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Outline

Several biological systems have the ability to adjust the range of their sensitivity to a

stimulus. This ability, called adaptation, has been widely studied in the last decades.

Discovering new pathways that exhibit this capability and trying to understand the

biological regulations carried out by the cells in order to achieve this form of dynamic

sensitivity is an intriguing area of research.

Due to their function of “probes” of external stimuli, sensory systems have to be

able to respond appropriately in a wide range of output amplitudes. As such they

represent an optimal biological setting for the study of adaptation. For this reason,

after a first work on the adaptation in yeast stress response (published in [21] and

not included in this thesis), we have focused our research on the study of sensory

transduction pathways. Sensory transduction pathways represent the first step in

sensory perception and are responsible for the conversion of an external stimulus (e.g.

an odorant molecule, the environment light, a particular sound) into an electrical

one, then sent to the higher parts of the brain for a further elaboration. Although

these pathways represent only a first stage of signal processing, it is already possible

to detect in them mechanisms designed to adjust the response of the cell depending

on the input amplitude.

Most of the experimental data discussed in this thesis have been recorded in

the laboratory of my coadvisor Professor Anna Menini, who has been studying

the olfactory transduction pathway for several years. This has allowed us to test

and compare the responses of our models with a variety of different experiments,

permitting a detailed analysis of the behavior of the systems. The first part of

this thesis therefore focuses on the study of the olfactory transduction pathway,

explaining the adaptation exhibited by this system. We then consider data obtained

from phototransduction experiments and compare their properties with those of the

olfactory system. Finally a detailed study of one of the ion channels involved in the

olfactory transduction mechanism is presented.

In the Introduction I present a description of adaptation in biology and of the
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methodologies we use in this thesis, followed by a characterization of the olfactory

transduction pathway (including an in-depth presentation of the calcium-activated

chloride channel) and of the phototransduction pathway.

A first dynamical model for the olfactory system is then described in the Chapter

2, containing all the significative molecular mechanisms of the pathway and explain-

ing adaptation through the hypothesis that the molecular complexes responsible for

the feedback regulation have a slower kinetic compared to the other processes in-

volved.

This hypothesis is further developed in Chapter 3, where elementary models are

presented, with the aim to find the minimal set of ordinary differential equations able

to reproduce the essential features of the biological responses. In this chapter also a

comparison between the adaptation present in the olfactory and phototransduction

pathways is presented. In particular it is observed how it is possible to distinguish

different levels of adaptation, with the olfactory response being “mode adapted”

than the visual one. This difference is explained in terms of trade-off of time constant

between the variables responsible for the feedback and those belonging to the open-

loop part of the system.

The last chapter of the thesis presents instead a more detailed study of a specific

component of the olfactory transduction pathway, the calcium-activated chloride

channel. Despite the fact that the current flowing through this channel accounts for

up to 90% of the total response of the olfactory sensory neuron, many features of the

response of this channel are still under investigation. In particular a Markov model

is used to study the dependence of the channel on its two activation mechanisms,

that are the calcium ion and the transmembrane potential.

Most of the material presented in this thesis has been collected in the following

papers:

• G. De Palo, A. Boccaccio, A. Miri, A. Menini and C. Altafini. “A dynamical

feedback model for adaptation in the olfactory transduction pathway.”

Biophysical J., 102(12):26772686, 2012.

• G. De Palo, G. Facchetti, M. Mazzolini, A Menini, V. Torre and C. Altafini.

“Understanding the common features of sensory adaptation in photoreceptors

and olfactory sensory neurons through minimal dynamical models”

Submitted for publication

• G. De Palo, A. Boccaccio, A Menini and C. Altafini. “A dynamical model for

the calcium-activated chloride channel in the olfactory transduction.”

In preparation



Chapter 1

Introduction

1.1 Adaptation in biological systems

The study of intracellular signaling pathways is fundamental for the understand-

ing of the ability of the cells to survive and proliferate in different environmental

conditions. These biochemical pathways allow the cell to organize an appropriate

response to constantly changing external stimuli, such as environmental stresses,

nutrients or growth factors. The different inputs received by the cells, and the con-

sequent elicited responses, are characterized by different time dependent profiles.

The adjustments made by the cell allow it to maintain a narrow change in the

vital quantities in response to broad changes of the extracellular signals. An impor-

tant example of such a regulation is the phenomenon of adaptation, which can be

defined as the ability of a cell to recover (partially or completely) an optimal level of

some components in spite of a persistent stimulation. This allows the cell to adjust

the dynamical range of the response, thereby increasing the range of sensitivity and

avoiding saturation conditions which could damage the biological system.

Adaptation plays a crucial role in many signaling pathways, such as bacterial

chemotaxis, yeast stress response [21] and different sensory systems [98]. One of the

most investigated biological setting for the study and the modeling of adaptation is

the bacterial chemotaxis [2, 1, 7, 107]. The movement of the bacterium consists of

two different components: a linear run plus a random tumbling part which allows the

changing of the direction. While moving, the bacterium detects the concentration

of the chemoattractants and compares it with the previous value, thus measuring

the spatial gradient through a temporal difference. If we take the variations of the

tumbling frequency in response to changing concentrations of chemoattractants as

measure of the response of the system, then we can conclude that the bacterium is
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8 CHAPTER 1. Introduction

able to adapt. Indeed in the presence of a nutrient increase (or decrease) in a given

direction, the tumbling probability initially decreases (increases), thus propelling the

bacterium in the corresponding direction. However, after this transient response,

the tumbling frequency returns to a given steady state value, independently of the

new concentration of the nutrient (provided this is constant in time). This allows

the bacterium to move toward the chemoattractant while the gradient is present and

to restore the original tumbling-like motion once the nutrient is equally distributed

in space, independently of its concentration. This type of adaptation, in which the

steady state of the response of the system does not depend on the input amplitude,

is called perfect adaptation.

The ideas developed for the pathway involved in bacterial chemotaxis can be

successfully applied in the study of more complex biological settings. In the present

thesis, we focus our attention mainly on vertebrates olfactory sensory neurons and

on photoreceptors. From the point of view of signaling transduction pathways,

the olfactory and visual systems share many common features. However there are

significant differences between them which we are now going to underline. Both

systems are present in higher organisms and both carry out highly complex functions

involving many layers of neuronal activity which has been only partially decoded

and understood. For the purposes of the present study the focus will be on signaling

transduction at the level of the single neuron where the basic processing of the input

stimulus occurs. The olfactory transduction takes place in the olfactory sensory

neurons, the first cells in the whole olfaction machinery. They are located on the

apical part of the nasal cavity and are responsible for the conversion of a chemical

stimulus (the odorant) into an electrical one, subsequently sent through neurons

connections toward the higher parts of the brain. The corresponding cell in the

visual system are the photoreceptors, located in the retina, capable to convert a

light stimulus into an electrical one. The effect of adaptation in these pathway

is very common in our everyday life. For instance when we enter a bright room

coming from a dark environment, after few seconds of being dazzled, we “adapt” to

the current light and the same occurs returning to the dark environment. A similar

reaction takes place for the odors, after a short time smelling some strong odor, our

perception of it gradually decreases. If this “macroscopic” effect involves the whole

sensor and is therefore beyond the scope of our study, traces of it are observed also

in the stimulus-response curves of a single neuron and it is on these that we will

focus our attention.

It is important to notice that differently from the bacterial chemotaxis, adap-

tation in the olfactory and phototransduction pathways (at the level of the single

neuron) is not perfect. This means that in the presence of a sustained stimula-
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tion lasting for several seconds (a bright light or a prolonged odor), the response of

the sensory neurons does not completely disappear after the first transient, but it

reaches a low level which is slightly different from the prestimulus one. This behav-

ior is clearly detectable in the experimental data and is a novelty in the landscape

of the models for the adaptation, which are instead focused on perfect adaptation.

Another peculiar feature of our work is that the data we analyze are not only

responses to sustained stimulations lasting several seconds, but also responses to

short pulses of light or odorant molecules, thus allowing us to make more detailed

investigations on the dynamics of the response.

1.2 Modeling techniques

The molecular pathways previously mentioned are characterized by the presence of

an extracellular input to which corresponds a measurable response of the cell. This

biological setting can be modeled by a dynamical system, representable through

ordinary differential equations (ODE). More precisely if we denote u = u(t) the

time-dependent input of the system and y = y(t) the corresponding output (i.e. the

measured response), then our model is given by the following formulæ:

ż = g(u, z)

y = f(u, z), (1.2.1)

where z(t) = (z1(t), ..., zn(t)) represents the vector of the state variables character-

izing the system.

For the sensory transduction systems we are considering, the input consists of a

flash of light or of a release of odorant molecules, the output is the current produced

on the surface of the sensory neurons and the different components of the pathway

can be represented through the state variables.

Following the introduced formalism, the system (1.2.1) adapts perfectly if the

steady-state output y equals a fixed y0, independently on the constant value assumed

by u. This property means that in correspondence of a step input, the output of the

system, after an input-dependent transient, will be constant and exactly equal to

the prestimulus level y0 regardless of the amplitude of the step. This is the behavior

expected in bacterial chemotaxis.

A first feature in order to distinguish the possible models able to explain adap-

tation is their robustness [1, 2, 7, 84]. It has been shown that biological circuits have

robust designs such that their essential function is nearly independent of biochemical
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parameters that tend to vary from cell to cell [2]. Consequently we can classify a

model as robust if the qualitative behavior of the output time profile is independent

of the model parameters. However it is necessary to distinguish which is the feature

we are looking at and if that feature is robust to specific parameter variations. On

the contrary characteristics which constantly depend upon certain parameter values

are said to be fine-tuned. An example of a model for bacterial chemotaxis in which

adaptation is a fine-tuned property is described in [41]. In a mechanism of this type,

the steady state value in response to an input step is constrained to be equal to the

prestimulus value, choosing values of the parameters that satisfy this constraint. As

soon as the parameters are perturbed, the match between the steady state of the

step response and y0 is lost, hence the behavior of the model is not robust. Barkai

and Leibler [7] proposed instead a model for the same biological setting allowing

exact adaptation for a wide range of parameters variations. Their model is more

interesting from a theoretical point of view since adaptation turns out to be an

intrinsic feature, depending upon how the model is built.

In the landscape of robust models explaining perfect adaptation in response

to a step which have been built in the last decade it is possible to point out two

main schemes: the integral feedback and the incoherent feedforward loop. The

integral feedback control (Fig. 1.1) is a well known scheme in control theory and

it was initially proposed to explain adaptation in bacterial chemotaxis by Doyle

and collaborators [107]. In this type of scheme, there is a “memory” variable (x

in Fig. 1.1), which keep tracks of the past history of the system, intended as the

difference between the present value of the output y(t) and the desired steady-

state value y0. Feeding back to the system the value of the integral of this “error”

(the variable x) ensures that the steady-state error for y approaches y0 despite

of parameters or input fluctuations. A scheme of this type guarantees a perfect

adaptation. Recalling the previously introduced formalism, let z = (x, y) represents

a two component states vector in which the output of the system is identified with

the state variable y.

∫

fu y

x

Figure 1.1: Integral feedback scheme
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The equations of this scheme become as follow:

ẋ = g(x, y) = y − y0

ẏ = f(u, x, y) (1.2.2)

The second possible scheme to achieve perfect adaptation for a step input is given

by incoherent feedforward loops (Fig. 1.2). Feedforward motifs have been found to

be overrepresented in biology [2], in particular in E. coli transcription networks [62]

and recently the incoherent configuration has been consider as a possible scheme

explaining adaptation [89, 95, 100]. In this scheme, the input u promotes the activity

of both the output y and of the inhibitor x of the output, thus acting as a delayed

inhibitor.

f

g

u y

x

Figure 1.2: Incoherent feedforward loop scheme

The corresponding equations are:

ẋ = g(u, x)

ẏ = f(u, x, y) (1.2.3)

In this motif feedback regulation is completely absent. Although it is robust

with respect to perfect adaptation to constant steps, lack of feedback means it is

inadequate for many other tasks ad in particular that it is not suitable for our

sensory pathways, in which regulation is known to play a key role. For this reason

hereafter we will focus our work on the integral feedback scheme.
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1.3 The transduction pathways

1.3.1 The olfactory transduction pathway

Olfactory transduction occurs in the cilia of olfactory sensory neurons (OSNs, see

Fig. 1.3). OSNs are bipolar neurons with an axon, soma, dendrite and several cilia

protruding from the apical side of the dendrite [40, 85].

The binding of an odorant molecule to an odorant receptor on a cilium induces

a conformational change of the receptor causing the activation of an interacting

G-protein. In turn, the G-protein stimulates the enzymatic activity of an adenylyl

cyclase (AC) generating an increase in the concentration of cyclic AMP (cAMP).

Cyclic nucleotide-gated (CNG) channels located in the ciliary membrane are directly

activated by cAMP, causing a depolarizing influx of Na+ and Ca2+ ions. The in-

tracellular increase of Ca2+ concentration directly gates Ca-activated Cl channels.

Since OSNs maintain an unusually high internal concentration of Cl−, which is in

the same range as the Cl− concentration present in the mucus at the external side

of the ciliary membrane, the opening of Ca-activated Cl channels causes an efflux of

Cl− ions from the cilia, corresponding to an inward current that further contributes

to the depolarization of OSNs [40, 70]. The depolarization spreads passively to the

dendrite and soma of the neuron, triggering action potentials that are conducted

along the axon to the olfactory bulb.

Several Ca-dependent feedback mechanisms may contribute to adaptation. The

cilia contain a phosphodiesterase that, after being activated by the complex Ca-

Calmodulin (CaCaM), hydrolyzes cAMP [13]. The complex CaCaM and possibly

other Ca-binding proteins decrease the sensitivity of the CNG channel to cAMP [6,

14, 19]. The activation of CaCaM-dependent protein kinase II (CaMK) inhibits

AC activity [103]. Finally, the intracellular Ca2+ concentration is reduced by Ca-

extrusion through a Na+/Ca2+ exchanger [60].

The cilia contain only two types of ion channels, CNG and Ca-activated Cl chan-

nels. Voltage-gated channels are instead located in other compartments of OSNs:

dendrite, soma and axon. The depolarization originating in the cilia spreads to the

soma where action potentials originate and carry the information to the olfactory

bulb [40, 85]. Here, we study the transduction current in voltage-clamp conditions

to isolate the transduction properties of the cascade from voltage-gated channels.

The generation of action potentials occurring at the soma and spike rate adaptation

depends also on the specific properties of the voltage-gated channels expressed by

OSNs and are not considered in this thesis. However, it is worth noting that adap-

tational properties have also been measured in OSNs in vivo in some pioneering



1.3. THE TRANSDUCTION PATHWAYS 13

studies, as reviewed by Getchell [29]. Both the generator potential measured using

electroolfactograms in frogs [68] and single unit extracellular recordings from sala-

mander OSNs [30] exhibited step adaptation and multipulse adaptation in response

to odorants.

These results indicate that the choice of the transduction current as the output

of OSNs is also a good representation of the response of OSNs in natural conditions.

Figure 1.3: The olfactory transduction pathway and its feedback loops in
olfactory sensory neurons cilia.(modified from [70])

1.3.2 Ion channels in the olfactory transduction

As discussed in the previous paragraph, the olfactory transduction current is com-

posed by the current flowing through two main type of channels: the cyclic-nucleotide-

gated channels and the calcium-activated chloride channels.

The cyclic nucleotide gated channels are composed by four subunits forming a

tetramer with a central pore [38]. They are permeable to all monovalent cations
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Na+, K+, Li+, Rb+ and Cs+ and by divalent cation such as Ca2+ and Mg2+ and

are activated by a direct binding of a cyclic nucleotide such as cAMP or cGMP

[24, 66]. These channels are sensitive to the calcium-calmodulin complex, which

lowers the affinity of the channels for the cyclic nucleotides [38]. This mechanism

constitutes one of the two main feedback loops responsible for the adaptation in the

olfactory transduction pathway.

The calcium-activated chloride channels (CaCCs) act as amplifiers in the olfac-

tory transduction pathway. Indeed it has been shown that in rat and mouse they

account for up to 85%-90% of the total current induced during the response to an

odorant [12, 67, 78]. In the rat olfactory cilia the channel density has been esti-

mated to be four chloride channels per cyclic nucleotide gated channel [78]. Despite

its importance, the molecular identity of this calcium-activated chloride channel

has remained unknown until 2008. In that year three different groups showed that

TMEM16A, or Anoctamin1, functions as Ca2+-activated Cl− channel [17, 86, 105].

The following year, 2009, it was found that another member of the same family,

TMEM16B/Anoctamin2 functions as CaCC [71, 92, 93]. Moreover TMEM16B is ex-

pressed in olfactory sensory neurons [9, 83] and it was shown that calcium-activated

chloride currents were undetectable in mice lacking this protein [9]. This connection

with the olfactory transduction and the surprising little knowledge of it, led us to

focus our study on the modeling of the behavior of TMEM16B/Anoctamin2.

1.3.3 The visual transduction pathway

The neurons responsible for the conversion of the light into an electrical signal

are called photoreceptors. They are located in the retina and can be divided in

two types: rods and cones. Rods exhibit a high sensitivity to light, though their

response is relatively slow. The response of cones is less sensitive, faster, noisier

and they are able to provide the color vision. These features render the rods more

specific for nocturnal vision and the cones for the case of a bright light. Despite of

this different behavior, the main components in the phototransduction of rods and

cones are very similar.

In the inset of Fig. 1.4 it is possible to see a drawing of a rod structure. Every

photoreceptor is divided into an outer segment region, responsible for the photo-

transduction, and an inner segment region, providing energy to the cell and con-

necting it through the synaptic terminal. The rods outer segment is filled with a

stack of disks containing a high concentration of the visual pigment rhodopsin. The

cones possess a slightly different visual pigment included directly into foldings of the

cytoplasmic membrane [46, 73, 106].
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A scheme of a rod phototransduction pathway is presented in Fig. 1.4. The ab-

sorption of a photon converts rhodopsin into its active form Rh∗. This in turn pro-

motes the activity of a G-protein, which binds and activates the phosphodiesterase

PDE, thus catalyzing the hydrolysis of cyclic-GMP (cGMP). The consequent drop in

the concentration of cGMP induces the closure of the cyclic-nucleotide-gated chan-

nels (CNG), permeable to sodium and calcium ions. The Na+/Ca2+, K+ exchanger

continues its action of pumping extracellularly the calcium ions, thus causing a de-

crease in the intracellular calcium concentration. Calcium is responsible for three

main feedback mechanisms: Ca2+ can bind to guanylyl cyclase activating protein

(GCAP), blocking its binding to GC and the following increase of GC activity; the

calcium-calmodulin complex bound to the CNG channel decreases the affinity of

the channel for cGMP; and the calcium-binding protein recoverin inhibits, through

the G protein-coupled-receptor-kinase 1 (GRK1), the phosphorilation reaction of

rhodopsin. In this way the decreasing concentration of calcium promotes the acti-

vity of GC and the opening of the CNG channels, while at the same time decreasing

the amount of available (non phosporilated) rhodopsin [46, 73, 106].

In rods the feedback action of calcium ion on the CNG channels is of little

account with respect to the other two mechanisms [45]. At low and intermediate

light intensities, the dominant feedback is that involving the modulation of the GC,

at higher intensities the feedback due to the action of the recoverin acquire increasing

importance [106].

Figure 1.4: The phototransduction pathway and its feedback loops in ver-
tebrate rods.[106]
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Chapter 2

A detailed dynamical model

explaining adaptation in the

olfactory transduction pathway

2.1 Background

In order to optimize the signal-to-noise-ratio over a range of input intensities, ver-

tebrate sensory neurons (olfactory, visual and auditory, see [98]) are able to adjust

their dynamical range maintaining the response around a nominal value, while their

input stimulus changes considerably. Sliding the window of interest maximizes the

capacity for distinguishing variations of a signal while avoiding distortions due to

saturation. In the biological literature, this process is called adaptation [8, 88, 98].

As explained in the Introduction of this thesis, in olfactory transduction, the

ordinary input to an olfactory sensory neuron (OSN, here, the “sensor”) consists of

a stimulation by odorant molecules eventually leading to an electrical signal. Here we

consider the transduction current measured with the voltage clamped at a constant

value as the measurable output of the pathway (see Subsection 2.3 for details). Two

forms of adaptation of the odorant-induced current response [48, 49, 51, 79] are

observed during two types of experimental protocols:

1. Step adaptation, which is caused by a sustained stimulus (a step input) and

consists of a decline in the response despite the continued presence of a con-

stant odorant stimulus;

2. Multipulse adaptation, which is caused by repeated brief stimuli and involves a

17



18 CHAPTER 2. Adaptation in the olfactory transduction pathway

reduction in the amplitude of the response to the second odorant stimulus with

respect to the first. The difference in amplitude of the responses is reduced

when the time interval between stimuli is increased; complete recovery of the

response is seen for a sufficiently long interval.

In step adaptation, the return of the transduction current toward the basal

pre-stimulus level implies that the system has a memory of the basal level and

a mechanism enabling regulation around it. Multipulse adaptation in OSNs also

represents a form of memory: the attenuation of the transduction current in response

to the second pulse means that also in this case the past history of the system can

influence its present behavior [49]. In spite of the evidently similar nature of the two

phenomena, mathematical models taking into account both forms of adaptation are

very rare (the only papers we know of are [22, 76]). The aim of this work is to provide

insight into the mechanism of step and multipulse adaptation by constructing a

mathematical model of the olfactory transduction pathway that reproduces these

phenomena.

Several mathematical models capturing step adaptation have been reported in

the literature, see Refs. [1, 2, 8, 28, 100, 107]. Most of these models describe kinetic

mechanisms suitable to attain perfect adaptation, in which a new steady state value

exactly corresponds to the pre-stimulus value. In voltage clamp experiments on

OSNs, however, step adaptation is never perfect: a (small) difference between the

pre-stimulus value of the current and the new steady state value achieved after a

step-like stimulation is always observed [49, 61], with an amplitude that typically

grows with the size of the step (see [61], Fig. 1). We will show here that imperfect

step adaptation and multipulse adaptation can be explained by the same mechanism.

Conceptually, our model derives from the integral feedback model of [107]. In

this scheme, feedback evokes temporal integration of the past history of the output

in order to force it to return to its pre-stimulus value. For systems in which the

signals have constant sign (positive concentrations) a perfect memory of the past

implies a feedback variable that is monotonically increasing. However, in olfactory

transduction, the strength of adaptation in a multipulse protocol decays as the

interpulse interval increases, meaning that the memory of the past is gradually

forgotten by the system. An exact integral feedback adaptation cannot capture

this feature, just like it does not predict the displacement between steady state and

pre-stimulus value in the step adaptation. However, if we add a memory decay

to the integral feedback model, its monotonic character is lost and both types of

adaptation can be correctly reproduced.

Olfactory transduction occurs in the cilia of OSNs. The cilia contain all the bio-
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chemical machinery for transduction and two types of ion channels: cyclic nucleotide-

gated (CNG) and Ca-gated Cl channels (see Fig. 2.1). Voltage-gated channels for

the generation of action potentials are located in other compartments of OSNs and

are not activated when the voltage is clamped at a constant value, thereby decou-

pling the olfactory transduction process from the spiking events. The main steps

of olfactory transduction involve the binding of extracellular odorant molecules to

odorant receptors (ORs), which induces intracellularly a G-protein mediated activa-

tion of adenylyl cyclase (AC) to produce cyclic AMP (cAMP). cAMP then directly

gates CNG channels, causing an influx of Na+ and Ca2+ ions. Ca2+ entry amplifies

the response by gating a Cl− current and, in combination with Ca-binding proteins,

induces feedback mechanisms: Ca-calmodulin (CaCaM) increases the phosphodi-

esterase (PDE) hydrolysis of cAMP, and activates CaCaM-dependent protein ki-

nase II (CaMKII), which inhibits AC. Moreover, the cAMP sensitivity of the CNG

channels is reduced by Ca2+ feedback mediated by CaCaM and/or other Ca-binding

proteins natively bound to the CNG channels (see Section 1.3 for a detailed descrip-

tion of the pathway, and for reviews, see [40, 85]).

Previous experiments have shown that the shape of the response to odorants can

be reproduced by increasing the concentration of cAMP in the cilia via photorelease

of caged cAMP (see Fig. 4 of [96], or Fig. 2 of [48]), indicating that the response time

course is not significantly altered by the events occurring in the pathway upstream

of the production of cAMP (receptor activation, G-protein and AC signaling). Fur-

thermore, it has been shown that the principal molecular mechanisms underlying

multipulse odorant adaptation occur after the production of cAMP, since the re-

sponses to repeated photorelease of cAMP have adaptation properties similar to

those induced by odorants [48]. We therefore decided to focus our study on the part

of the pathway downstream of the production of cAMP, where Ca-mediated regula-

tory mechanisms play a key role. Ca-induced feedbacks are crucial for adaptation:

indeed, it has been shown that in the absence of Ca2+ influx, achieved either by

removing Ca2+ from the extracellular solution [49, 54] or by recording the current

at positive membrane potentials [11], neither form of adaptation can take place.

The common dynamical explanation for both types of adaptation provided in

this work relies on the kinetics of the Ca-induced feedback being slower than the

kinetics of the gating of the CNG channels and Ca2+ influx through CNG chan-

nels. We will show that by modulating the time constants of these kinetics with

respect to the other time constants of the system, a trade-off between the two forms

of adaptation is established. For example, assuming a very long time constant for

the feedback results in a nearly exact step adaptation but in an amplitude recovery

of multipulse adaptation that is slower than that observed experimentally. On the
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contrary, assuming a short time constant for the feedback leads to incomplete step

adaptation but to faster recovery in multipulse adaptation. This trade-off implic-

itly constrains the range of values of the parameters in which the behavior of the

model reflects the experimental data. We show here that for both input protocols

(sustained and repeated stimuli) a variety of data obtained in different experimental

conditions (different species; stimulation by odorant or by direct release of second

messengers) lead to fairly similar values of the parameters. Our results demonstrate

that both types of adaptation can be reproduced correctly if the system is endowed

with multiple time scales, such that the regulatory actions have longer time constants

than the direct transduction of stimuli to membrane current. This kinetic property

is the basis for several models proposed for (step) adaptation [2, 28], and is also

consistent with hypotheses presented in the olfactory transduction literature ([55],

see also [76]).

2.2 Model

Fig. 2.1 A illustrates the main steps of the olfactory transduction cascade (see also

Section 1.3 for a detailed description). We focused our study on the part of the

pathway downstream of the production of cAMP and considered experimental data

obtained using a constant voltage protocol (thus the voltage dependence does not

appear in the model proposed here). Hence, here the “open-loop” part of the path-

way (the signaling cascade from the input stimulus to the output current, feedback

excluded) consists of the cAMP-induced opening of the CNG channels and the in-

flux of Ca2+ into the cilia, while the feedback part involves the Ca-binding proteins,

which directly (through their gating action on the CNG channels) or indirectly

(through the activation of PDE) lead to the closure of the CNG channels. Both

feedback actions are subordinated to Ca2+ influx.

The model of Ordinary Differential Equations (ODEs) we use consists of the

following five state variables:

1. [cAMP], the concentration of the cyclic nucleotide,

2. [CNGo], the concentration of open CNG channels,

3. [Ca], the concentration of Ca2+ free ions,

4. [CaBP], the concentration of the complex formed by Ca2+ and Ca-binding

proteins (BP) natively bound to CNG channels,

5. [CaCaM], the concentration of the cytoplasmic Ca-calmodulin complex.
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A

B

Figure 2.1: The pathway and its feedback loops. (A) Representation of the
entire olfactory transduction pathway in the cilia of OSNs. Modified from [70].
The part in gray is not considered in this study. (B) Scheme of the basic reactions
and feedback mechanisms included in our model. The pointed arrows represent
positive regulation, stopped arrows represent negative feedbacks, and dashed arrows
degradations. The three bidirectional arrows represent reversible reactions. The two
feedback loops are represented in red and green.
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CaCaM is taken here as a proxy for the PDE activity (not modeled explicitly),
and the complex CaCaM is assumed to be free in the ciliary cytoplasm. It is known
that Ca-free calmodulin is also pre-associated with CNG channels and facilitates
a rapid Ca-dependent reduction in cAMP sensitivity of the CNG channels [14].
However, since calmodulin may not be the only protein involved in this process [6],
we take a more general perspective and attribute the reduction in sensitivity for
cAMP of the CNG channels to a “generic” BP natively bound to the channels and
whose action is triggered by Ca2+. Thus the variable [CaBP] summarizes the effect
of potentially more than one type of Ca-binding proteins (including also calmodulin)
that are assumed to be permanently bound to the CNG channels and able to rapidly
reduce their sensitivity for cyclic nucleotides when activated by the binding with
Ca2+. While the first three variables form the open-loop part of the model, the
pair [CaCaM] and [CaBP] are our feedback variables (Fig. 2.1 B). Their action in
generating dynamical feedback can be formulated using ODEs, as follows:

d[cAMP]

dt
= 2λ1 · [CNGo] − 2γ1 · [cAMP]2([CNGtot] − [CNGo])

−δ1 · [cAMP] − f1([cAMP], [CaCaM]) + u (2.2.1)

d[CNGo]

dt
= γ1 · [cAMP]2([CNGtot] − [CNGo]) − λ1 · [CNGo]

−f2([CNGo], [CaBP]) (2.2.2)

d[Ca]

dt
= φ1 · [CNGo] − δ2 · [Ca]

−γ2 · [Ca]([BPtot] − [CaBP]) + λ2 · [CaBP]

−2γ3 · [Ca]2([CaMtot] − [CaCaM]) + 2λ3 · [CaCaM] (2.2.3)

d[CaBP]

dt
= γ2 · [Ca]([BPtot] − [CaBP]) − λ2 · [CaBP] (2.2.4)

d[CaCaM]

dt
= γ3 · [Ca]2([CaMtot] − [CaCaM]) − λ3 · [CaCaM] (2.2.5)

where the initial concentrations correspond to a basal pre-stimulus level.

In Eqs (2.2.1)-(2.2.5) the total concentrations of the CNG channels [CNGtot],

calmodulin [CaMtot] and the Ca-binding proteins [BPtot] are conserved. No con-

servation law is imposed on the low molecular weight [cAMP] and [Ca]. Since

Ca2+:cAMP:CaM have molecular weights 40:329:16800, this assumption is reason-

able: small molecules can diffuse more rapidly in the cytoplasm of the neuron. In

addition Ca2+ and cAMP cannot be conserved because they are also involved in

non-conservative reactions: Ca2+ can enter the cell through the CNG channels, can

diffuse away from the internal membrane and can be extruded through Na+/Ca2+

exchangers; cAMP can be hydrolyzed by PDE. Most of the terms appearing in

Eqs (2.2.1)-(2.2.5) are derived from mass action kinetics. We report here the corre-

sponding reactions:
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2 cAMP + CNGc
γ1−⇀↽−
λ1

CNGo

Ca2+ + BP
γ2−⇀↽−
λ2

CaBP

2 Ca2+ + CaM
γ3−⇀↽−
λ3

CaCaM

where

[CNGc] + [CNGo] = [CNGtot];

[BP] + [CaBP] = [BPtot];

[CaM] + [CaCaM] = [CaMtot].

The input stimulus u appears as a synthesis term in Eq. (2.2.1) for cAMP, having
distinct temporal profiles for the different stimuli used (see Subsection 2.4.4). Two
more terms in Eq. (2.2.1) describe the binding/unbinding of cAMP to the CNG
channels (the term [CNGtot]-[CNGo] represents the concentration of closed chan-
nels). Eq. (2.2.1) also involves a linear degradation term representing the diffusion
of the nucleotide away from the internal membrane surface, and a negative feedback
term due to the hydrolysis induced (through PDE) by the CaCaM complex (green
stopped arrow in Fig. 2.1 B). The simplest way to represent this feedback action
avoids modeling explicitly PDE and is given by

f1([cAMP], [CaCaM]) = k1 · [cAMP] · [CaCaM]. (2.2.6)

This term was difficult for us to represent through mass action kinetics due to the
lack in our model of a variable representing the adenylyl cyclase responsible in the
biological pathway for the regeneration of cAMP. To describe the opening rate of
the CNG channels in Eq. (2.2.2), we use a mass-action law with cooperativity index
2 for cAMP because the binding of two molecules of cAMP is sufficient to open the
channel [10, 40, 65]. In Eq. (2.2.2), besides the association/dissociation with cAMP,
[CNGo] decreases due to negative feedback of the CaBP complex (red feedback
loop in Fig. 2.1 B).This negative gating activates only when Ca2+ binds to the Ca-
binding proteins permanently attached to the CNG channel and is represented as
a negative term which “competes” with the positive term (gate opening induced
by cAMP) thereby reducing the sensitivity of the channel to cAMP. The simplest
possible functional form to express this feedback is

f2([CNGo], [CaBP]) = k2 · [CNGo] · [CaBP]2 (2.2.7)

where a cooperativity index 2 is assumed for CaBP to account for the possible

presence of multiple units of BP in the complex they form with the CNG channels,

as reported for example for calmodulin [14, 99]. An alternative model to describe this



24 CHAPTER 2. Adaptation in the olfactory transduction pathway

negative gating is described in Subsection 2.4.7. Eq. (2.2.3) represents the inflow of

free Ca2+ ions into the cilia which depends on [CNGo], on their diffusion away from

the internal membrane surface (and extrusion through the Na+/Ca2+ exchanger),

and on their binding/unbinding with calmodulin and Ca-binding proteins. The

remaining Eqs (2.2.4)-(2.2.5) for [CaBP] and [CaCaM] represent mass action laws

for the binding and unbinding of Ca2+ ions. For simplicity we assume a linear

behavior between Ca and BP, while for the binding to CaM, following [76], we

consider a cooperativity index equal to 2 (the four binding sites for Ca2+ are highly

cooperative in pairs, see [69]).

The total elicited transduction current (the output measured in experiments) is

the sum of two distinct inward currents: one component carried by the influx of

Na+ and Ca2+ through CNG channels and the other carried by the efflux of Cl−

through channels gated by Ca2+. The equations for the currents are therefore:

ICNG = kc · Imax · [CNGo] (2.2.8)

ICl = (1 − kc) · Imax

( [Ca]2

[Ca]2 + k2
1/2

)

(2.2.9)

Thus, the output of our model is given by the sum of ICNG and ICl. The constant

kc, representing the relative contribution of the two currents, is known to be ap-

proximately 20% in the case of a nearly-saturating response [12]. ICNG depends on

the number of open channels and we use a direct proportionality with [CNGo]. ICl

depends on the fraction of open Cl channels, which is a function of the Ca2+ con-

centration [94] described by a Hill-equation with a cooperativity index of 2 [11, 40].

2.2.1 Choosing the pre-stimulus baseline level

For some of the quantities of interest in our model, ranges of plausible values of basal

(pre-stimulus) concentrations in the olfactory cilia are available. This concerns in

particular cAMP and Ca2+. For cAMP, the literature reports a basal concentration

of ∼ 0.1µM [13, 75] and a peak of concentration ∼ 100µM during the response to

a stimulus [97]. We used this information to normalize the value of [cAMP] in our

simulation so that the magnitude of the transient never exceeds a 103 ratio with

respect to its basal value (for reasonable values of the parameters, not necessarily

for the optimal set). Knowing the ratio of the output current before/after a stimulus

allows us to choose a proper initial value for [Ca] and for [CNGo] compatible with

the data. As for the other state variables, plausible values can easily be chosen,

assuming that at steady state (without input), the feedbacks are nearly inactive.
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Once the parameters are chosen, to avoid spurious prestimulus transients in the

simulations, the initial condition of the state variables is set equal to the steady

state reached by the system in correspondence of u=0.

2.3 Experimental Methods

Patch clamp experiments on dissociated olfactory sensory neurons Ol-

factory sensory neurons were dissociated from the olfactory epithelium of newts

(Cynops pyrrhogaster) as described in [47, 48], salamanders (Ambystoma tigrinum)

as in [25] or mice (BALB/c strain) as in [51]. All experiments were carried out

in accordance with the Italian Guidelines for the Use of Laboratory Animals (De-

creto Legislativo 27/01/1992, no. 116). Olfactory sensory neurons were identified

by their characteristic bipolar shape and only neurons with clearly visible cilia were

used for the experiments. Currents were measured in the whole-cell voltage-clamp

mode as previously described [25, 48, 51]. Transduction currents were elicited by

odorant, IBMX, the photorelease of cAMP [11, 48] or its non-hydrolyzable form

8-Br-cAMP [11], and were recorded at a holding potential of -50 mV. IBMX was

dissolved in DMSO at 100 mM and an aliquot was added to the Ringer solution to

obtain a final concentration of 0.1 mM. IBMX was applied to the neurons through

a glass micropipette by pressure ejection (Picospritzer, Intracel, United Kingdom).

All experiments were performed at room temperature.

Photolysis of Caged Compounds Caged cAMP (Dojindo, Japan) and BCMCM-

8-Br-cAMP (provided by V. Hagen, Leibniz-Institut fur Molekulare Pharmakologie,

Berlin, Germany, [11]) were dissolved in DMSO. Final concentrations were obtained

by diluting an aliquot of the stock solution into the pipette solution. Caged com-

pounds diffused into the neuron through the patch pipette and cyclic nucleotides

were photoreleased by ultraviolet flashes applied to the ciliary region through the

epifluorescence port of the microscope [11, 48]. For the experiments in the newt

the light source was a 100W mercury lamp. Timing and duration of the flash were

regulated by a mechanical shutter as described in [48]. For the experiments per-

formed in the mouse the light source was a xenon flash-lamp JML-C2 system (Rapp

OptoElectronic, Hamburg, Germany) that allowed an intense and short light flash

(about 1.5 ms), as described in [11].
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2.4 Results

In the present section we describe the experimental data, followed by a fit performed

with the model of Eqs (2.2.1)-(2.2.7), and by the description and evaluation of the

fitting procedure. Finally we introduce a possible alternative model, presenting the

corresponding simulations and comparing it with the model of Eqs (2.2.1)-(2.2.7).

2.4.1 Description of the experiments

To test the ability of the model to reproduce the adaptation of OSN responses,

we considered data from various experimental conditions in which responses were

elicited by different stimuli: (i) odorant, (ii) photorelease of caged cyclic nucleotides,

either cAMP or 8-Br-cAMP, and (iii) IBMX. All experiments considered here were

performed in voltage-clamp conditions, holding the membrane voltage constant at

-50 mV for the entire duration of the experiment. This allows the measurement of

transduction currents without the interference of action potentials.

(i) Response to odorant. A typical example of multipulse odorant adaptation in

an OSN is illustrated in Fig. 2.2 A. Responses to pairs of identical odorant

pulses separated by a variable time interval ∆t are plotted superimposed. The

amplitude of the response to the second pulse is reduced with respect to the

first, and progressively recovers to the initial value as ∆t is increased. The

input is modeled as a pair of square pulses of the same duration and ∆t as

the experimentally delivered odorant pulses. Fig. 2.2 B shows an example of

step odorant adaptation. The current response declines to an almost basal

steady-state level in spite of the persistent odorant stimulus.

(ii) Response to photorelease of caged compounds. The stimulus is given by the

photorelease of caged cyclic-nucleotides: in Fig. 2.3 A cAMP is released with

100 ms light flashes, while in Fig. 2.3 B the non-hydrolyzable 8-Br-cAMP is

released with briefer, about 1.5 ms, but more intense flashes. The input is

modeled as a pair of square pulses of a similar duration and the same ∆t as

in the experiments. For both types of caged compounds, we assume that the

concentration of the cyclic nucleotide depends on the intensity and duration of

the different flashes. As 8-Br-cAMP is not hydrolyzable by PDE [16, 101], we

consider PDE to be inactive in this case, and therefore the CaCaM feedback

is absent from the model. Multipulse adaptation similar to that observed with

odorants is seen with photorelease of both cAMP and of 8-Br-cAMP.
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A B

C D

Figure 2.2: Response to odorant.(A) Response reductions by a conditioning
pulse and their recovery time course in newt OSN (blue) and the corresponding
fit of the model (red). The blue traces above the fit of the data represent the
timing of the odorant stimulations. The amplitude of each response was normalized
to the response to the first conditioning pulse. Two identical odorant stimuli of
amyl acetate of 200 ms duration were applied separated by a time interval ∆t of
2.5, 4.5 and 6.5 s. Experimental data drawn from [48]. (B) The response of a
salamander OSN to an odorant stimulus sustained for 43.5 s. Experimental data
adapted from [61]. (C) Corresponding simulated input, normalized state variables
and output currents (with the two components ICNG and ICl) for the pulse pair
with ∆t = 2.5 s shown in (A). (D) Simulated input, normalized state variables and
output currents (ICNG and ICl) for a sustained stimulus 43.5 s in duration.
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A

B

Figure 2.3: Response to photorelease of caged cyclic nucleotides. Response
reductions by a conditioning pulse and their recovery time course in OSNs. The
experimental data are shown in blue, the response of the model in red. Above each
panel, the experimental input is shown (see Fig. 2.5 for the simulated input). In
each panel, the amplitudes of the responses were normalized to the response to the
first conditioning pulse. (A) Responses of a newt OSN to photorelease of cAMP
by two identical 100 ms ultraviolet flashes, separated by increasing time intervals
∆t of 2.3, 4.3 and 6.3 s. Experimental data adapted from [48]. (B) Responses of a
mouse OSN to photorelease of 8-Br-cAMP obtained with two identical ultraviolet-
light flashes of 1.5 ms separated by time intervals of 2.5, 4 and 6.8 s. Experimental
data from [11].
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(iii) Response to IBMX. Fig. 2.4 shows responses to applications of IBMX. Since

IBMX reduces the activity of PDE, responses in the presence of IBMX are

caused by the increase in cAMP concentration produced by the basal activity

of AC. Stimulus onset is modeled with a rapid rise in u; its offset is modeled as a

slow decay (see Fig. 2.6, and Fig. 2.11, Table 2.2 for an explanation). Fig. 2.4 A

shows superimposed current recordings in response to pairs of brief stimuli with

increasing ∆t. Fig. 2.4 B shows the response of a neuron to a prolonged IBMX

stimulation. The current response recovers to a low steady state level although

the stimulus is maintained. Fig. 2.4 C shows the superimposed responses to

two identical prolonged IBMX applications separated by ∆t of 20 or 28 s. The

current response to the first stimulus transiently increases and then decays to

a steady-state during the sustained stimulus. The amplitude of the transient

response to a second stimulus increases as ∆t increases, as for the experiments

shown in Figs. 2.2 A, 2.3 and 2.4 A.

2.4.2 Validation of the model

The agreement between parameter estimates across input types is quite good, despite

the fact that different experimental techniques and animal species were used and

despite the absence of step adaptation for two of the input types. This demonstrates

that similar dynamics can account for all of the experimental time series we fit. In

particular, the 4 parameter sets unanimously agree on the following relationship

among degradation and dissociation rates: 0 < λ2, λ3 # δ2. This corresponds to

saying that the time constants of the feedback variables CaBP and CaCaM are much

longer than that of free Ca.

Figure 2.2 C and D shows the temporal profile for the state variables from

fits to data shown in Figure 2.2 A and B. The response of the open-loop part of

the pathway, involving [cAMP], [CNGo], and [Ca], is prompter than that of the

feedback variables [CaBP] and [CaCaM], both in growth and decay. For multipulse

adaptation, in particular, if the concentrations of CaBP and CaCaM are still above

their basal levels when the second pulse arrives, the transient excursion of the pulse

response of the open loop part is reduced because the feedback response is quicker.

The result is that for both [CNGo] and [Ca] the second pulse is attenuated with

respect to the first. In the case of step adaptation in Fig. 2.2 B, the early response

consists of a transient peak of [cAMP], [CNGo] and [Ca]. As the concentration of the

two feedback variables [CaBP] and [CaCaM] builds up, the corresponding negative

feedbacks start influencing the dynamics of the open loop cascade, progressively
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A

B

C

Figure 2.4: Response to IBMX. Responses of salamander OSNs to IBMX. The
experimental data are represented in blue, the response of the model in red. Above
each panel, the experimental input is shown (see Fig. 2.6 for the simulated input).
(A) Responses to repeated applications of IBMX pulses of 20 ms applied to the
cell at time intervals ∆t of 6, 10, and 15 s. (B) Response to an IBMX stimulus
applied for 24 s. (C) Responses to two subsequent prolonged IBMX stimuli of 8 s
duration with interpulse interval of 20 and 28 s. IBMX was applied through a glass
pipette controlled by a pressure ejection system. The concentration of IBMX in the
pipette was 0.1 mM. Both kinds of adaptation are observed in the experiments and
reproduced by the model: decline of the peak and convergence to a new adapted
steady state within each stimulation, and peak amplitude modulation depending on
the interstimuli lag time.
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curtailing the transient excursion, until a steady state is reached. At this steady

state, the concentration of the feedback variables is still high, while both [CNGo]

and [Ca] have returned near their basal levels. In turn, from Eqs (2.2.8)-(2.2.9) this

implies that the output current returns near its basal level. Similarly, when the

input step finishes, the open-loop variables drop to their basal levels much quicker

than the feedback quantities.

For photorelease of 8-Br-cAMP, even if PDE activity is absent (no [CaCaM]

feedback in the model, k1 = 0), [CaBP] feedback is enough to guarantee multipulse

adaptation (Fig. 2.3 B). However, a comparison between the models for cAMP and

for 8-Br-cAMP photorelease data (Fig. 2.3 A and B) indicates that the joint action

of both feedback mechanisms yields a more rapid recovery of the response. In the

model, when the contribution of [CaCaM] is suppressed, the decaying phase of the

cyclic nucleotide concentration becomes slower, modifying the kinetics of all the

processes downstream (Figure 2.5).

Fig. 2.4 C illustrates a situation in which both types of adaptation are observed

in response to IBMX stimulation. Given the dissociation rate constants for [CaBP]

and [CaCaM] inferred from data, the recovery from multipulse adaptation is almost

complete when ∆t is 15 s or longer (Figs. 2.2 A and 2.4 A). In Fig. 2.4 C, however,

∆t for the first pair of steps is 20 s but adaptation is still clearly visible, much more

than when ∆t = 28 s. This apparent discrepancy is interpretable in terms of the

model of Eqs (2.2.1)-(2.2.7). During a step response, the feedback variables [CaBP]

and [CaCaM] remain at high concentrations, and only after stimulus offset do they

start to decrease (Figure 2.6). Hence essentially only the lag time between the end of

the first step and the beginning of the second matters in determining the magnitude

of multipulse adaptation.

While the shapes of the output responses plotted in Figures 2.2-2.4 are repro-

duced by the model fits with appreciable accuracy, their peak amplitude is sometimes

not perfectly matched by the model (see Fig. 2.2 A). These errors are however within

the range of experimental variability of the system.

2.4.3 Parameters estimation

The model of Eqs (2.2.1)-(2.2.9) contains 18 parameters (plus 5 describing the in-

put profiles, see Table 2.2). These parameters are reported in Table 2.1. A priori

knowledge on some of these parameters is available or can be inferred from other

experiments. The parameters δ1, λ1 and γ1 were previously estimated from experi-

ments in low calcium conditions (see Fig. 2.7). kc is drawn from [12, 31], and Imax

is set equal to 1 because we considered normalized currents. The parameter k1/2 is
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Figure 2.5: Time profile of the state variables for the simulated data in
response to caged compounds. Panels (A) and (B) show the normalized simula-
tion of the model in response to a paired-pulse stimulation using respectively caged
cAMP and caged 8-Br-cAMP, corresponding to Fig. 2.3. For both figures, the upper
panel represents the input given to the model.
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Figure 2.6: Time profile of the state variables for the simulated data in
response to IBMX. Panels (A), (B) and (C) show the normalized simulation of
the model in response to a paired-pulse stimulation, a prolonged stimulus, and a
mixed stimulus, corresponding to the data of Fig. 2.4. The top panels on each figure
represent the input given to the model.
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constrained to be between 2 and 5 [11, 40], and the total concentration of calcium

binding proteins [BPtot] bound to CNG channels is constrained by its stoichiometric

ratio with [CNGtot]. The relative blockage B of the CaCaM feedback due to the

action of IBMX was allowed to vary between 0.6 and 1.

In the equations for the current calculation (Eqs (2.2.8)-(2.2.9)), some of the

parameters can be considered constant: Imax = 1 because of the current normal-

ization; the exponent 2 represents the cooperativity of ICl [11, 40]; and kc = 0.2 to

reproduce a relative contribution of ∼ 20% of the ICNG in the total current [12, 31].

The experiments depicted in Figs. 2.2, 2.3, 2.4 were performed in different ex-

perimental conditions and therefore we subdivided them into 4 subsets, each cor-

responding to a choice of input stimulus (odorant, caged cAMP, 8-Br-cAMP and

IBMX), and fitted 4 distinct sets of parameters. The fit was performed normalizing

the amplitudes of the current responses. The starting point of the whole fitting pro-

cedure was a collection of experimental data obtained using 8-Br-cAMP stimulations

of increasing amplitude, in positive potential conditions (thus with a reduced inflow

of Ca2+, if any, hence approximately in “open-loop” conditions) [11], see Fig. 2.7.

In this way it was possible to obtain a good estimation of the association rate of

cAMP and CNG channels, in our model represented by γ1, of the corresponding

dissociation constant λ1 and of the degradation rate of cAMP δ1. The input pulse

amplitude and shape were assumed to be the same as those used in fitting the 8-

Br-cAMP responses. Parameter values resulting from this fit were then used as

the initial guesses for subsequent estimation of these parameters. The parameters

were allowed to span from 0 to infinity with some exceptions: the intervals for the

values of δ1, λ1 and γ1 were restricted around the values previously found, and a

lower bound equal to 0.1 was chosen for λ2 and λ3 to allow a complete recovery

from adaptation of the response in about 30 seconds [11]. The other constrained

parameter was k1/2 appearing in the calculation of the chloride current: following

the experimental data of [11, 40] it was allowed to vary between 2 and 5. The param-

eter B representing the relative inhibition of PDE due to the action of IBMX (see

Subsection 2.4.4 for details) was considered only for the data obtained using IBMX,

and was allowed to span from 0.6 to 1. All this a priori knowledge is reported

in Table 2.1. Fits were performed using these initial values and constraints with

the MATLAB function lsqcurvefit, which performs non-linear least squares (with a

trust-region-reflective algorithm) simultaneously over the time series of each of the 4

experimental setups. The lsqcurvefit function finds the vector of coefficients p that
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optimizes the following functional

J∗ = min
p

||F (p, t) − y||2
2 = min

p

∑

i

(F (p, ti) − yi)
2 ,

where t represents the time vector, y the experimental data, and F(p,t) the output

of our model.

0 5 10 15
0
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1

time (s)

I/I
m

ax

Figure 2.7: Response to photorelease of caged cyclic nucleotides in a low
Ca2+ experiment. The experimental data are shown in blue, the response of the
model in red. The blue traces above the data represent the experimental stimu-
lus. Response of a mouse OSN to photorelease of 8-Br-cAMP with ultraviolet light
flashes of 1.5 ms at various relative intensities (0.25, 0.4, 0.8 and 1), recording at
+50mV in Ringer solution. Parameter estimates: δ1 = 2.28, λ1 = 0.21, γ1 = 0.09.
Experimental data from [11].

The 4 parameter sets, reported in Table 2.1, show a substantial agreement. They

are also in agreement with the parameter values one obtains performing a fit on all

data simultaneously (column “common”). Since the model is nonlinear, no globally

convergent fitting procedure exists. However, an extensive search over the space of

parameters (see Subsection 2.4.5 and Fig. 2.12, 2.13) suggests that the parameter

region which optimizes the least squares cost functional may be uniquely defined

for most of the parameters. A notable exception is λ3, the dissociation rate for

the CaCaM feedback, whose value appears not to be univocally determined by the

optimization procedure. No ambiguity is present in the 8-Br-cAMP responses, since

in this case the CaCaM feedback is absent. We comment on this in the Discussion

section.

Parameters estimation -Common fit for all experimental data The simi-

larity among the 4 sets of parameters in Table 2.1 suggests that the experiments of

Figures 2.2-2.4 can all be fit with a single set of parameters. When performing a si-
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multaneous fit to all data sets (i)-(iii) (Table 2.1, last column; Figures 2.8, 2.9, 2.10),

the agreement with the data is less precise than for fits to individual data sets.

Nonetheless, the predicted output currents are still qualitatively correct, despite the

fact that the experiments were performed in OSNs from different species and with

different stimuli. This indicates that indeed the model captures the relevant aspects

of olfactory adaptation.
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Figure 2.8: Adaptation in response to an odorant. Responses of the model
(red) for the data shown in Fig. 2.16 (blue), using the parameter set in the “common”
column of Table 2.1.
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Figure 2.9: Adaptation in response to caged compounds. Responses of the
model (red) for the data shown in Fig. 2.3 (blue), using the parameter set in the
“common” column of Table 2.1.
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Figure 2.10: Adaptation in response to IBMX. Responses of the model (red)
for the data shown in Fig. 2.4 (blue), using the parameter set in the “common”
column of Table 2.1.
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2.4.4 Modeling the input stimulus

The shape of the input u in Eq. (2.2.1) for [cAMP] changes with the type of stim-

ulation considered. We reported in Fig. 2.11 and in Table 2.2 the shape and the

parameter values for the different simulated inputs. The plot of the profiles can be

seen above those of the state variables in Fig. 2.2, 2.5 and 2.6. For odorant molecules

and caged compounds, we chose a step-like function to represent the shape of the

input, assuming fast kinetics for both release and termination of the stimulation.

We imposed a total inhibition of the action of PDE in the data obtained using 8-Br-

cAMP (the CaCaM feedback gain k1 = 0 in this case). To model the experimental

data with IBMX as input, we instead used a ramp-like form for input onset and

offset, because of the different mechanism of stimulation: IBMX suppresses part of

the basal activity of PDE, directly leading to an increasing amount of cAMP. For

this type of data the rise is steeper than the decay, with a rise duration equal to

0.02 s (corresponding to the experimental duration of the stimulus) and a decreasing

duration equal to 2 s for the stimulation representing multipulse adaptation, while

we used a 0.02 s increase followed by a constant amplitude, and by a 2 second-ramp

decrease to represent the longer stimuli (see Fig. 2.11 and Table 2.2 for details).

Furthermore a dedicated parameter B was added in the fitting procedure to repre-

sent the relative inhibition of the CaCaM feedback due to the action of the PDE

(the parameter k1 in the equations was multiplied by 1-B). The ∼75% inhibition of

PDE by IBMX obtained by the parameter estimation (see Table 2.1) seems to be

a reasonable value and gives a good fit to the experimental data. A delay of the

response, varying between 0.2 and 1 s, was added to represent the latency (in this

case considered as the time required by the first part of the transduction process,

upstream of cAMP production) in the fit of the responses to odorants or to IBMX.

Such a delay was not added to the input profile for experiments using caged com-

pounds, in which the photorelease of cyclic nucleotides is very fast and produced a

rapid response (Fig. 2.3).

2.4.5 Evaluation of the goodness of the fit

We performed several tests to evaluate the goodness of the parameter estimation.

First of all we tested if the parameters we obtained from the fitting procedure were in

correspondence of a local minimum. We moved each parameter around its estimated

value up to a 10 fold increase/decrease or until the cost function increases more than

10% of its optimum J∗. In Fig. 2.12 the corresponding results for the entire set of

parameters are shown (J∗ is plotted in red) for the case of “common” parameter set
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t1 t2 t1 t2 t1 t2

h h
r1 hr2 r1 r2

Figure 2.11: Profiles of the shapes of the simulated inputs. The profile A is
used to simulate the response to odor, cAMP and 8-Br-cAMP, B is for the IBMX
pulses, and C for the sustained stimuli of IBMX.

Table 2.2: Details of the simulated inputs. The shape corresponds to one of the
three profiles represented in Fig. 2.11. h represents the amplitude of the stimulus,
r1 and r2 represent the slopes of the profiles. All the time units are expressed in s.

type shape h (t2-t1) delay r1 r2
odor pulses A 200 0.2 0.2

sustained A 100 43.5 1
cAMP pulses A 300 0.1 0

8-Br-cAMP pulses A 3000 0.005 0
IBMX pulses B 140 0.02 0.3 7000 70

sustained C 50 24 1 2500 25
sustained double C 50 8 0.7 2500 25
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of Table 2.1. The only two parameters for which the cost function decreases with

respect to J∗ are the dissociation rate λ3 and the fractional blockage B of the CaCaM

feedback in the IBMX experiments. In both cases, the variations improving on J∗

are outside the range we allowed for the parameters. In particular, the lower bound

we imposed in λ3, namely 0.1, is due to the fact that in experiments a complete

recovery from multipulse adaptation occurs in at most 30 s. This constrains the

time constants of the feedbacks. Notice in Fig. 2.12 that a similar behavior does

not occur for λ2. The interpretation of this fact is straightforward: when λ2 is

kept fixed at the optimal value, the CaCaM feedback is largely redundant and it is

allowed to behave as an exact integral since the CaBP feedback loop already takes

care of shaping the closed-loop system as required. To confirm that this is indeed

the case, we have carried out extensive simulations varying simultaneously the two

dissociation rates λ2 and λ3 for the feedback variables. In no case did λ2 and λ3

assume too small values simultaneously while reproducing correctly the input-output

adaptation profiles. As for the B parameter, the minimum blockage of 60% which

we impose on the IBMX experiments is reasonable, given our current knowledge of

the action of this blocker on PDE. Hence, in this case, the (marginal) improvement

of J∗ shown in Fig. 2.12 is to be considered non-physiological. The pattern of single

parameter variations is similar on the odor experiments (B does not appear in this

case) and in the IBMX data. No improvement at all appears in the 8-Br-cAMP

data set.

While the local analysis carried out above is encouraging, due to the nonlinear-

ities in the dynamics, our parameter fitting procedure is not guaranteed to find a

global optimum. We tried anyway to explore the landscape of the parameter space

from a more global perspective (see Fig. 2.13). We considered for this kind of test

the parameter set obtained for the fit of the responses to odor (the behavior for the

other sets is similar). For each parameter we randomly sampled rescaling factors

across 4 orders of magnitude (10−2 ÷ 102), combining the rescaled parameters in

various ways, at random. We then use these values as starting points for the pa-

rameter estimation. Fig. 2.13 A shows that when the procedure is repeated about

100 times a cost function smaller than J∗ is never obtained. In the best suboptimal

solutions we found (drawn in red in Fig. 2.13 A) we verified that indeed at least

one of the two feedback dissociation rates is small compared to the other reaction

rates. This confirms that in a model like ours the slow dynamics of the feedback

is fundamental to reproduce adaptation, and supports our observation that the two

feedback loops perform this task in a redundant way.

In order to evaluate how rugged the parameter landscape is, and to estimate

how well our fitting procedure performs (the two aspects are linked and cannot
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be disentangled easily), in Fig. 2.13 A the initial parameter guess and the final

(suboptimal) parameter set are shown connected by a line. The distance D in

parameter space is calculated as

D = ||p∗ − p̂||2 =

√

∑

i

(

p∗

i − p̂i
)2

,

where p∗ is the parameter vector corresponding to J∗, and p̂ the parameter vector

of the current suboptimal fitting. Every segment connects a random starting point

with the final result p̂ (indicated with a star in the plot). It is possible to see that

a diminishing difference in the cost function corresponds to a diminishing distance

in the parameters, suggesting the idea of a landscape in the cost function with a

unique region for the minimum, surrounded by a large amount of local minima at

higher cost.

To increase the sample size, we repeated about 1000 times a similar procedure

without re-fitting the parameters but only evaluating the cost function on a random

choice of the parameters, see Fig. 2.13 B. For each sampled parameter vector we

calculated the cost function and the distance from p∗. No value found in this

way appears below J∗, and it is possible to notice how increasing the distance in

parameter space from p∗ tends to increase the cost function, suggesting that the

basin of attraction of our minimum could be quite large (thereby confirming the

result of Fig. 2.13 A).

2.4.6 Dose response relations

The model presented here is able to reproduce the shift in the dynamic range caused

by adaptation in the olfactory transduction pathway. The typical illustration of

this feature is the dose-response curve. In this curve, the normalized maximal

amplitude of the current response is plotted versus the relative input amplitude or

input duration. Following adaptation, the input amplitude interval over which the

curve is approximately linear (the system is responding but not saturating) is shifted

and broader, allowing better detection and discrimination of further stimulations.

We present here the response of our model to two different simulated stimuli. In

Fig. 2.14 A it is possible to see the dose-response curves of the model in the case of

odor stimulation (with stimulus duration on the x-axis) and in Fig. 2.14 B in the case

of photoreleased 8-Br-cAMP (with stimulus amplitude on the x-axis). Comparing

the shape of these curves with those obtained experimentally (for the type of data

we are considering see [11, 48]) it is apparent that the qualitative behavior is very
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Figure 2.12: Goodness of fit: testing local optimality in the neighborhood
of p∗. Sensitivity of the cost function to single-parameter perturbations. On the x-
axis the relative value of each parameter with respect to its optimal value is reported,
on the y-axis the corresponding value of the cost function. p∗ is shown in red.
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Figure 2.13: Goodness of fit: exploring the landscape of the cost function.
(A) Starting from random points and optimizing. On the x-axis the distance in the
space of parameters is reported, on the y-axis distance from J∗ of the cost function,
both in a logarithmic scale. The segments connect the random starting points and
the optimized p̂ (denoted with a star). The red points indicate fitting results with
a difference smaller than 5 from the cost function of the optimal solution. All the
p̂ very close to p∗ in terms of cost function have similar feedback time constants as
our p∗ parameter set. (B) Evaluation of the cost function for a random choice of
parameters. On the x-axis the distance in the space of parameters is reported, on
the y-axis the difference in the cost function, both in a logarithmic scale.
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similar. The typical sigmoidal shape for the activation of both the control and the

adapted responses, and the reduction of the distance between the two curves with

increasing input are correctly reproduced. We fit these simulated data with a Hill-

type function: Y = Xn

Xn+K1/2
n where X represents the input duration or amplitude

and Y is the value of the current peak in the control or adapted state. The values

for the cooperativity index n and for the half-activation constant K1/2 are reported

in Tab. 2.3.
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Figure 2.14: Dose response plot. (A) Simulated odorant response: the black dots
represent the model simulation, the red curve shows the corresponding Hill function.
For the response to the first pulse, an input of increasing duration was simulated.
To obtain the adapted response, the duration of the second pulse was increased,
keeping fixed that of the first pulse. (B) Same as (A), but using simulated responses
to a release of caged 8-Br-cAMP of increasing amplitude.

Table 2.3: Parameter set used to fit the dose response curves of Fig. 2.14.

Type of stimulation n K1/2

odor control 1.83 0.14
adapted 1.73 0.43

8-Br-cAMP control 1.90 0.09
adapted 2.02 0.52

2.4.7 An alternative model for the CNG channel

In this subsection we formulate a possible alternative model for the gating of a CNG

channel inspired by [76], and show that also in this case the input-output behavior
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is qualitatively correct. Following [76] a different formulation of the model can

be considered, in which the state of a CNG channel is characterized by 3 possible

conformations:

• open (hereafter [CNGo])

• closed ([CNGc])

• inhibited ([CNGi])

The inhibited state of the CNG channel resembles the inactivated state of the

voltage-gated Na+ channel, in which after depolarization, the channel is in a non-

conductive state and remains refractive to further gate opening commands for a

certain time interval. Although to our knowledge there is no experimental evi-

dence to support the existence of an “inhibited” phase in CNG channels during

voltage-clamp, the scheme can be used to set up a theoretical model alternative to

Eqs (2.2.1)-(2.2.7). In this scheme, the variable [CaBP] no longer appears: the bind-

ing of Ca to BP (permanently attached to the channel) automatically turns an open

channel into an inhibited channel (second reactions of the list below). The longer

time constant associated with the feedback action of the CaBP in the model (2.2.1)-

(2.2.7) is replaced here by the longer time constant of the “inhibited” phase with

respect to the other two phases of the CNG channel. The reactions are therefore as

follows:

2 cAMP + CNGc
γ1−⇀↽−
λ1

CNGo

CNGo + 2 Ca2+ γ2−→ CNGi + 2 cAMP

CNGi
λ2−→ CNGc + 2 Ca2+

2 Ca2+ + CaM
γ3−⇀↽−
λ3

CaCaM

cAMP
k1 · CaCaM + δ1−−−−−−−−−−→ AMP

with the following conservation laws:

[CNGtot] = [CNGo] + [CNGc] + [CNGi];

[CaMtot] = [CaM] + [CaCaM].
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Adding a factor σ=volume/surface to allow the interaction between surface and
volume concentrations of variables, the reactions above lead to the equations:

d[cAMP]

dt
= 2 ·

1

σ
· λ1 · [CNGo] − 2 ·

1

σ
· γ1 · [cAMP]2 · ([CNGtot] − [CNGo] − [CNGi])

−(k1 · [CaCaM] + δ1) · [cAMP] + 2 ·
1

σ
· γ2 · [Ca]2 · [CNGo] + u (2.4.10)

d[CNGo]

dt
= γ1 · [cAMP]2 · ([CNGtot] − [CNGo] − [CNGi])

−λ1 · [CNGo] − γ2 · [Ca]2 · [CNGo] (2.4.11)

d[Ca]

dt
= φ1 ·

1

σ
· [CNGo] − δ2 · [Ca] − 2 ·

1

σ
· γ2 · [Ca]2 · [CNGo] + 2 ·

1

σ
· λ2 · [CNGi]

−2 · γ3 · [Ca]2 · ([CaMtot] − [CaCaM]) + 2 · λ3 · [CaCaM] (2.4.12)

d[CNGi]

dt
= γ2 · [Ca]2 · [CNGo] − λ2 · [CNGi] (2.4.13)

d[CaCaM]

dt
= γ3 · [Ca]2 · ([CaMtot] − [CaCaM]) − λ3 · [CaCaM] (2.4.14)

Hypothesizing slow dynamics for the [CNGi] and [CaCaM] variables this model is

able to reproduce both types of adaptation observed in the olfactory transduction

(Fig. 2.15).
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Figure 2.15: 3-conformation model for the CNG channel. Panel (A) shows
the response of the model of Eqs (2.4.10)-(2.4.14) to a double pulses protocol. Panel
(B) shows the response on the same model in the case of a sustained stimulation.
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In this model, the binding of Ca to BP (and hence the initiation of the inhibition

phase) coincides with the detachment of cAMP (and hence with the termination of

the opening gate signal). In the model (2.2.1)-(2.2.7), the two gating commands are

instead independent and can coexist, which seems to us a more appropriate descrip-

tion for this population of channels. Furthermore the profile of a dose-response curve

cannot be reproduced by Eqs (2.2.1)-(2.2.7). Finally the behavior in the adapted

state is different in the two models. Indeed, in the case of a saturating input a

model like (2.4.10)-(2.4.14) provides right after the stimulus a total inhibition (and

unavailability) of the CNG channels. Therefore this system is unable to respond to

subsequent stimuli, until the channels have turned from the inhibited to a closed

state. On the contrary, in the system of Eqs (2.2.1)-(2.2.7) the CNG channels are

still able to produce a response, although reduced due to the feedback action of the

calcium binding protein complex.

Notice that also for this model in nominally zero Ca2+ the channels never be-

come inhibited, hence both feedback mechanisms are absent, consistently with the

experimental data.

2.5 Discussion

The aim of this work is to formulate a basic model for adaptation in OSNs, able

to capture all the kinetic features observed in the experiments and to provide a

dynamical interpretation of the phenomenon. The main result is that both multi-

pulse and step adaptation can be explained by the same assumption, namely that

the dynamics of the feedback part of the pathway are much slower than those of

the open-loop part. As mentioned in the Section 2.1 this scheme corresponds to an

integral feedback with memory decay. That such a scheme can account for both

types of adaptation is shown by best-fits of a kinetic model to experimental data.

One of the main predictions of our model is that the two forms of adaptation

are in a dynamical trade-off: when the time constant of the feedback part becomes

infinite and step adaptation is exact, then the recovery in multipulse adaptation

vanishes, thus the second pulse will have reduced amplitude for any interpulse in-

terval (see Figure 2.16 A and B). In terms of the model of Eqs (2.2.1)-(2.2.7), a long

feedback time constant means that the Ca-activated protein complexes responsible

for the feedback are long lived after the first pulse. Upon the arrival of a second

pulse, their concentration is still high and the feedback-induced response attenuation

is more rapid. When the feedback time constants are comparable to those of the

open-loop part (Figure 2.16 C and D), then these complexes have time to dissociate
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before the arrival of the next pulse, and the response attenuation is diminished. For

prolonged stimuli, the difference between the feedback and open-loop time constants

determines the degree of adaptation.
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Figure 2.16: Dynamical trade-off: comparison between perfect adaptation
and fast dissociation of CaCaM and CaBP. Left: Response to double pulses
in the case of perfect adaptation (dissociation rates for the feedback variables, λ2

and λ3, equal to zero) in panel (A) and in the case of fast kinetics of the feedback
variables in panel (C). The lag time for the recovery of the response is overestimated
in the first case (for perfect adaptation there is no recovery) and underestimated
in the second case. Right: Response to a sustained stimulation for zero (B) and
fast (D) feedback kinetics rates. In the first case the pre-stimulus current recovers
exactly during the stimulation (hence the name perfect adaptation) while in the
second case the system adapts less than observed experimentally.

In a model like that of Eqs (2.2.1)-(2.2.7), a natural way to obtain slow dynamics

for a state variable is to choose a time constant which is long (longer than the other

time constants of the system), and feedback loops are natural candidates for slower

kinetics, especially in the presence of output responses exhibiting only a transient

excursion as in step adaptation. For our adaptation experiments, the identification

of two slow variables appears to be confirmed by the agreement of fits performed

independently on 4 data sets: all of them implicate CaBP- and CaCaM-mediated

feedback as candidates. The high correlation among the 4 sets of parameters in

Table 2.1 and the qualitatively correct fit obtained from simultaneous fitting of

all 4 data sets emphasize that all of the experimental results we have presented

can be accounted for by one model and that the trade-off mentioned earlier leaves

only a limited parameter range compatible with both types of adaptation. Other
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well-known features of adaptation, such as the dose-response shift, are qualitatively

reproduced by the model with best-fit parameters (Figure 2.14 and Table 2.3). Also

the slow attenuation of the current response following a transient input in low ex-

tracellular Ca2+ is replicated by the Eqs (2.2.1)-(2.2.7) when the amount of Ca is

set equal to zero (Figure 2.7).

Other models for olfactory transduction have been published in recent years [22,

33, 76]. In [22] for instance, the authors focus on modeling multiple aspects of

the kinetics, such as the plateau phase of the pulse response appearing on (some)

high amplitude stimuli, and the onset of oscillations for step responses (see also

the model in [76]), from experiments using the suction-pipette technique [79, 81].

Neither of these features is present in the voltage-clamp experiments described here

(the oscillations visible in the step adaptation of Fig. 2.2 are very small and irregu-

lar). In [22], capturing such complex phenomena requires a much more complicated

model, with several nonlinear kinetic functional forms and several more parameters

than the model developed here. This makes it more difficult to understand which

basic mechanisms are responsible for adaptation. The model of [76] instead rep-

resents an ionic channel with a 3-conformation model: open, closed and inhibited,

the last corresponding to a non conductive channel. In this model, the binding of

Ca2+ to the Ca-binding proteins present on the channel, initiates a refractory pe-

riod in which the channel has lost sensitivity to cAMP and cannot reopen. This

mechanism, in a way similar to what happens during the repolarization phase in

models of neuronal action potentials, is described in detail in Subsection 2.4.7 (see

also Figure 2.15). The duration of the refractory period plays the same role as the

long (feedback) time constant in a model like that of Eqs (2.2.1)-(2.2.7).

As for adaptation in general, many mathematical models have been proposed in

recent years [1, 2, 8, 28, 100, 107]. These are however exclusively concerned with step

adaptation, and, as the exact integral feedback model shows, they may not manifest

both forms of adaptation observed in olfactory transduction. From a kinetic point

of view, the integral feedback model corresponds to a time constant which is infinite

and induces an exact recovery to the pre-stimulus level (a perfect step adaptation),

never observed in voltage-clamp measurements of olfactory transduction. That the

inexact adaptation in our measurements is not an artifact is confirmed by the fact

that the steady state displacement scales with the amplitude of the step input (see

for example Fig. 1 of [61]). This property is not observed in perfect step adaptation

which is instead independent of input size - the displacement converges to zero

for all amplitudes of the input step. Note that a dependence of the steady state

displacement on the amplitude of the constant input is captured by our model

(Figure 2.17).
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Figure 2.17: Current responses to a prolonged stimulation of different am-
plitudes. Responses are normalized to the amplitude of the transient peak. In-
creasing inputs yield increasing steady-state levels. This shows that for our model
the lack of exact adaptation is not an “error” but a steady-state characteristic, in-
compatible with models of perfect adaptation. The green trace corresponds to the
simulation in Fig. 2.2.

In spite of these differences, a common principle in many adaptation models,

namely that adaptation is the result of multiple time scales acting on a system [2, 28],

also guides our work. In the context of olfactory transduction, previous studies [55]

have suggested that a slower kinetic is due to the action of CaMKII on AC, and

that each form of adaptation is due to a different feedback [108]. Our model sug-

gests instead that a feedback on AC is not necessary and that, rather than a neat

association of each form of adaptation to a particular feedback mechanism, there is

a redundancy in the regulation, with each feedback contributing to both types of

adaptation and only a marginal synergistic effect observable from their joint action.

In our model this redundancy is highlighted by the observation that the only pa-

rameter which can be modified significantly without altering the quality of the fit

is λ3 (the dissociation rate of the CaCaM feedback). Provided that the time con-

stant of the kinetics of the CaBP feedback is kept in the correct time window (i.e.

slower than the time constant of Ca but fast enough to avoid perfect adaptation),

λ3 can be modified without drastically altering the closed loop behavior. While a

redundant role for the two feedback loops is a plausible hypothesis, its complete

experimental validation is still unfeasible. In fact, if the CaCaM feedback loop can

be blocked (as in our 8-Br-cAMP experiments), the blockage of the CaBP regulation

requires the knowledge of all gating proteins naturally bound to the CNG channel,

an information which is still out of reach.



Chapter 3

Basic dynamical models

explaining adaptation in

olfactory sensory neurons and

photoreceptors

3.1 Background

A common trait of most sensory neurons in vertebrates is their capacity to adapt to

changes of the input signal being monitored. As already mentioned adaptation in

this context is intended as the ability of the sensory cell to shift the window of am-

plitudes in which the signal is accurately detected without incurring in saturation-

induced distortions. Physiological recordings have identified the phenomenon in

olfactory receptors [48], retinal photoreceptors [74], auditory [20] and somatosen-

sory neurons [58]. In this chapter we focus on the first two such sensory systems,

olfactory transduction and phototransduction. If it is commonly accepted that the

mechanisms inducing adaptation in sensory receptor cells are those involved in the

homeostatic regulation of the signaling pathways [60, 74], there is still no commonly

accepted explanation of how this function is performed. In spite of a wealth of knowl-

edge available at the level of molecular components and of reaction mechanisms for

the signaling cascades involved and for their regulation (see the Introduction and e.g.

[15, 23, 40, 73] for comprehensive surveys of olfactory transduction and phototrans-

duction), what is still missing (and difficult to obtain) is a complete understanding of

how the various steps are orchestrated into a coherent behavior at system-level. Our

53
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aim in this work is to combine mathematical modeling and single cell electrophysio-

logical experiments, in particular input-output (i.e., stimulus-response) time series,

to thoroughly understand a number of dynamical features which can be associated

with sensory adaptation, thereby helping understanding how this phenomenon hap-

pens.

The ability of a biological system to adjust the sensitivity in a wide range of input

amplitudes, has been extensively studied in the literature [41, 43, 44, 98], especially

in recent years [2, 7, 8, 28, 36, 37, 57, 91, 100, 107]. The phenomenon occurs in

different contexts, like chemotaxis in bacteria [2, 107] and amoeba [36], osmotic

regulation in yeast [64], tryptophan regulation in E.coli [102], and sensory systems

[41, 98]. Most, if not all, of these studies evaluate adaptation through the steady

state values reached in response to different constant stimuli. When one is concerned

only with steady states and their variations, then the only form of adaptation which

can be studied is what we call step adaptation. This dynamical behavior is also

known as desensitization in the literature [41] and corresponds to a response that

terminates or attenuates in spite of a persistent stimulation. Following [44], step

adaptation is called perfect (“absolute” in [44]) in the first case, and partial in the

second. From a modeling perspective, the perfect adaptation case is of particular

interest, because it entails the presence of a particular form of regulation known

in control theory as integral feedback [107]. Perfect step adaptation means that,

regardless of the amplitude of the input step being applied, the system is able to

recover exactly the nominal value it had before the stimulus.

If, as in our sensory systems, we are able to apply a richer class of input pro-

files than just steps, then more features than simply steady state responses can be

studied. From a dynamical perspective, in fact, the stimulation with time-varying

input protocols provides information which is nonredundant with the steady state re-

sponses. Combining this with the possibility of monitoring precisely the entire time

history of a response, then more fine-graded hypotheses on the regulatory mecha-

nisms encoded in the pathways can be formulated theoretically and validated (or

falsified) experimentally. For instance, if in a system with integral feedback instead

of steps we apply a pair of nonoverlapping pulses, no difference should emerge in

the elicited responses as we progressively increase the delay of the second pulse with

respect to the first. This is not what happens in sensory systems: if for short delays

between the pulses adaptation manifests itself in a reduced amplitude of the tran-

sient response to the second pulse, increasing the lag time adaptation progressively

reduces, until the system recovers completely, i.e., the two pulses elicit identical re-

sponses. This effect, which we call multipulse adaptation, translates into an integral

feedback which cannot be perfect, but which has to “forget” the past with a cer-
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tain time constant. Exact integral feedback (which corresponds to an infinite time

constant) cannot achieve this, but a dynamical feedback with a suitable memory

decay can accomplish the task. However, replacing an exact integral feedback with

a dynamical feedback having a memory decay implies that perfect step adaptation

is no longer possible. Also this prediction is coherent with the experiments. In both

sensory systems, in fact, the step responses reset themselves only partially, never

completely. While the gap is minimal in the olfactory neurons, it is consistent in

phototransduction, see Fig. 3.1 A and Fig. 3.2 A.

In the previous chapter we have observed that the two forms of adaptation

mentioned so far, step adaptation and multipulse adaptation, appear to be in a

dynamical trade-off: the more step adaptation gets closer to perfect, the slower is

the recovery in multipulse adaptation and viceversa. The limiting case of perfect

step adaptation corresponds to no recovery at all in multipulse adaptation. In the

present chapter this trade-off is investigated more in detail from both a theoretical

and an experimental perspective. In particular, we observe that both our sensory

systems obey to the rules imposed by this trade-off, and the fact can be neatly

observed in the transient profiles of the electrophysiological recordings. We show

that the trade-off is naturally present also in basic regulatory circuits, and that the

time constant of the dynamical feedback can be used to decide the relative amount

of the two forms of adaptation. These elementary circuits help us understanding the

key ingredients needed to have both forms of adaptation, and confuting potential

alternative models. For example, while it is in principle possible to realize some form

of recovery in multipulse adaptation also in presence of exact integral feedback, we

show that this requires necessarily a transient response that undershoots its baseline

level during the deactivation phase, something that is not observed experimentally

in neither sensor. However, if we manage to artificially shift the baseline level (for

example performing phototransduction experiments in dim background light rather

than in dark) then our simplified model predicts that nonnegligible undershoots in

the deactivation phase should emerge. We have indeed verified their presence in

experiments.

Stimulus-response behavior for various input protocols. Several input pro-

tocols, i.e., classes of time courses given to the stimulus are used for our two sensory

systems:

1. steps;

2. repeated pulses at different lag times;
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3. double (nested) steps.

We have applied the first two protocols to olfactory neurons and photoreceptors,

obtaining electrical recordings like those shown in Fig. 3.1-3.2. The double step is

instead used only for phototransduction (shown in Fig. 3.2 B).

The responses to these input protocols for the two systems exhibit several com-

mon features which are highlighted below:

1. step response: we observe a transient excursion followed by a decline of the

output signal, which tends to return towards its basal, pre-stimulus level (more

in olfactory transduction than in phototransduction);

2. multipulse response: if for short delays between the two pulses the response

to the second pulse is attenuated with respect to the first one, as the lag time

between the two pulses increases, a progressive growth of the amplitude of the

second response is observed, up to a complete recovery;

3. double step response (in phototransduction): unlike for a single step, the

deactivation phase of the inner step exhibits an overshoot with respect to the

steady state value corresponding to the outer step. No significant overshoot

is observable for deactivation of the outer step.

It is remarkable that both sensors exhibit input-output responses which are qualita-

tively similar for what concerns both the types of adaptation previously mentioned.

3.2 Experimental methods

Olfactory transduction Olfactory sensory neurons have been dissociated from

the Ambystoma Tigrinum salamander as previously reported [25]. Only neurons

with clearly visible cilia were selected for the experiments. The currents were elicited

by the application of 0.1 mM IBMX, previously dissolved in DMSO at 100 mM and

then diluted in a Ringer solution in order to obtain the final concentration value.

The release of IBMX to the neurons was performed through a glass micropipette by

pressure ejection (Picospritzer, Intracel, United Kingdom). All experiments were

performed at room temperature (22-24◦C). Transduction currents on the surface of

the dissociated neurons were measured through whole-cell voltage clamp recordings

(as described in [25, 48, 51]) where the holding potential corresponds to -50mV. All

experiments were carried out in accordance with the Italian Guidelines for the Use

of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116).
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Figure 3.1: Step and multipulse responses for the olfactory transduction
pathway. A: An example of a normalized response to a stimulus of IBMX sustained
for 24 s, applied to a salamader olfactory sensory neuron. B: examples of normalized
responses to two identical pulses of IBMX of duration 20 ms, applied with a time
interval ∆t of 6, 10, and 15 s respectively.
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Figure 3.2: Step and multipulse responses for the phototransduction path-
way. A: An example of normalized response to a step sustained for 20 s in non
saturating light conditions (wavelength 491 nm) obtained with suction-electrode
recording method from an isolated and intact Xenopus laevis rod in dark-adapted
conditions. B: Example of normalized response to a double step of non saturating
light; the two nested steps have a duration of 60 and 20 s. C: Example of normal-
ized response from two identical non saturating light pulses with a duration of 5 ms
applied with a time interval ∆t of 2, 3, 4, and 5 s respectively.
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Phototransduction Isolated photoreceptors from retina: dissociated rods were

obtained using adult male Xenopus laevis frogs as previously reported [52, 59, 90].

All experiments carried out have been approved by the SISSA’s Ethics Commit-

tee according to the Italian and European guidelines for animal care (d.l. 116/92;

86/609/C.E.). The frogs were dark-adapted and the eyes were enucleated and emi-

sected under a dissecting microscope with infrared illumination (wavelength 820

nm); isolated and intact rods were obtained by repeatedly dipping small pieces of

retina into a Sylgard Petri dish with a Ringer solution containing the following (in

mM): 110 NaCl, 2.5. KCl, 1 CaCl2, 1.6 MgCl2, and 3 HEPES-NaOH, 0.01 EDTA

and 10 Glucose (pH 7.7 - 7.8 buffered with NaOH). After dissociation the sample

was transferred into a silanized recording chamber containing the Ringer solution.

All experiments were performed at room temperature (22-24◦C).

Electrophysiological recordings: after the mechanical isolation, the external (or

the internal) segment of an isolated and intact rod was drawn into a silane-coated

borosilicate glass electrode (internal diameter of 6-8 µm) filled with Ringer solu-

tion. The cell was viewed under infrared light (wavelength 900 nm) and stimulated

with 491 nm diffuse light (Rapp OptoElectronic, Hamburg, Germany). The pho-

tocurrents obtained after the stimulus where recorded using the suction-electrode

recordings, as previously described [27, 52], in voltage-clamp conditions and achieved

with an Axopatch 200A (Molecular Devices). The functionality of the cell was con-

firmed by the observation of the amplitude of the cell response (typically 15-20 pA)

to brief light flashes (1 ms) of saturation intensity. Different light stimuli protocols

were used for different recordings (see figure legends).

3.3 Models

In the present section we introduce a minimal model able to reproduce the features

of the response, obtained improving some 2-variable systems. More detailed models

of the olfactory and phototransduction pathways which have been used to fit the

experimental data are then described.

3.3.1 A minimal regulatory model for input response.

Detailed dynamical models for the two sensory systems can be found in [22, 33] for

olfactory transduction and in e.g. [27, 34, 87] for phototransduction. The approach

followed in this work is different: rather that including into our models all the

kinetic details available for the two signaling pathways, we would like to introduce

an elementary model which, in spite of its extreme simplicity, is nevertheless able to
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qualitatively capture the salient features of the various responses. This basic model

is presented now in general terms. In Section 3.4 an interpretation in terms of the

specific signaling mechanisms of the two pathways is provided. More specific models

tailored to the two transduction processes are discussed in Subsection 3.3.3

Consider the 2-variable prototype regulatory system depicted in Fig. 3.3 A. It

represents a system in which two molecular species y and x are linked by a negative

feedback loop.

A B

Figure 3.3: Step and multipulse adaptation. A: the basic model (3.3.1) consists
of the two variables y and x linked by a negative feedback loop (of gains k1 and
k2), an external input u, and two first order degradation terms (of rates δx and δy).
B: Various levels of adaptation for the model (3.3.1), according to the ratio δx/δy.
The upper and lower parts of the panel show the response to the two main input
protocols described in the text, steps and multiple pulse pairs (here a series of 4
pulse pairs in which the second pulse is progressively delayed with respect the first;
the 4 double pulse responses are shown all simultaneously, and the 4 first pulses of
each pair are all identical and overlapping). Notice that the step responses resembles
those of Fig. 5 of [44]. The ratio δx/δy determines the amount of the two forms of
adaptation mentioned in the text, step adaptation and multipulse adaptation. In
particular perfect step adaptation requires exact integral feedback (i.e., δx = 0) and
corresponds to no recovery in multipulse adaptation (leftmost plots). Moving from
left to right of the panel as we increase the ratio δx/δy, step adaptation decreases
and the recovery in multipulse adaptation becomes faster. See Fig. 3.6 for blown-up
plots of the various cases.

The following minimal mathematical model describes the reactions in the scheme
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of Fig. 3.3 A:

ẏ = u(1 − y) − k1xy − δyy (3.3.1)

ẋ = k2y − δxx,

where k1 and k2 are gains and the two parameters δx, δy represent first order degra-

dation rates in y and x. The external stimulus u favors the production of y, which

is instead inhibited by the negative feedback from x. In turn, the synthesis of x is

enhanced by y. By construction 0 ! y ! 1 and x " 0, meaning that the model

is biologically consistent. The model (3.3.1) is the simplest elementary dynamical

system having an input-output behavior resembling that of olfactory transduction.

Consider the change of variable z = 1 − y, 0 ! z ! 1. A straightforward

algebraic manipulation allows to rewrite the system (3.3.1) in terms of z. In this

case the regulatory actions have the opposite sign: u decreases z while the feedback

from x promotes the formation of z.

ż = −uz + k1x(1 − z) + δy(1 − z) (3.3.2)

ẋ = k2(1 − z) − δxx.

This is the minimal model which will serve as reference for the input-output behavior

of phototransduction. By construction, the models (3.3.1) and (3.3.2) exhibit the

same dynamical behavior up to a flipping symmetry in the y and z variables. An

exegesis of these models, explaining the role of each of the terms, and including

other technical details such as shifted baseline levels, is presented in the following

subsections.

3.3.2 Further considerations on elementary 2-variable models

From exact integral feedback model to integral feedback with memory

decay This section is meant to explain why on elementary models a simple exact

integral feedback is not suitable to reproduce the analyzed data. For the sake of

simplicity, we take as reference the experiments with olfactory neurons shown in

Fig. 3.1, in which the input positively stimulates the state variable y of the system

(and hence the output). We review (basic) models starting from the one in [107]

and adding elements to it, with the aim of “qualitatively” satisfying the following

dynamical features:

• reproduce the step adaptation, with its steady state value which is similar but

not exactly equal to the pre-stimulus level;
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• reproduce the two-pulse adaptation protocol, with its recovery profile;

• avoid non-physiological signals. These correspond for example to negative

concentrations of a substance, but also to unrealistic transient excursions. In

particular in all our experimental data for olfactory response (see Chapter 2),

the output current never undershoots the basal level of current, neither in a

step adaptation nor in a multipulse protocol.

Model 1. The basic integral feedback model. Following the notation of the cap-

tion of Fig. 2 of [107], the basic model is

y = k1(u − x) − yo (3.3.3)
dx

dt
= y,

where y is the output variable, yo its basal level, and x the feedback variable.

A characteristic of this model is that when y ≥ 0 ∀ t ≥ 0 (physiological condi-

tion for most biological models, including ours) x(t) =
∫ t
0 y(τ)dτ is monotoni-

cally growing. Hence no matter how delayed is the second pulse of a two-pulse

protocol, y(t) " 0 implies x(t2) " x(t1) ∀ t2 > t1, meaning that the adapted

response does not recover increasing the lag time between the two pulses. The

only way to decrease x (to “discharge” the integrator in control engineering

language) is to allow for negative y, see Fig. 3.4. Notice that the model is

exactly the same as the following one, with baseline “shifted”

y = k1(u − x) (3.3.4)
dx

dt
= (y − yo),

where integration is with respect to the baseline value yo. Now the output

y “moves around” yo, hence when yo > 0 it could remain positive even if

y − yo < 0. However, in the multipulse response the problem of possible

negative values of y reappears if the amplitude of u is increased, meaning

the model is not structurally consistent for biological signals. Furthermore,

the profile for the deactivation phase (following the end of a pulse) is not

physiological, and differs from any experimentally observed profile.

In addition, y has jumps when u has jumps, since the first equation of (3.3.3)

is a static input-output relationship.

Model 2. Adding a kinetics to the input-output relationship. The static input-

output transduction of model (3.3.3) can be replaced by a differential equation,
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describing the kinetics from input u to output y

dy

dt
= f(u, x) (3.3.5)

dx

dt
= y,

where f(·) is any kinetic function, for example a linear one: f(u, x) = u−k1x.

In this way we obtain a linear system ξ =

[

y

x

]

dξ

dt
= Aξ + Bu,

where A =

[

0 −k1

1 0

]

, B =

[

1

0

]

. A system like this is not asymptotically

stable (trace(A) = 0 means the eigenvalues are purely imaginary) and typically

induces oscillations in response to steps, see Fig. 3.4. However if we add a

damping, i.e., a negative term on the diagonal of A, then asymptotic stability

is recovered.

Model 3. Adding a damping term to the y equation. A first possibility is to place

the damping term (a first order decay) in the input-output transduction:

dy

dt
= u − k1x − δyy (3.3.6)

dx

dt
= y,

or, in presence of a nonzero baseline yo,

dy

dt
= u − k1x − δyy (3.3.7)

dx

dt
= y − yo.

From Fig. 3.4, these curves are qualitatively correct for double pulse adapta-

tion and show perfect step adaptation. However, as in Model 1 the double

pulse adaptation is obtained only because y becomes negative (or undershoots

its baseline), hence the model is inadequate for the same reasons.



64 CHAPTER 3. Minimal models for sensory adaptation

Figure 3.4: Step and multipulse response for the Models 1-3. The main
dynamical properties of the models are summarized below the equation box.
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In order to avoid negative values of y, the simplest solution is to introduce

a nonlinearity in the ODE for y, for example a quadratic term, in our case

representing the “encounters” of x and y in a mass-action formalism.

Model 4. Adding a quadratic term on Model 3. Adding the quadratic term in

the input-output transduction and keeping the linear decay in y we get

dy

dt
= u − k1xy − δyy (3.3.8)

dx

dt
= y.

From Fig. 3.5, the model (3.3.8)

• avoids negative values for y;

• does not reach a steady state in x in the step response (dx/dt > 0 always);

• shows no recovery of the adaptation to a double pulse.

The latter item in particular is unavoidable regardless of the functional form

chosen for the kinetics of y, as long as the exact integral ODE of model (3.3.8)

is used. In this case in fact the only way to “discharge” the integrator is when

y assumes negative values.

We deduce therefore that adaptation to a double pulse cannot be achieved by

an exact integral feedback in which the integrated variable is never negative.

The argument is similar in presence of a baseline yo (and of an output y s.t.

y − yo ≥ 0 always, as in our experiments).

Model 5. Quadratic term as in Model 4 and damped integral feedback.

In this model the diagonal damping term affects the feedback variable:

dy

dt
= u − k1xy (3.3.9)

dx

dt
= y − δxx.

This is the starting point of our scheme of an integral feedback with a memory

decay.

From Fig. 3.5, the model (3.3.9)
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• avoids negative values of y (or of y − yo in case of nonzero baseline);

• shows a non perfect adaptation to a step;

• exhibits a recovery of the adaptation in a double pulse protocol.

Qualitatively this elementary model reproduces all the dynamical features ob-

served in the experimental data. The presence of a damping term −δyy in the

first equation of model (3.3.9) does not alter this qualitative behavior provided

that δx/δy is small enough (the time constant of x is longer than the one of

y).

Model 6. Adding a conservation law to Model 5.

If, as in our models, y represents a fraction of a certain molecular species of

constant total concentration (e.g. the fraction of open CNG channels in olfac-

tory transduction), then its value must be constrained, for example assuming

0 ! y ! 1. The Models 1÷5 do not respect this constraint, because u is not

linked to the value assumed by y. A conservation law can be imposed multi-

plying u by the complement of y (i.e., by the fraction of closed CNG channels

in the olfactory pathway). The resulting model

dy

dt
= u(1 − y) − k1xy (3.3.10)

dx

dt
= y − δxx,

is the one described in the previous subsections once a degradation term is

added in the second equation. A similar conservation law can in principle be

applied also to x (not necessary in our case). As can be seen on Fig. 3.5, the

behavior of Model 6 is qualitatively similar to that of Model 5 for what

concerns our input responses.

Whenever basal regulation is nonnegligible, nonzero baseline levels can be

taken into account for both y (as we did above with yo) and x (denote it xo).

The model (3.3.10) can be amended as follows:

dy

dt
= u(1 − y) − k1(x − xb)(y − yo) (3.3.11)

dx

dt
= (y − yo) − δx(x − xo)

where the baseline may or may not be present in the first order degradation

rates, depending on the context.
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Figure 3.5: Step and multipulse response for the Models 4-6. The main
dynamical properties of the models are summarized below the equation box.
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“Discharging” an integral feedback by undershooting: confutation of an

alternative model. Reviewing the behavior of the basic Models 1 through 5 of

the previous paragraph, it can be observed that even with an integral feedback it

is possible to generate output profiles which match qualitatively the responses to

both types of adaptation but do not exhibit the trade-off described here. This case

corresponds for example to Model 3, see (3.3.6) and Fig. 3.4. In this model, the

(exact) integrator is “discharged” through a signal that undershoots the baseline

level, avoiding any memory decay. From (3.3.7) if yo is the baseline of y, then

y < yo implies that even with δx = 0 the integral x(t) =
∫ t
0 (y(τ) − yo)dτ is no

longer monotone, i.e., the integral x(t) can indeed decrease also in a model with

exact integral feedback.

The undershooting in the deactivation phase should however be observable ex-

perimentally, i.e., it should produce an output current which becomes less than

basal in olfactory transduction or higher than basal in phototransduction. No ex-

periment with the olfactory system shows undershooting of the basal current. Also in

phototransduction experiments, for both pulse and step responses in dark, no over-

shooting above the noise level can be observed in the deactivation phase. For both

sensors, a large number of similar experiments available in the literature confirms

the lack of undershoot (overshooting for phototransduction) deactivation transients

[11, 15, 26, 27, 73, 80].

Furthermore, if y represents a fraction of a (positive) quantity, 0 ! y, yo ! 1,

the scheme making use of undershooting to discharge the integral, in order to be

plausible, requires that yo is sufficiently large. In olfactory transduction, however,

y reflects the fraction of open CNG channels, and it is estimated that yo ∼ 0 in

absence of stimulation (y reaches 0.9 upon strong stimulations). Hence, to preserve

nonnegativity of concentrations, the admissible undershooting would in any case be

extremely limited. The behavior in phototransduction is not completely specular,

in the sense that, for the “complementary variable” z = 1 − y, zo (representing the

basal fraction of open channels) in dark is low, and during the transient it decreases

further, z ! zo (i.e., CNG channels close even more, up to a complete closure for

saturating illuminations). In spite of this, it is worth observing that when stimulated

in dark, overshooting transients in the deactivation phase of a pulse/step are not

seen in experiments with rods.

The similarity of the behavior in the two sensors confirms that “discharging” of

the feedback variable(s) has to be accomplished by some other mechanism such as

the memory decay. Other pieces of evidence in favor of the memory decay mechanism

include the graded steady state level reached in response to graded step inputs, see
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Chapter 2 for a relate discussion in the olfactory transduction system. Remarkably

for cones (which are known to never saturate [74]) some form of undershooting is

instead observed [42].

3.3.3 Signaling pathways and their models

Olfactory transduction

Pathway. In the absence of stimuli, the cyclic nucleotide-gated (CNG) channels in

the olfactory transduction are almost completely closed. The arrival of the odorant

molecules increases, through a G-protein cascade, the amount of activated adenylyl

cyclase, which in turn leads to the accumulation of cyclic AMP, thus triggering the

opening of the CNG channels. This allows various types of cations to enter the cell.

Among these, the calcium ions further open the calcium-activated chloride channels,

leading to a second current of chloride anions which flows out from the cell, ampli-

fying the original response [40, 70]. Calcium is also responsible for several feedback

loops in the pathway: by binding to proteins (among these possibly calmodulin)

which are natively attached to the CNG channels, it decreases the sensitivity of the

channels to cAMP thus inducing their closure [6, 14, 19]. Furthermore, by bind-

ing to calmodulin free in the cytoplasm it causes the hydrolysis of cAMP through

a phosphodiesterase (PDE) [13], and this calcium-calmodulin (CaCaM) complex

can activate also the enzyme CaCaM-dependent protein kinase II (CaMK) which

inhibits the adenylyl cyclase activity [103]. Calcium is finally extruded through

the Na+/Ca2+ exchanger [60]. More details on the pathway are available in the

Introduction.

Dynamical model. For the sake of simplicity, these feedback actions are lumped

together into the single feedback shown in Fig. 3.10 A. Extensive analysis of more

complex models carried out in Chapter 2 in fact suggests that the multiple feedback

actions are redundant for what concerns the adaptation behavior considered in this

work. Our “minimal” model includes therefore 3 state variables: [CNGo] (fraction

of open channels), [Ca] (concentration of Ca2+ ions) and [CaBP] (concentration of

the complexes that calcium forms with the protein complexes natively bound to the

CNG channels, here indicated as BP). The first and the latter of these variables

obey a conservation law. The total number of CNG channels (normalized to one)

is the sum of the closed and the open channels (respectively [CNGc] and [CNGo]).

Furthermore the equation [BP]+[CaBP] = 1 represents the conservation of the total

concentration of the calcium-binding proteins BP. For this reaction a mass-action
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kinetic is considered:

Ca2+ + BP
αCaBP−−−−⇀↽−−−−
βCaBP

CaBP.

In our dynamical model the cyclic AMP can be considered as the input of the system

(here called u):

d[CNGo]

dt
= (1 − [CNGo])u − k1[CNGo][CaBP]2 (3.3.12)

d[Ca]

dt
= k2[CNGo] − δCa[Ca]

−αCaBP[Ca](1 − [CaBP]) + βCaBP[CaBP] (3.3.13)

d[CaBP]

dt
= αCaBP[Ca](1 − [CaBP]) − βCaBP[CaBP]. (3.3.14)

In (3.3.12) the first term represents the opening of the CNG channels due to cyclic

AMP and the second term the negative feedback (which includes a cooperative

action, known to hold for calmodulin [14]). Equations 3.3.13 and 3.3.14 include the

mass-action terms introduced above and the inflow of calcium due to the opening

of the channels (term k2[CNGo]). The linear degradation term δCa[Ca] includes also

the extrusion of calcium through the sodium-calcium exchanger. More details on

the kinetic terms are available on Chapter 2.

In the cilia the CNG current is further amplified by the chloride current flowing

through the calcium-activated chloride channels. Therefore the output of our model

(total elicited current) is calculated as the sum of the current flowing through the

CNG channels (proportional to the fraction of open channels), and of that carried by

chloride anions. To account for this second component we use a Hill-dependence on

the calcium concentration with a cooperativity index n equal to 2 (as in [11, 40, 94])

and with the half-activation constant K1/2 equal to 4 µM [11, 40]. Furthermore we

have added a weight of 0.2 for the current carried by CNG channels and of 0.8 for the

calcium-activated chloride current, to reflect their proportionality in the biological

data [12]

Iolf = 0.2 [CNGo] + 0.8
( [Ca]n

[Ca]n + Kn
1/2

)

. (3.3.15)

Phototransduction

The signaling mechanisms involved in the phototransduction of vertebrate rods are

described at length in several survey papers, such as [15, 23, 73, 74]. Also several

detailed mathematical models exist, see e.g. [27, 34, 73, 87]. Coherently with the

approach followed in this work, only the basic ingredients needed to have a minimal
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regulatory system are considered in our model.

Pathway. In darkness, rods are characterized by Ca2+ and Na+ currents which

circulate through cGMP-gated CNG channels (inflow) and exchange pumps (out-

flow). Light photoisomerizes rhodopsin which, through the mediation of G-proteins,

activates PDE. Activated PDEs hydrolyze cGMP, and the drop of cGMP induces

the closure of the CNG channels and hence a drop in the Ca2+ current. As the

efflux through the exchange pumps is not affected, also the cytoplasmic concentra-

tion of Ca2+ drops. In dark, Ca2+ binds to the guanylate cyclase activating protein

(GCAP) reducing its function of inhibitor of guanylate cyclase (GC) activity. The

drop of Ca2+ during light response implies calcium-free GCAP binds to GC and

increases its catalytic activity for second messengers. Hence the synthesis of cGMP

passes from a basal level to a higher rate, thereby completing the negative feedback

loop which forms the core of the regulation considered in our model. Calcium is

responsible for at least two more feedback mechanisms present in the phototrans-

duction pathway1. It decreases the affinity of CNG channels through the binding

with calmodulin, and the calcium-binding protein recoverin inhibits the phosphori-

lation of rhodopsin due to G-protein-coupled-receptor-kinase 1 (GRK1) preventing

the complete deactivation of rhodopsin by arrestin. Therefore, a decreasing concen-

tration of calcium promotes the activity of GC, the opening of the CNG channels

and the quench of rhodopsin [46, 73, 106]. The feedback involving the modulation

of the GC is considered dominant at low and intermediate light intensities, whereas

the feedback due to recoverin-arrestin seems to play a more important role at higher

intensities [106]. The feedback action of calcium ions on CNG-channels is of little

importance in rods phototransduction compared with the other two mechanisms

[45]. See the Introduction for a more detailed description of the pathway.

Dynamical model. In what follows we will disregard the feedbacks mediated by

calmodulin and by recoverin and concentrate on the GC feedback loop. The resulting

basic pathway considered in our model is depicted in Fig. 3.11 A. For this pathway we

consider a model of 4 variables: [cGMP] (concentration of cGMP), [CNGo] (fraction

of open CNG channels), [Ca] (concentration of Ca2+ ions), [GC] (fraction of active

guanylate cyclase). GCAP is not modeled explicitly. Conservation laws are imposed

on [CNGo] and [GC]. Denoting [CNGc] and [GCi] respectively the fraction of closed

CNG channels and the fraction of inactive GC enzyme, these conservation laws can

be expressed as [CNGo] + [CNGc] = 1 and [GC] + [GCi] = 1. The reactions for

1Several extra feedback loops are actually mentioned in [73] but will not be described here.
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which we use mass-action kinetics are the following:

CNGc + 2cGMP
αCNG−−−⇀↽−−−
βCNG

CNGo

GC + 2Ca2+ αCa−−⇀↽−−
βGC

GCi

cGMP
δCNG−−−→ ∅ (hydrolyzed to GMP)

Ca2+ δCa−−→ ∅ (outflow from the outer segment).

The second reaction models the (GCAP mediated) inhibition of GC by Ca2+, which

occurs in darkness. Additional (non-mass action) reactions express the inflow of

Ca2+ through the open CNG channels (linear term, with gain constant k2), and the

feedback action (linear production of cGMP, whose substrate, GTP, is considered

abundant). The ODEs we will use are the following:

d[cGMP]

dt
= −(u + δcGMP)[cGMP] + k1[GC]

−2αCNG[cGMP]2(1 − [CNGo]) + 2βCNG[CNGo] (3.3.16)

d[CNGo]

dt
= αCNG[cGMP]2(1 − [CNGo]) − βCNG[CNGo] (3.3.17)

d[Ca]

dt
= k2[CNGo] − δCa[Ca]

−2αGC[GC][Ca]2 + 2βGC(1 − [GC]) (3.3.18)

d[GC]

dt
= −αGC[GC][Ca]2 + βGC(1 − [GC]) (3.3.19)

In the phototransduction experiments the only affected current in response to

light stimuli is the one flowing through the CNG channels. Therefore the output

of the model (reproducing the measured current) is considered proportional to the

fraction of open CNG channels. To account for the normalization and the shift

of the recorded currents (otherwise impossible to compare because of the different

amplitudes and responses) we inserted in the model two parameters: KI representing

the amplification of the current and I0 to account for a different dark current level:

Iphoto = I0 + KI [CNGo]. (3.3.20)
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3.4 Results

In the present section we first show how the simple models (3.3.1) and (3.3.2) ex-

clude the possibility that multipulse adaptation could be reproduced through perfect

adaptation. Afterwards we explain in detail the concept of trade-off between time

constants, showing how it can be noticed in the experimental recordings of the

olfactory and phototransduction responses. The absence of undershooting in the

deactivation phase and, on the contrary, the detection of it when the baseline is al-

tered, like in the deactivation of a double pulse protocol, are then presented, both in

the simulations of model (3.3.1) and in the experimental traces of the phototrans-

duction pathway. We further introduce a parallelism between the simple models

(3.3.1) and (3.3.2) and the experimental pathways. The details of the fitting pro-

cedure performed with models of Eqs (3.3.12)-(3.3.14) and of Eqs (3.3.16)-(3.3.19)

are finally described.

Perfect adaptation fails to reproduce multipulse adaptation. While sev-

eral models exist able to capture perfect step adaptation [2, 7, 37, 41, 100, 107],

there is one general principle to which most proposals are equivalent, namely that

perfect step adaptation in order to be robust to parametric variations must be ob-

tained by means of a negative regulation, and that this regulation achieving perfect

step adaptation must be of integral feedback type, see [37, 107]. In our minimal

models (3.3.1) and (3.3.2), an integral feedback is obtained when the degradation

rate constant for x vanishes i.e., δx = 0. This corresponds to the second differential

equation of (3.3.1) being formally solvable as the time-varying integral

x(t) = k2

∫ t

0
y(τ)dτ, (3.4.21)

and analogously for (3.3.2). Since y(t) " 0, the integral (3.4.21) is monotonically

growing in this case, hence the feedback variable keeps growing and stabilizes only

when y(t) → 0. Such a behavior occurs regardless of the amplitude of the input step2

u. In the engineering analogy of an integrator being a capacitor, y(t) " 0 implies

that x(t) gets charged and never discharges. In a double pulse protocol, this implies

that after the first pulse x(t) > 0, and when the second pulse arrives the response of

the feedback is more prompt because x(t) is already charged. Hence the second pulse

response is attenuated with respect to the first. However, lack of degradation of x(t)

2When a nonzero baseline level yo is considered in (3.3.1), then (3.4.21) becomes x(t) =
k2

∫ t

0
(y(τ) − yo)dτ . The monotonicity property is preserved for the variation with respect to yo,

and the steady state imposed by perfect adaptation is y(t) → yo.
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implies that the behavior occurs regardless of the lag time between the two pulses,

which contradicts the experimental results shown in Fig. 3.1 B and Fig. 3.2 C. Hence

a perfect adaptation model is inadequate for our sensory transduction pathways,

because i) it fails to reproduce the non-exact return to the prestimulus level observed

in the step responses of Fig. 3.1 A and Fig. 3.2 A, and ii) it completely misses the

recovery in the multipulse adaptation observed in Fig. 3.1 B and Fig. 3.2 C.

Reproducing both types of adaptation: a trade-off of time constants. In

a model like (3.3.1) or (3.3.2), both types of adaptation are determined by the ratio

between the characteristic time constants of the two kinetics, which are captured

with good approximation by the first order kinetic terms (i.e., by δy and δx). The

ratio δx/δy modulates the amount of adaptation in opposite ways in the two types

of input protocols (see Fig. 3.6).

Figure 3.6: Input responses of the 2-variable model (3.3.1). The various plots
of Fig. 3.3 B are shown here more in detail. The 4 panels show the time course of
the input (u) and state variables (y and x) of model (3.3.1) in response to steps
(top) and multiple pulse pairs (bottom) for 4 different values of the ratio δy/δx.
The same classification as in Fig. 3.3 B is followed. A: perfect step adaptation / no
recovery in multipulse adaptation; B: almost perfect step adaptation / slow recovery
in multipulse adaptation; C: partial step adaptation / fast recovery in multipulse
adaptation; C: no step adaptation / no multipulse adaptation.

If δx = 0 represents perfect step adaptation but recovery from multipulse adap-

tation is absent, when δx/δy # 1 (i.e., the characteristic time constant of x is

much longer than that of y), then step adaptation is almost exact, while multipulse
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A B

Figure 3.7: Olfactory transduction. In red, the experimental traces shown if
Fig. 3.1. In blue the corresponding fits with the dynamical model of Eqs (3.3.12)-
(3.3.14).

adaptation recovers very slowly. This behavior is similar to what happens in our

experiments with the olfactory transduction system shown in Fig. 3.7. When in-

stead δx/δy < 1 but not too far from a ratio of 1, then step adaptation is partial but

multipulse adaptation recovers quickly, see again Fig. 3.3. This situation resembles

our experiments with phototransduction shown in Fig. 3.8. When instead δx/δy > 1

neither of the two forms of adaptation is visible.

Deactivation and (lack of) undershooting. Upon termination of a step, a

response deactivates, meaning in our model (3.3.1) that the observable variable y

returns to its pre-stimulus level yo (which for simplicity and without loss of generality

we are assuming equal to 0). The way it does so is informative of the dynamics

of the system. In a system with exact integral feedback, if the activation profile

overshoots the baseline and then approaches it again, then the deactivation time

course must follow a pattern which is qualitatively similar but flipped with respect

to the baseline, i.e., it must undershoot the baseline during the transient, see Model 3

of the previous Section, described in (3.3.6) and Fig. 3.4. In models with a high

degree of symmetry, like for example in presence of input scale invariance (“fold

change detection” of [89]), the responses could even have a mirror symmetry around



76 CHAPTER 3. Minimal models for sensory adaptation

A B

Figure 3.8: Phototransduction. In red, the experimental traces shown if
Fig. 3.2 A, B. The blue traces show the response of the dynamical model of
Eqs (3.3.16)-(3.3.19).
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the baseline yo.

The undershooting in the deactivation phase should however be observable ex-

perimentally, i.e., it should produce an output current which becomes less than

basal in olfactory transduction or higher than basal in phototransduction. No ex-

periment with the olfactory system shows undershooting of the basal current. Also

in phototransduction experiments, for both pulse and step responses in dark, no

overshooting above the noise level can be observed in the deactivation phase. For

both sensors, this behavior is confirmed by many more experiments available in the

literature [11, 15, 26, 27, 73, 80].

As already discussed, the lack of deactivation undershooting is another element

that can be used to rule out the presence of exact integral feedback regulation in

our systems.

A double step may instead exhibit undershooting. By construction, the

model (3.3.1) can never undershoot the baseline since all negative terms in the first

equation vanish when y → 0 (the argument is similar for a baseline yo )= 0, see

(3.3.11)). This is coherent with the step deactivation recordings shown in Figs. 3.7-

3.8. Assume now that the input protocol consists of a double step as in Fig. 3.9.

If y1 is the steady state reached in correspondence of a single step, then necessarily

y1 > 0 in our non-perfectly adapting systems. However, even when this single step

stimulation is present, the negative feedback in the model (3.3.1) still maintains

the original baseline yo = 0 as reference. It means that when a second step input

is superimposed to the first as in Fig. 3.9, it is in principle possible that in the

deactivation phase of this second step a transient significantly undershooting the

“fictitious” baseline y1 may now appear. This is indeed what happens for the model

(3.3.1), see Fig. 3.9 A. Clearly under perfect adaptation y1 = yo = 0, hence exact

integral feedback predicts no difference between the single step and the double step

deactivation.

Given the very strong adaptation in olfactory sensory neurons, the double step

experiment has been performed only in photoreceptors: indeed the combination of

near zero baseline and almost perfect adaptation implies that in olfactory sensory

neurons the presence of an overshoot will be hardly detectable. In photoreceptors,

instead, the double step deactivation behavior of (3.3.1) is faithfully reproduced. In

the input protocol, the broader step of smaller amplitude corresponds to a constant

dim light on top of which a more intense light step is applied. The current record-

ing shown in Fig. 3.9 B indeed exhibits a consistent deactivation overshooting not

observed in dark.
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A

B

Figure 3.9: Double step responses. A: double step protocol applied to the model
(3.3.1). While the step response never exhibits deactivation undershooting (i.e.,
upon termination of the step the output returns to its baseline without crossing
it over), in a stimulation with a double step, the deactivation of the inner step
shows a drop in the output that undershoots the shifted baseline. B: In red, the
experimental traces shown if Fig. 3.2 C. The deactivation transients of the inner
step overshoots the steady state corresponding to the outer step. The fitting for the
model of Eqs (3.3.16)-(3.3.19) is shown in blue.
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Apart from providing a validation of the reliability of the simple model (3.3.1),

a direct interpretation of this transient is that indeed the system keeps a memory

of the basal level “anchored” at yo even when constant stimuli are applied to the

system.

Interpretation of the elementary model in the context of olfactory and

phototransduction pathways. In this work we will not attempt to present com-

prehensive mathematical models of the two sensory pathways containing all the bio-

chemical reactions known to be involved in the signaling transduction of the stimuli,

but will limit ourselves to consider the section of the pathways involving the Cyclic

Nucleotide-Gated (CNG) channels and a primary calcium-induced feedback regu-

lation. For the olfactory system, the pathway is depicted in Fig. 3.10 A and the

corresponding model in Eqs (3.3.12)-(3.3.14).

In our minimalistic approach, in the olfactory system the variable y can be as-

sociated to the fraction of open CNG channels on the ciliary membrane. In absence

of stimulation, the channels are almost completely closed. Upon arrival of a stimu-

lation, the CNG channels open and the inflow of calcium ions triggers the negative

feedback regulation which closes the CNG channels. In a model like (3.3.1), the

feedback variable x plays the role of the concentration of the calcium-activated pro-

tein complexes responsible for the gating of the channels. The fit resulting from the

kinetic model of Eqs (3.3.12)-(3.3.14) is shown in blue in Fig. 3.7, see also Fig. 3.10.

Its dynamical behavior is very similar to that of (3.3.1), shown in Fig. 3.3 B.

Unlike for the olfactory system, in phototransduction the CNG channels are

(partially) open in absence of stimulation, and they further close when the photore-

ceptors are hit by an input of light. If we think of z as the fraction of open CNG

channels, then the mechanism (3.3.2) can be used in phototransduction to describe

qualitatively the core action of the primary feedback loop (due to guanylate cyclase).

In the response to light, in fact, its effect is to reactivate z. The resulting fit for

the phototransduction experiments is the blue trace of Fig. 3.8. Other details are

in Fig. 3.11. Also in this case the core dynamical behavior of the pathway-specific

model of Eqs (3.3.16)-(3.3.19) and that of the elementary model (3.3.2) resemble

considerably.

Fitting procedure. The parameters of the models of Eqs (3.3.12)-(3.3.14) and of

Eqs (3.3.16)-(3.3.19) have been fitted to the data presented in Figs. 3.1 and 3.2. To

perform this fit, we used the MATLAB function lsqcurvefit. This function minimizes

the residuals sum of squares of the different datasets simultaneously with a nonlinear
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Figure 3.10: Olfactory transduction. A: the diagram represents the core regula-
tory action included in the model of Eqs (3.3.12)-(3.3.14) for the olfactory transduc-
tion. B: behavior of the state variables of Eqs (3.3.12)-(3.3.14) for the step response
of Fig. 3.7 A. The top panel shows in black the “ideal” input and in green the more
plausible input shape as described in (3.4.22). C: state variables (and input) for the
pulse pairs of Fig. 3.7 B.
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Figure 3.11: Phototransduction. A: the diagram shows the pathway used
for phototransduction with its calcium-mediated GC feedback loop, see text and
Eqs (3.3.16)-(3.3.19). The panels B, C and D show the input u (both the ideal
profile in black and the more realistic shape obtained from (3.4.22) in color) and
the 4 state variables of the model of Eqs (3.3.16)-(3.3.19) for B: the step response of
Fig. 3.8 A; C: the multipulse response of Fig. 3.8 B; and D: the double step response
of Fig. 3.9 B.
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least square method (using the trust-region-reflective algorithm). The resulting

values of the parameters are reported in Tables 3.1 and 3.2.

Table 3.1: Parameter set used to fit the olfactory transduction data of
Fig. 3.7.

Name Description Value
k1 CaBP feedback gain 215
k2 inflow of Ca2+ through CNG channels 23
δCa outflow of Ca2+ 1.5

αCaBP association rate between Ca2+ and BP 0.10
βCaBP dissociation rate between Ca2+ and BP 0.21

Table 3.2: Parameter set used to fit the phototransduction data of
Figs. 3.8-3.9.

Name Description Value
δcGMP degradation rate of cGMP 0.38

k1 GC feedback gain 3480
αCNG association rate between CNG and cGMP 1.95
βCNG dissociation rate between CNG and cGMP 150

k2 inflow of Ca2+ through CNG channels 440
δCa outflow of Ca2+ 28
αGC association rate between Ca2+ and GC 0.10
βGC dissociation rate between Ca2+ and GC 0.0018

Modeling the input stimulus For phototransduction, the input of our model

is the PDE which hydrolyzes the cGMP. Since we do not describe the early steps

of the pathway, the dynamics of activation is taken from literature. For instance,

the tailed peak of PDE from a pulse stimuli reported in [77] is here reproduced

(normalized) with the following expression

u(t) =

{

0 t < to

(t − to)λe1−λ(t−to) t " to
(3.4.22)

where the parameter λ = 6.0. Step inputs are reproduced holding the maximum

value of this function for the whole length of the pulse. Moreover, we assume that

the stronger action induced by a step (with respect to a short pulse) reflects also in

a slower decay. In these cases the parameter λ is reduced to 2.2. The same input
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modeling is used for the olfactory transduction, with values of λ = 2 and λ = 1

respectively.

Inducing adaptation via negative feedback: faster and slower time con-

stants. As mentioned before, if in a model like (3.3.1) exact integral feedback im-

plies an infinite time constant for the variable x, achieving partial step adaptation

still requires a system with a faster (y) and a slower (x) kinetics, see Fig. 3.6. Also

the models of Eqs (3.3.12)-(3.3.14) and of Eqs (3.3.16)-(3.3.19) obey this principle.

For example, it is known that in phototransduction the opening and closing of

the CNG channels occurs on a very fast time scale (milliseconds, [73]) when com-

pared with the PDE-mediated decline of the input stimulus and with the regulatory

action of GC, which is induced by GCAP reactivation following the Ca2+ drop.

Therefore for the purposes of our modeling we can consider the CNG gating (and

the consequent kinetics of Ca2+ influx/efflux) as faster processes when compared to

the negative feedback regulation due to GC, see Fig. 3.11 A.

Similarly in the olfactory transduction, the time constant of the feedback mech-

anism is longer than that associated with the opening of the CNG channels. As just

mentioned, this last is known to be very fast, of the order of milliseconds, while the

onset of the feedback is neatly slower, as can be seen in Fig. 3.1. Notice that also in

Chapter 2, where related models are studied in detail, similar ranges of values for

the time scales of the system emerge naturally when trying to fit step/multipulse

response data.

Finally, it is worth remarking that the presence of fast and slow dynamics is

a prerequisite also in other models for adaptation, like the incoherent feedforward

loop (in this case a delay element is often used to mimic slower response).

On minimality of the model and identifiability At the level of a single pho-

toreceptor, much more detailed kinetic models than the one adopted here to fit the

data have been available for several years [27, 34, 73, 87]. The same consideration

applies also to the olfactory transduction [22]. As we have observed for the latter

pathway in Chapter 2, from the perspective of the input-output dynamical modeling

(i.e., without the possibility of monitoring extra variables other than the stimulus

and the output current) the introduction of extra details and of multiple feedback

loops essentially introduces redundancy into the mathematical model. The com-

plications associated with “non-minimal” dynamical models are well-known in the

parameter identification literature [56, 82]. They essentially amount to the impossi-

bility of uniquely determining the kinetic parameters of a model. The drastic choice
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made in this work, namely to (deliberately) oversimplify the differential equations

is also meant to avoid such type of ill-posed identifiability problems.

3.5 Discussion

To date, the vast majority of papers dealing with models for sensory adaptation has

focused on the perfect step adaptation case [2, 7, 28, 36, 37, 41, 44, 57, 89, 91, 100].

While in some examples of sensory response, like in E.coli chemotaxis, perfect step

adaptation may reasonably well describe the motility response of the bacterium,

in many other case studies (notably in sensory systems of higher organisms) the

classification as perfect adapters holds only as long as the sensor “as a whole” is

considered. These sensory responses are however much more complex cognitive pro-

cesses than the single cell signaling transductions considered in this work, and have

little to do with the models (and data) discussed in this thesis. For example, the vi-

sual system can adapt over light variations of several orders of magnitude. However,

when looking at single photoreceptors, if cones virtually never saturate in response

to steady illumination [42, 74], the capacity of rods (the receptors studied in this

work) to adapt is much more modest and this can already be seen in the partial

step adaptation of Fig. 3.8 A. When it comes to modeling adaptation, an emblem-

atic example of the difference between an omnicomprehensive sensory system and

the single cell level of interest here is given by a “sniffer”, i.e., a basic circuit (an

incoherent feedforward loop) often considered as a model for perfect adaptation and

sometimes taken as paradigm for the functioning of the sense of smell “as a whole”

on a purely phenomenological basis [57, 89, 100]. This model not only can adapt

perfectly, but it can do so without any feedback loop. If experiments such as those

of Fig. 3.7 show that at the level of single receptor step adaptation is not exact,

other experiments in low-calcium show that when the (calcium-induced) feedback

regulation is impaired, adaptation basically disappears and even a single pulse re-

sponse terminates very slowly (see e.g. [11] and Fig. 2.7 of Chapter 2). This implies

that feedback regulation is crucial for adaptation in our olfactory neurons. As sim-

ilar arguments hold also for phototransduction, in this work incoherent feedforward

mechanisms are never considered as potential models for adaptation (perfect or less).

Even though the distinction between perfect and partial step adaptation has been

known for a while [44], the dynamical implications of the different models for other

input protocols has in our knowledge never been investigated in detail. In this work

we show that not only this difference is observable in several experimental features

of the responses, but also that it has important conceptual consequences. One of
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these consequences is that in a system with a perfectly adapting mechanism modeled

with an exact integral feedback the basal working value of the state is “internal” and

uncorrelated with the environment. While this allows the system to climb exactly

any step of input (all steps have the same steady state yo), it implies that the

transient responses during stimulus activation and termination should have similar

(but specular with respect to a baseline level) profiles as in Model 3 of Fig. 3.4.

On the contrary, in a sensor with a partial step adaptation mechanism, the steady

states reached in the step responses depend on the amplitude of the step, while

instead the feedback remains “anchored” around the basal level yo, itself uniquely

associated to an input amplitude (which could be u = 0 in the simplest case). This

implies that while weberian-type graded responses for the peaks of the transients are

still possible [74], properties involving the whole profile of the response such as the

input scale invariance of [89] are no longer possible, not even approximately. Our

double step experiment with its asymmetry in the two deactivation phases clearly

shows that such an input invariance cannot hold not even qualitatively for our

sensors. Furthermore, anchoring the state around a nominal value helps shifting

the dynamical range back to that value when the stimulus terminates, resetting

the sensor to the most plausible value of the environment without incurring into

unrealistic deactivation transients.

Another important difference between the dynamical models of perfect and par-

tial adaptation concerns the effect on internal, nonobservable variables like our x

in (3.3.1). Exact integral implies an infinite time constant for x (or, in practice,

longer that the time scales of interest for the observable kinetics). Partial step

adaptation, instead, is associated to changes in x which are still slower than those

observed on the output of the system, but not by orders of magnitude. How much

slower these changes are influences how much adaptation we observe in the step re-

sponses. Experiments with time-varying input protocols, namely with double pulse

sequences, allow to have a rough estimate of the slower time constant. In olfactory

transduction, this time constant is normally associated to the shift in dose-response

plots (which is an alternative, compatible, way to describe the multipulse adapta-

tion effect, see Chapter 2, Fig. 2.14). What is predicted by theoretical models and

confirmed by experiments is that the speed of the recovery in multipulse adaptation

is inversely correlated to the amount of step adaptation. In particular, for the two

sensors investigated in this work the relative amount of the two forms of adaptation

are different. Both values are coherent with the trade-off proposed.

The main prerequisite for this trade-off to be well-posed, namely that the sys-

tem in the deactivation phase obeys approximately a linear decay law, is the same

mechanism that enables the reset of the output to the pre-stimulus baseline without
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undershooting this nominal value. This property of the model is confirmed in the

experiments. Also the more fine-graded prediction that, upon perturbation of the

natural decay law by means of an altered baseline level, the deactivation transient

can become less regular (and undershooting can appear) is validated by our double

pulse experiments.



Chapter 4

A dynamical model for the

calcium-activated chloride

channel in the olfactory

transduction

In this chapter we study more in detail a single component of the olfactory trans-

duction pathway, the calcium-activated chloride channel. What could be measured

from the experimental data in general is explained in the first part, together with

the specific experimental recordings of the Ca-activated Cl channel, appearing in

[18]. In Section 4.2 we introduce Markov models which are used to reproduce the

behavior of ion channels, and we explain the genesis of our proposed scheme. A

description of the models present in literature for the same family of channels is

further introduced. The presentation of our results and their discussion close the

chapter.

4.1 Background

Ion channels are fundamental bricks in the machinery of a biological system. They

are transmembrane proteins able to regulate the flow of various types of ions through

the cellular membrane. These proteins allow the selection of a specific intracellular

environment and the regulation of the membrane potential. This is strictly related

to cell excitability, which permits the transmission of information much quicker than

the diffusion rate of molecules. Transmembrane channels are controlled by one or

87
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more external factors, such as the concentration of an agonist or the membrane

potential. In response to these agents, they are able to modify the permeability

of ions, through a conformational change. This change, at the level of the single

channel, causes an alternation between open and closed states [3, 35, 39, 63].

Several types of ion channels are present in the different cells: they can be

classified depending on the permeant ions (the type of ions flowing through them),

or by their gating (the mechanism which controls the opening of the channel). In

particular they can be selective for a single type of ion, or permeable to a bigger

class (like cations or anions), and they can be voltage-gated, ligand-gated or both

[35].

Modern experimental techniques allow the recording of ionic currents both in

the whole cell (or in a part of a membrane) and at the level of a single channel (fluc-

tuating between open and close conformations). The type of data and consequently

the analyses required for these experiments are quite different. The first type cor-

responds to the recording of the sum of thousands of microscopic currents flowing

through an equal number of ion channels, mediating the fluctuations of single chan-

nel activity. The second instead allows the study of the gating process of the single

unit, which consists of discrete changes in conductance over time. Considering the

small conductance of the channel we are studying, namely the calcium-activated

chloride channel (0.8 pS in frog [53], 1.5 pS in rat [78], 2.6 pS in mouse [72]) and

the consequent lack of data due to the difficulty to measure the single channel ac-

tivity, we have focused our work on the experimental recordings of a population of

channels.

In the study of the total current flowing through a population of channels, we

have to distinguish between two components: the current flowing through a single

channel unit (depending on the conformation of the channel and on the transmem-

brane potential) and the number of open channels (modified by the potential or by

some ligand concentration or by both, depending on the type of the channel). The

amount of current can thus be written as:

I(V, L, t) = φ(V ) · n(V, L, t) (4.1.1)

where V is the transmembrane potential, L is the ligand concentration, n the number

of open channels and φ the amount of current flowing through the single open chan-

nel. Notice that n(V, L, t) can be written as n(V, L, t) = N ·p(V, L, t) in which N is a

constant and represents the total number of channels contributing to our recordings

and p is the probability to have an open channel. In this type of collective experi-

mental recordings we can distinguish the contribution of the single channel current
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φ and the probability p considering the instantaneous and the steady state currents.

Indeed, what we immediately detect in response to a step of the transmembrane

potential is the change in current due to the function φ, while the channels modifi-

cations in response to the change of potential (the change of p) are slower. Thus the

profile obtained with the instantaneous current amplitudes in response to different

steps of potential is useful to estimate the function φ, while the final steady states

of the current after the (slower) modification of the amplitude reflect both contribu-

tions. In particular, the calcium-activated chloride channel we are considering, has

a linear current-voltage relationship for the instantaneous response, meaning that

φ(V ) follows Ohm’s law and that the conductance of the single channel does not

depend on the potential applied (φ(V ) = g · V ). This reduces equation 4.1.1 to:

I(V, L, t) = N · g · V · p(V, L, t) (4.1.2)

We can therefore focus our study in the description of p(V, L, t), the probability of

the channels of being in the open state. In Section 4.2 we introduce the techniques

used to deal with this problem.

4.1.1 Behavior description

As mentioned in the Introduction, the calcium-activated chloride channel present

in the olfactory sensory neurons has been identified with the TMEM16B protein.

In this section we describe the behavior of the TMEM16B channel, using the data

recently obtained in the laboratory of Professor Anna Menini [18]. Following the

classification proposed at the beginning of the chapter, TMEM16B belongs to the

family of the channels which are permeable to chloride ion and whose gating is

regulated by both a ligand, the calcium ion, and the transmembrane potential. The

precise dependence of the TMEM16B channel on the two gating mechanisms acting

on it and the way in which they are able to modify its structural properties are

still unknown. In the present thesis, we mainly consider experiments in which the

calcium concentration is held constant during every recording, while the voltage is

modified using a step protocol (see Fig. 4.1 A).

Concerning the voltage dependence, the instantaneous current recorded in re-

sponse to voltage steps is linearly dependent on the potential (see Fig. 4.1 B, filled

triangles), meaning that a fraction of channels was open at 0mV (because of the

detection of an instantaneous current) and that the single channel conductance g

is constant for the different amplitudes of the potential. However it is possible to

notice clearly that, after the instantaneous increase of current depending on the
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A B

Figure 4.1: Experimental data: TMEM16B responses and I-V relationship.
A: in the panel above a scheme of the voltage protocol is presented (the cell is held
at 0 mV, then exposed to a voltage between -100 mV and +100 mV and finally
held at -100 mV); the panels below represent the recoded currents in the case of
nominally 0 Ca2+ and 1.5 µM Ca2+. B: I-V relations for the instantaneous currents
(triangles) and steady state currents (circles) [18].
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number of open channels at the time of the change of the potential, the current

amplitude is further modified: the voltage contributes to the opening or the closure

of a part of channels (in the case respectively of positive or negative potential). This

dependence can be seen in the outward rectification of the current-voltage curves at

steady state of Fig. 4.1 B (empty circles) and in Fig. 4.2, in which the normalized

steady state conductance of the channel (G = Ngp of Eq. (4.1.2) is plotted versus

the potential, at different calcium concentrations.

Figure 4.2: Experimental data: voltage dependence of TMEM16B. Steady
state normalized values of the conductance plotted versus the transmembrane po-
tential, at different concentrations of intracellular Ca2+ [18].

Another fundamental actor which influences the behavior of the channel is the

calcium ion. In the absence of intracellular calcium the channel cannot open, in-

dependently from the potential considered (see Fig.4.1 A). With increasing con-

centration of calcium, the fraction of open TMEM16Bs increases (Fig. 4.3). In

Fig. 4.4 the calcium dependence at different potentials is reported. The curves can

be well fitted by the Hill equation: G = Gmax
[Ca2+]n

[Ca2+]n+Kn
1/2

, where K1/2 represents

the calcium concentration giving the half-maximal activation and n represent the

cooperativity index. In literature, n has always been reported to be greater than

1 for this channel [18, 71], meaning that probably the channel has more than one

calcium-binding site and that the binding of the second calcium ion is favored with

respect to that of the first one. The action of calcium on the channel influences also

its voltage dependence. Indeed the outward rectification clearly distinguishable at

low calcium concentration decreases with increasing calcium, meaning that at high

calcium concentrations the voltage contribution is reduced (see Fig. 4.3).

So far we have focused our attention on the steady state behavior of the TMEM16B
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A B

Figure 4.3: Experimental data: TMEM16B responses and I-V relations at
different Ca2+ concentrations [18].

Figure 4.4: Experimental data: calcium dependence of TMEM16B. Steady
state values of the channel conductance (normalized for the capacity of the single
cells) plotted versus the intracellular Ca2+ concentration, at different transmem-
brane potentials [18].
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channel. Considering also the dynamic response of the channel could give important

clues on its activity. Fitting the time-dependent component of the response with an

exponential function like y = y0+A·e−t/τ it is possible to estimate the time constant

τ of activation/deactivation of the channel. The experimental data suggest us that

the activation time constant decreases with increasing calcium concentration and

it is not strongly dependent on the voltage (see Fig. 4.5 A). On the contrary, the

deactivation time constant is altered by the potential and increases with increasing

calcium (see Fig. 4.5 B). This means that at high calcium concentrations the chan-

nel has a fast opening and a slow closure, while it is the opposite at low calcium

concentrations.

A

B

Figure 4.5: Experimental data: dynamic response of TMEM16B. Calcium
and voltage dependence of the time constant values for the transient response of
the channel after a positive/negative voltage step, corresponding respectively to the
activation/deactivation time constants [18].
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4.2 Models

The different structural conformations that an ion channel can assume, can be dis-

cretized through a Markov model. A Markov model is a set of open and closed

states, interconnected through state transitions. In a Markov process, the system

is defined only by its present state and it is independent from its past. At each

time interval, there is the probability to switch to a different state, depending on

the current state of the system, on the transition rates and on some external factors

able to modify the transitions between states.

The simplest scheme for a model of a channel is composed by two states, one

open and one closed:

C
k1−−⇀↽−−
k
−1

O

where C denotes the closed state, O the open state and k−1 and k1 represent the

transition rates. The equation giving the probability p of an open state is:

p(t + dt) = p(t)(1 − k−1dt) + (1 − p(t))k1dt (4.2.3)

which gives

ṗ(t) = lim
dt→0

p(t + dt) − p(t)

dt
= −k−1 · p(t) + k1(1 − p(t)) (4.2.4)

This gives the stationary open distribution and time constant:

p∞ =
k1

k1 + k−1
(4.2.5)

τ =
1

k1 + k−1
(4.2.6)

and, denoting p(0) = p0 the initial condition,

p(t) = p∞ − (p∞ − p0)e
−t/τ (4.2.7)

Equation (4.2.7) gives the evolution of the open probability of the channel when

exposed to a change in the voltage or in the ligand concentration (depending on the

type of channel), before reaching the new equilibrium state. Both the ligand concen-

tration and the transmembrane potential can appear in this scheme by modifying

the rate constants (becoming k1(L, V ) and/or k2(L, V )).

Starting from this simple scheme, it is possible to build more complicated schemes,
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in which multiple closed and open states are present and every transition between

two states is developed as described above.

4.2.1 Toward the creation of a model for the chloride channel

Similarly to the simple model just presented, to reproduce the behavior of the chan-

nel and to understand its voltage and calcium dependence, we chose to represent

it through a Markov process. For clarity, we use the letter k to refer to calcium-

dependent transitions (and K for the equilibrium constants e.g. k−1/k1) and α and

β for the voltage-dependent ones. The calcium dependence is modeled considering

a direct proportionality between the binding rate constants and calcium concentra-

tion. Following [5, 50], we use exponential functions for α and β dependence on the

potential:

α(V ) = α0 · e
V
sα ; (4.2.8)

β(V ) = β0 · e
−

V
sβ . (4.2.9)

where V represents the transmembrane potential and α0, β0, sα and sβ are constants.

The output of the model is a current which is proportional to the sum of the fraction

of channels in the open states. A direct proportionality has been chosen because of

the linear instantaneous current-voltage relation, meaning that the single channel

conductance is not affected by the potential (see Section 4.1).

In every configuration we have considered, the transition depending on the cal-

cium contribution is upstream (and therefore necessary for) the opening of the chan-

nel. This choice is due to the fact that the channel, regardless of the value of the

voltage, is not capable of opening in the total absence of calcium (see 4.1 A and

[18]).

In the experimental data considered, the transmembrane potential applied to

the cell span from -200 mV to 200 mV and the calcium concentration from 0.5 µM

to 100 µM. Hereafter we will consider as “low” concentrations of calcium values

below 1 µM and “high” concentrations values above 10 µM.

3-state schemes We started considering the simplest schemes allowing us to dis-

tinguish between the action of the voltage and of the calcium concentration on the

channel. Following [5], in order to study the qualitative behavior of these models

with an analytical approach it is possible to hypothesize that the transition between

the closed and the open state is much slower than the other transitions (that we

can assume in equilibrium). This allows us to reduce the 3-state schemes to simpler
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close-open configurations in which the voltage and the calcium contributions are

combined together. The resulting system has now a single eigenvalue, reciprocal to

the time constant of the system τ (λ = −1/τ).

Two different cases of this 3-state scheme and consequent reduction are now

discussed in some detail.

• Model 1

C0
α
−⇀↽−
β

C1
k1 · [Ca]
−−−−−⇀↽−−−−−

k
−1

O

The corresponding equations are:

Ċ0 = −α · C0 + β · C1

Ċ1 = α · C0 − β · C1 − k1 · [Ca] · C1 + k−1 · O (4.2.10)

Ȯ = k1 · [Ca] · C1 − k−1 · O

It is now possible to reduce this model to a simple close-open model. Under the

assumption of a fast C0 −C1 transition we can obtain from the first equation

of system (4.2.10):

C0ss =
β

α
· C1 (4.2.11)

Denoting C = C0 + C1 the closed state of the reduced model we obtain:

C1 =
1

1 + β
α

· C (4.2.12)

Therefore the equations for the new system become:

Ċ = −
k1 · [Ca]

1 + β
α

· C + k−1 · O (4.2.13)

Ȯ =
k1 · [Ca]

1 + β
α

· C − k−1 · O

which correspond to the reduced configuration

C

k1 · [Ca]

1 + β
α−−−−−⇀↽−−−−−

k
−1

O
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For this configuration the steady state percentage of the open channels pss

and the time constant of the transition τ are:

pss =
1

1 + k
−1

k1·[Ca] · (1 + β
α)

; (4.2.14)

τ =
1 + β

α

k1 · [Ca] + k−1 · (1 + β
α)

. (4.2.15)

This type of model correctly reproduces, from a qualitative point of view,

both the steady states curves of Fig. 4.2 and 4.4. τ diminishes with increasing

concentration of calcium in the activation phase of the channel at positive

potential (for V* 0, β → 0), as in the experimental data, but it becomes

independent from calcium concentration in the deactivation phase at negative

potential (for V# 0, β → ∞). Moreover, even at intermediate transmembrane

potential (when k1 · [Ca] , k−1
β
α), τ is inversely proportional to the concen-

tration of calcium. For this reason Model (4.2.10) cannot reproduce correctly

the behavior of the channel, in which the activation time constant diminishes

with increasing calcium, while the deactivation time constant increases in the

presence of more calcium.

• Model 2

An alternative scheme consists in inverting the order of the Ca and V transi-

tions.

C0
k1 · [Ca]
−−−−−⇀↽−−−−−

k
−1

C1
α
−⇀↽−
β

O

The corresponding equations are:

Ċ0 = −k1 · [Ca] · C0 + k−1 · C1

Ċ1 = k1 · [Ca] · C0 − k−1 · C1 − α · C1 + β · O (4.2.16)

Ȯ = α · C1 − β · O.

Still under the equilibrium assumption for the C0−C1 transitions, the pss and

the τ can be calculated as described above, and become as follows:

pss =
1

1 + β
α · (1 + k

−1

k1·[Ca])
; (4.2.17)

τ =
1 + k

−1

k1·[Ca]

α + β · (1 + k
−1

k1·[Ca])
. (4.2.18)



98 CHAPTER 4. A model for the Ca2+-activated Cl− channel

This scheme correctly captures the stationary behavior of Fig. 4.2 and 4.4 and

the calcium dependence of the activation τ at positive potential (diminishing

with increasing calcium concentration). However it does not reproduce the

deactivation τ at negative potential, which results constant for every concen-

tration of calcium (τ → 1/β, thus depending only on the potential). Adding

more calcium bindings before the close-open transition does not modify this

feature.

4-state scheme As we have shown in the previous paragraph, it is not possible

to correctly capture the slower closure of the channel due to the increasing of the

calcium concentration without adding in the scheme at least one calcium-dependent

transition after a close-open transition. This consideration led us to the following

scheme:

C0
k1 · [Ca]
−−−−−⇀↽−−−−−

k
−1

C1
α
−⇀↽−
β

O1
k2 · [Ca]
−−−−−⇀↽−−−−−

k
−2

O2

of equations:

Ċ0 = −k1 · [Ca] · C0 + k−1 · C1

Ċ1 = k1 · [Ca] · C0 − k−1 · C1 − α · C1 + β · O (4.2.19)

Ȯ1 = α · C1 − β · O1 − k2 · [Ca] · O1 + k−2 · O2

Ȯ2 = k2 · [Ca] · O1 − k−2 · O2.

Still under our assumption of a slower transition for the close-open process with

respect to the transitions among closed states or open states (thus hypothesizing

the steady state for the calcium binding-unbinding transitions), we reduced this

scheme to a two state model in which:

pss =
1 + k2·[Ca]

k
−2

1 + k2·[Ca]
k
−2

+ β
α(1 + k

−1

k1·[Ca])
; (4.2.20)

τ =
(1 + k

−1

k1·[Ca])(1 + k2·[Ca]
k
−2

)

α(1 + k2·[Ca]
k
−2

) + β(1 + k
−1

k1·[Ca])
. (4.2.21)

In this case, we have a second binding of calcium which “stabilizes” the opening

of the channel. Consequently the deactivation time constant at negative potential

correctly increases with increasing concentration of calcium, while the activation

time constant at positive potential decreases with increasing calcium. However,
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considering Eq. (4.2.20), it is possible to notice how, unless we select a K2 = k
−2

k2

ratio very large (meaning an “anti-cooperative” behavior for the binding of the

second ion of calcium), at high calcium concentration at positive potential the open

probability is equal to one independently from the value of the voltage. In the

experimental data, the binding of calcium displays a cooperative behavior, as the

cooperativity index of the Hill curve (see Fig.4.4) is greater than one. Moreover the

maximal conductance in the dose-response plot (Fig.4.4) is clearly still dependent

on the potential. Also in this scheme adding more calcium bindings before or after

the close-open transition does not modify this feature.

The final scheme The simplest model able to reproduce, in addition to the other

features, the slower closure of the channel in the presence of a high concentration

of calcium, being at the same time qualitatively different from the 4-states scheme

presented above, is shown in Fig. 4.6 A. The horizontal connections represent the

C0 C1 C2

O1 O2

k1 [Ca] k2 [Ca]

k-1
α1β1 α2β2

k3 [Ca]

k-3

k-2

A

C0 C1 C2

O1 O2

k1 [Ca] k2 [Ca]

k-1 k-2
α1β1 α2β2

k4 [Ca]

k-4
 

X0
k3 [Ca]

k-3
 

α0
β0

B

Figure 4.6: Possible schemes for TMEM16B. The scheme in B is derived by
the scheme in A adding the possibility of a modification of the channel due to the
transmembrane potential even in the absence of intracellular calcium.

binding/unbinding of the calcium ion to the channel and the vertical ones correspond

to the opening and closing to the channel due to the voltage action. In this case

two different opening/closing transitions are present: the first from the state C1 to

the state O1 representing the dynamics of the channel with one bound calcium ion

(thus predominant at low and intermediate concentrations of calcium), the second

C2 −O2 for the case in which two calcium ions are bound to the channel (becoming

important at high calcium concentrations). This double close-open transition allows

us to reproduce different time constants in the dynamics of the channel depending

on the concentration of calcium. To entail the possibility of a modification of the

channel due to the action of the transmembrane potential even in the absence of
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calcium, we modify the scheme of Fig. 4.6 A into that of Fig. 4.6 B. We have called

X0 the newly introduced state representing this configuration of the channel, to

underline the peculiarity of this condition, corresponding to an open state from a

conformational point of view, but still not conducting current because of the absence

of calcium. The corresponding equations for the scheme of Fig. 4.6 B are:

Ċ0 = −k1 · [Ca] · C0 + k
−1 · C1 − α0 · C0 + β0 · X0

Ċ1 = k1 · [Ca] · C0 − k
−1 · C1 − k2 · [Ca] · C1 + k

−2 · C2 − α1 · C1 + β1 · O1

Ċ2 = k2 · [Ca] · C1 − k
−2 · C2 − α2 · C2 + β2 · O2 (4.2.22)

Ẋ0 = −k3 · [Ca] · X0 + k
−3 · O1 + α0 · C0 − β0 · X0

Ȯ1 = k3 · [Ca] · X0 − k
−3 · O1 − k4 · [Ca] · O1 + k

−4 · O2 + α1 · C1 − β1 · O1

Ȯ2 = k4 · [Ca] · O1 − k
−4 · O2 + α2 · C2 − β2 · O2

We have not added further binding-unbinding transitions (and corresponding

open states) for calcium binding because our aim was to find the simplest model

able to reproduce the main features of the TMEM16B channel and the estimated

Hill coefficient from the experimental data was only slightly greater than one [18].

We chose to distinguish two different open states because of the presence of (at

least) two different dynamics of the channel in low or high concentrations of cal-

cium (there should be two different close-open transitions). The possibility to mesh

together this two open states was not considered due to its physiological meaning:

the two open states represent the open channel with one or two bound calcium ions.

Thus a single state representing both conditions could have led to misunderstand-

ings about the number of ions bound to the channel and it would not have been

possible to impose that a channel open through C1 − O could not close through

O −C2 and viceversa. Allowing this, the channel would gain a calcium ion without

any calcium dependence and this transition would be preferred in the case of low

calcium concentration, in which the state C2 is less populated than C1.

Moreover we noticed that the fit improved allowing the transition between the

two open states and X0 and O1, confirming our idea that the binding of the calcium

ion is possible in both the closed and the open channel. We constrained the equilib-

rium binding contants Ki = k−i/ki, i = 1, 2, 3, 4 to be equal for all the transitions.

Furthermore hypothesizing that the binding rate is not affected by the presence

of an ion already bound to the channel, the value for the constants of the tran-

sitions between closed states are set to be equal and the same for the transitions

X0 − O1 − O2.
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4.2.2 State-of-art of models for the calcium-activated chloride chan-

nel

Possible schemes for the dynamics of the calcium-activated chloride channels have

been investigated by different groups ([5], reconsidered by [32], and [50], further

developed also by [4]).

Arreola and colleagues [5] proposed a 4-states scheme in which only one open

state was present:

C0
α1·[Ca]
−−−−⇀↽−−−−

β1

C1
α1·[Ca]
−−−−⇀↽−−−−

β1

C2
α2−⇀↽−
β2

O

In this scheme they hypothesized two consecutive binding of calcium to the closed

channel, regulated by the ligand concentration and by the transmembrane potential.

The final step, responsible for the opening of the channels, is instead dependent only

on the potential. The binding affinity is equal for both the binding steps and in

the transition between C2 and O the dependence on the potential is only through

the closing rate β2, using an exponential function as Eq. (4.2.9) (α2 is constant).

Moreover they considered the instantaneous component of the current due to the

a very fast calcium binding kinetics and they consequently assumed the steady

state for the first two transitions C0 − C1 and C1 − C2 while studying the opening

dynamics. This allowed them to reduce the scheme as the simpler 2 states scheme

presented earlier and to study the kinetics of the reduced model, as shown in the

previous subsection. The scheme correctly reproduced the steady state values of

the current and the different instantaneous currents which increase with increasing

calcium concentrations after a voltage step, but was not able to represent the slow

closure of the channel at high amounts of calcium.

An alternative scheme was presented by the group of Hartzell [50] (see Fig. 4.7).

They distinguished seven possible states for the calcium-activated chloride chan-

nel, four closed and three open. The transitions between closed states are calcium-

dependent, while the transition between closed and open states are voltage-dependent.

Transitions between open states are not allowed. The rate constants accounting for

the binding/unbinding of calcium are equal for the binding of the first, second and

third calcium ion. The rate constants for the opening of the channel are instead

different for the three transitions, they are not depending on the transmembrane

potential and they increase in transitions between states with more ions of calcium

bound to the channel (α1 < α2 < α3). The closure of the channel is voltage-

dependent (through an exponential function like Eq. (4.2.9)) and equal for the three

possible closing transitions present in the scheme. This model was tested in simula-
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O1 O2
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O3

k-1
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β(V)
 

β(V)
 

k1 [Ca]k1 [Ca]

Figure 4.7: The scheme proposed by Kuruma and Hartzell in [50].

tions of responses to voltage steps between -120 and +120 mV, at a given concentra-

tion of calcium, and of responses to calcium steps, with the potential held constant

for all the duration of the simulation. In both cases the activation of the channel

became faster with increasing calcium concentrations, as in the experimental data.

The outward rectification of the current response present in the experimental data

gradually becoming less pronounced at high calcium concentration is also correctly

reproduced. On the contrary, the model fails to reproduce the slow closure of the

channel at high calcium concentration. Moreover in the closure of the channel after

a step of calcium, it predicted a slower deactivation time constant for 50 µM Ca2+

than for 500 nM Ca2+, a difference not detected in the experimental data.

4.3 Results

We fit the model (4.2.22) to experimental recordings of the type shown in Figs. 4.1,

4.2 and 4.3 through a least square algorithm similar to that described in the previous

chapters. The corresponding parameters are reported in Table 4.1.

In Fig. 4.8 the responses of the model of Fig. 4.6 B are shown. The calcium

concentration was held constant for all the duration of the simulation, while the

potential stepped from 0 mV to different values between -200 mV and +200 mV,

then to -200 mV and finally back to 0 mV. These data correctly capture both

the steady states values and the time dependent profiles of the experimental data.

The steady state dependence on the potential can be seen in Fig. 4.9. The model

reproduces the sigmoidal shape of the dependence of popen with respect to V and the

shift of this curve towards smaller transmembrane potential values with increasing

calcium concentrations. Notice that at 0 mV the open probability of the channel

is greater than 0, despite of the fact that the current is equal to 0. This allows to



4.3. RESULTS 103

Table 4.1: Parameter set used to fit the data of Fig. 4.1, 4.3 and 4.2.

Parameter Value Parameter Value
α00 219.2 β00 1038
sα0 0.43 sβ0 1
α01 14.5 β01 27
sα1 0.05 sβ1 0.05
α02 103 β02 21.6
sα2 0.15 sβ2 0.17

k1,k2 1137 K1,K2 2.3
k3,k4 67.4 K3,K4 2.3

reproduce the instantaneous currents detected in response to the voltage steps and

is achieved through an exponential dependence of the voltage-dependent transitions

α and β (see Eqs (4.2.8), (4.2.9)). An explicit calcium dependence of these simulated

traces is represented in Fig. 4.10. These curves have been fitted like the experimental

data to the Hill equation G
Gmax

= [Ca2+]nh

[Ca2+]nh+K
nh
1/2

. On the right panels of Fig. 4.10 it is

possible to visualize the estimated half-maximal intracellular calcium concentration

K1/2 (above) and the cooperativity number nh (below). The dependence of K1/2 to

the transmembrane potential is similar to the profile obtained from the experimental

data (see Fig. 4.4). The cooperativity index nh seems to be not modified by the

voltage and slightly greater than one, as in Fig. 4.4.

As previously mentioned the transient dynamics of the channel have been also

considered. The traces of the simulated data presented in Fig. 4.8 have been fitted

with the exponential function y = y0+A·e−t/τ , in order to estimate the time constant

τ of activation/deactivation of the in silico channel and compare it with that of the

experimental data. The time constants at different calcium concentrations and

their dependence on the transmembrane potential are reproduced in Fig. 4.11. The

simulated data correctly captures the opening time constant of the channel after a

voltage step, which is fast in the case of a high calcium concentration and increases

at lower concentrations. On the contrary the closure of the channel following a

negative potential step is faster in the presence of a small calcium amount. This

means that a high calcium concentration not only enhances the steady state open

probability of the channel, but also influences the dynamic response contributing

to accelerate the opening and to slow down the closure of the channel, as in the

experimental data. As can be noticed in Fig. 4.11, τ is also dependent on the

transmembrane potential and it decreases at lower voltages during the closure of the
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Figure 4.8: Simulated data resembling those of Figs. 4.1, 4.3.
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Figure 4.9: Simulated data: voltage dependence. Steady state current val-
ues reported versus the transmembrane potential, at different intracellular calcium
concentrations. The corresponding experimental data are shown in Fig. 4.2
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Figure 4.10: Simulated data: calcium dependence. Steady state current values
reported versus the calcium concentration, half-maximal calcium concentration K1/2

and cooperativity number nh values, to be compared with those of Fig. 4.4. The
voltage of the simulation is changed from -120 mV to 120 mV.

channel, reflecting the behavior of the experimental data (see Fig. 4.5). Regarding

the channel opening, the model predicts a decreasing activation time constant at

positive potential, which cannot be seen in the experimental profiles. However,

given a certain calcium concentration, the experimental time constants at positive

voltages are smaller than those at negative voltages, meaning that the function

relating τ and V cannot be monotonically increasing and consequently that the

constant experimental τ at the considered values of V could decrease at higher

potentials.

4.4 Discussion

As introduced in the Methods section, different Markov models have been studied

to explain the behavior of the calcium-activated chloride channel. The first was

introduced by Arreola and collaborators [5] presenting data of the native channel in

rat parotid acinar cells. They noticed from the experimental data that the current

flowing through the channel increases with increasing intracellular calcium concen-

tration and that the responses to a voltage step were composed by an instantaneous

and a slower components. The proposed scheme (see Subsection 4.2.2) contains a
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Figure 4.11: Simulated data: time constant of the channel in response to
voltage step. The time constant of the current response is reported in dependence
of the voltage value (changing from -120 mV to 120 mV) and of intracellular calcium
concentration (see Fig. 4.5 for a comparison).

single open state and consequently a single close-open transition, which depends

only on the transmembrane potential and not on the calcium concentration. This

means that if the amount of calcium can influence the steady state current and the

activation time, it cannot modify the deactivation time, i.e. the time needed to

the channel to modify its state from open to close. Therefore the proposed model

cannot reproduce the slow closure of the current in the presence of a high calcium

concentration.

A similar scheme was presented by Haase and Hartung in 2006 [32] to explain the

behavior of the calcium-activated chloride channel in Xenopus oocytes. The main

difference between the two models is that in [32] an inactivated state was added, to

account for the inactivation exhibited by the channel in response to voltage steps.

They consequently focused their studies on the activation current profiles in response

to positive voltage steps, which consisted in a fast transient followed by a slower

voltage-independent activation. In particular they did not study the inactivation

time constant of the channel in response to negative voltage step, which was the

main feature not correctly reproduced by the model proposed in [5].

In 2000 Kuruma and Hartzell [50] introduced a very different scheme (after-

wards considered also in [4]) for the calcium-activated chloride channels in Xenopus

oocytes. They did not detect the deactivation phase subsequently measured in [32].

The in silico data of the responses of the channel to voltage and calcium concentra-
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tion steps were compared with the experimental data. In response to a step of Ca2+

the opening of the channel becomes faster with increasing calcium concentration

both in the simulations and in the experimental data, while the closure of the chan-

nel is slower at high Ca2+ only in the simulated data (they did not found a similar

dependence on calcium concentration in the experimental recordings). The same

scheme was tested for voltage steps responses and, at high calcium concentration,

it correctly reproduced the fast activation time constant but not the slower closure

of the channel following a negative voltage step.

The schemes of Fig. 4.6 we are presenting in this thesis resemble that of Kuruma

and Hartzell [50]. We did not consider the states C3 and O3 (accounting for the

binding of the third calcium ion to the channel) because they turned out to be not

fundamental in reproducing the data. Moreover we added transitions between open

states to account for the possibility that the binding of calcium could occur even in

the case of an open channel, stabilizing this opening. In the scheme of Fig. 4.6 B we

also added a further closed state X0 representing the action of the transmembrane

potential on the closed channel in the case of nominally zero calcium concentration.

Following these considerations and the results shown in [50] and [104] a new

type of experimental data have been recorded recently. Using a photorelease pro-

tocol similar to that of the caged compounds in Chapter 2, the channel (previously

held at nominally zero calcium) have been exposed to a fast release of intracellu-

lar calcium. This protocol allows the emission of different calcium concentrations

through shieldings of the uncaging light, at various constant transmembrane po-

tentials. The recorded currents exhibit an extremely fast activation (with a time

constant below 5 ms) both at +50 mV and -50 mV at a high flash intensity (high

calcium concentration) and a slower response (τ ∼10 ms, both at +50 mV and -50

mV) in the case of a shield for 96.8% of the light (corresponding to a low calcium

concentration).

These data suggest the possibility that the channel could “be prepared” to the

opening by the transmembrane potential, confirming our idea of the presence of a

state X0 in which the channel is still close (no current flows through the channel),

but it is prompter for the opening with respect to the state C0. Upon the arrival of

the calcium ion the channel in this state opens rapidly and the opening time con-

stant depend only on the calcium amount. On the contrary, in the absence of the

state X0, it would be impossible to obtain a smaller opening time constant in the

experiments in which the channel undergoes a sudden change of calcium concentra-

tion (while keeping constant the voltage) compared to the voltage step experiments

(at constant calcium). Indeed in a scheme as that presented in Fig. 4.6 A, in the
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absence of calcium all the population of channel is in the state C0, independently of

the transmembrane potential. When calcium is released, the channel opening must

occur through the transitions C0 − C1 − O1 or C0 − C1 − C2 − O2. In the voltage

step experiments calcium is already present and at the constant potential of 0 mV

the population of the channels is distributed between all the states. Thus, after a

positive voltage step, we would expect an instantaneous current accounting for the

already open channels, followed by a fast opening of the remaining current (faster

than the response to a calcium release). The minimum modification of the scheme

of Fig. 4.6 A to account for this difference, is the introduction of the state X0 of

Fig. 4.6 B. In this case, when the channel is held at a given potential and nominally

zero calcium amount, the population of the channels is distributed between states C0

and X0. After the calcium release, the channel has the possibility to open through

the X0 −O1 transition, which could be faster than those between C0 −C1 −O1 and

C0−C1−C2−O2 and is by definition only depending on the calcium concentration.

Clearly at a given calcium concentration and a fixed potential, the steady states

of the simulated currents are independent from the history of the channel (i.e. inde-

pendent from the type of experiment). The difference between the two experiments

lies in the initial conditions and in the time constants of the transient current, mean-

ing that the response to a given experimental protocol depends on the order of the

input.

We are going to focus our future studies on this interesting behavior, investigat-

ing the model responses and the necessary dynamical features in order to correctly

reproduce it.
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