ngv 0 N?gy — Ng,
(N +1)g4 &g 0
+ A NWN-1)| &  dg.—2gv fg- (6.2.23)
0 fo_ 0
with the condition ) )
264+d=3(N—-1) & f=0() (6.2.24)

Making use of eq.(6.2.11) (6.2.12) (6.2.13) (6.2.14) we obtain
&= d(N =2) F=—28N =2) (6.2.25)
It is convenient to solve eq.(6.2.24) in the form

+1  d=w-1-2L (6.2.26)
fl 1

where from the 1/N expansion one can show that v must be independent of N.

E=(N—1)
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In conclusion the most general allowable form of the 4-loop contribution to the
metric is

(N +1)g+ (V —1)g- 0
GP(a) = AN -1)|(N-1)g- (N —1)gy—2gv —2g_ |+
0 —2g_ 0
Ngy —gv 0 Ngv — g+
+ AN 0 (N =1)(g+ — 29v) 0
Ngv — g4 0 Ng — Nigy
0 g— 0
+ NN —-1)|9- 4dgv—29. —2g_ (6.2.27)
0 —29_ 0

Let us now apply our result eq.(6.2.27), together with eq.(4.2.37), to Zamolod-
chikov’s equation in the form

oC . _ . _ . .
== GiB ~ (G,(?) + Gi(;)) (6(1)3 + 13(2)J> ~ Gz(_?)ﬁ(l)j + Gf—?)ﬂ(Q)J + Gl(;)ﬂ(l)J

g
(6.2.28)
A trivial consequence of this equation is the order by order irrotationality of the
covariant vector G;;47. The lowest order term is

(N +1)g% + (N —1)g2
B = gDpWI = £,b N(N —1) 2(N —1)g49- —4gvg- (6.2.29)
— 22

and it is trivially seen to satisfy

N +1
B = 0. fbN(V = 1) (5208 + (V= D)gZen —29ve)] (6230
Tt is convenient to recall eq.(4.2.28):
b1 = ~—1- s bg = —]-:-

T w2
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implying
0p0 _ 08"
g’ dg*
At the two loop level we obtain from eq.(6.2.27) and eq.(4.2.37)
52(2) _ Gz(?)ﬁ(z)j + Gf-})ﬂ(l)j —
(N +1)g% + (N = 1)g492 — 2gvg?
= fob2N(N = 1) | (N —1)(¢% +¢2)g9- — 49+9-gv +2Ngg_
—2g+92 +2Ngvg?
N(N +1)g3 + (3N? = 5N)g; g2 — 4(N — 1)gvg®
+AbN(N =1) | g [(N? = 3N +4)g% + (3N? — 5N)g% — 8(N — 1)g. gv + 8¢2
8gvg2 —4(N —1)g492

(6.2.31)

0
+ foboaN(N —1)6 | g_(¢% — g> — 4gvgys + 4g%)
0
Lgvg:
+ SfobeN(N = 1)(N = 2) | v(93 — ¢%)9- + pgvg+g- + og¥g—
2
pgvg>

~2gvg% + (N +1)g3 + (N — 1)g4¢2
+fibN(N =1) | —4Ngvgrg- +2(N —1)gig- + 8g%g-
— 2949 +2Ngyg?
2(N — 1)g+92 — 4gvg?
+ YNV =1)| (2-3N)gig- + Ng3 +8Ngvgrg- — 16g%g- (6.2.32)
89vgZ —4A(N —1)g4 g2

It is easily seen that the first two terms can be expressed as

N+1 N-1 N—-1
@NUV~DUw4 79t 5 9h9E — 20vg4gt + NapeZ + ——gt | +
N(N +1
flh{m( 4+ )gi+(N2-3N+4)g‘i+
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3N? — 5N
ik — 4N~ D)gvgsg? +4g}e?|} (6.2.33)

Therefore the irrotationality condition can be seen as a homogeneous set of equations
in the parameters 6, u, v, p,0 and f],v. This set of equations can be solved in the
form

b6 = bi[6y — f{] (6.2.34)
bop = —4byy
bop = Dbi[df] — 167]

byv = by[by — fil
bgO’ = bl [Qf]/_ —- 4’}’]

As a consequence the most general two loop A functions are completely determined
in terms of the most general admissible four loop metric:

Ngi + (N —2)g492

BB = by | (N =1)(g2 +¢%)9- — 4g:9-9v + 2Nglg_ (6.2.35)
9+(9% — 92) +2(N — 1)gvg?
.
+ bufi | 9o (N =1)(% — 63 +4gvay) + 2(N — 4)g}]
0

—4(N —2)gvg?
+ by | g- [(BN = 4)(g2 — %) — 8(2N — 1)ggv — 4(IV — 8)g?]
— 4(N —2)gvg?
Finally we can use irrotationality as an integrability condition and obtain

N+1, N-1,,

a9 = ai(fobg+f{bl)N(N—1)[—-4————g++ 5939 (6.2.36)
, N -1
~ 29vgr92 + Noyg2 + — gt
B 160 0 g0
+ dg G008

DN (N = 1)g [(V = 1)(g2 — g% + dgvs) + 2V — 4)g?]
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Going back to eq.(6.2.27), we can still make use of the free field normalization condi-
tion on Gyy(g- = 0), thus obtaining the constraint

f=0 (6.2.37)

The second term in eq(6.2.36) is related to the renormalization group properties of
the metric: it is easy to show that its coefficient must take the value

fi=—2bfo [log(w2x2) + v + 1] (6.2.38)

In conclusion, our algebraic construction led us to an almost complete determi-
nation of the structure of the two loop 2 functions and the four loop metric. There
is only one free parameter left, which does not correspond to an arbitrariness in
reparametrization (there is no variable shift preserving the symmetry conditions to
this order, apart from the trivial renormalization group tra,nsformatlon) From a
direct evaluatlon of Feynman diagrams we found

y=0 (6.2.39)
Assuming these results and the validity of eq.(5.3.13) we are now ready to compute

the five loop central charge. From eq.(5.3.16) we obtain in the symmetric scheme the
expression:

3 N+1
C = ot TNV —1) [(5) 6%+ (N = 1)gsg? — 20042

3 N+1 N-—1 N-1 ) ,
+ ZhfoN(V —1) [ 9y + —5—9392 + ——9° — 29v49% + Ngig?
3 . .
-3 [1 + 95 + log(mu w2)] Gl(-?)ﬁ(l)lﬁ(l)] (6.2.40)

All the scale dependence is contained in the last term, as expected from renormaliza-
tion group invariance of C. The symmetries of the model that we already discussed,
yield a set of constraints which are satisfied by the function C' and which are reported
below for completeness.

1. Chiral symmetry
C(94:9-,9v) = Clg+,—g-,9v) (6.2.41)
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2. Group properties
CT — Cg = CZAI{T(g; CA) (6242)

where K7 is a universal function related to f7 and Fr by

3 1
Kr(g;C4) = Z}:/o CugFr(tg; Ca)Pr(tg; Ca) =

3 1 1
= ZOA [gblfogg + Z(bzfo + CAblfl)g4] (6.2.43)

3. Singlet decoupling

oC

E—g—{/— |g._.=0:: 0 (6244:)

4. Conformal invariance of U(1) models

C—cgox N(N—1) (6.2.45)

5. Properties of N=2 models
Clg+,9-,9v)n=2 = Ci(g4)+C_(g9-,6v) (6.2.46)
C-(9-,0) = Cilg.) (6.2.47)

At the end of this chapter it is useful to summarize all the results we found in
a set of tables. Thus table 6.3 reports the explicit expression of the S-function up
to two loops in the two bases S, P,V and +,—,V, table 6.4 contains the metric and
table 6.5 the function C.
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Table 6.3: Summary of S-functions

Basis

Symmetric B-functions (upper indices)

Bs = —2[(N—1)g2 +gs9p — 29v (g5 — gp)]
+ 5w [N95(9§ +9%) — 93(9s — gp) + 29v (93 — 93)

+2N g% (g5 — gp)]

Bp = —+[(N —1)g} + grgs — 2gv(gp — gs)]

+ 522 [Nop(gh + 03) — g3 (ap — 95) + 20v (g} — 43)

+2Ngi (gp — gs)]

By = —igsgp

+ 5= (N~ )gv(gs — gp)* + gsg9p(gs + gp))

Bi = —1[Ngi + (N —2)g2]

+ 2 [Ng3 + (N = 2)g402]

B- = —2[2(N - 1)gsg- —4gvyg_]

+ 5 (V= 1)(g1 +92)g9- —4g+9vg- +2Ngg_]

Pv = —%[g3 —g]

+ 25 [94(g3 — 92) +2(N = L)gvg?]

83
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Table 6.4: Metric

Basis G
IN — 1 1 -2
Gij = 1= 1 2N —1 -2
-2 -2 4N
S,P,V
+ sis [log(7z?u2) + vz + 1] N(N —1)-
(2N —1)gs +gp — 29v gs +gp — 29v — 2(gs — gp)
gs +gp — 2gv (2N —1)gp +95 —29v  2(gs — gp)
—2(gs — gp) 2(g9s — gp) 0
N 0 -1
Gz] = 4].,\:4 0 N-1 0
-1 0 N
+7 ) 14

+ HealraZ P dva ] (N — 1) ( (N—-1)g- (N—1)gr —20v —2g_

(N +1)gy (& —1)g- 0 )

0 —2g- 0
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Table 6.5: C-function

Basis C-function

S, PV C = & - &N - D[N - 1)(g3 + g3)
+39s9p(gs + gp) — Bgv (gs — gP)Z]
+ 52 NV = 1)[(2N — 1)(6 + g3)” + dgs9p (9% + 92 + 959P)
—8gv (95 — 9p)(9% — 93) +'89%f(95 - 9P)2]

= & [L+ 75 + log(ru?a?)] G p1)igM)3

T C = &— N -p[(%L) 62

+(N — 1)g+ g2 — 2gvg2

[E—

N N—-
+ e NV - 1)[Eilgt 4 No1g2 2
+25Lgt — 2gvgs g2 + Nohg? |

-2 {1+vg+ log(mﬂﬁ)] Gz(-?)ﬁ(l)iﬁ(l)j




Chapter 7

Conclusions

This thesis was devoted to study an explicit realization of Zamolodchikov’s C-theorem
[1,2,3] by means of the generalized Thirring model (2.1.1) [32,34,47]. During this work
we have been led to discuss several questions concerning the nature and the properties
of the model at hand and the consistency and limits of validity of the theorem.
Examples of that have been the study of the classical symmetries of the lagrangian,
with the aid of abelian bosonization, or the analysis of the problems induced by
the regularization procedure we have emploied to settle the renormalization of the
quantum theory, and, on the other hand, the discussion of the influence of infrared
divergences on the proof of the theorem and of its interesting consequences in relating
quantum aspects of field theory and geometrical properties of the manifold of coupling
constants. We hope to have provided as much details as possible in each part of the
survey, compatibly with the limits and the scope of this thesis.

Beyond that the study of the application of Zamolodchikov’s theorem led to con-
sider some old and new quantities in quantum field theory, namely A-functions, the
metric tensor Gy in the parameter space and the function C. We have presented the
computation of two of these functions in the framework of perturbation theory up
to the highest perturbative order reachable without too much difficulty (second loop
for the f-functions and fourth for G;;), while the C-function has been worked out
with the aid of Zamolodchikov’s relation. Moreover we have discussed how to recover
the symmetries of the model which are present at a classical level, and indeed how
to exploit them as constraints for an algebraic approach to the determination of the
above quantities.

At the end of this work we would like to point out some issues which deserve more
work and which could be examined more closely in the future:
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o A detailed study of the Ward identities of the model in order to understand
better all the connections between the symmetries of the two dimensional model
and the metric structure of the abstract mainifold of the coupling constants.

e A supersymmetric extension of the model. This would be interesting in two
respects:

1. The problem of -5 has been solved in a self consistent way in the dimen-
sional scheme, and this could allow us to study the supersymmetric Ward
identities in this scheme.

b

The presence of scalar fields in this case would eventually give rise to
infrared divergences, which spoil the original version of Zamolodchikov’s
theorem. From the study of this model we can learn how to answer several
interesting questions about the approach to conformal symmetry in the
supersymmetric case.

e As we have already stressed in the main text the computation of the next
order (five loops) contribution to the metric would allow us to know additional
informations on the geometric structure of the manifold of coupling constants,
such as the curvature. This task involves a huge number of diagrams so that it
is technically quite difficult.

e The four-fermion models can also be treated in a bosonized version (both abelian
and non abelian): the first has been used in section 2.2 in order to exploit the
symmetries of the model. In the second case it is already known that the
conformal algebras of the bosonic and fermionic systems coincide: it would be
interesting to study the perturbation theory of the bosonic model and check if
this equivalence survives outside the critical point.
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Appendix A

Clifford algebras and Fierz
identities in d-dimensions

Dimensional regularization requires an extension of our notion of a Clifford algebra
in d spacetime dimensions, since we must analytically continue d to any (non-integer)
value. We consider a representation of the d-dimensional Clifford algebra defined by

VYo + YoV =2 61 (A1)

The space of matrices acting on Dirac spinor indices is spanned by the completely
antisymmetric products ‘

1
F(k) =Npr - Tw] = E,T Z (—_l)p Vg « - Vo

perm
= Vuaomk (A2)

When the number of dimensions is an integer, then 1 < d and the total number of
these matrices is 2¢. However when d is noninteger the number of matrices must be
considered as infinite. It is quite easy to prove the properties

Vorows = (FDFEDq, L, (A.3)
Yo Vprex Vv = (—1)k~17m---uk v e {/“k} (A'4)
WYV = (1 Y v & i} (A.5)
where we have no summation on indices. As an immediate consequence
TOTO = 1r®p<i4 (A.6)
TOTOT® = +1® no summation on J (A.T)

89
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A few special consequences of the previous results are

1 iz P
S T8+ (COTE Lon] =T, (A.8)
L ) ) ps  pli-1)
2 [%’FM N ( 1) Pm #‘7”] - Z(_l) 6"% Fm---ue[uk] (A.Q)
S D0, = (~1)i(d — 210 (A.10)

and more generally

ST, Ore) | =
V1 enVj V1..Vj
{vi}

— (~1) U1y 3 (;) (d:;> ) (A.11)

We can therefore identify the functions defined in the text

D = (=1)/(d — 24) (A.12)
46D — (ml)%j(j—l)(”l)iiz (Z> <d B Z) (A.13)
p -P
Having defined the matrices
X/(Lij) _ I\(i)%r(j) _ I*(J'),Y“P(i) (A.14)

we can now explicitly compute their decomposition in the basis of matrices T'®). The
relevant decompositions at the two-loop level are

X =0 (A.15)

xy00 = 21{ (A.16)

X487 = 2Suavp — Susa) (A.17)

o = 218, (A.18)

X0 = 2(6upBay — bapbiy) + 205, (A.19)
XH2D = 9 T 6, IO, 4 6,7 — 655TC),

'“5u51—‘(3 + 5#5P§26 + 6#/3P'y§a 6uar—y6ﬁ] (A'QO)

afy
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The Fierz identities are a consequence of the completeness in the matrix space
spanned by the I'(®). All the identities can easily be derived by the master formula

Z k(k Y Z FL’;) uk u1) uk) 6= 2d/25055’7ﬂ (A.21)
k

In the presence of an SU(N) symmetry it may be useful to use the previous formula
in conjunction with the relationship

1
ZTS T}:n = ZR(5im5lj - ]—V,'51351m) (AQ.?)
where T are the SU(N) generators in some representation R and

TrToT® = b, (A.23)

Another important consequence of equation(A.21) is that it allows to decompose the
operators in the basis O as defined in the text. At the two- loop level the relevant
non trivial relationship following from eq.(A.21) are

> XD @ XD = 8(d - 1), ® 7, (A.24)
Hyct, 8
> XN e XM = sdd-1le!
1,08,y
+4 Z P(B4L1a ﬁ#’YCY (A'25)
Ky, 3
> XD e xilY =16(24 - 5) ST, @ TE), (A.26)
o, 3,7v,8 afy

and these allow an explicit computation of the functions I defined in the text.



Appendix B

Mass terms cancellation

In this appendix we show a simple example of the cancellation of mass terms in the
computation of f functions.
The propagator of the fermion field will be
-1 +m

R (B.1)
and we will be interested in the contribution to pole terms in two loop diagrams
coming from the mass term in the numerator. Let us consider for example diagrams
(E) in section 4.1.

(B) = ~gigior | T9 0 (TSI T[S 5()r8 s(~ta)rg]
+ TPS(=L)TYTe [S@)TP S s(—1)rd]) (B.2)

For symmetry reasons only terms even in the variables /; can appear in the compu-
tation, so we can meet only the following integrals

2
m Z?u.lBu

1) - B.

Juu /1112 (lf-%—mz)?(l%—i—mz)(l%-{-mz) (B.3)
2l

oo [ b

= T 2 + ) (B ) (B4)
21,1

(3) _ M7ty

J /1112 (& + m2)2 (1% + m?)( + m?) (B.5)
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m4

@ _
/ v (B F 2 (B + ) (B ) (B:6)

It is easily seen that only the first integral diverges and its pole is

JO = 125 (B.7)

ny

This result implies that the pole contrlbutlon in eq.(B.2) coming from mass terms
can be expressed as

i

€ 29 B B i
(E1)m “QNZIEQinngEq) ® Tg)'yal‘(k) [Tr (P( )I‘c fyal“(]))
—Tr (P(i)l-\(j) F(k)”

= ..1 3Ngig;0x T ® X589 Tr (1§ X309 (B.8)
Let us now consider the counterterm (E2)
N ra(ik 7 1
(E2) = ——Igglg]gkXB(]k) T [X5875()rPsw)) e 7Y (B.9)
1

The mass term can contribute only to the integral

2

©) — / M & B.
J . (Z% n m2)2 542 ( 10)
So we have for the pole term
0 N 2 R 2GRy [ XSGR T g PO
(B2) = ——g:9;906 13 X5 "Tr X381 © T (B.11)

One can see that the contribution of eq.(B.11) exactly cancels the term appearing in
eq.(B.9). The same mechanism works for all the graphs, as it can be easily checked.



Appendix C

SU(N) Thirring model

In this appendix we give a brief summary of the explicit computation of the 8 func-
tions for SU(N) Thirring model [35], and this can provide a check of the results
presented in this work.

The lagrangian of the model is:

7 1 a Ta
CL=9dY+ 59 i (C.1)
where B
Ji =T (C.2)

The operators 7% are the generators of the Lie algebra of the group G in the repre-
sentation R. Their normalization is

Te (T°T%) = Ip6* (C.3)
T = Cp = dg B (C.4)

dr
72,7 = iftere (C.5)

In eq.(C.4, C.5) dg is the dimension of the group, dg is the dimension of the repre-
sentation R, fo% are the structure constants.

We list some formulae which can help the reader in going through the computa-
tions:

fabCfa’bc — CA 5@ a’ (CG)
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S =TT} = 285 4, T (7
G

2(205 = 5C4) = 1 (4Ck + duseds) (C5)
2 da

TPTeTE = <(JF— —;-CA> T (C.9)

The values of the Casimir operators Cp and C,4 for the fundamental and adjoint
representations of SU(V) are given by

N?—1
= =N .
Cr 577 Ca (C.10)
It can be useful to rewrite the lagrangian (1) using a lagrangian multiplier
T - 4 Qg 1 a Aa

In this notation the vertices can be drawn as in figure

a . a
———————— Yudi

j

As we explained in the main text we use an effective propagator

__Y
S(p) = T (C.12)
and as usual it can be verified that the inclusion of a mass term in the numerator of
eq.(C.12) does not change the results for the 8 function.
All diagrams are computed at zero external momenta and the results are given
factorizing the group structure and the Lorentz factors; therefore the zero loop graph

Pt ———
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takes the form

(A0) = =" T* @ T, ® 7, (C.13)
At one loop order the only divergent graph is
——— —TT
a\ /b a : b :
\/ I
Y 1 I
/ N\ | {
/ A\ | |
/ \ | I
— N ! I
b a a b
(A1) = PTT*®T°T* [ 7,5(h)7 ® 7S(=h) (C.14)

+g*T*T* @ T*T* /11 7S ® 1,5 (l ),
2

1
—§’4—GA (84— 2) LT* ® T*7, @ 7+ 79" 1350 © SanAs ® Ag

where the results and the notations of appendix A have been used. It appears that
at one loop we have a f function both for the relevant operator

1 - _
Orn = 597, 1" 7. T%% (C.15)
and for the evanescent operator
1 - _
0 = §¢Sab1“(3)¢ S TGy (C.16)
Brn = ———g’C (C.17)
Th = 59 4 :
1,
fs = 3.9 (C.18)
The renormalization constant in the relevant operator is
me_ L 20,1
239" = 5-9°Ca (C.19)
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At two loops order, assuming

Goare = g + 25797 + ¢° (20 — 2207 (C.20)

where Z, is the wave function renormalization constant, we have
B =2 4° (28 - 22{?) (C.21)

Let us start form the computation of Z§2). The only divergent graph is

and its computation leads to

Crln 21
a2 7 g
T €
The vertex graphs are drawn in the table C.1 and a straightforward computation

gives the following results for their relevant divergent part:

2 g% = Cplely)lng? =

(C.22)

(Gl) = °T(R)C4e3T* @ Ty, ®@ 7,
(G2) = —g*T(R)CAeI2T* @ T, ® 7,
(G3) = 26°T(R) (Cr = 3C4) e BT* @ T*7, ® 7,
(G4) = =313 (16 + d(d — 2)) T°T*T° @ (T°T°T° + T°T*T*) v, ® 4,
(G5) =20° (1 4 2¢) T°T*T° ® (TeTeT® + T5TT° 4+ TeT=T* 4 T*TeT*) 4, ® 7,
G(6) = 2¢°Calal; [LC4(3d — 2)T" @ Ty, ® Y] + 2gPc oIy

T°TPTe ® (QT”TbTC + 2T°TPT® + ToTeT® 4 TTeT° + TeTT® + TbTCT“)
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The second part of (G6) comes from the insertion of the operator Oj. If we denote
the group factors by

F, = T°T°T°Q (T“T”TC + TCT”T“)
F, = T°T'T°® (T“T“‘Tb + TPTeT® 4 T°T°T® + TbTCT“)

1
2R —F, = SCAT° QT (C.23)
the sum (G4) + (G5) + (G6) takes the value
. 3
g [21212 - —722] CaT* ® Ty, ® 7, + 2935—@ R+ F2) 7. ® (C.24)

We see that these graphs do not contribute to the § function of the relevant coupling
Oy, but instead give a renormalization of the operator

F = éIZT“TbTC*y“W/—) (2T°T°T° + 2T°T*T*
+ TaTch—i—TbTaTc*{—TcTaTb+TbTCTa)‘/u'l,b
31
pr = *ngs (C.25)

Taking into account of the wave function renormalization, the graphs (G1-G3) give

2) 1
By = FQECAZR (C.26)
Therefore, up to two loops, the renormalization group flow is driven by the operator

(852 + B5)) Ozn + 8005 + P F (C.27)

We have to work out the reduction formula for the operator ﬁ:gl) Os. The computation
1s essentially identical to the insertion of the counterterms proportional to O3 in the
graph (G6) and gives
N0y =2 g®F C.28
3 V8T L yg2 (C.28)

which exactly cancel the spurious contribution in eq.(C.27). Therefore the renormal-
ization group is driven by the 8 function

1, ln
Pra=—5-g Ca (1 - ‘7‘r‘9> (C.29)
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In order to compare with the results presented in chapter 4 we must recall that

1
Oty = —ZR(O+ + —]\—/:Ov) (0.30)

therefore the relationship between the coupling g and g, is

and consequently

1

Blg+) = lRﬂTh(%) = —'2‘1;;91@1(1 - -g%t) (C.32)

which leads to eq.(4.2.28) for I = 1/2,C4 = N.
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Table C.1: Divergent vertex graph for the SU(N) Thirring model

b [ b [ b
\\]2_ / \Jg(/ 3
c b
n'1 + hh + ‘1'1
Gl , T r
a a
G
N ‘ i,
Lo 13
)
a9 (gl +
1y R
a b az a b
-1
’,11 1;‘| a % 2 b ¢
—l AN S 7
e 1/
G3 G4 :
< Wy 2N
a3 abeg ° 0 R
ay by az b_
! \ Y, { 1 /%
G5 ’\\ X\ /A I\ G6 : i
Y AR A /N b a a b
a b ¢ ¢ a b D ¢ a a ¢ [ G6
G5
1. G6 denotes the contribution of one loop counterterm.
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