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Chapter 1

Introduction and Overview of

the main results

Since the discovery twenty years ago of high temperature superconductivity in

cuprates doped Mott insulators, strong correlations in electronic systems have

progressively become synonymous of striking physical phenomena. Following

the impressive experimental progress in synthetizing novel correlated materi-

als and even designing artificial correlated models, e.g. cold atoms trapped in

optical lattices, as well as in improving old or creating new investigating tools,

there has been a great theoretical effort in developing reliable and efficient

schemes for treating strong electronic correlations, like for instance dynamical

mean field theory (DMFT) [1] or improved density functional calculations in

the local density approximation, e.g. LDA+U [2] or LDA+U+DMFT [3]. At

the meantime, old theoretical tools developed long time before the discovery of

high Tc superconductors have been improved and adapted to better describe re-

alistic correlated materials, among those particularly the Gutzwiller variational

approach, which is actually the subject of this thesis. In fact, it is not exag-

gerated claiming that most important concepts in strongly correlated systems

originated from Gutzwiller variational calculations or, equivalently, slave-boson

mean-field results, as for instance the famous Brinkmann-Rice scenario [4] of

the Mott transition or the slave-boson mean-field phase diagram of the t − J

model for cuprates [5], which remains so far the most promising, although still

controversial, explanation of high-temperature superconductivity.
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2 Introduction and Overview of the main results

In a series of three papers [6, 7, 8] Martin Gutzwiller introduced in the

60th’s a variational wavefunction for studying ferromagnetism in transition

metals, which has the general expression

|ΨG〉 =
sites∏

R

PR |Ψ0〉, (1.1)

where |Ψ0〉 is an uncorrelated wavefunction that satisfies Wick’s theorem, and

the operator PR has the role of modifying the relative weights of the electronic

configurations at site R with respect to their uncorrelated values in order to

improve local correlations. Both |Ψ0〉 and PR are to be variationally deter-

mined by minimizing the average energy. In spite of its simplicity, the average

values of any operator on |ΨG〉 can not be computed but numerically in realis-

tic lattice models. For this reason, Gutzwiller also introduced an approximate

scheme to compute those average values analytically. Both the wavefunction

and the approximation were named after him. Since then, the Gutzwiller wave-

function and approximation became very popular tools to attach theoretically

strongly correlated systems. We previously mentioned the famous Gutzwiller

scenario of a paramagnetic Mott transition that was found by Brinkmann and

Rice in the attempt of describing the prototypical Mott insulator V2O3, but

the list of interesting results that were obtained by this variational technique

is impressively long, hence impossible to cite in an exhaustive way. Because

it is closely related to this thesis and help the following discussion, we just

mention the Gutzwiller approaches to the physics of heavy fermion materi-

als [9, 10], which were quite popular just before high Tc era, and, among them,

the seminal works by Rice and Ueda [11] and Brandow and Fazekas [12, 13, 14],

which, at the same time, showed qualities and defects of the method. In the

context of heavy fermions, the Gutzwiller approach was actually in compe-

tition with another approximate analytical tool that was developing in early

80s, the so-called slave-boson technique [15, 16, 17, 18]. In reality, both the

Gutzwiller approximation and the slave-boson mean field theories applied to

models for heavy fermions gave almost coincident results and in accord with

most experiments. This coincidence motivated the attempt by Kotliar and

Ruckenstein [19] for building a bridge between the two approaches. Essen-

tially these authors found a novel version of a slave-boson path integral action
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for a single band Hubbard that, at the saddle point, reproduces exactly the

Gutzwiller results of Brinkmann and Rice. In principle, slave-boson mean field

theory can be improved going beyond the mean field approximation [20, 21, 22],

which is an advantage with respect to the Gutzwiller approximation but is in

fact quite an hard task. Conversely, the Gutzwiller approach can be improved

with respect to the Gutzwiller approximation by direct numerical evaluation

of average values on the Gutzwiller wavefunction, see Refs. [23] and [24], and

references therein, which has the advantage to be a consistent variational ap-

proach. In spite of these differences, the Gutzwiller approximation and the

slave-boson mean field theory has become somehow synonymous, in the sense

that they lead to equivalent results.

After the discovery of cuprate superconductors and the consequent explo-

sion of research activity in strongly correlated materials, there has been a

revival of interest in the Gutzwiller variational approach as well as in the

slave-boson technique. In fact, many popular theoretical concepts born in the

context of high Tc materials, like the spin liquids, i.e. lattice models of spins

whose ground state does not break any symmetry [25], or the so-called RVB

superconductivity [26] that may arise when doping a liquid of valence bonds

(spin-singlet pairs), a particular case of a spin-liquid, have been originally for-

mulated through a Gutzwiller approximation or a slave-boson approach to

models for cuprate materials. [26, 27, 28, 5] Just to face the need for broader

applicability and greater reliability, both the Gutzwiller variational approach

and the slave-boson technique have been considerably improved during years

and along several directions. Sophisticated algorithms have been developed to

increase accuracy and variational freedom in the Gutzwiller wavefunctions, see

e.g. [29], and applied to several models [30, 31, 32, 33]. On the other side,

multi-orbital effects have been included in the simpler Gutzwiller approxima-

tion [34, 35] as well as in the slave-boson mean field theory [36], in the attempt

of describing realistic correlated materials beyond simple single-band ones and

of including inter-site correlations absent in the original wavefunction (1.1).

In addition, the development of DMFT has brought novel insights in the

physical meaning of the Gutzwiller approximation. Metzner and Vollhardt

showed [37, 38] that the Gutzwiller approximation is actually exact in the limit

of infinite coordination lattices, where the single-particle self-energy becomes
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purely local in space [39]. In this limit, where also DMFT becomes exact, the

Gutzwiller approach seems to provide a variational prescription to determine an

approximate low-frequency behavior of the self-energy, unlike DMFT that can

access the whole frequency range. Hence the Gutzwiller approximation can be

regarded also as a tool to extract Fermi-liquid parameters, or, more generally,

renormalized band-structure parameters, within the assumption that spatial

correlations are not important [40], justifying what was done by Vollhardt

for 3He [41] and opening a promising route towards combining the Gutzwiller

approach with ab-initio calculations [42].

All novel perspectives that one can foresee in the future of the Gutzwiller

variational method require however a number of preliminary steps to be un-

dertaken in order to make this technique really flexible and able to cope with

more complicated cases than the simple single band Hubbard model. This is

what motivated the work presented in this thesis. Specifically, by facing three

problems of current interest, the Fermi surface evolution in heavy fermion sys-

tems, the emergence of superconductivity upon doping a simple spin-liquid and

finally the quantum transport across a correlated microscopic object, we ended

up in a series of novel developments in the method that allowed us to access

physical properties previously unaccessible unless by more involved numerical

simulations. Therefore this thesis has a dual nature: first there are few in-

teresting physics questions that we have addressed and solved; secondly, their

solution has brought us to improve, in our opinion significantly, the method.

After this brief digression, we briefly list the three problems that we at-

tached and our main results.

1.1 Fermi-surface evolution across the magnetic

phase transition in the Kondo lattice model

The physics of heavy fermion materials has a long history that enriched along

the years with more and more interesting aspects [9, 10]. The name heavy

fermions is commonly refereed to compounds where the electrons occupying

narrowly localized partially filled f -shells get promoted to the Fermi level

forming very narrow, hence the adjective heavy, paramagnetic bands, lead-
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ing e.g. to a specific heat coefficient γ orders of magnitude bigger than in

conventional metals. This behavior is conventionally interpreted by invoking

the Kondo effect [43], i.e. the many-body phenomenon by which the localized

moments of magnetic impurities get screened when diluted in metals. From

this viewpoint, the heavy-fermion behavior corresponds to the on-set of coher-

ence of the different Kondo clouds that form around each magnetic ion, apart

from subtleties as for instance the Nozières exhaustion principle [44]. A more

traditional approach, which is nevertheless deeply related to the essence of the

Kondo effect, is that, if the strong correlations active on the f -orbitals could be

hypothetically switched off without encountering any phase transition, then the

heavy-fermion state should be adiabatically connected with a non-interacting

state, e.g. the state obtained by a non-magnetic electronic structure LDA cal-

culation. Since the latter is characterized by a Fermi surface that encloses a

volume counting the f electrons besides the more itinerant s-p-d ones, also the

fully interacting Fermi surface of the heavy-fermion state must have the same

property, a consequence of the so-called Luttinger’s theorem [45]. It then fol-

lows that the f electrons must contribute to the metallic behavior, i.e. to the

linear in temperature specific heat, to the Pauli paramagnetic susceptibility,

etc..

In reality, not all f -electron systems display a paramagnetic heavy-fermion

behavior. There are in fact materials where the local moments of the f -shells

order magnetically, thus inducing magnetic ordering also in the itinerant bands,

leading to SDW metals usually with a complicated magnetic structure. Because

of the spin-symmetry breaking, there is no more guarantee by Luttinger’s theo-

rem that the f electrons do partecipate to the metallic behavior. Indeed, there

are evidences that the Fermi volume in the SDW metal does not include f elec-

trons, which is supported also by the more conventional metallic properties with

respect to heavy-fermion paramagnets [9, 10]. Quite interestingly, there are

compounds where, by means of external agents, like physical or chemical pres-

sure, it is possible to cross the transition from a SDW metal to heavy-fermion

paramagnetic metal. This transition has attracted a lot of interest since, be-

sides obvious topological changes of the Fermi surface [46, 47, 48, 49, 50], it is

usually accompanied by an anomalous behavior of various transport and ther-

modynamic quantities. [10, 51] The Fermi surface change and the magnetism
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can be explained in a conservative scheme as simply the consequence of the

additional Bragg scattering due to the static magnetism, assumed to arise pre-

dominantly by an instability of the itinerant phase [52, 53]. Correspondingly,

the observed anomalous behavior is thought to arise by critical magnetic quan-

tum fluctuations. [54] This explanation is contrasted by a different one that

ascribes the changes of the Fermi surface to an f -electron Mott localization [55],

which is assumed to occur concomitantly with magnetism [56, 57, 58, 59]. In

this case the anomalous behavior is believed to arise from the singular local

magnetic fluctuations accompanying the f -localization, hence the death of the

Kondo effect. On the contrary, in the former scenario, what matters are the

singular magnetic scattering localized around the q-vector of the contiguous

magnetic order.

In order to shed some light in this debated issue, we have decided to study

the prototypical Kondo lattice model, i.e. a lattice of localized spin-1/2 antifer-

romagnetically coupled to conducting electrons, by an extension of the standard

Gutzwiller variational approach. While in the past a Gutzwiller wavefunction

as in (1.1) was studied in which PR was assumed to act only within the f -

shell, here we consider a more general PR that acts on all local configurations

including f and conduction electrons. The novelty is the possibility to vari-

ationally control the strength of the singlet-coupling between localized spins

and conduction electrons, which otherwise is dictated only by the uncorrelated

wavefunction |Ψ0〉. The additional variational freedom leads however to sev-

eral technical difficulties to extend the Gutzwiller approximation, that we have

successfully overcome.

The variational phase diagram as function of the Kondo exchange has been

found to depend non-trivially on the conduction electron density. Very close

to the compensated regime (one conduction electron per impurity-spin), upon

decreasing the Kondo exchange there is first a second-order paramagnetic-to-

antiferromagnetic phase transition, followed by a first-order transition between

two magnetic phases with completely different Fermi surfaces. Moving away

from the compensated regime, the second order phase transition disappears

and we find a single first order line separating a paramagnetic phase from an

antiferromagnetic one with different Fermi surfaces. Our results suggest that

the magnetic transition and the topological change of the Fermi surface are
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not necessarily coincident, which has been also observed in a very recent ex-

periment [60, 61]. In order to understand if the abrupt change in the Fermi

surface is due to a Mott localization rather than to magnetism, we have stud-

ied the model in the paramagnetic sector by preventing any magnetic ordering.

Although our optimal uncorrelated wavefunction |Ψ0〉 is forced to have always

a finite, although small, weight of f -electrons at the Fermi energy – this is the

only allowed way to gain Kondo exchange energy within the simplest Gutzwiller

scheme – yet this weight undergoes a sharp discontinuity, corresponding to an

abrupt transfer away from the chemical potential, at what seems to be varia-

tionally a weakly first order phase transition. Indeed, visualizing the shape of

the Fermi surface at finite temperature, this transition seems to be accompa-

nied by a topological change of the Fermi surface. Finally, we have analyzed

the role of a uniform magnetic field in the paramagnetic phase and found a

metamagnetic instability near the above phase transition, suggestive of the

metamagnetism observed experimentally. [62]

In conclusion, our results show that the f -localization is indeed close to the

on-set of magnetism but is not necessarily coincident, hence that the two points

of view previously mentioned do not necessarily exclude each other. However,

it remains opened the question whether the anomalous behavior observed is

caused by magnetism or rather by the Mott localization. Our finding about

the metamagnetic behavior of the paramagnetic phase seem to favour the Mott

localization mechanism, but this is only a speculation.

1.2 Superconductivity in a liquefied valence-

bond crystal

Just after the discovery of high temperature superconductivity in doped cuprates,

Anderson [26] came out with an original proposal that remains till now one

of the most convincing one, apart from minor changes intervened along with

the experimental developments, e.g. d-wave symmetry instead of the originally

proposed extended-s. Without pretending to be exhaustive, Anderson’s idea

can be summarized as follows. All cuprate superconductors can be regarded

as doped Mott insulators. The undoped insulating phase, when accessible, is
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antiferromagnetic. Once holes are injected by doping, long range antiferro-

magnetism dies out, but it is conceivable, given the strength of the magnetic

exchange, that short range magnetic correlations survive. Instead of attempt-

ing to describe such a phenomenon starting from the ordered antiferromagnet,

it is tempting to undertake a different point of view and start from a spin liquid

phase, actually a liquid of spin-singlet pairs, so-called resonating valence bond

(RVB), which is already lacking long range order, and dope it. Indeed, at short

range an antiferromagnet and a RVB are hardly distinguishable. Furthermore,

a RVB state can be adiabatically turned into a long range antiferromagnet [63].

If one accepts to start from an RVB phase and dope it, i.e. remove spins that

leave behind holes, then the spin-singlet pairs will start moving around and it

is not difficult to believe that they could become superfluid at low temperature,

hence, being charged, actually superconduct. This very crude picture of the

RVB superconductivity, has been elaborated in much detail during the years,

especially by numerical studying variational wavefunctions for the t-J model

of the type (1.1) with |Ψ0〉 a a d-wave BCS wavefunction [30, 32, 33] and PR

projecting out doubly occupied sites, leading to very promising results.

In reality, one may generalize Anderson’s point of view and ask whether

melting a non-magnetic Mott insulator formed by spin-singlet pairs is gener-

ally accompanied by the emergence of superconductivity. In the RVB scenario,

the spin-paired sites can be at any distance and in any direction, but one can

imagine a simpler case of a crystalline short-range RVB, or valence-bond solid,

with pairs with fixed length and orientation, which is no more a liquid but

remains non-magnetic. Such an insulating crystal can be melt either by reduc-

ing the repulsion, the pairs can overlap and eventually liquefy, or, similarly to

the RVB case above, by doping. In order to investigate this extreme case of a

valence-bond solid, in Ref. [35] a Gutzwiller approximation was used to study

a model of two Hubbard planes at half-filling coupled by an inter-plane hop-

ping. The latter was assumed to be strong enough to make the Mott insulator

at large on-site repulsion U non-magnetic, a collection of inter-plane singlet

bonds, but weak enough that the uncorrelated phase at U = 0 is metallic.

Upon increasing U from the metal to the valence-bond Mott insulator, it was

shown that the Gutzwiller wavefunction stabilizes a superconducting dome that

intrudes between the two phases. To further extend this analysis, here we have
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decided to look at the same problem but upon doping the valence-bond insu-

lator. As we hoped, we find that liquefying the valence-bond crystal by doping

also leads to a superconducting dome that counter-intuitively exists only close

to the half-filled Mott insulator; a striking similarity to cuprates and in accord

with existing speculations [64]. This result suggests that indeed Anderson’s

speculation is generalizable to a larger class of non-magnetic insulators [65],

even though it remains open the question of its relevance to cuprates.

Technically, in order to describe accurately the valence-bond insulator, we

had to to use an operator PR in (1.1) that acts on all electronic configurations

of the two sites, one on top of the other, connected by the inter-plane hopping.

The allowance of superconductivity and the absence of particle-hole symmetry

away from half-filling made the variational problem quite complicated, hence,

in order to simplify it, we had to enforce symmetries. Their inclusion within

the Gutzwiller scheme is the technical novelty of the work.

1.3 Transport in quantum dots

The physics of the Kondo effect has become recently quite popular also in

a context far away from magnetic alloys, namely that of quantum transport

across nanocontacts. Indeed, because of the low dimensionality of the contact

region, electronic correlations grow in strength and may stabilize a local mag-

netism that influences electron tunneling. The Kondo-like zero-bias anomalies

first observed in quantum dots [66] are just the simplest manifestation of it.

From the theory side, this phenomenon is particularly hard to study, first of

all because strong correlations play a major role, secondly because it is inher-

ently an out-of-equilibrium phenomenon. While the zero-bias conductance can

be accessed by an equilibrium calculation, and there exist plenty of techniques

that are capable to access Kondo physics in detail, the inelastic tunneling spec-

trum at finite bias is practically unaccessible with reliable techniques unless in

extreme cases. Furthermore, the technique that are effective at equilibrium

can deal only with simple models, like the single impurity Anderson or Kondo

models, and become soon untractable with realistic cases, e.g. tunneling across

a transition metal atom, where many orbitals partecipate to magnetism and

affect conductance. In this general context, it would be desirable to have at
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disposal a technique as simple and flexible as the Gutzwiller variational one

but capable to access out-of-equilibrium phenomena. Therefore we decided to

study the possibility of extending this method away from equilibrium. The

idea that we followed started from a result by Hershfield [67], according to

whom the out-of-equilibrium steady state can be regarded as the equilibrium

one with an Hamiltonian that includes an effective bias operator. Should this

operator be known, one could indeed use the Gutzwiller approach to study

steady state properties. Since it is unknown, we had to make several assump-

tions in the spirit of a local Landau Fermi liquid description [68] to get to some

expression for this operator that we think should be valid if the bias is not too

large. We then calculated the inelastic tunneling spectrum for the tunneling

across a single-orbital Anderson impurity, which is qualitatively in accord with

the observed behavior in quantum dots. We proceeded further and applied

the method to the less trivial example of a double dot. Although the method

is still at the level of a proposal and need to be better justified and further

improved, we think this is a promising route to pursue.

1.4 Outline

The thesis is organized as follows:

In chapter 2 we discuss the Gutzwiller method in detail. After a brief gen-

eral introduction we will focus on all the new features that we have developed,

and that considerably simplify all the pratical calculations for a wide class of

problems. In section 2.1 we will underline all the advantages of using the so

called mixed-basis rapresentation and present some technical detail about the

Gutzwiller-constraint’s parametrization; section 2.3 is devoted to the problem

of generating variational wavefunctions with a given symmetry; and in the last

section we will discuss a well accepted method that allows to extract quasi-

particle properties of the system with the Gutzwiller method.

In chapter 3 we derive, by means of an extended Gutzwiller wavefunction

and within the Gutzwiller approximation, the phase diagram of the Kondo

lattice model. We find that generically, namely in the absence of nesting, the
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model displays an f -electron Mott localization accompanied by a discontinu-

ous change of the conduction electron Fermi surface as well as by magnetism.

When the non interacting Fermi surface is close to nesting, the Mott localiza-

tion disentangles from the onset of magnetism. First the paramagnetic heavy

fermion metal turns continuously into an itinerant magnet - the Fermi surface

evolves smoothly across the transition - and afterwards Mott localization inter-

venes with a discontinuous rearrangement of the Fermi surface. We find that

the f -electron localization remains even if magnetism is prevented, and is still

accompanied by a sharp transfer of spectral weight at the Fermi energy within

the Brillouin zone. We further show that the Mott localization can be also

induced by an external magnetic field, in which case it occurs concomitantly

with a metamagnetic transition.

In chapter 4 we study by multi-orbital extension of the Gutzwiller wave-

function with enforced spin-rotational symmetry the role of doping in the bi-

layer Hubbard model, within a regime in which the half-filled Mott insulator

at large interaction is non-magnetic; a local version of a valence bond crystal.

Using a variational wavefunction which includes Cooper pairing correlations,

we find a region of singlet superconductivity that arises close to the half-filled

Mott insulator.

In chapter 5 we develop an approximate method based on the Gutzwiller

technique to study non-equilibrium steady state transport across a correlated

impurity (mimicking e.g. a quantum dot) coupled to biased leads. The method

is based on the Hershfield result that steady state properties can be regarded as

equilibrium ones with a proper Boltzmann weight. We test this method to the

simple single-orbital Anderson impurity model, finding the correct behaviour

of the conductivity as a function of the bias. We finally apply the proposed

procedure to a more complicated two-dots model and we discuss our results.





Chapter 2

The Gutzwiller variational

method

Since its original formulation in the early 60th’s, the Gutzwiller variational

approach[6, 7, 8] remains one of the simplest yet effective tools to deal with

correlated electron systems. The brilliant idea invented by Martin Gutzwiller

was to properly modify the weight of local electronic configurations according

with the on-site interaction starting from some uncorrelated reference values.

In his original formulation, this is accomplished by means of the variational

wavefunction:

|ΨG〉 = P|Ψ0〉 =
∏

R

PR |Ψ0〉, (2.1)

where |Ψ0〉 is an uncorrelated variational wavefunction, conveniently chosen

such that Wick’s theorem holds, and PR a projection operator acting on the

local configurations at site R. Both |Ψ0〉 and PR have to be determined by

minimizing the average energy. In what follows we shall assume a generic

multiband Hamiltonian, in which case the most general expression for the local

operator PR is:

PR =
∑

Γ1,Γ2

λ(R)Γ1Γ2
|Γ1,R〉〈Γ2,R|, (2.2)

where each state |Γi,R〉 denotes any electronic configuration belonging to the

local Hilbert space of a given multi-band model, whereas the matrix λ(R)

contains all the variational parameters needed to define the operator PR. In

general, average values of operators on the wavefunction (2.1) must be com-

13
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puted numerically, unless the lattice has infinite coordination number, in which

case they can be evaluated analytically [34, 69, 35]. For that purpose, let us

assume that the following constraints are satisfied by PR[34, 69, 35]:

〈Ψ0| P†
R PR |Ψ0〉 = 1, (2.3)

〈Ψ0| P†
R PR CR |Ψ0〉 = 〈Ψ0| CR |Ψ0〉, (2.4)

where CR is the local single-particle density-matrix operator with elements

c†R,αcR,β, c
†
R,αc

†
R,β and cR,αcR,β; c

†
R,α(cR,α) creating (annihilating) an electron

in state α, where α label both spin and orbitals, at site R. In order to enlight

the meaning of these constraints, let us consider e.g. a particular case of (2.4),

i.e.

〈Ψ0| P†
R PR c

†
R,αcR,β |Ψ0〉 = 〈Ψ0| c†R,αcR,β |Ψ0〉. (2.5)

Since Wick’s theorem can be used to evaluate average values on |Ψ0〉, (2.5)

becomes through (2.3)

〈Ψ0| P†
R PR c

†
R,αcR,β |Ψ0〉 = 〈Ψ0| P†

R PR |Ψ0〉 〈Ψ0| c†R,αcR,β |Ψ0〉
+〈Ψ0| P†

R PR c
†
R,αcR,β |Ψ0〉connected

= 〈Ψ0| c†R,αcR,β |Ψ0〉
+〈Ψ0| P†

R PR c
†
R,αcR,β |Ψ0〉connected,

where the subscript connected means all possible contractions between c†R,αcR,β
and a pair of single fermion operators from P†

R PR. Because of the constraint,

the right hand side of (2.4), it follows that the sum of all connected terms must

vanish. In turns, this implies that selecting any pair of single particle operators

from P†
R PR and averaging over |Ψ0〉 what is left, the net result is zero. Next,

suppose we have to calculate the average of a local operator OR at site R. It
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follows that

〈Ψ0| P†OR P |Ψ0〉 = 〈Ψ0|
∏

R′ 6=R

(
P†

R′ PR′

)
P†

R OR PR |Ψ0〉

=
∏

R′ 6=R

〈Ψ0| P†
R′ PR′ |Ψ0〉 〈Ψ0| P†

R OR PR |Ψ0〉

+〈Ψ0|
∏

R′ 6=R

(
P†

R′ PR′

)
P†

R OR PR |Ψ0〉connected

= 〈Ψ0| P†
R OR PR |Ψ0〉

+〈Ψ0|
∏

R′ 6=R

(
P†

R′ PR′

)
P†

R OR PR |Ψ0〉connected,

where this time connected means all terms where operators at different sites are

averaged together. Because of (2.4), an operator P†
R′ PR′ can be connected to

other sites only by more than two single-particle operators, the terms with two

vanishing exactly as explained above. While these contributions are non-zero in

any finite-coordination lattice, they vanish in the limit of infinite coordination,

in which case what remains is simply

〈Ψ0| P†OR P |Ψ0〉 = 〈Ψ0| P†
R OR PR |Ψ0〉 , (2.6)

which can be readily calculated by means of Wick’s theorem. Seemingly, the

average of the inter-site density matrix in an infinite-coordination lattice re-

duces to calculate

〈Ψ0| P† c†R,αcR′,β P |Ψ0〉 = 〈Ψ0| P†
R c

†
R,αPR P†

R′ cR′,β PR′ |Ψ0〉 (2.7)

=
∑

γδ

〈Ψ0|
(
R(R)αγ c

†
R,γ +Q(R)αγ cR,γ

) (
R(R′)∗βδ cR′,δ +Q(R′)∗βδ c

†
R′,δ

)
|Ψ0〉.

In other words, the inter-site single-particle density matrix averaged on |Ψ〉
becomes in an infinite coordination lattice equivalent to averaging over |Ψ0〉 a

renormalized density matrix with effective fermionic operators, replacing the

physical ones according to

c†R,α →
∑

β

R(R)αβ c
†
R,β +Q(R)αβ cR,β , (2.8)
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where the renormalization matrices R and Q can be determined by inverting

the following set of equations [35]:

〈Ψ0| P†
Rc

†
R,αPRcR,β |Ψ0〉 =

∑

γ

R(R)αγ〈Ψ0| c†R,γcR,β |Ψ0〉

+
∑

γ

Q(R)αγ〈Ψ0| cR,γcR,β |Ψ0〉, (2.9)

〈Ψ0| P†
Rc

†
R,αPRc

†
R,β |Ψ0〉 =

∑

γ

R(R)αγ〈Ψ0| c†R,γc
†
R,β |Ψ0〉

+
∑

γ

Q(R)αγ〈Ψ0| cR,γc
†
R,β |Ψ0〉. (2.10)

As explained, the above expressions are strictly valid only in the limit of

infinite-coordination lattices, although it is quite common to use them as ap-

proximated formulas even for finite-dimensional systems. This is usually re-

ferred to as the Gutzwiller approximation, and it is known to be equivalent

to the saddle-point solution of the slave-boson technique[70, 36], see also sec-

tion 2.2. However, despite the considerable simplification introduced by the

infinite-coordination limit, the variational problem remains still a difficult task

to deal with, due to the exponential growth of the local Hilbert space and

consequently of the variational matrix when considering multi-orbital models.

A further simplification can be achieved with a proper choice of the basis

set spanning the local Hilbert space. This can be done, for instance, by using

from the start the natural basis, i.e. the single-particle basis that diagonalizes

the variational density matrix 〈 CR 〉0 [35].

2.1 The mixed-basis representation

An alternative more flexible approach that we propose [71] consists in defin-

ing the local operator PR in a mixed-basis representation, namely expressing

|Γ1,R〉 = |{Γα},R〉 in Eq. (2.2) in the original basis defined by the model

Hamiltonian and assuming that 〈Γ2,R| = 〈{nα},R| are Fock states in the nat-

ural basis. With this choice one has to take into account variational density

matrices with only diagonal non-zero elements; a great simplification since the

unitary transformation that relates the natural-basis operators dR,α to the orig-

inal ones cR,α needs not to be known explicitly. We assume that the average
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value of the local single-particle density-matrix operator CR on the uncorrelated

wavefunction Ψ0 is diagonal in terms of the operators d†Rα and dRα, related by

a unitary transformation to the original ones, c†Rα and cRα. In other words, for

any α and β,

〈Ψ0| d†RαdRβ |Ψ0〉 = δαβ n
0
Rα

〈Ψ0| d†Rαd
†
Rβ |Ψ0〉 = 0 (2.11)

where 0 ≤ n0
Rα ≤ 1 are the eigenvalues of CR. We specify PR to be of the form

as in Eq. (2.2), namely

PR =
∑

{Γα}{nα}

λ{Γα}{nα}(R) |{Γα},R〉〈{nα},R|, (2.12)

where, by assumption, |{Γα},R〉 are Fock states in the original cRα basis , while

|{nα},R〉 are Fock states in the natural basis, namely in terms of dRα operators.

In other words, and dropping for simplicity the site-label R, a generic state |n〉
is identified by the occupation numbers nα = 0, 1 and α = 1, ..,M , M being

the total number of single particle states, and has the explicit expression

|n〉 =
(
d†1

)n1

...
(
d†M

)nM

|0〉 .

We introduce the uncorrelated occupation-probability matrix P 0 with ele-

ments

P 0
{nα}{mα} ≡ 〈Ψ0| |{mα}〉〈{nα}| |Ψ0〉 = δ{nα}{mα} P

0
{nα}, (2.13)

where

P 0
{nα} =

M∏

α=1

(
n0
α

)nα
(
1 − n0

α

)1−nα
. (2.14)

We remind that n0
α are the elements of the diagonal density matrix (to be

variationally determined) and nα = 0, 1 denotes the occupation number of the

natural state α.

We also introduce the matrix representation of the operators dα and d†α,

namely

dα →
(
dα
)
{nβ}{mβ}

= 〈{nβ}|dα|{mβ}〉,
d†α →

(
d†α
)
{nβ}{mβ}

= 〈{nβ}|d†α|{mβ}〉 =
(
〈{mβ}|dα|{nβ}〉

)∗
,
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and assume that the variational parameters λ{Γβ}{nβ} in Eq. (2.12) are the ele-

ments of a matrix λ. With the above definitions, the two conditions Eqs. (2.3)

and (2.4) that we impose, and which allow for an analytical treatment in

infinite-coordination lattices, become [35]

〈Ψ0| P†P |Ψ0〉 = Tr
(
P 0 λ† λ

)
= 1, (2.15)

〈Ψ0| P†P d†αdβ |Ψ0〉 = Tr
(
P 0 λ† λ d†αdβ

)

= 〈Ψ0| d†αdβ |Ψ0〉 = δαβ n
0
α (2.16)

〈Ψ0| P†P d†αd
†
β |Ψ0〉 = Tr

(
P 0 λ† λ d†αd

†
β

)

= 〈Ψ0| d†αd†β |Ψ0〉 = 0. (2.17)

If Eqs. (2.15), (2.16) and (2.17) are satisfied, then the average value of any

local operator O in infinite-coordination lattices is [34, 35]

〈Ψ| O |Ψ〉 = 〈Ψ0| P†OP |Ψ0〉
= Tr

(
P 0 λ†Oλ

)
, (2.18)

where O is a matrix with elements

O{Γβ}{Γ
′

β
} = 〈{Γβ}|O|{Γ′

β}〉.

In the mixed original-natural basis representation, the proper definition of

the R and Q coefficients in Eqs. (2.9) and (2.10) changes into

〈 P†c†αPdβ 〉0 =
∑

γ

Rαγ 〈 d†γdβ 〉0 +
∑

γ

Qαγ 〈 dγdβ 〉0, (2.19)

〈 P†c†αPd†β 〉0 =
∑

γ

Rαγ 〈 d†γd†β 〉0 +
∑

γ

Qαγ 〈 dγd†β 〉0. (2.20)

In other words, c†R,γ, introducing back the site label, effectively trasforms

into

c†R,α →
∑

β

R(R)αβ d
†
R,β +Q(R)αβ dR,β . (2.21)
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2.2 Explicit formulas and connection with slave-

boson mean field theory

To further simplify the calculation, we introduce a new matrix in the mixed

basis representation

φ = λ
√
P 0, (2.22)

with elements

φ{Γα}{nα} = λ{Γα}{nα}

√
P 0
{nα}

. (2.23)

As we shall see, φ{Γα}{nα} corresponds to the slave-boson saddle-point value

within the multiband extension of the Kotliar-Ruckenstein mean-field scheme

recently introduced by Lechermann and coworkers [36], which they named ro-

tationally invariant slave-boson formalism. By means of the definition (2.22)

the first condition (2.15) becomes

Tr
(
φ† φ

)
= 1,

which coincides with the saddle-point value of Eq. (28) in Ref. [36].

Condition Eq. (2.16) becomes

Tr

(
√
P 0 φ† φ

√
1

P 0 d
†
αdβ

)
= 〈Ψ0| d†αdβ |Ψ0〉

=

√
P 0
{nα}

P 0
{mα}

φ†
{nα}{Γα}

φ{Γα}{mα}
〈{mα}|d†αdβ|{nα}〉

= δαβ n
0
α, (2.24)

where we adopted the convention to sum over repeated matrix indices.

We note that the two Fock states |{nα}〉 and |{mα}〉 in Eq. (2.24) differ

only because |{nα}〉 has the orbital β occupied but orbital α empty, while it is

viceversa for |{mα}〉, so that
√
P 0
{nα}

P 0
{mα}

=

√
n0
β

(
1 − n0

α

)
(
1 − n0

β

)
n0
α

,

hence Eq. (2.24) is actually equal to
√
n0
β

(
1 − n0

α

)
(
1 − n0

β

)
n0
α

φ†
{nα}{Γα}

φ{Γα}{mα}
〈{mα}|d†αdβ|{nα}〉 = δαβ n

0
α.
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Because of δαβ on the r.h.s, this equation is equivalent to

Tr
(
φ† φ d†αdβ

)
= δαβ n

0
α

= 〈Ψ0| d†αdβ |Ψ0〉. (2.25)

that is the saddle-point value of Eq. (29) in Ref. [36] provided n0
β 6= 0 and

n0
α 6= 1. Similarly, it can be easily proved that condition Eq. (2.17) becomes

Tr
(
φ† φ d†αd

†
β

)
= 0 = 〈Ψ0| d†αd†β |Ψ0〉. (2.26)

Therefore, if the average value of the single-particle density matrix on the

uncorrelated wavefunction |Ψ0〉 has eigenvalues nor 0 nor 1, the conditions

Eqs. (2.15), (2.16) and (2.17) are equivalent to impose

Tr
(
φ† φ

)
= 1, (2.27)

Tr
(
φ† φ d†αdβ

)
= 〈Ψ0| d†αdβ |Ψ0〉 = δαβ n

0
α, (2.28)

Tr
(
φ† φ d†αd

†
β

)
= 〈Ψ0| d†αd†β |Ψ0〉 = 0, (2.29)

In terms of φ, the average of the local operator O, Eq. (2.18), becomes

〈Ψ| O |Ψ〉 = Tr
(
φ†Oφ

)
, (2.30)

Finally we need to evaluate Rαβ and Qαβ of Eqs. (2.19) and (2.20). We find

that

Rαβ =
1

n0
β

Tr

(
√
P 0 φ† c†α φ

√
1

P 0 dβ

)
(2.31)

=
1

n0
β

√
P 0
{nα}

P 0
{mα}

φ†
n{Γα}

〈{Γα}|c†α|{Γ′
α}〉φ{Γ′

α}{mα}
〈{mα}|dβ|{nα}〉

=
1√

n0
β

(
1 − n0

β

) φ
†
{nα}{Γα}

〈{Γα}|c†α|{Γ′
α}〉φ{Γ′

α}{mα}
〈{mα}|dβ|{nα}〉

=
1√

n0
β(1 − n0

β)
Tr(φ† c†α φ dβ) ,
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and

Qαβ =
1

1 − n0
β

Tr

(
√
P 0 φ† c†α φ

√
1

P 0 d
†
β

)
(2.32)

=
1

1 − n0
β

√
P 0
{nα}

P 0
{mα}

φ†
{nα}{Γα}

〈{Γα}|c†α|{Γ′
α}〉φ†

{Γα}{mα}
〈{mα}|d†β|{nα}〉

=
1√

n0
β

(
1 − n0

β

) φ
†
{nα}{Γα}

〈{Γα}|c†α|{Γ′
α}〉φ†

{Γα}{mα}
〈{mα}|d†β|{nα}〉

=
1√

n0
β(1 − n0

β)
Tr(φ† c†α φ d

†
β) .

We note that actually

〈{Γβ}|c†α|{Γ′
β}〉 = 〈{mβ}|d†α|{nβ}〉 ∀α (2.33)

because both the left and the right side of Eq. (2.33) are the matrix elements

of a α creation operator in it’s own Fock basis, hence they can be calculated

and stored once for all. This is the reason why the unitary transformation that

relates the natural-basis operators dR,α to the original ones cR,α needs not to

be known explicitly.

2.2.1 Parametrization strategy

In order to parametrize the variational matrix φ one can introduce a local

Hamiltonian h that acts on all possible local electronic configurations, and

define

φ†φ =
e−βh

Ω
, (2.34)

where

Ω = Tr
(
e−βh

)
,

is the local partition function and 1/β a fictitious temperature. With this

definition, the conditions Eqs. (2.28) and (2.28) become

1

Ω
Tr
(
e−βh d†αdβ

)
= 〈Ψ0|d†αdβ|Ψ0〉 = δαβ n

0
α, (2.35)

1

Ω
Tr
(
e−βh d†αd

†
β

)
= 〈Ψ0|d†αd†β|Ψ0〉 = 0. (2.36)
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Therefore, the zero-temperature average value of the single-particle density ma-

trix on |Ψ0〉 must coincide with the its thermal average with the local Hamil-

tonian h. Our parametrization strategy is to impose that h is such that

1

Ω
Tr
(
e−βh d†αdβ

)
= 0 ∀α 6= β, (2.37)

1

Ω
Tr
(
e−βh d†αd

†
β

)
= 0 ∀α, β , (2.38)

so that
1

Ω
Tr
(
e−βh d†αdα

)
= n0

α[h] (2.39)

depends parametrically on h. After, we impose the following conditions

〈Ψ0|d†αdβ|Ψ0〉 = δαβ n
0
α[h], (2.40)

〈Ψ0|d†αd†β|Ψ0〉 = 0, (2.41)

on the uncorrelated wavefunction |Ψ0〉. In terms of h

φ = U
e−βh/2√

Ω
, (2.42)

with U a unitary matrix. The expressions of the renormalization factors are

then obtained through

1

Ω
Tr

(
e−

β

2
h U † c†α U e−

β

2
h dβ

)

= Rαβ

√
n0
β

(
1 − n0

β

)
, (2.43)

1

Ω
Tr

(
e−

β
2
h U † c†α U e−

β
2
h d†β

)

= Qαβ

√
n0
β

(
1 − n0

β

)
, (2.44)

We found that it is more convenient to use as variational parameters those of

the local Hamiltonian hR and of the unitary matrix UR, introducing back the

site label. In the case of a paramagnetic wavefunction that does not break

translationally symmetry, hR and UR are independent of R. On the contrary,

for instance in an antiferromagnetic wavefunction on a bipartite lattice, going

from one sublattice to the other the role of spin ↑ (↓) is interchanged with that

of spin ↓ (↑).
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2.3 Implementation of symmetries

The variational matrix φ can be parametrized in such a way that constraints

(2.27)-(2.29) are satisfied from the onset. It may happen however that the vari-

ational space thus generated is unnecessarily large. For instance, if one looks

for a variational wavefunction which preserves particle number, all the elements

of the matrix λ connecting subspaces of the local Hilbert space with different

particle number should be zero. It would be desirable then to specialize the

general procedure sketched above in such a way that given symmetries can be

built in the variational wavefunction from the onset. In general terms, given a

symmetry group G under which the variational wavefunction is assumed to be

invariant, this would amount to define a PR which satisfies

[PR, G] = 0 . (2.45)

However, in the mixed representation there may be some symmetry operations

that can not be defined without an explicit knowledge of the natural basis

in terms of the original one, which would make the whole method much less

convenient. If one decides not to implement these symmetries, but only those,

symmetry group G, whose generators are invariant under the most general

unitary transformation U connecting original and natural basis, i.e.

[U,G] = 0 , (2.46)

compatibly with the variational ansatz, the above described variational method

can be still used with the following modification.

Let us assume this case and define a unitary operator V that transforms

the Fock states in the original basis |{Γα},R〉 into states that decompose the

local Hilbert space in irreducible representations of the group G,|{Γ̄α},R〉, i.e.

V |{Γα},R〉 = |{Γ̄α},R〉 ∀Γ. (2.47)

We define Ḡ the representation of G in this basis. Because of our choice of

G, V does the same job even in the natural basis, although this is unknown.

Since the trace is invariant under unitary transformations, all formulas (2.2),

(2.27)-(2.29) and (2.32)-(2.33) remain the same even if the variational matrix
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φ and the matrix representation of the single fermion operators are defined in

the states of the irreducible representations

φ̄ = V †φV (2.48)

c̄α = V †cαV,

d̄α = V †dαV (2.49)

with the additional symmetry constraint

[φ̄, Ḡ] = 0, (2.50)

which follows from (2.45). We note that the single fermion operator matrix

representation in these states is readily obtained once V is known, and is

trivially the same for both original and natural operators. Therefore it is

sufficient to create and store it at the beginning of any calculation.

As an example let us look for a variational wavefunction which doesn’t

break spin-SU(2) symmetry.

2.3.1 Example: implementation of SU(2) symmetry

According to the general scheme just sketched, we can apply the following

standard procedure:

• the local Hilbert space HR is decomposed in S2 eigenspaces:

HR =
⊕

l

Hl; (2.51)

• each subpace Hl is decomposed in the S3-component eigenspaces

Hl =
l⊕

m=−l

Hm
l ; dim(Hm

l ) = gl ∀m; (2.52)

• the required basis |Γ̄,R〉 (and the unitary matrix V ) is then obtained by

applying 2l+1 times the creation operator S+ onto any orthogonal basis

of each subspace H−l
l .
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The parametrization of the matrix φ̄ is then carried on in each subspace of the

local Hilbert space. To satisfy Eq. (2.50) we look for matrices φ̄ that have the

following form in each subspace Hl:

φ̄ =




p111l · · · p1gl
1l

...
. . .

...

pgl11l · · · pglgl
1l  (2.53)

which, according to Schur’s lemma, is the most general φ′ with the required

symmetry (1l being identity matrices of size 2l + 1 and pij variational param-

eters).

2.4 Variational energy and Gutzwiller quasi-

particles

Let us consider a general tight-binding Hamiltonian

H = −
∑

RR′

∑

αβ

tαβRR′ c
†
R,αcR,β

+
∑

R

∑

{Γα}{Γ′
α}

U(R) |{Γα},R〉〈{Γ′
α},R| (2.54)

where the Hermitean matrix U(R) is the representation of the local interaction

in the original representation. The average value of this Hamiltonian on the

Gutzwiller wavefunction is, in the Gutzwiller approximation,

Evar = −
∑

RR′

∑

αβγδ

tαβRR′

[
R(R)αγ R

∗(R′)βδ 〈 d†R,γdR′,δ 〉0

+R(R)αγ Q
∗(R′)βδ 〈 d†R,γd†R′,δ 〉0

+Q(R)αγ R
∗(R′)βδ 〈 dR,γdR′,δ 〉0

+Q(R)αγ Q
∗(R′)βδ 〈 dR,γd

†
R′,δ 〉0

]

+Tr
(
φ(R)†U(R)φ(R)

)

= E0 + Tr
(
φ(R)†U(R)φ(R)

)
. (2.55)

The variational energy (2.55) has to be minimized respect to all the possible

variational parameter φ which satisfy Eqs. (2.37)-(2.38) and all the possible
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uncorrelated wavefunction |Ψ0〉 which satisfy Eqs. (2.40)-(2.41). It can be

shown that |Ψ0〉 is nothing but the ground state of the Hamiltonian

H∗ = −
∑

RR′

∑

αβγδ

tαβRR′

[
R(R)αγ R

∗(R′)βδ d
†
R,γdR′,δ

+R(R)αγ Q
∗(R′)βδ d

†
R,γd

†
R′,δ

+Q(R)αγ R
∗(R′)βδ dR,γdR′,δ

+Q(R)αγ Q
∗(R′)βδ dR,γd

†
R′,δ

]

+
∑

R

∑

αβ

µ(R)αβ

(
d†R,αdR′,β − δαβ n

0
R,α

)

+
∑

R

∑

αβ

(
ν(R)αβ d

†
R,αd

†
R′,β + h.c.

)
. (2.56)

The parameters µ(R)αβ and ν(R)αβ are Lagrange multipliers. They can for

instance be found by calculating at fixed µ(R) and ν(R) the ground state

energy of (2.56), and find its maximum with respect to µ(R) and ν(R). Once

these parameters are determined, then E0 in (2.55) is obtained as

E0 ≡ 〈Ψ0| H∗ |Ψ0〉. (2.57)

The variational Hamiltonian (2.56) has rigorously no physical meaning but

for the ground state properties. However, it is common [40] to interpret it

as the Hamiltonian of the quasi-particles. Within such an assumption, the

Gutzwiller approximation technique can be regarded as a tool to extract quasi-

particle properties. More precisely, suppose we diagonalize the Hamiltonian

(2.56) with the optimized values of the Lagrange multipliers,

H∗ =
∑

n

ǫ∗k ψ
†
k ψk, (2.58)

so that |ψ0〉 is the corresponding Fermi sea, hence

E0 =
∑

k

ǫ∗k n
∗
k, (2.59)

where n∗
k = 〈Ψ0|ψ†

k ψk |Ψ0〉. If we further suppose that the eigenoperators ψk

correspond to delocalized single-particle wavefunctions, then, to leading order
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in the inverse volume, the variational wavefunction

|ζk〉 = P ψ†
k |Ψ0〉, (2.60)

with k empty in |Ψ0〉 will have an average energy

Ek = E0 + ǫ∗k, (2.61)

as if this excitation corresponds to a coherent single-particle one, a quasi-

particle. If one believes in this identification, then he may follow the following

procedure to evaluate single-particle spectral functions at low frequency:

ARα,R′α′(ω) ≃ 1

π
〈φ0|P† cR,α δ (ω −H + Evar) c†R′,α′ P |φ0〉 (2.62)

≃ 1

π

∑

kk′

〈φ0|P† cR,α|ζk〉〈ζk| δ (ω −H + Evar) |ζk′〉〈ζk′|c†R′,α′P |φ0〉.

Using Eqs. (2.60) and (2.21) it follows that

〈ζk′|c†R′,α′ P |φ0〉 = 〈φ0|ψk′ P†c†R′,α′P |φ0〉
=

∑

β′

R(R′)α′β′ 〈φ0|ψk′ d
†
R′,β′|φ0〉

+
∑

β′

Q(R′)α′β′ 〈φ0|ψk′ dR′,β′|φ0〉, (2.63)

which can be easily calculated. Furthermore, since, by definition,

〈ζk| δ (ω −H + Evar) |ζk′〉 = 〈φ0|ψkδ
(
ω −H∗ + E0

)
ψ†
k′ |φ0〉

= δkk′ δ (ω − ǫ∗k) (1 − n∗
k) , (2.64)

the spectral function (2.62) can be finally computed.





Chapter 3

Fermi-surface evolution across

the magnetic phase transition in

the Kondo lattice model

3.1 Introduction

The physics of heavy-fermion compounds remains a fascinating and challenging

issue within strongly correlated materials. Recently, considerable experimental

and theoretical interest has focused on the physical behavior across the mag-

netic quantum phase transition that is traditionally expected to occur when

the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction overwhelms Kondo

screening. [72] This transition is induced experimentally by external param-

eters like chemical composition, pressure or magnetic field, see for instance

Refs. [10] and [51] as well as references therein, and is commonly accompanied

by topological changes of the Fermi surface [46, 47, 48, 49, 50] and anoma-

lous behavior of various transport and thermodynamic quantities. [10, 51] The

theoretical debate on this subject has so far mainly followed two different direc-

tions. [51] One ascribes the changes of the Fermi surface to an f -electron Mott

localization, [55] which is assumed to occur concomitantly with magnetism.

In this scenario, the appearance of transport and thermodynamics anomalies

is assumed to arise by the local magnetic susceptibility of the f -orbitals that

grows singularly as Kondo temperature diminishes [56, 57, 58, 59]. The alter-

29
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native proposal assumes that magnetism is predominantly an instability of an

itinerant phase [52, 53], hence that the Fermi surface changes arise simply by

the spin polarization of dispersing bands [52, 53] and the anomalous behavior

by a singular magnetic scattering at the q-vector of the magnetic order that

is going to establish [54], which differs substantially from the local in space

singularity expected in the Mott f -localization above mentioned.

This issue has been very recently addressed theoretically in the periodic An-

derson model by De Leo, Civelli and Kotliar [73, 74] using a cluster extension

of dynamical mean field theory (CDMFT). Upon decreasing the hybridization

between f -orbitals and conduction electrons, a weak first order phase tran-

sition from a heavy-fermion paramagnet to an itinerant antiferromagnet has

been found. Remarkably, when these authors force CDMFT not to break spin

SU(2) symmetry and follow the metastable paramagnetic solution, they find an

orbital-selective Mott localization - a pseudogap opens in the f -electron spec-

tral function at the chemical potential, although low energy spectral weight

remains within the Mott-Hubbard gap [75, 76] - for a hybridization between f

and conduction electrons almost coincident with the value at which, allowing

for magnetism, the antiferromagnetic transition occurs. This result suggests

that the magnetic phase transition masks an incipient Mott localization of

the f -electrons, which could become visible above the Neèl temperature or

by suppressing antiferromagnetism. A complementary attempt has been al-

most contemporaneously performed by Watanabe and Ogata [77, 78]. These

authors analyse by a variational Monte-Carlo (VMC) technique a Gutzwiller

wavefunction for a Kondo lattice model in a two-dimensional square lattice.

The variational phase diagram as function of the Kondo exchange depends

non-trivially on the electron density. Very close to the compensated regime

(one conduction electron per impurity-spin), upon decreasing the Kondo ex-

change there is first a second-order paramagnetic-to-antiferromagnetic phase

transition, followed by a first-order transition between two magnetic phases

with different Fermi surfaces. Moving away from the compensated regime, the

second order phase transition disappears and they find a single first order line

separating a paramagnetic phase from an antiferromagnetic one with differ-

ent Fermi surfaces. These VMC results suggest that the magnetic transition

and the topological change of the Fermi surface are not necessarily coincident,
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which has been also observed in recent experiments. [60, 61] Since a variational

calculation can only access ground state properties and not subtle dynamical

features like an orbital-selective Mott transition, and keeping into account the

differences between the periodic Anderson model and the Kondo lattice model,

the VMC [77] and CDMFT [73] results might not be incompatible one to the

other, and instead describe the same physical scenario although from two differ-

ent perspectives. Should this be the case, it would undoubtly represent a step

forward in the comprehension of heavy-fermion physics. To settle this question,

one should for instance try to get closer to the compensated regime by CDMFT

and check whether the f -localization and the on-set of magnetism disentangle

from each other as predicted by VMC. Alternatively, one could carry on with

variational calculations trying to uncover features that indirectly signal the

f -localization. This is the aim of the present work. We note, by the way, that

finite average values of the hybridization between f orbitals and conduction

electrons, in the periodic Anderson model, or of the Kondo exchange, in the

Kondo lattice model, must not be interpreted as absence of f -localization in a

proper variational calculation, since the hybridization or the Kondo exchange

are part of the Hamiltonian. Therefore other quantities must be identified that

are accessible by a variational calculations.

In particular, in the work presented in this chapter we adopt a variational

technique based on the multi-band extension [71, 35] of the so-called Gutzwiller

approximation to evaluate analytically average values on Gutzwiller variational

wavefunctions. [6, 7] This method is not exact like VMC, unless in the case

of infinite-coordination lattices. However, we have found that a variational

wavefunction richer than that of Ref. [77] seems to compensate for the ap-

proximation adopted to calculate average values, thus leading to the same

phase-diagram as the one obtained by VMC in the case of a two-dimensional

square lattice [77]. Encouraged by this result, we have extended the analy-

sis of Ref. [77]. Specifically, we have derived the phase diagram forcing the

wavefunction to remain paramagnetic. Similarly to the CDMFT calculation

of Ref. [73], we have found that a first order transition that we think might

correspond to an orbital selective Mott transition, which is masked by mag-

netism when we allow for it. Finally, we have analyzed the role of a uniform

magnetic field in the paramagnetic phase and found a matamagnetic instabil-
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ity near the above phase transition, suggestive of the metamagnetism observed

experimentally. [62]

3.2 The Model and the variational wavefunc-

tion

We consider a Kondo lattice model (KLM) described by the Hamiltonian

H = −t
∑

<RR′>

∑

σ

(
c†RσcR′σ +H.c.

)

+J
∑

R

SfR · ScR ≡ H0 + HJ , (3.1)

where c†Rσ creates a conduction electron at site R with spin σ that can hop

with amplitude −t to nearest neighbor sites, SfR is the spin-1/2 operator of

the f -orbital and ScR the conduction electron spin-density at site R. In what

follows, we assume a bipartite lattice. To study this Hamiltonian we introduce

the following variational Gutzwiller wavefunction

|Ψ〉 =
∏

R

PR |Ψ0〉, (3.2)

where |Ψ0〉 is the ground state of a non-interacting two-band variational Hamil-

tonian describing hybridized c and f orbitals, while PR is a local operator that

modifies the relative weights of the local electronic configurations with respect

to the uncorrelated wavefunction. In particular, we will assume for PR the

general expression

PR =
∑

Γ,n

λΓn(R) |Γ,R〉〈n,R|, (3.3)

where |Γ,R〉 and |n,R〉 span all electronic configurations of the c and f orbitals

at site R, with the constraint that the states |Γ,R〉, but not |n,R〉, have just

a single f -electron.

The variational wavefunction (3.2) has been widely used to study the pe-

riodic Anderson model as well as its strong coupling counterpart, the Kondo

lattice model, within the Gutzwiller approximation. [12, 11, 79, 80, 13, 14].

However, in all the earlier works the operator PR has been chosen to act
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only on the f -orbitals states. For instance, in the KLM that we consider, this

choice would reduce to take PR as the projector onto singly occupied f -orbitals,

namely

PR =
∑

Γ

|Γ,R〉〈Γ,R| = (nfR↑ − nfR↓)
2 , (3.4)

where nfRσ = f †
RσfRσ. This assumption implies that the spin correlations

induced by the exchange J in (3.1) are only provided by the uncorrelated

wavefunction |Ψ0〉. The more general form of PR, Eq. (3.3), that we assume in

what follows, permits to include additional correlations besides those included

in the wavefunction |Ψ0〉, in particular the tendency of the conduction electrons

to couple into a singlet with the localized spins.

The variational procedure amounts to optimize both the parameters λΓn(R)

as well as those that identify |Ψ0〉 by minimizing the average value of the

Hamiltonian (3.1). In general this task can be accomplished only numerically,

for instance by means of VMC as actually done by Watanabe and Ogata [77, 78]

with the simple choice of PR of Eq. (3.4). However, in infinite coordination

lattices many simplification intervene that allow to evaluate average values

analytically. [37, 38, 34] In this work we follow an extension [35] of the multi-

band method developed by Bünemann, Weber and Gebhard [34, 81] that allows

to handle with non-hermitean operators PR, which is generally the case since

the bra 〈n,R| in (3.3) can have any number of f -electrons while the ket |Γ,R〉
is forced to have only one.

We start assuming that PR is not the most general as possible but is subject

to the following two conditions

〈Ψ0| P†
R PR |Ψ0〉 = 1, (3.5)

〈Ψ0| P†
R PR CRσ |Ψ0〉 = 〈Ψ0| CRσ |Ψ0〉, (3.6)

where

CRσ =

(
c†RσcRσ c†RσfRσ
f †
RσcRσ f †

RσfRσ

)
, (3.7)

is the local single-particle density matrix operator. If Eqs. (3.5) and (3.6) are

satisfied, then, as discussed in chapter 2, in an infinite-coordination lattice the
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average value of (3.1) that has to be minimized is simply [34, 81, 35]

E =
〈Ψ| H |Ψ〉
〈Ψ|Ψ〉

= −t
∑

<RR′>σ

〈Ψ0|
[(

Rccσ(R) c†Rσ +Rcfσ(R) f †
Rσ

)

(
R∗
ccσ(R

′) cR′σ +R∗
cfσ(R

′) fR′σ

)
+H.c.

]
|Ψ0〉

+J
∑

R

〈Ψ0| P†
R SfR · ScR PR |Ψ0〉. (3.8)

The hopping renormalization coefficients R are obtained through the following

equations, compare with Eq. (2.9) with Q = 0, since in this case we do not

allow for superconductivity,

〈Ψ0| P†
R c

†
Rσ PR cRσ |Ψ0〉 = Rccσ(R) 〈Ψ0|c†RσcRσ|Ψo〉

+ Rcfσ(R) 〈Ψ0|f †
RσcRσ|Ψo〉 (3.9)

〈Ψ0| P†
R c

†
Rσ PR fRσ |Ψ0〉 = Rccσ(R) 〈Ψ0|c†RσfRσ|Ψo〉

+ Rcfσ(R) 〈Ψ0|f †
RσfRσ|Ψo〉. (3.10)

Therefore the variational calculation reduces, in infinite coordination lattices

and provided Eqs. (3.5) and (3.6) are satisfied, to calculate expectation val-

ues on the Slater determinant uncorrelated wavefunction, which is analytically

feasible since Wick’s theorem applies.

Before moving to the presentation of our variational results, we want to

mention some important consequences of choosing PR that acts both on the f

and on the c orbitals. A drawback of the conventional Gutzwiller wavefunction

with PR of Eq. (3.4), which was pointed out already by Fazekas and Müller-

Hartmann in Ref. [14], is that, for small J , the paramagnetic solution gains a

singlet-condensation energy that has a Kondo-like expression ∝ exp(−1/Jρ),

with ρ the conduction electron density of states at the chemical potential. On

the contrary, any magnetic solution gains a local exchange energy of order J2ρ -

the average value of J
∑

R SfR ·ScR - independently of the spatial arrangement

of the magnetic ordering. This result would remain true even for a single

impurity Kondo model and is obviously incorrect. Our wavefunction partially



3.3 Variational phase diagram 35

cures this deficiency because PR is able to induce additional spin-correlations

among c and f electrons, although only locally.

We further note from (3.8) that the action of the Gutzwiller operator PR

effectively generates an intersite hopping between the f -electrons, absent in

the original Hamiltonian (3.1), which correlates different sites hence can play

an important role in determining the topology of the Fermi surface as well as

in stabilizing magnetic structures. Even though our method for computing av-

erage values is not exact in finite-coordination lattices, the more involved form

of PR of Eq. (3.3) with respect to (3.4) partly compensates for this weakness –

the variational Hamiltonian contains inter-site f -f and f -c hopping – leading

to results that are very similar to those obtained by exact VMC, as we are

going to show.

3.3 Variational phase diagram

We have solved the variational problem numerically using, for numerical con-

venience, a flat conduction-electron density-of-states with half-bandwidth D,

our unit of energy. We do not expect that a more realistic density of states

could qualitatively change the phase diagram that we find. Let us discuss our

variational results.

In Fig. 3.1 we show the variational phase diagram as function of the Kondo

exchange J , in units of D, versus the conduction electron density 0 ≤ nc <

1. Close to the compensated regime nc = 1, one conduction electron per

spin, we do find, similarly to Watanabe and Ogata [77, 78], two successive

transitions as J/D is reduced from the heavy-fermion paramagnetic phase.

First, Nèel antiferromagnetism appears by a second order phase transition, see

Fig. 3.2. Within the antiferromagnetic phase, a first-order phase transition

further occurs at smaller J/D, see the jump of the order parameter in Fig. 3.2,

accompanied by a rearrangement of the Fermi surface. This is shown in Fig. 3.3,

where we draw the quasiparticle (emission) spectral function at the chemical

potential, defined by

A(k) = −
∫
dǫA(k, ǫ)

∂f(ǫ)

∂ǫ
, (3.11)

where f(ǫ) is the Fermi distribution function at low temperature. A(k, ǫ) is
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Figure 3.1: (Color online) Variational phase diagram as function of the con-

duction electron density nc and of the Kondo exchange in units of half the

bandwidth, J/D. The solid line with the circles represents a first order line,

while the dotted line is a second order transition. The error bars along the sec-

ond order phase transition line reflect the variational uncertainty of a precise

location of the continuous transition. The same problem does not arise along

the discontinuous first order line. PM stands for paramagnetic heavy-fermion

metal, while AF stands for an itinerant antiferromagnet, the subscripts “e” and

“h” are borrowed from Ref. [77] and refer to the electron-like, “e”, or hole-like,

“h”, character of the Fermi surface, see Fig. 3.3.

calculated using the method described in chapter 2 with a nearest-neighbor

hopping on a two dimensional square lattice, though with variational param-

eters optimized using a flat density of states at the same values of nc and

J/D.

The k-points where A(k, ǫ) is large identify the effective Fermi surface. We

note that, in the paramagnetic phase, the Fermi surface is hole-like just as if

the f spins do partecipate the Luttinger sum rules - two bands with 1+nc ≤ 2

electrons per site; one band empty and the other occupied by 1 < 1 + nc < 2

electrons. The same feature is also found beyond the second order phase tran-

sition. However, for J/D below the first order phase transition, the Fermi
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Figure 3.2: (Color online) The magnetic order parameter as function of J/D

for nc = 0.92 (left panel) and nc = 0.7 (right panel). Notice that for nc = 0.92

the order parameter grows continuously below a critical J/D ≃ 0.6 – second

order phase transition – until at J/D ≃ 0.36 it jumps abruptly – first order

transition. For nc = 0.7 only a first order transition with a jump from zero to

a finite value of the order parameter is observed.

surface changes topology and become electron-like, as if the f -electrons dis-

appear from the Fermi surface. Comparing the phase diagram Fig. 3.1 with

the one obtained by VMC [77], we find that the two agree well, even quantita-

tively. [82] In order to identify the origin of the Fermi surface rearrangement,

it is convenient to write the general expression of the variational Hamiltonian

H∗, see Eq. (2.56), of which |Ψ0〉 is the ground state. In momentum space and

within the magnetic Brillouin zone

H∗ =
∑

kσ

ψ†
kσ




tccǫk Vu + tcfǫk σm σVs + σt′cfǫk

Vu + tcfǫk ǫf + tff ǫk σVs − σt′cfǫk σM

σm σVs − σt′cfǫk −tccǫk Vu − tcfǫk

σVs + σt′cfǫk σM Vu − tcfǫk ǫf − tffǫk


 ψkσ,

(3.12)

where ǫk is the energy dispersion of the conduction electrons,

ψ†
kσ =

(
c†kσ, f

†
kσ, c

†
k+Qσ, f

†
k+Qσ

)
,

a Fermi spinor, its hermitean conjugate being ψkσ, Q the Nèel magnetic vector,

and all the Hamiltonian parameters are variational but ǫk.

In Fig. 3.4 we plot the variational bands in the antiferromagnetic phase

below and above the first order phase transition along the trajectory repre-
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Figure 3.3: (Color online) The conduction electron spectral function at the

chemical potential for a two-dimensional square lattice. Panels (a)-(b)-(c) show

the evolution of the spectral function A(k) at the chemical potential for nc =

0.92 in the paramagnetic phase, panel (a) with J/D = 0.8, right after the

second-order transition, panel (b) with J/D = 0.4, and finally below the first-

order transition, panel (c) with J/D = 0.16. Panels (d)-(e) show the same

evolution with nc = 0.7 where there is only the first-order transition.

sented in Fig. 3.5. In agreement with the interpretation given by Watanabe

and Ogata in Ref. [77], the bands in the antiferromagnetic phase at low J/D

can be thought as antiferromagnetically split c and f bands very weakly hy-

bridized, panels (a) and (b) in Fig. 3.6, while those at larger J/D as strongly

hybridized c and f bands weakly antiferromagnetically split, panels (c) and

(d) in Fig. 3.6. The main control parameter of the transition is the relative

strength of the f -orbital energy, ǫf in (3.12), with respect to the antiferromag-

netic splittings, mostly σM in (3.12).

Above a critical doping away from the compensated regime, we only find a

single first-order phase transition transition, see Fig. 3.2, directly from a para-

magnet at large J/D, with a band structure similar to panel (c) in Fig. 3.6

unfolded in the whole Brillouin zone, to an antiferromagnet with a band struc-

ture similar to panel (b) in Fig. 3.6. In other words, this phase transition is

accompanied by a drastic reconstruction of the Fermi surface.

3.4 Fermi-surface reconstruction vs. magnetism

The variational phase diagram, Fig. 3.1, shows that the onset of magnetism

is not necessarily accompanied by a Fermi surface reconstruction. Viceversa,

one could speculate that the latter might not require magnetism, which would



3.4 Fermi-surface reconstruction vs. magnetism 39

2

1

0

-1

-2
ΓM′X′Γ

Ε/
D

2

1

0

-1

-2
ΓM′X′Γ

Ε/
D

2

1

0

-1

-2
ΓM′X′Γ

Ε/
D

2

1

0

-1

-2
ΓM′X′Γ

Ε/
D

Figure 3.4: (Color online) Evolution of the band structure of the optimized

variational Hamiltonian Eq. (3.12) for nc = 0.92 as a function of J/D and

across the first order transition. From top left to bottom right panel: J/D =

0.1, J/D = 0.2, J/D = 0.34 (below the first-order transition) and J/D = 0.36

(above the first-order transition).
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Figure 3.5: The magnetic Brillouin zone
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Figure 3.6: (Color online) One-dimensional representation of the different vari-

ational band structures in the two magnetic phases close to nc = 1, drawn in

the magnetic Brillouin zone. Small J/D phase: panel (a) represents non-

hybridized c and f bands split by antiferromagnetism; panel (b) what happens

once a small hybridization is switched on. Large J/D phase: panel (c) repre-

sents non-magnetic hybridized c and f bands in the folded Brillouin zone; panel

(d) what happens once a small antiferromagnetic order parameter is switched

on.
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Figure 3.7: (Color online) Variational energy as function of J/D at nc = 0.8

in the paramagnetic sector. A kink is visible at J/D ≃ 2.1. We note the finite

curvature of the energy at low J/D, which, as we checked, is compatible with

second order perturbation theory.

be the case if the Fermi-surface change were caused by the f -electron local-

ization [55]. This aspect makes worth investigating the properties of the vari-

ational wavefunction (3.2) preventing antiferromagnetism, which amounts to

assume λΓn(R) in Eq. (3.3) independent of R and |Ψ0〉 a paramagnetic Slater

determinant.

At first sight, one would not expect to find anything special varying J/D in

the paramagnetic sector. In fact, we previously mentioned that the change of

the Fermi surface within the magnetic phase reflects essentially the change of

the band structure, which, in turn, depends variationally only on the value of

the f -orbital energy with respect to the magnetic splitting, respectively ǫf and

2M in Eq. (3.12). Therefore, without magnetism, i.e. M = 0, the topology of

the band structure must remain invariant whatever J/D 6= 0 is, as we indeed

find. Nevertheless, even in this case, we do observe a very weak first order

phase transition for values of J/D slightly smaller than those at which the first

order transition occurs when we allow for magnetism, as shown by the behavior

of the variational energy in Fig. 3.7. Although strictly at zero temperature the

Fermi surface must enclose a volume that contains 1 + nc electrons, a very

small but finite temperature in Eq. (3.11) is able to emphasize features close
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Figure 3.8: (Color online) Low temperature spectral function at the chemical

potential for nc = 0.8 and J/D above, panel (a), and below, panel (b), the

critical value.

to the chemical potential that, as shown in Fig. 3.8, undergo a sharp change

across the transition. For J/D above the critical value, the T 6= 0 Fermi

surface includes the f -electrons, while, below, it does not, exactly as we find

when magnetism is present. Note that, should we set the temperature T = 0

in (3.11), only the hole-like sheet of panel (a) Fig. 3.8 would appear, even for

J/D below the transition. It is only because T 6= 0 that panel (b) shows a

different electron-like Fermi surface.

The observed changes at T 6= 0 occur now not because the band structure

is modified but because the spectral weight of the conduction electrons at the

Fermi energy changes discontinuously. Indeed, looking carefully at the spectral

function in Fig. 3.8a, one can distinguish two sheets of the Fermi surface, a

small one, which corresponds to the non-interacting conduction electron Fermi

surface, and a large one that includes also the f electrons. Across the transition,

it is the relative weight of these two sheets that change discontinuously. We

believe that this must be regarded as a manifestation of the f -localization,

or, better, of the orbital-selective localization, as proposed in Refs. [73] and

[74], since a tiny spectral weight at the Fermi energy remains on the small

Fermi surface for low J/D, see Fig. 3.8a. This result also demonstrates that

the rearrangement observed along the first-order line in the phase diagram

Fig. 3.1 is caused by the f -electron orbital-selective localization rather than by

magnetism.

Inspection of the behavior of the average Kondo exchange and hopping,
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Figure 3.9: (Color online) Behavior of the average Kondo exchange and hop-

ping.

Fig. 3.9, shows that the “localized” phase has a better conduction-electron

hopping energy, while the “delocalized” one a better Kondo exchange. This

suggests that the abrupt change of the Fermi surface is primarily consequence of

the competition between the conduction electron band-energy and the Kondo

exchange, and not of the commonly invoked competion between Kondo and

RKKY interactions.

In light of these results, also the transition lines in the phase diagram,

Fig. 3.1, assume a different meaning. The first-order line that separates the

paramagnet from the antiferromagnet is primarily due to the f -localization,

magnetism being just its by-product. On the contrary, the second-order line

close to the compensated regime is more likely to be interpreted as a Stoner’s

instability of the paramagnetic Fermi-liquid, driven by the nesting property of

the Fermi surface at nc = 1. Across this second-order phase transition, the

Fermi surface changes, smoothly, following the spin splitting of the bands.

3.5 Metamagnetism

Another indirect signal of the f -localization can be found by studying the be-

havior of the paramagnet in the presence of a uniform magnetic field. Indeed,
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if the f -orbitals are close to a Mott localization, they are also very prompt to

order magnetically. Let alone, they would prefer some magnetic order along

with the structure of the RKKY exchange, in our bipartite lattice model not far

from half-filling the natural candidate being a Néel ordering. However, in the

presence of a magnetic field, they could equally prefer to order ferromagneti-

cally. In other words, it is plausible to foresee that the f -localization could be

driven by a weak magnetic field, the weaker the closer the f -localization is, thus

accompanied by a sharp increase of magnetization, so-called metamagnetism,

as well as by a discontinuous change of the Fermi surface.

This expectation is confirmed by our variational calculation. In Fig. 3.10

we show the evolution of the uniform magnetization as function of the applied

magnetic field in the paramagnetic phase at J/D = 0.45 and nc = 0.88. Indeed,

as function of the magnetic field, we do find a first order phase transition that

is accompanied by a abrupt increase of the magnetization as well as by a

discontinuous change of the conduction electron Fermi surface, specifically of

the majority spin one. In fact, since the critical field is smaller than the Kondo

exchange J , once the f electrons localize and their spins align with the external

field, the effective Zeman field felt by the conduction electrons is opposite to

the applied one. Consequently, the Fermi surface of the majority spin becomes

smaller than the minority spin one, contrary to the case for external fields

below the metamagnetic transition, which is what we find, although hardly

visible in Fig. 3.10.

3.6 Conclusions

We have calculated within the Gutzwiller approximation the phase diagram

of the Kondo lattice model as function of the conduction electron density and

of the Kondo exchange J . The novel feature of our approach with respect to

earlier ones is that the Gutzwiller projector acts on all the electronic configura-

tions of each f orbital plus the conduction state to which it is hybridized. This

allows to include additional local correlations between f and conduction elec-

trons, specifically those that favour singlet pairing among them. Summarizing

our variational results, we have found that:
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Figure 3.10: (Color online) Evolution of the uniform magnetization as function

of an external magnetic field applied in the paramagnetic phase (J/D = 0.45

at nc = 0.88). Insets show the spectral functions for the majority (top panel)

and minority (bottom panel) spins across the metamagnetic transition.

• there exists an orbital selective Mott localization of the f electrons ac-

companied by a discontinuous change of the Fermi surface;

• away from any nesting instability, this first-order transition in accompa-

nied by magnetism;

• on the contrary, when the conduction electron Fermi surface is perfectly

or almost perfectly nested, magnetism occurs before the f -localization,

via a second order transition with a continuous change of the Fermi sur-

face;

• the f -electron Mott localization can be also induced by a uniform mag-

netic field, in which case it is revealed by a metamagnetic transition at

which the magnetization jumps and the Fermi surface changes discontin-

uously.

These findings bridge between the cluster dynamical mean field theory results

of Refs. [73]-[74] and the variational Monte Carlo ones of Refs. [77]-[78], and

suggest that generically, i.e. without nesting, magnetism is a by-product of

the f -electron Mott localization rather than the outcome of the competition
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between Kondo screening and RKKY interaction. We must mention that the

weak first-order character of the Mott transition that we find might be a spu-

rious outcome of the variational procedure, so that we can not exclude that in

reality such a transition is continuous.

The question we can not address, since ours is a variational approach for

the ground state, concerns the anomalous thermodynamic behavior observed

around the magnetic transition. In other words, we can not establish whether

such a behavior is associated with the incipient magnetism [54] or is just a

consequence of the f -electron localization, [56, 57] or better of the orbital

selective Mott localization. [58, 59, 83, 74]



Chapter 4

Superconductivity in a liquefied

valence-bond crystal: the doped

bilayer Hubbard model

4.1 Introduction

The concept of resonating-valence-bond (RVB) superconductivity introduced

by Anderson [26, 84] in the early days after the discovery of high-temperature

superconductors has during the years branched out into a whole series of in-

teresting subsidiary questions. While a lot of efforts have need systematically

devoted to uncover the RVB scenario in models of cuprates [24, 85, 86, 30, 87,

32, 88, 33, 89, 90], there have been also attempts to extend the idea well be-

yond cuprates. For instance, the simple follow up of the RVB hypothesis is that

doping a spin-liquid, i.e. a phase of magnetic moments that does not break any

symmetry, inevitably leads to superconductivity. Supports to this idea came

from the observation that a metallic phase with dominant superconducting

fluctuations appears upon doping the gaped-spin-liquid Mott-insulating state

of a half-filled two-leg Hubbard ladder [91, 92] but also of the spontaneously

dimerized insulating phase of the half-filled Hubbard chain with nearest and

next-nearest neighbor hopping [93], both model cases believed to be relevant

to actual superconducting quasi-one-dimensional materials [94, 95, 96]. In re-

ality, the Mott phases of the ladder and of the spontaneoulsy dimerized chain

47
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should not be regarded as spin-liquids in the strict sense, but rather as valence-

bond (VB) crystals, the dimerized chain even breaking translational symmetry.

Their superconducting behavior therefore suggests that the RVB hypothesis

may actually include a larger class of VB insulators, either real spin-liquids or

short range RVBs. This same idea has been also advocated to explain super-

conductivity in organic alkali-doped fullerenes [97, 65], whose insulating phases

can be regarded as local versions of VB crystals, where singlet pairing takes

place within each molecule by the Jahn-Teller effect.

In order to verify with a simple method this hypothesis, a model of two Hub-

bard planes coupled by an inter-plane hybridization was studied at half-filling

by a multi-band extension of the Gutzwiller approximation in Ref. [35]. This

model, just like its one-dimensional counterpart, the aforementioned ladder,

has a Mott insulating phase at half-filling and for a sufficiently large inter-

plane hopping that is a non-magnetic VB crystal, a collection of inter-plane

singlets. It was found that, upon melting the VB crystal by decreasing the

Hubbard repulsion, a superconducting phase emerges just next to the Mott

insulator. Following up this work, we have decided to study the same model

away from half-filling, namely to study the melting of the VB crystal induced

by doping. As we expected and wished, superconductivity emerges once more

for very low doping, at higher doping a normal metal being stable, in remark-

able similarity with the phase diagram of cuprates and with existing DMFT

results [64].

4.2 The Model

The model consists of two Hubbard planes coupled through a single-particle

hopping t⊥, each one being defined on a lattice with nearest neighbor hopping
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t. The Hamiltonian reads:

H = −
∑

RR′

2∑

i=1

∑

σ

tRR′ c†R,iσcR′,iσ +H.c.+
U

2

∑

R

2∑

i=1

(nR,i − 1)2

−t⊥
∑

R

∑

σ

(
c†R,1σcR,2σ +H.c.

)

=
∑

kσ

2∑

i=1

ǫ(k) c†k,iσck,iσ +
U

2

∑

R

2∑

i=1

(nR,i − 1)2

−t⊥
∑

kσ

(
c†k,1σck,2σ +H.c.

)

≡ Hhop + HU + H⊥, (4.1)

where t⊥ > 0, c†R,iσ and cR,iσ create and annihilate, respectively, an electron at

site R in plane i = 1, 2 with spin σ, nR,i =
∑

σ c
†
R,iσcR,iσ is the local occupation

on layer i, and U is the Hubbard repulsion on each lattice site. In order to study

the doped system it is more convenient to work in the grand-canonical ensemble

adding a chemical potential term −µ∑R,i nR,i to the model Hamiltonian (4.1).

The particle number is then controlled by tuning µ. In Eq. (4.1) c†k,iσ creates

an electron in layer i and spin σ with momentum k, and ǫ(k) ∈ [−D,D] is

the intra-layer dispersion in momentum space, where D is half the bandwidth

that will be our unit of energy. The non-interacting part of the Hamiltonian is

better rewritten introducing the bonding (e) and antibonding (o) combinations

c†k,eσ =
1√
2

(
c†k,1σ + c†k,2σ

)
,

c†k,oσ =
1√
2

(
c†k,1σ − c†k,2σ

)
,

through which

Hhop + H⊥ =
∑

kσ

∑

a=e,o

ǫa(k) c†k,aσck,aσ, (4.2)

where ǫe(k) = ǫ(k) − t⊥ ∈ [−D − t⊥, D − t⊥] and ǫo(k) = ǫ(k) + t⊥ ∈
[−D + t⊥, D + t⊥] are, respectively, the bonding and antibonding band dis-

persions, see Fig. 4.2.

If U = 0 and the density is one electron per site, half-filling, the model

describes a metal until the two bands overlap, i.e. t⊥ ≤ D, and a band insulator

otherwise.
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For U ≫ D + t⊥, the model becomes equivalent to two Heisenberg planes

coupled to each other by an inter-plane antiferromagnetic exchange J⊥ =

4t2⊥/U . If each plane is a square lattice with only nearest neighbor hopping

t, hence D = 4t, each Heisenberg model is characterized by a nearest neigh-

bor antiferromagnetic exchange J = 4t2/U . This model has been studied

in detail by quantum Monte Carlo [98, 99] and it is known to have a quan-

tum critical point that separates a a Neèl antiferromagnet, for J⊥ ≤ 2.5520 J ,

from a gaped spin-liquid phase, for larger J⊥. The latter can be interpreted

as a kind of VB crystal, each bond being an inter-layer singlet, adiabatically

connected to the band insulator at U = 0. In terms of the hopping param-

eters of the original Hubbard bilayer, the critical point should correspond to

(t⊥/t)c =
√

2.5220 ≃ 1.5881. This value is in good agreement with direct QMC

simulations of the Hubbard bilayer [100, 101], which find (t⊥/t)c ≃ 1.5 to 2.

According to these results, when 1.6 ≤ (t⊥/t) ≤ 4 one could start at U = 0

with a metallic phase, and, upon increasing U , find a direct transition into the

VB Mott insulator. However, the story must become more complicated if the

U = 0 Fermi surface at half-filling has nesting at the edge of the Brillouin zone,

as it happens for a square lattice with only nearest neighbor hopping. In this

case, the U = 0 and t⊥ < 4t = D metal has a Stoner instability towards Neèl

antiferromagnetism for arbitrary small U , so that it is a priori not obvious that

one could find any direct metal to VB Mott insulator transition. In reality,

both cluster DMFT [102] and QMC simulations find evidence that such a tran-

sition does exist. Nevertheless, one may always bypass this problem assuming

that the intra-layer hopping is such as not to lead to any nesting, the latter

being more an accident than the rule in realistic systems. In this case, which

we will implicitly assume hereafter, it is safe to believe that a direct transition

at half-filling from a metal to a VB Mott insulator does exist.

Within this scenario, the melting of the VB crystal into a metallic phase

can therefore occur either by doping away from half-filling but also upon de-

creasing U below the Mott transition, still keeping half-filled density. In the

latter case, a recent study [35] has shown that, within the Gutzwiller approxi-

mation, the VB crystal first turns into a superconducting phase that eventually

gives way to a normal metal upon further decreasing U . This finding supports

the RVB superconductivity scenario [26] and shows that the one-dimensional
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behavior persists in higher dimensions. It also agrees with the indication of an

enhanced pairing susceptibility obtained in earlier studies by QMC [103, 104].

However the lowest temperatures attainable so far by QMC are still above the

eventual superconducting critical temperature, so that the existence of a true

superconducting phase at half-filling is numerically still an open issue. DMFT

calculations, that could in principle be carried out at zero temperature, was

performed [105, 102] but did not search explicitly for any superconducting

phase.

Away from half-filling, QMC indications of enhanced pairing fluctuations

are more convincing [104, 101], although the existence of a superconducting

phase at low temperature is still uncertain [104]. This makes it worth address-

ing this issue by the Gutzwiller approximation, which is not as rigorous as

QMC but at least can provide results at zero temperature.

4.3 The method

In order to study the doped system it is more convenient to work in the grand-

canonical ensemble hence adding a chemical potential term −µ
∑

R,i nR,i to the

model Hamiltonian (4.1). The particle number is then controlled by tuning the

value of µ.

Following Ref. [35], we decided to search for a variational solution that al-

lows for singlet superconductivity, hence doesn’t break spin-SU(2) symmetry.

Since any unitary transformation, which diagonalizes a generic single-particle

density matrix that includes an anomalous term in the spin-singlet Cooper

channel, leaves the spin-SU(2) generators invariant, this case is perfectly suit-

able for applying the method described in chapter 2.

In Ref. [35] it has been shown that, at half-filling and for values of t⊥ such

that the Mott insulator at large U is non-magnetic – a collection of inter-layer

singlets, as mentioned a local version of a valence bond (VB) crystal – the tran-

sition to a conducting phase below a critical Uc occurs via a superconducting

region that intrudes between the Mott insulator and the normal metal. On

general grounds [26, 64] one may expect that the melting of the VB solid by

doping rather than by decreasing U should also result in the appearance of

a superconducting dome that disappears above a critical doping, a scenario
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that we aim to investigate with the Gutzwiller variational technique. To this

purpose, we consider the variational wavefunction

|Ψ〉 =
∏

R

PR |Ψ0〉, (4.3)

where the operator PR acts on the two sites at R belonging to the two planes.

This choice allows to us enforce better the tendency of the two sites forming

a spin-singlet. The uncorrelated wavefunction is assumed to be a generic BCS

wavefunction with real inter-plane singlet pairing, i.e.

〈Ψ0| c†R,1↑c
†
R,2↓ |Ψ0〉 = 〈Ψ0| c†R,2↑c

†
R,1↓ |Ψ0〉 6= 0.

According to the results of chapter 2, the variational energy to be minimized

is obtained as the sum of two terms, one being the contribution of the local,

same R but both layers, terms:

Eloc = Tr

[
φ†

(
HU + H⊥ − µ

∑

Ri

nR,i

)
φ′

]
(4.4)

where all operators are meant to be matrices in the local representation invari-

ant under SU(2) symmetry, and the hopping contribution Ehop. This can be

shown to coincide with the ground-state energy of a variational single-particle

Hamiltonian[35]:

H∗
hop =

∑

k

ψ†
k T̂k ψk, (4.5)

where ψ†
k = (d†k1↑, d

†
k2↑, d−k1↓, d−k2↓) is the Nambu spinor in momentum space

and T̂k a 4×4 matrix in the natural basis which depends explicitly on momen-

tum and on some Lagrange multipliers included to enforce that the average of

the single particle density matrix on the ground state – to be identified with

|Ψ0〉 in (2.1) – is diagonal in the natural basis, with matrix elements satisfying

〈Ψ0|d†RiσdRiσ|Ψ0〉 = Tr
(
φ†φ d†iσdiσ

)
≡ n0

i ,

The matrix T̂k has the general expression:

T̂k =

(
ǫ(k)Ẑ + η̂ ǫ(k)∆̂ + δ̂

ǫ(k)∆̂† + δ̂† −ǫ(k)Ẑt − η̂t

)
, (4.6)
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where the 2 × 2 matrices η̂ and δ̂ are the aforementioned Lagrange multiplier,

while Ẑ and ∆̂ have elements (labelled by j, l = 1, 2, the layer indices)

Ẑj,l =

2∑

i=1

(
Ri,j R

∗
i,l −Qi,lQ

∗
i,j

)
(4.7)

∆̂j,l =

2∑

i=1

(
Ri,j Q

∗
i,l +Q∗

i,j Ri,l

)
(4.8)

and ǫ(k) is the intra-layer band dispersion.

4.4 Variational results

We solved numerically the variational problem assuming for simplicity a flat

density of states with half-bandwidthD (we do not expect the results to change

qualitatively by adopting a more realistic density of states). In order to com-

pare with the half-filling results reported in Ref. [35], we fixed the value of the

intra-dimer hopping t⊥/D = 0.5 and solved the variational problem for differ-

ent values of U/D and µ/D. Note that this value in the case of a square lattice

with nearest neighbor hopping t corresponds to t⊥ = 2t, above the critical

value for the stability at large U of the VB Mott insulator [99].

At half-filling, µ/D = 0 and we recover all results of Ref. [35]. Specifically,

we find a first order metal to VB insulator transition. In the metallic phase

just before the transition, singlet superconductivity emerges. In Fig. 4.1 we

show as function of U/D the behavior of the inter-layer, ∆⊥ and intra-layer,

∆||, superconducting order parameters, defined as

∆⊥ = 〈ΨG| c†R,1↑c
†
R,2↓ + c†R,2↑c

†
R,1↓ |ΨG〉, (4.9)

∆|| = 〈ΨG| c†R,i↑c
†
R′,i↓ + c†R′,i↑c

†
R,i↓ |ΨG〉, (4.10)

where R and R′ are nearest neighbor sites on layer i = 1, 2. We find that, near

the first order transition that we think identifies the actual Mott transition,

both order parameters are finite and have opposite sign, the so-called dz2−r2

symmetry known to be dominant in the two-chain model [92], and which QMC

simulations [103, 104] indicate as the leading pairing instability. The variational

energy that we obtain appears to be slightly lower than that found in Ref. [35],
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Figure 4.1: (Color online) Inter-plane (blue circles) and, with reversed sign,

intra-plane (red triangles) superconducting order parameters at half-filling as

function of U/D. The vertical line indicates the first order transition that

we think identifies the on-set of Mott insulating behavior. Inset shows the

variational energy in units of D

as one could have expected due to the larger number of variational parameters.

Nonetheless, the critical Uc at the Mott transition is only slightly reduced to

Uc/D ≃ 2.02 for t⊥/D = 0.5. We note that the phase at U > Uc, that we

believe is Mott insulating, still shows a finite superconducting order parameter

that dies out upon increasing U . As discussed in [35], we think this might

be a spurious result of our variational approach that lacks intersite charge

correlations crucial in stabilizing a genuine Mott insulating phase [106].

We study finite hole doping by varying µ/D < 0 at different values of U/D.

4.4.1 The non-interacting system

Before discussing the variational results, we briefly sketch the behavior of the

doped non-interacting system, U/D = 0. The inter-layer coupling gives rise

to bonding and antibonding bands, see Eq. (4.2). With the chosen value of

t⊥ = 0.5D, these bands overlap at half-filling and the system displays a metal-

lic behavior. When the chemical potential is lowered, holes are injected into

the system inducing a depletion of both bands until, at a given value of the

chemical potential, the upper (antibonding) band empties. For the chosen t⊥
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Figure 4.2: The non-interacting density of states of the lattice of dimers. The

bonding and anti-bonding state of each dimer give rise to two bands that

overlap, leading to a metallic phase in the absence of interaction.
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Figure 4.3: (Color online) Average density n summed over both layer as a

function of the chemical potential µ < 0 for selected values of interaction U/D.

and for a flat density of states the complete depletion of the antibonding band

happens at µ = 0.5D, corresponding to quarter filling n = 1. As a consequence,

both the intra-layer (Ehop) and inter-layer (E⊥) hopping contributions display

a discontinuity in their first derivatives at quarter filling, signaling that the

antibonding band is no longer contributing. The total energy however remains

smooth for any value of µ (or equivalently n), as it should.

When U/D 6= 0, the behavior that we find depends crucially if U is smaller

or greater than Uc, namely if the half-filled state is a metal or an insulator.
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Figure 4.4: (Color online) Left panel: The different contributions to the vari-

ational energy as a function of doping for U/D = 1 and per lattice site R,

i.e. summed over both layer. As a reference, the behavior of non-interacting

inter- and intra-layer hopping contributions is plotted (dotted lines). In the

inset the total energy Evar(n) = Evar +µn is shown: despite the cusp observed

in the hopping contributions, the evolution of Evar(n) is smooth. Right panel:

Occupation of the variational lower and upper bands as function of n. Dotted

lines represent average occupation of even and odd orbitals.

4.4.2 Doping the metal at U < Uc

As long as U < Uc, any change of µ induces a continuous change in the total

particle number; a finite compressibility signal of a metallic behavior, as shown

in Fig. 4.3. Alike the uncorrelated case, a cusp appears in the evolution of n at

quarter-filling, that we explain seemingly as the depletion of the antibonding

band. Indeed, when U < Uc, the metallic solution evolves just like the non-

interacting case. The main effect of interaction is to slightly reduce inter- and

intra-layer hopping contributions with respect to their uncorrelated counter-

parts, as shown in Fig. 4.4 where we plot the different contributions Ehop, E⊥

and EU to the variational energy. The intra-layer hopping contribution Ehop

diminishes in absolute value with increasing doping because of the depletion of

the bands, as it occurs in the non-interacting system; at quarter-filling it dis-

plays a cusp and correspondingly the inter-layer hopping E⊥ starts to rapidly

decrease, the effects of U being more and more negligible as the low-density

regime is approached. In the right panel of Fig. 4.4 we show the occupancies

n0
l and n0

u of the variational lower and upper bands, respectively, which are

obtained by diagonalizing the associated variational Hamiltonian, Eq. (4.5),
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and actually coincide with the eigenvalues of the single-particle density ma-

trix. As in the uncorrelated system, the occupancy of the upper band vanishes

at quarter filling. We stress the fact that in the present approach these states

are variationally determined and may not correspond to the even and odd com-

binations of the original operators. However, as long as U < Uc, we find that

the average values of bonding and antibonding band occupancies, ne and no,

almost coincide with, respectively, n0
l and n0

u.

Concerning superconductivity, we find that the inter-layer order parameter,

Eq. (4.9), is extremely small, practically zero within our numerical precision,

see Fig. 4.5. The intra-layer order parameter strictly follows the inter-layer

one, hence is also zero.

4.4.3 Doping the VB Mott insulator at U > Uc

When U > Uc, i.e. when the half-filled system is insulating, the particle number

remains stuck to its half-filled value n = 2 until |µ| ≤ |µ∗| ≈ (U − Uc)/2. This

simply follows from the existence of the Mott gap at half-filling. Upon doping,

i.e. when |µ| > |µ∗|, a metallic behavior is clearly found. However, within

our numerical precision we can not establish whether the evolution from the

insulator to the metal occurs smoothly (yet with a diverging compressibility) or

through a weak first-order transition. Till the largest value of U we considered,

we could not find any appreciable discontinuity in the evolution of n at large

doping, unlike for U < Uc where a cusp is observed at quarter filling. In

addition, contrary to the case U < Uc, here we find a clear superconducting

signal between half and quarter filling, see e.g. the behavior of ∆⊥, Eq. 4.9,

shown in Fig. 4.5. We note that ∆⊥ has a non-monotonous behavior, first

increases quite rapidly with U and for larger values decreases. Like at half-

filling, a finite ∆⊥ produces through Eq. (2.8) also a finite intra-layer ∆||,

Eq. 4.10, not shown here, which happens to have opposite sign.

Let us now consider in detail the energetic balance for U > Uc and its

differences with respect to U < Uc. At very large U (not shown), as holes

are injected into the system, both intra- and inter-layer hopping contributions

first increase in absolute value, then saturate around approximatively quarter-

filling, and eventually decrease as the low-density regime is attained, as ex-
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pected when approaching the bottom of the variational bands. In other words,

the behavior at large U between half- and quarter-filling is quite different from

the non-interacting case, while becomes quite similar below. This points to a

very different influence of a strong interaction close to half-filling and far away

from it and, indirectly, emphasizes the role of the superconductivity that we

find for 2 > n > 1. For U & Uc, i.e. closer to the half-filled metal-insulator

transition, the picture is slightly different, as shown in Fig. 4.6 for U/D = 3.

To begin with, at small dopings the system gains in intra-layer hopping en-

ergy while the inter-layer one seems to be slightly reduced. Remarkably, even

if the total energy is, within our numerical accuracy, a smooth function of

n, both hopping contributions display a discontinuity at µ/D ≃ 1.28, which

corresponds to a local density of n ≈ 1.27. Here the occupation of the up-

per variational band goes to zero (cfr. right panel of Fig. 4.6), even though

nothing similar occurs in the occupation of the physical antibonding band. At

this filling fraction, the inter-layer hopping energy gain has an upward jump,

contrary to the intra-layer one, even though further doping leads to a reduc-

tion of both. A drop in the amplitude of the superconducting order parameter

∆⊥ is also found at this point. Further doping diminishes ∆⊥, which vanishes

approximatively at quarter filling. A similar feature is observed in another

quantity. Indeed, just like n0
l and n0

u may not correspond to the occupation

of the bonding and antibonding bands, n0 = n0
l + n0

u, which is the average

density of the BCS-like variational wavefunction, may differ from the physical

one. In the inset of Fig. 4.5 we show their difference for U/D = 3. We observe

that they actually deviate when superconductivity is found and their difference

jumps down abruptly for n < 1.27.

4.5 Conclusions

In this work we have studied by means of an extension of the Gutzwiller ap-

proximation the effect of doping a bilayer Hubbard model. We have considered

a value of the inter-layer hopping t⊥ such that, at half-filling, the model should

undergo a direct transition at U = Uc from a metal to a non-magnetic Mott

insulator, a valence bond crystal consisting of inter-layer dimers. This choice

offers the opportunity to study how a valence bond crystal liquefies either by
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Figure 4.5: (Color online) Superconducting inter-layer order parameter ∆⊥ for

different U/Ds. In the inset we plot the difference between the local densities of

the BCS variational wavefunction |Ψ0〉 and of the actual one |ΨG〉, at U/D = 3.

reducing the Coulomb repulsion keeping the density fixed at one electron per

site, or by adding mobile holes. The melting upon decreasing U was already

shown [35] to lead to a superconducting phase intruding between the valence

bond insulator at large U > Uc and the normal metal at weak U ≪ Uc. Here we

show that superconductivity arises also upon melting the valence bond crystal

by doping. In other words, the superconducting dome that exists at half-filling

close to Uc extends into a whole region at finite doping. The maximum su-

perconducting signal is found at 20% doping, and beyond that it smoothly

diminishes, disappearing roughly at quarter filling within our choice of param-

eters. These results are appealing as they show that the well established be-

havior of a two-leg Hubbard ladder [35, 107, 108, 92] seems to survive in higher

dimensions, actually in the infinite-dimension limit where our Gutzwiller ap-

proximation becomes exact. It is obvious that, in spite of all improvements

of the Gutzwiller variational approach, to which we contribute a bit with this

work, this method remains variational hence not exact. Therefore it is still un-

der question if superconductivity indeed arises by metallizing the valence bond

Mott insulating phase of a Hubbard bilayer, which we believe is an important

issue of broader interest than the simple bilayer model we have investigated [64].

There are actually quantum Monte Carlo simulations [100, 103, 104, 101] that
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Figure 4.6: (Color online) Left panel: Contributions to the variational energy as

function of doping for U/D = 3. In the inset the total energy Evar(n) = Evar+

µn is shown: despite the discontinuities observed in the hopping contributions,

the evolution of E(n) is, to our numerical accuracy, smooth. Right panel:

Occupancies of lower, n0
l and upper, n0

u, variational bands as function of n.

Dotted lines represent average occupation of even, ne, and odd, no, orbitals.

Note that the insulating phase at half-filling is identified by the lower band

fully occupied and the upper one empty. The latter empties again for doping

2 − n > 0.73.

partially support our results as they show a pronounced enhancement of super-

conducting fluctuations close to the half-filled Mott insulator. However a true

superconducting phase is still unaccessible to the lowest temperatures that can

be reached by quantum Monte Carlo. On the other hand, dynamical mean field

calculations, that can access zero temperature phases, did not so far looked for

superconductivity [105, 102]. Therefore we think it would be worth pursuing

further this issue.



Chapter 5

Transport in quantum dots

within the Gutzwiller approach

Nanocontacts of quantum dots, single molecules or atoms, and nanowires are

ideal candidates to realize electronic devices where a source-drain current across

the contact can be magnetically controlled. Indeed, because of the low dimen-

sionality of the contact region, electronic correlations grow in strength and may

stabilize a local magnetism that influences electron tunneling. The Kondo-like

zero-bias anomalies first observed in quantum dots [66] are just the simplest

manifestation of such a local magnetism, but one can foresee even more spectac-

ular phenomena, like giant magnetoconductance [109]. From the theory side,

this is a complicated problem first of all because electronic correlation is the

main actor and is difficult to treat, and secondly because the inelastic tunnel-

ing spectrum requires full out-of-equilibrium calculations. Many complemen-

tary techniques have been used to characterize the nanocontact at equilibrium.

For instance ab initio LDA calculations can provide the electronic structure

and predict whether magnetism could indeed be stabilized [109, 110, 111],

at least at the mean field level. Inclusion of quantum fluctuations requires

many-body techniques, like numerical renormalization group [112, 113], which

are often applied to oversimplified models, like the single-orbital Anderson

impurity model, although there are recent attempts to join together the two

approaches [114, 115, 116]. Unfortunately, out of equilibrium properties are

much more difficult to study. Apart from many-body Keldish perturbation

61
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theory [117], many sophisticated numerical techniques have been developed in

recent years to cope simultaneously with out-of-equilibrium and strong cor-

relations, [118, 119, 120, 121, 122, 123]. However, given the complexity of

the electronic structure that may arise at a nanocontact e.g. of a molecule

or a bridging transition metal atom, it would be desirable to have at disposal

approximate techniques enough simple and flexible to deal with realistic situa-

tions otherwise prohibitive with more accurate numerical approaches, as those

previously mentioned. In this paper we shall propose one of such methods

that is based on an out-of-equilibrium extension of the conventional Gutzwiller

approximation [6, 7] for correlated electron systems.

5.1 The problem

We consider two biased macroscopic leads described by non-interacting elec-

trons coupled to a bridging region described by discrete electronic multiplets

H = H0 + V + Hint, (5.1)

where V describes the tunnelling between the leads and the nanocontact and

Hint describes the local interaction of the nanocontact.

One assumes that initially the leads are not coupled through the bridging

region, each lead being subject to a different electrochemical potential. Such a

situation can be described by a density matrix

ρ0 = e−βH
∗

0(Φ)/Tr(e−βH
∗

0(Φ)) (5.2)

where

H∗
0(Φ) = H0 + ΦY0, (5.3)

with H0 the non-interacting Hamiltonian of the independent left (L) and right

(R) leads plus the nanocontact, and

Y0 = (NL −NR) /2 (5.4)

that describes the potential drop and commutes with H0 – the initial state is

stationary though out-of-equilibrium, equilibrium meant to be the two leads

at the same chemical potential.
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Suddenly the coupling to the bridging region is switched on - namely the

Hamiltonian changes from H0 + Hint into H = H0 + Hint + V - and a current

starts to flow. If

U(t) = e−iHt (5.5)

is the time evolution operator with the full interaction, the initial density ma-

trix ρ0 evolves maintaining the functional form of a Boltzmann exponential

ρ(t) = e−βH
∗(t,Φ)/Tr(e−βH

∗(t,Φ)) (5.6)

where

H∗(t,Φ) = H(t) + ΦY (t) (5.7)

and

H(t) = U(t)(H0 + Hint)U(t)†,

Y (t) = U(t)Y0U(t)† (5.8)

For time t sufficiently large, namely after a transient time T , the system

reaches a steady state with constant current. If we are interested only in steady

state properties, a good starting point is offered by Hershfield’s results [67].

Hershfield showed that the stationary state value of certain observables coincide

with their equilibrium value obtained through an effective density matrix

ρ = e−βH
∗(Φ)/Tr(e−βH

∗(Φ)), (5.9)

with

H∗(Φ) = H + ΦY, (5.10)

being Y the time evolution, in the Schrödinger picture, of Y0 and still satisfying1

[H, Y ] = 0. (5.11)

Should Y be known, steady state properties could be obtained, in principle, by

any equilibrium technique.

1The physical meaning of (5.11) is that the steady state can be reached only when all

terms of Y0 that do not commute with the Hamiltonian H have been filtered out.
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5.2 The resonant-model out of equilibrium

Let us consider the simple case of a non-interacting single-level bridging region

H = H0 + V̂ , (5.12)

with

H0 =
∑

α=−1,1

∑

kσ

ǫk c
†
αkσcαkσ +

∑

σ

ǫd d
†
σdσ,

V̂ =
∑

α=−1,1

∑

kσ

Vk√
Ω
d†σcαkσ +H.c. , (5.13)

where c†αkσ creates a conduction electron on the left (α = −1) or right (α = 1)

lead with quantum number k and spin σ while d†σ creates an electron into the

dot with spin σ, and Ω is the quantization volume of the system. Notice that,

quite generally only a single channel of conduction electrons is coupled to the

impurity, so that the model can always be mapped onto two one-dimensional

leads hybridized at the contiguous edges with an impurity. Therefore it is

perfectly legitimate to regard the quantum number k as one-dimensional mo-

mentum and Ω as the linear size of the system.

The non-equilibrium Hamiltonian

H∗(Φ) = H + ΦY (5.14)

can be calculated explicitly in this simple case. It can be proven [67] that, in

the thermodynamic limit and in the absence of bound states,

H =
∑

α=−1,1

∑

kσ

ǫk ψ
†
αkσ ψαkσ,

Y =
∑

α=−1,1

∑

kσ

α

2
ψ†
αkσ ψαkσ ; (5.15)

where ψ†
αkσ are the fermionic creation operators that generate the left (α = −1)

and right (α = 1) incident scattering waves

ψ†
αkσ =

(
1 +

1

ǫk −H + i 0+
V̂

)
c†αkσ

= c†αkσ +
Vk√
Ω
gd(ǫk) d

†
σ

+
∑

α′k′σ′

VkVk′

Ω

gd(ǫk)

ǫk − ǫk′ + i 0+
c†α′k′σ′ ; (5.16)
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being gd(ǫ) the retarded Green’s function of the impurity at equilibrium, which

is, in the infinite bandwidth limit,

gd(ǫ) =
1

ǫ− ǫd + iΓ
. (5.17)

We underline that Eq. (5.16) is meaningful only in the termodinamic limit, i.e.

when Ω → ∞. For a finite system the time evolution of an incident state

|ψinαkσ〉 = c†αkσ|0〉 (5.18)

oscillates, namely it doesn’t converge to a well defined scattering state

|ψαkσ〉 = ψ†
αkσ|0〉 (5.19)

Sobstituting Eq. (5.16) in Eq. (5.15) we find that

Y =
∑

αkσ

α

2
c†αkσcαkσ

+
∑

αkσ

α

2

∑

α′k′

VkVk′

Ω

g(ǫk′)

ǫk − ǫk′ + i0+
c†α′k′σcαkσ +H.c.

+
∑

αkσ

α

2

Vk√
Ω
g(ǫk) d

†
σcαkσ +H.c. (5.20)

The scattering states (5.16) are, in the thermodynamic limit, a complete

basis ∑

αkσ

ψ†
αkσ ψαkσ =

∑

αkσ

c†αkσcαkσ +
∑

σ

d†σdσ . (5.21)

Eq. (5.21) allows us to formally expand the c and d operators in terms of

scattering states

c†
ᾱk̄σ̄

= ψ†

ᾱk̄σ̄
+
∑

αk

Vk̄Vk
Ω

g∗(ǫk)

ǫk − ǫk̄ − i0+
ψ†
αkσ̄

d†σ̄ =
∑

αk

Vk√
Ω
g∗(ǫk)ψ

†
αkσ̄ , (5.22)

and to calculate the average of any operator using the result

〈Ψ(Φ)|ψ†
αkψα′k′ |Ψ(Φ)〉 = δαα′δkk′ f

(
ǫk + φ

α

2

)
(5.23)
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- being |Ψ(Φ)〉 the ground state of H∗(Φ) and f(ǫ) the Fermi function. The

correct value of the average is finally obtained taking the limit for Ω → ∞ of

the result. It can be proven that the obtained value is the same that one could

obtain within the Keldish technique.

In order to state variationally the problem for finding the solution of the

Hershfield Hamiltonian H∗(Φ) in the presence of interaction we should be able

to evaluate the energy

δEΦ(Ψ) = 〈Ψ| H∗(Φ) |Ψ〉 − E0 , (5.24)

being E0 the minimum energy of the Hershfield Hamiltonian H∗
0(Φ) in absence

of tunnelling

H∗
0(Φ) =

∑

α=−1,1

∑

kσ

(
ǫk + Φ

α

2

)
c†αkσcαkσ +

∑

σ

ǫd d
†
σdσ, (5.25)

and we should minimize δEΦ(Ψ), which is of order 1/Ω with respect to E0, with

respect to |Ψ〉.
Unfortunately, as it is explicitly proven in appendix A.2.1, δEΦ(Ψ) is ill

defined in the above formulation that implicitly assume the thermodynamic

limit; it contains diverging terms which partly cancel each other to give a

result of order one. The appearence of infinities can be easily traced back

observing that the first term of Eq. (5.20) is

∑

αkσ

α

2
c†αkσcαkσ ≡ δQ̂

2
, (5.26)

where Q̂ is the operator that represents the charge difference between the two

leads. The contribution of δQ̂ to the variational energy δEΦ(Ψ) is, defining

|Ψ0〉 the ground state of H∗
0(Φ),

δQΦ(Ψ) = 〈Ψ| Q̂ |Ψ〉 − 〈Ψ0| Q̂ |Ψ0〉 , (5.27)

which is the charge passed from one lead to the other during the “infinite”

transient time necessary to reach the steady state. This is obviously infinite,

hence, to produce at the end something of order one, which is the contribution

of the impurity, other singular terms should partly cancel it. This cancellation

of singularities is hard to accomplish in the above formulation. In order to
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circumvent such a difficulty, we propose here an alternative but well defined

procedure.

We consider once again the Hamiltonian (5.12) at finite size Ω and at zero

bias, and introduce s- and p-wave states, omitting the spin label, through

sk =
1√
2

(c+1k + c−1k) ,

pk =
1√
2

(c+1k − c−1k) .

We assume that the quantum numbers k label discrete one-dimensional mo-

menta, and the single-particle energy is a simple function of them: ǫk = ǫ(k).

The addition of the impurity has two effects: (1) the number of allowed mo-

menta k in the s-channel increases by one – the impurity is absorbed in the

conduction sea; (2) the energy in the s-channel as function of momenta changes

into

ǫk = ǫ(k) → ǫ∗k = ǫ

(
k − δ(ǫ∗k)

Ω

)
,

where δ(ǫ) are so-called phase-shifts. The diagonalized Hamiltonian then reads

H0 + V̂ =
∑

allowedk′s

ǫ

(
k − δ(ǫ∗k)

Ω

)
s̄†ks̄k + ǫ(k) p†kpk

≃ Ω

∫
dk

π
ǫ

(
k − δ(ǫ∗k)

Ω

)
s̄†ks̄k + ǫ(k) p†kpk, (5.28)

the last expression being the continuous limit, where the difference between

the allowed set of k’s in the two channels disappears, and s̄† being the eigen-

operators of the s-channel plus impurity Hamiltonian. One can indeed show

that the continuous limit reproduces all known results in scattering theory. For

instance, the change in electron number is found to be

δN = Ω

∫
dk

π

[
f

(
ǫ

(
k − δ(ǫ∗k)

Ω

))
− f(ǫ(k))

]
≃ Ω

∫
dk

π

∂f(ǫk)

∂ǫk

∂ǫk
∂k

δ(ǫk)

Ω

=

∫
dǫ

π

∂f(ǫ)

∂ǫ
δ(ǫ) =

δ(0)

π
,

which is the well known Friedel’s sum rule. Formally, one can now introduce
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back right and left incident waves by

ψ+1k =
1√
2

(s̄k + pk) ,

ψ−1k =
1√
2

(s̄k − pk) ,

which is however strictly valid only in the continuous limit. Assuming blindly

Hershfield’s results to hold, one would conclude that the bias evolves in the

steady state into the operator

ΦY ≃ Φ

2

∑

k

ψ†
+1kψ+1k − ψ†

−1kψ−1k =
Φ

2

∑

k

s̄†kpk + p†ks̄k. (5.29)

One can diagonalize H0 + V̂ + ΦY and calculate the total energy EΦ to find,

up to order O(1) in the volume,

EΦ = Ω

∫
dk

π

∑

α=±1

(
ǫ(k) + α

Φ

2

)
f

(
ǫ(k) + α

Φ

2

)

−
∫

dǫ

2π
δ(ǫ)

[
f

(
ǫ+

Φ

2

)
+ f

(
ǫ− Φ

2

)]
+O

(
1

Ω

)

≡ E0
Φ −

∫
dǫ

2π
δ(ǫ)

[
f

(
ǫ+

Φ

2

)
+ f

(
ǫ− Φ

2

)]
. (5.30)

In the absence of bias, this expression reduces to the well known result at

equilibrium. We will assume in what follows that Eq. (5.30) is the “energy” of

the Hershfield Hamiltonian. At equilibrium is well known that

δ(ǫ) = −Im ln

(
ǫ+ i0+ − ǫd − ∆(ǫ+ i0+)

ǫ+ i0+ − ǫd

)
, (5.31)

where

∆(z) =
1

Ω

∑

kα

V 2
k

z − ǫk
(5.32)

is the hybridization function. An alternative way of writing (5.30) is

EΦ − E0
Φ = −T

∑

n

∑

α

ln



iǫn + α

Φ

2
− ǫd − ∆(iǫn)

iǫn + α
Φ

2
− ǫd


 , (5.33)
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where ǫn are Matsubara frequencies. This expression has been derived in an

alternative way in the appendix A.

We observe that the value of δEΦ defined in Eq. (5.33) is exactly the 1/Ω

contribution to the average of H calculated on the ground state of the Hersh-

field Hamiltonian (5.15) defined through the scattering states, as it is proved

explicitly in Appendix A. From this point of view δEΦ can be interpreted as the

energy of the system gained, in the presence of the bias, during the transient

time necessary to reach the steady state after the introduction of the dot, that

is not zero because the action to switch on the tunnelling term is “external”.

In other words, δEΦ is finite because the system is not isolated.

We conclude this section calculating explicitly δEΦ for the non-interacting

model Eq. (5.12). Let us assume that the density of states is flat

∆(z) =

∫
dǫ

π

Γ(ǫ)

z − ǫ

Γ(ǫ) = Γχ[−1,1](ǫ) , (5.34)

where χ[−1,1](ǫ) is 1 if ǫ ∈ [−1, 1] and is 0 otherwise, and that Γ ≪ W = 1. It

can be easily verified that

Γ2 ∂

∂Γ

(
δEΦ(Γ)

Γ

)
= ǫ arctan

(
Γ

ǫ

)]−Φ

2

−1

(5.35)

We observe that when Φ = 0 the right member of Eq. (5.35) is −Γ, so that the

solution of Eq. (5.35) is

δE0 = −2

π
Γ log

( e
Γ

)
, (5.36)

while, when

W ≫ Φ ≫ Γ , (5.37)

the right member of Eq. (5.35) vanishes, so that

δEΦ =
2

π
Γ log

(
Φ

2

)
. (5.38)
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5.3 The concept of quasi-particles out of equi-

librium

We consider now the general interacting system described by the Hamiltonian

H = H0 + V + Hint, (5.39)

We know that if we prepare the two leads at a different chemical potentials

and we let it evolve within the interacting Hamiltonian

U(t) = e−iHt, (5.40)

for times t longer than some transient time T the final non-equilibrium state

is described by the Hershfield Hamiltonian

H∗(Φ) = H + ΦY, (5.41)

formally defined in Eq. (5.8)

In general Y is a complicated many body operator that must satisfy Eq. (5.11)

and in addition share the same symmetry properties as Y0, i.e. a spin-singlet op-

erator odd under interchanging the two leads. Therefore, generally the steady-

state Hamiltonian H∗(Φ) is an interacting one, the interaction presumably

remaining local as it was originally. Furthermore, since the nanocontact can

not change the bulk properties of the leads, e.g. inducing a spontaneous sym-

metry breaking, H∗(Φ) should still describe a metal. It is therefore tempting to

assume that, if in the absence of external bias the system, leads plus nanocon-

tact, is described by a local Fermi liquid theory in the Nozières sense [68],

which is generally the case, the same should hold even in the steady state after

the bias is applied. It then follows that it should be possible to represent the

low energy/temperature/bias properties in terms of weakly interacting quasi-

particles, which, by continuity with the non-interacting case, should be better

regarded as renormalized scattering states with an Hamiltonian of the same

form as (5.15) with renormalized (bias dependent) energies plus additional

weak local-interaction terms [68]. This local Fermi-liquid assumption seems

to us quite plausible. However, since the bias is coupled to a non-conserved

quantity, the charge difference between the leads, the effective bias felt by the
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Figure 5.1: The single dot system

quasi-particles will generally differ from the applied one and the quasi-particle

current not correspond to the real one. This implies that the current can not

be expressed simply in terms of Landau parameters and an explicit calculation

is required.

5.4 The Gutzwiller approximation at equilib-

rium

Let us forget for a moment the bias and consider the same problem at equi-

librium. Although the method we shall present is quite general, for sake of

simplicity we shall show how it works in the simple case of a bridging re-

gion described by a single-orbital Anderson impurity model at half-filling. The

equilibrium Hamiltonian is

H =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

αkσ

Vk√
Ω
d†σcαkσ +H.c.

+
U

2
(nd − 1)2 ≡ H0 + Û (5.42)

The physical properties of the above Anderson impurity model are very

well known [43]. For large U the model effectively maps into a Kondo model,

the impurity electron behaving as a local moment Kondo screened by the con-

duction electrons. A simple way to describe qualitatively and to some extent

also quantitatively the Kondo screening is by a Gutzwiller-type of variational
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wavefunction [14, 13]

|Ψ〉 = Pd |Ψ0〉 (5.43)

where Pd is an operator that modifies the relative weights of the impurity

electronic configurations with respect to the uncorrelated wavefunction |Ψ0〉,
and |Ψ0〉 is the ground state of a non-interacting variational resonant level

Hamiltonian.

The variational procedure amounts to optimize both the local projector Pd
as well as the non-interacting wavefunction |Ψ0〉 by minimizing the average

value of the Hamiltonian (5.42).

We assume that Pd is subject to the following two conditions

〈Ψ0| P†
d Pd |Ψ0〉 = 1, (5.44)

〈Ψ0| P†
d Pd ndσ |Ψ0〉 = 〈Ψ0|ndσ |Ψ0〉, (5.45)

where

ndσ = d†σdσ (5.46)

is the impurity number operator. Condition (5.44) is the normalization require-

ment of the variational wavefunction. Condition (5.45) - that ensures that all

the Wick contractions between the conduction electron operators and the im-

purity operators are zero - allows to evaluate average values straightforwardly.

In particular, the average value of the Hamiltonian (5.42), that has to be

minimized, is

E =
〈Ψ| H |Ψ〉
〈Ψ|Ψ〉

= 〈Ψ0|
[
∑

αkσ

ǫk c
†
αkσcαkσ

+
∑

αkσ

RVk√
Ω
d†σcαkσ +H.c.

]
|Ψ0〉

+
U

2
〈Ψ0|P†

d(nd − 1)2Pd|Ψ0〉

≡ 〈Ψ0|H0
R|Ψ0〉

+
U

2
〈Ψ0|P†

d(nd − 1)2Pd|Ψ0〉 (5.47)
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where the hopping renormalization coefficient R is obtained through the fol-

lowing equation:

〈Ψ0| P†
d d

†
σ Pd dσ |Ψ0〉 = R 〈Ψ0|d†σdσ|Ψ0〉 . (5.48)

The calculation of the first term in Eq. (5.47) reduces, provided Eqs. (5.44) and

(5.45) are satisfied, to calculate the energy gain of H0
R due to the renormalized

tunnelling term

V̂R =
∑

αkσ

RVk√
Ω
d†σcαkσ +H.c. , (5.49)

that is, as shown in appendix (A), a functional of the impurity Green’s function

GR(ω) of H0
R

〈Ψ0|H0
R|Ψ0〉 = F [GR(ω)] . (5.50)

The variational Hamiltonian whose ground state is the uncorrelated wave-

function |Ψ0〉 has rigorously no physical meaning but for the ground state

properties. However, it is common [124] to interpret it as the Hamiltonian of

the quasi-particles and

R2 = z (5.51)

as the quasi-particle weight of a single-particle excitation. Within such an

assumption, the Gutzwiller approximation technique can be regarded as a tool

to extract quasi-particle properties.

From now on the unit of energy is given by the conduction electron half-

bandwidth.

In figure 5.4 we show the value of R2, as a function of U . At U = 0 we find

that z = 1 as expected and has a finite curvature. When U → ∞ we find that

z(U) ∼ 1

Γ
exp

(
− π

16

U

Γ

)
; (5.52)

that is the behaviour of the Kondo temperature, although the correct universal

prefactor of U/Γ should be π/8

TK ∼ exp

(
−π

8

U

Γ

)
. (5.53)
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Figure 5.2: (Color online) R2, as a function of U

We conclude this section observing that at large U the value of z vanishes

exponentially remaining finite because

〈Ψ0|H0
R|Ψ0〉 = −2

π
zΓ log

( e

zΓ

)
, (5.54)

that vanishes at z = 0 with an infinite derivative because of the presence of z

in the logarithm.

5.5 The Gutzwiller approximation out of equi-

librium

We want to study now the half filled Anderson model

H =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

αkσ

Vk d
†
σcαkσ +H.c.

+
U

2
(nd − 1)2 (5.55)

when it is driven out of equilibrium preparing the leads at two different chemical

potentials (Fig. 5.1). Turning on the tunnelling interaction we know that a

current starts to flow and the system, after a transient time, reaches the steady

state formally defined by Eq. (5.9). At zero temperature the steady state is

therefore the ground state of

H(Φ) = H + ΦY. (5.56)
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We want to approximate the Hershfield steady state with the usual equi-

librium Gutzwiller variational wavefunction

|Ψ〉 = Pd |Ψ0〉 (5.57)

which satisfies conditions (5.44) and (5.45).

The average on |Ψ〉 of H is equal to the average on |Ψ0〉 of the renormalized

Hamiltonian

H0
R = P†

d HPd =
∑

αkσ

ǫk c
†
αkσcαkσ

+
∑

αkσ

RVk√
Ω
d†σcαkσ +H.c. . (5.58)

What can we say about P†
d Y Pd? We do not known Y explicitly. However, just

like at equilibrium, we expect that P†
d (H + ΦY ) Pd should describe weakly

interacting quasiparticles in the presence of a bias. Since any bias dependent

interaction term (recall that the bias can only generate terms that are odd

upon exchanging the leads, hence can not renormalize the Hubbard U but

at most induce an interaction term between the impurity and the leads) will

affect conductance at higher orders in the bias, we assume that H0
R + P†

d Y Pd
corresponds to the non-equilibrium Hamiltonian

H0∗
R (Φ) =

∑

αkσ

ǫk ψ
†
αkσ(R)ψαkσ(R)

+ Φ
∑

αkσ

α

2
ψ†
αkσ(R)ψαkσ(R)

≡ H0
R + ΦY 0

R , (5.59)

where ψ†
αkσ(R) are appropriate scattering waves identified by R, and to inter-

pret it as the Hamiltonian of the quasi-particles. In other words, we assume

that the Fermi liquid renormalization affects the bias opeartor only through

the definition of the quasiparticle scattering waves.

Given the above assumption, our procedure amounts to minimize the fol-

lowing energy functional

E = 〈Ψ0(Φ)| H0
R + ΦY 0

R |Ψ0(Φ) 〉

+
U

2
〈Ψ0(Φ)| P†

d(nd − 1)2Pd |Ψ0(Φ)〉 , (5.60)
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where Ψ0(Φ) is the ground state of H0∗
R (Φ), subject to conditions (5.44-5.45).

This corresponds to assume that we can approximate the average of Y on the

projected state |Ψ〉 = Pd |Ψ0〉 with the average of Y 0
R on the uncorrelated state

|Ψ0〉. In other words, we substitute the equilibrium energy gain due to the

tunnelling term (5.49) for the energy gain due to the tunnelling term in the

non equilibrium quasi-particle Hamiltonian (5.59).

We stress that our functional, and then the value of R after the optimiza-

tion, depends on the bias Φ. This is crucial in order to properly take into

account the strong correlation effects induced by the Hubbard repulsion.

The expression for the average of the current after the optimization is

I = −i
∑

kσ

Vk√
Ω

(
〈Ψ0(Φ)| d†σckσ,−1 |Ψ0(Φ)〉 − c.c.

)

=

∫ φ

2

−φ

2

dǫΓ∗ρΓ∗

d (ǫ) (5.61)

where ρΓ∗

d (ǫ) is the spectral function of the dot, that is

ρΓ∗

d (ǫ) =
1

π

Γ∗

ǫ2 + Γ∗2
χ[−1,1](ǫ) (5.62)

with

Γ∗(ǫ) = R2 Γ(ǫ) (5.63)

having assumed that the density of states is flat and that Γ ≪W = 1

∆(z) =

∫
dǫ

π

Γ(ǫ)

z − ǫ

Γ(ǫ) = Γχ[−1,1](ǫ) (5.64)

We notice that Eq. (5.61) fails to describe the system accurately when

Φ ∼ U , because it doesn’t take into account the spectral contribution of the

Hubbard bands. However, for the simple single-band Anderson model we can

reproduce artificially the correct qualitative behaviour of the current in this

regime by substituting R2ρΓ∗

d (ǫ) with

ρUd (ǫ) = R2ρΓ∗

d (ǫ) +
1

2
(1 − R2)

∑

α=−1,1

ρΓ
d

(
ǫ− U

α

2

)
(5.65)
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in Eq. (5.61).

In Fig. 5.3 we show the results for the conductance G of the Anderson

model. The data are obtained with the method described above applied to the

system at particle-hole symmetry

ǫd = 0 . (5.66)

The obtained value of the conductance at zero bias is universal as expected,

and the curvature is given by

d2G

dΦ2

∣∣∣∣
Φ=0

= − 1

2π(R2Γ)2
∼ − 1

(TGK )2
(5.67)

- being TGK the Kondo temperature with the incorrect prefactor predicted by

the Gutzwiller method

TGK ∼ e−
π
16

U
Γ . (5.68)

Nevertheless for large enough value of U we found (not showed) that the con-

ductance may become negative, which is unrealistic. In order to establish the

regime of validity of our method, we note that the Fermi-liquid description

that we assume is applicable only for values of the bias much lower then the

Kondo temperature TK . For the single-orbital Anderson impurity model we

can calculate analitically the minimum value of the energy functional (5.60)

when

W ≫ Φ ≫ Γ , (5.69)

namely when Eq. (5.38) can be applied, so that

〈Ψ0(Φ)| H0
R + ΦY 0

R |Ψ0(Φ) 〉 =
2

π
R2 Γ log

(
Φ

2

)
. (5.70)

In particular, it can be easily proven that the value of z vanishes at

Φ∗ = e−
π
16

U
Γ ∼ TGK , (5.71)

namely out of the expected regime of validity.

We finally notice that the procedure proposed in this section is generaliz-

able, in principle, to any complicated impurity model.
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Figure 5.3: (Color online) Conductance as a function of the bias for Γ = 10−3

and three different values of U .

5.5.1 The method out of particle-hole symmetry

Let us consider the Anderson model out of particle-hole symmetry

H =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

αkσ

Vk√
Ω
d†σcαkσ +H.c.

+ ǫd
∑

σ

d†σdσ +
U

2
(nd − 1)2 , (5.72)

namely with ǫd 6= 0. The state |ψ0〉 which minimize the energy HR and satisfies

Eq. (5.45)

〈Ψ0| d†σdσ |Ψ0〉 = n (5.73)

can be calculated within the Lagrange multipliers method, namely |ψ0〉 is the

ground state of the Hamiltonian

HLag
R = HR + µ

∑

σ

(d†σdσ − n) (5.74)

with a proper chemical potential µ.

In particular, when ǫd = 0 the ground state of HR satisfies the con-

straint (5.45) automatically, namely HLag
R = HR, and the correspondent non-

equilibrium Hamiltonian H∗
R(Φ) automatically satisfies the constraint (5.45)

too, namely

〈Ψ0| d†σdσ |Ψ0〉 = 〈Ψ0(Φ)| d†σdσ |Ψ0(Φ)〉 =
1

2
(5.75)
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Let us consider now the general case ǫd 6= 0. In this case

HLag
R =

∑

αkσ

ǫk ψ
†
αkσ(R)ψαkσ(R) , (5.76)

where ψ†
αkσ(R) where ψ†

αkσ(R) are the scattering waves constructed with renormized

hybridization RVk, which depend on the retarded impurity Green’s function

gdR(ǫ) =
1

ǫ− µ+ iR2Γ
. (5.77)

We observe that, if µ is taken to be the value that satisfies the constraint (5.45)

at equilibrium, the ground state |Ψ0(Φ)〉 of the non-equilibrium Hamiltonian

H∗
R(Φ) =

∑

αkσ

ǫk ψ
†
αkσ(R)ψαkσ(R)

+ Φ
∑

αkσ

α

2
ψ†
αkσ(R)ψαkσ(R) (5.78)

is not such that

〈Ψ0(Φ)| d†σdσ |Ψ0(Φ)〉 = n , (5.79)

namely it doesn’t satisfy anymore (5.45). The procedure described for ǫd = 0

should then be modified without fulfilling this condition, renouncing to the

consequent simplification of the calculations.

5.6 Study of a two-dot model at equilibrium

We consider a system (represented in Fig. 5.4) of two antiferromagnetically-

interacting levels coupled among each other by an antiferromagnetic exchange

J ; each one is hybridized with two bands of conduction electrons with energy

dispersion ǫk and suffers from an Hubbard interaction U

H =
∑

α=−1,1

∑

βkσ

ǫk c
†
αβkσcαβkσ

+
∑

α=−1,1

∑

βkσ

Vk√
Ω
d†σβcαβkσ +H.c.

+ J S1S2 +
∑

β

U

2
(nβ − 1)2 (5.80)
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Figure 5.4: The two-dot system
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phase

Kondo screened Kondo unscreened

phase

Figure 5.5: The phase diagram of the two-dot system at equilibrium

where Si represents the spin operator of the dot i.

At equilibrium this model is known [125, 126] to have a second order quan-

tum phase transition upon increasing the antiferromagnetic exchange between

the two levels (see Fig. 5.5). The quantum critical point (QCP) separates

a Kondo screened phase (for J < Jc) from a Kondo unscreened phase (for

J > Jc), that are both Fermi-liquid-like in Noziéres sense; namely, they cor-

respond asymptotically to well defined limits of free-elecrons scattering off a

structure-less impurity potential, infinite in the Kondo screened and zero in

the unscreened one.

The theory at the QCP is an unstable fixed point respect to the confor-

mal group, that can be destabilized by the following three relevant symmetry

breaking operators

hAF (S1 − S2) ; hSC

(
d†1↑d

†
2↓ − d†1↓d

†
2↑

)
;
∑

σ

h⊥d
†
1σd2σ + h.c. . (5.81)

so that the susceptibility with respect to the operators (5.81) diverges at the
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Figure 5.6: (Color online) ∆ as a function of J for Γ = 2 10−3 and three

different values of U .

QCP.

This model has been already studied at equilibrium within the slave-bosons

technique [127], and the transition between the Kondo e non-Kondo regime was

found to be either first order or second order, depending on the values of the

coupling constants. We analyzed the same problem increasing the variational

freedom of the Gutzwiller wavefunction, allowing it to have a finite value of ∆

[35]

∆ =
1

2
〈 d†1↑d†2↓−d†1↓d†2↑ 〉 , (5.82)

although it is impossible for a single impurity to break a bulk symmetry (see

appendix B for the the technical details of our calculation). An eventual ten-

dency of our trial state to have ∆ 6= 0 should be interpreted as the tendency

of the system to have a large susceptibility respect to ∆. The additional vari-

ational freedom that we have introduced allows the impurity spectral function

to develop a two-peaks structure, that can mimic the actual behavior [128].

In Fig. 5.6 we plot ∆ as a function of the antiferromagnetic coupling J

and Γ = 2 10−3 for some value of the Hubbard U . In this cases we found a

weak first order phase transition at a critical value of J that decreases upon

increasing U .

In Fig. 5.11 we plot the impurity spectral functions for a value of J greater
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Figure 5.7: (Color online) From Ref. [129]. Main panel: low energy behavior of

the impurity DOS of the dimer model at equilibrium, with U = 8, J = 0.00125

and, from top to bottom, Γ = 0.44, 0.42, 0.4, 0.35, 0.3 in units of half the

conduction bandwidth. Upper inset: the DOS behavior in the whole energy

range with the same U and J and with Γ = 0.6, top curve, and Γ = 0.3.

The Hubbard bands are clearly visible, while the low energy parts are hardly

distinguishable.

then the critical value, and in Fig. 5.12 we plot the impurity spectral functions

for a value of J is lower then the equilibrium critical value. Our result is

qualitatevely consistent with the NRG results showed in Fig. 5.7: in the Kondo

screened phase there is a Kondo peak on top of a broad resonance, while in the

Kondo unscreened phase the Kondo peak disappears, developing a two-peaks

structure.

5.7 Double dot model out of equilibrium

This section is devoted to a tentative study of the half-filled two-dot model

described by Eq. (5.80) out of equilibrum (see Fig. 5.4), by means of the method

described in section 5.5.
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If the problem is studied with a variational Gutzwiller wavefunction which

doesn’t break any symmetry of the Hamiltonian, the uncorrelated wavefunction

|Ψ0(Φ)〉 - the ground state of the non-equilibrium Hamiltonian H0∗
R (Φ) defined

in Eq. (5.59) - has the same density matrix of |ψ0〉 - the ground state of H0
R.

This is not true anymore if we allow the wavefunction to have a finite value of

the parameter ∆. In this case, we should in principle impose that |Ψ0(Φ)〉 is

subject to the Gutzwiller constraints

〈Ψ0(Φ)| P†
d Pd C |Ψ0(Φ)〉 = 〈Ψ0(Φ)| C |Ψ0(Φ)〉 , (5.83)

where C is the local single-particle density-matrix operator with elements d†idj,

d†id
†
j and didj (i label both spin and orbitals). It comes out that, enforcing

(5.83) leads to out of equilibrium results that we do not understand com-

pletely when ∆ 6= 0. We find that the bias is able to induce the transition

that is observed at equilibrium upon increasing J , something that we expected

since the bias weakens Kondo effect hence effectively strengthen J . However

this transition comes out to be strongly first order because in order to fulfill

(5.83) with ∆ 6= 0, the latter must be sizable, hence a smooth transition can

not occur. We are tempted to believe that this is an artifact of the method,

which forces us to explicitly break a symmetry that could not be broken spon-

taneously. Therefore we have decided to adopt a different approach that leads

to a smoother behavior. Essentially, we fixed the constraint (5.83) at equilib-

rium, which amounts to determine Lagrange multipliers similarly as in (5.74),

and we keep the latter fixed even at finite bias. We stress that this problem

does not occur if variationally ∆ = 0, in which case particle-hole symmetry

guarantees that all Lagrange multipliers are zero.

In Fig. 5.8 and Fig. 5.9 we plot the behaviour of ∆ as a function of the bias

Φ calculated as discussed above and for two different values J at fixed U . In

Fig. 5.10 we plot the conductance.

We find that, if J is smaller then the equilibrium critical value, a second

order transition can be induced upon increasing the bias; the conductance

decreases and has a jump at the QCP, when ∆ starts to be finite. If J is

greater then the equilibrium critical value, instead, the conductance grows

upon increasing the bias and is continuous.

The origin of this difference can be clarified if we look at the impurity
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Figure 5.8: (Color online) ∆ as a function of the bias V for Γ = 2 10−3,

U = 10−2 and J = 5 10−3 - slightly before the equilibrium critical value of J .

spectral functions at Φ = 0 (Figg. 5.11 and 5.12). If J is greater then the

equilibrium critical value when we start applying bias, the spectral function

has already a two-peak structure, so that the interval [−Φ
2
, Φ

2
] includes, upon

increasing Φ, an increasing additional spectral weight. When J is lower then

the equilibrium critical value and Φ is below the bias critical value, instead,

the spectral function has a single peak structure, so that the interval [−Φ
2
, Φ

2
]

includes, upon increasing Φ, a decreasing (normalized to Φ itself) additional

spectral weight.

5.8 Conclusions

We have proposed a novel generalization of the Gutzwiller variational method

for studying the steady-state zero-temperature properties of a general quantum-

dot driven out of equilibrium through the application of a bias. Our method

is based on:

• the Hershfield [67] idea that the out-of-equilibrium steady state can be

regarded as the equilibrium one with an Hamiltonian H∗(Φ) that includes

an effective non-equilibrium term proportional to the bias ΦY .

• the assumption that the effective Hershfield Hamiltonian H∗(Φ) describes
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Figure 5.9: (Color online) ∆ as a function of the bias V for Γ = 2 10−3,
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Figure 5.10: (Color online) Conductance as a function of the bias V for Γ =

2 10−3, U = 10−2 and J = 5 10−3,J = 8.5 10−3.

a local Fermi liquid theory in the Noziéres sense [68].

These ideas lead us to define an expression for the non-equilibrium operator Y

that, we think, should be valid if the bias is not too large compared with the

Kondo temperature.

In order to test our method, we have applied it to the simple single orbital

Anderson impurity model, finding a good qualitative accord with the observed

behavior in quantum dots for the expected regime of validity.
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Figure 5.11: (Color online) Impurity Green’s function for Γ = 2 10−3, U = 10−2,

J = 3.5 10−3 at equilibrium.
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Figure 5.12: (Color online) Impurity Green’s function for Γ = 2 10−3, U = 10−2,

J = 10−2 at equilibrium.

We have then studied within the Gutzwiller method the phase diagram of

the more complicated two-dot model Eq. (5.80) enlarging the variational space

to the wavefunction with a finite mean value of a BCS operator in the inter-bath

Cooper singlet channel. Within this expedient we have been able to partially

recover some of the correct qualitative features of the phase diagram, that

would not be accessible to the Gutzwiller method otherwise. Finally, we have

performed a preliminary (not rigorous) study of the two-dot model within our
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non-equilibrium generalization of the Guzwiller method. Our results suggest

that a second order transition can be driven by the bias starting from a Kondo-

like regime with a zero-bias anomaly. The simple explanation is that, as the

bias progressively decouple the leads from the two dots, the tendency of the

latter to couple among each other into a singlet state increases. These effects

enforce each other and finally lead to a drop in conductance that variationally

appears to be related to a second order phase transition.

The method that we have proposed has the important advantage to be

simple and flexible enough to deal with realistic situations. For example, the

idea to generalize the LDA + Gutzwiller method to non-equilibrium problems

seems us to be a very interesting perspective.





Chapter 6

Conclusions and Perspectives

In this thesis we have faced, by means of the Gutzwiller variational approach,

the following three different problems of current interest:

• The Fermi surface evolution in heavy fermions systems.

In this work we have applied the Gutzwiller ansatz to the Kondo lattice

model. We have computed its phase diagram as a function of conduction

electron density and Kondo exchange, finding that for any value of the density

there is an orbital selective Mott transition accompanied by a discontinuous

change of the Fermi surface. Away from the compensated regime the first order

transition occurs in concomitance with magnetism, while near the compensated

regime the f -localization occurs after the appearance of magnetism via a second

order transition (with a continuous change of the Fermi surface). We have

then studied the behaviour of the system when a uniform magnetic field is

applied to a paramagnetic state, finding that a first order phase transition -

accompanied by a abrupt increase of magnetization and a discontinuous change

of the conduction electron Fermi surface - can be induced upon increasing it

(metamagnetism).

Our results suggest that (without nesting) antiferromagnetism is a by-

product of the f -electron Mott localization rather than the outcome of the

competition between Kondo screening and RKKY interaction.

• The emergence of superconductivity upon doping a simple spin-liquid,

89
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We have considered the model of two Hubbard planes coupled by an inter-

plane hybridization. In particular, we have studied, within the Gutzwiller

approximation method, the melting induced by hole doping of the valence bond

crystal (a collection of inter-plane singlets) that exists at half-filling for large

enough inter-plane tunneling. We have found that a superconducting solution

emerges as soon as the non-magnetic Mott insulator is doped, which gives up to

a normal-metal phase for large enough doping. This behavior is closely related

to the RVB superconductivity scenario [26], and quite reminiscent of the actual

behavior of cuprates superconductors, although our model has nothing to do

with models for cuprates. This suggests that the RVB scenario might be correct

and relevant to the physics of high Tc superconductors, as originally claimed

by Anderson [26, 27].

• The quantum transport across a correlated microscopic object.

We have proposed a generalization of the Gutzwiller variational method for

studing steady-state properties of a general quantum-dot system driven out of

equilibrium by a finite bias.

The starting point of our idea has been the results by Hershfield [67], ac-

cording to whom the steady state value of certain observables can be regarded

as the equilibrium value calculated with a Boltzmannian density matrix con-

structed by a “non-equilibrium” Hamiltonian (the Hershfield Hamiltonian),

that includes an effective bias operator. Such operator, although is formally

well defined, can’t be generally calculated explicitly, and for that reason we

had to make several assumptions in the spirit of a local Landau Fermi liquid

hypothesis [68] to get to some expression that, we think, should be valid if the

bias is not too large.

We have tested our method applying it to the single-orbital Anderson im-

purity model, finding a good qualitative accord with the observed behavior in

quantum dots for the expected regime of validity, i.e. bias much smaller then

the Kondo temperature.

Next we have studied a two-dot model, see Eq. (5.80). Each dot is assumed

to be coupled to two leads, and the dot are coupled among each other by an

antiferromagnetic exchange. At equilibrium, no bias applied to the leads, this

model is known [125, 126] to posses a second order quantum phase transition
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between a Kondo screened phase and a Kondo unscreened one, as the inter-

dot exchange increases. The conventional Gutzwiller approximation using a

variational wavefunction that shares the same symmetry of the Hamiltonian,

is known to fail [127] in capturing the second order transition. For this reason

we have enlarged the variational space allowing the variational wavefunction

to posses a finite BCS order parameter, whose susceptibility is known to di-

verge at the QCP [126] although rigorously it can not spontaneously rise. This

expedient provides a better description of the actual phase diagram. Finally,

we have studied the model out of equilibrium using our non-equilibrium gen-

eralization of the Guzwiller method. Our preliminary results suggest that a

second order accompanied by a rapid drop of conductance can be induced by

the application of the bias.

We underline that our method is simple and flexible. Therefore we think

that it might be exploited in combination with electronic structure calculations

to provide more realistic description of nanocontacts.

While addressing all these problems, we have been forced to improve along

several directions the Gutzwiller method. In particular, we have found very

convenient to use a “mixed-basis” representation for the projector operators

|Γ〉〈Γ̃| that defines the Gutzwiller operator. Here |Γ〉 is a local configuration

in a known basis, e.g. multiplets with given electron number and total spin,

while |Γ̃〉 is a configuration in an unknown basis, which we assume to be the

“natural” one, namely that one which diagonalizes the single-particle local den-

sity matrix of the variational uncorrelated wavefunction. Indeed, one of the

issues that arise while applying a Gutzwiller projector to a set of many-body

operators is the ability to keep track of the transformation linking the physical

basis (e.g. the tight-binding free-electron orbitals) to the natural basis (the ba-

sis that diagonalizes the local density matrix computed on the single-particle

Slater determinant). The use of the mixed basis gauges-away this connection,

and enables us to forget about it until the end of the minimization procedure.

Moreover, the introduction of a new type of Gutzwiller parameters, correspond-

ing to the slave-boson saddle-point within the Kotliar-Ruckenstein mean-field

scheme, allows to further simplify the parametrization of the variational space.
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As a result, we achieved a considerable speed-up in the computation of the

energy-minimum, due to the reduced problem complexity. We think that our

scheme is suitable for applications to systems more complex than those dealt

with in this thesis, e.g. for combining the Gutzwiller scheme with ab-initio

calculations.
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Appendix A

Resonant model out of

equilibrium

In this appendix we discuss some results related with the resonant model that

are necessary in order to calculate the non-equilibrium energy functional that

we have introduced in chapter 5.

A.1 Equilibrium Hamiltonian and Fridel sum

rule

Let us consider the resonant model Hamiltonian

H =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

αkσ

Vk√
Ω

(d†σcαkσ +H.c.) +
∑

σ

ǫd (d†σdσ − nσ) (A.1)

and its correspondent Green’s function

G(z) =
1

z − ǫd − ∆(z)
. (A.2)

We want to solve the problem to calculate the value of ǫd such that the ground

state |Ψ0〉 of H0 satisfies the condition

〈Ψ0| d†σdσ |Ψ0〉 = n0
d . (A.3)

From now on we will assume that the half bandwidth W is the unit of energy

and that

Γ(ǫ) = Γ
√

1 − ǫ2 χ[−1,1](ǫ) , (A.4)
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where χ[−1,1](ǫ) is 1 if ǫ ∈ [−1, 1] and is 0 otherwise; then

∆(z) =

∫
dǫ

π

Γ(ǫ)

z − ǫ′
= Γ

(
z −

√
z2 − 1

)
. (A.5)

The spectral function of G(z) is

ρǫd(ǫ) = −1

π
ImG(ǫ+ i0+)

=
1

π

Γ
√

1 − ǫ2 χ[−1,1](ǫ)

(ǫ− ǫd − Γǫ)2 + Γ2(1 − ǫ2)
+ z δ(ǫ− ǫ∗) (A.6)

where

ǫ∗ =
|ǫd| (1 − Γ)

1 − 2Γ

{
−1 +

√
1 − (1 − 2Γ)

ǫ2d + Γ2

ǫ2d(1 − Γ)2

}

z =

(
1 +

ǫd − ǫ∗√
ǫ2 − 1

)
(A.7)

The value of ǫd such that condition (A.3) holds can be easily found numerically

as the solution of the Fridel sum rule

n0
d =

∫
dǫf(ǫ)ρǫd(ǫ) (A.8)

A.2 Non-equilibrium Hamiltonian energy

The Hershfield Hamiltonian H + ΦY defined in Eq. (A.1) can be expressed in

terms of the scattering operators

ψ†
αkσ = c†αkσ +

Vk√
Ω
g(ǫk) d

†
σ

+
∑

α′k′

VkVk′√
Ω

g(ǫk)

ǫk − ǫk′ + i0+
c†α′k′σ , (A.9)

where g(ǫ) = G(ǫ + i0+) is the retarded Green’s function of the impurity at

equilibrium, as it follows:

H + ΦY =
∑

α=−1,1

∑

kσ

(
ǫk + Φ

α

2

)
ψ†
αkσ ψαkσ . (A.10)
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We express the Hershfield Hamiltonian (A.10) in terms of c and d operators

H(Φ) = H0 + V̂ + ΦY (A.11)

where

H0 =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

σ

ǫd d
†
σdσ

V̂ =
∑

αkσ

Vk√
Ω

(d†σcαkσ +H.c.)

Y =
∑

αkσ

α

2
c†αkσcαkσ

+
∑

αkσ

α

2

∑

α′k′

VkVk′

Ω

g(ǫk′)

ǫk − ǫk′ + i0+
c†α′k′σcαkσ +H.c.

+
∑

αkσ

α

2

Vk√
Ω
g(ǫk) d

†
σcαkσ +H.c. . (A.12)

In order to calculate the non-local energy functional in our approximation

we need to calculate the energy gain δEΦ due to the presence of V̂ and ΦY in

H(Φ); a problem that can be solved using the Hellmann Feynman theorem.

Let us introduce the operator

Hλ(Φ) = H0 + λV̂ + ΦY (λ) (A.13)

where

Y (λ) =
∑

αkσ

α

2
c†αkσcαkσ

+
∑

αkσ

α

2

∑

α′k′

λ2VkVk′

Ω

g(ǫk′)

ǫk − ǫk′ + i0+
c†α′k′σcαkσ +H.c.

+
∑

αkσ

α

2

λVk√
Ω
g(ǫk) d

†
σcαkσ +H.c. (A.14)

and the correspondent minimum energy

E(λ) = 〈Ψ0(λ)| Hλ(Φ) |Ψ0(λ)〉 (A.15)

The energy gain δEΦ is

δEΦ =

∫ 1

0

dλ
dE
dλ

(A.16)
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where (Hellmann Feynman theorem)

dE
dλ

= 〈Ψ0(λ)| V̂ |Ψ0(λ)〉

+ Φ
d

dλ
〈Ψ0(λ)| Y (λ) |Ψ0(λ)〉 ; (A.17)

so that

δEΦ =

∫ 1

0

dλ 〈Ψ0(λ)| V̂ |Ψ0(λ)〉

+ Φ ( 〈Ψ0(1)| Y (1) |Ψ0(1)〉 − 〈Ψ0(0)| Y (0) |Ψ0(0)〉 ) . (A.18)

The next sections of this appendix are devoted to the explicit calculation

of the energy gain of the non-local energy functional out of equilibrium.

A.2.1 Non-equilibrium Green’s functions

We write down here the expansion of the c and d operators in terms of scattering

operators, that can be easily obtained inverting Eq. (A.9)

c†
ᾱk̄σ̄

= ψ†

ᾱk̄σ̄
+
∑

αk

Vk̄Vk
Ω

g∗(ǫk)

ǫk − ǫk̄ − i0+
ψ†
αkσ̄

d†σ̄ =
∑

αk

Vk√
Ω
g∗(ǫk)ψ

†
αkσ̄ , (A.19)

Eqs. (A.19) allows to calculate the spectral functions of any Green’s function

for the non-equilibrium Hamiltonian (A.10) using that

GΦ
ψαk ,ψα′k′

(z) = δαα′δkk′
1

z − (ǫk + Φα
2
)
, (A.20)

where GΦ
ψαk,ψα′k′

is the Green’s function of the scattering operators

GΦ
ψαk,ψα′k′

(z) = −
∫ β

0

dτezτ 〈Ψ0|ψαkσ(τ)ψ
†
α′k′σ |Ψ0〉 . (A.21)

We underline that the Green’s functions calculated withing the scattering

operators have not any direct physical meaning, and have to be intended as a

mathematical instrument that allow to calculate the average of any observable.
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The impurity Green’s function is

GΦ(z) =
∑

αk

V 2
k

Ω
|g(ǫk)|2

1

z − (ǫk + Φα
2
)

=
1

2

∑

α

∫
dǫ

ρ(ǫ)

z − (ǫ+ Φα
2
)
; (A.22)

while the mixed dc Green’s functions are

GΦ
αk(z) =

Vk√
Ω
g(ǫk)

1

z − (ǫk + Φα
2
)

+
Vk√
Ω

∑

k′α′

V 2
k′

Ω
|g(ǫk′)|2

1

ǫk′ − ǫk + i0+

1

z − (ǫk′ + Φα′

2
)
. (A.23)

Notice that ∑

α

GΦ
αk(z) =

∑

α

G0
αk

(
z + Φ

α

2

)
. (A.24)

Let us calculate now the the cc Green’s functions out of equilibrium. It can

be easily verified that

GΦ
α1k1,α2k2

(z) = δk1k2δα1α2

1

z − (ǫk1 + Φα1

2
)

+
1

2

∑

α

X0
α1k1,α2k2

(
z + Φ

α

2

)

+ α1
V 2
k

Ω

g∗(ǫk1)

ǫk1 − ǫk2 − i0+

∑

α

α

2

1

z − (ǫk1 + Φα
2
)

+ α2
V 2
k

Ω

g(ǫk2)

ǫk2 − ǫk1 + i0+

∑

α

α

2

1

z − (ǫk2 + Φα
2
)
, (A.25)

where

X0
α1k1,α2k2

(z) =
1

Ω

Vk1
z − ǫk1

G0(z)
Vk2

z − ǫk2
. (A.26)

When k1 = k2 and α1 = α2 Eq. (A.25) becomes

GΦ
αk,αk(z) =

1

z −
(
ǫk + Φα

2

)

+
1

2

∑

α′

X0
αk,αk

(
z + Φ

α′

2

)

+ α
V 2
k

Ω

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)
. (A.27)
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that is divergent when Φ 6= 0. We observe that

∑

α

GΦ
αk,αk(z) =

∑

α

G0
αk,αk

(
z + Φ

α

2

)
, (A.28)

is not divergent, while

∑

α

α

2
GΦ
αk,αk(z) =

∑

α

α

2

1

z − (ǫk + Φα
2
)

+
V 2
k

Ω

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)
, (A.29)

contains a divergent term proportional to 1/Ω, being Ω the volume of the

system. In order to understand the physical meaning of the divergent term let

us consider the charge difference of the two leads in the non-equilibrium steady

state

δQΦ = T
∑

ω

e−iω0+
∑

kα

αGΦ
αk,αk(iω) (A.30)

and the charge difference of the two leads at the initial time - before that the

the tunnelling interaction is turned on -

δQ0 = T
∑

ω

e−iω0+
∑

kα

αG0
αk,αk(iω) . (A.31)

The charge passed from one lead to the other during the infinite transient time

necessary to reach the steady state is then

δQΦ − δQ0 = 2
V 2
k

Ω

∑

kα

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′f

(
ǫk + Φ

α′

2

)
= ∞ ; (A.32)

that is the expected result.

A.2.2 V̂ energy gain

We calculate now the energy gain δE due to the tunnelling term out of equi-

librium, namely the first term in Eq. (A.18).

Let us define

Hλ =
∑

αkσ

ǫk c
†
αkσcαkσ +

∑

αkσ

λVk√
Ω

(d†σcαkσ +H.c.) +
∑

σ

ǫd (d†σdσ − nσ) . (A.33)
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We consider the Hamiltonian

Hλ + ΦYλ =
∑

α=−1,1

∑

kσ

(
ǫk + Φ

α

2

)
ψ†
αkσ(λ)ψαkσ(λ) (A.34)

where

ψ†
αkσ(λ) = c†αkσ +

λVk√
Ω
gλ(ǫk) d

†
σ

+
∑

α′k′σ′

λ2VkVk′

Ω

gλ(ǫk)

ǫk − ǫk′ + i0+
c†α′k′σ′ , (A.35)

The derivative of the average of the tunnelling term respect to the coefficient

λ is, because of the Hellmann-Feynman theorem,

1

2

∂δEΦ

∂λ
= 2T

∑

ω

e−iω0+
∑

kα

Vk√
Ω
Gα
dk(iω, λ) + c.c. (A.36)

where

Gα
dk(iω, λ) =

λVk√
Ω
g(ǫk)

1

iω − (ǫk + Φα
2
)

+ λ3
∑

k′α′

V 2
k′

Ω
|g(ǫk′)|2

Vk√
Ω

1

ǫk′ − ǫk + i0+

1

iω − (ǫk′ + Φα′

2
)
. (A.37)

It can be easily found that

2T
∑

ω

e−iω0+
∑

αk

Vk√
Ω
Gα
dk(iω, λ) + c.c.

= 2
∂

∂λ

∑

α

∫
dǫ

2π
f
(
ǫ+ Φ

α

2

)
Im [log (ǫ− ǫd − ∆λ(ǫ))] , (A.38)

where

∆λ(ǫ) = λ2∆(ǫ) . (A.39)

Integrating Eq. (A.36) we obtain that

δEΦ =
∑

α

∫
dǫ

π
f
(
ǫ+ Φ

α

2

)
Im

[
log

(
ǫ− ǫd − ∆(ǫ)

ǫ− ǫd

)]

= −2T
∑

ω

1

2

∑

α

log

((
iω + Φα

2

)
− ǫd − ∆

(
iω + Φα

2

)
(
iω + Φα

2

)
− ǫd

)
(A.40)

Let us now consider now the energy gain due to the operator Y .
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A.2.3 Y energy gain

In this section we calculate the energy gain δE due to the tunnelling term out

of equilibrium, correspondent to the second term in Eq. (A.18).

Let us concentrate first on the energy of the “current” operator

Ymixed(λ) =
∑

αkσ

α

2

λVk√
Ω
g(ǫk) d

†
σcαkσ +H.c. . (A.41)

We have to calculate

〈Ψ0(1)| Ymixed(1) |Ψ0(1)〉 − 〈Ψ0(0)| Ymixed(0) |Ψ0(0)〉

=
∑

αkσ

α

2

Vk√
Ω
g(ǫk) 〈Ψ0(1)| d†σcαkσ |Ψ0(1)〉 + c.c. , (A.42)

that can be easily calculated using Eq.(A.23). The result is

〈Ψ0(1)| Ymixed(1) |Ψ0(1)〉 − 〈Ψ0(0)| Ymixed(0) |Ψ0(0)〉 = −
∫ Φ

2

−Φ

2

dǫ ρ(ǫ) , (A.43)

where

ρ(ǫ) = −1

π
Im g(ǫ) . (A.44)

Let us consider now the contribution of the operator

Y
(1)
leads =

∑

αkσ

α

2
c†αkσcαkσ . (A.45)

that is

〈Ψ0(1)| Y (1)
leads |Ψ0(1)〉 − 〈Ψ0(0)| Y (1)

leads |Ψ0(0)〉
=
∑

αkσ

α

2
〈Ψ0(1)| c†αkσcαkσ |Ψ0(1)〉 −

∑

αkσ

α

2
〈Ψ0(0)| c†αkσcαkσ |Ψ0(0)〉

= T
∑

ω

∑

kσ

(
∑

α

α

2
GΦ
αk,αk(iω)

)
−
∑

αkσ

α

2
〈Ψ0(1)|ψ†

αkσψαkσ |Ψ0(1)〉

= T
∑

ω

∑

kσ

V 2
k

Ω

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)
, (A.46)

where we have used Eq. (A.29).
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Let us consider, finally, the contribution of the operator

Y
(2)
leads =

∑

αkσ

α

2

∑

α′k′

VkVk′

Ω

g(ǫk′)

ǫk − ǫk′ + i0+
c†α′k′σcαkσ +H.c. . (A.47)

Its energy contribution - in the termodinamic limit - is

〈Ψ0(1)| Y (2)
leads |Ψ0(1)〉 − 〈Ψ0(0)| Y (2)

leads |Ψ0(0)〉

= T
∑

ω

∑

kσ

V 2
k

Ω

g(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)

+ c.c.

= T
∑

ω

∑

kσ

V 2
k

Ω

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)

; (A.48)

that is equal to the infinite energy contribution of Y
(1)
leads, and that is, explicitly,

T
∑

ω

∑

kσ

V 2
k

Ω

g(ǫk) − g∗(ǫk)

2i 0+

∑

α′

α′ 1

z − (ǫk + Φα′

2
)

= −∞
∫ Φ

2

−Φ

2

dǫΓ(ǫ)ρ(ǫ) (A.49)

A.3 The current

We consider the current operator

Î = −i
∑

kσ

Vk√
Ω

(
d†σckσ,−1 −H.c. .

)
(A.50)

where, as usual, β = −1 is the label of the left lead. The average of Î on the

ground state of the Hershfield Hamiltonian H + ΦY defined in Eq. (A.10) is

I = iT
∑

ω

e−iω0+
∑

kσ

Vk√
Ω

(
GΦ

−1 k(iω) − c.c.
)

=

∫ Φ

2

−Φ

2

dǫΓ
√

1 − ǫ2 ρ(ǫ) . (A.51)





Appendix B

Detailed calculations for the

two-dots model with Gutzwiller

In chapter 5 we have studied the two-dots model within the Gutzwiller ap-

proximation. In order to simplify our calculations we have considered a vari-

ational wavefunction invariant under the action of a symmetry group G that

doesn’t satisfy condition (2.46), namely the condition to apply the mathemat-

ical method developed in chapter 4. For this reason a specific treatment has

been necessary.

B.1 The symmetry group of the Gutzwiller

wavefunction

It is well known that the two-dot system Hamiltonian Eq. (5.80) is invariant,

respect to the spin rotations group of the two dots SU(2)spin and, provided

that the two baths are particle-hole invariant, respect to the isospin rotations

group SU(2)charge, generated by the operators

Iz = n1 + n2 − 2

I+ = d†1↑d
†
2↓ − d†1↓d

†
2↑

I− = (I+)† . (B.1)
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Nevertheless, we analyze the problem allowing the wavefunction to have a finite

value of

∆ = 〈d†1↑d
†
2↓〉 , (B.2)

partially breaking the SU(2)charge symmetry. Namely, we consider only varia-

tional functions invariant under the action of the group G which contains the

following transformations:

• the spin rotation group SU(2)spin,

• the symmetry under permutation of the two dots,

• the Gauge transformation

d1↑ → d1↑e
iφ1 ; d1↓ → d1↓e

iφ2

d2↓ → d2↓e
−iφ1 ; d2↑ → d2↑e

−iφ2 , (B.3)

• the particle-hole transformation

d†1↑ → d2↓ ; d†2↓ → d1↑

d†1↓ → −d2↑ ; d†2↑ → −d1↓ . (B.4)

Notice that the particular choice of the particle-hole symmetry (B.4) allows ∆,

defined in Eq. (B.2), to be finite.

B.2 The natural basis

Let us introduce the spinor

φ† =
(
d†1↑ d2↓ d

†
2↑ d1↓

)
. (B.5)

The variational density matrix

Cij = 〈Ψ0|φ†
iφj |Ψ0〉 (B.6)

must have, because of the assumed invariance of |ψ0〉 respect to G, the following

form

C =




1
2

δ 0 0

δ 1
2

0 0

0 0 1
2

δ

0 0 δ 1
2
.


 (B.7)
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We observe that the orthogonal transformation which diagonalizes (B.7) does

not depends on the specific value of δ; namely, it does not depend on the

specific variational state, provided that it is invariant under the action of G.

The natural basis is

f †
1↑ =

d†1↑ + d2↓√
2

; f †
1↓ =

d†1↓ − d2↑√
2

f †
2↑ =

d†2↑ + d1↓√
2

; f †
2↓ =

d†2↓ − d1↑√
2

(B.8)

If we introduce the spinor

φ†
0 =

(
f †

1↑ f2↓ f
†
2↑ f1↓

)
(B.9)

the correspondent variational density matrix

C0
ij = 〈Ψ0|φ†

0iφ0j |Ψ0〉 (B.10)

is

C0 =




1
2

+ δ 0 0 0

0 1
2
− δ 0 0

0 0 1
2

+ δ 0

0 0 0 1
2
− δ .


 (B.11)

B.3 The parametrization strategy

The Gutzwiller projector P must be invariant under the action of G. The

parametrization of those projectors which satisfy the symmetry condition

[P, G] = 0 (B.12)

is very easy if we chose to represent it in the basis of states that decompose

the local Hilbert space in irreducible representations of SU(2)spin:

PR =
∑

{Γ̃α}{Γ̃′
α}

λ̃{Γ̃α}{Γ̃′
α}

(R) |{Γ̃α},R〉〈{Γ̃′
α},R|, (B.13)

We consider the transformation V which relates the Fock original basis |{Γα},R〉
to the correlated basis |{Γ̃α},R〉

V |{Γ̃α},R〉 = |{Γα},R〉 (B.14)
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and the transformation U which relates the Fock natural basis |{nα},R〉 to the

Fock original basis |{Γα},R〉

U |{Γα},R〉 = |{nα},R〉 . (B.15)

Using relations (B.14) and (B.15) we can easily find that the coefficients of the

natural-basis representation of the Gutzwiller projector

PR =
∑

{nα}{n′
α}

λ{nα}{n′
α}(R) |{nα},R〉〈{n′

α},R| , (B.16)

are related with the coefficients of the correlated-basis representation (B.13) as

it follows:

λ = (V U)† λ̃ (V U) (B.17)

We introduce, as in chapter 2, the occupation-probability P 0 in the natural

basis

P 0
{nα}{mα} ≡ 〈Ψ0| |{mα}〉〈{nα}| |Ψ0〉 = δ{nα}{mα} P

0
{nα} , (B.18)

and the the matrix

φ = λ
√
P 0 . (B.19)

In terms of φ̃, the Gutzwiller constraints are

Tr
(
φ̃† φ̃

)
= 1, (B.20)

Tr
(
φ̃† φ̃ f̃ †

αf̃β

)
= 〈Ψ0| f †

αfβ |Ψ0〉 = δαβ n
0
α, (B.21)

Tr
(
φ̃† φ̃ f̃ †

αf̃
†
β

)
= 〈Ψ0| f †

αf
†
β |Ψ0〉 = 0, (B.22)

where

f̃ †
α = (V U)† f †

α (V U) (B.23)

is the representation of the natural-basis Fock operator f †
α in the |{Γα},R〉

representation.

We observe that all the Gutzwiller constraints on the matrix of variatonal

parameters φ are automatically satisfied: equations

Tr
(
φ̃† φ̃ f̃ †

1σf̃
†
2σ

)
= 0

Tr
(
φ̃† φ̃ f̃ †

α↑f̃
†
α↓

)
= 0 (B.24)
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are satisfied because of the invariance respect to the Gouge transformation

(B.3); while the constraints

Tr
(
φ̃† φ̃

(
f̃ †

1↑f̃
†
2↓ + f̃ †

1↓f̃
†
2↑

))
= 0

Tr
(
φ̃† φ̃

(
f̃ †

1↑f̃
†
2↓ − f̃ †

1↓f̃
†
2↑

))
= 0 (B.25)

are satisfied because of the invariance respect to SU(2)spin and to the particle-

hole transformation (B.4) respectively.

Following the parametrization strategy described in chapter 2, we consider

the most general matrix φ̃ invariant under the action of G and which satisfy

the normalization condition (B.20) and we force the uncorrelated wavefunction

|Ψ0〉 to satisfy the Gutzwiller constraints Eqs. (B.21) and (B.22).

B.4 The non-local equilibrium energy functional

Let us consider the two-dots Hamiltonian

H =
∑

α=−1,1

∑

βkσ

ǫk c
†
αβkσcαβkσ +

∑

α=−1,1

∑

βkσ

Vk√
Ω
d†σβcαβkσ +H.c.

+ J S1S2 +
∑

β

U

2
(nβ − 1)2 . (B.26)

When we calculate the average of the tunnelling operator

V̂ =
∑

α=−1,1

∑

βkσ

Vk√
Ω
d†σβcαβkσ +H.c. (B.27)

on a normalized correlated wavefunction which satisfies the Gutzwiller con-

straints (B.21) and (B.22), the result is that

〈Ψ0| P†
d V̂ Pd |Ψ0〉 = 〈Ψ0| V̂R |Ψ0〉 , (B.28)

where the renormalized tunnelling V̂R is obtained effectively transforming the

impurity operators d†σβ as it follows:

d†σβ → Rd†σβ , (B.29)
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where

R =
Tr
(
φ̃†f̃ †

σβφ̃ f̃σβ

)

√
n(1 − n)

. (B.30)

We have now to calculate the uncorrelated state |ψ0〉 that minimizes the renor-

malized Hamiltonian

HR =
∑

α=−1,1

∑

βkσ

ǫk c
†
αβkσcαβkσ + V̂R (B.31)

and satisfies the conditions (B.21) and (B.22). This state can be calculated

within the Lagrange multipliers method, namely, |ψ0〉 is the ground state of

the Hamiltonian

HLag
R =

∑

α=−1,1

∑

βkσ

ǫk c
†
αβkσcαβkσ + V̂R

+ ∆

(
d†1↑d

†
2↓ − d†1↓d

†
2↑

2
+H.c.− δ

)

+µ
∑

βσ

(
d†βσdβσ −

1

2

)
(B.32)

with ∆ and µ such that

〈Ψ0| d†βσdβσ |Ψ0〉 =
1

2

〈Ψ0| d†1↑d
†
2↓ − d†1↓d

†
2↑ |Ψ0〉 = δ . (B.33)

The problem is simplified if we assume that the two leads are particle-hole

symmetric. If this condition is satisfied one can apply, as we shall prove later, a

unitary transformation on the c†σβ and d†βσ operators of the Hamiltonian (B.32)

that leaves unchanged the tunnelling term

V̂R =
∑

α=−1,1

∑

βkσ

RVk√
Ω
d†σβcαβkσ +H.c. (B.34)

and the leads Hamiltonian

T̂ =
∑

α=−1,1

∑

βkσ

ǫk c
†
αβkσcαβkσ , (B.35)



B.5 The non-local non-equilibrium energy functional 111

and that transforms HLag
R in the Hamiltonian of two equal uncoupled single-dot

systems

H′Lag
R =

∑

β

{
∑

α=−1,1

∑

kσ

ǫk c
†
αβkσcαβkσ +

∑

α=−1,1

∑

kσ

RVk√
Ω
d†σβcαβkσ +H.c.

+
∑

α=−1,1

∑

σ

ǫd (d†σβdσβ − n)

}
≡
∑

β

H′Lag
R (β) . (B.36)

being

n =
1

2
+ δ . (B.37)

Such operation, being unitary, doesn’t change the minimum energy of the

original Hamiltonian HLag
R . The chemical potential ǫd can be calculated fol-

lowing section A.1.

B.5 The non-local non-equilibrium energy func-

tional

Following the procedure described in chapter 5, we construct the operator

YR from the correspondent equilibrium Hamiltonian HLag
R - the Hamiltonian

defined in Eq. (B.32) - within the scattering operators, and we find the state

that minimizes the mean value of

H∗
R(φ) = HLag

R + ΦYR . (B.38)

The operator YR is formally the asintotic time evolution of the operator

Y
(0)
R =

∑

α=−1,1

∑

βkσ

α

2
c†αβkσcαβkσ (B.39)

generated by HLag
R . In order to calculate

YR = eiH
Lag
R

T Y
(0)
R e−iH

Lag
R

T (B.40)

we can perform, similarly to what we did for the equilibrium problem, a unitary

transformation U on the c†σβ and d†βσ operators that leaves unchanged the
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leads Hamiltonian T̂ and the operator Y
(0)
R , and that transforms HLag

R in the

Hamiltonian of two uncoupled Hamiltonian H′Lag
R defined in Eq. (B.36)

H′Lag
R ≡

∑

α=−1,1

∑

βkσ

ǫk ψ
′†
αβkσψ

′
αβkσ (B.41)

and, consequently, that transforms YR in

Y
′

R = eiH
′Lag
R

T Y
(0)
R e−iH

′Lag
R

T

≡
∑

α=−1,1

∑

βkσ

α

2
ψ′†
αβkσψ

′
αβkσ , (B.42)

where

ψ′†
αβkσ = c†αβkσ +

RVk√
Ω
gǫdR (ǫk) d

†
βσ

+
∑

α′β′k′σ′

R2 VkVk′

Ω

gǫdR (ǫk)

ǫk − ǫk′ + i0+
c†α′β′k′σ′ . (B.43)

In order to calculate the non-equilibrium energy functional we have now to find

the state |ψ0〉 that minimizes the energy of

H′∗
R(Φ) =

∑

α=−1,1

∑

βkσ

(
ǫk + Φ

α

2

)
ψ′†
αβkσψ

′
αβkσ , (B.44)

representing two uncoupled single-orbital Hershfield Hamiltonians, where ǫd is

the same of Eq.(B.36).

B.5.1 Useful canonical transformation

Let us consider an impurity model coupled to a particle-hole symmetric infinite

bath. The Hamiltonian is

H =
2∑

a=1

∑

σ

∫ D

−D

dǫ

[
ǫ c†ǫaσcǫaσ + V

(
c†ǫaσdaσ +H.c.

)
]

+∆
(
d†1↑d

†
2↓ + d†2↑d

†
1↓ +H.c.

)
.
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We can introduce the Nambu spinors

Ψ1ǫ =

(
cǫ1↑

−c†−ǫ2↓

)
,

Ψ2ǫ =

(
cǫ2↑

−c†−ǫ1↓

)
,

D1 =

(
d1↑

d†2↓

)
,

D2 =

(
d2↑

d†1↓

)
,

as well as their hermitean conjugate operators. In the Nambu space we intro-

duce the Pauli matrices τi, i = 0, . . . , 3, where τ0 is the identity. In the Nambu

language the Hamiltonian reads

H =
2∑

a=1

∫ D

−D

dǫ

[
ǫΨ†

aǫ τ0 Ψ†
aǫ + V

(
Ψ†
aǫ τ0Da +H.c.

)
]

+∆
∑

a

D†
a τ1Da.

The first two terms only involve τ0, hence are invariant under any unitary

transformation in the Nambu space. In particular, we consider the transfor-

mation

Ψaǫ = U Φaǫ ≡ e−i
π
4
τ2 Φaǫ,

Da = U Fa ≡ e−i
π
4
τ2 Fa .

Since

ei
π
4
τ2 τ1 e−i

π
4
τ2 = τ3,

it follows that

H =
2∑

a=1

∫ D

−D

dǫ

[
ǫΦ†

aǫ τ0 Φ†
aǫ + V

(
Φ†
aǫ τ0 Fa +H.c.

)
]

+∆
∑

a

F †
a τ3 Fa ,
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which is now a diagonal Hamiltonian that describes two independent resonant

level models. Note that a bath chemical potential is not invariant under the

above unitary transformation. In fact

−µN = −µ
2∑

a=1

∑

σ

∫ D

−D

dǫ c†ǫaσcǫaσ = −µ
2∑

a=1

∫ D

−D

dǫΨ†
aǫ τ3 Ψaǫ + const.

= µ
2∑

a=1

∫ D

−D

dǫΦ†
aǫ τ1 Φaǫ + const.

Now we consider two baths α = ±1 at different chemical potential. The Hamil-

tonian reads

H =
∑

α=±1

2∑

a=1

∑

σ

∫ D

−D

dǫ

[
ǫ c†ǫαaσcǫαaσ + V

(
c†ǫαaσdaσ +H.c.

)
]

+∆
(
d†1↑d

†
2↓ + d†2↑d

†
1↓ +H.c.

)
,

while the bias term is

ΦY0 = Φ
1

2

∑

α=±1

2∑

a=1

∑

σ

∫ D

−D

dǫ α c†ǫαaσcǫαaσ.

In this case I introduce different Nambu spinors

Ψα 1ǫ =

(
cǫα1↑

−c†−ǫ−α2↓

)
,

Ψα 2ǫ =

(
cǫα2↑

−c†−ǫ−α1↓

)
,

D1 =

(
d1↑

d†2↓

)
,

D2 =

(
d2↑

d†1↓

)
,

through which the Hamiltonian can be rewritten as

H =
∑

α=±1

2∑

a=1

∫ D

−D

dǫ

[
ǫΨ†

αaǫ τ0 Ψ†
αaǫ + V

(
Ψ†
αaǫ τ0Da +H.c.

)
]

+∆
∑

a

D†
a τ1 Da,
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while the bias as

ΦY0 =
Φ

2

∑

α=±1

2∑

a=1

∫ D

−D

dǫ αΨ†
αaǫ τ0 Ψαaǫ.

Under the unitary transformation

Ψαaǫ = U Φα aǫ ≡ e−i
π
4
τ2 Φα aǫ,

Da = U Fa ≡ e−i
π
4
τ2 Fa ,

the Hamiltonian becomes diagonal, i.e.

H =
∑

α=±1

2∑

a=1

∫ D

−D

dǫ

[
ǫΦ†

αaǫ τ0 Φ†
α aǫ + V

(
Φ†
αaǫ τ0 Fa +H.c.

)
]

+∆
∑

a

F †
a τ3 Fa ,

as well as the bias

ΦY0 =
Φ

2

∑

α=±1

2∑

a=1

∫ D

−D

dǫ αΦ†
α aǫ τ0 Φαaǫ.

This also shows that the form of the Gutzwiller projector compatible with the

symmetry at equilibrium remains unaltered also out-of-equilibrium.
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netic and transport properties of a coupled hubbard bilayer with electron

and hole doping. Physical Review B (Condensed Matter and Materials

Physics), 77(14):144527, 2008.

[102] S. S. Kancharla and S. Okamoto. Band insulator to Mott insulator tran-

sition in a bilayer Hubbard model, 2007.

[103] Nejat Bulut, Douglas J. Scalapino, and Richard T. Scalettar. Nodeless

d-wave pairing in a two-layer hubbard model. Phys. Rev. B, 45(10):5577–

5584, Mar 1992.

[104] Raimundo R. dos Santos. Magnetism and pairing in hubbard bilayers.

Phys. Rev. B, 51(21):15540–15546, Jun 1995.



BIBLIOGRAPHY 127

[105] Andreas Fuhrmann, David Heilmann, and Hartmut Monien. From Mott

Insulator to Band Insulator: A DMFT Study. Phys. Rev. B, 73:245118,

2006.

[106] Manuela Capello, Federico Becca, Michele Fabrizio, Sandro Sorella, and

Erio Tosatti. Variational Description of Mott Insulators. Phys. Rev.

Lett., 94(2):026406, 2005.

[107] Leon Balents and Matthew P. A. Fisher. Weak-coupling phase diagram

of the two-chain hubbard model. Phys. Rev. B, 53(18):12133–12141, May

1996.

[108] H. J. Schulz. Metal-insulator transition in the two-chain model of corre-

lated fermions. Phys. Rev. B, 59(4):R2471–R2473, Jan 1999.

[109] A. Smogunov, Andrea Dal Corso, A. Delin, R. Weht, and E. Tosatti.

Colossal magnetic anisotropy of monatomic free and deposited platinum

nanowires. Nature, 3:22, 2008.

[110] A. Smogunov, A. Dal Corso, and E. Tosatti. Ballistic conductance

and magnetism in short tip suspended Ni nanowires. Phys. Rev. B,

73(7):075418, 2006.

[111] Alexander Smogunov, Andrea Dal Corso, and Erio Tosatti. Mag-

netic phenomena, spin-orbit effects, and Landauer conductance in Pt

nanowire contacts: Density-functional theory calculations. Phys. Rev.

B, 78(1):014423, 2008.

[112] Kenneth G. Wilson. Rev. Mod. Phys., 47:773, 1975.

[113] Ralf Bulla, Theo A. Costi, and Thomas Pruschke. Numerical renormal-

ization group method for quantum impurity systems. Rev. of Mod. Phys.,

80(2):395, 2008.

[114] Herbert Schoeller and Jürgen König. Real-Time Renormalization

Group and Charge Fluctuations in Quantum Dots. Phys. Rev. Lett.,

84(16):3686–3689, 2000.



128 BIBLIOGRAPHY

[115] D. Jacob, K. Haule, and G. Kotliar. Kondo Effect and Conductance of

Nanocontacts with Magnetic Impurities. Phys. Rev. Lett., 103(1):016803,

2009.

[116] Procolo Lucignano, Riccardo Mazzarello, Alexander Smogunov, Michele

Fabrizio, and Erio Tosatti. Kondo conductance in an atomic nanocontact

from first principles. Nat. Mater., 8:563, 2009.

[117] Herbert Schoeller and Jürgen König. Real-Time Renormalization

Group and Charge Fluctuations in Quantum Dots. Phys. Rev. Lett.,

84(16):3686–3689, 2000.

[118] J. E. Han and R. J. Heary. Imaginary-Time Formulation of Steady-State

Nonequilibrium: Application to Strongly Correlated Transport. Phys.

Rev. Lett., 99(23):236808, 2007.
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