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Chapter 1

Introduction

After Boltzmann it has become more and more evident that the laws that govern
many phenomena in Nature have a statistical origin. It is the collective behavior of
large ensembles of random variables, rather than the detailed microscopic dynamics,
that provides the understanding of macroscopic phenomena. This observation has
grown, in the last century, into the discipline of statistical mechanics. One of the
highest achievements in this field, the theory of second order phase transitions, finally
led to recognize the importance of scale invariance for the understanding of critical
phenomena. In equilibrium statistical mechanics criticality and scale invariant are the
exception as they arise only for particular values of a continuously varying parameter
(e.g. temperature, magnetic field, etc.).

B. Mandelbrot [1] and P. Bak [2] recently realized that scale invariance and criti-
cality - i.e. long range correlations in space and/or in time — are the rule in Nature
rather than the exception. The geometry of coastlines and natural river networks,
the distribution of galaxies and of the magnitude of earthquakes, fluctuations in econ-
omy are all examples of phenomena that lack of a characteristic length or time scale.
The same applies to systems at a second order phase transition, but there are two
important differences: 1) criticality arises spontaneously, there is no need to tune a
parameter (like temperature) to a critical value and 2) there is no obvious free en-
ergy minimization behind these phenomena. Long range correlations are likely to be
dynamically built up by the system. Even when a stationary regime of evolution is
reached, its statistical nature is often intrinsically related to the dynamics that has
led to it. On the contrary, detailed balance guarantees that the dynamics of the ki-
netic Ising model will asymptotically sample the Boltzmann equilibrium distribution
exp{—pBH?} irrespectively of the particular dynamical prescription used.

This thesis touches on three topics of non equilibrium statistical mechanics: inter-
face growth, dynamics in disordered media and self organized criticality. The link
between these subjects is of a personal nature. I will try to convince the reader,
in this introduction, that these links form a path that is not a random walk, not




completely at least.

Interface growth occurs in a very wide variety of phenomena ranging from propa-
gation of a fire front, to growth of bacterial colonies and crystal growth by Molecular
Beam Epitaxy. The interfaces dealt with in this thesis are rough. Often the roughness
is a result of a far from equilibrium dynamics rather than of thermal fluctuations.
For an interface growing from a substrate, the equation usually takes on the form

Oih = F(h,Vh,...)+1. (1.1)

h(x,t) is the height of the interface on the point x of the D dimensional substrate, 0;
is the partial derivative with respect to time and V is the spatial gradient. Finally
F is a functional of h and of its derivatives and n(x,t) is a random field, that is
often assumed to be gaussian with zero average and delta correlated both in & and
in t. Equation (1.1) also describes the thermal dynamics by which a system with an
Hamiltonian H[A] reaches equilibrium. In this case F[h] = — %5 [3].

Translation invariance in the A direction is expected to hold in modeling processes
such as those previously mentioned. This implies that F cannot depend directly on
h but only on its derivatives. As a result the fluctuations of 2 on a portion of linear
size € of the substrate are expected to diverge as §h ~ (*. Indeed, consider the
familiar case of the Ginzburg-Landau Hamiltonian H = [ da[(Vh)? — m?h? 4 uh?].
The statement §F/6h = 0 clearly implies that the mass term is zero (m = 0) and
also u = 0. Therefore the Langevin dynamics of eq. (1.1) will sample the system
exactly at the Gaussian critical point. In this sense kinetically rough interfaces are a
prototype of systems that naturally contain scale invariance and critical fluctuations.

Regarding interface growth, I will discuss a general method for the derivation of
stochastic partial differential equations based on the requirement of reparametrization
invariance [4]. This allows a panoramic of the most physically motivated terms that
can appear in the equation for a growing interface. Next we will focus on a particular
equation, derived from these considerations, and we will carry out the program of the
dynamic renormalization group for this equation. This equation describes processes
of growth in the presence of an inclined flux of particles. The relevant mechanism
of relaxation is via surface diffusion; this is a physical situation which is actually
realized in Molecular Beam Epitaxy experiments.

To move on to the dynamics in a disordered medium, it is natural to consider the
situation of interface growth in a random media. This has been the subject of a
extraordinary activity very recently. Growth in disordered environment is relevant
for a wide variety of phenomena, from fluid flow in porous media and imbibition
experiments, to domain wall dynamics in disordered magnets. We borrow again the
description of equation (1.1) for the interface. A noteworthy difference now is that
the random term in the equation does not depend on (x,t) as before but on and h
itself. It depends on the position (x, k) of the interfacein the D+1 dimensional space.
Even in the absence of a mass term this would destroy translation invariance. Indeed
the behavior of eq. (1.1) with 7 = n(x, k) is similar to that of a standard statistical
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model, like the Ising model. If the .driving force F' = F(0,0,...) is smaller than a
critical value, the interface finally gets pinned by the random potential and stops. If
instead F' is too large the interface overcomes any obstacle the random potential 7
may pose and the interface moves at a constant velocity. Thus h(x,t) ~ ¢ and one
recovers the situation of eq. (1.1) with n(a,t). The properties of the system at the
depinning transition, that is at the critical value of F, are of great interest. This is
not only academic since the situation is an experimentally realizable one. Frequently
it is simpler to control the velocity of the interface rather than the force that pushes
it. Naturally at the depinning transition translation invariance, and the resulting
“generic” scale invariance [5], is recovered.

The dynamic at the depinning transition is very different from the Langevin dy-
namic considered so far. In order to realize a model for a surface that moves infinitely
slowly it is natural to consider at each discretized time step the point on the interface
with the smallest pinning force (i.e. with the largest d;h). This will indeed be the
first point to move under a slowly increasing F'. After updating the interface in this
point we shall consider the point with the next smallest pinning force, we will move
it and so on. A similar situation is realized also in the metropolis dynamics [6] of
driven disordered systems at zero temperature. These dynamics involve, in the end,
a global search for the minimum of a random field and will be hereafter referred to
as “quenched dynamics”.

Quenched dynamics is the central subject of the second chapter of this thesis.
The problem one faces in the analytic treatment of disordered system is that of
quenched averages. The dynamics depends on the actual realization of the noise
and at the end one should take the average over all possible configurations of the
noise. The first part of the chapter shows that this difficulty can be circumvented in
principle, by mapping the quenched process of evolution, that is deterministic for any
realization of the disorder, into a stochastic process. The transformation, in a loose
sense, performs the average over all realizations of disorder consistent with a given
evolution history. In practice the transformation involves very heavy calculations
that become prohibitive for large systems. The method however proves to be useful
in connection with approaches devised to study critical systems, as the real space
renormalization group and the Fixed Scale Transformation [7]. The following two
sections indeed illustrate two applications of these ideas.

Finally we come to self organized criticality. This term is probably too much
abused. In a strict sense it refers to models for earthquakes and sand piles [2].
Its broad sense has undefined limits. Growing interfaces are, maybe trivially, self
organized critical systems. Also models with quenched dynamics self organizes into a
critical state. In the latter there is more than just power law correlations, as in inter-
face growth, to motivate this term: there is the statistics of avalanches. An avalanche
is a sequence of events of evolution that are causally and spatially connected. These
macro events can be defined in models with quenched dynamics and their distribution
is seen to follow power laws just as in ordinary models of self organized criticality.




The transformation of the quenched dynamics to a stochastic dynamics offers a clue
for the understanding of the emergence of the power law behavior in the avalanche
distributions. This is because in the transformation to a stochastic dynamics memory
effects are generated. Memory, as the sensibility of local dynamics to a large period
of the past history of the process, extends in these models over times that diverge
with the size of the system. The work presented in the previous chapter, suggests a
general method to detect memory effects in a system. It also suggests a method to
inquire whether self organization in quenched dynamic is a general consequence of
memory effects or whether it is a peculiar characteristic due to the presence of dis-
order. This amounts in devising a model that contains only memory effects, without
reference to the disorder, and in investigating whether this model can reproduce the
self organized critical properties observed in the corresponding model with quenched
dynamics. The response of numerical analysis is affirmative. If the the memory effect
is “fine tuned” to that observed in quenched dynamics, the same behavior is found
within numerical uncertainty. Moreover the model also uncovers a rich scenario of
self organized critical behavior arising from memory effects that extends beyond that
observed for dynamics in quenched disorder. This is the final point of the detour
through non equilibrium statistical mechanics presented in this thesis.
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Chapter 2

Interface Growth

The best way to start a discussion on kinetic roughening is probably to write down
the celebrated Kardar Parisi Zhang (IKPZ) equation [§]

. A
Oh = v, V?h + ;)—(5_7_11)2 + 1. (2.1)

Its fame, apart from its relations with the Burger equation for fluid dynamics [8, 9]
and with directed polymers in random media [8, 10], is mainly due to its implications
for growing surfaces. This is indeed a description at a coarse grained (mesoscopic)
level of a growing interface in a D + 1 dimensional space. The location of the surface
is specified by its height i(z,t) on the points & of a D dimensional substrate. As
previously mentioned d, is the partial derivative w.r.t. time whereas V is the spatial
gradient and n(z,t) is a zero average delta correlated gaussian noise.

The KPZ equation describes a self affine interface: typical fluctuations of A over
a region of linear size ( are of the order of §h ~ (*. Eq. (2.1) can be regarded as
the lowest order expansion of a more complex nonlinear equation in powers of Vh.
As long as a < 1, which is the case for D > 0, this expansion is legitimate since
Vh ~ (¢~ is small for { > 1. In other words, the large scale (¢ > 1) fluctuations of
the interface would not be affected by the presence in eq. (2.1) of higher order spatial
derivatives of h. This statement, that can be made more precise by the dynamical
renormalization group approach, explains why the KPZ equation is so relevant: the
terms in eq. (2.1) are the first ones! that are expected to appear in the expansion of
the local velocity F in small gradients of 2. The KPZ universality class then enjoys
of very large domain of application.

Note that eq. (2.1) is not invariant under the reflection transformation h — —h.
This means that, for a fixed sign of ), the interface distinguishes between the occupied
region and the region it is going to invade. Taking the integral on the whole space,

1A constant term and a term proportional to Vh are easily absorbed in the Lh.s. by a galileian
transformation
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the Lh.s. yields the time derivative of the volume enclosed by the interface while in
the r.h.s. the integral of the \ term gives a nonvanishing term. This means that the
equation describes a growing interface or that the dynamics does not conserve the
volume. There are situations in which symmetries or conservation laws are instead
expected to hold. These will exclude all the terms in the expansion of F in powers
of Vh that are not consistent with them. For example a (V)? term cannot appear
in the equation for the fluctuations of a soap film where volume is conserved.

In view of these considerations, M. Kardar [5] has suggested a general method
to derive stochastic partial differential equations much in the spirit of the Landau’s
construction of effective actions in static critical phenomena. This amounts to: i)
expand the equation of motion for small gradients of & i) retain only the lowest
order terms (the relevant ones) that are consistent with the symmetries and the
conservation laws of the process. This method has been successfully applied in many
situations in connection with the dynamic renormalization group scheme [11].

The self affine nature of the fluctuations of h, that is verified a posteriori, is crucial
in this approach. Moreover notice that eq. (1.1) is not the most general equation
that one can write down for an interface. This is because it exploits a particular
parametrization of the points on the surface, that is ¥ = (x, &), that we will hereafter
call the Monge parametrization. In particular single-valuedness of h(x.t) excludes the
possibility to deal with overhangs or handles. These observations motivates the work
presented in the first part of this chapter. This concerns the derivation of equations
for the interface in a generic parametrization. Guided by differential geometry and by
_ the requirement that the equation has the same form in terms of the properties that
characterize the intrinsic local geometry of the surface, namely reparametrization
invariance, we derive and discuss the more important terms that can appear in the
growth equation. The expression in the Monge parametrization is given along with
the general form and its small gradient expansion is discussed. This procedure clarifies
the geometrical origins of various terms. For example we find that the nonlinear term
in eq. (2.1) arises either from a pressure term or by a deposition probability that
depends on the local inclination of the surface; the sign of A is found to be opposite
in the two cases. Also we find that the term V?(Vh)?, which has been discussed
in literature [12, 13, 14], has a rather obscure physical meaning in terms of the
geometric invariants of the surface. This term would be relevant in equations with
volume conservation, as those for Molecular Beam Epitaxy, and cannot be ruled out
by symmetry considerations alone.

The second part of the chapter discusses the scaling behavior of an equation derived
with the above method. The situation is that of an interface growing in the presence
of an inclined flux of particles that relaxes through surface diffusion. The results
should apply to experiments of Molecular Beam Epitaxy. We apply the dynamic
renormalization group scheme to one loop order and find a rich scenario with a non
trivial stable fixed point. In particular an exact scaling relation yields a value for the
roughness exponent in the direction perpendicular to the beam, that is in excellent



agreement with experimental results.

Quite involved calculations are used in this chapter. In order not to obscure the
physical description, these have been included in the appendix. This contains also a
brief discussion of the necessary elements of differential geometry and of the dynamic
renormalization group scheme.

2.1 Equations for a Growing Surface and Repa-
rametrization Invariance

The most general Langevin equation for the evolution of a surface in a D + 1 dimen-
sional space has the form

-

0ir(s,1) = RG[F(5,1)] + F(s,1). (2.2)

where the D + 1 dimensional vector 7(s.t) = {ra(s,t)}2*! runs over the surface
as s = {s'}2,, varies in a parameter space. In Eq. (2.2) # stands for the versor
normal to the surface at 7 while G contains a deterministic growth mechanism that
causes growth along the normal 7 of the surface and is a functional of 7 itself. F' is
a random force acting on the interface. Eq. (2.2) derives from Newton laws in the
limit of a massless surface when the inertial term, 9?7, can be ignored with respect to
the dissipative force. Independently on the kind of physical mechanisms entering the
various terms of Eq. (2.2), which therefore specify the form of G and the properties
of F', this equation has to satisfy the fundamental requirement of reparametrization
invariance (R-invariance). This requires that only quantities that are independent of
the choice of the parameterization s, such as those referring to the inner geometry of
the surface, like the curvature, can appear in the equation. As any other symmetry,
reparametrization invariance poses constraints on the possible forms the equation
(2.2) can take. Unlike other symmetries however this has not a physical content. It
is only a statement about mathematics. In the following we will focus mainly on the
physical description. For detailed calculations and the basic elements of differential
geometry used in this section, we will make reference to appendix A.

The deterministic part of Eq. (2.2), as well as the noise, can be further expressed
as a sum of different terms '

G=G,+G,+... and ﬁ:fa+ﬁb+....

The derivation of the equation can then be split in the derivation of the individual
terms that are expected to appear in a real physical system.

When growth occurs from a flat substrate it is convenient to describe the interface
in the Monge form, i.e. with 7 = (z,h(z)). h(z) is the coordinate in the direction
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normal to the substrate and since it must be a single valued function of x the interface
cannot have overhangs. In this form (2.2) becomes

dih(z.t) = /g (G +7) (23)

~where ¢ = 1+ (VR)? is the determinant of the metric tensor (see A.1). G and 7,
as before, are the amplitude of the deterministic force and the noise in the normal
direction respectively (note indeed that d;h(z,t)/\/g is the normal velocity).

2.1.1 Deterministic part ¢

Reparametrization invariance requires that G may depend only on intrinsic geometric
properties of the interface like the mean curvature H, or eventually on scalar products
of the normal & with some fixed vector ¢ (in this case G is not rotational invariant).

The physical meaning of G is particularly evident in the case in which it can be
derived from a potential

- 1 §H[(s)] .
08, e = ———= xi’z 3) (2.4)
Volg) T

where M is an R—invariant functional of 7. In this case indeed this term induces a
dynamic that tends to minimize the potential energy H of the surface. Moreover,
if the random force is properly chosen, i.e. if it is not conservative, the system
approaches a steady state whose distribution of 7" is given by exp{—/AH|[r]} where 3
is related to the correlations of the noise [3].

R-invariance of H guarantees that the functional derivative in Eq.(2.4) is a vector
parallel to the normal and the 1/./g factor guarantees R-invariance of the func-
tional derivative. Indeed R-invariance of H implies that H[r(s')] = H[i(s)] for any
reparametrization s'(s). For an infinitesimal transformation &' = s + €(s),
(') = 7(s) + €+ OF(s) + O(€)

so that

oH

—57;’.

Since O;7 is a vector in the tangent plane, the second term in this equation vanishes
for any € € R only if the functional derivative is parallel to the normal 7.

H[F(s')] = H[(s)] + €0i(s)

In the Monge form, if G derives from a potential H, we find (see A.3)

.1 6H M

Q":- —71'%3}; = _——E
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In the following we list the simplest possible terms that can appear in Eq. (2.2).
We first give the expression in a general parameterization and then discuss the Monge
form and the expansion in small gradients of A(x,?).

Surface tension

The simplest physically motivated term in the Hamiltonian of a surface is proportional
to the total area A = [ dPs,/g and produces a force that tends to minimize the surface
area. This term is usually referred to as coming from surface tension. The functional
derivative yields |

1 6 1 g o |
T /3 61s) J s = Nk (vag™ ;) (s) = A#(s) (2.6)

where A is the Beltrami-Laplace operator (A.4). Equation (A.6), if H, = v,A, yields

Gs=vn-AT=v,H (2.7)

where H is the mean curvature. In the Monge parameterization this reads
y—h 2 Q
\/g_gzus\/gv-—\/?zysv hiz,t) + (2.8)

Pressure

The second, simplest, geometric property on which H may depend is the volume V
enclosed by the surface. A linear dependence on the volume physically represents a
pressure term. If H, = —AV the pressure A > 0 encourages volume increase, while
if A < 0 the force Eq. (2.4) acts to deflate the surface. The infinitesimal volume
variation on the surface element do = dPs./g is given by doi - 67 so the functional
derivative of H, in Eq. (2.4) gives

that in the Monge form is

VIGy = A/g = A1+ %(’_V_h)Q-i-... . (2.10)

Equation (2.2) with G = G, + G, is the R-invariant form [4] of the KPZ equation.
Indeed, to lowest order in the gradient expansion, eq. (2.1) is recovered (the constant
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term A can be absorbed by redefining h — h + At). The complete R-invariant KPZ
equation derives from the Hamiltonian H .., = [ dPx(vs\/g — Ah) which, however,
is unbounded from below for h — oo (A > 0). The expression exp(—SH, ;) for
the equilibrium distribution of % is then meaningless. This is not surprising and it
is related to the presence of a pressure that makes the system grow forever. In a
sense the interface growth is intrinsically irreversible. Note that A couples only to the
k = 0 mode of % in a Fourier expansion. This would suggests that the steady state
correlation functions, like {[h(z) — h(y)]*), are independent of A. A derivation of the
IKPZ equation from the functional derivative of a free energy with a volume and a
surface term, was also obtained by Grossmann et al. [15] in a rather more complex
way.

External potentials

Other dependencies on 7 in H can be introduced, as the effect of an external potential.
The simplest example is that of a gravitational field. The variation 6H, of the
gravitational energy, if ¥ — 7 + 67, is proportional to the variation of the mass
pdPs\/gh - 67 times the acceleration a, of the gravitational field times the “height”
2 -7, where £ is the direction of the gravitational field. Then

§H, = —ug/st\/z,(f- DER (2.11)

where v, = pa,. This equation generalizes to the case of potential V(7) if this Is
substituted to -2 in Eq. (2.11). It is easy to see that such terms in Eq. (2.2) destroy
translational invariance, i.e. the equation changes if 7(s) — 7(s) + 7o (unless V() =
const. that would coincide with a pressure term). Since translational invariance is
expected to hold these terms are not considered. In the Monge parameterization the
gravitational energy is proportional to [ dPxh*(z) and it brings a linear term in % in
the equation of motion.

Curvature energy

It is natural to expect that the Hamiltonian depends on the curvature H of the
interface. In general this dependence can be expressed in a power expansion

H. = —/dD.s\/ﬁ(H.lH drgH 4 ) = Hor + Hog+ ... (2.12)

The physics behind the first term reflects the difference in the mechanical properties
of the media divided by the interface. Indeed for x; > 0 large positive curvatures are
encouraged while negative ones are depressed. The functional derivative is carried

13



out in the appendix (A.5) with the result

D
Gy = _%,«1 - 57;;’1 = =y (H"’ - ZA?) (2.13)

where A; are the eigenvalues of the matrix of the coefficients of the second fundamental
form and express the principal curvatures of the surface. Since H = Ay in D =1, G.1
vanishes. This is a consequence of the Gauss—Bonnet theorem that states that the
integral of the Gaussian curvature A" on a closed surface is a constant. Since H = I\’
in D =1, the variation of H, is zero.

=1

Equation (2.13), in terms of h(z), takes the form (summation on repeated indices
1s assumed)

D
(V2h)? = > (9:h95h)* + .. } . (2.14)

1,j=1

O;hO*h — 9:10;0;h
\/§QC,1=H~1\/§&' it Ehl 12#‘61

9

In the small gradient expansion no linear term arises. This term, as expected, breaks
the symmetry h — —h in the equation.

Similarly higher powers of H are easily worked out (A.5). For the p** term in Eq.
(2.12) we find

)

[\7

1 o 6HC r p—1 p—1 D 2 p+1

Gep=——=n——=- =k, | pAH" + pH! Z Ar— HP . (2.1
G o7 ~ i=1

This equation generalizes Eq. (2.7), that is the p = 0 case, and Eq. (2.13). The effect

of these terms is more transparent in the Monge parameterization. Of particular

interest 1s the sy term in the expansion of the curvature potential:

Oi/gH  ;h [ ) L(ai\/gH)O;h]} )
V9Ge2 fm/ﬁ{ 9 i + Nk N — (2.16)

= —2r(VH2h + ... (2.17)

Orientation energy

Up to now all the terms we have considered, apart from being invariant under
reparametrizations and translations, were also rotational invariant. The simplest
term which would break this invariance is

H. = —-/dDS\/g_)\’(nz) (2.18)

where n, = n- %, 2 is some fixed direction in the D + 1 dimensional space and x(x) is
a generic function. Such a term would result, for example, by imposing a constraint
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on the slopes of the surface with respect to a reference substrate plane. This 1s often
realized in restricted solid on solid (RSOS) models for interface growth. These are
lattice models in which the height of the surface from the reference plane on two
neighboring sites can differ only by a given number of units. Clearly, at a coarse
grained level, this constraint can be expressed by a term derived from Eq. (2.18) n a
continuous description. The functional derivative is easily carried out observing that
the variation of \/gn - £ vanishes. This is a consequence of the fact that integration
of this in dPs results in the surface area of the substrate plane, that cannot change
if # — 7+ 67. The resulting term in the equation for dy is

‘ 1 A 5H: 1 d\ . [} el
Gg. = ——%n s = -\—/—ga, g [nz i (nz)] o'
= div (n ;‘ll-’;\— — \> IF (2.19)

The constraint discussed above would result in a restoring force towards a flat surface.
Indeed in this case we expect that dy/dx > 0 and that y(z) > 0 is maximum for
¢ = 1. The first non trivial term is the quadratic one: x(n.) = v;nZ. A constant term
would indeed be a surface energy while a linear term has no contribution. This has
essentially the same effect than the surface tension term of Eq. (2.6). This is evident
from the small gradient expansion of this term in the Monge parameterization

h
V9G- = 1/32—2\/—_1 =v.Vh+... (2.20)
g

Different situations, in which \(z) has a maximum at some 2 < 1 or is decreasing,
would result in a negative “surface tension” for some values of 72 - 2. Here and in the
following, if not stated otherwise, we have assumed that the direction £ is the same
as that along which A is measured. The case in which a different direction is singled
out can be dealt with similarly or by introducing an affine Monge parameterization
(see later).

The flux of particles and geometric effects

Apart from forces that can be derived from an Hamiltonian, we can also think of
purely geometric effects that result in an effective force in Eq. (2.2). The simplest,
non conservative, such term is one deriving from a flux of particles, whose velocity
is ®, reaching the surface and sticking to it. The external flux of incoming particles
is the basic source of non conservative noise in interface growth. For this reason we
consider here only the effect of the average flux J = (<I;) while the fluctuation term
F = & — J will be the subject of section 2.1.2. The growth rate G; produced by J
is proportional to the flux of J through the surface, that is exactly a measure of how
many particles have been added to the surface

Gy=—n-J=—Jn; ‘ (2.21)
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. where ny is the component of # in the J direction, J = |J | and the negative SIgn
recalls that 7 and J have opposite directions. When growth occurs from a vapor  is
almost isotropically distributed and, having zero mean, gives a vanishing contribution
whereas when particles arrive at the surface in a collimated beam this is different from
zero. In most situations this term can be eliminated by a Galileian transformation,
as it is obvious in the framework of Monge parameterization where

Ochlgy = /995 = —J: + Jy - Vh (2.22)

and J, is the projection of J on the substrate plane. The first term is absorbed into
d;h by the transformation h — A+ J.t while the second disappears once @ — 2 -+ Jot.

Let us go back to the height constraint used in some discrete lattice model for the
growth of interfaces. Apart from producing a surface tension term, the constraint
has an effect also on the flux term. This is because deposition can only occur in
local minima of the discretized surface. In the coarse grained picture minima will
be rare on steep portion of the interface. Thus deposition will be less probable in
steep regions than in flatter ones. In other words the constraint should reduce the
flux d¢ = —nyd? s,/g through the infinitesimal surface element dPs./g if ny is small.
This is easily accounted for by multiplying Eq. (2.21) by an increasing function of n

g,] = ——-]nj T(nj). (2.23)

Independently of the choice of the function Y(a), provided it is increasing, this term
produces, in the small gradient expansion in %, the nonlinear term of the KPZ equa-
tion. Indeed, if J || 2, the first term in a power expansion of (2.23) is proportional to
n: =1/,/g ~ 1 — (¥h)?/2 which contains the non linear term of the KPZ equation
with a negative A. This result was also found by other means [16, 17]. The effect of a
constraint on height differences then produces both the surface tension and the non-
linear term of the KPZ equation, and thus provides a physically different derivation
than that discussed previously.

The applicability of equation (2.23) extends of course to any situation where the
probability for an incoming particle to stick on the surface depends on the local
inclination of the surface. This can also account for the relation between the ballistic
deposition model and the KPZ equation. In this model particles from a ballistic beam
attach at the first site they reach in their trajectories which has a nearest neighbor
surface site. The result of this mechanism is a non compact cluster with a fixed
density. Even though overhangs are present in the surface, the description of the
process in terms of a single valued function h(z,?) is possible, at a mesoscopic level,
by considering h(x,t) as the 2 coordinate of the highest occupied site for each .
An incoming particle may either stick at the surface or penetrate in the voids of the
structure. In the latter case the deposition process will not result in an increase of
h(a,t). A correction of the flux term, such as Eq. (2.23), is expected since particles
that arrive on a flat portion of the interface has more chances to penetrate into the
structure than those arriving on steep ones. This situation would be modeled by a
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function T(n.) that should in this case be a decreasing function of n., in contrast to
the previous case; this would finally result, in the small gradient expansion, in a non
linear term of the KPZ type but now with a positive coefficient A.

The flux term produces an other interesting effect in situations where the atoms
cannot be approximated as point particles. Recently Mazor et al. [18] have shown
that the finite size of particles is relevant in Molecular Beam Epitaxy (MBE) ex-
periments in which thin films were grown at intermediate temperatures. The basic
observation is that, if the atoms have a radius ¢ deposition does not actually occur on
the surface but at a distance ¢ from it in the normal direction. The growth rate is then
proportional to the flux of the beam through a surface #(3) = 7(s) 4+ {n that is dis-
placed by an amount ¢, in the normal direction, from the actual surface. The growth
rate on a surface element do = d” 5./9 is proportional to the flux d¢ = —#n'- JdP s\q
of J through the surface #'. Here the primes refer to the displaced surface. Since
7' = the only effect comes in the /g factor. The metric tensor ¢'; ; obtained ob-
serving that 9,7 = 97+ £0ifi so that ¢'; ; = O - 0;7 = gij — 26bi j + O(£?) (see A.1).
Evaluating the determinant we find that Eq. (2.21) has to be modified as follows

do
Gy = Gr+Ge=—
do
i P 2 ‘
= ——n-a‘.v-=—n-J(1——§H)+O(§ ). (2.24)
g
In the equation for h(z,t) a term
Vh
N —ut-y_:\:fgl =~V + ... (2.25)

must be included in the growth equation, with v, = J¢. It is interesting to note
that, despite eqs. (2.20) and (2.25) differ only by a sign, G does not derive from a
potential as G..

Surface diffusion

In cases where the binding energy of particles on the surface are large compared to
thermal energy fluctuations the motion of the particles at the surface is constrained
into the tangent plane. This is actually the case in many experimental realizations
of MBE. A force acting in the normal direction cannot displace particles. Its effect
is to change the local chemical potential y. Differences in chemical potential on the
surface in their turn produces a current, proportional to the gradient of y, onto the
surface [19]. The evolution of the surface is given by the continuity equation that the
particle density p and this current satisfy: d;p o< 1 - 0,7 yield the Lh.s. of Eq. (2.2)
while the divergence of the current gives the r.h.s..

The mathematical translation of this argument goes as follows. The constraint
that the motion of particles occurs on the surface implies that the volume it encloses
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cannot change. Since

oY = /(ZD —— 047 (3, /d s/gn - [nG + iz, )], (2.26)

)

the condition 9,V = 0, for the deterministic part of Eq. (2.2), implies

OV =0 & /(ZDS\/ﬁg —0 (2.27)
which is satisfied if
G§=AF=—-divJ - (2.28)

In other words volume conservation requires G to be the (covariant) divergence of
a (contravariant) current J' Here J is the surface current of particles and F is
proportional to the chemical potential. This relaxation mechanismis known as surface
diffusion.

The chemical potential is proportional to the force the particles experience in the
normal direction. If this force derives from a potential

F = ———1——72 oH (2.29)

N/ &

Having derived in the previous section the forces coming from a the most simple
potential energy of an interface it is straightforward to find what is the appropriate
G° term in the equation for ;7 under surface diffusion by applying the Beltrami
Laplace operator to the terms derived previously. In the Monge form, the term
appearing in Eq.(2.3) has the form

M
VIO = —JIAF = iAZ (2.30)

where the second equality holds for growth mechanisms that can be derived from a
potential.

When surface diffusion occurs to minimize the surface area, the corresponding term
in Eq. (2.2) reads

g =pus An-Arv=pus A H. (2.31)

this term has been widely used in numerical and analytical studies of the last years
[18, 20, 21]. Its expression in terms of A(z,t) is
Vh

V995 = —[is éz- ‘—\;_g- ~ — (VA2 + ... (2.32)

A pressure instead cannot produce any surface diffusion, as is evident since this
conserves the volume. External potentials, that depend on 7, can produce surface
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diffusion. In the simplest case of the gravitational potential (along the = direction)
we have

G = v,2-nH (2.33)

where v, = pa, is the mass density times the gravitational acceleration. The explicit
f - 4 factor reminds that this term breaks rotational invariance. G has the same
form as G, but has the opposite sign. In actual experimental situation however
the gravitational energy is negligible with respect to the binding energy. It can be
estimated for example that, in MBE experiments of growth of thin films, v, is of the
order of 10~ of the corresponding coefficient in the G, term. However terms of the

form ,
Yh

c , _— L~ 2 ) ¢ .
\/ggg =V, % h=v,V Vi ~ vy, Vh+... (2.34)
with a positive v, has been often used in recent literature. This is principally justified
by RG considerations. Also if this term is not expected at a microscopic level, it 1s
generated in the iteration of the RG equations from the non linear terms.

Surface diffusion can be induced also by curvature dependent Hamiltonian or by
orientation dependent potentials in the same manner. The explicit expression is
simply given by that for the non conserved case with the additional Beltrami Laplace
operator. Since these are not very interesting terms we skip a detailed analysis.

2.1.2 The noise term

As already mentioned, the principal source of randomness in interface growth comes
from a flux of particles that deposit on the surface. Another kind of noise is produced
by thermal fluctuations of the surface. The main difference is that, while the latter
conserves the total volume enclosed by the surface. In general we can take the random
force F' = fin in the normal direction (see the last comment of A.1) with (n) = 0. The
properties of 7 will now be discussed for the two different cases of non conservative and
conservative noise. Our main concern is the correlator (5(3,t)n(5",')). In cases when
the statistics of the noise is Gaussian. as is almost always assumed, the correlator
specifies all the distribution of 7(§,1).

Non conservative noise

For a flux of particles arriving at the surface with velocity (I-i, the noise term is given
by 5 = fi- §® where 6@ = ® — (®), which is the fluctuation of the number of particles
that arrive at the surface. The correlation of 7 is then given by

(n(5,t)n(3,1)) = N (5, )na(F, ') (60%(5,1)607 (5, 1))

6(§—3§
— 7za(§,t)71,3(.§",t")F“’/3—£:——-——c—)-6(t —t). (2.3

S
(8]
Lo
Ut
S——
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Here we choose 6@ to be delta correlated both in space and time. The more general
choice

(60°(5,1)60P (7, t")) = T*PC(5— 3,1 = 1),

where C'(s,t) is a R-invariant function, involves no further complication, so we will
use the explicit expression (2.35). The coefficients I'™* are symmetric in the indices
and specify the geometric properties of the noise. We may distinguish two extreme
cases:

e deposition processes that occur from the condensation of an isotropic vapor and
e deposition that occurs from a collimated beam of particles.

The difference between these two possibilities fully appears in the Monge parameter-
ization. In order to discuss this it is useful to introduce the random field

= Van(z.1) (236)

that is the one that appears explicitly in the equation for d;h. The correlation prop-
erties of 7j(x,t) are derived directly from those of n(z,t) discussed above.

The correlations of 7 are easily read off from equation (2.35)

=% — 29;hT%* + 0, ho; RId
NZ

If growth occurs from condensation of an isotropic vapor, we expect that 6@ is a
random vector with uncorrelated components and? ' = ['6%#. In equation (2.37)
we find

(n(z, t)y(a’,t) = Sz —2)8(t —1') (2.37)

(n(z, )2’ 1)) = T'/gd(z §(t—1t') (2.38)

For growth occurring from a directed flux, one may assume that all components
of 6@ are independent random variables so that I'*# =T, 6P (no summation on «
is assumed here). If rotational invariance is expected for rotations in the substrate
plane we have I'; = ' and

I. + T (Vh)?
\/g

Note that in—plane correlations are enhanced in regions where h has steep derivatives.
For a collimated beam perpendicular to the interface we have I'j < I, and

(i, )il 1)) = §(x —a') 6(t —1') (2.39)

(n(z, )’ t") = 5—%6(_1_ —a)é(t— t'), (2.40)

Zhere we use use the Kronecker symbol with both upper indices which coincides with the metric
tensor ¢®” in the D + 1 dimensional space.
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while if ') = I'; we recover eq. (2.38). If the randomness affects only the intensity
of the beam I'*? = I'J*J” and equation (2.37) becomes

’ 2
()2’ 1) = r(']: = Vh-Jy) Sz —2')8(t —t) (2.41)

Nz

where J | is the component of J in the substrate plane 7 = x. In the case of a vertical
rain J. > |.J, | and we recover the previous result.

The physical meaning the prefactors of the delta functions is evident if we introduce
No(2,t) such that (n,(z,t)n.(a’,t")) = I"é(x — 2')é(t — t’'). In condensation from a
vapor, Eq. (2.38), we find that 7j(z.t) = ¢'/*p.(z,t) in Eq. (2.3). The noise is
enhanced in regions where h has steep derivatives since the exposed surface area in
the substrate element dPx, that is \/ng x, is larger. The opposite case is that of
(2, t).
This comes because the flux of J through the surface is proportional to - £ = 1/,/g
and regions with high slopes receive less particles than those that are flatter.

growth from a perpendicular beam J = J.Z in which case 7j(z,t) = ¢

Conservative noise

Another source of noise comes from thermal fluctuations and from internal degrees of
freedom of the interface. In this case the noise is called conservative because it causes
no increase of the volume enclosed by the interface. This requirement is translated
in Eq. (2.26) in the condition

atvinoise = /(ZDS\/§7] =0 (242)

where again we have taken ' = nr. This poses a condition on 7. The more general
way to make the noise contribution in Eq. (2.42) vanish is to take

n = div(

where div is the covariant divergence acting on ¢ that is a delta correlated noise both
in space and time and in components

6(s — g

9

(Gls, ) (1)) = T6) ) s(t — 1),

!

Here reparametrization invariance has been satisfied and the delta function allows
the use of ¢’ = g(s’) instead of ¢g(s). The correlations of 7 readily follow:
- - 1 . .
I 4! P / “if - Y
(Fle () = —=0i/50/o (¢ S0 1)

1 .
= I'—==0i\/99"79.8(s — &)6(t =1’
F\/ﬁ&\/gg 9:6(s — 87)8( )
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= \/_0\/]’10 \/—_5@—”

I

-r_xé(—i—:—iza(t—t') O (2.43)

/

VY
where primed quantities refer to s’ and the presence of the delta function has been
used repeatedly to change from primed to unprimed quantities (note that the operator
A does not act on ¢’). This is the natural generalization in reparametrization invariant

form of the correlator often used in dealing with conserved noise that contains the
laplacian operator acting on the delta function. The expression of the correlator in
the Monge parameterization is readily derived from the above expression and deserves
no further comments.

2.1.3 Discussion

We are now in a position to make some considerations. First of all we have seen
that there are four different mechanisms that produces a Laplacian term vV?2h in the
small gradient expansion of Eq.(2.3). Three of them, surface tension, a orientation
dependent potential (or a constraint on n.) and surface diffusion induced by gravity,
lead to a positive v coefficient and then drive the evolution towards flatter and flatter
surfaces. Note that these effects could be distinguished only from higher order terms
in the gradient expansion that however are irrelevant in the RG sense. The fourth
one, that results from considering the finite size of incoming particles, has a negative
coefficient in front of the Laplacian, so it leads to an instability. This is evident
since Eq. (2.25) can be formally derived as a surface diffusion induced by a negative
gravitational field. This also implies that this term, as well as Eq. (2.20), strictly
conserve the volume enclosed by the surface (while surface tension, eq. (2.8), does
not) even though they were not derived from conservation considerations.

Secondly we note that the non linear term of the KPZ equation (2.1), can be derived
in either of two ways: from a pressure term in a potential, that gives a positive A for a
growing surface, or from an inclination dependent factor in the flux term. The latter
may result as the effect of a constraint on n., yielding a negative A, in agreement
with known results. It has also been argued that such a term is expected in ballistic
deposition but with the opposite effect, i.e. inhibiting growth on flat portions of the
surface. A positive A is expected in this case. The change of sign in this coefficient
does not change the character of the process dramatically (as it is for »). The value of
A however is a directly measurable quantity [17] since it is related to the inclination
dependence of the velocity of growth v(u). This is defined as the average of d;h(z,1)
over x. Equation (2.1), for an interface growing from a flat substrate, yields

v(0) = S((Lh)?).

o | >
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If in this equation we substitute A — h + u - @, that would be appropriate for an
opportune inclination of the substrate, we find that the inclination dependent growth
velocity v(u) = v(0) + Au?/2 from which

1

=5

Viv(w).

Analyzing the behavior of v(u) IKrug were able to predict the presence of the non
linear term of the IX\PZ equation in various models. In connection with our arguments
we note that while this is a criterion based on the global behavior, our is based on
the local properties of the growth process. Other derivations of the IXPZ equations
for these models were based on the relation with the polymer problem in a random
environment [16].

Equation (2.17) provides a further physical derivation of a term (V?)?h in the
equation for a growing interface. This term has been usually associated with surface
diffusion. This extends the validity of the results derived in the presence of this
term to situations where the restoring force is derived from a potential surface energy
proportional to H2. However, while there are symmetry considerations for the absence
of a linear term in the expansion of the potential in powers of H, this in general will
contain the zero™ order term, i.e. surface tension, that dominates the dynamics.

T. Sun et al. [12] studied an equation with a linear term proportional to (V?)*h
and a non linear term proportional to V(Y h)?. The same equation was studied in
refs. [13, 14]. This is in a loose sense the conserved version of the KPZ equation (also
a conservative noise was considered). We note here that while the first term could be
derived from surface diffusion or from a potential proportional to H?, the non linear
one is not related to one of the simple mechanisms discussed here. In particular a
derivation of the conserved KPZ equation cannot follows the same lines described
above. In one case because the KPZ equation comes out as a result of a process that
does not conserve the volume. When the INPZ derives from the effect of a constraint
on height gradients, one should motivate the rather odd choice T(n.) = — A T(n.).
There are no R-invariant potentials that would lead to such term in the gradient
expansion, neither under conservative or non conservative dynamics. It is still possible
however that such a term is generated dynamically in a RG procedure.

It would be interesting to analyze the effect of the term resulting from a potential
linear in H, eq. (2.14), in a RG scheme.

A point worth of discussion with respect to the noise term lies in the presence of
prefactors in front of the random field. In a small gradient expansion these yield a

nonlinear term of the KPZ type with a random valued A, that could eventually be
relevant in a RG calculation.



2.2 Renormalization Group Study of Growth Pro-
cesses With an Oblique Incident Flux

The principal theme of this section is a renormalization group (RG) analysis of growth
processes arising from an oblique flux of incident atoms. Such growth processes are
commonly encountered in molecular beam epitaxy (MBE) experiments [22, 23] and
growth arising from ballistic deposition processes [24]. MBE has been studied both
by stochastic partial differential equations [25, 19, 26, 20, 27, 13] and by computer
. simulation [24, 26, 28, 29, 30]. Among the latter ballistic aggregation in the presence
of an oblique incident flux was studied [24], but the effects of surface diffusion were
~ not included. In the former, while including surface diffusion, only a normal incident
flux was considered.

Our principal result is the elucidation of a rich behavior involving a novel growth
regime that ultimately crosses-over to the familiar Edwards-Wilkinson (EW) univer-
sality class [31]. We calculate the scaling exponents of the new class of behavior to
one-loop order in a D = 6 — e calculation. Our results are obtained in the famil-
iar no-overhang approximation (the Monge representation) in which the interface is
described by a single-valued height function h(z,t) of the substrate z and time ¢.
This approximation would be expected to be valid when the dominant relaxation
mechanism, surface diffusion, is effective in eliminating overhanging configurations.

2.2.1 Stochastic Partial Differential Equation:

We study the equation

%]tE =—uV*ih+(f- Yh)V2h+7q (2.44)

where n(2,1) is a stochastic Gaussian noise with a zero average and

(n(z, t)n(a, 1)) = 286" (2 — 2")6(t — 1'). (2.45)

The coefficient x is a measure of the surface diffusion and f is proportional to the
parallel component of the flux Jj, (the incident flux is defined to be J = (Jy, J.),

where the z direction is normal to the substrate).

Equation (2.44) follows from straightforward physical considerations. As discussed
in the previous section, in the Monge representation, the general form of the deter-
ministic part of the growth equation is

oh
?’)72 = /4G (2.46)
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where G is a reparametrization invariant function [4]. If growth occurs due to an
incident flux J of particles with surface diffusion being the principal relaxation mech-
anism, then

G:--f"ﬁ(l—'rﬁf)—i—hrz_\%—:E (2.47)

where 2 = (=Vh,1)/,/g is the local normal to the interface; H = V - (X]_h/ \/57) 1s

the mean curvature; A is the Beltrami-Laplace operator that incorporates-the fact

that the diffusion current is parallel to the interface and not to the substrate; r is the
non-zero radius of the aggregating particles [25]; and H = o [ d*x./g represents the
energy of the interface, that is proportional to its area. Equation (2.47) with J = J2
(i.e. Jy = 0) reduces to the r.h.s. of the equation of Mazor et.al. [25]. Near the upper
critical dimension in the self-affine regime eq. (2.47) can be expanded in powers of
h .
%’-
dh 9 2 4 . :
ET —J. +J_||°_Y_h+7’-]3v h—rJ N hV h—puV=h+ higher order terms in power of h
(2.48)
\

where p = ko.

The first term (note that J. < 0) is just the average velocity of the interface, while
the second describes a uniform shift of the fluctuations on the interface. Both can be
eliminated by the galileian transformation

h(z,t) = —Jt + h(z + Lyt t) (2.49)

The new regime of behavior is obtained when the third term in the r.h.s. of (2.48) can
be neglected with respect to the fifth one. This occurs for r|.J.| << pA? where A is
the ultraviolet momentum cut-off. This is easily verified at nearly grazing incidence.
Under a RG transformation, a V2h term will be generated in any case so that our
results will hold at intermediate scales until such a term starts to become important
(See also discussion in ref. [32]). Furthermore, since J, < 0, the surface tension term
is initially negative. Under the RG transformation a positive surface tension will be
generated so that the coefficient of V?h diminishes in absolute value until it vanishes
and after it grows positive, leading finally to the EW behaviour.

Notice, finally, that under the transformation

. ~ I .
]Z’(ill’t.) =n (.l_vt) - —:J” -
I

the equation for % contains only the last two terms of (2.48). This transformation
corresponds to a rotation of the z axis in the direction normal to the flux.

Thus including the noise due to fluctuations in the incident flux, equation (2.48)
becomes (2.44) with f = rJ.

S
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Under RG, due to the anisotropy induced by f, we are forced to generalize eq.(2.44)

as follows:

oh ‘ . ; Y ; : :

YT ——(,u“aﬁh +p 0 h+ ;deiaﬁh) + 0||11.()\||(?|2|/2. +ALO2h)+7 (2.50)

Initially g = po = pa/2 = p and Ay = Ay = f. The deterministic part of eq.(2.50)
is formally invariant under the transformation

Wit = bt —en (2.51a)
n ;

1’ = — te(/\n;f?”a” + ’\_LQ_L) (251]))
In egs. (2.50) and (2.51a,2.51b) we are using the following notations: z = (2p20),
f=(f,0)and ¥ = (9,d,). The Gaussian noise with a correlation given by (2.45) is
not invariant under the transformation (2.51b) so that the symmetry of the determin-
istic part of (2.50) does not imply exponent equalities as in the Kardar-Parisi-Zhang
[8] equation.

2.2.2 Sketch of the RG Calculation:

Following ref. [L1] we integrate out fluctuations with.wave numbers Ae7l <] By |< A
and Ae™¢ <| k, |< A in order to determine the renormalized coeflicients in eq.
(2.50), pyy(1), po(l) ete (see appendix B.1 for more details). A~! is proportional to a
small length scale cut-off. The restoration of the original cut-off A in the renormalized
equation follows from the subsequent rescaling

;l‘” had 6l;lf||

. <.

L= ety (2.52)
h — ¢e%h
t — et

The exponent ¢ is introduced due to the anisotropy present in our equation. Note
that defining, I¢ = {1, o is changed into ¢ and z into §. W hen the A’s are zero in eq.
(2.50) the values of the exponents in eq.(2.52) are

D
and z, =4 (2.53)

CO"_"lv Q‘O:

F4

leading to the bare scaling A; — NI =||, L, induced by eq.(2.52). One then iden-
tifies D, = 6 as the upper critical dimensional below which the A’s are relevant. The
full renormalization is performed at 1-loop order. The calculations are quite involved.
The essential details are presented in appendix B.1. In terms of the parameters

1

: A
p= </_‘£> P L Sy (2.54)
Ml 2/HEL AV pL
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and

\ A
16\/—]\D 1/‘”/) 5(1 +7u) 5/2

g=

where (2m)P N'p is the surface area of the unit sphere in D-dimensions, the RG flow
equations are

0ln A
= = s-2a-1-(D-1) (2.55a)
al /\
St = sta-1-% (2.55b)
dln )
al/) = 1- ¢ — ggp(ruvr,\) (255C)
dlnr,
’%ﬁ - gSu (,7';1.7 71,\) (255(1)
Jdlnry o
a7 = 9N (T, ) (2.55e)
ol _
;g = €= gSulry,m) (2.55f)
The ¢ independent terms in qu. (2.55a-f) arise from the rescaling (2.52). The

s i1
functions $; introduced above

1
gﬂ(,ru-v 71,\) = 'S' [3 + Tp— 71,2\(3 + 77';1. + lOI'Z + 47'2)]

, 1
Sulru ) = 20r [5 —20r, — 2r\(5 + 1) + 73(21 + 1007, + 81r2 + 507 + 20r;§)]
207,
1
S\(rp, ) = 1 [ —3ry +r3(2 = 5, — 107"2 — 47‘2.) + 3r3(7 + 107, + 47‘2)]
and
1
Sg(b'ru,ar,\):"_""—""""' [ 67/_,"' +)l \(11+ ”H)

30, + 1)
+73(129 + 4407, + 5292 + 23812 + 28r%) — 12r3(1 + 1,)(T + 100, + 417-2).]
Notice that A and A, do not renormalize apart from the rescaling (2.52). An inspec-

tion of the perturbative expansion shows that this holds at all orders. At the fixed
point eqs. (2.55a-b) give the exponent equalities

3+ D . 3-D
1+—+—3—g, af¢="5— (2.56)

thus 1educing the problem to the calculation of the anisotropy exponent (. Note that
a/¢ is determined exactly. In the flow equations (2.55a-f) three exponents can be

o
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Figure 2.1: RG flow in the (r,,7)\) plane. The short-dashed line is the locus where
&, vanishes while S, is zero on the long—dashed line. The signs of the various terms
are such that the flow close to the fixed points is as shown by the arrows for g > 0.

eliminated fixing the scale of ), and & thus reducing the flow diagram to e.g. 1,7\
and ¢. To leading order in € we find three fixed points

P = 0855556 ) = —0.24871 ¢ = —0.545298¢
r® = 0212544 P =0.075748 ¢! = 0.113579¢
P = 0279516 7Y = 0.254999 ) = 0.124125¢

The first fixed point is unphysical since g < 0. The analysis of the flow equations
shows that only the second fixed point is physically relevant since it is stable and
has a non-empty domain of attraction as seen in figure 2.1.  The corresponding
exponents are, to order ¢,

¢ =1-0.0452¢,z = 4 — 0.1800¢ and « = —1+ 0.0896¢ (2.57)

One may attempt to estimate the lower critical dimension Dy, defined by

Max (a(Dp),a(D)/¢(D1)) = 1.
In the absence of nonlinearities, one obtains from eq. (2.53) that Dy = 2. The
presence of nonlinearities leads to Dy = 0. A realistic estimate would entail the

calculation of higher order corrections to the ¢ exponent. We note in particular the
coincidence of the result /¢ = 1/3 in D = 2+1 with the experimental findings of ref.
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[23] where such value of the wandering exponent was measured in a MBE experiment
with an inclined flux.

In the presence of anisotropic scaling, for a sample of size L in the direction parallel
to J and L, in the other D — 1, the steady state roughness has the general scaling
form

w(Ly, L) = Lﬁ(D)f (LL/Lﬁ) . (2.58)

If Ljj ~ 1 this should reproduce the behaviour of the D — 1 dimensional interface
in the case in which the flux has normal incidence (and a,(D — 1) is its roughness
exponent), so that w(1,L,) ~ f(Li) ~ Li"(D~l). This combined with eq. (2.58)
yields w(L,L) ~ L% with &(D) = (D) + [1 = {(D)]an(D — 1).

In summary, we have studied the experimentally realizable case of a growing in-
terface due to an oblique incident flux with surface diffusion being the dominant
relaxation mechanism. Our renormalization group calculations indicate that while
the long time behavior ought to be in the Edwards-Wilkinson universality class, a
novel intermediate regime should be present. An exact expression for the exponent
ratio o/ was found in this new universality class, whereas « itself was determined
to lowest order in an € expansion in (6-€) dimensions.



Chapter 3

Dynamics in Disordered Media

A sheet of paper is held vertically and it 1s dipped into a basin filled with a suspension
of ink. The paper starts absorbing the suspension and the interface between wet and
dry paper advances [33]. The forces pushing the surface, namely capillary forces, acts
in the normal direction, while evaporation tends to minimize the interface area. Thus
the mechanism controlling the evolution of the surface is described by the first two
terms (vV2h + A(Vh)?) of the KPZ equation (2.1). This time however randomness
comes in not from a beam of particles but from the inhomogeneities of the medium.
Regions where the density of the paper is bigger will oppose more resistance to the
flow than less compact regions. Instead of n(z, t), in equation (2.1), we have to take a
random field that depends on the location of the interface, n(z, k), i.e. on the solution
h(z,t) itself of the equation. A second difference with the equation with annealed
noise (i.e. n(z,t)) is that the average f = (n) cannot be eliminated as before. Indeed
if h — h — ft the constant term is eliminated but it reappears in the argument of
n =z, h—ft)—f. f=n)is indeed a relevant parameter of the problem: it is
the driving force. If it is too small the interface soon stops on a barrier of pinning
centers whereas if it is too large we expect to recover the behavior of the KPZ with
annealed noise. In fact if the interface moves at a constant, large speed v =~ f, the
argument h in 7 can be approximated by vt so that n(z, h) — n(z,t) for v > 1.
The two behaviors are separated by the depinning transition that occurs for a critical
value of f and has many typical aspects of a second order phase transition.

The situation at the depinning transition, where the interface moves at a vanishing
speed and critical fluctuations of all sizes occur, has an interest that is not only
academic. Let us return to the imbibition experiment. The interface ultimately will
stop when the rate of evaporation will balance the effect of capillary forces. The final
configuration will then be a realization of a typical interface at (or very close to) the
depinning transition. It has also been argued [34] that, in actual experiments, it is
often easier to control the velocity of the interface than the driving force. Thus driven
interfaces in a disordered media are often at the depinning transition. Fortunately,
for the problem at hand [33, 35], exactly at the depinning transition, geometrical
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considerations allow to relate the exponents to those of directed percolation [36, 34].
For our purposes it is important to observe that the interface, at the depinning
transition, advances by subsequent breaks through in the points with least resistance,
i.e. with the largest 0;h or the smallest ¢, = —0:h(z,t).

A depinning transition is also observed in charge density waves [37] dynamics in
quasi one dimensional metals. A mesoscopic description of this phenomenon [38]
involves a Langevin equation

Och = WV h 4+ fF+m0(wVh + f + 1)

Now h(a,t) has the meaning of a phase, but the equation is very similar: f is a driving
(electric) external field and 7(x) is a random field with short range correlations. The
9 function allows % to “move” only forward. The noise term here does not depend
on h and, were it not for the @ function, the solution would be very easy!. The non
linear effects of the # functions combined with those of the quenched noise n(a) result
in a large number of interesting phenomena like a depinning transition, stretched
exponential relaxation in the pinned phase and memory effects. Also in this case, at
the depinning transition the region where the local field (the argument of the 8) is
positive consists in one point: that for which the sum vV2h 4+ 5 = —e of the elastic
potential and the pinning potential is largest.

Let us now consider the random field Ising model

== Jijsisj— 2 (ni + H)si (3.1)
iJ

]

where 7); is a random field with zero average and standard deviation A, H is an
external magnetic field and J; ; is the usual nearest neighbor coupling. Much recent
interest has focused on aspects related to the 77 = 0 athermal dynamics of this
system, which occurs as a response to a slow varying, driving magnetic field H(t)
Hysteresis loops [39] and domain wall dynamics [40] are two phenomena where this
model provides a reliable description. Leaving aside a more detailed discussion of
these phenomena, let us examine the process more carefully. The adiabatic condition
means that the field is varied so slowly that the system jumps from a state to another
state which differs only by one spin flip. Flipping spin ¢ leads to a gain in energy of
¢; = 28;(X; Jijsj + ni + H). The move of flipping the spin ¢ will be accepted with
probability min[1, exp(—e¢;/T')] for a general T' [6]. In the limit T — 0, however, only
the spins with ¢; < 0 will have a chance to flip. In practice the spin with the smallest
value of ¢ will be the next one to be flipped.

In these examples the evolution implies a global search for the point with the
extreme value of a random field ¢; (the extreme statistics) where the evolution will
occur. This mechanism is also present in other widely studied models, like invasion

Tn the fourier space the equation is diagonal. The solution is a uniformly “sliding” rigid charge
density wave, which is indeed what happens for large positive values of f, where the theta function
has no effect.
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percolation [41], models for fracture propagation [43] and dielectric breakdown [44],
and in more recently proposed models [35, 45].

Suppose we wish ultimately to monitor the behavior of a quantity A and evaluate
its “quenched” average A(t) that is the average on the disorder configurations. For a
given realization of the random disorder, the process is deterministic of course. This
means that all quantities of interest are functions of the random field 7; and A(t) =
(A(t,{n;}). If the functional dependence of A on the disorder configuration {n;} were
known analytically the evaluation of the average would pose no problem. Usually
however this dependence is accessible only by evolving the process with disorder
{n:}. Not even a zero order approximation Is available in most cases so an analytic
approach appears hopeless.

This chapter is devoted to the derivation and to some applications of a general
method to deal with quenched dynamics, namely with processes whose evolution 1s
based on the extreme statistics of a random field. The main idea, which was intro-
duced by L. Pietronero and W. R. Schneider in the study of invasion percolation
[46], consists in a transformation of the quenched process to an annealed one, 1.e.
to a stochastic process. While the former is deterministic, for each realization of
the disorder, the latter is stochastic in the sense that individual evolution events are
independently selected from a given distribution at each time. This probability dis-
tribution embodies the screening effect which is the origin of the interesting behavior
of these systems. It also provides the probability of a given realization and allows in
principle to perform averages on the space of all realizations. The condition for this
process to be statistically identical with that evolving selecting the extremes of the
disorder, specifies the evolution of the effective distribution of the random field ¢; on
which the extremum is taken. The effective distribution of €;, which we will call run
time statistics (RTS), is the distribution of ¢; that is statistically consistent with (or

conditional to) the actual evolution of the process.

A simple illustration of the ideas behind the transformation is briefly discussed
in section 3.1.1 for a model of diffusion in a random potential. Then we derive, in
section 3.1.2 the transformation for the dynamics driven by the extreme statistics.
The resulting set of transformations allows for an approximate solution for a general
class of models (sect. 3.1.3, 3.1.4 and 3.1.5). The key quantity is the histogram of the
values of the random field over which the search of the minimum is performed. From
this a qualitative insight in the general properties of these processes can be gained
(sect. 3.1.6). The use of the alternative description of the process based on the RTS
in numerical studies would provide a wider information on the process. However the
practical implementation of the transformation implies the heavy numerical task of
performing a rather large amount of integrals. For this reason, the best application
of the RTS is probably in connection with other theoretical methods devised to study
critical phenomena. Examples of these applications are given in the two subsequent
sections. In section 3.2 the RTS is used in the Fixed Scale Transformation [7] approach
to uncover the fractal properties of invasion percolation with and without trapping
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[47]. For simple invasion percolation[41] we find a lower bound of the fractal dimension
which is within 0.5 % of the exact value. Including trapping [48], we find a fractal
dimension which is in excellent agreement with numerical results. A natural extension
of this approach is the computation of the fractal dimension for models where the
random field is coupled to a local field. This occurs in models for fracture propagation
[43] and for dielectric breakdown [44] in random media.

Finally, in section 3.3, we discuss the application of the RT'S in connection with the
real space renormalization group for a recently proposed model of biological evolution
[49]. Also in this case, while unravelling aspects of the large scale behavior of the
model, we find numerical results in excellent agreement with numerical findings [45].

3.1 The Run Time Statistics

A process with quenched dynamics evolves in a “cognitive” way: it acquires more and
more information on the random environment by testing it. This section is devoted
to the translation of this observation into a mathematical formalism, using the rules
of conditional probability. The output of this formalism is the rule by which the
run time statistics evolve. This is the effective probability distribution in which the
information on the history of the process is stored in a conditional way. These ideas
are briefly illustrated in a simple example, the random random walk, in the next
subsection. Then we turn to growth processes with quenched dynamics, in which
the growth occurs where the random environment attains its extreme value. The
above approach provides a general mapping of a quenched growth process, that is
deterministic with a space dependent randomness, to an annealed stochastic process,
that is a process with a time dependent randomness. The latter is specified by a
probability distribution for the individual growth events at each time, that contains
the average on all realization of the disorder with that given history.

Having defined the models we deal with and set some notations, in section 3.1.2,
we discuss the mapping of the quenched growth process to a stochastic process. The
basic equations are then solved for the empirical distribution of the random field,
using a simple approximation. This solution provides qualitative information on all
the quantities that characterize the process. The case of invasion percolation [41] is
discussed first (sect. 3.1.3) to illustrate the method, the approximations involved and
how these can be controlled. The solution of the general case is worked out in section
3.1.4 extending the results on invasion percolation. A general relation for the critical
threshold, that marks the location of the discontinuity in the empirical distribution,
is derived. This extends a known rigorous result for invasion percolation [50] to the
general model. A particular limit of the model, that is realized in recently proposed
models for interface growth [35] and biological evolution [45], is analyzed in some
detail in section 3.3. There the relaxation to the stationary state is investigated pro-
viding an explicit expression for the relaxation time. We discuss also the corrections
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induced in the dynamics by a small non-zero temperature. Finally, in section 3.1.0,
we discuss the asymptotic limit of an infinite cluster.

3.1.1 An example: The RTS in the Random Random Walk

Consider a one dimensional random walk with hopping probabilities x; and 1 —a; for
jumps to the left and the right respectively, on each site i. x; are independent uniform
random variables in [0,1]. This “random” random walk is a model for diffusion in a
disordered media and has been widely studied [51]. We borrow this model to illustrate
the general idea behind the transformation of a process in quenched disorder to a
stochastic process.

Imagine to observe the walker in his motion in the random environment. The
statistical properties of x; are known (it is uniform in [0,1]), however we have no
access to the actual values of the hopping probabilities that characterize the particular
realization we are looking at. The only information available is what we see: the
number of visits n; on each site ¢ and the number k; of times the walker has moved
from site i to site i —1 with a jump to the left. This is a sufficient information to
describe, at a probabilistic level, the future evolution of the walker.

The probability that the random random walker has jumped to left k; times out of
its n; visits to site ¢ (and that n; — k; times it has jumped to the right) is

- n; ki -
Pn,’,ki(flfi) = (kl) Ii;(l . 3],’)“' Lt.
i

This equation relates the statistics of the number of left jumps on each site, to the
value of the hopping probability x;. About ; however we know only that it was
drawn from a uniform distribution and that &; left jumps have occurred out of n;
trials. These informations are easily combined, using the rules for conditional events,
to derive the distribution density of x; that is consistent with a fraction k;/n; of left
jumps '
n; o :

Pag e (20) = (ni +1) (h)wél(l — )T (3.2)
This distribution, in its turn, allows to evaluate the probability that the next jump
will occur to the left

ki + 1
n; + 2

Lo i = E(23) = /01 TP, i (2)dw = (3.3)
which is the expected value of ;. We could then simulate diffusion in a disordered
environment, without making any reference to the disorder, by assigning from the
beginning the rule (3.3) to evaluate jump probabilities in terms of the dynamical
variables n;(t) and k;(t). Our simulation, by construction, will be statistically in-
distinguishable from the diffusion process in a random media. This is because the
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condition that the future evolution be statistically consistent with the past history,
has been properly satisfied.

The two processes, that based on x; and the one that uses eq. (3.3), are related by
the distribution p;¢(2) = prie)mie)(x) of @ of eq. (3.2). pi(x) evolves conditionally
subject to the information the process accumulates on a;. For this reason we call 1t

run time statistics.

This simple example uncovers some relevant aspects of dynamics in quenched disor-
der. As time goes on, the process samples the random environment and accumulates
statistical informations about it. In this sense it might be seen as a cognitive process.
Note indeed that the distribution (3.2), for n; > 1 tends to

{_ (2; — ki /ni)* }

22:(1 —a;)/ni )
As already stated, the expected value of a; is (k; + 1)/(n; +2). The most probable
value is instead k;/n;. The standard deviation diminishes as 1/,/n; as n; — oo.
As time goes on the information about w; gets more and more precise. For a finite
lattice of L sites with periodic boundary condition the distribution of x; will approach
a delta function more and more closely as time goes on. As the distributions of x; get
narrower and narrower, the process singles out all the realizations of the disorder that
are consistent with the history of the process. In a strict sense the process will never
reach a stationary state. This is related to the occurrence of aging [52] phenomena
in this simple model [53].

In evaluating some quantity, like the mean square displacement of the random
random walk, one faces the problem of quenched averages. The quantity must be
averaged over the different realizations of the disorder and to do this one must repeat
many times three operation: i) fix the disorder {x;, ¢ = 1,...,L}, ii) perform the
walk and iii) evaluate the quantity. With the use of the run time statistics instead
one has direct access to the statistical weight of all the configuration of the disorder
for a given history of the process: this is indeed given by the product over time of
the probabilities ftn(s) k(s of the jump event occurred at time .

The dependence of the jump probability s, on the past history of the process,
i.e. on the number n of visits to the site and on the number & of times a jump to the
left has occurred, implies the presence of memory effects. These will be the subject
of the next chapter.

3.1.2 The RTS for Quenched Growth Models
Let us consider a model defined on a lattice. A random variable ¢; € [0,1] is assigned
to every site of the lattice. These are all independent and they are drawn from the

same distribution Pyg(z) = Prob(e; < ). Here and in the following we will use
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Jower case letters for probability densities while upper case letters stand for the cor-
responding distribution (e.g. F(x) = f§ f(y)dy). Both € and the their distributions
can be defined in [0,1] without loss of generality. We will refer to site models, the
extension to the bond version being trivial. Once the disorder is assigned the process
is deterministic. This is best explained by the example of site invasion percolation
[41, 50] (IP). a model for fluid displacement in porous media [42]. One seed site 7o
is initially chosen. Among its nearest neighbor the one with the smallest random
variable i; is added to iy at the t = 1 time step. Next the site with the smallest
random variable, among the perimeter sites of the two sites cluster C; = {io, 71}, is
selected and added to the cluster. At a generic time t the next site to be added to
C: = {io,.-..1t-1} is the one with the smallest ¢; where ¢ labels one of the sites on
the perimeter dC; of the cluster C;.

This model is generalized as follows: growth starts from a set of seed sites Co. This
defines also a corresponding set of active sites dCo, usually on the perimeter of Co.
Among these the one with the smallest random variable, i.e. €, = min{e;; j € 9Co},
is selected as the initiator of the growth event at time 0. A deterministic rule then
specifies the set of sites Go that, along with 7,, become part of the new cluster C, =
CoUGoU{io}. In the IP case Go = 0. The same mechanism is repeated at later times:
given the cluster set C;, the set of active sites 9C; is identified. Among these the one,
i;, with the smallest variable initiate the growth event by which a set Gi, together
with 7;, is removed from 9C; and is added to the cluster Ci41 = C:UG: U{i:}-

In section 3.1.5 we will discuss some recently proposed models for interface growth
[35] in a disordered media that fit this general definition of the model. Here along
with 7, also sites from the close neighborhood of i, are allowed to grow to mimic the
effect of surface tension. Also a recent model of biological evolution [45] exploits the
same mechanism.

This class of models are simple prototype of systems that display a Self Organized
Critical behavior. Indeed IP is known [41, 50] to reproduce the geometrical properties
of standard percolation right at criticality without fine tuning any temperature like
parameter.

At any time step, all the variables ¢;, for i € 9C;, are tested to decide which is
the minimum, €;,. For the one (i = ;) that “wins” we acquire the information that
it has been the smallest among all. For the others we know that they were not the
smallest at that time. This can be directly translated in a formula for the effective
probability density p;(x,t) of the variables ¢; at time t, that we will call Run Time
Statistics (RTS). Before doing this it is essential to note that the distribution of €
for i € 9C; depends only on the number 7; of times it has been tested or, that is
the same, on the time 7; it has been in the set of active sites. We then choose the
notation p,(z) for the RTS of variables that have been tested 7 times and n; for the
number of these sites. N; = 3, nry = |9C;| is the total number of sites in 9C;. Once
the distribution n,; and the RTS p..(x) are given the probability that a variable ¢;
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with 7; = 7 initiate growth is

1
e = [ depeale) TLL = Pualy)]"s % (3.4)
k
This is indeed the probability that e ; > ¢ for all j # i. Here the Kronecker delta
Or,r comes because the contribution of the variable €; itself has not to appear in the
product. The normalization of this growth probability distribution (GPD) is easily
proved introducing the function

Zi(x) =T [1.— Prla)]"™ (3.5)

and observing that 37 Nrgfley = — fol 0. Zy(x)dx = 1.

Once a site i; with 7;, = 7 is selected according to this GPD, its density is updated
in a conditional way with the information that €, < ¢; for all j #4;. So it becomes

! pra() H [1— Pk’t(;lj)]n"'t"‘s"" (3.6)

me(2|7) =
. Hrt k

The distribution of the other e; for j € 9C; is updated with the information that
€j > ¢;,. The rules of conditional probability, if 7; = 0, yield

M(z|7)
=3 Do
Jo pe.t(y) M (y|T)dy

that also expresses the fact that now the variable €; has been tested 7; + 1 times.
The sites in G, are added to the cluster. Their RTS does not evolve any more. The
other ones remain in the set 0Cy4q of active sites. Finally no,t+1 sites eventually enter
the interface dC;y; as they are reached by the growing cluster. Their probability
distribution is of course the original one Po.+1(2) = poo(a).

(2). (3.7)

Po+1,+1(T)

Accordingly the distribution ng, 1s updated: ngyq g = Mot — Jo.r — 079 where gy,
is the number of sites in G, with =0,

The evolution of the process is completely specified by the initial conditions Gy, 9C,
and poo(2), the above set of equations and by the deterministic rules used to identify
the set G;. Equations (3.4,3.5,3.6,3.7) provide a general mapping of a quenched pro-
cess, 1.e. a deterministic process in a random environment, to an annealed stochastic
process with a time dependent randomness. The GPD, Eq.(3.4), as well as the RTS,
depends in general on the whole history of the process. This memory is stored in
the distributions of individual variables and generally makes it less likely for an old
variable to grow than for a younger one. The memory effect extends over a time
T = max; jeac, {7 — 7;}. Indeed if all variables have experienced the same history, no
memory effect at all is present and fre = 1/N;.

A mapping between quenched and annealed models was proposed in Ref. [44]
for the Dielectric Breakdown Model. This was actually in the direction opposite to
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that discussed here: a stochastic model was mapped to a quenched model. As a
result a spatial correlation in the disorder was induced. It is interesting to note that
the reverse path discussed here produces a time correlation, l.e. a memory, in the
stochastic model. Moreover in Ref. [44] it was found that this correlation is not
present when growth is allowed on all sites (i.e. if dC; contains all sites that are
not in C;) and results in a disconnected cluster. This is consistent with the evident
fact that, in our formalism, no memory is produced in the reverse transformation.
This is because the distributions of all sites are conditioned on the same history
in disconnected growth. Actually this argument is not rigorous in the case of the
quenched version of the Dielectric Breakdown Model since there the random potential
is coupled to the Laplace field [44]. ‘

The choice of the initial probability density poo(x) is clearly unessential. One can
safely restrict attention to the uniform density in [0,1], since the GPD is invariant
under the transformation = — [ poo(y)dy that maps any density to the uniform
one.

The probability densities pg4(x) and me(x|r) are themselves random. Iteration of
equation (3.7) implies that

t—1

Pé),t(‘-?) = A H f\rfk(;l?l"l‘k) (3.

k=t—0

04]

)

where A is the normalization constant and 7y is the 7 value of the smallest variable
at time k. The noise acts in a multiplicative fashion on the distributions and this
may be related to the occurrence of multiscaling in quenched processes [35].

3.1.3 The Empirical Distribution for Invasion Percolation

The starting point of the analysis of the set of equations (3.4,3.5,3.6,3.7) is the relation

t—1

ST pigl@) + D pisla) = 10C] + |Ce = Ne + SUGK+1) (3.9)

i€dc i€C: k=0
where p; () is the RTS of the variable &, Gy +1 = 2, ¢rs +1 = |Gi| + 1 is the
total number of sites that grow at time t and pog(x) = 1 was used. This identity is,
in a sense, a “law of conservation of information”. The history of the process up to
time t gives only information on how the probability is distributed among the two
sums in Eq.(3.9), but it cannot affect the value of their sum. Eq.(3.9) also introduces
the empirical distribution h¢(z) = Yieac, pii(®) that is the histogram of the random
variables on the interface (note that the same name in the literature was used for
different quantities [50, 45]). This is a directly accessible quantity in a computer
simulation. Our aim is to derive an analytic expression for k() under simple and
controllable approximations. It will be shown that A:(z) provides also information on
the other quantities that characterize the growth process like i and n,: We start
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from the case of IP (G; = 0 and G; = 0), for which our scheme can be compared with
rigorous results [50], and later we will turn to the general case.

The first step to derive an equation for the empirical distribution consists in taking
the difference of Eq.(3.9) for ¢ + 1 and ¢. Since Cpyy = C;U{i:} and p;, s = my(|7),
this is hyq1(2) = hy(x) — my(2|7) + Niy1 — Ny +1 This contains still random quantities
so we take the average (-) over realizations and we define ; = (V) and w; = 9,0 =
(Niy1 — Ny). For a fixed realization of C;, the average over the realizations C;y; of
my(x|T) yields (my(2|7))e, = X, nrstremu(2]7) = —0pZ,(x). This gives

<]Z-t+1(;17)> = <ht(;l7)> + 01 <Zt(117)> + w; + 1 (310)

which is still an exact relation. The boundary conditions for this equation are (with
the usual convention on uppercase notation)

(Hi(1)) = & (3.11)
(Hipa(1)) = (Nega) = Qi + wy (3.12)
(]2‘154_1(0)) = Wt +1 (313)

here the first two are statements on the total number of sites in dC; and JCiy1 while
the last one derives from the observation (see Eq.(3.7)) that p,:(0) = §,¢ for any ¢
and that (h:(0)) = —0,(Z:(2))]e=0 = n0s-

In order to obtain a closed equation for (h(x)) we have to express both (Z;(x)) and
{(hepa()) as functions of (hs(x)). These are the two main sources of approximations
in the solution for the histogram. The second is controllable since once a solution
for (h¢(2)) is found the approximation used for (h;y;(x)) can be checked by power
expansion in the time variable around ¢.

The approximation for (Z;(x)) comes from expanding (1—P; ;)" = exp[n,;log(1—
Pri)] > exp[—n. Py + O(P2,)] in Eq. (3.5). When x is small the terms of higher
order are small compared to the first. On the other hand when = is close to 1 Z;(x) is
exponentially small in IV;. These considerations justify the approximation of retaining
only the first term: (Z;(x)) = (exp[—H¢(2)]). The same approximation is obtained
in another way with the use of a Poisson transformation [54] in the appendix. Note
that from Eq.(3.5) Z;(1) = 0 while in the above approximation {Z;(1)) = exp(—1V;).

Since hy(x) is an histogram the number of sites whose variable is found in the 2 bin

(i.e. < ¢ < a+dx) should follows a binomial law with mean (ht(x))d2x and variance
(hi(x))da(l — (he(a))da [Q:) = (hy(x))dx. This would suggest that (exp[—H;(x)]) =
exp[—f(H;(x))] where 3 < 1 should account for the first two cumulants while the
central limit theorem should rules out the higher ones. If
exp (-0 (Hi(x))] — exp [— 58]
I —exp [~ B

is put in Eq. (3.10) we easily find that the conditions (3.11,3.12,3.13) are satisfied
only if /7 is the solution of

Zi(z) = (3.14)

B=1—e P (3.15)
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T he solution 3 # 0 is exponentially close to 1, which would be consistent with the case
in which also the second cumulant of k() is negligible. From another point of view,
3 = 1 would result also if the n,; were all independent variables distributed with
a Poisson law (see Appendix). We will return later on this point when comparing
the results to numerical data. For the moment being we take (Zy(x)) as given by
Eq.(3.14,3.15) so that equation (3.10) becomes

(hea(2) = (ha() {1 — exp =B (Ha(a))]} + i + 1. (3.16)
We now introduce the function ¢:(xv) = (hs(2))/Q: and expand (h;yq) in the time
variable around t: {hi11(2)) = Qoi(x) + wids(a) + Oidi(x) + ... Our strategy is
to retain only the term proportional to ¢(x) and to check on the solution whether
the other terms are relevant. Eq. (3.11) implies that fy ¢:(z) = 1. The choice
(hig1(2)) = (Q + wi)de() satisfies Eqs (3.12,3.13) implies that
Wi + 1
5¢(0) = 3.17
#:(0) O + wi (3.17)

In this approximation, after some algebra, Eq. (3.16) yields

D.du(x) = PUS) |1 - —=ula )| (3.18)

wt—{—l

that is readily integrated to give ¢;(a) in implicit form

Wi Qtét l .
1 —_— 34 — . (t 3.19
1 Og<wt+1——wt¢t) (bt = B (x — a(1)) ( )

where

1 _ Qt -+ W
BQ:e:(0)  B(ws + 1)

and Eq. (3.17) was used for ¢;(0). It is a matter of algebra to verify that b di(a)da =
1 is satisfied. ¢;(x) is monotonously increasing (see (3.18)). For 2 =0 its value is
of order 1/Q; while at @ = x.(t) it attains a finite value ¢. = 0. 7822(1 4+ wit).
.(t) is also very close to the point where the second derivative of ¢; vanishes (and
¢ = 2(1 + w;')/3). Finally at @ = 1 it reaches the value (1) = (1 + wy)/[we +
Qyexp(—p%)] = 1+ w;'. Some algebra shows that for 0 < = (t') —x ~ 1/log
the function ¢; is still close to ¢:(0) and is of the order of log €;/Q;. It is of the
order ¢, ~ 1/log Y for 0 < a.(t) — a ~ loglog Q:/Q:. Above z.(t) we find that
bi(1) — ds(x) ~ 1/ for 0 < @ — a(t) ~ log Q:/Q;. So there is a small interval in
which ¢;(z) changes rapidly from ¢:(0) to ¢;(1) (in this interval indeed its derivative,
Eq. (3.18), is large).

x.(t) =

Equation (3.19) also allows to evaluate J;¢;(x) and check the validity of the ap-
proximation. This can be cast in the form F(¢¢, Q) = 0 where the dependence on ¢
comes in . Then 0;¢; = —w;dq, F /0, F that reads

Ori() = Pl (a )[1—- ¢t(ar)] o - au(t)] = (e —zdBd. (321

u,t—{-l
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From the above estimates of @; we find that Q;0;¢; is small in absolute value. At
most it has a sharp peak of the order of loglog ;/(log 2;)? close to x.. Thus it is
vanishingly small w.r.t. (Q; 4+ w;)é;: as @ — oo which supports the validity of the
approximation. Higher time derivatives of ¢;, that can be explicitly calculated in the
same way, also yield a negligible contribution as £2; — co.

Note that ;0:¢; is of the same order of w;¢; up to 2 ~ a. — 1/log ;. ()
decreases below @, and it increases above x.. d;¢; vanishes very rapidly over a length
of the order of 1/Q; for > a. and fj 9,¢:(x)dx = 0, apart from exponentially small
terms. So the total loss of ¢;(x) below . is compensated by its increase in a small
region above .. '

One unpleasant feature of the approximation used is that (h:(0)) is fixed by the
boundary conditions. The undesired consequence of this is that, since (h;(0)) =
(Ne = Ni—1) = wiq, Eq. (3.17) vields a recurrence relation for Q; that implies
lim;_.. w; = co. The simplest way to overcome this problem is to take (hey1(2)) =
(Q¢ + @) ¢(2) + wy — & from the beginning. The only effect of this different choice
is to replace w; by &y in Eqs. (3.17-3.21). Using the expansion (h;11(2)) = (he(x)) +
Oi(h:(x)) + ... we can control the approximation requiring that the L, norm of the
error A(hepq(x)) = (he(2)) + 0e{he(2)) — [(Q + @4 ) de() + wy — @] is minimum. This
condition fixes the value of &; that, once the calculations are worked out, is

3wy

Thus, in the end, this refinement of the approximation implies only a shift of w, by
an amount of order 1/;.

Figure 3.1 displays the histogram from 10° realizations of ¢ = 100 IP clusters
compared to the solution ¢;(x). The values of Q; ~ 106 and w; ~ 0.853... were
computed in the simulation. The accuracy of the solution, as expected, gets worse
as x. is approached®. The accuracy improves as (2, increases. Note that ¢,(z) has a
sharper character than the numerical histogram that may be indicative of a too large
value of §; or 3. The weak point in our scheme, that is also the hardest to deal with,
is the approximation on (Z;(z)). The same assumption that (Z;(x)) depends on the
RTS through (h:(x)) is by no mean obvious.

The histogram ¢;(x) = (h:(z))/Q: converges to a step function as ¢t — co. This is
the behaviour that is actually observed for empirical distributions in quenched growth
models. In IP the location of the discontinuity coincides with the critical threshold
p. and we find:

(3.23)

e = lim x.(t) = lim .
p t—lal'];- ( ) t—l-wx: wi + 1

The limit of w; as t — co in IP is the surface to volume ratio of the cluster. In Ref.
[50] this relation was derived rigorously for IP. The last relation is very similar to

?The discrepancy for x > z,.(t) is required by the normalization condition.
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Figure 3.1: Empirical distribution h(z) evaluated in a computer. simulation (O)
compared to ¢;(x). 10° clusters of size ¢t = 110 were generated. The parameters in
$4(x), computed in the simulation, are {2; ~ 106, w; =~ 0.853 (full line) and w; ~ 0.875
(dotted line).

the one that results from a partition function approach for the Self Avoiding Walk
[55] where the critical step fugacity k. is related to the average number b; of bonds
that can be added to a walk of t steps: k. = limy—o 1/b;. The similarity is even
more suggestive in terms of ng; = wi + 1. The relation p. = lim;—s 1/n¢; implies
that asymptotically the average number of the newly added random variables that
are smaller than p. 1s one.

Figure 3.2 shows that Eq.(3.23) is satisfied quite well in IP. The motivation for
the choice of the variable ~1/P¥ in Fig. 3.2 comies from scaling relations in ordinary
percolation. The size £(p) of the typical cluster is connected with the deviation from
pe as £(p) ~ (p. — p)~". This is also related to the mass t via the fractal dimension
D: &(p) ~ +1/D_ These scaling relations together imply that p. — (1+w) ™t~ t—1/Dv,
The slow convergence to p. makes it hard to use this method to evaluate the critical
threshold: to get (1 +w;)™" within 1% of p. clusters of the size of ¢ ~ 10° are needed.

Once (h(x)) is known, we can also evaluate the distribution of the minimum vari-
able in 9C;: (my(x)) = —0x(Zi(x)) = wi + 1 — wede(x). (My(z)) = J5 (mu(2)) in
its turn provides an approximate expression for pri(2) through Eq. (3.7). Actually
we cannot evaluate the average of the product of M(x) in Eq. (3.8), but only the
product of the average values (M;(z)). Using Eq. (3.21), and expanding (M;—(x)) in
the time variable around ¢, we easily find that (M;_x(x)) can be replaced by (M;(x))
at the expense of errors of the order of k/Q;. Within these approximations the RTS
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Figure 3.2: Effective threshold p.(¢) = 1/(w; + 1) from numerical simulation (10°
cluster of size ¢ = 800) for site invasion percolation on the square lattice. The form
pe(t) = pe(o0) + At~ with w = 1/Dv is extrapolated (dashed line) in the range
150 < ¢ < 800 to p.(c0) = 0.5924 £ 0.0010.

pri(x) =~ A(Mi(2))” can be used in Eq. (34) to get an estimate of the GPD:

M (
1 — M 1. 3.24
= [ e = A (e de (3:24)

where a factor Zy(x) = 1 — M;(x) has been singled out in the integrand of Eq. (3.4)
and we have suppressed the average symbol. The above integral is easily evaluated
numerically®. Since the limit limy_ ., [irt = frne is finite and g, s = gy + O(Q1)
we leave the discussion of the GPD for a later paragraph where y; .. is analyzed.

Finally from the estimate of p,;(x) we can also find an approximated expression
for n,. This is achieved expanding both sides of

I N //{()
= 2 mebndl) = 2 ey

which defines (h;(x)), in powers of @ for t — co. All the derivatives of ¢; and M;(x),
as well as the integral of M (x), can be evaluated explicitly so that equating the
coefficients of z* on both sides yields a system of linear equations for n,,. We just
mention here the leading term in 1/ that is

(3.25)

Nt = wy + ? + 0. (3.26)

3The integrand can be expressed as a function of M;(z) alone and then a change of integration
My(2)dz = dM leads to a definite integral in M.
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This concludes the exposition of the results for the IP model. In summary we have
been able to give an estimate of all the quantities appearing in Egs. (3.4-3.7). Due
to the approximations used, that are too severe with respect to time correlations, our
results, specially those concerning the RTS, the GPD and n;,, are not expected to
meet more than qualitative agreement with the actual quantities.

3.1.4 The Solution for the General Case

The extension to the case G; # 0 of the procedure outlined for the IP model follows
the same guidelines. The only difference is that in taking the difference of Eq. (3.9)
for ¢ + 1 and ¢ the new term Y;cq, pii(x) appears. The origin of this new term is
model dependent. The way in which the sites in G; are chosen in JC; may depend on
geometric properties of the interface in a neighbourhood of the site with the minimum
RV. Examples of this sort will be discussed in the next section. One could also think
to a mechanism of growth independent of the location of the smallest RV. Think for
example to a modification of IP in which the sites in G; are chosen randomly with
equal probability in dC;. This generalization would include IP and the Eden model,
when Gy = |G| > 1, as particular cases. For this model

<Z f)i,t(w)> = %i— (he()) (3.27)

1EGE

where 7, = (G;). We will discuss later how to improve this equation to account for
the situation in which the growth events of G; and of i; are not independent.

The boundary conditions (3.11,3.12) still apply while that on (h41(2)) must be
modified to
(hex1(0)) = ¢ +we + 1. (3.28)
The same approximation Eq. (3.14) for (Z;(x)) is used, but now the same algebra
shows that Egs.(3.11,3.12,3.28) implies that 3 is a solution of

3 = (1 = 3'1) 1 — P 3.29
/ ) ( ) (3.29)
and the equation for the histogram finally becomes
(hiya(2)) = (1 - —gl—t) (he(2)) (1 — e"ﬁ(H'(I)}) + 9 +w + 1. (3.30)
¢

As before, (hs(x)) = Qi¢i(2) and we take (hiyi(2)) = (Q +wi)¢s(x). Then Eq.(3.17)
generalizes to
L 4w +1

0:(0) = o (3.31)

while the solution is given by

Tt we (2t — 7e)dr ] 1 _
etk — = B [ — .l (3.32)
Tt tl ° [7f+““’t+1 — (7t + wi) e ¥ Pula )
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with z.(t) = [$Q:6:(0)]7. The same considerations discussed for the IP case are
readily translated to this general case. Again we can control the approximation on
(hey1(2)) and eventually refine it with a “renormalized” value w; of w;. Also the
evaluation of the RTS, of the GPD (that refers only to the site with the smallest RV)

and of n,; follows the same guidelines and does not need further discussion.

As a final remark we discuss a refinement on the approximation of Eq. (3.27)
when the G; sites are chosen in a way that depends on the site i;. To improve the
approximation on Yeg, pit(¥) = X, grepri(2) we note that Eq. (3.27) implies that
Yenrs = Qigri. This means that the probability of a site in dC; to be in G; is the
same for all sites (i.e. v;/8;) irrespective of their 7 value. Often the mechanism to
select the sites in G; involves only the close neighbourhood of #;. It is then likely that
in this case ¢,; will be larger for 7 small than for 7 >> 1. Within our scheme we can
enhance in a simple way the importance of the 7 = 0 term in the sum on G;. This is
accomplished taking g, = Jin,¢/ + (7: — Y¢)0r0 so that Eq. (3.27) becomes

<Z pf,t(‘a’)> = -gi— (ha()) +7¢ = - (3.33)

tEG:

This is easily seen to provide the same solution outlined above but with v, replaced
by 4. So finally this refinement only implies a shift in the threshold value. The
magnitude §y; = v; — ¥ of this shift is a parameter that must be supplied by con-
sideration of the actual mechanism of growth, however, if go: is of the same order
of g,; for 7 > 0, the shift is expected to be éy; ~ 7:/Q; that is vanishingly small
as Q; — oo. This argument can also be applied to the 7 = 1 term. This indeed
would yield in Eq. (3.33) a term which is proportional to (M;(x)) = 1 — (Zi(x))
that can also be expressed as a function of (h;(x)). In principle this procedure could
be extended further to deal with 7 = 2,3,.... The extension is straightforward, but
since it depends on the specific mechanism of growth it will not be discussed here.

3.1.5 The case w; =0

A particular case worth of mention is that of v; > 0 and w; = 0. Models recently
introduced for interface growth [35] and for biological evolution [45] are exactly of this
type. We briefly mention about the former. In d = 1 + 1 dimensions, the interface
grows along an infinitely long lattice whose transverse size is L. Cylindrical boundary
conditions apply in this direction. The surface is pinned by a random force modeled
assigning a RV to every site of the lattice. The second ingredient of the model is
surface tension that tends to minimize the extension of the interface. In the extreme
case (infinite surface tension) the length of the interface is fixed to its minimum
possible value (i.e. L) by an height difference constraint that forces the interface on
one column to be at the same height or one unit above or below the interface on
neighbouring columns. When the site i, with the smallest random variable among
those on the interface grows, also all the sites that are necessary to recover the single
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step constraint are forced to grow. Since the number of sites in the interface is always
fixed to L we are exactly in the case w; = 0 while ~; is the average number of other
sites that have to grow to recover the constraint. Other models of the same sort may
involve a milder mechanism for the minimization of the interface length, allowing for
a stochastic readjustment of the interface in the region close to ¢;.

The peculiarity of these models is that since §; = L is fixed, they evolve in a
stationary regime of growth. The guess (hu1(2)) = Qidse = (he(2)) in Eq. (3.30)
is exact for the steady state empirical distribution (note indeed that d;é;(x) oc wy).
This forces us to change slightly the notation: for L fixed we define v, as the steady
state average value of 4;. The discontinuity in the empirical distribution appears in
this case in the L — oo limit: p. = limz—.(1 +7,)”*. In Ref. [45] a derivation of
the empirical distribution was given. The result coincide essentially with our ¢ (x)
but the derivation was based on the assumption that all the variables in JC; have
the same probability density ¢..(z). This is a misleading assumption, in our opinion,
since the difference in the probability densities of the variables in 0C; 1s actually the
origin of the non—trivial behaviour of these models.

The Approach to the Stationary State

Apart from the discussion of the solution, that again follows the same guidelines
outlined for IP, we are also in a position to analyze the dynamics of relaxation to
the stationary solution L. (). This is usually characterized by a relaxation time
I'1 that depends on the size of the system through the dynamical exponent z: I' ~
L===14_ A suggestion in this respect comes from the fact that Eq. (3.30) is mapped
into that for the IP model, Eq. (3.16), if Q; = L — vy and w; = ;. At £ =0, in both
models, (ho(x)) is a constant and the same function, apart an overall factor, at time
t is obtained iterating ¢ times Eqs. (3.30,3.16). Since in IP the number of iterations
needed to get an interface of Q; = L sites is proportional to Q;/w; = L/v: we expect
't L/vy; and =z =

A more rigorous procedure is to consider Eq. (3.30) as a functional relation that
yields ¢ip1(x) in terms of ¢y(x): i.e. ¢yp1 = T..{¢:}. In the following we consider
the situation in which the value of 7; is fixed to 4; = 7,. In situations were [35] this
parameter is not fixed from the beginning 7 reaches its steady state value with a
relaxation law that may be independent of that of the histogram. Here we suppose
that v, relaxes faster than the histogram to 7, or else that it relaxes so slowly that
¢ = ¢t evolves with +; adiabaticlly®.

The operator T has the fixed point qﬁm") The dynamical relaxation is related to

the damping of a small perturbation in ¢; = () +6¢ at the fixed point: T, {¢( Wy

4Usually = is defined with respect to a Montecarlo time step that corresponds to L individual
events.
5The dependence on 7; is made explicit in @~ in this section.
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6o} = + e T8¢ to linear order in §¢. Actually such a simple relation for the
evolutlon oi pe1tulba.tlons does not hold in our case since

T, {0 + 86} = ¢t + 86 — A’L“ %/&b )da! (3.34)

and it is not possible to find §¢ # 0 such that the last term is proportional to 6¢
itself. A solution is instead possible if we require that

a@*‘——(l ) /‘T 5@’(‘;1?')(1.1" =adp+n(l — ,(;L)) (3.35)
61) Jo .

where o and 7 are parameters. The solution of this equation reads

$9() = gy (e = 000 = 9L+ bl = 6} (3:36)

The relation T, {9 Qo) } = éwLw%) +(1— gb(vL +6A"L))67L explains the meaning of

Eqgs. (3.35, -3.36) These state that the opelatm T,, cannot be linearized at the fixed

t ) here 6y, = (L=, /L)y, + 1.

Both §¢ and &+, are proportional to 7 and, as n o € -t 5 0, the fixed point q’)QL) is
reached. This is a physically sound effect: the steady state empmcal distribution is
reached by eliminating the excess of small random variables in 9C;. Indeed év, >0
implies that §z.(t) < 0; then x.(t) — 2.(c0)” as 6y, — 0. We finally note that a
has to be smaller than ¢.,(1) = 7, /(7, + 1) to avoid divergencies in (3.36) for = ~ 1.
Taking o = ¢y, /(7, + 1) with ¢ < 1, we get in the end

point ¢(~.:YL) but around the “fixed point” qfn;

Ty, {80 466y = o277 4 (1 - CYL_> 5¢ (3.37)

that readily yields I' o «,/L and z = 0. This result was also obtained by different
methods in ref. [56] where however the relaxation of the histogram function to the
steady state was not examined. Note that the characteristic time diverges as v, — 0.
This limit is achieved in a model of interface growth with no surface tension. At each
time step the smallest RV is selected among those on top of L adjacent columns and
the corresponding column advances of one lattice spacing. The process has clearly
no steady state since every column is pinned by always increasing random variables.

The order statistics and T # 0 Dynamics

Let us consider in more detail the column invasion model we have just mentioned.
This model belongs to the phase diagram of a random filed Ising model with asymmet-
ric couplings. Imagine indeed the T' = 0 Metropolis dynamics with the Hamiltonian
of eq. (3.1). Imagine we are interested in the domain wall dynamics in D = 2 di-
mensional lattice that has infinite extent in one dimension and has a width of L sites
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in the other. We prepare the system in a initial state in which all the spins are +1
up to a fixed height along the strip and above it all spins are —1. As we turn on the
magnetic field H some spin becomes unstable (that with the highest local field) and
flips. This event may cause other spins to become unstable and to flip, if this does
not occur the external magnetic field H is raised until the first one becomes unstable.
As a result, the interface advances along the strip. This model has a rather trivial
behavior®: depending on the competition between the strength J of the coupling and
the width A of the noise (for which we take a uniform distribution) the growth occurs
either layer by layer (J > A) or as in invasion percolation (J < A), thus generating
a fractal cluster.

The situation changes if we consider asymmetric couplings. If J;; = Jj| between
neighbors along the strip and J;; = J, in the transverse direction, there is a third
regime where overhangs are not allowed and the domain wall is a solid on solid (SOS)
interface. This occurs if J, < A < Jj. To understand this imagine the situation
where a spin on a vertical wall tries to flip. Its gain in energy comes only from the
competition between J and A because the final configuration will have one L bond
satisfied and one not just as in the initial state. However, since Jyj > A, there will be
no field A; for which the move leads to a gain in energy. In a sense, while the model
is in the layer by layer phase w.r.t. Jj it is in the invasive phase w.r.t. J . If we now
imagine to let J; — 0 we recover exactly the column invasion model mentioned at the
end of the last section. As previously mentioned this model never reaches a steady
state since every column, independently of the others, is entangled in the endless
search for the largest possible random number. The situation changes of course if
we raise the temperature: the sites are selected on the interface’” according to the
Boltzmann weight exp{—e¢;/T}. However, for a very small temperature T' < A we
can imagine that the evolution is still based on the search of the smallest ¢; but the
system makes a fault from time to time. Sometime it is not the smallest variable ¢;
to be selected. If this is a very rare event we can qualitatively describe the system
within our model with w; = 0. The parameter v, will be the average number of
“faults” (selection of RV’s which are not the smallest) in the time interval between
two growth events in which the minimum was actually selected. In brief an estimate
of 7 is given by the ratio of the contributions of the minimum €y, and all the other
random variables to the partition function, that is

7= exp|(emn — &)/T] (3.38)
i#min

where €, is the smallest variable and we have suppressed the ¢ index on v since we
are interested in its steady state value. The simplest way to deal with this average
is to introduce the order statistics ¢;. These are defined as €. = é,, where 7 is the

5We only consider the range of parameters where the random field cannot overcome the strength
of four J couplings so that spin inside the sea of —1 can never flip and the evolution occurs only on
the interface

"Also in this case events in which a spin in the sea of down spins flips can be neglected by taking
Jy — oc.
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permutation of the indices for which & < €1 Vi < L. The distribution density of
the k" order statistics é is derived in the appendix and it is

r1 O
r(z) = —0. (1) —— X
() = —0:|(—1) (’\:_1)Z.\(l),\=1
L
where Z\(x) = 1 [T [1 — APi(x)]. Then eq. (3.38) can be approximated by

1

ii

T {expl-&/7)]
T {expl—&/T)]

For the purposes of evaluating

k-1
kO

(exp(—€&x/T)) = (1) (k—1)

1

/ e_’“‘/Tal,Z,\(m) dx (3.39)
A ,

it is sufficient, in order to uncover the qualitative behavior of 7, to consider the power

expansion in z. The 27 term in the expansion of dxZ\(z) yields a term proportional

to T¥+!. The expansion is easily examined by observing that

— O0pZ\(2) = Z n.P(x)— A Z ne(n; — 8- ) Pr(a)Pr(x) + O(A?). (3.40)
7=0

T,7=0

and that the expansion of P,(z) starts with 2™+, Moreover notice that the A*~!
term in eq. (3.40) contains k factors P-(x) which are at least of order x and on
differentiating k — 1 times w.r.t. A, the terms of order smaller than & — 1 in A
vanish. These considerations suggest that the contribution of the k™ order statistics
to the statistical sum is at least of order T*. This is however not true because of the
Kronecker § in eq. (3.40); The T* term results by taking all 7's equal to zero but
ng = 1+ is very close to one. For this reason one must take the & smallest 7 values
in the term with k P, factors. This finally leads to conclude that the contribution of
the &M order statistics is of order k(k +1)/2 in 7. Our final conclusion is then

In particular note that, even though as L — oo the number of sites diverge, v remains
finite hecause a series of powers with exponent k(k+1)/2 converges if T' < 1 and the
coefficients are all of order L. A finite temperature introduces a relaxation time in
this problem that diverges as T — 0 as 7> and as L as L — oo. The situation for
a model whose dynamic at T = 0 is characterized by w; = 0 and a finite 70 > 0 1s a
little bit different. From the above considerations we expected the k*h order statistics
to contribute a term of order T and then to have a correction of order 6y ~ T in 7o.
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3.1.6 Asymptotics

This paragraph is devoted to the analysis of the asymptotic behaviour of the quan-
tities appearing in Eqgs. (3.4,3.6,3.5,3.7) as 2; — oo. This is the asymptotic time
limit when w; > 0 while it is the limit Q; = L — oo for w; = 0. The empirical
distribution, as already discussed, tends to a step function with a discontinuity at
pe = limy oo (1 + w; +7¢)~%. The distribution of the minimum instead tend to

M (2) = min(1,2/p.) (3.41)

that is also evident from power expansion of M(z) = [1 — (v + we)/Qly + (7: +
w)y?/(20) + ... with y = 2/p.. The function M. () is the starting point for the
calculations in this section. This will be used to evaluate the RTS p,(z) from Eq.
(3.8) and then of the GPD and of n,; with a procedure already sketched for the
IP case. These quantities are relevant in the study of the statistics of “avalanches”.
Avalanches and self organized criticality in these models will be analyzed in the next
chapter. For the moment, with this introductory outline we wish to make explicit
from the beginning the approximations involved in this section. This is actua]h
severe with respect to time correlations since the average of the product of M;(x) in
the evaluation of the RTS, Eq. (3.8), is substituted by the product of the average.
Furthermore we take M;_j(z) & M,(z) for k < 7 and

M (2)

— 3.42
fol M/ (2)da! ( )

Pri =
that is a more controllable approximation since, as discussed in 3.1.3, it only in-
troduces an error of order 7/§);. The results derived within these approximation
are however expected to give qualitative information on the actual behaviour of the
models considered.

With this proviso, taking AM(z) = M (2) in Eq. (3.42) and using the resulting
RTS in Eq. (3.4), we find the following expression for the GPD

+ 1y (1 —y) dy.
o 1+ +1) (vt + wy) — y7+!

(3.43)

This is easily evaluated numerically, but a simple closed expression is not available.
The fact that limg, .o ftrt = ftr,o0 1s finite excludes the possibility of a multifractal
behaviour of the GPD, that is observed in other growth models that, as IP, produce
fractal patterns. Moreover we note that gy, ~ 772/(y + wi) + O(773) for 7 >
1. We can next investigate the asymptotic distribution of times that is n,. =
lim¢ ..o 7+ This is done by taking the limit on both sides of Eq.(3.5) and using the
above approximation for the RTS. It is easy to realize that, for @ > p., both limits
yield zero. Instead for y = x/p. < 1 this reads

(& 14 (74 1w, —y™™!
1— Yy = exp {7;0717',00 1Og [ 14+ (7- + 1)("“ -+ LLJt)
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Differentiation of both sides yields

= (r+ 1)y’
1 =(1—: Nr o ‘ .
( y')rz:; Tl (T D we) —yTH

The normalization of the asymptotic GPD 2% nrcefiree = 1 is indeed recovered
integrating between 0 and 1 this equation. For y = 0 we again find no,.c =7 +wi+ 1.
A system of linear equations for n, .., results equating the coefficients of y* in the
expansion of the r.h.s. to zero for & > 0. A simple expression 1s not possible for any
7. If 7 — 1 is a prime integer we find 1, = [y +we +1/(7 + D][1 + (3 +we + 1)~
For general values of 7 more terms appear in the second bracket while the first factor
(the leading one for 7 — oo) remains unchanged. The result nr o = i +wi+1 [(14+7)
derives easily from the same procedure if Z;(x) ~ exp[—BH;(x)] instead of equation
(3.5) is used. This agrees with the estimate of n.; given in 3.1.3 but it does not yield
the normalization of the asymptotic GPD.
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3.2 The RTS and the Fixed Scale Transforma-
tion Approach to the Fractal Dimension of
Invasion Percolation

This section is devoted to the calculation of the fractal dimension of clusters of
invasion percolation with and without trapping. For the second model the result is
known exactly, since it coincides with the fractal dimension of the infinite percolating
cluster D; = 91/48 while only numerical results are available for the former. The
calculation of the fractal dimension for these models, within the Fixed Scale Trans-
formation (FST) approach has been already discussed in ref. [46] using the idea of
describing the quenched process by a stochastic one. The equations for the evolution
of the RTS in ref. [46] were however incomplete. The results of the calculations, even
though in spectacular agreement with exact and numerical results, are then question-
able. We propose here to repeat these calculations using the correct evolution of the
RTS. Again we find excellent results but a much slower convergence with the order of
the calculation which is consistent with the general properties of quenched dynamics.

3.2.1 The Fixed Scale Transformation Approach

The Fixed Scale Transformation (FST) is a theoretical scheme which provides a
systematic description of the scale invariant properties of fractal growth models. It
focuses on the dynamics at a given scale and it examines accurately the nearest—
neighbour correlations at this scale by suitable lattice path integrals. The use of scale
invariant growth rules allows then to generalize these correlations to coarse grained
cells of any size and therefore to compute the fractal dimension. The basic point is
to split the long time limit (f — oco) for the dynamical process at a given scale, from
the large scale limit (r — oco) in which the scale invariant dynamics is defined. In
addition, by working at a fixed scale with respect to the dynamical evolution, it is
possible to include the fluctuations of boundary conditions and to reach a remarkable
level of accuracy for a real space method. This new framework is able to explain
the self-critical nature and the origin of self-similar structures in irreversible growth
models and to compute their fractal dimension analytically.

The Parametrization of the Structure

Focusing on a fractal structure we want to find a simple way to describe its essential
properties. This can be done more easily by choosing a lower dimensional subset
with which we can fully characterize the whole structure. For a fractal structure of
dimension D; embedded in two dimension this is clearly the intersection set with a
line. The intersection set is also a fractal and its dimension is D; = Dy — 1. For
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Figure 3.3: The fragmentation process which defines the dyadic random Cantor set
of the intersection.

homogeneous self-similar structures the intersection can be done in any direction.
Dealing with a structure generated by a growth process, for reason that will be clear
in the following, we will prefer to take an intersection perpendicular to the growth
direction. We can analyze the set of points generated by the intersection with a
procedure of box-covering. A box is characterized by a black dot if it contains some
points belonging to the structure. Conversely, a box is characterized by a white dot
if it does not contain any point of the structure. First we consider a box of the size
of our maximum length scale along the intersection. This box contains the whole set
of points, so it is black. We then subdivide this box into two sub-boxes considering
length scales half of the previous length. By continuing this subdivision process
white boxes begin to appear corresponding to regions in which there is no part of
the structure. Then the process of subdivision continues only for the occupied boxes.
Clearly, voids (empty boxes) are generated at all scales if the structure is fractal. One
can obtain the fractal dimension Dy by the scale invariant statistics of the occupation
of the intersection. To look at the scale invariant statistics of this set we focus on
the elementary process by which a black (occupied) box is subdivided into two as
shown in fig. 3.3. We start by defining the n-n pair correlation configurations along
the intersection. The possible configurations of site pairs generated by the growth
process are:

i) A configuration of type 1 with an occupied (black) site and an empty (white)
site.

i1) A configuration of type 2 with both sites occupied (black).

The probabilities of occurrence of these configuration in the fragmentation (fine grain-
ing) process are C; and C, respectively (see fig. 3.3), with the normalization require-
ment Cy + Cp=1. These probabilities, strictly speaking, characterize only the n-n
transverse correlation at a given scale. If C; are scale invariant, they characterize
correlation between cells of any size. In such a situation our pairs of cells correspond
to the generators of the box covering process of the intersection set. In the asymp-
totic limit, the number of occupied boxes at scale ¢/2 can be related to the number
at scale (. It is easy therefore to show that the (box counting) fractal dimension of
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the intersection set, and then Dy, is is directly related to the value €, C by:

111(C1 + 2C72) )

D;=14+D;=1 3.44d
/ + + In2 ( )

The problem of the calculation of the fractal dimension is then shifted to the
calculation of the asymptotic distribution {C;}. The Fixed Scale Transformation
provides a systematic way to evaluate the C,’s considering the generators of the
fragmentation process as the basic diagrams of the dynamics of the system.

The Matrix of the Fixed Scale Transformation

Structures produced in fractal growth have two types of invariance:

a) The structure is invariant under scale transformations in the sense that the
values of {C’;} that we obtain via a fine graining from scale ( to scale (/2 are
the same as those obtained from scale ¢’ to scale (//2.

b) The structure is invariant with respect to the dynamical evolution at the same
scale. This means that if one considers two different intersections of the original
structure and performs a fine graining analysis for the two different sets one
obtains the same distribution {C;}.

The FST method uses this second type of invariance to relate the statistics of
occupation ({C;}) of two successive intersections in the growth direction. The Fixed
Scale Transformation can be thought of as an “equation of motion” for C; in the
growth direction of the intersection, that is a Master Equation for the {C;} under
translation. Since C; is a two dimensional vector, we can write in full generality the
Fixed Scale Transformation as an iterative equation of type:

C'1k+1 I‘[l 1 l‘fg 1 Cv1k>
3 = ' ’ : 3.45
(C;?H ) <l\fl,2 11'12,2) ( Oé” ( 2
where k denotes the order of iteration, corresponding to the height of the intersection.
The Fixed Scale Transformation matrix elements M; ; are the conditional probabilities
that in the asymptotic structures, a configuration of type ¢ will be followed by a
configuration of type j in the growth direction. As such they are normalized as
M;y + M; 3 = 1. Clearly the asymptotic invariant distribution {C'*} will be given by
the fixed point of the FST:
- 1"‘[2,1
(] = ——.
14 M,
The above relation in combination with eq.(3.44) allows one to compute the fractal

dimension Dy of the structure. Actually, taking into account the fluctuations of
boundary conditions, the matrix elements M; ; will be non-linear functions of the

(3.46)
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Figure 3.4: The growth processes for the calculation of the matrix element My ;. The
probabilities refer to the bonds which join black to white dots. These bonds are
labeled by the first index i of y;, from left to right and from the top to the bottom
of each configuration. The second index refer to the order of the graph.
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distribution C; itself. Eq. (3.46) is in general a self consistent equation whose solution
is the fixed point distribution.

The FST is then a sort of transfer matrix for the probability of occurrence C1, Cy
of the elementary configurations. It is important to remark in this respect that it
relates the statistics of the structure on different intersections at the same scale. This
is different from the real space renormalization group approach where the critical
behavior is extracted by relating the properties of the same local process at two
different scales. If the matrix elements are scale invariant, the resulting value of C;
will be the same at all scales and therefore will yield the fractal dimension Dy. In
order to have such a situation one should use the scale invariant dynamics in the
calculation of the matrix elements, which is not necessarily the microscopic one, and
it has to be found using different methods.

The dynamics of the system is then the essential point of the FST approach and it
is contained in the matrix elements A j = prob.(: — j) which define the conditional
probability to have a cell of type ¢ followed by a cell of type j on the next line adjacent
to it. The matrix elements are defined by the lattice path integrals corresponding to
the various growth processes ¢ — j. It should be noticed that this whole construction
refers to the “frozen structure™, which has already grown to its asymptotic state
and for which no further evolution will occur. This implies that the lattice path
integrals should be extended until the growing interface is far enough from the starting
configurations, so that they can be considered asymptotic (large time limit).

In order to calculate explicitly the matrix elements we develop a diagrammatic
graphical method. We start with a configuration of type ¢ and then we consider
a “growth” column above it. We have then to consider all the graphs linking the
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occupied sites in the initial cell to the sites of the next cell in the column. By the
order of graph we will mean the number of bonds occupied by the path, excluding
the trivial starting one on top of the cell. We have also to enforce the connectivity
of the column, therefore each path consists of a connected sequence of honds. The
matrix elements are evaluated by summing up the weight of each graph of a given
order which leads from a configuration of type ¢ to a configuration of type j. In this
sense the calculation of the matrix elements corresponds to a lattice path integral
defined by the growth process. It is very simple to assign the weight of each path,
following the dynamical evolution inside the growth column. Consider for example
the figure 3.4 where the starting cell is of type 1. We can not consider growth in the
initial cell because it is conditionally “frozen”. Therefore we have only two possible
paths indicated by the bonds of the corresponding growth events. The probability of
the growth events are indicated by p; ; where the first index “” refers to the growth
bond and the second one “s” refers to the order of the graph to which it will give rise.
At the second order the resulting graphs are five as shown in fig. 3.4. Each of them
has a weight given by the product of the probability of the first order path s;; and
the probability of the growth process which leads to the corresponding second order
path ;5. We can now evaluate the matiix elements at the first two orders. At first
order only the process po; will lead to the occupation of both sites in the cell on top
of the starting one, therefore 1\-’[1(9 = pt21. At second order all the paths generated
from the growth process y;; belong to the matrix element 1 — 2. In addition the
other first order path of fig. 3.4 can generate a double occupation in the first growth
cell with probability uz,. We have then at first and second order

I
M) = paa

v = 3.47
Miy" = pog+ paapss (3.47)

We can repeat all the previous steps starting with a cell of type 2 obtaining similar
results for j\fZ(Q and A: ;gle). The relation M;; = 1 — M, provides the other matrix

elements.

Clearly the values of the growth probabilities u;, necessary to define the matrix
elements are defined through the growth rules of the model considered and depend
upon the graph order, the boundary conditions and the type of starting configuration.

The asymptotic matrix elements are those evaluated at the infinite order: A ; =
limy, oo M 5(7;) but in practice the series (3.47) can be truncated when the probability
of occupation of the second site of the configuration j is virtually negligible. This is
called the “freezing condition”. In fact, if there is a screening effect in the dynamic
process, the higher order terms of the series correspond to configurations in which the
second site of configuration j is strongly screened by growth which has occurred at
other sites. Such a fact is crucial because it allows the rapid convergence of the series
of M; to a value smaller than one. This is a key point for the formation of fractal
structures. In fact, if the M;, converges to a number smaller than one this implies
that My; =1 — M, > 0 asymptotically. Therefore there is a finite probability that



growth will leave empty sites even asymptotically and, for the scale invariance of the
problem, holes of all scales are generated. The FST then states a precise condition
to distinguish between compact and fractal structures. Given the growth rule of a
model it is possible looking at the FST matrix elements, to decide if it will give rise
to a fractal structure or not. In this sense the FST illuminates the key point for the
generation of fractal structures as the screening effect of the growth dynamics of the
model.

As already mentioned, the growth process, the probabilities p;; and therefore the
matrix elements M; ;, depend on the configuration of boundary conditions considered.
To include the effect of fluctuations in the boundary conditions, the generic matrix
element M;; should be interpreted as the convolution over all possible boundary
conditions around the growth column. In this way we define an effective average
dynamics with respect to the fluctuations of boundary conditions. The simplest
non trivial method to include the effect of different boundary conditions consists in
assuming that the matrix elements are not too sensitive to the distance of the next
branch unless it is very close. In this sense we can consider mainly two different
types of matrix elements. The first type, j\[ﬁb, is evaluated with “closed” boundary
conditions (one cell period) for which the next branch is very close. The second type,
M7, of matrix elements are instead calculated with open boundary condition (infinite
period). Without entering the details of the distribution of boundary conditions (the
interested reader may consult ref. [57] for an exhaustive discussion), we report here
the fixed point solutions in this approximated scheme:

Mgy + Mgy — 2MgE — (30535 — Mg, — 2Mh )2 + 405, A/

e 2

E 24

(3.48)

where A = ﬂff}z -+ l\f;f’ll - %(ﬂflog + ALY).

This scheme of calculus, called “open—closed”, gives very good results in all two
dimensional problems, and could be improved by the introduction of intermediate
boundary conditions.

3.2.2 Asymptotic Scale Invariant Dynamic in Invasion Per-
colation

We have seen that the correlation properties calculated with the F5T correspond to
the asymptotic structure only if the scale invariant dynamics is used. This is a crucial
and not obvious point on which is based the FST. In the growth rules which give the
dynamics of the model are defined at the smallest scale considered (the microscopic
scale), and it is not obvious that exactly the same growth rules hold also for coarse
grained variables. The identification of the effective growth rules which apply to
coarse grained variables is necessary for the definition of the FST. In this sense the
scale invariant dynamic is an external input that has to be provided with some of the
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Figure 3.5: The coarse graining procedure for the bonds.

various methods like mean field, cluster expansion, series expansion, renormalization
group or even by numerical determination. A general features of the scale invariant
dynamics is that it applies to bond variables [58]. The question we have to address
here is then what is the scale invariant dynamics of bond invasion percolation.

At the smallest scale, the dynamic variables ¢; are the RV’s defined on each bond.
The dynamic rule applied to these variables is: select the minimum RV among those
on the perimeter JC; of the cluster C; and add the corresponding bond to the structure.
This simple mechanism produces self similar structures and memory effect: indeed
the presence of a finite threshold p. implies [50] that the structure has a surface to
volume ratio |0C;|/|C;| which tends to a constant w,, as t — co. This can only be
consistent with a fractal structure, since for all compact objects in two dimensions this
ratio would vanish as ¢~1/2 (t = |C;] is the volume). Next we saw that the probability
of selection of a bond depends on the time 7 it has been on the perimeter and it
vanishes as a power law for 7 — co. The possibility to account for these critical
properties, at a qualitative level, using the microscopic dynamics alone, suggests
that the relevant features of the scale invariant dynamics are already present in the
microscopic dynamics. '

Let us try to figure out how the dynamics can change under a scale dilatation. The
first important point is the coarse graining procedure: the prescription by which the
process at one scale is described at the larger scale. The geometry of coarse graining
1s given in figure 3.5. The set of 8 bonds at the smaller scale (on the left) is replaced
by two bonds at the larger scale. Correspondingly we shall define two coarse grained
variables egl), 2 = 1,2, on these bonds. These will in general be a function of the 8 RV
at the smaller scale. The only requirement on this function is that it has to retain the
relevant details which allow a description of the process at the larger scale. If these
condition is satisfied, in the scale transformation we have eliminated only small scale
irrelevant details. For the problem at hand, where the extreme values of the bond
variables decide the evolution, the information we want to preserve from one scale to
the other is: irrespectively of the path inside the cell, in what direction (vertical or
horizontal) will the process evolve. Avoiding the details of the explicit construction
(1) — F(ej, j=1,...,8) which is

of this function, we assume there is a function ¢;
such that the minimum RV among ef-l) identifies the direction where the process will
evolve. We also make the additional hypothesis that, as for RV at the smaller scale,
the two coarse grained variables are independent. Once the function F' is known,
from the distribution of small scale RV, we can evaluate that of egl). We now observe
that coarse grained RV are defined up to an increasing function. Indeed, as long as

Opfi(2) > 0, the variables egl) = fl(ef-]) ) will also enable us to know in what direction
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the process is evolving by selecting the coarse grained hond with the minimum EE )

This additional freedom in the definition of coarse grained cells can be used to fix
the distribution of coarse grained RV which are just reached by the cluster (7 = 0).
In particular we can choose the uniform distribution for these variables. Isotropy-
guarantees that the distribution of the two coarse grained variables will be the same.
By this hand waving argument, we conclude that the dynamics at scale 1 of invasion
percolation is the same as the dynamics at the smallest scale. This same argument
can be iterated to any scale thus suggesting that the microscopic dynamic is indeed
the scale invariant dynamic in invasion percolation.

The crucial assumption is that of independence of the coarse grained variables. A
careful analysis of its validity implies the direct construction of the transformation
and the evaluation of the joint distribution of 651). Even though the transformation
might build up a correlation between the variables, the crucial point is whether this
correlation vanishes under repeated application of the coarse graining transformation
or not. Research in this direction is in current progress.

Having defined the coarse grained variables and their dynamics, we want now
to explicitly evaluate the probabilities y;; which enter the calculations of the FST
matrix elements. In this respect it is important to note that we will focus on the
local dynamics of large scale coarse grained bond variables. We are interested in
the asymptotic (1 — oo) behavior of the growth process. This implies that the local
growth process, we will focus on, occurs on an infinite cluster. The dynamics we have
discussed up to now is not the scale invariant local dynamics but the global one. This

is a very important observation.

To understand the difference between the rules of global and local dynamics, let us
follow the evolution for a while. At time ¢ the bond with the smallest RV €+ = p(t)
is selected on the whole perimeter dC; and it is added to the cluster. In this event
new perimeter bonds are reached by the cluster. These are the bonds adjacent to ¢*
which were neither in C; nor in 9C;. In the successive global search for the minimum,
one of these bonds can be selected. This will happen surely if the smallest among
the new RV is smaller than p(t). This is simply because the previous event has
shown that all other variables in 9C; are larger than p(t). The global selection will
occur on the set of bonds generated by the growth event on bond 7, at later times
t + s, as long as the smallest RV p(t + s) will be smaller than p(t). Instead when all
" descendants” of the initiator bond i* have a bond variable larger than p(t), the global
dynamics will choose a different region where a new local process will occur. The first
conclusion we have reached is that: the global dynamics is based on the selection of
the minimum RV on the whole infinite cluster. The local dynamics is instead based
on the selection of the minimum RV in the local environment of the initiator with the
additional constraint that the value of the minimum is smaller than the value of the
initiator of the local process. In other words, the cluster globally grows by a series
of casually connected local events. These macro events, that we will call avalanches,
are characterized by the fact that the minimum RV selected inside the avalanche
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at time t + s is smaller than the value of the initiator RV. This condition, namely
p(t + s) < p(t), guarantees, at the same time, that all events, inside the avalanche,
are spatially and causally connected.

The run time statistics allows to compute explicitly the probabilities p; s(p) of
the local growth events inside an avalanche. As shown, this depends on the value
p = p(t) of the initiator RV. To compute y; ;(p) we will repeat the derivation outlined
in section 3.1.2 with the additional constraint that the minimum RV is smaller than
p. Imagine to know all the distributions densities p; () (i.e. the RTS) of the RV ¢;
generated by the selection of the initiator after s selection events. The probability
that the j®* RV is the smallest one, being smaller than p, is -

l‘u@s(P)i/ dx pjs(x H/ dy pis(y). (3.49)
0 i#j 7

With this probability the event at time ¢ 4+ s happens on site j. In this case the
distribution of the j*" RV becomes

Pis(x) = mjs(x) = —l)—:——l—) pis(@) I1 / pis(y)dy (3.50)
l['Jys(.p l#] &

that is just the density of ¢; conditional to the events €; = min;(¢;) and ¢; < p. The
same information acts conditionally on the distribution of other RV's (that were not
the smallest at that time) that become

Dist+1(x) = Ap,-,s(:r)/o.m.j,s(y')d;y (3.51)

where A is the normalization constant. The density of each RV, when it is first
reached by the cluster, is the uniform one. The equations (3.49)-(3.51), with these
initial condition, completely specify the local dynamics.

There are two remarkable points in this dynamics:

e a) the local dynamics is defined only in terms of local variables. The presence
of an infinite cluster enters only through the value p of the initiator RV. In
particular the knowledge of the RTS of all the other RV in the perimeter 9C; is
not necessary.

e 0)the growth probability distribution y; s(p) is not normalized. There is a finite
probability Z(p) = [I; f pis(y)dy that the local event stops at time s. This,
as we are going to see, is a relevant aspect of the local avalanche dynamics.

How long will the local avalanche event last? The answer to this question depends
on the value p of the initiator. If the initiator has a very large bond variable it is
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very likely that the local process will never stop. On the other hand, if p(?) is very
small it will be very unprobable for the ”descendants” to supply at each time a RV
p(t + s) smaller than p(t). The probability the local process will survive a time s
will drop exponentially to zero as s — oo with a characteristic time sq. Clearly
none of the these two local processes is characterized by a scale invariant dynamics.
This is evident if we remember that we are dealing with invasion percolation. The
initiator site will sample the duration of its local growth process from the cluster
size distribution of standard percolation at a concentration p(t). There is only one
value p. for which the cluster size distribution has scale invariant properties. This
leads to the conclusion that the scale invariant dynamics we should use to evaluate
the FST matriz elements, is given by the equations (3.49)—(3.51) with p = p.. This is
the dynamics of local avalanche events starting from an initiator bond with a random
variable ¢ = p..

In the application of the FST scheme, the freezing condition is usually enforced
by normalizing the growth probability inside the column and letting the interface
of growth evolve far from the considered region. The region of the cluster one is
interested in is that of the bulk of the infinite cluster. This is important because the
fractal properties of the growing interface of the cluster are often different from those
of the bulk, which is the case for Diffusion Limited Aggregation [7], and because
one is not interested in the properties of finite clusters, which could be sampled for
example by the scale invariant dynamics in percolation or Potts models [57]. These
two problems can be both solved with the normalization of the growth probability
in the growth column. In invasion percolation nome of these two problems arise:
1) the cluster is by definition infinite and connected, and 2) when a local process
stops in a region it leaves a structure with the statistical properties of the bulk of
the infinite cluster. Indeed, after a local event with this dynamics has finished no
further evolution will ever occur in that region in the asymptotic ¢ — oo limit. This is
because the scale invariant dynamics will leave only RV larger than p. in this region.
Any further local event in this region will therefore be not scale invariant. Moreover
the probability that a second local event will start in the same region vanishes as
the size of the cluster ¢ — co. The structure produced by the local, scale invariant
dynamics is that of the asymptotic cluster.

The above mentioned lack of normalization in the growth probability is totally
consistent with the FST scheme. This is a relevant aspect of the scale invariant
dynamics in invasion percolation. Eventsin which growth stops in the column must be
included in the statistics because the local growth processes must be sampled from a
scale invariant distribution, the cluster size distribution of percolation at p.. Imposing
normalization on this distribution is the same as sampling this distribution for p = 1.
We have checked that the FST result for the fractal dimension is, accordingly, D = 2:
a compact cluster.
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Figure 3.6: The growth processes for the calculation of the matrix element ﬂv[f,lj.
The closed boundary conditions are denoted by the lines on the sides of the growth
column. The structure is repeated in the nearby columns as shown.

3.2.3 The Fractal Dimension of Invasion Percolation

Having defined the scale invariant dynamics we should use to study invasion perco-
lation, we can evaluate the fractal dimension following the project of the FST. The
bond percolating probability on the square lattice is known exactly: p. =1 /2. This
value will be used in the following thus suppressing the dependence on p in ftis-

The most relevant technical point lies in the fluctuations of boundary conditions.
In the present application the open closed approximation is a very good one. This
is because the growth probability s ,(p.) does not depends on how far is the next
branch of the structure, as long as this is not close to the growth column (as for
closed boundary conditions). An eventual near branch would have no effect since the
local dynamics allows only paths directly connected with the initiator RV.

The calculation is performed using the graphical expansion of the matrix elements
shown in figure 3.4. The situation depicted there refers to open boundary conditions,
so we will start with the evaluation of AL;%. In the top graph of figure 3.4 the initiator
RV, that is relative to the bond which connects the two black sites, has just been
selected. The value of its bond random variable was p.. Therefore the distributions
of the RV’s on the two bonds that can grow is the ougmal one, that is uniform. The
first growth event then occurs with a probability ;1 = fo (1 —2a)dr = 3/8. Already
at the first step, there is a probability 1/4 that the process Wlll stop. With probability
fi21 the second site on the upper intersection gets occupied. so the first contribution
to M is 3/8. The other growth event results in the first order configuration on
the leit in figure 3.4. The bonds connected to the top black site have a uniform
distribution p;2(x) = 1, ¢ = 1,2, while the distribution of bond 3 is obtained with eq.
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3 0.43869730 0.59135136 0.65073384 0.72864921
4 0.50334684 0.65732821 0.72777563 0.80269596
5 0.52879759 0.68399751 0.75083084 0.82503358
6 0.55085940 0.70538634 0.77611005 0.84851797
T 0.56151848 0.71594246 0.78531358 0.85716702
§ 0.57084028 0.72435091 0.79621307 0.86704406
9 0.57576926 0.72967473 0.80058298 0.87106235

Table 3.1: The Fixed Scale Transformation matrix elements for invasion percolation.
n is the order of the calculation, that is the number of bonds that have to grow
to enforce the freezing condition. The matrix elements are listed for j = 2. The
normalization condition Al;; = 1 — A;; vields the j = 1 elements.

(3.51) using the distribution of the minimum m;;(x) = 80(a — 1/2)(1 — x)/3:

. ( dx(2 — 2
paa(a) = Ez—min {—1(—3——1-2, l} .

{

Again eq. (3.49) yields p35 = 35 which allows the determination of M7} to second
order 3 3 31 13
. : X 51:
MEi==+4+=--—+...=
ERE T 1120 ©

It is clear that as the order of the calculation grows, the iteration of the equations
(3.49)—(3.51) involves functions of increasing complexity. Moreover the convergence
of the matrix elements is very slow. Usually in the applications of the FST, M, ;
converges exponentially to an asymptotic value as a consequence of screening. In
the present case the convergence is of power law type. This is because stopping the
calculation at the order n involves neglecting a contribution y;, to Al > which is the
growth probability of a bond RV that has been tested, unsuccessfully, n — 1 times in
the search for the smallest variable. We have seen in the previous sections that ;.

: e nl . . 7
vanishes as a power law as n — co. The same behavior is then expected for A, f j) .

For these reasons the calculation of the FST has to be pushed to high orders.
Some approximations involved in the FST may seem questionable when the order
1s as high as 8 or 10. These subjects has been analyzed in detail in the past years
[57]. In any case the FST scheme provides a systematic prescription to evaluate the
tfractal dimension to any desired order. A prescription that has well defined physical
basis. Extending this procedure to an arbitrarily large order can be done in the same
spirit of, say, the standard ¢ expansion for critical phenomena. In the latter scheme
one will eventually evaluate exponents for ¢ = 2 or 3, neglecting higher powers of e.
In the FST, apart the reliability the method has shown in numerous application, we
might have more confidence since in any case the method will provide a lower bound
to the fractal dimension [57].

The complexity of the distribution functions generated in the process, forced us
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Figure 3.7: Values of the fractal dimension (o) for invasion percolation from the FST
at order n = 3,...,9. These are plotted versus 1 /n?. The linear fit yielding the
extrapolation Dgfc') = 1.8879... (e) is also shown as the full line.

to resort to numerical techniques. The integrals were performed using Gaussian
integration on 100 points in the interval [0,1/ 2] (all the distributions have a constant
value for @ > 1/2). A Fortran code was developed to automatically generate the
configurations occurring in the growth process and to evaluate the distributions of
each bond variable and then the growth probability distribution. The results for the
matrix elements with open boundary conditions are reported in table 3.1.

The same method was used to compute the matrix elements for closed boundary
conditions. The graphs occurring in the first two steps of the process are shown in fig
3.6. This is the same as figure 3.4 apart from the presence of the adjacent structure
mirrored by the periodic boundary conditions. The only technical difference with the
previous case is that growth can occur on both horizontal bonds at any height of the
structure. This simply amounts in a double counting of the events occurring on the
horizontal bonds. The results for the matrix elements M fg are displayed in table 3.1.

Using these values in equation (3.48). we finally obtain estimates D;”) of the fractal
dimension of invasion percolation at any given order n. These are plotted in figure
3.7 versus 1/n2. As expected the convergence is of power law type. Moreover the
figure shows that the convergence nicely fits with the behavior pir ~ 772 found in
section 3.1.6. The extrapolation to infinite order can be performed by a linear fit.
The result of this is Dgéx') — 1.8879 ... which is a lower bound between 0.5 % of the
fractal dimension of the infinite cluster of percolation Dy = 91 /48 = 1.89583 .. ..
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Figure 3.8: The inclusion of trapping in the FST calculation. The second site of
the configuration above the frozen one is surrounded by the structure. Then it will
asymptotically remain empty. All the paths that are generated in the successive
evolution will contribute to Aff).

3.2.4 The Extension to Invasion Percolation with Trapping

The same calculation is easily extended to the invasion percolation with trapping.
The growth mechanism of invasion percolation may produce voids in the cluster.
Actually, since the cluster is a fractal, it will produce voids, or holes, of any size. In
the version of invasion percolation that includes trapping, the growth process is not
allowed to continue inside the voids. Once a region has been closed by the structure
it remains asymptotically empty (or trapped). This is a more realistic model,.than
invasion percolation, for various situations involving fluid flow in porous media. This
additional constraint in the model poses great problems on the theoretical side. L.
Pietronero and W. R. Schneider [46] have shown that the FST can account for the
nonlocal effects introduced by this constraint in a rather simple and natural way.

Let us start from the problem of identifying the scale invariant dynamics. Assuming
statistical independence of the coarse grained RV the scale invariant dynamics is
totally specified by the value of p.. This, for invasion percolation with trapping,
is the same as that of the model without trapping. This can be argued as follows:
Imagine to set up a real space renormalization group method to evaluate the threshold
pe for invasion percolation with and without trapping. We would certainly rely on
the coarse grained procedure of figure 3.5. All the processes on this configurations
will have the same statistics in the two cases, since no trapping event can occur in
the left hand configuration. Our fixed point value of p. will therefore be the same in
both cases. An alternative way of finding the same result is based on the observation
that once a region gets trapped, in invasion percolation, the growth events inside the
region and outside it become statistically independent. This means that, the fact that
growth occurs inside the trapped region or not, has no consequence on the growth
process on the external perimeter. So the scale invariant dynamics will be exactly
the same.

A direct consequence of these observation is that the FST matrix elements with
open boundary conditions will coincide with that found previously for the case with-
out trapping. The only difference then comes in the calculation of Affb. Indeed
trapping events occur only for this kind of boundary conditions. The first graph
where such an event occur is the second order graph of figure 3.6 that is reported
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Figure 3.9: The results of the FST for the fractal dimension of invasion percolation
with trapping. The line is a linear fit of D}") (o) versus 1/n? and yields the asymptotic

value D(fx') = 1.8157... (e).

in fig. 3.8. In this graph the second site of the configuration above the frozen one
is surrounded by the structure. Trapping is fully taken into account if we forbid
further growth on this site. Then, as shown in figure 3.8, this graph and all these
generated by the successive growth will contribute to ]\If}l. Trapping occurs also in
higher order graphs, whenever both sites, at a given height larger than 1, get occu-
pied. It is very easy to account for these events. The matrix elements M flj were also
obtained iterating numerically the equations for the RTS. The resulting estimates for
the fractal dimension is plotted in figure 3.9 again versus 1/ n%. The extrapolated
value fo‘x') = 1.8157... is totally consistent with known numerical results [41, 43].
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3.3 The RTS and the Real Space Renormaliza-
tion Group Approach to a Simple Model of
Biological Evolution

This section discusses the critical properties of a model recently proposed by P. Bak
and K. Sneppen, for biological evolution [45]. This is probably the simplest model
which combines both the effects of irreversible dynamics and quenched disorder and
displays a non-trivial self organized critical behavior. Our goal is not to discuss its
implications in biology but rather to propose a new method to tackle a wider class
of models. This approach is based on two elements: ¢) the transformation, based
on the run time statistics, of a quenched quenched process into a stochastic one; ii)
the identification of the scale invariant dynamics of avalanche events through a real
space renormalization group (RSRG) approach along the same general lines of ref.
[59]. This allows to unravel the self organized nature of the process and to compute
the critical exponents that agree fairly well with available numerical data on the

Bak-Sneppen (BS) model [45].

The BS model [45] is defined as follows: to every site ¢ of a 1-d lattice is associated
a random variable (RV) ¢; extracted from a uniform distribution. At time step ¢ the
smallest RV and k of its neighbors are selected and refreshed, i.e. they are substituted
with a new uniformly distributed random variable (UDRV). The system self organizes
to a “critical” steady state in which almost all RV’s are above a certain threshold
value p. This state is characterized also by long range correlations, both in space and
in time.

We focus on the critical behavior of avalanche events. An avalanche is initiated
at time ¢ on the site with the smallest RV ¢; = p and lasts until the smallest RV in
the system becomes bigger than p. If this happens at time t + s we say that s is
the duration of the avalanche while £ is the size of the region it has covered. The
statistics of avalanche events is characterized by two exponents: that of the avalanche
size distribution

P~ &7 (3.52)

that yields the probability P(¢)d¢ that the avalanche size is between € and {+d€, and
the dynamic exponent of these local events, that relates the duration of an avalanche
s to its size £

s~ €7 (3.53)

Often the critical behavior is analyzed in terms of the avalanche duration distribution
which defines the probability Py(s)ds that an avalanche lasts a time between s and
s+ds. Also this distribution has a power law behavior Py(s) ~ s77 and its exponent
follows directly from eqs. (3.52) and (3.53):

T—1

(3.54)

T4 =1+

.

&
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In order to set up the RSRG approach, we have to focus on a coarse grained descrip-
tion of the process both in space and in time. This amounts to the identification of
cell variables at a generic scale and of the dynamic rule for these variables. The coarse
grained variables ¢;(k) in the i*® box B;(k) of 2 sites, will in general be a function of
all the RV ¢; = ¢;(0) at scale 0 inside the box B;(k). At any scale &k the activity will
occur in the box that contains the smallest RV. The most general functional depen-
dence that conserves this information at all scales is ¢;(k) = Fi(min{¢;, j € Bi(k)}).
Indeed, if Fi(x) is a monotonic increasing function, the relative order of cell random
variables is preserved. In particular the box B;(k) with the minimum RV at scale &
will automatically contain the minimum RV at smaller scales. Note that this defi-
nition of coarse grained RV has a simple decomposition from scale k to scale &k + 1:
€j(k+1) = fr(min{ez;_1(k), €2;(k)}). Thus the RV at scale k result from the succes-
sive applications of the selection of the minimum among two RV at scale j and the
function f; for j < k. This structure. that for f; = 1 amounts simply in the dyadic
search of the minimum among 2% R\’s. is particularly suited to applications in the
spirit of the renormalization group.

With respect to the dynamics, again it will rely on the selection of the minimum
cell RV. As at the microscopic scale. the avalanche event, started from a box B;(k),
will modify the RV’s of neighboring cells. In order to define the dynamics at scale
k, we can choose fi(z) in such a way that the distribution of the new cell RV in
the box B;(k) that had the minimum RV, is uniform. However the new cell RV on
the neighbor box B;1;(k), that has been updated along with the minimum one, will
not be a UDRV in general. Thus we have to allow for a slight generalization of the
dynamic rules:

1. the smallest cell RV ¢, (k) is selected and replaced by a UDRV;

2. one of its neighbors (chosen with equal probability) is replaced by a RV dis-
tributed with density bi(x), i.e. bp(x)dx = Prob{ax < €na1(k) < @ + da}.

Note that the original Bak Sneppen model [45] in which the smallest RV and its A = 2
neighbors were updated with UDRV's, after one scale transformation is of the type
described here.

Our goal is to find a transformation that relates the dynamics at scale £ 41 to that
at scale k. More precisely, having parametrized the dynamics with the distribution
bi.(x), we will search for the transformation that gives the density bry1(a) = R {bx(x)}
in terms of the density by(x) at the smaller scale. The fixed point solution b (x) of
the transformation will yield the scale invariant dynamics and then the exponents.
This in practice can be achieved by monitoring all histories that start from a eritical
initiator site at scale k and that finally update the RV’s of two neighboring cells of
size 281 (i.e. four RV’s at scale 2¥). The renormalization group procedure consists
in a mapping of this process in a single burst event at scale 2**! that has updated
two neighbor sites (see fig.3.10).
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The first important observation concerns the initiator site. Its RV must be critical
in the sense that it initiates an avalanche that belongs to the statistic described
by eq.(3.52). In order for this to happen the value p of the initiator RV, being
the smallest RV in the system, must not be too small, otherwise it will produce a
subcritical avalanche with a finite expected duration. Let n;(p) be the number of sites
whose RV is smaller than p. An avalanche started at time g in a site with with a RV
¢; = p will continue until ny(p) > 0. The avalanche is critical if the average number
of descendants of the initiator tends to one as ¢ — oo

ne(p) = (nelp)) — 1 (3.55)
where the average is performed on all the avalanche events with initiator ¢,, = p. The
value of the limit is one here since the property n:(p)ne(p) = nite(p) is expected to
hold for ¢,# — oco. Then the possible values of the limit in eq. (3.55) are zero,
that corresponds to a subcritical avalanche, co, for a super critical avalanche, and
1. Eq. (3.55) is the condition that, given bi(x), fixes the critical values of p. Note
the similarity of this condition with eq. (4) of ref. [59]. Before going on, it is
worth spending some words on a particular approach to the BS model that leads to
a mapping to directed percolation [60]. ‘

3.3.1 The Annealing Approximation and the RTS Approach

In order to find ny(p) we introduce a representation in which a RV smaller than p or
below threshold, is described as a particle. Borrowing the notations of second quan-
tization, we introduce creation and annihilation operators, ! and «;, for a particle
on the 't site. Fermi statistics is assumed to ensure the single occupancy constraint.
In the initial state, [+/o) = a}|0), there is only the initiator particle at i = 0. In the
particle approximation the evolution of this state is given by |i:(p)) = U p)ald |0)

where the operator
1 o . .
Ulp) =5 3 (1= p+pali)(l = p+ pal) (s +1 = fiss)e, (3.56)

destroys a particle at site i, the one that bursts, and also one on the neighbor sites
i+6, if it is there (72; = a}a; stands for the number operator on site ¢). Then it creates
a particle at site ¢ with probability p. that is just the probability for the new UDRV
to be smaller than p, and one in the neighbor site with probability p = [ b(x)dx.
The average number of descendants of the initiator is

ni(p) = (¢u(p)] Zﬂi l4be(p)-) (3.57)

There is a subtle approximation in what we have just said. Indeed the evolution
of the probability distribution, under the conditional information acquired by the
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system, suggests that particles should carry a second “quantum” number 7 specifying
the RTS of the RV on that site. This implies that a RV below threshold has a
probability to be the smallest one that will differ from particle to particle. This
probability, moreover, varies (i.e. it decreases) with time. Eq.(3.56), on the contrary,
assumes that particles have the same probability to be selected. This point may
change dramatically the nature of the model since the screening effect evidenced
by the RTS is neglected. In ref. [60]. assuming this annealing approximation, it
was shown that a description at the mesoscopic level leads to the Reggeon field
theory, a model that belongs to the directed percolation universality class. The
claim that the BS model belongs to the directed percolation universality class was
tested against numerical simulation. However the simulations were performed for the
annealed model of eq. (3.56). The excellent agreement of the numerical results with
directed percolation exponents may then have no relevance for the BS model.

Our intention is instead to take into full account the effect of different distributions
in the RG transformation. The difference in the distribution does not arise only be-
cause a RV may be generated with density 1 or b(x), but also because of the evolution
of distributions, discussed in previous sections, under the information accumulated
by the process [46, 61]. In the present case, the condition on the smallest RV must
be supplemented with the condition that the event belongs to the avalanche. This in
practice means that the smallest RV must be smaller than p. We briefly repeat the
derivation of section 3.1.3 with this additional condition. Let p;:(x) be the run time
statistics of the it RV, i.e. its distribution at time ¢. The probability that the j*!
RV is the smallest one, being smaller than p, is

P 1
pielp) = [ depsale) IL [ dypicty). (3.58)
i# e

With this probability the event at time ¢ happens on site j. In this case the distri-
bution of the j** RV becomes

olp — =) 1
g m; &) = —————Pj\& 7; ¢ (l'} 3.59
piale) = myale) = =) TL [ petw)dy (3.59)

that is just the density of €; conditional to the events €; = min;(¢;) and €; < p. The
same information acts conditionally on the distribution of other RV’s (that were not
the smallest at that time) that become

Pisri(x) = Apis(a) /0“ m;.(y)dy (3.60)

where A is the normalization constant. These recursion relations for the probability
densities enables us to study the deterministic process in a random media as an
annealed process, that is one with a time dependent randomness. Note that there is
no correlation between surviving RV’s that remain mutually independent.
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Figure 3.10: A simple path in one avalanche event. In the final configuration, at scale
k, four states have been updated. This process (left) is mapped in the RSRG to a
single selection-update event (right) at scale & + 1. The different distributions of the
RV’s is also reported graphically: sites denoted by e have a RV larger than p and
cannot take part in the avalanche; o (O) sites denote RV that were extracted from
the uniform (b(x)) distribution. The number below each o or O site indicate the RTS
index 7 which is the number of times the RV has been checked. The selection events,
occurring on the minimum RV, are marked by an arrow.

3.3.2 Sketch of the Renormalization Procedure

Let us leave the problem of the solution of eq. (3.55) and, supposing for the moment
to know the critical value of p, come to the renormalization scheme. This consists
essentially in evaluating, from the knowledge of the distributions of RV at scale &, the
distribution of those at scale k + 1: €;(k + 1) = fi(min{ey;_1(k), €2j(k)}). Consider
all paths «, as that shown in figure 3.10, in which the burst of the initiator leads,
in the end, to a final configuration of four sites with updated RV’s. Let t, be the
number of events occurred in this path (¢, = 3 in fig. 3.10) and let the densities of
the RV’s in the final configuration be pf.“)(_;z:) = pit,(x) where 2 = 1,2 label sites in
the cell I = 1 where the initiator was. while i = 3,4 label sites in the neighboring
cell (I =2). The RG transformation is carried out in three steps:

1. evaluate the distribution density of the minimum in each of the two cells in the
final configuration

(a) d &
mfw) =—— T [ iy, T=1.2 (3.61)
L i=21-17%

2. average over all possible paths:

(my(2)) = Zwam([a)(ar), I=1,2 (3.62)

The weights w, = Wy, of the paths are proportional the product v, of the
probabilities y;,(p), given by eq.(3.58), of the events that occur in that path.
The proportionality constant W =1/, v, is fixed by normalization;

71




3. transform variables in the unit interval (z — y) in such a way that the RV

in the I = 1 cell is uniformly distributed. This is simply accomplished if
y(x) = [ (my(a”))da’ so that (my(x)) — 1 and
| (malx(y)])

(ma(a)) = brpa(y) = ( (3.63)

ny [;lf(llj )]) '

With respect to the standard RG the first two steps perform a decimation of degrees
of freedom in which small scale details are eliminated while the third one corresponds
to the rescaling of block variables.

Let us now return to the problem of finding the critical value of p. Imagine to
observe an avalanche spreading through the system. We can describe this event at
any scale k. This implies that the number ﬁ.gk)( p) of cell variables smaller than p
has the same asymptotic behavior as ¢ — oo for any k. In particular eq. (3.55) will
be satisfied simultaneously for the same value of p at all scales. This statement is
a consequence of the scale invariance of the critical state. Our RSRG enables us to

evaluate a relation between ﬁ(k)( and 7TV (p) that reads
P t P

4
Za Vék) 2 fop ])Ea)(;l')(l;l?
=1
p+ J§ by (x)da

e (p) = i (p) (3.64)
and is derived by observing the same process (like that of figure 3.10) at two different
scales. The avalanche at scale k produces, form one initiator site, an average number
of particles (new RV smaller than p) equal to the numerator in eq. (3.64). The same
event produces an average number p + [J byy1(x)dx of particles at scale k+1. Eq.
(3.64) can be iterated back to & = 0 and forth to any k. Ast — oo, n,(fk)(p) will
diverge, vanish or converge to a limit. simultaneously for all &. Then it will converge
if and only if p is such that

4 )
> k) Z/p pi(2)de = p+ /L bpy1(a)da. (3.65)
“ =10 0 '

This is the condition that fixes p.

The distribution v, is defective; it is not normalized to one. The use of v, in the
numerator of the L.h.s. eq. (3.64) is very important: the condition (ne(p)) — 1 as
¢ — oo must be imposed averaging over the whole statistics of avalanches, including
the finite ones, and not only on the infinite avalanches. Imposing normalization, with
the substitution vy — ws, we would average only over avalanches larger than 2k+1,
This average is appropriate for a different quantity

(o) = (n(p) ¢ = 24)

that is the number of “particles” of size 2% in an avalanche of size { > 2k+1. This is
exactly what we would measure in a box counting analysis of the particle distribution
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inside the avalanche: the number of 1 )O\G‘S of 51ze 2% which contains some particle.
This number is expected to scale as nt (p )(p)‘Z""Df, where Dy is the fractal
dimension of the particle distribution. At the c11t1c.a1 point, eq. 3.64 implies that
nlF )( ) = Walkty (p). Therefore

In W

D=5 (3.66)

In order to evaluate the dynamical exponent z, it is sufficient to note that the
duration of an avalanche of size 2% is T}, = [T;<x tj where ¢ 1s the number of events at
scale 2/ that produce one event at scale 2/t The tlansimmatlon from one scale to
the next one, discussed previously, is realized in a number ¢; of events at the smaller
scale that is itself a random variable with a distribution that, under RSRG iteration,
eventually converges to a fixed point distribution

= Z'l(;aé(t—ta). (3.67)

The most probable value of T} is given by the law of large numbers: Tk = exp(k(logt)).
The dynamical exponent is then

logt .
<1o§>>' (3.68)

In ref. [59] instead of the average of Int the logarithm of the average of ¢ was used
to compute the exponent z. This method, in our opinion, has a weaker statistical
justification and, as we shall see, it leads to an estimate of z which differs by a
non negligible amount from that of eq. (3.68). In general, the difference in the two
estimates of z is large if Pf(?) has a long tail as in this case. Finally, the exponent of
the avalanche size distribution can be derived computing [59]

P(&)de = J[(1 — Kj) ~ 2k0-7) (3.69)

k .
2 <k

where L is the proba.bility that the avalanche stops at size 2/. For large j, if I\;
converges under the RSRG iteration. to a fixed point value i, we find

log h'*

T (3.70)

log2 °
In practice A'™* is obtained summing the probabilities of all processes in which the
activity occurs only on the same site : = 0, eventually for an infinite time.

Coming to the details of the calculation, it is instructive to evaluate explicitly the
contribution of the realization shown in figure 3.10. The probability involved in the
second event, at ¢t = 1, is pa21(p) = [ b(2)(1 — x)dx divided by 2 because of the
choice of the neighbor. Correspondingly the density of the smallest RV becomes
ma(x) = 0(p — 2)b(x)(l — x)/p2,1(p). The density of the RV on the initiator site
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Figure 3.11: The fixed point density b (a) for 7' = 20. The difference of this and
0o (2) obtained for T' =19 is at most ~ 0.01%.

at t = 21is pyo(x) & fy mei(a’)da’. The activity then moves on site ¢ = 3 and the
probability of this event is one half of uza(p) = ff b(z)(1 — a)dx [} p12(2')dz’. The
distribution of the third RV, the smallest at this time, is mg2(x) = 0(p — x)b(x)(1 —
a)dx [ pra(2’)de' /us2(p) and this is used to obtain the final densities on sites i = 1,2
using again eq.(3.60). These with p3z(z) =1 and py3(x) = b(x) are used in eq.(3.61)
to find the contribution of this path to the distribution of the smallest RV in the
two cells. This path will be summed with all other paths with its probability that is
wy = Wy, = Wpe1(p)ps2(p) where 11 is such that Yo, w. = 1.

Already for the simplest path the calculations are involved. For this reason the
project outlined up to now was carried out numerically on a computer. Gaussian
quadrature with 100 points was used to evaluate integrals. The process at the same
scale was reproduced generating all configurations and calculating their weight, up
to processes of order T' = 20. The configurations occurring in the process are labeled
by the four indices of the distributions on the four sites. To reduce the number
of configurations and of different distributions occurring in the process, densities
pit(2) with a Ly distance less than ¢ were identified. The results are quite stable for
changes of ¢ < 5-1073. The criticality condition, eq.(3.65), was solved numerically.
Under RG iteration, by(x) converges rapidly to a fixed point b (x) that is shown in
figure 3.11. The attractive nature of the fixed point implies the lack of relevant
parameters and can be read as a hallmark of self organization. As a manifestation of
universality, we found that the same fixed point was reached for any starting bo(x).
The enhancement of b, (x) for small « w.r.t. the uniform density indicate a tendency
of activity to wander rather than to continue in the same region.

T4



T p p z Dy T

12 0.541157 0.710563 2.339501 0.767690 1.269723
13 0.539545 0.709528 2.326541 0.762516 1.271850
14 0.539325 0.708022 2.316740 0.763463 1.273531
15 0.539235 0.707010 2.310200 0.764364 1.274623
16 0.539186 0.706358 2.305382 0.764985 1.275321
17 0539157 0.705940 2.303040 0.765394 1.275767
18 0.539139  0.705672 2.301172 0.765659 1.276052
19 0.539127 0.705501 2.299945 0.765830 1.276234
20 0.539120 0.705391 2.299141 0.765938 1.276352
oo 0.539107 0.705198  2.297500 0.766125 1.276611

Table 3.2: Results of the RSRG calculation to order 7' = 12,...,20. Extrapolations
were performed using the modified Romberg algorithm.

Table 3.2 lists the results for the exponents. The bottom line reports the results of
sequence extrapolation using the modified Romberg algorithm [62]. D; was evaluated,
for any T, from the fixed point value of W and eq. (3.66). For the dynamical
exponent, using the logarithm of the average of ¢ [59] instead of (Int), as anticipated,
we find a larger (extrapolated) value of the dynamical exponent =/ = l—l':% = 2.4505....
With respect to the 7 exponent. A~ was evaluated numerically considering in detail
the effect of different distributions occurring in the process. The extrapolated values
of z and 7, in eq. (3.54), yield an exponent of the avalanche duration distribution
7¢ = 1.1204.... The agreement of these values with those, obtained via numerical
simulation, reported in ref. [45] is quite satisfactory.

3.3.3 The Relation with Directed Percolation

Our results are also in good agreement with the values obtained in ref. [60] from the
mapping to directed percolation: Tf "=1.08+1.11 and 1 /= = 0.4307. This mapping,
as well as these values of the exponents, rely on the annealing approximation.

Let us first analyze the relation between the BS model and directed percolation.
By the experience with invasion percolation and the discussion in section 3.2.2, we
may formulate an invasive version of directed percolation and argue that the local
avalanche dynamics samples the cluster size distribution of directed percolation at
the percolation threshold p.. An avalanche event, in this model, will extend in the
"time” direction for a length (; and in the spatial direction for a length (. These
two lengths diverge as (; ~ |p. — p|* for p — p, with exponents [63] v = 1.733,
v = 1.097 respectively. (; = ¢ will correspond to the space variable also for the
BS model. The quotes on “time” mean that () is not related to the time in the BS
model. Indeed the latter is measured as the number of selection of the minimum RYV.
This definition of time, for our avalanche of directed percolation, corresponds to its
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Figure 3.12: The relation between bond invasion directed percolation and the BS
model. The bond variables are projected for each space coordinate in the time di-
rection. As a result at each point x there are several variables. The BS model is
obtained if only the younger variable is retained for each x. In the figure, the bonds
of directed percolation are labeled by the time in which they have grown. Under the
sites of the projection we report the RTS index 7 for each bond variable.

o N : D C o
mass s. Since in each “time” intersection there are a number (|7 of occupied sites,

the mass of the avalanche will be s = fné’ff . Using the relation ( = f’i"/“ which
relates the extension of the critical cluster, we find a relation between the time s and

the size € of an avalanche for invasion directed percolation given by eq. (3.53) with

DP DP 4
z = Df ’l.
vy
The exponent of the avalanche duration distribution is obtained by observing that the
invasive growth process samples the duration s of the avalanches from the cluster size
. . . . . .« . . DP
distribution of directed percolation at p.. This implies an exponent 7, =~ 1.11....

A more direct relation between directed percolation and the BS models is sketched
in figure 3.12. In the upper part it is shown a realization of directed bond invasion
percolation. If we look at the dynamics projected on a “space” line, we find a process
very similar to that modeled by Bak and Sneppen. Let us consider, on the projection
line, an array of sites in correspondence of the bonds of the directed lattice. The
dynamics we will see on this 1-dimensional lattice goes as follows. The smallest RV
is selected and a new RV is generated in the same site and in one of its neighbors.
However these do not substitute the other variables that were already on these sites.
As a result on the same site of the line there will be more than one variable. At each
selection on the site, or in one of its neighbors, a new RV will be added to list. The BS
model has exactly the same dynamics except that only the most recent RV, on each
site, will compete with the others in the search for the minimum. In other words
only the last entry of the list of RV’s is retained; the one with the smallest index
7 the run time statistics. Furthermore note that the annealing approximation for
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directed percolation is exact. If a RV on the perimeter JC; of the cluster is smaller
than p. it will surely grow. It does not matter in what order the “particles” are
selected in directed percolation since all of them will be selected sooner or later. In
particular one can choose the prescription of directed invasion percolation by which
the particle with the smallest RV is selected at each time. The particles can also
be updated simultaneously. This is not so in the BS model. A “particle” may be
replace by a RV larger than p before it is selected. Each different prescription for the
order in which the particles are updated leads to a different evolution. The validity
of the annealing approximation is therefore not obvious as in directed percolation.
Whether these are relevant differences or not, for the determination of the universality
class of the model, is not clear. Our numerical results suggest that the mapping to
directed percolation [60], if not exact. is a very good approximation. The extension
of the RSRG approach to the annealed model and to the projected directed invasion
percolation model would probably clarify this issue.
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Chapter 4

Self Organized Criticality

A large amount of efforts have been recently devoted to uncover the mechanism
underlying the tendency of large statistical systems to self organize into a critical
state [2, 66, 59, 49, 60]. This issue has a great relevance since self organized criticality
manifests itself in a large variety of phenomena ranging from earthquakes [64] to
magnetic systems [39, 52], from interface growth [35, 33] to biological evolution [45].

Much interest has focused on recently proposed models that involve quenched dis-
order [45, 35] and whose dynamics leads spontaneously to a self organized critical
state. The occurrence of critical aspects in connection with a dynamics in a random
environment is not a peculiarity of these models: invasion percolation [41] is known
to reproduce the critical clusters of standard percolation right at the percolation
threshold; non trivial space-time correlations also appear in spin glasses dynamics
[52], charge density waves [37] and in zero temperature athermal dynamics of disor-
dered magnetic systems [39, 40]. It has been recently recognized that these systems
fit the description of self organized criticality. The latter is based on the concept
of avalanche which may be defined as a macro event of evolution. The dynamics of
a self organized critical system is a sequence of macro—events that are causally and
spatially connected. The duration of these events and their size have no characteristic
scale. The power law distribution of avalanche size (or duration) is the hallmark of
self organized criticality. This is related to the hierarchical structure of avalanche
events that extends from the microscopic scale up to the whole size of the system.
Inside an avalanche we might identify smaller avalanches which in their turn contain
even smaller avalanches and so on.

A peculiarity of systems involving quenched dynamics, apart their critical and
self-critical aspects, is the presence of memory effects. Leaving for a later moment a
more precise definition of memory, we will say a memory is present in the system if
the dynamic of local variables is sensible to “long” period of the past history of the
process.

This chapter inquires on the relation between dynamics in quenched disorder, mem-

-1
[v'5]



ory effects and self organized criticality. We have already seen qualitatively and in
some explicit example, that both memory effects and avalanche events arise in this
~dynamics. The main question we have enquired is whether the self organized critical
behavior arises in these systems as a consequence of memory or not. The path to
address this question we will be the following

1) discuss memory in quenched dynamics;
2) understand how to detect and measure memory in a system;
3) find a method to describe avalanche events without reference to the disorder and’

4) generalize a model with quenched dynamics eliminating the disorder and retaining
only memory effects. Finally we will analyze the model and find whether it can
account for the self organized critical behavior of the corresponding model with
quenched dynamics.

We will draw inspiration,.in the definition of our model, from the two models
already discussed in this thesis: the Bak—Sneppen (BS) model [45] and invasion per-
colation [41]. The models we will define make no reference to quenched random
variables. For a particular value of the exponent a that tunes the effects of the past
history on the evolution, we reproduce to some extent the critical behavior of the cor-
responding dynamics in quenched disorder. The most relevant difference concerns the
self organized critical behavior. Avalanches in invasion percolation are not properly
reproduced by our model when the exponent a is tuned to that observed in invasion
percolation. This suggests that either the parametrization of memory effects in quen-
ched dynamics used in our model is inappropriate or that there are features specific
of quenched dynamics which are relevant for the self organized behavior observed.
This point will be discussed in the final section. However the model we will define
shows a rich scenario of self organized critical behavior. This includes stretched ex-
ponential avalanches distributions as well as power law distributions accompanied by
a finite probability for infinite avalanches. This allows to conclude that self organized
criticality is not a peculiarity of dynamics in quenched disorder. It arises in general
as a result of memory effects.

4.1 Memory in Quenched Dynamics

Let us start from invasion percolation. The cluster C; grows selecting at each time
step the minimum RV among those on the perimeter C;. This site is included in
the cluster C;y; while the set of perimeter sites is updated to 0Ci41 adding the sites
the cluster has reached with this growth event. We have already seen that, with
this rule, the system self organizes to a “critical” state: almost all RV’s in JC; are
above a certain threshold value p. and long range correlations, both in space and in
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time, appear. As shown in the previous chapter, this rule is equivalent to a stochastic
dynamics. While the original rule is based on (taking the minimum among) the values
of the RV, the latter is defined in terms of the distributions of the RV’s. The relevant
index in the stochastic rule is the number 7 of times the RV has been checked in the
search for the minimum RV. 7,. as we have seen, is the “lifetime” of the RV on site i.
It is a counter variable which is increased by one each time the RV is not selected and
its value is zero for a new uniformly distributed RV. This variable will be a central
quantity in this chapter. In order not to confuse it with the avalanche exponent, we
shall slightly change notations, using the letter & for counter variables.

In a system that evolves probing a random environment, as the BS model and
invasion percolation, it is natural to think that the evolution will take place more
often on recently updated regions than in older ones. This is because a site whose
RV has been checked a large k; >> 1 number of times in the search for the minimum
RV will probably have a large RV. It still has a probability of being the smallest in
the future but this probability gets smaller and smaller as time goes on. This implies
that the probability that a site with a counter equal to k is selected decreases with
k. In the previous chapter we have shown that it is possible [61], keeping track of
the evolution of the statistics of the RV on each site, to pursue this argument further
and to evaluate the probability of each growth event. The probability that a random
variable ¢; is the smallest one depends on k;. Under approximations of mean field
type, for invasion percolation

Prob{e; = minle;; Vj]} = pgy e ~ k77 (4.1)

for ¢ > k; > 1 with « = 2. Tt is worth to stress here that pz: is not a function of &
alone in models like invasion percolation. In a single realization it actually depends
on finer details of the past history. However, on average, it displays a fairly stable
power law dependence on k as shown in figure 4.1. We postpone a discussion of
this figure and how it has been obtained to the last section. For the moment it is
important to stress that the qualitative behavior of j is correct: it has a power law
dependence on the counter variable k. We shall see that exactly this behavior, using
approximations of the same nature, can account for the power law in the avalanche
size distribution.

4.1.1 Counter Variables and Memory |

Before discussing the characterization of avalanche events in terms of counter vari-
ables, let us discuss memory effects. For a generic growth process defined in terms
of lattice variables ¢; we can assign to each site 7 a counter variable k;. These are
initially set to zero on the whole lattice. The variables k; starts increasing when the
site ¢ is first reached by the growing cluster C;. The variables k; of perimeter sites
i € 9C; are increased by one unit at each time step unless they are selected in the
growth event. In this way ki(t) is the time spent by the site i on the perimeter of
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Figure 4.1: The distribution sy ; measured in clusters of invasion percolation of ¢ =
8192. The power law fit yields an exponent azp = 1.35 = 0.01.

the cluster. The distribution sz, can be defined in general as a frequency in terms
of counter variables. s is a directly accessible quantity in a computer simulations.
Indeed the fraction of times selection occurs on a site with k; = k will be Mkt flh s
where ny,; is the number of sites with counter ki(t) = k at time ¢. These satisfy the
normalization conditions ¥, Mrenige = 1 and Y, ng; = N; which is the number of
sites in 0C;.

A measure of the effect of memory is given by the first moment of the distribution
gt
1 &
T, = ~ Z kg ~ 1. (4.2)
Mt k=0
On the average the local dynamic of the variable on site i is sensible to a period
of length T; of the past history of the process. The exponent ¢ is an indicator of
the presence of memory effects. Indeed ¢ = 1 implies that the dynamics at time #
“remembers” a number of events that is of the order of the “age” of the whole cluster.
The local dynamics is sensible to the previous state of the process. Conversely ¢ < 1
implies that the dynamics depends only on the current configuration of the interface.

It is instructive to discuss the above quantities for some examples of cluster growth
processes. Let us first discuss the Eden model [67, 24]. In this case p, is a constant
and the resulting distribution n;; decays exponentially with a rate proportional to
N7, The Eden clusters are compact so Ny ~ /tin D =2, and ¢ = 1/2. The surface
to volume ratio tends to zero as t — oco. which is the appropriate thermodynamic limit
for all compact clusters. Instead, processes that generate fractal patterns, often lead
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to a finite surface to volume ratio for the infinite cluster. This is the case for invasion
percolation, where this ratio is related to the percolation threshold [50]. Accordingly
we find that T} is proportional to the volume. Thus we find ¢ = 1. As shown in
figure 4.1, pp, decays as a power law in k. As k < t — oo np; reaches a constant
value Ny o, which is the surface to volume ratio. The behavior of y, embodies the
screening effect which produces fractal structures. The screening effect is also present
in other models, as diffusion limited aggregation [63] and the self avoiding walk [55].
In the former u; decays exponentially, as a consequence of the screening induced
by the Laplace equation. In the latter y; = 0k since growth is allowed only at the
“ends of the walk. Both models have a finite surface to volume ratio and ¢ = 1.

For a system of finite size L (with periodic boundary conditions), the process will
reach a stationary state. This is a slightly different situation and it requires a little
change in our notations. In the steady state the above distributions attain a constant
value (L) and ng(L). These satisfy the normalization conditions 3, px(L)np(L) =
1 and ¥y ni(L) = L? for a system of linear size L. The equivalent of eq. (4.2) is

1 &
T(L) = > kng(L) ~ LAOF9, (4.3)
k=0 '

As ¢, the exponent ( is an indicator of the presence of memory effects. On the average
the local dynamic of the variable on site 7 is sensible to a period of the past history
of the process. If the length of this period, measured in units of L¢ individual events,
increases with L, i.e. if ¢ > 0, the state of the infinite system will depend on the
whole history. If ( = 0 we can say that no memory effect is present.

As an example, consider the Metropolis dynamics [6] of the Ising model. A variable
is selected on average once every L9 attempts. With a probability that does not
depend on L the move is accepted and the spin flipped. Thus we expect ¢ = 0 for
this model and in general for equilibrium dynamics. Consider next the prototype
model of self organized criticality, the sandpile model [2]: sand is added on randomly
chosen sites. A site cannot store more than 2d — 1 grains and it “topples” when it
receives the 2d'" one, i.e. it distributes one grain to each of its neighbor sites causing
eventually “toppling” on these sites as a result. After a toppling a site 1s empty.
Before it will topple again it needs to store enough sand. Thus the probability that it
will topple after & toppling events grows with & and on the average it will topple once
every L? toppling events. Then ¢ = 0 also in this case. This result is consistent with
the abelian nature of this model [65]. Coming to the quenched disorder, figure 4.2
shows that the situation is different for the Bak Sneppen model [45]. ux(L) decays as
a power law in k with an exponent aps = 1.31 & 0.01 and nj(L) satisfies the scaling
behavior

ni(L) = k™7 f (k/L**¢) for k>0 (4.4)

with Bgs = 0.58 & 0.01. The scaling function f(x) drops quickly to zero for large
arguments and tends to a constant f(0) = n;(L) for x — 0. The assumption of a
single time scale T, (L) for a given size is implicitin (4.4). If 3 < 1, the normalization
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Figure 4.2: The distributions ng(L) and ie(L) measured from simulations of the BS
model.

condition on ny(L) easily yields the exponent relation

. B
= 4.5
(=155 (4.5)
This yields (gs ~ 1.44 in fair agreement with the direct measure (s = 1.46 +0.03 /
using eq.(4.3).

The conclusion we have reached is that quenched dynamics implies memory.

4.1.2 Counter Variables and Self Organization

If ¢ or ¢ are the indicators of the relevance of memory, the self organized nature is
usually related to the occurrence of avalanche events. An avalanche event is made of
a spatially and causally connected series of events.

Let us recall the definition of avalanches in quenched dynamics. This dynamics
is based on the selection of the minimum RV. The event on a site at time ¢ may
generate RV’s in its neighborhood, that are smaller than the one that has just been
selected. The evolution will naturally select these RV at time ¢ 4+ 1. The same may
happen for a certain period and as a result selection events will be localized in a small
region. This sequence of local causally connected events is an avalanche. At each
time one avalanche starts, so a number of nested avalanches are active at each time.
In the self organized critical state, the duration s of an avalanche follows a power law
distribution P,(s) ~ s7™ that defines the exponent 7.
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Up to now and in the previous chapter, we have defined avalanches in processes
involving quenched disorder in terms of the sequence p(¢) of minimum RV selected
during the evolution. If the minimum RV €, = p(t + 1) at time ¢ 4+ 1 is smaller than
the one p(t) that has been selected previously, the two events are causally connected.
This is obvious because the RV selected at time ¢ + 1 must have been generated in
the growth event at time . At that time in fact the minimum RV was p(¢) and not
p(t+1). However it might also occur that a RV generated in the event at time ¢ turns
out to be the smallest one even though it is larger than p(t). The above criterion
would say the two events are not causally connected, while actually they are. The
larger is the number of sites N; or L on which the dynamics searches for the minimum
the smaller is the probability of the occurrence of this event.

This problem does not occur if we use counter variable to define avalanche events.
The definition of an avalanche is particularly simple in terms of the variables £;.
Indeed the event at time ¢ + 1 will be causally connected to that occurred at time ¢
if and only if the counter variable of the site selected at time ¢ + 1 is & = 0. This
argument establishes also the causal connection on a longer period s of time. Consider
the avalanche started at time to. This will be active at time ¢ + s if all sites ()
selected at times to < t < o+ s had a counter kj)(t) <t —to. Indeed this means
that all the sites () for ¢o < t < #o + s have entered the set of active sites JC; after
the avalanche began. On the other hand the selection of a site with a counter & at
time ¢ terminates all avalanches that started after time ¢ — k. Moreover the size of
an avalanche that lasts for s time steps is simply evaluated as the size of the region
with counters smaller than &; < s.

We will assume that this definition of avalanche events, that fully reflect the causal-
ity relation that binds individual events into an avalanche, is equivalent to that based
on the values of the smallest RV at each time.

In order to discuss the behavior of the avalanche distribution® it is convenient to
generalize it to account for infinite avalanches

Py(s) = (1 = Noo) Pi(8) + Nsbis o (4.6)

where N, is the fraction of avalanches that never stop. An avalanche that lasts a
time s is terminated when a site with k; > s is selected. For a finite system of size
L, if kpax(t) = max[k;(t),7 = 1,.... L], all the avalanches that began before time
t — kmax(?) will never be terminated. These will contribute to N. In general, the
probability that the avalanche stops at time ¢ after s events, for what we have said
previously, is

Pstop('s'r t.) = Z Ng ikt (47)
k>s

'In the remaining of this chapter we will study the statistics of the duration of avalanches.
Implicitly, in the following, the avalanche distribution will refer to the duration.



An avalanche will still be active after s events at time ¢ with a probability
) )
Pace(s,t) = [T [1 = Patop(s — k,t — k). (4.8)
k=1

These two equations provide a relation between the distributions fkts N and the dis-
tribution of finite avalanches. This is because the probability to observe an avalanche
of duration s is the probability that this avalanche is active after s events times the
probability that it stops at time ¢:

P (s.t) = Pacil(5, 1) Paop(s, 1): | (4.9)
The contribution of infinite avalanches is instead given by

Noe = lim Poy(s,t). (4.10)

t>s5—n0a

It is worth stressing that Péf !(s,1) can be factorized as long as the events at time
t and ¢ — k for k < s are statistically independent. This is the case for most models
of fractal growth [67, 68, 41] and holds also for quenched dynamics as shown in the
previous chapter. Note that the growth probability distribution (GPD) {4, ni}
depends on time. More precisely the GPD is itself a random quantity which depends
on the past history of the process. The analysis of equation (4.9) involves the problem
of evaluating the averages of a product of correlated random variables. Neglecting
this correlations and using the product of the average values instead of the average
of the product we found the behavior of uy; in eq. (4.1). Before we apply the same
approximation to eq. (4.9), it is important to emphasize a further point. A self
organized critical behavior can result only if the dependence on ¢ is irrelevant. In
other words we will be interested in the distribution Py(s) = thﬂn& FPy(s,t). This limit

is the L — co limit in finite size systems. We will assume this limit situation if the
dependence on ¢ (or L) is not explicit in the following. Regarding Piop(s,t) = Patop(s)
as a fixed quantity, let us first consider infinite avalanches. These will occur when
the infinite product in eq. (4.8) for ¢+ — oo, will converges to N, > 0. The criterion
for the convergence of infinite product implies that this will occur when the series
25 Patop(s) converges to a finite value. This will be the case for the SAW where
Pyop(s) = 0 for s > 0 and for the DLA where it decays exponentially. Indeed in
the former model all the events are causally connected while in the latter infinite
avalanches occur as a result of the Laplace screening. When Piiop(s) ~ 77 decays as
a power law the sum will diverge for V< 1. Itis interesting to note that, within the
same approximation, in section 3.1.6, we have derived relations for p, ~ k=2 /~, +
O(k~%) and ngy =~ 4,4+ 0(k™1) which lead to Pitop(s) = ks 4+0(s72). This is exactly
the limiting case 9 = 1 and the coefficient is x = 1. Pursuing this approximation it is
not difficult to find in the end that Py(s) ~ s=*~1. The correct power law behavior of
the avalanche distribution for invasion percolation is properly reproduced. The value
of the exponent is however wrong. 7, = x + 1 should be compared with the exponent
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of the cluster size distribution of percolation at p.. This is 7, = 1.05... instead of

2.

If 9 > 1, apart from a finite contribution of infinite avalanches N.., we find a
power law distribution for finite avalanches: Pdf)(.,) ~ 577 For v < 1 finally,
our brute approximation suggests a stretched exponential behavior for the avalanche
distribution: P(f)(_.,) ~ exp(—as!™).

The simplest method to go bevond the approximation used above, is to devise
a simple model that may scan the various situations occurring in a process with a
memory. This will be the subject of the next section.

4.2 The Generalized BS Model

The key points we have reached up to now with the introduction of counter variables
are: i) dynamics in quenched disorder leads to memory effects. For a finite size
system the model is characterized by power law behavior in both ui(L) and ng(L)
(see fig. 4.2). ii) the mechanism of self organization is not the same in sandpile
models [2], that display no memory effect, and in the BS model. iii) We can describe
both memory effects and avalanche events in terms of counter variables alone. These
observations motivates the introduction of a new model defined in terms of counter
variables to study the interplay between the effects of memory and self organization.

Let us consider again the BS model [45], which is perhaps the simplest model of
dynamics in quenched disorder, and repeat briefly its definition: assign a uniformly
distributed RV ¢; on each site i of a d—dimensional lattice. At each time step select
the smallest RV and replace it and the RV’s on the neighboring sites with newly
extracted uniform RV’s. Figure 4.2 suggests a natural generalization of this model
which is the following: assign a counter variable k; to each site ¢ = 1,...,L of a 1
dimensional lattice. At each time step one site is selected, with a probability g, that
depends on the value of the counter

e = po(k+1)77. (4.11)

If site ¢ is selected, its counter variables and that of its neighbor sites are set to zero.
All other variables are increased by one:

kiys(t+1)=0 for 6 = 0,41 (4.12)
kit 4+1)=kj(t)+1 else. (4.13)
The dependence of the selection probability on & is devised to generalize the situation
occurring when the dynamics is driven by the extreme statistics of a random field.

This is the simplest way to account for a dependence of the local dynamics on the
history of the process. The larger the time a region has been tested for selection
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the smallest the probability it will be selected. The rules of the model apply to
situations without disorder but with the same screening effect in time. In particular
it relies on a stochastic description which is often preferable to the deterministic
nature of quenched dynamics. For example, the present model yields a description
of biological evolution that differs from that of the original BS model [45]: a specie
has a probability to undergo a mutation which is given by (4.11). This probability
is consistent with the fact that the longer a specie has not undergone mutations the
more it fits its environment. However it still has a probability to mutate and this
depends on a stochastic event. Mutations may depend on variables that are not
explicitly present in the model and not only on the fitness of the specie. Events like
glaciations, fall of asteroids, large scale forest fires or sudden changes of the climate
are best taken into account by a stochastic description. In the present model a
mutation in one specie can be induced also by mutation in “neighboring” species, as
in the BS model. We might also think to other situations this model may describe.
Our concern however is mostly on the statistical properties of this model so we will
refrain our fantasy.

Fora finite L the system reaches to a steady state that is characterized by a dis-
tribution of counters ng(L) for which we shall assume the scaling form eq.(4.4). Of

course ng(L) = 3 since three counters are updated at each time step. The normal-
ization of the selection probability 3%, ni(L) tr(L) = L fixes the value of ,uéa)(L):

() 1 g
L)= : . 4.14
o S D 1 A

Let us start the discussion of the model from the a = 0 case. Clearly ,uéo) (L) =
1/L at all times. The distribution ny(L) instead decays exponentially. A simple
explanation of this comes from the relation between the number of sites with ki(t +
1) =k +1 and k;i(¢) = k. In the steady state this reads np41(L) = ng(L)(1 —3/L).
This immediately yields ny(L) = 3exp(3k/L) and ((a = 0) = B(a = 0) = 0. Of
course the probability of a connected event of s steps also goes to zero exponentially
with s, i.e. 75(a = 0) = 0. In conclusion neither memory nor avalanches are present
in the model for a = 0. The same behavior is expected to persist for small values of
a. Let us focus on a site with &; = k and consider the probability pi(s) that it will
not be selected in the next s steps, under the condition that in this period it will not
be updated because of its neighbors. Clearly pe(s) = Hji',f +1(1 = pog™). It is not
difficult to check that, if @ < 1, pp(s) — 0 as s — oo while it tends to a constant
if @ > 1. So this site, if it is not updated by its neighbors, will surely be selected
sooner or later. This suggests that for a < 1 the average time T (L) between two
updates of the same site stays finite and ((a < 1) = f(a < 1) = 0 (see eq.(4.5)).
The occurrence of self organized criticality can be excluded as well for & < 1. The
probability of local, causally connected events (the avalanches) depends on pg(L).
The existence of such events on all length and time scale requires this probability to
stay finite independent of L. Supposing the scaling form (4.4) for ng(L) in eq.(4.14),
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o B ¢

1.10 0.3+£0.1 0.5+ 0.2

1.20  0.48 +£0.01 0.90 £ 0.04
1.30  0.58 £0.01 1.40 £ 0.06
1.40 0.619 £ 0.005 1.53 £ 0.03
1.50 0.613 4+ 0.005 1.47 £ 0.03
1.75 0.571 4+ 0.005 1.31 £ 0.03
2.00 0.545 £ 0.005 1.17 & 0.02
2.50 0.510 £ 0.005 1.06 £ 0.02

Table 4.1: The results of numerical simulation for the exponents /3 and (. The model
was simulated for the values of a reported on a finite size lattice of width L = 32-256.

it is easy to see that if o + 3 > 1, as L — oo, po(L) — po(o0) > 0, while in the
opposite case po(o0) = 0.

Let us now consider the opposite case: o = co. In this case yp = 0 VA > 0 and
tto = 1/3. The model describes a random walk on a d =1 lattice. It is not difﬁcult
to find ((co) = 1 and a distribution nx(L) that follows eq. (4.4) with B(co) = 1/2.
With respect to self organized criticality, the evolution is a single connected event:
every avalanche lasts for an infinite time. Thus N, =1 in eq. (4.6).

For a finite, large a > 1, supposing again eq.(4.4) for ng(L), the sum in eq. (4.7)
yvields Piop(s) S 178 Thus P,c(s) will converge to a finite limit N, > 0 as long
as a+ 3 > 2. Under the hypothesis that a + 3 is a monotonic function of o we define
a. as the solution of a + (a) = 2. For a > o, a finite fraction N, > 0 of avalanches
will never stop and the distribution of finite avalanches will behave as a power law
with exponent 74 = a + f(a) — 1.

Below a. the probability of infinite avalanches goes to zero. The approximation
discussed in the previous section would vield a stretched exponential avalanche dis-
tribution.

Let us now come to the result of numerical simulation. For a < 1, as expected,
tto(L) ~ L™ vanishes with w(a) ~ 1 — a and (L) converges to a finite value as
L — . For a = 1 the best fit suggests T.(L) ~ log L. Table 4.1 lists the values

obtained for the exponents 3 and ¢ by numerical simulations of the model for sizes up
to L =256 and a > 1. The statistical uncertainty gets large as o = 1 is approached
from above. The relation (4.5) is satisfied fairly well. o + B(a) gets bigger than 2 for
~ 1.4. Correspondingly B(a) reaches a maximum and, as expected, N, becomes
posxtwe This is shown in fig. 4.3 where we report also the estimate ot the exponent
¢ obtained for L = 128 and 256. For these sizes the distribution Pd (3) is not still
relaxed to its asymptotic behavior and the reported values are upper bounds to the
true 7 exponent. For small o the statistics of avalanches was too poor to extract a
reliable estimate of 74(«). For large a, where a stable behavior of P(f)( s) was found
with L, the difference between 74(a) and a 4 () — 1 is small. The character of the
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Figure 4.3: The measured values of N, and 7; for o > 1.
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T4(a) curve, however, is quite evident: 7y reaches a minimum approximately in the
same region where o + = 2 and N starts to increase.

We performed simulations on the BS model as well. The agreement of 3(1.30)
and ((1.30) with the exponents measured for the BS model is remarkable. For the
avalanche statistics, the latter model displays a much better scaling behavior than our
model. This enabled us to conclude that Nyo(L) ~ L~%% vanishes indeed. A direct
measure of the 7, exponent for L = 128 yields a value 74 = 1.38 that is 0.3 larger
than the best estimates [60]. The claim, ming{rs(a)} = 1, suggests a systematic
error of the same magnitude. These considerations suggest that the mechanism of
self organization of the BS model. being similar to that of our model, is related to
memory effects rather than to the presence of quenched disorder.

We have assumed in our numerical simulation a power law behavior for the avalanche
distribution also for a < a.. The approximation discussed previously implies a
stretched exponential behavior in this region. Our numerical data did not allow us
to distinguish clearly between these two behaviors. For small o > 1 the stretched
exponential behavior is more evident while if a is close to o a power law behavior
is more likely. Thus we cannot definitely establish whether the self organized critical
behavior of our model coincides or not with that of the BS model.

4.3 Cluster Growth with Memory

The second model we discuss is a generalization of the invasion percolation model.
To each site i of a D dimensional infinite lattice is assigned a counter variable &;
which is initially set to zero. Growth starts from one seed site 1(0) = Cp and after a
time t it produces a cluster C; = {i(s), s =0,...,1 — 1} with the following rule: one
of the sites in the perimeter OC; of the cluster is selected with a probability which
depends on its counter variable

Prob{i is selected} = pi; = po(t)(ki +1)7%. (4.15)

The counter variable of the site i(t) which has been selected will remain unchanged
in the future. The site is included in the cluster Cipy = CiU{i(t)}. The counter
variable k;(t) of all the other sites j € dCq, j # i(t), will be increased by one:
ki(t +1) = k;(t) + 1. At each time step one only site grows. This is enforced by the
normalization condition that yields

o -1
po(t) = [Z net(k + 1)_“] (4.16)
k=0

Depending on the value of a we expect different behavior as for the model of the
previous section. In particular for a = 0 we recover the Eden [67] model. For a — o0
growth will occur only at the sites with k = 0. These are those reached by the cluster,
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Figure 4.4: The fractal dimension D;(a) as a function of o (e). The solid line is a
spline interpolation intended only to guide eyes. The O point is the measured fractal
dimension of invasion percolation D;P ~ 1.89.

for the first time, at the previous growth event. The rule than reduces to that of the
self avoiding random walk [55]. The model is expected to interpolate between these
two models and to reproduce to some extent the properties of invasion percolation.
The latter model has indeed a yy; of the form (4.15). The exponent, read off from
figure 4.1, is «;, = 1.35 £ 0.01. The approximation discussed in section 3.1.6 yields
af®? = 2 which differs substantially from the numerical result.

We shall shortly repeat some of the arguments of the previous section for this
model together with some preliminary results of numerical simulation. Even though
we cannot draw definite conclusions it seems that the a—model misses the structure
of avalanche events of invasion percolation. In this sense it is likely that these models
display different self organized critical properties.

As in the previous section we can conclude that for a < 1 growth will occur in a
Eden like fashion. We can indeed assert that all the sites in the perimeter dC; will
surely grow sooner or later. Indeed by eq. (4.16) uo(t) ~ ¢~ can eventually vanish
with an exponent that is at most 7, < 1 — a. The probability that a site will not
grow for s time steps after it has entered the interface is Py(s) = [Tiesll — po(to +
k)(k + 1)7%]. If the series Ty pto(to + k)(k + 1)~ diverges the limit of the product
will be zero. This happens for v, + o < 1 which, as observed before, is always the
case for @ < 1. The probability that a site spends a time s in the set of perimeter
sites goes to zero as s — oo for @ < 1. The same argument suggests that clusters
will grow compact, that the surface to volume ratio will vanish asymptotically and
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Figure 4.5: The probability Pa(s) for @ = 1.30, 1.40 (x) and for invasion percolation
(O). The solid line has a slope v = —0.90.

that the average value of k will scale with an exponent ¢ < 1 in eq. (4.2). The latter
occurrence implies that no memory is present in the process. Finally no self organized
critical behavior occur. In fact the fact that po(t) — 0 precludes the possibility of a
local dynamics such as that of avalanches. This scenario for o < 1 is confirmed quite
well by numerical simulation.

For o > 1 instead we find ¢ = 1 as an indication of the presence of memory effects.
Both the surface to volume ratio and po(t) converge to a finite value as ¢ — co. The
former implies that the growth process produces a fractal cluster. Preliminary results
for the fractal dimension are shown in figure 4.4. The latter suggests that avalanches
have a well defined distribution. For 1 < a < 2, the previously discussed approxima-
tion, implies a stretched exponential distribution. This is roughly confirmed by the
numerical data shown in figure 4.5. The distribution of avalanches for the a-model is
consistent with a stretched exponential behavior since Paci(s) ~ exp( —as?™). Con-
versely for invasion percolation P, (s) is a fairly stable power law with an exponent
v & 0.9 which is roughly consistent with the value of 7y = o +~v—1~1.05.... For
a = 2 the stretched exponential behavior of chf )(_s) turns into a power law and for
« > 2 a finite probability for infinite avalanches appears.



4.4 Discussion

Let us summarize the results we have reached in this section. First of all we have
seen that the introduction of counter variables allows both to detect memory and to
characterize completely the avalanche behavior. The causal relation between indi-
vidual events is more transparent in terms of counter variables than in terms of the
succession of minimum RV selected during quenched dynamics. Moreover the same
definition in terms of counter variables extends to more general situations. Regarding
the self organized critical nature of processes involving quenched dynamics, we have
seen that a model that accounts in the most simple way for the memory effects can re-
produce the “standard” critical properties. These are in the BS model the exponents
$ and ¢, in invasion percolation the surface to volume ratio and the fractal dimension
(see fig. 4.4). In both models the presence of memory (¢ > 0 or ¢ = 1) comes along
with critical properties such as fractality in cluster growth. The presence of memory
is also accompanied by the presence of well defined local events (avalanches). The
avalanche distribution has a power law character, which is the hallmark of standard
self organized criticality, for a > a.. In this region of a there is a finite probability to
observe endless avalanches. This probability vanishes at a.. For 1 < o < a. a simple
approximation suggests a stretched exponential distribution for avalanche events. We
could not clarify this issue for the generalized BS model. Our numerical data did not
allow for a definite characterization of the avalanche distribution. For values close to
a. & 1.4, as is the value measured in the BS model ags ~ 1.3, a power law character
was found to fit well the data, while closer to @ = 1 the stretched exponential form
seems to be more appropriate.

In cluster growth with memory, where o, = 2, the stretched exponential behavior
suggested by the above mentioned approximation, is more suited in the region 1 <
a < a.. A suggestive similarity between the two models comes from the comparison
of the 3 data and figure 4.4. In both cases the exponent attains an extreme value at
a. (which is 2 in fig. 4.4).

With respect to the relation with quenched dynamics the failure of our model in re-
producing correctly avalanche events for the appropriate value of a can be read in one
of two ways: 1) the modelling of memory effects in the corresponding model involving
quenched dynamics is not appropriate; 2) there are features of quenched dynamics
which has nothing to do with memory and which are relevant for the self organized
critical behavior. A shortcoming of our model, as well as of the approximation we
have discussed, is that the selection of a variable has the same conditional effect on
the remaining ones 7rrespectively of the value of its counter variable. In the model
counters are increased of one unit no matter what value of k£ has been selected. In
the approximation the average distribution of the minimum variable is used instead
of the distribution of the RV that is actually selected (which is conditional to the fact
that this variable was the smallest). In quenched dynamics, the longer the selected
RV has been in the set of the perimeter sites the closer it will be to the threshold
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value. The selection of an old RV will have a strong conditional screening effect on
the other variables. This effect may account for the mismatch between the approxi-
mation and the simulation in the a exponent for invasion percolation. It might also
be responsible for the markedly different behavior in the avalanche distribution shown
in figure 4.5.

A more complete understanding of the behavior of models with memory and of its
capability of reproducing features of quenched dynamics necessitates a more sensible
theoretical approach. The simplicity of the models discussed in this chapter suggest
that it should be a feasible project to uncover in more detail the very rich behavior
discussed so far.
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Appendix A

Elements of Differential Geometry
and Derivation of
Reparametrization Invariant
Growth Equations

A.1 Differential Geometry

An orthonormal basis is assumed in the D+1 dimensional space and Greek letters are
used for the vector components. Instead latin letters index refer to the components
of vectors in the D dimensional parameterization space. s‘ are general curvilinear
coordinates that label points on the D dimensional surface. The notation d; = 0/0s
is used for covariant derivatives. Summation over repeated indexes is always assumed.
Lastly for the scalar product in both spaces a dot is used while x denotes the vector
product.

The distance between infinitesimally close points on the surface is given by the first
fundamental quadratic form

|dr|? = O;7ds’ - 9;7ds? = gijdsids?. (A1)

This defines the metric tensor 9i,j = O 0;7. g = det{g; ;} denotes its determinant
while g*/ is the inverse, Girg* = 671, and also defines the contravariant derivative

0 = g0,

The only restriction on the choice of the parameterization is that ¢ # 0, i.e. that
9ij 1s invertible, and this implies also 8.7 # 0. The vectors &;7 lie in the tangent

'The symbol § is used here for the Kronecker delta. It will also be used for the Dirac delta
function and for functional differentiation.
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hyperplane so that the normal versor is given by i = g V20,7 x OyF X ... X OpT where
¢~Y? ensures normalization.

The invariant surface element is given by do = dPs,/g and this implies that the

invariant form of the delta function in parameter space is

bols — &) = ——— (A.2)

where §(s) is the usual delta function in D dimensional space.

For differential calculus, invariant forms of the gradient, divergence and curl are
obtained requiring the transformation properties of tensors to apply. The gradient of
a scalar S is simply given by ;S while the divergence of a vector is

. 1, ;
dive = —0;/gv"
V9
Taking the divergence of the contravariant gradient yields the reparametrization in-
variant generalization of the laplacian operator in curved spaces '
1 1

N
iV =g

which is known as the Beltrami Laplace operator.

% (Vig"0;) (A.3)

A
A G
~

The curvature  of the surface along a curve s(() is given by the second fundamental
quadratic form
dst ds? ds' ds’

a0 = arar (A4)

k= ;i O (s(0)

_This defines the principal curvatures (directions) as the eigenvalues A; (vectors) of
bl. These are invariant under reparametrization. The mean curvature H is the sum
of these and then equals the trace of b7

' D
H = bﬁ = Z A= —0Oin - 7. (A.5)

i=1

Another useful definition of H comes from observing that, since n -9 = 0, di\/91 -

O = VI(0im) - IF+h - O;ﬂaif' = 0. This implies

H= -9 -0F=n-AT (A.6)

The Gaussian curvature is instead defined as K = det{b} = IT; Ai.

2actually the mean curvature should contain a factor 1/D that we disregard for convenience.
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With respect to the dynamic we note that the time derivative of 7 has to be parallel
to the normal of the surface, as stated in Eq.(2.2). This is because t = s° can be
regarded as the D + 1™ coordinate, and (s,°) is a curvilinear coordinate system.
It the growing surface invades the D + 1 dimensional space, this parameterization is
legitimate since the metric tensor is positive definite. However s° is the absolute time.
and changes of parameterization cannot involve this variable. This is satisfied only if

the elements go; = 9,7 9,7 vanish. that implies that 07 L 9;7 for all i =1,..., D.

- A.2 The Monge Form

A particular choice for the parameterization is the Monge form
7= (z,h(z)) (A.7)

where 2 is a vector in the D dimensional substrate plane and A(z) is the height of the

surface in the direction 2 perpendicular to this plane. Use of this parameterization
implies that no overhangs are present in the surface otherwise i(z) would not be single

valued. In this parameterization the metric tensor has the form 9i; = 6i;j — 0;h0;h,

g=1+(Vh)* and n = —L(——S_Zh, 1). (A.8)

N

Finally the mean curvature is given by

g = y¥hiz) (A.9)

<

The equation for h(x,t) is obtained from (2.2) considering the various components
of 7. Take 7(s,) = (2(s, t), h(s,t)), then for components we have

Oh(s,t) = n°G
Or'(s,t) = n'G

173

where n' (n%) is the component of the normal in the direction #: (£). These derivatives
are evaluated at constant s while we are interested in the derivative of h at constant
, that is
) oh . .
Oih(z,t) = Oh(s,t) + —a?dt:v‘(ﬁ, t)
that, using the above equations and 7 = (=Xh,1)/,/9, readily yields the deterministic
part of eq. (2.3).
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A.3 Equations derived from a potential in the
Monge representation

The property that the functional derivative is orthogonal to the vector ;7" translates

into

and to find Eq. (2.5).

o, S
§ht T bat

This allows to eliminate the functional derivative w.r.t. ' in

. éﬂ -6H +vni§_7-_-(
§7  bh at

A.4 Derivation of the Growth Term Due to Sur-
face Energy

In the functional derivative of g w.r.t. 7, in eq. (2.6),

determinant and the property

§lndet AT = Strin M= teAL6N

that holds for variations of a matrix M. This allows to write

1 - o
5/ch5\/§: 3_/chs\/Eg”’égjvi = —-/chsc')i\/g?g""ﬁjr-ér

for a variation 67 of 7, which readily yields Eq. (2.6).

A.5 Curvature Dependent Potential

we use the fact that g is a

For a variation 67 in 7, # changes to 72 + §f. Since 6(# - ) = 0, the variation 07 1s
normal to 7. Take Eq. (A.6) for H; then in

SH = 8h - AT+ 7 - 6(AT)

the first term in the r.h.s. vanishes since A is parallel to #i. The variation of AT,

by simple arithmetic, is

SAT =

2

5—-1\/50,- (Vag"19;) 7

(a

ava
VA

. 1 ..
OF 4+ AT+ —0; |\ /9(89™)0;| T
) P \/g [\/j( 9 ) J]
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The first term in the last line, being proportional to &7, vanishes once it is multiplied

by 7. For the same reason the only contribution that survives in the last term is

obtained when the derivative O; acts on 7. The variation 69"’ is expressed in terms
= . e . s ik o Ti .

of 67" taking the variation of 9""9k,j = I; so that finally

§H=f -A67—2 (aféf‘a-ff) (- 00;F) .

The variation of Heqg = —ry [ dP 8/gH w.rt. 67 involves the variation §H and the
variation of /g, which is evaluated as before. The tunctional derivative of the first
term is evaluated from the above equation with a partial integration

B 1 6H.1
NI

On multiplication of the above equation with 7 to find G, ;, the property - ;7 = 0
can be used again to show that the second term gives no contribution and to perform
the derivative in the last term that becomes bijbji. This is the trace of the square
of the matrix of the coefficients of the second fundamental form. Finally we have to

- ~ 1 : .
=Ry —HAT = 0FTOH + A +2—0, h - 009 L
/\1{ HAT—0%0;H A7+ \/50 [\/5(’7 (30]7)07]}

compute 72 - A fi. Using the facts that # L 9"/ and that Ot = —by 9;F, we easily find
. N 3 D -
AR = =0 0'h = —bb} = =3 N2, (A.10)
1=1

Collecting the various terms we get the result displayed in Eq. (2.13) that is clearly
fully R~invariant.

The chain rule of differentiation, applied to H.), = —x, [ dP s/gH?, also gives Eq.
(2.15), where the second term, as before comes from the variation of /9 while the oth-
ers come from 6H? = pHP~'§H. This needs also the straightforward generalization
of Eq. (A.10) to

D
n- A(FR) = <_§ ~ Z,\?) F
~ =1

~

for a generic R-invariant function F (8).
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Appendix B

Dynamic Renormalization Group
for Growth from an Inclined Flux

B.1 The Dynamic Renormalization Group

Let us consider the Langevin equation
Oh(z,t) = L{h(z. 1)} + N{h(z. )} + n(z,1)
where £ (N) is a linear (nmﬂinear) differential operator in the x variable and
(nl, n(a’, 1)) = 2862 (2 — 2ot — t). (B.1)

The first step for the dynamic renormalization group (DRG) analysis, following Ma
and Mazenko [11. 9], is to transform the equation in the Fourier space:

~

hik,w) = /dD:l? dt bz, t)e™ kT
(k,w) = /(ZD;E dtn(z,t)e™ k2
—Qh(k,w) = /dD;lf dt L{h(z, 1) e EE

where Q) is a function of k& whose form depends on the combination of differential
operators in £. For a quadratic nonlinear term, the equation can be cast in the form

hk,w) = Golkw)i(kw) (B.2)
. dPq T dv s .
+ Go(kw) oD ‘—)—;F(A,g)h(g, v)h(k — ¢,w—v)
5(A) —“a

where Go(k,w) = 1/(Qx — w) is the bare propagator and I' is the bare vertex func-
tion. S(A) is the domain of integration with A being the momentum cutoff. The
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renormalization of the propagator and of the vertex (or of the coefficients that ap-
pear in them) and of the amplitude A of the noise correlation is given by the vari-
ation of these functions under an enlargement of scale. The change of scale is done
in two steps: i) elimination of “fast” degrees of freedom (that describe the Sys-
tem at small scales) by eliminating the variables whose momentum lies in the shell
S(A)/S(e7'A) = {k € S(A), k& S(e7'A)}. i) rescaling of the variables k — ek,
t — et and h — ¢“h in such a way as to recover, in the new variables, the orig-
inal cutoff A. The renormalization scheme is successful if after these two steps the
equation can be cast in the form (B.3) with a new propagator G and a new vertex
function IV, The equations of the RG flow are obtained, for 0 < I < 1, by evaluating
the variation of Gy and T' to first order in /. The fixed point solutions are eventu-
ally obtained by setting these variations to zero, thus requiring scale invariance of
the equation. In order to carry out the first step, the elimination of fast degrees of
freedom, it is helpful to adopt the following graphical representation of eq. (B.3):

h is denoted by a solid thick line and Gy by a thin one. The cross stands for a noise
term 77 and the vertex I is graphically represented by an open dot o. It is also useful
to use a different notation for the degrees of freedom that we are going to eliminate.
A slash on a thick (thin) line represent a h (Go) with £ in the shell. So the equation
for i for k € S(e~'A) is given by the full equation a) in figure B.1 while eq. b) applies
to h for k in the shell. Note that, since we are interested in the k — 0 limit, the
term in which the A’s going out of the vertex are in S(e'A) can be neglected in the
equation b using moment conservation. Equation b) is solved iteratively in powers
of I The zeroth order term, with no vertex, is just the first term of equation h):
Go. The first order is obtained obtained by substituting the zeroth order solution
in equation b) (i.e. changing all slashed full lines with a Glon term). This solution in
used back in equation b) to get the second order solution (that contains two factors
I') and so on. In this way h( k,w) for k in the shell is expressed as a function of hk,w)
for k € S(e7!A). This solution is then substituted to the slashed thick lines in eq. a).
At this point we take the average over the noise with momentum in the shell. Since
the noise is gaussian this amounts in pairwise contracting external lines of the type
Gon in all possible ways. A contraction of two 1 is shown as a O. The graphs with an
odd number of 5} with moments in the shell vanishes. At the end of the calculation,
considering only one loop corrections, the equation for i(k € S(e7'A)) is as shown in
figure B.2. The explicit form of the terms appearing in figure B.2 is obtained by the
following Feynman rules:

103



is equivalent to a factor Go(k,w). Tf the line is slashed then k lies in the shell.

e implies a factor T'(k, ¢), where k is the incoming momentum and an integration
on dPq/(27)P and on the frequency v. Momentum and frequency must be
conserved at the vertex.

O stands for the factor 2A8(¢ + ¢')o(v + ') that results from contraction of (g, 1)
and (¢, t').

The multiplicity of the graph, that is shown in figure B.2, is the number of ways in

which it can be obtained. )

For example, the self energy insertion & in the second line of figure B.2 is given by

o0

diq dv . . .
Sk(w) =4 / W / ;_;I‘(l‘* q)GO(!‘:’—ng—V)GD(Q*U)ZAGO(_QJ’_V)F(L"Qj —_(i)
shell = -0 =

This term will provide a renormalize the propagator G while the other terms in the
bottom line of figure B.2 will renormalize the vertex function.

We finally have to take into account of the renormalization of the noise. This comes
from the last term of equation a) of figure B.1 when we substitute Gg1 to both legs
with k in the shell. This graph and the first term of equation a) can be absorbed in
the definition of the new term Gp7’. Graphically

¢

GD(E& (.u')‘l

(khw) = X +

-~

X

Under the hypothesis that the noise is still gaussian one has only to evaluate the coeffi-
cient of the delta functions in eq. (B.1). This amounts in evaluating (0’ (k,0)7' (=4, 0))
which yields the correction to A.

B.2 Calculations for the Growth Equation with
an Inclined Flux

For eq. (2.44) we have to consider a different renormalization of the length scales in
the different directions (k; — l\r”e“ﬂ k, — kpe ¢ and h — he!®) and of the time
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scale t — te'*. The most general form of (), consistent with the anisotropy and eq.
(2.44) is ’

Q¢ = m)gji + 11qi + pagids (B.3)
which is the inverse of the propagator at zero frequency. This is because the anisotropy
in the nonlinear term renormalizes differently the three terms of Eq. (B.3).

Also for the vertex function a second parameter is necessary
A A
= (-Z§> Ryay(ky —qp) + ¢ (—‘I-;) [q“(h —qu)* + (ky — f/u)Qﬂ

Fa

to account for different scaling properties of Ay = X and A, = Ae.

Propagator Renormalization

The self energy correction to the free propagator Q) at w = 0 has two contributions.
One (Z3) coming from the bare scaling of x, t and h, the other resulting from the
integration in the momentum shell Ae! < |g] < A, Afe?! < lgy] < AS. The latter,
after integration on the internal frequency, reads

dPq T(k,q)T(k — q,~q)
Es‘heﬂ = _4A v q _ .y
k shél (27)P Qg (Qq + Q) (B.4)

L dPq T(k,q)T(k — ¢, ~q) E-N (k- V)
= *4,_3}[/11 5P 267 L4+ == -2+ Q.

<

Expanding in power of £,
Ek — Eslsccal + Eihell — [l/”lﬁ + l/_L,l.?_QL -+ U[[/\ﬁ -+ O'dlcﬁl{?i + O'J_kj_ + .. } [ (B5)

where [ is the scale factor. Since there is no term proportional to Ici, the term (ﬁ,
which is absent from the bare propagator, will not be generated. On the contrary a
contribution kjf exists so the term gff in Q is generated by iteration of the DRG. Our
results will hold as long as this term is negligible. The product of the two I in eq.
(B.4) is

—4AT(k, T (k —q,—q) = — MNA[KRqd(ky — qp)® + 20k kykod(ky — q) (ke — 1)
— @ (kygl — K an) kel — 2krquar + Kqp) |

then the other coefficients in eq. (B.5) are:

AZA dPq (g —¥*qt , i (i
o =F-dt = l/u (2r)D { 1Q? InQ, + 53—3“1"% o
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JL._ﬂ+vA‘/dg§;wumm@~g
and "
sims-2-2 + A2 | o [q” 453 L g,
Lo qnfu(qg; Ss'qJ_)anal nQ,
+ L,ﬁ—glg (q”al, InQ, +c%¢10, InQy — Z)jl :

Vertex Renormalization

The product of three T' entering the renormalization of the vertex is instead
Dlkoq) [Dq. k= K)D(q — k+F, )+ Tlg,K)Dlg =K k= k)
+ ‘ZF(([, I‘I)P(]‘ -4 k— 'I‘,)] =
= Ty(k K )(gf — e g+ edl)* + .

No contribution of the form I'; arises so that

dln A .
o7 L sta-—1-2C
For A\ = A, the integral on the internal frequency yields a factor A/ (LLQ';’), that,
combined with the degeneracy (4) of the graphs gives
Oly _ / chq (qﬁ — P2 )gf + eql) (B.6)
dlnA 7 Q3 ' '

shell

The evaluation of the integrals is straightforward but tedious. In terms of the
adimensional parameters of eq. (2.54) we find

dlnp 1
= 3o
dlnr, 1 1
ar <C'“‘ TRt 5"“)
Jdlnry L . dlnA 1
——':a—‘l‘— = ~+C\—1-“2(_,— al *-5(0’_]_-—0'”)

that finally yield eq.(2.55).

Finally, it is easy to see that, since the vertex I'(k, ¢) is proportional to the parallel
component kj of the i 1ncommg momentum, the correction to A is proportional to L“
Therefore there is no noise renormalization.
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A Note on the Domain of Integration

The integrals on the momentum shell Ae~! < lg)l < A and A% < |qu| < AC can
be performed in the following way (up to orders (2)

dPyq d dPyq )
/ (: ‘)Dw ((ju,ql) B lalnAS({) (2~7r)qu <q”’q'L) - l@lnAF(A)

Shell »

P

where
S(A) = {’q”] <A;jlgu| < AC}.

In the evaluation of the integrals one often has the additional condition that also
¢—k € S(A). This additional condition is easily dealt with! introducing a 6 function
in the integrals and expanding it in powers of k:

dP dP
F(A) = / (‘)n)qp‘lj((” = / («),.‘.)qu [(q - A:)Q — A2] U(q)
g.9-kes(\) s(a)
dPyq [ J
= 1 —2qké (¢? — A?) + k2 (1+2(2—,—> §(g*—A? J U(q).
s (27)D 1 (1 ) 1 EYE (1 )

The terms containing a delta function only involve the integration on the angular
variable. It is easy to see that, since U(bg) = b=P<U(q) with D. = 6 in our case,
the integral on S(A) of these terms is proportional to AP~P<. Upon differentiation
w.r.t. In A we find that their contribution vanishes at D = D.. In conclusion in the
evaluation of the integrals the domain can be safely neglect the condition ¢—k € S(A)
as long as one is interested in first order correction in the e = D. — D expansion.

'We discuss, for the sake of simplicity, the isotropic case where S(A) = {l¢] < A}. The general-
ization to the non isotropic case is straightforward and only involves longer formulas.
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—_— = X + +

b)

= x4 — +
+2

Figure B.1: Feynman diagram for a quadratic Langevin equation a) for k € S(e—I\),

b) for k in the shell.
4
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—— = X+ =
+4 Jﬂ}\ - +
+ 4 + 8 +..

Figure B.2: Renormalized equation at 1 loop order for A(k,w). The graph of the
second line is absorbed in the renormalization of the propagator. Those in the last
line yield the renormalization of the vertex.
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Appendix C

Notes on the Run Time Statistics

C.1 The Poisson transformation.

The average of Z,(x) on the realizations C; is given by

(Zi(2)) = Z W(C) Zy(2,Cy)
{Ce}

where W(C;) is the probability of a given cluster. The dependence of Z;(x) on C;
comes primarily because of the explicit exponents n,¢ in Eq.(3.5). Neglecting other
dependencies, that comes in the functions P ¢(x) through M(z|7) see Eq.(3.7), the
average can be performed on the probability P{n:} of a given set {n;+} (note that
P,: does not depend on the distribution of times {n,;} at the same time). The
average is easily evaluated using the Poisson transformation [54]

Nkt
Qe

P (Comro{nra}) = /F(Ct—l«,{ar})HdO‘k e 7k
k

nk,t!

where the new variables a; have of the meaning of the average value of ny. With
this transformation the sum on ng, can be performed explicitly in evaluating the
averages with the result

(he())e, = 32 () Prale) = Ned(, 1)

T

(Zde))e, = <exp [_Zarp,,t(m)b - <exp [- /D h.t(y)cly]>.

In the average also the term n,, = 0 for all 7 is considered in the average and this

makes (Z;(1)) = e~ £ 0.

and

110



C.2 The Order Statistics

Let ¢;,7=1...,L, be a random variables with distribution Fi(x) and density p;(z).
Define the permutation T in such a way that €ry < €rp,, for all k. The distribution

density of the '™ order statistics, that is €rx, 1S given by

1 k-1 L A ,
Or(x) = I YT 0 ZT [I];[l P/Ti(;r)J l)ﬂ.k,(;l?)jz]_;:-[u [l - P,-rj(;l‘)] (C.1)

where the sum is over all permutations 7@ = {rni=1..., L} of L indices. This just
expresses the fact that among the I variables, & — 1 must be smaller than the 4t
order statistics while L — & must be larger.

The function 6 (z) can be derived from the generating function

1.k |
Zi(z) = 3 [1 —APi(2)] (C.2)
=1 )
by differentiating k — 1 times w.r.t. \
) (_1)!»-—181{:-1 ‘
9.. ) = — v | /(7 ’3
A = (C3)

as 1t is easily seen by interchanging the order of the derivatives, Note that for k=1
eq. (C.3) yields the same expression found before for the distribution m(x) of the
minimum variable. A direct consequence of eq. (C.3) is that the distribution tunction
O() = [§ O(2")da' is related to the expansion of Zy(x) in powers of n =1 — \:
L
Ziy(x) = Y [1 = Okla)]p~.

k=1

The distribution of order statistics can be evaluated explicitly within the approxi-
mation presented in section 3.1.3: the generating function is

qa L[r+1-9e]" .
Zy(xr) = 1 [‘m] (C.4)
and ol
o~ SR G D A PO e o ‘
91\(1)—(/4-1-;(5)(16_1),[ (L——q-)@’J (C.5)
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