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Abstract

Cyclic nucleotide-gated ion channels are distributed most widely in the neuronal and non-
neuronal cell. Great progress has been made in molecular mechanisms of CNG channel gating in recent
years since their discovery in 1985(Fesenko et al., 1985). Results of many experiments have indicated
that the stoichiometry and assembly of CNG channel subunit affect their property and gating. The
substituted cysteine accessibility method (SCAM) has been a very powerful tool in understanding many
of the molecular mechanisms underlying their functions. Cite directed mutagenesis has been a great
help in elucidating the possible mechanism behind the ligand discrimination among channels expressed
in different cell types. In the recent years the advance in computer technology has provided tremendous
help in understanding the three dimensional arrangement of proteins by virtue of molecular biology.
Most probably this is the perfect time in which molecular biology, biochemistry and computational sci-
ence has come together to provide some amazing view of membrane proteins. Still crystallography has
its own limitations, and electrophysiology serves as an adequate substitute. Most of our understand-
ing about the CNG channels arises from the study of these channels expressed in sensory neurons, viz
photoreceptors and olfactory sensory neurons. In my work I have used heterologously expressed homol-
ogous CNGA1 subunit from bovine rod receptors as a target. The expression system used was Xenopus
leavis oocytes. Though the homologous channels thus expressed vary in several aspects provides a very
good tool in studying the structure function relationship of these channels. In the preliminary part of
the study an extensive site directed mutagenesis from residue F375 to V424, one at a time, has been
performed (SCAM). I have then probed these mutant channels with divalent cations such as Cd** and
Ni2*t and several methane thiosulfonate compounds to study their accessibility and interaction. The
residues from F375 until S399 does not show much effect to these externally applied compounds with
few exceptions. One remarkable exception is F380C, which is found to be potentiated by Cd?** when
applied in the open state of the channel inhibited when applied in the closed. Further studies have
revealed a locking effect of the channel and thus some insight into the proximity of residues and pos-
sible molecular rearrangement while channel passing from closed to open. Another study has revealed
the interaction of native Cysb05 residues with several other residues in the C-linker domain when are
mutated into cysteine. This study has helped to propose a molecular model of C-linker domain. Also
it provided some knowledge in the possible rearrangement of C-linker region while channel opens. One
another course of study has revealed that the residues from 390 to 400 come closer in the closed state
than in the open. The following stretch of residues, from 410 to 420, on the contrary comes closer in the
open state than in the closed. My studies suggest that the channel while passing from close to open does
not undergo a major translational movement of residues near the S6. Probably the coupled movement
of of S6 with pore helix provides enough energy to open the gate.



Chapter 1

Introduction

1.1 Early biophysics

A precious moment in the history of science
has brought us the understanding of electricity
and with it a revolution in human life. From the
frog leg twitch experiments of Galvani in 1791
we have progressed to telegraphs, telephones, in-
ternet and super computers. In the same period
the ubiquitous role of electricity in life has be-
come clear. As early as 1817, the great Swedish

chemist Berzelius suggested that electric eel’s

current was “elicited by an organic chemical pro-
Figure 1.1: Luigi Galvani and his Frog muscle twitch ex-

. cess”. Italian physicist Leopoldo Nobili was
periment

the first to measure the current in a frog muscle
using an astatic galvanometer. Following up on Nobili’s work Carlo Matteucci (1838) measured cur-
rent, which leaking out of injured muscle, formed the basis of the important concept of resting potential.
He went on to discover that muscle cells, after stimulation by a nerve, produce a current by their own.
Matteucci also discovered that altering the pH of the solution surrounding the muscle fiber brings a
contraction to it. It was becoming more and more clear that the phenomenon underlying muscle and

nerve cell excitation was chemical in nature.

By the late 1800s the chemical mechanism underlying nerve and muscle tissue messaging was still
a mystery. Ludimar Hermann, in 1872, was remarkably able to suggest that muscle and nerve cells
were capable of exhibiting a “self-propagating wave of negative charge which advances in steps along the
tissue”. In 1905 he described the passive spread of potentials in axons and muscles by a theory for a
leaky telegraph cable (Herman Cable theory). In the 1880s Sidney Ringer has discovered that sodium,
potassium and calcium salts are necessary for the isolated frog heart to continue beating. Into this void
of current understanding, Julius Bernstein, a famous physicist made the first real theoretical contri-
bution. He postulated the ionic theory, the Nernst equation and the assumption of a semi-permeable
membrane surrounding nerve and muscle cells that could help explain the mounting physiological data

of the past century. According to him the difference in K+ concentration in the inside and outside of the
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1.1 Early biophysics CHAPTER 1. INTRODUCTION

cell could explain the origin of membrane potential. British physiologist John N. Langley, in 1907, put
forward the concept of receptor molecules on the surface of the muscle and nerve cells in order to explain
effect of chemicals and tetanus toxin on them. In 1923, Kenneth.S. Cole with H.J. Curtis began
to study the membrane properties by measuring the
electrical impedance of cell suspension and of single
cell. These careful studies concluded that each cell has a
high-conductance cytoplasm, with an electrical conduc-
tivity 30 — 60% that of the bathing saline, surrounded
be a membrane of low conductance and an electrical

capacitance of 1 uF/cm?.

The period from 1935 to 1952 was heroic in the

history of membrane biophysics. John Z. Young, in

1936, was the first one to use squid giant axons for Figure 1.2: A.L. Hodgkin and Huzley H.F : Nobel
studying the ionic current. For the first time, Hodgkin  Prize in Physiology or Medicine 1963.

and Huzxley (1939, 1945) and Curtis and Cole (1940, 1942) were able to measure the full action po-
tential of an axon with an intracellular micro pipette. In 1949 Cole found that by placing two glass
electrodes inside the cell one can hold the potential of the interior of the cell. Later by Cole (1949),
Marmont (1949) and Hodgkin, Huxley and Katz (1949, 1952) developed a new experimental procedure
known as “voltage clamp” which has been the best biophysical technique for the study of ion channels for
over 50 years. A great milestone during this period was the definitive description of electrical signaling
in axon membrane in 1952 by Hodgkin and Huxley (1952d,a,c,b). After their great work there were
three main questions remaining. (a) How do ions get through membrane? (b) How does the membrane
distinguish between Nat and K*? (c) How does the membrane change its electrical resistance and ion
selectivity in a fraction of second? Until the beginning of 1970s channels were a less popular idea because
selectivity seemed harder to explain for a channel. Some guesses were even wild. One of those was that
the conduction path in a membrane was formed of lipid with protein as the insulator. By early 1970s
Bertil Hille and Clay Armstrong each concluded separately with experiments using tetrodotoxin
(TTXT) and TEA™ respectively that the Nat and K+ passage should be through separate aqueous
pores. They ruled out the chance of transport based on a carrier because of its slow nature.

In 1971 Hille and in 1972 Bezanilla and Arm-
strong proposed models of discrimination between ions
by channels. They attributed this discrimination on the
unfavorable energetics of stripping water from the ions
and providing favorable interaction by the channel pore
walls in return. By 1980, it seemed probable that the
channels are made of proteins, which lead Armstrong

(1981) to propose that the activation charge mentioned

by Hodgkin and Huxley were in fact charged membrane
helices — specifically, a negatively charged helix moves

Figure 1.3: Erwin Neher and Bert Sakmann:The  inward with respect to a positively charged helix, yield-
Nobel Prize in Physiology or Medicine 1991, for the

) i ing a lot of charge movement, and hence voltage sen-
invention of patch clamp method.

sitivity relative to small physical motion. When the

Na™ channel was cloned few years later the positively
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CHAPTER 1. INTRODUCTION 1.2 Ion channels

charged helix — the now called S/ segment — was immediately visible and the expected negatively
charged helix doesn’t exist.

One of the 20th century revolutions in biophysics was the
development of patch clamp method by Erwin Neher and Bert
Sakmaan in 1970s. An improvement in the patch clamp method
called “gigaseal formation” occurred serendipitously in 1980. The
final proof that channels are made of proteins was made possible
by Hamill et al. (1981) through single channel patch clamp exper-

iments. 1984 saw the first clone of an ion channel. Noda(Noda

et al., 1984) and co—workers succeeded in isolating, cloning and se-
quencing first voltage-gated Na® channel from electric eel. In 1998,
the first crystal structure of an ion channel the KcsA from bacteria Figure 1.4: Roderick Mackinnnon:
was reported by the Mackinnon’s lab (Doyle et al., 1998). While  The Nobel Prize in Chemistry 2003,
this achievement provided a great deal of information about what for solving the K channel crystal
a channel “looks” like, the next step will be to produce a series of structure.

structures of an ion channel in all various modes of operation to

determine what it “acts’ like, basically a motion picture of a protein in action.

1.2 TIon channels

Ton channels are membrane protein complexes and their function is to facilitate the diffusion of
ions across biological membranes or phospholipid bilayers. The bilayers that are electrical insulators,
build a hydrophobic, low dielectric barrier to hydrophilic and charged molecules. Ton channels provide a
high conducting, energetically less expensive hydrophilic pathway across the interior of the membrane.
Ton channels are broadly classified into voltage-gated (VG) channels and ligand-gated (LG) channels
(Hille, 2001). Some of the major ubiquitous ion channels are KT, Nat, Ca?*, TRP, Cl~ etc. For an
overview refer (Armstrong and Hille, 1998; Armstrong, 2007; Hille, 2001)

1.2.1 KT channels

Potassium channels, originally identified as the molecular entities mediating flows of potassium
ions across nerve membrane in action potential generation, are now known in virtually all types of cells
in all organisms, where they are involved in a multitude of physiological functions. All fully sequenced
genomes — eukaryotic, eubacterial and archaeal — contain at least one type KT channel making them
the most ubiquitous. KT channels are the founding member of the ‘S4—superfamily’ of ion channels
dedicated to electrical signaling, which, apart from the K™ channels, are found exclusively in eukaryotes
(Miller, 2000). The cyclic nucleotide-gated channels evolved from K+ channels via acquisition of a cyclic
nucleotide-binding domain near the carboxyl terminus; the Ca?t and Nat channels, each of which is a
monomer containing four repeats, evolved from Kt channels via two gene duplications, with the Ca?*t
channel appearing in unicellular organisms and Na™ channels arising with the appearance of neurons in
multicellular organisms (Miller, 2000).

There are two broad classes of KT channels defined by the transmembrane topology, as reflected
from the primary sequence: the six—transmembrane(S1, S2, S3, S4, S5 & S6)-helix, voltage-gated
(K,) and the two-transmembrane-helix(M1 & M2) inward rectifier (K;.) subtypes. All K* channels
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1.2 Ion channels CHAPTER 1. INTRODUCTION

display a ‘signature sequence’ between the most carboxy—terminal transmembrane helices which reads—
TMxTVGYG(Heginbotham et al., 1994). All K,~type channels have an S4 helix sequence with a
lysine or arginine repeating every third or fourth position in an otherwise hydrophobic stretch. This
makes them voltage sensitive and helps in the channel activation. Some variations are known such as
Ca?* activated Kt channels, 2P channels, Cyclic Nucleotide-Gated(CNG) channels etc, they posses
the sequence similarity but no voltage sensitivity. KT channels are formed as tetramers of similar or
identical subunits arranged in four fold symmetry around a water filled K* conduction pathway (except
2P channels, which are presumably dimer of dimers).

In 1998 Roderick Mackinnon’s group solved the crystal structure of a non-voltage gated (Ca?*
gated), two—transmembrane spanning KT channel from the bacteria Streptomyces lividans (KesA KT
channel) at 3.2 A resolution (in this crystal structure the amino acids from 126 to 158 at the carboxy
terminal end have been cleaved off)(Doyle et al., 1998). They subsequently determined the crystal
structure of Ca?t gated MthK, a complete Kt channel from Methanobacterium thermoautotropicus
(Jiang et al., 2002a,b). They went on to solve the more difficult voltage-dependent KT channel K,AP
from the thermophilic Archea Aeropyrum perniz (Jiang et al., 2003). The crystal structures of these
proteins tremendously improved our knowledge about protein structure: four subunits surround a central
water filled ion pathway in the shape of an inverted “tepee” across the membrane, near the center of
the membrane the pathway is very wide, the GYG sequence forms the selectivity filter close to the
extracellular side of the membrane and so on. The selectivity, voltage sensitivity and desensitization of

channels will be described in a separate following section.

1.2.2 Nat channels

Voltage—gated sodium channels play an essential role in the initiation and propagation of action
potentials in neurons and other electrically excitable cells such as myocytes and endocrine cells (Hille,
2001). When the cell membrane is depolarized by a few millivolts, sodium channels activate and inacti-
vate within milliseconds. Influx of sodium ions through the integral membrane proteins comprising the
channel depolarizes the membrane further and initiates the rising phase of the action potential. The
voltage-gated sodium channel is a large, multimeric complex, composed of an « subunit (260 kDa com-
plex) and one or more (81, 52 and/or $3) smaller 8 subunits (33 - 36 kDa) (Catterall, 2000a; Catterall
et al., 2005a). The ion—conducting aqueous pore is contained entirely within the a subunit, and the
essential elements of sodium—channel function — channel opening, ion selectivity and rapid inactivation
— can be demonstrated when a subunits are expressed alone in heterologous cells. Coexpression of the «
subunit is required for full reconstitution of the properties of native sodium channels, as these auxiliary
subunits modify the kinetics and voltage-dependence of the gating (that is, opening and closing) of
the channel. Nine o subunits (Na,1.1-Na,1.9) have been functionally characterized and a tenth related
isoform (Nay) may also function as a Na™ channel. The primary sequence predicts that the sodium
channel « subunit folds into four domains (I-IV), which are similar to one another and contain six o —
helical transmembrane segments (S1-S6). Each domain contains a voltage sensitive helix S4 just like in
K™ channels. A re—entrant loop between helices S5 and S6 is embedded into the transmembrane region
of the channel to form the narrow, ion-selective filter at the extracellular end of the pore.

Sodium channels were the first members of the ion channel superfamily to be discovered. But in
evolution, the sodium channel family is the most recent of the voltage—gated ion channels to have arisen.

They might have been evolved from similarly structured Ca?*channels that contain four homologous
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domains. Because of their fundamental importance, much of the early work on ion channels involved
characterizing the electrophysiological and biochemical properties of sodium channels. In recent years,
however, the rapidly expanding number and diversity of potassium and calcium channels has overshad-
owed the field of sodium channel research, particularly given the fact that all voltage—gated sodium
channels are relatively similar. Recent identification that minor changes in the properties of specific
isoforms are responsible for several heart (long Q-T syndrome, Brugada syndrome), muscle (epilepsy,

myotonia) and nervous system (hyperexcitability) diseases, bringing them back to the main research.

1.2.3 Ca?t channels

There are several different signals that controls cellular Ca?*, such as voltage changes, neurotrans-
mitters, hormones, sensory inputs etc(Catterall, 2000b). Here in this session I introduce the voltage—
gated Ca2™ channels. They mediate calcium influx in response to membrane depolarization and regulate
intracellular processes such as contraction, secretion, neurotransmission, and gene expression. Their ac-
tivity is essential to couple electrical signals in the cell surface to physiological events in cells. The
calcium channels that have been characterised biochemically, are complex proteins composed of four
or five distinct subunits, which are encoded by multiple genes. The «; subunit of 190-250 kDa is the
largest subunit and it incorporates the conduction pore, the voltage sensor and gating apparatus, and
the known sites of channel regulation by second messengers, drugs, and toxins. The composition and
organisation of o subunits is like that of Na™ channels (infact Na* channel is supposed to be evolved
from Ca2t channel). An intracellular 8 subunit and a transmembrane, disulfide-linked asd subunit
complex are components of most types of calcium channels. A - subunit has also been found in skeletal
muscle calcium channels and related subunits are expressed in heart and brain. Although these auxiliary
subunits modulate the properties of the channel complex, the pharmacological and electrophysiological

diversity of calcium channels arises primarily from the existence of multiple cr; subunits.

According to different physiological and pharmacological properties there are several distinct classes
of Ca?t currents. L-type calcium currents require a strong depolarization for activation, are long-
lasting, and are blocked by the organic L-type calcium channel antagonists. They are the main calcium
currents recorded in muscle and endocrine cells, where they initiate contraction and secretion. N—type,
P/Q-type, and R-type calcium currents also require strong depolarization for activation. They are
relatively unaffected by L—type calcium channel antagonist drugs but are blocked by specific polypeptide
toxins from snail and spider venoms. They are expressed primarily in neurons, where they initiate
neurotransmission at most fast synapses and also mediate calcium entry into cell bodies and dendrites.
T—type calcium currents are activated by weak depolarization and are transient. They are resistant to
both organic antagonists and to the snake and spider toxins. They are expressed in a wide variety of
cell types, where they are involved in shaping the action potential and controlling patterns of repetitive
firing. Different type of channel subfamily o subunits modulates afore said Ca?* currents. The Ca,1
subfamily (Ca,1.1 to Ca,1.4) includes channels containing ags, aic, aip and o, which mediate L—-
type Ca?* currents. The Ca,2 subfamily (Ca,2.1 to Ca,2.3) includes channels containing a4, a1, and
a1g, which mediate P/Q-type, N-type, and R-type Ca?* currents, respectively. The Ca,3 subfamily
(Ca,3.1 to Ca,3.3) includes channels containing aq g, aim, and a1, which mediate T-type Ca2t currents

(channel names are according to the nomenclature adapted in 2005(Catterall et al., 2005b)).
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1.2.4 TRP channels

In the ion channel research field the mammalian TRP channels are the latest arrivals (first time
reported in 1995(Wes et al., 1995)). Since then six protein families have been identified with many
members in each family. All TRP channels have putative six-transmembrane polypeptide subunits
that assemble as tetramers to form a cation permeable channel pore like the voltage-gated channel
super family(Ramsey et al., 2006). Though they have similar folding architecture like the voltage—gated
channel family, there is no sequence similarity. They are either modulated by store-operated calcium
(Clapham et al., 2005)(a theoretical description related to a poorly understood phenomenon) or by
receptors or in some cases by hormones (TRPMS5 is modulated by Klotho(Chang et al., 2005)). TRP
channels are the vanguard of our sensory systems responding to temperature, touch, pain, osmolarity,
taste hearing and other stimuli. But their role is much broader than classical sensory transduction.
This make them ubiquitously expressed with many splice variants. So most cells have number of TRP
proteins. The subfamilies are TRPC (canonical TRP, with TRPC1 being the first ever reported), TRPV
(vanilloid receptor), TRPM (melastatin), TRPP (polycystin) and TRPML (mucolipin). The TRPMs
are responsible for the renal Ca?t absorption and the recently identified TRPMS6 is supposed to be
playing a role in cellular Mg?T maintenance.

The gnawing mystery of TRP channels are their elusive mechanism of gating. Only few studies
have been conducted at their physiological environment or at physiological temperature. Attempts to
understand TRP channel activation have given rise to several theories such as receptor—operated theory,
store-operated Ca?* entry hypothesis, vesicle fusion hypothesis and cell sensory hypothesis. The future
work should indeed need to display whether really they are activated by the above said mechanisms
or there is any other common mechanism of activation like the recently identified hormone activation
(Klotho) of TRPMS5 proteins.

1.2.5 Cl= channels

For more than 50 years the study of these ion channels has been dominated by their neuronal
function: initiating action potentials at synapses, propagating signal along axons and dendrites etc.
Electrical signalling in neurons almost exclusively use cations (Nat, K+, Ca?*, HT) as current carri-
ers. On the other hand Cl~ channels were supposed to be maintaining the house keeping acts such
as epithelial secretion of mucus, saliva, digestive and reproductive effluvia etc. In the past decade,
however, CI™ channels started enjoying the attention mainly because of the realisation that they are
a large molecular family expressed almost in all cell type (showing their functional importance) and
their electrophysiological characters are much different from the cation—conducting channels(Nilius and
Droogmans, 2003).

The first CIC channel was identified from the electric organ of Torpedo californica (White and
Miller, 1979) and subsequently cloned in 1990(Jentsch et al., 1990). In 2002 the first CLC-ecl (bac-
terial chloride channel) channel crystal structure was reported (Dutzler et al., 2002). Until now nine
mammalian Cl~ channels have been identified (CLC-1 to 7, CLC-K, and CLC-K;). A unique feature
of CLC channel is their dimeric architecture in which each subunit forms a proper pore. The single
channel activity of this channel shows a common gate to both subunits and an individual gate to each
of them. Another interesting feature is that the single subunit can function by itself leaving behind the
question, why they are together? In striking contrast to structures of familiar ion channels, CLC-ecl

lacks transmembrane pore. Later in 2004 it was understood that this feature is because CLC-ecl is not
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a channel but a transporter (Accardi and Miller, 2004). Later in 2005 (Picollo and Pusch, 2005) the
mammalian analogues of this channel (CLC-4 and CLC-5) were also proved to be C1~/HT exchanger.
At the moment it is supposed to be the CLC-1 & 2 and CLC-K, & Kj express on the cell plasma
membrane and help in the stabilization of the membrane potential and trans epithelial transport. The
other members of the family, CLC-3 to 7, express on the membrane of intracellular organelles where
they help in the acidification of intra—organellar compartment.

Some of the basic characteristics of all membrane proteins such as selectivity, activation and inac-

tivation are briefly introduced in the following session.

1.2.6 Selectivity

How does a channel distinguish divalent and monovalent
cation? How do they distinguish between a Nat and KT ion?
This question was quite satisfactorily, theoretically tackled in
the beginning of 1970s by Hille (1971a,b) and Bezanilla and
Armstrong (1972). Hille’s working hypothesis for the selec-
tivity of Nat over K* for sodium channel was that, the ions
passing through the pore are partially hydrated and are sta-
bilized by the compensatory direct interaction with the neg-
ative charge in the selectivity filter. In this view the small
cations such as Na®™ and Lit are well stabilized in the neg-
atively charged pore but the bigger cations such as KT and
Rb™ are not stabilized.

The discrimination between divalent and monovalent

cations can be more easily understood. The Nat and Ca?*

K* in filter Nat in filter

channel have two rings of charge encircling the pore, each con-

taining four residues. The outer ring is entirely negative and
Figure 1.5: A theory for KT selectivity.

the inner ring is composed of the amino acids Asp Glu Lys Ala
& p p y Kt and Nat are shown in water and in a

in the Nat channel and Glu Glu Glu Glu in Ca?t channel.
From this channel conducting Ca?t has more negative charge wery high energy in filter compared to K*.
to bind the calcium more tightly compared to Na® channel. ~Modified from (Armstrong, 2007)

Once the Ca?Tis bound to the negatively charged pore it in-

carbonyl-lined filter environment. Nat has

terferes with the Na™ passage and stops its permeability. By keeping this fact in mind Heinemann et al.
(1992) successfully converted a Na® channel into a Ca?T preferring channel by site directed mutagenesis.

The high resolution crystal structure of KesA (2 A (Jiang et al., 2002a) from Mackinnon’s lab has
given an experimental demonstration of the ion discrimination by K+ channels and the necessity for
a signature sequence for highly selective channels. The TVGYG (signature sequence of K+ channels
(Heginbotham et al., 1992)) amino acids have all their carbonyl oxygen atom pointing in one direction
towards ions along the pore. The alternating glycine amino acids permits the required dihedral angles,
the threonine hydroxy oxygen atom coordinates to a Kt ion and the side-chains of valine and tyrosine
directed into the pore core surrounding the filter to impose geometric constraint. The result when all
subunits come together is a narrow tube consisting four equally spaced KT binding sites. The oxygen
atoms in the filter mimic the water molecules of the hydrated K* ion compensating the dehydration

energy. It has been shown that two ions can occupy the pore at the same time and the electrostatic
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repulsion between the occupied ion helps in the high throughput (107 - 10® ions/s) of the highly selective

channel.

1.2.7 Activation gating

There are several ways of activation gating in ion channels: voltage, ligand, pressure, temperature
etc. Among them activation process of the Voltage gated channels are vigorously studied and may be
the most understood. Voltage gated channels are exquisitely sensitive to small changes in membrane
potential. Decades ago Hodgkin and Huxley realised that Na® and KT channel opening or activation
must result from movement of charges within the membrane. They predicted the “gating current”,
which is now recognised as a positively charged helix, the S4. The idea that the gating current is a
helix came from the work of Armstrong (1981): he predicted the counter movement of charged helices
(positive and negative) yielding a lot of charge movement and hence voltage sensitivity. The cloning of
Na* channel (Noda et al., 1984, 1986) revealed the existence of the positively charged helix (the now
called S4) but the expected negatively charged helix was not visible. The S4 is coupled to the gate
and its movement bring the conformational change to open the gate (or close?) leading the permeation
of ions across channel through the pore. The actual movement of S4 and its coupling with the gate
is under controversy (Bezanilla, 2005; Ahern and Horn, 2004; Cuello et al., 2004; Jiang et al., 2003;
Chanda et al., 2005; Mackinnon, 2004). There are several predicted models for the S4 movement with
respect to the membrane voltage. The simplest are the 1) zipper model, 2) its helical screw variant
and 3) the paddle model. All three models have problems. The negative counter charges suggested by
the first and second models have never been identified in sufficient number. The energetic cost to put
the charged arginines in the lipid membrane stirs up a controversy strengthened by the proof that S4
undergoes limited translational movement (~ 2 A) verses the large (>15 A) translational movement
suggested by the paddle model.

The coupling of S4 to the gate

Lipid

is still not understood completely. bilayer

Do the S4 pull the gate open when Outside

Fluid lipid
Z  membrane

they are activated? Or do they
lock the gate shut when they are e
deactivated? Or both? Though

selectivity filter
the second idea gains some support

side

Outer
vestibule

from the crystal structure of K, 1.2,

\ /
Channel
protein

ilter
Sugar
residues

it is premature to establish unan-

Voltage
sensor

imously the action of S4 on gate— surace

charge

Anchor
protein

opening. Another peculiarity of the

Fluid lipid
membrane 0 1 2 3

gate—opening is that, it is all or

none, i.e., all S4s must be activated Figure 1.6: First panel: Cartoon model of an ion channel in 1977. Second,
for the gate to open. This is clear 15 years later: notice the S4 heliz and increased intra—and extra— cellualr
from the single-channel records in  "4$%€s compared to the previous. (adapted from Hille(2001))

which the opening is a single jump

that cannot be resolved into smaller jump. Why all four S4s must be activated to open the gate? A
possible answer is that the gate region’s hydrophobic lining must be pulled in all four directions to

effectively break the hydrophobic bonds that almost certainly help to hold it closed. One factor almost
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surely is that the gate region is either large enough to admit a dehydrated K* ion, or it is not. In the

case of CNG channels there are proofs that the channel can have partially conducting states.

1.2.8 Inactivation gating

Sodium channels open in response to depolarization admitting Na®™ and driving the membrane
potential more positive during the upstroke of an action potential. They then inactivate spontaneously
(stop conducting), making it easy for the K™ channels to restore its membrane potential to rest. This
inactivation gating in Na™ channel and some of the K¥ channel are mechanistically simpler than the
activation gate. Experiments during 1970s show that a cytoplasmically located portion of the channel
peptide diffuses into the mouth of the inner vestibule of the pore and blocks conduction. Cutting off
this part of the protein with pronase removes the inactivation of the channel. These observations led
to the proposal of ball and chain model (Bezanilla and Armstrong, 1977), in which an inactivation
ball attached to the inner surface of the protein by a peptide chain diffuses into the pore and blocks
the permeation. The movement of this peptide is relatively slow allowing the average Nat channel to
complete the rising phase of the action potential. The apparent voltage sensitivity of the inactivation
gating is derived from the voltage dependence of activation that precedes it rather than utilising a highly
charged dedicated voltage sensor. Unlike that of the activation gate the inactivation gate is not all or
none. The experiments by Aldrich and colleagues (Hoshi et al., 1990, 1991; Zagotta et al., 1990) suggest
that one “ball peptide” from any of the subunit is enough for inactivation and four of them increase the
probability of finding the pore and thus speed up the inactivation. Who get first in the pore is a matter
of chance (Armstrong and Hille, 1998).

1.3 Cyclic Nucleotide Gated channels

Cyclic nucleotide gated channels underlie sensory transduction in vertebrate photoreceptors and
in olfactory sensory neurons. To open, they require cyclic nucleotides such as cAMP or cGMP (Fesenko
et al., 1985; Zimmerman et al., 1985; Nakamura and Gold, 1987; Kaupp et al., 1989; Zagotta and
Siegelbaum, 1996; Biel et al., 1999; Kaupp and Seifert, 2002; Craven and Zagotta, 2006). They are
relatively recent arrivals in the world of ion channels. The search for the intracellular messenger that
mediates photoresponse in retinal photoreceptors paved the way for their discovery. Since the late 1960s
Ca?* and ¢cGMP (cyclic 3’, 5" — Guanosine Mono Phosphate) were considered to be the most probable
candidates to control the light—sensitive conductance in the outer segment of rod photoreceptors. It was
believed that cyclic nucleotides control the activity of proteins through phosphorylation mediated by
cyclic nucleotide dependent kinases. It was a surprise when Fesenko et al. (1985) reported that cGMP
can directly activate light—dependent channel of rods. Since then, in a relatively short period, similar

channels were identified in cone photoreceptors, olfactory sensory neurons, pineal gland etc.

1.3.1 Family of CNG channels

CNG channels belong to a heterogeneous gene superfamily of ion channels that share a common
trans—membrane topology, pore structure and a Cyclic Nucleotide Binding Domain (CNBD). Other
members of this family are the Hyperpolarization—activated and Cyclic Nucleotide—gated (HCN) chan-
nels (Kaupp and Seifert, 2002; Craven and Zagotta, 2006), the ether—i—go—go(EAG) and human eag—
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related gene (HERG) family of voltage activated KT channels(Ganetsky et al., 1999) and several plant
K™ channels (KAT, KST and AKT)(Schachtman, 2000).

1.3.2 Physiological roles of CNG channels

CNG channels have been identified and described in a variety of cell types there they play a fun-
damental role in variety of physiological processes. They were first discovered in the plasma membrane
of the outer segment of vertebrate photoreceptors, there it take part in a critical role of phototrans-
duction (Fesenko et al., 1985). Most of what we know about how CNG channels work has come from
the extensive studies of rod and olfactory channels. CNG channels mediate the final step of enzymatic

cascade in sensory cells of the olfactory and visual systems (Kaupp and Seifert, 2002).

CNG channels in photoreceptors

The vertebrate photoreceptors are ciliary type, whereas the

invertebrate photoreceptors fall into two different subtypes: rhab-

it domeric photoreceptors with a microvilli-derived photosensitive
\

structure and ciliary photoreceptors (Kaupp and Seifert, 2002). The

\ ciliary type photoreceptors use cGMP-signalling pathways. The tar-
cone 55 gets of these signalling pathways are CNG channels that either open
or close in response to light. The signalling mechanism in the rhab-

domeric receptors is not yet clear.

(A) Rod (B) Cone

Phototransduction in vertebrate rod photoreceptors
CQuter Cytoplasmic

segment space
Outer Phototransduction is the process by which photons of light
segment
generate an electrical response in retinal rod and cone photorecep-
tors, thereby initiating vision (Arshavsky et al., 2002; Fain et al.,

2001).

Inner
segment

Inner
segment

MNucleu :v—’

Photoisomerization: Visual detection begins with the absorp-

- tion of a photon by the photopigment rhodopsin. In the darkness
Synaptic
vesicles

Synaptic ’ Synaptic
terminal | T AR terminal

rhodopsin is bound to a small molecular weight chromophore, 11-cis—
retinal, that regulates its activity. This preattached ligand of visual
Figure 1.7: Comparison between pigment is photoisomerized to all-cis—retinal by the captured photon.
z’ert‘ibmte rod and cone photorecep-  Within a millisecond rhodopsin undergoes a series of intra—molecular
oTS.

transitions leading to a conformational state called metarhodopsin II

(R* of activating the photoreceptor-specific G protein, transducin).

Transducin Activation: R* interact with the GDP-bound form of the transducin a3y trimer; i.e.,
with Gay — GDP — Gf3v;. R* activates the transducin by triggering rapid exchange of bound GDP for
GTP on the Gay; this is followed very rapidly by dissociation of the transducin from the R*, as well by
dissociation of the active Gay — GTP (or G*) from GG,.
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Phosphodiesterase Activation: At the next step of the cascade Gay — GTP stimulates the activity
of its effector enzyme, the cGMP phosphodiesterase (PDE). The PDE is a heterotetramer consisting of
two identical or nearly identical catalytic subunits (a3 in rods, v in cones) and two identical regulatory
v subunits (PDE~), which serve as protein inhibitors of PDE activity and responsible for maintaining
the activity in the non activated state at it’s very low basal level. Activation of the PDE results from
the binding of Gay to the v subunit, thereby removing the inhibitory constraint that the PDE~ had
imposed on the catalytic site of the PDE « or 8 subunit.

c¢GMP reduction and CNG channel closure: In the dark the binding of cGMP to CNG channels
keep them open, allowing Na* and Ca?* to flow into the cell. This flow of inward current, the dark
current, depolarizes the outer segments. The activation of PDE causes the reduction in cytoplasmic con-
centration of the cGMP by hydrolyzing them to 5'— GMP. The CNG channels in the plasma membrane
close in direct response to this decrease in cGMP, inhibiting the dark current, and hence hyperpolarizing
the outer segments. This hyperpolarization is transmitted to the inner segments and ultimately causes
a decrease in the ionic release of the neurotransmitter glutamate from the presynaptic terminal. The
CNG channel is crucially important for the control of the Ca?t concentration in the outer segment of

the rod cells because it is the only source for Ca2t influx.

Termination of Phototransduction: Inrods
between 10 and 18 % of the dark current is car-
ried by the Ca?t. The entry of Ca?t through
open CNG channels is balanced by its extrusion
though a Nat/Ca?t-K* exchange mechanism.
In light, when CNG channels close, the exchanger
continues to clear Ca?t from the cystol, and the
Ca?* balance is disturbed. This decrease in Ca?*
controls at least three mechanisms. First, it ac-
tivates guanylyl cyclase (GC) that synthesizes
c¢GMP. The Ca?t sensitivity of the GC is re-
layed by two Ca?* binding proteins (GCAP1 and
GCAP2). In dark (at rest), when Ca%* is ~ 300 —
500 nM GCAPs prevail in the inactive form with
Ca®* bound. In light when Ca?™ is lowered to 50
to 100 nM, Ca2?t dissociates from GCAPs; this
Ca?t free form stimulates GC activity. Second,
the life time of active PDE is shortened through
the phosphorylation of light—activated rhodopsin

Figure 1.8: Photo transduction mechanism. Refer text for

more details(Modified from www.mcw.edu))

(R*) by the rhodopsin kinase. This reaction is mediated by another Ca?* binding protein, recoverin
(Koch, 1992). Finally, the ligand sensitivity of CNG channels increases as Ca?T concentration decreases.
The regulation of ligand sensitivity by Ca?* is mediated by a third Ca?*— dependent protein calmodulin
(CaM) (Hsu and Molday, 1993). All three reactions in various degrees help to restore the dark state
and to adjust the light sensitivity of the cell.

The light activated rhodopsin (R*) is inactivated by two sequential processes: first the phosphory-
lation of rhodopsin and then the binding of arrestin to the phosphorylated photopigment (Fain et al.,

13



1.8 Cyclic Nucleotide Gated channels CHAPTER 1. INTRODUCTION

2001). Phosphorylation of rhodopsin can, itself, reduce the ability of R* to activate the transduction
cascade. However, a complete inactivation of R* is achieved by the binding of arrestin. After this
inactivation process the photopigment must be regenerated before a new photon can be absorbed. This
is a multi step process, in which the chromophore all-trans—retinol must be converted back to 11—cis—
retinal. The retinal in the outer segment is reduced to all-trans—retinol by a membrane associated
dehydrogenase. This chromophore is then transported to an adjacent retinal pigment epithelium and it
is isomerised to 11—cis—isomer. It is then retransported back to the photoreceptor and combined with
de—phosphorylated opsin. This cycle is often called the visual cycle.

A similar phototransduction cascade exists also in cone photoreceptors and both receptors utilize
similar protein isoforms of the enzyme cascade. However, the light sensitivity of cones is 30— to 100- fold
lower than that of rods and they adapt over a wider range of light intensity. The cGMP sensitivity, its
modulation by intracellular Ca?* and the Ca?* permeation are profoundly different in CNG channels

of rods and cones.

CNG channels in chemosensory transduction

Chemosensory cells of vertebrates can be subdivided into three major subgroups: olfactory sensory
neurons, neurons of the vomeronasal organ and taste receptor cells. The involvement of CNG channel
in signal transduction in all these three system has been proposed. Chemosensory transduction in
invertebrates is far less well understood, possibly due to the fact that a single system is not involved
in the work. In this section I will describe the involvement of CNG channels in olfactory sensory

transduction.

Signal transduction in vertebrate olfactory sensory

neurons
Receptor e The olfactory epithelium is made of mainly three dif-
cell axons = e
T Foce ferent types of cells: olfactory receptor neurons and their
Basal el B4 T cilia, sustentacular cells (that detoxify potentially dangerous
Dividing chemicals), and basal cells(Firestein, 2001) (for reviews see
Developing el (Menini, 1999; Buck, 2000; Schild and Restrepo, 1998; Menini
receptor cell
E suporting gt al., 1999)). Olfactory receptor neurons are generated con-
Offactory tinuously from basal cells. The cellular and molecular ma-
e }“”““* chinery for olfactory transduction is located in the olfactory

cilia

cilia. Although two possible transduction cascades have pre-
viously been proposed, involving the production of cAMP or
IP3 (inositol-1, 4, 5-triphosphate), there is converging evi-

Figure 1.9: Cross-section of an olfactory ep-

itheliium dence for only the cAMP pathway of intracellular signaling.
Odorant transduction begins with odorant binding to specific receptors on the external surface of
cilia. Once the receptor has bound an odour molecule, a cascade of events is initiated that transforms the
chemical energy of binding into a neural signal. Binding may occur directly, or by way of proteins in the
mucus (called odorant binding proteins) that sequester the odorant and shuttle it to the receptor. The
olfactory receptor neurons contain an olfactory—specific G-protein (G, s), which activates an olfactory—
specific adenylyl cyclase (ACIII). The cyclase converts the abundant intracellular molecule ATP in to

cyclic AMP.
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This cAMP binds to the intracellular face of a CNG channel (closely related to that found in
photoreceptors) and opens. The opening up of CNG channel permits Nat and Ca?* entry (mostly
Ca?*), increasing the resting potential of the plasma membrane towards positive. This depolarization
amplified by a Ca?*-activated Cl~ current, is conducted passively from the cilia to the axon hillock
region of the olfactory receptor neuron, where action potentials are generated and transmitted to the

olfactory bulb.

The second—messenger cascade of enzymes provide amplification and integration to odour—binding
events. One membrane receptor activated by a bound odour can in turn activate tens of G—proteins,
each of which will activate a cyclase molecule capable of producing thousands of cAMP molecules per
second. It seems that one odour molecule can produce measurable electrical event in an olfactory sensory
neuron (OSN), and just few channels opening simultaneously could pass sufficient current to induce an

action potential.

Another amplification mechanism is controlled by the Ca?* entering through the CNG channels.
The Ca?T thus entering are able to activate another ion channel permeable to negatively charged chloride
ion. At rest OSNs maintain an unusually high concentration of intracellular C1~ ions, presumably by
the action of a membrane pump. Once the Ca?* dependent chloride channels are open the Cl~ ions

rush out from the cell throwing up the membrane potential more positive that further depolarizes the

cel. The Ca2?" ions entering through
the CNG channels are also important in
response adaptation through a negative CNG channel
feedback pathway involving the ion chan- 0 CNPELG

nel (Kurahashi and Menini, 1997). The f** ) [ A A

resreere -A'-—.«" i
intracellular increase of Ca?t during the

CI channel

I I

pLiL) LALALILILY
b LIL)

odour response decreases the sensitivity of ':
t GDP
the CNG channel towards cAMP, (proba- _ ATP
bly through calmodulin) thereby requir- @ @ i ﬁ|:

ing stronger odour stimulus to produce
sufficient cAMP to activate the chan-

nel. One another mechanism by which

AMP

OSN adapt to odour stimulus is through Figure 1.10: Olfactory sensory transduction cascade(Adapted from
RGS protein (regulator of G—protein sig-  Firestein (2001)).

nalling). Apparently this protein acts on

the adenylyl cyclase to decrease its activity (Sinnarajah et al., 2001). Another by a kinase that phos-

phorylates activated receptors to a desensitised state.

Olfactory receptor neurons are especially efficient in extracting a signal from chemosensory noise.
Fluctuations in the cAMP concentration in an olfactory receptor neuron could, in theory, cause the
receptor cell to be activated in the absence of odorants. Such nonspecific responses do not occur,
however, because the cAMP—gated channels are blocked at the resting potential by the high Ca?*t
and Mg?T concentrations in mucus. To overcome this voltage-dependent block, several channels must
be opened at once. This requirement ensures that olfactory receptor neurons fire only in response to
stimulation by odorants. Moreover, changes in the odorant concentration change the latency of response,
the duration of the response, and/or the firing frequency of individual neurons, each of which provides

additional information about the environmental circumstances to the central stations in the system.
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Other chemosensory signal transduction:

The vomeronasal organ (VNO) is a chemoreceptor organ enclosed in a cartilaginous capsule
and separated from the main olfactory epithelium. The vomeronasal neurons have two distinct types of
receptor that differ from each other and from the large family of odorant receptors. In situ hybridization
studies revealed that a modualtory CNG channel subunit that is also found in OSNs is reportedly
expressed in these neurons. But the principal CNGA2 (see nomenclature in sect. 1.3.4) subunit of OSNs
is lacking (Berghard et al., 1996). The CNGA4 subunit by itself does not form functional channels
(Liman and Buck, 1994) or they become activated by an unknown ligand. The significance of this
finding is unclear; because recent findings suggest that the signaling in VNO is mediated by inositol
1,4,5—trisphosphate pathway and TRP channels as opposed to cAMP pathway (Liman et al., 1999;
Zufall and Munger, 2001; Keverne, 1999).

1.3.3 Hyperpolarization—activated and cyclic nucleotide—gated channels

HCN channels are another important member of the Cyclic Nucleotide activated ion channel
family (for review see (Craven and Zagotta, 2006)). They have a very different physiological role from
that of CNG channels. They regulate neuronal and cardiac firing rate. Unlike CNG channels they are
activated by membrane hyperpolarization also, and are weakly K selective. One area in which it is
described extensively is the cardiac sinoatrial node, which is the pacemaker region of the heart. HCN
channel also mediate pacemaker activity in nervous system by a similar mechanism as in the heart,
but the neuronal action potentials are much faster than cardiac action potentials. Besides acting as a
pacemaker, HCN current also functions as a regulator of resting potential and membrane resistance.
Moreover, they regulate synaptic transmission and nervous system development. The adenosine 3', 5’
— cyclic monophosphate (cAMP) speeds up the activation kinetics and maximal current levels of HCN

channels in the cardiac pacemakers. In the nervous system they influence the neuronal firing rate.

1.3.4 The subunit gene family and molecular cloning

In vertebrates, six members of the gene family expressing CNG channels have been identified.
These genes are grouped according to sequence similarity into two subtypes, CNGA and CNGB (Bradley
et al., 2001). The first subfamily consists of four members namely, CNGA1, CNGA2, CNGA3, CNGA4.
Except CNGA4 all others form functional homomeric channels. The second family comprises two
members called CNGB1 and CNGB3 (Refer table 1.1). Additional genes coding for CNG channels have
been identified from Drosophila melanogaster and Caenorhabditis elegans.

After the physiological observation of a cGMP gated channel (Fesenko et al., 1985), it was subse-
quently identified through protein purification by Cook at al (1987). The first cDNA clone for a subunit
of a CNG channel (CNGA1) was islotaed from bovine retina by Kaupp et al. (1989). This 63 kDa
CNGAT1 subunit was expressed in rod photoreceptors and produced functional channels when expressed
exogenously. Later in 1993 Chen and co-workers (Chen et al., 1993) cloned a second subunit of the
CNG channel. This subunit appeared to exist in two different forms one 70 kDa and one 120 kDa. None
of these proteins were found in retina. Two years later another polypeptide of 240 kDa, the now known
CNGBI, was identified by Korschen et al. (1995). CNGB1 subunits expressed alone do not produce
functional CNG channels, but co—expression of CNGA1 and CNGBI1 yields functional channels with
physiological properties very similar to that of native channels (See CNGB1 subunit in 1.3.1) (Chen
et al., 1993; Korschen et al., 1995).
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H Nomenclature for CNG subunits H

Adopted Previous designations
CNGA1 Rod CNG Channel CNGA1
/CNGal /RCNC1
CNGA2 olfactory CNG channels
CNG2,CNGa3,0CNC1
CNGA3 Cone CNG channel
CNG3,CNGa2,CCNC1
CNGA4 Second /modulatory subunit of
olfactory CNG channels CNG5,
CNGB2, CNGa4, OCNC2
CNGBI Second /modulatory subunit of
rod CNG channel
CNG4,CNGp1
CNGB3 modulatory subunit of cone
CNG channel CNG6, CNGS1

Table 1.1: The newly adopted subunit nomenclature of cyclic—
nucleotide gated channels. (From Bradely et al.(2001))

CNG channels from cone photorecep-
tors are composed of two other subunits,
CNGA3 and CNGBS3 that are cloned (Mat-
ulef and Zagotta, 2003)(Bonigk et al 1993,
Gerstner et al 2000 ).

The first subunit of the olfactory CNG
channel, CNGA2, was cloned in 1990 (Dhal-
lan et al., 1990; Ludwig et al., 1990). A sec-
ond subunit, CNGA4, was found to be ex-
pressed in olfactory epithelium in 1994 (Li-
man and Buck, 1994). Also an alternatively
spliced form of CNGB1 (CNGB1b) is found
in olfactory epithelium (Bonigk et al., 1999;
Picco et al., 2001; Matulef and Zagotta, 2003;
Sautter et al., 1998). The CNGA2 sub-
units alone form functional channels when
heterologously expressed. The CNGA4 sub-
units, similar to CNGB, do not form func-
tional channels by its own when expressed.
They have many similar characters of CNGB
subunits than the CNGA. However, based
on the overall sequence similarity and func-

tional sequence motifs, it is closer to CNGA1,

CNGA2 and CNGA3 than the two CNGB subunits (Kaupp, 1995).

1.3.5 The Stoichiometry of subunits

The first indication that CNG channels are built
from several distinct subunit came from the functional
characterization of heterologously expressed CNGA1
subunit of rod photoreceptors. Though these recom-
binant channels maintained many key properties of the
native CNG channels, they deviated in some aspects.
The native channel in rods consists of two types of sub-
units CNGA1 and CNGBla. When coexpressed they
produce channels that exhibit most, if not all, of the
key properties of the native channel. One strategy taken

to examine the stoichiometry of subunits was by coex-

Subunit stoichiometry

olfactory neurons

Figure 1.11: The subunit stoichiometry of CNG
channels from rods, cones and two population of ol-

factory sensory neurons

pressing wild—type and mutant subunits and studying their change in characteristics thereby “report”

the number and arrangement of individual subunits (Liu et al., 1996; Bucossi et al., 1997).

Shammat and Gordon (1999) coexpressed CNGA1 and CNGBI subunits either with constructed
or mutated (destructed) Ni?* potentiating site and from the obtained results they concluded with an
AABB (CNGA1 CNGA1 CNGB1 CNGBI1) arrangement. This view was challenged by He et al. (2000b),
and by using Ni%?* potentiation experiments they suggested an ABAB stoichiometry. Interestingly
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their experiments using the blockage of L—cis—diltiazem and cAMP activation properties of coexpressed
tandem constructs did not provide evidence against an AAAB or BBBA arrangement. Kaupp and
Seifert (2002) without providing experimental proof suggested an AAAB stoichiometry. Later in the
same year, from Kaupp’s and other two groups, the proof came that CNGA channel has an AAAB
stoichiometry (Zhong et al., 2002; Weitz et al., 2002; Zheng et al., 2002).

Although CNG channels from cones has not been extensively studied as in rods, it likely is composed
of CNGA3 and CNGB3 subunits similar to rod CNG channels (Bonigk et al., 1996). CNG channels in
the OSNs consist of three different subunits: CNGA2, CNGA4, CNGB1b (Bonigk et al., 1999)(Figure
1.11).

1.3.6 Structural and Functional domains

The CNG channel subunits all share the same basic architectural plan. Though they are activated
by ligands, according to the sequence similarity they are classified as members of the voltage — dependent
K™ channels (Jan and Jan, 1990). The CNG channels form a tetrameric assembly of several homologous
subunits (Chen et al., 1994; Korschen et al., 1995; Shammat and Gordon, 1999; Zhong et al., 2002; Zheng
et al., 2002; Kaupp and Seifert, 2002; Weitz et al., 2002). In this section I will discuss the structural
and functional domains formed by CNGA1 homologous channels unless specified. The primary amino
acid sequence of CNGA1 channel from bovine rods is composed of 690 residues (Kaupp et al., 1989).
They share a significant sequence homology with KT channels (Zagotta and Siegelbaum, 1996; Biel
et al., 1999) and have been considered to share same 3D topology and gating mechanism. Each subunit
contain six transmembrane segments (S1-S6), a re—entrant pore-loop, and intracellular amino and
carboxy-terminal regions (Kaupp et al., 1989; Liu et al., 1996; Molday et al., 1991).

Voltage sensor motif, the S4

In voltage gated channels the fourth transmembrane helix is a voltage sensor, characterized by
repeating arginine or leucine at every third amino acid position (refer section 1.2.7 Activation gating).
The CNG channels also contain this domain, but their net charge is neutralised by the presence of

negative charges making the CNG channels voltage independent.

The pore

Another similar structural region shared by the KT and CNG channel is the pore. Sun and
co—workers (Sun et al., 1996) by using SCAM (Substituted Cysteine Accessibility Method (Akabas
et al., 1992)) proposed that, P-region of the CNG tetramer should extend towards the axis of the pore,
forming the blades of an iris like structure. The presence of the pore-helix in CNGA1 was shown by the
pattern of reaction to modification by extracellular MTSEA ((2-amino ethyl) methane thiosulfonate
), in which every third or fourth position is modified, consistent with the presence of an alpha helical
structure at the beginning of the P—loop (Liu et al., 1996). By SCAM method the pore helix has
been probed with cysteine modifying reagents MTSEA and MTSET (2-((Trimethylammonium) ethyl)
methane thiosulfonate) to determine the accessibility (Sun et al., 1996; Becchetti et al., 1999; Liu and
Siegelbaum, 2000). The first crystal structure of a KT channel was obtained in 1998 (Doyle et al., 1998)
and it described the pore organization like an inverted tepee. The pore of CNG channel consists of a

stretch of 20 amino acids and exhibit approximately 30% sequence similarity with K™ channels. The
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pore of KT selective channels consist a signature sequence (Heginbotham et al., 1992) of GYG (glycine -
tyrosine - glycine) and are responsible for the higher selectivity of these channels. In CNG channels this
signature sequence is absent it is replaced with a G — — ET(glycine — — glutame threonine) sequence.
It has been shown that when the conserved residues from the pore of shaker channels are deleted, they
become non-selective ion channel (Heginbotham et al., 1994). Though the filter in K* channels is rigid
it has been shown that in CNG the selectivity filter moves during channel activation, leading to the
speculation that it might act as a gate(Becchetti et al., 1999; Sesti et al., 1995; Bucossi et al., 1996;
Fodor et al., 1997Db).

The inner helix (S6)

In KcsA the inner helix lines the inner vestibule.

Recent studies have shown that the analogous structure

Topol f CNG Channel . N
S anness in CNG, the S6 segment, serves a very similar role (Flynn

extracelliiar o Py % = and Zagotta, 2001; Flynn et al., 2001; Jiang et al., 2002a;
( o EHEE E‘: ) Johnson and Zagotta, 2001). Using sequence alignment
between CNGA1 and KcsA (Doyle et al., 1998) Zagotta

intracellular
%

e |
NH, 2 formational change occurs in the CNGA1 helix bundle dur-

COOH

and co—workers constructed a homology model to repre-

sent the putative pore structure of CNG channels. A con-

ing activation. It has been shown that S399C residues, lo-
cNMP-binding site
cated near the cytoplasmic end of S6, forms spontaneous
disulfide bonds in the closed state, but not in the open

Figure 1.12: The putative secondary struc- Fl d7 tta. 2001 Furth ¢ for th
ture of CNGAI1 subunit, where the six trans- (Flynn an agotta, ) Further proof for the con-
membrane helices, pore forming region, CNBD formational change comes from the state dependent block
are depicted(adapted from (Kaupp and Seifert, of V391C, a residue situated in the inner vestibule of the
£002)). channel, which is modified by MTSET faster in the open
state than in the closed (Flynn and Zagotta, 2001). All these results show that the helix-bundle under-
goes a conformational change during activation. However, Ag™ enters the inner vestibule of the channel
both in the open and closed state. This shows that the helix bundle cannot act as a gate (Flynn and

Zagotta, 2001): which strengthens the observation that the gate is situated in the pore itself.

N—-terminal

Nearly 150 amino acid residues compose the N-terminal region of the CNGA1 subunit of the
rod CNG channel. An interaction between the amino and carboxy terminal of the same or different
subunit of the channel was shown by electrophysiological and biochemical methods (Gordon et al.,
1997; Rosenbaum and Gordon, 2002). It was shown that a disulfide bond formation between the C481
of different subunits can take place and C35 can form a disulfide bond with the C481 of the same
subunit or with the C481 of the adjacent subunit. These results show that in functional channels the
C-linker regions of different subunits lie in close proximity and the N—terminal can contact the C—linker
of the same and that of the adjacent subunit(Rosenbaum and Gordon, 2002). In the closed state C481
residue is not accessible, this shows a conformational change in this region during activation (Brown
et al., 2000; Gordon et al., 1997; Zheng and Zagotta, 2000). The involvement of amino terminal region

in determining the allosteric gating transition and spontaneous opening has been proved (Tibbs et al.,
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1997).

The C—linker

In CNG the region between the S6 and CNBD (Cyclic Nucleotide Binding-Domain) is known as
the C-linker. Throughout this region the residues are shown to have state dependent modification, and
mutations are shown to have large effect on gating (Gordon and Zagotta, 1995b,a; Broillet and Firestein,
1996; Johnson and Zagotta, 2001). It has been shown that the H420 residue from neighbouring subunits
in CNGA1 channels create a Ni?t binding site at the interface between subunits and a histidine at 396 in
CNGA2 support Ni?* coordination (Gordon and Zagotta, 1995a,b). Histidine substitution experiments
in the C-linker region showed that Ni?* preferentially binds to residues 409, 413 and 417 in the closed
state and 416 and 420 in the open state of CNGA1 channel (Johnson and Zagotta, 2001). By considering
what is known about KcsA and putting these results together the authors suggested a homology model.

Some of these findings are in disagreement with the results shown by Hua and Gordon (2005).

The Cyclic Nucleotide—Binding Domain

The CNBDs of CNG channels share significant sequence similarity with other cyclic nucleotide—
binding proteins including cGMP- and cAMP- dependent protein kinases (PKG and PKA respectively)
and the Escherichia coli catabolite gene activator protein (CAP). The crystal structures of CAP and
PKA have been solved (Su et al., 1995; Weber et al., 1987) and are very similar. Although the over
all sequence identity among the CNBDs of these cyclic nucleotide-binding proteins is only ~ 20 %, the
residues that make important contacts with the bound cAMP or occur at turns between adjacent (3
strands are conserved. Hence the structure of the CNBD of CAP is used as a model for the ligand-
binding domain of CNG channels. The cAMP-binding site of CAP comprises three a—helices (A, B and
C) and eight S—strands (81 - 48). The CNBD of CNGAL1 is considered to be formed by eight—stranded
antiparallel S-rolls flanked by a short amino-terminal a—helix (A helix) and two C—terminal o—helices
(B and C helices).

Functional roles

CNG channels exhibit a very high degree of cyclic nucleotide specificity. The cGMP, ¢cIMP (Inosine
3’, 5’ cyclic monophosphate) and cAMP differ by only three positions on their purine rings. All three
ligands can bind to CNBD of bovine CNGA1 channel subunits. However bound nucleotides promote
allosteric opening transition differently. The free energy of opening in CNGA1 channel with cGMP is the
lowest, intermediate with cIMP and highest with cAMP. In the case of CNGA2 channel the current can
be activated by saturating concentrations of both cGMP and cAMP. They have a lower free energy of
opening with cGMP than with cAMP (Dhallan et al., 1990), though cAMP is the specific physiological
ligand. It is tacitly assumed that the differential interaction with the purine rings (Matulef and Zagotta,
2003)(figure 1.13) of the ligands control the selectivity.

By probing with a photoaffinity radioactive analogue of the cGMP that is able to label specifically
CNGA1 and CNGB1 subunits of the bovine rod CNG channel, Brown and co—workers localised the
¢GMP binding site and identified the residues lining the binding pocket (Brown et al., 1995). Apparently
it became evident that there are at least two important positions in the CNBD which are responsible for

the ligand specificity. The first is a threonine in the § roll corresponding to T560 in CNGA1 channels.
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The mutation at this position decreases the apparent affinity for cGMP but has little effect on the
affinity for cAMP (Altenhofen et al., 1991). Molecular modeling studies suggest that this threonine
forms an important hydrogen bond with amino group attached to C2 on the guanine ring (figure 1.13)
of cGMP (Scott et al., 1996; Weber et al., 1989). This hydrogen bond formation would require the
c¢GMP to bind in the syn configuration. Whereas cAMP was found in the anti configuration in the
crystal structure of CAP (Weber et al., 1987) and syn configuration of that of PKA (Su et al., 1995).
Since all CNG channel sequences identified has a threonine at this position, T560 alone cannot account
for the ligand discrimination.

The second residue involved in the ligand specificity is
in the C-helix (Goulding at al 1994). The mutation of a single
residue in this region, D604, found to dramatically alter the =
ligand specificity (Varnum et al., 1995). In fact, the D604Q N( / N
mutation (the equivalent residue in fish olfactory channels), o :o: / e
altered the specificity to cGMP > cAMP > cIMP. Substitu- ‘ 4 p N’_<

H

tion of D604 with methionine (the amino acid present at this o==p

position in rat olfactory CNGAZ2), completely inverted the o N o

relative agonist efficacy of the expressed channels, such that K

Tnax for cAMP > cIMP > ¢GMP. The purine ring of cGMP —th, N / N—H

has amino group at N1 and N2 positions, cIMP has at N1 and ‘ - ° . N,—J

cAMP has none. The carboxylic acid side chain of D604 can b Q b

hydrogen bond with the H of the amino group of cGMP. The O:T o ° on H\

unavailability of an H to bond with D604 leaves out cAMP as ° N N—H

the poorest agonist of CNGA1 channels (Varnum et al., 1995; (

Matulef and Zagotta, 2003). o—ocH, N / )NQ
Recently, the crystal structure of the C-terminal of H H N=—

HCN2 channel was solved (Zagotta et al., 2003), shedding Ozl F}HH(

light on the binding of ligand and the activation of this chan- c|)@

nel. The sequence alignment of these domains in HCN2 and
bovine CNGA1 channels indicates a sequence identity of 32

. . Fi 1.13: ] -
%. Several important residues such as K472, E502 and D542 lgure 8: Chemical structure of mu
cleotides: from top to bottom, cGMP, cIMP

known to form salt bridges in HCN2 channels (Craven and . .4mp respectively. Notice the decrease

Zagotta, 2004) are conserved also in CNG channels (Zagotta in available H in the purine ring while pass-
et al., 2003) and the charged residues R590 and E617 forming @9 from cGMP to cAMP

inter-subunit bonds between the proximal HCN2 CNB domains (Zagotta et al., 2003) are also con-
served in CNG channels. This indicates that the overall folding of the C-linker domain of HCN2 and
CNGAT1 channels could be similar. Several experiments failed to verify the validity of this model to be
homologous to that of the CNGA1, leaving the speculation that the crystallized ligand bound state of
the HCN2 C-linker might represent the resting configuration of homologous region of CNGA1 channels
(Hua and Gordon, 2005; Islas and Zagotta, 2006).

CNGB1 subunit

Native rod CNG channels are oligomeric proteins composed of CNGA1 and CNGABI subunits.

As mentioned earlier the CNGB1 cannot form functional channels by itself. When coexpressed with
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CNGAT1 subunit they form functional channels with identical properties of the native rod CNG channels
(Korschen et al., 1995; Biel et al., 1999; Kaupp and Seifert, 2002): apparent affinity for cGMP, sensitivity
to L-cis-diltiazem, fast single chan-

nel gating, inhibition by Ca?*/CaM.

GARP-part Cam1 Cam2 Since they serve to modulate the
= —— ¢ function of the native CNG chan-
nels they are also called modual-

Figure 1.14: The putative secondary structure of CNGBI subunit, where tory subunits. The earlier cloning
the siz trans-membrane helices, pore forming region, CNBD, the C*?t bind-

studies suggested that there are two
ing CaM and GARP region are depicted

alternatively spliced forms of the
CNGBI subunit, which differ only in length. The shorter one has a predicted molecular mass of ~
70 kDa and the longer one with an additional N—terminus and has a molecular mass of ~ 102 kDa.
However polypeptide of this mass range was not detected in the purified rod channel preparations (Mol-
day et al., 1990; Chen et al., 1994), instead they showed distinct 63 or 240 kDa polypeptides. The 63
kDa corresponds to the CNGA1 (Kaupp et al., 1989; Molday et al., 1991) and the 240 kDa was shown
to bind calmodulin and to contain partial amino acid sequence of the human CNGB1 (Hsu and Molday,
1993; Chen et al., 1994). In 1995 the 240 kDa subunit from bovine rod was cloned (Korschen et al.,
1995) and shown that it has a unique bipartite structure. The C—terminal region, from 572 — 1394, with
a voltage—sensor like motif, a pore region, the cGMP binding domain and the calmodulin—binding site.
The hydrophilic N-terminal part, from amino acid 1-571, contains a bovine retina specific glutamic
acid — and proline — rich protein (GARP, cloned earlier (Sugimoto et al., 1991). Electrophysiological
properties of the native CNG channel were not influenced
by the GARP-part.

Quaternary structure

Most of the crystallographic studies on mammalian
membrane proteins are often hindered by difficulty in obtain-

ing enough quantity of purified proteins. In 2002 Kaupp and

co—workers (Higgins et al., 2002) purified the heteromeric CNG
channels and studied that by electron microscopy and image
processing of single particles. The resultant 35 A resolution
structure shows three distinct domains. The larger domain eytasal
has a width ~100 A, thickness ~50 A and four corners, simi-

lar to the putative membrane spanning domain of the shaker

KT channels (Sokolova et al., 2001). Two smaller domains
each with 40x40x50 A dimension (two fold symmetry) are Figure 1.15: Surface representation of

attached to this by two narrow linkers. They suggested this CNG channel at a contour level that includes
as the cytoplasmic end of the four C—terminal and N—terminal ¢ mass of four subunits. A is viewed from
. . the cytosolic side of the membrane, B is
part of the protein. The authors proposed a “hanging gon-

viewed from the extracellular side C,D, and
dola” structure, similar to some K+ channel structures, for the  E are viewed from a direction parallel to the

ligand-binding domains that hang below the transmembrane membrane. F-I sections through the electron
density along the lines indicated in D (refer

part by taking into account of the electron density distribution. o
Higgins et al. (2002))

The cytoplasmic regions that hang below the transmembrane
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part seem to have two—fold symmetry instead of four fold. The gating properties of CNG channels also

indicate that the subunits are arranged as two functional dimers (Liu et al., 1998).

1.3.7 Properties of CNG channels
Ionic permeation

The pore—forming region of membrane protein is known to be the major determinant of ion
permeation in voltage—as well as ligand—gated ion channels(Heginbotham et al., 1994; Goulding et al.,
1993; Yang et al., 1993). Native CNG channels are permeable to monovalent cations, such as Nat, LiT,
K*, Rb™, Cs* and Ti™ but do not discriminate much between them (Capovilla et al., 1983; Nakatani
and Yau, 1988; Yau and Nakatani, 1984). It has been shown also in the excised patches (Fesenko et al.,
1985; Nunn, 1987; Menini, 1990; Colamartino et al., 1991) Ca?* is also permeable but at the same time
acts as a voltage—dependent blocker of monovalent cations (as does Mg?*, Ba?*, Sr?T Mn2") (photo
receptors: see (Yau and Nakatani, 1984; Zimmerman and Baylor, 1992; Colamartino et al., 1991) for
olfactory receptors: see (Zufall and Firestein, 1993; Zufall et al., 1994). This reduces the single-channel
conductance from between 20 and 45 pS in the absence of divalent cations to less than 1 pS under
physiological conditions. The first attempt to record a single channel activity was a failure (Fesenko
et al., 1985). The low single channel conductance is of physiological significance because the gating
of a large number of low conductance channels is associated with less current noise than that of a
few high conductance channels. This facilitates the reliable detection of small changes in current and
thus enhances sensitivity, to detect even a change in single photon. CNG channels are also sensitive to
external proton concentration: a subconductance state due to a blocking effect observed with decreasing
pH (Goulding et al., 1992; Zufall and Firestein, 1993).

The selectivity of CNG channels for monovalent cations was determined from relative ion per-
meabilties recorded under bionic conditions in excised patches. The following selectivity and perme-
ability ratio was obtained for the excised salamander rod photoreceptors; Lit >Nat~K*t>Rb*t>Cst
=1.14:1:0.98:0.84:0.58 (Menini, 1990). Similar ratios were also determined from frog rods (Fesenko
et al., 1985), mammalian rods (Luhring et al., 1990), and lizard parietal eye (Finn et al., 1997, 1998).
The recombinant CNGA1 channels of rod photoreceptor shows similar selectivity and permeability ratio
except NaT is more permeable than Li™ (Kaupp et al., 1989), which is due to the lack of CNGB1 subunit.
The permeability of CNG channel was probed with large organic cations and estimated the narrowest
part of the pore to be 3.8 Ax 5 A rectangle(Picco and Menini, 1993). This estimated size suggests that
the pore of CNG channels is bigger than the ones of Nat and K™ channels but smaller than the one of
the Ca2™ channel of skeletal muscle. This conclusion is in accordance with the estimation obtained by
Laio and Torre(Laio and Torre, 1999). The ion selectivity of CNG channel of cone is similar to that of
rod: Kt>Nat~LiT~Rb">Cs* = 1.11:1.0:0.99:0.96:0.8 (Picones and Korenbrot, 1992).

Role of conserved pore glutamate in permeation

Ca?t binds to a site inside the pore for permeation and thereby block the current carried by
monovalent cations (Refer section selectivity). A glutamate residue in the P loop (E363 in CNGA1) of
the CNG channels (CNGA1 to CNGAS3 subunits) has been identified as an important structural element
of Ca?* binding. When this glutamate is replaced with a neutral residue, the Ca?* blockage is almost
abolished (Eismann et al., 1994; Gavazzo et al., 2000; Park and Mackinnon, 1995; Root and MacKinnon,

1993). Experiments either enhance or diminish the net negative charge of this residue increased or
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decreased respectively the K5 of blockage, showing that the net negative charge of this residue is an
important determinant in deciding the blockage. The CNGBI1 subunit has a glycine at the equivalent
position of glutamate. This explains the reduced Ca?* blockage in the native channel compared to the
heterologously expressed homologous CNGA1 channels (Korschen et al., 1995). Recently it was shown
that the S5-pore-S6 module, by providing a characteristic electrostatic environment, determines the
protonation state of pore glutamates and thereby controls Ca2* affinity and permeation in different
channel type (Seifert et al., 1999). This glutamate was also shown to be responsible for the multi-ion
nature of the pore of CNG channels (Sesti et al., 1995). Another interesting observation regarding
E363 of CNGA1 was made regarding channel gating (Bucossi et al., 1996). By mutating E363 into an
alanine, a serine or an asparagine, a current decline reminiscent of the desensitisation of ligand gated
channels was observed for the CNG channel suggesting that glutamate 363 is involved in the gating in
addition to be a part of the selectivity filter. In the same study, it was demonstrated that the mutant
E363S was permeable to dimethylammonium; replacing the glutamate with a smaller residue led larger
organic cations to permeate suggested that E363 was located close to the narrowest part of the pore.
The findings in this article also lead to the conclusion that probably the gate is situated in the pore it
self (Bucossi et al., 1996).

Single channel properties

Single channel properties of CNG channels from different preparations vary significantly. The
CNGA2 channels from catfish olfactory sensory neuron have three open states with a conductance of
25, 50 and 80 pS (Goulding et al., 1992; Root and MacKinnon, 1993). The CNGA1 from bovine rod
has only one resolvable open state with a conductance of about 28 pS (Kaupp et al., 1989; Nizzari
et al., 1993) CNGA2 from bovine olfactory sensory neuron has a single—channel conductance of about
40 pS. The single—channel openings of the native CNG channels from vertebrate rods are peculiarly
characterized by rapid flickering (Sesti et al., 1994) in the total absence of divalent cations, and its
mean open time is not more than 40 us. Because of this rapid flickering the determination of single
channel conductance is controversial. Single channel conductance measured from patches containing
many channels suggested a conductance of 50 pS (Sesti et al., 1994), but the measurement based on
patches with single channel showed a conductance of 25 pS (Taylor and Baylor, 1995). In contrast the
native channels from olfactory sensory neurons have well resolved openings with mean open time larger
than 1 ms.

Bucossi et al. (1997) addressed the phenomenon of rapid flickering observed in the native rod
photoreceptor cells. They studied heterologously expressed hetero-multimeric channels and arrived at
two important findings. First, at least three types of channels with different properties were observed,
first with stable single channel openings at the positive potential and multiple openings at the negative
potential; second with a low apparent conductance (5-25 pS) and third with a high apparent conductance
(25-45). This difference may arise due to different stoichiometry of channel subunits, or different spatial
arrangement of subunits or due to posttranslational modifications. The second finding was that the rapid
flickering appears to be an intrinsic property of the channel and not caused by rapid proton blockage.

Several groups reported that CNG channel can open occasionally to subconducting states (Zim-
merman and Baylor, 1986; Hanke et al., 1988; Taylor and Baylor, 1995; Bucossi et al., 1997). Ruiz and
Karpen (1997) have used an elegant approach to show that CNG channels have multiple sub—conducting
opening states. They succeeded to covalently tether a cGMP photoaffinity analog to the CNGA1 chan-
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nel and thereby permanently activate the channel. The technique allowed them to lock exactly one,
two, three or four cGMP molecule to the channel. By single channel analysis they found that channels
occupied by four ligands are open most of the time; unliganded channels and channels with one ligand
open with a probability P, ~107°. When two or three ligands were locked in place the probability is
0.01 and 0.33, respectively. Though the approach was elegant the finding is not unequivocal. Several
others found either less subconducting states or none (Liu et al., 1998; Sunderman and Zagotta, 1999;
Tldefonse and Bennett, 1991; Benndorf et al., 1999). A more qualitative description and comparison will

be given in one of the following section (see Kinetic modeling in sec. 1.3.7).

Macroscopic currents

Most ligand gated channels eventually close even in the continued presence of agonist (see Inac-
tivation gating in sec. 1.2.8). The CNG channel, however, display little desensitisation, thus eliminates
technical and analytical complications. The CNG channels involved in phototransduction responds
immediately to the ligand (cGMP) variation, whereas those of olfactory have slow activation kinetics
(Zufall et al., 1993). These differences certainly account for the different requirement of the two modes of
sensory transduction. After macro patch excision, for several minutes, there is a run up in the fractional
activation of cGMP induced current, and has been previously shown to represent dephosphorylation
of the channels by endogenous patch—associated phosphatases (Gordon et al., 1992; Molokanova et al.,
1997) (also see Phosphorylation/dephosphorylation in section 1.3.8). A small outward rectification is
shown by CNG channels of the photoreceptors. It is ascribed to the decreased open probability at
negative voltages (Sesti et al., 1994).

Kinetic models

A protein whose shape is changed when it binds a particular molecule is called allosteric proteins.
The term “allostery” means “other sites.”

In studying ligand—gated channels, many experimenters have measured the fraction of open chan-
nels in response to varied concentration of agonist. In a very common finding this dose-response relation
shows an S — shape rather than a rectangular hyperbola (in a linear scale plot). The Hill equation was
used to explain these type of data. A.V. Hill in 1910 applied this equation to describe the binding of
oxygen to hemoglobin (Hill, 1910), and subsequently has been widely used in biochemistry, physiology,
and pharmacology to analyze the binding equilibria in ligand—receptor interactions(Weiss, 1997).

The Hill equation is readily derived from a binding reaction scheme in which n molecules of ligand
(L) bind to a receptor (C), i.e.,

k¢

C+nlL CL, or C+nlL CL, (1.1)

kg
where, Kg = ks /ky. At equilibrium, the ratio of bound to total receptors is given by a familiar form of

the Hill equation

Pma:l/'
P= 1+ (Kos/[L)"

Where P is the response(ratio of bound to total ligand), P4, is the maximum response, Ko 5 is

(1.2)

the [L] at which half of the receptors are bound, and is equivalent to n** root of Ky
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Dose-response data of CNG channels have almost always shown an S—shaped curve with a Hill
coefficient n~3. The physical origin of this S—shaped curve and an n~3 is the following: the channel
is most likely to open with a presence of multiple bound agonist molecule than single bound agonist,

probably with a minimum of 3 molecules.

However, for a receptor with more than one

ligand binding site, the Hill equation does not re-

cGMP cGMP cGMP cGMP
C, “== C == C == C == C flect a physically possible reaction scheme; only
}:_ o ﬂ’- . 4L’- . » under the very specific condition of marked pos-
' b a ' 1 a itive cooperativity does the Hill coefficient accu-
o, "GML*_ o i o, L o, L o, rately estimate the number of binding sites(Li
4K 3fK/2 2fK/3 fK/4

et al., 1997; Weiss, 1997). For example, when

n=2 simultaneous interaction of three molecules
Figure 1.16: The WMC model for CNG channel with four
equivalent binding cites.Co—Cy are closed states; O,—0O4 are
corresponding open states. K, microscopic equilibrium as- the R and RL, state. In real ligand-receptor in-

with no intermediate state RL occurs between

sociating constant of the closed state; Lo, equilibrium con-  teractions the intermediate states have to occur.
stant between closed and open state in the abscense of ligand; The Hill coefficient is best thought of as an “in-

f, the multiplicative factor with which each binding displaces - . .
the closed—open equilibrium.(Monod et al., 1965), scheme teraction” coefficient, reflecting the extent of co-
adapted from Li et al. (1997) operativity among multiple ligand binding sites

(the sigmoidicity of the S curve).

The mechanistic limitations of the Hill equation have led to interpret the channel behavior by using
kinetic models. One of the most widely used models based on the “binding-then—gating” hypothesis,
contains a linear series of binding steps leading to a final conformational change (figure 1.16). After
the importance of conformational changes was recognized, two different theories of the cooperative
mechanism were postulated in 1960s. One was the theory of Monod, Wyman, and Changeux (MWC
model also called as the “symmetry” model, “concerted” model, or “the two-state” model) (Monod
et al., 1965), and the other was the theory of Koshland, Nemethy, and Filmer (KNF model; often called
as the “induced fit” model or the “sequential” model) (Koshland et al., 1966).

The MWC model assumes that the two structures, one named T, for tense, and the other R, for
relaxed, are in equilibrium at whatever ligation state due to the concerted transition of the protomers
from one structure to the other. In the absence of ligand, the equilibrium is governed by the allosteric
constant, L = [Ty] / [Ro|, where the subscript indicates zero ligand. The homotropic ligand binds the
molecules in the T structure with low affinity (K7) and binds to those in the R structure with high
affinity (Kg). The model is translated into an equation the ratio between the bound sites and the total
number of sites, with the ligand concentration, which takes the form of a sigmoid curve. Such a curve

indicates that the sites of the homotropic ligand cooperate positively in binding. (figure 1.16)

The KNF model, does not assume equilibrium of quaternary structures. The switch from the T to
the R structure occurs progressively through intermediate structures induced by the homotropic ligand
binding. The structural pathways for the transition depend on the specific protein case. This model
can describe positive and negative cooperative interactions.

The MWC model has had a major impact on the understanding of cooperativity because of the
universality of the equilibrium concept and the simplicity of the formulation, which is capable of de-
scribing the behavior of many allosteric proteins with good accuracy by using only three parameters.

In contrast, to formulate the mechanism of the allosteric protein the KNF model requires a detailed
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knowledge of the functional/structural properties of all of the intermediates, in addition to the end
states, a prerequisite that in most cases is too difficult to fulfill.

The MWC model has three predictions. Ligand independent channel opening, every liganded
state has unique opening and the equilibrium constant therefore the open probability should increase
by a constant factor. The first prediction is satisfied. In fact it is shown that CNG channels show
ligand independent openings (Kleen, 2000; Picones and Korenbrot, 1992; Ruiz and Karpen, 1997, 1999;
Tibbs et al., 1997). The spontaneous open probability is significantly lower for CNGA1 than CNGA2
channels (spontaneous open probability Ps, = 1.5 x 107° for CNGA1(Ruiz and Karpen, 1997) and
Py, = 2.25x1073 for CNGA2 (Tibbs et al., 1997). The amino terminal domain determines differences
in both ligand gating and spontaneous openings between rod and olfactory CNG channels, and that
channel activation occurs by a cyclic allosteric mechanism and not by linear reaction steps where ligand
binding is obligatory before channel opening. Another significant step in checking the allosteric model
was the work by Ruiz and Karpen (1997) (see Single channel properties in sec. 1.3.7). The P, (open
probability) values predicted by MWC are not in accordance with the experimentally obtained values of
Ruiz and Karpen (1997). More interestingly when less than four ligands are bound the opening events
show smaller subconductance states, as if the flipping of each subunit opens the channel into a particular
open state. These observations are inconsistent with the MWC model. An alternative model taken by
Liu et al. (1998) also shows the inadequacy of MWC model to explain the allosteric activation of CNG
channels. To check the validity of the model the authors constructed channels with constrained number
of binding sites. Their results quantitatively differed from that of Ruiz and Karpen but qualitatively
agreed and went on to propose an interesting variation of MWC model: coupled dimer model (CD). In
this model each dimer binds to ligand independently and undergo an allosteric conformational change

to open and each dimer make this transition independently.

1.3.8 Modulation of CNG channels
Modulation by calmodulin

Native olfactory and rod CNG channels are inhibited by nano molar levels of CaM in a Ca?*
and time dependent way (Chen and Yau, 1994; Hsu and Molday, 1993). For both channels Ca?*/CaM
decreases the apparent affinity for cyclic nucleotides. One way for this to occur is if Ca?*/CaM destabi-
lizes the opening allosteric transition as proposed (Chen and Yau, 1994). The time course of adaptation
to either pulses of odorant or to photolysis of caged compound are the same suggesting that adaptation
work through olfactory CNG channels. Adapted channels and Ca?*/CaM inhibited channels have a
similar apparent affinity for cAMP suggesting that odorant adaptation is due to Ca?*/CaM dependent
inhibition of CNG channels.

Unlike in the case of olfactory neurons the physiological role of CaM modulation in rod photore-
ceptors are not yet clear. Speculatively the interaction of Ca?*/CaM with CNG induces a negative
feedback loop in native rods. In the dark, in high levels of Ca?* and ¢cGMP, Ca?*/CaM bound channels
would be inhibited, thereby having a lower apparent affinity for cGMP. Once light hit the receptors,
Ca?* and cGMP levels drop, Ca?* /CaM would not be bound, the channel increases the apparent affin-
ity for cGMP. However, such a mechanism is under scrutiny as CaM alters the apparent affinity of rod
channels by two fold, which is a relatively small change compared with the 1000—fold range in intensity
over which visual adaptation occurs (Koutalos et al., 1995; Koutalos and Yau, 1996; Nakatani et al.,
1995).
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The cone CNG channels in excised patches from some species are weakly modulated by CaM
(Bonigk et al., 1996), cones from other species found to be insensitive to CaM: native catfish (Haynes
and Stotz, 1997). Bewilderingly, the A3 subunit of cone CNG channels comprises in its amino terminal
region fairly conserved CaM target motif that, in various binding assays, shows CaM binding. Most
probably the cGMP sensitivity of cone CNG channels are controlled by some another Ca?* binding
protein and CaM acts a partial modifier. Rebrik and Korenbrot (1998) have experimentally supported
this hypothesis. The detached patch supplemented with Ca?*/CaM does not mimick the same ligand
sensitivity in a cellular environment.

The molecular mechanism underlying the Ca?t/CaM inhibition of olfactory and rod channels
are broadly the same. Olfactory CNGA2 subunits contain a site in their NHo—terminal region that is
necessary and sufficient to bind Ca?*/CaM (Chen and Yau, 1994). Deletion of this site in CNGA2 results
insensitiveness to Ca?T/CaM (Chen and Yau, 1994). The CNGA4 and CNGB1b subunits of OSNs work
as modualtory subunit in determining the kinetics of Ca?*/CaM action. Even though CNGA4 does not
bind directly to CaM, the olfactory CNG channels with out these subunit shows 200 fold slower on-rate
on modulation by Ca?*/CaM. CNGA4 subunit allows for a state-independent association of Ca?*/CaM
with the CNGA2/CNGA4/CNGB1b channel complex. The Ca?T/CaM modulation is independent on
the open probability of channel; this enables channels with high open probability to be inhibited.

Rod CNGA1 subunit does not contain CaM binding site; however, CNGB1 subunit has an N—
terminal site for CaM binding which modulates the channel activity in the intact cells. Co-expression
of CNGA1 and CNGB1, where the CaM binding site is deleted from the later, results in a functional
channel that are insensitive to Ca?*/CaM. How ever, the CNGB1 is unconventional as in the C—terminal
region it has another CaM binding location that binds to Ca?* /CaM in biochemical assays. The
functional significance of this site is unclear because when deleted, channels retain wild—type Ca?* /CaM
dependence (Weitz et al., 1998; Trudeau and Zagotta, 2002b).

In CNGA2 channels, the N-terminal regions forms an interaction with the C-terminal. This
interaction may promote channel opening by helping to stabilize conformations of the C—linker and
CNBD (Varnum and Zagotta, 1997). The cytoplasmic N— and C— terminal of CNGA1/CNGB1 channel
also interact (Trudeau and Zagotta, 2002b,a). The Ca?"/CaM binding site of the CNGBI interact with
the short C—terminal end of CNGA1; unlike the olfactory channels the CNBD and C-linker of CNGA1
are not involved in this interaction. The Ca?*/CaM disrupts the N— and C— terminal interactions in both
olfactory CNGA2 and rod CNGA1/CNGBI channels (Varnum and Zagotta, 1997; Trudeau and Zagotta,
2002b). This explains the possible mechanism for inhibition in both channels. In CNGA2 channel the
CaM binding region serves as an autoexcitatory site upon interaction with C—terminal (Chen et al.,
1994; Varnum and Zagotta, 1997). The disruption of this interaction upon Ca?* /CaM binding inhibits
the channel response. This autoexcitatory mechanism is not present in rod CNG channels, suggesting

some different unknown mechanism.

Phosphorylation/dephosphorylation

Studies suggest that CNG channels can be modulated by changes in phosphorylation state cat-
alyzed by serine/threonine protein kinases and phosphatases (Gordon et al., 1992) and, more recently,
by protein tyrosine kinases (PTKs) and phosphatases (PTPs) (Molokanova et al., 1997). Repeated
measurement of the dose-response curve of channel activation in excised patches of ROS membranes

disclosed a slow increase in ¢cGMP sensitivity over time (Gordon et al., 1992). The decrease in Ko 5
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was usually 2— to 3— fold but could be as large as 10— fold. The enhancement of ligand sensitivity was
slowed down by both ATP and inhibitors of Ser/Thr phosphatases and was accelerated by purified type
1 phosphatase, suggesting that phosphorylation might control the conversion of channels between states
of high and low ligand sensitivity(Kramer and Molokanova, 2001).

Heterologously expressed (Xenopus oocytes expression system) CNGA1 subunit displays a seem-
ingly similar decrease in Kg 5 after patch excision, attributable to changes in tyrosine phosphorylation
state (Molokanova et al., 1997, 1999). Unlike native channels, orthovanadate and pervanadate (in-
hibitors of phosphotyrosine phosphatase (PTP)) slowed down the progressive sensitivity enhancement
(Molokanova et al., 1997, 1999). The effect is reduced by Y498F mutation, consistent with the idea that
this residue is phosphorylated by a protein tyrosine kinase (PTK) in oocytes. Studies on homomeric
rod CNG channels containing CNGA1l-subunits show that the channel can only be dephosphorylated
when it is opened with cGMP and can only be phosphorylated when it is closed by removing cGMP.
Application of cAMP weakly alters the ability of PTP to modulate the channel, supporting the notion
that channel opening, rather than ligand occupancy of the cyclicnucleotide—binding site, is responsible

for the activity—dependent effects of cyclic nucleotides (Molokanova et al., 1999).

Regulation by nitric oxide

Nitric oxide (NO) is an important signaling molecule in the retina. The major target for NO in
most cell types is soluble guanylate cyclase, which, by synthesizing cGMP, can lead to activation of CNG
channels. In some olfactory neurons, NO can directly activate CNG channels even in the absence of
cyclic nucleotides (Broillet and Firestein, 1996), but there is no evidence that NO has a direct affect on
photoreceptor CNG channels (Trivedi and Kramer, 1998). One crucial locus for NO action appears to be
a cysteine residue (C460) in the CNGA2-subunit of the olfactory channel (Broillet, 2000), a residue that
is also conserved in the olfactory CNGB3- subunit and in the rod CNGA1- and CNGB1- subunits. Why
the rod channels are unaffected by NO remains a mystery. It was shown that the homomeric CNGA4
(modualtory subunit of OSNs) channel can function when activated by NO (Broillet and Firestein, 1997;
Cudeiro and Rivadulla, 1999).

Regulation by lipid metabolites

Recent studies have shown that certain lipid metabolites, including diacylglycerol (DAG), mod-
ulate native and expressed rod CNG channels (Gordon et al., 1995; Crary et al., 2000). Even though
DAG is an activator of protein kinase C (PKC), the effect of DAG on CNG channels does not require the
catalytic activity of protein kinases (Gordon et al., 1995). Invertebrate phototransduction is thought to
be mediated by phospholipase C (PLC) (Ranganathan et al., 1995), and DAG metabolites have been im-
plicated in activating the light—sensitive ion channels in Drosophila melanogaster photoreceptors (Chyb
et al., 1999).

Divalent cations

The sensitivity of CNG channels can also be altered by transition metals, such as Ni?t and Zn?*
(Karpen et al., 1993; Gordon and Zagotta, 1995¢). Like other divalent cations (Ca**, Mg?*, Mn?* and
Cd?*), at sufficiently high (Gordon and Zagotta, 1995c) concentrations these ions induce a voltage—
dependent block by binding to sites within the permeation pathway of the CNG channel (see also Ionic

29



1.8 Cyclic Nucleotide Gated channels CHAPTER 1. INTRODUCTION

permeation in sec. 1.3.7). However, Ni?T and Zn?* have an additional effect on channel gating (see The
C-linker in section 1.3.6). Ni?* coordination by His420 of CNGA1 channel can potentiate the channel
activation, and His396 in CNGA2 can inhibit channel activation (Gordon and Zagotta, 1995b). From
a functional perspective, there is the intriguing possibility that Zn?t might play a physiological role
in rod CNG channel regulation. Free or loosely bound Zn?* can be detected in rods and cones (Wu
et al., 1993; Kaneda et al., 2000), and Zn2T is tightly bound to rhodopsin (Shuster et al., 1996) and
phosphodiesterase, where it is essential for enzymatic function (He et al., 2000a). Exposure to light
results a dramatic redistribution of chelatable Zn?* in rods (Ugarte and Osborne, 1999), raising the
possibility that Zn?* plays a dynamic role in phototransduction, perhaps with CNG channels as an

important target.

pH

In the catfish olfactory neurons, pH titration combined with mutagenesis studies of Glu363 (the
conserved glutamate involved in the block by divalent cations) have suggested that this pore residue
is also involved in proton binding and subsequent channel block (Tanaka, 1993; Root and MacKinnon,
1994). Protonation of D604 in the rod CNG channel may enhance the interaction between the binding
site and the cyclic-nucleotide triggering the allosteric changes that lead to channel opening (Varnum
et al., 1995; Gordon et al., 1996) (see also The cyclic nucleotide Binding Domain in sec. 1.3.6).

Pseudechetoxin

Recently, a peptide blocker that can be used as a pharmacological tool has been extracted and
purified from the venom of the australian king brown snake (Brown et al., 1999). This protein (PsTX,
24 kDa) blocks the cGMP dependent current in CNGA2 channel, when applied extracellularly. The
block is independent of voltage and requires only a single molecule of toxin. PsTx also blocks CNGA1
homologous channel with an apparent affinity of 100 nM. The Heteromeric rod photoreceptor CNG
channels have the lowest affinity (K; ~ 3.5 uM).

Tetracaine

Tetracaine is a local anaesthetic which has been shown to block the bovine rod but not the rat
olfactory CNG channel (Fodor et al., 1997b,a). It is a state-dependent and a voltage dependent blocker.
Tetracaine blocks preferentially in the closed state, by binding to the pore E363. Mutating this residue
abolishes the blockage. Widening of the pore in the open state might be destabilising this conformation,
or alternatively, the electrostatic repulsion by permeating cations and the positively charged amine

group of tetracaine leads to low affinity binding in the open state.

Dequalinium

Dequalinium is an organic divalent cation which suppresses the rat small conductance Ca?*—
activated K*-channel 2 (rSK2) and the activity of protein kinase C (Rosenbaum et al., 2003). De-
qualinium blocks CNGAT1 intracellulary, with a Ky s~ 190 nM and CNGA1+CNGBI1 channels with a
Ko.5/ 385 nM, at 0 mV. The blockage is state independent, but it is voltage dependent. Single channel

recordings indicate that dequalinium acts as a slow blocker. It promotes the appearance of long closed
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states (with no change in unitary conductance) rather than promoting “flickering” between the closed

and open states which would be characteristic of a fast (low affinity) blocker (Hille, 2001).

Calcium channel blockers

L-cis-diltiazem, the inactive isomer of a calcium channel blocker was the first blocker of CNG
channels discovered (Koch and Kaupp, 1985). In the rod channel, the efficiency of this block depends
on the CNGB1 subunit (Chen et al., 1993). The concentration dependence of block showed that one
molecule of the blocker is sufficient to block the channel (Haynes, 1992). The blockage in CNG channels
of rods, cones and olfactory neurons is voltage-dependent (Haynes, 1992; McLatchie and Matthews,
1992). Pimozide blocks the cyclic GMP-activated current with half-maximal suppression at a concen-
tration of about 0.8 uM and nearly complete suppression at 10 M. The block produced by pimozide is
voltage and time independent (Nicol, 1993). D—600, amiloride Frings et al. (1992) and nifedipine (Zufall
and Firestein, 1993) act on the olfactory CNG channels.

Nicotine

Nicotine has been reported to stabilise the closed conformation of the rod CNG channel (McGeoch
et al., 1995). Calcium lowers the Ko 5 of blockage and cGMP increases it, giving a range of Kg 5 between
10~ and 1078 M.

Polyamines

Polyamines have been shown to block the pore of inward rectifier KT channels as well as some
glutamate—gated channels. Three polyamines (putrescine, spermidine and spermine) effectively block
the CNG channel from both sides of the membrane. Among them, spermine has the greatest potency (Lu
and Ding, 1999). Extracellular spermine blocks the channel as a permeant blocker, whereas intracellular
spermine appears to block the channel in two conformations —one permeant, and the other non— (or much
less) permeant. Since polyamines exist in both the intracellular and extracellular media, blockade of the
CNG channel by polyamines may play an important role in suppressing noise in the signal transduction

system in rods.

Quaternary ammonium

In potassium channels, the blockade by TEA ions has provided tremendous insight into the
structure and function of this class of channels. The idea that KT — and Na* — permeation occur through
two different physical pathways came from studies using the TEA™ blocker (also due partly by the studies
using TTX by Hille (1975))(Armstrong and Binstock, 1965; Armstrong, 1971) as well. The quaternary
ammonium (QA) derivatives block the permeation pathway of CNG channels in concentration—and
voltage — dependent manner. With the increase in number of tail methylene group the binding affinity
increases (Contreras and Holmgren, 2006). In CNG channels QA derivatives can bind to both open and
closed state. In the open state blockage decreases the mean open time of channel rather than decreasing
the unitary conductance. The state independent blockage in CNG channels show that the permeation
pathway in these channels is different from that of K, channels, where QA derivatives bind preferentially

to the open state.

31



1.4 Aim of the study CHAPTER 1. INTRODUCTION

1.4 Aim of the study

The identification of ion channels opened up several puzzles which were experimentally and theoretically
addressed during the past three decades. In the beginning one of the major problem was to explain
the selectivity of ion channels. The theoretical models of the 1970s waited until 1998 for experimental
conformations. Still many more questions are open. How does a voltage sensor move in a voltage gated
channel to open the gate? Or how does the binding of ligand transfer energy to open the gate in a
ligand gated channel etc. The movement of the voltage sensor in K channel has been studied in detail
for the last couple of years with controversial results coming from different groups.

The energy of ligand binding in a ligand-gated channel can be transmitted tens of angstroms
through the structure of a protein to open the channel. It is not well understood how this energy
transfer can open the gate. The simplicity in function and lack of desensitization makes CNG channels
a favorite target in studying the structure function relation ship of ligand-gated ion channels. Previous
studies suggested several possible rearrangements in the pore forming region of CNG channels associated
with the binding of ligand in the CNBD. Still the transmission of energy (as a result of ligand binding)
from CNBD toward the gate through the C-linker is largely unclear. Even though the crystal structures
can give amazing insight into the structural details, at the moment, it lacks the potential to decipher
the modulation of channels during its activation. FElectrophysiology can improve substantially our
knowledge about channel rearrangement during closed to open transition. Electrophysiology combined
with molecular biology with the help of homology modeling can be a powerful tool to address this
problem.

In order to understand the aforesaid structure-function relationship of CNG channels, I addressed
the molecular rearrangement of these channels during channel activation. The substituted cysteine
accessibility method developed by Akabas et al. (1992) is a widely used strategy in studying this kind
of problems. The amino acid of interest can be specifically mutated to a cysteine and challenged with
different thiol modifying reagents. The change in the cGMP evoked current before and after application
of the thiol modifying reagents in the closed state or in the open state can provide information regarding
the rearrangement or proximity of those homologous residues from different subunits. The information,
thus, achieved can be used as spatial restraints in refining the homology model of the channel.

To achieve my goal I aimed, first of all, to substitute all residues in the pore region one by one with
a cysteine and to challenge with thiol specific reagents with a hope to obtain spatial restrain to refine
the CNG channel model. It is widely believed that the recently obtained KcsA crystal structure is a
good homology template for CNG channel. My second aim was to check this hypothesis. The crystal
structure of CNBD of HCN channel is supposed to be a good model for the CNBD of CNG channel
also. Checking whether this structure is a possible template for the CNBD of CNG channel was my
third aim.

In the current study I have used excised inside-out patch clamp method as the electrophysiological
tool. Xenopus leavis oocyte was used as the expression system for the heterologous expression of
the homologous CNGA1 channel. The ease of handling and the readiness in patching make Xenopus
leavis oocytes advantageous over other expression systems. The simplicity to modify (mutate) and
the native (heterologous CNG channel) like physiological characters (most—if not all) of homologous
CNGA1 channel make them a very good tool to study the structure — function relationship of ligand

gated channels.
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Abstract Cyclic nucleotide-gated (CNG) ion channels, underly-
ing sensory transduction in vertebrate photoreceptors and olfac-
tory sensory neurons, require cyclic nucleotides to open. Here,
we present structural models of the tetrameric CNG channel
pore from bovine rod in both open and closed states, as obtained
by combining homology modeling-based techniques, experimen-
tally derived spatial constraints and structural patterns present
in the PDB database. Gating is initiated by an anticlockwise
rotation of the N-terminal region of the C-linker, which is then,
transmitted through the S6 transmembrane helices to the P-he-
lix, and in turn from this to the pore lumen, which opens up from
2 to 5 A thus allowing for ion permeation. The approach, here
presented, is expected to provide a general methodology for mod-
el ion channels and their gating when structural templates are
available and an extensive electrophysiological analysis has been
performed.

© 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: CNG channels; Gating mechanism; Comparative
modelling; Structural basis; Distance restraints

Ion channels are membrane spanning proteins that allow
ions, such as K, Na*, Ca?* and CI, to cross the hydrophobic
core of the cell membrane [1]. Because of the well-known dif-
ficulties in obtaining high resolution 3D structures by X-ray
crystallography of ion channels, alternative strategies based
on computational biology tools are currently used to investi-
gate their biophysical properties (for reviews on ion channel
modelling see: [2-4]).

Here, we present a computational structural study on the
widely characterized homotetrameric cyclic nucleotide-gated
channel (CNG), from bovine rod, composed by the subunit
CNGALI1 [5], which forms functional assemblies with the same
selectivity and gating properties as the native channels, which
are instead heteromeric tetramers. Each subunit consists of
two domains: (i) a transmembrane domain formed by six
transmembrane helices (S1-S6) and a pore helix (P-helix) with
the same topology of voltage-gated K* channels [6,7]. (i) A
cytoplasmic domain formed by the cyclic nucleotide binding
domain (CNBD) which is linked to the transmembrane do-
main through the so called C-linker region. The pore, unselec-
tive for Na* and K™, is believed to gate via a conformational
change of S6 transmembrane helix (TMH) initiated by the
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binding of cyclic nucleotides to the binding domains. This con-
formational change is transduced to the pore via coupling with
the four P-helices [8,9].

Here, we provide a molecular basis to this proposal by con-
structing models of the transmembrane region of the CNGAL1
channel from bovine rod, which includes S6, P-helix-loop (P-
helix + pore wall or filter), along with the C-linker N-terminal
section, for which there exist a great amount of experimental
data. Models of P-helix-loop and S6 are based on the KcsA
X-ray structure [10,11], whose topology has been suggested
to be similar to that of CNG channels [6]. The C-linker domain
was modeled using the C-linker of the HCN (from mouse)
channel in ligand bound state, for which the X-ray structure
has been recently solved [12]. This template shares a high se-
quence identity (>30%) with CNG channels in this particular
region. Finally, the obtained models refer to residues from
Arg345 to Argd22 of the CNGALI channel.

The models, obtained based on the alignments shown in
Fig. 1A, were refined by the inclusion of an extensive dataset
of spatial constraints inferred by electrophysiological measure-
ments on cysteine mutants (Fig. 1B and C). A large set (about
50) of structural constraints among Co atoms are inferred
from measurements in the presence of metal ions (Table 1)
[6,13-20]: (i) Cd*", which can block the channel [21] when it
binds to, at least, two cysteine residues (see Table 1). Estimates
obtained by a calculation of residue-residue distribution func-
tion based on the RCSB Protein Data Bank [22] suggest that
the Ca of these cysteines are located at about 11-13 A (Fig.
1D and the Note in the figure caption) [23]. (ii) Mild-oxidizing
agent copper phenanthroline (CuP) favors disulfide bridge for-
mation between two cysteines separated by a distance going
from 6 to 11 A (see Fig. 1D and the Note in the figure caption).

A smaller set of data (about 20) provide information on sol-
vent accessibilities, inferred from measurements in the presence
of three differently sized and charged sulthydryl specific re-
agents such as MTSET", MTSEA™ and MTSES™. Indeed,
these compounds may react with solvent accessible cysteines
[24] (Table 1) [25].

In the S6 TMH and in the N-terminal portion of the C-linker,
Cd** blockage is almost absent for residues upstream Gly395 in
both open and closed states, whilst it is strongly state dependent
for residues downstream Asn400 (Table 1 and Fig. 1C). As a re-
sult, in the open state, the N-terminal section of the C-linker is
bent around a hinge located approximately between Val391
and Gly395, and it is also rotated in the anticlockwise sense
by about 60° (around the helix axis) related to the closed con-
formation, assuming a configuration similar to that of the tem-
plate (Fig. 2). These conformational changes resemble
somehow that proposed for the Shaker K* channel [26], in

0014-5793/$30.00 © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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Fig. 1. (A) Sequence alignment of the CNGA1 channel from bovine rod used for building up the structure by homology modelling. The templates
are: KesA K* channel from Streptommyces lividans [11,30] for P-helix-loop and TM2/S6, and HCN from mouse for the C-linker [12]. Colour coding
(for all figures): Gray: pore walls (filter). Blue: P-helix. Yellow: S6 transmembrane helix. Red: C-linker N-terminal section. Selected experiments
taken from [18,19]: (B) Current response for wild type (wt), mutant L356C and double mutant L356C & F380C in the presence of | mM cGMP (cG).
L356C desensitise while double mutant shows similar response like wt. (C) Effect of 100 uM Cd?" in the open and closed states of mutant Q417C (C:
control current; Cd>* is the current after cadmium application for 5min). (D) Distances between Ca of cysteines forming disulfide bridges or
coordinating to Cd>* ions (blue and red, respectively). Distributions were obtained by screening of the PDB data bank [22]. For the latter distance,
note that there are two distributions (from 4 to 7.5 and 8.5-10 A) associated to complexes involving two adjacent and opposite cysteine residues,
respectively. Note: In the used distance restraints (see text and Table 1) an average of 2.5-3 A was added, in order to consider thermal fluctuations.

which the S6 TMH bends around a valine residue (Val374).
This residue is in correspondence to CNG’s Val391, suggesting
a common mechanism in the gating of a variety of ion channels.

In the P-helix-loop region, formed by the P-helix and the
putative filter region (known also as the pore walls), the fol-
lowing structural features can be established.

In the P-helix, L356 forms hydrophobic interactions with
F380@S6. In fact, L356C desensitizes and F380C shows lock-
ing effects, whilst L356C & F380C double mutant (Table 1 and
Fig. 1B) behaves as wt, suggesting that in the latter case the
hydrophobic interactions are substituted by an S-S bridge
(Fig. 2). In addition, this helix changes its location in space
on passing from closed to open form. Indeed, Thr355 and
Leu358 of the P-helix are accessible to extracellular solvent
only in the closed state, whilst Val348 and Leu351 are accessi-
ble in both states (Table 1).

For the filter, we notice that: (i) the homology of the se-
quences here is very low (Fig. 1). (ii) The filter GYG motif
for K™ channels is not conserved in CNG channels (Fig. 1),
as the Tyr residue and one Gly residue have been lost during
evolution. Thus, there must be two gaps on passing from the
K™ channel sequence to that of the CNG channel. As a result,
the accuracy in this region is clearly very low and the only
structural information should come from experimental data
[13]. Specifically, it is found that Thr360 is solvent accessible
in both states and this residue exhibits different conformation
in the open and closed conformation, as shown by the differ-
ences in response upon Cd>" addition (Table 1): In the open
state, the channel is blocked by Cd?*, and thus the distance be-

tween the T360C’s Co should be of about 11-13 A (Table 1),
whilst in the closed state it is not blocked, so this distance
should be larger than 14 A. The experimental data on
Thr360 have immediate consequences on the conformation
of the adjacent residues Ile361 and Gly362: in both cases, the
distances between Ca belonging to opposite subunits increase
in passing from the closed to the open conformation (e.g. dis-
tance between opposite Gly362 Ca increases from 3 to about
6A, Fig. 2), making the pore lumen to increase upon opening,
till a diameter of about 5 A. Although the difficulties in mod-
elling and the low accuracy found in this region, this result,
and in particular the variation of the pore lumen obtained in
the models (Fig. 2), is corroborated by measurements based
on the permeability of the channel to large organic cations
(such as NH4+, CH3NH3+, (CH3)2NH2+, (CH3)3NH+ and
CH,CH;3;NH;") [27-29]: using permeability information, it
was possible to estimate that the diameter of the narrowest
part of bovine CNG channel pores in the open configuration
measures between 4 and 6 A [27-29].

On the basis of these findings, we propose that gating occurs
by bending and an anticlockwise rotation by about 60°
(around the helix axis and seen from the extracellular side of
the membrane) of the C-linker N-terminal section (Fig. 2).
This rotation is transmitted upwards, making the upper part
of S6 to rotate anticlockwise by about 30° (around the helix
axis). Due to the direct interaction of S6 with the P-helix, this
motion is transmitted to the latter, which rearranges so as its
terminal Thr360 residues and therefore, the lower part of the
pore wall, leading to the opening of the pore lumen.
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Table 1
Spatial constraints involving P-helix-loop, S6 and N-term@C-linker of CNGA1 channels from bovine rod, based on experimental data on cysteine
mutants
Mutant Cd** MTS Restraint
Open Closed Open Closed
V348C Block-E Block-E Block-MTSET-E [6,13] Block-MTSET-E [6,20] Accessible from outside open/closed state
NoEff-I [20] NoEf-I [20]
- - NoEf-MTSET-E [13] NoEfl-MTSET-E [13]
$350C NoEff E&I[16]  NoEff E&I[16]  NoEfMTSET-E [13] NoEfi-MTSET-E [13]
L351C - - NoEff-MTSET-E [20] Block-MTSET-E [20] Accessible from outside closed state
Y352C - - NoEf-MTSET-E [6] NoEf-MTSET-E [13]
W353C - - NoEfi-NTSET-E [6] NoEfi-MTSET-E [13]
$354C - - NoEf-MTSET-E [6] NoEf-MTSET-E [13]
T355C - - NoEff-MTSET-E [6] Block-MTSET-E [13] Accessible from outside closed state
L356C - - NoEf-MTSET-E [6] NoEf-MTSET-E [13]
T357C - - NoEfi-MTSET-E [6] NoEfi-MTSET-E [13]
L358C - - NoEff-MTSET-E [20] Block-MTSET-E [13] Accessible from outside closed state
T359C NoEf-MTSET-E [13] NoEf-MTSET-E [13]
T360C Block-I [20] NoEfE-I [20] Poten-MTSES-I [18] Poten-MTSES- I [18] D(Co—Ca) ~ 11 A (open)
D(Co~Ca) > 14 A (closed)
Accessible from inside
1361C Block-I [20] Block-I [20] NoEff-MTSET-E [13] NoEff-MTSET-E [13] Accessible from inside
G362C - - NoEft-MTSET-E [13] NoEft-MTSET-E [13]
E363C - - Block-MTSET-E [13] Block-MTSET-E [13] Accessible from outside open/closed-state
T364C Block-E Block-E Block-MTSET-E Block-MTSET-E Accessible from outside open/closed-state
NoEf-I [20] NoEfL-I [20] NoEf-MTSET-I [6,13]  NoEf-MTSET-I [6,13]
P365C - - NoEff-MTSET-E,I [6] NoEff-MTSET-E.I [6]
P366C Block-E Block-E Block-MTSET-E Block-MTSET-E Accessible from outside open/closed-state
NoEfI-I [20] NoEf-I [20] NoEf-MTSET-I [6,13]  NoEf-MTSET-I [6,13]
F375C NoEf-I [19] NoEfL-I [19] - - D(Co—Ca) > 14 A
V376C NoEff-I [19] NoEff-I [19] - - D(Co—Cu) > 14 A
V377C NoEfI-I [19] NoEf-I [19] - - D(CoCa) > 14 A
A378C NoEf-I [19] NoEfL-I [19] - - D(Co—Cu) > 14 A
D379C NoEfi-I [19] NoEf-I [19] - - D(Co—Ca) > 14 A ]
F380 Poten-I [19] Block-I [19] - - D(F380Ca-C314Ca) < 8 A
CuP: Disulfide bridge
F380C-L356C NoEfI-I [19] NoEfI-I [19] - - D(F380Co—L356Ca) ~ 6 A
Disulphide bridge formation
1381C NoEf-I [19] NoEf-I [19] - - D(Co—Ca) > 14 A
1382C NoEff-I [19] NoEf-I [19] - - D(Co-Ca) > 14 A
1383C NoEfI-I [19] NoEfI-I [19] - - D(Co—Ca) > 14 A
V384C NoEf-I [19] NoEfi-I [19] Block-MTSEA-I [15] D(CoCa) > 14 A
Face central pore
L385C NoEff-I [19] NoEf-I [19] NoEfi-MTSEA-I [15] D(Co—Ca) > 14 A
1386C NoEft-I [19] NoEf-I [19] NoEf-MTSEA-I [15] D(Co-Ca) > 14 A
F387C NoEf-I [19] NoEf-I [19] Block-MTSEA-I [15] D(CoCa) > 14 A
Face central pore
A388C NoEff-I [19] NoEff-I [19] Block-MTSEA-I [15] D(Co—Ca) > 14 A
Face central pore
T389C NoEf-I [19] NoEf-I [19] Block-MTSEA-I [15] D(CoCa) > 14 A
1390C NoEff-I [19] NoEf-I [19] NoEfi-MTSEA-I [15] D(Co—Ca) > 14 A
V391C Block-I [19] Block-I [19] Block-MTSET- 1 [16] NoEff MTSET-I [16] D(Co—Ca) < 14 A
Block-MTSEA-I [16] BlockMTSEA-I [16] Face central pore
G392C NoEf-I [19] NoEfLI [19] Block-MTSET-I [16] D(Co—Cu) > 14 A
Block-MTSEA-I [15] Face central pore
N393C NoEf-I [19] NoEf-1 [19] Block-MTSET-I [16] D(Co—Ca) > 14 A
NoEf-MTSEA-I [15]
1394C NoEf-I [19] NoEf-I [19] Block-MTSET-I [16]™ NoEf-MTSET-I [16] D(CoCa) > 14 A
Block-MTSEA-I [15] Face central pore
G395C Block-1I [19] Block-I [19] Block-MTSET-I [16]~ D(CoCa) < 14 A
Block-MTSEA-I [15] Face central pore
$396C NoEff-I [19] Block-1 [19] Block-MTSET-I [16]~ Block-MTSET-I [16] D(Co-Ca) < 14 A
Block-MTSEA-I [15]
S397C NoEf-MTSET-I [16] - D(Co—Ca) < 14 A
NoEfi-MTSEA-I [15]
1398C NoEff-I [19] NoEf-I [19] Block-MTSET-I [16] - D(Co~Car) > 14 A (open)
NoEff-MTSEA-I [15] D(Co—Ca) =~ 11 A (closed)
$399C Block-1I [19] BlockI [19] Block-MTSET-I [16] Block-MTSET-I [16] D(CoCa) < 14 A
Block-MTSEA-I [15] Face central pore
N400C NoEff-I [19] Block-I [19] - - D(Co—Ca) > 14 A (open)

D(Co—Ca) =~ 11 A (closed)
(continued on next page)
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Table 1 (continued)

Mutant cd* MTS Restraint
Open Closed Open Closed

M401C NoEff-I [19] NoEff-I [19] - - D(Co—Ca) > 14 A

N402C NoEfE-I [19] Block-I [19] - - D(Co-Car) > 14 A (open)
D(Co~Co) = 11 A (closed)

A403C NoEff-I [19] Block-I [19] - - D(Co-Ca) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

A404C NoEf- I [19] Block-I [19] - - D(CoCar) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

R405C NoEfL-1 [19] NoEfE-I [19] - - D(Co-Ca) > 14 A

A406C NoEff-I [19] Block-I [19] D(Co—Coa) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

D407C NoEff-I [19] Block-I [19] - - D(Co—Ca) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

F408C NoEfE-I [19] Block-I [19] - - D(Co—Car) > 14 A (open)
D(Co~Ca) ~ 11 A (closed)

Q409C NoEff-I [19] Block-I [19] - - D(Co—Ca) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

A410C NoEfL-I [19] NoEfE-I [19] D(Co—Ca) > 14 A

1412C NoEf-I [19] NoEf-I [19] - - D(Co-Ca) > 14 A

A413C Block-I [19] Poten-I [19] D(Co—Co) > 14 A

A414C NoEfE-I [19] Block-I [19] - - D(CoCar) > 14 A (open)
D(Co-Co) 2 11 A (closed)

1415C NoEfE-I [19] NoEfE-I [19] - - D(Co-Ca) > 14 A

L416C NoEf-1 [19] NoEfL-1I [19] - - D(Co-Co) > 14 A

Q417C NoEfF-I [19] Block-I [19] D(Co-Ca) > 14 A (open)
D(Co—Ca) ~ 11 A (closed)

Y418C Block-I [19] Block-I [19] - - D(Co—Co) > 14 A (open)
D(Co—Ca) =~ 11 A (closed)

M419C NoEf-I [19] NoEf-I [19] - - D(Co—Ca) > 14 A

H420C NoEf-I [19] NoEf-I [19] D(Co—Ca) > 14 A

F421C NoEf-I [19] NoEfL-I [19] - - D(CoCa) > 14 A

R422C NoEfE-I [19] Block-I [19] - - D(Co—Car) > 14 A (open)
D(Co—Co) ~ 11 A (closed)

Distance restraints always refer to opposite Co in the tetramer, unless specified. Accessibilities patterns were used to constraint the P-helix orientation
in agreement with [13]. The first, second, third and fourth bracket refer to the blue, gray, yellow and red color coding in the figures. Abbreviation
details: No Eff: no effect; Block: irreversible blockage of the current; E and I: measurements carried out with the reagents in the extracellular and
intracellular sides of the membrane, respectively; Poten: current potentiation; MTS: methylsulfonate agents - MTSET, MTSEA, MTSES — (see text).
Experimental information: The CNGA1 channel contained native cysteines [6]; experiments performed in tandem construct of CNGA1 (with native
cysteines) channels where cysteine mutants were introduced in only one of the tandem component [13]; experiments performed in a cysteine-free
CNGALI channel from bovine rods [15,16]; the CNGAI channel contained native cysteines [18-20].

Closed State Open State
= » d=6A §

op View

Fig. 2. Structural models [31] of S6, the P loop of the transmembrane domain along with the N-term@C-linker in the closed and open states. Only
two opposite subunits are shown for the sake of clarity. The structures were obtained by homology modelling (see Fig. 1B) by using Modeller6v2 [32]
with the inclusion of the spatial constraints in Table 1. Selected residues’s Ca are shown. d is the shortest distance between opposite Co’s in the pore.
Insets: (i) Detail of the central P-Helix-Loop region (able to permeate trimethylammonium ion (TMA™) only in the open conformation) (Blue). Also
here only two opposite subunits are shown. (it) Top view of the N-term@C-linker (Red).
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In conclusion, the initial event of cyclic nucleotide binding is
transmitted to the pore walls by a remarkable and sophisti-
cated coupling of conformational changes spanning through-
out the entire cytoplasmic and transmembrane domains of
the channel.
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Locking CNGA1 Channels in the Open and Closed State

Anil V. Nair, Monica Mazzolini, Paolo Codega, Alejandro Giorgetti, and Vincent Torre
International School for Advanced Studies and Instituto Nazionale Fisica della Materia, 1-34014 Trieste, Italy

ABSTRACT With the aim of understanding the relation between structure and gating of CNGA1 channels from bovine rod, an
extensive cysteine scanning mutagenesis was performed. Each residue from Phe-375 to Val-424 was mutated into a cysteine
one at a time and the modification caused by various sulfhydryl reagents was analyzed. The addition of the mild oxidizing agent
copper phenanthroline (CuP) in the open (presence of 1 mM cGMP) or closed state locked the channel in the respective states.
A subsequent treatment with the reducing agent DTT restored normal gating fully in the open state and partially in the closed
state. This action of CuP was not observed when F380 was mutated into a cysteine in the cysteine-free CNGA1 channel and in
the double mutant C314S&F380C. These observations suggest that these effects are mediated by the formation of a disulfide
bond (S-S) between F380C and the endogenous Cys-314 in the S5 segment. It can be rationalized by supposing that during

gating the S6 segment rotates anticlockwise—when viewed from the extracellular side—by ~30°.

INTRODUCTION

CNG channels play a major role in sensory transduction of
vertebrate photoreceptors and olfactory sensory neurons.
They require cyclic nucleotides to open (1-7). Native CNG
channels are heterotetramers composed of distinct subunit
referred to as CNGA and CNGB (8,9). Homotetrameric
CNGAI1 channels from bovine rods when heterologously
expressed give rise to functional channels with properties
similar but not identical to those of native CNG channels (4).
Each subunit is composed of 690 residues (4) encoding for a
cyclic nucleotide-binding (CNB) domain made of ~125
amino acids in the cytoplasmic C-terminal end (5,7).

The amino acid sequences of CNG and K™ channels have
a significant homology and both channels are members of the
superfamily of voltage-gated channels (5). Therefore, it is
highly possible that CNG and K™ channels share the same
gross three-dimensional (3D) topology. The 3D structure of
several K" channels has been solved recently: the bacterial
KcsA from Streptomyces lividans in the closed state (10,11),
the bacterial MthK from Methanobacterium thermautotro-
phicum in the open state (12,13), and the KirBac 1.1 in the
closed state (14). In all these K™ channels the pore domain
includes four identical subunits comprising two transmem-
brane helices, S5 and S6 (referred to as TM1 and TM2 in
KcsA and MthK channels), a loop forming the filter region,
and an additional small helix, not spanning the lipid mem-
brane referred to as the P-helix (Fig. 1). S6 is involved in the
gating of K™ channels, whereas the loop forming the filter
region does not change its conformation upon gating. In K™
channels, the major structural difference on passing from the
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closed to open conformation is the bending of S6 helix by
30° toward the lipid phase, around a glycine hinge (12,13).

In CNGA1 channels the gate is believed to be located in
the pore itself (15—-18) and a model of possible conforma-
tional changes in the pore region has been proposed (19).
These conformational changes are initiated by the binding of
c¢GMP in the CNB domain (4-7,18,20,21). This initial event
must be transmitted to the pore region by conformational
changes spanning throughout the entire cytoplasmic domain
of the channel. As the S6 helix is connected to the C-linker
and CNB domain, a signal must be transmitted to the pore
region through S6.

With the aim of understanding the nature of this signal an
extensive site-directed cysteine scanning mutagenesis was
performed. Each residue—one by one—from Phe-375 to
Val-424 was mutated into a cysteine and the modification
produced by various sulfhydryl reagents was analyzed. During
this analysis, we observed that mutant channel F380C was
blocked by Cd*™" ions in the closed state but was potentiated in
the open state. The irreversible potentiation of the mutant
F380C caused by the addition of Cd*™ in the open state suggests
some major changes in the gating of the mutant channel and we
asked whether it was possible to lock the channel in the open
state, in a way similar to that observed in the spHCN channel
(22,23). Therefore we explored properties of the mutant channel
F380C in more detail. The application of the mild oxidizing
agent CuP in the presence of cGMP locked the channel in the
open state. The addition of CuP in the closed state locked the
channel in the closed state. The application of CuP did not lock
the mutant channel F380C in a cysteine-free CNGA1 channel
(24) neither in the open nor in the closed state. Similarly,
application of CuP to the double mutant channel F380C&C314S
did not have any significant effect. These results suggest the
formation of disulfide bonds (S-S) between exogenous cysteines
introduced in position 380 and endogenous Cys-314 in the S5
segment were responsible for the effect observed in the mutant
channel F380C. These results provide clues for understanding

doi: 10.1529/biophysj.105.073346
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KcsA: (28) AAGAATVLLVIVLLAGSYLAVLAERG-~============= APGAQLITYPRALWWSV (70)
spHCN: (368) ACNLVCMMLLIGHWNGCLOYLVPMLQEYPDQSWVAI--NGLEHAHWWEQYTWALFKAL (423)
CNGAl: (298) ISNLVMYIIIIIHWNACVYFSISKAIGEGNDTWVYPDVNDPDFGRLARKYVYSLYWST (355)

FIGURE 1 Sequence alignment of the KcsA, CNGALI,
and spHCN channels. (A) Sequence alignments between

KesA:  (71) ETATTVGYGDLY-PVTLWGRCVAVVVMVAGITSEGLVTAALATWEVGREQERRGH  (124) " o
SpHCN: (424)  SHMLCIGYGKFP-PQSMTDVWLTIVSMVSGATCFALFIGHATNEIQSMDSSRRQY  (477) the KcsA (K™ channel from Streptomyces lividans), the
CNGAl (3586) LTLTTIG~--ETPPEVRDSEYFFVVAMELIGVLIFATIVGNIGSMI SNMNAARAEF (408)

Side view

Top view

conformational changes in the upper part of the S6 domain,
which leads to channel opening (19).

MATERIALS AND METHODS
Molecular biology

The clone of the BROD CNGA1 channel, consisting of 690 residues, was
mutated using the Quick Change Site-Directed Mutagenesis kit (Stratagene,
LaJolla, CA). The DNA was sequenced with the sequencer LI-COR (4000L)
to verify whether the mutation was correct. The selected residues were
replaced by introducing a cysteine in the wild-type (WT) and cysteine-free
WT as described (16,24). The double mutants were constructed by insertion
of an additional mutation into the DNA with a single mutation. The RNAs
were synthesized in vitro by using the mCAP RNA Capping kit (Stratagene).

Oocyte preparation and chemicals

The WT or mutant channel cRNAs were injected into Xenopus laevis oocytes
(““Rettili’” Dr. Rainer Schneider, Varese, Italy). Oocytes were prepared as
described (25). Injected eggs were maintained at 19°C in a Barth solution
supplemented with 50 wg/ml gentamycin sulfate and containing (in mM): 88
NaCl, 1 KCl, 0.82MgS0,,0.33 Ca(NOs),, 0.41 CaCl,,2.4 NaHCO3, 5 TRIS-
HCI, pH 7.4 (buffered with NaOH). During the experiments, oocytes were
kept in a Ringer solution containing (in mM): 150 NaCl, 2.5 KCl, 1 CaCl,, 1.6
MgCl,, 10 HEPES-NaOH, pH 7.4 (buffered with NaOH). All chemicals
were purchased from Sigma Chemicals (St. Louis, MO).

Recording apparatus

cGMP-gated currents from excised patches were recorded with a patch-
clamp amplifier (Axopatch 200B, Axon Instruments, Foster City, CA), 2-6
days after RNA injection, at room temperature (20-24°C). The perfusion
system was as described (26) and allowed a complete solution change in
<200 ms. Borosilicate glass pipettes had resistances of 3-5 M() in
symmetrical standard solution. The standard solution on both sides of the
membrane consisted of (in mM) NaCl, 110; HEPES, 10; and EDTA, 0.2 (pH
7.4). The membrane potential was usually stepped from 0 to 60 mV. We
used Clampex 8.0, Clampfit, and Matlab for data acquisition and analysis.
Currents were low-pass filtered at 2 kHz and acquired digitally at 5 kHz.
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CNGAL, and the spHCN channel (HCN channel from sea
urchin sperm). Residues in blue, red, and green boxes of
the KcsA channel indicate the S5, the P-helix, and the S6
domain, known to have an a-helical conformation. Yellow
indicates cysteine residues. Residues involved in locking
the spHCN channel in the open state (22) are shown in red
boxes and Phe-380 of the CNGA1 channel is shown in
a black box. (B) Homology model of CNGA1 channel
showing the location of Cys-314 (in yellow) in the S5
domain flanking Phe-380 (in white) in the S6 domain. The
homology model was obtained using the 3D structure of
the KcsA channel as template with the sequence alignment
shown in panel A. A top view of the homology model is
shown on the left panel and a side view on the right.
Colored cylinders indicate a-helices; blue, red, and green
indicate the S5, the P-helix, and the S6 presumed domains.

Application of sulfhydryl-specific reagents

In the inside-out patch-clamp configuration, soon after patch excision, the
cytoplasmic face of the plasma membrane was perfused with the same pipette-
filling solution and then with the same solution containing 1 mM cGMP.
The Cd** effect was tested by perfusing the intracellular side of the membrane
with a standard solution without EDTA (to avoid partial Cd*>" chelation),
supplemented with 100 uM CdCl, for variable time course, to study the effect
in the closed state. For the open state we applied the above solution in the
presence of 1 mM ¢cGMP. CuP was prepared by mixing cupric sulfate and
phenanthroline in a 1:3 ratio to a final concentration of 1 (or 10) uM of CuSOy, in
the standard solution without EDTA. Phenanthroline was dissolved in ethanol
and cupric sulfate in water. DTT (5 mM) was dissolved in the standard solution
without EDTA. CuP and DTT was freshly prepared everyday. DTT was used
for a maximum of 5 h. Current traces illustrated in the figures were obtained by
subtracting the current measured in the absence of cGMP before application of
CuP and DTT to the current measured after the ionic manipulations (addition
and removal of CuP, DTT, or cGMP) of the intracellular medium. Therefore,
the current measured at the beginning of the experiment in the absence of cGMP
is shown as zero (see straight line in panels A of Figs. 4-8).

Sequence alignment

Sequence alignments were performed using ClustalW multiple alignment
program (27). Three-dimensional models of the S5, the P-helix, and the S6
domain of CNGA1 were constructed using a homology modeling approach
as implemented in the program Modeller 6.2 (28,29). The molecular models
in Figs. land 9 are prepared with VMD 1.8.2. visualization software.

RESULTS

CNG and K" channels belong to the same superfamily of
voltage-gated ionic channels (30) and are most likely to share
the common molecular architecture. Therefore, the structure
of KcsA (10,11) is a possible template for the 3D structure of
the pore, S5, and S6 domains of CNG channels (18). Fig. 1 A
illustrates the sequence alignment between residues from
Ala-28 to His-124 of the KcsA channel and from Iso-298
to Phe-408 of the CNGA1 channel and Ala-368—Tyr-477 of
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spHCN channels (the hyperpolarization and cyclic nucleo-
tide controlled channels from sea urchin sperm (31)). The S5,
S6 domains and the P-helix of the KcsA channel are indi-
cated in Fig. 1 A and it is believed that the aligned amino acids
of the CNGA1 and spHCN channels have an a-helical config-
uration with a similar orientation in space.

With the aim of understanding the relation between
structure and gating in CNGAI channels an extensive site-
directed cysteine scanning mutagenesis was performed in
the S6 and C-linker domain of the CNGA1 channel and the
effect of 100 uM Cd*" added to the intracellular side of the
membrane patch was investigated.

The mutant and WT constructs were expressed in Xenopus
laevis oocytes and studied with the patch-clamp method in
the excised inside-out patch configuration. The effect of the
addition of 100 uM Cd*" on the WT CNGA1 channel is
illustrated in Fig. 2, A—C. Brief voltage pulses from —100 to

3601

by 100 uM Cd*" in the WT CNGAI channel were fully
reversible when Cd>* ions were removed from the bathing
medium (Fig. 2 C). Similarly, exposures to 100 uM Cd** in
the absence of cGMP did not cause any significant alteration
of the cGMP-activated current measured after removing
Cd®" ions. The current voltage relation of the cGMP
activated current in the presence of 1 mM c¢cGMP and with
(open symbols) and without 100 uM Cd*" (solid symbols)
are shown in panel D: Cd*" ions potentiate the cGMP-
activated current at negative voltages and block the current at
positive voltages. Very similar results were obtained with a
cysteine-free CNGALI channel, here referred as WTcyg free
kindly provided by William Zagotta (24). These observa-
tions provide a rationale to distinguish the action of Cd**
ions mediated by the binding to exogenously introduced
cysteines: significant changes of the cGMP-activated current
(i.e., >20%), observed after exposure to 100 uM Cd*" can

+100 mV in step of 20 mV were alternated, while changing
the medium bathing the intracellular side of the membrane
patch. When Cd*™" ions were added in the presence of | mM
c¢GMP (Fig. 2 B), the cGMP-activated current (Fig. 2 A) was
reduced in a voltage-dependent way, presumably by binding
to Glu-363 in the pore region (26,32). At higher negative
voltages (below —40 mV; see also Becchetti and Roncaglia
(15)), 100 uM Cd** did not block but potentiated the
cGMP-activated current. This potentiation is similar to that
observed in the presence of NiZ* ions, known to be mediated
by His-420 in the C-linker (33-35). Blockage at positive
voltages and potentiation at higher negative voltages caused
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be attributed to exogenously introduced cysteines.

During the cysteine scanning analysis of residues from
Phe-375 to Val-424 the exposure of the intracellular side of
the membrane to 100 uM Cd>" jons for 5 min either had a
negligible effect or blocked in an irreversible way the cGMP
evoked current. The remarkable exception was mutant channel
F380C; as shown in Fig. 2 D, when the mutant channel was
exposed for 5 min to 100 uM C
1 mM cGMP, the cGMP-activated current was permanently
activated by 37 = 15% (n = 7) both at positive and negative
voltages for at least 15 min after removal of Cd*" ions from the
intracellular medium. On the contrary, when Cd*" ions were

24 .
d”" ions in the presence of

FIGURE 2 The effect of Cd*" on the
WT CNGAT1 and mutant channel F380C.
(A—C) Current recordings (average of
three trials) at membrane voltages from
—100 to 100 mV in 20 mV steps from
the WT in control conditions (A), in the
presence of 100 uM Cd*" (B), and after
removal of Cd>" ions (C). No permanent
modification in the cGMP-activated
current after removal of Cd** ions was
observed. (D) I/V relation of the WT.
CNGAL1 channel in control conditions
(open symbols) and in the presence of
100 uM Cd** (solid symbols). (E and F)
Permanent modification of the cGMP-
activated current in mutant F380C after
exposure to 100 uM Cd*>* ions in the
presence and absence of 1 mM cGMP,
respectively. In panels D and E, Cd*"
ions were applied for 5 min and the
cGMP-activated current at =60 mV was
measured before application of Cd** ions
(traces labeled control) and after removal
of Cd** ions (traces labeled after expo-
sure to Cd>* + ¢G and Cd*>* + 0 cG)
from the bathing solution. The cGMP-
gated current was obtained as the differ-

ence of the current in the presence and in the absence of 1 mM cGMP. The current traces shown in panels D and E are the average of 10 individual trials. Thin

horizontal lines represent the applied membrane potential.
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added in the absence of cGMP, the cGMP-activated current
was blocked both at positive and negative voltages for at least
15 min after Cd*" removal (Fig. 2 E). Therefore we decided to
investigate the mutant channel F380C in more detail.

Fig. 3 illustrates current recordings obtained from the WT
(A), the mutant F380C (B), the WT yg free (C), and the mutant
channel F380C.ys free in @ WTeys free background (D), when
the membrane voltage was applied from —100 to +100 mV
in 20 mV steps. The mutant channel F380C either in the WT
or in the WT,y e background had a significant rectifica-
tion: the ratio of the cGMP-activated current at —100 mV
and at +100 mV in mutant channel F380C was 39 * 19%
(n = 32) and in the WT s free Was 37 = 22% (n = 24).

The irreversible potentiation of the mutant F380C (Fig. 2
D) caused by the addition of Cd** in the open state suggests
some major changes in the gating of the mutant channel and
we asked whether it was possible to lock the channel in the
open state, in a way similar to that observed in the spHCN
channel (22). Indeed, in the spHCN mutant channel L466C,
nanomolar quantities of Cd>* ions greatly slow down its
closure once opened at negative voltages (22). In the presence
of Cd*>" ions, the double mutant channel H462C&LA466C once
opened remains locked in the open configuration. This locking in
the open state could be caused by the formation of disulfide bonds
between exogenous cysteines and endogenous cysteines (Cys-
373 and Cys-369 shown in yellow in Fig. 1 A) becoming close in
the open state as suggested by Giorgetti et al. (23). Phe-380 (white)
of the CNGA1 channel and His-462 and Leu-466 (red) of the
spHCN channel are located in the S6 domain (Fig. 1 A), which
presumably moves during channel gating. The yellow boxes in
Fig. 1 A show the endogenous cysteines present in the S5 of the
CNGAL1 and spHCN channels. Fig. 1 B illustrates a top and side
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FIGURE 3 Comparison of the I/V relations in the WT (A), mutant F380C
(B), WTeys free (C), and mutant channel F380C.ys_free in the WTyq free back-
ground (D); current recordings at membrane voltages from —100 to 100 mV
in 20 mV steps are shown. Each trace was obtained as an average of five
individual trials. The cGMP-gated current was obtained as the difference of
the current in the presence and in the absence of 1 mM cGMP. Thin hori-
zontal lines represent the applied membrane potential.

Biophysical Journal 90(10) 3599-3607

Nair et al.

view of the molecular model of S5, pore, and S6 domains of the
CNGAT1 channel based on the homology with the KcsA channel
and the sequence alignment of Fig. 1 A. According to this model,
Cys-314 (shown in yellow) in the S5 domain is at a short distance
from Phe-380 (shown in white) of the S6 domain. Therefore the
endogenous Cys-314 could form S-S bonds with the exogenous
sulfur atoms of mutant channel F380C. This interaction could be
responsible for the locking of mutant channel F380C in the open
and closed state, which will be described in the coming sections.

Locking of mutant channel F380C in the
open state

When mutant channel F380C in the presence of 1| mM cGMP
was exposed to the mild oxidizing agent CuP (1 or 10 uM)
for some tens of seconds the amplitude of the cGMP-
activated current increased significantly. After an exposure
for several minutes to CuP in the presence of 1 mM cGMP,
the cGMP-activated current persisted even after cGMP was
removed from the solution bathing the intracellular side of
the patch (Fig. 4, A and B). After exposure to CuP (1 or 10
uM) in the presence of 1 mM cGMP for at least 3 min, the
current measured in the absence of cGMP significantly
increased: data collected from 26 patches indicate that the
current measured in the absence of cGMP was 68 * 25% of
that measured in the presence of 1 mM cGMP before CuP
with cGMP application. This behavior could be either due to
the locking of the channel in the open state (locked open) or
due to an increase in the leak current caused by the dete-
rioration of the patch. Two reasons suggest that the channels
were locked in the open state. Firstly, as shown in Fig. 4, E
and F, the I/V relations of the current flowing through the
patch after CuP treatment had the same degree of rectifica-
tion as the cGMP-activated current before CuP treatment;
indeed the ratio of the cGMP-activated current at —100 mV
and at +100 mV in mutant channel F380C was 39 * 19%
(n = 32) before exposure to CuP and after treatment of CuP
in the presence of 1 mM cGMP. The same ratio of currents of
CuP treatment in the absence of cGMP was 35 £ 23%
(n = 15). Secondly, 100 uM Cd*" blocked the current
measured in the absence of cGMP of locked-open channel
(Fig. 4, D and F) with the same voltage-dependent way as the
current measured in the presence of 1 mM cGMP before CuP
application (Fig. 4, C and E); the current at positive voltage
is blocked more powerfully than the current at negative
voltages. In addition, as shown in Fig. 4, C and D, a clear
potentiation of the cGMP-activated current at higher nega-
tive voltages was observed, as observed in the WT CNGA1
channel (see Fig. 2). The blocking effect of Cd** ions of the
cGMP-activated current at positive voltages was signifi-
cantly larger in the mutant F380C than in the WT channel
(compare Figs. 2 and 4), as shown from the current voltage
relations shown in Fig. 4, E and F.

Perfusing mutant channels F380C locked in the open state
with the standard solution without cGMP for several minutes
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FIGURE 4 CuP in the presence of 1 mM cGMP locks the mutant channel F380C in the open state. (A) Currents recorded in the absence of cGMP (0 ¢G) and
in the presence of 1 mM cGMP (+ cG) in mutant channels F380C. (B) The effect of exposure to 1 uM CuP for 5 min in the presence of 1 mM ¢GMP on the
currents recorded in the absence of cGMP (0 ¢G) and in the presence of | mM ¢cGMP (+ cG). In panels A and B, current recordings were obtained at =60 mV
by averaging 10 individual trials. (C) The blockage of cGMP-activated current (+ ¢G) by 100 uM Cd>* added to the medium bathing the intracellular side of
the membrane patch (Cd** + ¢G) before CuP treatment. (D) Blockage by 100 uM Cd** (Cd** + 0 ¢G) of the current persistent (0 ¢G) in a locked-open
channel after exposure to CuP + 1 mM cGMP. (E) I/V relation of the mutant F380C channel in control conditions (open symbols) and in the presence of 100
uM Cd** (solid symbols). (F) I/V relation of the current persistent in a locked-open channel (open symbols) and in the presence of 100 uM Cd>" (solid
symbols). In panels A and C the cGMP-activated current was obtained by subtracting the current measured in the absence of cGMP from the current measured
in the presence of 1 mM ¢cGMP. In panels B and D the current was obtained by subtracting the current measured in the absence of cGMP before CuP exposure
from the current measured after CuP exposure. In panels C and D current recordings were obtained by averaging three individual trials each obtained at
voltages from —100 to +100 mV in steps of 20 mV. Thin horizontal lines represent the applied membrane potential.

did not unlock mutant channels. The locking of the channel
in the open state could be caused by the formation of disulfide
bonds between the sulfur atoms of exogenous cysteines and
endogenous cysteines (Fig. 1). In this case treatment with the
reducing agent DTT is expected to break these disulfide bonds
and unlock the channel from the open configuration. CuP
could also overoxidize cysteines and this modification is not
reverted by DTT (36).

After treatment with 5 mM DTT for 5 min the amplitude
of the current recorded in the absence of cGMP (Fig. 5 B) in
the locked-open mutant channel F380C decreased and ap-
proached the amplitude of current observed before CuP
treatment (gray trace in Fig. 5 A). The amplitude of the
current observed in the presence of cGMP was almost
unaffected by treatment with DTT (compare Fig. 5, A and B).
Collected data from six patches showed that DTT reduced
the current measured in the absence of cGMP in the locked-
open channel by 70 = 25%.

Locking of mutant channel F380C in the
closed state

Next we addressed the question: what would happen if mutant
channels F380C were treated with CuP in the absence of
cGMP? When the patch was treated with CuP in the closed

state—i.e., in the absence of cGMP—the cGMP-activated
current (Fig. 6 A) was abolished, as shown in Fig. 6 B. Indeed
the current measured in the presence and absence of cGMP
did not show any rectification and had amplitude similar to
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FIGURE 5 The locking of mutant F380C in the open state is reverted by
DTT. (A) The current measured in the absence (0 cG) and in the presence of
1 mM cGMP (+ cG) after exposure to CuP in the presence of 1 mM cGMP
for 5 min. The gray trace in the first column indicates the current measured
under the same conditions before CuP exposure. (B) Same as in panel A, but
after removal of CuP and exposure to 5 mM DTT for 5 min in the absence of
c¢GMP. Current traces shown are obtained as in Fig. 4 B. Thin horizontal
lines represent the applied membrane potential.

Biophysical Journal 90(10) 3599-3607



3604

A F380C

0cG +cG

B After CuP

—_————— [T

0cG +cG

C After DTT

] =

o

=] 0cG +cG

o~

50 ms

FIGURE 6 Locking of mutant channel F380C by CuP in the absence of
¢GMP. (A) Currents recorded in the absence of cGMP (0 cG) and in the
presence of 1 mM ¢cGMP (+ ¢G) before CuP exposure. (B) Same as in panel
A but after exposure to 1 uM CuP for 5 min in the absence of cGMP. (C)
Same as in panel B but after removal of CuP and exposure to 5 mM DTT
in the absence of cGMP for 5 min. Current traces shown are obtained as in
Fig. 4 B. Thin horizontal lines represent the applied membrane potential.

that observed in the absence of cGMP before CuP treatment.
In all 19 patches examined, the exposure to CuP in the
absence of cGMP for longer than 5 min invariably led to an
almost complete blockage of the cGMP-activated current
(locked closed). When mutant channels F380C were locked in

A F380ccys-free C

—_—  — 73—
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the closed state by treatment with CuP (Fig. 6 B), a subsequent
treatment with DTT unlocked (Fig. 6 C) these channels to
some extent. DTT treatment (5 mM) for 5 min restored 46 *=
249% (six patches) of the current initially observed in the
presence of 1 mM cGMP before CuP treatment.

Mutant channel F380C in a cysteine-free
background and the double mutant
channel F380C&C314S

The homology modeling of Fig. 1 B suggest that the
exogenous cysteines introduced in the position 380 are far
apart to form intersubunit disulfide bonds. To investigate the
possible formation of disulfide bonds between endogenous
and exogenous cysteines, we repeated the mutation F380C
in a cysteine-free CNGAI1 channel (F380C.ys free) kindly
provided by Matulef et al. (24). Data obtained from different
patches show that treatment with CuP for 5 min in the open
(seven patches) or closed (six patches) state did not lock the
channel in either states (Fig. 7, A and B).

Sequence alignment of the CNGA1 and KcsA channel
(Fig. 1 A) and the homology model with the 3D structure of
the KcsA channel (Fig. 1 B) show that in the S5 domain of
CNGAL there is a native cysteine at position 314 that could
form a disulfide bond with the exogenous cysteine at position
380, responsible for the effects described in Figs. 4-6. To test
this possibility the mutant channel F380C&C314S was con-
structed. Incubation of patch in CuP for 5 min in the presence
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or in the absence of cGMP did not lock the channel in both
conformations (Fig. 7, C and D). Similar results were observed
in four different patches excised from two different oocytes.

To verify whether the locking of the channel in the open
and closed state described in Figs. 3—6 was caused primarily
and uniquely by the formation of disulfide bonds between
cysteines in positions 380 and 314, cysteines were intro-
duced at positions 380 and 314 in the cysteine-free CNGA1
background. CuP was able to lock—to some extent—also
this mutant channel (Fig. 8, A and B) in the closed and open
state as observed in the mutant F380C. After CuP application
in the closed state the cGMP-activated current was reduced
by 49 *£ 23% (n = 7). After application of CuP in the
presence of 1 mM cGMP the current measured in the absence
of cGMP was 51 = 28% (n = 6) of the current measured in
the presence of cGMP. Therefore the effect of CuP on the
mutant F380C is similar but not identical to that observed on
the mutant F380C&C3 14y free constructed on the WTeyg free
background.

All these results show that the mechanism responsible for
locking the channel in the open and closed state is indeed due
to the formation of disulfide bonds between cysteines in
positions 380 and 314.

DISCUSSION

Upon binding of cyclic nucleotide, CNG channels undergo a
sequence of conformational changes leading to channel
opening (1). As the binding domain is located in the cyto-
plasm (4) and the gate is presumably located in the pore itself
(15-18) a signal must be transmitted to the S6 domain and
finally to the pore. The nature of this signal is unknown and
constitutes the molecular basis of channel gating. Locking
CNG channels in the open and closed state provides useful
information on conformational changes that occur during
gating. Our results show that in mutant channel F380C, the
addition of the oxidizing agent CuP in the open and closed
state locks CNGA1 channels in the respective states. Moreover

F380C&C314,
A B

cys-free

—_— 3} —
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DTT, areducing agent, unlocks the channels from their locked
configuration. These results suggest that the observed locking
effect was mediated by the formation of disulfide bridges.
When a cysteine at position 380 was introduced in the
cysteine-free CNGA1 wild-type channel (24) CuP could not
lock the channel in either state. Also in the double mutant
F380C&C314S CuP could not lock the channel in open or
closed states. Two cysteines were introduced at positions 380
and 314 in the cysteine-free CNGAI1 background for the
conformation of this observation. CuP was able to lock—to
some extent—also this mutant channel (Fig. 8, A and B) in the
closed and open state. These results indicate the formation of
disulfide bridges between the exogenous cysteine introduced
at position 380 and the endogenous cysteine at position 314.

These experimental observations can be used to hypothe-
size the signal originating from the cyclic nucleotide-binding
domain and sent to the pore through the S6 domain. As
suggested by our experiments Cys-314 of S5 and the exo-
genous cysteine in position 380 are near each other, both in
the open and closed state so that in both states they can form
a disulfide bond. Inspection of the Protein Data Bank (PDB)
indicates that the distance between the C, of cysteines
forming a S-S bond is between 6 and 9 A. Therefore, the
distance between the C,, of the exogenous cysteine of mutant
F380C and the endogenous Cys-314 must be within this
range in both states. As a consequence, the conformational
rearrangement that occurs during gating in the upper part of
S6—where Phe-380 is located—does not involve large
molecular motions but a subtle displacement; likely just a
few Angstroms are enough to lead a major functional change.

A possible motion compatible with these experimental
constraints is a rotation of the S6 domain around its helical
axis by ~30° (Fig. 9). In the closed state the F380C and Cys-
314 of each subunit can form an S-S bond, locking the
channel in the closed state, as illustrated in Fig. 9.

In the open state (Fig. 9) the upper portion of S6 rotates
anticlockwise by ~30°, when viewed from the extracellular
side. Also in this configuration F380C and Cys-314 can form
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an S-S bond but this time locking the channel in the open
configuration. This anticlockwise rotation, by a suitable cou-
pling between the P-helix and S6 causes a small displace-
ment of residues that are forming the narrowest portion of the
pore, leading to channel opening as hypothesized and shown
in Fig. 9. The notion that channel gating is mediated by
an anticlockwise rotation of the S6 domain was already
proposed (37) on the basis of a histidine scanning of the S6
domain. An anticlockwise rotation of ~30° of the upper
portion of S6 (19) may be the molecular signal underlying
gating in the pore of CNGA1 channels. In this view we spec-
ulate that in the WT CNGA1 channel Phe-380 by interacting
also with hydrophobic residues such as those comprised
between Leu-351 and Leu-356 in the P-helix is part of the
molecular coupling between the P-helix and S6.

The model described in Fig. 9 providing a molecular
explanation of the locking of the channel in the open and
closed state is certainly not unique and other mechanisms
could be envisaged. For instance it is possible that in the
closed state, blockage is mediated by the formation of di-
sulfide bonds between cysteines within the same subunit and
in the open state by the formation of disulfide bonds between
cysteines in neighboring subunits or vice versa. This mecha-
nism, however, requires large conformational changes of the
pore topology between the open and closed state, which do
not appear to be supported by the available experimental
evidence. The fact that the mutant channels F380C&C314S
and F380C.ys free did not lock the channels in either states by
the application of CuP also strengthens the current notion.
Indeed, the pattern of accessibility of residues in the pore
region are very similar in the open and closed states (16,17)
indicating that only minor and subtle conformational changes
of the pore mediate the transition between the open and closed
state. The model in Fig. 9 is certainly consistent with the
experimental results described in this article and requires only
small conformational changes for gating. The results obtained
from different laboratories also support this model.
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FIGURE 9 A model of the -conformational
changes during gating in the upper portion of S6
and the locking of mutant channel F380C in the
closed and open state. Locking is mediated by the
formation of disulfide bonds between the exogenous
cysteines of mutant F380C and the endogenous
cysteine Cys-314. The blue and red residues in the
center show the narrowest region of the pore in the
closed state and open state, respectively. In the open
state the upper portion of S6 rotates anticlockwise—
when viewed from the extracellular side of the
membrane—by ~30°. This anticlockwise rotation,
by a suitable coupling between the P-helix and S6
causes a small displacement of residues forming the
narrowest portion of the pore leading to channel
opening (see red residues). The position of the F380
has been slightly displaced from the analogous
position of the corresponding residue (Met-96) of
the KcsA structure (11), which points toward the
selectivity filter.
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CHAPTER 3. RESULTS

Abstract:

Three constructs are used for the analysis of biophysical properties of CNGA1 channels: the
CNGAI1 channel, a CNGA1 channel where all endogenous cysteines were removed (CNGA1cys— free) and
a construct composed of two CNGA1 subunits connected by a small linker (CNGAliandem). So far, it has
been assumed, but not proven, that the molecular structure of these ionic channels is almost identical.
The I/V relations, ionic selectivity to alkali monovalent cations, blockage by tetracaine and TMA™ were
not significantly different. The cGMP dose response and blockage by TEAT and Cd?T were instead
significantly different in CNGA1 and CNGA1.ys—free channels, but not in CNGA1 and CNGAlandem
channels. Cd?* blocked irreversibly the mutant channel A406C in the absence of cGMP. By contrast,
Cd?* did not block the mutant channel A406C in the CNGA1,.ys_ fre. background (A406C s frec), but
an irreversible and almost complete blockage was observed in the presence of the cross-linker M-4-M.
Results from the application of different MTS cross-linkers and reagents suggest that the 3D structure
of the CNGA1l.ys—free differs from that of the CNGA1 channel by several Angstroms and the distance
between homologous residues at position 406 in CNGAlys—free is 3-4 Angstroms longer than in the
CNGAL.

Introduction:

Cyclic nucleotide gated (CNG) channels mediate sensory transduction in photoreceptors and ol-
factory sensory neurons (Fesenko et al., 1985). In these cells, sensory transduction requires the binding
of cyclic nucleotides (cGMP for photoreceptor and cAMP for olfactory receptor) to CNG channels in
order for the latter to open (Craven and Zagotta, 2006; Kaupp et al., 1989; Kaupp and Seifert, 2002;
Matulef and Zagotta, 2003; Zagotta and Siegelbaum, 1996). Native CNG channels are heterotetramers
and have distinct subunits usually referred to as CNGA and CNGB (Bradley et al., 2001). Native CNG
channels from bovine rod photoreceptors are composed of 3 CNGA1 and 1 CNGB1 subunits (Weitz et
al., 2002; Zheng et al., 2002; Zhong et al., 2002). The CNGA1 subunit from bovine rod is composed of
690 amino acids encoding for a cyclic nucleotide-binding (CNB) domain composed of about 125 amino
acids in the cytoplasmic C terminal end (Biel et al., 1999; Zagotta and Siegelbaum, 1996). The analysis
of the amino acid sequence of the CNGA1 subunit indicates the existence of six transmembrane seg-
ments, usually referred to as S1, S2, S3, S4, S5 and S6 helices. Between the S5 and S6 helices there is a
pore region, from Val348 to Pro367, that shows a significant sequence homology with the pore region of
K* channels (Becchetti et al., 1999; Liu and Siegelbaum, 2000). The overall architecture places CNG
channels in the superfamily of voltage - gated ionic channels, rather than in the superfamily of ligand
gated channels (Jan and Jan, 1990). Homotetrameric CNGA1 channels from bovine rods, when het-
erologously expressed in Xenopus leavis oocytes, give rise to functional channels with properties similar
- but not identical - to those of native CNG channels (Kaupp et al., 1989).

In order to understand the relation between structure and function of ionic channels, residues were
mutated and electrophysiological properties of mutant channels were investigated. A common strategy
is to substitute native residues with exogenous cysteines and to analyze the effect of compounds known
to react with the sulfur (S) atom of cysteines. This procedure usually known as cysteine scanning mu-
tagenesis (CSM) (Akabas et al., 1992; Karlin and Akabas, 1998) analyses the formation of S-S bridges,

spontaneously occurring or induced by appropriate cross-linking reagents, such as copper phenanthro-
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line, Cd%* ions or MTS-MTS compounds (Glusker, 1991; Hastrup et al., 2001; Loo and Clarke, 2001;
Ren et al., 2006). As native ionic channels have endogenous cysteines, it is not easy to distinguish
between the formation of S-S bridges between a pair of exogenous cysteines and between exogenous and
endogenous cysteines. This issue is particularly relevant in studies aiming at establishing distances be-
tween homologous residues. (Matulef et al., 1999) have engineered a CNGA1 channel (CNGAlcys— free)
where all endogenous cysteines were replaced with other residues not bearing a S atom. When exoge-
nous cysteines are introduced in the CNGAl.ys_ free any effect mediated by agents reacting with thiol

groups can be ascribed to exogenous cysteines.

Another very useful construct is the CNGA1yangem where two CNGAT1 subunits are joined together
by a small linker composed of some tens of residues (Flynn and Zagotta, 2003; Matulef and Zagotta,
2002; Rosenbaum and Gordon, 2002; Rothberg et al., 2002). By introducing a mutation in only one
subunit of the tandem it is possible to study the effect caused by the mutations in only two subunits out
of the four composing the channel. In this way, a mutation that does not lead to functional channels
when performed in all four subunits, may lead to functional channels when performed in only two
subunits. This enabled an extensive CSM in the pore region of CNGA1 channels (Liu and Siegelbaum,
2000) extending the analysis to mutant channels otherwise not functional (Becchetti and Gamel, 1999;
Sun et al., 1996).

All these constructs are very useful if the molecular structure of the CNGA1, CNGAl.ys—free and
CNGAltandem is always the same or, if not, it is very similar.(Matulef et al., 1999) observed that the
concentration of tetracaine blocking half of the maximal cGMP activated current in CNGAl ys— free
and in CNGA1 was 10.5 and 8.9 uM respectively. They also reported that the cGMP concentration
activating half of the maximal cGMP activated current in CNGAl.ys—free and the CNGAL was 8.56
and 75.1 puM respectively. On the basis of these two observations, (Matulef et al., 1999) concluded
that mutating the endogenous cysteines did not greatly alter the structure of the channel, without
providing any quantitative estimation of the similarity between the 3D structure of the CNGA1.ys— free
and CNGA1 channels.

In order to verify this hypothesis, physiological properties of these channels were extensively com-
pared by performing electrophysiological experiments where experimental variations were minimized.
Tonic selectivity, cGMP dependency and blockage by a variety of compounds were investigated. Our
results indicate that the electrophysiological properties of the CNGA1 and CNGAl¢apdem are not sig-
nificantly different. By contrast, differences between several electrophysiological properties of CNGA1
and CNGA1.ys_ free are statistically significant. In addition, we show that Cd** ions in the absence
of cGMP block irreversibly, the mutant channel A406C in the CNGA1 background, as well when near
endogenous Cys481 and Cys505 are replaced with alanine and threonine respectively. By contrast, Cd?*
ions did not block the mutant channel A406C constructed in the CNGA1 ys— free, but an irreversible
blockage was observed in the closed state by the application of the cross-linker (Loo and Clarke, 2001)
M-4-M. Blockage of mutant channel A406C.ys— free Was not observed in the presence of non cross-linking
MTS derivatives with the same length and a volume larger than that of M-4-M. These results indicate
that homologous residues at position 406 in the CNGA1l.ys— e are approximately 3-4 A more distant
than in the CNGA1 channel. Functional differences between native and cysteine free proteins have
already been reported and investigated (Kato et al., 1988; Kohler et al., 2003; Taylor et al., 2001), but
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their structural differences were rarely quantified. The present manuscript quantifies these differences.
Materials and Methods:

Molecular Biology

Three different bovine rod channel constructs were used. The CNGAI1 channel, consisting of
690 residues, the CNGAlandem, @ tandem dimer construct and - a gift from William Zagotta - the
CNGA1,ys—free channel (Matulef et al., 1999). Selected residues were replaced by introducing a cysteine
in the CNGA1 and CNGAI1 ys_frcc as previously described (Becchetti et al., 1999; Matulef et al., 1999)
with the use of a Quick Change Site-Directed Mutagenesis kit (Stratagene). Point mutations were
confirmed by sequencing them with the sequencer LI-COR (4000L). cDNAs were linearized and was
transcribed to ¢cRNA in vitro using the mMessage mMachine kit (Ambion, Austin, TX).

The tandem dimer construct was generated by the insertion of one copy of the CNGA1 DNA into
a vector pGEMHE already containing another copy of CNGA1 DNA. At the end of cloning two copies
of the CNGA1 DNA, they were connected by a 10-amino acid linker GSGGTELGST (Rothberg et al.,
2002) joining the C-terminus of the first CNGA1 with the N - terminus of the second one. This second
subunit was made by replacing the Apal restriction site 'GGGCCC’ at the end of the CNGA1 DNA
without changing the amino acid 'GGTCCC’ and adding at the start codon a new Apal restriction site
followed by a linker, using a PCR reaction. Subunits were linked after HindIII/Apal cut.

Oocyte preparation and chemicals

Mutant channel cRNAs were injected into Xenopus laevis oocytes (”Xenopus express” Ancienne
Ecole de Vernassal, Le Bourg 43270, Vernassal, Haute-Loire, France). Oocytes were prepared as already
described (Nizzari et al., 1993). Injected eggs were maintained at 18°C in a Barth solution supplemented
with 50 ug/ml gentamycin sulfate and containing (in mM): 88 NaCl, 1 KCl, 0.82 MgSO4, 0.33 Ca(NOs3)a,
0.41 CaCly, 2.4 NaHCOs3, 5 TRIS-HCI, pH 7.4 (buffered with NaOH). During the experiments, oocytes
were kept in a Ringer solution containing (in mM): 110 NaCl, 2.5 KCl, 1 CaCly, 1.6 MgCl,, 10 HEPES-
NaOH, pH 7.4 (buffered with NaOH). Usual salts and reagents were purchased from Sigma Chemicals
(St. Louis, MO, USA), and MTS compounds (MTSET, MTSEA, MTSPT, MTSPtrEA and cross-
linkers) were purchased from TRC (Toronto Research Chemicals, Canada). Cross-linker compounds such
as M-2-M (1,2-Ethanediyl bismethanethiosulfonate), M-4-M (1,4-Butanediyl bismethanethiosulfonate),
M-6-M (1,6-Hexanediyl bismethanethiosulfonate), M-8-M (3,6-Dioxaoctane-1,8-diyl bismethanethiosul-
fonate) and M-11-M (3,6,9-Trioxaundecane-1,11-diyl bismethanethiosulfonate) had different maximum
cross-linking span - i.e.: the longest distance between the S atoms of the cross-linker reacting with the
S atoms of cysteine and forming S-S bonds (see Fig.3.3.1) (Loo and Clarke, 2001).

The cross-linker M-2-M has a cross-linking span of 5.2 A and an actual volume of 139 A3. When
M-2-M reacts with a S atom it loses one SO3CHj3 group and when it cross-links with two S atoms its
effective volume becomes 73.8 A%, Longer cross-linkers, such as M-4-M, M-6-M, M-8-M and M-11-M
can exist in different configurations, i.e. they have several rotamers illustrated in the first column of
Fig.3.3.1.
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MTS cross-linkers ~ Maximum cross-linking Actual Volume Effective Volume

span (A) A A
AP TR M-2-M 5.2 139.0 73.80
G M-4-M 7.8 166.4 101.2
&
‘%'a"' M-4-M,, 49 160.7 99.2
Q F
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Figure 3.3.1: Properties of cross-linkers with handles of increasing length. The first column shows the chemical
structure and some representative rotamers. The spheres shown in yellow represent Sulfurs, Oxygens are in red, Carbons
are in grey and Hydrogens are in white. The suffizes rotl and rot2 show two representative rotamers of a minimum
and intermediate spacer arm length. The cross linking span of the M-X-M is calculated by the estimated chemical
bond size (Loo and Clarke, 2001) and the rotamers’ cross-linking span was calculated by using the VMD wvisualization
software(Humphrey et al., 1996) (second column). The actual volume is the volume with the SOz CHs (shown as
transparent objects) group at both ends (third column). The effective volume is the volume when the cross-linker loses
its SO CHs groups to form bonds with the sulfur of cysteines (fourth column). The volumes are calculated using the
program steric v1.12 (White et al., 1993)

Recording apparatus

c¢GMP-gated currents from excised patches were recorded with a patch-clamp amplifier (Axopatch
200B, Axon Instruments Inc., Foster City, CA, USA), 2-6 days after RNA injection, at room temperature
(20-24°C). The perfusion system was as described (Sesti et al., 1995) and allowed a complete solution
change in less than 1 s. Borosilicate glass pipettes had resistances of 3-5 M) in symmetrical standard
solution. The standard solution on both sides of the membrane consisted of (in mM) NaCl, 110; HEPES,
10; and EDTA, 0.2 (pH 7.4). The membrane potential was usually stepped from 0 to + 100 mV in 20
mV steps or = 60 mV. We used Clampex 8.0, Clampfit, and Matlab for data acquisition and analysis.
Currents were low-pass filtered at 2 kHz and acquired digitally at 5 kHz.

Application of sulfhydryl-specific reagents

In the inside-out patch-clamp configuration, soon after patch excision, the cytoplasmic face of the
plasma membrane was perfused with the same pipette-filling solution and then by adding 1 mM cGMP

to it. The effect of divalent cations was tested by perfusing the intracellular side of the membrane
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with a standard solution without EDTA (to avoid partial divalent cation chelation), supplemented with
variable concentrations of CdCly or ImM CaCl, for different periods of time to study their effect in the

closed state. In order to study the open state effect we applied these solutions in the presence of 1mM
cGMP.

Cross-linker compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted in standard
solution to a final concentration of 100 M. The final concentration of DMSO was 0.1%. We checked
that this concentration of DMSO did not affect the cGMP activated current. Solutions containing
cross-linker compounds were prepared immediately before the application (typically <5 min) to prevent
degradation, as these reagents dissociate rapidly in aqueous solution. They were not used for more
then 45 minutes after dissolving in aqueous solution. The cross-linkers of different length were used to
determine the distance between exogenously introduced cysteines (Loo and Clarke, 2001; Ren et al.,
2006)

Comparison of electrophysiological properties

In order to reduce the sources of variability in the comparison of electrophysiological properties,
several precautions were taken. Solutions from the same stock were used to fill the patch pipette or to
perfuse the intracellular side of the membrane in all three channels. In all experiments the mRNA of the
three channels were injected in oocytes harvested from the same animal. Each experiment was repeated
at least three times in the same experimental session. Statistical significance of different properties
between two channels was analyzed using Student’s t-test. For every data set, the current measured
after a given chemical manipulation (Y;4 (i=1, n)) was normalized (A; = Y;4/ X;4) to the current
measured in control condition (X;4 (i=1, n)). We used the Shapiro-Wilk test (Shapiro and Wilk, 1965)
to verify that normalized data had a Gaussian distribution: if the value of W was greater than 0.5
we assumed that the data had a Gaussian distribution. Variance comparison of normalized data were
evaluated using the one sided F variance ratio method. The upper critical value for hypothesis rejection
was compared with 5% significance (o = 0.05) level value (Snedecor and Cochran, 1989). After verifying
that both hypotheses were satisfied, we checked the statistical significance using Student’s t-test. The
level of statistical difference was assumed to be very high when ***p<0.001, medium when **p<0.01

and marginal when *p<0.05
Results:

The membrane topology of a single subunit of the CNGA1 channel from bovine rod is shown in
Fig.3.3.2.A where the presumed transmembrane segments S1, S2, S3, S4, S5 and S6 are indicated by
vertical cylinders. The CNGA1 channel contains 7 native cysteines: Cys35, Cys169, Cys186, Cys314,
Cys481, Cys505 and Cysb73 encircled in Fig.3.3.2.A.

Cys35 is located near the N-terminal of the CNGA1 channel at the cytoplasmic side (Brown et al.,
1998; Molday et al., 1991) and it is thought to interact with Cys481 in the open state, but not in the
closed state (Gordon et al., 1997; Rosenbaum and Gordon, 2002). Cys169 and Cys186 are presumably
located in S1 and their functional and/or structural role has not been studied in detail. Cys314 in the

S5 transmembrane segment can interact with residues at position 380 in the S6 domain (Nair et al.,
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2006). Cys481 is located in the C-linker region (Brown et al., 1998) and its role in channel function has
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Figure 3.3.2: The three channels under comparison. A: the CNGA1 channel. B: the CNGAl.ys_ free. C:
the CNGAliandem- In yellow are indicated the locations of the endogenous cysteines- Cys35, Cys169, Cys186, Cys314,
Cys481, Cys505, Cys573 - which are absent in the CNGAlcys_ free channel. Residues substituted with cysteines are
shown in the corresponding circles in panel B. D:, E: and F: recordings of the cGMP activated current in voltage
clamp experiments when the membrane voltage was stepped from -100 to +100 mV in 20 mV steps for the CNGAI,
CNGAliandem and CNGAl1.ys_free channels respectively. Each trace was the average of 5 individual traces and the
current was obtained as the difference between current recordings in the presence of ImM cGMP and current recordings
obtained in the absence of cGMP. G: the dose-response curve of cGMP activation at +60 mV for CNGA1 (closed circle),

CNGAliandem (open circle) and CNGAlcys_ free (closed square) channels respectively. The smooth curves are the fit to
. I [cGM P]? . . L
the equation Tnaz — EGMPIPAIK, 52 Where Imaqg is the mazimum current elicited in the presence of ImM cGMP and

K, /3 ts the concentration of the cGMP producing half mazimal current. H: bar plot for the K, /5 of the three channels.
Statistical significance for differences of K15 of CNGAltandem and CNGA1cys— free to CNGAL was checked by using
Student’s t-test (see material and methods). The difference in K12 between CNGAltandem and CNGAI channels has a
marginal significance (*p<0.05). The difference of Ky /o between CNGAlcys—free and CNGAL channels has very high
stgnificance (***p <0.0001). I: bar plot for the ratio of the current elicited at -100 mV and at +100 mV in the presence
of ImM ¢cGMP. In CNGA1, CNGAltandem and CNGAleys_ free this ratio was 89.4 & 2.5 %, 89.6 £ 2.6% and 84.7 =
2.9% respectively. No statistically significant difference was observed.

been extensively studied. Modification of Cys481 in the open state with sulfhydryl reagents potentiates
CNGA1 channels (Brown et al., 1998). Cys505 in the CNB domain is accessible to sulfhydryl reagents
in the closed state but not in the open state (Matulef et al., 1999; Sun et al., 1996). Finally, Cys573 is
located near the C-terminus of the channel. Cys505 and Cys573 do not contribute to the potentiation
observed by the application of compounds promoting the formation of disulfide bonds (Gordon et al.,

1997), whereas Cys35 in the open state can form a disulfide bond with Cys481 (Gordon et al., 1997).

In the CNGALgys— free (Fig.3.3.2.B) the 7 native cysteines Cys35, Cys169, Cys186, Cys314, Cys481,
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Cysb05, and Cysb73 were replaced by alanine, serine, serine, serine, phenylalanine, valine and valine
respectively (Matulef et al., 1999). In CNGAliandem channels, the N-terminal of the CNGA1 channel
is linked to the C-terminal of another copy of the CNGA1 channel by the linker shown in Fig.3.3.2.C
(Flynn and Zagotta, 2003; Gordon and Zagotta, 1995; Liu and Siegelbaum, 2000; Rosenbaum and
Gordon, 2002; Varnum and Zagotta, 1996).

In what follows, an extensive comparison of physiological properties of the CNGA1, CNGAlandem
and CNGAl.ys—free channels will be presented. The cGMP activated current here analyzed is the
current measured in the presence of a given amount of cGMP minus the current measured in its absence
(leak current). When the ¢cGMP dose response and blockage were compared in the three channels,
the same solutions were used either to fill the patch pipette or to perfuse the intracellular side of the
membrane. For every set of comparison experiment the mRNA of three channels were injected in oocytes

harvested from the same animal.
I/V relations and cGMP dose response

cGMP activated currents from CNGA1l and CNGA1liandem channels were recorded within one or
two days after mRNA injection, but one or two additional days were necessary to obtain a comparable
current from CNGA1¢ys— free channels. As shown in Fig.3.3.2.D, E and F current recordings elicited in
voltage clamp mode from membrane patches excised from oocytes injected with the mRNA of the three
channels were very similar. In all three channels, when the voltage was stepped from 0 mV to £ 100 in
20 mV steps, the current reached its steady value within 2-4 ms. No time dependent relaxation of the

cGMP activated current was observed.

The dose response, i.e. the relation between fractional activated current (Ijeqarp)/Ijeqarpsat)) and
c¢GMP concentration in the medium bathing the intracellular side of the membrane patch is shown in
Fig.3.3.2.G for the CNGAL1 (filled circle), CNGAltandem (0pen circle) and CNGAlcys— free (filled square)
channels. The cGMP concentration activating a half maximal current (K;/5) was 116.9 £ 7.2 (N = 7
patches), 96.6 + 7.7 (N = 5) and 27.5 £+ 6.1uM (N = 6) for the three channels respectively. In agreement
with (Matulef et al., 1999), the CNGA1.ys_ free channel has higher cGMP affinity than CNGA1 channel.
The Student’s t-test indicated that the difference between the Ky, of CNGAl.ys_ free and CNGA1
channels is highly significant (***p<0.0001) and the difference between the K,/ of CNGAltandem and
CNGA1 channels is only marginal (*p<0.05) (Fig.3.3.2.H). As shown in Fig.3.3.2.1, the ratio of the
current flowing at -100 and + 100 mV (I_109/100) for the three channels, was rather similar: indeed it
was 89.4 + 2.5 % (N =10), 89.6 & 2.6% (N =10), 85.7 & 2.9% (N =10) for the CNGA1, CNGA L andem
and CNGAl.ys— free channels respectively. The difference between the value of 110,100 for the CNGA1
and the CNGA1.ys_ rree Was not significant.

Ionic selectivity

CNG channels differ from the other members of the superfamily of voltage gated channels (Jan
and Jan, 1990; Kaupp et al., 1989; Zagotta and Siegelbaum, 1996) for their poor selectivity among
monovalent alkali cations. The permeability ratio in the native CNG channels from rod photoreceptors

(Menini, 1990) is
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Li (1.14) >Na (1) >K (0.98) >Rb (0.84) >Cs (0.58)

where the number in parenthesis indicates the selectivity ratio between the tested alkali monovalent
cation and Na*. This permeability ratio differs from that of the homomeric CNGA1 channel (Kaupp
et al., 1989; Nizzari et al., 1993):

Na (1) >K (0.96) >Li (0.75) >Rb (0.73) >Cs (0.36)

The presence of the CNGB1 subunit makes the native CNG channel more permeable to Lit than
to Na® (Kaupp et al., 1989; Korschen et al., 1995). In this analysis, the selectivity to monovalent
alkali cations was estimated by measuring V..., in bi-ionic conditions, in saturating cGMP. The pipette
always contained 110 mM NaCl, while the equimolar monovalent alkali cationic solutions were changed
at the intracellular side of the patch. Currents were elicited by applying + 40 mV in step of 2 mV
across the patch membrane. A comparison of the measured V.., among the three channels is shown
in Table 3.3.1: the three channels had similar values of V., within the experimental variability. No

statistically significant difference was observed.

Table.3.3.1: Reversal potentials (Vyep) X /Nat

Lit (mV) | KT(mV) | RbT(mV) | Cst(mV)
CNGA1 7.5£2.0 1.0+0.6 8.2+2.4 26.3+4
CNGAliandem 7.3£2.8 -0.2£1.4 | 12.5£24 34£6.3
CNGAleys—free | 10.843.4 | -0.4+1.7 | 11.5+£2.6 | 26.8£7.5

The effect of Cd** ions

Having compared the I/V relations, the cGMP dose response and ionic selectivity, we compared
blockage by different compounds added at the intracellular side of the membrane. Blockage by divalent
cations (Colamartino et al., 1991), TEA, TMA (Menini, 1990; Picco and Menini, 1993) and tetracaine
(Fodor et al., 1997b; Fodor et al., 1997a) was analyzed. These compounds have a different size and
blocking mechanism and therefore their blockage can be used to probe the molecular environment of the
intracellular side of the channel. The CNGA1 channel does not have any cysteine residue in the pore
region and therefore any effect of Cd?* ions on the inner pore of CNGA1 channels cannot be ascribed

to interactions with thiol groups.

The I-V relations of the current recordings obtained from the three channels in the absence (black
symbols) and in the presence of 100 uM Cd?* (grey symbols) at the intracellular side of the membrane
patch are shown in Fig.3.3.3.A, B and C. In all channels Cd?* ions potentiated the amplitude of the
cGMP activated current at negative voltages, as shown in Fig.3.3.3. Indeed, at voltages lower than -60
mV, 100 M Cd2* ions potentiated the cGMP activated current by about 15% in all the three channels.
Cd?* potentiation is expected to have the same molecular origin as that observed in the presence of
Ni?* (Gordon and Zagotta, 1995), which depends on His420, present in the three channels. However, at
+100 mV we consistently observed a lower blockage in CNGA1.ys— free channels: in fact, at this voltage,
the residual cGMP activated current in the presence of 100 M Cd?* was 67.1 4+ 8.7% (N=6), 41.84:5.9%
(N=6) and 36.7+5.1% (N=4) in CNGAlsys— free, CNGAL and CNGAliandem channels respectively.
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Figure 3.3.3: Comparison of Cd*>t
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The different blockage at +100 mV observed in the CNGAl.ys— free Was statistically significant (t
-test provides a value of **p <0.001). Potentiation at negative voltages and blockage at positive voltages
caused by the addition of Cd?* ions were both quickly and entirely reversible as soon as Cd?T ions were

removed from the bathing medium.
The effect of Ca’* ions

It is well known that Ca?* ions permeate through CNG channels but also block the current carried
by Na* ions (Colamartino et al., 1991). Ca®* ions block CNG channels from the extracellular side rather
powerfully and the concentration of Ca?* blocking half of the maximal current is voltage dependent and
is 288 uM at + 80 mV and 2.3 uM at -30 mV (Eismann et al., 1994). At the intracellular side Ca?* ions
block CNGA1 channels less powerfully and the Ca?t concentration blocking half of the maximal cGMP
activated current is 2.3 mM at + 80 mV and 6.9 mM at -80 mV. Ca?* blockage is partly mediated by
Glu363 at the extracellular mouth of the inner pore (Root and MacKinnon, 1993). In none of the three
channels under investigation, Ca%* ions potentiated the cGMP current at negative voltages, as observed
in the presence of Cd?* ions. Similar to Cd?* ions, at positive voltages Ca2t ions potently blocked the
c¢GMP activated current in a voltage dependent way. When data from all patches were considered for a
statistical analysis, Ca?* blockage in CNGAl.ys— free; CNGAltandem and in the CNGA1 channels was
not significantly different.

The effect of TEAT and TMA™" ions

Organic compounds such as TMA and TEA added at the intracellular side of the membrane block
the flux of alkali monovalent cations from both sides (Picco and Menini, 1993) in a reversible way.
The blockage of CNG channel by organic cations requires a concentration of the order of 1072 M and
therefore their blockage is less potent compared to Ca?* and Cd?* requiring concentrations 10 and 100
times lower. We analyzed blockage by TMA' and TEAT when 110 mM Na™ was present on both sides
of the membrane and 25, 50 and 75% of Na™ in the intracellular medium was replaced by TMA™T or
TEAt. When Nat ions were replaced by TMAT differences among the CNGA1, CNGAliandem and

CNGA1lcys—free channels were not statistically significant.
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CNGA1 CNGA1,....

modification by TEA at -100 mV
1.0

2>}
% of TEA

Figure 3.3.4: Biockage of Nat flux by TEAT ions. A, B, C: I/V relations in control conditions and in the
presence of TEAT. Black symbol shows the I/V relation in control conditions and grey symbol shows the 1/V relation in
the presence of 75 % TEAT + 25 % Nat. D: bar plot showing the modification of the Nat flux by TEAT at +100 mV.
Bars are indicated in different grey levels indicating the percentage of TEAT /Nat replacement: 0% indicates 110 mM
NaCl, 25% is 87.5 mM NaCl + 27.5 mM TEACI, 50% is 55 mM NaCl+55 mM TEAC! and 75 % is 27.5 mM NaCl +
87.5 mM TEACI. The replacement of Na© ions with TEAT ions by 25, 50 & 75% decreased the cGMP current to 49.7
+ 5.0%, 31.1 + 5.3%, 18.1 £ 5.7% in CNGA1 channel, to 51.8 + 16.1%, 29.7 + 8.6%, 15.5 + 4.5% in CNGAIltandem
and to 32.5 £ 7.1%, 14.4 £ 6.7%, 7.9 £ 3.2% in the CNGAl.ys_ free channel respectively. Blockage in CNGAljandem
was not significantly different from that observed in CNGA1 channels. TEAT blockage in CNGAlcys— free channels
was statistically different from that observed in CNGA1 channels with a significance of **p<0.01. E: TEAT blocks the
CNGA1cys— free channel significantly also at -100 mV. The presence of 27.5, 55 and 82.5 mM TEAY at the intracellular
side of the membrane reduced the Nat influz to 82.8 £ 7.0%, 68.0 & 6.2%, 58.2 & 7.6% in CNGA1 channels, to 80.7
+ 11.7%, 64.5 + 14.6%, 50.7 + 17.6% in CNGAliandem channels and to 56.6 + 22.2%, 43.0 + 14.1%, 24.5 + 12.9%
i CNGAl.ys— free channels . No significant differences were observed between CNGAljandem and CNGA1 channels.
Blockage in CNGAl.ys_free was different from that observed in CNGA1 channels with a statistical significance of
*p<0.05 in the presence of 25% TEA™T and of **p<0.01 in the presence of 50 and 75% TEAT.

TEAT is a larger organic cation compared to TMA™T and its blocking effect on the current carried by
Na™ ions in CNG channels is more effective.(Menini, 1990; Picco and Menini, 1993) Fig.3.3.4 illustrates
results of experiments showing the effect of TEA™T on the three channels under investigation, with the

same style and format used in Fig.3.3.3.

In contrast to what observed with TMA™ blockage, TEAT blocked the cGMP activated current
more potently in the CNGAl.ys—_ free channels than in CNGA1 and CNGAl¢andem channels, as shown
in Fig.3.3.4.A-C. At positive voltages replacing the concentration of intracellular Na™ ions with TEA™
by 25, 50 and 75%, it decreased the cGMP current to 49.7 + 5.0%, 31.1 &+ 5.3%, 18.1 + 5.7% in CNGA1
channels (N=7), to 51.3 £ 16.1%, 29.7 + 8.6%, 15.5 + 4.5% in CNGAltandem (N=4) and to 32.5 +
7.1%, 144 £ 6.7%, 7.9 + 3.2% in CNGAlcys— frec (N=6) channels (see Fig.3.3.4.D), indicating that
TEAT ions block more effectively. Differences between CNGA1 and CNGA1iandem channels were not
statistically significant, but the differences of CNGA1l ys— ree with CNGA1 channels were important:

*

in fact the significance was **p<0.01 in all three cases. At negative voltages, i.e. at -100 mV the
presence of 27.5, 55 and 82.5 mM TEA™ at the intracellular side of the membrane reduced the Na*
influx to 82.3 £ 7.0%, 68.0 + 6.2%, 58.2 &+ 7.6% the cGMP current in CNGA1 channels (N=7), to 80.7
+ 11.7%, 64.5 £+ 14.6%, 50.7 + 17.6% in CNGAtandem (N=4) channels and to 56.6 + 22.2%, 43.0 +
14.1%, 24.5 + 12.9% in CNGAlsys—free (N=6) channels (see Fig.3.3.4.E). Similarly to what observed at

4100 mV differences between the CNGA1 and CNGA1iandem channels were not statistically significant
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but differences with the CNGA1.ys— free channel were significant with *p<0.05 in the presence of 25%
TEA* and **p<0.01 in the presence of 50 and 75% of TEAT. TEA™ effect was analyzed in the presence
of a saturating cGMP concentration and therefore the different blockage observed in the CNGA1 and
CNGA1l.ys—free channels cannot be ascribed to their different sensitivity to cGMP, as in the presence
of 1 mM ¢GMP both channels have an open probability about 0.9.

Tetracaine blockage

Tetracaine at micromolar concentrations added to the intracellular side of the membrane blocks
the CNGA1 channels (Fodor et al., 1997b) and is therefore a more potent blocker of CNGA1 channels
than divalent cations, TMA™ and TEA™. In the light of this, we have compared tetracaine blockage
in the three channels under investigation. The blockage was measured at the end of voltage pulses
lasting 100 ms. In the presence of 1 mM cGMP, the tetracaine concentration blocking half of the cGMP
activated current T4 /o at +80 mV was 5.34 & 2.35 (N=6), 4.17 & 0.97 (N=5) and 4.25 £ 0.86 (N=6)
uM for the CNGA1L, CNGAlys— free and CNGAlgandem channels respectively. At -80 mV the values
of Ty was 11.77 &+ 4.38, 10.32 + 4.31 and 8.88 & 1.35 M respectively for the three channels. In
agreement with a previous report (Fodor et al., 1997b) blockage by tetracaine in the presence of a lower
c¢GMP concentration was stronger in all three channels. These results do not highlight any difference in

tetracaine blockage in the three channels.
Irreversible Cd?>t blockage in cysteine mutants in CNGA1 and CNGA1.ys_free channels

The comparison of physiological properties described in the previous sections has not identified any
significant difference between the CNGA1 and CNGA1y,ndem channels, but has indicated statistically
significant differences between the CNGA1 and CNGA1,y;s_ free channels.

In the following session we will attempt to quantify structural differences between these two chan-
nels. The distance between residues in homologous subunits can be estimated by studying which cross-
linking reagents, among those shown in Fig.3.3.1, is able to cross-link the mutant channel obtained
when these residues are mutated into cysteines. The existence of a residue cross-linked by reagents with
different cross-linking span in the CNGA1l and CNGAIl.y,_ free channels provides a quantification of
the structural difference between the two channels, at least for that residue. With this rationale we
have scanned several residues in the C-linker domain of CNGA1 channels and we found that Ala406
was the suitable residue. Therefore we have studied the irreversible blockage of the cGMP activated
current after a 5 minute application of 200 uM Cd?T to the intracellular side of the membrane patch in
the closed state in mutant channels A406C and A406C ys— free-

As shown in Fig.3.3.5.A, the cGMP activated current observed in control conditions (left panel in
Figs 3.3.5.A and B) was irreversibly blocked by Cd?* ions in the mutant channel A406C (right panel of
Fig.3.3.5.A), but not in the mutant channel A406C.ys_ free (right panel of Fig.3.3.5.B). This different
blocking effect of Cd?* ions can be produced by two different mechanisms or by their combination. Cd?*
blockage of the cysteine mutant in the CNGA1 background illustrated in Fig.3.3.5.A can originate from
Cd?* coordination to the exogenous cysteine with endogenous cysteines and in particular with Cys481
and/or Cys505 (Mechanism 1) which are part of the C-linker domain (Brown et al., 1998). An alternative
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cd* Cd?>+  blocks irreversibly A406C and

- S s m—— A406C & C481A & C505T but not

= A406C.ys_free- A, B and C: The effect
= s — of 200 uM Cd*t added for 5 minutes in mu-
240 ms tant channel A406C (A), in mutant channel
B A408C.,, e A406Cys_tree (B) and in mutant channel
N A406C&4CL81A&C505T (C). Cd?t ions

- | Cd L were added to the medium bathing the intra-

< cellular side of the membrane patch in the
S +cG +cG absence of cGMP. The left and right traces
T40ims in A and B illustrate the current activated
c A406C&C481A&C505T by 1 mM ¢cGMP at + 60 mV in control con-
ditions and after exposure to Cd*t ions re-

Cd” spectively. In the mutant channel A406C

'4 - ':]' the irreversible blockage induced by 200 uM
I Cd*t ions was 93 + 6 % (N= 5), and in
I r—_ the triple mutant it was 65 + 18 % (N= 2).

explanation is that the 3D structure of CNGAIl.ys— free channels differs by some A from CNGA1
channels (Mechanism 2), so that Cd®* can coordinate exogenous cysteines introduced in the CNGA1
channels but not in the CNGAl.ys_ free channels. In order to resolve this issue we studied in detail
mutant channel A406C and we performed two series of experiments. In the first series of experiments we
analysed Cd%* blockage in cysteine mutant channels where the two endogenous cysteines Cys481 and
Cysb05 were replaced by residues not reacting with S atoms, such as alanine or threonine. In the second
series of experiments the effect of cross-linkers of different length in mutant channel A406C.ys— ¢ree Was
examined. Copper phenanthroline is the shortest cross-linker as it promotes the formation of disulfide
bonds among neighboring cysteines but being an oxidizing reagent it has multiple effects. Cd** ion
cross-links cysteines when the distance between their C, are at a maximum of ~11 A. The recently
synthesized MTS cross-linkers (Loo and Clarke, 2001) have a thiol group at both ends with a linker of
variable length. (see Fig.3.3.1). The existence of MTS cross-linkers able to irreversibly between their
C, are at a maximum of ~11 A. The recently synthesized MTS cross-linkers (Loo and Clarke, 2001)
have a thiol group at both ends with a linker of variable length. (see Fig.3.3.1). The existence of MTS
cross-linkers able to irreversibly block the mutant channel A406C.ys— free in the closed state will support

Mechanism 2.

We investigated the mechanism of the irreversible Cd?* blockage observed in the closed state
illustrated in Fig.3.3.5.A in mutant channel A406C by removing Cys481 and Cys505. Membrane patches
were exposed to 200 M Cd2* ions for 5 minutes in the absence of cGMP and the current recorded
after Cd?* removal and in the presence of a saturating cGMP concentration was measured. As shown
in Fig.3.3.5.C Cd?* blockage although slightly reduced is still observed in the triple mutant channel
A406C&C481A&C505T. In the mutant channel A406C the irreversible blockage induced by 200 uM
Cd?** ions was 93 £ 6 % (N= 5) and in the triple mutant it was 65 + 18 % (N= 2).

The effect of MTS cross-linkers on mutant channel A406C  ;_ trce

Cd?* ions in the absence of cGMP powerfully blocked mutant channel A406C but not mutant
channel A406C.ys— frce (see Fig.3.3.5.A, B). The data presented in Fig.3.3.5.C indicate also that Ca*t

blockage in mutant channel A406C does not depend significantly on the presence of endogenous cys-
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teines at location 481 and 505 and therefore the observed Cd?* blockage is likely to be caused by its
coordination to the ring of exogenously introduced cysteines at position 406. In this view, the absence
of Cd?* blockage observed in mutant channel A406Ccys— free is caused by a different 3D structure of
the CNGA1 and CNGA1.ys—free channels, whereby in the CNGA1.ys— free channel residues at position
406 are at a
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different distance not allowing the coordination of Cd?* ions by exogenous cysteines. In order to test this
possibility, we investigated blockage by thiol cross-linkers M-X-M with an increasing length of the linker.
100 uM of the cross-linker M-2-M, with a linker of 5.2 A did not block mutant channel 406Ccys— free
(N = 5), as shown in Fig.3.3.6.A, C. In contrast, the same concentration of the reagent M-4-M (N = 6)
with a linker of 7.8 A powerfully blocked mutant channel A406C.ys_ free (see Fig.3.3.6.B, C).

We have also analyzed blockage of the cGMP current in mutant A406C.ys—free by cross-linkers
of increasing length. As shown in Fig.3.3.6.C, cross-linkers M-2-M (N=5) and M-11-M (N=5) did not
block significantly mutant channel A406C.ys— free, While cross-linkers M-4-M (N=6), M-6-M (N=4)
and M-8-M (N=6) all blocked the mutant channel A406C.ys_ free, With cross-linker M-4-M being the
most potent blocker. M-2-M did not block the mutant channel A406C.ys— free probably because of its
shorter cross-linking span. M-6-M and M-8-M cross-linkers exist in several rotamers (see Fig.3.3.1) so
that they can have an effective cross-linking span similar to that of M-4-M. We examined the effect
of the M-2-M and M-4-M cross-linkers applied in the closed state of the mutant channels A406C and
A406C&C481A&C505T. 100 M M-2-M did not block either the mutant channel A406C (10.4 4+ 9.4 %;
N= 5) or the triple mutant channel A406C&C481A&C505T (12 £+ 10 %; N= 4). Blockage by 100 pM
M-4-M was also low with 13 £ 9.7 % (N=5) of the A406C channel and 5 + 4.5 % (N=4) blockage of
the triple mutant channel A406C&C481A&C505T.
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The observed blockage of mutant channel 406C.ys— free by the cross-linker M-4-M could be caused
by a simple steric occlusion and not by the cross-linking of the two exogenous cysteines. In order
to investigate this possibility, we analyzed the effect of MTS compounds with an increasing volume.
During the formation of an S-S bond, MTS compounds react and lose one SOoCHj group. In this way
the effective volume of MTS compounds reacting with a cysteine decreases by about 30 A3. M-X-M cross
linkers lose two SO, CHjz groups reducing their effective volume by about 60 A% (see Fig.3.3.1). We then
compared the blocking effect of 100 pM of different MTS compounds such as MTSET (N=6), M-4-M
(N=6), MTSPT (N=4) and MTSPtrEA (N=8) (see Fig.3.3.6.D). MTSET is the shortest of the four
compounds and MTS-PtrEA is the bulkiest. As shown in Fig.3.3.6.D, MTSET is shorter than M-4-M; in
contrast, MTSPT and MTS-PtrEA have the same effective length of M-4-M but have a larger volume. If
M-4-M is sterically occluding the pore, rather than cross-linking two exogenous cysteines, bulkier MTS
compounds are expected to block more intensely the mutant channel A406C.ys— free. But as shown in
Fig.3.3.6.D neither 100 uM MTSET (N =5) nor the same concentration of MTSPT blocked the mutant
A406Cys—free (N =4) and the same concentration of the much bulkier compound MTSPtrEA blocked
~30% (N = 8) of the current observed in the control condition (see Fig.3.3.6.D). These results show
that the blockage observed by the M-4-M is not caused by steric occlusion, but by the cross-linking of
exogenous cysteines. The absence of Cd** blockage in mutant channel A406C ;s fre. is ascribed to the
fact that the 3D structure of the CNGA1 and CNGA1.ys_ frec is different and in particular residues at
position 406 of the CNGA1l.ys_free are at a reciprocal distance not compatible with Cd?* coordination
but compatible with the coordination by the cross-linker M-4-M. In the A406C mutant channel residues
at position 406 are at a compatible reciprocal distance to coordinate with Cd?*, but not with the longer
cross-linkers M-2-M and M-4-M.

Discussion:

Two constructs derived from the CNGA1 channels from bovine rods have been recently proposed
as useful tools for the investigation of the relation between structure and function in CNGA1 channels.
The first construct is the CNGAlys— free channels (Matulef et al., 1999), where all endogenous cysteines
were replaced with other residues not bearing a S atom. The second construct is the CNGA 1¢.ndem Where
two CNGA1 subunits are joined together by a small linker composed of some tens of residues (Flynn
and Zagotta, 2003; Liu and Siegelbaum, 2000; Matulef and Zagotta, 2002; Rosenbaum and Gordon,
2002; Rothberg et al., 2002). However, it has not been proven that ionic channels formed by these
constructs have a 3D structure identical or very similar to that of the CNGA1 channel. On the basis of
their experimental investigation regarding the physiological properties of CNGA1 and CNGAl ys— free
channels, (Matulef et al. 1999) concluded that mutation of all endogenous cysteines led to functional
channels which were gated by ¢cGMP in a way not too different from what observed in the CNGA1
channel. However, the degree of structural similarity between the CNGAl ys— free and CNGAL was
not established. The investigation of electrophysiological properties of CNGA1, CNGAlandem and
CNGA1lcys—free channels here presented, does not show any statistically significant difference between
the CNGA1 and CNGAl¢andem channels. The CNGA1l and CNGAl.y,—_ free channels have also very
similar qualitative properties, such as ionic selectivity, I/V relations, blockage by divalent cations,
organic compounds and tetracaine instead differ in some quantitative features which are statistically
significant. Given the crucial role of cysteine residues in protein structure it is not surprising that

functional properties of CNGA1 and CNGA .ys— free channels are different and it is important to quantify
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their structural difference.
Electrophysiological differences between the CNGA1 and CNGA1i.ndem channels

As shown in Figs.3.3.2-4 and Table 1 the I/V relations, ionic selectivity, dose response of the cGMP
activated current and blockage in CNGAl{andem and CNGA1 channels are not different in a statistically
significant way. Since there is no electrophysiological difference between these two channels, we can
then deduct that their 3 D structure is very similar even though we cannot provide a precise estimate

of this similarity.
Electrophysiological differences between the CNGA1 and CNGA1.ys_free channels

Three quantitative differences were observed in the electrophysiological properties of the CNGA1
and CNGAl.ys—free channels. Firstly, as shown in Fig.3.3.2 the concentration of cGMP activating
half of the maximal current K; /o was 116.9 4+ 7.2 and 27.5 £ 6.1 for the CNGA1 and CNGAl.ys— free
channels respectively, in agreement with what already observed by (Matulef et al 1999). Secondly, as
shown in Fig.3.3.3, at +100 mV 100 uM Cd?*t ions added to the intracellular side of the membrane
blocked CNGAlcys—free to a lower extent than CNGAL channels. Thirdly, as shown in Fig.3.3.4 and
discussed in the text when Na™ ions were replaced with TEA™T, the cGMP activated current at both
+100 and - 100 mV decreased more in CNGAlys— free than in CNGAL channels. These differences
were statistically significant. Blockage by Ca?* ions and by the organic compound TMAY was not
significantly different in CNGA1 and CNGA1.ys_ free channels.

Structural differences between the CNGA1 and CNGA1 ys_¢ree channels

From the observed electrophysiological differences it is not possible to determine at which extent
the 3D structures of the CNGA1 and CNGA1.ys— free channel differ. Indeed blockage of an ionic channel
can be modulated by the position and properties of a single residue (Bucossi et al., 1996; Gordon and
Zagotta, 1995) and significant functional differences can originate from very small structural changes
often of the order of just 1 A or less. For instance, single channel properties of the CNGA1 channel
change when the length of the side chain at position 363 is reduced by 1 A in the mutant E363D (Bucossi
et al., 1997).

In order to quantify differences in the 3D structure of CNGA1 and CNGAl.ys— free channels, we
looked for a residue of the CNGA1 channel, which, when mutated into a cysteine, could cross-link
with another cysteine at the same position but from a different subunit. The length of the cross-linker
is a good indicator of the distance between homologous residues in different subunits: if Cd?* ion is
the cross-linking reagent, the distance between the C, of the homologous residues is between 8 and
11 A. The reagents M-2-M, M-4-M and M-6-M are molecules with a S atom at both ends separated
by a handle of variable lengths (Loo and Clarke, 2001). If the same residue in the CNGAl ys— free
channel is not cross-linked by a Cd?* ion but by a M-X-M reagent, the length of the handle provides
an estimate of the different distance between homologous residues in the CNGA1 and CNGAl ys— free
channels. Given the presence of several endogenous cysteines in the CNGA1 channel (see Fig.3.3.1) it

is difficult to distinguish between the formation of S-S bridges between a pair of exogenous cysteines
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Figure 3.3.7: The distance
between homologous residues at
position 406 in the CNGAL1
and CNGA1.ys_free channels.
A and B: a model of the
binding of Cd>* and M-4-M
to CNGA1 and CNGAlcys—free
channels respectively. The green
tube represents part of S6 he-
lix  where the mutated A406C
is positioned. The sulfur atom
of cysteine is shown as yel-
low spheres, coordinating with a
Cd?t in the CNGA1 channel and
cross-links with the sulfur atoms
from both ends of M-4-M in the
CNGAlcys— free channel.  The
difference in the distance between
the Co of the two channels is
about 3.5 A.

and between one exogenous and one endogenous cysteine. As shown in Fig.3.3.5 in the absence of
c¢cGMP Cd?* ions powerfully block in an irreversible way the mutant channel A406C. In the triple
mutant channel A406C&C481A&C505T Cd?* blockage was still present. These results indicate that the
observed irreversible Cd?* blockage in mutant channel A406C can be ascribed to a cross-linking reaction
between exogenous cysteines in homologous positions. By contrast, the mutant channel A406C.ys— free
in the absence of cGMP is not blocked by Cd?* ions but is blocked by 100 uM of the cross-linker M-4-M
(see Fig.3.3.6). Mutant channel A406C.ys_ frce is not blocked by 100 uM MTSET, which has a slightly
higher volume than M-4-M. Further more two other MTS derivatives MTSPT (Sullivan and Cohen,
2000) and MTS-PtrEA (Contreras and Holmgren, 2006) with same length as M-4-M but with much
higher volume (see Fig.3.3.6.D) did not block the channel. Therefore blockage of the mutant channel
A406C,ys— free in the absence of cGMP by M-4-M is ascribed to the cross-linkage of exogenous cysteines

in two subunits. These results are summarized in Fig.3.3.7.A and B.

The C, of residues at position 406 of the CNGA1 are at distance of about 8-11 A, but the same
residues in the CNGA1.ys_ free channel are at a distance about 3-4 A longer, so that one Cd?* cross-
links homologous residues in the CNGAL channel but not in the CNGAl.ys— free channel. In the
CNGA1leys—free channel the reagent M-4-M is necessary to cross-link the same homologous residues,
so that the distance between their Cy, is 14.5A, i.e. 3-4 A more than in the CNGA1 channel. As the
strength and nature of chemical interactions change drastically when distances are increased by 3-4
A, the way in which the CNGA1 and CNGAI1.ys— free channels interact with chemical probes can be
completely different. This conclusion is not surprising, as when all cysteines are removed from a protein
the overall 3D structure can change quite significantly. Indeed we have previously shown that it was
possible to lock the mutant channel F380C channel in the open and closed state, but only to some extent
when Phe380 is replaced with a cysteine in the CNGAl.ys— free channel (Nair et al., 2006).

Functional differences between native and cysteine free proteins have already been reported and
investigated. The catalytic activity of the cysteine free B Glutathione Synthetase from FEscherichia
coli reduced to 26% compared to that measured in the w.t. (Kato et al., 1988). The different catalytic

67



CHAPTER 3. RESULTS

activity was ascribed to a perturbation in the tertiary structure of the enzyme. The effect of drugs on the
cysteine free P-glycoprotein is significantly different from that observed on the wild type protein (Taylor
et al., 2001): the action of nicardipine on the catalytic cycle of P-glycoprotein is clearly modulated by
cysteine substitution. The removal of all 12 native cysteines from the rat renal Nat/Pi cotransporter

led to a non functional protein (Kohler et al., 2003).
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Abstract:

We have investigated conformational changes occurring in the C-linker and cyclic nucleotide-
binding (CNB) domain of CNGA1 channels from bovine rod photoreceptors, by analyzing the inhibition
induced by thiol specific reagents in mutant channels Q409C and A414C in the open and closed state.
200 M Cd?* inhibited irreversibly mutant channels Q409C and A414C in the closed but not in the
open state. Cd?t inhibition was abolished in the double mutant A414C&C505T and in the tandem con-
struct A414C&C505T+w.t1qndem- The cross-linker reagent M-2-M inhibited mutant channel Q409C in
the open state. M-2-M inhibition in the open state was abolished in the double mutant Q409C&C505T
and in the tandem construct Q409C&C505T+ w.t¢andem. These results show that the C, of C505 in
the closed state is located at a distance of approximately 8 A from the C, of A414 of the same subunit,
but in the open state it moves towards Q409 of the same subunit between 10 and 13 A from the C, of
this residue. These results are not consistent with a 3-D structure of the CNGA1 channel homologous

to that of HCN2 channels neither in the open nor in the closed state.

Abbreviations used in this article:

CNG, Cyclic nucleotide-gated; CNBD, Cyclic nucleotide-binding domain; CSM, Cysteine scan-
ning mutagenesis; MTS, Methanethiosulfonate; MTSET, 2-(Trimethylammonium)ethyl methanethiosul-
fonate bromide; MTSPT, 3- (Trimethylammonium) propyl methanethiosulfonate bromide; MTS-PtrEA,
3-(Triethylammonium)propyl methanthiosulfonate bromide; M-2-M, 1,2-Ethanediyl bismethanethiosul-
fonate; M-4-M, 1,4-Butanediyl bismethanethiosulfonate.

Introduction:

Cyclic nucleotide gated (CNG) channels underlie sensory transduction in vertebrate photoreceptors
and in olfactory sensory neurons. To open, they require cyclic nucleotides such as cAMP or ¢cGMP
(Fesenko et al., 1985; Zimmerman et al., 1985; Nakamura and Gold, 1987; Kaupp et al., 1989; Zagotta
and Siegelbaum, 1996; Biel et al., 1999; Kaupp and Seifert, 2002; Craven and Zagotta, 2006). Contrarily
to the usual N* and K* channels, CNG channels are cation selective, but poorly selective among
monovalent alkali cations (Zimmerman and Baylor, 1986; Kaupp et al., 1989; Menini, 1990; Picco and
Menini, 1993; Craven and Zagotta, 2006). They also form a tetrameric assembly of several homologous
subunits (Chen et al., 1994; Korschen et al., 1995; Shammat and Gordon, 1999; Zheng et al., 2002;
Zhong et al., 2002; Craven and Zagotta, 2006), referred to as CNGA and CNGB (Bradley et al., 2001).
The CNGA1 channel from bovine rods (BROD) is composed of 690 residues (Kaupp et al., 1989) and
each subunit encodes for a cyclic nucleotide-binding (CNB) domain consisting of about 125 amino acids
in the cytoplasmic C terminal (Kaupp et al., 1989; Zagotta and Siegelbaum, 1996). The CNB domain
connects to the transmembrane domain of CNG channels through another domain composed of about

77 amino acids referred to as the C-linker.

The amino acid sequence of CNG and K channels share a significant homology and both channels
are members of the superfamily of voltage-gated channels (Zagotta and Siegelbaum, 1996; Biel et al.,

1999). They also have a significant homology with the family of Hyperpolarization-activated and Cyclic
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Nucleotide-gated (HCN) channels (Anselmi et al., 2007), composed of four isoforms called HCN1, HCN2,
HCN3 and HCN4 (Hofmann et al., 2005). All these channels open when the membrane potential is
hyperpolarized and their activation properties can be modulated, to some extent, by cyclic nucleotides.
It is known that the 3-D structure of the C-linker and CNB domains of murine HCN2 channels has been
solved (Zagotta et al., 2003); and that the sequence alignment of these domains in HCN2 and bovine
CNGAL1 channels indicates a sequence identity of 32 %. Several important residues such as K472, E502
and D542 known to form salt bridges in HCN2 channels (Craven and Zagotta, 2004) are conserved also
in CNG channels (Zagotta et al., 2003) and the charged residues R590 and E617 forming inter-subunit
bonds between the proximal HCN2 CNB domains (Zagotta et al., 2003) are also conserved in CNG
channels. This indicates that the overall folding of the C-linker domain of HCN2 and CNGA1 channels

could be similar.

The purpose of the present manuscript is to obtain experimental constraints on the relative distance
between amino acids to test the hypothesis that the 3D structure of the C-linker in CNGA1 channels
is homologous to that of HCN2 channels. Here we show that in the closed state C505 is near to A414
of the same subunit but in the open state it moves close to Q409 of the same subunit. These results
are not consistent with a 3-D structure of the CNGA1 channel, homologous to that of HCN2 channels

neither in the open nor in the closed state.
Materials and Methods:

Molecular Biology

Three different channel constructs from bovine rods were used: the CNGA1 channel consisting
of 690 residues, the tandem dimer construct and the CNGAl.ys— free channel (Matulef et al., 1999).
Selected residues were replaced by introducing a cysteine in the three channels as described (Becchetti
and Gamel, 1999; Matulef et al., 1999) using the Quick Change Site-Directed Mutagenesis kit (Strata-
gene). Point mutations were confirmed by sequencing, using the sequencer LI-COR, (4000L). cDNAs
were linearized and were transcribed to cRNA in vitro using the mMessage mMachine kit (Ambion,
Austin, TX).

The tandem dimer construct was generated by the insertion of one copy of the CNGA1 DNA into
a vector pGEMHE already containing another copy of CNGA1 DNA. At the end of cloning, two copies
of the CNGA1 DNA were connected by a 10-amino acid linker GSGGTELGST(Rothberg et al., 2002)
joining the C-terminus of the first CNGA1 with the N- terminus of the second one. This second subunit
was made by replacing the Apal restriction site ‘GGGCCC’ at the end of the CNGA1 DNA without
changing the aminoacid ‘GGTCCC’ and adding to the start codon a new Apal restriction site followed
by a linker using a PCR reaction. Subunits were linked after HindIII/Apal cut.

Oocyte preparation and chemicals
Mutant channel cRNAs were injected into Xenopus laevis oocytes (“Xenopus express” Ancienne
Ecole de Vernassal, Le Bourg 43270, Vernassal, Haute-Loire, France). Oocytes were prepared as de-

scribed (Nizzari et al., 1993). Injected eggs were maintained at 18°C in a Barth solution supplemented
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with 50 pg/ml of gentamycin sulfate and containing (in mM): 88 NaCl, 1 KCl, 0.82 MgSOy4, 0.33
Ca(NOg3)s, 0.41 CaCly, 2.4 NaHCOg3, 5 TRIS-HCl, pH 7.4 (buffered with NaOH). During the exper-
iments, oocytes were kept in a Ringer solution containing (in mM): 110 NaCl, 2.5 KCl, 1 CaCly, 1.6
MgCly, 10 HEPES-NaOH, pH 7.4 (buffered with NaOH). Usual salts and reagents were purchased from
Sigma Chemicals (St. Louis, MO, USA) and MTS cross-linkers (M-2-M and M-4-M) were purchased
from TRC (Toronto Research Chemicals, Canada).

Recording apparatus

c¢GMP-gated currents from excised patches were recorded with a patch-clamp amplifier (Axopatch
200B, Axon Instruments Inc., Foster City, CA, USA), 2-6 days after RNA injection, at room temperature
(20-24°C). The perfusion system was as described (Sesti et al., 1995) and allowed a complete solution
change in less than 1 s. Borosilicate glass pipettes had resistances of 3-10 M2 in symmetrical standard
solution. The standard solution on both sides of the membrane consisted of (in mM) NaCl, 110; HEPES,
10; and EDTA, 0.2 (pH 7.4). The membrane potential was usually stepped from 0 to + 60 mV. We used
Clampex 8.0, Clampfit, and Matlab for data acquisition and analysis. Currents were low-pass filtered
at 2 kHz and acquired digitally at 5 kHz.

Application of sulfhydryl-specific reagents

In the inside-out patch-clamp configuration, soon after patch excision, the cytoplasmic face of the
plasma membrane was perfused with the same pipette-filling solution. The effect of Cd?* was tested
by perfusing the intracellular side of the membrane with a standard solution without EDTA (to avoid
partial Cd%* chelation), supplemented with variable amounts ( from 10 to 500 uM ) of CdCl, for
different times. The time course of Cd?* inhibition of mutants Q409C and A414C was determined by
applying 100 and 200 uM of the reagent in the closed state ( i.e. in the absence of cGMP ) for variable
time periods and by measuring the current observed after Cd removal in the presence of 1 mM ¢GMP.
Fig.4.3.1.A and B show data collected from 7 patches containing the mutant channel Q409C exposed
for variable times to 100 and 200 M Cd?* respectively. Data were normalized to the cGMP current
activated at + 60 mV before Cd?* treatment. The solid line through the experimental points was
obtained from the equation y = exp(—7/t) where 7 is the time constant of Cd** inhibition. Fig.4.3.1.C
and D show similar data but for the mutant channel A414C.

Therefore, we analysed Cd?* inhibition in the closed state by exposing patches to 200 uM Cd2+
for 5 minutes. In some constructs, such as Q409C+C505T and Q409C+C481A, with this procedure
an inhibition between 30 and 70 % was observed. The partial inhibition observed after 5 minutes of
Cd?* exposure could be due to a slower inhibition rate of Cd?* ions and therefore we investigated the
effect of longer exposures to Cd?* ions. To study Cd?* inhibition in the open state, we applied 200 M
Cd?7 in the presence of ImM ¢cGMP for 5 minutes or longer, during which the amplitude of the cGMP

activated current was continuously monitored.
Cross-linker compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted in standard
solution to a final concentration of 100 M. The final concentration of DMSO was 0.1%. We checked

that this concentration of DMSO did not affect the cGMP activated current. Solutions containing
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Figure 3.4.1: Time course of inhibition by Cd>t on mutant channels Q409C and A414C. A,B: Inhibition of
Q409C by 100 and 200 pM Cd>t respectively in the closed state. Values are shown as mean &+ SD. The solid red line
through the data is the fit to equation y = exp(—7/t) , where T is the time constant of Cd?>% inhibition. The T for mutant
Q409C by 100 uM Cd** is 624.8 s and 203.3 s by 200 uM Cd?>*. C,D: the data shown are obtained as of panel A and
B, but for mutant channel A414C. The time course of inhibition is 400.1 s by 100 uM Cd?>t and 94.4 s by 200 pM
Cd?**. E: Distribution of the distance between the Co, of cysteines coordinating one Cd?t ion ( grey), M-2-M (red) and
M-4-M (green) calculated with AMBER package (see methods). White bars indicate distances between Co of cysteines
coordinating one Cd?% ion obtained from inspection of the PBD (Giorgetti et al., 2005)

cross-linker compounds were prepared immediately before the application (typically < 5 min) to prevent
degradation, as these reagents dissociate rapidly in aqueous solution. They were never used for more
then 45 minutes after dissolving in aqueous solution. The cross-linkers of different length were used to
determine the distance between exogenously introduced cysteines (Loo and Clarke, 2001; Ren et al.,
2006).

Estimation of the distance between C, of coordinating cysteines

The distance between the C,, of cysteines coordinating Cd?* ions or cross-linkers such as M-2-M and
M-4-M was estimated by inspection of the 3D structure of proteins contained in the Protein Data Bank
(PDB) and by molecular dynamical simulations. Inspection of PDB shows that distance between C,,
of cysteines that Cd?* coordinates ranges between 5 and 10 A(see white bars in Fig.3.4.1.E) (Giorgetti
et al., 2005). The cross-linkers M-2-M and M-4-M can coordinate cysteines at a larger distance. As no
crystal structure of a protein coordinating either M-2-M or M-4-M is available, a direct evaluation of
the distance between C, of cysteines cross-linking these compounds cannot be obtained from the PDB.

For this reason we used molecular dynamics: first we calculated the distribution of distances between
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C, of cysteines coordinating one Cd?* ion by molecular dynamics simulation using AMBER package
(see grey area in Fig.3.4.1.E). The distribution of the C, - C, distance obtained by molecular dynamics
provides similar results as those obtained by the direct inspection of the 3D structures in the PDB. We
then performed similar molecular dynamics simulations of two cysteines cross-linked by M-2-M and M-
4-M (red and green areas in Fig.3.4.4.E). As shown in Fig.3.4.1.E, M-2-M can coordinate two cysteines
when the distance between their C,, is between 4 and 12 A and M-4-M when the distance between their
C, is between 4 and 15 A. These results indicate that if Cd2* inhibits the channel by coordinating to
two cysteines, the distance between the C, of coordinating cysteines is <10.5 A. If channel inhibition
is observed with M-2-M but not Cd?* then the distance between the C, of coordinating cysteines is
between 10 and 13 A. Similarly, if the inhibition is caused by M-4-M and not by Cd?>* and M-2-M, the

distance of the C,, of coordinating cysteines is between 12 and 14.5 A.
Results:

A common tool for the investigation of functional and structural properties of ionic channels is
Scanning Cysteine Mutagenesis (SCM) in which residues in a given region of the ionic channel are
mutated one by one into a cysteine and the action of reagents able to interact with the sulfur atom of
the cysteine is investigated. With this rationale we scanned several residues in the C-linker domain of
CNGAL1 channels from Phe375 to His420. In these mutated channels we studied the effect on cGMP
activated current induced by 200 uM Cd?* added for 5 minutes to the bathing medium in the presence
(open state) or in the absence (closed state) of 1 mM ¢cGMP. Exposure of CNGA1 channel for 5 minutes
to 200 uM Cd?* induced a very small permanent change in the cGMP activated current (9.4 + 6 %,
N = 7) (Nair et al., 2006). During this extensive SCM we found that many mutant channels were
irreversibly inhibited by Cd?* ions.

In the present manuscript, we analyze in detail the molecular mechanisms underlying inhibition by
Cd?* and longer cross-linkers such as M-2-M and M-4-M in mutant channels Q409C and A414C by using
the following rationale. Inspection of the three dimensional (3D) structure of proteins in the Protein
Data Bank(Berman et al., 2000) shows that one Cd?T ion coordinate with two cysteines when the
distance between their C,, varies between 4 and 10.5 A. Therefore, if we can prove that Cd®* inhibition
is caused by its coordination with the exogenous cysteine inserted at position 414 (414C) and with the
native C505 of the same subunit, we obtain a good estimate of the distance between the C, of A414
and C505 in that specific subunit. The newly synthesized MTS cross-linkers (Loo and Clarke, 2001) can
coordinate a pair of cysteines which are at a longer distance: indeed the two ends of these compounds
have a S atom - which can react with the cysteines’ S atom - separated by a handle or a spanning
distance of increasing length, which for the cross-linkers M-2-M and M-4-M are 5 and 8 A respectively.
As discussed in the Methods section, a inhibition by M-2-M and not by Cd?* indicates a slightly larger
distance for the C, of coordinating cysteines varying between 10.5 and 12.5 A, and the inhibition by
M-4-M (and not by Cd?* and by M-2-M) reports a distance between the C,, of coordinating cysteines
varying from 12 to 14.5 A. This analysis provides valuable information for the understanding of the

molecular structure of CNGAT1 channels in the open and closed state.

Cd?t inhibition of mutant channel A414C
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The CNGAT1 channel is composed of four subunits each containing 6 transmembrane helices indi-
cated by grey cylinders in the insets of Fig.3.4.2. Each subunit contains 7 native cysteines indicated
by a yellow C: C35, C169, C186, C314, C481, C505 and C573. When the CNGA1 channel from bovine
rod is exposed for some minutes to an intracellular medium containing 200 xM Cd?* in the open or
closed state, the cGMP activated current measured after Cd?* removal is not significantly modified,
as shown in Fig.3.4.2.A (see also (Becchetti and Roncaglia, 2000; Nair et al., 2006)). The absence of
any irreversible effect indicates that in the CNGA1 either Cd?* ions cannot coordinate with multiple
cysteines or such coordination does not modify the channel gating. A different behaviour was observed
when a cysteine was introduced at position 414. In fact, as shown in Fig.3.4.2.B, the mutant channel
A414C was irreversibly inhibited by exposure to Cd?* ions in the closed state. The irreversible inhibi-
tion of the mutant channel A414C by 200 uM Cd?* was 96.4 + 2.7 % (N = 7). As shown in Fig.3.4.2.C,
mutant channel A414C was not inhibited by Cd?T in the open state (2.6 £ 2 %, N =4), and neither
the cross-linker M-2-M nor M-4-M inhibited the mutant channel A414C in the open state (data not
shown). These results suggest that in the open state 414C of different subunits are far from each other
and they are also distant from endogenous C481 and C505. Irreversible inhibition (10.1 &+ 2.1 %, N =2)
in the closed state was not observed, even when A414 was substituted by a cysteine in the cysteine free
CNGAT1 channel (Matulef et al., 1999), as shown in Fig.3.4.2.D.

A B
CNGA1 k Ad14C Figure 3.4.2: Effect of Cd*>* on the CNGA1 and
mautant channels. A: effect of 200 uM Cd*>t on the
CNGA1 channel in the closed state. B & C: Effects of
200 pM Cd*t on mutant channel A414C in the closed and
_ - open state respectively. Cd?>t irreversibly inhibits the mu-
tant channel A414C (B red trace) in the closed state but
not in the open state (C green trace). D: effect of 200

_I < ] Y M Cd*t on the mutant Q409Cys— free (mutation in the
0 = cysteine free background) in the closed state. Location of
20mso 10 ms+ endogenous and exogenous cysteines introduced in mutant
Cc D channels are shown superimposed to the presumed topology
A414C élm: A4’I4Ccys_m§'jm: of an individual subunit at the upper right portion of each
\03‘ panel. Currents were measured in the presence of 1mM
T“'“m‘l cGMP before and after a 5 min exposure to 200 M Cd>T.
‘ \\ Current traces were obtained by stepping the membrane
ooy e voltage from 0 mV to 60 mV. Black traces were obtained
l { < < in control conditions, before the application of Cd**, and
s e | oD- | g red traces after the application of Cd*T in the closed state
10 ms™® 10msS - absence of cGMP. Green traces were obtained after the
application of Cd?t in the open state - presence of 1 mM

- After 200 yM Cd*+ ¢G — After 200 yM Cd* cGMP.

The different blocking effect of Cd?* ions in the closed state observed in mutant channels A414C
and A414C.ys—free can be produced either by two different mechanisms or by their combination. Cd*t
inhibition of cysteine mutants in the CNGA1 background can originate from Cd?* coordination with
endogenous cysteines and particularly with C481 and C505 which are known to be part of the C-
linker domain and are involved in the gating machinery of CNGA1 channels (Brown et al., 1998). An
alternative explanation is that the 3-D structure of CNGA1.ys— free channels differs by few A from that of
CNGA1 channels, so that Cd?* can coordinate exogenous cysteines introduced in the CNGA1 channels
but not in the CNGA1ys— free channels. Matulef et al (1999) have shown that tetracaine blocks in a very
similar way both the CNGA1 and CNGA1.ys_free channels, but also that the concentration of CNG
activating half of the maximal current is different in the two channels. Therefore, some physiological

properties of the CNGAl.ys—free are very similar to those of the CNGAL channels, but the degree of
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similarity of the 3D structure of the CNGAI and CNGA1.y,_ free has not been established. Experiments
from our lab show that removal of all cysteines from the CNGA1 channels perturbs the position in space
of several residues and that, for some aminoacids, the relative distance between homologous residues
in different subunits is different by some Angstrom in the two channels (Mazzolini et. al, unpublished
data). Given the major structural role of cysteines in protein structure it is expected that the exact 3D
structure of a native protein is to be different at some extent from its cys-free version. Therefore, we
decided to analyse Cd?* inhibition in mutant channels Q409C and A414C when the least number of
endogenous cysteines. Given their likely proximity to Gln409 and Ala414 we concentrated our attention
to the two endogenous Cys481 and Cys505 and we investigated the mechanism of the irreversible Cd?+
inhibition observed in the closed state of mutant channel A414C by comparing Cd?* inhibition whilst
(C481 was replaced with an alanine and C505 was replaced with a threonine. The inhibition caused by the
exposure to 200 M Cd?* in A414C was not significantly affected in the double mutant A414C&C481A
(Fig.3.4.3.A) but was drastically reduced in the double mutant A414C&C505T (Fig.3.4.3.B).

A414C&CA81A ¢ A414C&C505,, .,
Figure 3.4.3: Closed state inhibition
of mutant channel A414C depends on
- — C505. A, B and C: current recordings
< < of ¢GMP activated current before (black)
| . L & and after (red) application of 200 uM
B 10 ms® D 10 ms® Cd?t in the closed state from mutant chan-
10 nels A414C&C481A, A414C&C505T and
’ A414C& C505.y5_ free TeESPectively. Voltage
A414C&CS05T _o;): commands as ym J;'ig.3.4.2. B: bar plot of
;04 the average block by 200 uM Cd** of mutant
- channels in the closed state. Cd*t was applied
- - 0:2 for 15 min in the CNGA1, A41/C&C505T
” 0.0 \Vo %\V Qé 6&@0?5 and.A/f]4C&C505cys,fTee channels and for
B & P 0(00 S 5 min in the A414C and A414C& C481A mu-
10ms 2 \b(o‘l-r b‘O%’ b(o“’ tant channels.
» WY W
Kl S

As shown in Fig.3.4.3.C, 200 uM Cd?* ions inhibited the mutant channel A414C by 96.4 4+ 2.7
% (N = 7), the double mutant channel A414C&C481A by 86 £+ 6.2 % (N =5) and the mutant channel
A414C&C505.y5— free by 81.3 £ 11.1 % (N =4). In contrast, Cd?T inhibition was drastically reduced and
almost eliminated in the double mutant A414C&C505T (25+ 7.2%, N = 3). We report that in CNGA1
inhibition by the same concentraion of Cd?* is 9.4 + 6 %, (N = 7). These results strongly indicate that
Cd?7 inhibition in the closed state in A414C mutant channels was generated by its coordination with
414C and C505.

The interaction between C505 and exogenous cysteine A414C is within the same subunit

In order to establish whether Cd?* inhibition - observed in the closed state in mutant A414C -
was a consequence of a cross-linkage between two cysteines from the same subunit or from neighboring
subunits, two tandems were constructed: the tandem A414C & C505T+w.t;qndem Where each subunit
contained either an exogenous cysteine at 414 or the native cysteine 505; and the tandem A414C +
C505T tandem Where two subunits have 414C as well as C505. As shown in Fig.3.4.4.A, 200 uM Cd?*
in the absence of cGMP inhibited poorly the tandem construct A414C&C505T+W.tiandem and Cd?F

inhibition was very similar to what observed in the CNGA1 channel.

The tandem A414C&C505T+wW.tandem has a very low expression rate. In 6 macro patches obtained
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Figure 3.4.4: The interaction
between C505 and 414C 1is within
the same subunit. A: current record-
ings before (black) and after (red)

A B PRCS B T @~ application of 200 pM Cd*t in the
A414C&C505T+WT,, .. é@é“ ’ /@a 3 @}gﬁé@ ) \" s closed state from  mutant channel
o @// \\;%;y/ g \\gg/ A414C& C505 T+w. t.tande'rn . Voltage
1.0 commands as in Fig.3.4.2. B: bar plot
200 UM C** 0.8 of the average inhibition by 200 pM
%06 Cd?t in the closed state. 5 min appli-
- r—' 3 cation at the intracellular side of the
<04 membrane patch inhibited the c¢GMP
< 02 activated current by 85 + 8.1% in
ome S 00 A414C+C505Tsandem and by 5.6 + 2%
'\b(o 6\&@ Qé s& n A414C&C505T+w-trandem - The
¥ 0@ %c?’ . representation at the top of each bar
K9 \bp@/\@b shows the cysteines present in each

N L .

o ¥ subunit.

we have seen an intermediate inhibition between A414C and A414C&C505T+wW.trandem- But subjected
to prolonged (ranging between 600 and 900 s) application of Cd?* the current in A414C & C505T
+W.tyandem Was completely inhibited. As summarized in fig.3.4.4.B, while 200 uM Cd?* ions inhibited
almost completely the cGMP activated current in mutant channel A414C; it did not block significantly
the tandem A414C&C505T+W.tandem (5.6 & 2 %, N = 4). In contrast, Cd?>* inhibition in the A414C
+ C505T4ndem channel was intermediate between the inhibition observed in mutant channels A414C
and A414C & C505T+w.ttandem. From these results, we conclude that the inhibition in mutant channel
A414C in the closed state, by Cd?T, is caused by its cross-linkage between C505 and 414C of the same

subunit.
Open state inhibition of mutant channel Q409C

During the SCM analysis in the C-linker region we found that a majority of mutant channels in the
open state were not inhibited by thiol specific reagents. Neither Cd?* nor long cross-linkers such as those
of the M-X-M family produced any significant permanent inhibition of the cGMP activated current. A
remarkable exception was mutant channel Q409C, which was permanently inhibited by 100 pM M-2-M.
But, exposure to 200 uM Cd?* ions in the open state poorly inhibited (16 + 2.1%, N = 4) the cGMP
activated current in mutant channel Q409C (see Fig.3.4.5.A).

In contrast, as shown in Fig.3.4.5.B, when 100 uM M-2-M was added in the open state, the cGMP
activated current recorded from the mutant channel Q409C was permanently inhibited. Inhibition
persisted even after the patch was washed for 10 minutes or longer with a medium not containing thiol
reagents. During the exposure to M-2-M, the cGMP activated current declined within 4 to 6 minutes
with an average time constant of about 255 seconds (panel C). In order to identify the molecular
mechanisms underlying this open state inhibition, we analyzed the effect of 100 pM M-2-M on mutant
channel Q409C when C505 was replaced with a threonine. As shown in Fig.3.4.5.D, the compound M-
2-M did not block the double mutant channel Q409C&C505T (10 + 7 %, N =4). Therefore, inhibition
of Q409C in the open state by the compound M-2-M is caused by its cross-linking to 409C and C505.
In order to establish whether the inhibition was a consequence of cross-linkage of two cysteines from
the same subunit or from neighboring subunits, M-2-M inhibition in the open state was analyzed in the
tandem Q409C&C505T+w.trgndem. In this tandem construct, each subunit contained either 409C or
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C505 and this demonstrates that the cross-linkage between 409C and the C505 can occur only between
different subunits. As shown in Fig.3.4.5.E, M-2-M in the open state did not block the tandem construct
Q409C&C505T+wW .t tandem -

A B
Q409C Q409C
P————my .
‘ ‘ Figure 3.4.5: 409C is inhibited
o - by M-2-M in the open state. A: Cur-
| %_ rent recordings obtained in the pres-
=}

ence of ImM c¢GMP before (black) and
10 ms—= 10 ms after (green) exposure to 200 pu M

C Cd?t in the open state. B: Cur-
— +cG rent recordings obtained in the pres-
- +M-2-M ence of 1 mM cGMP before (black)
and after (blue) exposure to M-2-M in

the open state.C: Plot of time course

< of inhibition by M-2-M in the open
Q-[ n state.  Recordings done every 15 s
§ ' e : 41 for 100 ms at +60 mV holding po-
100 ms 15 s ! 458” 120s ! tential. D and E: Effect of M-2-M
in the open state on Q409C& C505T

&
TN
¥

D F and Q409C& C505T+w.tyandem chan-
Q409C&CS05T 9N nels respectively. Colors of current
— €0
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< 0.8 Fig.3.4.2. F: bar plot of average inhi-
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tandem inhibited the cGMP activated current
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As summarized in Fig.3.4.5.F, 100 pM M-2-M in the open state inhibited 71 + 6 % (N =5) of
the cGMP activated current in mutant channel Q409C, but only 10 & 7 % (N = 4) in the double
mutant Q409C&C505T and 17 4+ 10.5% (N = 4) in the tandem construct Q409C&C505T+wW.t.tandem-
Therefore, inhibition of mutant channel Q409C by the compound M-2-M in the open state is caused by
the cross-linkage of C505 with 409C of the same subunit.

Cd?* inhibition of mutant channel Q409C in the closed state

Mutant channel Q409C was permanently inhibited by the exposure to 200 uM Cd?* ions also in
the closed state, as shown in Fig.3.4.6.A. The irreversible inhibition observed in the closed state was
not seen when Q409 was substituted with a cysteine in the CNGAlcys— free (see Fig.3.4.6.B).

To understand the molecular mechanisms underlying Cd?* inhibition in the closed state in mutant
channel Q409C, we analyzed inhibition when C481 was replaced with an alanine and C505 was replaced
with a threonine. As shown in Fig.3.4.6.C and D, exposure to 200 M Cd?* for 5 minutes inhibited the
c¢GMP activated current in the double mutant channels Q409C&C481A and Q409C&C505T between
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30 and 50 % . When membrane patches were exposed to 200 pM Cd?* for at least 15 minutes an
almost complete blockage of the cGMP activated current was observed ( see traces indicated by arrows
in Fig.3.4.6.C and D).

A

B Cc
Q409C Q409C.e  Q409C&C481A  Q409C&C505T Figure 3.4.6: Closed state inhi-

bition of Q409C by Cd*t depends
T = = on C505 and C481. A, B, C and D:
< | 3 1 3 current recordings of cGMP activated
10msS 10ms§ 10ms§ current before (black) and after (red)
E F closed state application of 200 pM
1.0 T,,= 4097 s 1. 7,,=801.8 s Cd?t on mutant channels Q409C,
Q409Ccys_ free, Q409C&C481A and
Q409C& C505T respectively. Volt-
506 06 age commands as in Fig.3.4.2. E
=04 SEO_4 and F:time course of inhibition by
100 and 200 puM Cd?* respectively
02 02 on Q409C& C505T mutant channel.
The solid lines are fit to the equa-
tion y = exp(—7/t). The value of
7 for 100 and 200 uM Cd*>T was
4097 s and 801 s respectively. G:
Bar diagram comparing average in-
hibition by 100 and 200 pM Cd?>t
in constructs containing a different
number of endogenous cysteines C481
and C505 and exogenous 409C. The
representation at the top of each bar
shows the cysteines present in each
subunit. The grey bars are effects
after 200 uM Cd*>t and the blacks
are after 100 pM. Data are shown as
meanxSD.

E

In order to understand the molecular mechanisms leading to Cd?* inhibition in mutant channel
Q409C we engineered the tandem constructs Q409C+C505T4ndem and Q409C&C505T+Q409Cundem -
In the tandem construct Q409C+C505T 4ndem, only two subunits have a cysteine residue at positions
409 and 505. This construct did not give rise to functional channels and therefore we could not record any
c¢GMP activated current. The tandem construct Q409C&C505T4+Q409C4ndem has a cysteine residue

at position 409 in all the four subunits, but the native C505 is in only two subunits.

In the tandem construct Q409C&C505T+W.tiqndem Cd2t inhibition was drastically reduced and
was comparable to that observed in the CNGA1 channels. In this construct, the four native C481
are present, and the observed small Cd?* inhibition indicates a minor role of the native C481 in the
inhibition. In contrast, in the tandem Q409C&C505T+Q409C qndem Cd?t inhibition was very similar
to that observed in mutant channel Q409C.

Fig.3.4.6.G compares inhibition by 200 uM Cd?* in the closed state (grey bars) in different con-
structs: the largest inhibition (84.48 £+ 14 %, N = 5) was observed in mutant channel Q409C, where the
exogenous cysteine at position 409 is present in all four subunits. A very similar inhibition (79.2 £ 6.6 %,
N = 4) was observed in the tandem construct Q409C&C505T+Q409C;4ndem Where the native C505 was
replaced with a threonine in two subunits. In the double mutants Q409C&C481A and Q409C&C505T,
Cd?* inhibition following an exposure of 5 minutes was reduced to 59.6 + 6.4 % (N=4) and to 41 + 3.2
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% (N = 4) respectively(black bars) but it was almost complete for exposures longer than 15 minutes.
Cd?7 inhibition was very small (2.3 4 2.1 %, N = 4) in the tandem construct Q409C&C505T+W.t¢andem
where only two subunits have an exogenous cysteine at position 409. A similar negligible Cd?* inhibi-
tion (9.4 £+ 6 %, N = 7) was observed in the CNGA1 channel. Cd*" inhibition is significantly slower in
the double mutants Q409C&C481A and Q409C&C505 and was abolished but in the tandem construct
Q409C&C505T+W.teandem-

These results show that Cd?* inhibition in mutant channel Q409C cannot be ascribed to Cd?*t
coordination between the exogenous cysteine and one native cysteine in the same subunit as in mutant
channel A414C. Therefore it is possible that inhibition in mutant channel Q409C is mediated also by
Cd?* coordination to cysteines of different subunits. Taken together the results shown in Fig.3.4.6
indicate that Cd?* inhibition in the closed state observed in mutant channel Q409C is caused not only
by the coordination of one or more Cd?t ions with 409C and C481 and C505 of the same subunit
but also with 409C of other subunits. In mutant channel Q409Cys_ free, Cd?T ions do not cause any

inhibition because of the absence of the two cysteines at position 481 and 505.
Discussion:

In the present manuscript we have investigated the relative distance between specific residues in the
C-linker of CNGA1 channels. These interactions were analyzed by introducing cysteines into selected
positions and by studying the effect of thiol specific reagents such as Cd?>* and different MTS cross-
linkers (Loo and Clarke, 2001). We found that mutant channels Q409C and A414C are irreversibly
inhibited in the closed state by 200 uM Cd?* added at the intracellular side of the membrane. In
contrast, in the presence of 1 mM c¢GMP, these two channels are not inhibited by Cd?* ions, but the
mutant channel Q409C is powerfully inhibited by the cross-linker reagent M-2-M. In what follows we
will discuss the molecular mechanisms underlying these effects and the architecture of the C-linker and
CNB domain in CNGA1 channels.

Cd*t and M-2-M inhibition in mutant channels Q409C and A414C

In the closed state 200 uM Cd?* powerfully inhibited mutant channels Q409C and A414C (Fig.3.4.1.B
& 4A). Inhibition of mutant channel A414C was not affected by the replacement of C481 with an ala-
nine, but was abolished when C505 was replaced with a threonine (Fig.3.4.4), indicating that Cd**
inhibition can be ascribed to its coordination with A414C to C505. Cd?T inhibition was also abolished
in the tandem construct A414C&C505T+w.t;qndem Where each subunit had only one cysteine of the
pair at position 414 and 505. Therefore, Cd?* inhibition can be ascribed to its coordination with C505
and with 414C of the same subunit.

In contrast, Cd?* inhibition in the closed state in mutant channel Q409C cannot be ascribed to
a simple mechanism as for mutant channel A414C. As shown in Fig.3.4.5 Cd?* inhibition was reduced
but not abolished in double mutant channels Q409C&C481A and Q409C&C505T (Fig.3.4.5). The
comparison of Cd?T inhibition in different constructs, shown in Fig.3.4.6, suggested the possibility that
inhibition is also mediated by its coordination with cysteines in different subunits. Taken together, all

these results suggest that Cd?* inhibition in mutant channel Q409C is mediated by the coordination of
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409C with native C481, C505 and with 409C of different subunits.

In the open state Cd?* inhibition was not observed either in Q409C or in A414C mutant channels.
In the open state, the cross-linker reagent M-2-M (Loo and Clarke, 2001) powerfully inhibited the mutant
channel Q409C but not the mutant channel A414C (Fig.3.4.4.B). M-2-M inhibition was abolished in the
double mutant channelQ409C&C505T and in the tandem construct Q409C&C505T+ w.tqndem. These
results indicate that M-2-M inhibition in the open state is mediated by the cross-linkage between 409C
and C505 of the same subunit.

These results show that in the closed state the residue at position 414 is at a distance between 4
and 10 A from C505 of the same subunit, so that one Cd?* ion can coordinate C505 and 414C of the
same subunit. In the open state, C505 moves to a distance between 10.5 and 12.2 A toward residue
Q409 of the same subunit so that M-2-M - but not Cd?*- can cross-link them; C505 has been previously
proved to be accessible to MTSEA in the closed state but not in the open state (Sun et al., 1996; Brown
et al., 1998; Matulef et al., 1999); C481 moves toward A461 during channel opening (Islas and Zagotta,
2006). All these results indicate a complex molecular rearrangement occurring in the CNB domain and

C-linker during gating.
Possible 3-D structure of the C-linker and cyclic nucleotide binding domain

Figure 3.4.7:  Possible struc-
tures of the C-linker. A: ho-
mology model of the CNGA1 sub-
unit using HCN2 (1Q3E) as a tem-
plate. Helices are labelled alphabet-
ically, strands are labelled numeri-
cally. The model shows that C505
and C481 are very far from either
Q409 or A414. In contrast, R431
and D502 are close to each other and
form a salt bridge, which is present
also in the template and is very well
conserved in the CNGAI1-4 family.
Structural models were built using the
Modeller 6.2 program (Sali and Blun-
dell, 1993). B: Homology model Te-
strained according to the experimental
observations, where A414 and Q409
are near C481 and C505 as shown in
the present manuscript.

HCN2 and CNGA1 channels share a sequence identity of 35 % in the CNB domain and C-linker
region and could be expected to have the same 3D architecture. Indeed R590 and E617 forming a salt
bridge in HCN2 channels (Zagotta et al 2003) and the homologous R431 and D502 in CNGA1 channels
interact almost identically. In addition, amino acids which were indicated to be important for the HCN2
function, like K472, E502 and D542 (Craven and Zagotta, 2004) are very well conserved in the CNGA1-4
family. Nonetheless, an homology model of the C-linker and CNB domain of the CNGA1 channel based
on the HCN2 template (see Fig.3.4.7.A) fail to explain the experimental results here described: in fact,
in this homology model, the distance between the C, of C481 and Q409 is longer than 40.8 A and the
distance between the C, of C505 and A414 is more than 29.3 A: these distances are not in agreement

with the estimates obtained by the present investigation.
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The 3D structure of the CNB domains from six different proteins is available in the Protein Data
Bank (Berman et al., 2000): the CNB domain of CAP (Passner et al., 2000), KAP0 (Wu et al., 2004b),
1RL3 (Wu et al., 2004a), KAP3 (Diller et al., 2001), HCN2 (Zagotta et al., 2003), M. loti CNB domain
mutant MlotiK1 (Clayton et al., 2004). These proteins share a sequence homology of 40 % to 60
% and the folding of their CNB domains is almost identical, but the overall protein architecture is
very different. These considerations indicate that the folding of individual CNB domain is likely to be
conserved among all or most of CNB proteins but the assembly of different subunits may be different.
Therefore, differences between the 3D structure of HCN2 and CNGA1 channels are likely to reside in the
structure of the C-linker domain and/or in the orientation of the single CNB domain subunits. Indeed,
as shown in Fig.3.4.7.B, a rotation of the CNB domain around D502 towards the C-linker, can displace
C481 and C505 near Q409 and A414 so to satisfy the obtained experimental constraints. The exact
molecular rearrangements underlying the transition from the closed to the open state will be determined

by the combination of future structural and electrophysiological experiments.
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Abstract:

Conformational changes occurring during channel gating in the S6 domain of bovine CNGA1
channels were investigated. All residues from Phe375 to Val424 were mutated one by one to a cysteine in
the CNGA1 background and at selected locations also in the CNGA1.ys_ free background. Modifications
induced by intracellular Cd?* or cross-linkers of different length in the presence and absence of 1 mM
c¢GMP were studied. No Cd?* inhibition was observed in mutant channels from F375C to I390C, with
the exception of mutant channel F380C which was inhibited in the closed state and potentiated in the
open state. In mutant channel V391C Cd?* ions inhibited reversibly CNGA1 channels with a half
inhibition of 32 and 600 nM in the open and closed state respectively. Cd?* did not block in the open
state any of the mutant channels from N400C to I1412C. In the closed state Cd?T ions inhibited mutant
channels A406C and Q409C but not when cysteine was introduced in the CNGA1.ys_ free background.
However the cross-linker reagent M-4-M inhibited in the closed - and not in the open - state mutant
channels A406C.ys— free and Q409C cys— free- Cd?* ions inhibited in the open state mutant channels
D413C and Y418C constructed both in CNGA1 and CNGA1.ys— ¢ree background. Our results suggest
that: i - for residues from Phe375 to approximately Asn406, the 3D structure of the KcsA is a good
model for the spatial orientation of the S6 domains of the CNGA1 channel in the closed state; ii- in the
open state residues from Val391 to Asn406 in homologous subunits move far apart as expected from the
gating in KT channels; iii- in contrast, residues from Asp413 to Tyr418 in homologous subunits becomes

closer in the open state.
Introduction:

Sensory transduction in vertebrate photoreceptors and in olfactory sensory neurons is mediated
by cyclic nucleotide gated (CNG) Channels (Craven and Zagotta, 2006; Kaupp and Seifert, 2002; Biel
et al., 1999; Zagotta and Siegelbaum, 1996; Kaupp et al., 1989; Nakamura and Gold, 1987; Fesenko et
al., 1985; Zimmerman et al., 1985). CNG channels form a tetrameric assembly of several homologous
subunits(Craven and Zagotta, 2006; Zheng et al., 2002; Zhong et al., 2002; Shammat and Gordon,
1999; Korschen et al., 1995; Chen et al., 1994), usually referred to as CNGA1-CNGA4, CNGB1 and
CNGB3 (Bradley et al., 2001). The primary amino acid sequence of CNGA1 channel from bovine rods
is composed of 690 residues (Kaupp et al., 1989) each subunit encoding for a cyclic nucleotide-binding
(CNB) domain composed of about 125 amino acids in the cytoplasmic C terminal end (Zagotta and
Siegelbaum, 1996; Kaupp et al., 1989). The amino acid sequence of CNG and K channels share a
significant homology (Biel et al., 1999; Zagotta and Siegelbaum, 1996) and it has been hypothesized
that CNG and KT channels share the same 3D topology and gating mechanism. The 3D structure of
several KT channels has been solved recently: the KcsA in the closed state (Doyle et al., 1998), the
MthK in the open state(Jiang et al., 2002a; Jiang et al., 2002b), the KirBac 1.1 (Kuo et al., 2003)
and the mammalian Kv1.2 (Long et al., 2005). In all these KT channels the pore domain includes
four identical subunits comprising two transmembrane helices, S5 and S6 (TM1 and TM2 in KcsA and
MthK channels) and a loop forming the filter region and an additional small helix, not spanning the
lipid membrane referred as the P-helix. In KT channels, the major structural difference on passing
from the closed to the open conformation is the bending by 30° of the S6 helix towards the lipid phase,
around an alanine hinge (Jiang et al., 2002a; Jiang et al., 2002b)
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The analysis of residue accessibility in the pore of CNG channels, based on Cysteine Scanning
Mutagenesis (CSM) (Karlin and Akabas, 1998; Krovetz et al., 1997; Benitah et al., 1996; Kurtz et
al., 1995; Akabas et al., 1992), has shown that CNG and Kt channels share the same gross topology
(Becchetti et al., 1999). A similar analysis performed in the S6 domain of CNGA1 channels from Thr389
to Ser399 (Flynn and Zagotta, 2003; Flynn and Zagotta, 2001) suggested that also in CNG channels
the S6 domain has a helical configuration, possibly crossing at a hypothetical constriction, located
between residue Val391 and Ser399. On the basis of their results Flynn & Zagotta (2003) proposed
that the closed and open conformations of the CNGA1 channels are similar to the KecsA and MthK 3D
structure respectively. A more recent report based on a similar CSM and the analysis of effects of the
oxidizing agent CuP on the dose response to cGMP concluded that residues from Gln417 to Val424 in
neighbouring subunits become closer in the open state and are far from each other in the closed state
(Hua and Gordon, 2005). Therefore homologous residues from Thr389 to Ser399 in different subunits
are closer to each other in the closed state and become far apart in the open state, but the opposite

conclusion was drawn for residues from Gln417 to Val424.

These CSM analysis were performed in a CNGA1 background were all native cysteines were re-
moved (Matulef et al., 1999), which will be referred as CNGAl.ys— free channel. When an exogenous
cysteine is introduced in the CNGAl.ys— free channel any effect caused by compounds reacting with
thiol groups can be safely assumed to be mediated by the exogenous cysteines. The use of CSM using
the CNGAl.ys— free channel is appropriate to draw conclusions on the structure of the CNGA1 channel
only if the molecular structure of CNGA1 and CNGA1lys—free channel are the same or very similar. A
recent comparison of CNGAL and CNGA1 ys— free channels has evidentiated several differences and has
shown that homologous residues at position 406 in the CNGAl.ys_ free are approximately 3-4 A more
distant than in the CNGA1 channel (Mazzolini et al 2007, submitted). Therefore CSM based on the
use of CNGA1l.ys—free background does not necessarily provide correct information on the 3D structure

and chemical interactions occurring in the CNGA1 channel.

CNG and KT channels have a significant homology also with the family of Hyperpolarization -
Activated and Cyclic Nucleotide - gated channels (HCN)(Anselmi et al., 2007) composed by four main
isoforms called HCN1, HCN2, HCN3 and HCN4 (Hofmann et al., 2005). All these channels open
when the membrane potential is hyperpolarized and their activation properties can be modulated to
some extent by cyclic nucleotides. The 3-D structure of murine HCN2 C-linker and CNB domains has
been recently solved (Zagotta et al., 2003). The sequence alignment of these domains in HCN2 and
bovine CNGA1 channels indicates a sequence identity of 32 %. If degree of sequence identity suggests
a common 3D architecture among HCN2 and CNG channels some other observations argue differently.
At the moment the 3D structure of CNB domains from several different proteins is available in Protein
Data Bank (Berman et al., 2000). These proteins share a sequence homology of 40%-60% and the
folding of their CNB domain is almost identical, but the overall protein architecture is very different.
Therefore it is not obvious whether the C-linker of the HCN2 channel has the same 3D structure of the
C-linker of CNGA1 channels either in the open or closed configuration.

The purpose of the present manuscript is to obtain experimental information on the spatial rear-
rangement of amino acids in the S6 helix and in the initial portion of the C-linker up to Val424 during

channel gating. In the present investigation we have repeated a CSM of the entire S6 domain from
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Phe375 to Val424 introducing cysteines both in the CNGA1 and CNGA1 .y, free channels with the
specific aim to examine whether the KcsA and the MthK channels are good models for the closed and
open structure of the CNGA1 channel respectively. The 50 residues from Phe375 to Val424 include the
entire S6 domain and the initial segment of the C-linker, covering and extending previous analysis of
the same domains (Hua and Gordon, 2005; Flynn and Zagotta, 2003; Flynn and Zagotta, 2001; John-
son and Zagotta, 2001). The CSM of these 50 residues was complete in the CNGA1 background and
cysteines were introduced in selected positions of the CNGAl.ys—free. The modifications induced by
intracellular Cd?* (Rothberg et al., 2003; Mazzolini et al., 2002; Rothberg et al., 2002) were analyzed
in all these mutant channels in the open and closed state, and the effect of other sulfhydryl reagents,
such as MTSET and MTS cross-linkers (Loo and Clarke, 2001) was analyzed on selected mutants.

Materials and Methods:

Molecular Biology

The clone of the BROD CNGA1 channel, consisting of 690 residues, was mutated using the
QuickChange Site-Directed Mutagenesis kit (Stratagene). CNGA1 and different mutant RNAs were
synthesized in vitro by using the mCAP RNA Capping kit (Stratagene), and were subsequently se-
quenced with the DNA sequencer LI-COR (4000L), to verify that the sequence was correct. Cysteines
were introduced in the stretch from Phe375 to Val424 in the CNGA1 channel.

Oocyte preparation and chemicals

The CNGA1 or mutant channel cRNAs were injected into Xenopus laevis oocytes (“Rettili” Dr.
Rainer Schneider via Corridoni, 3 - 21100 Varese - Italy). Oocytes were prepared as previously described
(Nizzari et al., 1993). Injected eggs were maintained at 19°C in a Barth solution supplemented with 50
ug/ml gentamycin sulphate and containing (in mM): 88 NaCl, 1 KCl, 0.82 MgSQy, 0.33 Ca(NOs)2, 0.41
CaCly, 2.4 NaHCOg, 5 TRIS-HC], pH 7.4 (buffered with NaOH). During the experiments, oocytes were
kept in a Ringer solution containing (in mM): 150 NaCl, 2.5 KCI, 1 CaCly, 1.6 MgCly, 10 HEPES-NaOH,
pH 7.4 (buffered with NaOH). The MTS compounds were purchased from Toronto Research Chemicals
(Ontario, Canada). All the other chemicals were from Sigma Chemicals (St. Louis, MO, USA).

Recording apparatus

c¢GMP-gated currents from excised patches were recorded 1-5 days after RNA injection with a
patch-clamp amplifier (Axopatch 200B, Axon Instruments Inc., Foster City, CA, USA) at room tem-
perature (20-24°C). The perfusion system was as previously described (Sesti et al., 1995) and allowed
a complete solution change in less than 1 s. Borosilicate glass pipettes had resistances of 3-10 M in
symmetrical standard solution. The current traces used for obtaining steady-state current-voltage rela-
tions were the difference between currents in the presence and absence of cGMP. The patch potential
was usually stepped from 0 to & 60 mV. Currents were low-pass filtered at 2 kHz and acquired on-line

at 5 kHz. Clampex 8.0, Clampfit and Matlab were used for data acquisition and analysis.
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Application of sulfhydryl-specific reagents

To test the effect of sulfhydryl-specific reagents on the CNG current, Cd?*, MTSEA, MTSET,
MTSPT, MTSPtrEA and cross-linkers of the MTS-X-MTS family were applied from the intra cellu-
lar side of the membrane. In the inside-out patch-clamp configuration, soon after patch excision, the
cytoplasmic face of the plasma membrane was perfused with the same solution filling the pipette to
measure the leak current and then by adding 1 mM cGMP to it to measure the current through the
activated channel. The Cd?* effect was tested by perfusing the inner side of the patch with a standard
solution without EDTA (to avoid partial Cd?* chelation), supplemented with a CdCly concentration
ranging from 10 nM to 1 mM for variable exposure times ranging from 10 seconds to 5 minutes. The
effect of MTS reagents was tested at a concentration of 2.5 mM 100 uM for MTSEA MTSET, MTSPT
and MTS-PtrEA in standard solution with EDTA. Cross-linker compounds were dissolved in dimethyl
sulfoxide (DMSO) and diluted in standard solution to a final concentration of 100 M. The final con-
centration of DMSO was 0.1%. We checked that this concentration of DMSO did not affect the cGMP
activated current. Solutions containing cross-linker compounds were prepared immediately before the
application (typically <5 min) to prevent degradation, as these reagents dissociate rapidly in aqueous
solution. They were not used for more then 45 minutes after dissolving in aqueous solution. To study
the effect of the probe in the closed state, patches were exposed to the appropriate reagent in the absence
of cGMP. After washout, cGMP was applied to measure the residual current. To study the effect in
the open state, sulthydryl-specific reagents were applied in the presence of 1 mM ¢GMP. All effects of
sulthydryl reagents here described were obtained after washing out reagents and in the presence of a

steady cGMP gated current.

MTS reagents, MTS cross-linkers and Cd?T modify cysteine mutants by different mechanisms
and the comparison of their effect are used as a tool for the investigation of conformational changes
during channel gating. One molecule of MTSEA, MTSET, MTSPT or MTS-PtrEA forms a covalent
bond with the thiol group of a single cysteine. (Karlin and Akabas, 1998; Akabas et al., 1992) The
MTS cross-linkers bears reactive S atoms at both ends thus forms covalent bond with two cysteines
from different subunits (Loo and Clarke, 2001) while one Cd?* ion usually binds to two or even more
cysteines (Loussouarn et al., 2000; Holmgren et al., 1998; Benitah et al., 1996). Inspection of the 3D
structure of metallothioneins deposited in the Protein Data Bank indicates that distances between the
C, of two cysteines coordinating the same cadmium ion ranges between 5 and 10 A(Giorgetti et al.,
2005; Maroney, 1999; Ermler et al., 1998; Krovetz et al., 1997). Given thermal fluctuations of side chains
and of backbone C , the distance between the C, of two cysteines able to coordinate one Cd?* ion varies
between 8 and 12 A(Careaga and Falke, 1992; Krovetz et al., 1997; Ermler et al., 1998; Maroney, 1999).

Determination of Cd’T action on exogenous cysteines

As already observed, Cd?* ions have multiple effects on the CNGA1 channel (Becchetti & Roncaglia,
2000): micromolar amounts of Cd?* potentiate the CNGA1 channel reversibly. This potentiation is
similar to that observed in the presence of Ni?* ions, known to be mediated by His420 in the C-linker
(Gordon and Zagotta, 1995c). At higher concentrations, between 10 and 100 uM, Cd?* ions block in
a reversible and voltage dependent way the CNGA1 channel presumably by binding to Glu363 in the
pore region (Sesti et al., 1995; Root and MacKinnon, 1993). Fig.3.5.1.A illustrates the effect of 10 and
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100 M Cd?* on the CNGA1 channel and provides a rationale for identifying Cd?* effects caused by
its binding to exogenous cysteines. Brief voltage pulses at -100 and 4100 mV were alternated, while
changing the medium bathing the intracellular side of the membrane patch. Exposures to 10 and 100
uM Cd?T in the absence of cGMP did not cause any significant alteration of the cGMP activated cur-
rent measured after removing Cd?* ions and adding cGMP. As shown in Fig.3.5.1.A and B, when Cd?*
ions were added in the presence of 1 mM cGMP, the cGMP activated current was reduced in a voltage
dependent way, but remained almost unaltered at negative voltages such as -80 or -100 mV (see also
Becchetti & Roncaglia, 2000).
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Identical results were obtained with a cysteine free CNGAL channel (data not shown), kindly
provided to us by William Zagotta (Matulef et al 1999). Cd?* caused a voltage dependent block of the
c¢GMP activated current of the cysteine free CNGA1 channel, which was entirely reversible upon Cd?*
removal from the bathing medium. As the effect of 10 and 100 uM Cd 2% ions on the CNGA1 and its

cysteine free construct was the same, exogenous cysteines were introduced in the CNGA1 channel.

These observations provide a rational to distinguish the action of Cd?T ions mediated by the
binding to exogenously introduced cysteines: any significant inhibition (larger than 15 %) observed
after Cd?* removal from the bathing medium is caused by a binding to exogenous cysteines. Inhibition
of the cGMP current observed in the presence of Cd?T at very negative voltages (such as -80 and -100
mV) is also ascribed to an action on exogenous cysteines. The first criterium will be used to establish the
state dependency of Cd?* inhibition and the second criterium will be used to determine rate constants

of inhibition and recovery from inhibition (Fig.3.5.3).
Determination of time course of Cd*T inhibition

The time course of Cd?* inhibition of selected mutant channels (N402, E407C, Q409C and A414C)
was determined by applying 100 and 200 uM of the reagent in the closed state (i.e. in the absence of
c¢GMP) for variable time periods and by measuring the current observed after Cd removal in the presence
of 1 mM c¢cGMP. Fig.3.5.1.C show data collected from four patches containing the mutant channel N402C
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exposed for variable times to 100 uM Cd?*. Data were normalized to the cGMP current activated at
+ 60 mV before Cd?* treatment. The solid line through the experimental points was obtained from
the equation y = exp(—7/t) where 7 is the time constant of Cd?* inhibition. The time constant of
Cd?* inhibition in the closed state was 250 + 12, 183 4 15, 394.1 + 18 and 188 s for mutant channels
N402C, E407C, Q409C and A414C respectively. Therefore we analysed determined Cd?* inhibition
by measuring the residual cGMP activated current after exposure to 100 pM for 7 minutes. Cross-
linker compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted in standard solution to
a final concentration of 100 uM. The final concentration of DMSO was 0.1%. We checked that this
concentration of DMSO did not affect the cGMP activated current. Solutions containing cross-linker
compounds were prepared immediately before the application (typically <5 min) to prevent degradation,
as these reagents dissociate rapidly in aqueous solution. They were never used for more then 45 minutes
after dissolving in aqueous solution. The cross-linkers of different length were used to determine the

distance between exogenously introduced cysteines (Ren et al., 2006; Loo and Clarke, 2001).
Estimation of the distance between C, of coordinating cysteines

The distance between the C, of cysteines coordinating Cd?* ions or cross-linkers such as M-2-M
and M-4-M was estimated by inspection of the 3D structure of proteins contained in the Protein Data
Bank (PDB) and by molecular dynamical simulations, as described in Mazzolini et al 2007. If Cd?*
inhibits the channel by coordinating to two cysteines, the distance between the C, of coordinating
cysteines is <10.5 A. If channel inhibition is observed with M-2-M but not Cd2?* then the distance
between the C,, of coordinating cysteines is between 10 and 13 A. Similarly, if the inhibition is caused
by M-4-M and not by Cd?* and M-2-M, the distance of the C,, of coordinating cysteines is between 12
and 14.5 A.

Results:

The structures of the KcsA (Zhou et al., 2001; Doyle et al., 1998) and MthK channels (Jiang et
al., 2002a; Jiang et al., 2002b) are possible templates for the closed and open state of the S6 domain
respectively (Flynn and Zagotta, 2003). Fig.3.5.2.A illustrates the sequence alignment between residues
from proline 84 to histidine 124 of the KesA channel and from Pro367 to Met419 of the CNGA1 channel.
Residues of the KesA channel form an helix (indicated by the blue bar in A) from Gly89 to the final
His124. The structure of the KcsA terminates about 15 residues before the termination of the considered
stretch of residues in the CNGA1 channel.

The S6 domains of the KcsA channel form an inverted tepee (Doyle et al., 1998) with an angle
of about 30° relative to the central axis perpendicular to the membrane and channel pore (see a side
view and a top view shown in D and G respectively). According to the sequence alignment shown in
Fig.3.5.2.A and the homology modeling, the distance between opposite C, of Val391, Gly395 and Ser399
of the CNGA1 is expected to be around 11, 9 and 13 A respectively. Fig.3.5.2.B illustrates the sequence
alignment between residues from proline 67 to leucine 98 of the MthK channel and the corresponding
residues of the CNGA1 channel. The orientation in space of the initial portion of the S6 domains of the
MthK channel is similar to that of KcsA channel, but helices bend towards the lipid phase by about
30° (see a side and a top view in E and F respectively) around Gly83 - indicated by a green ball in
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panels D and F - forming the hinge - labeled in yellow in panels A,B and C -. According to the sequence
alignment of Fig.3.5.2.B and the homology modeling the distance between opposite C,, of Val391 and
Gly395 of the CNGAL is expected to be around 24 and 27 A respectively.

If the KcsA channel and MthK channel are appropriate templates for the closed and open state of
CNGAT1 channels, residues downstream the hinge - such as Val391 and Gly395 - will significantly change
their 3D location. This possibility will be tested by analyzing whether Cd?* modification in cysteine
mutant channels, such as V391C and G395C is state dependent.

KosA  (83)  PVTLWGRCVAVVVMVAGITSFGLVTAALATWEVGREQERRGH (124)
CNGA1 (367) PVRDSEYFFVVADFLIGVLIFATIVGNIGSMISNMNAARAEFQARIDATKQYMEFRNVS (425)
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Figure 3.5.2: Sequence alignments between the S6 domain of CNGA1 and three putative templates: A: with the
KesA (Kt channel from Streptomyces lividans) a possible template for the closed configuration, B: with the MthK (Kt
channel from Methanobacterium thermoautotrophicum) a possible template for the open configuration; C: with the C-
linker of mHCNZ2 (hyperpolarization activated cyclic nucleotide gated channel isoform 2 ) a possible template for the
open configuration of the C-terminal portion of the S6 domain. Blue regions show known a-helices in the templates.
Asterisks and colons indicate identities and conservative mutations respectively. Yellow indicates the hinge of K channels
composed by a glycine (underlined residues and indicated in green in A to E ) and five residues downstream up to a
glycine or an alanine (shown in bold in A, B and C). 1,2 and 3 in red indicate residues V391, G395 and S399. 1 and
2 in blue indicate the beginning and end of the first o heliz (A’ )of the C-linker of the mHCNZ2 channel. D, E and
F': side views of the crystal structure of the KcsA, MthK and C-linker of the mHCNZ2 channel respectively. Residues
indicated by red, green and blue symbols in A, B and C are indicated in D, E and F in the same way. In D and E only
two opposing subunits are shown. In F only one subunit is shown. G, H and I: top views of the three crystal structures.
Only the a helices of the four subunits are shown. The direction of the helices of the KcsA channel in a plane parallel
to the membrane is shown in red. The direction of the final portion of o helices of the MthK channel in a plane parallel
to the membrane is shown in blue. Observe the lateral bending in E and the anticlockwise rotation by about 30° in H of
the MthK channel relative to the 3D structure of KcsA channel.

Fig.3.5.2.C illustrates the sequence alignment between residues from Pro408 to Pro466 of the HCN2
channel and the corresponding residues of the CNGA1 channel. The 3D structure of the C-linker of the
mHCN2 channel has been solved in the presence of a cyclic nucleotide (cAMP and/or cGMP) bound to
its binding domain. We have shown that the 3D structure of the C-linker of mHCN2 and of the CNGA1
channels are not identical ( Mazzolini et al 2007), but the two channels could share several architectural
features, such as an helical structure with some kinks connecting the S6 transmembrane helices to the
CNB domain. Indeed, the N-terminal segment, from Asp443 to Lys463 of the mHCN2 channel and the
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N-terminal part of C-linker region (residues from Asn402 to Ser425) of CNGAL1 the channel could be
similarly organized as alpha helices, possibly with different spatial orientations. Indeed, in this region
there is a high sequence identity (7/24 identical residues), complemented with several conservative
mutations (5/24 see Fig.3.5.2.C), between HCN2 and CNGA1 channels.

A comparison of the 3D structure of the KecsA and MthK channels indicate not only a bending
towards the lipid phase of lower portion of the terminal « helices (best seen comparing the side views
shown in panels D and E) but a concomitant anticlockwise rotation when seen from the top as shown
in panels G and H respectively. As indicated by the red and blue arrows, the terminal portion of the «
helices not only bends towards the lipid phase but also rotates anticlockwise by about 30° when observed

from the top.

The mRNA of wild type and mutant channels were injected in Xenopus laevis oocytes and the
electrophysiological properties of these channels were analyzed in excised membrane patches in the
inside-out configuration. Currents flowing through CNG channels were measured under voltage-clamp
conditions, while the composition of the medium bathing the intracellular side of the membrane was
changed. The experiments here described were performed in the CNGA1 channel containing endogenous
cysteines. Cysteines were also introduced at selected locations of the CNGA1gys— free channel (Matulef
et al., 1999)

Cd?t inhibition in mutant V391C

If the KcsA structure is a good template for the closed state and the MthK structure for the
open state, a strong state dependent Cd?* inhibition in mutant channels V391C, G395C and S399C is

expected.
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When 10 or 100 M Cd 2+ was added to the medium bathing the intracellular side of the membrane
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in the presence of 1 mM c¢GMP, the cGMP activated current in mutant channel V391C at -100 mV
was quickly suppressed, in contrast with what observed in the CNGA1 channel (see Fig.3.5.1.A and B).
This powerful inhibition at very negative voltage indicates a binding to the exogenous cysteines. Cd?*
inhibition in mutant channel V391C was reversible and therefore it was possible to study the inhibition
rate of different amounts of Cd?* ions in the same patch. As shown in Fig.3.5.3.A Cd?T concentrations
of 10 uM inhibited the cGMP activated current with a rate comparable with that of the solution change,
occurring in 1 or 2 seconds. A lower Cd?* concentration of 100 nM substantially inhibited the cGMP
current but within some seconds. The stoichiometry of Cd?* inhibition, shown in Fig.3.5.2.B, indicates
a half inhibition K, /» in the open state, i.e. in the presence of 1 mM ¢GMP of 32 &+ 15 nM.

Cd?* inhibition in the closed state, was determined by measuring the inhibition of the cGMP
activated current immediately after the concomitant Cd?* removal and addition of 1 mM cGMP. As
shown in Fig.3.5.3.D exposures to a solution containing 50 or less nM Cd?* for 30 or 60 seconds in the
absence of cGMP did not cause any significant inhibition of the cGMP activated current. A closed state
inhibition was observed when Cd 2% concentration was increased above 0.1 pM. A complete inhibition
of the cGMP activated current in the closed state was observed in the presence of 10 and 100 pM
Cd?*. The stoichiometry of Cd?* inhibition, shown in Fig.3.5.3.D, indicates a half inhibition K/ of
600 £ 34 nM in the closed state. The data of Fig.3.5.3 indicates that Cd?* ions inhibited reversibly the
mutant channel V391 both in the closed and open state, but that the half inhibition K, is higher in

the closed state, indicating a slightly stronger inhibition in the open state.
Cd*t effect on mutant channels from F375C to S399C

Fig.3.5.4 illustrates a summary of the effect of 100 uM Cd?* in the presence and absence of 1
mM c¢cGMP on channel mutants from F375C to S399C. A clear inhibition by Cd?* was observed only in
mutant channel V391C with a half inhibition of 600 and 32 nM in the closed and open state respectively.
A partial block in the closed state was observed also in mutant channel F380C (Nair et al 2006).
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Figure 3.5.4: Cd*T modification of mutant channels in the S6 segment from F375C to S399C: fractional
change induced by 100 uM Cd?>t. The effect of 100 uM Cd>t added for 5 minutes in the absence (black circles) and in
the presence of 1 mM cGMP (white circles).

In mutant channel G395C the cGMP activated current was usually small and often only single
channel openings could be observed. The open probability in saturating cGMP (1 and 5 mM ¢GMP)
was estimated to be smaller than 0.1 and therefore channels are most of the time in the closed state.

Therefore the state dependence of Cd?* modification could not be determined.
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The analysis of the effect of sulfhydryl reagents on mutant channel S399C was difficult as the
c¢GMP activated current often but not always declined spontaneously, as already observed (Flynn and
Zagotta, 2001). The run down was variable: in 12 out of 28 patches the run down was small and in the
remaining patches the cGMP activated current declined within some minutes (from 7 to 15 minutes) to
a steady level between 20 and 25 % of the initial current. Given this experimental variability we could

not quantify inhibition induced by sulfhydryl reagents in mutant S399C.

As shown in Fig.3.5.4, sulfhydryl reagents did not have any significant effect on cysteine mutants
from F375C to I390C, with the exception of mutant channel F380C, which was potentiated by 100 uM
Cd?* in the open state and inhibited in the closed state (Nair et al., 2006). Given the moderate effect
of sulfhydryl reagents on mutant channels from F375C to S399C the CSM was performed only in the
CNGA1 background.

Cd?* inhibition in mutant channels from N400C to Q409C

The analysis of state dependent effects of Cd?* ions on cysteine mutants will be used to identify
changes of relative distances among exogenous cysteines occuring during channel activation (Rothberg
et al., 2003; Mazzolini et al., 2002; Rothberg et al., 2002; Becchetti and Roncaglia, 2000). Residues
from Alad03 to His420 have been already investigated by Johnson & Zagotta (2001). Johnson & Zagotta
(2001) mutated one by one all residues into a histidine and analyzed the effect of micromolar amounts of
intracellular Ni?T on these mutant channels constructed from a CNGA1 channel in which all endogenous
cysteines were mutated and His420 was replaced by a glutamine. In the presence of a saturating cGMP
concentration, 1 uM Ni?* caused a small block of the cGMP activated current in mutant channels
Q409H and D413H and a potentiation in mutant channel K416H and in the CNGA1 with histidine at
position 420. These results strongly suggest that in the open state residues from position 400 to 420 are
arranged in an « helix configuration. Ni?t potentiation in the CNGA1 channel has been ascribed to
the binding of Ni?T to His420 in different subunits (Gordon and Zagotta, 1995a; Gordon and Zagotta,
1995b; Gordon and Zagotta, 1995¢) Channel mutants from N400C to V424C were analyzed. With the
exception of mutant channels R411C, N423C and V424C, they were all functional and a cGMP activated
current with amplitude and properties similar to those observed in the CNGAlwas measured. These
mutant channels - with the exception of mutant channel D413C - had an apparent normal gating, as
judged by the absence of inactivation and normal I/V relations. The dependence of the cGMP-activated
current on cGMP concentration and ionic selectivity of these mutant channels were not investigated in
detail. Many of these mutant channels were powerfully and irreversibly inhibited by the addition to the
medium bathing the intracellular side of the membrane patch of 100 uM Cd?*. Fig.3.5.5.A-D illustrates
the effect of 100 M Cd?* in the open and closed state on channel mutants N402C, A403C, A406C and
Q409C. In the closed state Cd?T ions inhibited powerfully mutant channels N402A, A403C, A406C and
Q409C inhibition was not removed or reduced by washing the patch with 0.2 mM EDTA for several

minutes (typically 5) and therefore inhibition was assumed to be irreversible.

None of these mutant channels was inhibited by Cd?* ions in the open state. In some experiments
the patch containing the mutant channel was first exposed to Cd?* ions in the presence of 1 mM cGMP
and when the cGMP activated current fully recovered, the patch was subsequently exposed to Cd?* but
in the absence of cGMP. Cd?* inhibition did not depend whether the patch was previously exposed to
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Cd?7 in the presence of 1 mM cGMP.
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Figure 3.5.5: The effect of cross-linkers on cysteine free mutants. A, B: M-4-M effect in A{06Ceys_ free and
Q409Ccys— free Tespectively in the open (right panels) and closed (right panels) states. Blue traces are the effect after
the cross-linker application and cyan traces are after the open state application. Black are before the application of
cross-linker. All traces are obtained with a holding potential of £ 60 mV. The effect of different cross-linking and other
MTS reagents on mutant channels A406C.ys_ free and Q409Ccys_ free. The black bars show the effect of MTS reagents
applied in the closed state; grey show after the open state. Values are shown as mean + SD.

In order to explore the molecular mechanism responsible for the Cd?* inhibition of mutant channels
illustrated in Fig.3.5.5.E, we have introduced cysteine at specific locations also in the CNGAl ys— free
channel (Matulef et al., 1999) where all endogenous cysteines were replaced with amino acids not bearing
a S atom and therefore not able to form S-S bonds with thiol reagents. We have analyzed the effect
of 100 M Cd?* ions in mutant channels N402C ys— free, A406Ccys—free and Q409C ys—free In none
of these mutant channels - constructed in a CNGA1 background without any endogenous cysteines -
Cd?7 ions produced any significant inhibition. None of these mutant channels was modified by 100 uM
Cd?*. Fig.3.5.5.F summarizes the effect of 100 uM Cd?* ions on some mutant channels constructed in
CNGA1lcys—free background.

This different blocking effect of Cd?* ions can be produced by two different mechanisms or by
their combination. Cd2* inhibition of the cysteine mutant in the CNGA1 background illustrated in
Fig.3.5.5.A can originate by Cd?T coordination to the exogenous cysteine with endogenous cysteines
and particularly with Cys481 and/or Cysb05 (Mechanism 1) which are part of the C-linker domain
(Brown et al., 1998). An alternative explanation is that the 3D structure of CNGA1l.ys_ free channels
differs by some A from that of CNGA1 channels (Mechanism 2), so that Cd?* can coordinate exogenous
cysteines introduced in the CNGA1 channels but not in the CNGAl.ys—free channels ( Mazzolini et
al 2007 unpublished data). In order to resolve this issue we studied in detail mutant channel N402C,
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A406C and Q409C by performing two series of experiments. In the first series of experiments we analysed
Cd?7 inhibition in cysteine mutant channels where the two endogenous cysteines 481C and 505C were
replaced by residues not reacting with S atoms, such as alanine or threonine. If in these experiments
Cd?7 inhibition is drastically reduced or eliminated Mechanism 1 will be validated. In the second
series of experiments the effect of cross-linkers of different length in mutant channels N402C.ys_ free,
A406C ys—free and Q409C.ys— free was examined. The recently synthesized MTS cross-linkers (Loo
and Clarke, 2001) have a thiol group at both ends with a linker of variable length. For example, the
compounds M-2-M, M-4-M and M-6-M have a linker of 5.2, 6.5 and 7.8 A respectively (Fig.3.3.1 of
Mazzolini et al 2007, unpublished data). The existence of MTS cross-linkers able to block mutant

channels irreversibly in the closed state will support Mechanism 2.
The effect of MTS cross-linkers on mutant channels A406C.ys_frce and Q409C.ys_rce

Cd?* ions in the absence of cGMP powerfully inhibited mutant channels A406C and Q409C but
not mutant channel A406C.ys_ free and Q409C ys—free (see Fig.3.5.5.E). In order to investigate the
molecular mechanisms causing this different effect by Cd?* ions we investigated inhibition by different
thiol cross-linkers of M-X-M family with an increasing length of the linker. 100 uM of the cross-linker
M-2-M, did not block mutant channel A406C.ys_ free( n= 6) and Q409C.ys_ free neither in the open
nor in the closed state. In contrast, the same concentration of the reagent M-4-M ( n= 7 ) with a linker
of 7.8 A powerfully inhibited both mutant channels A406C.ys— free and Q409C s free in the closed
state but not in the open state, as shown in Fig.3.5.6.A and B respectively.
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The observed inhibition of mutant channels A406C.ys— free and Q409C.ys—free by cross-linkers
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could be caused by a simple steric occlusion and not by the cross-linking of the two exogenous cys-
teines. Therefore we have compared the blocking effect of 100 uM of different MTS compounds such as
MTSEA, MTSET, MTSPT and MTSPtrEA (see Fig.3.5.6.C) on the mutant channels A406C ys— free
and Q409C.ys—free. As reported by Mazzolini et al 2007 none of these large MTS compounds block
significantly both mutant channels A406C.ys— free and Q409C ys—free. These results indicate that the
absence of Cd?T inhibition in mutant channel A406C.ys—free is ascribed to the fact that the 3D struc-
ture of the CNGA1 and CNGAl.ys—free is different and in particular residues at position 406 of the
CNGAl.ys—free are at a reciprocal distance not compatible with Cd?* coordination but compatible
with the coordination of the cross-linker M-4-M (Mazzolini et al 2007).

Inactivation in mutant channels D413C and D413C.ys_ trec

As illustrated in Fig.3.5.7 mutant channels D413C and D413C.ys— free responded to cGMP with a
progressive decline of the cGMP activated current, reminiscent of inactivation observed in some mutant
channels in the proe region. Indeed when repetitive voltage pulses were elicited and 1 mM cGMP was
rapidly added to the solution bathing the intracellular side of the membrane patch, the cGMP activated
current quickly increased, but it started to declined within some seconds ( see panels A and B ). The
CGMP activated current in the mutant channel D413C declined with a time constant varying between
40 and 60 seconds and within 2 or 3 minutes reached a value which was approximately 40 % of what
initially observed. The decline of the cGMP activated current was observed also in mutant channel
D413C.ys—free Where it was slightly faster and larger: indeed in mutant channel the cGMP activated

current declined to about 20 % of the value measured immediately after the addition of cGMP.

A B Figure 3.5.7: The reversible cur-

D413C D413C,.... rent decline of mutant channels

400 300 D413C and D413C.ys_jrec. A, B:

The wvertical bars indicate the current

elucidated at &= 60 mV in the presence

of ImM c¢GMP. By removing cGMP

g 0.0 from the solution bathing the intracel-

g lular side of the membrane patch for

©-150 at least 2 minutes, a cGMP activated

current with the same amplitude as

-400 -300 originally observed could be measured,

0 100 200 300 400 500 600 0 100 200 300 400 for both mutant channels D413C and
Time(s) Time(s) D41300ys—frec .

The decline of the cGMP activated current was reversible: indeed by removing cGMP from the
solution bathing the intracellular side of the membrane patch for at least 2 minutes, a cGMP activated
current with the same amplitude as originally observed could be measured, for both mutant channels
D413C and D413C.ys— ¢ree as shown in Fig.3.5.7. The time dependent decline of the cGMP activated
observed in the two mutant channels D413C and D413C.ys—_ ree Was never observed in any cysteine
mutant channels constructed in the S6 and C-linker region from L381 to V424 and is reminiscent of

what observed in mutant channels when Glu363 in the pore region was mutated into alanine.

One possibility for this current decline could be that, in the open state D413 form an inter-subunit
salt bridge with R411. This salt bridge may be important for stabilizing the open state. Mutating D413

to a cysteine disrupt this salt bridge formation, which results in the time dependent current decline.
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Cd?* inhibition in mutant channels from 410C to V4}24C

Mutant channels from 410C to V424C, with the exception of R411C, N423C and V424C were all
functional and a cGMP activated current with amplitude and properties similar to those observed in the
CNGAlwas measured. Fig.3.5.7.A illustrates the effect of 100 M Cd?* in the open and closed state
on channel mutants D413C, A414C, Q417C and 418C. Cd?* ions inhibited powerfully mutant channels
A414C and Q417C in the closed state, but in the open state, i. e. in the presence of 1 mM ¢GMP. The
action of Cd?* ions on mutant channel D413C was tested when the cGMP activated current was fully
inactivated (see Fig.3.5.7). In the open state, Cd®T ions inhibited mutant channels D413C and 418C.
The mutant channel H420C (see Fig.3.5.8.E) was not affected by Cd** ions in the presence of 1 mM
c¢GMP and was poorly inhibited when was exposed to Cd?* in the absence of cGMP.
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Figure 3.5.8: Cd?* inhibition in the open state of mutant channels from A410C to H420C. A, B, C, D:
Cd?* inhibition in channel mutants D413C, A414C, Q417C and Y418C respectively in open (green) and closed (red)
state. Black traces are the current obtained before applying Cd2t. The traces are obtained with a holding potential
of £ 60 mV. In D418C Cd?>t was applied after the cGMP dependent current decline was complete. E: Summary of
collected data of Cd?t inhibition from A400C to H{20C in CNGA1 background in the closed (black symbols) and open
(white symbols) states. F: same as in E but the mutants are constructed in the cysteine free background.

Cd?* inhibition observed in the closed state in mutant channels A414C and Q417C was not ob-
served when cysteines were introduced in the CNGAl.ys_ free background (see Fig.3.5.8.F). In con-
trast, Cd?T inhibition in the open state was also observed in mutant channels D413C.ys_ free and
Y418C,ys— free in agreement with what previously reported by Hua & Gordon (2005). As Cd?* in-
hibition in the open but not in the closed state was observed in mutant channels D413C and Y418D
and also in D413C.ys— free and Y418C,ys— free it is possible to conclude that homologous residues in

different subunits in position 413 and 418 move closer in the open state.

In contrast, the understanding of molecular mechanisms underlying the closed state Cd2* inhibi-
tion observed in mutant channels A414C and Q417C but not in mutant channels A414C.ys_free and
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Q417C.ys—free requires further experiments.
Role of Cys481 and Cys505 in Cd** inhibition

We investigated the molecular mechanism of the irreversible Cd?* inhibition observed in the closed
state illustrated in Figs.3.5.5 and 8 in mutant channels N402C, A406C, Q409C, A414C and in Q417C
by removing native cysteines Cys481 and Cys505.

Membrane patches were exposed for 5 minutes to 100 pM Cd?T ions in the absence of cGMP
and the current recorded after Cd?T removal and in the presence of a saturating cGMP concentration
was measured. In each panel of Fig.3.5.9 Cd?* inhibition in mutant channels N402C, A406C, Q409C,
A414C and in Q417C are compared when C481 and C505 were replaced respectively with an alanine

and a threonine.

In some mutant channels (Q409C&C505T and Q409C&C481A) exposure to 100 uM Cd?* resulted
in a partial inhibition varying between 30 and 70 %. In these mutant channels, membrane patches were
exposed to 100 pM Cd?*t for a longer time in order to fully observe Cd?t inhibition. As shown in
Fig.3.5.9.A Cd?* inhibition in mutant channel N402C was not observed in the triple mutant channel
N402C&C481A&C505T. In contrast, as shown in Fig.3.5.9.B, Cd?* inhibition observed in mutant chan-
nel A406C was also observed in the triple mutant channel A406C&C481A&C505T and the time course

of Cd?* inhibition in both mutant channels was very similar.

Cd?* inhibition in mutant channel Q409C was slower: indeed 100 uM Cd?* ions inhibited mutant
channels with a time constant of about 394 s and of about 812 s and 1018 s in the double mutants
Q409C&C505T and Q409C&C481A respectively.

Figure 3.5.9: Role of C481
and C505 in Cd?>t inhibi-
tion. In each panel the Cd2t
inhibition in  mutant channel
N402C, A406C, Q409C, A414C
and Q417C are compared when
C481 and C505 were replaced
with an alanine and a threonine
respectively. In mutant channels
of Q409 the current inhibtion
is compared after the 5 min
application (darker bars) of Cd?+

@QO @\vhgé b‘\b‘ob‘q’\voﬁé b‘(\obg’\v@c} to a longer time (lighter bars)
(e %0 ‘&O v~ %0 ‘&0 (e %_O %0 i order to observe complete
& W 3O R inhibition.
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As shown in Fig.3.5.9.D and E, Cd?T inhibition in mutant channels A414C and Q417C was
eliminated in the double mutants A414C&C505T and Q417C&C505T but not in the double mutants
A414C&C481A and Q417C&C481A.

These results indicate that Cd2t inhibition in the closed state observed in mutant channels N402C

and A406C is only weakly dependent on the presence of endogenous cysteines in position 481 and 505.
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In contrast in mutant channel Q409C Cd?* inhibition is highly dependent on native cysteines C481 and
C505. In both mutant channels A414C and Q417C Cd?* inhibition was insensitive to the presence of a

cysteine in position 481, but was significantly reduced when native C505 was replaced with a threonine.
Discussion:

Our results provide new experimental information on the 3D structure of the S6 domain and pave
the way to the understanding of molecular mechanisms underlying gating in CNGA1 channels. Let us

now discuss in more detail the experimental results and their implications for channel gating.
CSM in the CNGA1 and in the CNGAI1 ys_frec

The interpretation of CSM experiments using thiol reagents with a CNGAl.ys— free channel is
certainly much simpler than when cysteines are introduced in the CNGA1 channel, where 7 native
cysteines are present in each subunit. CNGA1 and CNGA1.ys— free channels have same ionic selectivity,
same I/V relations and are similarly inhibited by a variety of compounds, from divalent cations to
tetracaine. However some quantitative differences have been found (Mazzolini et al 2007): the dose
response to cGMP is shifted towards lower cGMP concentration in the CNGA1l.ys— free channel by about
10 times (Matulef et al., 1999), Cd?* inhibition at positive potential is stronger in the CNGA1 channel
and inhibition by TEA at negative voltages is higher in the CNGAlcy-free channel. In the closed state
homologous residues at position 406 of the CNGAl,ys_ free channels are 3~4 A more distant than in
the CNGA1 channel (Mazzolini et al 2007). Therefore the 3D structure of the CNGA1y,_ free channels
is similar but not identical to that of the CNGA1 channel. For these reasons we have performed a
CSM in the CNGA1 background and not in the CNGA1.ys— free background. When thiol reagents did
not produce a significant effect on cysteine mutants, as on many of those from F375C to S399C (see
Fig.3.5.4), the outcome of the experiment was clear and no further investigation was necessary. When
Cd?7 ions caused a permanent modification of a cysteine mutant, it was necessary to determine whether
the effect was entirely mediated by binding to exogenous cysteines or was also caused by binding to
some nearby endogenous cysteines. In several mutant channels Cd?* blockage, observed in the closed
state (see Figs 3.5.5 and 8 ) was eliminated when endogenous Cys505 and/or Cys481 were substituted

with a threonine and an alanine respectively.
Cd?* action

The present investigation of conformational changes in the S6 domain is primarily based on the
analysis of the action of 100 uM Cd?* after its removal from the bathing medium. Indeed as shown
in Fig.3.5.1 and in agreement with Becchetti & Roncaglia (2000 ) exposure for 5 minutes or so of 100
uM Cd>?* ions produce a negligible irreversible inhibition of the cGMP activated current in the CNGA1
channel. Therefore any irreversible inhibition larger than 30 % - and any irreversible potentiation - can

be reliably ascribed to Cd?* binding to exogenous cysteines.

Methane thio sulfonate reagents, such as MTSEA and MTSEThave been often used to probe the
accessibility of channel pores (Flynn and Zagotta, 2003; Flynn and Zagotta, 2001; Liu and Siegelbaum,
2000; Becchetti et al., 1999; Krovetz et al., 1997; Benitah et al., 1996; Sun et al., 1996; Kurtz et al., 1995;
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Akabas et al., 1992) and the pattern of their inhibition is usually very similar to that observed with
Cd?7 ions (Becchetti and Roncaglia, 2000). The recently synthesized MTS-X-MTS cross-linkers have a
reactive S at both ends and can covalently bind to two cysteines. Indeed Cd?*t ions and MTS reagents
block the channel pore by obtruding it. Differences of their blocking efficacy have been usually ascribed
to their different radius (Karlin and Akabas, 1998): indeed Cd?*, having a smaller radius, can reach the S
atoms of slightly buried cysteines. When Cd?* ions and MTS reagents are used to probe conformational
changes outside the channel pore, they can provide rather different results as their binding mechanism
is different. One Cd?* ion coordinates to several cysteines and therefore can block the channel, not by
obtruding its pore, but by locking the channel in the closed state. As MTS reagents bind to cysteines
in a one-to-one ratio, their binding to exogenous cysteines may not lead to channel inhibition, as in the
case of several mutant channels from N400C to V424C. Therefore Cd?T modification can reveal changes
of proximity of exogenous cysteines introduced in the gating machinery. At certain residues the distance
between homologous exogenous cysteines in different subunits is too large for Cd?* coordination and
the the newly synthetised MTS-X-MTS reagents (Loo and Clarke, 2001) were used. These reagents can
cross-link S atoms at a larger distance, since they have a handle of different length separating reactive
S atoms. For these reasons the present investigation of conformational changes underlying gating in
CNGAL1 channels combines the analysis of the effect of Cd?*, MTS-X-MTS and MTS compounds.

Comparison of Cd*t action on cysteine mutants and Ni*T on histidine mutants

Micromolar amounts of Ni?* potentiate the CNGA1 channel in the open state (Gordon and
Zagotta, 1995c) but not in mutant channel H420Q. The analysis of subunit interactions suggested
that potentiation was mediated by the binding of Ni?* to His420 of neighboring subunits (Gordon and
Zagotta, 1995a,b,c) Johnson & Zagotta (2001) mutated one by one all residues from Alad03 to Met419
to a histidine and analyzed the effect of micromolar amounts of intracellular Ni?T. In the presence of
a saturating cGMP concentration, 1 uM Ni?T caused a small block of the cGMP activated current in
mutant channels Q409H and D413H, a complete inhibition in mutant channel Q417H, and a potentia-
tion in mutant channels K416H and in the CNGA1. The data of Fig.3.5.8 show that in the presence of
1 mM c¢GMP, Cd?* ions inhibited to some extent in the open state mutant channel D413C and Y418C
but not Q409C. Therefore, with the exception of residue at position 409, the effect by Cd?* on cysteine

mutants is rather similar to the effect by Ni?* on histidine mutants.
State dependent Cd’T and MTS-MTS inhibition

The present investigation has identified several mutant channels exhibiting a state dependent
inhibition by Cd?* and by the longer cross-linker reagent M-4-M. Cd?* inhibition in mutant channel
V491C was more powerful in the open (a K /o of about 32 nM) than in the closed state (K, 5 of about
600 nM) (see Fig.3.5.3). In agreement with previous investigations we conclude that that homologous
residues in position 391 in different subunits slightly move apart in the open state. We could not
determine the state dependent Cd?* inhibition of mutant channels G395C and S399C. We could measure
in mutant channel G395C only single channel openings, even in the presence of saturating cGMP
concentrations, larger than 5 mM. The estimated open single channel probability was less than 0.1 and
therefore channels of mutant G395C were most of the time in the closed state either in the presence or

absence of 5mM cGMP and therefore the state dependent inhibition of Cd?* ions could not be measured.
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In mutant channels S399C often the cGMP activated current had a spontaneous run down and therefore
we could determine reliably whether the current decline observed upon the addition of Cd?* ions to the

bathing medium occurred spontaneously or it was caused by the thiol reagent.

Mutant channels A406C and Q409C are irreversibly inhibited by Cd?* in the closed but not in the
open state. When cysteines are introduced in position 406 and 409 in the CNGA1l.ys— free background
no Cd2* inhibition was observed, but M-4-M (see Fig.3.5.6) irreversibly inhibited both mutant channels
A406C ys—free and Q409C ys— free in the closed but not in the open state. Taken together these results
indicate that homologous residues in position 406 and 409 in different subunits move apart in the open

state and are closer in the closed state.

Mutant channels D413C and Y418C were inhibited by Cd?T ions in the open state but not in
the closed state (Fig.3.5.8). A similar result was observed for mutant channels also for D413C.ys— frec
and Y418C.ys— free . Therefore in agreement with Hua & Gordon (2005) we conclude that homologous
residues at different subunits in position 413 and 418 move closer in the open state.

The structure of the S6 domain and initial portion of the C-linker in the closed and open

state

Figure 3.5.10: Possible 3D arrangement
of the residues in the C-linker. A: The
residues Asn400 to Gln 409 are near in the
closed state (red) than in the open (green) and
residues from Asp413 to Tyr418 are near in the
open state. B: Shows the top and side view of
the C-linker in the closed state. C: The top
and side view in the open state.

On the basis of the results presented in the present manuscript, we propose that residues from
Phe375 to Ser399 have an alpha helix conformation with a spatial arrangement referred as an inverted
tee-pee (Doyle et al 1998) as expected from the homology with all other ionic channels whose 3D
structure has been solved. The relative distance between homologous residues in position 391 does not
change significantly in the open and closed state, as Cd?* ions can inhibit mutant channels V391C
both in the open and closed state (see Fig.3.5.3), although with a larger affinity in the open state. The
apparent higher Cd?t affinity in the open state can be a consequence of a rotation of the S6 helices
occurring during channel gating (Nair et al 2006) or by other molecular rearrangements occurring during

gating around residues in position 391.
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As mutant channels A406C and Q409C are irreversibly inhibited by Cd?* in the closed but not
in the open state and mutant channels A406C s free and Q409C,ys— free are inhibited by M-4-M with
the same state dependency, residues from positions 406 and 409 in different subunits are near each other
in the closed state but move apart in the open state. A different behaviour was observed for mutant
channels D413C and Y418C and for mutant channels D413C .ys—free and Y418C .ys—free Which are
inhibited by Cd2™ ions in the open but not in the closed state, in agreement with Hua & Gordon (2005).

These experimental observations can be rationalized assuming that residues from Asn400 to His420
have an alpha helix conformation but with a kink between Gln409 and Asp413 so that residues from
Asnd00 to GIn409 are near in the closed state (see red in Fig.3.5.10.A) and residues from Asp413 to
Tyr418 are near in the open state (see green in Fig.3.5.10.A). Fig.3.5.10.B and C illustrate possible
3D arrangements of residues in the closed and open state in the region connecting the S6 helices to
the upper portion of the C-linker. These conclusions are in agreement with the model proposed by
Giorgetti et al 2005 for residues from Phe375 to approximately Gln409 and with the model proposed
by Hua & Gordon (2005) for residues from Gln409 to His420.
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3.6 Conclusions

The cyclic nucleotide-gated channel is believed to share a similar over all 3-D architecture with voltage
gated KT channels. The KcsA structure has been suggested to be a good template for the over all
architecture of CNG in the closed state and MthK in the open state. If this is the situation then the
residues down stream S6 helix are supposed to undergo a large translation in space while passing from
closed to open conformation. With the current experimental results I conclude that KcsA is a good
model of CNG in the closed state. But the MthK cannot be considered as a good model for the open
state, because the relative distance between the homologous residues at position 391 from different
subunits does not change considerably the position in space. The residues from N400 to Q409 are near
in the closed state and move far in the open state. The residues from D413 to Y418 are near in the
open state. The result shows that the residues from N400 to H420 has an alpha helical structure with
a kink between Q409 and D413 residue.

The crystal structure of bacterial NaK channel has been solved in 2006. The sequence of the
selectivity filter of this channel resembles that of CNG channels as D66 in NaK is equivalent to E363 in
CNG. The NaK channel has a notable structural difference with KcsA, the K™ channel. Unlike a KT
channel selectivity filter, which contains four equivalent KT-binding sites, the selectivity filter of the
NaK channel preserves the two cation—binding sites equivalent to sites 3 and 4 of a K* channel, whereas
the region corresponding to sites 1 and 2 of a K+ channel becomes a vestibule in which ions can diffuse
but not bind specifically. Another notable difference is that, the N-terminal MO helix which is parallel
to the membrane in NaK is absent in KcsA. The four M0 helices form a cuff that encircles the inner
helix bundle crossing, and seem to be positioned to affect the opening and closing of the pore. The
sequence similarity of the pore region of CNG and NaK makes the latter as a possible best available

template at the moment.  Several residues which are important for the functioning of HCN channel

Figure 3.6.1: Cartoon model of
Closed and Open State: The closed
model of S5 and S6 was done by us-
ing KcsA as a template and the C-
linker region by using HCNZ2. The
model of the open state was done by
using MthK and HCN2 as a template
for the S5 and S6 region and the C-
linker region respectively. When the
channel opens, the A’ and B’ he-
lices mowves in a plane parallel to the
membrane bringing B’ from different
subunit close to each other. This
movement eventually pushes A’ al-
most perpendicular to the membrane.
A possible mechanism in which the
channel opens could be that, the rota-
tion of S6 about its helical axis moves
the P-heliz which is coupled to S6.
This movement of P-helix flips the
pore-filter and the channel opens.
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are conserved also in CNG. The HCN2 and CNGA1 channels share a sequence identity of 35 % in the
CNB domain and C-linker region and could be expected to have the same 3D architecture. The HCN2
CNBD crystal structure has been solved. Nevertheless the homology model of CNG using HCN as a
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template fails to explain the proximity between several residues, as shown in the fourth section of the
results. A rotation of the homology model with HCN of the CNBD around D502 residue could satisfy

the experimental results obtained.

During the extensive cysteine scanning an interesting observation was the mutation F380C. In the
closed state F380C was able to form a disulfide bond with endogenous C314 and this locked the channel
in the closed conformation. F380C was also able to form a disulfide bond in the open state with C314
and locking the channel in the open state. These results are concurrent with an anticlockwise rotation
of the S6 - helix about its helical axis, when viewed from the extracellular side. This anticlockwise
rotation, by a suitable coupling between the P-helix and S6 causes a small displacement of residues that
are forming the narrowest portion of the pore, leading to channel opening. This conclusion is highly
coherent with the idea that the gate of CNG channel is situated in the pore itself (Becchetti et al., 1999;
Sesti et al., 1995; Bucossi et al., 1996; Fodor et al., 1997b).

The CNGA1 subunit has 7 endogenous cysteines. While doing SCAM analysis it is highly probable
that the exogenously introduced cysteines interact with the endogenous ones and bias the conclusion.
A cys-free version of CNGA1 channel is extensively used to avoid this non-specific interaction. I have
extensively compared the physiological properties of this cys-free version of CNGA1 and the homologous
CNGAT1 channel. This study shows that though cysteine free proteins can be a very helpful tool in
investigating and understanding the structure but it cannot be considered to have the same 3D structure
of the CNGA1 channel.
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