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LMPC: Laser Microdissection Pressure Catapulting 
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TH: Tyrosine Hydroxylase 

TSS: Trascription Starting Site 
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Note: The abbreviations LCM and LMPC are used interchangeably in the text.  
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ABSTRACT 
 
 
 

The Central Nervous System (CNS) contains an enormous variety of cell 

types which organize in complex networks. The lack of adequate  markers to 

discern unequivocally among this cellular heterogeneity make the task of 

dissecting out such neural networks and the cells that comprise them very 

challenging. The present study represents a “bottom-up” approach that entails a 

description of A9 and A10 nuclei, which are components of the mesencephalic 

dopaminergic system, and the identification of their molecular make-up through 

microarray analysis of their gene expression profiles.  

These mesencephalic dopaminergic nuclei give rise to the mesocortical 

and mesostriatal projections and are well known for their roles in initiation of 

movement, reward behaviour and neurobiology of addiction.  Moreover, in post 

mortem brains of Parkinson Disease patients a specific topographic pattern of 

degeneration of these neurons, also recapitulated in experimental animal models, 

is noted, with A9 neurons presenting with a higher vulnerability to degeneration 

with respect to A10 cells among which, neuron loss is almost negligible.  

Molecular differences may be at the basis of this different susceptibility. 

 In this study we have optimized a protocol for laser-assisted 

microdissection of fluorescent-expressing cells and have taken advantage of a line 

of transgenic mice TH-GFP/21-31, which express GFP under the TH promoter in 

all CA cells, to guide laser capture microdissection of A9 and A10 mDA neurons 

for differential informative cDNA microarray profiling.  

Results show that our optimized method retains the GFP-fluorescence of 

DA cells and achieves good tissue morphology visualization. Moreover, RNA of 

high quality and good reproducibility of hybridizations support the validity of the 

protocol. Many of the genes that resulted differentially expressed from this 

analysis were found to be genes previously known to specifically define the 

different identities of the two DA neuronal nuclei. Transcripts were verified for 

expression, in DA neurons, using the collection of in situ hybridization in the 

Allen Brain Atlas. We have identified 592 differentially expressed transcripts 
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(less than 8%) of which 242 showing higher expression in A9 and 350 showing 

higher expression in A10. Categorical analysis showed that transcripts associated 

with mitochondria and energy production were enriched in A9, while transcripts 

involved in redox homeostasis and stress response resulted enriched in A10. Of all 

the differentially expressed genes, eight transcripts (Mif, Hnt, Ndufa10, Aurka, 

Cs, enriched in A9 neurons and Pdia5, Whrn, and Gpx3 enriched in A10 neurons), 

verified with the Allen Brain Atlas and not noted or confirmed as differentially 

expressed before, emerged from this analysis. These and other selected genes are 

discussed.  
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INTRODUCTION 
 
 

 
1. 1 NEURONAL CELL TYPES  

 

1.1.1 A historical perspective 
 
 

The mammalian brain is the most intricated biological structure known 

and still the scale of its complexity is grossly underestimated. It is composed of 

tens to hundreds of areas, each containing a comparable number of distinct cell 

types, about a trillion nerve cells in addition to astrocytes, oligodendrocytes and 

microglia. Identification and classification of these different cell types that 

constitute the elementary building blocks of the brain is at the basis of 

understanding brain circuitry and function. In fact, one of the key questions of 

brain microcircuitry studies is the degree to which a single canonical circuit 

comprised of a set of canonical cell types can be recognized across cortical areas 

(Monyer et al., 2004). Many neural cell types have been known for over a century, 

but the coverage has been spotty and far from complete.   

  
Figure 1. Camillo Golgi  

               (1843-1926) 

Systematic analysis of neuronal 

diversity started over 125 years ago 

with the publication of a technique 

for silver staining (black reaction or 

reazione nera) by Camillo Golgi that 

revolutionized histological studies of 

the nervous system. The Golgi 

method consisted in submerging 

 

 small pieces of nervous tissue in an  

 osmium – bichromic solution for   

several days, following which the 

pieces of tissue were left in a fresh 
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solution of silver nitrate for a few more days (Valverde, 1970). As a result some 

cells became filled with a fine-silver chromate precipitate that made them visible 

in their entirety against a translucent yellow background (Figure 2). Because this 

technique allowed the reaction of only a few, widely separated cells in a sample of 

cell-dense neural tissue, Golgi was able to observe for the first time an incredible 

morphological diversity amongst neurons. He could examine many of the 

fundamental cell types from various regions of the central nervous system such as 

the olfactory bulb, cerebral cortex, spinal cord and the cerebellum (including the 

sole output neurons of the cerebellar cortex, the Purkinje cells). At about the same 

time Ramon y Cajal used a modified Golgi method for his survey of the retina and  

                            
 

Figure 2. Photomicrographs from Cajal’s preparations (housed in the museo Cajal at the Cajal 
Institute, Madrid, Spain) of the cerebral cortex of a newborn infant, showing neurons impregnated 
by the Golgi stain. “Cajal on the cerebral cortex”, Oxford University Press, New York, 1988. 
 

 
Figure 3. Ramon y Cajal (1852-1934) 
 

the cerebellum. In his analysis of 

flow of impulses in these regions, he 

confirmed the cell types that Golgi 

had described in the cerebellum, and 

added a detailed description of the 

two types of afferent fibers to the 

cerebellar cortex, the “mossy” and 

“climbing” fibers.  He recognized 

that Golgi’s large basket cells of the 

cerebellar cortex were distinct 

functional entities and could only 
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exert an effect upon the white matter through their axon terminations on the cell 

bodies of Purkinje cells (Cajal 1888). This observation led him to the idea of the 

“connections by contact” and his “connectionist view of the nervous system”, 

which demolished the old network theory, supported by Golgi, and resulted in the 

formulation of the Neuron Doctrine by Waldeyer (1891) in the form that we know 

it today. His illustrations of the retina, with the description the of major cell types 

that constitute it, was restricted horizontally and extended vertically, reflecting his 

view for a unidirectional flow of nerve signals. 

                                               

           
Figure 4.  Drawings made by Ramon y Cajal of the retina and the cerebellar cortex, respectively. 
The variety of cell types recognized and the interwiring of the neurons into polarized circuits, 
allowing for a unidirectional flow of nerve signals, is evident.    
 
  
  The recognition that neurons were distinct functional entities coming in a 

variety of types that interconnected in specific ways to form circuits, underlying 

specific brain functions, laid the modern basic principles of neuroscience and 

started off a systematic analysis of neuronal types.  

 

1.1.2 How many different neuronal cell types exist ? 

 

Traditionally, cell types have been defined on the basis of a wide variety of 

characteristics including anatomical location, morphology, intrinsic firing 
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patterns, synaptic physiology, expression of particular neurotransmitters and 

receptors, presence or absence of particular marker genes, such as those encoding 

neuropeptides and calcium binding proteins. In fact, different structure - intending 

here by structure both morphology and the expression of functionally important 

proteins - indicates different function. The commonest way to distinguish between 

different neuronal types has been the shape of a cell, as the shape is a direct 

reflection of its synaptic connections. The methods that typically have been used 

to reveal the morphology of a cell fall in three main categories: 1) staining 

methods such as the Golgi technique, methylene blue or the reduced silver stain, 

2) filling the cell with a dye, such as biocytin, through a microelectrode, and 3) 

other histochemical methods that rely on biochemical markers present in single 

neuronal types. Increasingly and with the development of immunohistochemistry 

in the 1960s and 1970s, cells have been distinguished by the expression of 

genes/proteins. Occasionally, cells have been first distinguished by patterns of 

electric activity.   

In recent years, the development of sensitive and reproducible mRNA in 

situ hybridization techniques have permitted the systematic analysis of gene 

expression in neurons. Furthermore, transgenic (promoter-based and BAC-based) 

and knock in approaches have made it possible to visualize the pattern of 

expression of particular genes using genetically encoded reporters driven from the 

gene locus in transgenic mouse lines.  

Gene expression profiling needs consecutively neuroanatomical 

verification and integration with connectional data to lead to meaningful 

interpretation of cerebral brain functions. Thus, in parallel to gene expression 

analysis, intensive connectivity studies were set off by the development of a 

technological innovation on tracing techniques in the late 1960s that saw a rapid 

development in the decade of the 1970s. These tracing techniques utilize 

anterograde and retrograde naturally occurring cellular transport for fiber tracing 

purposes and have been fundamental in providing the solid neuroanatomical 

background for many concepts of brain function. Recently, the development of 

genetically encoded tracers that are transported across synapses and of genetic 

encoded reporters of electrical activity (for example changes in intracellular 
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calcium concentration), have allowed patterns of connectivity and neuronal 

functions to be defined.  

 In the past decade, different laboratories have undertaken studies in an 

attempt to quantify neuronal diversity in a single class of neurons, reaching the 

conclusion that indeed neuronal diversity is higher than previously thought. In this 

perspective, MacNeil and Masland (1998) conducted a study on the amacrine cell 

population of the retina, which is fundamental to the processing of visual 

information. Because the retina is a highly ordered laminar structure, the shape 

and extent of an amacrine’s cell dendritic arbor determines its connections with 

other neurons, bipolar (the output cells) and ganglion cells, modulating their 

responses. By describing the dendritic shape and stratification of 261 randomly 

chosen amacrine cells by a new method termed photofilling, MacNeil and 

Masland were able to classify 26 different types of neurons, including the four 

major types already known (Figure 5).  

One year earlier, in 1997, DeVries et al., exploited the multielectrode array 

which permitted simultaneous recordings from a large number (in the order of 

100) of neighboring ganglion cells in the rabbit retina, distinguished 11 distinct 

physiological classes. In the same year, Parra et al. attempted to quantitate the 

number of different interneurons present in the CA1 area of the hippocampal 

cortex. These neurons were first classified on the basis of morphology (somatic 

location, dendritic orientation, regions of innervation), then physiology (action 

potential firing properties) and finally sensitivity to modulatory neurotransmitters. 

They were able to distinguish 16 distinct morphological phenotypes and 3 

different modes of discharge. Most cells responded to 2 to 3 agonists and 25 

different response combinations were detected. To their surprise each cell was 

unique across these criteria. They concluded that the number of different types in 

the CA1 region of the hippocampus must be between two dozen and four dozen. 

Still, the question of how many different neuronal cell types might there be 

in the brain has not found a definite answer. An assumption can be made based on 

spacing, cell number and dendritic cell diameter.    
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Figure 5. Patterns of connectivity in the retina, illustrated for 3 levels of the inner plexiform layer. 
Cell bodies are indicated by ovals, with dendrites extending below. Note the dendritic extension to 
different cell levels (horizontal cell lines) for different cell types and the difference in arborization 
patterns, the level of stratification of the different cell types defines which cells can contact each 
other (from Masland et al., 2004). 

 

Initial observations that some particular ganglion cell types just cover the retina 

with their dendritic fields (Wässle et al., 1981 and DeVries and Taylor, 1997) 

demonstrated the generality of what has come to be known as the “tiling” 

principle. According to this principle it is reasonable to assume that the receptive 

field belonging to any particular type of neuron overlap only moderately with 

other cells of the same type. Since each neuron type contributes to information 

processing in a distinct way, all other neuronal types should have similar access to 

at least one member of each distinct class, by filling in a brain region with 

minimal redundancy. Another aspect to take into consideration when trying to 

envision the scale of neural diversity is that some brain areas more than others 

might afford redundancy, or, in other words, might have multiple copies of a 

neuron. In fact, this would ensure, on one hand, the function of the circuit if a few 

neurons died and, on the other, the possibility to average information over 

multiple copies of a single neuron. It is well known that mammalian brains can 

still function after relatively heavy neuronal loss (Stevens et al., 1998). So, for 

example, to estimate neuronal diversity in the neocortex one could argue that 
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underneath 1 mm2 of most regions of the primate cortical surface there are about 

105 neurons, each of which with a dendritic spread of 0.05 mm2. This means that 

20 neurons would be needed to cover a square millimeter of cortex if we assume 

they tile the region. The upper limit on number of cell types should then be 105//20 

or 5000 cells. Considering a generous redundancy factor of 10 (10 times more 

neurons of each type than required to cover the cortex), then the total number of 

individual neuronal types in the neocortex alone is calculated to be around 500 

(Stevens et al., 1998).  

With over a third of the genome expressed in the brain, a large number of 

different neuronal types should not perhaps come as a surprise. The scale of 

neuronal diversity probably also indicates the existence of an unsuspected variety 

of microcircuits or networks, still far from being understood, and each devoted to 

a specialized computational task. One could then argue that a good way to 

discriminate a neuronal type is by characterizing its unique function or task within 

a circuit. 

 

1.2 METHODS FOR CELL -TYPE-SPECIFIC EXPRESSION PROFILING  

 

1.2.1 Overview 

 

It is reasonable to assume that the role of a neuron within a circuit is 

highly correlated and dependent on its transcriptome. For this reason, it has been 

suggested that global gene expression profiling could provide a useful alternative 

strategy for the identification and classification of neuronal types (Mott et al., 

2003 and Makram et al., 2004). In the last years, mRNA profiling has become 

feasible through the introduction of cDNA (Schena et al., 1995) and 

oligonucleotide microarrays (Lockhart et al., 1996) as well as modern sequencing 

techniques on full length cDNA libraries and tag sequences (Velulescu et al., 

1995; Shiraki et al., 2003), which allow simultaneous analysis of thousands of 

genes. Initial gene expression profiling studies have been carried out on tissue 

homogenates from entire brain regions or subregions where cell-specific gene 

expression is “lost” in favor of more abundant cells within the tissue  (Mirnics et 
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al. 2000, Sandberg et al., 2000, Xie et al. 2002, Zhao et al., 2001, Zirlinger et al., 

2003). The results of such studies are difficult to interpret without localization of 

individual transcripts at the cellular level and can lead to biased conclusions. In 

fact, in a pioneering study, Barlow and colleagues detected more cerebellum-

expressed transcripts than neocortical transcripts (Sandberg et al., 2000), although 

the underlying complexity of mRNA is likely to be inverse (Geschwind 2000). 

Despite the drawbacks of this approach, such studies have been useful, for 

example, in suggesting functional gene classes involved in schizophrenia (Mirnics 

et al., 2000) and identifying neuronal markers in the amygdala (Zirlinger et al., 

2003), holding promise for the use of this technology in the classification of 

neuronal types.  

The problems arising from the heterogeneity of tissue samples and the 

difficulty of isolating homogeneous neural types for expression profiling have a 

dual nature. In the first place, as mentioned earlier, a significant fold change in the 

expression of a particular gene can be diluted considerably if the cell type 

expressing a particular gene represents only a fraction of the overall population 

being studied. Moreover, it is possible that up-regulation in the expression of a 

gene in one cell population can be masked by down-regulation of the same gene 

in a neighboring cell population in the tissue sample under study, resulting in loss 

of information of expression changes. A second problem lies with the nature itself 

of the genes under scrutiny. It has been reported that gene products fundamental 

for neuronal function such as neurotransmitters, receptors and their regulatory 

factors, are expressed at very low levels compared to other cellular constituents 

like structural proteins (Jiang et al., 2000; Wurmbach et al., 2002). Moreover, it 

seems that physiological and clinical features in neuropsychiatric diseases are due 

to moderate changes in gene expression rather than the often two-fold or higher 

gene expression changes noted for cancer tissues (Soverchia et al., 2005). If the 

population looked at is complex, then discriminating real expression from 

experimental noise becomes rather difficult.   

As a consequence, various cell selection techniques have been developed 

to enhance homogeneity of cell samples and achieve purity of neuronal 

populations. The strategy used can be generally outlined as follows. 
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 i) A functionally distinct cell type must be rendered recognizable. This can be 

achieved with the use of an antibody by immunocytochemical labeling against a 

known marker. The fact that few neural cell types bear specific markers has made 

sampling of specific cells very difficult until recently. Cells can also be labeled by 

stereotaxic injection of fluorescent tracers into their projection target or a cell 

population can be engineered to express a fluorescent protein such as green 

fluorescent protein (GFP) under a specific promoter or enhancer. Finally, it is 

possible to select cells based solely on their topographic position, morphology or 

electrophysiology, without the need for specific labeling. 

 ii) The population bearing the specific label must be purified from the rest of the 

tissue. 

 iii) The mRNA must be extracted. 

 iv) The mRNA must be amplified to yield a sample that can be probed on a 

microarray platform.  

Many laboratories have put considerable effort in optimizing and 

integrating all of these steps with very promising results.    

 

1.2.2 Techniques for enriching specific cell populations 

 

1.2.2.a Fluorescent Activated Cell Sorting (FACS) 

 

Labeling of defined cell types in vivo has been used for Fluorescent 

Activated Cell Sorting. The first to utilize this sampling strategy to analyze 

genome wide gene expression was Zhang and his co-workers in 2002. He 

expressed green fluorescent protein (GFP) in the six touch-receptor neurons of the 

nematode C. elegans, then purified these cells from thousands of dissociated 

embryos on automated fluorescent activated cell sorter (FACS), after culturing 

them overnight to increase GFP expression, and finally extracted and amplified 

mRNA for microarray analysis. This method was subsequently implemented in 

other C. elegans studies (Colosimo et al., 2004; Fox et al., 2005; Cinar et al., 

2005) and soon after in cell-type-specific expression profiling in the mammalian 

nervous system (Buchstaller et al., 2004; Arlotta et al., 2005). Arlotta and co-
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workers used a tracer labeling strategy to mark the cells to be FACS sorted and 

profiled, i.e. cortical projection neurons were retrogradely labeled by injection of 

tracer intro controlateral cortex and spinal cord. The major limitations of this 

approach are the applicability to adult and aged brain tissue, and eventually, the 

effect that the ex vivo prolonged tissue processing may have on gene expression. 

On the other hand, contamination with glia, which may have their own distinct 

role especially if studying response to neurodegeneration, and neuronal fibers is 

negligible and RNA is preserved well as it is not subjected to freezing or fixation 

procedures.  

 

1.2.2.b Manual Cell Sorting 

 

  A similar way to purify labeled neuronal populations is by manual sorting. 

A glass pipette is used to collect and purify dissociated cells under a fluorescent 

dissecting microscope (Sugino et al., 2006). Compared to the automated FACS 

sorting, this method, being a very gentle procedure, allows purification of adult 

neurons, leads to even higher population purity and it can be used even on cells 

expressing low fluorescent intensity. The samples that can be collected are though 

limited in size (usually between 30 and 100 cells).     

Single cell aspiration has been used mainly on single cell expression 

studies. It is a microinjection technique by which a patch electrode filled with first 

strand cDNA synthesis components is injected into a single cell. The cell is loaded 

with the reaction mix, followed by suction of the entire cell content into the 

electrode for further processing (Cao et al., 1996; Crino et al., 1996; Gustincich et 

al., 2004).   

 

1.2.2.c Immunomagnetic positive selection 

 

This technique uses magnetic beads conjugated to an antibody directed 

against a specific antigen present on the membrane of the cell population to be 

sorted (Lyons et al., 2007). 
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1.2.2.d Laser assisted microdissection (LCM) 

 

  In recent years, several investigators have used laser-assisted 

microdissection to isolate small areas of tissue or single cells out of histological 

sections to achieve nearly pure cell samples for subsequent expression profiling 

studies. This technology allows the excision by laser of cells of interest from a 

thin tissue section, chosen by the operator on the basis of specific topographic, 

morphologic or staining characteristics, and their collection in a tube for 

subsequent analysis. Compared to fluorescent-activated cell sorting or magnetic 

bead sorting, this method does not require tissues to be exposed to collagenase 

digestion before cell isolation. As these cells are directly collected in situ  from 

the tissue, they conserve their RNA profile in a true in vivo state. In fact, the 

metabolism of neurons in vivo is coupled to that of glial cells, which means that 

the study of transcriptional profiles of dissociated neurons in vitro is likely to lead 

to artificial results (Pellerin and Magistretti, 1994; Kasischke et al., 2003). 

Limitations lie in the fact that the tissue needs to be frozen or fixed with cross-

linking agents (e.g. formaldehyde) or precipitating agents (e.g. ethanol) and very 

often to be stained by immunohistochemical and immunofluorescent assays. All 

the aforementioned interventions do not allow isolation of high-quality RNA, 

which affects the subsequent microarray analysis (Karsten et al., 2002; Van 

Deerlin et al., 2002). Moreover, the absence of a coverslip and the complete 

dehydration of the tissue section required by the procedure lead to poor 

visualization of cell morphology. The fact that only small amounts of nucleic 

acids can be isolated with this method calls for further DNA or RNA 

amplification of the collected material with all the difficulties that amplification 

may bring. Finally, contamination by surrounding cells cannot be completely 

controlled for. 

The first instrument for laser-assisted microdissection was developed in 

1996 at the National Cancer Institute (Emmert-Buck et al., 1996) for the analysis 

of tumor cells. Only recently has it been applied to the study of the CNS (Luo et 

al., 1999). It was commercialized and released on the market by NCI and Arcturus 

Engineering, California, USA, as the PixCell system, 12 months after publication. 
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Soon after the first commercial LCM microscope was released, various companies 

developed microdissection systems with similar characteristics (Table 1). 

   

 
Table 1. List of commercially available laser-based tissue microdissection systems, their excision   
 and collection methods. 
 
 
Nowadays, the LCM system (Laser Capture Microdissection, Arcturus 

Engineering) and the LMPC (Laser Microdissection Pressure Catapulting) system 

from PALM Microlaser Technologies are the most widely used laser-based 

microdissection systems (Figure 6). The Arcturus system  is based on a 

technology referred to as Laser Capture Microdissection (LCM). In this 

procedure a cap, coated with a special thermoplastic film, is placed on the tissue 

section and an infrared (IR) laser is directed through the cap to melt the film onto 

the cells of interest. The cap is then lifted with the selected cells attached to it and 

automatically placed onto 0.5 ml microcentrifuge tube for subsequent molecular 

analysis. The PALM Microlaser system based on LPC, uses an Ultraviolet A 

(UV-A) laser beam to collect cells of interest through an inverted microscope after 

these have been marked for dissection by the operator. The laser beam impacts the 

tissue sample and, at the focal point, the energy transfer is sufficient to break 

molecular bonds resulting in fragmentation of the radiated matter, a phenomenon 

that is called “cold ablation” or  “ablative photodecomposition” (Srinivasan, 1986; 

Company   Instrument Laser Excision  Collection 
Arcturus 
Engineering 

PixCell II IR Laser hitting of desired 
cells by cap thermoplastic 
melting  

CapSure cap 
(EVA polymer 
film) 

Arcturus 
Engineering 

ArcturusXT 

(open and modular) 
UV 
and IR 

LCM and Laser Cutting CapSure cap 
(EVA polymer 
film) 

Arcturus 
Engineering 

Veritas 
(enclosed and 
automated) 

UV 
and IR 

LCM and Laser Cutting CapSure cap 
(EVA polymer 
film) 

PALM Microlaser 
Technologies 

PALM 
Microbeam 

UV Laser cutting around 
tissue of interest 

Laser pressure 
catapulting 

Leica Microsystems Leica AS LMD UV Laser cutting around 
tissue of interest 

Excised tissue 
falls down by 
gravity 

Molecular 
Machines and 
Industries 

Mmi Cellcut UV Laser cutting around 
tissue of interest 

Adhesive 
collection cap 

IR, infrared; UV, ultraviolet 
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Vogel and Venugopalan, 2003). The tissue sample results cut while a defocused 

laser beam gives the pulse that lifts up and catapults the sample into the collection 

tube overlying the tissue with the advantage of isolating material in a non-contact 

manner, thus minimizing the risk of contamination (Schutze et al., 1998). 

 
Figure 6. Principles of laser-assisted microdissection techniques. Tissue slides are viewed through 
and inverted microscope in both A and B versions of the technique. A) LCM. A film-coated cap is 
lowered on top of the specimen. An infrared laser beam is directed against the region of interest, 
determining, with its passage through the cap, the melt down of the thermoplastic film on the 
selected region of the tissue. Finally, the cap is removed achieving the detachment of the selected 
cells from the tissue section. B) LMPC. The tissue specimen is mounted on a PEN membrane-
coated slide (or directly on a glass slide). An ultraviolet A (U.V.-A) laser beam is pulsed through 
the objective of the inverted microscope, and at the focal point through a process known as “cold 
ablation” cuts the tissue sample around the demarked region. Subsequently, the excised area is 
catapulted, through a defocused U.V.-A pulse, out of the tissue and into the collection cap 
overlying the tissue specimen. Collection is achieved against gravity protecting the collected 
sample from contaminants.   
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Since the microscope is inverted, tissue sections can be mounted either on glass 

slides or on poly-ethylene-naphthalene (PEN)-coated glass slides. The latter allow 

for the collection of the tissue sample of interest in its integrity, since it is excised 

and catapulted on a piece of membrane which permits the preservation of its 

morphology. 

The success of molecular analysis after laser-assisted capture 

microdissection depends on the careful optimization of every step involved in the 

process, that is, tissue sample preparation and handling, RNA extraction, 

amplification, microarray hybridization, data analysis and interpretation and, 

finally validation of results.    

 

1.2.3 Tissue sample preparation for LCM 

 

Collected specimen can be either snap-frozen or fixed in various ways to 

prepare tissue sections for LCM collection. Snap-frozen tissues minimize RNA 

degradation and provide excellent RNA and DNA quality. The gold standard for 

brain tissue preparation consists in the immersion of the sample in liquid nitrogen-

cooled isopentane (at -60˚C). Not all tissues can be snap-frozen as the possibility 

of ice-crystal formation within the tissue can destroy morphological detail, 

rendering histological examination cumbersome, especially when some sort of 

staining for cell recognition is required. Therefore, fixation and tissue embedding 

need to be used for microdissection when retention of rich morphological detail is 

a prerequisite for cell collection.   

A number of different fixatives have been used to prepare tissue sections 

for LCM. Aldehyde-based fixatives (such as formalin or paraformaldehyde) 

function as chemical cross-linking agents giving excellent morphological 

visualization whereas simple organic coagulants like ethanol, methanol, acetone 

or zinc salts have precipitating effects. Several researchers have found it 

(Brownstein et al., 2004; Lewis et al., 2001) impossible to extract good quality 

RNA from formalin-fixed tissues. In fact, in a study conducted by Karsten et al., 

(2002), cDNA microarray experiments performed using RNA samples from 

frozen tissue resulted in very reproducible expression data while results generated 
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from RNA coming from fixed tissue, either formalin or ethanol, were 

characterized by lower correlation coefficients and irreproducibility. Formalin-

fixed tissue was more severely affected than ethanol-fixed tissue. Time and 

temperature seem to have a determinating effect during formalin fixation (Foss et 

al., 1994; Van Deerlin et al., 2002) as prolonged fixation in formalin (longer than 

12-18 hours) results in shorter amplifiable targets, while fixation under high 

temperature does not preserve RNA integrity. There is some controversy 

surrounding the use of ethanol as a fixative for LCM procedures as it has been 

reported to result in bad quality RNA by some researchers (Fend et al., 1999; 

Huang et al., 2002; Gillespie et al., 2002; Brownstein et al., 2004), but to yield 

intact or good RNA by others (Luo et al., 1999; Mikulowska-Mennis et al., 2002; 

Luzzi et al., 2003; Wang et al., 2009). Acetone has resulted in good RNA 

preservation in several studies (Goldsworthy et al., 1999; Salunga et al., 1999; 

Burbach et al., 2004; Torres-Muñoz et al., 2004). Methanol seems to efficiently 

recover RNA with preserved integrity, comparable to that of acetone fixation 

(Goldsworthy et al., 1999; Schleidl et al., 2002). A zinc-based fixative, acting as a 

precipitating agent, has proven successful in terms of both preservation of tissue 

morphology and RNA quality (Johansson et al., 2000; Schleidl et al., 2002). 

Fixation in zinc salts can be performed prior to cryosectioning, allowing thus 

subsequent cryopreservation in glucose solution, which further aids retention of 

tissue morphology in successive steps. Another interesting fixative compound that 

has been reported to assure good tissue morphology and RNA integrity is dithio – 

bis (succinimidyl proprionate) (DSP), a cross-linker, also known as Lomant’s 

reagent (Brownstein et al., 2004). 

Tissue embedding in paraffin or in OCT for snap-frozen samples is 

generally used to improve tissue morphology, but it can also affect RNA tissue 

integrity. Schleidl et al., 2002, showed that the effect of OCT embedding on 

nucleic acid preservation was negligible while paraffin embedded samples 

resulted in the production of lower amounts of cDNA. Histological stains, 

immunohistochemistry, immunofluorescence, and in situ hybridization also have 

deleterious effects on RNA quality. Various methods have been developed to limit 

the adverse effects of staining on RNA quality. Usually shortening of incubation 
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times for histological staining (Goldsworthy et al., 1990; Ginsberg and Che, 2004; 

Torres-Muñoz et al., 2004], for immunohistochemical protocols (Fend et al., 

1999; Burbach et al., 2004), and for immunofluorescent protocols (Mojsilovic – 

Petrovic et al., 2004; Chung et al., 2005) appear to result in improved RNA 

quality since the shortened protocols protect from the activation of tissue RNases. 

For the same reason, special compounds such as RNase inhibitors have been 

added to the various incubation solutions especially in immunohistochemical 

protocols with positive results in terms of RNA preservation (Grimm et al., 2004; 

Greene et al., 2005).   

Once tissues are prepared, they are sectioned with a microtome or, if 

frozen in a cryostat, in sections of such thickness that will allow good microscopic 

resolution but not at the expense of the quantity of material that can be harvested. 

Usually, 5-8 µm sections are considered as a monolayer of small cells while for 

larger cells tissue thickness can vary from 10 to 20 µm, despite this makes 

morphological visualization more difficult. It is important that sections have no 

wrinkles and scratches and that they adhere to the slide, so that a uniform contact 

between the thermoplastic film and the tissue (for LCM) (Mora et al., 2002) or a 

constant focusing plane for cutting (for LMPC) can be achieved. 

In this work we have evaluated various fixatives in terms of tissue 

morphology, cell marker retention, and RNA integrity and we have set up each 

step of the method accordingly. 

 

1.2.4 Harvesting the cells of interest amongst heterogeneity 

 

One of the main disadvantages of laser-assisted tissue microdissection is 

the poor morphology of tissue sections from which cells are excised. This is due 

primarily to the fact that sections cannot go through the canonical histological 

procedures which would be incompatible with downstream analysis; secondly, 

sections need to be air-dried and uncovered for the technology to be applied; 

finally, microscopes used with laser dissecting systems are generally not very 

powerful. To improve microscopic visualization several strategies have been 

devised amongst which the use of a diffuser filter (provided with the PALM 
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LMPC system). This filter diffracts light passing through the cap giving a better 

image of the tissue. In this case, cells must be selected first and they can only be 

harvested later without the diffuser (Simone et al., 1998). Alternatively, drops of 

xylene or ethanol have been used in various occasions for this purpose. Again, 

morphology is improved temporarily, allowing just the time for cells to be 

selected by the investigator, before the tissue is dry and excision can start. PALM 

offers a resin (LiquidCover N) as a mounting medium that improves tissue 

morphology and does not interfere with UV laser cutting efficiency, catapulting or 

downstream molecular applications. It is not suited though for fluorescent 

expressing tissues, since being alcohol-based, quenches fluorescence as xylene 

and ethanol do.  

In our laboratory, in order to improve visualization of GFP – expressing 

dopaminergic cells from our TH-GFP/21-31 transgenic mouse lineage we have 

used a drop of Zincfix (zinc-based fixative) on the region of interest to be 

harvested. We have evaluated the effects on UV cutting and RNA quality. 

 

1.2.5 RNA extraction procedures 

 

Numerous RNA extraction procedures have been developed in conjunction 

with the advent of LCM technology that are appropriate for small samples 

(Parlato et al., 2002; Burgemeister et al., 2003; Niyaz et al., 2005), all of which  

should be optimized by each user to best suit their own application. For this 

reason, but also to avoid loss of material in samples so small as the ones obtained 

by LCM and to speed up the process of extraction, many investigators have 

chosen to use kit-based methods especially developed for this type of samples, i.e. 

Strategene Absolutely Microprep kit, Qiagen RNeasy Minikit, Arcturus Pico-Pure 

RNA Isolation kit. These kits are column-based and this allows a greater yield 

than methods that rely on multiple organic extractions since each extraction step 

equals some loss of RNA. Moreover, these kits: 1) use elution volumes in the 

order of 10 µl, and 2) allow treatment with DNase directly on the column, thus 

avoiding further RNA purification and precipitation steps. 
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For paraffin-embedded, formalin-fixed tissues various procedures have 

been suggested (Godfrey et al., 2000; Specht et al., 2001), but the most common 

method is based on Proteinase K digestion of the fixed or embedded tissue (Lewis 

et al., 2001), which facilitates subsequent RNA extraction. Most companies today 

provide kits especially optimized for RNA extraction for paraffin-embedded 

microdissected tissues, i.e. Strategene Absolutely RNA FFPE kit; Ambion 

RNAqeous microkit, Arcturus Paradise reagent system.  

 

1.2.6 RNA amplification 

 

Standard protocols for microarray hybridization technology require a large 

amount of RNA. In fact, the total RNA quantity required for use in microarray 

experiments was reported to be 50-200 µg  in a number of review papers (Duggan 

et al., 1999). Considering that a cell contains 5-10 pg total RNA, the number of 

cells required to achieve 50-200 µg ranges from 1.6 x 106 to 2x 107, amount that 

corresponds to several milligrams of tissue (~ 100 mg). 

RNA extracted from small tissue samples like those obtained by LCM is 

not enough for microarray hybridization as such; instead amplification of some 

sort is required. 

Two main approaches have been developed to overcome limitations 

deriving from the use of small samples, signal amplification and global poly (A)+ 

RNA amplification. 

 The first strategy functions by increasing the fluorescence signal emitted 

per transcript. This is achieved by technologies such as dendrimer (Stears et al., 

2000) or tyramide signal amplification (TSA) (Karsten et al., 2002), which claim 

avoidance of dye bias and improved signal to background ratio. Commercial 

products have achieved considerable improvements of these technologies with a 

minimum number of cells required to achieve good quality arrays amounting to 

2.5 x 104 (denrdimer technology by Genisphere). Still this number is too high for 

LCM captured samples. 

The second strategy, that allows RNA amplification from limited 

quantities down to the single cell, entails global amplification of the sample based 
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either on exponential PCR amplification (Lukyanov et al., 1997) or isothermal 

linear RNA polymerase amplification (Van Gelder et al., 1990).  

The classic T7 RNA polymerase amplification method, commonly referred 

to as the Eberwine method (Van Gelder et al., 1990), has provided the basis of the 

procedures and commercial kits routinely used today (Figure 7). This method 

utilizes a synthetic oligod(T) primer annealed to a phage T7 RNA polymerase 

promoter to prime synthesis of first strand cDNA by reverse transcription of the 

poly(A)+ RNA pool of total RNA. Second strand cDNA is synthesized with 

RNase H by degrading the RNA strand followed by second strand synthesis with 

E.Coli DNA polymerase I. Amplified antisense RNA (aRNA) is synthesized by in 

vitro transcription of the double-stranded cDNA (ds cDNA) template using T7 

RNA polymerase (Figure 7). Since its appearance, this method has been subjected 

to numerous variations and optimizations. Amongst those the exploitation of the 

template switching effect of the 5’ end of the mRNA to ensure the synthesis of 

full length ds cDNA, which is not ensured with the classical method, is to be 

noted (Chenchik et al., 1998; Wang et al., 2000). This template-switching effect is 

based on the terminal transferase activity of the reverse transcriptase that adds 

additional, non-template residues, primarily cytosines, to the 3’ end of the cDNA. 

The reverse transcript buffer mixture also contains a primer containing an 

oligo(G) sequence at its 3’ end which will base pair with the newly synthesized 

dCTP stretch. Reverse transcriptase then switches templates and continues 

replicating the defined sequence of the annealed primer. This method can amplify 

the starting poly(A)+ RNA by up to 200 fold and a double T7 amplification round 

can take this figure up between 1000 and 100,000. 

Linear amplification methods have been preferred over exponential 

amplification methods for use in combination with microarray technology as they 

have been reported by several studies to better preserve relative transcript copy 

numbers. In fact, the efficacy of the Eberwine based methods has been evaluated 

in several studies by comparing profiles between amplified and non-amplified 

material (Puskas et al., 2002), Northern analysis (Eberwine et al., 1992), dot blot 

differential screening (Poirier et al., 1997), use of internal standard (Madison and 

Robinson, 1998), hierarchical clustering analysis to compare consistency of 
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outlier genes upon amplification (Wang et al., 2000), validation by RT-PCR 

(Puskas et al., 2002), and comparisons of the ratio/intensity distribution of the 

total gene set (Schleidl et al., 2002). The disadvantage of this methodology is that 

it is very laborious, requiring multiple steps and hence it is time consuming and 

cost effective.     

As an alternative to T7-based linear methods, PCR-based approaches have 

been introduced. These methods introduce PCR-priming sites at both ends of each 

reverse cDNA transcribed molecule, followed by global amplification of cDNA 

by PCR cycles (Hertzberg et al., 2001, Iscove el., 2002). There are many 

variations of this method. One approach involves reverse transcription of first 

strand cDNA primed by oligo(dT), addition of an oligo(dA) tail with terminal 

transferase and exponential amplification with an oligo(dT) containing primer 

(Iscove et al.,  2002). Three-prime-end amplification (TPEA) is a method that 

results in global amplification of 3’- ends of all mRNAs present in the sample 

(Dixon et al., 1998; Freeman et al., 1999). In this approach, PCR amplification 

occurs between primers incorporated into the first strand cDNA during reverse 

transcription and a primer used to initiate second strand synthesis. The second 

strand primers have a partially degenerate 3’ end and are designed to anneal 

approximately once every 1 kb. This results in similarly amplified amplicons 

therefore all mRNA species should amplify equally well regardless of the initial 

size of the transcript. The amplification factor using a PCR-based method has 

been reported to be between 107 and 3x1011 (Iscove et al., 2002). 

Approaches that combine linear with exponential methods (Aoyagi et al., 

2003; Ji et al., 2004) have also been used in some studies to achieve amplification 

from limited amounts of starting material with an amplification factor between 

106 and 107 (Ohtuka et al., 2004). Gustincich et al., in 2004 used a combination of 

SMART PCR based on the template switching principle (Chenchik et al., 1998) 

and T7 linear amplification, called SMART7 to profile single dopaminergic 

neurons of the retina. With this method the first strand DNA is synthesized in the 

presence of the SMART template Switching Oligonucleotide and PCR amplified 

for a limited number of cycles. The amplification product becomes in turn the new  

 

Second strand cDNA synthesis 
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Figure 7. Diagram of a global linear mRNA amplification procedure generating antisense RNA 
(aRNA). An oligo (dT) primer containing a T7 Polymerase binding site is used to prime the first 
strand cDNA synthesis. Digestion of mRNA strand in the mRNA-cDNA hybrid by RNase H 
leaves small fragments of RNA, which are used to prime second strand cDNA synthesis. 
Antisense RNA is then transcribed by T7 RNA polymerase. Second and subsequent rounds of 
amplification are initiated by random priming (Figure based on method presented by Van Gelder 
et al., 1990).  
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template for two rounds of linear T7 aRNA synthesis. The combination of 

exponential and linear  amplifications  keeps the number of PCR cycles low (less  

than 20) and avoids the strong competition from template-independent 

amplification that occurs when T7 RNA polymerase is used with very low 

amounts of starting material (less than 1 ng total RNA). Other recently published 

studies on expression profiling of single cells have preferred PCR-based 

techniques for amplification rather than the classic linear approaches (Chiang et 

al., 2003; Nakagawa et al., 2004).  

PCR-based amplification methods do have some advantages over linear 

amplification methods. First of all, they are simpler to perform. They can be used 

on lower input amount material, down to the single cell, since amplification yields 

exceed by far those of linear amplification techniques, achieving amplification 

rates up to 107  fold and over. The double stranded products are more stable than 

RNA products.  The main disadvantage of this method is that it has been reported 

by several studies to lead to a bias in the transcriptome abundance relationships. 

These concerns arise from properties, inherent in the DNA polymerase enzyme, 

like misincorporation of bases, bias towards shorter transcripts and differential 

amplification efficiencies of different templates based on GC composition. 

Various studies have documented the degree of fidelity of PCR-based methods by 

real time PCR and by comparing profiles between amplified and non amplified 

material (Seth et al., 2003; Petalidis et al., 2003). In the first of these studies, 

conducted by Iscove et al., 2002, fidelity of PCR-based amplification was 

evaluated by comparing the outliers between exponentially amplified, linearly 

amplified and non-amplified targets. Their conclusion was that their exponential 

method was superior to one round linear amplification. In fact, recently there has 

been a turn to the use of exponential over linear amplifications methods. 

 

1.2.7 Reproducibility 

 

An important aspect of RNA amplification is its degree of reproducibility 

that can be evaluated at the end of the process itself and at subsequent 

hybridizations. In general, it has been reported to be high. Zhao et al., (2002) 
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observed significantly higher correlations (0.97) for samples amplified on the 

same day compared to samples amplified on different days (0.90). It is of note that 

the reproducibility of replicate hybridizations of amplified material is higher than 

for experiments using total non-amplified RNA (Nygaard et al., 2003; Stoyanova 

et al., 2004), which demonstrates consistency and indicates that amplification is 

reproducible even for genes whose relative transcript levels are not maintained. 

The amplification process is also affected by the amount of input total RNA. In 

fact, it has been reported that correlation values are reduced as the input RNA 

diminishes (Soverchia et al., 2005; Kenzelmann et al., 2002), showing that 

reproducibility increases with RNA starting quantity.  

Results regarding reproducibility amongst linear and PCR-based 

amplification procedures are incongruent. Puskas et al., (2002) showed that 

reproducibility was very high for linear amplification and slightly lower for a 

SMART-PCR based amplification. In contrast, Klur et al., (2004) showed that 

their PCR-based protocol was slightly more reproducible than the linear approach.  

 

1.2.8 Further considerations on amplification 

 

As discussed in the above paragraph, faithful preservation of abundance 

levels of gene transcripts is the most important issue regarding the use of any 

amplification procedure in combination with quantitative microarray studies. The 

widest used method to control that quantitative relationships of input RNA are 

maintained has been by comparing profiles between amplified and non amplified 

material, while the most common statistical algorithm applied, when comparing 

profiles, has been the calculation of Pearson correlation coefficient. Other 

methods, such as calculation of gene-specific t-scores or calculation of the 

correlation value between a subgroup of amplified data against real time RT-PCR 

data, have also made their way into assessing the degree of fidelity of 

amplification on differential gene expression. To this extent, recently, researchers 

have focused their attention on genes co-regulated in pathways or signatures 

rather than single, differentially expressed genes, as this approach seems to result 

in more reliable interpretations (Nygaard and Hovig, 2006), especially when 
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dealing with minute samples. In fact, the lower the abundance of any template, the 

smaller the probability its true abundance will be maintained in the amplified 

product (Stenman et al., 2003). The reason for this lies in sampling variation that 

can be affected by the stochastic distribution of low abundance mRNAs and in the 

inherent stochastic nature of the amplification process at low template 

concentrations (Nygaard and Hovig, 2006). 

Some general conclusions that can be drawn from these studies are 

summarized in the following points. 

1) Amplified material gives in general a better signal to noise ratio. 

2) The number of genes detected by fluorescent signaling using amplified material 

is significantly higher compared to non amplified targets (Nygaard et al., 2003; 

Stoyanova et al., 2004; Puskas et al., 2002). This increased sensitivity seems to 

interest low abundance transcripts more.  

3) It has been reported (Nygaard et al., 2003) that some genes with low expression 

are scored as differentially expressed in the amplified target contrary to the 

reference, non-amplified target. The reason for this is that the amount of amplified 

aRNA used for labeling is 3-10 times higher than the corresponding mRNA 

content in the total RNA targets, which means that in reality the amplified 

products are closer to the true expression as these transcripts become detectable 

only when amplified from an optimal amount of RNA (Nygaard and Hovig, 

2006). It follows that it is not so straightforward to infer which differentially 

expressed genes between the amplified material and the total RNA are the result 

of poor amplification or of the undetectability of low copy number transcripts 

obtained from the total RNA arrays.  To obviate this situation, replicate arrays are 

used to explore consistency or variability of results.  

Comparison against results from other high-throughput methods and use of 

quantitative real time RT-PCR for verification of gene expression or ratio levels 

are also valid alternative strategies for validation of microarray procedures. 

Finally, it is important to set a lower threshold for sample size with respect to 

reliable gene expression measurements. 
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1.2.9 Amplification – our approach 

 

In this work we have used and tested a new kit-based method that permits 

one step mRNA isolation and cDNA synthesis followed by exponential 

amplification, called µMACS SuperAmp. This kit has been developed by Miltenyi 

Biotec (Bergisch Gladbach, Germany) for amplification of small samples (Figure 

8 for an overview of the procedure). In brief, the sample is lyzed in a solution 

containing proteinase K and subsequently incubated with magnetic microbeads 

bearing an oligo(dT)-tag, followed by application of the lysate on a µMACS 

column which retains all the Poly(A)+ RNA.  

  cDNA synthesis by reverse transcription and cDNA tailing with Terminal 

Deoxynucleotidyl Transferase takes place on the same column in which the 

mRNA was retained. In column mRNA capture and first strand synthesis allow 

high sensitivity, avoid loss of precious material and speed up the process. Global 

PCR (a total of 40 cycles) through the use of one common primer that anneals on 

multiple sites of comparable length along the cDNA template permits sample 

amplification avoiding PCR bias due to different transcript length and due to 

different primer annealing conditions. The PCR product represents also a stable 

resource that can be used to repeat experiments.  

All reactions are performed in a very small volume to gain sensitivity and 

the Klenow fragment assures a good rate of dye incorporation. The kit has been 

specifically developed to be compatible with FACS, immunomagnetic and 

microdissection sorted cells. The manufacturers guarantee good reproducibility of 

gene expression profiles for a number of cells between 100 and 1000, and 

detectability of differentially expressed genes down to the single cell. 
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Figure 8. The sample is lyzed in the lysis buffer that contains Proteinase K and an RNA carrier and 
subsequently is incubated with magnetic beads that have an oligo(dT) - tag attached to them, before 
being added to a µMACS column applied to a magnet, which allows separation of all Poly(A)+ RNA. 
cDNA syntesis and cDNA tailing are performed on the same column assuring high sensitivity of the 
reaction. The eluate is subsequently amplified with a PCR reaction through the use of one single 
primer that has been designed so as to that prime multiple cDNA sites of comparable length allowing 
good amplification of the sample without the PCR bias due to different transcript length and different 
priming annealing contitions. Last step involves labelling of the amplified dsDNA with Klenow 
fragment direct dye incorporation. 
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1.3 HIGH THROUGHPUT GENE EXPRESSION PROFILING  

 

1.3.1 Overview 

 

The introduction of automated large scale sequencing, supported by 

adequate computational and bioinformatic tools, has greatly increased our 

knowledge of the genomic sequences of humans and other organisms as well as 

that of the genes that they encode. This wealth of data has triggered the 

development of techniques, based both on hybridization and sequencing methods, 

that allow surveys of expression patterns for thousands of genes in a single assay. 

These techniques include the widely used serial analysis of gene expression 

(SAGE) (Velculescu et al., 1995), cDNA microarrays (Schena et al., 1995),  

oligonucleotide arrays (Lockhart et al., 1996), full length cDNA cloning. To those 

we can add tiling arrays, which permit identification of novel transcribed elements 

and internal structure of transcripts, cap-analysis of gene expression tag 

sequencing (CAGE) (Shiraki et al., 2003), which allows identification of 

transcription starting sites (TSS), and quantitative profiling of relative promoter 

usage across tissues and cell types (linking gene expression with controlling 

promoter elements) further increasing our understanding of the transcriptome 

architecture. Recently, we have developed nanoCAGE (submitted manuscript) 

which is a modified version of CAGE that allows identification of TSS from 

minute samples from fixed tissue. The current estimate of transcripts in the 

mammalian genome, based on analysis of cDNA clones and tags, is of at least 

181,000 (Katayama et al., 2005), one order of magnitude larger than the 

previously estimated 22,000 protein mammalian coding genes. More than half of 

those transcripts are non-coding. As these latter technologies are out of the scope 

of this work, I shall focus on microarray technology and particularly on cDNA 

arrays. 
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1.3.2 Microarray technology 

 

By reversing the Northern blot principle, the labeled moiety, referred to as 

the “target” and derived from the mRNA sample, is hybridized in parallel to a 

large number of DNA sequences known as “probes”, immobilized on a solid 

surface in an ordered array. These filter-based gene expression analysis have 

enabled simultaneous determination of expression levels of thousands of genes in 

one experiment. Furthermore, advancements made in attaching nucleic acids to a 

glass support through the development of slide surface chemistries and robotics 

able to miniaturize the size of the reactions have made possible the passage from 

nylon membranes to glass slides and the development of microarray technology as 

known today.  

Amongst the many different microarray systems that have been developed, 

the ones of most common use can be divided into two groups, according to the 

arrayed material: complementary DNA (cDNA) and oligonucleotide microarrays. 

Probes for cDNA arrays are usually products of the polymerase chain reaction 

(PCR) generated from cDNA libraries or clone collections, using either vector-

specific or gene-specific primers, and are printed onto glass slides or nylon 

membranes as spots at defined locations in a total area of few squared centimetres. 

Spots are typically less than 200 µm in size and are spaced about the same 

distance apart. The cDNA probes are immobilized onto the glass solid surface by 

one of the various deposition methods developed (contact or non-contact printing) 

and exposed to a set of targets derived from experimental or clinical samples 

either separately or in a mixture. This method, “traditionally” called DNA 

microarray, is commonly considered as developed at Standford University. This 

technique is widely used by research scientists around the world to produce "in-

house" printed microarrays from their own labs. For oligonucleotide arrays, short 

20-25mer (Affymetrix) or 60mer probes (Agilent) are synthesized in situ, either 

by photolithography onto silicon wafers (high density oligonucleotide arrays from 

Affymetrix (Wodicka et al., 1997) or by ink-jet technology (developed by Rosetta 

Inpharmatics and licensed to Agilent technologies). In oligonucleotide 

microarrays, the probes are short sequences designed to match parts of the 
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sequence of known or predicted open reading frames. Pre-synthesized 

oligonucleotide probes can also be printed onto glass slides like cDNA probes. 

Methods based on synthetic oligonucleotides offer the advantage that 

probes can be designed to represent the most unique part of a given transcript, 

making the detection of closely related genes or splice variants possible. Spotted 

arrays, on the other hand, offer a greater degree of flexibility in the choice of 

arrayed elements. As the sequences for de novo synthesized arrays are stored 

electronically rather than physically in frozen DNA libraries, the costs and the 

potential for errors in amplification, storage, and retrieval are eliminated. 

Here we have used home-spotted arrays based on the FANTOM 2 collection 

of mouse transcripts (Okazaki, Furuno et al., 2002; FANTOM International 

Consortium). Genes were represented in triplicate and the whole collection was 

printed on two slides.  

 

1.3.3 Target preparation 

 

Several methodologies are now routinely used for labelling targets and 

many of these systems are supplied as commercially available kits.  In situ 

synthesized high-density oligonucleotide arrays (Affymetrix) and spotted arrays 

present differences also in target preparation. In both cases, mRNA from cells or 

tissues is extracted, converted to DNA and labelled, hybridized to the DNA 

elements on the array surface, and detected by phospho-imaging or fluorescent 

scanning. The high reproducibility of in situ synthesis of oligonucleotide chips, 

though, adopts the one-channel method as it allows accurate comparisons of 

signals generated by samples hybridized on different arrays. In the classic cDNA 

microarray experiment, targets are prepared from mRNA extracted from two 

different cell populations or tissues, one  labelled using cyanine 3 (Cy3) and the 

other using cyanine 5 (Cy5). The two labelled samples are then pooled and 

hybridized together on the same array, which results in competitive binding of the 

target to the arrayed sequences. After hybridization and washing, the slide is 

scanned using two different wavelengths, corresponding to the dyes used, and the 

intensity of the same spot in both channels is compared. This results in the 
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measurement of the ratio of transcripts level for each gene represented on the 

array. It is worth to mention at this point that cDNA arrays only allow the 

detection of relative abundance of target samples, but not their absolute quantities. 

In fact, incorporation of labelled nucleotides depends on the length of the DNA 

sequence, which means that a bright fluorescent spot does not necessarily imply a 

high expression of a gene. It may just be an indication of a low expression, but 

structurally long transcript.   

 

1.3.4 Design and analysis of microarray cDNA experiments  

 

The development of computational and statistical tools to analyze the 

amount of data produced by microarray experiments constitute a great challenge, 

especially when we consider that, typically, microarray studies implicate the 

integration of data from multiple experiments. For this reason, a brief description 

of experimental design issues and of computational analysis of cDNA microarrays 

is introduced in the next few paragraphs. 

 

1.3.4.a Direct versus indirect  comparisons  

 

The key issue in designing a cDNA microarray experiment is to decide 

whether to use direct or indirect comparisons, or, in other words, whether to make 

the comparisons within or in between slides. The efficiency of comparisons 

between two samples is determined by the length and number of paths connecting 

them (Kerr et al., 2001; Yang et al., 2002). The most efficient approach is to make 

the comparisons of greatest interest directly on the same array. Let us suppose we 

want to carry out two hybridazations: a direct comparison is carried out when 

sample A, labeled with Cy5 and sample B, labeled with Cy3, are hybridized 

together (A-B) on both slides. For any gene, two independent estimates of the log 

ratio (A/B) would be obtained. If the variance for one such measurement is σ2, 

then the variance of the average of the two independent measurements is σ2/2. If 

we do an indirect comparison and make use of a common reference R, then the 

two hybridizations would be A-R, and B-R. In this case, the log ratio log (A/B), 
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for any gene is the difference of two independent log ratios from the equation log 

(A/B)=log (A/R) – log (B/R). As above, if the variance of a single log ratio is σ2 , 

it follows that that the variance of the difference of the two independent log ratios 

is 2σ2. In summary, with two hybridizations, we obtain a measure of the log-ratio 

of a gene with variance σ2/2 by doing two direct hybridizations, and the log-ratio 

of a gene with variance 2σ2 by doing two indirect comparisons (Yang et al., 

2002). Direct comparisons give more immediate and less variable results with 

respect to indirect comparisons. For this reason we have chosen to perform direct 

comparisons in this work. 

.  

1.3.4.b Dye swap experiments 

 

If samples are compared directly, then it is good practice to introduce a 

correction for eventual dye imbalances. Since the efficiency of incorporation of 

nucleotides labeled with different fluorescent dyes during target-sample 

preparation may not be equal, reciprocal labeling with swapped colors is 

recommended with direct cDNA experiments. This means that two arrays are used 

to compare two samples. On one array, sample A is assigned to the red dye, and 

sample B is assigned to the green dye. On the other array, the dye assignments are 

reversed. This arrangement can be repeated by using four or six or more arrays to 

compare the same two biological samples. This repeated dye-swap experiment 

reduces technical variation due to labeling imbalances. 

 

1.3.4.c Reference sample 

 

When using a common reference to compare more samples, dye 

orientation used is always the same. As a result dye effects are confounded with 

inherent biological difference of the samples (Kerr et al., 2001; Yang et al., 2002). 

The choice of the reference sample, in this case, becomes the most important 

issue. It should present (can be either constructed or bought) particular 

characteristics such as homogeneity, stability over time, and finally it should 

“light up” most spots on the array. The reference sample should also be as close to 
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the experimental samples as possible. Typically, a pooled reference is formed 

from the samples that will be assayed in the experiment. This ensures that every 

transcript present in the test samples will be represented in the reference sample 

and that the relative amounts of each RNA species will be similar. Samples that 

have similar concentrations are easier to compare and handle during data analysis 

(Quackenbush et al., 2001). A commercial RNA reference will not have these 

advantages and it will not represent all genes of the test samples, but it can be 

useful for continuous projects and data collections.  

Choice between these two design modes depends on the aim of the 

experiment. For instance, if we would decide to compare several healthy tissue 

samples with many disease samples, then a good experimental design would be to 

compare each disease sample with a common reference constructed by pooling all 

healthy tissue samples. On the other hand, if we would like to compare healthy 

tissue versus disease tissue samples obtained from the same patient then direct 

comparison would be the best option. Very often a combination of direct and 

indirect comparisons is the best practical solution to a design problem.  

  

1.3.4.d Variability and replication 

 

 One way to monitor and improve the overall quality of the outcome of a 

microarray experiment is by putting replicates of the same spot (cDNA probe) on 

each slide (Black et al., 2002). This increases precision (Lee et al., 2000) of the 

measurements if the spot intensities are averaged. It can also minimize problems 

due to scratches or dust present on the microarray surface. It is advisable, 

however, to have repeated spots well spaced over the microarray surface and not 

adjacent, as this would give a better reflection of the variability across the slide. 

Often, internal control spots, such as missing spots, spiked spots, and 

housekeeping genes, are used to produce good data quality. 

 The form of replication described in the previous paragraph allows quality 

control of the data to some extent, but because nearly all aspects of the experiment 

(printing, general hybridization, and scanning conditions) will be shared by spot 

replicates, these will lack the independence that greatly reduces their value for 
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broader statistical inference. Different hybridizations of identically prepared 

material, or, even better, of differently prepared material, have been shown to 

increase precision of measurements and to give more reliable results. In fact, 

replicate hybridizations reduce variability in summary statistics and data obtained 

from replicate slides can be analyzed by using formal statistical methods. In 

essence, replication allows averaging, and averages are less variable than their 

component terms. For this reason, replication allows extrapolation of results from 

the investigated sample to the whole population from which the sample originates. 

There are two types of replicates that can be performed to render more robust 

microarray data analysis, technical and biological replicates.  

a) Technical replicates 

Technical replicates between slides refer to replication in which the target 

mRNA comes from the same pool, that is from the same extraction. This means 

that these replicates generally involve a smaller degree of variation in 

measurements than the biological replicates. Technical replicates serve the scope 

of reducing the variability between slides.  

b) Biological replicates 

Biological replicates usually refer to hybridizations that involve mRNA 

from different extractions – for example, from different samples of a particular 

cell line or tissue. This approach leads us close to the use of independent 

variables. The term can also refer to target mRNA that comes from different 

individuals or versions of a cell line. This approach may bring with it some noise, 

such as hormonal and immune systems of individuals being in different states or 

tissues being in different states of inflammation. This variation may make harder 

to discern the real expression differences between the samples. For experiments 

that have the aim of generalizing their conclusions to an entire inbred strain of 

mice for example, this is the appropriate form of replication.  Biological replicates 

serve the purpose of obtaining averages of independent data, hence strengthening 

statistical analysis. This allows a generalization of conclusions. 

 Choice of type and number of replicates for a particular experiment needs 

careful consideration. Here, we have used a direct experimental design, with three 
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biological replicates. For every biological replicate 3 technical replicates were 

prepared and for each one of those a dye swap, for a total of 18 hybridizations. 

 

1.3.4.e Data Analysis 

 

After hybridization, microarray slides are scanned with two different 

wavelengths, corresponding to the dyes used, and the relative fluorescent intensity 

of spots in both channels is measured. These fluorescent intensities need to be 

subjected to normalization, which adjusts for differences in labelling and 

detection efficiencies of the fluorescent labels and for differences in the quantity 

of initial RNA from the two samples examined in the assay, so as to avoid shifts 

in the average ratio of Cy3 to Cy5. The most widely used normalization 

algorithms assume that all genes in the array have an average expression ratio 

equal to one. A normalization factor is then calculated and used to rescale the 

intensities before the experiment is analyzed (for review, see Quackenbush, 

2001). Normalized data for each gene are typically reported as an ‘expression 

ratio’ or as the logarithm of the expression ratio. The expression ratio is simply 

the normalized value of the expression level of a particular gene in the query 

sample divided by the normalized value of the control. At this point, a list of 

differentially expressed genes can be produced. Often a two fold increase or 

decrease in measured level is used to define differential expression, although there 

is no firm theoretical basis for selecting this level as significant. 

The true power of microarrays though lies in the mining of data aimed at 

identifying common patterns of gene expression. We can assume that genes that 

are contained in particular pathways, or that respond to a common exogenous 

challenge, are co-regulated, and consequently, should show similar patterns of 

expression. Statistical methods, generally referred to as ‘cluster analysis’, have 

been devised to identify genes that show similar patterns of expression.  Amongst 

those the most popular tools are hierarchical clustering (Eisen et al., 1998) and 

self-organising map (SOM) clustering (Tamayo et al., 1999).  

In hierarchical clustering, the distances between genes are calculated for 

all the genes based on their expression pattern and the closer genes are merged to 
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produce a cluster. The distances between these small clusters are calculated to 

produce a new cluster. Self-organizing map (SOM) clustering assigns genes to a 

series of groups on the basis of expression pattern similarities. Random vectors 

are constructed for each group and a gene is assigned to the closest vector (for 

review, see Quackenbush, 2001). 

 

1.3.4.f Considerations on brain gene expression profiling studies 

 

Many investigators have reported that manipulation of animals may often 

result in dramatic changes in gene expression in the brain (Soverchia et al., 2005). 

For example, studies analyzing early onset gene expression (c-Fos, c-Jun) have 

revealed that changes in their transcript levels may occur within a few minutes of 

animal handling (Herdegen and Leah, 1998). Exposure to stressful events such as 

the laboratory environment, presentation of odors like, for example, blood from 

other animals can result in gene expression changes (Herdegen and Leah, 1998). 

Moreover, since expression of many genes is heavily influenced by ‘biological 

clock’ genes, which in turn depend on the dark-light cycle, the time of day in 

which the experiments are conducted should also be kept into serious 

consideration (Soverchia et al., 2005). Animals should be followed by the same 

people and the killing procedure should be reproducible for what regards the 

environment, the method and the time of day. 

 

1.3.5 Applications of LCM paired with microarray technology on brain tissue 

samples 

 

Integration of LCM technology with microarray platforms has been 

intensively used in cancer studies for identification of tumor markers, but also to 

produce tumor expression profile signatures that can distinguish between clinical 

subtypes, leading to refined diagnosis and treatment with tailored therapies. This 

approach holds also promise for the understanding of the underlying molecular 

biology of cancer disease. The positive results obtained in this field have pushed 

investigators to use this technology in studies on neurodegenerative diseases, 
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neural classification and brain circuitry identification, where brain tissue 

heterogeneity calls for cell sampling. A combination of LCM with microarray 

analysis has been applied to define specific subclasses of neurons by Luo et al., 

1999, who analyzed differential gene expression between large and small LCM-

captured neurons from dorsal root ganglia. Since then the application of this 

approach to define gene expression of specific neuronal types either for their 

characterization or their implication in neurodegenerative diseases has increased. 

Bi et al., 2002, have profiled NMDA receptor subunits using real time PCR in 

NOS (Nitric Oxide Synthase)-immunopositive neurons dissected from flash 

frozen brain sections. Bonaventure et al., 2002, used LCM to collect 100 Nissl-

stained cells from seven different brain nuclei. Amplified RNA was then applied 

to a custom cDNA microarray platform and the transcriptomes of the different 

nuclei were compared. For each nucleus, expression of one or two known 

signatures genes was enriched. Further validation of their results contemplated 

qRT-PCR and in situ hybridization. In fact, the expression levels of four randomly 

selected genes validated by qRT-PCR seemed to confirm microarray results.  

Other studies have used LCM and gene profiling to analyze gene 

expression in Nissl-stained single cells with promising results (Kamme et al., 

2003; Tietjen et al., 2003). In particular, Kamme showed the diversity of 

expression profiles that characterizes cells of the CA1 region of the hippocampus, 

which, up to that moment, were considered as a broad neuronal subclass. 

 A number of studies have concentrated on the dopaminergic neurons 

because of their clinical relevance in neurodegenerative disorders such as 

Parkinson’s disease, schizophrenia and addiction, but also for the ease with which 

these cells can be identified in brain though quick labeling by antibodies against 

tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine.  

Chung et al., 2005 and Green et al., 2005 compared dopaminergic cells from 

neighboring midbrain regions, the ventral tegmental area (VTA) and the 

substantia nigra (SN), to identify genes that might contribute to the higher 

susceptibility of the latter population to neurodegeneration in Parkinson’s disease. 

Both studies identified numerous genes that had statistically significant 

differential expression. Yao et al., 2005 compared VTA dopaminergic neurons 
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with corticostriatal pyramidal cells retrogradely labeled by striatal injection of 

fluorogold. Several genes were identified as differentially expressed by the 

microarray analysis but only some of them were actually confirmed to show 

expression differences when analyzed with qRT-PCR. Results from the 

microarray showed the occurrence of some contamination with oligodendrocytes 

and thus the importance of independent validation of results when using this 

methodology.  

Grimm et al., 2004 have presented the global gene expression profiles that 

define the four major classes of dopaminergic (DA) and noradrenergic (NA) 

neurons in the brain. Hypothalamic DA neurons and noradrenergic neurons in the 

locus coeruleus (LC) were found to display distinct group-specific signatures of 

transporters, channels, transcription, plasticity, axon guidance, and survival 

factors. In contrast, the transcriptomes of midbrain DA neurons of the substantia 

nigra and the ventral tegmental area presented closely related with less than 1% of 

differentially expressed genes. Transcripts implicated in neural plasticity and 

survival were enriched in ventral tegmental area neurons consistent with their role 

in schizophrenia and addiction and their decreased vulnerability in Parkinson’s 

disease.  

All the aforementioned studies demonstrate that LCM in combination with 

microarray technology achieve sufficient cell type purity and RNA integrity. The 

importance of validating microarray results by independent methods such as qRT-

PCR or in situ hybridization also becomes evident.  

 In this work, we also address the issue of defining the mesencephalic 

dopaminergic identities of the SNc and the VTA populations by producing and 

analyzing their gene expression profiles.   

 

1.4 THE DOPAMINERGIC SYSTEM  

 

1.4.1 Overview 

 

Some of the most interesting and most intensively studied neuronal 

systems in the CNS are those comprising the catecholamine-neuronal systems 
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and, in particular, the dopaminergic cells. This is due to their involvement in 

several mental and neurological disorders and to the ease with which we can 

visualize and map anatomically their circuit components, the DA cells. In fact, the 

dopamine (DA), noradrenaline (NA) and serotonin (5-HT) systems in the brain 

were the first transmitter systems to be mapped with accuracy (Dahlström and 

Fuxe, 1964). In the early 1960s, the newly introduced formaldehyde 

histofluorescence method (Falck et al., 1962), based on the visualization of 

fluorescent monoamines following formaldehyde treatment, allowed Carlsson, 

Falck, and Hillarp (Carlsson et al., 1962) to identify the two primary CAs, 

noradrenaline (NA) and dopamine (DA), in discrete neural systems in the brain. 

Two years later, in 1964, Dahlström and Fuxe published a detailed account of the 

distribution of CA and serotonin-containing neurons in the rat brain, with a 

description of twelve groups of CA cells (appointed letter A and a number, A1-

A12) distributed from the medulla oblongata to the hypothalamus. Subsequent 

advances in histochemical techniques led to the detection of groups A13-A17 

located in the diencephalon, olfactory bulb and retina, and to the three adrenaline-

containing cell groups, C1-C3 (Hökfelt T. et al., 1984, from Handbook of 

Chemical Neuronatomy, Vol 2). The nomenclature underlying this basic 

organization is still accepted today.  

 

1.4.2 Origin and development 

 

The growth of midbrain neurons follows a specific, genetically regulated, 

developmental program initiated early during brain formation, as happens for 

most neuronal types. Mesencephalic dopamine-containing cells arise from a single 

embryological cell group that originates in the floor plate and base plate (adjacent 

to the floor plate on both sides of the neural tube) at the ventral midline, around 

the cephalic flexure, at around E10.5 in mouse. Secreted signaling proteins, sonic 

hedgehog (SHH) and fibroblast growth factor 8 (FGF8), derived from the ventral 

midline cells and the isthmic organizer (Hynes and Rosenthal, 1999) at the 

mid/hindbrain border respectively, specify the identity of early proliferating 

dopaminergic progenitors. In fact, the combination of SHH and FGF8 are 
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necessary and sufficient for the generation of ectopic mDA neurons in embryonic 

explant cultures derived from the rat brain (Ye et al., 1998).  

When these dopaminergic progenitors become postmitotic, they start to 

express TH and migrate along radial glia towards their final location (Di Porzio et 

al., 1990). Cells immunoreactive for TH are distributed throughout the entire 

length of the ventral mesencephalic wall at E12, and by E14 TH cells are located 

laterally, along the ventral pial surface, to form the primordia of the substantia 

nigra (Kawano et al., 1995). When the SN neurons have reached their position in 

the midbrain, they form axons that project towards the Lateral Ganglionic 

Eminence (LGE), which develops into mature striatum. It takes weeks for the 

dopamine innervation to be completed. 

Early DA progenitors express the LIM homedomain proteins Lmx1a and 

Lmx1b, but the two proteins seem to have distinct roles in the development of 

these cells. Lmx1a has been recently shown to be selectively expressed in 

midbrain progenitor cells in ventral midbrain and to be involved in the process of 

DA cell-fate specification (Andersson et al., 2006). It is maintained in postmitotic 

DA neurons and functions as a specific activator of downstream genes, including  

the transcription factor Nurr1. In contrast to Lmx1a, Lmx1b is not specifically 

expressed in DA progenitor cells, it is not maintained over the period of DA 

generation and it seems likely to have a more profound role in differentiating 

post-mitotic DA neurons (i.e. it is necessary for  Ptx3 expression – Smidt et al., 

2000; Andersson et al., 2006 – ). Important TFs for subsequent differentiation and 

maintenance of DA cells include Nurr1, critical for the transcriptional activation 

of genes required for dopamine biosynthesis and neurotransmitter expression 

(Zetterstrom et al., 1997), the transcription factors En1/En2 which are essential for 

the generation and survival of mDA neurons (Simon H. et al., 2001, Thurret et al., 

2004, Sgado P., et al., 2006), and the bicoid-related homeodomain containing 

transcription factor Pitx3. Pitx3 is expressed exclusively in mesencephalic 

dopaminergic neurons and is involved in their development and maintenance 

(Smidt et al., 1997; Nunes et al., 2003). It promotes, in co-operation with Nurr1, 

the terminal maturation of mammalian embryonic stem cells into mDA neurons 

with the expression of the full repertoire of DA markers (i.e. coexpression of TH, 
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Nurr1, Lmx1a, Lmx1b, En1/En2, and DAT) (Martinat et al., 2006) (for reviews, 

see Sillitoe and Vogel, 2008 and Marten P. et al., 2007). 

Coupling information from signaling molecules, morphogens and 

transcription factors in control of DA cell differentiation with the molecular codes 

identifying the different cell subpopulations present among adult mDA neurons 

could lead to the development of new drugs to treat mDA neuron-associated 

neurological disorders such as schizophrenia or depression and enable new 

strategies in the field of stem cell engineering. Dopaminergic neurons of the 

desired specificity could, for example, be induced from stem cells in vitro to be 

utilized in cell replacement therapies in Parkinson’s disease patients. 

 

1.4.3 Mesencephalic dopaminergic neurons and their projections 

 

The largest assembly of DA neurons is found in the ventral midbrain 

(VM). A distinction is usually made between nigral (A9) and non-nigral (A8 and 

A10) DA neurons, although there is no clear definable boundary between them 

and these groups can be seen as a continous cell system (Björklund and Lindvall, 

1984, from Handbook of Chemical Neuroanatomy). Nigral neurons are confined 

to the pars compacta and pars lateralis of the substantia nigra. Few A9 cells are 

scattered ventrally in the pars reticulata. The A10 cell group is largely confined to 

the ventral tegmental area (VTA) and is positioned medially to the substantia 

nigra proper. The DA neurons of the A8 cell group located in the retrorubral field 

(RR), caudally to the substantia nigra proper, can be considered as a caudal 

extension of the A9 cell group as they too project to the striatum (Nauta et al., 

1978). The designation of subpopulations of dopamine neurons according to their 

topographic location conforms to some extent to their projection targets 

(Bjorklund and Lindvall, 1984). VTA A10 cells give rise to the mesolimbic and 

mesocortical pathways that innervate the nucleus accumbens, olfactory tubercle, 

septum, amygdala and the prefrontal, cingulate and perirhinal cortex, respectively. 

The overlap between the VTA neurons that project to these various targets is 

considerable and for this reason the two systems are often collectively referred to 

as the mesocorticolimbic system (Wise et al., 2004). The dopaminergic cells of 
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the A10 group are implicated in the control of emotional balance, reward-

associated and addictive behaviour, attention and memory. The A9 cells in the 

SNc give rise to the nigrostriatal pathway which innervates the caudate-putamen 

(dorsal striatum) and plays an essential role in the control of postural reflexes and 

initiation of voluntary movement. SNl dopaminergic cells project to the striatum 

and amygdala (Moriizumi et al., 1992). Finally, the A8 dopamine neurons that 

reside in the RR project primarily to the dorsal striatum and the pontomedullary 

reticular formation and are thought to influence orofacial movements (Figure 8). 

 

         
Figure 8.  A) Schematic diagram of  a coronal view of the topographic location of SN and VTA. 
B) Drawing showing the principal projections of DA cells groups. 
 

In rodents, the total number of TH-positive cells in all three cell groups 

bilaterally is ~ 20,000 - 30,000 in mice and 40,000 - 45,000 in rats with about half 

of the cells located in SN (German and Manaye 1993; Nelson et al., 1996). The 

totality of mDA cells does hardly reach the figure of 1% of total midbrain. A 

striking  increase of DA neurons occurs in primates with 165,000 mDA cells in 

the macaca monkey  and up to 450,000 cells in the young human (German and 

Manaye, 1993). This increase is due to an expansion of the DA innervation 

territory, particularly in the neocortex, in primates and human. In rodents, the 

cortical innervation is largely confined to areas of the frontal, cingulate and 

entorhinal cortex, whereas, in primates, DA innervation spreads over the entire 

cortical mantle (Lewis et al., 1998). This cortical innervation derives from the 

dorsal regions of all parts of the mesencephalic neural complex, that is A8, A9, 

and A10 cells (Williams et al., 1998). 

A B 
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Differences in the morphology of neuronal dendrites, the expression of the 

calcium-binding protein calbindin, and the projections to either the patch or the 

matrix striatal compartments (Gerfen et al., 1987 a and b) of mDA cells have led 

researchers to an alternative topographical classification of these neurons into a 

dorsal and a ventral tier.  The dorsal tier comprises cells located in the dorsal VTA 

and SN and cells from the RR and innervates the ventral striatal, limbic and 

cortical areas and the matrix of the dorsal striatum. These cells extend their 

dendrites in the pars compacta, they are calbindin-positive, and express low levels 

of the DAT transporter (Prensa et al., 2001; Gerfen et al., from Paxinos 2004). 

The ventral tier cells, located in the ventral SN and VTA, extend their dendrites 

ventrally, in the pars reticulata, appear more densely packed, are negative for 

calbindin immunoreactivity, express higher levels of DAT, and are generally 

immunopositive for the ion channel protein GIRK2. These cells project to the 

striatal patch compartment (Prensa et al., 2001; Gerfen et al., from Paxinos 2004). 

It has become evident with time that the mDA neurons are not a simple 

system but they are organized in a complex circuit that comprises subpopulations 

of neurons exhibiting differences in their morphology, but also in several 

molecular markers and patterns of forebrain projections. Although the projections 

of the three DA pathways (nigrostriatal, mesolimbic and mesocortical) are both 

anatomically and functionally distinct and confined to their projection targets with 

a very limited degree of collateralization, their cells of origin are more intermixed 

than originally thought. In fact, the striatal DA innervation derives from the SNc 

(both the dorsal and ventral tiers) but also from the lateral VTA and the RR. More 

specifically, SN cells project to the sensorimotor striatum through the 

“nigrostriatal” pathway, in the strict sense of the term. Lateral VTA (A10) and RR 

(A8) project to the limbic part of the striatum, which includes the nucleus 

accumbens rostrally and the central nucleus of the amygdala and adjacent parts of 

the caudal striatum. It follows that the term mesostriatal DA pathway may be 

more appropriate to describe all components of the midrain DA system  projecting 

to the striatum. Therefore, often the three DA projections arising from mDA are 

described with the terms mesostriatal and mesocorticolimbic pathways.  
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The dual functional and chemical organization that saw dopaminergic 

neurons lying in SNc, VTA, RR and GABAergic neurons being localized mainly 

in the SN pars reticulata, forming one of the most important output pathways of 

the basal ganglia projecting to the thalamus, colliculi and tegmentum (Di Chiara 

et al., 1979; Redgrave et al., 1992), has been challenged by the finding of a non-

dopaminergic nigrostriatal pathway. In fact, the different projections of the 

mesostriatal and mesocorticolimbic systems comprise dopaminergic and non-

dopaminergic neurons for which γ-aminobutyric acid has been identified as the 

neurotransmitter (Maler et al., 1973;  van der Kooy et al., 1981; Swanson et al., 

1982; Gerfen et al., 1987;  Hattori et al., 1991). In contrast to the VTA, where 

dopaminergic and non-dopaminergic cells projecting to a certain terminal area 

seem to be essentially intermixed (Björklund and Lindvall, 1984, from Handbook 

of Chemical Neuroanatomy), in the SNl, the non-DA containing neurons, which 

project to the inferior colliculus (IC), are confined to its dorsoventral part 

(Moriizumi et al., 1992). Surprisingly, the use of immunohistochemistry has 

reported the existence of a small subpopulation of SNl  neurons projecting to the 

Superior Colliculus (SC) that co-express tyrosine hydroxylase and glutamic acid 

decarboxylase (GAD) (Campbell et al., 1991). Co-expression has also been 

reported in a 10% of mesostriatal neurons mostly lying in the medial region of the 

SNc and neighbouring A10 region (Gonzàlez-Hernàndez et al., 2001). These 

findings reveal the existence of a third nigrostriatal pathway formed by 

dopaminergic/gabaergic neurons. Interestingly, other DA groups in the basal 

hypothalamus, the olfactory bulb, and the retina, have been found to co-express 

DA and γ-aminobutyric acid, and might thus operate with more than one 

transmitter (Bjorklund and Dunnet, 2007; Hirasawa et al., 2009). 

 

1.4.4 DA projections to downstream striatal targets 

 

The external and internal segments of the globus pallidus (entopeduncular 

nucleus in rodents), parts of the ventral pallidum and the subthalamic nucleus 

(Hassani et al., 1997; Lindvall and Björklund, 1979)  receive innervation from 

mDA neurons. 
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Moreover, in the SN itself, DA is known to be released from a plexus of 

long slender dendrites that run ventrally from the ventral tier of the SNc, to ramify 

in the SNr (Björklund and Lindvall, 1984). In this context, the DA neurons can 

regulate the activity not only of the DA neurons themselves, but also modulate the 

release of GABA from striatonigral afferent fibers and perhaps also from 

GABAergic interneurons within the SNr and part of its efferent neurons 

(Björklund and Lindvall, 1984). In other words, midbrain dopamine neurons can 

exert their action not only at the level of the caudate nucleus and putamen, but can 

also modulate the activity of basal ganglia output neurons at the pallidal, 

subthalamic and nigral levels. 

 

1.4.5 Electrophysiological properties of DA neurons 

 

Functional analysis of midbrain DA neurons started in the early eighties 

and have led to important findings regarding their firing patterns and the channels 

involved in their production. A brief description follows. 

  In their landmark studies, Grace and Bunney showed that DA midbrain 

neurons in vivo discharge in two distinct modes of electrical activity in the 

anesthetized rodent brain: either in a slow irregular single-spike pattern with a 

very narrow frequency band (between 1 and 8 Hz) characterized by a broad action 

potential followed by a pronounced hyperpolarization (Grace and Bunney, 1984b) 

or alternatively in short bursts of action potentials at higher frequencies (Grace 

and Bunney, 1984a) (see Figure 9).  

                

 

Figure 9. Examples of activity patterns of two individual dopaminergic midbrain neurons from 
adult mouse: A) in vivo (extracellular recording, sampling rate 12.5 kHz) pacemaker activity, B) in 
vivo burst activity. Scale bars: 1s, 0.5mV. (Modified from Liss et al., 2008). 
 

A) B) 
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This spontaneous pacemaker activity seems to rely on a different ionic mechanism 

than most other cells in the CNS. In fact, it has been reported that blocking of the 

hyperpolarization cation current Ih (mediated by hyperpolarization-activated 

cyclic-nucleotide cation – HCN – channels) has no effect on pacemaking in most 

midbrain dopamine neurons (Mercuri et al., 1995), except for a subpopulation of 

SN neurons, where pacemaking is slowed but not stopped (Neuhoff et al., 2002), 

whereas replacement of calcium by cadmium or cobalt completely silences 

pacemaking (Fujimura and Matsuda 1989; Grace and Onn, 1989; Harris et al., 

1989). This pacemaker activity has been shown to depend principally on the 

subthreshold membrane potential oscillations created by voltage-gated L-type 

channels (Puoppolo et al., 2007). In SN neurons, Cav1.3 channels (which are 

activated at more negative potentials compared to other L-type calcium channels, 

also expressed in SNC) carry the bulk of calcium inward currents during the 

interspike interval, although multiple calcium channel types have been suggested 

to contribute to pacemaking of midbrain DA neurons (Puoppolo et al., 2007). A 

significant contribution to the same function has been reported to be given by 

subthreshold TTX (tetrodotoxin)-sensitive sodium current (Puoppolo et al., 2007). 

This calcium component is far more dominant in SN DA neurons compared to 

those of other pacemaker neurons in brain (i.e. Purkinje neurons, suprachiasmatic 

nucleus neurons), which mainly rely on interspike sodium influx by TTX-

sensitive sodium channels or HCN channels (Bean, 2007). 

However, HCN channels, comprising slow gating HCN2, HCN3, and 

HCN4 channel variants (Franz et al., 2000), show large differences in density 

among different DA subpopulations (Neuhoff, 2002) and in part contribute to the 

subthreshold membrane potential oscillations. It has been shown that only a 

subpopulation of DA neurons within the SN actively uses HCN channels for 

pacemaker frequency control (Neuhoff et al., 2002), while there exists a 

population of DA cells in the medial posterior VTA that possesses almost no 

functional HCN channels. Although these channels have been extensively used to 

identify DA subpopulations, their variability in expression among DA cells and in 

response to homeostatic mechanisms does not make them good candidates for DA 

neuron identification.  



 51 

In SN neurons, this interspike depolarization towards threshold, driven by 

calcium, sodium and HCN channels is opposed by fast inactivating A-type 

potassium channels, which are composed by the pore-forming alpha subunits 

Kv4.3L (long splice variant) and the auxiliary beta-subunits Kchip3.1 (Liss et al., 

2001).  

 The switch from pace-making activity to bursting has not generally been 

observed to occur spontaneously in midbrain DA neurons in reduced  in vitro 

preparations (Grace et al., 2007) indicating a possible dependence of the burst-

firing mode of DA neurons on the interplay of patterned synaptic input and 

intrinscic conductances. Moreover, spontaneous burst discharges in midbrain DA 

neurons have been reported to be completely silenced by apamine-sensitive small-

conductance calcium-activated potassium (SK) channels (Ji and Shepperd 2006) 

implicating the latter in stabilization of distinct thresholds for burst-firing in the 

presence of variable synaptic inputs (Liss and Roeper, 2008). It is very interesting 

that the same neurons in the medial VTA that almost lack HCN conductances also 

show the smallest SK channel-mediated after-hyperpolarizations (Liss and 

Roeper, 2008).   

Recently, Lammel et al., 2008, have suggested that the dopamine midbrain 

system consists of two distinct types of DA midbrain neurons with very different 

functional properties. In addition to the well-studied conventional dopaminergic 

midbrain dopamine neurons described in the above paragraphs, they have 

described an atypical fast-firing subtype of dopaminergic neurons. These 

mesocorticolimbic DA neurons project selectively to medial prefrontal cortex, 

basolateral amygdala, and the core of the medial shell of the nucleus accumbens 

and are able to fire action potentials at significant higher frequencies in a 

sustained fashion compared to the “conventional” DA neurons (<10 Hz). Among 

these DA fast-firing neurons, those projecting to the prefrontal cortex are unique 

in that they neither possess functional D2 dopamine receptors nor their 

downstream targets, the GIRK2 channels. This mode of discharge at higher 

frequencies has been suggested to contribute to the more sustained DA release 

pattern recognized in vivo in the amygdala and the prefrontal cortex (Garris and 

Wightman, 1994), which could also be assisted by the absence of D2 mediated 
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inhibition. Interestingly, these mesocortical DA neurons can be identified by their 

low D2 and GIRK2 expression levels combined with their low DAT/TH and 

DAT/VMAT2 mRNA ratios (Lammel et al., 2008) in addition to their expected 

low abundances for SK3 (Wolfart et al., 2001) and HCN (Neuhoff et al., 2002). 

The DAT/TH and DAT/VMAT2 ratios indicate a lower re-uptake capacity 

relative to TH-mediated synthesis and VMAT2-mediated vesicular packaging of 

dopamine, which corroborates well with a slower decay of extracellular dopamine 

concentrations in cortical areas compared to dorsal striatum (Yavich et al., 2007). 

This is an illustration of how combination of functional and molecular data can 

lead to shaping functional identity of neurons, in this case for instance in 

mediating sustained forms of behaviorally relevant release of DA in several brain 

regions in vivo, involving this VTA subpopulation for example in working 

memory (Seamans and Yang, 2004). 

Up to date, two channel-based mechanisms have been advanced to explain 

the different vulnerability that DA neurons show to degeneration in Parkinson’s 

disease or in animal toxic models. Liss et al., 2005, report that electrical activity 

of less vulnerable VTA neurons is not affected by toxin concentrations in contrast 

to the electrical activity of more vulnerable SN neurons where the effects are 

dramatic. They show that, in response to PD toxins, there is selective activation of 

ATP-sensitive potassium (K-ATP) channels in DA neurons (build by Kir6.2 and 

SUR1 subunits), which hyperpolarize the membrane potential and completely 

prevent action potential generation, in vitro, in adult mice. Furthermore, studies in 

K-ATP channel knockout (KO) mice and wild type (WT) mice, under chronic 

MPTP treatment demonstrate that high vulnerable SN neurons are selectively 

rescued in K-ATP KO mice, while the mild loss in VTA neurons is not affected 

(Liss et al., 2005). A second, channel-based, proposed mechanism for differential 

vulnerability of SN neurons is proposed by Chan et al., 2007 with their Cav1.3 

KO mouse. Based on the finding that SN DA neurons continue to generate 

spontaneous pacemaker activity in these mice, due to a switch from calcium to 

sodium-based pacemaking, they demonstrate that a corresponding drug-induced 

pacemaker-switching of SN DA neurons by selective blockade of L-type calcium 
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channels, significantly reduces their vulnerability in a model of chronic MPTP 

treatment (Chan et al., 2007).   

Puopollo et al., 2007, propose that the massive entry of calcium during 

both the slow spontaneous depolarization and also during the spike, involved in 

pacemaking activity of DA neurons, and the mechanisms to clear such a calcium 

load could be involved in differential vulnerability of DA neurons. In support to 

this hypothesis, VTA DA neurons that depend less on calcium entry for their 

pacemaker drive than SN neurons, as discussed previously, are less vulnerable to 

neurodegeneration. Moreover, different synaptic inputs may also contribute to 

different vulnerability of DA neurons. For example glutamatergic input loads the 

cells with calcium; neurons presenting with higher density of HCN channels 

directly involved in pacemaker frequency control, are likely to be more sensitive 

to neuromodulatory input by for instance serotonin (Kitai et al., 1999) due to their 

modulation by cyclic nucleotide levels in neurons. Finally, it has been proposed 

by Neuhoff et al. 2002, that differences in Ih channel density in DA neurons may 

be important for the integration of GABAergic signaling which represents more 

than 70% of synaptic input to midbrain DA neurons. DA autocrine control of 

spontaneous firing by GABA release, as it was recently hypothesized for retinal 

dopaminergic neurons (Hirasawa et al., 2009) could be yet another mode of action 

contributing to pacemaker control. 

 

1.4.6 DA and associated pathologies 

 

1.4.6.a Overview 

 

Consistent with their varied functions DA neurons are associated with 

multiple neurodegenerative and psychiatric disorders. Selective degeneration of 

DA neurons in the SN, but not in the VTA, leads to Parkinson’s Disease (Hirsch 

et al., 1988; Purba et al., 1994; Varastet et al., 1994), whereas abnormal function 

of VTA DA neurons has been linked to schizophrenia, drug addiction and 

attention-deficit-hyperactivity disorder (ADHD) (Bonci et al., 2003; Viggiano et 

al., 2003; Meyer-Lindenberg et al., 2002; Nestler et al., 2006).  Other conditions 
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that affect the pars compacta with a pattern of cell loss similar to PD include 

striatonigral degeneration (or multiple systems atrophy), progressive supranucear 

palsy and corticobasoganglionic degeneration  (Rehman et al., 2000). 

  

1.4.6.b Parkinson’s disease 

 

The major neurodegenerative disorder associated with dopaminergic loss 

is PD. PD was first described by James Parkinson in 1817 as a neurological 

disorder associated with specific neuropathological lesions. It is the second most 

common progressive neurodegenerative disorder, affecting 1-2% of all  

individuals above the age of 65. The main pathological hallmark of PD is 

progressive loss of neuromelanin-containing dopaminergic neurons in the SNc of 

the ventral midbrain and the presence of eosinophilic intraneuronal inclusions, 

called Lewy bodies (LBs), composed of specific cytoplasmic proteins like alpha-

synuclein, parkin, synphilin, ubiquitin, and oxidized neurofilaments (Goldman et 

al., 1983). LBs were first described by Lewy in 1913 in degenerating neurons in 

the basal forebrain.  

In PD the loss of nigral neurons follows a specific pattern of degeneration 

with the A9 and in a lesser extent the A8 cell groups presenting with a higher 

vulnerability with respect to the A10 cells, among which neuron loss is almost 

negligible. Significant differences are also seen within the A9 cell group with 

lesions being more prominent at caudal, ventral and lateral positions in contrast to 

more rostral, dorsal and medial regions. This pattern of cell loss is also seen in 

animal model systems (Betarbet et al., 2000). MPTP treatment in rodents and 

primates, 6-hydroxydopamine infusion in rodents, and rotenone infusion in rats all 

produce dopamine neuron death following this specific pattern (Rodriguez et al., 

2001; Burns et al., 1983; Dawson et al., 2002).  Moreover, this susceptibility, 

higher in SN neurons with respect to VTA cells, is also seen after proteosomal 

inhibition in the rat or spontaneously in the weaver mouse (Graybriel et al., 1990; 

McNaught et al., 2004).  The result of this cell loss is severe dopamine depletion 

in the striatum, responsible for the motor symptoms associated with PD, 

especially bradykinesia, tremor at rest, rigidity, and loss of postural control 
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(Bernheimer et al., 1973; Ehringer and Hornykiewicz, 1960; Selby, 1984). The 

cardinal symptoms first appear when about 50% of the dopamine neurons in the 

SN are lost and levels of dopamine in the striatum are reduced by 80% (Agid, 

1991). Other lesions are observed in the noradrenergic locus coeruleus and the 

ascending cholinergic pathway from the nucleus basalis of Meynert (Ehringer and 

Hornykiewicz, 1960; Candy et al., 1983). These non-nigral lesions lead to 

cognitive and psychological impairments such as dementia which is estimated to 

occur in around 30% of all PD patients (Aarlsland et al., 1996). The loss of 

neurons in the LC is actually more prominent than the loss in SN (Ehringer and 

Hornykiewitz, 1960; German et al., 1992). The observations that cell loss in the 

nucleus coeruleus results in increased vulnerability of mDA neurons to various 

insults such as 1-methyl-4 phenyl1-1,2,3,6-tetrahydropyridine (MPTP)  

(Srinivasan and Smith, 2004) and that oxidative stress is reduced on VM cultures 

by noradrenaline application (Troadec et al., 2001) have led to the hypothesis that 

the cause of Parkinson’s disease is due to the degeneration of neurons in the LC. 

Moreover, a recent study has suggested that loss of locus coeruleus neurons 

contributes to motor dysfunction in PD (Rommelfanger et al., 2007). According to 

this hypothesis, LC neurons precede and might initiate DA loss.   

 

1.4.6.c Other etiologies for Parkinson’s disease 

 

Epidemiological and genetic studies have suggested multiple etiological 

factors for Parkinson’s disease that is more appropriately described as a syndrome 

rather than one disease (Calne et al., 2001). Some of the features found to be 

implicated in the destruction of dopaminergic neurons are age, genetic and 

environmental factors, neuroinflammation and oxidative stress.  

DA neurons are thought to be particularly prone to oxidative stress due to 

their high rate of oxygen metabolism, low levels of antioxidants, and high iron 

content.  Lower glutathione (GSH) content has been reported in the brains of 

parkinsonian patients which show a reduced capacity to clear hydrogen peroxide 

(Lang et al., 2001). Laboratory experimental evidence in support of the oxidative 

stress hypothesis comprises the external administration of anti-oxidants such as 
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cysteine to reduce 6-hydroxydopamine’s neurotoxic action (Méndez-Άlvarez et 

al., 2001).  

Dopamine itself is capable of producing toxic reactive oxygen species 

(ROS) via both its enzymatic and non-enzymatic catabolism (Halliwell, 1992). 

Specifically, dopamine oxidation can occur either spontaneously in the presence 

of transition metal ions or via an enzyme-catalyzed reaction involving monoamine 

oxidase (MAO). Oxidation of dopamine via MAO generates a spectrum of toxic 

species including H2O2, oxygen radicals, semiquinones and quinones (Graham et 

al., 1978). An increased brain concentration or utilization of dopamine could lead 

to an increase in the formation of active metabolites especially under conditions in 

which the ratio of available dopamine to antioxidant capacity is high (Hastings et 

al., 1994).  

Exposure to environmental toxins and pesticides (rotenone or paraquat), 

i.e. in agriculture, and various heavy metals have been associated with disease 

insurgence (Baldereschi et al., 2003; Betarbet et al., 2000). Neutotoxins, such as 

MPTP, a side product during heroin production, have been related to PD when it 

was noted in 1980s that its accidental use by young heroin addicts in California 

resulted in their exhibiting parkinsonian features (Langston et al., 1983). It is this 

substance and the elucidation of the mechanism by which it causes Parkinsonism 

in animal models, that have led to the implication of mitochondrial dysfunction in 

the pathogenesis of PD. MPTP is highly lipophilic, and it crosses the blood brain 

barrier within minutes (Markey et al., 1984). In the brain, MPTP is oxidized to 1-

methyl-4 phenyl-2,3-dihydropyridinium (MPDP+) by monoamine oxidase B 

(MAO B) in glia and serotonergic neurons and then is spontaneously oxidized to 

MPP+. Due to its high affinity for the DA Transporter (DAT), it is selectively 

accumulated in dopaminergic neurons, where it causes toxicity and neuronal death 

by impairing mitochondrial respiration through inhibition of complex I of the 

electron transport chain (Javitch et al., 1985; Blum et al., 2001). Complex 1 

deficiency specific to the substantia nigra has been reported in human PD brains 

(Shapira et al., 1990). The common herbicide 1,1’-dimethyl-4,4’-5 bipyridinium 

(paraquat) and rotenone exert their toxic effects on complex I in a similar fashion. 
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  There is strong debate over the mechanism by which an external event 

eventually leads to the disease, with a traditional and conventional model of 

etiopathogenesis, which envisions a continual process affecting all susceptible 

cells in the SN, in contrast to the so called “event hypothesis”, by which a 

transient environmental factor would cause sublethal damage that eventually 

would result in the premature death of neurons, at variable periods after the insult 

has occurred (Calne, 1994). In support of the latter theory come the following 

models: a) Von Economo’s encephalitis (Calne et al., 1988), which often led to 

the appearance of parkinsonism several years after the infection, b) the selective 

nigral damage caused by MPTP, that has been shown to lead to immediate death 

of cell dopaminergic neurons and then, many years later, to active cell destruction 

with progression of the disease (Vingerhoets et al., 1994; Langston et al., 1999), 

and, finally, c) reports of traumatic brain injuries, that have led to parkinsonism 

with disease progression after cessation of the traumatic event (Vingerhoets et al., 

1994; Langston et al., 1999). 

Neuroinflammation has been suggested to participate in the degeneration 

of dopamine neurons in Parkinson’s disease. Activated microglia are found to 

correlate in areas within the SN with extracellular neuromelanin (a product of 

catecholamine metabolism), and anti-inflammatory drugs have been associated 

with reduced risks to develop PD (Beach et al., 2007; Chen et al., 2003). Within 

CNS, microglia can act as macrophages by removing cell debris and fighting 

infections by the production of pro-inflammatory cytokines like interleukin-1ß 

(IL-1ß) and TNFa. Microglia is also associated with increased expression of iNOS 

and NADPH oxidase, enzymes that generate free radicals such as nitric oxide and 

superoxide (Langston et al., 1999). NM is released by dying neurons, which are 

phagocytosed by microglia, and such a microglial activation would elicit a vicious 

cycle of NM release followed by inflammation. Misfolded or aggregated proteins 

from diseased SN neurons could similarly activate a local immune response. 

About 5-10% of all cases of Parkinson’s disease are familial (Olanov and 

Tattom, 1999). Up to this moment two autosomal-dominant genes, (α-synuclein 

and LRRK2) and three autosomal recessive genes (parkin, DJ-1 and PINK1) have 

been definitely associated with inherited PD (Polymeropoulos et al., 1997: Kitada 
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et al., 1998; Bonifati et al., 2003; Valente et al., 2004; Paisán-Rui’z et al., 2004; 

Zimprich et al., 2004). UCHL-1 (Leroy et al., 1998; Healy et al., 2006), 

Nurr1/NR4A2 (Le et al., 2003; Healy et al., 2006), synphillin-1 (Marx et al., 

2003) and Htra2/Omi (Strauss et al., 2005; Simón-Sánchez et al., 2008) have also 

been described to be associated with PD, but these reports have neither been 

replicated nor they have shown any linkage or association to disease (Hardy et al., 

2007). α-synuclein was the first gene in which a mutation was found to cause an 

autosomal-dominant form of Parkinsonism (Polymeropoulos et al., 1997). 

Furthermore, it was found to be the principal constituent of Lewy bodies 

(Spillantini et al., 1997). Its function is currently not known. It has been shown 

though to be involved in fatty acid metabolism since α-synuclein knockout mice 

have a defect in brain fatty acid metabolism (Govolko et al., 2005). LRRK2, 

whose function is also unknown, is a complex kinase for which it has been 

proposed that a simple gain of kinase function could lead to toxicity (Greggio et 

al., 2006). Parkin is an E3 ligase, whose functions in the cell may include 

preparing proteins for proteosomal degradation, but its key function emerges now 

to be related to the mitochondrion (Golovko et al., 2005). DJ-1 is an atypical 

peroxidase that protects from oxidative stress. PINK 1 is a mitochondrial kinase, 

but neither its direct activators nor repressors are known. UCHL-1 has been 

shown to have ubiquitin ligase activity as well as hydrolase activity that could 

result in proteosomal degradation of proteins (Liu et al., 2002; Osaka et al., 2003). 

Its mutation has been reported to result in selective degeneration of DA neurons in 

a familiar case of PD (Liu et al., 2002). NR4A2 is a transcription factor required 

for the differentiation of midbrain neurons and there are indications that 

synphilin-1 may interact with alpha-synuclein and parkin (Zarranz et al., 2004). It 

has also been found as a component of LBs in brains of sporadic PD patients. 

Autozygous mutations linked to PD have been reported also for ATP13A2 

(Ramirez et al., 2006), which is a lysosomal pump (likely to be involved in a 

lysosomal storage disorder.), and for FBXO7, part of an E3 ubiquitin ligase 

(Laman et al., 2006). Mutations in the glucocerebrosidase gene (GBA), which in 

homozygous modality causes Gaucher’s disease, a lysosomal storage disorder, in 

its heterozygous mutated state has been proposed as an risk factor for PD (Goker-
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Alpan, 2004; Clark et al., 2007). GBA catalyzes the breakdown of the 

glucosecerebrosides to ceramide and glucose. Lysosomal build up of 

glucosecerebroside in the liver is the acute cause for its clinical manifestation.  

In this context, oxidative stress and mitochondrial dysfunction have been 

proposed as one pathway leading to mitochondrial cell death. For this, evidence 

exists, that PINK1 and parkin are on the same mitochondrial pathway with PINK1 

acting upstream of parkin (Park et al., 2006) and, although there is no direct 

evidence linking DJ-1 to parkin and PINK1, it has been suggested that this gene 

also might be part of the same pathway (Fitzgerald et al., 2008).  Aberrations in 

the ubiquitin-proteasome pathway might relate to alpha-synuclein, UCHL-1 and 

parkin. Malfunctioning of this system could lead to an accumulation and 

deposition of proteins.  

Finally, Hardy et al., 2009 include the following three diseases, in their 

critical review of the genetics of Parkinson’s syndromes, for their clinical and 

neuropathological (presence of Lewy bodies) associations with parkinsonian 

syndromes:  the   Niemman-Pick type C (NPC) caused by mutations in the NPC1 

gene, the Hallervoden-Spatz disease (also known as Neurodegeneration with 

Brain Iron Type 1/NBIA-1) caused by mutations in the PANK2 gene (Zhou et al., 

2001) and the Neurodegeneration with Brain Iron Type 2 (NBIA-2) caused by 

mutations in the PLAG2G6 gene (Morgan et al., 2006).  As these proteins GBA, 

PLA2G6, PANK2, and NPC1 all map directly on to lysosomal ceramide 

metabolism (Bras et al., 2008), they propose this pathway as an interesting 

possibility to take into consideration for future explorations. Work in yeast has 

also suggested a relationship between alpha-sunuclein and lysosomal recycling 

(Gitler et al., 2009) (for review on genetics of Parkinson’s syndromes, see Hardy 

et al., 2009).  

 

1.4.6.d Treatment of PD 

 

There is no current cure for the disease. Treatment is largely symptomatic. 

The most commonly prescribed drug for PD is L-dopa. L-dopa is the natural 

precursor for the metabolism of dopamine (Cotzias et al., 1967), and since it is not 
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charged like dopamine, it can cross the blood brain barrier. It is given with 

decarboxylase inhibitors to decrease its peripheral metabolism. The intake of L-

dopa proves to be efficient in reducing parkinsonian symptoms, but it is also 

accompanied by severe side effects such as nausea, vomiting, and altered blood 

pressure. Moreover, after some years of treatments, the effects of L-dopa decline 

and patients develop dyskinesias (Lang and Lonzano, 1998 a & b). Dopamine 

agonists are also used therapeutically to replace dopamine function, but, up to 

now, none has proved as efficient as L-dopa. Other treatments include inhibition 

of the catecol-O-methyl transferase (COMT) and monoamine oxidase B. 

Experimental methods used at this time include deep brain stimulation and stem 

cell implantation. Deep brain stimulation consists in implanting high frequency 

electrodes in the brain to stimulate the thalamus reducing tremor (Putzke et al., 

2003). Stimulation of the subthalamic nucleus or the globus pallidus interna 

diminishes bradykinesia, rigidity, and reduces L-dopa induced dyskinesia (Kumar 

et al 1998a, Kumar et al., 1998b). Transplantation of neural stem cells from fetal 

tissue into the striatum is still in its infancy although it has proved promising up to 

this moment as it appears that neural stem cells survive within the host and 

replace the function of the damaged dopaminergic neurons (Storch et al., 2004). 

The outcome of recent clinical trials however revealed poor cell survival of 

transplanted grafts with only portions of the host brain becoming re-innervated by 

subpopulations of these grafted cells Furthermore, it was noted that some 

transplanted patients develop dyskinesias (Bjorklund et al., 2003; Olanow et al., 

2003). Other problems with grafting fetal tissue derive by its limited availability 

and the ethical issues that come with it. Alternative sources should be approached, 

such as the use of multipotent stem cells from the patient’s own body and research 

effort put in developing appropriate protocols for the induction of the desired 

dopaminergic phenotype that could then be used to replace midbrain 

dopaminergic neurons lost during the disease process.      
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1.4.7 Transcriptional anatomy of DA cells   

 

Three recent gene expression profile experiments, already mentioned in 

section 1.3.5, (Grimm et al., 2004; Chung et al., 2005; and Greene et al., 2005) 

have looked at differences between SN and VTA and have confirmed previous 

results obtained traditionally by looking at one candidate at a time. These studies 

have produced new data, a number of which have been validated and used for the 

formulation of testable hypothesis. These data have been examined either by 

looking at differentially expressed genes individually or by searching for 

concerted differences in gene expression, which are more likely at the base of 

functional differences between populations. A brief review of genes identified by 

all three studies follows.  

MARCKS (myristoylated, alanine-rich, C-kinase substrate), ADCYAP1 or 

PACAP (pituitary adenylate cyclase activating polypeptide) and LPL (lipoprotein 

lipase) are three genes that have been found to show higher expression in the 

VTA, whereas a higher expression of GSYN (gamma synuclein) and NMDAR2C 

(N-methyl-D-aspartate receptor subunit 2C) has been noted for SN neurons. 

MARCKS has been implicated in learning and long term potentiation and the 

pathophysiology of mood disorders (Matus, 2005). PACAP has a known 

neurotrophic role during development and in cultures of ventral mesencephalic 

dopamine neurons. A neuroprotective function against MPP+ induced toxicity has 

also been noted (Vaudry et al., 2000; Takei et al., 1998; Reglodi et al., 2004). LPL 

is a candidate for protecting cells from damage caused by oxidized lipoproteins 

(Paradis et al., 2003). These gene functions seem to comply well with the 

diminished susceptibility of VTA DA cells to neurodegeneration. Gamma-

synuclein has been reported to be involved in the regulation of the cell cycle 

(Inaba et al., 2005) and NMDAR2C in excitatory neurotoxicity of SN neurons 

(Kress et al., 2005).  

Examination of gene categories of microarray expression studies has 

highlighted two major distinctions between VTA and SN neurons. All three 

studies converge to the idea that the most prominent difference concerns genes 

encoding energy-related metabolism, electron-transport and mitochondrial 
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proteins, which appear to be more expressed in SN rather than VTA neurons. This 

corroborates well with the fact that mitochondrial dysfunction is considered one 

of the aetiologies of PD (Greenamyre et al., 2001). SN neurons appear to be more 

metabolically active than VTA neurons and accordingly more energy (ATP)-

dependent. As a consequence they may be more susceptible to toxins such as 

MPP+, rotenone (Betarbet et al., 2000), to mutant forms of alpha-synuclein or 

parkin that have been proposed as interfering with normal mitochondrial function 

(Hsu et al., 2000; Palacino et al., 2004). Genes related to lipid metabolism 

categories (Willingham et al., 2003) and vesicle-mediated transport are also found 

to be more expressed in A9 neurons with respect to A10 neurons and interestingly 

several RAB three genes (implicated in vesicle mediated transport) were found 

within genomic linkage regions for PD (Hauser et al., 2003). It has been proposed 

that vesicle-mediated transport may be more active in A9 neurons rendering them 

more vulnerable to eventual genetic or environmental factors that interfere with 

this pathway functioning. Large differences have been noted in neuropeptide and 

neurotrophic factors, more highly expressed in VTA rather than SN neurons 

(Chung et al., 2005; Greene et al., 2005). This could explain the preservation of 

VTA neurons in PD patients and in animal models that recapitulate the 

neuropathology of the disease.  

Up to now, a total of six studies have analyzed the expression profile of 

ventral midbrain cells or mDA neurons specifically, resulting in a list of several 

hundred genes. The three studies that have just been dealt with have identified the 

global expression profile of the subpopulations of mDA neurons in rats amd mice 

using microarrays. The other three studies (Stewart et al., 1997; Barret et al., 

2001; Thuret et al., 2004), based on differential display, have examined the 

expression profile of the midbrain tissue in mice. In a retrospective study, Alavian 

and Simon (2009), have combined the resulting datasets from all six studies and 

have produced a database of the genes expressed in the mDA cell population. 

They have then verified the expression of each gene in dopaminergic neurons, 

using the collection of in situ hybridization in the Allen Brian Atlas. What they 

have found is that the efficiency of each screen in identifying mDA-specific genes 

was 25% for Chung et al., 29% for Barrett et al., 28% for Stewart et al., 37% for 
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Greene et al., 24% for Thuret et al., and 24% for Grimm et al., which is an 

indication for the complementary and non-redundant nature of such studies. 

 

The importance of being able to identify unequivocally DA cell 

subpopulations and having a full ID of each subtype emerges if we take into 

consideration the centrality of these nuclei in brain function and dysfunction. It 

clearly is important for defining which neurons are marked for death and in which 

pattern in the various neurodegenerative diseases that affect the mesencephalic 

DA neurons. It is also crucial for the development of selective drug targets and 

therapies. This because the drugs do not distinguish between classes of neurons 

and the desired effects in one condition become the adverse effects in another. For 

example, hallucinations and paranoia are common side effects of PD drug 

therapy, while schizophrenia drug therapy is characterized by unwanted PD-like 

extrapyramidal motor disturbances (Grimm et al., 2004).      

Very importantly still, although the presence of TH enzyme is the most 

sensitive and consistent single marker available to us for the identification of 

dopaminergic cells and while it works very well for mDA cells, it has proven not 

to be always a reliable or necessary condition for determining the DA identity of a 

neuron. The reason for this is that TH at immunohistochemically detectable levels 

can change over time and vary in response to changes in functional demands and 

hormonal status. For instance, there is an age-related decline in dopaminergic 

function in the nigrostriatal system which is linked to a downregulation of the TH 

enzyme. This decline is also seen in dysfunctional but surviving neurons in PD. 

On the other hand, TH positive cells, undetectable with the histofluorescence 

technique, occur in rodents in the hypothalamus and in primates and humans also 

in the basal forebrain, striatum and cortical areas. These neurons do not contain 

any detectable CA and lack AADC, as well as VMAT-2 (Ikemoto et al., 1999, 

Weihe et al., 2006) and the majority of them exhibit morphological features of 

GABA interneurons (for review, see Björklund et al., 2007). From here follows 

the importance of finding additional markers to identify cells as functional DA-

producing neurons in other areas of the nervous system. Identification of specific 

markers in combination with molecular profiles will also support stem cell 
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engineering in targeting the production of specific DA subpopulations for cell 

replacement therapies. 

Finally, full expression profiles of A9 and A10 cells may shed light on the 

biological basis that dictate the differences in susceptibility seen in the two mDA 

subpopulations. Unraveling eventually such differences in expression at baseline 

and prior to any experimental manipulation may help to elucidate this selective 

vulnerability and the specific function of these neurons. 

 

1.5 AIMS OF THIS WORK  

 

• To develop a suitable method for producing high quality RNA from GFP-

expressing mDA cells isolated by LMPC 

• To apply the extracted and suitably amplified material on cDNA 

microarrays for gene expression profiling of A9 and A10 mDA 

subpopulations 

• To validate most interesting results by cross-referencing them with  

literature data from previous expression profiling studies and with in situ 

hybridization data from the Allen Brain Atlas, in order to identify potential 

markers that may discriminate between A9 and A10 cells and interesting 

genes that could be at the basis of the differential vulnerability of the two 

subpopulations in Parkinson’s and other neurodegenerative diseases. 
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MATERIALS AND METHODS 
 
 
 
2.1 ANIMALS  

 

2.1.1 TH - GFP transgenic mice 

  

Two to three months old female TH-GFP transgenic mice that express 

GFP protein in the majority of midbrain DA neurons under the control of the 9-kb 

upstream region of the rat TH gene were used for all expression profile 

experiments involving DA cells. The TH-GFP/21-31 strain was kindly provided 

to us by Prof Kazuto Kobayashi (Department of Molecular Genetics, Institute of 

Biomedical Sciences, Fukushima Medical University, School of Medicine, 

Fukushima, Japan).  The transgenic line was maintained by breeding to C57BL/6J 

inbred mice in our Animal House Facility (Settore Stabulario, Università di 

Trieste, via Valerio 28, Trieste). Homozygous mice are lethal possibly because of 

disruption of some gene functions by transgene integration. Transgenic mice were 

identified by PCR of tail DNA using the GFP sequence. 

 

2.1.1.a Generation of transgenic mice carrying a TH-GFP fusion gene 

 

Briefly, the transgene construct contained the 9.0-kb 5’-flanking region of 

rat TH gene, the second intron of the rabbit β-globin gene, cDNA encoding EGFP 

(Clontech, Palo Alto, CA, USA), and polyadenylation signals of the rabbit b-

globin and simian virus 40 early genes (Sawamoto et al., 2001). The construct was 

microinjected into fertilized (C57BL/6J x DBA/2J) F2 mouse eggs, which were 

then implanted into pseudo pregnant females. Ten copies of the transgene were 

integrated per haploid genome in this strain. The typical expression frequency of 

the GFP protein in the TH-GFP/21-31 line was 94.1% in the SNc and 85% in the 

VTA whereas the ectopic expression frequency, defined as the percentage of 

expression of the number of GFP+ only cells in the total number of TH+/GFP+ 

cells, was 7.5% in the SNc and 8.3% in the VTA (Matsushita et al., 2002).  



 66 

2.1.2 C57BL/6J 

 

For all other applications unless otherwise stated C57BL/6J mice were used. 

 

2.2 DISSOCIATION OF DOPAMINERGIC NEURONS  

 

Dissociation trials were performed on wild type C57BL/6J aged P20. 

Animals were killed by cervical dislocation and brains were removed. Ventral 

mesencephalon was dissected out in ice-cold dissociation solution (Earle’s 

Balanced Salt Solution 10X EEBS, Sigma, St Louis, MO, USA; 7.5% NaHCO3; 

1M HEPES, Sigma, St Louis, MO, USA; pH adjusted to 7.4 with 1N HCl) and 

minced in small pieces with a scalpel blade. These pieces were subsequently put 

in a Falcon tube containing 5 ml of the dissociation solution with 20 u/ml of 

papain (Worthington Biochemicals Co., Freehold, NJ, USA). Papain was pre-

activated by incubation at 37˚C for 30 minutes in the presence of 1 mM L-

cysteine and 0.5 mM EDTA. After papain, 250 µl DNAse I (Worthington 

Biochemical Co. Freehold) were added to the digestion solution and the tube was 

gently agitated at 37˚C for 40 minutes. The digestion medium was then removed 

and the contents washed briefly in EBSS. An additional wash (5 min at 4˚C) was 

then performed with 5 ml of EEBS containing 500 µl of 1% ovomucoid inhibitor 

(Worthington Biochemical Co. Freehold) and 1% BSA (Sigma, St Louis, MO, 

USA). To stop the enzymatic digestion, the supernatant was discarded and 2 ml of 

albumin/ovomucoid inhibitory mix were added to the tube. The mesencephalic 

pieces were mechanically triturated with a fire-polished glass Pasteur pipette and 

the cloudy cell suspension transferred to a new tube with fresh ovomucoid 

inhibitory solution and triturated further with a glass Pasteur-pipette fire-polished 

to a smaller diameter. The supernatant was then pooled and centrifuged at 900 

rpm for 5 minutes. Pelleted cells were resuspended immediately in DMEM + 10% 

FBS + Pen/Strept. Resuspended cells were seeded on glass coverslips, previously 

treated with Concanavalin A (Sigma), and washed with PBS (2x) and culture 

DMEM (1x). Cells were left to adhere for 30 to 60 minutes and fixed in PFA 4% 

for 10 minutes. 
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 Immunofluorescence with a mouse monoclonal anti-TH primary antibody 

(DiaSorin, Stillwater, MN, USA) was coupled with an Alexa Fluor 594 

immunofluorescent secondary antibody. Fixed dissociated cells were washed 

twice in PBS, incubated at RT for 4 minutes with 0.1% Triton solution (in PBS), 

followed by two further PBS washes. Cells were incubated with the primary 

antibody in a 1:1000 PBS solution (0.1% BSA + 0.02% NGS + 0.1% TritonX-

100) for 90 minutes. After two five minute washes with PBS, the secondary 

antibody was applied in a 1:250 dilution in a PBS solution (0.1% BSA). Cells 

underwent two more five minute washes with PBS. Finally, cells were 

counterstained with the immunofluorescent nuclear 4’, 6-diamidino-2-

phenylindole (DAPI; Invitrogen Molecular Probes) in a 1:2000 dilution made in 

PBS, washed three times in PBS and one final time in H2O, before being mounted 

with Vectashield for microscopic inspection.  

 

2.3 DEVELOPMENT OF PROTOCOL FOR USE WITH LMPC 

 

2.3.1 RNase – free experimental environment 

 

All procedures were performed in an RNase-free environment. Working 

surfaces and plasticware were treated with RNase decontamination solution 

(RNase Zap, Ambion, Austin, TX, USA) and rinsed with Diethyl Pyrocarbonate 

(DEPC, Sigma)  treated water. Glassware was baked at a minimum of 220˚C for 4 

hours to inactivate RNases. All solutions were prepared either with DEPC-treated 

water or from purchased certified RNase- free water. 

DEPC-treated H2O: 1 ml of DEPC was added to 1L of bidistilled H2O and the 

solution was stirred for 6-8 hours at RT and left uncovered overnight under a 

fume hood. The day after residual DEPC was removed by autoclaving. To avoid 

interference of residual traces of DEPC with subsequent enzymatic reactions such 

as nucleic acid amplifications, the solution was autoclaved twice and stored at RT. 

All chemical substances containing amino groups like TRIS, MOPS, EDTA, 

HEPES etc were prepared in DEPC-treated H2O and never directly treated with 

DEPC.  
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2.3.2 Comparison of fixatives and staining in relation to tissue morphology 

and RNA quality retention 

 

Adult C57BL/6J mice and TH-GFP/21-31 were killed by cervical 

dislocation in the laboratory environment always at 6 p.m. The brains were 

rapidly removed with the help of forceps, briefly washed in ice-cold PBS, and the 

regions of interest dissected and included in section medium Neg-50 (Richard 

Allan Scientific, Kalamazoo, MI, USA) in cryomolds in the desired position and 

orientation. Blocks of tissue were then snap-frozen on an isopentane layer (Sigma, 

St Louis, MO, USA) previously hardened in liquid nitrogen. Brains to be used 

immediately were left to equilibrate in a cryostat chamber (Microm International, 

Walldorf, Germany) at -21ºC for 1 hour. Fourteen micrometer (14 µm) 

cryosections were cut at the cryostat and thaw-mounted onto plus-charged 

Superfrost glass slides (Superfrost plus, Menzel-Gläser, Menzel GmbH & co KG, 

Braunschweig, Germany). Six sections were mounted on each slide. Slides were 

kept in the cryochamber at -21ºC during the whole procedure. Cutting and 

mounting were performed as quickly as possible (approximately 15 minutes). 

To compare and evaluate the effects of fixatives and staining on tissue 

morphology of wild type mice sections and the effect of fixatives on the retention 

of the GFP fluorescence of TH-GFP/21-31 mice sections as well as the effects on 

RNA recovery and quality, slides were air-dried for at least 2 minutes and fixed in 

the following compounds: 

A) Ice-cold ethanol (EtOH) 95% for 1 minute.   

B) Ice-cold acetone 99% for 2 minutes.  

C) DSP (Pierce, Rockfold, IL, USA) at a final concentration of 1mg/ml for 5 

minutes. 50x stock solutions of DSP in anhydrous DMSO (Sigma) were 

prepared and stored at -80 ºC. To prepare a working concentration the 

stock solution was diluted with 1xPBS immediately before use. DMSO 

stock was added to PBS dropwise while the solution was on a stirrer so as 

to avoid the formation of white precipitate (Xiang et al., 2004).  

D) Paraformaldehyde (PFA) 4% for 5 minutes. 
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E)  Zinc-based fixative (Zincfix). Immediately after brain dissection, a piece 

of tissue was placed in 1X ice-cold Zincfix (BD Biosciences, Franklin 

Lakes, NJ, USA) for 6 - 8 hours followed by an overnight immersion in a 

solution of 1X Zincfix + 30% sucrose at 4 ºC, until the specimen sunk at 

the bottom of the Falcon tube. The ratio, fixative volume to specimen 

volume, was >10. The cryoprotected brain portion was subsequently 

embedded in Neg-50, snap frozen on liquid nitrogen cooled 2-

methylbutane (isopentane), and sectioned at 14 µm intervals at the 

cryostat, at -21 ºC.  

F) Fresh brain sections prepared at the cryostat from snap-frozen brain were 

used as control. 

Following fixation, half of the slides were used for morphological evaluation and 

half for estimation of RNA recovery and integrity. Wild type mice sections were 

washed with nuclease-free water (10 seconds) with the exception of ethanol-fixed 

sections which also underwent a 70% ethanol rinse before the water wash, and 

Zincfic-fixed sections which underwent a five-minute immersion in ice-cold 

Zincfix to get rid of the Neg-50 tissue embedding medium. Subsequently, they 

were stained into a 1% cresyl violet solution (1gr Cresyl Violet Acetate, Sigma,  

in 100 nuclease-free H2O) for 2 minutes, rinsed in nuclease-free H2O, and finally 

dehydrated through a decreasing series of EtOH solutions, 75% for 30 seconds, 

95% for 30 seconds, and 100% for 30 seconds (2x). Xylene was used for 1 minute 

only if stain was too deep.  

The slides were left to air dry on the bench and stained tissue sections were 

examined together with fixed unstained sections from TH-GFP/21-31 mice with 

regards to morphology and retention of the fluorescent marker respectively, with a 

Zeiss PALM LMPC microscope (Carl Zeiss Inc., Germany). Some Zincfic-fixed 

sections were subjected to a shorter modified Nissl stain for which, they too, were 

evaluated in terms of tissue morphology and RNA integrity. The short cresyl 

violet staining consisted in a one minute 70% EtOH wash, followed by staining in 

a 1% cresyl violet solution prepared in 70% EtOH in place of H2O for 2 minutes, 

and a final wash in 100% EtOH.  
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In parallel, to study RNA recovery and quality, similarly prepared sections 

(6 from each slide) were scraped off the slides and into Eppendorf tubes with the 

help of a scalpel and collected at the bottom of the tubes with a centrifuge  at 

13000g for 5 minutes. The procedure was repeated five times. RNA was 

extracted, quantified, and its quality assessed as described in paragraph 2.5, "RNA 

extraction and quality assessment”. 

 

2.3.3 Improving tissue visualization 

 

Morphology of tissue sections when dry and not mounted and coverslipped 

is far from ideal. Recognition of structures of interest becomes difficult, especially 

when looked at though an LMPC objective, which does not offer high optical 

resolution. This is particularly true for fluorescent-expressing cells and tissues, for 

when these dry, fluorescent structures tend to blend with the background which 

shows a diffuse fluorescence itself. 

 In order to improve visualization of tissue morphology and discern cells 

of interest, in this case the TH-GFP expressing DA cells of the midbrain, we 

applied to our sections a series of compounds, in drops, before looking at them at 

the LMPC: i) the LiquidCover Glass N (PALM, Microlaser Technolgies GmbH, 

Benried, Germany), which is a resin that can be thinned with EtOH, ii) EtOH 

100%, and iii) Zincfix. Sections were evaluated for their morphology and RNA 

quality was assessed only for the compound which gave the best results, in this 

case Zincfix, as described in the paragraph on “RNA extraction and quality 

assessement”. This application was called the “postfixation” step. Concomitantly 

RNA quality was analyzed for a) a piece of fresh cerebellum, b) a piece of 

cerebellum fixed in Zincfix, c) Zincfic-fixed cerebellar sections, and d) postfixed, 

Zincfic-fixed cerebellar sections subjected to the laser-microdissection procedure, 

in order to grossly evaluate the loss of RNA quality at each step of the process. 

For RNA extraction and quality assessment see paragraph 2.5. 
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2.3.4 Storage of sections 

 

LPC sessions often last for many hours and if more than 1000 cells are to 

be collected one by one, then the harvest can continue the day after. For this 

reason it was necessary to test and select the best storage conditions for the tissue 

sections intended for LMPC use. 

Sections from TH-GFP/21-31 transgenic mice were prepared as 

aforementioned (paragraph 2.4.2) and fixed with Zincfix. One batch of slides was 

stored in dry conditions, in a box with silica beads, in a vacuum, for two months; 

a second batch was stored in a box, with dessicant, at -80◦C for the same time 

period. These sections were consequently evaluated for tissue morphology after a 

dropwise addition of Zincfix on their surface and RNA recovery and quality as in 

paragraph 2.5. 

 
 
2.4 TISSUE PREPARATION FOR LMPC 

 

For laser capture microdissection, regions of midbrain, cerebellum and 

hippocampus, respectively from TH-GFP/21-31 mice and wild type mice were 

dissected and incubated in 1X Zincfix solution for 6 hours. They were then 

cryoprotected in a 1X Zincfix + 30% sucrose solution at 4˚C overnight, embedded 

in Neg-50 section medium, snap-frozen and left to equilibrate in a cryostat 

chamber at -21˚C for 1 hour before sectioning, as described earlier. Coronal 14 

µm sections were prepared from cerebella and hippocampi of wild type mice and 

thaw-mounted on PEN membrane-coated slides (PALM), which were then Nissl 

stained as described earlier. Midbrain sections from TH-GFP/21-31 were thaw-

mounted on thinner PET membrane slides (PALM), which gave lower 

background fluorescence and hence allowed better visualization of the DA GFP-

expressing cells. For all microarray experiments TH-GFP midbrain sections were 

thaw-mounted on Superfrost plus glass slides (Mezzle-Glasser) as brain sections 

adhered better on them rather than on membrane-coated slides which were 

confounding because of their inherent fluorescence.  Sections were left to air dry 

for 30 minutes and postfixed with LiquidCover N and Zincfix just prior to the 
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moment of cell selection. Sections were left to dry for few minutes.  Up to three 

slides were placed each time on the slide holder of the PALM Robot-MicroBeam 

system (PALM Microlaser Technology AG, Benried, Germany).  

With the help of a mouse, a line was drawn around each cell to be 

collected and once all cells of a specific section were chosen, on activation, the 

UV laser beam made an excision along the previously drawn cell borders. 

Subsequently, a brief laser pulse was shot against the desired cell which was 

catapulted upwards, against gravity, in a small tube cap, situated directly above 

the processed section. Membrane slides allowed for a brief laser pulse to be used 

for catapulting as the laser beam excised both the tissue and membrane and the 

cell could be collected in its entirety. For sections on glass slides, tissue was 

dissected by the laser beam along the perimeter of the cell but more laser pulses 

were needed to catapult upwards the whole structure, achieving this, only by 

fragmenting the cell in pieces. All cells were harvested under a 40x magnification.  

Two types of caps were used to collect the cells. Trials for the development of the 

protocol were conducted with 0.2 ml eppendorf tubes carrying transparent caps 

coated with a small amount of mineral oil so as to provide a sticky surface for the 

cells. All hybridization trials and experiments were performed with 0.2 ml 

microfuge tubes provided with a white cap (PALM adhesive caps), filled with an 

inert sticky substance, which immobilized catapulted samples instantly. At the end 

of each LMPC session, cell collection was verified by inspecting the tube cap. 

Microdissected sections were monitored and controlled throughout the procedure 

to make sure that cell selection and collection were optimal. Never were more 

than 1000 cells collected in one cap. Microcentrifuge tubes were left at RT until 

the end of the LMPC session before RNA isolation or stored at RT, in a box with 

silica beads, inside a vacuum for up to a week if more samples were to be 

collected and pooled for a single RNA extraction. 

 

2.5 RNA EXTRACTION AND QUALITY ASSESSMENT  

  

Total RNA was extracted from pieces of fresh brain and Zincfic-fixed 

brain with 500 µl TRIzol (Invitrogen Molecular Probes, Carlsbad, CA, USA) 
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according to the manufacturer’s instructions. Scraped sections were lyzed in 100 

µl TRIzol and RNA was extracted with the RNA Miniprep kit (Stratagene, La 

Jolla, CA, USA) in a final elution volume of 30 µl. DNAse treatment was 

performed if appropriate and according to the protocol used. The quality of 

purified RNA was assessed using an Agilent 2001 Bioanalyzer (Agilent, Palo 

Alto, CA, USA) and quantified with an ND-1000 spectrophotometer (Nanodrop 

technologies, Wilmington, DE, USA). 

  To extract total RNA from LMPC collected cells, 10 µl of lysis buffer 

were added directly onto the cells in each microcentrifuge cap and the solution 

was pippetted up and down a few times. Tubes were left on ice upside down for 5 

minutes to allow time for cell lysis and centrifuged briefly at max speed so that 

they could be collected at the bottom of the tube. If more samples were to be 

extracted together, centrifuged material from more caps was pooled in one tube 

and processed as one sample. Total RNA extraction was performed with the RNA 

Nanoprep kit (Stratagene, LA Jolla, CA, USA) according to manufacturer’s 

recommendations in an elution volume of 12 µl. RNA quality and yield were 

analyzed with RNA 6000 Pico Lab Chips (Agilent).  

Samples that were not extracted immediately were kept homogenized in 

TRIzol at -80ºC until later processing.  

 

2.6 RNA ASSESSMENT OF MICRODISSECTED CELLS BY RT-PCR AND 

QPCR 
  

 RNA obtained from microdissected cells was further evaluated for 

integrity with RT-PCR and qPCR.  Moreover, the sensitivity of the procedure was 

assessed by evaluating RNA extracted from 100 and 10 microdissected cells. 

 

2.6.1 RT-PCR 

 

 Global amplification with the use of an oligod(T)-tailed primer, followed 

by specific PCR for the DJ1 cDNA was conducted on fresh brain, Zincfic-fixed 

brain, Nissl-stained Zincfic-fixed sections, and 1000 LMPC Nissl-stained granule 

cells microdissected by their morphology and topography from the hippocampus.   
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Extracted RNA (see paragraph 2.5) was subjected to 2 units Rnase-free DNase (2 

units/µl; Ambion) at 37˚C for 20 minutes to get rid of any genomic material still 

present. Reverse transcription (RT) was conducted in a 15 µl volume, with 5µl 

RNA, 0.5 µl (500 ng/µl) of primer SMART724 (Clontech), 0.5 µl RIBOSMART 

and DEPC-treated H2O up to 10 µl. After five minutes at 68˚C and quick chill on 

ice, the following reagents were added to the reaction: 2 µl of First-strand 5x 

buffer, 1 µl of 1 mM DTT, 1 µl of 10 mM dNTPs, 0.5 µl of 200 u/µl of 

Superscript II (Invitrogen), 0.5 µl of 40 u/µl of RNase Inhibitor (Ambion). The 

reaction was carried out at 37˚ for 90 minutes. For each sample, a mock reaction 

without reverse transcriptase was performed.  Unreacted primer was specifically 

removed by adding to the tube 1 µl of 20 u/µl exonuclease I (New England 

Biolab) while 0.5 µl of 1 u/µl phosphatase SAP (Shrimp Alkaline Phosphatase) 

(Roche) were used to inactivate free nucleotides. The reaction was incubated at 

37˚C for 30 minutes and at 80˚C for 10 minutes to inactivate the enzymes. Tailing 

was performed on a total volume of 30 µl with 3 µl of 10X tailing buffer, 3 µl of 1 

mM dATPs, 1 µl of terminal deoxy transferase (TdT) (Roche) and DEPC-treated 

H2O at 37˚C for 30 minutes. Finally, the reaction was stopped by incubation at 

70˚C for 10 minutes. A global conventional 35-cycle PCR was performed with 2.5 

µl of the newly formed cDNA, 0.5 µl of (500 ng/µl) SMART724 primers, in a 

total volume of 50 µl to dilute previously used reagents, employing La Taq Takara 

(Takara Bio Inc.), in a thermal cycler, at the following conditions: 94 ˚C for 3 

minutes to destroy RNA strand and inactivate previously used enzymes, 37˚C for 

5 minutes, and 72˚C for 20 minutes to complete first strand synthesis. Next, a 35-

PCR cycle followed, with denaturation at 94˚C for 30 seconds, annealing at 55˚C 

for 30 seconds, extention at 72˚C for 5 minutes, with a final extention step at 72˚C 

for 10 minutes. 1 µt from this PCR was used to perform a conventional 30-PCR 

cycle with specific primers for DJ1, with the employment of La Taq Takara and 

an annealing T of 50 ˚C. 

Specific amplification for SUMO 1 was performed from RNA extracted 

(see paragraph 2.5) from 100, 10 microdissected cells and plain microdissected 

membrane to assess the sensitivity of the procedure and control for contamination 

from debris due to the laser cutting. 3 µt of the RT-PCR products, with an RT 
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reaction performed as described previously, were tested with a conventional 35-

PCR cycle for the presence of SUMO 1 with no prior global amplification. 

Controls were prepared as before. 

Specific gene amplifications were also performed from 1000 hippocampal 

and 1000 dopaminergic neurons microdissected from TH-GFP/21-31 mice 

sections in groups of 3 or 4. We looked for the presence of gene transcripts 

characteristic for the isolated cells and for eventual contamination by surrounding 

cells by using TH (present in DA neurons), MAP-2 (present in all neuronal cells), 

GFAP (present in astrocytes), and the housekeeping gene GAPDH (See table 1 for 

full gene names and primers). The primers used for these amplifications, with the 

exception of GAPDH, were designed to be intron-spanning to avoid amplification 

of unwanted genomic material, also in view of the amplification protocol used. 10 

µt of a lysis solution (containing: 0.2 mM guanidinium thiocynate, 10 mM DTT, 

0.5% NP-40 and 100 ng/µl twentymer of inosine in DEPC-treated water, at final 

concentrations) were directly added to the cap collector containing the LMPC 

isolated cells, which were pipetted up and down so as to allow rupture. Each 

sample was split it two tubes in order to perform a normal and a mock RT 

reaction. After addition of 1.0 µt 10 mM dNTPs, 0.5 µt of random primers, the 

tubes were warmed at 70˚C for 2 minutes and immediately put on ice. Reverse 

transcription was performed with 2.0 µt of First-strand buffer, 1 µt of Superscript 

II (Invitrogen), 0.5 µt RNase Inhibitor (Ambion) on a total volume of 10 µt at 

37˚C, for two hours. Conventional 35-cycle PCR amplifications with specific 

primers for the above cDNAs were performed using 1 µt from the RT-PCR 

products and La Taq Takara (for primers, see table 1). 

 We assessed RNA quality from two samples, each of 300 dopaminergic 

GFP-fluorescent cells, microdissected one at a time from sections mounted on 

Superfrost Plus glass slides and microdissected in small groups of 3 to 4 from 

membrane-coated slides respectively, by gene specific amplification of the GFP 

cDNA fragment. In the same two samples the degree of astrocytic contamination 

was evaluated by amplification of the GFAP fragment (see table 1 for primers). 

 

 



 76 

 

Specific PCR primers  
Name Sequence Amplicon size 
Dopamine Transporter 
(DAT) 

Fw: CGGCTAAAGAGCCCAATGCTGTGG   
Rv: CATCAATGCCACGACTCTGATGG 

643 bp 

Microtubule-associated 
protein 2 (MAP-2) 

Fw: CTGGCTCAGGCATTCAGAAACAGC 
Rv: TACCATTGCTGAAACTCCAGCGCA 

521 bp 

Tyrosine Hydroxylase 
(TH) 

Fw: TCTGACGATGTGCGCAGTGCCAGAG 
Rv: CGCAGCTGGAAGCCAGTCCGTTCC 

413 bp 

Green Fluorescent 
Protein  (GFP) 

FW: CTTTTCACTGGAGTTGTCCCAA 
Rv: TGGTCTGCTAGTTGAACGCTTCC  

530 bp 

Glial Fibrillary Acidic 
Protein (GFAP) 

Fw: GGATGTGGCCAAGCCAGACCTCAC 
Rv: CTTAATGACCTCACCATCCCGCA 

594 bp 

Glyceraldehyde-3-
phosphate dehydrogenase 
(GAPDH)* 

Fw: CCACTAACATCAAATGGGGTG 
Rv: ACGTCAGATCCACGACGGACAC 

496 bp 

DJ1* Fw: GATGGAGACAGTGATTCCTGTGG  
RV: ACATACTACTGCTGAGGTTCC  

610 bp 

Small ubiquitin-like 
modifier (SUMO 1) 

Fw: AGTCATTGGACAGGATAGCAGTGAG 
Rv: TCACATCTTCTTCTTCCATTCCC 

196 bp 

*All primers except for GAPDH and DJ1 were intron-spanning 

 

Table 1. Primer sequences used in this study 

 

2.6.2 Real time assessment of RNA integrity 

 

 We also used qPCR to look at astrocytic contamination of LMPC isolated 

samples, by GFAP amplification, from 500 A9 and 500 A10 neurons. DAT and 

TH were used as dopaminergic specific genes (see table 2). RNA was extracted 

from LMPC-collected cells with Absolutely RNA Nanoprep kit (Strategene). 

Single strand cDNA was obtained from purified RNA using the iSCRIPTTM 

cDNA Synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA) according to 

manifacturer’s instructions. Quantitative RT-PCR was performed using SYBER-

Green PCR Master Mix and iQ5 Real-Time PCR Detection System (Bio-Rad). 

Quantitative RT-PCR was performed with an iCycler IQ (Bio-Rad); the 

housekeeping gene β-actin was used as an endogenous control to normalize the 

expression level of target genes. Primers were designed with the Beacon 

DesignerTM 6.0 (PREMIER Biosoft International, Palo Alto, CA, USA).  Results 

were normalized to β-actin and the initial amount of the template of each sample 
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was determined as relative expression versus the sample chosen as reference. In 

this case, RNA extracted from mouse TH-GFP/21-31 total mesencephalon. 

Finally, qPCR was used to evaluate RNA integrity in a sample of 500 A9 

and a sample of 500 A10 microdissected cells by looking at the 3’/5’ ratio of a 

qPCR-amplified, widely expressed gene, as the tranferrin receptor (TFRC). 

   

Real Time Primers  
Gene Name Primer Sequence 
Dopamine Transporter 
(DAT) 

Fw: GTGCTGGTCATTGTTCTG    
Rv: TCACAGAGACGGTAGAAG 

Tyrosine Hydroxylase 5’ 
(TH 5’) 

Fw: CCGTCTCAGAGCAGGATACC 
Rv: CGAATACCACAGCCTCCAATG 

β-actin  Fw: CACACCCGCCACCAGTTC 
Rv: CCCATTCCCACCATCACACC  

Glial Fibrillary Protein 
(GFAP)* 

Fw: CAAGGCTCAATCAGTGCTAAG 
Rv: AACAACAAGGATGAAGGAAGTG  

Tranferrin Receptor 5’ 
(TRFR 5’) 

Fw: GGCTGAAACGGAGGAGA 
Rv: ACGAGGAGTGTATGTATTCTGG 

Transferrin Receptor 3’ 
(TRFR 3’ 

Fw: AGGCATTGACTCAGAAAG 
Rv: GTAGACTTAGACCCATATCC 

* All primers were intron-spanning except for GFAP 

 

Table 2. qPCR primers used in this study 

 

2.7 LMPC WITH MICROARRAYS  

 

Three hundred A9 and 300 A10 neurons were LCM-isolated by their GFP 

identity and topographic location from the whole expanse of the VM of the same 

mouse, for each experiment (biological replicate). Three biological replicates and 

three technical replicates, each of which with two dye orientations, were used for 

hybridization on a total of 18 slides. The SISSA 2 slide, home-spotted with 7 246 

from the ~60 000 FANTOM 2 collection of mouse transcipts (Okazaki et al., 

2002), was used for our experiments.  

 

 2.7.1 RNA extraction and probe synthesis 
 
 

Isolation of mRNA, millionfold amplification and labeling of the resulting 

cDNA with Cy3-dCTP and Cy5-dCTP (PerkinElmer) was performed using the 
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µMACS SuperAmp Kit (Miltenyi Biotec) and a thermoMACS Separator, 

according to the recommended protocol. A brief description follows: 

mRNA isolation. 5.4 µl of  incubation buffer were added directly to the 

microdissected cells previously collected in an adhesive cap (PALM), incubated 

on ice upside down for a couple of minutes, vortexed, and briefly centrifuged. The 

incubation buffer (for 1 to 5 reactions) was prepared by adding in a 1.5 ml RNase-

free tube the following reagents in the indicated order: 25 µl of Lysis/Binding 

Buffer, 2 µl tRNA Solution, 1 µl of Proteinase K (5 µg/µl, Roche). The tube was 

placed in a thermal cycler and incubated for 10 minutes at 45ºC, then for 1 minute 

at 75ºC. The lysate was incubated with 5 µl magnetic microbeads (SuperAmp 

Microbeads) and then applied to a µMACS column, previously prepared by rinse 

with a 100 µl of Lysis/Binding Buffer and placed in the magnetic field of a 

thermoMACS separator, which retained all the Poly (A)+ RNA. Finally, the 

column was washed with 4x100 µl Wash Buffer to remove proteins, DNA and 

rRNA. 

cDNA synthesis in the column and cDNA tailing. Samples were reverse 

transcribed for 45 minutes at 42ºC on the same column. 1 µl of RNase Inhibitor 

(10 units/ µl, Protector, Roche) was added to the resuspended First-strand cDNA 

mix, which was eluted to follow a cDNA tailing reaction for another hour at 37ºC 

with Terminal Deoxynucleotidyl Transferase (TdT) (GE Healthcare). 

Global PCR. For the PCR reaction the Expand Long Template PCR system 

(Roche) was used. This protocol utilizing only one primer, allowed similar 

annealing conditions. The cDNA was primed at multiple sites of comparable 

length avoiding bias due to different transcript lengths. The amplification 

reactions were run with 41 cycles as indicated in the following profile: 

 

Step 1  78ºC 30 s 
Step 2 20 cycles 94ºC 15 s 

  65ºC 30 s 
  68ºC 2 min 
Step 3 21 cycles 94ºC 15 s 
  65ºC 30 s 
  68ºC 2.5 min + 10 s/cycle 
Step 4  68ºC 10 min 
HOLD  4ºC  
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PCR products were purified with High Pure PCR Product Purification kit (Roche). 

Purified DNA was quantified by spectrophotometric measurement (Nanodrop 

ND1000). At this point the cDNA could be stored at -20ºC for later labelling. 

Klenow labelling. 200 nanograms of anyone of the purified PCR products were 

labelled with direct incorporation of Cy3-dCTP and Cy5-dCTP (PerkinElmer) 

with 2 µl of Klenow Fragment (10 units/µl, MBI Fermentas). The reactions were 

incubated for 2 hours at 37 ºC in the dark. The Klenow fragment labeling reaction 

yielded a 5-30 fold amplification of the template DNA. Labeled DNAs were 

purified with CyScribe GFX Purification Kit (GE Healthcare) according to 

manufacturer’s protocol 1 (65 ºC elution buffer) with an additional incubation of 4 

minutes at room temperature before elution. Cy3 and Cy5-labeled samples to be 

co-hybridized were pooled and purified in one column.  The final product was 

quantified spectrophotometrically (Nanodrop). 

Klenow labeling using the RadPrime kit (Invitrogen). The PCR yield of most 

amplification reactions was high enough to permit the repetition of the labeling of 

a given sample when needed. This labeling reaction was prepared on a total of 50 

µl, mixing the following reagents: 20 µl of Buffer 2.5X, H2O (up to a total of 50 

µl), 200 ng from the amplified DNA (PCR reaction). It was then incubated at 

100ºC for 5 minutes and immediately placed on ice. The following reagents were 

further added to the tube: 1 µl of dNTPs (50x, 5mM dGTP, 5mM dATP, 5mM 

dTTP + 3mM dCTP), 2 µl of fluorescent-conjugated 1mM dCTP, 2 µl (40 U) of 

Klenow Fragment. The reaction was incubated in the dark for 2 hours at 37ºC and 

at 70ºC for 5 minutes to inactivate the enzyme. It was finally purified with 

CyScribe (GE Healthcare) according to the manufacturer’s protocol. Samples 

intended for co-hybridization were pooled and purified as one. Dye incorporation 

efficiency and quantity of labeled probes were measured spectrophotometrically 

(Nanodrop).  
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2.7.2 Microarray hybridization 

 

 Before hybridization, microarray slides were incubated for 1 hr at 55˚C in 

0.2X SSC (Ambion), buffers filtered through a 0.22 µm filter, washed in distilled 

water and centrifuged at 2000 rpm for 5 minutes. For hybridization on two 

microarray slides, labeled DNA from the two probes to be co-hybridized (a total 

of 3.0 µg per slide) were mixed together with 1.3 µl of 3.5 mg/ml Salmon Sperm 

(Sigma, St Louis, MO, USA), 1.3 µg/ml Cot-1 mouse (Invitrogen, Carlsbad, CA, 

USA), 6.6 µl of PolyA and 6.6 µl of 11.8 mg/ml tRNA (Sigma, St Louis, MO, 

USA). Sample volume was brought to 150 µl with distilled H2O, before adding 

150 µl of 2X formamide-based hybridization buffer (Genisphere, Hatsfield, PA, 

USA) pre-heated to 65˚C for 10 minutes. Slides were mounted on a GeneMachine 

Hyb4 Microarray Station (Genomic Solutions, MI, USA) and after having pre-

heated at 80˚C for 10 minutes, 150 µl of sample were pippetted onto each slide. 

Hybridization was performed with the following protocol: 65˚C for 2 hr, 55˚C for 

2 hr and 44˚C for 12 hr. Slides were washed 5 times with 2X SSC + 0.2 SDS at 

65˚C, 5 times with 2X SC at 55˚C, and 5 times with 0.2 SSC at 42˚C. Each wash 

included 10s of flowing solution, and 30s at holding temperature. Before 

scanning, slides were centrifuged at 2000 rpm for 10 minutes in the dark. 

 

2.7.3 Analysis of expression profile data 

 

 Slides were scanned with GenePix Personal 4100A microarray scanner 

(Molecular Devices Corporation, CA, USA) and the GenePix version 6.0 

software. Normalization and statistical analysis were performed in the R 

computing environment (www.r-project.org/, version R 2.8.0 for Windows) using 

the LIMMA package (Smyth 2004) from the BioConductor software project 

(www.bioconductor.org/). Normalization of intensity values within arrays was 

done with the function “normalizeWithinArrays” based on the LOWESS 

algorithm: normalizeWithinArrays(RG,method=”loess”,bc.method=”normexp”, 

offset=50)”. Normalization between arrays was done with the function 

“normalizeBetweenArrays” based on the quantile method: 
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“normalizeBetweenArrays(MA,method=”quantile”)”. Subsequently, a linear 

model was fit to the normalized data. P-values were adjusted for multiple testing 

using Benjamini and Hochberg’s method to control the false discovery rate 

(Hochberg and Benjamini, 1990). Genes with adjusted P-values below 0.01 were 

considered differentially expressed. 

Gene Ontology (GO) analysis was performed using tools for annotating 

gene lists available at DAVID Bioinformatic Resources at david.abcc.ncifcrf.gov/ 

(Dennis et al., 2003; Huang et al., 2009). Clustering association analysis was 

performed after application of a threshold p-value ≤0.05 and high stringency 

classification. Enrichment p-values were corrected, to control for family-wide 

false discovery rate, with the Benjamini correction technique.  

 

2.8 VERIFICATION OF MICROARRAY DATA ON THE ALLEN BRAIN 

ATLAS  
 

Genes resulted differentially expressed between SN and VTA from the 

mmicroarray analysis were verified one by one with the aid of expression data in 

the Allen Brain Atlas (ABA), which collects the gene expression patterns of over 

21,000 genes, derived from high throughput, semi-automated in situ hybridization 

(ISH) on mouse brain sections. Only coronal digital sections from the publicly 

available Allen’s Brain Atlas ISH database at www.brain-map.org/ were used to 

verify the results as it was difficult to discriminate between the two 

subpopulations on saggital sections. 
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 RESULTS 
 
 
 

3.1 DEVELOPMENT OF PROTOCOL FOR LASER CAPTURE 

M ICRODISSECTION OF MESENCEPHALIC DOPAMINERGIC CELLS  
 

3.1.1 Dissociation of DA mesencephalic neurons 

 

The original idea was to collect our cells of interest either manually, by the 

patch clamp technique (Gustincich et al., 2004), or by fluorescence activated cell 

sorting (FACS) (Herzenberg, Sweet et al., 1976).  In fact, the original plan was to 

make use of a line of a transgenic mice as a source for DA cells, where a reporter 

gene, human placental alkaline phosphatase (PLAP), is expressed in all 

catecholaminergic neurons of the central nervous system under the control of the 

promoter for tyrosine hydroxylase, the rate limiting enzyme for dopamine 

biosynthesis (Gustincich et al., 1997). Mesencephalic dissociations followed by 

quick immunofluorescence on living dissociated cells with an antibody against the 

PLAP membrane marker would allow cell collection specifically of mDA cells.  

First attempts consisted in dissociating the mesencephalon using papain to 

digest the tissue and in plating cells on concavalin A-coated glass coverslips 

placed in multi-well plates to assess the effects of the dissociation procedure on 

cell size and shape and the percentage of DA cells that could be detected. In these 

trials, PFA-fixed cells were labeled with a primary mouse anti-Tyrosine 

Hydroxylase monoclonal antibody (Chemicon, Temecula, CA) and a fluorescent 

Alexa Fluor 488 labeled secondary rabbit anti-mouse antibody (MoBiTec, 

Göttingen, Germany). Microscopic observation of the plated cells revealed the 

presence of DA cells in a degree of 2% to 3% and a decent preserved morphology 

(Figure 1).  

The low percentage of dopaminergic cells obtained with this method up to 

that moment and the concomitant arrival of the Zeiss PALM LCM system (Carl 

Zeiss Inc., Germany) in our laboratory, pushed us towards the use of a different 

methodology to obtain DA cells. As it follows from above, we turned to Laser 
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Capture Microscopy to isolate mesencephalic dopaminergic cells for gene 

expression profiling and hence to the development of a suitable protocol for this 

purpose. 

 

   
   
Figure 1. Plated dissociated mesencephalic cells. A) 40x magnification, B) 10x magnification. 
Fixed cells labeled with anti-TH antibody in red and nuclei counterstained with DAPI in blue. 
Shape and size of TH-positive cells look sufficiently preserved. 
 
 
3.1.2 Evaluation of fixatives 
 

Specific laser-assisted cell capture for subsequent expression profiling 

requires good visualization of structures and cells in tissue sections and recovery 

of good quality RNA. With the aim of developing a suitable protocol for this 

method of cell acquisition, we tested several fixatives followed by a standard 

Nissl stain on mice cerebellar or hippocampal sections with regards to 

preservation of tissue morphology and recovery of quality RNA. 

Cerebellum coronal Nissl-stained sections fixed in paraformaldehyde and 

Zincfix rendered very good staining results with no significant difference in tissue 

architecture, cellular morphology, or tinctorial reaction. Following acetone, 

ethanol and DSP fixation Nissl staining was weaker; still tissue morphology was 

satisfactory and comparable among the three fixatives. Images were taken with 

the Zeiss PALM microscope (Carl Zeiss Inc., Germany) (Figure 2, A to F). Tissue 

sections were not cover-slipped, but reflect what one sees when laser dissections 

are performed.  

A B 
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The fixation methods used differently affected our ability to extract RNA. 

To determine the efficiency of RNA recovery from fixed and stained tissues,  six 

sections were scraped off of slides for each fixative and their RNA extracted and  

       
  

      
 

      
 

Figure 2. Morpholgical evaluation of Nissl-stained sections of mouse cerebellum fixed with the 
following agents: A) Acetone, B) Ethanol, C) DSP, D) PFA 4%, E) Zincfix, F) Zincfix (short 
modified Nissl stain). Images reflect what one sees during the LMPC procedure.  

 
 
quantified by UV-spectrophotometric analysis with the Nanodrop 

spectrophotometer (Nanodrop Technologies Inc.,Wilmington, DE, USA). 

Measurements were repeated five times. Recovery rates are presented as the 

A 

E 

D C 

B 

F 
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percentage of the mean quantity of RNA extracted from the differently fixed 

tissue sections with respect to the mean RNA content recuperated from the same 

number of unfixed (fresh) sections (Figure 3). It was impossible to extract RNA 

from paraformaldehyde-fixed tissues, in agreement with the literature (Fend et al., 

1999; Goldsworthy et al., 1999; Vincek et al., 2003), and we found difficult to 

extract RNA from DSP-fixed tissues although Xiang et al., 2004 have reported 

ease in extracting RNA of excellent quality with this fixative. Our failure in 

extracting RNA from DSP-treated tissues could be due to two factors: a) the 

difficulty in preparing a good and clear working solution of DSP – it often 

presented with precipitates –, and b) the omission of a reducing agent such as 

DTT  before RNA extraction. One possibility is that RNA was never released 

during the extraction procedure, but was instead held in place by the crosslinking 

fixative. Precipitating agents such as Zincfix, acetone and ethanol resulted in 

efficient RNA recovery with Zincfix performing best and acetone and ethanol 

being less efficient but still permitting decent and comparable recovery rates 

(Mikulowska-Mennis et al., 2002; Schleidl et al., 2002) (Figure 3). 

 Generally, the fixatives with good recovery rates also preserved RNA 

integrity, which was evaluated by capillary electrophoresis using the Agilent 2100 

bioanalyzer (Agilent Technologies, Waldbronn, Germany). The Agilent 

bioanalyzer allows quality RNA assessment by both computing the 28S/18S ratios 

and a parameter called the RNA Integrity Number (RIN), which takes into 

account the entire electrophoretic trace. RIN is based on evaluation of total 

eukaryotic RNA, including ribosomal RNA, using a numbering system from 1 to 

10, with 1 being the most degraded profile and 10 the most intact. The quality of 

RNA for sections fixed with Zincfix, acetone and ethanol was very good with 

readily detectable 18S and 28S ribosomal peaks and with RINs ranging from 6.1 

to 8.5. There appears to be controversy with regards to the integrity of RNA that 

can be extracted by ethanol-fixed tissues. Some reports (Goldsworthy et al., 1999; 

Mikulowska – Mennis et al., 2002; Schleidl et al., 2002, Wang et al., 2009) are in 

agreement with our results but others (Fend et al.,1999; Xiang et al., 2004;  Huang 

et al., 2002; Gillespie et al., 2002) reported degraded RNA. Zincfix-fixed sections 

yielded RNA of integrity (RINs between 7.0 and 8.2) nearly as good as that of 
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unfixed (fresh) tissue which generally scored RINs between 7.7 and 9.5 (Figure 

4).  

 
 

Figure 3.  Several fixatives were evaluated for total RNA recovery. RNA content was quantified 
spectrophotometrically with the Nanodrop spectrophotometer and recovery rates are presented as 
the percentage of RNA recovered from fixed tissue with respect to RNA recovered from the same 
amount of fresh tissue. 
 

 
 
 

 
 

 
 

Figure 4. Quality of RNA from Nissl-stained mice cerebellar sections. Following extraction of 
RNA from unfixed (fresh) tissues (Lane 1), or samples fixed in ethanol (Lane 2), acetone (Lane 
3), Zincfix (Lanes 4 & 5), DSP (Lane 6), PFA 4% (Lane 7), the quality of the products were 
assessed with an Agilent Bioanalyzer. No RNA was recovered in tissues fixed with DSP (Lane 6) 
or PFA (Lane 7). Quality of RNA for the other samples was comparable and acceptable for use in 
expression profiling experiments. Zincfix-fixed sections showed overall RNA of higher quality. 
Sections in Lane 4 underwent a modified, quick, Nissl stain compared to tissue sections in Lane 5.  
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Some reports (Johansson et al., 2000;  Schleidl et al. 2002; and Lykidis et 

al., 2007) describe Zincfix as an excellent fixative for preserving RNA integrity 

for downstream expression profiling experiments. 

Two different Nissl staining protocols were used to stain sections for 

LMPC use. In the standard protocol, Zincfix-fixed mouse cerebellar sections were 

washed briefly in PBS, in 1% cresyl violet for 2 minutes, rinsed in DEPC-treated 

water and then dehydrated in a series of increasing ethanol gradients. In the quick 

cresyl violet staining protocol, Zincfix-fixed sections were taken through a 1 

minute wash into a 70% EtOH solution and subsequently dipped for 2 minutes 

into a 1% cresyl violet solution prepared with 70% EtOH. Finally, sections were 

briefly washed in 100% EtOH and left to dry. The second protocol was short, 

comprised few simple steps and presented no need for washes in aqueous 

solutions, which should minimize RNA degradation (Burbach et al., 2003; Fink 

and Bohle, 2002). On the other hand, Nissl staining resulted much weaker 

compared to that of the standard protocol although tissue morphology was of 

similar quality (Figure 2). Further assessment of RNA integrity of the two staining 

methods performed with the Agilent Bioanalyzer showed high RNA quality for 

both methods with the quick protocol often being associated with higher RINs 

(Figure 4). The short protocol, because of its resulting in a faint staining, is useful 

when the cells to be isolated are easily distinguishable (Figure 2).   

We have tested sections from transgenic TH-GFP/21-31 mice, that 

selectively express green fluorescent protein (GFP) in catecholaminergic cells 

under the control of tyrosine hydroxylase (TH) gene promoter (Sawamoto et al., 

2001 and Matsushita et al., 2002),  The only fixatives that preserved fluorescence 

of DA cells were PFA, DSP and Zincfix (Figure 5). Ethanol and acetone resulted 

in quenching of the green-fluorescent GFP signal.  

To summarize, Zincfix efficiently recovered and preserved the integrity of 

RNA, mantained tissue morphology very nicely, allowed histochemical stainings 

such as Nissl stain or Fast Red (results not shown), and protected the fluorescence 

of GFP-expressing tissues, presenting as the optimal candidate for downstream 

LCM applications (Table 1).   
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Figure 5. Mouse TH-GFP/21-31 mesencephalic sections fixed with A) PFA 4%, and B) Zincfix. 
Morphology and fluorescent signal of mDA cells are comparable. 

 

   

Test Fixative 
 Fresh       Acetone   Ethanol   Zincfix      DSP       PFA 
RNA recovery +++++ +++ ++ ++++ + - 
Nissl stain - +++ +++ ++++ +++ +++++ 
GFP expressing tissues  - - ++++ +++ ++++ 

Table 1. Scores from mouse brain fixed in acetone, ethanol, Zincfix, DSP, PFA and fresh tissue. 

 
Furthermore, Zincfix fixation can be performed prior to cryosectioning, 

contrary to precipitating agents adding value to the convenience and ease of use of 

this fixative. Zincfix became the fixative of choice for all subsequent experiments. 

 

3.1.3 Zincfix as the fixative of choice: evaluation of the experimental 
procedure 
 

3.1.3.a Improvement of tissue visualization 
 

As mentioned in the previous paragraphs, for LMPC applications it is of 

utmost importance to have the possibility to discriminate cells and tissues, in 

order to be able to select with precision the structures of interest. This 

methodology though does not lend itself to that end. In fact, it is the opposite. In 

addition to the difficulties in finding a fixative that maintains decent morphology 

without interfering with downstream recovery of RNA and DNA, what adds to the 

loss of optical resolution is the omission of the coverslip and the use of the optics 

A B 
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of the LCM machine, which naturally are not those of a good fluorescent 

microscope. 

We have met difficulties in discerning with precision all GFP-expressing 

DA cells in the mesencephalic sections of the TH-GFP/21-31 strain of mice. 

Adding a drop of ethanol on the sections as suggested by Grimm et al., 2004 was 

not helpful in our case as the GFP fluorescence quenched. The same happened 

when we embedded the tissue section with the polymeric and low viscose PALM 

LiquidCover Glass N, which, on the other hand, worked very nicely on Nissl-

stained sections, significantly ameliorating morphological inspection. We 

subsequently tried to view DA GFP-fluorescent cells by adding a drop of Zincfix 

on the sections.  A drop of Zincfix made cells visible. In fact, we could see cells 

that were not apparent before the addition of the Zincfix drop while achieving 

quenching of non specific fluorescent signals (autofluorescence of the tissue) 

(Figure 6).  

 

    
Figure 6. TH-GFP mesencephalic mouse sections fixed in Zincfix for LMPC. A) Dry, with no 
post-fixing, B) with the application of a Zincfix drop which allows better optical resolution. 

 
We called the addition of Zinfix drops intended for DA cell observation the “post-

fixing step”. We checked whether this operation could in anyway affect RNA 

integrity by extracting RNA from scraped sections. Results indicated that RNA 

quality of Zinfix-fixed sections and sections undergone the post-fixation step was 

comparable and often with the latter even showing better RNA preservation. This 

step was added to our microdissection protocol which comprises the following 

phases: fixation, OCT embedding (can be omitted), cryoprotection, 

cryosectioning, postfixation, LMPC, and finally RNA extraction. 

A B 
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3.1.3.b Storage of sections 

 

Collecting specific cells from a complex tissue like the brain by LMPC is 

time-consuming especially if cells have to be collected one by one. We could 

collect DA cells from one or two slides, containing 4 to 6 mesencephalic sections, 

in one day at most. Remaining slides had to be stored for use in the following 

days. It was important to have the possibility to store sections for some time with 

no further RNA degradation and maintenance of tissue morphology.  

We stored cerebellar sections from TH-GFP/21-31 mice under two 

different conditions for two months: a) in a box with dessicant at -80ºC, and b) in 

a box with silica gel balls, in a vacuum, in dry conditions. We then controlled 

whether cells were still recognizable for LMPC collection and whether RNA had 

been preserved at a good quality standard. Results were positive. Both storage 

modalities resulted in good preservation of the fluorescent GFP marker of DA 

cells. Fluorescent DA neurons became visible only after the addition of one drop 

of Zincfix on the region of interest in both dry and frozen stored sections (Figure 

7). There was no significant deterioration of RNA integrity even after two months 

storage for any of the above storage conditions (Figure 8).  

 

  

    

 

Figure 7. Inspection of TH-GFP/21-31 mesencephalic mouse sections fixed in Zincfix, after: A) 
two months storage in dry conditions, B) two months storage at -80ºC. A drop of Zincfix allows 
identification of cells and permits their collection by LMPC. 
 
 
 
 

A B 
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Figura 8. RNA from mouse brain subjected to quality analysis on an Agilent Bioanalyzer. Piece 
of fresh cerebellum (Lane 1), piece of cerebellum fixed in Zincfix (Lane 2), Zincfix cerebellar 
sections (Lane 3), Zincfix cerebellar sections with postfixation (Lane 4), Zincfix cerebellar 
sections with postfixation and subjected to laser-microdissection (Lane 5), 2 months old Zincfix 
cerebellar sections stored in dry conditions (Lane 6), 2 months old Zincfix cerebellar sections 
stored at -80ºC (Lane 7). Clear 18S and 28S RNA bands and no significant shift of RNA 
fragments to shorter migration times showed good RNA quality. RINs were between 6.6 and 8.6.  

 

3.1.3.c LMPC collection 

 
All the sections we prepared for LMPC were fixed in Zincfix as described 

in “Materials and Methods” and a drop of Zincfix was added on the region of 

interest to aid observation of the cells of interest. Cells to be collected were 

marked for dissection when still visible through the inverted microscope covered 

by the Zincfix drop and only cut with a UV-A laser and catapulted into a 

collecting device overlying the specimen with a precisely aimed laser shot in a 

second moment when the Zincfix drop evaporated and sections were completely 

dry. For our microarray experiments we used the PALM adhesive caps (caps 

coated with a white adhesive inert surface) as the collector device, but preliminary 

experiments were made by coating the caps with mineral oil (Sigma-Aldrich 

Chemie GmbH) to provide a sticky surface for the catapulted cells. Cell collection 

was verified by inspection of the cap at the end of every LMPC session (Figure 9). 

To optimize cell recovery the cap collector was brought as close to the specimen 

as possible. This shortened distance also permitted to use reduced LPC energy 

which protects from non specific carry-over of neighboring cell material (Burbach 

et al., 2003).  



 92 

     
 
 
 

    
 

    
 
Figure 9. i) Zincfix-fixed, Nissl-stained mouse cerebellum. One Purkinje cell is selected (a), 
excised (b) and catapulted into a PALM adhesive cap (c). ii) Zincfix fixed TH-GFP/21-31 
mesencephalic sections. Several TH-GFP expressing DA cells (a) are marked for collection (b), 
cut by the laser and catapulted (c) into the cap collector for microscopic inspection (d).  
 
 
The application of a drop of Zincfix (post-fixation) on the demounted sections 

(see paragraph 3.1.3a) did not interfere with the process of LMPC. 

All experiments regarding the evaluation of fixatives were performed 

using sections mounted on poly-ethylene-naphthalene (PEN) slides (PALM). 

These membrane-coated slides worked nicely with histochemical stains like cresyl 

violet and nuclear fast red. For the preliminary microarray experiments, sections 

a 

i) c a b 

ii) 

d c 

b 
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with TH/GFP-expressing DA cells were mounted on thinner PET-coated slides 

instead, which allowed better morphological evaluation and lower fluorescent 

background levels. Membrane-coated slides optimized tissue capture. When 

excised by the UV laser and catapulted on the cap collector, membranes transfered 

with them the overlying cells with just one laser shot, speeding the procedure and 

minimizing contamination from tissue debris created during the tissue cutting of 

the laser. Moreover, these inert membranes did not interfere with subsequent 

DNA or RNA applications. All microarray experiments on the contrary were 

performed using sections mounted on “Superfrost plus charged” (Menzel-Glaser) 

glass slides. We found that brain sections adhered better on glass rather than 

membrane. Glass slides also allowed best appreciation of the green fluorescent 

signal of the TH-GFP expressing cells while the + charged surface did not 

interfere with the process of cataplulting.    

 

3.1.4 Zincfix fixation and amplification of specific cDNA fragments –             
Evaluation of RNA quality 

 

To further test the compatibility of our LMPC-derived RNA for 

downstream applications such as hybridizations to cDNA microarrays, several 

specific gene transcripts amplifications were performed. For these experiments, 

PEN membrane-coated slides and PALM adhesive caps were used. Cells were 

collected from Zincfix, Nissl-stained mouse brain sections. DJ1 cDNAs with a 

length of ~600 bp were successfully amplified from fresh brain, Zincfix-fixed 

brain, Nissl-stained Zincfix sections, and 1000 LMPC Nissl-stained granule cells 

collected by their morphology and topography from the hippocampus. A first 

global amplification was followed by a specific PCR for the DJ-1 fragment. 

Extracted RNA was subjected to DNase treatment to get rid of any genomic 

material still present. No signal was observed after amplification of the negative 

RT control without addition of reverse transcriptase, nor was it noted for the H20 

control with reverse transcriptase but without cDNA (Figure 10). 

Zincfix allowed the amplification of a fragment of cDNA of medium 

length. We next sought to see how low we could go with our starting material to 

achieve gene specific amplifications. After DNase treatment of extracted RNA, 
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gene specific PCRs for the SUMO-1 cDNA (fragment lenght: 196 bp) with no 

prior global amplification from 100 and 10 LMPC collected granule cells resulted 

in amplification of the fragment with a 50% success rate. As a control, few shots 

of membrane collected from a region of the slide adjacent to the LMPC processed 

tissue underwent the same experimental steps as cell samples to control for 

possible contamination with debris during the laser cutting. As expected, there 

was no amplification of the specific transcript neither for this type of control, nor 

for the H20 control (Figure 11).   

Intron-spanning primers were designed to circumvent the problem of 

unwanted genomic amplification, since many of the amplification experiments 

were performed with no prior RNA isolation or DNase treatment (see “Materials 

and Methods”) to avert the difficulties met by a large elution volume (Fink and 

Bohle, 2002). Specific gene amplifications were so performed from 1000 

hippocampal neurons and 1000 dopaminergic neurons microdissected from TH-

GFP/21-31 mice sections. We looked for the presence of gene transcripts 

characteristic for the cells collected such as TH (present in DA neurons), MAP-2 

(present in all neuronal cells), GFAP (present in astrocytes), and the housekeeping 

gene GAPDH. TH amplification produced a positive band in an agarose 

electrophoretic run with ethidium bromide for DA neurons and a thinner band for 

granule neurons from the hippocampal dentate gyrus. In fact, this should have 

been expected because of the innervation of this lamina by NA terminals 

originating in the Locus Coeruleus (Lindvall and Bjorklund, 1974; Loy et al., 

1980; Oleskevich et al., 1989). MAP-2 was expressed equally well in both 

neuronal types. As cells were collected in small groups of three or four, 

contamination with astrocytes would have been unavoidable and that would 

explain the amplification of the GFAP transcript for both cell groups.  GAPDH 

resulted to be present in both cell types as expected, but being an intronless gene, 

we could not discriminate whether the fragment was amplified from RNA or 

genomic material. The no RT control in this case resulted positive because of 

amplification being performed from a non purified RNA sample containing 

genomic material (see “Material and Methods”). 
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Figure 10. RT, global cDNA amplification, and one cycle of PCR for DJ1 (610 bp) cDNA from 
material originating from: 1) Fresh brain sections, 2) Zincfix-fixed brain sections, 3) Zincfix-fixed, 
Nissl-stained sections, 4) 1000 LMPCcollected cells, 5) RT mock control, 6) H20 control. 
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Figure 11. RT and specific PCR amplification for SUMO 1 (196 bp) fragment from 100 and 10 
hippocampal microdissected cells. Controls: Membrane control, pieces of membrane excised and 
catapulted into a collector cap from membrane-coated slides and processed as cells samples.  H20 
control: sample with H20 instead of cDNA. 

  

                

                 
 

Figure 12. Reverse Transcription and specific PCR amplification for fragments: A) TH and 
MAP2, and B) GFAP, GAPDH. Samples: (1) 1000 granule cells from the hippocampus, (2) 1000 
mesencephalic TH-GFP expressing DA cells, (3) no RT control for sample 1, (4) no RT control for 
sample 2, (5) H2O control. RT control for the GAPDH fragment appeared positive since the gene 
is intronless and amplification was performed with no prior RNA purification or DNase treatment. 
All other primers were designed to be intron-spanning. 
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We looked at potential differences in the RNA quality derived from cells 

collected by LMPC from sections mounted on Superfrost plus charged glass slides 

and membrane-coated slides. 

We noted no appreciable difference in RNA characteristics in terms of 

specific gene amplification (GFP cDNA amplification) between the two collection 

modalities, nor could we see any considerable difference in the degree of 

contamination from surrounding glial cells (GFAP cDNA amplification) (Figure 

13). In other words, cells collected one by one from the glass slides showed 

similar degree of contamination with cells collected in small groups from 

membrane-coated slides. When we looked in the collected samples for 

contamination with astrocytes by quantitative real time PCR, we found it to be 

smaller when DA neurons were collected one by one. Real time PCR comparing 

A9 cells and A10 cells for the dopaminergic specific genes TH, DAT, and the 

astrocytic gene GFAP, indicated that TH and DAT were highly expressed in the 

A9 and A10 cell groups as expected, while GFAP resulted to be present, but in 

low quantities and with its expression being a little higher in A10 cells rather than 

A9 cells (Figure 13).   

This could be due to the fact that A10 cells are typically smaller compared 

to A9 cells and hence more difficult to be selected for and dissected from the 

tissue section without carrying along contaminating astrocytes and other cell 

types. Moreover, for the same number of collected cells, the RNA quantity for a 

sample of A10 neurons should be, at best, half the RNA quantity of a sample of 

A9 neurons. As a result, contaminating RNA is less diluted in the A10 cell 

samples and becomes a stronger competitor in the amplification reaction. Real 

time curves were constructed with four dilution points and were normalized to the 

housekeeping gene actin and to a control sample derived from a TH-GFP/21-31 

ventral mesencephalic dissection. In literature, Yao et al., 2005 and others, have 

noted a contamination of their SN samples with oligodendrocytes. 

We also looked at the 3’/5’ ratio of a qPCR-amplified, widely expressed 

gene as the tranferrin receptor (TFRC), in a sample of A9, a sample of A10 

LMPC collected cells and a cell sample from dissected total mesencephalon. 

Intronless primers (to circumvent problems deriving from genomic 
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contamination) were designed near the 5’ and 3’ ends of the aforementioned 

mRNA sequence.  The ratios were close to 1 for all three samples indicating the 

balanced presence of the two ends of the 5.2 kb long transcript (Figure 14). This 

last control constituted further indication that cDNAs produced by reverse 

transcription at the end of our microdissection protocol were representative of the 

whole length of the transcripts.  

                 
 

Figure 13. A) Reverse Transcription and specific amplification from 1000 TH-GFP expressing 
DA cells for i) GFAP fragments, and ii) GFP fragments, collected from: (1) membrane-coated 
slides in groups of two or three, and (2) glass slides one by one, (3) no RT control for sample 1, (4) 
no RT control for sample 2, (5) H2O control.. There is not an appreciable difference in the RNA 
quality between the two collection modalities in terms of specific fragment amplification. B) 
Normalized expression of DAT, GFAP, and TH fragments in A10 and A9 cell populations as 
resulting from real time PCR. Both samples are contaminated with astrocytic material. 

 

 
Figure 14. Expression of  TRFr 3’ and TRFr 5’ ends in A10 and A9 and VM cell populations as 
resulting from quantitative real time PCR.  The balanced amplification of the two ends of the 
transcript further supports the good RNA quality at the end of the microdissection protocol. VM: 
ventral mesencephalon, control sample. 
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Finally, we quantified the amount of RNA that we could obtain from 1000 

singularly microdissected mDA cells and evaluated RNA quality with the Agilent 

Bioanalyzer. Typically, RNA recovered from 1000 cells collected by LMPC 

ranged between 2 ng and 3 ng, which is in agreement with published data 

(Schleidl et al., 2002) with characteristic RNA quality ranging between 6.1 and 

7.5 (Figure 15). 

                     
 
Figure 15. (1) RNA quality from a control sample (1) from fresh brain, and (2) from 1000 TH-
GFP expressing dopaminergic cells selected and excised one by one from mesencephalic sections. 
A) 28S/18S ratios, and B) eletropherograms.   
 

Loss of RNA quality occured during fixation (Figure 4) and further so 

during the microdissection process itself (Figure 8) and RNA extraction. The 

estimated loss in RNA content during the experimental procedure was calculated 

to be 40% to 50%, considering a theoretical total RNA content of 5 pg per cell, 

but the quality was good for downstream applications (Figure 16). 

 
 

                                                         

 
 
Figure 16. Schematic representation of the steps of the microdissection methodology with an 
estimate of RNA loss from the intact cell to the purified sample to be amplified and hybridized.  

Estimated RNA quantity 
 for 1000 cells: 5 ng  
 (5 pg/cell). 

Measured RNA quantity 
 for 1000 cells collected 
 by LCM: 2-3 ng 

Brain disssection   
Fixation     
Postfixation  
Laser Microdissection 
RNA extraction  
DNase treatment 
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In light of the above results, to microdissect mDA cells from TH-GFP/21-

31 mice brain sections, we used Superfrost plus charged glass slides and Zincfix 

as fixative and post-fixative to improve morphological visualization. The 

optimized protocol for gene expression analysis of laser-microdissected GFP-

expressing cells is described in the box that follows. 

 

 
 
 
 

Leave in 1X Zincfix/30% glucose solution to cryoprotect tissue overnight at 4˚C 
 
 
 

Embed in –Neg50 or O.C.T. compound (can be omitted) 
 
 
 

Snap freeze brain tissue in liquid nitrogen cooled isopentane 
 
 
 

Cut 14 µm sections and mount on plus charged Superfrost glass slides 
 
 
 

If not used immediately, sections can be stored either dry in a vacuum or at -80˚C 
or up to two months 

 
 
 

LMPC and harvest cells by visualizing them with drops of Zincfix 
 
 
 

Cells collected in dry sticky caps can be stored at RT in a vacuum (with desiccant) 
for few days if more samples are to be collected and pooled for a single RNA 

extraction  
 
 

 
RNA extraction 
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3.2 CDNA HYBRIDIZATIONS  
 

3.2.1 Proof of Principle 
  

Four experiments were conducted to provide proof of principle for the 

amplification protocol and the overall methodology, from cell collection to cDNA 

hybridization, to be used in our cDNA microarray expression profiling study. 

Isolation of mRNA, millionfold amplification and labelling of the resulting cDNA 

with Cy3-dCTP and Cy5-dCTP (PerkinElmer) were performed with the µMACS 

SuperAmp Kit (Miltenyi Biotec, Bergisch Gladbach, Germany), not yet released 

on the market, and a thermoMACS Separator (Miltenyi Biotec), according to the 

recommended protocol. These preliminary results were published as a customer 

report on Miltenyi’s MACS&more  newsletter (Vol 12 ּ 1/2008).  

 
 

 
 
 

We tested the amplification kit on cultured striatal cells (Trettel et al., 

2000) obtained by dilution and on hippocampal and mesencephalic dopaminergic 

cells collected by LMPC from TH-GFP/31-21 mice. These samples were 

processed for mRNA extraction and amplification with the µMACS SuperAmp kit 

(Miltenyi Biotec), which uses magnetic beads to specifically isolate messenger 

RNA. This RNA was then amplified, labeled with fluorophores and hybridized on 

home-made microarrays. The arrays used were home-spotted with the FANTOM 

2 collection of mouse transcripts (Okazaki, Furuno et al., 2002; FANTOM 

International Consortium). 14 000 well characterized and non-redundant 



 101 

transcripts from ~60 000 transcripts in the collection were chosen. Genes were 

represented in triplicate and the whole collection was printed on two slides, but 

only one of the two, the SISSA 2 slide bearing 7 246 transcripts, was used for our 

experiments.  

More specifically, the description of experiments used as proof of 

principle for the overall methodology follows.  

A) Experiment A:  300 striatal cells versus 300 mutant striatal cells.  

Striatal cells, derived from cell lines established from wild type and mutant 

HdhQ111 knock-in mouse embryos (Trettel et al., 2000), were kindly provided to us 

by Dr Persichetti (Sector of Neurobiology, SISSA, Trieste). Cells were 

trypsinized, resuspended in DMEM, centrifuged, washed in PBS and dilutions of 

300 cells/µl were prepared. The two samples were hybridized against each other 

on one slide. Amplified cDNA from wild type striatal cells was labeled with Cy3 

and cDNA from mutated striatal cells with Cy5. This experiment was performed 

in order to test the efficiency of the SuperAmp amplification kit on a relatively 

low quantity (close to the recommended for good reproducibility limit of 100 

cells) of unfixed cells of similar identity.   

B) Experiment B: 100 mDA cells versus mDA cells. 

Two samples, of 100 mDA cells each, were LCM-isolated from one Zincfix-fixed 

mesencephalic section and co-hybridized on one microarray slide. With this 

experiment we tested the kit to its recommended limit. Moreover, we could 

evaluate the overall methodology, from tissue preparation, to cell isolation, 

amplification and hybridization on fixed cell samples of similar identity. 

C) Experiment C: 100 mDA cells versus 100 granule cells  

One hundred mDA cells and 100 granule cells from the hippocampus were LCM-

isolated and their extracted RNA amplified and labeled with Cy3 and Cy5, 

respectively. The purpose was, as for experiment B, to evaluate the overall 

methodology, using the kit to its limit, on fixed cell samples of different identity. 

D) Experiment D: Membrane Control  

Pieces of plain PEN membrane were excised and catapulted into a collection cap. 

This sample, processed exactly as the cell samples, was labeled with Cy3 and was 
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hybridized on one slide. (See Table 2 for results of amplification and labeling 

reactions for all four hybridization experiments). 

  

Cy3 Cy5 Hybridization experiments 
pmol/µl pmol/µl 

ng/µl µg 

Experiment A:  WT Striatal cells vs Mutated Striatal cells 1.3 0.7 50 3.0 

Experiment B: Midbrain DA cells vs Midbrain DA cells 0.9 0.5 51 3.0 

Experiment C: Midbrain DA cells vs Granule cells 0.6 0.5 59 4.2 

Experiment D: Membrane Control 1.1 0.8 137 8.2 

 
Table 2. Incorporation rates for dCTP-Cy3 and dCTP-Cy5 and total cDNA quantification 
performed with the Nanodrop spectrophotometer at the end of the amplification and labeling 
reactions for each hybridization experiment.  

 
 

The experimental procedure resulted to be relatively quick, straightforward 

and, most importantly, reproducible. Considering the very low amount of starting 

material (ranging from 100 to 300 cells), the cDNA yield at the end of the PCR 

reaction was good, typically ranging from 30 to 60 ng/ µl in a total volume of 60 

µl. As only 200 ng of cDNA were needed for the labeling (Klenow) reaction, 

there was enough material left over to perform further experiments using the same 

PCR source. The quantitative yield of paired labeled samples to be co-hybridized 

on the same slide, after amplification, labeling and purification, ranged in general 

between 3.0 to 4.0 µg (Table 2), again well over the 2.6 µg needed for 

hybridization according to our protocol.  

We were surprised to see that the membrane control sample resulted in 

four times the amount of labeled material of the cell samples, especially since 

each one of the cell samples consisted of two different labeling reactions (Table 

2). Despite the high amount of hybridization material, the very few positive spots 

that appeared on the hybridized slide were mostly due to bacterial genomic DNA 

present on our cDNA slides as control spots (Figure 17). Presumably,  genomic 

material or RNA species carried over with the enzymes used for amplification and 

labeling, not being competed by the whole spectrum of cDNAs present for 

instance in the cell samples, were exponentially amplified, resulting in such a high 

yield of labeled cDNA. From a technical point of view, the slides were clean and 

showed a very low background noise (Figure 17).  
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Figura 17. A) Part of the membrane control cDNA microarray slide: the green spots represent 
bacterial genomic DNA. B) Part of representative cDNA microarray slide probed with labeled 
cDNA from DA cells (Cy3, green signals) and granule hippocampal cells (Cy5, red signals). 
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Figure 18. A) Pearson correlation coefficients for gene expression profiles of microdissected cells 
calculated for the pair-wise hybridizations described in table 2 are in agreement with data 
communicated by Miltenyi Biotec marked with **. Jurkat and Raji cells were cytospinned, fixed 
in acetone and microdissected, B) Log Intensity graphs presented  for two of the experiments show 
nice spot distribution along the diagonal and regression correlation coefficients of 0.94 and 0.90 
respectively.  
 

 

A B 

A B 
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Pearson correlation coefficients calculated for co-hybridized samples (Cy3 

Intensity against Cy5 Intensity) were high as expected for similar cell populations. 

Moreover our results were in agreement with results obtained by Miltenyi (see 

above, Figure 18). 

To assess the reproducibility of the method two experiments, experiment 1 

featuring mDA cells labeled with Cy3 hybridized against total mesencephalic 

cells labeled with Cy5  and experiment 2 featuring the same two populations 

labeled inversely, were performed. These two hybridizations represent a technical 

replicate as the same pools of cells were used for two independent amplifications 

followed by cDNA labeling with Cy3 or Cy5 respectively (dye swap). The high 

linear correlation coefficient of the technical replicate (R=0.93) supports the 

reproducibility of the experimental approach and the amplification process 

(Figure 19).    

 
                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Reproducibility of gene expression profiling experiments, starting from 100 laser-
captured cells from the SNc. The plot shows the correlation (R=0.93) of Intensities (I) of a dye-
swap experiment. The samples were prepared by two independent amplifications, starting from 
common pools of cells, followed by cDNA labeling with Cy3 or Cy5, respectively. 
 
 
3.2.2 Differential expression profiles between A9 and A10 cell population  
 
 
 To reveal molecular differences between A9 and A10 neurons, their gene 

expression profiles were determined with three different techniques: cDNA 
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microarrays (presented here) and nanoCAGE sequencing. To this purpose, we 

took advantage of the TH-GFP/21-31 line of transgenic mice  where the majority 

of mDA neurons can be identified by their GFP labeling while A9 can be 

distinguished from A10 by their anatomical location. LCM was used to harvest 

A9 and A10 neurons from Zincfix-fixed tissue sections as described in “Materials 

and Methods”.  

 For each cDNA microarray experiment 300 GFP-expressing DA cells 

from the A9 and 300 A10 DA cells were microdissected from mesencephalic 

sections, their RNA purified, amplified by µMACS amplification kit (Miltenyi 

Biotec), labeled, and used to monitor the differential gene expression profile 

between the two populations on custom-made cDNA microarray platform (SISSA 

arrays) in a direct design experimental mode. mDA cells were hybridized on the 

SISSA 2 slides which contain 7246 representative full-length cDNA clones of 

protein encoding genes from the FANTOM2 collection. In the nanoCAGE 

transcriptome analysis, 2000 mDA cells were isolated from each population and 

used as template for nanoCAGE, a modification of CAGE (Gustincich et al., 

2008). In this technique full length cDNAs are selected and, after cleavage with a 

class IIS restriction endonuclease, 5’ end tags are purified and sequenced. 

Transcription start sites (TSS) are then identified by mapping tags to the genome 

(Valen et al., 2008; Kodzius et al., 2006). In nanoCAGE, tags are synthesized 

from a small  quantity of starting material from fixed tissue. The end result is that 

millions of tags are sequenced without cloning by using second generation 

sequencers. For our A9 and A10 populations TSS were identified and quantitively 

determined for coding and non coding expressed RNAs. Analysis from the 

nanoCAGE data is in progress.  

For all transcriptome analysis experiments, I collected A9 DA cells from 

the rostral to the caudal end of SN, from coronal level 80 (at -2.555 from bregma 

along the anteroposterior axis) to coronal level 90 (at - 3.68 from bregma along 

the anteroposterior axis.). A9 cells from SN lateralis (SNl) were excluded from all 

the transcriptome analysis. A10 cells were collected from the VTA in between the 

same coordinates (Figure 20).    
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Figure 20. A midbrain section (bregma coordinates: -2.88 mm) from TH-GFP/31-21 mouse 
showing SN and VTA neurons. A9 cells from the SN and A10 DA cells from the VTA were 
collected by LMPC according to their GFP expression and topographic localization. A9 from the 
SNl cells were not included in the analysis.   
 

Three biological replicates were used for hybridization on the cDNA 

microarray slides, but only two were included in the biostatistical analysis since 

quality controls showed that omission of one of the three replicates resulted in 

higher correlation of expressed spots. For each biological replicate there were 

three technical replicates, each of which with two dye orientations. Amplified 

material from the same PCR source was inversely labeled with Cy3 and Cy5 in 

different Klenow reactions. One hybridized slide was not included in the 

biostatistical analysis since technically did not present at a high standard. Thus, a 

total of 11 cDNA microarray slides were used to identify differentially expressed 

genes between the two mDA populations. Data processing was performed in the R 

computing environment using the LIMMA package from the BioConductor 

software project as reported in materials and methods. Of the 7246 clones on the 

microarray slide, 592 were determined to be differentially expressed at a statistical 

significance level of an adjusted p ≤0.01. Of these 242 showed higher expression 

in A9 cells and 350 resulted enriched in A10 cells. The entire list of differentially 

expressed transcripts is available as a “Supplementary Table”. 

The mean correlation coefficient relating the different values for signal 

intensity obtained between all 11 microarrays (2 A9 versus 2 A10 comparisons x 

three technical replicates x two dye swaps) was 0.94. Scatter plots of VTA signal 

intensity versus SN signal intensity with their related correlation values for all 

expressed spots for each slide of the microarray analysis can be seen in figure 20. 

VTA 

SN 

SNl 
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Correlations ranging from 0.92 to 0.96 calculated for the technical replicates 

between signal intensities of VTA versus SN, further supported the 

reproducibility of the overall methodology. At the same time, correlations ranging 

from 0.89 to 0.94 for the biological replicates indicated that the level of the 

majority of transcripts was not different between the two regions.  

Differentially expressed transcripts were validated in two ways. First, 

previously reported gene expression differences between A9 and A10 neurons 

were verified. Twelve transcripts with higher expression in A9 cells (Grin2c, 

Cyp4v3, Nrn1, Ksns3, Rab3c, Mpp6, Drd2, Scg2, Ckb, Atp5j, Ldhb, Sri) and ten 

transcripts with higher expression in A10 neurons (Sdc2, Maoa, Calb1, Tacr3, 

Ndrg1, Gsbs, Rab3b, Slc7a3, Otx2, Gpr83) were found to be concordant in terms  

of expression enrichment towards the expected direction (SN and VTA 

respectively) with previous microarray studies (Greene et al., 2005; Grimm et 

al.,2004; Chung et al., 2005), in which, independent qPCR validation for some of 

the transcripts (amongst which, Mpp6, Ldhb Calb1) was also reported. Literature 

review further validated our microarray results for Calb1, Tacr3, and Drd2 (Hurd 

et al., 1994; Liang et al., 1996; Massi et al., 2000) (see Table 3). Discrepancies 

between these  results and published data have not emerged with the exception of 

4 transcripts from Greene’s study. In particular, Arpc1b, Hmgb2, and Gabra4 here 

enriched in A9 cells, were reported to be enriched in A10 cells in Greene’s report, 

while the inverse was true for the Csrp2 transcript. It is notable that there has been 

reported no further validation for these genes while the expression of Csrp2 gene 

in the Allen Brain Atlas showed no significant difference amongst the two 

subpopulations.  

Second, expression of all transcripts that resulted differentially expressed 

in the A9 and A10 neuron populations from this microarray analysis were verified 

one by one with the expression data in the Allen Brain Atlas (ABA), which 

collects the gene expression patterns of over 21,000 genes, derived from high 

throughput, semi-automated in situ hybridization (ISH) on mouse brain sections.  
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Figure 20. Scatter plots of differential miroarray results plotting fluorescence intensity (FI) of 
each gene from VTA (x-axis) or SN (y-axis cells). Plots and correlation coefficients highlighted 
with the  blue rectangles refer to comparisons of samples from different  biological sources 
(different mice). The rest of the plots regard the technical replicate samples with their dye 
orientations. In labels: first number (1 or 2) denote biological replicate, the letters (A, B, or C) 
technical replicate, and the third number (1 or 2) the dye swap. 
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Only coronal digital sections from the publicly available Allen’s Brain Atlas ISH 

database at www.brain-map.org/ were used to verify the results as it was difficult 

to discriminate between the two subpopulations on saggital sections. Of the 242 

transcripts resulting enriched in A9 neurons: 35 were not in the Atlas; 134 were 

represented on the Atlas by saggital sections and were not examined further; 21 

were not discernable as to the expression pattern; 17 were ubiquitously expressed 

or not specific; 2 were expressed in the SNR; 18 transcripts were expressed in 

both populations. Eleven transcripts resulted enriched in the SN: Grin2c, Cyp4v3, 

Kcns3 (already reported by previous microarray studies), Hnt, Aurka, Cs, Mif, 

and Ndfu10 (not previously noted). Rab3c, Mpp6 and Ckb (also mentioned by 

previous studies) were positively correlated with both populations but with higher 

expression levels in A9 neurons.  Of the 339 A10 enriched transcripts: 41 were 

not in the Atlas;  103 had only a saggital representation and were not examined 

further; of 30 transcripts I could not discriminate the expression pattern clearly; 9 

transcripts did not seem specifically present in DA cells or showed widespread 

expression; 3 were present in the expanse of the SNR; 45 transcripts were 

expressed in both subpopulations. Nine transcripts were expressed only in A10 

neurons or showed higher expression in A10 neurons. Amongst those, the already 

cited transcripts from previous microarray studies (Sdc2, Maoa, Calb1, Tacr3, 

Scg2) plus 3 transcripts, not described elsewhere (Whrn, Pdia5, Gpx3) (Table 3). 

In total, differential expression of 19 transcripts among A9 and A10 neurons was 

in silico validated by using the collection of in situ hybridization images from the 

Allen Brain Atlas.  

 Moreover, the results of this microarray study were compared with the list 

of genes compiled by Alavian et al., 2009, which was prepared after combining 

and comparing the results of the six major gene expression studies conducted on 

mesencephalic DA cells and verification of each gene in DA neurons with the aid 

of the Allen Brain Atlas. Forty seven genes (of which 19 described in the above 

paragraphs) resulted present in that list, which means that they were found 

expressed in the Allen Brain Atlas above background level in SN/VTA or both 

regions in saggital and coronal sections (Table 4). 
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Confirmation Official Gene 

Symbol 
Expression in Allen 
Brain Atlas Previous gene 

expression studies 
(References) 

Literature 
(References) 

A9 DA cells   
Hnt Yes   
Grin2c Yes Chung, Greene  
Cyp4v3 Low Chung  
Nrn1  Greene  
Aurka Very Low   
Cs Yes   
Mif Yes   
Kcns3 Yes Greene  
Rab3c Both populations  but 

higher in A9 
Chung  

Mpp6 Both populations  but 
higher in A9 

Chung *  

Drd2 BOTH populations Greene Hurd et al., 1994 
Ckb Both populations  but 

higher in A9 
Greene  

Ndufa10 Yes   
Atp5j  Greene  
Ldhb  Greene*, Chung*  
Sri  Chung  
 
A10 DA cells 
Sdc2 Yes Grimm  
Maoa Yes Greene  
Whrn Yes   
Pdia5 Yes – sparse   
Calb1 Yes Chung*, Greene Liang et al., 1996 
Tacr3 Yes Chung, Greene Massi et al., 2000 
Gpx3 Sparse, similar to 

Pdia5 
  

Scg2 Both Greene  
Ndrg1  McKenzie  
Gsbs  Chung, Grimm  
Rab3b  Grimm  
Slc7a3  Greene  
Otx2  Chung  
Gpr83  Chung  
 
* also validated by Real Time PCR 
  

Table 3. Differentially expressed genes between A9 and A10 neurons, verified on the Allen Brain 
Atlas, by previous microarray studies, and by literature search. Blank boxes in the “Expression in 
Allen Brain Atlas” column mean that the genes seemed expressed in both populations at a 
comparable level.  
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 Genes espressed in SN/VTA 
in this gene expression study 

Genes espressed in SN/VTA or both 
according to Allavian et al., 2009 

  
Arl5a Author not specified 
Slc35c2 Author not specified 
Tspan6 Author not specified 
Cct5 Barret 
Morf4l1 Barret 
Ube2b Barret 
Ccdc91 Barret 
Ssbp2 Barrett 
Ndufa10 Barrett 
Fdps Barrett 
Scg2 Barrett, Greene 
Mpp6 Chung 
Cyp4v3 Chung 
Sri Chung 
Cs Chung 
Slco1c1 Chung 
9130213B05Rik Chung 
Tomm20 Chung 
Pdia5 Chung 
Idh1 Chung 
Otx2 Chung 
Gpr83 Chung 
Rab3c Chung  
Calb1 Chung, Greene 
Grin2c Chung, Greene 
Gsbs Chung, Grimm 
Nrn1 Greene 
Drd2 Greene 
Atp5j Greene 
Ckb Greene 
Kcns3 Greene 
Rgs2 Greene 
Maoa Greene 
Slc7a3 Greene 
Tacr3 Greene, Chung 
Ldhb Greene, Chung  
Serpine2 Grimm 
Lmo4 Grimm 
Aurka Grimm 
Prmt2 Grimm 
Akr1b3 Grimm 
Rab3b Grimm 
Slc39a4 Grimm 
Gpx3 Grimm 
Ndrg1 McKenzie 
Slc18a2 Steward 
Ran Thurret 

  

Table 4. List of 47 genes common to our microarray results, to one or more of the six published 
mDA gene expression studies and to expression data from the Allen Brain Atlas. The genes are 
expressed either in SN or VTA or both mesencephalic subregions.  
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Associations of differentially expressed genes with cellular component, 

molecular function and biological process terms from the Gene Ontology (GO) 

database were examined by DAVID and clustering association analysis was 

performed after application of a threshold p-value ≤ 0.05 and a high stringency 

classification. Enrichment p-values were corrected to control family-wide false 

discovery rate with the Benjamini correction technique (david.abcc.ncifcrf.gov/; 

(Dennis et al., 2003; Huang et al., 2009). DAVID returned GO classifications 

related to one or more of the above terms for 183 out of 242 (75%) A9 enriched 

transcripts and for 259 out of 350 (74%) A10 enriched transcripts, using the Mus 

musculus database. Of these, for both populations, more than half were related 

with the intracellular region and the cytoplasmic compartment categories of the 

cellular component (CC) term, and when analyzed for the biological process (BP) 

term, more than half the transcripts resulted associated with the metabolic process 

category. Regarding the molecular function (MF) term, the majority of  A9 

transcripts (79 transcripts) associated with catalytic activity, while the majority of 

A10 transcripts showed a stronger significant correlation with the protein binding 

category (120 transcripts). Although the number of total microarray spots (7246) 

was limited for categorical analysis, few concerted gene differences between the 

two populations emerged. Genes related to the  mitochondrion (26 transcripts), the 

synapse (5 transcripts), and the nucleolus (7 transcripts) were elevated in A9 

neurons together with genes associated with generation of precursor metabolites 

and energy (13 transcripts), organic acid metabolic process (12 transcripts), 

nervous system development (14 transcripts) and negative regulation of signal 

transduction (6 transcripts) (Table 5). Similar results were obtained using  KEGG 

pathway classification whereby oxidative phosphorylation, and glutathione 

metabolism pathways appeared enriched in A9 neurons. These results corroborate 

well with those of previous studies which noted enriched genes related to energy 

metabolism, organic acid metabolism, electron transport, mitochondrial proteins.  

In A10 cells, genes were found elevated in association to the ribosome (14 

transcripts) and the endoplasmic reticulum (23 transcripts), cell redox homeostasis  
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Enriched gene functional  annotations A10 

CATEGORY ASSOCIATED GENES 
Ribosome Rps19, Rps4y2, Rps5, Apex1, Rplp1, BC003885, Rpl6, Rps17, Mrps17, 

Rps11, Mrpl22, Rps23, Rps12, Mrps11  
Endoplasmic reticulum Ssr2, Plod1, Ergic3, Ero1lb, 0610007P14Rik, Pdia5, Pdia6, Apex1, Upk3a, 

Sc4mol, Dad1, Srpr, Vwf, Hsd17b10, Txndc11, Tusc3, Gpsn2, Scd2, 
Agpat2, Dgat1, Dnajc10, Cyp2s1, Stau1 

Cell redox homeostasis Txndc11, Pdia5, Pdia6, Dnajc10, Apex1 
Response to stress Scg2, Asf1a, Idh1, Bax, Alkbh3, Pdia5, Ube2b, Dysf, Fancl, Nono, Apex1, 

Lta4h, Cd9, Vwf , Rpain, Sfpq, 2410012H22Rik, Gpx3, Hsp110, Dgkk 
Lipid biosynthesis Dctn6, Gpsn2, Scd2, Cyb5r1, Agpat2, 0610007P14Rik, Sc4mol, Lta4h, 

Fdps 
Alcohol metabolism Pmm2, Ldha, Cyb5r1, 0610007P14Rik, Maoa, Sc4mol, Fdps, Dcxr, Eno2, 

Pgam1  
M phase of mitotic 
cycle 

Ywhah, Trrap, Mad2l2, Wee1, Ndc80, Akap8, Rgs14, Ccnb2  
 

Intracellular protein 
transport  

Ssr2, Ap2a2, Xpo6, Gga3, Tmed1, Rab3b, Ran, Chchd4, Srpr, Rpain, 
Ywhah, Fndc5, Nxf1, Arl2, Rims2, Tomm20  

Protein 
homotetramerization 

Gpx3, Pcbd1, Actn2 
 

 
Ribosome (KEGG 
pathway) 

Rpl6, Rps17, Rps19, Rps11, Rps23, Rps12, Rps5, Rplp1, BC003885  

 
Enriched gene functional annotations A9 

CATEGORY ASSOCIATED GENES 
Mitochondrion Uqcrc1, Atp5j, Sucla2, Fars2, Ywhaz, Mrpl43, Mfn2, Ndufa10, Ckb, 

Mrps7, Atp5c1, Atp5a1, Ndufs4, Shmt1, Mrpl2, Mrps5, Bckdha, Gpx4, 
Sardh, 1700020C11Rik, Scp2, abcb6, Cs, Cox10, Sh3glb1, Hspd1  

Nucleolus Lyar ly1, Rtf1, Ilf2, Nola2, Utp3, Lsm11, Bxdc5 
Synapse Camk2n1, Magee1, Gabra4, Grin3b, Grin2c 
Generation of precursor 
metabolites and energy 

Uqcrc1, Atp5j, Sucla2, Mdh1, Cyp4v3, Sardh, Nfia, Cs, Cox10, Atp5c1, 
Ndufs4, Atp5a1, Pycr2 

Organic acid metabolic 
process 

Qk, Scp2, Mdh1, Aldh1l1, Bckdha, Ndufs4, Fars2, Shmt1, Sardh, Pycr2, 
Sh3glb1, Plp1 

Negative regulation of 
signal transduction 

Chrd, Lect1, Chrdl2, Rgs16, Drd2, Socs2 

Nervous system 
development 

Chrd, Bzw2, Drd2, Socs2, Lmo4, Cfl1, Ndrg2, Qk, Nrn1, Chat, Utp3, 
Serpine2, Edg1, Plp1 

 
Oxidative 
phosphorylation 
(KEGG pathway) 

Uqcrc1, Ndufa10, Atp5j, Cox10, Atp5c1, Ndufs4, Atp5a1 
 

Glutathione metabolism 
(KEGG pathway) 

Ggt1, Gsst1, G6pdx, Gpx4 

Citrate cycle (TCA) 
(KEGG pathway) 

Cs, Sucla2, Mdh1 
 

Glycerophospholipid 
metabolism (KEGG 
pathway) 

Agpat4, Lcat, Chat, Sh3glb1 
 

N-Glycan biosynthesis  
(KEGG pathway) 

Mgat2, St6gal1, Stt3b  

 
Table 5. Categorical differences between A9 and A10 populations using GO annotations  and 
KEGG pathway classification. Some genes fall in more than one category. 
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(5 transcripts), response to stress (21 transcripts), intracellular protein transport 

(16 transcripts), lipid biosynthesis (9 transcripts), alcohol metabolism (10 

transcripts), M phase of mitotic cycle (8 transcripts), protein homotetramerization 

(3 transcripts). These results are in accordance with a possibly more stable 

homeostatic environment of A10 neurons and the capability to respond readily to 

exogenous and endogenous insults by activating rapidly DNA repair mechanisms, 

rendering these neurons less vulnerable to disease . A fine control over the cell 

cycle may corroborate towards the same direction. KEGG analysis has 

highlighted only the ribosomal pathway (9 transcripts) as enriched in these 

neurons. For a comprehensive view of the genes see Table 5.  

Other differences concerned the number of ion channels, with 5 transcripts 

(Grin2c, Ttyh3, Grin3b, Gabra4, Kcns3, 1700019N12Rik) found elevated in A9 

cells versus one (Fxyd5) present in A10 cells. Selected genes will be discussed.  
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DISCUSSION 
 

 
 
4.1 OVERVIEW  

 

Our knowledge of brain functions and the complex disorders that affect the 

central nervous system at the molecular level have been hampered by the 

difficulties that emerge when studying such a complex organ. Amongst those are 

the high degree of cellular heterogeneity of the brain tissue – which may result in 

loss of detection of specific gene transcripts or of their enrichment in a cell type, 

because diluted by the expression profiles of neighboring cells – and the 

preparation of good quality samples from which to obtain the maximum amount 

of high quality RNA.  

Recent development of the LCM technique, allowing in situ isolation of 

the desired cell type, along with reliable RNA extraction and amplification 

methods from small samples have made possible the implementation of genome-

wide gene expression analysis on brain samples. 

In the first part of this study we have optimized a protocol for laser- 

assisted microdissection of mesencephalic GFP-expressing DA neurons to be used 

in subsequent microarray profiling, and in the second part we have determined 

and compared the gene expression profiles of A9 and A10 DA populations with 

the intent to pick up genes that could underlie their selective vulnerability at a 

baseline level. 

 

4.2 COMMENTS ON TECHNICAL DEVELOPMENT  

  

Three are the aspects that have been addressed in the optimization of the 

LCM protocol: 

a) tissue fixation in relation to both achieving i) clear histological visualization by 

Nissl staining and/or by retention of the fluorescence in GFP-expressing cells, and 

ii ) good RNA recovery and retention of RNA quality, 
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b) improvement of tissue morphology at inspection, and 

c) storage of sections. 

 We evaluated five fixatives, paraformaldehyde 4% (PFA), Zincfix, 

acetone, ethanol, and DSP, for two aspects: a) in terms of retention of histological 

details, by staining cerebellar and hippocampal sections in 1% water-based Nissl 

stain, and b) in terms of retention of fluorescence in GFP-expressing 

mesencephalic sections. We found that PFA 4% and Zincfix provided the best 

results in relation to Nissl-stained sections, and for DA GFP-expressing neurons 

of TH-GFP/21-31 mouse brain sections. Ethanol and acetone resulted in 

quenching of the green fluorescent signal. 

Evaluation of fixatives in terms of RNA retrieval and integrity with cross-

linking agents such as PFA and DSP resulted in poor if any RNA extraction, in 

agreement with the literature concerning PFA, but in contrast with Xiang et al., 

2004, who have reported that DSP fixes soluble antigens and protects RNA in 

tissue sections. As stated in the “Results” chapter, our failure to extract RNA from 

DSP-treated tissues could have been due to the omission of a reducing agent such 

as DTT before RNA extraction that would have released the RNA immobilized by 

the crosslinking fixative. All precipitating agents – Zincfix, acetone and ethanol –  

resulted in efficient recovery of good quality RNA, with Zincfix performing best 

resulting in mRNAs characterized by  RINs >7.0.  This is in line with reports by 

several authors (Johansson et al., 2000; Schleidl et al. 2002; and Lykidis et al., 

2007) which describe Zincfix as an excellent fixative for preserving RNA 

integrity for downstream expression profiling experiments. Ethanol is at the centre 

of a controversy for its effects on RNA quality with some reports claiming 

degraded RNA following extraction from ethanol-fixed tissues and others like a 

recent report by Wang et al., 2009 describing RNA profiles obtained by ethanol 

fixation with RINs >8.0. One other advantage of Zincfix is that tissues are fixed 

prior to cryosectioning, by immersion, which makes handling of samples easy and 

quick.  

Two slightly different protocols, a standard 1% Nissl stain and a shorter 

ethanol based 1% Nissl stain, conducted on mouse wild type brain sections fixed 

in Zincfix, yielded RNA of comparable quality, although staining with the shorter 
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protocol resulted much weaker, revealing less morphological details, and hence 

being suitable only for the collection of easily recognizable structures. Reduced 

aqueous exposure by dipping sections in an ethanol based staining solution should 

protect from tissue RNases and subsequent RNA degradation. We noted that RNA 

from such stained sections was associated with higher RINs when compared to 

RNA deriving from standard stained sections, although this difference was not 

significant. 

In LCM gene profiling studies, it is essential to be able to unequivocally 

identify and isolate the desired cell type which is in contrast with the methodology 

of tissue section preparation that requires sections to be used dry and uncovered, 

resulting in poor morphology. We had difficulties in identifying all fluorescent 

GFP-expressing cells of TH-GFP/21-31 mice mesencephalic sections because of 

background fluorescence. We found that visualization of cells is greatly improved 

by addition of Zincfix drops on the tissue sample to be microdissected. Cells 

become temporarily visible and can be outlined until the section is damp. Once 

the section has dried, the excision can take place.  We have noted no interference 

of the dried solution, which acts as “coverslip”, with UV laser cutting or 

catapulting of cell samples into the collector cap. No negative effects have either 

been noted in RNA quality retention. On the contrary, RNA quality often resulted 

better preserved in the sections which had been treated with Zincfix drops. We 

have included this step in our optimized protocol for LMPC and called this step 

the “post-fixation” step. Drops of ethanol have been used traditionally to 

ameliorate histological inspection or resins such as the PALM LiquidCover N, 

which can be thinned with EtOH to reach the desired viscosity, but none of the 

two have retained GFP fluorescence in the TH-GFP/21-31 mice mesencephalic 

sections, although they both have worked nicely on Zincfix Nissl-stained sections.   

 Laser-assisted microdissection can be time consuming, especially if cells 

need to be collected one by one. It may happen that cell harvesting needs to be 

continued in the next days, in order to be completed. Although the suggestion is to 

process slides as close as possible to the time of use of LCM, storage of sections 

becomes an unavoidable need to be addressed. We have noted that fixed TH-GFP 

cerebellar sections can be stored with no noticeable RNA degradation in boxes 
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with dessicant both at -80˚C and under dry conditions, in a vacuum, for up to two 

months. The two storage modalities are comparable both in terms of retention of 

GFP fluorescence and RNA integrity.    

The successful amplification of cell-specific transcripts from as low as 10 

microdissected cells demonstrates the sensitivity of the whole procedure, while 

the amplification of cell-specific transcripts with fragment sizes of more than 400 

bp from 1000 cells or less, with conventional amplification methods, is indicative 

of the suitability of this LMPC-derived RNA for hybridization on DNA 

microarrays. 

The amplification of GFAP mRNA by both conventional PCR and qPCR 

from LMPC-captured A9 and A10 cell samples suggests the presence of 

astrocytes, both when these are collected in groups of 3 or 4 and when they are 

harvested one at a time, but with contamination being smaller in the latter case. It 

is of note that the A10 samples showed higher astrocytic contamination than the 

A9 sample.  This might indicate that A10 cells are more strongly associated with 

astrocytic cells or that, being significantly smaller in size with respect to A9 cells, 

they are more difficult to be precisely dissected. In fact, although LCM 

technology has been promoted for its ability to harvest single cells, the technology 

is best applied for capture of cell clusters and cell regions within a tissue section. 

Thinner sections and a higher number of collected cells are two ways for reducing 

contamination. If contamination is small it should be diluted out during the 

subsequent amplification procedure, assuming that gene expression profiling is 

intended next. Furthermore, a shorter distance between specimen and cap 

collector, which implies the use of lower energy both for the excision and cell 

transfer to the cap, can be another way to reduce contamination due to debris 

caused by high laser cutting energy. In most studies, LCM is performed on very 

thin sections (5-12µm). This thickness is considered as a monolayer of cells and 

will allow good visualization of the tissue. For larger cells, like mesencephalic 

DA neurons, we have used 14 µm thick sections, a thickness that represents a 

good compromise between decent optical resolution, good amount of collected 

material, and a low degree of contamination. As a final comment, we should say 
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that LCM-collected samples should be considered highly enriched as for the 

desired cell type rather than pure populations.  

 As to the slides employed in tissue section preparation for LCM, we have 

found that the best ones for use with TH-GFP mice mesencephalic sections are 

plus charged Superfrost slides, as they allow good tissue adherence and low 

background fluorescence. Moreover, it is easier to dissect cells one at a time from 

glass slides rather than from membrane-coated slides (PEN or PET for fluorescent 

structures).  

To collect laser-assisted microdissected cells we have opted for PALM 

adhesive caps (caps coated with a white adhesive inert surface) as they permit 

visualization of cells at the end of the procedure and provide a dry environment 

for their short time storage until RNA extraction. Usually, samples were 

processed for RNA extraction at the end of each session, but if a number of cells 

was required so that more sessions for their collection were necessary, cells were 

left in the cap, stored in a box with dessicant, in dry conditions, in a vacuum, for 

up to a week. We could see no adverse effects on RNA integrity. We have finally 

noted that, even if the cap collector was brought very closely to the specimen to 

prevent loss of catapulted material, we could not avoid a 10% loss. 

We have observed that 40% to 50% of RNA is lost during fixation, 

microdissection itself and the RNA extraction process. From 1000 singularly 

microdissected mDA cells we have extracted RNA quantities that ranged between 

2 ng and 3 ng, which is consistent with published data (Schleidl et al., 2002; 

Wang et al., 2009), with characteristic RNA RINs ranging between 6.1 and 7.5. 

There are not many reports that use RIN to evaluate their RNA quality (Clément-

Ziza et al., 2008; Kerman et al., 2006; Wang et al., 2009). The RINs associated 

with our LCM-derived RNA (6.1 to 7.5) are lower than, for example, the RINs 

(all above 8.0) reported by Wang et al., 2009, achieved for their LCM collected 

cell groups. We have to note though, that they fix their sections briefly in ethanol, 

while we fix ours for few hours and we cryoprotect the tissue overnight. This, of 

course, adds to the deterioration of RNA, but, at the same time, ensures better 

morphological inspection and excellent retention of the GFP fluorescent marker in 

TH-GFP transgenic mice brain sections, allowing microdissection at the single 
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cell level. Wang et al., in fact, collect relatively large areas of tissue, which should 

also result in less damaged RNA as the UV laser comes in contact with less tissue.    

For RNA extraction, amplification and target labeling to be used in our 

cDNA microarray expression profiling study we have used the µMACS 

SuperAmp Kit (Miltenyi Biotec) that had not been released on the market at the 

time of this work and for which we have acted as a test site. Our preliminary 

results, conducted on limited starting material (100 to 300 LCM-isolated cells), 

resulted in good PCR amplification and efficient Klenow labeling with high 

Pearson correlation coefficients between signal intensities of co-hybridized 

samples of similar cell populations. Furthermore, a technical replicate consisting 

of two independent amplifications from a common pool of cells, labeled 

inversely, presented with a high linear correlation coefficient, supporting the 

reproducibility of the amplification process. The strength of this kit lies: a) in the 

one-step mRNA isolation (by small magnetic beads) and subsequent in column 

cDNA synthesis procedure, which reduces loss of material due to tube-to-tube 

transfer; b) the generation of small first-strand cDNA fragments of comparable 

length, reducing PCR bias in the subsequent amplification procedure which is also 

avoided by the use of a single-primer global PCR amplification procedure with 

uniform annealing conditions for all transcripts. 

The correlation coefficients calculated for the signal intensities of the 

technical replicates, ranging from 0.92 to 0.96, and of the biological replicates, 

ranging from 0.89 to 0.94, for our compared A9 and A10 microdissected samples, 

further supported the strength of the overall experimental approach and indicated 

that the level of the majority of transcripts was not different between the two 

regions. In fact, relative to the total number of cells, the number of differentially 

expressed transcripts is <8%.  Previous microarray gene expression studies 

comparing these two neuron populations (Grimm et al., 2004; Chung et al., 2005; 

Greene et al., 2005) are in agreement on an even more conservative figure of less 

than 5%. 

Despite the similarity between the two regions, we have identified 592 out 

of the 7246 expressed transcripts to be differentially expressed between SN and 

VTA dopamine neurons at a statistical significance level of a p-value below 0.01. 
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Of these, 242 transcripts showed higher expression in A9 cells and 350 transcripts 

resulted enriched in A10 cells. We decided to use the adjusted p-value as the cut 

off threshold below which genes were to be considered differentially expressed 

and not the expression fold change. This is for two reasons: a) fold changes in this 

study are not very high as they range from a maximum of 3 fold to a minimum of 

1 fold, but then this should be expected when comparing cells of the CNS; b) 

moreover, fold changes much depend on the biostatistical tool used and can be 

vary considerable for the same set of data.   

 

4.3 DIFFERENTIAL GENE EXPRESSION BETWEEN A9 AND A10 

NEURONS 
 

Differences in gene expression data may be confirmed by qPCR and/or in 

situ hybridization. Instead, we verified all differentially expressed genes in silico, 

with the aid the in situ expression data of the Allen Brain Atlas and by literature 

review. Validation of transcripts with the Allen Brain Atlas does not constitute 

definite evidence of expression/absence of a transcript, but rather a strong 

indication that needs to be further confirmed, since not all images are clear and 

sections have not always been taken at evenly spaced intervals resulting in areas 

of interest not well represented and of difficult interpretation. Nonetheless, we 

have found 30 differentially expressed genes by in situ hybridization, of which 8 

not noted by previous microarray hybridization studies.  

Comparison of the differentially expressed transcripts herein presented 

with those found by other microarray gene expression studies has produced a 

number of genes that are consistent in their expression in terms of direction, A10 

rather than A9 population or the inverse. This is important if we consider that 

these analyses have been conducted on different array platforms and on different 

species (rat cdna microarrays for Grimm et al., 2004; mouse Affymetrix platform 

for Chung et al., 2005; rat Affymetrix platform for Greene et al., 2005). 

Moreover, further validation of transcripts expressed in the mesencephalic DA 

neurons (SN + VTA) has come from the comparison of the present results with 

those described in the retrospective study by Alavian et al., 2009, who have 

compiled a list of transcripts common to all six existing gene expression studies 
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performed on mesencephalic DA cells and present in either saggital or coronal 

sections of the Allen Brain Atlas. In addition to the above mentioned 30 genes, 

other 17 transcripts were identified. None of our differentially expressed genes 

was in contrast with existing in situ hybridization or validated data. These figures 

further support the strength of this differential expression study, of its results, and 

of the overall methodology, from laser-assisted cell isolation to amplification and 

finally array hybridization.  

Eight genes (Mif, Hnt, Ndufa10, Aurka, Cs, enriched in A9 neurons and 

Pdia5, Whrn, and Gpx3 enriched in A10 neurons), not noted or confirmed as 

differentially expressed before, emerged from our analysis. The most interesting 

amongst these A9 expressed neurons are neurotrimin (Hnt) and macrophage 

migration inhibitory factor (Mif). Hnt is a neuronal adhesion molecule that seems 

to inhibit axonal outgrowth, which is important in development of CNS and 

sympathetic nervous system (Gil et al., 1998; Struyk et al., 1995). It is a 

glycosylphosphatidylinositol (GPI)-anchored protein, expressed in distinct 

neuronal systems, and regulates the development of neuronal projections via 

attractive and repulsive mechanisms that are cell type specific and are mediated 

by homophilic and heterophilic interactions.  As an axonal growth inhibitor it may 

prevent neuronal regeneration or maintenance of synaptic connections in disease 

states, but at the same time it could be important in repair by helping direct 

appropriate connections. Mif is a candidate pro-inflammatory cytokine involved 

in hormonal regulation of inflammation (i.e. estrogen inhibits local inflammatory 

response by down regulating Mif (Ashcroft et al., 2003). At sites of inflammation, 

it may have a role in regulating the function of macrophages in host defense. In 

Alzheimer’s disease it has been found associated with amyloid plaques and it has 

been implicated in MS disease progression. It has a role in the regulation of the 

cell cycle and thus of normal and malignant cell growth. This corroborates well 

with the hypothesis that sees neuroinflammation involved in the pathogenesis of 

PD. Aurora kinase A (Aurka) is a kinase with a control over the cell cycle and a 

very weak expression in the Atlas. Cells over-expressing Aurka inappropriately 

enter anaphase despite defective spindle formation. Mitosis is subsequently 

arrested by failure to complete cytokinesis, resulting in multinucleation. Nadh 
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dehydrogenase (ubiquinone) 1 alpha subcomplex 10 (Ndufa10) mediates the 

transfer of electrons from NADH to ubiquinone of the respiratory chain, while 

citrate synthase (Cs) is the pace-making enzyme in the first step of the citric acid 

cycle,  found in nearly all cells capable of oxidative metabolism. The two latter 

transcripts are widely expressed, but they appear to be particularly abundant in A9 

cells. This is in line with the notion that sees SN neurons under higher metabolic 

drive and thus highly energy (ATP)-dependent. Amongst the A10 enriched genes, 

pdia5 is a disulfide-isomerase related protein that catalyzes the rearrangement of -

S-S- bonds in proteins. It has been implicated in maintenance of cellular 

homeostasis, response to stress, and protein folding. Gpx-3 is a gene product that 

belongs to the glutathione peroxidase family, which functions in the detoxification 

of hydrogen peroxide. It has been reported that increased Gpx-3 could play a 

significant role in protecting cardiomyocytes from oxidative stress caused by 

hyperglycemia (Iwata et al., 2006) while it seems induced in kidney under 

oxidative stress conditions (Shirota et al., 2006). Pdia5 and Gpx3 show a similar 

and very particular pattern of expression in the Allen Brain Atlas, with a low and 

sparse expression. Whirlin (Whrn) encodes a PDZ scaffold protein with 

expression in both hair cell stereocilia and retinal photoreceptor cells (Eberman et 

al., 2007). It could be important in linking the cytoskeleton with scaffold 

transmembrane proteins, having both a structural and signaling role. 

 It is commonly accepted that the strength of genome wide studies lies in 

the possibility they offer to identify coordinated gene differences to interpret 

diverse mechanisms of action, rather than looking at the single gene. Although 

this work does not represent a complete genome scan, but instead more a large 

scale survey with only 7246 genes having been enquired, some interesting gene 

concerted differences have emerged. 

Genes related to the mitochondrion, the synapse, the nucleolus were 

elevated in A9 neurons, together with genes associated with generation of 

precursor metabolites and energy as well as transcripts implicated in nervous 

system development. These results are in line with those of previous studies 

which noted enriched genes related to energy metabolism, organic acid 

metabolism, electron transport, and mitochondrial proteins. The first categories 
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that emerge as differentially expressed are mitochondrial transcripts and genes 

related to generation of energy, which is in agreement with the involvement of 

complex I dysfunction in human PD pathogenesis (Parker et al., 1989; Schapira et 

al., 1989, 1990). As discussed earlier, SN cells are thought to be under greater 

metabolic demand because of higher neuronal activity (Williams et al., 1998). 

Higher metabolic rates may result in greater levels of oxidative stress, making A9 

cells more vulnerable to complex I inhibition. Furthermore, looking in detail at the 

list of differentially expressed genes, by gene classification, kinase/phospatase 

related metabolism transcripts emerge as enriched in A9 cells, also reported by 

Green et al., 2005. Evidence exists for aberrant kinase or phosphatase signaling to 

be contributing to neurodegeneration in dopamine neurons (Zeevalk et al., 2001). 

Protein glycosylation and regulation of translation also seem upregulated in A9 

cells. 

In A10 cells, transcripts were found elevated in association to the 

ribosome, the endoplasmic reticulum and the biological process categories of cell 

redox homeostasis, response to stress, intracellular protein transport, lipid 

biosynthesis, alcohol metabolism, M phase of mitotic cycle, protein homo-

tetramerization. As mentioned in the “Results” section, these categories are in 

accordance with a higher compensatory capability of A10 neurons in response to 

exogenous and endogenous insults. The higher expression of DNA repair 

associated transcripts in these cells could have a synergistic role in their resistance 

to neurodegeneration. A finer control over the cell cycle may corroborate towards 

the same direction.   

Other differences concerned the number of ion channels, with 5 transcripts 

(Grin2c, Ttyh3, Grin3b, Gabra4, Kcns3, 1700019N12Rik) found elevated in A9 

cells versus one (Fxyd5) present in A10. A higher presence of ion channels could 

render cells of the SNc more vulnerable to eventual imbalances of ion fluxes with 

an effect on membrane excitability and possibly its destabilization. In particular, 

Grin2c and Grin3b are NMDA receptors of glutamate-gated ion channels, with 

voltage dependent sensitivity to magnesium and both mediated by glycine. The 

first with a double channel conductance is characterized by high calcium 

permeability, the second with a single channel conductance by low calcium 
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permeability. This finding is in agreement with a possible greater susceptibility of  

SN neurons to glutamatergic input proposed by Beal in 2000. Kcns3 is a 

potassium voltage-gated late rectifier channel while Gabra4 is an inhibitory 

GABA receptor that opens a chloride channel. Both these channels, however, do 

not show a high fold difference between the two subpopulations. In contrast,  

Ttyh3, which is a probable large-conductance calcium-activated chloride channel, 

and the 1700019N12Rik gene or TRAAK, which is an outwardly rectifying 

potassium channel belonging to K2P channel family, resulted highly enriched in 

A9 neurons. It has been shown that lipophosphatidic acid (LPA), an abundant 

cellular lipid, as well as polyunsaturated fatty acids, including arachidonic acid 

(AA), reversibly open TRAAK channels, directly linking the lipid status to cell 

electrogenesis (Chemin et al., 2004). TRAAK has been also reported to open upon 

intracellular alkalosis (Kim Y et al., 2001). Chemin et al., 2004, hypothesize that 

intracellular LPA sensitizes K2P channels to membrane stretch through a 

membrane effect of LPA and not through direct binding. They also suggest that 

this form of ion channel regulation may be involved in normal physiological 

functions as well as in various disease states, including neurological disorders. 

The mode of action of these channels through desensitization implies that in the 

physiological setting, transient stimuli can have large effects without the channels 

dominating the steady-state background (Chemin et al., 2004).  

Tacr3 and Gpr83 are neuropeptide Y receptors with neuroprotective 

effects and have been extensively reported as enriched in VTA and contributing to 

the resistance of these neurons to toxins. Amongst the genes enriched in A10, 

syndecan 2 (Sdc2) has been implicated in synaptic plasticity and G substrare 

(Gsbs) in learning and long term potentiation. Moreover, expression of 

glutathione-S-transferase, pi (gstp2) may protect from oxidative damage. All these 

functions have been traditionally correlated with A10 neurons.  

Looking again at single genes that have emerged as differentially 

expressed between the mDA populations in this study, I would choose to validate 

the following transcripts. 
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A) In relation to A9 neurons: 

1. Serine (or cysteine) peptidase inhibitor, clade e, member 2 (Serpine2). It is a 

serine protease inhibitor of thrombin, trypsin, tissue plasminogen activators 

(tPAs), and urokinase plasminogen activators and a neurite outgrowth promoter. 

There is evidence that Serpine is inactivated by xanthine oxidase-derived free 

radicals. It has been suggested that protection of Serpine2 in Alzheimer's or 

Parkinson's diseases, could be a possible target for a therapeutic function of 

antioxidants (Bolkenius et al., 1995). 

2. Neuritin 1 (Nrn1). It promotes neurite outgrowth and especially branching of 

neuritic processes in primary hippocampal and cortical cells and it has been 

suggested that it may take part in an activity-regulated transcriptional program 

that directs long-term changes in synaptic connections (Fugiino et al., 2003).  

3. Single-stranded DNA-binding protein 2 (Ssb2). Since Ssb1 and Ssb2 are 

believed to promote proper folding of proteins as they are synthesized, their 

absence or altered function might result in misfolded forms of proteins, which 

could accumulate in the cell. 

B) In relation to A10 neurons: 

1. Secretogranin-2 (Scg2) is a neuroendocrine secretory granule protein, which 

may be the precursor for other biologically active peptides.  

2. Sphingomyelin phosphodiesterase 2, neutral (Smpd2). It converts 

sphingomyelin to ceramide through hydrolysis. It has been reported that various 

oxidative stress-inducing agents lead to the activation of neutral sphingomyelinase 

and the production of ceramide. It is interesting to note that antisense knockdown 

of neutral but not acidic sphingomyelinase ablated oxidative stress-induced 

apoptosis and cell death in human primary oligodendrocytes (Jana et al., 2007). 

Moreover, impairment of lysosomal ceramide metabolism has been proposed as a 

possible pathway leading to Parkinson’s syndromes (Bras et al., 2008).  

3. Low density lipoprotein-related protein 1(Lrp1). It is an endocytic receptor. It is 

suggested that LRP1 mediates anti-apoptotic functions in differentiated neurons 

by regulating several signaling pathways critical for neuronal survival (Fuentealba 

et al., 2008). 
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4. Similar to 1-ACYL-SN-GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 

BETA (Agpat2). This gene encodes a member of the 1-acylglycerol-3-phosphate 

O-acyltransferase family. The protein is located within the endoplasmic reticulum 

membrane and converts lysophosphatidic acid to phosphatidic acid, the second 

step in de novo phospholipid biosynthesis. Mutations in this gene have been 

associated with congenital generalized lipodystrophy (CGL), or Berardinelli-

Seipsyndrome, a disease characterized by a near absence of adipose tissue and 

severe insulin resistance.  

 
 With this work we have devised a valid methodology for laser-assisted 

isolation of TH-GFP expressing mesencephalic dopaminergic cells from TH-

GFP/21-31 transgenic mice, and the subsequent sample preparation for 

hybridization on cDNA microarrays. Our results constitute a description of a large 

mRNA expression analysis from which several interesting genes, to be further 

confirmed, have emerged. From here, several hypotheses can be advanced 

towards the susceptibility differences seen in the two populations, namely A9 and 

A10 neurons, based on concerted or single gene differences that have been 

detected, but with some limitations. This difference in susceptibility, although it 

has been largely proposed to be due to intrinsic factors, which can be addressed 

with these type of studies, is also certainly due to circuitry differences and glial 

cell associational differences. Finally, we have to keep in mind that post-

translational modifications may change relations between mRNA expression and 

protein function, which makes testing of hypotheses at the protein level a 

necessary complement.  
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SUPPLEMENTARY TABLE         
Differentially expressed genes between A9 cells from SN and A10 cells from VTA     
     
Gene description Gene name logFC AveExpr adj.P.Val 
More expressed in A9         
GLIA DERIVED NEXIN PRECURSOR (GDN)  Serpine2 1.6 11.87 5.34E-17 
membrane protein. palmitoylated 3 (MAGUK p55 subfamily member 6) Mpp6 1.19 9.78 9.54E-12 
NEUROTRIMIN PRECURSOR (GP65) homolog [Rattus norvegicus] Hnt 1.14 10.15 4.92E-18 
Similar to 10-formyltetrahydrofolate dehydrogenase Aldh1l1 0.97 9.51 2.19E-15 
RAB3C. member RAS oncogene family Rab3c 0.95 9.55 4.99E-07 
Grin2c Grin2c 0.93 10.53 2.56E-11 
Similar to LIM and cysteine-rich domains 1 Lmcd1 0.91 7.5 7.77E-07 
UXT PROTEIN (UBIQUITOUSLY EXPRESSED TRANSCRIPT PROTEIN) Uxt 0.89 9.21 3.27E-10 
PLASMA KALLIKREIN PRECURSOR (EC 3.4.21.34) Cyp4v3 0.85 8.11 1.22E-08 
1-acylglycerol-3-phosphate O-acyltransferase 1  Agpat4 0.84 12.49 2.56E-11 
PHOSPHATIDYLCHOLINE-STEROL ACYLTRANSFERASE PRECURSOR (EC 2.3.1.43) Lcat 0.82 7.91 1.16E-08 
L-LACTATE DEHYDROGENASE B CHAIN (EC 1.1.1.27)  Ldhb 0.81 14.33 1.81E-10 
hypothetical Cytochrome c family heme-binding site containing protein Mtmr15 0.81 8.48 1.10E-06 
hypothetical protein Sft2d3 0.81 11.46 1.81E-07 
Neuritin Nrn1 0.79 10.09 5.05E-13 
single-stranded DNA binding protein 2 Ssbp2 0.77 10.23 2.22E-07 
hypothetical protein Ttyh3 0.74 9.72 6.51E-07 
transducin-like enhancer of split 6. homolog of Drosophila E(spl) Tle6 0.73 8.15 0.003785 
LIM DOMAIN TRANSCRIPTION FACTOR LMO4  Lmo4 0.72 10.59 8.37E-09 
SH3-domain GRB2-like B1 (endophilin) Sh3glb1 0.71 8.8 0.00025 
similar to THYRO1001033 PROTEIN [Homo sapiens] Ttc12 0.7 8.26 1.45E-06 
Esau protein  0.69 9.76 5.09E-07 
RIKEN cDNA 2210417O06 Sri 0.67 10.25 8.37E-09 
CHONDROMODULIN-I PRECURSOR (CHM-I)  Lect1 0.67 8.85 8.37E-09 
Similar to phenylalanine-tRNA synthetase Fars2 0.67 8.4 2.15E-05 
hypothetical protein 2810432D09Rik 0.67 8.97 0.000216 
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RIKEN cDNA 2410015N17 2410015N17Rik 0.66 9.06 7.27E-06 
unknown EST  0.64 9.2 6.17E-05 
PREFOLDIN SUBUNIT 6 (PROTEIN KE2) H2-Ke2 0.63 11.85 3.45E-07 
mitchondrial ribosomal protein S7 Mrps7 0.6 10.53 1.14E-06 
GLUTATHIONE S-TRANSFERASE THETA 1 (EC 2.5.1.18)  Gstt1 0.6 8.51 0.001452 
RIKEN cDNA 1700019N12 1700019N12Rik 0.59 7.83 0.000176 
Similar to RIKEN cDNA 2700094L05 gene Ccdc12 0.58 9.89 7.29E-09 
hypothetical Kelch repeat containing protein Klhl30 0.58 12.89 8.76E-08 
RNA PROCESSING FACTOR 1 homolog [Homo sapiens] Bxdc5 0.57 7.85 3.91E-05 
serine/threonine kinase 6 Aurka 0.56 8.4 0.000356 
RIKEN cDNA 2410130M07 Nola2 0.55 10.64 1.53E-06 
hypothetical P-loop containing nucleotide triphosphate hydrolases structure containing 4922503N01Rik 0.55 7.93 0.008411 
ubiquitin conjugating enzyme 6 Ube2j2 0.55 9.84 4.81E-05 
RIKEN cDNA 2010001H09 gene 2410081M15Rik 0.55 8.77 9.70E-05 
ubiquinol-cytochrome c reductase core protein 1 Uqcrc1 0.54 11.77 0.000784 
2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT Bckdha 0.54 9.03 0.000796 
Unknown (protein for IMAGE:3990036) 1810048J11Rik 0.53 8.02 0.000645 
RIKEN cDNA 2810036K01 Srfbp1 0.52 8 3.74E-05 
mouse fat 1 cadherin Fat1 0.52 7.78 0.002313 
hypothetical protein Camk2n1 0.52 11.88 2.05E-09 
CHORDIN PRECURSOR Chrd 0.51 8.27 0.001441 
hypothetical protein 1300010M03Rik 0.51 9.58 5.96E-07 
ADP.ATP CARRIER PROTEIN. FIBROBLAST ISOFORM (ADP/ATP TRANSLOCASE 2)  EG433923 0.5 11.06 4.62E-06 
magnesium-dependent phosphatase-1 1810034K20Rik 0.5 10.65 0.000148 
RIKEN cDNA 2400007P05  0.5 9.94 0.002306 
hypothetical Microbodies C-terminal targeting signal containing protein Tmem177 0.5 7.81 0.000512 
damage specific DNA binding protein 1 (127 kDa) Ddb1 0.5 12.57 3.81E-09 
TRANSCRIPTION FACTOR S-II-RELATED PROTEIN 4 (FRAGMENT) Tcea3 0.5 8.71 0.002154 
tumor-suppressing subchromosomal transferable fragment 4 Tssc4 0.5 9.06 3.29E-05 
ARP2/3 COMPLEX 41 KDA SUBUNIT (P41-ARC)  Arpc1b 0.5 8.29 0.001094 
Similar to hypothetical protein FLJ12949 Kri1 0.49 8.62 0.002967 
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disrupter of silencing SAS10 Utp3 0.49 10.1 1.07E-10 
TAF15 RNA polymerase II. TATA box binding protein (TBP)-associated factor. 68 kDa Taf15 0.49 11.14 1.61E-05 
N-ACETYLLACTOSAMINIDE BETA-1.6-N-ACETYLGLUCOSAMINYLTRANSFERASE (EC 2.4.1.150) Gcnt2 0.49 7.69 0.000221 
citrate synthase Cs 0.48 8.54 0.00088 
hypothetical Src homology 3 (SH3) domain profile Fchsd1 0.48 8.31 0.003046 
RIKEN cDNA 2310005G07 D10Ertd641e 0.48 8.76 0.005221 
histocompatibility 47 H47 0.48 10.22 5.95E-06 
melanoma antigen. family E. 1 Magee1 0.47 9.68 0.000119 
E430004M18 G6pdx 0.47 10.15 0.004429 
v-ral simian leukemia viral oncogene homolog B (ras related) Ralb 0.47 8.28 0.000293 
similar to PUTATIVE LAG1-INTERACTING PROTEIN (FRAGMENT) [Homo sapiens] BC003331 0.47 9.05 0.003092 
HYPOTHETICAL 23.9 KDA PROTEIN (CDNA FLJ31142 FIS. CLONE IMR322001317 Dusp26 0.47 9.31 0.000149 
weakly similar to RIBONUCLEASE III (EC 3.1.26.3) (RNASE III) (P241) [Homo sapiens] Rnasen 0.47 7.54 0.000148 
hypothetical COMPLETE PROTEOME BOLA/YRBA FAMILY REGULATION  Bola1 0.47 7.82 0.003266 
similar to PROTOHEME IX FARNESYLTRANSFERASE [Homo sapiens] Cox10 0.47 8.29 0.009928 
ARYLAMINE N-ACETYLTRANSFERASE 2 (EC 2.3.1.5) (ARYLAMIDE ACETYLASE 2)  Nat2 0.47 9.78 2.84E-06 
CALCIPRESSIN 2 (DOWN SYNDROME CANDIDATE REGION 1-LIKE PROTEIN 1)  Rcan2 0.47 8.84 1.25E-07 
expressed sequence C78613 Med10 0.46 9.44 0.002505 
hypothetical protein Lrrc27 0.46 8.1 0.000269 
CORONIN 1B (CORONIN 2) Coro1b 0.46 9.82 0.003532 
RIKEN cDNA 2010003O14  0.46 13.1 0.001891 
hypothetical protein Nfic 0.46 9.16 0.001414 
E430004M18 G6pdx 0.46 9.22 0.001533 
Similar to fusion. derived from t(12:16) malignant liposarcoma Fus 0.45 7.84 0.00273 
succinate-Coenzyme A ligase. ADP-forming. beta subunit Sucla2 0.45 10.53 1.28E-05 
MITOCHONDRIAL IMPORT INNER MEMBRANE TRANSLOCASE SUBUNIT TIM23  0.45 11.34 0.005981 
weakly similar to KRAB ZINC FINGER PROTEIN [Mus musculus] 2810487A22Rik 0.45 9.24 0.001329 
weakly similar to HYPOTHETICAL 66.8 KDA PROTEIN (FRAGMENT) [Homo sapiens] RP23-336F11.32 0.45 7.72 0.00309 
Drd2 Drd2 0.45 13.05 2.29E-07 
embryonic ectoderm development Eed 0.44 11.36 0.001919 
RIKEN cDNA 1110001I24 Bzw2 0.44 10.41 1.07E-05 
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SPERM SURFACE PROTEIN SP17 (SPERM AUTOANTIGENIC PROTEIN 17) Spa17 0.44 9.26 7.75E-06 
HYPOTHETICAL 43.8 KDA PROTEIN homolog [Homo sapiens] Kif26b 0.44 8.04 1.17E-05 
SERINE/THREONINE-PROTEIN KINASE PRP4 HOMOLOG (EC 2.7.1.37) Prpf4b 0.44 8.08 0.000916 
sialyltransferase 8 (alpha 2. 8 sialytransferase) E St8sia5 0.44 7.92 3.06E-06 
RIKEN cDNA 1810018M05 Pycr2 0.44 11.09 0.000953 
von Ebner minor salivary gland protein U46068 0.44 11.01 0.000203 
RIKEN cDNA 1500019L24 Osgep 0.43 9.34 7.94E-05 
CDNA FLJ14883 FIS. CLONE PLACE1003596 Stt3b 0.43 9.16 0.000216 
ATP SYNTHASE COUPLING FACTOR 6. MITOCHONDRIAL PRECURSOR (EC 3.6.3.14) (F6) Atp5j 0.43 11.26 0.000177 
Rhotekin Rtkn 0.43 10.15 0.000418 
RIKEN cDNA 2310003F16 2310003F16Rik 0.43 12.12 6.64E-05 
Grin3b Grin3b 0.43 9.68 9.12E-05 
expressed sequence tag mouse EST 12 X83328 0.43 8.81 0.000418 
weakly similar to SIMILAR TO ZINC FINGER PROTEIN 254 [Homo sapiens] 1700049G17Rik 0.42 7.08 0.009306 
hypothetical protein 5031410I06Rik 0.42 11.29 0.000312 
sterol regulatory element binding protein 2 Srebf2 0.42 7.86 0.003266 
proteasome (prosome. macropain) 26S subunit. non-ATPase. 11 Psmd11 0.42 9.74 0.000986 
hypothetical protein 1700058G18Rik 0.42 8 0.002955 
RIKEN cDNA 0610007P06 l7Rn6 0.42 8.65 0.001297 
GENERAL TRANSCRIPTION FACTOR II-I (GTFII-I) (TFII-I)(BTK-ASSOCIATED PROTEIN-135) (BAP-135)  0.42 11.2 9.59E-08 
DNA segment. human D6S2654E D0H6S2654E 0.42 9.5 0.005257 
ring finger protein 11 4732491K20Rik 0.41 8.43 0.004346 
desmoglein 2 Dsg2 0.41 8.62 0.000813 
CELL GROWTH REGULATING NUCLEOLAR PROTEIN Lyar 0.41 8.78 0.000435 
hypothetical protein Rtf1 0.41 9.84 1.56E-07 
NICOTINAMIDE N-METHYLTRANSFERASE (EC 2.1.1.1) Nnmt 0.41 7.57 0.009306 
hypothetical D111/G-patch domain containing protein 2310002B06Rik 0.4 8.46 0.000668 
CREATINE KINASE. B CHAIN (EC 2.7.3.2) (B-CK) Ckb 0.4 13.79 0.00155 
HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN K (HNRNP K) (65 KDA PHOSPHOPROTEIN) Hnrpk 0.4 9.63 0.000216 
mitochondrial ribosomal protein S5 Mrps5 0.4 8.86 0.008982 
HYPOTHETICAL 67.2 KDA PROTEIN homolog [Homo sapiens] Zfp653 0.4 8.98 0.002598 
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Unknown (protein for IMAGE:4948318) Hmgb2l1 0.4 8.44 0.00408 
mitochondrial ribosomal protein L43 Mrpl43 0.39 10.78 0.001037 
unknown EST Socs2 0.39 7.78 0.002374 
nudix (nucleoside diphosphate linked moiety X)-type motif 7 Nudt7 0.39 8.95 0.003637 
DA59H18.2 (NOVEL PROTEIN SIMILAR TO HUMAN Cerk 0.39 8.66 0.000213 
cofilin 1. non-muscle Cfl1 0.38 12.59 4.41E-05 
hypothetical PH domain-like structure containing protein 1700003H04Rik 0.38 9.37 0.000505 
testis specific gene A2 Rsph1 0.38 8.32 0.001223 
ACYLPHOSPHATASE. MUSCLE TYPE ISOZYME (EC 3.6.1.7)  Acyp2 0.38 7.7 0.005178 
Unknown (protein for MGC:37173) Mgat2 0.37 10.44 0.001106 
hypothetical Zinc finger. C2H2 type containing protein Zfp512 0.37 9.3 0.001879 
PROTEASOME SUBUNIT ALPHA TYPE 7 (EC 3.4.25.1) (PROTEASOME SUBUNIT RC6-1) Psma7 0.37 11.77 0.004414 
CHOLINE O-ACETYLTRANSFERASE (EC 2.3.1.6) (CHOACTASE) (CHOLINE ACETYLASE) (CHAT) Chat 0.37 7.45 0.002232 
hypothetical Glutamine-rich region containing protein 1700090G07Rik 0.36 6.27 0.006413 
2310009C03RIK PROTEIN homolog [Mus musculus] Wdr5b 0.36 7.42 0.0028 
heparan sulfate (glucosamine) 3-O-sulfotransferase 1 Hs3st1 0.36 7.65 0.000524 
HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN (PROTEIN KINASE C INHIBITOR 1)  Hint1 0.36 13.46 0.00189 
NUCLEAR FACTOR 1 A-TYPE (NUCLEAR FACTOR 1/A) (NF1-A) (NFI-A) (NF-I/A)  Nfia 0.36 12.44 6.69E-05 
RIKEN cDNA 2810405O22 Med29 0.36 10.35 0.00746 
CARNITINE DEFICIENCY-ASSOCIATED PROTEIN EXPRESSED IN VENTRICLE 1 (CDV-1 PROTEIN) Ift81 0.36 11.32 0.000372 
lymphocyte antigen 6 complex. locus A Ly6a 0.36 10.65 0.00114 
ADENYLATE CYCLASE. TYPE VII (EC 4.6.1.1) (ATP PYROPHOSPHATE-LYASE)  Adcy7 0.36 8.86 0.000988 
hypothetical protein Purb 0.36 10.7 9.26E-06 
CHITINASE-3 LIKE PROTEIN 1 PRECURSOR (CARTILAGE GLYCOPROTEIN-39) (GP-39)  Chi3l1 0.36 8.17 0.005439 
proline rich protein expressed in brain Dazap2 0.36 9.69 0.004418 
hypothetical protein 5730437N04Rik 0.36 10.49 0.000133 
SPARC PRECURSOR (SECRETED PROTEIN ACIDIC AND RICH IN CYSTEINE) (OSTEONECTIN) Sparc 0.36 12.6 0.000692 
DNA-DIRECTED RNA POLYMERASES I. II. AND III 7.0 KDA POLYPEPTIDE (EC 2.7.7.6)  Polr2k 0.35 9.77 8.49E-05 
nudix (nucleoside diphosphate linked moiety X)-type motif 5 Nudt5 0.35 7.96 0.004649 
hypothetical protein 2310046A06Rik 0.35 7.68 0.001734 
KETOHEXOKINASE (EC 2.7.1.3) (HEPATIC FRUCTOKINASE) Khk 0.35 9.82 0.008317 
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similar to Cell division control protein 2 homolog (P34 protein kinase) Pdik1l 0.35 7.72 0.009619 
RAS-RELATED PROTEIN RAB-5B LOC433464 0.35 7.41 0.004205 
ribosomal protein. mitochondrial. L14 Mrpl2 0.34 10.33 7.67E-06 
tripartite motif protein Trim12 0.34 7.51 0.000348 
Similar to protein phosphatase methylesterase-1 Ppme1 0.34 9.36 0.000393 
interleukin enhancer binding factor 2 Ilf2 0.34 9.29 0.002407 
WEAKLY SIMILAR TO RIBOSOMAL LARGE SUBUNIT PSEUDOURIDINE SYNTHASE C[Homo sapiens] Rpusd4 0.34 8.56 0.004788 
SERINE HYDROXYMETHYLTRANSFERASE. CYTOSOLIC (EC 2.1.2.1) (SERINE METHYLASE)  Shmt1 0.33 10.3 0.002232 
COP9 (constitutive photomorphogenic). subunit 3 (Arabidopsis) Cops3 0.33 7.52 0.0058 
HIGH MOBILITY GROUP PROTEIN 2 (HMG-2) Hmgb2 0.33 10.05 4.48E-05 
similar to NICE-1 PROTEIN [Homo sapiens] Crct1 0.33 12.24 0.008911 
unknown EST BB031773 0.33 7.63 0.000339 
reserpine-sensitive vesicular monoamine transporter homolog [Rattus norvegicus] Slc18a2 0.33 11.01 0.005355 
RIKEN cDNA 1810022C01 Chrdl2 0.33 9.98 3.12E-05 
SIMILAR TO HYPOTHETICAL PROTEIN FLJ12806 homolog [Mus musculus] 2610208M17Rik 0.33 8.7 0.004456 
GALACTOSYLTRANSFERASE ASSOCIATED PROTEIN KINASE P58/GTA (EC 2.7.1.-) Cdc2l1 0.32 11.09 0.000119 
MY022 PROTEIN homolog [Homo sapiens] 1700020C11Rik 0.32 9.43 0.002889 

ATP-binding cassette. sub-family B (MDR/TAP). member 6 
1700020C11Rik, 
abcb6 0.32 8.47 0.003424 

hypothetical Pseudouridine synthase I structure containing protein  0.32 9.3 0.0028 
PROBABLE PYRROLIDONE-CARBOXYLATE PEPTIDASE (EC 3.4.19.3)  Pgpep1 0.32 7.95 0.009671 
syntaxin 8 Stx8 0.32 10.93 0.00015 
Similar to RIKEN cDNA 3110009E18 gene 3110009E18Rik 0.32 7.52 0.004598 
hypothetical S-adenosyl-L-methionine-dependent methyltransferases structure containing protein 2410127L17Rik 0.32 10.38 0.001172 
MICROTUBULE-ASSOCIATED PROTEIN EMAP homolog [Rattus norvegicus] Eml2 0.32 11.6 0.002169 
RIKEN cDNA 2900053E13 Ndufa10 0.31 12.84 0.005249 
Cd27 binding protein (Hindu God of destruction) Siva1 0.31 8.64 0.002072 
GAMMA-GLUTAMYLTRANSPEPTIDASE PRECURSOR (EC 2.3.2.2)  Ggt1 0.31 7.54 0.000418 
hypothetical Eukaryotic protein of unknown function. DUF279 containing protein Chmp2b 0.31 8.74 0.004094 
KINESIN HEAVY CHAIN (UBIQUITOUS KINESIN HEAVY CHAIN) (UKHC) Kif5b 0.31 7.36 0.004414 
MYELIN PROTEOLIPID PROTEIN (PLP) (LIPOPHILIN) [CONTAINS: MYELIN PROTEIN DM-20] Plp1 0.3 11.77 0.001167 
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PEPTIDYLPROLYL ISOMERASE MATRIN CYP (EC 5.2.1.8)  Ppig 0.3 8.2 0.006922 
STOMATIN RELATED PROTEIN homolog [Homo sapiens] Stoml1 0.3 10.24 0.000595 
ovary-specific MOB-like protein 2700078K21Rik 0.3 10.79 0.005766 
hypothetical Small nuclear ribonucleoprotein (Sm protein) containing protein Lsm11 0.3 10.59 0.002146 
hypothetical LysM motif containing protein Lysmd2 0.3 8.83 1.64E-05 
weakly similar to GH13975P [Drosophila melanogaster] Mon2 0.3 11.23 5.99E-05 
hypothetical GroEL-like chaperone. apical domain/GroEL-like chaperones Bbs10 0.3 7.82 0.001879 
hypertension related protein 1 Mfn2 0.3 8.69 0.003592 
similar to SIMILAR TO NUCLEOLAR PHOSPHOPROTEIN P130 [Mus musculus] LOC331392 0.29 10.41 0.001497 
CMP-N-ACETYLNEURAMINATE-BETA-GALACTOSAMIDE-ALPHA-2.6-SIALYLTRANSFERASE  St6gal1 0.29 7.73 0.0028 
DNA MISMATCH REPAIR PROTEIN MSH6 (MUTS-ALPHA 160 KDA SUBUNIT) Msh6 0.29 8.99 0.004711 
RIKEN cDNA 2810403H05 gene  0.29 8.95 0.004287 
ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 5 homolog [Rattus norvegicus] Arl5a 0.29 10.4 0.00227 
14-3-3 PROTEIN ZETA/DELTA (PROTEIN KINASE C INHIBITOR PROTEIN-1) (KCIP-1)  Ywhaz 0.29 9.67 0.005249 
phospholipase C. delta 4 Zfp142 0.29 8.7 0.005028 
allograft inflammatory factor 1 Aif1 0.29 7.49 0.002598 
ATP synthase. H+ transporting. mitochondrial F1 complex. gamma polypeptide 1 Atp5c1 0.29 12.1 0.000402 
PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1 Edg1 0.28 7.51 0.006616 
TRANSLOCATIONAL PROTEIN-1 (SIMILAR TO TRANSLOCATION PROTEIN 1) homolog [Homo sapiens] Tloc1 0.28 10.84 0.002482 
transferrin receptor Tfrc 0.28 6.45 0.003393 
hypothetical protein MGC6279 Sardh 0.28 7.52 0.001533 
RIKEN cDNA 1810009J06 1810009J06Rik 0.28 11.35 0.001262 
expressed sequence AA617265 Ciapin1 0.28 10.97 0.001069 
similar to ETHANOLAMINE KINASE-LIKE PROTEIN EKI2 (FLJ10761) [Homo sapiens] Etnk2 0.27 9.15 0.000216 
REGULATOR OF G-PROTEIN SIGNALING 16 (RGS16)  Rgs16 0.27 7.72 0.009671 
unknown EST EG328451 0.27 11.88 0.005773 
NONSPECIFIC LIPID-TRANSFER PROTEIN. MITOCHONDRIAL PRECURSOR (NSL-TP)  Scp2 0.27 9.25 0.003126 
PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE Gpx4 0.27 13.33 0.003322 
U2 small nuclear ribonucleoprotein polypeptide A' Snrpa1 0.27 9.43 0.002769 
hypothetical IQ calmodulin-binding motif/Leucine-rich repeat containing protein Lrriq2 0.27 7.66 0.009902 
GAMMA-AMINOBUTYRIC-ACID RECEPTOR ALPHA-4 SUBUNIT PRECURSOR (GABA(A) RECEPTOR) Gabra4 0.27 12.4 0.004042 
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beta-transducin repeat containing protein Btrc 0.26 7.29 0.00954 
MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) (PHENYLPYRUVATE TAUTOMERASE) Mif 0.26 14.07 0.00055 
solute carrier family 21 (organic anion transporter). member 14 Slco1c1 0.26 7.33 0.004665 
METHIONINE AMINOPEPTIDASE 2 (EC 3.4.11.18) (METAP 2) (PEPTIDASE M 2) Metap2 0.26 10.11 0.006469 
T-COMPLEX PROTEIN 1. EPSILON SUBUNIT (TCP-1-EPSILON) (CCT-EPSILON) Cct5 0.26 10.27 0.00746 
RIKEN cDNA 3110043J09 gene 3110043J09Rik 0.25 7.51 0.003669 
RAC-GAMMA SERINE/THREONINE PROTEIN KINASE (EC 2.7.1.-) (RAC-PK-GAMMA) Akt3 0.25 8.81 0.004251 
hypothetical protein 1810013L24Rik 0.25 11.3 0.000389 
inferred: thyroid hormone receptor-associated protein complex component TRAP240 {Homo sapiens} LOC432586  0.25 11.45 0.000418 
NDRG2 PROTEIN (NDR2 PROTEIN) Ndrg2 0.25 13.02 0.007678 
TRANSLATION INITIATIONFACTOR EIF-4GAMMA (FRAGMENT) homolog [Homo sapiens] Eif4g3 0.24 10.06 0.004114 
ATP SYNTHASE ALPHA CHAIN. MITOCHONDRIAL PRECURSOR (EC 3.6.3.14) Atp5a1 0.24 12.81 0.003058 
COATOMER BETA' SUBUNIT (BETA'-COAT PROTEIN) (BETA'-COP) (P102) Copb2 0.24 9.52 0.006673 
RIKEN cDNA 2310050K10 Paip2 0.24 11.72 0.001289 
60 KDA HEAT SHOCK PROTEIN. MITOCHONDRIAL PRECURSOR (HSP60) (60 KDA CHAPERONIN)  Hspd1 0.24 11.1 0.003202 
RIKEN cDNA 2900072D10 Ncaph2 0.23 10.44 0.0058 
ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 3 Arl3 0.23 11.77 0.002154 
SECRETOGRANIN I PRECURSOR (SGI) (CHROMOGRANIN B) (CGB) Chgb 0.22 12.28 0.001734 
RAPAMYCIN-SELECTIVE 25 KDA IMMUNOPHILIN (FKBP25)  Fkbp3 0.22 11.74 0.002062 
PIPPIN PROTEIN (FRAGMENT) homolog [Rattus norvegicus] Csdc2 0.22 10.52 0.004373 
MALATE DEHYDROGENASE. CYTOPLASMIC (EC 1.1.1.37) Mdh1 0.22 13.39 0.002928 
quaking protein Qk 0.21 11.23 0.003455 
steroid receptor RNA activator 1 Sra1 0.21 10.28 0.004598 
eukaryotic translation initiation factor 4E binding protein 1 Eif4ebp1 0.21 10.82 0.002407 
tubulin cofactor a Tbca 0.2 11.87 0.006886 
MORF-related gene 15 Morf4l1 0.2 11.88 0.004406 
gamma-aminobutyric acid reseptor associated protein Gabarap 0.2 12.51 0.008731 
proprotein convertase subtilisin/kexin type 1 inhibitor Pcsk1n 0.2 12.51 0.008122 
voltage-gated potassium channel alpha chain Kv9.3 homolog [Rattus norvegicus] Kcns3 0.19 7.18 0.006222 
PROTEASOME SUBUNIT ALPHA TYPE 2 (EC 3.4.25.1) (PROTEASOME COMPONENT C3)  Psma2 0.19 11.46 0.004418 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex. 7 (14.5kD. B14.5a) Ndufs4 0.17 11.45 0.007889 
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More expressed in A10         
14-3-3 PROTEIN ETA (PROTEIN KINASE C INHIBITOR PROTEIN-1) (KCIP-1) Ywhah -0.18 12.93 0.005104 
hypothetical HMG-I and HMG-Y DNA-binding domain (A+T-hook) Ube2o -0.19 10.71 0.005696 
hypothetical protein Rexo1 -0.2 10.6 0.005012 
RIKEN cDNA 4733401H14 Dnase1l2 -0.21 7.77 0.009468 
Similar to chromosome 11 open reading frame 23 Saps3 -0.21 10.24 0.004414 
RANBP20 Xpo6 -0.21 9.15 0.005766 
protein phosphatase 1. regulatory (inhibitor) subunit 11 Ppp1r11 -0.22 11.74 0.00837 
UBIQUITIN-CONJUGATING ENZYME E2 B (EC 6.3.2.19) (UBIQUITIN-PROTEIN LIGASE B)  Ube2b -0.22 11.6 0.006217 
ADP-ribosylation-like 2 Arl2 -0.22 12.71 0.005823 
RIKEN cDNA 2310061B02 Tmbim1 -0.22 8.04 0.00537 
similar to CICK0721Q.5 (POLYPEPTIDE FROM PATENTED CDNA EMBL:E06811) [Homo sapiens] Cuta -0.22 11.82 0.00334 
similar to ALPHA-INTERFERON INDUCIBLE PROTEIN (FRAGMENT) [Mesocricetus auratus]  -0.22 12.36 0.002374 
DNA segment. human DXS9928E D0HXS9928E -0.22 12.64 0.001533 
dynactin 6 Dctn6 -0.22 10.78 0.007691 
RIKEN cDNA 3010026O09 3010026O09Rik -0.23 12.03 0.004649 
40S RIBOSOMAL PROTEIN S23 Rps23 -0.23 13.68 0.001607 
hypothetical protein AI662250 -0.24 7.87 0.006222 
HAIRY/ENHANCER-OF-SPLIT RELATED WITH YRPW MOTIF 1  Hey1 -0.24 9.75 0.0028 
ribosomal protein S19 Rps19 -0.24 12.1 0.00241 
ribosomal protein L6 EG620213, Rpl6 -0.24 13.79 0.000321 
RAN. member RAS oncogene family Ran -0.24 12.26 0.006408 
hypothetical protein 2610003J06Rik -0.25 12.32 0.008846 
similar to BA122O1.2 [Homo sapiens] Actr5 -0.25 9.69 0.004456 
expressed sequence C78013 Praf2 -0.25 12.15 0.000799 
putative GTP binding protein Gtpbp6 -0.25 9.96 0.003761 
40S RIBOSOMAL PROTEIN S11 Rps11 -0.25 13.37 0.0058 
mitochondrial ribosomal protein S11 Mrps11 -0.25 10.54 0.001494 
hypothetical protein Camsap1l1 -0.25 9.15 0.001869 
similar to A DISINTEGRIN-LIKE AND METALLOPROTEASE DOMAIN [Homo sapiens] Adamts3 -0.25 7.62 0.00746 
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28S RIBOSOMAL PROTEIN S17. MITOCHONDRIAL PRECURSOR (MRP-S17) Mrps17 -0.25 10.42 0.000798 
NICE-3 4933434E20Rik -0.26 9.35 0.00309 
polyglutamine binding protein 1 Pqbp1  11.33 0.002032 
HEAT-SHOCK PROTEIN 105 KDA (HEAT SHOCK-RELATED 100 KDA PROTEIN E7I) (HSP-E7I)  Hsp110 -0.26 12.04 0.000723 
histone 4 protein Hist1h4h -0.26 9.37 0.001532 
similar to APOPTOSIS RELATED PROTEIN APR-3 [Homo sapiens] 0610007C21Rik -0.26 11.51 0.001219 
periodic tryptophan protein 1 homolog Pwp1 -0.26 7.96 0.002539 
hypothetical Ypt/Rab-GAP domain of gyp1p structure containing protein Tbc1d7 -0.26 10.04 0.00825 
PTERIN-4-ALPHA-CARBINOLAMINE DEHYDRATASE  Pcbd1 -0.26 11.39 0.007908 
arsenate resistance protein 2 Ars2 -0.27 11.08 0.002619 
RIKEN cDNA 1810060J02 Ccdc91 -0.27 11.59 0.002288 
glyoxylate reductase/hydroxypyruvate reductase Grhpr -0.27 10.34 0.001387 
AQUAPORIN-CHIP (WATER CHANNEL PROTEIN FOR RED BLOOD CELLS)  Aqp1 -0.27 7.29 0.004815 
WEE1-LIKE PROTEIN KINASE (EC 2.7.1.112) Wee1 -0.27 10.76 0.004028 
DERMATAN/CHONDROITIN SULFATE 2-SULFOTRANSFERASE homolog [Homo sapiens] Ust -0.27 6.87 0.003399 
U4/U6 SMALL NUCLEAR RIBONUCLEOPROTEIN HPRP3  homolog [Homo sapiens] Prpf3 -0.27 10.46 0.003996 
40S RIBOSOMAL PROTEIN S5 Rps5 -0.27 13.74 0.000873 
NUCLEOLAR GTP-BINDING PROTEIN 1 (CHRONIC RENAL FAILURE GENE PROTEIN)  Gtpbp4 -0.27 9.07 0.005028 
similar to VON WILLEBRAND FACTOR PRECURSOR (VWF) [Canis familiaris] Vwf -0.27 7.59 0.001586 
RIKEN cDNA 1810014G04 Coq5 -0.27 11.08 0.005561 
similar to CDNA FLJ30600 FIS. CLONE BRAWH2009360 [Homo sapiens] 2610301B20Rik -0.27 9.71 0.004418 
homeo box C5 Hoxc5 -0.27 9.03 0.003411 
SIGNAL RECOGNITION PARTICLE RECEPTOR ('DOCKING PROTEIN') homolog [Homo sapiens] Srpr -0.28 9.41 0.004499 
hypothetical LIM domain. Villin headpiece domain containing protein Ablim2 -0.28 7.78 0.00334 
ATAXIN-1 (SPINOCEREBELLAR ATAXIA TYPE 1 PROTEIN) 2900016G23Rik -0.28 7.71 0.004415 
similar to DELTEX 2 (FRAGMENT) [Gallus gallus] Dtx4 -0.28 7.49 0.002686 
hypothetical protein Tmem71 -0.28 8.59 0.001346 
cyclin L Ccnl1 -0.28 8.13 0.007942 
protein arginine N-methyltransferase 2 Prmt2 -0.28 12.4 0.004373 
hypothetical BRCT domain containing protein  -0.28 8.66 0.003759 
hypothetical protein 2410012H22Rik -0.29 10.05 0.0028 
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non-POU-domain-containing. octamer binding protein Nono -0.29 10.1 0.00089 
similar to THYROID RECEPTOR INTERACTING PROTEIN 3 (TRIP-3) (FRAGMENT) [Homo sapiens] Myo19 -0.29 8.48 0.003669 
DIACYLGLYCEROL O-ACYLTRANSFERASE 1 (EC 2.3.1.20) (DIGLYCERIDE ACYLTRANSFERASE) Dgat1 -0.29 9.98 0.000572 
RIKEN cDNA 4930511N13 Btbd14b -0.29 9.43 0.007993 
DNA (CYTOSINE-5)-METHYLTRANSFERASE 1 (EC 2.1.1.37) (DNMT1)  Dnmt1 -0.29 7.63 0.000557 
engulfment and cell motility 2. ced-12 homolog (C. elegans) Elmo2 -0.29 8.43 0.006363 
ribosomal protein S12 Rps12 -0.29 13.22 0.000648 
ribosomal protein S17 Rps17 -0.29 13.58 0.000269 
hypothetical Zn-finger CCHC type containing protein Zcchc12 -0.29 11.39 0.000202 
HIPPOCALCIN-LIKE PROTEIN 4 (HYPOTHETICAL 22.2 KDA PROTEIN) homolog [Homo sapiens] Hpcal4 -0.29 10.36 0.003329 
hypothetical protein Zfyve9 -0.29 8.31 0.006707 
GAMMA ENOLASE (EC 4.2.1.11) (2-PHOSPHO-D-GLYCERATE HYDRO-LYASE) (NEURAL ENOLASE) Eno2 -0.29 9.82 0.001672 
methionyl aminopeptidase 1 Metap1 -0.3 8.57 0.001106 
PHOSPHORYLASE B KINASE GAMMA CATALYTIC CHAIN. TESTIS/LIVER ISOFORM  Gm166 -0.3 10.95 0.001701 
ubiquitin specific protease 20 Usp20 -0.3 10.04 0.007447 
P37 TRAP/SMCC/PC2 SUBUNIT homolog [Homo sapiens] Med27 -0.3 9.31 0.000723 
PHOSPHOMANNOMUTASE 2 (EC 5.4.2.8) (PMM 2) Pmm2 -0.3 8.43 0.001375 
unclassifiable  -0.3 10.64 1.07E-05 
DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE (EC 4.2.99.18) (AP ENDONUCLEASE 1)  Apex1 -0.31 10.75 0.000866 
expressed sequence AI481500 Trrap -0.31 9.76 0.001447 
hypothetical protein 1110014N23Rik -0.31 8.75 0.0058 
hypothetical Zinc finger. C2H2 type containing protein Zfp618 -0.31 11.21 0.001069 
EDAR (ectodysplasin-A receptor)-associated death domain Edaradd -0.31 10.22 0.001743 
MICROSOMAL SIGNAL PEPTIDASE 21 KDA SUBUNIT (EC 3.4.-.-) (SPASE 21 KDA SUBUNIT) (SPC21)  -0.31 11.18 0.000144 
PRKC. apoptosis. WT1. regulator Pawr -0.31 8.59 0.0028 
hypothetical protein LOC432471 -0.31 8.59 0.003892 
similar to NITZIN (FRAGMENT) [Rattus norvegicus] Frmd4a -0.31 10.31 2.49E-05 
hypothetical protein  -0.31 9.62 0.004787 
Rab3 interacting protein 1 Rims2 -0.31 7.92 0.00347 
RIKEN cDNA 1500041N16 1500041N16Rik -0.32 10.57 0.009027 
HEC protein Ndc80 -0.32 7.44 0.000924 
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methyltransferase Cyt19 As3mt -0.32 8.89 0.002769 
Unknown (protein for MGC:6627) Plekhf1 -0.32 10.45 0.004193 
SHORT CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE. MITOCHONDRIAL PRECURSOR (HCDH)  -0.32 7.93 0.007644 
hypothetical N-terminal nucleophile aminohydrolases (Ntn hydrolases) structure containing protein Tmem41b -0.32 9.49 0.001046 
hypothetical protein  -0.32 9.4 0.002865 
hypothetical Ribosomal protein S4E containing protein Rps4y2 -0.32 8.89 0.002928 
SIMILAR TO PROTEIN DISULFIDE ISOMERASE-RELATED PROTEIN homolog [Mus musculus] Pdia6 -0.32 10.19 1.66E-05 
ENDOSOMAL PROTEIN homolog [Homo sapiens] Eea1 -0.32 7.98 0.000448 
Similar to phosphoinositol 3-phosphate-binding protein-2 Plekha5 -0.32 9.5 0.006616 
hypothetical Cysteine-rich region containing protein  -0.32 8.63 9.62E-05 
3-HYDROXYACYL-COA DEHYDROGENASE TYPE II (EC 1.1.1.35) (TYPE II HADH)  Hsd17b10 -0.32 9.96 0.000997 
hypothetical protein. MNCb-0385 Nap1l5 -0.32 12.16 1.45E-05 
similar to COPINE-LIKE PROTEIN KIAA1599 [Homo sapiens] Cpne8 -0.32 8.33 0.001538 
Notch-regulated ankyrin repeat protein Nrarp -0.32 9.13 0.003616 
open reading frame 11 0610007P14Rik -0.32 9.61 0.002032 
RIKEN cDNA 2410018C20 2410018C20Rik -0.33 8.38 0.009671 
open reading frame 18 Tmem59 -0.33 11.51 0.000406 
cytokine receptor-like factor 1 Crlf1 -0.33 10.76 0.000411 
AD-017 PROTEIN (GLYCOSYLTRANSFERASE)  homolog [Homo sapiens] Glt8d1 -0.33 9.44 0.001223 
ADAPTOR-RELATED PROTEIN COMPLEX 2 ALPHA 2 SUBUNIT (ALPHA-ADAPTIN C)  Ap2a2 -0.33 12.4 0.002232 
GALECTIN-8 (LGALS-8) Lgals8 -0.33 8.93 0.00344 
2410007J07 LOC100041511 -0.33 13.18 0.000345 
similar to PROTEASOME INHIBITOR PI31 SUBUNIT (HPI31) [Homo sapiens] Psmf1 -0.33 9.55 0.000799 
RIKEN cDNA 2610005A10 gene Adck1 -0.33 8.43 0.00072 
hypothetical Aminotransferases class-II containing protein Lhfpl2 -0.33 7.38 0.000576 
RIKEN cDNA 2410012P20 gene Chchd4 -0.33 11.28 3.06E-06 
Unknown (protein for IMAGE:5345342) Bptf -0.33 9.8 4.85E-05 
hypothetical Crystallin/RING finger containing protein Mgrn1 -0.33 10.08 4.91E-05 
NUCLEOSIDE DIPHOSPHATE KINASE. MITOCHONDRIAL PRECURSOR (EC 2.7.4.6) Nme4 -0.33 9.54 0.001323 
RIKEN cDNA 2410004B18 2410004B18Rik -0.33 10.77 0.007538 
SWI/SNF related. matrix associated. actin dependent regulator of chromatin. subfamily f. member 1 Arid1a -0.33 8.28 0.007993 
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hypothetical protein 1700027J05Rik -0.34 10.73 1.32E-05 
expressed sequence AI428195 B230342M21Rik -0.34 9.41 0.00334 
CHROMOBOX PROTEIN HOMOLOG 1 (HETEROCHROMATIN PROTEIN 1 HOMOLOG BETA) Cbx1 -0.34 8.53 0.008911 
Similar to DKFZP564O0823 protein 9130213B05Rik -0.34 8.03 0.001192 
MAX-INTERACTING TRANSCRIPTIONAL REPRESSOR MAD4 (MAX-ASSOCIATED PROTEIN 4) Mxd4 -0.34 11.18 0.005766 
2310050F24 Pgam1 -0.34 9.3 0.004787 
SIMILAR TO PURITY OF ESSENCE (FRAGMENT) homolog [Homo sapiens] Ubr4 -0.34 10.76 4.85E-05 
CTLA-2-BETA PROTEIN PRECURSOR (FRAGMENT) Ctla2a -0.34 7.47 0.00334 
SIMILAR TO HYPOTHETICAL PROTEIN MGC4707 homolog [Homo sapiens] 1110051M20Rik -0.34 10.67 0.000148 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex. 7 (14.5kD. B14.5a) Ndufa7 -0.35 12.37 0.000613 
UBIQUITIN FUSION DEGRADATION PROTEIN 1 HOMOLOG (UB FUSION PROTEIN 1) Ufd1l -0.35 9.99 0.000418 
weakly similar to KIAA0542 PROTEIN (FRAGMENT) [Homo sapiens] Sfi1 -0.35 8.2 0.001027 
TFIIIC2 SUBUNIT homolog [Homo sapiens] Gtf3c2 -0.35 8.49 0.002421 
hypothetical TPR repeat containing protein Ttc32 -0.35 7.63 0.000439 
APOPTOSIS REGULATOR BAX. MEMBRANE ISOFORM ALPHA Bax -0.35 10.25 0.009671 
RPB5-mediating protein C80913 -0.35 8.95 0.002154 
unknown EST  -0.35 7.74 0.001194 
ganglioside-induced differentiation-associated-protein 2 Gdap2 -0.35 8.99 0.00067 
60S ACIDIC RIBOSOMAL PROTEIN P1 Rplp1 -0.35 14.09 0.00019 
RIKEN cDNA 1810037K07 Mmachc -0.35 9.34 0.004418 
G2/MITOTIC-SPECIFIC CYCLIN B2 Ccnb2 -0.36 7.1 0.000182 
KAIA2372 PROTEIN homolog [Homo sapiens] AW124722 -0.36 10.73 0.002598 
Unknown (protein for MGC:29167) Angel1 -0.36 8.99 0.003591 
similar to HCDI PROTEIN [Homo sapiens] 2310014G06Rik -0.36 10.56 1.39E-05 
REGULATOR OF G-PROTEIN SIGNALING 2 (RGS2) Rgs2 -0.36 10.39 0.00021 
small nuclear ribonucleoprotein polypeptide A Snrpa -0.36 10.23 7.14E-05 
hypothetical protein. MGC:6989 Tusc3 -0.37 9.6 0.000594 
RIKEN cDNA 2610510L01  -0.37 9.4 0.003848 
LEUKOTRIENE A-4 HYDROLASE (LTA-4 HYDROLASE) (LEUKOTRIENE A(4) HYDROLASE) Lta4h -0.37 9.57 0.000123 
SIMILAR TO SEVEN TRANSMEMBRANE DOMAIN PROTEIN homolog [Homo sapiens] Tmem147 -0.37 12.08 6.35E-07 
CARBONYL REDUCTASE (EC 1.1.1.184) (CARBONYL REDUCTASE 3) homolog [Cricetulus griseus] Cbr3 -0.37 7.6 0.001164 
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organic cationic transporter-like 2 Slc22a18 -0.37 7.51 0.001586 
SERINE PROTEASE HTRA2. MITOCHONDRIAL PRECURSOR (EC 3.4.21.-)  Htra2 -0.37 8.09 0.004711 
hypothetical protein  -0.37 8.15 0.001215 
cysteine-rich protein 2 Csrp2 -0.37 11.1 2.15E-05 
MAP/microtubule affinity-regulating kinase 3 Mark3 -0.37 9.71 0.005883 
hypothetical RING finger domain. C3HC4 structure containing protein March5 -0.37 8.56 0.002598 
hypothetical Immunoglobulin and major histocompatibility complex domain Vstm2a -0.37 7.7 0.002757 
interferon-stimulated protein (20 kDa) Isg20 -0.37 8.21 0.001223 
GERANYLGERANYL TRANSFERASE TYPE II BETA SUBUNIT (EC 2.5.1.-)  Rabggtb -0.37 9.44 0.007364 
expressed sequence AI427833 Txndc11 -0.38 10.25 9.62E-05 
signaling intermediate in Toll pathway-evolutionarily conserved Ecsit -0.38 9.11 0.000229 
hypothetical protein Map3k14 -0.38 8.65 0.004251 
hypothetical protein Sfi1 -0.38 8.08 0.001533 
SOLUTE CARRIER FAMILY 2. FACILITATED GLUCOSE TRANSPORTER. MEMBER 3  Slc2a3 -0.38 10.27 1.06E-05 
DOUBLE-STRANDED RNA-BINDING PROTEIN STAUFEN HOMOLOG Stau1 -0.38 9.46 0.000594 
MITOTIC SPINDLE ASSEMBLY CHECKPOINT PROTEIN MAD2B (MAD2-LIKE 2)  [Homo sapiens] Mad2l2 -0.38 9.04 0.001888 
protocadherin gamma subfamily C. 5 Pcdhga12 -0.38 10.4 0.000798 
prenylated Rab acceptor Rabac1 -0.38 13.03 0.000164 
MARCKS-RELATED PROTEIN  Marcksl1 -0.39 7.6 0.000701 
CALCIUM-BINDING PROTEIN P22 (CALCIUM-BINDING PROTEIN CHP)  1500003O03Rik -0.39 10.11 5.41E-05 
hypothetical protein  -0.39 6.95 0.004028 
recombination activating gene 1 gene activation Rag1ap1 -0.39 10.07 0.000312 
phosphoserine/threonine/tyrosine interaction protein Styx -0.39 8.07 0.009462 
ALPHA-1 CATENIN (102 KDA CADHERIN-ASSOCIATED PROTEIN) (CAP102) (ALPHA E-CATENIN) Ctnna1 -0.39 10.62 2.81E-06 
RIKEN cDNA 1300013B24 Ero1lb -0.39 8.06 0.001205 
spermatid specific RING zinc finger 1 Znrf4 -0.39 9.08 0.005249 
SYNDECAN-2 PRECURSOR (FIBROGLYCAN)  Sdc2 -0.39 12.22 4.42E-07 
SERINE/THREONINE-PROTEIN KINASE RECEPTOR R3 PRECURSOR (EC 2.7.1.37) (SKR3)  Kcnn3 -0.39 9.64 0.001637 
general transcription factor II I repeat domain-containing 1 Gtf2ird1 -0.39 8.17 0.006154 
ADAM33 alpha Adam33 -0.4 7.94 0.000123 
 WEAKLY SIMILAR TO SPLICEOSOME ASSOCIATED PROTEIN 49 [Homo sapiens] BC038822 -0.4 7.74 0.006513 



 

173

hypothetical protein Rpain -0.4 9.42 0.001632 
NUANCE (FRAGMENT) homolog [Mus musculus] Syne2 -0.4 11.88 1.06E-06 
Unknown (protein for MGC:6908) Dhrs7b -0.4 9.13 0.00199 
similar to ADP-RIBOSYLATION FACTOR BINDING PROTEIN GGA3 (GOLGI-LOCALIZED) Gga3 -0.4 8.97 0.000663 
Unknown (protein for MGC:25689) Ccdc115 -0.4 9.36 0.001533 
ALPHA-AMYLASE. PANCREATIC PRECURSOR (1.4-ALPHA-D-GLUCAN GLUCANOHYDROLASE)  -0.41 8.03 0.000677 
unknown EST Larp1 -0.41 9.25 0.005766 
similar to deoxyhypusine synthase (EC 2.5.1.46) [Homo sapiens] Dhps -0.41 9.45 0.001387 
CALCIUM/CALMODULIN-DEPENDENT 3'.5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE 1B  Pde1b -0.41 11.18 1.55E-06 
DYNAMIN 2 (EC 3.6.1.50) (DYNAMIN UDNM) Tmed1 -0.41 9.13 0.004469 
hypothetical Esterase/acetylhydrolase structure containing protein  -0.41 8.72 0.003791 
CDNA FLJ20594 (SIMILAR TO MITOCHONDRIAL RIBOSOMAL PROTEIN L22) homolog [Homo sapiens] Mrpl22 -0.41 8.08 0.009902 
ENVOPLAKIN (P210) (210 KDA CORNIFIED ENVELOPE PRECURSOR) Evpl -0.41 7.78 0.000393 
serologically defined breast cancer antigen 84 Ergic3 -0.42 12.27 0.000643 
INTEGRIN BETA-1 BINDING PROTEIN 1 (BODENIN) Itgb1bp1 -0.42 9.42 0.006217 
hypothetical SET-domain of transcriptional regulators (TRX. EZ. ASH1 etc) Wbp7 -0.42 9.85 0.004222 
HYPOTHETICAL 72.4 KDA PROTEIN homolog [Macaca fascicularis] Ccdc128 -0.42 9.59 0.001719 
weakly similar to PERQ1 [Mus musculus] Tnrc15 -0.42 11.75 2.21E-06 
RIKEN cDNA 1100001H23 1100001H23Rik -0.42 7.4 0.002002 
RIKEN cDNA 1500032E05 Ssr2 -0.42 11.17 5.96E-07 
low density lipoprotein receptor-related protein 1 Lrp1 -0.42 10.52 8.90E-09 
HEPATIC LEUKEMIA FACTOR homolog [Rattus norvegicus] Hlf -0.42 8.05 0.000921 
similar to C316G12.2 (NOVEL PROTEIN SIMILAR TO PREDICTED YEAST 0610007P22Rik -0.43 11.21 0.00746 
sterol-C4-methyl oxidase-like Sc4mol -0.43 10.13 6.55E-08 
expressed sequence AA959601 Dock9 -0.43 7.68 0.000813 
PUTATIVE PROTEIN DJ747H23.2 homolog [Homo sapiens] Rwdd2a -0.43 8.53 1.07E-05 
latent transforming growth factor beta binding protein 3 Ltbp3 -0.43 10.41 0.001069 
hypothetical protein Mitd1 -0.44 8.09 0.000596 
ankyrin repeat and  BTB (POZ) domain containing 1 Abtb1 -0.44 9.15 0.001223 
hypothetical AAA ATPase superfamily containing protein Katnal2 -0.44 9.59 0.004575 
similar to PROTEIN DISULFIDE ISOMERASE PDIP [Homo sapiens] Pdia2 -0.44 11.75 6.73E-05 
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hypothetical Rhodopsin-like GPCR superfamily containing protein C130060K24Rik -0.44 7.73 9.67E-06 
RAS GTPASE-ACTIVATING PROTEIN 3 (GAP1(IP4BP)) (INS P4-BINDING PROTEIN) (GAPIII) Rasa3 -0.44 9.03 0.006363 
hypothetical Cytochrome c family heme-binding site containing protein 1700024G10Rik -0.44 7.82 0.002018 
hypothetical protein Tmem130 -0.44 12.69 4.42E-07 
N-myc downstream regulated 1 Ndrg1 -0.45 9.16 0.009452 
CARBONIC ANHYDRASE-RELATED PROTEIN (CARP) (CA-VIII) Car8 -0.45 7.79 3.29E-05 
INTERFERON-INDUCED GTP-BINDING PROTEIN MX1 (INFLUENZA RESISTANCE PROTEIN) Mx1 -0.45 7.95 0.006619 
BAG-FAMILY MOLECULAR CHAPERONE REGULATOR-3 (BCL-2 BINDING ATHANOGENE- 3) (BAG-3) Bag3 -0.45 8.53 0.005692 
hypothetical Zinc-containing alcohol dehydrogenase superfamily containing protein AI427515 -0.45 7.86 2.69E-05 
COMPLEMENT C1Q SUBCOMPONENT. B CHAIN PRECURSOR C1qb -0.46 10.27 9.45E-08 
PROCOLLAGEN C-TERMINAL PROTEINASE ENHANCER PROTEIN homolog [Homo sapiens] Pcolce2 -0.46 8.51 0.00368 
Lutheran blood group (Auberger b antigen included) Bcam -0.46 8.41 0.001586 
hypothetical Quinoprotein alcohol dehydrogenase structure containing protein Itfg3 -0.46 8.79 0.000186 
AMINE OXIDASE [FLAVIN-CONTAINING] A (EC 1.4.3.4) (MONOAMINE OXIDASE) (MAO-A)  Maoa -0.46 8.86 4.06E-05 
HYPOTHETICAL 38.5 KDA PROTEIN homolog [Macaca fascicularis] 6430550H21Rik -0.46 9.34 0.001215 
glutathione S-transferase. pi 2 Gstp2 -0.46 12.93 1.20E-07 
EUKARYOTIC TRANSLATION INITIATION FACTOR 4E (EIF-4E) (EIF4E) (MRNA CAP-BINDING 
PROTEIN) Eif4e -0.46 10.93 0.000195 
hypothetical protein Zfp553 -0.46 8.56 5.90E-05 
Pxmp4 Pxmp4 -0.46 9.28 0.004989 
Unknown (protein for MGC:18664) Slc35c2 -0.46 9.98 7.08E-06 
REGULATOR OF G-PROTEIN SIGNALING 14 (RGS14) (RAP1/RAP2 INTERACTING PROTEIN) Rgs14 -0.46 10.14 1.36E-08 
RIKEN cDNA 1210002B07 Tspan6 -0.47 9.61 6.90E-10 
RIKEN cDNA 2810437E14 Zkscan14 -0.47 8.45 0.004566 
microtubule-associated protein 6 Mtap6 -0.47 7.73 0.006426 
PHOSPHOLYSINE PHOSPHOHISTIDINE INORGANIC PYROPHOSPHATE PHOSPHATASE homolog  2310007H09Rik -0.47 8.01 0.006217 
protein kinase C and casein kinase substrate in neurons 2 Pacsin2 -0.47 8.99 3.88E-06 
RIKEN cDNA 2010322C19 Fancl -0.47 8.28 3.91E-05 
neural-salient serine/arginine-rich Fusip1 -0.47 7.82 6.73E-05 
RIKEN cDNA 5830412B09 Sfpq -0.48 7.83 0.000817 
weakly similar to PROSTATE CANCER ANTIGEN-1 [Homo sapiens] Alkbh3 -0.48 9.77 0.001086 
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AMP DEAMINASE 2 (EC 3.5.4.6) (AMP DEAMINASE ISOFORM L) homolog [Homo sapiens] Ampd2 -0.48 8.33 0.002103 
DEFENDER AGAINST CELL DEATH 1 (DAD-1) Dad1 -0.48 13.29 9.21E-07 
hypothetical protein 2510039O18Rik -0.49 8.67 0.004373 
RIKEN cDNA 1500015G18 Tmem9 -0.49 10.29 2.15E-05 
RIKEN cDNA 1110068E11 gene Maf1 -0.49 10.04 0.00114 
ALDOSE REDUCTASE (EC 1.1.1.21) (AR) (ALDEHYDE REDUCTASE) Akr1b3 -0.49 11.79 1.17E-05 
GLUTATHIONE S-TRANSFERASE YC (EC 2.5.1.18) (GST CLASS-ALPHA) Gsta3 -0.49 7.95 0.001037 
SORTING NEXIN 3 (SDP3 PROTEIN) Snx3 -0.49 9.27 7.72E-05 
INTEGRAL PLASMA MEMBRANE PROTEIN 2310001A20Rik -0.49 9.1 0.003856 
hypothetical protein Sacs -0.5 7.26 0.000312 
similar to HEPARAN SULFATE D-GLUCOSAMINYL 3-O-SULFOTRANSFERASE-4 [Homo sapiens] Hs3st2 -0.5 7.4 1.66E-05 
hypothetical Fibronectin type III domain containing protein Fndc5 -0.5 10.03 1.39E-05 
MYOSIN REGULATORY LIGHT CHAIN 2. SMOOTH MUSCLE ISOFORM  homolog [Homo sapiens] Myl9 -0.51 9.33 0.000784 
LAMININ BETA-1 CHAIN PRECURSOR (LAMININ B1 CHAIN) Lamb1-1 -0.51 8.97 0.000789 
synaptotagmin 4 Traf7 -0.51 8.02 0.002977 
RIKEN cDNA 2310046N15 Fbxo31 -0.52 8.4 0.001854 
ACYL-COA DESATURASE 2 (EC 1.14.99.5) (STEAROYL-COA DESATURASE 2)  Scd2 -0.52 8.29 6.07E-08 
A kinase anchor protein 8 Akap8 -0.52 9.31 0.001054 
MITOCHONDRIAL IMPORT RECEPTOR SUBUNIT TOM20 HOMOLOG [Homo sapiens] Tomm20 -0.53 13.24 2.69E-05 
RIKEN cDNA 1110003B01 Pdlim7 -0.53 10.45 1.03E-08 
RAB3B. member RAS oncogene family Rab3b -0.53 9.18 5.80E-11 
PROTEIN KINASE C-BINDING PROTEIN NELL1 PRECURSOR homolog [Rattus norvegicus] Nell1 -0.53 8 7.65E-08 
NADH-CYTOCHROME B5 REDUCTASE ISOFORM homolog [Homo sapiens] Cyb5r1 -0.53 9.2 8.10E-05 
procollagen-lysine. 2-oxoglutarate 5-dioxygenase 1 Plod1 -0.53 8.34 0.000692 
RIKEN cDNA 2410012H02 gene Xrcc6bp1 -0.53 7.37 0.000159 
hypothetical Thioredoxin-like structure containing protein Dnajc10 -0.53 9 0.003729 
L-LACTATE DEHYDROGENASE A CHAIN (EC 1.1.1.27) (LDH-A) (LDH MUSCLE SUBUNIT) (LDH-M) Ldha -0.53 11.48 1.36E-07 
nucleosome assembly protein 1-like 1 Nap1l1 -0.53 10.1 0.00019 
Unknown (protein for MGC:28451) Osbpl2 -0.54 7.77 0.002154 
MYB binding protein (P160) 1a Mybbp1a -0.54 8.49 0.002676 
similar to CDNA FLJ32338 FIS. MODERATELY SIMILAR TO HUMAN BREAST CANCER Slc39a4 -0.54 8.87 2.43E-08 
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SECRETOGRANIN II PRECURSOR (SGII) (CHROMOGRANIN C) Scg2 -0.55 10.11 0.000363 
weakly similar to SNAP190 [Homo sapiens] Snapc4 -0.55 8.95 6.94E-05 
Similar to 60S ribosomal protein L30 isolog BC003885 -0.55 8.79 0.001264 
Similar to tetratricopeptide repeat domain 4 Ttc4 -0.55 9.96 1.26E-06 
proteasome (prosome. macropain) 28 subunit. beta Psme2b-ps -0.56 10.55 0.000197 
CADHERIN-16 PRECURSOR (KIDNEY-SPECIFIC CADHERIN) (KSP-CADHERIN) Cdh16 -0.56 9.77 3.32E-05 
hypothetical protein Obsl1 -0.56 8.31 7.21E-05 
binder of Rho GTPase 4 Cdc42ep4 -0.56 8.28 0.004094 
RAN-SPECIFIC GTPASE-ACTIVATING PROTEIN (RAN BINDING PROTEIN 1) (RANBP1) Ranbp1 -0.56 11.81 3.27E-10 
weakly similar to GOLGI MEMBRANE PROTEIN GP73 [Homo sapiens] Golm1 -0.57 7.11 0.000162 
hypothetical Collagen triple helix repeat containing protein Cthrc1 -0.57 7.96 2.11E-05 
SIMILAR TO CACTIN (FRAGMENT) homolog [Homo sapiens] 2510012J08Rik -0.58 9.76 0.000246 
unclassifiable  -0.59 8.63 1.63E-07 
BRF1 homolog. subunit of RNA polymerase III transcription initiation factor IIIB (S. cerevisiae) Brf1 -0.6 9.15 0.000997 
RIKEN cDNA 1520402O14 Leprotl1 -0.6 8.78 0.000123 
HEREDITARY HAEMOCHROMATOSIS PROTEIN HOMOLOG PRECURSOR  -0.6 7.59 3.79E-06 
sphingomyelin phosphodiesterase 2. neutral Smpd2 -0.6 8.46 0.003411 
RIKEN cDNA 6720485C15 Dcakd -0.6 9.21 0.000115 
cDNA sequence AF134346 Tdh -0.6 7.51 8.45E-08 
DIAPHANOUS PROTEIN HOMOLOG 2 (DIAPHANOUS-RELATED FORMIN 2) (DRF2) (MDIA3)  Diap2 -0.61 8.82 0.00155 
similar to FALSE P73 TARGET PROTEIN [Homo sapiens] Mett11d1 -0.61 8.77 0.001088 
Similar to transmembrane 6 superfamily member 2 Tm6sf2 -0.62 10.03 3.44E-07 
FARNESYL PYROPHOSPHATE SYNTHASE (EC 2.5.1.10) homolog [Mus musculus] Fdps -0.62 12.32 2.33E-11 
fucosyltransferase 8 Fut8 -0.62 8.83 5.41E-05 
iroquois related homeobox 5 (Drosophila) Irx5 -0.63 9.45 8.82E-09 
hypothetical protein D15Wsu59e Tars -0.64 11.69 9.03E-09 
synaptic glycoprotein SC2 Gpsn2 -0.64 14.07 7.17E-05 
unknown EST Whrn -0.65 10.19 1.76E-09 
LYSOSOMAL ALPHA-GLUCOSIDASE PRECURSOR (EC 3.2.1.20) (ACID MALTASE) Gaa -0.65 8.79 7.77E-10 
hypothetical protein Dgkk -0.66 7.82 0.000751 
RIKEN cDNA 2310079C17 Asf1a -0.67 9.91 2.60E-05 
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diacetyl/L-xylulose reductase Dcxr -0.68 8.32 0.007653 
Similar to for protein disulfide isomerase-related Pdia5 -0.68 8.71 6.69E-05 
G substrate Gsbs -0.69 7.84 3.91E-06 
LATENT TRANSFORMING GROWTH FACTOR-BETA BINDING PROTEIN 4 homolog [Homo sapiens] Ltbp4 -0.7 9.21 8.19E-06 
hypothetical protein 1700001L19Rik -0.7 9.03 3.82E-06 
seryl-aminoacyl-tRNA synthetase 2 Sars2 -0.71 9.2 0.002154 
Dysferlin Dysf -0.72 8.17 0.00016 
unknown EST 2310030N02Rik -0.72 8.05 0.000148 
TRAF-interacting protein Traip -0.72 8.21 2.74E-06 
solute carrier family 7 (cationic amino acid transporter. y+ system). member 3 Slc7a3+B32 -0.73 9.63 1.16E-08 
Mex 67 homolog (S. cerevisiae) Nxf1 -0.73 10.04 6.08E-09 
CD9 ANTIGEN Cd9 -0.73 8.15 2.86E-05 
hypothetical protein 1700040L02Rik -0.74 7.94 8.04E-08 
similar to 1-ACYL-SN-GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE BETA (EC 2.3.1.51)   Agpat2 -0.75 13.38 2.56E-11 
angiopoietin-like 1 Angptl1 -0.77 8.26 2.84E-06 
similar to CYTOCHROME P450 2S1 [Homo sapiens] Cyp2s1 -0.77 8.41 1.57E-06 
ATPase. H+/K+ transporting. alpha polypeptide Atp4a -0.77 7.61 0.000159 
ISOCITRATE DEHYDROGENASE [NADP] CYTOPLASMIC (EC 1.1.1.42)  Idh1 -0.78 8.8 1.82E-09 
thymus LIM protein Crip3 -0.79 8.64 8.24E-05 
FXYD DOMAIN-CONTAINING ION TRANSPORT REGULATOR 5 PRECURSOR  Fxyd5 -0.81 8.49 7.87E-07 
hypothetical protein 3100002J23Rik -0.81 9.5 4.38E-08 
UROPLAKIN III PRECURSOR (UPIII) Upk3a -0.81 7.35 0.000126 
similar to TRANSMEMBRANE 4 SUPERFAMILY. MEMBER 5  [Homo sapiens] Tm4sf5 -0.88 8.18 3.51E-06 
INTERFERON-INDUCED 35 KDA PROTEIN HOMOLOG (IFP 35) Ifi35 -0.9 8.11 2.47E-06 
hypothetical protein  -0.92 8.21 2.40E-07 
RIKEN cDNA 2510006M18 Asl -0.93 9.1 4.51E-07 
ALPHA-ACTININ 2 (ALPHA ACTININ SKELETAL MUSCLE ISOFORM 2)  Actn2 -1.04 8.02 1.07E-08 
BONE MORPHOGENETIC PROTEIN 1 PRECURSOR (EC 3.4.24.19) (BMP-1)  Bmp1 -1.04 8.2 6.98E-05 
RIKEN cDNA 1700027N10 gene 1700027N10Rik -1.08 9.16 1.55E-10 
LYMPHOCYTE ANTIGEN LY-6E PRECURSOR (THYMIC SHARED ANTIGEN-1) (TSA-1)  Ly6e -1.13 11.89 4.47E-15 
carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8 Chst8 -1.16 7.86 6.91E-10 
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HOMEOBOX PROTEIN OTX2 Otx2 -1.16 7.68 5.74E-10 
PROBABLE G PROTEIN-COUPLED RECEPTOR GPR72 PRECURSOR  Gpr83 -1.26 7.72 3.75E-09 
CALBINDIN (VITAMIN D-DEPENDENT CALCIUM-BINDING PROTEIN. AVIAN-TYPE) (CALBINDIN D28) Calb1 -1.27 8.22 1.92E-13 
NEUROMEDIN K RECEPTOR (NKR) (NEUROKININ B RECEPTOR) (NK-3 RECEPTOR) (NK-3R)  Tacr3 -1.5 9.31 3.73E-12 
PLASMA GLUTATHIONE PEROXIDASE PRECURSOR (EC 1.11.1.9) (GSHPX-P) Gpx3 -1.75 9.38 3.49E-23 
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APPENDIX  
 
 
 

BACKGROUND  
 

A very interesting subpopulation of mDA cells is constituted by the SNl, 

situated laterally to the SNc. This subregion is considered to be the source the 

projections of the nigra to the inferior collilculus (IC) (Björklund and Lindvall, 

1984, in Handbook of Chemical Neuroanatomy). Besides this projection, the SNl 

is also known to give rise to axonal projections that reach the striatum, the 

amygdala and superior colliculus (SC) (Kaebler et al., 1979; Björklund and 

Lindvall, 1984, in Handbook of Chemical Neuroanatomy). It seems that the pars 

lateralis pathway to the IC utilizes GABA as a neurotransmitter, whereas the cells 

projecting to the striatum and SC utilize dopamine and GABA as 

neurotransmitters (Moriizumi et al., 1992). Moreover, Moriizumi reports that cells 

projecting to these distinct regions are well partitioned in the expanse of the SNl; 

with cells projecting to the IC, lacking TH immunoreactivity, positioned 

dorsolaterally, and cells projecting to the amygdala and striatum, positive for TH 

immunoreactivity, situated ventromedially. 

 Always Moriizumi suggests that the SNl-IC cells may constitute a unique 

neuronal population in the basal ganglia, influencing auditory associated 

movement, since the major target of the IC projection seems to be the pericentral 

region surrounding the central nucleus, which is speculated to be a centre 

associated with acousticomotor behavior rather than pure auditory function.  

With regards to neurodegeneration, it has been reported that in MPTP 

treated animals that recapitulate the pattern of nigral loss seen in Parkinson’s 

disease, cells in the SNl are spared (Figure 1) (German et al., 1996). These cells 

have also been found to be calbindin positive (Thompson et al., 2005). Finally, it 

is interesting to note that one of the genes that has emerged as enriched in A10 

neurons from our analysis, Pdia5 (a protein disulfide isomerase-related protein), 

seems also expressed in the SNl according to the in situ hybridization data of the 

Allen Brain Atlas.   
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For all the above reasons and for the facts that this circuit is well defined, 

underlies a specific task, is constituted by more cell types, and there is 15 year gap 

surrounding its study make this region an excellent candidate for informative gene 

expression profiling. 

 By combining fluorescent retrograde labeling with the use of the 

transgenic TH-GFP/21-31 line of mice, in which GFP is expressed in all 

catecholaminergic cells, double labeled cells of interest could be collected by 

LCM and their expression profiles determined and compared to those of other DA 

and GABA cell populations of the same region. This part of the project was not 

taken further from preliminary tests but it would be interesting to take it in 

consideration for future completion of the expression profiles of DA cells 

belonging to the SN.   

 
 

 
  
Figure1. Coronal sections through the rostral midbrain, immunostained for TH, of MPTP-treated 
C57BL/6 mice. Neurodegneration can be noted at the ventrolateral region of the SNc while VTA, 
medial SNc and SNl (highlighted by the red circle) are relatively spared (Figure from German et 
al., 1996). 
 
 
 
MATERIALS AND METHODS  

 

Stereotaxic delivery in the mouse brain 

 
Briefly. Two months old adult C57BL/6J mice were used for the 

retrograde labeling experiments. Mice were anesthesized with a mixture of 

ketamine and xylazine at a dose of 80-100 mg ketamine and 10 mg xylazine per 

kilogram body weight, given intraperitoneally. When deeply anesthetized, the fur 
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of the skull was shaved and animals were placed in a stereotaxic apparatus 

(Stoelting Inc.). 

Surgical area had been prepared by disinfection with 70% EtOH while 

tools had been sterilized by autoclaving. A dissection microscope was used to 

visualize the top of the skull, which was disinfected with 70% EtOH before 

making a small midline incision with a small scalpel. The subcutaneous and 

muscle tissue was separated and held open with the aid of forceps. The bregma 

and lamba areas were gently cleaned with a small brain scraper. The head was 

leveled so that bregma and lambda were flat and on the same horizontal plane. To 

avoid drying of the skull and eyes, drops of PBS were applied throughout the 

surgery. The position of the x and y coordinates of bregma were taken and the 

coordinates of the target injection area were calculated (by subtraction), as 

determined by the stereotaxic brain atlas (Paxinos and Franlin, 2003). The skull 

over the target area was thinned with a motor drill until the dura madre became 

visible. At this point the injection of the retrograde tracer was performed through 

a glass capillary adapted to the tip of a 2µl Hamilton syringe. The tip of the glass 

capillary, loaded with 1 µl of the fluorescent tracer (Lumafluor, green fluorescent 

beads; Lumafluor Laboratories, Naples, USA), was brought to the correct 

position, over the target area, and lowered until it touched the dura. Its sharp edge 

easily penerated the brain and the capillary was lowered gently at the desired 

depth. The tracer was released very slowly. We waited for 5 minutes before 

withdrawing the glass capillary to avoid backflow of the solution. The injection 

site was cleaned with cotton swabs and the skin was sutured. Lidocaine was 

injected subcutaneously near the wound for local anesthesia. The animal was kept 

warm under a heat lamp until it recovered and returned to a clean cage. Injections 

were performed in the striatum, at the following coordinates with respect to 

bregma: a) anteroposterior: -0.8, b) mediolateral: -2.8, c) dorsoventral: -3.2. 

At least seven days were allowed before assessing success of sterotaxic delivery.  

 

Immunofluorescence 

 

 Operated mice were deeply anesthetized and intensively perfused 
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transcardially with PBS followed by 4% paraformaldehyde diluted in PBS. Brains 

were removed and post-fixed in 4% paraformaldehyde for 1h at room temperature 

and cryoprotected overnight in 30% sucrose at 4˚C. The midbrain was isolated, 

embedded in O.C.T medium, snap-frozen on a liquid nitrogen-cooled  isopentane 

layer (Sigma, St Louis, MO, USA), and 10 µm sections cut at -21˚C in a cryostat 

(Microm International, Walldorf, Germany). Sections were blocked with PBS, 

10% NGS, 1% BSA, 1% Fish gelatin (filtered) for 1h at RT, the primary and 

secondary antibodies were diluted in PBS, 1% BSA, 0.1% Fish gelatin, 0.3% 

tritonX- 100. Incubation with primary antibodies was performed for 2 hours at 

RT; incubation with secondary antibodies was performed for 1 hour at RT. Slides 

were mounted with Vectashield (Vector Lab) for inspection at the confocal 

microscope (LEICA TCS SP2). For detection, Alexa Fluor 488, and 594 

(Invitrogen) were used at a 1:250 dilutions. Primary antibodies used were a 

monoclonal anti-TH (DiaSorin) at 1:1000 dilution and an anti-calbindin 

polyclonal (Sigma) at 1:1000 dilution. 

 

  PRELIMINARY RESULTS AND COMMENTS  

 

Immunofluorescence 

 

Double immunofluorescence  on mesencephalic sections for TH and 

calbindin resulted, as expected from literature, with small  calbindin+/TH+ cells 

distributed within the VTA and larger TH+/calbindin–  situated in the expansion 

of the SNc with the exception of the lateral population that constitutes the SN pars 

lateralis where cells belonged predominantly to the calbindin/TH subtype (Figure 

2). 

 

Retrograde labeling 

 

Injections of green fluorescent beads were centered in the rostral striatum 

(see figure 3 for a representative injection site). Retrograde labeling was detected 
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in the VTA, SNc, and the SNl (Figure 3). The same sections were processed for 

TH immunofluorescence. Intense red fluorescence could be noted in the expanse  

 
 
 

 

 

Figure 2. Double immunofluorescence for TH-GFP (green) and calbindin (red).  As expected from 
literature, small  calbindin+/TH+ (here appear yellow by the overlay of green and red) are 
distributed within the VTA,  whereas SN neurons are TH+/calbindin–, with the exception of the 
SN pars lateralis (highlighted by the red circle), where cells are predominantly of the 
calbindin/TH subtype.  

 
 
  
of the dopaminergic ventral midbrain. Tracer beads inside dopaminegic cells 

appeared yellow because of the color overlay. It is of note that green fluorescent 

beads appeared also in cells that were negative for TH immunofluorescence but 

presumably projected to the same striatal region. These cells might be GABAergic 

projection neurons, but this is simple speculation. 

Retrograde labeling of cells worked very nicely and it held promise for 

future application in the context of gene expression profiling.  
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Figure 3. A) Green beads injected in the striatum, B) DA cells in the SN pars lateralis, 
retrogradely lebeled by green fluorescent beads (here appearing yellow due to the green and red 
color overlay). DA cells in red are revealed with anti-TH immunofluorescence. As it can be noted 
ghosts of cells can be guessed by the green bead filing, which means that cells immunonegative for 
TH were also retrogradely labeled. 
 
 

A 
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