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Introduction 1

Introduction

The aim of this thesis is to develope some subjects related to the study
of the theory of relaxed Dirichlet problems. The notion of “relaxed Dirichlet
problem” was introduced in [33] to describe the asymptotic behaviour of the
solutions of classical Dirichlet problems in strongly perturbed domains.
Given a bounded open subset £ of R, N > 2, and an elliptic operator
L in divergence form with bounded measurable coefficients on 2, a relaxed

Dirichlet problem can be written in the form

(1) {Lu—}—,wu,:G in (1,

u=20 ~ on 09,

where G € H™(Q) and p belongs to the space M(Q) of all positive Borel
measures on {2 which do not charge any set of capacity zero. The problem
(1) has to be interpreted in a weak sense. Namely a function u is the solution

of (1) if u belongs to H}(£2) N L?(£, 1) and satisfies
(2) (Buv) + [ wodu=(G,0),
Q

for every v € H}(Q) N L*(,1). Here and in the following (-,-) denotes the
duality pairing between H~!(Q) and H}(Q). The class of relaxed Dirichlet
problems contains all the classical Dirichlet problems in subdomains of (2.
More precisely, for every open subset {2’ of {1 a function u is the solution to

the problem

(3) {Lu:G in Y,

u =0 on 0%,

if and only if its prolongation to zero in Q \ £’ is the unique solution to the

relaxed Dirichlet problem

L’LL + OOQ\QI’U, = G in Q,
u=20 on 01,
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0, ifcap(E\Q,0)=0,

400 otherwise,

(4) comar (E) = {

for every subset E of Q) (here “cap” denotes the harmonic capacity). Thus
the framework of the relaxed Dirichlet problems allows us to treat problems
(3) and (1) in a unified way.

On the class M,(f2) we can introduce a notion of convergence, called 4L -con-
vergence (see [34], [23], [30]): a sequence of measures {pn} of My(Q) ~E -con-
verges to a measure p € My(Q2) if for every G € H~*(Q) the sequence {u,, }

of the solutions to the problems

Luy,, + pruy, =G in
uy, =0 on 01,

~ converge strongly in L?(Q) to the solution u of (1).

The main result concerning relaxed Dirichlet problems is the following com-
pactness theorem (see [34], Theorem 4.14, and [30], Theorem 4.5): every
sequence {p;} admits a ~L -converging subsequence. In the particular case
pih = 0q\q, , this implies that for every sequence {5} of open subsets of
there exist a subsequence, still denoted by {24}, and a measure p € M,y(Q),
such that for every G € H™1(Q) the solutions uj; of the Dirichlet problems

Lup, =G 1in Qy,
(5) {uh =0 on 08y,

extended to 0 on Q\Qy, converge in L2(Q) to the unique solution u of (1).
Moreover, the following density theorem holds (see [34], Theorem 4.16 for the
symmetric case): for every p € My(Q) there exists a sequence {0} of open
subsets of Q such that for every G € H™}(f2) the solution u of (1) is the
limit in L2(Q) of the sequence {up} of the solutions of (5). The proof of
this density theorem provides an explicit approximation only when p is the
Lebesgue measure, while it is rather indirect in the other cases, and does not
suggest any efficient method for the construction of the sets Qb .

The subjects developed in this thesis can be splitted into two parts. The
first one is contained in Chapters 2 and 3 and deals with the problems (1)
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that we briefely call “variational relaxed Dirichlet problems”, due to their
variational form (2).

In Chapter 2 we present an explicit approximation scheme for the relaxed
Dirichlet problem (1) by means of sequences of classical Dirichlet problems of
the form (5). '

In Chapter 3 we apply this approximation result to some shape optimization
problems with cost functionals of the form J(A4) = F(A4,uy) where A, the
unknown of the problem, is an open subset of { and u 4 is the solution of (3)
with ' = A, and we characterize the behaviour of the minimizing sequences
for J (for the explicit form of J see (9) below).

The second part of this thesis deals with relaxed Dirichlet problems with a
measure in the right-hand side, that we call “nonvariational relaxed Dirichlet
problems”.

In Chapter 4 we prove some regularity results for the solution of (1),
depending on the regularity of G, and we introduce, by a duality method,
a notion of solution for the problem (1) if G is a measure with bounded
variation, while in Chapter 5 we study the asymptotic behaviour of these
solutions in perforated domains.

 Let us give more details about the contents of each chapter and some
references.

In Chapter 2 we assume that g € M(Q) is a Radon measure, and we
construct explicitly a sequence {24} of open subsets of §2 such that for every
G € H1(Q) the solutions to the problems (5) prolonged to zero in Q\ Q,
converge in L*(f2) to the solution u of (1). In Section 2.2 the sets Q) will be
obtained by removing an array of small balls from the set 2. The geometric
construction is quite simple. For every h € N we fix a partition {Q%}, of RY
composed of cubes with side 1/h, and we consider the set N(k) of all indices
i such that Qi CC Q. For every i € N(h) let B} be the ball with the same
center as Q% and radius 1/2k, and let E,’l be another ball with the same
center such that

cap”(E}, By) = u(Q})-
Finally, let F = UieN(h) Ei and Q, = Q\E;. Note that the size of the
hole E} contained in the cube @} depends only on the operator L and on
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the value of the measure u on Q.

By using a very general version of the Poincaré inequality proved by P. Zam-
boni [67], we shall show that, if p belongs to the Kato space K{(Q), ie,
the potential generated by p is continuous, then the method introduced by
D. Cioranescu and F. Murat [25] can be ai)phed, so that for every G € H1(Q)
the solutions wj, of the Dirichlet problems (5) converge in L*({2) to the so-
lution u of the relaxed Dirichlet problem (1). To prove that the same result
holds also when p is an arbitrary Radon measure of the class My(Q) we
use the method of p-capacities introduced in [33] and [23]. Finally, if p is a
Radon measure and g & My(f2), then we prove that our construction leads

to the approximation of the solutions of the relaxed Dirichlet problem

Lu+ ppu =G in Q,
u=0 on 011,

where po is the greatest measure of the class M,(£2) which is less than or
equal to p.

In Section 2.3 we show that for every Radon measure u € M,y(f2) and
for every nonatomic, nonnegative Radon measure A it is possible to construct
a sequence {Ej} of subsets of {1 such that E;, is the union of (N — 1)~
dimensional balls centered in a cubical lattice with A(Ey) = 0, and the se-
quence {oog,} 7F-converges to p. While the proof of the approximation
result in Section 2.2 is based on the method of oscillating test functions as in
[25], in this case we follow a completely different line and we use directly the
capacitary method introduced in [23] for symmetric operators and generalized
to the nonsymmetric case in [31].

The study of the asymptotic behaviour of solutions of partial differential
equations in perforated domains is strictly related to the study of some shape

optimization problems with cost functionals of the form
(6) J(A) = F(ua),

where A varies in a suitable class A of open subsets of a given bounded

domain € R, and u_4 is the solution of a partial differential equation

in A (see, for instance, [57], [58], [69], [60], [66], [21], [14], [15], [16]). As it
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was shown in the papers [20], [18], [24], [19], [37], the framework of relaxed
Dirichlet problems turns out to be especially useful in the case where A is
the family of all open sets A contained in 2, and w4 is the solution of the

problem
(7) Luy=G 1inA, ui=0 1in Q\A4,

and F(u) in (6) is an integral functional, continuous on L?(Q), of the form

Flu) = /Qj(m,u)d:z:.

In these papers it was pointed out that in general the corresponding mini-

mization problem
(8) mjn {/ j(z,us)dz: AopenC Q,Luy =G in 4, uy =0 in ﬁ\A}
- Q

does not admit any solution. An explanation of this fact is that, if {Ax} is
a sequence of open subsets of {2, in particular a minimizing sequence of (8),
then the corresponding sequence {u.,} of solutions of (7) has a subsequence
converging to a function u in L?(f2), but, in general, there is no open set
A such that u = uy. Nevertheless, by the compactness theorem mentioned
above, there exists a measure p € M(Q) such that u is the solution of the
problem (1). The relaxed form of (8) is studied in [20] and it is given by

IIhln{/ j(zyu,)de : p€ Mo(Q), Luy+pu, =G inl, u, =0 on 80} )
’ Q

Moreover, if we identify each open set A with the measure py = coq\ 4 defined
in (4), the functional j(p) = [qj(z,u,)dz which appears in the relaxed
problem turns out to be the lower semicontinuous envelope of the functional
J(4) = fQ j(z,u4)dz with respect to the ~L -convergence. It is possible to
prove that the topological space (MU(Q),'YL) is actually a compact metrizable
space (see [33], [30]), and hence the relaxation of problem (8) studied in [20]

can be considered in the general framework of [5].
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In Chapter 3 we treat a case where the cost functionals J depend on
the unknown domain A not only through the solution w, as in (6). More

precisely, we consider functionals J of the form

Joi(zua)dy, i AA) €T,
(9) J(4) =

+ o0, otherwise,

where )\ is a bounded measure in My(Q), and T = [m,M] is a subinterval
of [0,A()] possibly degenerating to a point. Notice that the functional J
depends on A through the domain of integration, through the solution w4
of the differential equation, and through the constraint A(4) € T'. We shall

prove that also in this case the minimum problem
min {J(A4): 4 open, A C Q}
has, in general, no solution, and that the relaxed problem can be written as
min {J(p): p € Mo(Q)} ,

where J is the lower semicontinuous envelope of J in M(f2) with respect
to the 4% -convergence.

The main result of Chapter 3 is an explicit integral representation of J in
terms of the integrand j and of the constraint 7' (Theorem 3.3.1). The
relevant new difficulty with respect to [20] lies in the fact that A appears in
J also in the domain of integration. This requires a substantial change in the
proof, which is based on some new measure theoretical arguments.

In Chapter 4, following the lines of a paper by G. Stampacchia (see [65]),
we find that the solution of (1) is more regular if the datum is more regular: as
for the regularity of u in Lebesgue spaces L?({2) we obtain the exact analogue
of the results of [65]; furthermore we prove the regularity of w in LP(Q, ).
In particular, we find that, if G belongs to H~'?(Q?) with p > N, then u is
in L°(Q) N L>=(Q,p1).

The latter result allows us to study the relaxed Dirichlet problem (1) if G = v
is a measure with bounded variation. In particular we introduce a notion of

solution (that gives, if p = 0, the solution given by G. Stampacchia in [64]),
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proving an existence and uniqueness result. We also show that in the Lebesgue
equivalence class of this solution there is a representative, defined up to a set
of harmonic capacity zero depending on the datum v, that coincides with the
limit of its convolutions with any sequence of positive, spherically symmetric,
§-approximating convolution kernels with compact support. Moreover, we
study the regularity properties of the solution, both in Sobolev spaces H;P(Q)
and in Lebesgue spaces L?(Q, 1), if v belongs to L'(Q) or to L™({2), with m
“small”.
The nonvariational existence result allows us to define the Green function G,
for relaxed Dirichlet problems. We show that it is possible to define Gu(z,y)
pointwise in € x Q outside the diagonal, and that this representative is upper
semicontinuous in each variable, has the usual symmetry property, and the
classical representation formula for solutions of (1) with measure data holds.
The main difficulty in proving these properties consists in overcoming the lack
of continuity of G .

Finally, in Chapter 5 we study the asymptotic behaviour of the solutions
to the problems

(10) {L’uh =v in {Q,

v, =0 on 08,

where v is a measure with bounded variation. It can be easily seen that

N
N-1

H;?(Q), so that there exists a subsequence, still denoted by {vn}, which
converges to a function v in the weak topology of H}'P(Q). On the other hand

for every 1 < p < the sequence {vp} is bounded in the Sobolev space

the compactness result mentioned before guarantees that, possibly passing to
a futher subsequence still denoted by {4}, there exists p € My(Q) such
that for every G € H~!() the solutions uj to the problems

Lup =G in Oy,
Up =0 on Bﬂh,

converge in L2(f)) to the solution u of the relaxed Dirichlet problem (1). Our
goal will be to establish whether v is the solution of

(11) {Lv—l—,u,v::z/ in 2,

v=20 on 01},
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where p is the same measure which appears in (1). An easy example due
to Murat shows that this does not occur in general. It is enough to consider
Qn = Q\ B(zy,1/h), where B(zy,1/h) is the closed ball centered in z and
with radius 1/k, and v = §,,. In this case it is easily seen that v = 0, while
p =0, so that the solution of (11) is the Green function of the operator L in
 with pole z.

In this chapter we prove that if the sequence {ooq\q, } ~L -converges to
1, then for every v which does not charge polar sets the sequence {vp} of so-
lutions to the problems (10) admits a limit v in the weak topology of Hé’p(ﬂ) ,
1<p< —\—A—_-T ,and v coincides with the solution v of (11). Thus, for example,
the asymptotic behaviour of solutions of Dirichlet problems with datum in the
Lebesgue space L'(Q) and defined in perforated domains is characterized by
the asymptotic behaviour of the solutions of the corresponding problems with
datum in H~1(Q).

On the other hand we prove that, if the operator L has regular coeflicients
and and the limit measure g has a density f with respect to the Lebesgue
measure, with f € LP(Q), p > N/2, then for every measure v with bounded
variation in €2, there exists a subsequence {vp,} of the sequence {v} of the
solutions solutions to the problems (10) which converges to the solution to the
problem

{Lv+pv:)\ in 2,
v=20 on 01},
where )\ is a measure with bounded variation in )} depending on v and on
the subsequence {f,}, while z is the measure obtained in (1).

Since the solutions of problems with right-hand side measure are char-
acterized by a duality identity, the method of oscillating test functions used
in [30] to prove the compactness result cannot be applied. Qur approach
deals with a corrector result which could be interesting by itself. For every
g € L°(Q) we consider the solutions uy, u, to the problems

Lup =g in Qp,
(12) {uh =90 on 8Qh,

Lu, +puy, =g in 8,
(13) {u# = 0 on BQ,
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and we denote by wy, w, the solutions of (12), (13) corresponding to g = 1.
Since L and p are regular, the function wy is continuos in  and wy(z) >0

for every z € (1. Thus we can construct the functions
u
Zhp = Up — '—ﬁwh.
w
In [30] it was proved that, if the sequence {up} converges weakly in H;(Q)
to u, for every g € L>(Q), then

for every open set ' compactly contained in Q. Thus

and the remainder z; tends to zero strongly in H},.(92). This allows us to
regard {uu(—i—,’i— —1)} as a sequence of correctors in H} (Q) for the problems
considered above. Under the previous regularity assumptions on L and p we
obtain

T o] gy =0
for every open set {) compactly contained in {2, and this will be the basic tool
in order to pass to the limit in the equations satisfied by v;. We underline
that the regularity assumptions on L and p are suggested by the tecnique
of the proof, and we hope that they could be removed by using a different
approach. However our result generalizes the ones in (56] and [63]. In these
papers is was proved that, under the same regularity assumption on L and
1, and for sequences {Q} with a special geometry, there exists a sequence
of correctors (different from {z;}) which converges uniformly to zero. For
results of this type we refer also to [38] and [46].
The corrector result is still valid if we suppose that for every g € L>(Q)
the sequence {up} of the solutions of (12) converges weakly in Hj () to the

solution u, to the problem

Lu, +pu, =g in 4,
u, =0 in 0\ 4,
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where A is an open subset of {2, and p has the same regularity assumed
before. Then we can also prove that in this case for every measure v with
bounded variations in {2 such that [v|(2N0A) = 0, there exists a subsequence
{vn,} of the sequence {vs} of the solutions to the problems (10) which con-

verges to the solution v, to the problem

Ly, 4+ pv, = A iné,
v, =0 in Q\ A.

Moreover, if 0A is smooth, the result is proved for every measure v with

bounded variation.

The approximation result stated in Section 2.2 was obtained in collabo-
ration with Prof. G. Dal Maso and it is published in [32], while Section 2.3 is a
generalized version of the result obtained in collaboration with Prof. A. Braides
of the University of Brescia and published in [12].

The application to shape optimization problems contained in Chapter 3 was
investigate in collaboration with Prof. G. Dal Maso, Prof. G. Buttazzo of the
University of Pisa, and with Dott. A. Garroni of SISSA, and it is published
in [22].

The results of Chapter 4 were obtained in collaboration with Dott. L. Orsina
of the University of Roma I, and they are published in [52], while Chapter 5
contains results published in [53].
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Chapter 1
Definitions and preliminary results

In this chapter we collect the main preliminary results and notation
needed in the sequel. The preliminaries related to only one chapter will be

contained in the first section of the chapter itself.

1.1. Capacity and Sobolev spaces

Throughout this thesis  will be a bounded open subset of RN, N >2,
and B,(z) (or B(z,r)) will be the open ball of center z € RA and radius
7. For every set E, 1. will be the characteristic function of E, that is the

function defined as
1, fz€eFE,

1p(2) = {o, if o ¢ E.

We shall denote by L%({,u), 1 < g < 400, the usual Lebesgue spaces
with respect to a Borel measure p. If g = L is the Lebesgue measure
on RN, we set LI(0,L) = LI(Q). We shall denote by H"4(), H;(Q),
1 < g < +oo, the usual Sobolev spaces, and with H(Q2) (resp. H}(Q))
the space H12(Q) (resp. H&’z(ﬂ)) The dual space of Hg’q(ﬂ) will be de-
noted by H”lfql(ﬂ) where ¢’ is the conjugate exponent of g. The dual space
of HY(Q) will be denoted by H~!(Q2). A function u belongs to L ()

loc
(resp. HY(Q)) if w € LYQ') (resp. H1(Q')) for every open set ' com-
pactly contained in @ (' CC Q). The duality pairing between H~'(Q2)
and H} () will be denoted by (-,-).
If Q' is an open set compactly contained in 2 and u € Ha’q(ﬂ’), then
we can extend u to () by setting v = 0 in )\ Q'. We shall always identify u

with this extension, which is an element of H,'¢(02).

Definition 1.1.1 Let q be a real number, 1 < ¢ < +oc0. Let A be an open
subset of ). The q-capacity of A with respect to §} is defined as:

(1.1.1) cap,(4,Q) = inf {/ |Du|'dz :uw € HyY(Q), u>1, ae. in Q} ,
Q
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We use the convention that inf @ = +oco.

This definition can be extended to any subset E of ) in the following
way:
(1.1.2) cap, (E,§) = inf {capq (4,Q), Aopen, EC A} .

Using Holder inequality, it is easily seen by (1.1.1) that, if p < ¢ and if 4

is an open subset of (1, then

Q=

(1.1.3) (cap, (4,9))7 < |9]7 77 (cap, (4,9))7 ;
by (1.1.2), this inequality clearly holds for every subset E of Q.

We say that a property P(z) holds cap,-quasi everywhere (cap,-q.e.)
in  if there exists a subset £ of ! with g-capacity zero such that P(z)
holds for every = in Q\E. The expression “almost everywhere” (a.e.) refers,
as usual, to the analogous property for the Lebesgue measure.

We remark that cap, coincides with the harmonic capacity studied in
potential theory (see e.g. [7], [44] and [49]). In the following we always write
cap instead of cap, and q.e. instead of cap,-q.e. .

A function u:{) — R is said to be cap,—quasi continuous (or quasi
continuous for ¢ = 2) if for every € > 0 there exists a set £ C {1 with
cap,(E,Q) < ¢ and such that the restriction of u to 2\ E is continuous. We
recall that for every z in H;’q(ﬂ), 1 < ¢ < +oo, there exists a cap,-quasi
continuous function %, unique up to subsets of g-capacity zero, such that v =
% almost everywhere (see, e.g., [68], Theorem 3.1.4). In the following we will
always choose in the equivalence class of a function u belonging to H&’q(ﬂ)
its cap,-quasi continuous representative .

Now we give some properties of the cap,-quasi continuous representative

we shall use in the following.

Theorem 1.1.2 Let q be a real number, 1 < ¢ < +oo. Let {u,} be
a sequence of H,'%(Q) functions that converges strongly to w in the same
space. Then there exists a subsequence {uy,} that converges to u cap,-g.e..
Moreover, if w and v are two functions in H"9(Q) such that v < v almost

everywhere, then u < v cap,-q.c..

Proof. See [39], Theorem 2.1. L]
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1.2. Measures

By a Borel measure on {} we mean a positive, countably additive set
function with values in R defined on the o—field B(Q) of all Borel subsets
of . By a Radon measure on {)} we mean a Borel measure which is finite
on every compact subset of . If u is a Borel measure and E € B(f), the
Borel measure pl_E is defined by (zL_ E)(B) = p(E N B) for every set
B € B(Q). If p is a Borel measure, and h is a Borel measurable function, we
shall denote by hp the Borel measure defined by (hp)(B) = S hdu for every
set B € B(Q). For every signed measure p, pt and p~ will be respectively
the positive and negative part of p, and |p| = pt + p~ will be its total

variation.
Using the notion of capacity, we can define a class of Borel measures.

Definition 1.2.1 We denote by My(Q) the set of all nonnegative Borel
measures p on S0 such that p(B) = 0 for every Borel set B C Q with
cap(B,{1) =0.

For every subset E of () we shall denote by cop the measure in M, (Q2)
defined by

0, if cap(BNE, Q) =0,
400, otherwise,

(1.2.1) cop(B) = {

for every Borel set B C ).

Definition 1.2.2 We say that a nonnegative Radon measure v on Q belongs
to H~1(Q) if there exists f € H'(2) such that

Uph= [piv  VpeOF@).
We shall always identify f and v.

Tt is well known that every nonnegative Radon measure which belongs to

H=1() belongs also to M () (see [68], Section 4.7).

Another class of measures we are interested in is the Kato space.
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Definition 1.2.3 The Kato space K3() is the cone of all positive Radon

measures p on §) such that

lim sup / Gn(y — z) du(y) =0,
QNB,(z) .

r—0% zeQ

where G is the fundamental solution of the Laplace operator —A.

For every p € K‘,\F(Q) and for every Borel set £ C {1 we define

_ _ _2=N .
Iy = 502 [ Iy = 2PN aduty), N 23,
diam (F) .
= log | ——" ) d E f N =2.
el et 525[5 og< — ) ply) +w(E), i

For every p € K() it is easy to see that ||ul| < 4co and |||

K3 (Q) K} (E)
tends to zero as diam( F ) tends to zero. Finally, we recall that every measure

in K3(Q) is bounded and belongs to H~*(2). For more details about this
subject we refer to [1], [33], [47], [61].

Theorem 1.2.4 Forevery p € My(Q) there exists a positive, Borel measur-
able function h, and a positive Kato measure v such that fQ fdp= fQ fhdy

for every quasi continuous function f € L*(Q,pu).

Proof. See [4], Proposition 2.5, and [28], Theorem 2.6. [

1.3. Varational relaxed Dirichlet problems

Let A = A(z) = (aij)ij=1,.. N, with aij:RN — R, be a matrix with

measurable coefficients such that

(1.3.1) Alz)E-€>0¢)? for a.e. z € RY, V€ e RY,
and

for some constants 0 < § < @. Let L: H}(22) — H~!(Q) be the operator de-
fined by Lu = —div (A Du); thanks to the hypotheses on A, L is a uniformly
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elliptic and bounded operator. We shall denote by L* the adjoint operator
associated to L, i.e., L*u = —div(4* Du), where A* = (aji)ij=1,..,N is the

transposed matrix of A.

We give the definition of relaxed Dirichlet problems for the operator L

as it was given in [33].

Definition 1.3.1 We say that a function u is a local solution of the equation
Lu+pu=fin Q, with f € H}(Q) and p € Mo(Q), if w € HL ()N
L2 (Q,p), and

loc

(1.3.3) /ADuDvdm—l—/uvd,u:(f,v),
Q Q

for every v € H*(Q) N L?(Q, p) with compact support in Q). We say that u

is a solution of the relaxed Dirichlet problem

Lu+pu=/f infl,
(1.34) {u =0 on 0},

with f € H=1(Q) and p € My(), if u is a local solution and u belongs to
H(9)-

Theorem 1.3.2 Suppose that f € H™*(Q) and p € Mo(2). Then there

exists a unique solution u of the problem

{Lu—l-,uu::f in §,
vw=20 on 0.

Moreover, u belongs to H}(Q) N L*(, 1), satisfies

(1.3.5) /;ADuDvd:c—l—/S;uvd/,L: (f,v),

for every v € H}(Q) N L*(Q, p), and

for some positive constant ¢ depending only on N, 6, and O.

Proof. See [33], Theorem 2.4. O]
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Remark 1.3.3 The solution of (1.3.5) given by the preceding theorem may
not be a solution in the sense of distributions. Actually, as has been shown in
[34], Remark 3.11, there exist a measure p such that Hj(Q)NL*(Q,p) # {0},
while C$°(Q) N L2(Q,p) = {0}.

Remark 1.3.4 Let p € My(Q), and let h and v be respectively a Borel
function and a Kato measure as in Theorem 1.2.4. Since the functions in
H}(£) are quasi continuous, then, by Theorem 1.2.4, Jquvdp = fQ uv hdy
for every u and v in H}(Q) N L?(Q,p). Hence, the solution u of (1.3.5) is
also the solution of the relaxed Dirichlet problem with p is replaced by h~y.

Remark 1.3.5 If E is a closed subset of §2, then a function u is the solution
of (1.3.5) corresponding to p = cog if and only if u =0 q.e.in E and u is
the solution in Q \ E of the classical Dirichlet problem '

Lu=f imnQ\E,
=0 on 0(Q\ E),

(see, for example [BuDM1}, Section 2).
The solutions of relaxed Dirichlet problems satisfy a maximum principle.
Theorem 1.3.6 Let p; and py be in Mo(Q2), with py < py. Let fi and

fo bein H™Y(Q), with 0 < fo < f1. Let u; and uy be the solutions of

{Lui+#iUi=fi in Q,

u; =0 on 0}, 1=1,2.

Then 0 < uy < u; almost everywhere in ). Moreover, every solution u of
(1.3.5) with positive datum f satisfies Lu < f in the sense of distributions
on ().

Proof. See [33], Proposition 2.6 and Theorem 2.10. U

For every p € My(Q) we define w, to be the unique solution in the sense
of (1.3.5) of the problem

(1.3.6) {qu +pw, =1 inf,

w, =0 on 0.
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Remark 1.3.7 If we apply Theorem 1.3.6 with fi = f» =1, pu = 0,
pa = p, and the regularity results for classical Dirichlet problems (see [64],
Théoréme 4.2), we obtain that there exists a constant ¢, depending only on
9, ©, N and § such that w,(z) < c for almost every z € (1. Moreover,
again by Theorem 1.3.6 w, >0 g.e. in Q, and for every solution of problem
(1.3.4), with f € L>(Q), we have |u(z)| < | flloowp(z) for every z € Q2.

As a consequence of Theorem 1.3.6 we obtain the following result.

Lemma 1.3.8 If p1,ps € Mo(Q) and py > po, then wy, < wy, g-€ in §.

The main tool for the study of the asymptotic behaviour of Dirichlet prob-

lems in perforated domains is the following notion of convergence in My(92).

Definition 1.3.9 Let {us} be a sequence of measures of Mo(Q) and Iet
p € My(Q2). We say that {pn} ~L -converges to p (in §) if the sequence
{un} of the solutions to the problems

Lup + prup = f in Q,
up = 0 on BQ,

converges weakly in H}(§2) to the solution u of the problem

Lu+pu=f inQ,
u=20 on 011,

for every f € H™1(Q).

Remark 1.3.10 This convergence of measures is the natural extension of the
notion of 4L -convergence introduced in [34], when L is the Laplace operator,

and in [23] when L is symmetric.

Then main properties of v% -convergence are stated in the following propo-

sitions.

Proposition 1.8.11 (Compactness). Every sequence of measures of M (1)

contains a L -convergent subsequence.

Proof. See [30], Theorem 4.5. O
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Proposition 1.3.12 The sequence {uy} 7% -converges to p if and only if
{un} 4X" —converges to p.

Proof. See[30], Theorem 4.3. U
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Chapter 2
Approximation of relaxed Dirichlet problems by boundary
value problems in perforated domains

The aim of this chapter is to present an explicit approximation scheme for
relaxed Dirichlet problems by means of sequences of classical Dirichlet prob-
lems in perforated domains. We assume that p € M () is a Radon measure,
and in Sections 2.1 and 2.2 we consider only the case when L is a symmetric
operator. Nevertheless, using the results in [31] about p—capacities associated
to a nonsymmetric operator and with other minor changes, Theorem 2.2.9 be-

low can be extended to the case of nonsymmetric operators.

2.1. Preliminaries

Let L: HY(Q) — H~*(Q) be a linear elliptic operator in divergence form
Lu = —div (4 Du),

where 4 = A(z) = (aij(z)) is a symmetric N x N matrix satisfying (1.3.1)
and (1.3.2) with § =« and © = a~! for a suitable constant a > 0, and let
JIRS MU(Q)

A set function ca,pﬁ can be associated with every measure p in the

class My(f2).

Definition 2.1.1 Let p € My(Q). For every open set A C () and for every
Borel set E C A we define the p-capacity of E in A corresponding to the

operator L as

cap{j(E,A):min{(Lu,u)+Lu2du:u—lEH&(A)},

The p-capacity corresponding to L = —A will be denoted by cap,, , while
the p-capacity with respect to p = coq will be denoted by capl. The latter
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coincides with the classical capacity relative to the operator L according to the
definition of [64] and [50]. If L = —A and p = cogq, then cap’ coincides with
the harmonic capacity introduced at the beginning of this thesis. If p = coF
for some F C Q, and L is any elliptic operator, then capf;(E,A) = capZ(EN
F,A) for every E C A. .

Some of the properties of capfj are stated in the following proposition.

Proposition 2.1.2 Let p € My(2), A, B open subsets of { and E, F
subsets of A. Then
(i) cap{j(@,A) =0;
(i) ECF = capL(E,A) < capk (F, A);
(iii) capﬁ(E UF,A)< cap{;(E,A) + capﬁ(F, A);
(iv) ACB = cap{;(E,A) > cap{;(E,B);
(v) acap,(E,A) < capl(E,A) < a"'cap,(E,4) < a~tcap(E, A);
(vi) if {E} is an increasing sequence of subsets of A and E = UpEs, then
ca.p{j(E,A) = sup, capﬁ(Eh,A).

Proof. See [33], Proposition 3.11, Theorem 3.10 and [28], Theorem 2.9. U

Since we are dealing with symmetric operators, the ~F -convergence of a
sequence of measures {u} is related to the I'~convergence of the quadratic

functionals

F,,(u) = (Lu,u) +/ u? dpy
Q

as it is stated in the following theorem.

Theorem 2.1.3 A sequence {un} in My(Q) ~L-converges to the mea-
sure p € My(Q), if and only if the following conditions are satisfied for
every u € H}(Q):

(a) for every sequence {u} in Hj(Q) converging to u in L?(Q)

Fy(u) < h}fnianuh(“h)§

(b) there exists a sequence {up} in H}(Q)) converging to u in L*(Q) such
that
Fu(u) = Jim Fy, (u)

Proof. See [4], Proposition 2.9. U
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Our definition of v -convergence coincides with the definition considered
in [28]. As shown in [4], Proposition 2.8, if properties (a) and (b) hold on 2,
then they also hold for every open set {' C Q. Conversely, if (a) and (b)
hold for every open set ' CC 2, then they hold on 2. So our definition
of 4T -convergence differs from the definition given in [23] only in the fact that
now the ambient space is §) instead of RY. When L = —A, our definition

coincides with the definition given in [33].

Remark 2.1.4 Let {};} and {ps} be two sequences in M (§2) which AL
converge to A and p, respectively. If A, < pp for every h, by Theorem 2.1.3
we have [,u?dX < [, u®dp for every u € H}(Q). In particular, if p is a

Radon measure, then A < p.

Theorem 2.1.5 Let {u} be a sequence in M(Q2) which +% -converges to
a measure p in My(§2). Then

capfb‘(A,B) < H}fllio%f capﬁ’h (4, B),

for every pair of open sets A, B, with AC B C Q.
Proof. See [28], Proposition 5.7. LJ

We consider now a sufficient condition for the 4% -convergence of a se-
quence of measures of the form {cog, }, where {Ex} is a sequence of compact

subsets of (. In this case, if Qp = Q\E}, the solution up coincides with the

solution of the classical problem

Luh = f n Qh,
Up = 0 on 8Qh y
prolonged to zero outside {1j.
Assume that {E}} satisfies the following hypotheses, studied by D. Cio-
ranescu and F. Murat: there exist a measure p € H~1°(), a sequence

{wy} in H'(U), and two sequences of positive measures of H7Y(Q), {vn}
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and {Ap}, such that

wh —1  weakly in H\(U),
wp, =0 qe. in E,
Lwy =vh — M,
vy, — g strongly in H71(Q),
Mo —p weakly in H1(Q),

and (Az,v) = 0 for every h € N and for every v € HI(Q), with v = 0 q.e.
in E;.

Under these hypotheses the sequence {un} converges weakly in Hj(Q)
to the weak solution u of the problem

{Lu-{—p,uzf in Q,
u=0 on 0%

(see [25], Théoréme 1.2). Later, H. Kacimi and F. Murat pointed out that
the hypothesis g € H~1°°({l) can be replaced by p € H™(Q2) (see [46],
Rémarque 2.4).
In conclusion, using the language introduced in Definition 1.3.9, the following
theorem holds.

Theorem 2.1.6 If {E}} satisfies the hypotheses considered above, with u €
H~Y(Q), then the sequence of measures {oog, } ~L-converges to the mea-

sure [.

We shall use in the following a Poincaré inequality involving Kato mea-

sures.

Lemma 2.1.7 Let A be a Borel subset of a ball B = Bpg(zy) such
that diam(A) > g R for some ¢ € (0,1), and let p € K$;(A). Then there
exists a positive constant c, depending only on ¢ and on the dimension N of

the space, such that

2du < / Vul|?d
‘/Au /L_CHPJHK:_(__U BRl u! T

for every uw € H}(Bg).
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Proof. An inequality of this kind was proved by P. Zamboni in the case N >
3, A = Bg, and p absolutely continuous with respect to the Lebesgue mea-
sure. The same arguments can be adapted, up to minor modifications, also

to the general case. The main change in the case N = 2 is the use of the

inequality
1 diam(A4
/ R — Y (log (-—E‘E‘(——)) +1) Vz,z € 4,
Bn Iz —yllz — v |z — 2|
which can be proved by direct computation. U

Finally we need a sort of dominated convergence theorem for measures

in H71(Q).

Lemma 2.1.8 Let {un} be a sequence of positive measures belonging to
H~'(Q) that converges to 0 in the weak™ topology of measures and suppose
that there exists p € H™1(Q) such that pp < p. Then the sequence {pr}
converges to 0 strongly in H™*(Q2).

Proof. This result could be obtained easily by using the strong compactness
of the order intervals in H~(Q). However, we give here a self-contained ele-
mentary proof. Let us define vj = p — pp. Clearly HVhHH—x(Q) < H#HH—l(Q)
and so, up to a subsequence, {vp} convergesto weakly in H~(Q). The pre-
vious inequality, together with the lower semicontinuity of the norm, implies
. This shows that {v,} converges

that ”Vh”H-n( converges to H[.L”H

Q) N
to p strongly in H~!() and concludes the proof of the lemma. [

2.2. The approximation result

In this section we prove that for every Radon measure p € My(Q) the
general approximation rule outlined in the introduction provides a sequence
of measures of the form {oog, } which 7' -converges to p according to Defi-
nition 1.3.9.

To deal with the case p € K(Q), we need the following lemmas.

Lemma 2.2.1 Let U and V be open subsets of Q, with V.CC U CC ,
and let w be the L-capacitary potential of V with respect to U, ie., the
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unique solution of

{wEHé(U), w>1gqge onV,

(Lw,v —w) >0, VYve Hj(U),v>1gqe onV.

Let us extend w to ) by setting w =0 on Q\U. Then w € Hj(R) and w =1
q.e. on V. Moreover there exist two positive Radon measures 7y and v
belonging to H~'(f) such that suppy C 8V, suppr COU, Lw =~ —v in
Q, and v(Q) = 7(Q) = cap™(V,U).

We call « (resp. v) the inner (resp. outer) L-capacitary distribution of V
with respect to U.

“Proof of Lemma 2:2.1- -Itis ‘well known (see [64], Section 3) that there
exists a positive Radon measure v € H™}(U), with suppy & gV, such
that Lw = ~ in @ and 7(Q) = cap®(V,U). Let us consider now the fol-
lowing obstacle problem
{zEH&(Q), z >0 q.e. in Q\U,
(Lz+~,v—2)>0 Vve Hj(Q),v>0gqe in Q\U.

Tt is well known that there exists a unique solution z of this problem, that z
is a supersolution of L+7,i.e., Lz++ = v > 0 for some positive measure v €
H~1(Q), and that z < { for every supersolution ¢ € H'(2) of L+~ with ( >
0 ge. in Q\U (see [48], Section I1.6). Since 7y is a positive measure, 0 is
a supersolution of L + . Consequently z < 0 ge. in 2. As z > 0 q.e.
in Q\U, we conclude that z = 0 q.e. in Q\U, hence z € H}(U). On
the other hand Lz +~ = 0 in U. As Lw = 4 on U, by uniqueness we
can conclude that z = —w in U, hence in . This implies Lw = v —v
in Q. As Lw—~v=01in U and in Q\U we conclude that suppr C 9U.

Since Lw = v — v in {2, we have

ADngad:z:-:/god'y—/godu Yo € HY(Q).
Q Q Q

Let 9 be a cut-off function of class C§°(2) such that ¥(z) =1 in U. Choos-

ing v = 1(w — 1) as test function we obtain

/;ADwazl)dm—%—/g;ADwa(w——l)d:c:‘/Qzﬁ(w—l)d’y-}-‘/;zzb(l—w)dv
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and, using the fact that w = 1 y-a.e. in Q and ¥ (1—w) =1 q.e. on suppv,
we obtain [, A DwDw dz = v(Q). As () = cap?(V,U) = [, ADwDw dz,
we conclude that v(Q) = v(Q) = cap®(V,U). Ul

Let us fix z° € Q. For every p > 0.let B, = B,(z") and let @, be the
open cube {z € RM: —p <z, —2) <pfork=1,...,N}. H0<p<r
and B, CC Q, let w? be the L-capacitary potential of B, with respect to B,,

and let v? be the corresponding outer L-capacitary distribution.

Lemma 2.2.2 For every q € (0,1) there exists a constant ¢ = c(g,a,N),
independent of the operator L, such that, if B, CC{ and 0 <p < qr, then

1 -1
- dv? < ¢ —rme— v’
z/f(aB,.) /;Br(la Vr — chr(aBr) ‘/83r(P VT’

for every ¢ € H*(Q,) with ¢ >0 g.e. in Q.

Proof. Let us fix q, p, 7, ¢ as required, and let v € H}(Q) be a function

whose restriction to B, is a solution of the Dirichlet problem

Lu=20 in B,

We may assume that v = ¢ g.e. on the annulus Bgr\ B, for some R > 7, so
that u = ¢ q.e. on Br\B,. By De Giorgi’s theorem, we have u € C°(B,).

For every s € (0,7) we want to prove that

1 1
2.2.1 —-———f ud ::-————/ dv’,
(22.1) S30E:) Jos, " T 0208, Jos, ¢

where 7 is the inner L-capacitary distribution associated with wi. Using

the symmetry of the operator L, we get

0_:/ ADquﬁdaz:/ADwﬁDuda::
B, Q

:/udvﬁ—fuduﬁ:/ ud’yf—/ @ dv;.
Q Q 6B, OB-

Since v3(8B,) = cap®(Bs, B,) = 75(0Bs), we obtain (2.2.1).
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Now we remark that, by the maximum principle, © > 0 on B,. On the

other hand, by Harnack’s inequality,

supu < ¢ inf u,
B, Far

where the constant ¢ depends only on N, g, «, (see [64], Theorem 8.1). If
we apply (2.2.1) with s = p and s = ¢r, we obtain

1 / 1
AR de£’=~——————/ udyl < supu <
vr(0B:) Jos, 7+ (0B,) 8B, B

qr

1 1
<cinfu <c—grmm— uwdyl" = —F——"“/ pdvi’,
B, 75 (anr) 8Bgr ‘ 1/3 (BBT) 8B,
and the lemma is proved. ]

For every 0 < p <7, with B, CC Q,let M?: H'(Q,) — R be the linear
function defined by

1
2.2.2 MPyu = —7—— dv?
( ) T u VTI-J(BBT-) o8, u Vr’

where v? is the outer L-capacitary distribution of B, with respect to B;.

Lemma 2.2.3 For every q € (0,1) there exists a constant ¢ = ¢(q,a,N)
such that, if Q. CC Q and 0 < p < gr, then

lu~MEul ) S crllDul

Qr) L*(Q,)’

for every v € H*(Q,).

Proof. Let usfix q, p, r as required. It is not restrictive to assume z’ = 0.
Let Q = Q; and B = B;. Let us consider the operator L, defined by L,u =
—div (A, Du), where A,(y) = A(ry). It is easy to check that, if wf(z) is
the L-capacitary potential of B, with respect to B, then v%(y) = w(ry) is
the L,.-capacitary potential of B, with respect to B. By Lemma 2.2.1 we
can write L,v? = X — p?, with supp A2 C 0B, and supppul C 9B. We
want to prove that for every u € H*(Q,) we have

(2.2.3) / wdv? =72 f u, du?,
8B, 8B
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where u,(y) = u(ry). Let us fix u € H'(Q,) and let ¢ € C5°(Q) be a cut-off
function such that ¥ =1 on 8B, and ¥ =0 on B,. If ¥,(y) = ¥(ry), then

/ uduf:/ uq,bduf:—/ ADwfD(uvy)de =
6B, OB, ' -

R e el Rl I
B 6B 8B

which proves (2.2.3). Taking u = 1 we get v?(8B,) = r "2 u2(8B), so that

the previous equality gives

1 1
2.2.4 — / vdvf = 57— / updp?
(2.2.4) vE(8B;) Jom, HE(BB) Jop T H

for every u € H*(Q,). Finally, we recall that, if P is a projection from H*(Q)
into R, then the following Poincaré inequality holds for every » in H(Q):
e — P(u)

<B|P| | Dl

20 (H' (@) L(Q)’

where (HI(Q)), is the dual space of H'(Q) and the constant 5 depends only
on-the dimension N of the space (see [68], Theorem 4.2.1). Applying this

result to

1
p —_ p
Pru)= pr(0B) /aBUd““

and using (2.2.4), we obtain

— MP 12 — N _pr 2 <
o= gl = [ (o= P <
. 1 2
< 2, N 14 , 1‘2 i
e25) <8 (g Wy ) [ IDuel s

2 2 1 P ? 2
=57 (o Wiy ) [ 1Dw e

It remains to estimate ;—g—é—B)H/,LﬁH( . By Lemma 2.2.2, applied to L,,

HY(Q)
we obtaln .

<e— dpd”
S € LT (8B) /aB el dp

: /
dpy,
#ﬁ(aB) 5390 #
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for every ¢ € H*(Q), so that

1
(2.2.6) ( 55 oy = aramy M )

By Proposition 2.1.2(v) and by Lemma 2.2.1 we have
(2.2.7) pi"(0B) = cap’(Bg, B) > acap(B,, B).
Let ¢ € C(RY) be a cut-off function such that ( =1 on 8B, ( =0 on B,,

0 <(¢<1on B,and |D{| < ¢; = 2/(1 —q) on B. Then, using again
Proposition 2.1.2(v), for every ¢ € H'(Q) we obtain

[odur= [ pcaur=- [ 4-DutrD(ecyay <
Q 8B

(22.8) < cya™/2 (cap™ (By, B llell o
< cga (cap(By, B))'/? nsonHl(Q).
From (2.2.6), (2.2.7), (2.2.8) we obtain
1
JE(6) 12 H(H @) = < k(g, e, N),
which, together with (2.2.5), concludes the proof of the lemma. L]

For every r > 0 let 0, be the cube {z e RN: —r <z, —z} <7 fork =
., N}, so that @Q; is the interior of Q..

Lemma 2.2.4 Let p be a measure of K;(Q) Forevery r > 0, with Q, CC
Q, let p=p(r) € (0,r) be the radius such that capl(B,, B,) = u(Qr), and
let M, = Mf(r) , where Mf(r) is the average defined in (2.2.2). Then there
exists a function w,: R4+ — R, with r]_igle w,(r) = 0, such that

(22.9) [ — M| wu(r) || Dulf

L2(Q) -

for every uw € H*().
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Proof. First of all we prove that for every g € (0,1) there exists 74 > 0 such
that p(r) < gr for r < ry. We consider only the case N > 3;the case N =2

is analogous. Since p is a Kato measure, for every 7 > 0 we have

pOnB) N < [ =o' P N du(y) S $0),
QNB-
where 1 is an increasing function with ]im+1,b(r) =0. If p=p(r) > gr,
r—0
then, recalling that cap(Bgr,Br) = ¢4 #N=2 and using Proposition 2.1.2(v),

we obtain
acy PN 2 < acap(Bp,Br) < CaPL(BP’Br) = “(Qr) )

So we can write acyr™ "% < u(Qr) < p(QNBy.) < BrP(Nr) r¥=2 Choos-
ing r, such that (N ry) < acy/Bn, we obtain a contradiction for r < rq.
Therefore, there exists r, > 0, with Q,, CC Q, such that p(r) < gr for
every r < ry. Since ¢; — +oo as ¢ — 1, we can choose 7, so that for
every > 0, with Q, CC Q, there exists g € (0,1), with r <7y .

Let us fix ¢ € (0,1). It is clearly enough to prove (2.2.9) for every 7 < 7q.
As p € K;(Q), by Lemma 2.1.7, there exists a constant ¢y > 0 such that,
if @, CC, then

2 2
(2.2.10) /,. v dp <ecn ””HK“{.(Q,) /BN, |Du|” dz
for every v € H} (Bnr)-

Let us fix a bounded extension operator II: H*(Q:) — Hj(Bx), and for
every 7 > 0 let us define the extension operator O, HY(Q,) — Hj(Bxr)
by (ILu)(z) = (Hu,)(z/r), where u.(y) = u(ry). It is easily seen that the

boundedness of II implies the existence of a constant kx > 0 such that

(2.2.11) / |D(IL, v)|* dz < kx (/ |Dv|? dz + —:—12— / v? d:c)
Bxr Q- ™ JQ,

for every v € H*(Q,). Note that, if v € H'(?) and Q. CC Q, then v =1, v

g.e. on @, since both functions are quasi continuous and coincide on Q.
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Using (2.2.10) and (2.2.11), for every u € H'(Q2) we obtain

[ =t du<enllily g, [ (P 10)) " ds

. 1 ,
SCNkN”#“Kf{,(Q,) (/Q |Du‘2dz+ﬁL (u — M, u) dm).

As r <r,, we have p = p(r) < gr, so that Lemma 2.2.3 implies that

1
2

(v — Myw)? dz < / |Dul? dz,
Q. Q-

hence
[ M) dp S enbn (0 lal oy, [ D0,
o k4@ o,
for every 7 < 7, and for every u € H'(2). Since H/,LHK+(Q \ tends to zero
N r
as T tends to zero, the statement is proved. ]

We are now in a position to prove our result for Kato measures.

Let {Q;z}iezh' be the partition of R™ composed of the cubes

Q;z-:_{:z;ERN zk/hgzk <(zk+1)/hfork=1,,N}

Theorem 2.2.5 Let p € K3(Q). Let N(h) be the set of all indices i such
that Qi CC Q. For every i € N(h) let Bi be the ball with the same center
as Q% and radius 1/2h, and let E} be another ball with the same center such
that

cap”(E}, By) = n(Qh)-

Define Ej = UiE.’\'(h) E} . Then the measures g, ~% -converge to p as h —

0.
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Proof. Let v} be the L-capacitary potential of E} with respect to B,
extended to 0 on 2, and let w} =1 —v! . By Lemma 2.2.1, we obtain Lwi =
vi — AL in Q, with v}, AL € H™Y(Q), vi > 0, A{ > 0, suppv} C 8B;,
supp )\}; C 8E}, and

(22.12) vi(Qh) = A(Qh) = cap™(Ej, By) = w(Q3)-
Let us define w, € H(Q) as

wi in B,‘Z\E,’I,
(2.2.13) wi=1{0 inE,

1 elsewhere

and the measures v, and A, as

(2.2.14) vy = Z 1/;;, Ahz Z /\Z

iEN(R) iEN(R)
We want to prove that all hypotheses of Theorem 2.1.6 hold for wj and vy.

First of all, we prove that wj; converges weakly to 1 in H'(f). Since,
by the maximum principle, 0 < wy < 1 in 2, we have that {wy} is bounded
in L?(©2). On the other hand,

o [1Dwifdr< 3 cap (B[, Bi) = Y w(@Q})<u(@).
N i€N(R) i€EN(R)
Thus {w} is bounded in H'(f!) so that there exist a subsequence (still
denoted {w}) and a function w € H!(f), such that {w,} converges to w
weakly in H'(2), and hence strongly in L?(£2). We are going to show that
w =1 a.e. in 2, using the arguments of D. Cioranescu and F. Murat (see [25],
Théoréme 2.2). Let us consider the family {C}};.~ of all open balls with
radius (v/N —1)/2h and centers in the vertices i/h of the cubes Q% . In these
balls we have wj, = 1. Therefore, if we define C} as the union of the balls C,’;
contained in {1, we have w; 1., = 1., , where 1, is the characteristic
function of Cj. Since {1, } converges to a positive constant in the weak”
topology of L*>(f1), passing to the limit in the equality w1, = 1., we

obtain w =1 a.e.in .




32 Variational and Nonvariational Relaxed Dirichlet Problems

It remains to prove that the measures v;, defined in (2.2.14) converge to p
in the strong topology of H~1(Q). Indeed, since w; converges to 1 weakly
in H'(f), this implies also that A, converges weakly to p in H(Q).

For every h € N we introduce the Polyrectangle Py = UieN(h) Q} and
we define S, = Q\ P;. Moreover, for every ¢ € Hj(f1), we consider the

function

on=», (Miy) 1y,

ieN(h)
where, according to (2.2.2),
Migp=——er [ pdvi,
v;,(0B}) Jos:
and we define g, = |pl ShH @ Note that {e,} tends to zero by

Lemma 2.1.8. Recalling that /,L(Qh) = vi(8B}) and using the Poincaré in-
equality (2.2.9), we have that,

{vh, ) — = > ul:((an};L" /wiwdw’;— > / p dp — /(pdu <

iEN(h) i€N(R)

S/ I<P—~<Phldu+f leldp <
Ph 'sh

1/2
2 —
(oo i)+ InL Sl s g ]y 0 =

1/2

+enllell,,

< (u(ﬂ)

Py

= u(Q) Y lle— Mgl

H}
iEN(h) (Q)

L2(Q})
1/2

< | w®) Y w(1/h)?|Del?,

1N (h) L*(Q})

ten lipll o) < (w(1/) (0 )1/2+eh) [P

Thus we obtain

o =l s gy S BR2(1/R) + e,

hence {v;} converges to p strongly in H~!(Q). Therefore {cog,} yE-
converges to g by Theorem 2.1.6. [
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In order to generalize this result to every Radon measure we need the

following results.

Proposition 2.2.6 For every Radon measure p € M({2) there exist a
measure v € K%(Q) and a positive Borel function g:§0 — [0, +00] such
that p=gv.

Proof. The result follows from Theorem 1.2.4 and from the fact that p isa
Radon measure (see, e.g., [28], Section 3). O

Proposition 2.2.7 Let A € My(Q), let p be a Radon measure in Mo({2);
for every z € §} let

k(B (2), Bar(e)
fo) = Bmipf = p @)

Assume that f is bounded. Then ) is a Radon measure and we have A = fp.

Proof. See [23], Theorem 2.3. O

Proposition 2.2.8 Let p be a positive Radon measure on §. Then there
exists a unique pair (po,p1) of Radon measures on §) such that:
() p=po+p;
(i) po € Mo(2);
(iii) w3 = pl_ N, for some Borel set N with cap(N,2) =0.
Proof. See [40], Lemma 2.1. U

We are now in a position to prove our main result in its most general

form.

Theorem 2.2.9 Let p be a positive Radon measure on {}. Let {Qi}
and {E,} be defined as in Theorem 2.5. Then the following results hold:

(i) if p belongs to My(Q), then {ocog, } v -converges to u;

(i) if p = py + p1, with po and p; as in Proposition 2.2.8, then {o0E, }

~% -converges to py .

Proof. If u is a Radon measure in M;,(Q), then, by Proposition 2.2.6,
L = gv, where v € K;(Q) and ¢ is a positive Borel function. By The-
orem 2.1.3, there exists a subsequence, still denoted by {E.}, and a mea-
sure A € M,y(f), such that {cog,} 7% -converges to A. Let =z € { and
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let + > 0 such that By.(z) C 2. We want to prove that for every Borel
set B Q Bzr

(2.2.15) capX(E, Bgr(m)) < u(E).

If A and A' are two open sets such that A' CC A C B;,.(z) and h is small

enough we have

U @ic4,

EinA'#0

hence, by Proposition 2.1.2,

cap"(Ex N A, Bon(e)) € 5. caph(E}, Bas(e)) <

Eind'#0
< 3 capk(E},Bi) = D, Qi) < p(A)
EinA'#0 EinA'#0

Using Theorem 2.1.5 we obtain,
capX(4', Bar(z)) < ligninf capf(E, N A, Bo(z)) < p(4)

and, as A’ A, we obtain capk (4, Ba,(z)) < p(A) for every open set AC
Bsr(z) (see Theorem 2.1.2(vi)). Since p is a Radon measure, this inequality
can be easily extended to all Borel subsets of Ba-(z). So (2.2.15) is proved.
Choosing E = B.(z) in (2.2.15) and applying Proposition 2.2.7, we obtain
that ) is a Radon measure and that A < u.

Define, for k € N, the measures pf = g* v, where g*(¢) = min(g(z), k).
As p* € K#(Q), by Theorem 2.5 for every k there exists a sequence {Exn}n
such that {cog, , }r 7% -converges to p¥. Since p* < p, the construction of
Theorem 2.5 implies that E , C Ep for every h and k. By Remark 2.1.4
this implies A > u* for every k, hence A > p. As the opposite inequality has
already been proved, we obtain A = p. Since the ~L -limit does not depend
on the subsequence, the whole sequence {ooE, } ~L -converges to p.

Let now g be any Radon measure on 3. By Proposition 2.2.8, we can

write p = po+p1, with po € My(Q) and p1 = pl N, where N is a Borel set
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with cap(N,Q) = 0. Arguing as before, let A be the 4 -limit of a subsequence
of {oop, }. If z € Q and 7 > 0 is such that Ba.(z) C Q, we have

cap}(Br(2), B2r(2)) = cap3(Br(2)\N, B2r(2)),

since cap(V, B2r(z)) = 0 (see Proposition 2.1.2). Therefore (2.2.15), applied
with E = B.(z)\N, gives

cap} (Br(2), Bar(2)) < p(Br(2)\N) = po(Br(z)).

By applying again Proposition 2.2.7 we obtain A < yg.

Since py is a Radon measure of M({2), by the first part of this theorem
we can construct the holes Eg, such that {oog,,} 4% -converges to py.
Since u(Q%) > o(QL), we have Eg , C Ep, hence, by Remark 2.1.4, A > py.
As the opposite inequality has already been proved, we obtain A = py. As
before, this implies that the whole sequence {cog, } 7% -converges to py. [

We want to underline that if we take L = —A, p as the Lebesgue mea-

sure, and N > 3, then we have pi = p; independent of i, and

N-2
N-2( 1
Ph (2h)

. 3
1 N 2_ N—2
2h Ph

where o is the surface area of the unit sphere of RY, and we obtain

cap(Ej, Bj) = (N — 2)ow

N oN-2p2N -2 s
Ph = h_m< i— N— ) ’
1+ O'N(N - 2)21“ 2p2N—2

which yields the same approximating sequence obtained by Cioranescu and

Murat in [25].

Finally the following example shows that if the measure p is not a Radon

measure, our construction cannot be applied.

Remark 2.2.10 Let (z;) be a renumbering of Q™ N, and let us consider
the union U = |J, B(zs,71) of the balls with center on z; and with radii 75
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such that capL(B(a:h,rh),BR) < cap®(Q, Bg), where Bg is a ball such
that Q CC Bg. If we consider the measure p € M() defined by
. L _
i ={1 i

for every Borel set B C {1, then our construction gives a sequence {00, }
which ~L-converges to the measure 8 € Mo(Q) defined as B(B) = +oo for
every Borel set B of positive capacity. Hence, in this case p does not coincide
with the 4% -limit of {coE, }-

2.3. Approximation by problems in domains with holes of measure

zero

In Section 2.2 we proved that every Radon measure p € M,p(€) can be
approximated, in the sense of ~L -convergence, by measures of the type g,
where Ep € Q is the union of N —dimensional balls centered in a cubical
lattice and with radius depending on the mass of the measure p in each cube
of the lattice.

In this section we shall show that for every Radon measure p € Mo(Q)
and for every nonatomic, nonnegative Radon measure ) it is possible to con-
struct a sequence {Ej;} of subsets of { such that Ej is the union of (N —1)-
dimensional balls centered in the cubical lattice, with A(ER) = 0, and such
that the sequence {oog, } 7% -converges to p.

Let us remark that while the proof of the previous approximation result is
based on the method of oscillating test functions as in [25], allowed by the use
of a general version of the Poincaré inequality on Kato spaces, in this section
we shall follow a completely different line and we use directly the capacitary
method introduced in [23] for symmetric operators and generalized to the
nonsymmetric case in [31]. An application of this result to shape optimization

problems will be seen in Chapter 3

From now on L will be the operator introduced in Section 1.3, without
the symmetry assumption. Let {Qi}iczn» {B}} and N(h) asin Section 2.2.
For every i € N(h) we fix a constant ci > 0 and we consider the function

(2.3.1) on(z) = Y chlgi(z).

ieN(h)
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The main theorem of this section is the following.

Theorem 2.8.1 Let A be a nonatomic, nonnegative Radon measure, and let
i be a Radon measure belonging to Mo(Q). Suppose that the functions @
defined in (2.3.1) converge to a function ¢ in the weak* topology of L°(€).
Then for every h € N there exists a compact set E;, obtained as a union of
closed (N — 1)—dimensional spheres E} = S(i,pl) with the same center of
Q} , radius pi , and lying in a suitable (N —1)-dimensional hyperplane, with
the property

(2'3'2) CapL(EIiuBliz) = c;uu'(Q;z) = (‘Ph/"')(Qz}z)a

A(Ei) = 0 for every i € N(k), and such that the sequence {cog, } " -con-

verges to the measure Qu.
In order to construct the sequence {E} we need the following lemma.

Lemma 2.3.2 Let )\ be a nonnegative nonat‘omic bounded measure defined
in a bounded open set Q@ of RN, N > 2, and let us fix ¢ € Q. Then there
exists a (N — 1)-dimensional hyperplane Pn—1 containing = and such that
AMQNPx_y)=0.

Proof. We prove the result by induction on the dimension N of the space.
If N = 2, the set 0\ {z} can be written as the union U(Pi \ {z}) of
all straight lines passing through z and deprived of the point z. Since A is
finite and nonatomic, there exist at most countably many indeces w such that
QN Pg_,;) > 0. Thus the result is proved for N =2

If we suppose that there exists a (IV — 2)—dimensional hyperplane Pn_2
containing z and such that AMOQNPN—_2)=0, then we can consider the family
{P%_,\ Px_2}. of all the (N —1)-dimensional hyperplanes containing Py -2
and deprived of Px_o. As before, there exists at most countably many indeces
w such that A(QN P5_;) >0, and this concludes the proof. U

By Lemma 2.3.2, for every h € N and 1 € N(h) we can find a (N —1)-
dimensional hyperplane P, passing through the center zt of Qi such that
MPinQ}) = 0. Notice that the choice of Pj does not depend on the measure
p considered. We define E} to be the (N — 1)-dimensional sphere lying on
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P}, centered in ¢}, and with radius ph such that Ei = S(zi,pl) verifies
(2.3.2). The existence of pj is due to the continuity of the function p
cap(§(zt, p), By). Setting Ex = Uien(a) Ei, it remains to prove that the
sequence {oog, } ~L-converges to the measure pp.

In the following we need some propefties of the capacity associated to the

operator L.

Proposition 2.3.3 Let U, V be open subsets of RN andlet E, F be
subsets of U. We have
(i) cap™(@,U)=0;
(i) EC F = cap®(E,U) < cap”(F,U);
(iii) cap®(E U F,U) < cap?(E,U) + cap™(F,U);
(iv) U CV = cap®(E,U) > capf(E,V);
(v) 6cap(E,U) < cap®(E,U) < ©cap(E,U);

Proof. If L is symmetric these properties follow from Proposition 2.1.2 with
p = 0. The general case is studied in [51]. 0

The proof of Theorem 2.3.1 is based on the following characterization of

the 4L -limit of measures.

Theorem 2.3.4 For every sequence {£,} of compact subsets of {} there ex-
ist a subsequence, still denoted by {€,} and a measure 8 belonging to My (92)
such that the sequence of measures {cog, } " -converges to 3. Moreover B

is the least superadditive set function such that

(2.3.3) B(A) > inf sup limsup capL(Eh nK,Q),
U open pr compact h—0C
ACU KCU

for every Borel subset A C (1.

Proof. See [28], Theorems 6.1 and 6.3, and [34], Theorem 4.14 for the sym-

metric case, and [31], Theorem 5.10 for the general case. U

In order to prove Theorem 2.3.1 it will suffice to show that for every fixed
subsequence {Ey, }, taking £, = Ej, in Theorem 2.3.4, we obtain B = pu.

First of all we prove the easier inequality.




Approximation of relaxed Dirichlet problems by boundary value problems 39

Proposition 2.3.5 Ifp, ¢ and {Ep} areasin Theorem 2.3.1, then § < pp.

Proof. Let A and A’ be two open subsets of {2 such that A’ CC A4 and let
h be large enough to have UE;, A4 £D Qi C A. Then, by Proposition 2.3.3(iii),

(iv), we obtain

cap”(Er N A, Q) < Z cap(E},Q) <
EinA'#0

< S wpl(ELBY= Y, (eamQ)) < (enn)(4) = v/{(,o,;dp.

EinA'#0 EinA/#0

Passing to the limit as h goes to +oo we get

lim sup cap®(Er N 4',Q) < / wdp
A

h—o0

so that
B(A) = sup limsup capL(Eh NK,Q)=

K compact h-—o00

KCA

= sup limsup cap® (En N 4',9) < (pp)(4),
Al open h—oc0
A'CCA4
for every open set A. By the very definition of B and since p is a Radon

measure, we obtain 8 < ¢p. J

From now on we shall consider only the case N > 3. The changes in
dimension N = 2 will be explained in Remark 2.3.9.

In order to prove the inequality u < 8 we need a sort of “local almost-
superadditivity” of the capacity of the sets F, that holds if p belongs to
H~1(Q), as it was done in other papers on this subject (see [3], [12] and [13]).
The main tools in studying this property will be the following three lemmas.

Lemma 2.3.6 Let p, v be two positive measures belonging to H™'(Q),
let {€,} be a sequence of compact subsets of 1, and let B be defined as In
Theorem 2.3.4. Assume that there exist two positive constants ky, ko such

that for every open set A CC 1

B(A) > by v(A) - ko /  Gle,y) dun(e)du(y)

AxA
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where G is the fundamental solution for the Laplace operator in RN and A
is the closure of A; then 8> kiv.

Proof. Since p and v are Radon measures, and by the definition of 3, we
have

B(A) = sup B(T) = kiv(4) -k f [ (o, dnl)duty).

U open

vcc4

for every open set A C 1.

Now let us fix k € N, and let {A?} be a finite family of open sets such
that |J, A" = 4, diam(A?) < 1/h, and with the property that there exists a
positive constant ¢ such that for every fixed j the number of the indexes 1
such that AN A;‘ #+ @ does not exceed c.

Thanks to the superadditivity of 8 we obtain

aa) B> D8N 2 k) —cke [ Glaw) dule)iuty),

where K = {(z,y) € Ax A: dist((z,y),A) < 1/h} and A is the diagonal
in RV x RN. Since p belongs to H™!({), the measure Gp @ p is finite in
A x A. Moreover, since p is nonatomic and by Fubini theorem, we obtain
(Gp ® p)(A) = 0. Thus the term S, G(z,v) dp(z)dp(y) tends to zero as h
goes to +00. Eventually, a passage to the limit in (2.3.4) gives f(4) = k1 v(A)
for any open set 4 CC 2, and hence the thesis. ]

Lemma 2.3.7 Let p be a positive measure belonging to H~*(Q). Given

a positive real number § and an open subset A of (1, we define the set of

indices
g _liezy: % _..HLQ_{L)__._ML(QJ' N2 58, QINA# D .
2t — 2] |N-? h h
iezN igj TR
QLNAFO

Then, if we set A = UJ{Q} : Qi NA#QD}, we have

(U @nn) <2 [ oy dutedint).

. A6
JEJY
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Proof. Let us fix j € ZV; note that for every z, ¢ in Qi we have |z —¢| <
|z — a:ﬂ + € - m“ < 2v/N/h, and so
1

p(Q}) RN < (2V )N /QJ. Ferreh G Q-

i1z,
Moreover, if 1 € ZV is such that supy—; ..~ l7x — ix] < 1, then for every
T € Qi and for every ¢ € Q% we have

lo — &) < |z —a)| + |2f — 2h| + |z}, — €] <
< (@VN)/h + |zd — 2i| < (2VN +1)[e}, — il

so that (01) v
p(@} N-2 1
R < (2/N +1 / 5 dp(¢
oo ST g
for every z € Qi, i such that supg—;  n 17k — i < 1.
Finally, if 2 € ZV is such that sup;—y .~ |jk — ix| > 1, one obtains, in
a similar way, the estimate
——=r—— < (3VN — s dm(é
|z}, — 23,1V * (BVN) gi lz—¢IN? )
So we can conclude that for every j € J,‘;l"S there exists ¢ = ¢(N) > 0 such
that

s<e ) /il—;:—_-_—é—lﬁ_—zdu<a>=c_4ha<w,z>dme) Vo e Q.
O nA#O

Integrating the last inequality on the set U (Q;L NA) we achieve the result.

- ALé
jed;

O

Lemma 2.3.8 If u, ¢ and E), are as in Theorem 2.3.1, and in addition p
belongs to H™ (), then § > ¢p.

Proof. Let A be an open set compactly contained in Q. Fixed § > 0 we

shall prove the estimate

a5 Az - 4~ 5 [ Cle)dut=)duty).
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In fact (2.3.5) and Lemma 2.3.6 yield 8 > (1 — c6)?pp, and then the thesis
follows by taking the limit as 6 — 04.
Since @p converge in the weak™ topology of L>°(Q,u), then there exists

M > 0 such that “S"hHLm(Q ) < M for every h € N. Thus, since p belongs

to H™Y(Q), for every h € N the measure @, also belongs to H™*(Q). By
Lemma 2.3.7 and by the definition of Ei, setting pn = @rp and

M={ezN\J;" :QinA#0},

for every open set A compactly contained in  and for h large enough to

have Ap = UQ;’qu#O Qi CC 0, we get

) <pn( U @in4)+ D m(@)<

iegt’ ier?

<[] GendmEdmm + Y wr LB,
v Ap X

iert?

< M, we obtain

(2.3.6) pn(4) < %1— /v/.Ahx_4h G(z,y) du(z)du(y) + ig;,ﬁ cap®(Ej},B}).

It remains to estimate the quantity Ziel-,.;\,ﬁ capZ(E}, Bi). By Lemma 6.3 of
[31] if the L-capacitary potential u of U;ere E} with respect to §} is not
h

greater that ¢é on each OBi,i¢€ I,‘j’é , then

(2.3.7) Z capX(Ei,Bi) < (1 - c8) " 2cap®(Ex N A, Q).
iert?

The inequality (2.3.7) together with (2.3.6) gives the estimate

(

which yields (2.3.5). It remains to prove that w < ¢§ on 8B}, 1 € Il’j’é , for a
suitable constant ¢ = ¢(IV,2). Let us fix Q' DD 2 and extend L by setting

1
un(4) < = // Gz, ) du(e)dp(y) + 7 cap” (En N An, Q).
5 Ap X Ap ‘ 1 - C5)
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aij = 6; in Q' \ Q; if we denote by G' = @& the Green function of the

operator L on ', then there exists a constant M such that

1 1

ﬁm for all (E,yEQ,

(2.3.8) <G'(z,y) <M

|z —y|V 2’

(see [50], Theorem 7.1). If we define for every i € N(h) such that Q4 NA# 0

the function

wile) = ¢ [E ey) (),

then we can choose v = v(IN) > 0 such that w; is larger than or equal to 1
on E} and satisfies wi(z) < (ph)N 2|}, —z|*~N for every z € OB} . Hence,
the function w = ), w; is a supersolution for the operator L and w > 1 on
E;, N A. By the properties of the L-capacitary potential, then v < w ( see
[48], Section IL.6). Moreover by Proposition 2.3.3(v)(iv) we have

cap®(E}, B}) > 9 cap(EL, B}) > 6 cap(EL,R™)
and cap(Ei,RY) = (p};)N"zcap(E,RN), where E is the (N-1)-dimensional

closed sphere centered in 0 and with unit radius ( see [35], Section 4.7, Theorem

2). Thus (p})V 7% < (A, N)cap™(E;, 1y < c(A\, N)u(Q3}), and we have

“’(m)f"( > —f—%w@bh“"z),

1.—
i€ ZN i |2k — 2
QinA#O
andso u <w < c'§ on BB;; for all 7 §ZJ,‘;1'6. O

Proof of Theorem 2.3.1. By Proposition 2.3.5 and Lemma 2.3.8 the
result is proved for measures belonging to H~1(Q). If p is a Radon measure
of My(Q), then by Proposition 2.3.5 we have B < wu. In order to prove the
opposite inequality we need the decomposition result in Theorem 2.2.6: there
exist a Borel function g and a measure v € H~Y(Q) such that pp = gv.
Now we can consider for every k € N the measure pi = min(g, k) v, which
belongs to H~1(Q). By the first part of the proof we have pp = B, where Bk
is defined as in Theorem 2.3.4, with &, = En .k, {En 1} being the sequence
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given by Theorem 2.3.1 for the measure p. Since py < pp for every k € N,
then Ej x C Ej for every k € N and so ur = Br < 3. Passing to the limit as
k tends to infinity and using the fact that {ux} increases to pp, we obtain
op < B. | O

Remark 2.3.9 The procedure described above is still valid in dimension
N = 2, and gives the same results: as for the proof, it is enough to consider
logarithmic potentials instead of the newtonian ones. For example, the set
J ,‘:1'6 of the “bad” cubes will take the form

. 7 z 2d y -
e 3 w@iyos( o) ru@hos(2hd) > @ina+0},
'L'EZNi#j lwh—_mh‘
QINA#0O

where d = diam(Q). More details can be found in [13].
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Chapter 3
An application of the theory of relaxed Dirichlet problems
to some shape optimization problems

In this chapter we apply the approximation result proved in Section 2.3

to the study of the minimum problem
min{J(A4), A open A C 2}

where

fii(z,ua)dA, if MA) e T,

J(A) =

+ 00, otherwise,
) is 2 bounded measure not charging polar sets, and T' = [m, M] is a subin-
terval of [0, A(R)], and w.y is the solution of a Dirichlet problem in A. No-
tice that the functional J depends on A through the domain of integration,
through the solution u.4 of the differential equation, and through the con-
straint A(4) € T'. We shall prove that the minimum problem has, in general,

no solution, and that the relaxed problem can be written as
min {J(p): p € Mo(Q)}

where J is the lower semicontinuous envelope of J in My(f2) with respect
to the 7L -convergence.
The main result of the chapter is an explicit integral representation of J

in terms of the integrand j and of the constraint T.

3.1. Preliminaries

We say that a nonnegative Borel measure p is nonatomic if p({z}) =20
for every z € . It is well known that, if p is nonnegative and nonatomic,
then for every B € B(f) there exists a Borel subset B; of B such that
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0 < u(B1) < 2u(B), and, by induction, for every k € N there exists B C B
such that |

0 < p(Bi) < enlB).
Tt is also well known that a nonnegative, nonatomic bounded measure has the
following continuity property: for every choice of A,B € B(Q), with AC B,
and for every « in the interval [u(A), u(B)] there exists a set C € B(£) such
that A C C C B and p(C) = o (see, e.g., (43)). In the sequel we shall need

the following continuity result, involving only open sets.

Lemma 3.1.1 Let p be a nonnegative nonatomic bounded measure in 2
and let A, B be two open subsets of Q such that A C B. Then for every o
such that p(A) < a < p(B) there exists an open set C such that ACC C B
and p(C) = a.
Proof. Let {Ci} be an increasing sequence of open subsets of B such that
Co = A and a > pu(Cry1) > sk — 1/k, where

sp =sup{u(U): U open, Cx CUC B, p(U) < o} .
If we define C = |J, Cr and

s =sup{u(U): U open, CCUC B, p(U) <ea},

then C is open, A C C C B,and 0 < s < s for every k. As {Ci} is an

increasing sequence, we have

p(C) = lim p(Cr) 2 Hm sp = s,
hence p(C) = s and p(U) = s for every open set U such that C CU C B
and p(U) < a.

It remains to prove that s = a. By contradiction, if s < a, then wu(B\
C)>0. Let us fix 0 < § < @ —s. Since p is nonatomic, there exists a
set E € B(Q) such that E C B\C and 0 < p(E) < . Moreover, since p
is a Radon measure, there exists an open set V' such that E C V C B and
w(E) < u(V) < B. If we denote U = C UV, then CCUCB, plU) < s,
and

p(U) > p(CUE) = p(C) + p(E) > p(C) = s,
which gives a contradiction. Thus u(C) = «, and this concludes the proof.
O
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In the sequel we shall deal with measures belonging to H~'(£). We
underline that, having identified each function u in HI(QY) with its quasi
continuous representative, for every nonnegative Radon measure v € H(Q)
we have H2(Q) C L(Q), and (f,u) = Jqudv for every u € H; (). More-
over the injection of H}(2) into L.(Q) is compact. Indeed, if {vs} is a
sequence of functions which converges to a function v weakly in H, (), then
|vp, — v| converges to 0 weakly in HL(Q), so that [, |vp —vldv = (v, |vn —v|)
tends to 0.

A subset 4 of Q is said to be quasi open if for every £ > 0 there exists
an open subset U, of {1, with cap(Ue, Q) < €, such that AU U, is open.

We denote by M(Q) the set of all nonnegative Borel measures p on {1
such that '

(i) p(B) =0 for every Borel set B C Q) with cap(B,§) =0,
(i) w(B) = inf{u(A): A quasi open, B C A} for every Borel set B C Q.

Since all quasi open sets differs from a Borel set by a set of capacity zero,
all quasi open sets are p—measurable for every nonnegative Borel measure p
which satisfies (i). Therefore pu(A4) is well defined when A is quasi open, and

condition (ii) makes sense.

Remark 3.1.2 If we say that two measures py and po of My(Q) are equiv-
alent if [, u® dp; = Jq u® dps forevery u € HL(), then for every p € Mo ()
there exists a unique measure g € M(Q) equivalent to p. Moreover if two
measures p1, pa of My(Q) are equivalent, then the a function u is the so-
lution of a relaxed Dirichlet problem corresponding to p; if and only if it is
the solution of the relaxed Dirichlet problem corresponding to po. Finally
My() coincides with the class M () introduced in [28].

It is easy to see that if p belongs to M,y(Q) and E is a closed subset of
Q, then the measures gl E and ocogp belong to My(). This is not true, in

general, when E is not closed.

For every quasi open set A C {} we denote by g4 the measure defined
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by

0, if cap(B\4,0) =0,

oo, otherwise.

(3.1.1) pa(B) = {

Notice that g4 belongs to Mo(Q). Indeed condition (i) is clearly satisfied
and (ii) is trivial whenever pa(B) = +oo. Moreover, if pi(B) = 0, then
cap(B\ 4,9) = 0, so that BU A is a quasi open set containing B with
pa(AU B) = py(B). This implies (i1).

In the sequel we shall use the following result.

Proposition 3.1.3 For every measure y € ./\;lo(Q) there exist a nonnegative
Borel measurable function h and a nonnegative measure v € H~1(Q) such

that u(A) = (hv)(A) for every quasi open subset A of Q).

Proof. It is enough to apply Theorem 1.2.4 with f=1,. Cd

Let w, be the function defined in (1.3.6). By A, we shall denote the set
{z €Q : w,(z) > 0}. Notice that A4, is defined only up to a set of capacity
zero, hence all the equalities or inclusions involving A, are intended up to

sets of capacity zero. Since w, is quasi continuous, A, is quasi opemn.

Lemma 3.1.4 Let p € My(Q) and let w, be the solution of problem
(1.3.6). Then p(B) = +oo for every Borel subset B of Q with cap(B\A,, Q) >
0.

Proof. See (30), Lemma 3.2. O

Remark 3.1.5 It is easy to see that, if 4 is a Radon measure of My(Q),
then 4, = Q. If p = p4 and A is open, then 4, = A by Remark 1.3.5 and

by the strong maximum principle.

Theorem 3.1.6 Let {u,} be a sequence of measures of My(R) and let
p € My(2). Then {un} " -converges to p (in Q) if and only if the sequence

{w,,} converges to w, weakly In H ().

Proof. See [30], Theorem 4.5. U
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As a consequence of Theorem 2.3.1 we obtain the following density result.

Proposition 3.1.7 Let us fix a nonnegative nonatomic Radon measure A.
Then for every p € /\;(U(Q) there exists a sequence {Ep} of compact subsets
of Q such that {pag, ; ~E -converges to. p, and A(Ex) =0 for every h € IN.

Proof. Since by Propos1t10n 3.7 of [30] every measure of My(Q) can be
approximated in ~L -convergence by a sequence of Radon measures of M(Q2),
here it is not restrictive to suppose that p is a Radon measure. Thus we can

apply Theorem 2.3.1 of Chapter 2, obtaining the result. U

Finally, let us consider a real valued functional J defined on the class of
all open subsets of 2. With every open ‘subset A of {} we can associate the
measure g4. Thus the functional J can be considered as a functional defined
on the subclass {4 : A open, A CQ} of Mo ().

Definition 3.1.8 We shall call relaxation of J in My(Q) with respect to
the L -convergence, and we shall denote it by J, the greatest v L _Jower semi-
continuous functional defined on My(Q) such that TJ(pa) < J(A) for every
open set A C Q.

Remark 3.1.9 One can check that
(3.1.2) J(p) = inf{]iininf J(An) & Ap open, {p4,} ~% -converging to r},

for every p € My(Q). The previous formula characterizes the relaxation
7 as the unique functional which satisfles the following properties for every
p € Mo(Q):
(i) for every sequence {Ax} of open sets with {p.,} ~F-converging to p in
My(9)
J(p) < liminf J(4n);

h—oc

(ii) there exists a sequence {4} of open sets such that {p.4,} 7¥-converges
to p in My(Q) and

J(p) > limsup J(Ar)-

h—oc
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The relaxation J describes the behaviour of the minimizing sequences
of J. More precisely J is ~L -lower semicontinuous and so, by the direct

method of calculus of variations, J has a minimum point on the ~L -compact

set M,(£2). Moreover

min J(p) = inf J(4),

Mo(Q) s

every cluster point of a minimizing sequence for J is a minimum point for
J in J\;lo(ﬂ), and every minimum point for 7T in My(Q) is the limit of a
minimizing sequence for J (in the last statements we identify every open set
A C O with the corresponding measure f.4).

For a more general treatment of this subject see, e.g., [17] and [29].

3.2. Lower Semicontinuity

In this section we study the lower semicontinuity, with respect to the
~L -convergence, of some functionals defined on M, (). More precisely, fixed
a bounded measure X in My(Q), a function g in L'(,}), and a closed
(possibly degenerating to a point) subinterval T = [m, M] of [0,A(Q)], we

consider the functional
(3.2.1) Gr(p) = inf {/ gd\ :BeB(R), A, C B, A(B) € T} ,
B

where A, is the quasi open set introduced in Section 3.1. We shall always

use the convention inf @ = +oc.

Theorem 3.2.1 The functional G defined in (3.2.1) is lower semicontin-

uous in My(Q) with respect to the y*-convergence.

Remark 3.2.2 Let us fix a constant ¢ such that 0 < ¢ < A(Q2). If the set
T takes the form T = {c}, T = [0,¢], or T = [c,A(2)], then the functional

G becomes respectively

Gc(p):inf{/};gd/\ . BeB(Q), 4, C B, AB) = c},
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Glo,q(K) =inf{/ gd\ : BEB(Q), A4, CB, A(B) < c} :
B .
Glea(#) =inf{f gd\: BEB(Q), A, C B, A(B) 2 c} .
B

Notice that, in general, G¢, Glo,q> and Glea(n)) are different as it can be

easily seen by choosing g = 1 in each functional. Indeed in this case we have

_Je if AM(4,) < ¢,
Ge(p) = { +o00, otherwise,

_ M4, A4 S 6
G[o,c](ﬂ) - { +o00,  otherwise,

G[c,A(Q)](:u‘) = Sup{c’ A(‘4‘#)} .

Moreover, for every g € L'(£2,) the functional G can be rewritten as
Gpo,q(p) = / gt dx— sup/ g~ dA,
A B

where gt and g~ are the positive and the negative part of g respectively, and
the supremum is taken over all the Borel subset B of Q such that 4, C B,
and A(B) = ¢. When ¢ = A(Q), it reduces to the functional

Gty = [ ot ir- [ o= | gir- [ gan,
4, Q 4, A,

which then turns out to be v~ -lower semicontinuous on MU(Q)

In order to prove Theorem 3.2.1 we need a result of measure theory.

Lemma 3.2.3 Let \ be a nonnegative, nonatomic bounded Borel measure
on 1, and let g € L*'(Q,A). Fixed a closed subinterval T = [m,M] of
[0, M()], let us consider the functional

(3.2.2) G(A) = int {/ gd) :BeB(Q), AC B, \(B) € T}
’ B
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defined on the class of all Borel subsets A of 2. Then, for every A,, Ay such
that AM(A;) < M and MA2) < M, we have

(3.2.3) G(A1) < G(42) + 29(A(A1\Az)),

where w(8) = sup { 5 lgldX : M(B) < §}, and hence w(é) — 0 as §—0.

Proof. Let B, be any Borel set such that A € B2 and A(Bz) € T'. Since A
is nonatomic and A(B2\41) = A(B2)— MA41)+A(41\Bz), if A(B2)—A(41) >0
one can find a Borel set E C Ba\A; such that A(E) = AM(41\Bz). Thus,
setting F = By\(4; U E) = (B2\41)\E and By = A UF = (4, UB)\E,
we have A; C By, and

A(Bi1) = AMA1) + MF) = A(A4:1) + A(B2\4;1) — AMA41\B2) = A(B2),
and hence A(B;) belongs to T'. Moreover, as A;UBy = ByUE and BiNE =

@, we have V
f gdAz/ gd/\+/ gdk——/gdk.
B, B, A1\B2 E

Since A(4;\B2) = A(E) < A(A1\42) we get

G(A) s/

B, B,

Tf A(Bz) — (A1) < 0, then A(Bz) < M41) < M, so that MA;) € T and
G(4,) < / gd.
Ay
Since in this case A(Bs\A41) < A(41\By), we have
g(Al)S/ gdz\-{—/ gdA~/ gd) < / gdh +2w(A(4:1\A2))-
B, ANB: Bad, B,
Therefore (3.2.3) follows by taking the infimum over all admissible By. The

fact that w(§) — 0 as 6 — 0 is a consequence of the absolute continuity of
the integral. O
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We consider now a first lower semicontinuity result for functionals defined

on M()(Q)

Lemma 3.2.4 Let A € My(Q) and let {us}be a sequence in Mo ()
4% -converging to p € My(Q). Then

AMA,) < ]i}fninf AMAL) -
If, in addition, A(4,) < +oco, then hlim MANAL, ) =0

Proof. By Proposition 3.1.3 there exist a nonnegative measure v € H-YQ)
and a nonnegative Borel function h such that X = hv on the class of all quasi
open subsets of Q. In particular AA, f_-x hdy for every p € My(9).
Let f: € x R — [0,+00] be the Borel funchon defined by
_ J h(z), ifs>0,
fle,s) = {o, ifs < 0.

Then f(z,-) is lower semicontinuous, and by definition of A, we have

4,) = / foyws)dv Ve Mo(Q),

where w, is the solution of problem (1.3.6). Let now {pn} be a sequence
in My(2) which v%-converges to a measure p € My(Q), i.e., the sequence
{w“h} converges to w, weakly in H}(Q) (see Theorem 3.1. 6) Since v €

~1(Q), {w,,} converges to w, in the strong topology of LL(Q). Thus, pos-
51bly passing to a subsequence, {w,,} converge to w, v-a.e. in Q. Therefore,

by Fatou’s lemma and the lower semicontinuity of f(z,-), we obtain

(A4, )——/faz wy) du<hm1nff f(z w#h)du—hmmfA(Auh)

and the proof of the first statement is complete Let us suppose now that
MA,) < +oo. As we have shown before, the v -convergence of {ur} to p
implies the strong convergence in LY(Q,v) of {wy,} to w,. Hence, using
Fatou’s lemma again, we get

lim sup A4, \ 4,,) = limsup [A(4,) — A(Ap, N4l =

h—o h—>
= f(z, w#)dv—hmlnf/ flz,w,,)dv <0,
Ay

which concludes the proof. 0
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Remark 3.2.5 If the measure A does not belong to M(Q), the conclu-
sion of Lemma 3.2.4 may be false. In fact, take N > 2, z, € Q and let
)\ be the Dirac measure é,,. It is easy to see that the measures pp =

EO\B(z0,1/h) ~L -converge to the measure p which is identically zero on (.
On the other hand we have A,, = Q\B(zo,1/h) and 4, = {1, so that
A(4,)=1>0= liininf MAL,)-

—0C

Proof of Theorem 3.2.1. Let p be a fixed measure in M;y(£), and let
{pr} be a sequencein My () which % -converges to p1. It is not restrictive to
suppose that Gr(us) < +oo for every h € N. This implies that AM(4,,) < M
for every h € N, and then, by Lemma 3.2.4, we have also A(4,) < M. Since
for every quasi open set A there exists a Borel set B containing A, with
cap(B\4,Q) = 0, we can apply Lemma 3.2.3 with 4; = 4,,and 4, = 4,,,
and we get

Gr(p) < Grlpn) + 20(MAu\A,).

The ~4L-lower semicontinuity of Gr follows now from the second part of
Lemma 3.2.4. O

3.3. Relaxation

In this section we apply the previous lower semicontinuity results in order
to obtain an explicit representation of the relaxation of some cost functionals
in optimal shape design.

Let us fix a functional f € H™'(), a bounded measure A in Mo (Q),
a closed interval T = [m, M] of [0, ()] with M > 0, and a Borel function
j:Q x R — R satisfying the following conditions:

(i) for every u € Hj(9) the function j(z,u(z)) belongs to L'(£2,A);

(i) themap u — [, j(z,u)dXis sequentially continuous in the weak topology
of Hi(Q).
We shall consider the functional J defined on the class of all open subsets
of Q1 as
Jii(z,uq)dA, if AA4) e T,
(3.3.1) J(A) =

+o0 otherwise
? )
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where u 4 is the unique solution of the Dirichlet problem

: Luy=f onA,
(33.2) {u,; =0 on JA4.

Different hypotheses on A and j can be made in order to fulfill (i) and

(ii). For instance, if we assume that j(z,s) is measurable in z and continuous

in s, we can require one of the following properties:

(1) X is the Lebesgue measure and li(z,s)] < (1 + |s]?) for A-ae. z in
Q and for every p < 2N/(N — 2). Namely, in this case, by Sobolev
imbedding (i) and (ii) are obviously fulfilled.

(2) X is the (N — 1)-dimensional Hausdorff measure restricted on a smooth
(N —1)-dimensional hypersurface 5 C {2 and |j(z,s)] < c(1+ |s|?) for
M-ae. z in S. In this case (i) and (ii) follow from the compactness of
the trace operator between Hj(f2) and L2(S).

(3) X belongs to H~'(Q) and j has linear growth in s. In this case, (i) and
(i) follow from the compactness of the injection of H}(Q) into L3(Q).

Tt is well known that, under these very weak assumptions, the optimal

design problem

min J(A4)
AMAET

in general has no solution (see Examples 3.3.11 and 3.3.12). Thus, in order
to investigate the asymptotic behaviour of the minimizing sequences of J, we
are interested in its relaxation. To this aim, for every u € ./\;ig(ﬂ) we denote

by u, the unique solution in the sense of (1.3.5) of the problem
(3.3.3) Lu, +pu, = f in 0, u, € HY(Q)NLA(Q).

The main result of this section is the following.

Theorem 3.3.1 Let f € H™1(Q), let X be a bounded measure in My(Q),
and let j: QxR — R be a Borel function satisfying (i) and (ii). Fixed a closed
subinterval T = [m, M| of [0,A(R2)] with M > 0, we consider the functional
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J defined by (3.3.1) for every open set A C Q, where w4 is the solution of
problem (3.3.2). Then its relaxation T in My(Q) is given by

Tw= [ ieuw)dr

A

(3.3.4)
+inf{/ j(z,0)dX : BEB(Q), A, C B, A(B)ET},
B\,

with the convention inf @ = +oo.

Example 3.3.2 If there exists a constant k such that j(z,0) = k for every
M-ae. z € §2, then (3.3.4) can be simplified. Namely, if k is positive, then
(3.3.4) becomes

~ [ (@) dX + k(m = MA)*T, i M(4,) < M,
J(p) = { '

~+00, otherwise,
while, if k is negative, we get
_ {L i(zu)dX + E(M = MAL)), if M4,) < M,
T)y=3

+co otherwise.
b)

In particular, if 7' = {c}, then (3.3.4) takes the form

_ fQ j(z,u,)dXd + k(c— A(82)), if AM4,) <,
J(p) =

+o0, otherwise.

Remark 3.3.3 The functional J can be written as

J(4) = / iz ua) dh — f j(z,0)d) + / j(2,0)dA,
Q Q A
where u 4 is extended to 0 on Q\A. For every fixed p € ./\;((,(Q) and for every
sequence {Ax} of open subsets of  such that {pa,} 7% -converges to p, we
have that the sequence {u.,} of the solutions of the Dirichlet problems on



An application to some shape optimization problems 57

A, converges to the solution u, of the relaxed Dirichlet problem (3.3.3) in
the weak topology of HE(Q) (see Remarks 1.3.5 and 1.3.10), so that, by (ii),

lim j(m,u_4h)dk—/j(z,0)dk = fj(m,u“)d)\——/j(m,O)dA.
h—oo Jo Q - Ja Q

Hence, by (3.1.2), in order to exhibit the relaxation J of J, it is enough to
relax the functional

J,3(2,0)dA, if \(A)eT,
(3.3.5) Jo(4) =

+o00, otherwise.

Since the solution u, of (3.3.3)is zero g.e. in O\4, (Lemma 3.1.4), to conclude
the proof it is enough to show that the relaxation Jo of Jy coincides with the

functional

(3.3.6)  Jo(w) :inf{/ i(z,0)d\: BeB(Q), A, C B, \(B) € T} .
B

By Theorem 3.2.1, Jo is 4L -lower semicontinuous. Since jo(pA) < Jo(A) for
every open set A C §, by definition of Jo, we have Jo < Jo-

Suppose that, for every p € My(Q) with Jo(p) < +oo and for every
Borel set B containing 4, with A(B) € T', we are able to find a sequence
{As} of open subsets of Q such that A(4x) € T, {pa,} ¥ -converges to p,
and

lim j(:z:,O)d/\:/ i(z,0)dA.
B

h—o00 Ap

Then by (3.1.2) we get

Tolw) < Jim Jo(4a) = [ (@0,

Taking the infimum over all admissible B we obtain Jo(p) < Ju(u), and
hence Jo(p) = Jo()- |

In order to construct the sequence {4} we shall require that the set B
is open. As shown in the following lemma, this condition is not restrictive for

a large class of measures in Mo ().
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Lemma 3.3.4 Let g, X\, and G be as in Theorem 3.2.1 and let T =
[m, M] C [0,A(2)]. Then

(3.3.7) G(p) = inf {/ gd)\ : Bopen, A, C B, \(B)€ T}
B

for every measure p € M(Q) such that A(4,) < M.

Proof. Let p € My(Q) with M\(4,) < M. Let us denote by H(p) the
right-hand side of (3.3.7). It is enough to prove that G(p) > H(p), since the
opposite inequality is trivial. Since A(4,) <M, ) is nonatomic, and T’ is an
interval, G(u) coincides with the infimum taken over all Borel sets B such
that A(B) € T, 4, C B, and A(B) > A(4,).

Given one of these sets B, we shall exhibit a sequence {Ax} of open

subsets of ), with A(4p) = A(B) and 4, C Ay, such that

(3.3.8) lim gdX = / gdX.
Ap B

h—o00

Since H(p) < fAh g d)\, taking the limit as h — co we obtain

(3:3.9) H(u) < /B gdr,

and taking the infimum with respect to B we get H(p) < G(p). It remains to
construct the sequence Ap. Since X is bounded, we can find a sequence {Un}
of open subsets of 2 such that A, C Uy for every h e N, and AMUp\4,) <
1/h. Moreover for every h € N there exists an open set By 2 B such that
ABr\B) < 1/h. It is not restrictive to suppose U, C Bp, since one can
always replace B with By U Uy, and

A((BhUUh)\B) < A(Bh\B)-i-)\(Uh_\B) < A(Bh\B)-l-/\(U}L\Au) < Z/h.

Thus, for h large enough, A(Up) < M4u) +1/h < A(B) < A(B4), so that,
by Lemma 3.1.1 we can find an open set 4, such that U, € A, € By, and
M Ap) = A(B). Moreover we have that 4, C Uy € Ap and

/ gdA :/gd)\—/ gd)\—%—f gdX.
An B B\_-lh Ah\B

Since A(Ax) = A(B), we have A(B\4;) = MAr\B) < XMBr\B) <
1/h. Then, as g € L}(Q2), (3.3.8) follows from the absolute continuity of the
integral. ]
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Lemma 3.3.5 Let A and T be as in Theorem 3.3.1, and let p € My().
Then for every open set B containing A, with M(B) € T, there exists a
sequence {Ap} of open subsets of B, with AM(B\ Ap) = 0, such that the

sequence {p .4, } ~L -converges to p.

Proof. Applying Proposition 3.1.7 with Q replaced by B, it is possible
to find a sequence {An} of open subsets of B with MB\A4r) = 0, such
that the sequence {u.,} v -converges to p in B, i.e., replacing Q by B in
Theorem 3.1.6, the sequence {ws} of the solutions to the problems

(3.3.10) Lwh =1 in Ah N wh = 0 on (9Ah 3

extended to zero outside A weakly converges in H 4(B) to the solution w in

the sense of (1.3.5) of the problem
(3.3.11) Lw+pw =1 in B, w € HY(B)NL2(B)

extended to zero outside B. Since A, C B, the solution w, of (1.3.6) in {2
equals zero q.e. on Q\B, so that w, € H}(B)N L%(B) and satisfies (3.3.11).
As A, C B, this shows that {p.4,} ~L-converges to p in 1. [

We are now in a position to prove (3.3.4) for every p € My(9) such that
MAL) < M.

Proposition 3.3.6 Let j, A, and T be as in Theorem 3.3.1 and let Jy be
the functional defined in (3.3.6). Then Jo(p) = Jo(p) for every p € My(Q)
with A(4,) < M.

Proof. Let us fix p € My(Q) such that A(4,) < M. As pointed out
in Remark 3.3.3, it is enough to show that To(p) < Ju(p). Let us con-
sider an open set B, containing A,, with MB) € T. By Lemma 3.3.5
there exists a sequence {Ar} of open subsets of B, with MAr) = MB),
such that {u4,} 7% -converges to p. Thus, as in Remark 3.3.3, we obtain
Jo(p) < fB] z,0)d\. Taking the infimum over all admissible open sets B,
by Lemma 3.3.4 applied to g(z) = j(z, 0), we obtain To(p) < Jo(p)- ]
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In order to extend the equality Jo(p) = Jo(p) to every p € Mo(Q), we

need the following lemma.

Lemma 3.3.7 Let {43} and {A} be two sequences of quasi open subsets
of Q) such that A, C A for every h and cap(A-h\Ah,Q) — 0. Let wy and
@y, be the solutions of problem (1.3.6) with p = p., and p = pj, - If {wr}

and {w;} converge weakly to w and w, then w = w g.e. in (1.

Proof. Since A4, C ffh, by Lemma 1.3.8 we have wy < wp q.e. in Q for
every h € N, and then w < & q.e. in (1. Let us prove the opposite inequality.
To this aim, following the ideas of Stampacchia (see [64]), for every subset E
of 0 we denote with Kz the set of all functions v € Hj(2) such that v >1
g.e. in FE and, if Kg is nonempty, we consider the unique solution z of the
variational inequality
{ z € Kg,
(Lz,v—2) 2 0 Vv € Kg.

The function z is called the L—capacitary potential of E in ! and the L-
capacity of E in Q is defined by cap?(E,Q) = (Lz,z). We set cap®(E,Q) =
+oo if Kp =0. It is easy to see that

(Lz,¢) = 0 Vi € Hi(Q), with¢ =0qe.in E.

Moreover, by the maximum principle, one can check that z = 1 q.e. in E.
Finally cap®(E,Q) < ccap(E, Q) so that, by hypothesis, capL(An\4n, Q) —
0. Then by the ellipticity assumption on L the sequence {z} of the L-
capacitary potentials of the sets ffh\Ah in O converges to zero strongly in
H}(Q). Let ¢ be a positive constant such that w,; < ¢ q.e. in §2 for every
h € N. We claim that for every h € N

(3.3.12) wy, < wy + czp q.e. in 2.

As z =1 q.e. in A-h\Ah, wp > 0, and @, = 0 q.e.in Q\/Ih, (3.3.12) is
trivially satisfed in Q\A;. Since (Lz;,9) = 0 for every ¥ € H}(Q) with

% =0 qe. in Ay\ A4}, in particular, we have

(3.3.13) (L(dn — wh — cza)y) = 0
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for every ¥ € H}(Q) with ¢ = 0 q.e. in Q\ A;. Taking in (3.3.13) ¥ =
(wp — wp — czp)™, by the ellipticity assumption on L, we obtain that (wp —
wp —czp)T =0 ge. in Q, which proves (3.3.12). O

Proof of Theorem 3.3.1. By Remark 3.3.3 it is enough to characterize
the relaxation of the functional J, defined by (3.3.5). By Proposition 3.3.6
Jo(p) = JQ(/L) for every p € Mo(2) with A(4,) < M. Let us consider now a
measure pL € Mo( ) with A(4,) = M. Let A, be the measureon Q) defined
by (/\|A“)(B) = A(A,NB). Since M > 0, there exists a point © € suppA|,,
that is A(B(z,r) N 4,) > 0 for every r > 0. Setting B, = B(z,1/h),
Ay = A \By,and pp = p+pop, wehave that A,, C Ap and MA,,) <M.
By Lemma 3.3.7 applied to A, = A, , the sequence {pr} ~L -converges to p.

Thus by the 7F -lower semicontinuity of Jo we have
To(p) < liminf Jo(pn)-
h—o0

As MA4,,) < M, by Proposition 3.3.6 Tolpn) = Jo(ps) for every h € N.
Moreover, since 4,, € 4, and AMAL) =M, we have

Jom) < [ (e,0)dx = o)
Ay
for every h. Therefore
To(u) < liminf Jo(ps) < Jo(w),

and hence Jy(p) = Jo(p) for every p € Mo(Q). [

Remark 3.3.8 If T'= {0} and A is therLebesgue measure, then the func-
tional J, defined in (3.3.5) takes the form

0, if A=0,

+o0o, otherwise.

(3.3.14) Jo(4) = {
Thus its relaxation Jy is the functional defined by

(33.15) jU(I_L) - {07 if B’ = [:LO)

+o00, otherwise.
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Tt turns out that J coincides with the functional Jo defined in (3.3.6). Indeed
J, is finite and, more precisely, takes the value zero, only for p € M, (9) with
A(A4,) = 0. It is well known that every quasi open set with Lebesgue measure
zero has capacity zero, so that A(4,) =0 if and only if 1 = po.

The following counterexample shows that, for a general A, the functional

= _Jo, if M(4,) =0,
Joln) = {—%-oo, otherwise,

does not coincide with the relaxation of the functional Jo when T' = {0}.

Example 3.3.9 Let {qn} = 1N QN and let {rz} a sequence of positive
number such that cap(B(gr,7s),§) < 1/2%. Let V = U, B(gn,7s) and let
u be the function in H}() such that u =1 ge. in V and [, |Dul?dz =
cap(V,Q). Let us consider the measure ) defined as

A(B) = LY(V N B)

for every B € B(R), where L~ denotes the N —dimensional Lebesgue mea-
sure. Since for every open subset A of @ with A # @ we have A(4) > 0,
the functional J, defined in (3.3.5) corresponding to this choice of A takes
the form (3.3.14) and its relaxation Jo is given by (3.3.15). On the other
hand, if we consider the quasi open set 4 = {z € 0 : u(z) < 1/2}, since
w =1 ge. in V we have cap(A N V,0) = 0 and hence AM4) = 0. Fi-
nally A has positive Lebesgue measure, and then positive capacity, so that

pa(4) =0 +o00 = po(4). Thus jo(,u_.;) =0, but Jo(ps) = +oo.

Remark 3.3.10 If T = [0,A(Q)], then by Remarks 3.2.2 and 3.3.3 the

relaxed functional J can be written as

J = i(z,u A — T (z.0)dM.
T(1) f{ i(zu,)d /Ma (2,0)d

n

The following example shows that for every fixed v € MU(Q) there exists
a functional J, as in Theorem 3.3.1, with f =1 and T = [0, A(?)], such that
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v is the unique minimum point of J,. If v # py for every open set 4 CQ,

then the minimum problem

min J,(4)

A open
ACO

has no solution. Indeed J,(A4) > 7,,(/1_4) > J,(v) for every open set ACQ,

and

inf J,(A)= min To(p) = Ju(v)

AAOE?‘LH #EJ\-AO(Q)

by Remark 3.1.9.
Example 3.3.11 Let wy be the solution of the Dirichlet problem
wo € Hy(Q), Lwy =1 in Q.

Then wo € L®°(Q) and w, < wo ge. in by the comparison principle
(Lemma 1.3.8). Let us fix v € My(9) and let g, € L>(f2) be the function

defined by
w, in Ay,
gv =
3k in Q\A4,,
where k € R and k& > ||wo| Let 7,:Q x R — R be the function

defined by

L=(Q) "

jV($7S) = |3 - gu(fc)‘z — k2.

Finally let f = 1, let A be the Lebesgue measure, and let T = [0,A(f2)].
Then the functional defined by (3.3.1) is given by

JV(A) = /;(lw:l - gu‘2 - kz)dmv

for every open set A C . By Remark 3.3.10 the relaxation J, of J, takes

the form

(3316)  Tulw) = / (1w, — gu? — k%) de — L e

“tH
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for every p € My(f2). We want to prove that To(p) > Tu(v) = —k*X4y)
for every p € My(Q) with p # v. By (3.3.16) we can write

T (1) = /4 ) (jw, —w,|? — k*)dz + /; y (w? — 6kw, + 8k?) dz
ApnAdy Apyiy

—-/ (9k* — k%) dz — / (w2 — k%) dz,
A(A,UAL) AN,

Since w, =0 g.e.in 4,\4,, w, =0 ge. in AN\A,,and 0 < w, <k ge.
in Q, we have wi = |w, —w,|* qe.in A\ A4,, —6kw, + 8k? > 0 q.e.in 2,

and —(w2 —k?)” =w? —k? = |w, —w,|* — k? q.e.in A,\ A4, . Hence

Jo(p) > f lw, —wy| d:c-—kz)\(AuﬂA,,)—i—/ lw, —w,|*d=z
4,04, ' A

+/ lw, —w,|* de — E*A(A,\A,) = / lw, —w,|* —k*A(4,).
AN\, Q

This shows that J,(u) > Jo(v) = —k?A(4,) for every p € My(Q). I
T,(p) = Tu(v), then [, |lw, —w,|*> =0, hence w, = w, a.e.in 2, and this
implies 4 = v by Lemma 3.3.3 of [30].

In the following example, which is a particular case of the previous one,
the function j is continuous, and even C*°(Q) if the coeflicients of the operator

L are C*(Q).

Example 3.3.12 Let wy, k, A, f, T be as in Example 3.3.11, let j(z,s) =
|s — 2wy|? — k?, and let
1
J(A) = /(|w_4 — Zwyl? — k%) dz
4 2
be the corresponding functional defined for every open set A CQ. Then

(3.3.17) Jinf J(4) = —E2N(Q),
ACH

where ) is the Lebesgue measure, but the minimumin (3.3.17) is not achieved.
To prove this fact it is enough to notice that wy > 0 in 2 by the strong
maximum principle, and that

1 1 wy

L(= S22 =1 inQ
(2w0)+2w0 1 in y
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hence Zwy is the solution of (1.3.6) corresponding to the measure v = A wy .
Therefore 2 Wy = Wy As A, = Q, using the notation of the Example 3.3.11
we have g, = fwy, J» =7, Jv = J. Therefore J(p) > J(v) = —k2A(§Y)
for every p € Mo(Q) with p # v. The conclusion follows from (3.3.16) and
(3.3.17).
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Chapter 4 |
Relaxed Dirichlet problems with measure data

The aim of this chapter is to prove regularity results for the solution of
variational relaxed Dirichlet problems and to introduce, by a duality method, a
notion of solution for relaxed Dirichlet problems with a measure with bounded
variation as datum. In particular we introduce a notion of solution (that gives,
if p =0, the solution given by G. Stampacchia in [64]), proving an existence
and uniqueness result. This nonvariational existence result allows us to define
the Green function G, for relaxed Dirichlet problems. We show that it is
possible to define pointwise G,u(z,y) in QxQ outside the diagonal, and that
this representative is upper semicontinuous in each variable, has the usual
symmetry property, and the representation formula for solutions of relaxed
Dirichlet problems with measure data holds. The main difficulty in proving

these properties consists in overcoming the lack of continuity of G,

4.1. Preliminaires

We shall define Mp(Q2) as the space of all signed measures on  with
bounded total variation; we shall denote by &, the Dirac mass concentrated
in z € 0. By M(Q) we shall denote the class of measure with bounded

variation and not charging polar sets.

Definition 4.1.1 Let {vn} be a sequence of measures in Myp(R2). We say
that v, converges to a measure v € My(Q) in the weak* topology of mea-
sures, if [, f(z)dvn(z) converges to f,, f(z)dv(z) for every continuous func-

tion f with compact support in Q.

Remark 4.1.2 If v, converges to v in the sense of Definition 4.1.1, and
suppv, C K for every n € N, where K is a compact subset of {2, then

fQ f dvy, converges to fQ f dv for every continuous function f on .
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Theorem 4.1.3 Let {v,} be a sequence of measures of My(Q), and sup-
pose that there exists a positive constant ¢ such that |v,|(Q) < ¢ for every
n in N. Then there exists a subsequence {vn,}, and a measure v € My (92),
such that v,, converges to v in the weak”® topology of measures. Moreover,
if {v,} is a sequence of positive measures that converges to v € My(§) in

the weak™ topology of measures, then

liminf /Q f(z) dva(e) > /Q F(z) dv(z)

tiloened
for every continuous function f on Q, bounded from below.
Proof. See [2], Theorem 4.5.1. O

We recall that for every positive measure p the weak- L?({), ) space
L? (Q,p) is the space of all functions f such that

o =

= P :
15151 = 0010 iz € 0171 > eDIF < oo
A useful result about weak- LP(Q, 1) spaces is the Marcinkiewicz interpolation

theorem.

Theorem 4.1.4 Let p and v be two positive measures and let T be a linear
continuous mapping between LP°(Q, ) and L (Q,v), and between Lr(Q,p)
and LU (Q,v) with py # p1. Define, for a real number 6 in (0,1),

1 1-6 4 1 1-—-6 6

— - - ’

b

p Po n q q 41
and assume that p < g. Then T is continuous between LP(Q,p) and LY(£2, v).

Proof. See [6], Theorem 1.3.1. O

4.2. Regularity results for the variational case

In order to define relaxed Dirichlet problems with measure data, we need
some regularity results for the solutions of variational relaxed Dirichlet prob-

lems with tespect to the regularity of the datum. We begin with a useful
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result, whose proof is straightforward by a theorem due to G. Stampacchia
(see [64], Lemme 1.1).

Lemma 4.2.1 Let s:R — R be a lipschitz function such that s(0) = 0;
then the operator S, defined by S(u)(z) = s(u(z)) for every measurable
function u, maps H}(Q) N L*(Q, p) into itself.

Another basic tool in the proof of the regularity theorem will be the

following.

Lemma 4.2.2 Let ¢:[0,+00) — [0,400) be a decreasing function such that

C

#(k) < Gral#RN” VR>E 20,

where ¢, a and (3 are positive constants. Then the following hold:
() if §> 1, then $(d) = 0 where d* = c[¢(0)}7 7277

(i) if B <1, then ¢(h) < 9755 ¢T=F b7 for every h > 0, where T = T%E

Proof. See [64], Lemme 4.1. ]
Now we prove the regularity result.

Theorem 4.2.3 Let p be a measure in My(Q). Let u be the solution of
the relaxed Dirichlet problem
Lu u = —div in Q,
(421) {u ::—g g ) on 0Q.
Then the following hold:
(i) if the function |g| belongs to L™(Q), with m > N, then u belongs to
L>°() N L>(Q, ) and the continuity estimate holds:

| <

where ¢; and ¢, are positive constants that do not depend on u and g;
(ii) if the function |g| belongs to L™(Q), with 2 < m < N, u belongs
to L™ (Q) N LP(Q,p), with m* = Nm_ and p = 232m~, and the

N—-m?’ N

continuity estimate holds:

[l gy S 3ol gy Tl iy S 2090 gy
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where ¢; and cy are positive constants that do not depend on u and g.

Proof. Let us define the set A(k) = {z € Q: [|u(z)] > k}, where k
is a positive real number, and choose as test function in (4.2.1) vi(z) =

max(|u(z)| — k,0) sgn(u(z)). We obtain, by (1.3.1),

9/ | D |? dz +/ lu|vg dp _<_/ gDv dz .
A(k) A(K) A(k)

Using Young inequality in the right hand side and simplifying equal terms we

0 1
_f |ka|2d:c+/ uordp < = | lgPde.
2 Jam (k) 26 J s(xy

If h > k then A(h) C A(k), and vx > h —k in A(h); thus, by Sobolev
embedding,

/ |Dvgl?dz > ¢ / lv
A(R) (k)

where 2% = ]\E}E if N > 3, or any real number greater than —T%—T—z if N =2,

have

2* dm) s c(h— k2L (A(R)T ,

and

/ o dps > / orl2 dp > (b — k)? s (A(B)) -
A(k) A(k)

On the other hand, using Holder inequality,

L™(Q)

[ lakde < gl g, (£CAGNYT
A(k)
Finally, putting all the estimates together, we obtain the relation

2 (L (AR T

o(h— k) (L(AR))T +(h— kY p(AR) < lgl” .

and so, for every h > k > 0,

2%

422) LR £ ¢ F g ol g, (CAMNTITT

(42.3) (h— kY (A(R) < g, (£CAGRD) T
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m

we conclude that if m > N then, by (4.2.2), £(A(d)) = 0, where d
c“'éHgHLm(Q) , and, by (4.2.3), p(A(kh)) = 0 for every h > d. Thus, the first

part of the theorem is proved.

Applying Lemma 4.2.2 with ¢(h) = L(A(R)), a =2*,and B = (1 - 2)&

If 2<m < N then, by (4.2.2), L(A4(k)) <1 HgH'Z;(Q) k=™ and, choos-

ing h = 2k in (4.2.3), p(A(2k)) < ¢ |jg||(£;(2é;n)m* (2k)~(N=2)m /N Hence,
the mapping g — R(g), where R(g) is the solution of the relaxed Dirich-
let problem with datum —(g).,, is ].inearw?gld*continuous between L™()
and L7 (Q, L), and between L™(Q) and L~ " (9, 4), for every m in [2, N).
By Marcinkiewicz interpolation theorem this linear map is continuous be-
tween L™(Q) and L™ (), and between L™(Q) and LI\'i\_"?m*(Q,;L) for ev-
ery m in (2,N). Moreover, if m = 2 the continuity of the operator R
between L?(Q) and L? (), and between L2() and L?(£2, ) is well known

(see Theorem 1.3.2), and this concludes the proof of the theorem. U]

Remark 4.2.4 It is possible to obtain the result of Theorem 4.2.3(ii) with-
out using the Marcinkiewicz interpolation theorem; for example, the tech-
niques used in [10], Teorema 1.5, can be adapted in a straightforward way to
this kind of problems.

The following theorem can be proved in the same way.

Theorem 4.2.5 Let p be a measure in M((Q). Let u be the solution of

the relaxed Dirichlet problem (1.3.5). Then the following hold:

(i) if the datum f belongs to L™(Q), with m > ~2\—, then u belongs to
L>*(Q)N L>(Q,u) and

[l gy Selfl gy 10l S 27 gy

where ¢; and c, are two positive constants independent of v and f;

i) ifthe datum f belongs to L™(Q), 2% < m < &, u belongs to L™ " (Q)n
8 N2 2 &

L (Q,pn), with p= ‘\}\sz** = (—:—E—%Zﬁ and

Fell e oy Sl gy g S U gy

where ¢; and c; are two positive constants independent of u and f.
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4.3. Some results about Dirichlet problems with measure data

In the following, we give a definition of solution of an elliptic equation

with measure data, and prove some of its properties.

Definition 4.3.1 The resolvent operator of L is the operator R: L>=(Q) —
L>>(§) that associates to every L>°({}) function f the unique solution u =
R(f) of the classical Dirichlet problem

{Lu:f in 2,
u =0 on O€).

The operator R is well defined thanks to Théoréme 4.2 of [64]. We denote
by R* the resolvent operator of L*.

Remark 4.3.2 We note explicitly that, by Théoreme 7.1 of [64], R(f)
belongs to CY(f2), and not only to L>({). Moreover, if one assumes that 9Q
is regular (see Définition 6.2 of [64]), then R(f) belongs to C’(Q2).

Definition 4.3.3 Let v be a measure in My(Q) with compact support in
Q). A function u in L'(Q) is a solution of

Lu=+ 1in{,
u =0 on 011,

if

(4.3.1) /{;u(m)g(m) de = /Q R*(g)(z) dv(=) Vg e L>(Q).

Remark 4.3.4 The right hand side of (4.3.1) is well defined thanks to
Remark 4.3.2.

Remark 4.3.5 Our definition of solution is slightly different from the usual
one given in [64], Section 9, where (4.3.1) is required to hold for every g €
CY(Q) and 69 must be regular (in a sense specified in Définition 6.2 of [64]).
In this paper we overcome these problems with the hypothesis of compact
support for the measure 7.

Anyway, the proof of existence and uniqueness of solutions given in [64]

remains valid also in our case. Thus, there exists one and only one function
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u satisfying (4.3.1), and this function obviously coincides with the solution
found in [64], so that it enjoys all of its properties. In particular, it belongs

to HY(Q) for every 1 < g < N satisfies the continuity estimate
0 ] 9< ¥

(432) [l 00y 071,

for some positive constant ¢, and is the solution in the sense of distributions
if v € H1(Q). Moreover, if G(z,y) is the Green function of the operator L
in Q, that is, the solution in the sense of Definition 4.3.3 of L*u = &, then
the solution of Lu = v with homogeneous Dirichlet boundary conditions can

be written as

(4.3.3) u(z) = /QG(:B,y) dv(y) for a.e. ¢ € Q

(please note that in [64], Définition 9.2, there is a typing error: &y should
be replaced by 6;). Finally we recall that G is positive, continuous (with
extended real values) in © x Q, and that G(z,y) = G*(y,z) for every z and

y in ©, where G* is the Green function of the operator L*.

Remark 4.3.6 A question arises whether or not the solution u of (4.3.1)

is also a solution in the sense of distributions of Lu =7, i.e. if u is such that
/ ADuDypdz = / o dy Yo € C§°(82).
Q Q

In [8] it is proved that the limit of an approximating sequence of solutions of
Dirichlet problems with regular data converging to 7 in the weak™ topology
of measures is a solution in the sense of distributions. Anyway, the solution
in the sense of distributions is not unique, as a counterexample by Serrin (see
[62]) shows, and so it may be different from the (unique) solution of (4.3.1).
The following result shows that the solution of (4.3.1) can be obtained by

approximation, and so is a solution in the sense of distributions.

Lemma 4.3.7 Let v belong to My(Q), and suppose that v has compact
support in Q. Let {@,} be a sequence of positive, spherically symmetric,
§ -approximating convolution kernels with compact support, and define f, =
¢n*v. Let {u,} be the sequence of solutions of

Lu, = fn 1inQ,
u, =0 on 0f).
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Then, for every real number g such that 1 < ¢ < Rf—\;—l , U, converges strongly
in Hy?(Q) to the solution u of (4.3.1). Moreover

(4.3.4) / ADuDypdz = / v dy Yo € Hé‘ql(ﬂ).
Q Q :

Proof. By Lemma 1 of [8], u, converges strongly in H,%(Q) (hence in
LY(Q)) to a function u that satisfies (4.3.4). Moreover, since fn € L*(2), we

have

/ up,gde = / R*(g) fndz Vg e L°(Q2), Yne N.
Q Q

Since R*(g) € C°(Q), we can use Remark 2.2 and pass to the limit in both
sides of the preceding relations, obtaining that u is the solution of (4.3.1). U

Definition 4.3.8 Given a positive measure ¥ € My(Q) we define the set
N, as

N, ={zeq: /Q Gle,y) drly) = +oo}

It is proved in [7], Chapter 2, Sections 2-3, and Chapter 6, Section 1,
that N. has harmonic capacity zero; moreover, since G(z,z) = +oo, then
v({z}) = 0 for every ¢ ¢ N,, and N, C supp7, since G(z,y) is bounded
outside a neighbourhood of the diagonal.

If v is a Kato measure, N, = @, and the solution of (4.3.1), defined
pointwise by (4.3.3), is continuous in Q (see [33], Theorem 4.11).

Remark 4.3.9 From now on we will always choose in the almost every-
where equivalence class of the solution of Lu = 7, the representative given
by [, G(z,y)dy(y). We remark that it is well defined in  if v is a positive
measure, while, in general, it is not defined in N + N N_-. Furthermore,
if v is a positive measure, then this representative is lower semicontinuous,
as can be easily seen by Fatou lemma. This is a more precise choice of the
pointwise value of u, which, a priori, is defined only cap,-quasi everywhere,
while N+ N N.- is a set with 2-capacity zero. Moreover, this representative
is independent from the choice of u in its Lebesgue class, as we prove in the

following lemma.
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Lemma 4.3.10 Let v € My(Q2) be a positive measure with compact sup-
port in 0, and let u be the solution of (4.3.1). Then, for every z in {2,

(4.3.5) lim | u(y)en(z —y)dy = f G(z,y) dv(y),

n—ooc Q Q

where {@,} is any sequence of positive, spherically symmetric, 6 -approximat-

ing convolution kernels with compact support.

Proof. By (4.3.3) and Fubini theorem, we have

Au(y)wn(w—y)dy=L<L G(y,zwn(fc—y)dy> dv(z)

By Fatou lemma, since 7 is a positive measure and G(-,z) is continuous and
positive, we have

[ 6@ ar() < timint [ a)en(e ~v)dy,
Q Q

n—00

so that (4.3.5) is proved if its right hand side is infinite, ie., if z € N, .
Suppose that G(z,-) belongs to L'(Q,7). We recall that, if I' is the
Green function for the Laplace operator on {2, then I'(x,:) is a superharmonic
function, and so we obtain [, I'(y,2) vn(z —y) dy < I'(z,z) for every y € Q
since ¢, is radially symmetric; moreover, there exists a positive constant ¢,
depending on z and supp7, such that G(z,y) < c¢D(z,y) < 2 G(z,y) for
every y € supp~y (see [64], formula (9.23)). Thus, for every y € supp7,
we have [, G(y,z)¢n(z —y)dy < ¢®G(z,2). Since G(:,z) is continuous,
formula (4.3.5) follows from Lebesgue theorem. 0

Remark 4.3.11 The same result holds if we use convolution kernels of the
form ¢, (z) = n™ p(nz), ¢ € L>(B1(0)). Actually, Jo T(y,2) pnlz —y)dy <
cT(z,z) for every y € 2, where ¢ depends only on ¢, and this is the only
point of the proof that has to be changed.

Lemma 4.3.12 Let {v,} be a sequence of measures of My(§). Suppose
that there exists a compact set K CC § such that suppv, € K for every n
in N. Let w, be the solution of (4.3.1) with datum vy, and let ¢ be any real
number such that 1 < ¢ < ﬂl—\_—_—I . Then the following holds:
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(i) if yn converges to a measure vy in the weak™ topology of measures, then
w, converges to a function w weakly in HS’Q(Q), and w is the solution
of (4.3.1) with datum ~;

(i) if w, converges to a function w weakly in H;'%(Q), then v, converges
to a measure v in the weak™ topology of measures, and w is the solution
of (4.3.1) with datum «;

(iii) if v, converges to a measure y in the weak™ topology of measures, vn is
a positive measure for every n in N, and wy, Is an increasing sequence

of functions, then the pointwise limit w is such that

:LG(m,y)dﬂy) Vz € ().

Proof. (i) Since, by (4.3.2), ||wnl| < |val(€) < ¢, then, up to subse-

Hy(Q)
uences, w, converges weakly in HY7(Q) to a function w, and so, by Rellich
q 3 g Y 0 Yy

theorem, w, converges to w strongly in L'(Q). Using Remark 2.2, we can

pass to the limit in the identities

/wngd:c:/R*(g)d’yn Vg € L=(9),
Q Q

and obtain that w is the solution of (4.3.1) with v as datum. Since the limit
does not depend on the subsequence, then the whole sequence {wn} converges
to w.

(i) Since, by Lemma 4.3.7, w, is the solution in the sense of distributions

of Lw, =~n with Dirichlet boundary conditions, then

/ ADw,Dpdz = / w dvn Vo € C5°(9).
Q Q

Choosing ¢ such that ¢ = 1 on K, and using the boundedness of {wn}
in Hé’q(ﬂ), we obtain that |v,|(Q2) < c. Hence, up to subsequences, ¥»
converges in the weak ™ topology of measures to a measure y by Theorem 4.1.3.
By (i), this implies the result. Once again, by uniqueness, the limit v does
not depend on the subsequence and so the whole sequence {v,} converges.

(ii) By ( = [, G(z,y) dy(y) for almost every z € Q2. Since

= / G(z,y) dvn(y) Yz €, Vne N,
Q
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we have, passing to the limit, and using Theorem 4.1.3,

w(w)Z/QG(w,y)dv(y) Ve e L.

Let z be a fixed point in Q; for every r > 0 there exists z, € B,(z) such that

w(z,) L (Br(z)) < fB (x) W w(y)dy. Thus, since w is lower semicontinuous as
limit of an increasing sequence of lower semicontinuous functions, we have, by
Lemma 4.3.10,

w(z) < hga&fw( r) < 11:3(1#{ Z(B a;)) / w(y) dy
1
=hm————-——-—— (/Gy,zdvz‘)dy:/Gm,zd'yz
L T8 @) Joe s (y,2) dv(2) . (z,2) dv(z)
which concludes the proof. J

4.4. Nonvariational relaxed Dirichlet problems

The aim of this section is to introduce the notion of relaxed Dirichlet
problems in a nonvariational setting, giving existence and regularity results.
We will use the results of Theorems 4.2.3 and 4.2.5, and the ideas of Sec-
tion 4.3, to give the definition of a solution for this kind of problems if the
datum v belongs to My(f2).

Definition 4.4.1 Let pu be a measure in My(Q). We define the resol-
vent R,:L>(Q) — L>°(Q) as the operator that associates to every L>=(Q)
function f the unique solution u = R,(f) of the relaxed Dirichlet problem
Lu+pu=7Ff in,
u=20 on 01,
in the sense of Definition 1.3.1. The operator R, is well defined thanks to
Theorem 4.2.5. We define R}, the resolvent operator of L*.

Theorem 4.4.2 Let f be a positive function in L>(Q). Then there exists
a positive measure v € H () such that L (R(f) — Ru(f)) =~ in the sense
of Definition 4.3.3 in Q. Thus, R,(f) can be defined pointwise as

(4.4.1) R,(f)(z) = R(f)(= /G z,y)dv(y vV € Q1.
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This pointwise value coincides with the limit of its convolutions with any se-
quence of positive, spherically symmetric, §-approximating convolution ker-

nels with compact support, and

(4.4.2) BAA)@)] < Bu(D) g V2 ED.

Proof. By Theorem 1.3.6, R,(f) is non-negative, and L R,(f) < f in the
sense of distributions, so that L(R(f) — R,(f)) > 0. Hence, there exists a
positive measure v such that L(R(f) — Ru(f)) = 7 in the sense of distri-
butions, and (since v € H~1(Q2)) in the sense of Definition 4.3.3. Thus, we
define pointwise R(f) — R.(f) as [, G(z,y) dv(y); since R(f) is continuous,
(4.4.1) gives a pointwise definition for R,(f). By Lemma 4.3.10, this value

coincides with the limit of its convolutions, and so formula (4.4.2) follows. L]

Remark 4.4.3 Since the equation is linear, we can give a pointwise defini-

tion of R,(f) for every f € L>(f).

Definition 4.4.4 Let v belong to My(Q), and suppose that v has com-
pact support in ). We say that a function u in L'(Q) is a solution of the

nonvariational relaxed Dirichlet problem

Lu+pu=v inf,
u=0 on 011,

if

(4.4.3) /;u(m)g(a:)dm =LRZ(g)(m)du(a:) Vg € L=(Q).

We point out that the right hand side of (4.4.3) is well defined thanks
to Theorem 4.4.2. If ;= 0 the above definition coincides with the definition

given in Section 4.3.

Remark 4.4.5 If v € H~}(Q) then the solution u of the variational relaxed
Dirichlet problem (1.3.5) is the solution of (4.4.3), since R},(g) can be chosen
as test function in the variational formulation of the equation satisfied by u

and vice versa.
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Now we give an existence and uniqueness result for solutions of (4.4.3).
Theorem 4.4.6 There exists one and only one solution u of (4.4.3), with u

belonging to H,')(Q) for every real number g such that 1 < g < —\—'\_—T, and

(4.4.4) < e l(9),

U
H “Hé,q(Q)
for some positive constant ¢, independent of u.

Proof. We follow the ideas developed in [64]. Let us consider the linear
operator F: L>°(0)) — R defined as

Flo)= [ Bla)e)dvlz) g€ L@,
Since L°°(f) is embedded in H-1P(Q), p> N, we have, by Theorem 4.2.3,

(4.4.5) F(9)] < () IR o ) < €l 6]

H-br(Q)

Since the embedding is dense, F' is a continuous linear operator on H-17(Q).

So, there exists a unique function u belonging to the space H,Y(Q),1<g<

WDET’ that represents F', and, in particular,
[ ) a(e)de = [ Riae)avtz) Vg€ L7(0).
Formula (4.4.4) easily follows from (4.4.5). il

We show that the solution of (4.4.3) can be obtained as the limit of

solutions of variational relaxed Dirichlet problems.

Theorem 4.4.7 Let v belong to My(Q), and suppose that v has compact
support in Q. Let {¢,} be a sequence of positive, spherically symmetric,
§ -approximating convolution kernels with compact support, and define f, =
on*v. Let {u,} be the sequence of solutions of the problems (1.3.5) with fy,
as data. Then, for every real number g such that 1 < ¢ < ”\—\:I , U, CONVerges
strongly in Hy'?(Q) to the solution u of problem (4.4.3).

Proof. Since f, converges to v in the weak® topology of measures, we have

that {fn} is bounded in L*(Q), and so, by (4.4.4),

(4.4.6) HunHHé,q(m < CHf”HL‘(Q) )
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Using the technique of [8], Lemma 1, with minor changes due to the presence
of the measure p, we can prove that {Du,} is a Cauchy sequence in measure;
this and (4.4.6) imply, by Vitali theorem, that u, strongly converges to u
in H&'Q(Q), for every real number ¢ such that 1 < ¢ < 7\—\;_—1 .

It remains to prove that u is the solution of the problem (4.4.3). Ac-
tually, for every g in L*(f) and for every n in N, we have [,ungdz =
Jo B;(g) fndz. Clearly, the left hand side converges to [,ugdz. On the
other hand, since suppv is compact in {2, we obtain, for every n such that
the distance between the support of v and the boundary of 1 is greater
than 1/n,

/QRZ(Q)(:c)fn(m)dm:LR;(g)(m) /é%(m_y)d,,(y) de —
/QUQ RZ(Q)(G«’)‘Pn(m——y)dm) du(y):L(R;(Q)*%)(y)dy(y).

Using Theorem 4.4.2 and the boundedness of RZ(g), we can pass to the limit
by Lebesgue theorem, thus achieving the result. ]

Remark 4.4.8 If p = 0, we obtain again the result of Lemma 4.3.7: the

solution of (4.3.1) can be obtained by approximation.

Our next result is about the regularity of the solution of a nonvariational

relaxed Dirichlet problem outside the support of the datum v.

Theorem 4.4.9 Let v € My(Q), suppose that v has compact support in
Q, and let Q' C Q be an open set such that |[v|L_ Q' € H-YQ). If u is the
solution of the nonvariational relaxed Dirichlet problem with v as datum in
the sense of Definition 4.4.4, then w € H} ()N LE (Q',p), and it is a local

solution of Lu + pw = v in ' in the sense of Definition 1.3.1.

Proof. Since the equation is linear, it is not restrictive to suppose v > 0.
We begin by proving that, if E is the support of v, then u isin H} (Q\E)N
L (Q\E)N L (Q\E,p), and is a local solution of Lu + pu =0 in Q\E.

loc

Consider the approximating sequence {u,} of solutions of the problems
{Lun +pu, = frn in {2,

(4.4.7) U, =0 on 01,
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where f, = p,*v and {¢,} is as in the statement of Lemma 4.3.10. Let E,, =
supp fn, so that, for n large enough, {E,} is a decreasing sequence of compact
subsets of (2. Let K be any compact subset of 2\ E, and let ny = ny(K) be
an integer such that £,NK = @ for every n > ng. Let {v,} be the sequence

of positive solutions of
Lv, = f, in Q,
v, =0 on O11.

Since E, C E,, for every n > n; then Lv, =0 in Q\E,, for every n > ny.
By Harnack inequality (see [64], Section 8), there exists a positive constant ¢ =
(8,0, K,Q\E,,) such that supy v, < ¢ infg v,; using (4.4.4), and Sobolev
embedding,

c
Sl}i_P'Un S _(.E-—) \/;{ Un d$ S ¢y H’vn”Ll(Q) S C2 an”Ll(Q) .
Since u, < v, almost everywhere in {2 by Theorem 1.3.6, we have

(4.4.8) < supv, < ¢(K),
e

enll e

and so u belongs to L>°(K) for every compact subset K of Q\E.

Let K and ny = ny(K) be as before, and consider a compact set K’
with K CC K' CC Q\E,,. Let a € C{°(K') be such that 0 < o < 1
everywhere, « =1 on K, and set a = 0 in 2\ K’. Choosing o®u, as test
function in (4.4.7), we obtain, by (1.3.1), by Young inequality, and by (4.4.8),

/ |Dun|? o da +/ w2 o? dp < o(K') / Daf? « do < o(K').
“r o I‘-l

Since « is positive, and @ =1 on K we have

/|Dun|2dm+/ u? dp < c(K'),
K K

which implies that u belongs to H'(K)N L*(K,p), and it is the weak limit
of {u,} in the same space. Choosing as test function in the variational for-
mulation of (4.4.7) any function ¢ belonging to H(Q\E)N L2(Q\E, ), with
suppy C 2\ F, and passing to the limit as n goes to infinity, we obtain that
u is a local solution of the equation Lu + pu =0 in Q\E.
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To conclude the proof, it suffices to observe that, by linearity, v = v +w,

where v and w are the solutions of

Lv+pv=vL Q inQ, Lw+pw=v—-vLQ inQ,
v=20 on 01, w=0 on 01},
and that supp (v — vl ') = suppr\§'. D

Tt was proved in [33], [34] and [41] that, even if the datum f is smooth,
the presence of the measure g in (4.4.3) may produce discontinuity points
for the solutions in §1. Hence, we do not have, a priori, a standard way to
provide a pointwise value for a solution u of (4.4.3). On the other hand, since
u belongs to H,'!(2), then it has a pointwise value, but defined up to sets
of g-capacity zero. The following result states that = can be also defined
pointwise outside N, , a set of 2-capacity zero, and that this value has some

useful properties.

Theorem 4.4.10 Let p be a measure of My(§), and let Q' be a bounded
open set such that @ CC . Let v be a positive measure in My(Q) with

compact support in (1, let v and v be the solutions of

Lu+pu=v inf, Lv=vL_Q in,
u=0 on 0f, v=20 on OV,

and define i the prolongation of u to zero in Q'\Q. Then there exists a
positive measure v = v(Q',v), with suppy & Q, such that L(v —4) = v in
Q) in the sense of Definition 4.3.3. Thus, w will be defined pointwise in Q\N,

as

wo)= [ @e)dy D) - [ e,

Q/
where G' is the Green function of the operator L in Y. Moreover, this
pointwise value coincides with the limit of its convolutions with every sequence
of positive, spherically symmetric, §-approximating convolution kernels with

compact support, and does not depend on the choice of ).

Proof Let us consider the solutions u, and v, of

Lup,+pu, = frn inf, Lv,=f, in,
Up, =0 on 012, v, =0 on 98,




82 Variational and Nonvariational Relaxed Dirichlet Problems

where {f,} is, as in Lemma 4.3.10, the sequence of positive C§°(Q) functions
that approximates v in the weak™ topology of measures. By Theorem 4.4.7
and Lemma 4.3.7, the sequences {u,} and {v,} converge respectively to u
and v. By Theorem 1.3.6, Lu, < fn in the sense of distributions in {2, and
so, by the result of [9], Appendix A, Lii, < fn. in the sense of distributions
in ', where @, is the prolongation to zero in Q' of u,. Thus, there exists
a positive measure v, , with suppyn & 0, such that L(vn —%n) = 7n IR Q,
‘0 the sense of Definition 4.3.3. By Lemma 4.3.12(ii), there exists a measure
~ such that L (v —4) =~ in the sense of Definition 4.3.3. Moreover, one can
easily check that suppy C Q.

As last step, in order to prove that u is well defined outside N,, we
show that N, = N!, where N, is the set of points z € § such that
Joy G'(=,9) d(v L Q)(y) = +o0. Actually, if w is such that Lw = v in the
sense of Definition 4.3.3 in (2, then, by the result of [24] mentioned above,
L < v in the sense of distributions on (', where w is the prolongation
of w to zero in '\ Q. Hence, the soluti-on of Lw; = v__§ in the sense
of Definition 4.3.3 in €' can be written as w(z) + [y, G'(=,v) dv(y), where
~ is the positive measure of My(£), with support contained in 09, such
that L(w; —w) = 7 in the sense of Definition 433in Q. If ¢ € Q, then
Jo G'(z,y) dy(y) is finite, since ¥ has support in 6Q. Hence, N, = N}

If Q" is another open subset of RN, with @ cC ', and G" is the Green
function of L in Q", then [, G'(z,y)d(v —Q)(¥) — Jo G'(z,y) dv'(y) and
S G (2, y) d(v L Q)(y) — Jou G'(z,y) dy"(y) coincide almost everywhere in
0, since they both solve the equation satisfied by w. On the other hand, they
are both equal in Q\ N, to the limit of their convolutions, and so they are

equal on this set. O

Remark 4.4.11 If suppp is compact in {2, we can choose ' = Q, since
suppvyn C suppp. The proof is the same, but we do not need to apply the
result of [24].

Our next result proves that a solution of (4.4.3) is continuous outside the

support of the datum v if p is a Kato measure.

Theorem 4.4.12 Let p be a Kato measure, v a measure of My () with
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compact support in 1, f € L>(f2), and let u be the solution of

Lu+pu=v+f inf,
u=10 on 0€1,

in the sense of Definition 4.4.4. If v is the measure given by Theorem 4.4.10,
and if E = suppv, then v (Q\E) = upl (Q\E), and v is a continuous
function on Q\E.

Proof. By Theorem 4.4.9 u is a local solution of Lu + pu = fin Q\E.
Thus, since CH(Q\E) C H}(Q\E)N L*(Q\E,p),

/QADuD;lzd:c:/Qfgbdm—/;uq/zd,u Vb € CLO\E).

By Lemma 4.3.7, if v is the solution of Lv = v + f in the sense of Defini-
tion 4.3.3, then

LAD(U—lL)D’:,bd:BzL'gbdf}/, /QADvaaszfowm,

for every ¥ € CLHQ\E). Thus, [,¥dy = [y udp for every ¢ € CHQ\E),
and so 7L (Q\E) = wpl_ (Q\E). Moreover, since u belongs to L>=(Q\E),
f—upl_ (Q\E) is a Kato measure, and so

mwzﬁcwwﬂm@—ﬁawwwwww

is continuous on ©\ E. On the other hand, by Theorem 4.4.10, and by the
fact that N, N(Q\E) =0, u(z) = fQ G(z,y) fly)dy — fQ G(z,y)dv(y), and
sou=w on Q\E.

O

Remark 4.4.13 Applying the preceding result with v =0, we have that

R,(f) is continuous on § for every f in L>() if p is a Kato measure.

In the following, we prove the analogous result of Theorem 1.3.6 for non-

variational relaxed Dirichlet problems.
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Theorem 4.4.14 Let p; and po in M(Q), with py < po. Let vy and v
in My(Q), with 0 <wvp < w1, Let u; and us be the solutions, in the sense
of Definition 4.4.4, of

{Lui—}—piuizui in £, i=1.9
=1,2.

u; =0 on 011,
Then 0 < us(z) < ui(z) for every z € Q\Ny, .

Proof. Let {fin} and {f2.n} be the sequences of C&=() functions that
approximate v; and v; in the weak™ topology of measures, and let {u1n}

and {us ,} be the sequences of solutions of

{me+mmm:ﬁm in {1, i=1,2.

Uin =0 on 01,
Then, by Theorem 1.3.6, 0 < up n(z) < uy n(z) for almost every z € Q;
hence, by Lemma 4.3.10, for every z € {1. Since u;, converges to u; almost
everywhere by Theorem 4.4.7, then 0 < u1(z) < ug(z) for almost every z € Q,
and so the same inequality holds for every @ € Q\N,, by Theorem 4.4.10 (we
remark that N,, C N,, since vz < 11 ). O

4.5. Regularity results for nonvariational relaxed Dirichlet problems

Up to now we have not said anything about the regularity of the solution u
of (4.4.3) with respect to the measure p. First of all, we need an estimate
of the norm in L!(Q,p) of a solution u of a variational relaxed Dirichlet
problem (1.3.5).

Lemma 4.5.1 Let p be a measure of My(Q), and let u be the solution of
problem (1.3.5) with f € L*(Q). Then the following estimate holds:

(45.1) lell gy S 1711

Proof. Let n € N, consider the function S, defined by

-1 ifsg—%,
S,.(s) = ns if 2 <s<i,
1 ifs>2

n?
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and choose Sy(u) as test function in the equation satisfied by u. This can be
done by Lemma 4.2.1. We obtain, dropping the positive term that contains

derivatives,
uSnudp,</f5nudm< fll oy

Since Sn(u) converges to sgn(u) p-almost everywhere, we obtain the result

by Fatou lemma. 0

Lemma 4.5.2 Let p € My(Q) and let v € My (Q) with compact support
in Q. Let u be the solution, in the sense of Definition 4.4.4, of Lu+pu=uv.
Then u € L'(Q, ).

Proof. Let h and v be respectively the Borel function and the Kato mea-
sure associated to g as in Theorem 1.2.4. By Remark 1.3.4, R,(f) = Ru4(f)
for every f € L?(Q). Hence, we shall work with h~. Let {p,} be as in The-
orem 4.4.7, and let f, = pn*v. Let up = Ry +(fn). Then, by Theorem 4.4.7,
u, strongly converges to u in H;’q(ﬂ), with 1 <g< TV']\——l . Let k€ Ry, and
let vF = Ty(u}) = min(uf, k). Since v* belongs to Hj(f2) N L?*(Q,hy) by
Lemma 4.2.1, we can test with it the equation solved by u,; we obtain, using

(1.3.1), and dropping the positive term that contains the measure h7,

A D“d</nkd<kn ,
[ 1o < [ fuekde <kl

so that {vF} is bounded in H}(f) for every k. Hence it weakly converges, up
to subsequences, to a function v € H!(Q). Since u, converges to u strongly
in L}(Q), then v = Ti(u™). We show that vk converges to v strongly in
L'(Q,~). Actually,

ok — vl dy = (v, v — 2l
Q

and the right hand side tends to zero as n tends to infinity since v € H ()
and |v* —v| converges to 0 weakly in H}(Q). Hence, up to subsequences, vk
converges to v y-almost everywhere, and so h~-almost everywhere. Recalling
(4.5.1), using the positivity of h~y and v*, and applying Fatou lemma, we
obtain

/Tk(u+)hd'y§1iminf/Tk(ui)hdvg
Q Q

n-—oc
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<tmiaf [ ufhdy mint Ml gy <
so that Ti(u™) belongs to L*(£, k) for every k > 0. Since Ti(ut) € H(Q),
then [, Th(ut)dp = [y Ti(ut)hdy, and so Ti(u™) belongs to LY(Q,p).
Letting k tend to infinity implies, again by Fatou lemma, that u* belongs
to L}(Q,p). The same computations with vE = Ty(uy,) yield that v~ €
L(Q,p), and this concludes the proof. Cl

Remark 4.5.3 We note explicitly that [ |u|du has a perfect meaning
since, by Theorem 4.4.10, u is defined up to subsets of 2-capacity zero, and

i does not charge these sets.

Remark 4.5.4 In the proof of Lemma 4.5.2 we have shown that if u, =
R,(fn) is a sequence of solutions of relaxed Dirichlet problemé that converges
to a function u weakly in Hi(2), and if h and v are associated to p as
in Theorem 1.2.4, then, up to subsequences, u, converges to u h «-almost
everywhere.

We obtain further properties on v making stronger assumptions on v.

Theorem 4.5.5 Let q be a real number with 1 < g < 7\—,.]%3, let p be a
measure of My(Q), and suppose that v has a density f with respect to the
Lebesgue measure with f in L'()). Then the solution u of problem (4.4.3)

satisfies
/ADuDvd:c-I—/uvd,u:/fvdm,
Q Q Q

for every v in H&’q’(ﬂ) N L3(9,p). Moreover, u can be uniquely obtained as
the limit of a sequence of solutions of problems (1.3.5) with data fn in L*(Q)
converging to f in L'(£2).

Proof. Since the equation is linear, it is not restrictive to suppose that f is
positive. Let {f,} be any sequence of L*(Q) functions that converges to f
in L'(), and let u, be the solution of problem (1.3.5) with datum f,. Since
{f.} is a Cauchy sequence in L(Q), then, by linearity, by (4.3.2) and by
(4.5.1), we have that {u,} is a Cauchy sequence in H;Y(Q)NL* (9, p). Hence

there exist two functions, © and v, such that u, converges to u strongly in
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H}?(Q), and u, converges to v strongly in LY(Q,p). We claim that u = v p-
almost everywhere. To proveit, fix n and m in N, and subtract the equations
satisfied by u, and u.,;let k> 0, and choose as test function Tk(un — Um),
where Ty(s) = min(k, max(s,—k)) for every s € R ; using (1.3.1) we obtain,

dropping the positive term that contains the measure p,
o [ 1DTulun = ) de < Kl = Sl 1y

If we define, for n fixed, vm,n = Tk(un — Um), then {vmn} is bounded in
H}(Q), and so it weakly converges (up to subsequences) to a function v, ; since
u, converges strongly in L'(Q2) to u, then Ti(un — um) converges strongly
in L'(Q) to Tk(un —u); hence, vy = Tr(un —u). By lower semicontinuity,
this implies '

m—0OC

9/ IDTk(un—u)|2dm§]jminf0/ |DT(un — wm)? dz < k| fa—Fll 1 g
o o )

and so, for every k, Tj(un — u) converges strongly to zero in H(f2); hence,
it converges to zero quasi everywhere, and so p-almost everywhere. This fact
implies that u, —u converges to zero p-almost everywhere (this can be seen
by an easy contradiction argument, using the continuity of T} ); since u, con-
verges to v p-almost everywhere, we have that v = v p-almost everywhere.

A passage to the limit in the approximate equations yields the result,
since [, u, v dp converges to Jq wv dp because Hl}’q,(ﬂ)ﬂLz(Q, ) is a subset
of L=(Q,p).

Obviously, the function u does not depend on the choice of the approxi-

mating sequence. U

Remark 4.5.6 The latter result shows that the solution of a nonvariational
relaxed Dirichlet problem with L'(£) datum satisfies an identity similar to
(4.3.4). Again, it may not be the unique function that satisfies it (the coun-
terexample of Serrin is still valid), but it is anyway the unique that can be
obtained by means of approximating techniques. For other result of this kind

about classical Dirichlet problems, see e.g. {26] and [59].
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If the density of v with respect to the Lebesgue measure is more summable

than L'(Q), then the solution u of (4.4.3) is more regular.

Theorem 4.5.7 Let N > 3. Let m be such that 1 <m < ,\H Assume
that v has a density f with respect to the Lebesgue measure L, with f
in L™(), and that p is a measure of My (Q). Then the solution u of (4.4.3)
belongs to Hé’m* (Q) N LP(Q,p), with p = "\;\72777,**.

Proof. Let {f.} bea sequence of 1?(f) functions converging to f in L™ ()
and let {u,} be the sequence of solutions of problem (1.3.5) with f, as data.
Let = be a real number such that 0 < r < 1 and define v, = ((1+ lu )T —
1)sgn(un). Choosing v, as test function in the approximate problems and

using (1.3.1) we obtain the following estimates:

(4.5.2) 6(1—r) fQ (1‘lell)f / frvn dz

(4.5.3) /;zluni((l-kiunl)l”"—l)dpg/anvnd:v.

From (4.5.2) we obtain, working as in [59], Lemma 2.1, that {u,} is is a
bounded sequence in Hg’m*(ﬂ), and that [ fuvn dz < ¢, for some positive
constant ¢. This is achieved by choosing r in such a way that 2 —7 = p.
With this choice of = we have, by (4.5.3) and by Lemma 4.5.1,

Llunlpd#SLIUn,|(1+|un|) “Tdu =
= [l a7 = 1)+ [t <.
Q Q

and this yields our result. U

Remark 4.5.8 We point out that the regularity of the solution with respect

to u is the same obtained in the variational case (see Theorem 4.2.5).
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4.6. The Green function for relaxed Dirichlet problems

Definition 4.6.1 Let p be a measurein Mq(Q). We call p-Green function
for the operator L the solution G,(z,-), = € {1, given by Theorem 4.4.6, of
the nonvariational relaxed Dirichlet problem

L*Gu(z,) + pGu(z,-) =6 in
Gu(z,)=0 on 0.

We define G%(z,-) the p-Green function for the operator L*.

The following result is technical, and will be used in the proof of the

symmetry formula for the p-Green function.

Lemma 4.6.2 Let p € My(Q), and let {g,} be an increasing sequence
of positive Borel measurable functions on Q0 that converges to 1 everywhere
in §), possibly except the set E of the points ¢ € Q such that R,(g)(z) =0
for every g in L=(Q). Then Ry, ,(f) converges to R,(f) strongly in L*()
for every f in L*=(1).

Proof. Since the equation is linear we can limit ourselves to the case of a
positive f. If h and v are respectively a Borel function and a Kato measure
as in Theorem 1.2.4, then, by Remark 1.3.4, R,(f) = R L(f) and Ry, ,(f) =
R, b~ for every f € L?(Q). Hence, we will define p, = gnh7v, and prove
the result for p, and h~y. Let us define u, = R,.(f). By Theorem 1.3.2,
{u,} is bounded in Hj(), and so it converges weakly in the same space, and
strongly in L?(Q), to a function u. Since L2(Q,hv) € L*(9, pn), from the

variational formulation of the problem solved by u, we have that
/ ADu,Dvdz + / UV dfn = f fuvde Vv € HY(Q) N L*(Q, k7).
Q Q Q

The first term converges to [, A DuDvdz. We are going to show that
Jo tnvdu, converges to fQ wv hdy, so that, by uniqueness, u = R, (f) =
R,(f). Recalling the definition of fp, and using the fact that u belongs

to L?(Q, py,) for every n since 0 < u < up, and that it is zero on E, we have

/unvd,un——fuvhd'yzj(un—-u)gnvhd’y%—/uv(gn——l)hd'y,
Q Q Q Q
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and the last term tends to zero by Lebesgue theorem. Since u, converges
to u weakly in HZ(Q), then, by Remark 4.5.4, and up to subsequences, u,
converges to u h~y-almost everywhere, so that (u, — u)gn tends to 0 hy-

almost everywhere. Moreover, since g, <1 and ||'LG]ng(Q ) is bounded,
’ yHn

/(un——u)zgihdygf(un~u)2gnhd7§c.
Q Q

Standard measure theory arguments imply that (v, —u)gn tends weakly to
0 in the space L?(},h7), and this concludes the proof. Ul

Remark 4.6.3 If the operator L is symmetric, the result of Lemma 4.6.2

follows from the theory of 7-convergence of measures in My ({2) (see [33] and

[34]).

Theorem 4.6.4 The function G, is upper semicontinuous outside the di-

agonal in each variable, and

Gu(z,y) = G;(y,m) Ve,yeQ, ¢ #vy.

Proof. First of all we prove that, for every y € (2, there exists a set E(y) C
Q such that £(E(y)) =0, and G,(z,y) = G} (y,z) for every z € O\ E(y).
Actually, observing that Z‘l('gf((%)”)j is a positive, spherically symmetric, 6-
approximating convolution kernel with compact support, we have, by The-
orem 4.4.10 applied with v = 6., by the definition of G,, and by Theo-

rem 4.4.7,

1
u(2,y) r—o0t L{Br(y)) JB. () u{27)

= lm R (_——————le‘~’” ) (z) = Gily,z)
. U E (Br(y)) u ) ’

and the last equality holds for almost every z € 2. Exchanging the roles of G
and G, we have that for every z € Q there exists a set E(z), with L (E(z)) =
0, such that G,(z,y) = G,(y,z) for every y € Q\E(z).
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Suppose that g is a Kato measure on 1, with suppp CC 2. Then,
by Theorem 4.4.12 applied with v = §, and f = 0, for every fixed z € 2,
Gu(z,-) and G}(z,-) are continuous in Q\{z}.

Moreover, for every fixed y € 2, G,(,y) and G},(+,y) are upper semicon-
tinuous in Q\{y}. Actually, if z is a fixed point in 2, and {z,} is a sequence
in ) that converges to ¢ as n tends to infinity, then, by (4.4.4), {G.(zx,")}
is bounded in Hy'?(Q) for every 1 < ¢ < =27, and so there exists a func-
tion f such that G,(z,,-) converges to f in the strong topology of L!(f).
Passing to the limit in the identities [, G,(zn,v)9(v)dy = R,(g)(zxn), that
hold for every g in L>=(}), and since R,(g) is continuous by Remark 4.4.13,

we obtain

/Q F@)ew)dy = Ru(g)(z) V< I=(R),

so that G,(z,y) = f(y) for almost every y € 2. From Theorem 4.4.10, and
Remark 4.4.11, it follows that there exists a sequence -y, = vy(z,) of positive

measures with supp+, C suppp, and a positive measure vy = v(z), such that
L*(G(mm ) - Gu("’na )) =Tn,

L*(G(z,-) = Gu(z,")) = L*(G(=z,) — F(-)) =7,
in the sense of Definition 4.3.3. By Lemma 4.3.12(ii), 7, converges to v in the
weak ™ topology of measures. Thus, since G(y,-) is positive and continuous,
by Theorem 4.4.10 and Theorem 4.1.3 we have,
iminf (G(zn,y) — Gu(zn,y)) = ]iminf/ G(y, z) dyn(2)
n-—oo Q

> / G(y,2)dv(z) = Clz,y) — Colz,y).

Since G(-,y) is continuous and finite in Q\{y}, then G,(-,y) is upper semi-
continuous in )\ {y}.

Let (zy,y0) € Q xQ, zy # yo. Let {z,} be a sequence of points
in ) whose limit is zy, and such that G,(zn,y) = G:(y._.,wn) for ev-
ery n € N. Passing to the limit, and using the properties of G, and G}, we
obtain G,(zv,y0) > G (yo,zv). The opposite inequality is obtained identi-

cally, choosing a sequence {y,} whose limit is ;.
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Let p € Mo(f), with suppp CC Q. By Remark 1.3.4, R,(f) = Ruu(f)
for every f € L?(Q), where h and v are respectively a Borel measurable func-
tion and a Kato measure as in Theorem 1.2.4. Thus, we will work with hv.
Let us consider the sequence {u,} of Kato measures defined by g, = hnv,
where h,(z) = Th(h(z)) = nﬁn(h(m),nj. Obviously, {gn} is an increasing
sequence of measures whose limit is A v, and supp pn C supp (h v). By The-
orem 4.4.14, for every fixed z € Q, {G,,.(z, )} is a decreasing sequence of
functions, whose pointwise limit we will denote with f. Since, by (4.4.4),
{G,.(z,-)} is bounded in H}(Q) for every 1 < g < &5, then G, (z,°)
converges to f weakly in the same space, and strongly in L*(92). Moreover,
G, is such that

(4.6.1) / G (2,9)g(w) dy = Ry, (9)() Vg€ L=(R), Yo € Q.

If we define g, = hn/h, we have that g, converges to 1 on 2\ E, where
E={zeQ:h(zc)=+co}, and that R,(g) =0 in E, for every g in L>(Q).
Thus, applying Lemma 4.6.2, we conclude that R, (g) converges to R,(g)
strongly in L?(), and almost everywhere; moreover, if g is positive (which is
not restrictive since the equation is linear), Theorem 1.3.6 and the continuity
of R, imply that R, (g) decreases everywhere to a upper semicontinuous
function 1. Furthermore, by Theorem 4.4.2, there exists a sequence {7n} of

positive measures, and a positive measure 7, such that

L(R(9) = Run(9)) =71,  L(R(g) — Ru(9)) = L(R(g) —m) =7,

in the sense of Definition 4.3.3. By Lemma 4.3.12(i1), 7, converges to v
in the weak* topology of measures. Thus, w, = R(g) — R,.(9) and w =
R(g) — n satisfy the hypotheses of Lemma 4.3.12(iii), and so 7(z) = Ru(g)(z)
for every z in (. Passing to the limit in (4.6.1) yields

/f y)dy = Ru(g)(z) Vg€ L*(Q), Vo € Q,

which implies that f(y) = G,.(z,y) for almost every y € 2. It is easily seen
that w, = G(z,-) — G, (z,-) and w = G(z,-) — f(-) satisfy the hypothe-
ses of Lemma 4.3.12(iii), and so f(y) = Gu(z,y) for every y in 2, y # .
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Thus, G, (z,y) tends to G,(z,y) as n tends to infinity, and the same holds
for G, (z,y); since G, (z,y) = G5 (y,z) for every z and y, z # y, we
obtain the result for a measure g in Mg(Q), with compact support in (2.
Moreover, both G, and G}, are upper semicontinuous functions of their ar-
guments.

Let p be a measure in Mo(f), let {K,} be an increasing sequence
of compact subsets of {1 such that UK. = Q, and define pn = pl Ky,
Since g, increases to u, then, “for every fixed z in Q, there exists a func-
tion f such that G, (z,-) decreases to f(). By means of Theorem 4.4.10,
Lemma 4.3.12(iii) applied in some ', with 0 cc Q,and Lemma 4.6.2 ap-
plied with gn, = 1, we show as before that f(y) = Gu(z,y) for every y in
), y # «, and so the theorem follows. Ul

Remark 4.6.5 If {,} is as in the statement of Lemma 4.3.10, we have,

as a consequence of this theorem,

Gu(z,y) = lim / G,(z,y) n(z — 2)dz Ve, y€Q, ¢ #Y,
n-—oC Q

as can be checked applying Theorem 4.4.10.

Theorem 4.6.6 Let p € Mo(Q) and v € My(Q) be a positive measure
with compact support in . Then the pointwise value in Q\N, , given by The-
orem 4.4.10, of the solution u of the nonvariational relaxed Dirichlet problem
(4.4.3) with v as datum is such that

(4.6.2) u(z) = /5.2 G(z,y)dv(y) Ve e Q\N,,

so that fQ Gu(z,y)dv(y) gives a representative of the solution u in its almost

everywhere equivalence class.

Proof. Let g be a function in L*({2). Then, by definition of G,

R (9)(2) = / Ci(e,)aly)dy  VoeqQ,
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and so, by Fubini theorem, and by Theorem 4.6.4,

/Qu(m)g(m)dm :LRZ(Q)(x)dV(m) _

= [([aiemswa) ae = [ ([ cmoae) o,

so that (4.6.2) holds for almost every z € Q. Let v(z) = [, Gu(z,y) dv(y)
for every z € 2, and let z € 2\ N,. We have

| owente-va= [ ([ Gu(y,zm(z-ywy) a(z),

and, by Remark 4.6.5, [, G.(y,2)¢n(z — y)dy converges to G,(z,z) for ev-
ery z # z. Since v({z}) = 0, then [, G,(y,2)¢n(z —y)dy converges to
G,(z,z) v-almost everywhere. Moreover, by Theorem 4.4.14, and by the re-
sult of [64] mentioned in the proof of Lemma 4.3.10, there exists a positive

constant ¢ such that

/ Gu(y,2) pn(z —y)dy < / G(y,2z)pn(z —y)dy < 2 G(z,2) VzeQ,
Q Q

and G(z,-) belongs to L'(Q,v) if z € O\ N, . Hence, by Lebesgue theorem,

Lim (y) enlz —y)dy = ‘/Q G(z,z)dv(z) = v(z)

v
n—oC Jo

for every z € Q\ N, , and so u = v on the same set. (]

Remark 4.6.7 We have always supposed that the datum » has compact
support in {}. This assumption can be removed. Indeed, fixed a bounded
open set (' DD Q, for every p € My(Q) we can consider the measure p; =
B+ c0gnq. It can be easily seen that for every measure v € My (), if we
set v1(B) = v(BNN) for every Borel set B, a function u is the solution to

the problem
Lu + piu =v; in 0,
u=0 on 0%V,

if and only if w =0 q.e. in '\  and it is the solution to the problem

Lu+pu=v inQ,
u=0 on 0.

Since v has compact support in £’ all the results remain valid.
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Chapter 5
Asymptotic behaviour of Dirichlet problems with measure
data in perforated domains

In this chapter we study the asymptotic behaviour of the solutions of
elliptic equations with measure data and with Dirichlet boundary conditions
in perforated domains. We prove that if a sequence {pn} of measures of
M(€) ~E-converges to a measure p, then for every measure v with bounded
variation in ! and which does not charge polar sets, the sequence {vp} of

solutions to the problems

(5.0.1) {Lvh + prvp =v in Q,

vy =0 on 0},

admits a limit v in the weak topology of HyP(R), 1 < p < "J\/Q:T’ and v
coincides with the solution v, of
{Lv#—f—yv# =v in{,

v, =0 on 0f.
On the other hand we prove that, if the operator L has regular coeflicients
and and the limit measure p has a density f with respect to the Lebesgue
measure, with f € LP(Q), p > N/2, then for every measure v with bounded
variation in 1, there exists a subsequence {v,} of the sequence {vp} of the
solutions solutions to the problems (5.0.1) which converges to the solution to
the problem

{Lv—i—uv:/\ in Q,

v=20 on 0y,

where ) is a measure with bounded variation in {} depending on v and on
the subsequence {up, }.
Since the solutions of problems with right-hand side measure are characterized
by a duality identity, the method of oscillating test functions used in [30] to
prove the compactness result cannot be applied. Our approach deals with a

corrector result (see Section 5.2).
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5.1. Data not charging polar sets

Let {11} be a sequence of measures of M ({) which ~% -converges to a
measure g € Mo(), and let v € M*(Q). Let {v,,} be the sequence of the

solutions in the sense of Definition 4.4.4 to the problems

(5.1.1) {L’u#h + pavu, =v in {2,

vy, =0 on 0f).

By the very definition of y%-convergence, for every G € H-Y(Q) the
sequence {u,,} of solutions of the variational relaxed Dirichlet problems with
G as datum converges weakly in HZ(Q) to u,, solution of (1.3.5). We want
to investigate the asymptotic behaviour of the solutions of the non-variational
relaxed Dirichlet problems corresponding to the measure pp and with the
measure v as datum. By the continuity estimate (4.4.4) the sequence {vu.}
is bounded in H 3 P(Q) so that it admits a subsequence weakly converging to a
function v € Hy?(Q). We shall show in Section 5.3 that in general we cannot
expect that v solves the relaxed Dirichlet problem corresponding to g and

with v as datum. Nevertheless this occurs whenever v belongs to My(f2).

Theorem 5.1.1 Let {us} be a sequence of measures of My({) which
~L -converges to a measure p € My(Q2), and let v € ME(Q). Then the
sequence {v,, } of solutions of (5.1.1) converges weakly in H?(Q),1<p<

7\—4\:3 , to the solution v, to the problem

(5.12) =

v, =0 on 0f1.

Proof. Thanks to the linearity of the problem it is not restrictive to suppose
that v is positive. Since HvuhHHé,p(Q) < ¢pv(Q2) for every 1 < p < I\Tl—T’
there exists a subsequence, still denoted by {v,, }, weakly converging in the
same space to a function v. We want to prove that v coincides with the
solution v, of (5.1.2). Let us consider the Borel function f and the measure
XA € H™(Q) as in Theorem 1.2.4, and for every k& € N let us define the
measure v; = (f A k)X € H™1(Q), where f(z) Ak = min(f(z),k) for every
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z € ) . By the dominate convergence theorem, for every continuous function

¢ with compact support in  and such that lo] <1 we have

/(pduk——/tpdu
Q Q

so that limp—oo |vx — v|(©2) = 0. Thus the solutions v¥ of the variational

hm
k—oc

skli_{x;ofﬂlf/\k—fl&:O

relaxed Dirichlet problems

{ka—{—uvkzuk in

vk =0 on 011.

converge weakly in HY?P(Q), 1 <p< L. to the solution v, of (5.1.2).
0 N-1 7

Indeed for every k € N and for every g € L>({2) we have

(5.1.3) /vkgdosz-—/RZ(g)de,
Q Q

and by the continuity estimate (4.4.4) ||vk||H1,p(Q) < clve|(92) < e1, so that
8]
there exists a subsequence converging to a function z in the weak topology of

H,?(R). Moreover

<

JRAGLTS [ Ritora

/Q RA(9)) dlv — v < I1BL(9) = (ol — ¥I(9)

and the last term tends to zero as k goes to +o0o. Thus we can pass to the
limit in (5.1.3), getting v, = z.
Let us consider the solutions vf € H} () to the problems

{Lv}]:—}—/,bhv]’i =y, in ()

(5.1.4) vi =0 on 6.

Since {un} 7L -converges to p, for every fixed k the sequence {vf} converges
weakly to v¥ in HI(Q). Finally, by the continuity estimate (4.4.4), lvF —
Vi | grte ) < clvk — v|(), where ¢ does not depend on h or k.

0

Let now v be the weak limit of v,, in H;?(); we have

lv,—vllLr o) < ”vu'”kHLl(Q)'l'Hvk"vlli”Ll(Q)'i'“'”;i—'”uh iy +llvn, —vllr )

so that, passing to the limit in each term of the right-hand side (first as

h — oo and then as k — oo) we can conclude that v, = v a.e. in 1. ]
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5.2. L>(f2) estimates for the correctors

Let us consider a sequence {un} of measures belonging to M;({2), and a
measure g € Mo(Q). Fixed g € L>°(Q2), let u,, and u, be the solutions of
the relaxed Dirichlet problems corresponding to pp, ¢ and with g as datum,
and let w,, , w, be the functions introduced in (1.3.6) corresponding to ps

and p. From now on we shall assume that the following condition is satisfied:
(H1) p = fL, with f € LP(Q), p > N/2.

Let us define the functions

(5.2.1) Zp = Uy, — Wy, ——

By De Giorgi’s regularity theorem (see [42], Theorem 8.22), we have that for
every g € L>°(Q) the solution u, to the problem

Lu, + fu, =g in Q,
u, =0 on 011,

is continuous, and, since by Remark 1.3.7 w, > 0 in , by Harnack inequality
(see [42], Theorem 8.20), w, > 0 in Q, so that 2, is well defined.
In order to investigate the asymptotic behaviour of the solutions of prob-

lems (5.1.1), we need the local uniform convergence of the functions 2.

Lemma 5.2.1 Let {u;} be a sequence of measures of My(€1) % -con-
verging to p. Then for every open set Q' CC Q and for every h € N the
functions z, defined by (5.2.1) belong to H'(¥') N L*(Q) and satisfy

(Lzp,v) ~:—/ zpvdpp = —(div(A*D(—l%'i)),w”hv)—%—
Q

(5.2.2) u uu
g~ 2 4 div(w, (A + 47)D(2E)),0)
Wy Wp

for every v € HY (V) N L2(QY, up) N L>=(Q).

Proof. Since both u, and w, belongs to Hj(f2) N L>(£2) and there exists
e > 0 such that w,(z) > ¢ for every z € ', the function z, belongs to
H'(Q'). Moreover, by Remark 1.3.7, the function Yi is bounded in Q, so

Wy
that z, also belongs to L?(§2, px) N L*(1).
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We have to compute L(w,, EL—“—) For every v € H(Q') N L2(Y, up) N
Wy
L>=(§Y) we have

/AD wuhw )Dvd:c—/ﬂwﬂhAD( —~YDv dz+

(5.2.3) /—’iADw#hDv da:—-/w#hAD( )Dv dz+
Q

wy

+/ADw#hD(v—li‘i)cl:c——/vADwu,‘D(}ﬁ'—i—)d:c
Q Wy [¢) w

I

Since the function v—~ is an admissible test function in the equation satisfied

Wy
by w,, , we get
(5.2.4) / ADw#hD('ulLi)da: = -—/ Wy, Zu dun + ey dz .
) Q Wy Q Wy Q Wy
Moreover we have
Uy |-
vADw,, D(—)dz =
w
(5.2.5) y @ # y
- / A*D(*D(w,, v) do — / w,, A* D™\ D(v) de .
Q Wy Q Wy

By (5.2.3), (5.2.4) and (5.2.5) we get

/ AD(w,, ~“)Dv dz = / wy, (A + A)D(22)Dv do+
Q Wy Q

Wy

—/ w#h}i,i’vd/‘l’h’l— Eﬁ-vdac—/ A*D(}L——“—)D(w#hv)dm.
Q w Q Wy Q Wy

m
Adding this integral equation to the equation satisfied by u,, we obtain

(5.2.2). O

Another basic tool needed in the following is a regularity result for local
solutions of relaxed Dirichlet problems which generalizes Theorem 4.2.3. As
in Chapter 4, we obtain for this kind of problems the same results obtained

in [64] for local solutions of Dirichlet problems.
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Theorem 5.2.2 Let p € My(Q), let uw € HL () N L}, .(Q,p) be alocal

loc loc

solution to the problem Lu + pu = 0 in Q, and let Bg = B(zy, R) CC (1.

Then we have

1/2
(526) “U’”Lx(Bp_/z) <ec {R‘"i\' f u? dm} s
Br
where the constant ¢ depends only on 6, © and N .

Proof. Forevery 0 < p < R let ¢ € C°() be such that p(z) =1 for every
z€B,, p(z) =0 forevery z € @\ Br, 0 < ¢ <1 and |Dyp| < 2/(R - p).
Let us consider the function v = w?max(|u| — k,0)u/|u|. Clearly v belongs

to H}(Q) and it has compact support in {. Moreover

/vzdyg/ (\u[—k)zdpS/uzdp
Q (u|>k} Q

so that v belongs to L?(Q,u), and we can choose it as test function in the
equation satisfied by u, obtaining

/ @?ADu Dudz + 2/ (lu| — k)u/|u|lpADu Dy dz+
{lu[>k} {lu|>k}

+ [ el - ) de = 0.
{lu|>k}
Dropping the positive term involving p and using (1.3.2), we get
/ w?ADu Dudz < 2@/ o(|u| — k)| Du| | De|de .
{lu|>k} {lu|>k}
Now we can follow the lines of the proof of the analogous theorem for lo-

cal solutions of Dirichlet problems (see [64], Théoréme 5.1), getting the esti-
mate (5.2.6). O

Corollary 5.2.3 Let p be a measure in My()) and let v € H'(Q) N

L?(Q, ) be a local solution to the problem Lu + pu = G in . Then the

following hold:

(i) if G belongs to H™*4(Q), with ¢ > N, then u belongs to Lf; () and
for every 2 CC Q2

lullL=(a < ¢ {llullzza) + |Gller-vaa) }
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where c is a positive constant that depends only on 6, ®, N, ¢, and Q';
(i) if G belongs to H-19(Q), with 2 < ¢ < N, then u belongs to L}, (),

with ¢* = \I\fq , and for every ) CC §)

lullper @y < c{|lullr2(o) + NGl rr-va) }

where c is a positive constant that depends only on 6, ©, N, ¢, and Q'.

Proof. If Q' = B(zy, R) = Bg, using Theorems 5.2.2 and 4.2.3, and follow-
ing the lines of the proof of Théoréme 5.4 in [64], we get

~ . 1/2
[ullLe (Br0) < C{(R‘\(Q/q _I)HUHL2(BR)> + HGHH"‘I(BR)} ;

if 2<¢g< N, and

1/2

HuHLoc(BR/g) < C{(RNHUHL?(BR)) -+ RI'N/QHG”H‘*‘?(BR)} ,

if ¢ > N. The result for ' CC € can be obtained by standard compactness

arguments. ]

Remark 5.2.4 We want to underline that the conclusions of Corollary 5.2.3
are still valid if we consider a function » € H(Q) N L2(, p) which satisfies
the equality

(Lu,v)+/§;uvd,u= (G,v),

only for every v € Hj(2) N L%, (Q) with compact support in {2 and which
also belongs to L°°(Q2) . Indeed both the proof of Theorem 5.2.2 and the
proof of Theorem 4.2.3 are based on the choice of a suitable test function

which belongs to L>=(12).

We are now in a position to state and proof the main result of this section.
Notice that the technique we shall use to obtain the uniform convergence to
zero of the functions zj, exploits the classical regularity results for solutions of
elliptic equations in divergence form. In order to apply these results we need
the hypothesis (H1) and the following regularity assumption on the coeflicients

of the matrix A:
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(H2) the coeflicients of the matrix A belong to Cc*(Q);

The assumptions (H1) and (H2) are satisfied in most of the explicit ex-
amples treated in literature, as the classical periodic case studied in [25] and

its generalization developed in [63].

Theorem 5.2.5 Let {ur} be a sequence of measures of My(Q2) AL -con-
verging to . Then, under the assumptions (H1) and (H2),

s l2nllL= () =0,

for every open subset ' CC 2.

Proof. Let us fix an open set Q" with smooth boundary and such that
Q cc Q' cc Q. Since w, is positive and continuous in 2, there exists
e > 0 such that w,(z) > ¢ for every z € Q". Moreover, since u, and w, are
bounded, by (H1) the products fu, and fw, belong to LP(Q). The classical
L? —estimates for second derivatives (see e.g. [42], Corollary $.18) guarantee
that u, and w, belong to H*?(Q2"). For the rest of the proof we assume
that N/2 < p < N, the case p > N being easier. By the Sobolev embedding
we have also that u, and w, belong to HYW (Q"). As p > N/2 we have

p* > N. Let ¢ = min{p,p*/2}. Then ¢ > N/2 and ka3 belongs to H%9(Q)").
Wy
Therefore the functions

Wy, div(A*D(%i))
u

belong to L%(Q") and, consequently, to H-19(Q"), with ¢* > N. Since
¢* < p* and, by Remark 1.3.7, the sequence {w,,} is bounded in L>(0)
and converges to w, in L"(Q) for every 1 < r < oo, we obtain that the

functionals

(5.27)  Gh=g— & 1 div(w, (A+ A")D(~2)) — w,, div(4*D(=~

w, wy w, ))

belong to H~1% (") and converge to

G = g— " 4 div(w, (A + A")D(A2)) — w,div(4* D(*L)),

wy wy, wy
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strongly in H~1:¢ (2"). By using the equations satisfied by u, and w, we
have

(G,v) :/gvdm~/ Ei—“—val:z:——‘/ADu”Dvd:c-{—/ E'—l—ADw# Dv dz+
Q Q Q . 9]

Wy wy

+vaDqu(Pi)d$:fuvdp—/ y—’ivdas+/ADqu(—lf—’i—v)d:c:0,
Q Q Q 9]

Wy Wy Wy

for every v € C§°()"). Therefore {G} converges to 0 strongly in H-1La Q7).

By Lemma 5.2.1, the function z; € H*(Q')N L2, (") is a local solution
(in the sense of test functions belonging to Hj(Q") N L2, (Q) N L*=(Q) with
compact support in ") of Lzy + przr = Gy in Q. Thus by Corollary 5.2.3,
and Remark 5.2.4 we have that

(528) IthHLoc(Ql) S C {thHLz('Q”j -+ HG}L“H—L,q* (Qn)} B

As {u,,} convergesto u, and {w,, } convergesto w, strongly in L?(f2), then
{2z} converges to 0 strongly in L2(f2""). Therefore, by (5.2.8) the sequence
{z1} converges to 0in L>®(Q) . 0

5.3. Asymptotic behaviour of nonvariational relaxed Dirichlet prob-

lems

Now we are in a position to investigate the asymptotic behaviour of so-
lutions of relaxed Dirichlet problems with a measure as datum. As a first
step we consider the case of “fully homogenized” limit problems, that is we
assume that the sequence {us} 7% -converges to a measure p satisfying (H1)
and (H2).

In the following w3, (resp. w}) will denote the solution of the relaxed
Dirichlet problems corresponding to the operator L*, the measure u; (resp.

p), and with datum g = 1.

Theorem 5.3.1 Let {u;} be a sequence of measures of M,(Q) v -con-
verging to a measure p which satisfies (H1) and (H2). Let v,, be the solution

to the problem
Lv,, + ppv,, =v in
vy, =0 on 0.
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Then there exists a subsequence {v,, } which converges weakly in HiP(Q),

1<p< 7\—% , to the solution v to the problem

Lv+pv=2X infl,
(5.3.1) {v =0 . on 04,
where A = (1/w})a, and o is the weak™ Lmit in M?P(Q) of the measures
Wy, V-

Proof. Notice that by Proposition 1.3.12 we can use all the result stated
in the previous sections replacing L with L* in the equations. By the con-
tinuity estimate (4.4.4), for every 1 < p < 797, HUMHHOL,;:(Q) < c|v|(92), so
that there exists a subsequence {v,, } weakly converging to a function v in
H,?(Q). Moreover, since lw:hkv| < ¢|v|, we can apply Theorem 4.1.3 and
we obtain that there exists a further subsequence, still denoted by {w;hku},
and a measure a € M®(Q) such that {w;hku} converges weakly® to a. It
remains to prove that v is the solution of (5.3.1). We want to pass to the

limit in the equations

‘/v#hgdm:/R;h(g)du Vg € L*°(Q).
Q Q

Thanks to the linearity with respect to g of the problems it is not restrictive
to consider only the case g > 0. Clearly we can pass to the limit in the left
hand side, since {v,, } converges to v in L'(2).

For every m > 0 let us consider an open set ' CC Q such that |v|(Q2
Q') < 7. Let us fix another open set 1" such that Q' CC Q" CC Q. By
Theorem 5.2.5 we have limy— |21 = () = 0. Fixed ¢ € C§(92") such
that oy =1 in Q' and 0 < ¢ <1 in Q", we have

Ry, (9)dv= | (1-¢)R,, (9)dv+ | ¢ R, (9)dv=
(5.3.2) /O l’ '/Q

w*
= [(1-—p)R,, (g)dv+ oz dv+ [ v R,(g) M:" dv,
Q . Q Q w

u

where

. ) . R.(9)
z;, = Ruhk(g) —w;hk Z]* .
i
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Since this function is integrated with respect to the (possibly singular) measure
v, we have to define its pointwise value at every point of 2. The functions

R;hk(g) and w,, are positive and pointwise defined as the limit of their

R*
averages, and —Z(,‘gl is continuous and bounded in ", so that for every
u

h € N the function z; hasa pointwise value given by the limit of its averages.
Thanks to this choice we also have

/Q o 25, dv < Wl Q)||Z5, | L=(a) -

Moreover, since R%, (g)(z) < | R}, (9)llz=(q) < ¢ for every @ € Q, we have

L (1- @) R (g)dv < clv|(Q\ ).

Finally, by the very definition of «, we get

bm [ o R b= [ o R (o)L do
k—occ Q‘P w9 w* - QSO ﬂng ’

u

and

1 1 1
goR*g——daz/R*g————da—}-/cp—l R (g)— do.
e Bto) gz da= [ Bo) jdes [ (o1 R0

Since wy, (z) < |lwy, ||z~ (q) < ¢ for every z € Q and |R}(9)| < lgllz=@)w},
we have a < cv and
* 1 [ !
Q(‘P - 1)Ru(9)-w—* da < cllgllze @2\ Q') < cligllze)m -
n
Thus, if we pass to the limit in (5.3.2) in h and then we let 7 tend to zero,
we obtain the result. U

Example 5.3.3 shows that for an arbitrary v € M*(Q) the limit problem

depends on the choice of the subsequence.

Lemma 5.3.2 If {E.} is a sequence of compact subsets of §} such that

h]im cap(En,Q) =0,
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then the sequence {cog,} 7~ -converges to p = 0. Moreover for every G €

H~Y(Q) the sequence of the solutions uj to the problems

Lup =G inQ\ Ey,
up =0 on (2 \ E4),

converge strongly in H} () to the solution u to the problem
g g1y 0

{LuzG in 2,
u=0 on Of1.

Proof. See [55], Corollary 2. U

Example 5.3.3 Fixed z;, z; in , 21 # 22, let us consider pp = cog,,
where Ej, is the closed ball B(z;,1/h) if h is odd, and Ej = B(zy,1/h) if
h is even. Then, by Lemma 5.3.2 the measures up ~L -converge to 0. If we
choose v = 6, , then wv,, = 0 for every odd h, while, for every even h, vy,

is the solution of the problem

{Lvuh =§,, inQ\ B(z2,1/h),
vy, =0 in 8(Q \ B(zz2,1/h)).

Thus, if we consider the subsequence {Q2r+1}, then the limit problem is

clearly
Lv=0 1in Q,
{v =0 in 09,

while, if we consider the subsequence {{l;x} we obtain the limit problem

{Lv =6b,, inf,
v=20 in 0f2.

It remains to establish if, given a v’ -converging sequence {us}, one can
extract a subsequence {w,, } such that for every v € M?(£1) the sequence
{wy, v} converges weakly " in M?®(Q). The Example 5.3.5 shows that this
is not possible in general. More precisely we shall exhibit a sequence {2} of
open subsets of Q such that for every subsequence {2, } there exists a point

z € {1 with the property

limsupw,, (z)> M >0, liminfw,, (z)=0.
k k—oc k

k—oc
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For every set E we shall denote by 1z the characteristic function of F,

that is
_J1, ifzekE,
15(‘”)"{0, ifzdE.

Lemma 5.3.4 Let E be a Borel subset of [0,1] such that 0 < L(E) <1,
and let {e,} a decreasing sequence of positive numbers converging to zero
and such that (1 +¢4)E C [0,1]. For every h € N we define the sets

h—1 h-1
Ev=Jr U E+EK), Fu=|JrHL+en)E+E).
k=0 k=0

Then for every subsequence {hy} there exists a set B with Lebesgue measure

zero such that

lim sup lEhk(:c) =1, ]ilgiio%f thk(:c) =0,

k—oco
for every z € [0,1]\ B.

Proof. Itis well known that the sequence {1, } converges weakly in L'(Q)
to the constant £(E), so that for every subsequence {h;} there exists a set

B' with Lebesgue measure zero such that

lim sup 1Ehk(m) =1, lim inf lEhk(a:) =0,

k—oo k—oo

for every z € [0,1]\ B'. Moreover {11:'”e — 1Ehk} is a sequence converging to
zero in L(0,1). Thus there exists a subsequence, still denoted by {ht}, and

a set N with Lebesgue measure zero such that

lim (thk(:z:) - lEhk(a:)> ~0,

k—o0

for every ¢ & N. Then for every z € [0,1]\ (B' U N) we have

iminf1p, (z)= Hﬂi&f 1Ehk(m) =0,

k—oc

and the result is proved choosing B = B'UN. O
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Example 5.3.5 Let £ be an open set in RN, N > 3, such that the
cylinder {(z1,2) € R™: 0<=2z; <1, |2| < po} is compactly contained in Q
for a suitable py > 0, where ¢ = (z2,...,2N). Let E}, Fj be constructed as
in Lemma 3.3.1 starting from the set E = (1/4,3/4) and with e, = (2h)~2,
and for every 0 < p < pg, and h large eﬁough, let Ch, Df € Q be the sets

Ch ={(z1,2) e RN: 2, € Fy,|2| < ™2},

Df = {(z1,2) e RY: 2z, € B}, 1z] < p}.

It is easily seen that for every fixed h, lim,_.y cap(D},2) = 0, so that by

Lemma 5.3.2 the sequence of solutions {w?} to the problems
Lw; =1 in Q\ D}, wp =0 ond(Q\D}),

converges strongly in H{(f), as p tends to zero, to the solution w to the
problem
Lw=1 in Q, w=0 ondf.

Moreover, for every h € N we consider a set C}, such that D?* cC C) CC C,
for some p; > 0. Then for every p < pn, the function w,’i is a local solution
in 1\ C} to the problem Lw{ = 1. By the De Giorgi’s regularity result
(see, e.g., [42], Theorem 8.22), we have that for every open set £}’ such that
Ch CC Q' CC Q, the family {w}},<,, is equicontinuous in '\ C, with
respect to p, so that it converges to w uniformly in '\ Cp, as p — 0.

By the strong maximum principle, there exists m > 0 such that w(z) >
m forevery 2 € § = { € Q' ,% = 0}. Thus for every h € N there exists
Th < pn such that wi*(z) > m/2 for every 2 € (' \ Cy) N S. Finally
by Lemma 3.3.1 for every subsequence {h;} there exists z € § such that
T e D}:';“ for infinitely many k, but z ¢ C}, for infinitely many k. Thus

(5.3.3) h'mksup w,:zk (z) >m/2>0, limkinf w;';’“ (z)=0.

Since limp .o cap(D}",Q) = 0, by Lemma 5.3.2 the measures Hh = Oprs

vL -converge to p = 0, but (5.3.3) guarantees that there exist no subsequence

Th . . . .
of {w, *} pointwise converging in Q.
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For every z € Q let 6, be the Dirac massat z. Since {w:;" 6} converges
weakly * in M®(Q) if and only if {w;’;” (z)} converges in R, we conclude that
for every subsequence {w}?;"} there exists z € Q0 such that {w;';" 6.} does

not converge weakly* in M?(Q).

In order to generalized Theorem 5.3.1 to the case in which some “holes”

appear in the limit problem we need the following lemmas.

Lemma 5.3.6 Let {us}, p be measures of My(Q) such that {us} % -con-
verges to p. Let g € L>(f) be a positive function and u,,, u, be the
solution of (1.3.5) corresponding to pp, p and with g as datum. Then

limsupu,, (z) < uy(z)

h—oo
for every z € §2.

Proof. Let uy be the solution of

(5.3.4) Luy =g in Q, ug =0 on 00

and let 4, and 4 be respectively the positive measures of H ~*(£2) such that
(5.3.5)  L(up —u,,)=~vr in H7}(Q), L{ug —u) =~ in H Q).

Then we have the representations

un (&) = wale) - |

Glev)an(y),  ule)=wle) - [ Gy,
Q , Q

where G is the Green’s function of L in  with Dirichlet boundary conditions.
From (5.3.5) it follows that {y,} converges to v weakly in H ~!(Q), and the
boundedness in H~!({2) implies that the hypotheses of Theorem 4.1.3 are
satisfied. Then we conclude easily that {y;} converges weakly* in M"(Q) to

~. Since G is a positive continuous function, by Theorem 4.1.3 we get

(5.3.6) /QG(:I:,y)d'y(y) S]i}ff_l»i;f/gl@(ﬂ:,g) dvr(y) .

By the continuity of the function uy, the result follows from (5.3.6). U]
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Corollary 5.3.7 Let {u,,} and u, be as in Lemma 5.3.6, and let v be a
positive measure of M®(Q). Then the sequence of measures {u,,v} admits a
subsequence which converges weakly* to a measure A in M®(}). Moreover
A<u,v.

Proof. By Theorem 1.3.6 we have u,,(z) < u¢(z) for every z € Q, where
uy is the continuous function defined in (5.3.4). Then {u,, } is equiintegrable
with respect to v, and we can apply Theorem 4.1.3, obtaining that there exists
A € M*(9) such that, up to a subsequence, {u,,v} converges weakly* to A.

By Fatou Lemma and Lemma 5.3.6, for every positive function ¢ €

- C(2) we have

/godA: lim UL, duS/golimsupuuh dvﬁ/gouudu, '
Q Q Q Q.

h—o0 h—oo
which gives the result. ]

We are now in a position to study the asymptotic behaviour of nonva-
riational relaxed Dirichlet problems for which the corresponding variational
problems converge to a measure that can be infinite in some subdomain of .

More precisely we have the following assumption:

(H3) there exists an open set 2, of £ such that p = fLL Q, + ©qo\q, ; With
fe L), p> N/2.

Remark 5.3.8 The hypothesis (H3) implies that for every G € H!(f2) the

solution u, of (1.3.4) coincides with the solution to the problem

Lu+ fu=G in HY(8,),
u=20 on 0Q,,

(see [20], Section 2).

Theorem 5.3.9 Let {u,} be a sequence of measures of My(Q) ~L-con-
verging to a measure p, and let v € M?(Q) be such that |v|(2N8Q,) = 0.
Suppose that the hypotheses (H2) and (H3) hold. For every h € N let v,

be the solution to the problem

Lv,, + pprv,, =v in §Q,
Vy, =0 on 0f).
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Then there exists a subsequence {vpu, } of {vu,} which converges weakly in
HPP(Q), 1< p< 55, to the solution v, of the problem

{Lvu—{—pvﬂ:)\ in 2,

(5.3.7) g on 50,

where the measure X is given by

N = (1/“’:)0" in £,
0 in Q\ Q,,

and o is the weak™ limit in Mb(ﬂ) of the measures wzhk V.

Proof. It is not restrictive to suppose that v is a positive measure. In this
case by Corollary 5.3.7 we obtain that there exists a subsequence {wzhk v}
which converges weakly* to some measure o with 0 < a < w,v

The only change we have to do with respect to the proof of Theorem 5.3.1

/ du—/ Ry, g)du+/ R}, (g9)dv.
one,

By Remark 5.3.8 we can apply the same arguments of the proof of Theo-

is to split

rem 5.3.1, obtaining

k_m/ R, (g)clz/:/Q %g—zd

I
By Corollary 5.3.7, a = 0 in 2\ Q,, and

R*
/ L(g)—dasz;(g)dA.
Q, W, Q

On the other hand , by Lemma 5.3.6 and since R}(g)(z) =0 for z € 2\ Q,
, for every positive g € L>°(Q) and for every z € O\ Q, we have

im R}, (g)(z)=0.

k—oc  Hhi
As (2N 8Q,) =0, by the dominated convergence theorem we get

(5.3.8) klinolo thk( g)dv=0 VYg=>0.
\Q,

By the linearity of thk(g) with respect to g (5.3.8) holds for every g €
L>°(§2), which concludes the proof. L]
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Remark 5.3.10 In Theorem 5.3.9 the fact that the measure v does not
charge the set 2N 0Q, was used only in order to get (5.3.8). The same result
can be obtained assuming that |[v|{(2N (682, \ E)) = 0, where E is the set of
all the Wiener points of {2,, that is all the points z € 8Q, such that

/.1 cap(B(z,p) \ ﬂu,B(QB,QP))dp = +400.

N-1
P

Indeed it is well known that if z € E, then Rj(g)(z) = 0 for every g €
L>*(Q) (see e.g. [33], Section 5), and this is enough to conclude the proof of
Theorem 5.3.9.

In particular if 0§, is smooth, then the conclusion of Theorem 5.3.9

remains valid with no assumption on v.

Remark 5.3.11 As an application of Theorem 5.3.9 we can consider a se-
quence {2} of open subsets of f such that the sequence {coq\q, } 4% -con-
verges to the measure p = ocog\q. , where {lo is an open subset of .
Our result guarantees that for every ¢ ¢ 2 N s (and also for every
z € 1N 0o which is a Wiener point for 0o ) there exists a subsequence
{0} and a constant ¢(z) > 0, both depending on z, such that the se-
quence {Gp,(z,-)} of the Green’s functions corresponding to the operator
L with Dirichlet boundary conditions on 8, converges to the function
c(z)Goo(z,-), where G (z,-) is the Green function corresponding to the op-
erator I and with Dirichlet boundary conditions on 8Q,. Moreover ¢(z) is

given by

(5.3.9) c(z) = k]im / Gh,(z,y)dy = klim wh, (z),
—_— Q — 00
where wy, is the solution of the problem

Lwp =1 in Qp, wp =0 on 0y .

Since for every z € 2 the function Gj(z,-) satisfies

/Q Ga(z,9)9(y) dy = Ry, (9)(2)
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and there exists a subsequence {p4, } such that
m B, (9)(#) = Ri(9)()

for almost every z € 1, we can find a subsequence {Gh;(fﬂ,')} such that
Gh,(z,) converge to G (z,-) for almost every z € Q2.

On the other hand, since ¢(z) is given by (5.3.9), Example 5.3.5 shows
that in general it is not possible to find a subsequence {{1;,} such that the

sequence {Gy,(z,-)} converges for every z € {1.
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