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Chapter 1

Introduction

In the last few years there has been a great interest in the study of com-
plex networks, where the term complex refers to one of the following prop-
erties: small world effect [147, 146], power law degree distribution [3, 45]
and more recently degree correlations [115, 138, 103, 101]. This explosion
has been possible due to the increase of available data and the technologi-
cal capabilities to collect and process them. Now we count with the graph
representation of a wide variety of systems with sizes ranging from hundred
to billions of nodes. This includes technological networks like the physical
Internet [102, 86, 69, 124, 53, 60, 30, 115, 138, 153], the World Wide Web
[4, 12, 28], electronic mail web [48], and the map of electronic circuits [34].
Biological networks like the protein-protein interactions [132, 71, 70, 72, 144],
metabolic paths [74, 145], and food webs [33, 126] have been recently studied.
The social networks like the citation graph [82, 122, 134], the scientific col-
laboration graphs [105, 107, 57, 13], the sexual relations [85], among others,
have been also analyzed.

The applicability of graph theory was already recognized in the eighteen
century by the Swiss mathematician Leonard Euler. The system analyzed
by Euler was the set of Konigsberg bridges (see the figure above). The town
of Konigsberg in Prussia is divided by the river Pregel into four parts A, B,
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C, and D. The problem under discussion was whether it is possible, starting
from any part, to take a walk in such a way that every bridge is crossed
exactly once. He notices that details like the size or shape of each part,
among others, are irrelevant for this problem. Actually, all the information
we need is contained in the graph representing the town. More precisely a
multi-graph because there are multiple bridges between pairs of town parts.
Using this representation and the fact that every town part can be reached
from an odd number of bridges he concluded that a walk containing every
bridge only once is not possible.

In general, as in the Euler problem, the graph theoretical approach to
a system can be divided in: the graph representation of the system (graph
representing the Konigsberg bridges), the analysis of the topology of the
resulting graph (all vertices have an odd number of incident edges), and
its influence on processes running on top of that graph (the Euler walk).
Moreover, in many cases it is important to understand the origin of the
graph topology (Why the bridges were built in this way?) In the first step we
represent the system in a set of units (the vertices) and the set of interactions
among them (the edges). This representation is, in general, not unique and
depends on the level of abstraction that we use. For instance, the World
Wide Web can be represented as the set of web pages and hyper-links among
them or, at a coarse grained level, it can be studied as the set of web sites
and the hyper-links among them. Moreover, in this second representation
the interactions can be weighted by the number of hyper-links going from a
web page in one site to a web page in the other. Thus, the representation
depends on the properties we want to study and on the level of simplification
of our approach.

The graph representation gives us an abstract view of the system under
study. Some of its topological properties may be deduced by just analyzing
the representation itself but, in general, we should build the graph. For small
systems, like in the Euler problem, the construction of the graph may be
simple. However, for large systems like the World Wide Web or the Internet
collecting the data to generate the graph is not an easy task at all. The
construction of the graph is in many cases the subject of research projects
requiring a large amount of resources, like the Internet mapping projects
[102, 124, 69, 86], the two hybrid experiments to determine protein-protein
interactions [132, 71, 70] and in social network research [97].

Once we have the graph we can characterize it using different topological
measures. In particular the degree (the number of edges incident to a vertex),
the minimum path distance between pairs of vertices and the clustering coef-
ficient (the fraction of edges among the neighbors of a node) have attracted
the attention of the physics community in the last few years. Watts and

4



CHAPTER 1. INTRODUCTION 5

Strogatz [147, 146] have shown that many real networks are characterized
by a small average minimum path distance and a large clustering coefficient
that together are named as the the small world effect. The name comes from
the fact that we can reach every vertex in the graph crossing a small amount
of edges. Moreover, Barabdsi and collaborators [12] have pointed out that
many real networks are also characterized by power law degree distributions,
giving an appreciable probability to observe high degree vertices. A more
exhaustive analysis reveals that, in addition to power laws, truncated power
laws and exponential distributions are also observed [6].

In order to explain these observations different models have been pro-
posed. Before entering in their description we should mention the ancestor
of all of them, the random graph model introduced by Erdds and Rényi in
1959 [50]. The random graph model is quite simple, in one of its variants
one connects every pair of vertices with a probability p. Erdés and Rényi
obtained that varying p there is a percolation transition from a graph made
by disconnected clusters of vertices with size of the order 1 to a graph with
a giant component containing a finite fraction of the vertices [51]. More-
over, in any of the phases the vertex degrees are distributed according to a
Poisson distribution, the average minimum path distance between vertices in
the largest cluster scales logarithmically with its size, and they have a small
average clustering coefficient [23].

Random graphs thus exhibit one of the properties of real networks, the
logarithmic scaling of average minimum path distance with the number of
vertices. However they do not explain the other two properties: high clus-
tering and broad degree distribution. Taking into account that a large clus-
tering coefficient is characteristic of some regular lattices Watts and Strogtz
[147] introduced the small world model, that is an interpolation between a
regular lattice and a random graph. In this model one starts with a reg-
ular lattice and rewire each edge with a probability p, choosing one of the
ending vertices at random. Numerical simulations and analytical studies
[15, 111, 112, 40, 14, 43] have shown that there is a crossover graph size
N,(p) separating the region N < N(p) where the average minimum path
distance scales linearly with NV as in a regular lattice to N > N,(p) where it
scales with In NV as for random graphs. Moreover, the clustering coefficient
remains relatively large provided p is not to close too 1 [14]. However, as in
the random graph model, the degree distribution is peaked around its mean
value [14].

The random graph model can be easily generalized to obtain graphs with
power law degree distributions, or any arbitrary degree distribution, gener-
ating random graphs with a given degree sequence [2, 98]. These graphs can
be used to study the influence of the degree distribution but not their origin.
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Barabési and collaborators proposed a mechanism that explains the origin
of power law degree distributions [9, 10]. This mechanism is based on two
fundamental properties of many real networks, their growing nature and the
existence of a preferential attachment: new vertices added to the graph are
attached preferentially to high degree vertices. In particular a linear pref-
erential attachment, where the probability to get connected to a vertex is
proportional to its degree, leads to power law degree distributions [12, 11].
The preferential attachment mechanism can be generalized in many ways.
A sub-linear preferential attachment leads to bounded degree distributions
while a super-linear one leads to a graph with a single hub connected to al-

most any other vertex [81, 79]. The power laws can be also truncated after
the introduction of other ingredients like aging [42], bounded capacity [6] or
limited information [100]. Moreover, the introduction of quenched [20] and
annealed [47, 135] disorder leads to logarithmic corrections and multi-fractal
scaling, respectively.

Finally, once we know the topology of the graph representing our system
we can investigate the influence of this topology on the different processes
that can be performed on top of this graph. Analytical and numerical studies
of percolation [5, 37, 32, 38], spreading phenomena [117, 116, 90, 99, 108],
the Ising model [41, 84] on top of random graphs with power law degree dis-
tributions reveal that the relevant parameter is in this case the ratio between
the second and the first moments of the degree distribution. If the second
moment diverges then the system will not exhibit a phase transition, s.e.
the graph has always a giant component that is robust under random vertex
or node removal, the spreading of a disease has a finite prevalence, and the
system is always ferromagnetic.

The topology of real networks is also characterized by degree correlations
[115, 103] and clustering hierarchy [138, 121]. Moreover, it has been shown
that growing network models with [79] and without [31] preferential attach-
ment lead to non-trivial degree correlations. Therefore, the extension of pre-
vious results for uncorrelated graphs is of utmost importance. The study of
models on graphs with degree correlations is quite recent [103, 101, 18, 140].
Some expressions for the size of the giant component and related quantities
have been obtained in Ref. [103] whereas an equation for the epidemic thresh-
old has been provided in [101, 21]. General statistical mechanics approaches
for models on correlated graphs has also been developed in Refs. [18, 140].
Moreover, it is not clear how degree correlations can affect the performance
of optimization algorithms.

In this work we will present our contribution in the study of complex
networks. In the 27¢ Chapter we introduce some basic concepts of graph
theory and some of the most significant graph models. In the 3" Chapter we
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CHAPTER 1. INTRODUCTION 7

introduce our proposal to study degree correlations and clustering hierarchy
in real networks. Most of our findings in this direction have been obtained
from a detailed analysis of the Internet topology and, therefore, we use it
as a case study. We investigate the scale-free properties of the Internet
maps, focusing on the degree and betweenness distributions. Furthermore,
we propose two metrics based on the degree and the clustering correlation
functions, that appear to sharply characterize the hierarchical properties of
Internet maps. Finally, we extent the use of these metrics to discriminate
between other real networks that appear similar simply on the basis of their
degree distribution.

In the 4" Chapter, we study a hypothesis for the origin of an effective
preferential attachment, based on growing graph models with local rules. We
investigate three different models with applications to different real graphs.
In all of them we obtain an effective preferential attachment and an in-
verse proportionality between the clustering coefficient and the vertex degree.
Moreover, using numerical simulations we also show that these models lead
to degree correlations.

In the 5% Chapter we introduce a general statistical mechanics approach
to investigate the influence of degree correlations. Particular attention is de-
voted to the problem of percolation and vertex covering. The study of the
percolation problem is related to the robustness of graphs upon removal of its
vertices or edges. The resilience to damage has a great impact in the perfor-
mance of communication and biological networks. Besides, we have chosen
the vertex covering problem for two reasons: It belongs to the basic NP-
hard optimization problems over graphs [55], and has found applications in
monitoring Internet traffic [26] and denial of service attack prevention [120].

Finally, using our main results, topology analysis, graph generators, and
statistical mechanics models, in the 6 Chapter we propose a method for
protein function assignment using protein-protein interaction data. This ex-
ample constitutes a case study where, as in the Euler problem, we can see
the different parts and potentiality of a graph theoretical approach.

The results presented in this thesis and related works have appeared in
the following papers: ‘

e A. Vazquez, Scale free networks generated by recursive searches, Euro-
phys. Lett. 54, 430-435 (2001).

e R. Pastor-Satorras, A. Vazquez and A. Vespignani, Dynamical and
correlation properties of the Internet, Phys. Rev. Lett. 87, 258701~
258704 (2001).

e A. Vizquez, R. Pastor-Satorras and A. Vespignani, Large-scale topo-
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logical and dynamical properties of Internet, Phys. Rev. E 65, 066130~
066141 (2002).

Y. Moreno and A. Vézquez, The Bak-Sneppen model on Scale-Free
Networks, Europhys. Lett. 57, 765 (2002).

M. Leone, A. Vazquez, A. Vespignani, and R. Zecchina, Ferromagnetic
ordering wn graphs with arbitrary degree distribution, Eur. Phys. J B
28, 191-197 (2002).

A. Vazquez, A. Flammini, A. Maritan and A. Vespignani, Modeling of
protein interaction networks, cond-mat/0108043.

A. Vazquez, R. Pastor-Satorras and A. Vespignani, Internet topology
at the router and autonomous system level, cond-mat/020608.

A. Vazquez and M. Weigt, Computational complezity arising from de-
gree correlations in networks, cond-mat/0207035.

A. Vézquez, A. Flammini, A. Maritan and A. Vespignani, Assignment
of protein function from protein-protein interactions, submitted to Nat.
Biotech.

A. Vazquez and Y. Moreno, Resilience to damage of grdphs with degree
correlation, cond-mat,/0209182.

A. Vazquez, M. Boguiia, Y. Moreno, R. Pastor-Satorras, and A. Vespig-
nani, Topology and correlations in structured scale-free networks, cond-
mat/0209183.



Chapter 2

Preliminaries

2.1 Graph representation of real networks

Let us now introduce some basic definitions and concepts that will be used
throughout this work. A graph G is defined by a pair of sets (V, £) such that
V#£Pand ECVxV. V(G) ={l,...,N} is the set of vertices of G and
N is the number of vertices or graph size. £(G) = {(i1,71),..., (g, Jr)} 18
the set of edges and E the number of edges in the graph. If the edge (3, j)
is not equivalent to (j,4) then the graph is said directed and (4, j) represents
an edge from vertex i to vertex j. Otherwise the graph is said undirected
and (i,7) = (4,7) represents an edge connecting vertex ¢ and j, which are
said adjacent. An example of an undirected graph is shown in Fig. 2.1. It
is made of N = 18 vertices and E = 42 edges. In the following we will focus
on undirected graphs, with some quotes to directed graphs when necessary.
Degree: The degree d; of a vertex 7 is defined as the number of edges
incident to it, and (d) is the average of d; over all vertices in the graph. In
an undirected graph each edge contributes to the degree of two vertices and,
therefore, -
(d) = N (2.1)
For instance, the central vertex in Fig. 2.1 have degree d = 18 and the
average degree is (d) = 2 x 42/18 ~ 4.7. The average degree for some real
networks is shown in Table 2.1. In average each vertex has a small degree
compared with that of a fully connected graph of the same size ({(d) = N —1),
i.e. they are sparse graphs. In directed graphs it is also convenient to divide
the vertex degree into in-degree and out-degree, counting the number of edges
going in and out from the vertex.
Clustering coefficient: The number of neighbors of a vertex ¢ is given by
its degree d;. On their turn, these neighbors can be connected among them

9




10 2.1. GRAPH REPRESENTATION OF REAL NETWORKS

Figure 2.1: The co-authorship sub-graph induced by A. Vazquez. The central
vertex corresponds to A. Vazquez and the neighbor vertices the scientists that
have written a paper with him. Two scientists (vertices) are connected by
an edge if they have been co-authors of at least one article.

forming a triangle with vertex ¢. The clustering coefficient ¢; is then defined
as the ratio between the number of edges e; among the d; neighbors of a
given vertex i and its maximum possible value, d;(d; —1)/2, i.e.

2€i
di(d; — 1)

The average clustering coefficient (c) is the average of c¢; over all vertices
in the graph. The clustering coefficient provides a measure of how well are
locally interconnected the neighbors of any vertex. For instance, the number
of edges among the d = 18 neighbors of the central vertex in Fig. 2.1 is
e = 24 resulting ¢ = 2 x 24/18 x 17 ~ 0.16.

The maximum value of (c) is 1, corresponding to a fully connected graph.
For random graphs [23] (see next section), which are constructed by con-
necting nodes at random with a fixed probability p, the clustering coeflicient
decreases with the network size IV as

C; = (2.2)

<C>rg = %%—Z (2.3)

On the contrary, it is independent of N for regular lattices. The average
clustering coefficient for different real networks is shown in Table 2.1. As

10



CHAPTER 2. PRELIMINARIES 11

Network | N dy ] ) | (e (d) /N

AS 10515 | 4.1 1371029 |39x107*
router 228298 | 2.8 | 9.5 0.030 | 1.2 x 107°
WWW | 325729 1 9.0 | 7.2 | 0.23 | 2.8 x 107°
Gnutella | 727 3.6 430014 |5.0x 1073
PIN 3278 241761011 |7.3x10™4
Math 70901 | 4.2 185|046 |59 x 1075

Table 2.1: Average properties of some real networks. AS and router
are the autonomous system [102] and router [69] level graph representa-
tions of the Internet, respectively,. WWW a sub-graph of the WWW net-
work, a data set collected by the Notre Dame group on Complex Networks
(http://www.nd.edu/ networks). Gnutella is the Gnutella peer to peer net-
work, provided by Clip2 Distributed Search Solutions. PIN if the protein-
protein interaction graph of Saccharomices Cerevisiae as obtained from two
hybrid experiments [70]. Math is the co-authorship graph obtained from all
relevant journals in the field of mathematics and published in the period
1991-1998 [13]. The average clustering coefficient of the corresponding ran-
dom graph with the same number of vertices and edges ((d) /N) is also shown
for comparison.

it can be seen, it takes values orders of magnitude larger than that of a
random graph with the same number of vertices and edges. Therefore, these
networks are far from being random. The existence of a high clustering
coefficient may have different origins. In the Internet graph representation
the edges among vertices are considered as equivalent, but they are actually
characterized by a real space length corresponding to the actual length of
the physical connection between AS. The larger is this length, the higher
the costs of installation and maintenance of the line, favoring therefore the
connections between nearby nodes. It is thus likely that nodes within the
same geographical region will have a large number of connection among them,
increasing in this way the local clustering coefficient. Something similar takes
place in the co-authorship graph, where the publications play the role of the
geographical constraint in the Internet. In fact, a scientist being co-author of
a paper with m authors will have the other m—1 authors as neighbors. At the
same time, these m—1 authors will be mutually connected resulting in a large
clustering coefficient. This is a general property of social graphs, that are
actually bipartite graphs [110]. Scientists are connected by collaborations,
actors by films, people by places or common activities, etc.

Minimum path distance: Two vertices 1 and j are said to be connected

11




12 2.1. GRAPH REPRESENTATION OF REAL NETWORKS

10° . ;
s
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d d

Figure 2.2: Degree distribution of the real graphs introduced in Tab. 2.1.

if one can go from node ¢ to j following the edges in the graph. The path
from i to 7 may be not unique and its distance is given by the number of
vertices visited. The minimum path distance /;; is defined as the shortest
path distance between two nodes 7 and j, and (I) is its average over every
pair of vertices in the graph. As it can be seen from Table 2.1 the average
minimum path distance is in general small. These networks thus exhibit
what is known as the small-world effect [147, 146]: in average one can go
from one vertex to any other in the graph passing through a very small
number of intermediate vertices. This necessarily implies that besides the
local connections which contribute to the large clustering coefficient, there
are some hubs which connect different parts of the graph, strongly decreasing
the average minimum path distance.

Degree distribution: The degree distribution py = P(d; = d) is the proba-
bility that a vertex has degree d. For random graphs [23] it is peaked around
the average degree. However, Barabdsi and collaborators [12] have pointed
out that many real networks are characterized by power law degree distribu-
tions, giving an appreciable probability to observe high degree vertices (see
Fig. 2.2). A more exhaustive analysis reveals that, in addition to power laws,
truncated power laws and exponential distributions are also observed [6].

12
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Figure 2.3: Schematic representation of the random graph model. Left:
starting from a set of disconnected vertices, each pair of vertices is connected
with a probability p. Middle and right: two realizations with a small p in
the middle and a larger p in the right.

2.2 Random graph model

The random graph model introduced by Erdés and Rényi [50] is probably the
simplest graph model including some heterogeinity. Starting from a set of NV
disconnected vertices, each pair of vertices is connected with a probability p
(see Fig. 2.3). Due to is simplicity many of the properties of the random
graph model can be computed exactly in the large N limit. The average
number of edges in the graph is just a fraction p of the N(IN — 1)/2 possible
edges yielding the averaged degree

=22 =pN, (2.4)

where the last equality holds for N > 1. The degree distribution can be also
computed taking into account that the degree of a vertex d; is given by a
binomial process [22]. In fact, the probability that vertex ¢ is connected to
another vertex is p. This process is repeated over the N —1 vertices excluding
i resulting the binomial distribution

Pa = C]%J—lpd(l - pd)> (25)

where C%_, is the number of ways in which a vertex is connected to d other
vertices and not connected to N — 1 — d vertices. In most of the cases of
practical imterest the average degree is of the order of 1 and, therefore, from
Eq. (2.4) it follows that p ~ N~!. Taking the limit N > 1 with (d) = const.
the binomial distribution is approximated by the Poisson distribution

Pa=€ " . (2.6)
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Figure 2.4: Degree distribution of the random graph with pN = (d) = 10
and preferential attachment model with m = 2 analyzed in Sec. 2.4.

In Fig. 2.4 we plot the degree distribution obtained from this expression. It
is characterized by a peak around the mean that is determined by the d! in
the denominator of Eq. (2.6).

Another magnitude that can be easily computed is the clustering coef-
ficient. In the random graph model the probability that an edge between
two vertices exist is independent of the existence of other edges and equal to
p. Hence, in average, there will be p d(d — 1)/2 edges among the d(d — 1)/2
neighbors of a vertex with degree d. Then from Eqgs. (2.2) and (2.4) it follows
that

(d)

() =p="L 27)

For sparse graphs with (d) ~ 1 the clustering coefficient clearly decreases with
increasing the graph size. Moreover, the clustering coefficient is independent
of the vertex degree, i.e. if we restrict the average over vertices with a given
degree d we get the same result in Eq. (2.7) independent of d.

The properties discussed so far do not exhibit any substantial change as
a function of p. On the contrary, if we focus in global properties a qualitative
change is observed when p = 1/N ((d) = 1). For instance, let us consider
the fraction of vertices S in the largest cluster of connected vertices. For
p ~ 0 all vertices are practically disconnected and, therefore, S ~ 1/N < 1.
On the other hand, for p &~ 1 the graph is almost fully connected resulting

14
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Figure 2.5: Schematic representation of the iterative approach to compute
the size of the giant component.

S = 1.

The size of the giant component for intermediate values of p can be de-
termined using different methods [51, 110]. Here we will use some iterative
approach that is common to the generating function scheme [110] and to more
general statistical mechanics approaches like the replica and cavity methods
[96, 95]. Let u be the probability that a vertex does not belong to the giant
component after we remove one of its edges. Now, take a given vertex 7 of the
graph and remove all its edges (see Fig. 2.5). If the graph does not contain
loops then the probability that one of the neighbors of i is not in the giant
component is independent of the other neighbors and equal to u. Hence, the
probability that a vertex of degree d does not belong to the giant component
is given by u¢ resulting

S=1-> pau’ (2.8)
d

This procedure can be iterated to compute u. To do that let us focus on one
of the neighbors j of vertex ¢. First notice that the degree of that vertex is not
distributed according to pg. In the random graph there are no correlations
among the different edges and, therefore, the probability that an edge coming
from a randomly chosen vertex points to another vertex with degree d is

_ 9P

dd -

Now, let ¥ # i an index denoting any neighbor of j, excluding i (see Fig.
2.5). The probability u that vertex j does not belong to the giant component,

(2.9)

15
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Figure 2.6: Size of the giant component of the random graph model as a
function of the average degree.

given that the edge (4, j) has been removed, is equal to the probability u®!
that any of its d — 1 remaining neighbors is not in the giant component,
provided the edges (4, %) have been removed. Taking the average over the
degree distribution of vertex j we obtain

u=y qeu'. (2.10)
d

Equations (2.8) and (2.10) can be rewritten as
S=1-Go(u), u=Gi(u), (2.11)

where

Go(z) = Zpﬂd, Gi(z) = qud"l- (2.12)

Go(z) and G1(z) are the generating functions of p; and ¢z. The term gener-
ating function comes from the fact that py and g4 can be “generated” taking
the derivatives of the functions Go(z) and G;(z), respectively [110].

For the random graph models the generating functions can be computed
exactly resulting

Go(x) = Gl (CE) = 6<d>($_1). (213)

16
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Then, the size of the giant component can be computed solving Eq. (2.11)
with these generating functions. In Fig. 2.6 we plot S as a function of the
average degree (d). For (d) < 1 we obtain S = 0 which corresponds with a
graph made of disconnected clusters of vertices with size of the order of 1.
On the other hand, for (d) > 1 there is a giant component containing a finite
fraction of the vertices. Thus, at (d) = 1 a percolation transition takes place.
As the giant component, other global magnitudes have a qualitative change
of behavior at (d) = 1. For instance, let us consider the average minimum
path distance between connected vertices (). For (d) < 1 it is finite because
all clusters contain a fraction 1/N of vertices. However, for (d) > 1 it scales
logarithmically with the graph size according to

In N
O~ (d)’

(2.14)

This scaling is much slower than that of a D-dimensional regular lattice where
(Iy ~ NYP,

In summary, the random graph model is characterized by a Poisson degree
distribution, a clustering coefficient of the order N~! and a small average
minimum path distance. Nevertheless, in the previous section we have seen
that real graphs are characterized by broad degree distributions that in many
cases are given by a power-law decay. Moreover, as it is shown in Tab. 2.1 its
clustering coefficient is order of magnitudes smaller than that of real graphs.
Thus, the random graph model is not a good approximation of real graphs.
In the following sections we show how some of these discrepancies can be
partially solved.

2.3 Small world model

To solve the discrepancy between the small clustering coefficients of random
graphs and that of real graphs Watts and Strogatz [147, 146] introduced the
small world model that its an interpolation between regular lattices and the
random graph model. They exploited the fact that many regular lattices, like
the one despited in Fig. 2.7, exhibit a finite clustering coefficient indepen-
dent of the lattice size. Their model is constructed starting from a regular
lattice and them making a random reconnection of a certain fraction of the
edges. Here we will consider a slightly different model introduced latter by
Newman and Watts [111], with the same qualitative features but much easier
for analytical treatment.

Consider a regular lattice with a finite clustering coefficient C' and co-
ordination K. An example is given by the K-ring in Fig. 2.7, where the

17



18 2.3. SMALL WORLD MODEL

Figure 2.7: Schematic representation of the small world model. Left: starting
from a regular lattice, each pair of vertices is connected with a probability p.
Middle and right: to realizations with a small p in the middle and a larger p
in the right.

vertices are put in a ring and they are connected to the K closest neighbors.
For such a lattice the clustering coefficient is

2K —2)

U=k

(2.15)
Now on top of this lattice generate a random graph. To be more precise, in
addition to the existing edges given by the regular lattice, connect every pair
of vertices with probability p = z/N. In this way we are actually making
a multi-graph, where two vertices can be connected by more than one edge.
However, for p ~ 1/N the existence of these multi-edges is irrelevant. The
average degree of the graph constructed in this way is

(d) =z+ K. (2.16)

Moreover, since the only randomness is introduced by the random placement
of edges then the degree distribution will be that of a random graph shifted
by Z, the coordination number of the original regular lattice, i.e.

gy (7

Pa=¢€ d—2) (2.17)

With respect to the average minimum path distance, numerical simula-
tions and analytical studies [15, 111, 112, 40, 14, 43] have shown that there
is a crossover graph size N.(p) separating the region N < N,(p) where the
average minimum path distance scales linearly with /V as in a regular lattice
to N > N,(p) where it scales with In NV as for random graphs. The crossover
size from one regime to the other scales as

N(p) ~ p7/7, (2.18)

18
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where D is the dimension of the original lattice. Now, we have already
mentioned that to obtain an agreement with real graphs p should scale as
p = z/N with z ~ 1. Thus, from Eq. (2.18) it follows that

Ny(z) ~ 2z~ V/P-1), (2.19)

Since z ~ 1 then N.(z) ~ 1 and taking into account that N > 1 in most real
graphs we can conclude that they are in the small world regime, where the
average minimum path distance scales logarithmically with the graphs size.

Hence, with respect to the degree fluctuations and the average minimum
path distance the small world model exhibits the same features of a random
graph. On the contrary, an important difference is obtained for the clustering
coefficient. The random placement of edges on top of the regular lattice
increases each vertex degree to d; = K + z;. However, the correction to the
number of edges among the neighbors of a vertex is of the order of z/N and,
therefore, can be neglected. Hence, in the limit N > 1 the local clustering
coefficient at a vertex ¢ is given by

K(k—1)
(K +2)(K+2—1)

where C' is the clustering coefficient of the original lattice and the second
factor is just the ratio between the number of possible edges among the
neighbors of vertex i, before and after the random placement of edges. Now,
since the distribution of z; is peaked around its mean z we obtain the following
approximation

K(K-1)
(K+2)(K+z-1)

In most real graphs the average degree is of the order of 1 and, therefore,
from Eq. (2.16) it follows that z should be of the order of 1. In such a
case, the clustering coefficient of the small world model will remain finite
independent of the graph size and it takes values comparable to that of the
original regular lattice. In this way we obtain a better agreement with the real
graphs clustering coefficient. However, the degree distribution is essentially
the same as in the random graph model and, therefore, it is in disagreement
with that of real graphs.

(0) ~ C (2.21)

2.4 Preferential attachment model

Barabdsi et al [12, 11] pointed out that to obtain the correct degree distribu-
tion one should take into account two fundamental properties of real graphs:
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1- they are growing and 2- there is a preferential attachment. The growing
nature of many real graphs is a fact. For instance the number of web pages
and routers in the WWW and the Internet, respectively, is growing exponen-
tially. The genetic, protein, and metabolic networks of living organisms grow
in the course of evolution. Social networks becomes bigger in the course of
history. Hence, this growing nature should be reflected in the graph topology.

However, the growing mechanism along does not lead to the power law
degree distribution observed in real graphs [12, 11]. If the new incoming
vertices are attached to old vertices selected at random then an exponential
distribution is observed [11, 31]. As a different with the Poisson distribution
the exponential distribution does not have a peak. Nevertheless, the decay
for large degrees is still quite fast. A slower decay should be obtained if
we take into account that the incoming vertices are not attached at random
to old vertices. Actually, the existing vertices that are more “visible” will
have a higher probability to receive a new connection to them. Barabési et
al [12, 11] proposed the vertex degree as a measure of visibility. That is,
vertices with a larger degree will have a larger probability to receive new
edges from added vertices. To be more precise they defined the following
model. Starting with a small set of myq of vertices and £ edges among them:

e Growth: At every time step we add a new vertex with m < mg edges;

e Preferential attachment: the vertex at the other end of these m new
edges is chosen with probability

d;
Zj dj.

Different approaches have been proposed to compute the degree distri-
bution of the preferential attachment model, including a continuum theory
[11], a master equation scheme [46, 44] and a rate equation approach [81, 79].
Here we will use the rate equation approach. In this case one focuses on the
average number ng4(t) of vertices with degree d after ¢ time steps. Now,
when we add a new vertex with m new edges its quite improbable that for
N > 1 two of these edges goes to the same vertex. Thus, we can assume
that on each step the degree of a vertex can only increase by one. Under this
approximation the evolution of ny(¢) satisfy the rate equations

Bnd (t)

ot
where Ay is the probability per unit time that a vertex with degree d increases
its degree by one and Apew is the number of new vertices added per unit time.

I1(d;) = (2.22)

= Ad_lnd_l (t) — Adnd(t) + Aﬂewédm, (2.23)
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The attachment and addition rate corresponding to the model introduced

above reads
d

Ay = m—— A = 1. .

d 7nN <d>a new (2 24)
The factor m comes from the fact that m new edges are added and Apew =1
because only one vertex is added, on each step. Moreover, for N > 1 the

average degree is given by

d) = ~ 2m. .
(d) = e~ 2m (2.25)

From Eqs. (2.23)-(2.25) it follows that

8nd (t) d—1 d

= _1(t) = =pa(t) + 6 2.2
o 5 Pd 1(t) de()+ dm> (2.26)
where pg(t) = ng(t)/N(t) is the degree distribution. The stationary solution

to these equations can be obtained setting ?—ng—t) = 0, resulting
2 ifd=m

=4 P " 2.27
P { ——ngcllpd_l ,ifd>m ( )

Iterating this equation we finally obtain

_ 2m(m+1)
Pa= G+ 1)(d+2)

(2.28)

Now, for d > 1
pa~d, =3 (2.29)

Hence, the preferential attachment model of Barabdsi et al leads to a power
law degree distribution with a exponent y = 3. This exponent can be tuned
to different values by considering more generals forms of the attachment rate
[44, 79], of the type

a+ bd

~ S, a+bd’

and addition rates Apew < 1. In this way one obtains exponents in the range
2 < v < co. However, these results are only valid for attachment rates linear
in d [79]. The use of a sub-linear form (Ag ~ d* o < 1) leads to stretched
exponential distributions. On the other hand, super linear attachment rates
(Ag ~ d*, o > 1) have as outcome a “gelation” process, where there is a
vertex connected to almost every other vertex in the graph.

Ag (2.30)
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Other properties of the preferential Barabdsi et al model are more diffi-
cult to compute analytically. The average minimum path distance growths
logarithmically with the graph size with a double logarithm correction [25]

0 InN
InlIn N*

(2.31)

Moreover, numerical simulations show that [3] the average clustering coeffi-
cient decreases with increasing the graph size as

(c) ~ N7OT5, (2.32)

This decay is slower than the N1 obtained for the random graph model but
it is still to fast to explain the clustering coefficient observed in real graphs.

In summary, the Barabési et al model provide us a mechanism to obtain
power law degree distributions in growing networks. If one consider other
magnitudes like the clustering coefficient then one may conclude that this
model is still insufficient to describe real graphs. However, we should not fo-
cus on the detailed properties of the model but on its philosophy. That is, if
we assume that there is growth and an effective linear preferential attachment
then we obtain a scale-free degree distribution. Actually, this effective prefer-
ential attachment have been measured in different real graphs, including the
Internet {73, 115] and a variety of scientific collaboration graphs {73, 104, 13],
supporting the hypothesis of a linear attachment rate. With regard to the
other topological properties, we can construct many models with preferential
attachment and different clustering coefficient, minimum path distances, and
other metrics [24]. The interesting question is why the preferential is linear
and it has not a definitive answer yet. In the fourth chapter we investigate
one hypothesis.
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Chapter 3

Hierarchy and correlations: the
Internet and other real
networks

We can go beyond the study of average measures and their distributions
to detect correlations and hierarchy. Most of our findings in this direction
have been obtained from a detailed analysis of the Internet topology and,
therefore, we use it as a case study. We investigate the scale-free properties
of the Internet maps, focusing on the degree and betweenness distributions.
Furthermore, we propose two metrics based on the degree and the clustering
correlation functions, that appear to sharply characterize the hierarchical
properties of Internet maps. Finally, we extend the use of these metrics to
discriminate between other real networks that appear similar according to
their degree distribution.

The relentless growth of the Internet goes along with a wide range of inter-
networking problems related to routing protocols, resource allowances, and
physical degree plans. The study and optimization of algorithms and policies
related to such problems rely heavily on theoretical analysis and simulations
that use model abstractions of the actual Internet. On the other hand, in
order to extract the maximum benefit from these studies, it is necessary to
work with reliable Internet topology generators. The basic priority at this
respect is to best define the topology to use for the network being simulated.
This implies the characterization of how routers, hosts, and physical links
interconnect with each other in shaping the actual Internet.

In the last years, research groups started to deploy technologies and infras-
tructures in order to obtain a more detailed picture of the Internet. Several
studies, aimed at tracking and visualizing the Internet large scale topology
and/or performance, are leading to Internet mapping projects at different
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resolution scales. These projects typically collect data on Internet elements
(routers, domains) and the connections among them (physical edges, peer
connections), in order to create a graph-like representation of large parts of
the Internet in which the vertices represent those elements and the edges
represent the respective connections. Mapping projects focus essentially on
two levels of topological description. First, by inferring router adjacencies it
has been possible to measure the Internet router (IR) level topology. The
second measured topology works at the autonomous system (AS) level and
the degree obtained from AS routing path information. Although these two
representations are related, it is clear that they describe the Internet at rather
different scales. In fact, each AS groups a generally large number of routers,
and therefore the AS maps are in some sense a coarse-grained view of the IR
maps.

Internet maps exhibit an extremely large degree of heterogeneity and
the use of statistical tools becomes mandatory to provide a proper mathe-
matical characterization of this system. Statistical analysis of the Internet
maps fabric have pointed out, to the surprise of many researchers, a very
complex degree pattern with fluctuations extending over several orders of
magnitude [53]. In particular, it has been observed a power-law behavior
in metrics and statistical distributions of Internet maps at different levels
[53, 60, 30, 138, 137, 151, 130, 35, 29]. This evidence makes the Internet an
example of the so-called scale-free networks [3] and uncover a peculiar struc-
ture that cannot be satisfactorily modeled with traditional topology genera-
tors. Previous Internet topology generators, based in the classical Erdos and
Rényi random graph model [50, 23] or in hierarchical models, yielded an ex-
ponentially bounded degree pattern, with very small fluctuations and in clear
disagreement with the recent empirical findings. A theoretical framework for
the origin of scale-free graphs has been put forward by Barabasi and Albert
[3] by devising a novel class of dynamical growing networks. Following these
ideas, several Internet topology generators yielding power-law distributions
have been subsequently proposed [92, 91, 75].

Data gathering projects [102, 124, 49, 69, 86] are progressively making
available larger AS and IR level maps which are susceptible of more accurate
statistical analysis and raise new and challenging questions about the Inter-
net topology. For instance, statistical distributions show deviations from the
pure power-law behavior and it is important to understand to which extent
the Internet can be considered a scale-free graph. The way these scaling
anomalies—usually signaled by the presence of cut-offs in the corresponding
statistical distributions—are related to the Internet finite size and physical
constraints is a capital issue in the characterization of the Internet and in the
understanding of the dynamics underlying its growth. A further important
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issue concerns the fact that the Internet is organized on different hierarchical
levels, with a set of backbone edges carrying the traffic between local area
providers. This structure is reflected in a hierarchical arrangement of ad-
ministrative domains and in a different usage of edges and degree of vertices.
The interplay between the scale-free nature and the hierarchical properties of
the Internet is still unclear, and it is an important task to find metrics that
can exploit and characterize hierarchical features on the AS and IR level.
Finally, although one would expect Internet AS and IR level maps to exhibit
similar scale-free properties, the different resolution in both kinds of maps
might lead to a diversity of metrics properties.

In this chapter we present a detailed statistical analysis of large AS and
IR level maps [102, 49, 69]. We study the scale-free properties of these
maps, focusing on the degree and betweenness distributions. While scale-free
properties are confirmed for maps at both levels, IR level maps show also the
presence of an exponential cut-off, that can be related to constraints acting
on the physical degree and load of routers. Power-law distributions with a
cut-off are a general feature of scale-free phenomena in real finite systems
and we discuss their origin in the framework of growing networks. At the AS
level we confirm the presence of a strong scale-free character for the large-
scale degree and betweenness distributions. We also discuss that deviations
from the pure power-law behavior found in recent maps [49] at intermediate
degrees has a marginal impact on the resilience and information spreading
properties of the Internet [5, 37, 117].

Furthermore, we propose two metrics based on the degree and the cluster-
ing correlation functions, that appear to sharply characterize the hierarchical
properties of Internet maps. In particular, these metrics clearly distinguish
between the AS and IR levels, which show a very different behavior at this
respect. While IR level maps appear to possess almost no hierarchical struc-
ture, AS maps fully exploit the hierarchy of domains around which the In-
ternet revolves. The differences highlighted between the two levels might
be very important in the developing of faithful Internet topology generators.
The testing of Internet protocols working at different levels might need of
topology generators accounting for the different properties observed. Hierar-
chical features are also important to scrutinize theoretical models proposing
new dynamical growth mechanisms for the Internet as a whole. Finally, we
extend the use of these metrics to discriminate between other real graphs
that appear similar according to their degree distribution.
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AS?2

. ASI

Figure 3.1: Schematic representation of the Internet maps at the Router
(top) and Autonomous System (bottom) levels.

3.1 Internet maps

Nowadays the Internet can be partitioned in autonomously administered do-
mains which vary in size, geographical extent, and function. Each domain
may exercise traffic restrictions or preferences, and handle internal traffic
according to particular autonomous policies. This fact has stimulated the
separation of the inter-domain routing from the intra-domain routing, and
the introduction of the Autonomous Systems Number (ASN). Each AS refers
to one single administrative domain of the Internet. Within each AS, an
Interior Gateway Protocol is used for routing purposes. Between ASs, an
Exterior Gateway Protocol provides the inter-domain routing system. The
Border Gateway Protocol (BGP) is the most widely used inter-domain pro-
tocol. In particular, it assigns a 16-bit ASN to identify, and refer to, each
AS.

The Internet is usually portrayed as an undirected graph. Depending
on the meaning assigned to the vertices and edges of the associated graph,
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we can obtain different levels of representation, each one corresponding to a
different degree of coarse-graining respect to the physical Internet (see Fig.
3.1).

Internet Router level: In the IR level maps, vertices represents the routers,
while edges represent the physical connections among them. In general, all
mapping efforts at the IR level are based on computing router adjacencies
from traceroute sequences sent to a list of networks in the Internet. The
traceroute command performed from a single source provides a spanning
tree from that source to every other (reachable) vertex in the network. By
merging the information obtained from different sources it is possible to
construct IR level maps of different portions of the Internet. In order to
catch all the various cross-edges, however, a large number of source probes is
needed. In addition, the instability of paths between routers and other tech-
nical problems—such as multiple alias interfaces—make the mapping a very
difficult task. These difficulties have been diversely tackled by the different
Internet mapping projects: the Lucent project at Bell Labs [86], the Coop-
erative Association for Internet Data Analysis [124], and the SCAN project
at the Information Sciences Institute [69], that develop methods to obtain
partial maps from a single source.

Autonomous System level: In the AS level graphs each vertex represents
an AS, while each edge between two vertices represents the existence of a
BGP peer connection among the corresponding ASs. It is important to stress
that each AS groups many routers together and the traffic carried by a edge 1s
the aggregation of all the individual end-host flows between the corresponding
ASs. The AS map can be constructed by looking at the BGP routing tables.
In fact, the BGP routing tables of each AS contains a spanning tree from
that vertex to every other (reachable) AS. We can then try to reconstruct the
complete AS map by merging the degree information coming from a certain
fraction of these spanning trees. This method has been actually used by the
National Laboratory for Applied Network Research (NLANR) [102], using
the BGP routing tables collected at the Oregon route server, that gathers
BGP-related information since 1997. Enriched maps can be obtained from
some other public sources, such as Looking Glass sites and the Reseaux IP
Europeens (RIPE) [35], getting about 40% of new AS-AS connections.

These graph representations do not model individual hosts, too numer-
ous, and neglect edge properties such as bandwidth, actual data load, or
geographical distance. For these reasons, the graph-like representation must
be considered as an overlay of the basic topological structure: the skeleton
of the Internet. Moreover, the data collected for the two levels are different,
and both representations may be incomplete or partial to different degrees.
In particular, measurements may not capture all the vertices present in the
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actual network and, more often, they do not include all the edges among
vertices. It is not our purpose here to argue about the reliability of the dif-
ferent maps. However, the conclusions we shall present in this paper seem
rather stable in time for the different maps. Hopefully, this fact means that,
despite the different degrees of completeness, the present maps represent a
fairly good statistical sampling of the Internet as a whole. In particular, we
shall use the map collected during October/November 1999 by the SCAN
project with the Mercator software as representative of the Internet router
level. At the autonomous system level we consider the (AS) map collected
at Oregon route server and the enriched (AS+) map (available at [49]), both
dated May 25, 2001.

3.2 Average properties

We start our study by analyzing some standard metrics: the total number
of vertices N and edges F, the vertex degree d;, the minimum path distance
between pairs of vertices [;;, the clustering coeflicient ¢;, and the betweenness
b;. The degree d; of a vertex is defined as the number of edges incident to
that vertex, i.e. the number of connections of that vertex with other vertices
in the network. If vertices 7 and j are connected we will say that they are
nearest neighbors. The minimum path distance d;; between a pair of vertices
¢ and j is defined as the minimum number of vertices traversed by a path
that goes from one vertex to the other. The clustering coefficient ¢; [147]
of the vertex i is defined as the ratio between the number of edges e; in the
sub-graph identified by its nearest neighbors and its maximum possible value
di(d; — 1)/2, corresponding to a complete sub-graph, i.e. ¢; = 2¢;/d;(d; — 1).
This magnitude quantifies the tendency that two vertices connected to the
same vertex are also connected to each other. The clustering coefficient c;
takes values of order O(1) for grid networks. On the other hand, for random
graphs [50, 23], which are constructed by connecting vertices at random with
a fixed probability p, the clustering coefficient is of order O(N~!). Finally,
the betweenness b; of a vertex 7 is defined as the total number of minimum
paths that pass through that vertex. It gives an measure of the amount of
traffic that goes through a vertex, if the minimum path distance is considered
as the metric defining the optimal path between pairs of vertices. The average
values of these metrics over every vertex (or pair of vertices for d;;) in the
AS, AS+, and IR maps is given in Table 3.1.

The average degree for the three maps is of order O(1); therefore, they can
be considered as sparse graphs. Despite the small average degree, however,
the average minimum path distance is also very small, compared to the size
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Figure 3.2: Probability distribution p, = Prob[l;; = {] of the minimum path
distance between vertices, for the AS, AS+, and IR maps.

of the maps. The probability distribution of the minimum path distance,
p = Prob[l;; = I], is shown in Fig. 3.2. For all maps this distribution
is sharply peaked around the average value (l); therefore, we can take (/)
as the characteristic minimum path distance. In the next section we will
show that this is not the case for the degree, that is characterized by large
fluctuations from vertex to vertex. Thus, the Internet strikingly exhibits
what is known as the “small-world” effect [147]: in average one can go from
one vertex to any other in the system passing through a very small number of
intermediate vertices. Since the network is sparse this necessarily implies that
there are some hubs and backbones which connect different regional networks,
strongly decreasing the value of (I). The small world evidence is strengthened
by the empirical finding of clustering coefficients for the AS, AS+, and IR

Map N E\|{d | | [®B)/N
TR | 228298 | 320105 | 2.80 | 9.51 | 0.03 | 4.14
AS | 11174 | 23367 | 4.18 | 3.62 | 0.22 | 3.61
AS+ | 11461 | 32711 | 5.71|3.56 | 0.24 | 3.56

Table 3.1: Average metrics of the AS, AS+, and IR maps. See text for the
metrics’ definitions.
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four orders of magnitude larger than the corresponding value for a random
graph of the same size, O(N~!). As discussed above, this fact implies that
neighbors of the same vertex are very likely on their turn connected among
themselves. The high clustering coefficient of the Internet maps is probably
due to geographical constraint. In Internet graphs, all edges are equivalent.
Yet, the physical connections are characterized by a real space length. The
larger is this length, the higher the cost of installation and maintenance of the
physical line, favoring therefore the preferential connection between nearby
vertices. It is likely that vertices within the same geographical region will
have a large number of connections among them, increasing in this way the
clustering coefficient.

Another measure of interest is given by the number of minimal paths
that pass by each vertex. To go from one vertex in the network to another
following the minimum path, a sequence of vertices is visited. If we do this
for every pair of vertices in the network, there will be a certain number of key
vertices that will be visited more often than others. Such vertices will be of
great importance for the transmission of information along the network. This
evidence can be quantitatively measured by means of the betweenness b;; i.e.
the number of minimum paths that go through each vertex ¢. This magnitude
has been introduced in the analysis of social networks in Ref. [105, 106] and
more recently it has been studied for the AS maps, with the name of load [58].
An algorithm to compute the betweenness has been described in Ref. [106].
For a star network the betweenness takes its maximum value N(N —1)/2 at
the central vertex and its minimum value N — 1 at the vertices of the star.
The average betweenness of the AS, AS+, and IR maps analyzed here is
O(N), as shown in Table 3.1. In the case of the AS and AS+ maps, despite
the enriched map has a much larger number of edges, the average measures
are very similar.

While some metrics are very alike (for instance, the average betweenness
(b)), some differences among others are consistent with the fact that the AS
and AS+ maps are a coarse-grained representation of the IR map. The IR
level map is, for instance, sparser, and its average minimum path distance is
larger. The IR map has a small average degree, because routers have a finite
capacity and, therefore, can have a limited number of connections. On the
contrary, ASs can have in principle any number of connections, since they
represent the aggregation of a large number of routers. This implies that AS
maps have a greater number of vertices with a high number of connections
(hubs), providing the shortcuts needed to produce a small average minimum
path distance.
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3.3 Scale-free properties

The analysis of the average measures presented in the previous section makes
clear that the Internet does not resemble a star-shaped architectures with just
a few gigantic hubs and a multitude of singly connected vertices. The same
measurements rule out as well the possibility of a random graph structure
or a regular grid architecture. These evidences suggest a peculiar topol-
ogy that will be clearly identified by looking at the detailed distributions.
In particular, Faloutsos et al. [53] pointed out for the first time that the
degree properties of the Internet AS maps are characterized by a probabil-
ity distribution that a vertex has d edges with the form py ~ d~7, where
v ~ 2.1 is a characteristic exponent. This behavior signals the presence of
scale-free degree properties; i.e. there is no characteristic degree above which
the probability is decaying exponentially to zero. In other words, there is a
statistically significant probability that a vertex has a very large number of
connections compared to the average degree (d). In addition, the implicit
divergence of (d?) is signalling the extreme heterogeneity of the degree pat-
tern, since it implies that statistical fluctuations are unbounded. The work
of Faloutsos et al. was followed by different studies of AS maps [36, 138, 137],
AS+ maps [35], and IR maps [60, 29]. Here, we will revisit the analysis of
scale-free properties in recent AS, AS+, and IR level maps.

We start by considering the integrated degree probability P; = Prob|[d; >
d]. In the case of a pure power-law probability distribution pg ~ d~7, we
expect the functional behavior Py = ad'~7, where a is a normalization con-
stant. In Fig. 3.3 we show the degree distribution for the AS, AS+, and IR
maps. For the AS map a clear power law decay with exponent v =2.1+0.1
is observed, as it has been already reported elsewhere [53, 36, 138, 137]. The
reported distribution is also stable in time as found by analyzing different
time snapshot of the AS level maps obtained by the NLANR [138, 137]. As
noted in Ref. [35], the degree distribution for the AS+ enriched data devi-
ates from a pure power law at intermediate degrees. This anomaly might
or might not be related to the biased enrichment of the Internet sampling
(see Ref. [35]). While this represents an important point in the detailed de-
scription of the degree properties, it is not critical concerning the scale-free
nature of the Internet. With respect to the network physical properties, it is
just the large degree region that is actually effective. Indeed, recent studies
about network resilience to removal of vertices [5, 37] and virus spreading
[117] have shown that the relevant parameter is the ratio k = (d*) / (k) be-
tween the first two moments of the degree distribution. If x > 1 then the
network manifests some properties that are not observed for networks with
exponentially bounded degree distributions. For instance, we can randomly
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Figure 3.3: Integrated degree distribution P, = Prob[d; > d] for the AS,
AS+, and IR maps. The solid line corresponds to a power law decay py ~
d'~7 with exponent v = 2.1.

remove practically all the vertices in the network and a giant connected com-
ponent [23] will still exist. In both the AS and AS+ maps, in fact, we observe
a wide degree distribution, with the same dependency for very large d. The
factor x is mainly determined by the tail of the distribution, and is very sim-
ilar for both maps. In particular, we estimate x = 265 and x = 222 for the
AS and AS-+ maps, respectively. With such a large values, for all practical
purposes (resilience, virus spreading, traffic, etc.) the AS and AS+ maps
behave almost identically.

The degree distribution of the IR level map has a power-law behavior
that is, however, smoothed by a clear exponential cut-off. The existence
of a power-law tendency for small degrees is better seen for the probability
distribution p; = Probld; = d], as shown in Fig. 3.4. A power law fit of the
form py = a(1—-)d~7 for d < 300 yields the exponent v = 2.1+0.1, in perfect
agreement with the exponent found for the integrated degree distribution
in the AS map. Nevertheless, for d > 50 the IR map integrated degree
distribution follows a faster decay. This picture is consistent with a finite
size scaling of the form py = d~7f(d/d.) [45]. Here d,. is a characteristic
degree beyond which the distribution decays faster than a power law, and
f(z) has the asymptotic behavior f(z) = const. for z < 1 and f(z) < 1
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Figure 3.4: Degree distribution pg = Prob[d; = d] for the IR map. The solid
line is a power law decay pg ~ d~7 with v = 2.1.

for > 1. Deviations from the power law behavior at large degrees have
been also observed for the larger maps reported in Ref. [29]. In that work,
the integrated probability distribution is fitted to the Weibull distribution
P; = aexp|[—(d/d.)?]. While we do not want to enter into the details of the
different fitting procedures, we suggest that the more general fitting form
pg = d~"f(d/d.), in which +y is an independent fitting parameter, is likely a
better option.

The presence of truncated power laws must not be considered a surprise,
since it finds a natural place in the context of scale-free phenomena. Actually,
bounded scale-free distributions (i.e. power-law distributions with a cut-off)
are implicitly present in every real world system because of finite-size effects
or physical constraints. Truncated power laws are observed also in other real
networks [6] and different mechanisms have been proposed to explain the
cut-off for large degrees. Actually, we can distinguish two different kinds of
cut-offs in real networks. The first is an exponential cut-off, f(z) = exp(—x),
which can be explained in terms of a finite degree capacity of the network
elements [6] or incomplete information [100]. This is likely what is happening
at the IR level, where the finite capacity constraint (maximum number of
router interfaces) is, in our opinion, the dominant mechanism affecting the
tail of the degree distribution. In this perspective, larger and more recent
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Figure 3.5: Integrated betweenness distribution Py = Problb; > b] for the
AS, AS+, and IR maps. The solid line is a power law decay P, ~ b'~7% with
Y — 1.9.

samples at the IR level could present a shift in the cut-off due to the improved
technical router capabilities and the larger statistical sampling. A second
possibility is given by a very steep cut-off such as f(z) = (1 — z), where
0(z) is the Heaviside step function. This is what happens in growing networks
with a finite number of elements. Since SF networks are often dynamically
growing networks, this case represents a network which has grown up to a
finite number of vertices N. The maximum degree d, of any vertex is related
to the network age. The scale-free behavior is evident up the d. and then
decays as a step function since the network does not possess any vertex with
degree d larger than d.. By inspecting Fig. 3.3, this second possibility appears
realized at the AS level. Indeed, the dominant mechanism at this level is the
finite size of the network, while degree limits are not present, since each AS
is a collection of a large number of routers, and it can handle a very large
degree load.

The connection between finite capacity and bounded distributions be-
comes evident also if we consider the betweenness. This magnitude is a
static estimate of the amount of traffic that a vertex supports. Hence, if a
router has a bounded capacity, the betweenness distribution should also be
bounded at large betweenness. On the contrary, this effect should be absent
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for the AS maps. The integrated betweenness distribution P, = Prob(b; > 0]
for the AS, AS+, and IR maps is shown in Fig. 3.5. The AS and AS+ dis-
tributions are practically the same and they are well fitted by a power law
P, ~ b~ with an exponent v, = 1.94:0.1. In the case of the IR map, on the
other hand, the betweenness distribution follows a truncated power law, in
analogy to what is observed for the degree distribution. The betweenness dis-
tribution, therefore, corroborates the equivalence between the AS and AS+
maps, and the existence of truncated power laws for the IR map.

Finally, it is worth to stress that while the power law truncation is an
expected feature of finite systems, the scale-free regime is the important sig-
nature of an emergent cooperative behavior in the Internet dynamical evo-
lution. This dynamics play therefore a central role in the understanding and
modeling of the Internet. In this persepective, the developing of a statistical
mechanics approach to complex networks [3] is providing a new dynamical
framework where the distinctive statistical regularities of the Internet can be
understood in term of the basic processes ruling the appearance or disap-
pearance of vertices and edges.

3.4 Hierarchy and correlations

The topological metrics analyzed so far give us a distinction between the AS
and IR maps with respect to the large degree and betweenness properties.
The difference becomes, however, more evident if we consider properties re-
lated with the existence of hierarchy and correlations. The primary known
structural difference in the Internet is the distinction between stub and tran-
sit domains. Vertices in stub domains have edges that go only through the
domain itself. Stub domains, on the other hand, are connected via a gateway
vertex to transit domains that, on the contrary, are fairly well interconnected
via many paths. This hierarchy can be schematically divided into interna-
tional connections, national backbones, regional networks, and local area
networks. Vertices providing access to international connections or national
backbones are of course on top level of this hierarchy, since they make possi-
ble the communication between regional and local area networks. Moreover,
in this way, a small average minimum path length can be achieved with a
small average degree. This hierarchical structure will introduce some corre-
lations in the network structure, and it is an important issue to understand
how these features manifest at the topological level. In order to exploit the
presence of hierarchies in Internet maps we introduce two metrics based on
the clustering coefficient and the nearest neighbor average degree [138, 137].

The previously defined clustering coefficient is the average probability
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Figure 3.6: Average clustering coefficient as a function of the vertex degree
for the AS, AS+, and IR maps. The solid line is given by the power law
decay (c); ~ d~%™. The horizontal dashed line marks the average clustering
coefficient (¢) = 0.03 computed for the IR map.
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that two neighbors [ and m of a vertex 4 are connected. Let us consider the
adjacency matriz a;j, that indicates whether there is a connection between
the vertices 4 and j (a;; = 1), or the connection is absent (a;; = 0). Given
the definition of the clustering coefficient, it is easy to see that the number
of edges in the subgraph identified by the nearest neighbors of the vertex
i can be computed as ¢; = (1/2) >, GiGmam;. Therefore, the clustering
coefficient ¢; measures the existence of correlations in the adjacency matrix,
weighted by the corresponding vertex degree. In section 3.2 we have shown
that the clustering coefficient for the AS, AS+, and IR maps is four orders of
magnitude larger than the one expected for a random graph and, therefore,
that they are far from being random. Further information can be extracted
if one computes the clustering coefficient as a function of the vertex degree
[138, 137]. In Fig. 3.6 we plot the average clustering coefficient (c), for ver-
tices with degree d. In the case of the AS and AS+ maps this quantity
follows a similar trend that can be approximated by a power law decay with
an exponent around 0.75. For the IR map, however, except for a sharp drop
for large values of d, attributable to low statistics, it is almost constant, and
equal to the average clustering coefficient (c) = 0.03. This implies that, in the
AS and AS+ maps, vertices with a small number of connections have larger
local clustering coefficients than those with a large degree. This behavior is
consistent with the picture described in the previous section of highly clus-
tered regional networks sparsely interconnected by national backbones and
international connections. The regional clusters of ASs are probably formed
by a large number of vertices with small degree but large clustering coeffi-
cients. Moreover, they should also contain vertices with large degrees that
are connected with the other regional clusters. These large degree vertices
will be on their turn connected to vertices in different clusters which are not
interconnected and, therefore, will have a small local clustering coefficient.
On the contrary, in the IR level map these correlations are absent. Somehow
the domain hierarchy does not produce any signature at the single router
scale, where the geographic constraints and degree bounds probably play a
more important role.

These observations for the clustering coefficient are supported by another
metric related with the correlations between vertex degrees. These corre-
lations are quantified by the probability p(d'|d) that, given a vertex with
degree d, it is connected to a vertex with degree d’. With the available data,
a direct plot of p(d' | d) results very noisy and difficult to interpret [59]. Thus
in Ref. [138, 137] we suggested to measure instead the nearest neighbors
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Figure 3.7: Nearest neighbors average degree for the AS, AS+, and IR
maps. The solid line is given by the power law decay (dn,)q ~ d~9.

The horizontal dashed line marks the value in the absence of correlations,
(dnn)% = (d?) / (d) = 26.9, computed for the IR map.

average degree of the vertices of degree d,
(dun)g =Y d'p(d | d)
d/

and to plot it as a function of the degree d. If there are no degree correla-
tions (i.e. for a random graph), then p°(d' |d) = d' pa/ {d) and we obtain
(dnn)y = (d*) / (d), which is independent of d. The corresponding plots for
the AS, AS+, and IR maps are shown in Fig. 3.7. For the AS and AS+ maps
we observe a power-law decay for more than two decades, with a character-
istic exponent 0.55, clearly indicating the existence of correlations. On the
contrary, the IR map displays again an almost constant nearest neighbors
average degree, very similar to the expected value for a random graph with
the same degree distribution, (d,,)3 ~ 30. Again, the sharp drop for large d
can be attributed to the low statistics for such large degrees. Therefore, also
in this case the two levels of representation show very different features.

It is worth remarking that the present analysis of the hierarchical and
correlation properties shows a very good consistency of results in the case
of the AS and AS+ maps. This points out a robustness of these features
that can thus be considered as general properties at the AS level. On the
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other hand, the IR map shows a marked difference that must be accounted
for when developing topology generators. In other words, Internet protocols
working at different representation levels must be thought as working on dif-
ferent topologies. Topology generators as well must include these differences,
depending on the level at which we intend to model the Internet topology.

3.5 Other real graphs

In a more general scope we extend the analysis made above for the Inter-
net maps to the study of other real graphs In general, real networks are not
uncorrelated and correlations may have different origins. Let us reconsider
the example of the Internet. Due to installation costs, the Internet has been
designed with a hierarchical structure. This hierarchy can be schematically
divided in international connections, national backbones, regional networks,
and local area networks. Vertices providing access to international connec-
tions or national backbones are of course on top level of this hierarchy, since
they make possible the communication between regional and local area net-
works. Moreover, in this way, a small average minimum path distance can be
achieved with a small average degree. This hierarchical structure will intro-
duce some correlations in the network topology. For instance, it is expected
that vertices with high degrees are connected to vertices with small degrees.

On the contrary, in social networks well connected people tends to be
connected with well connected people [103]. Let us take the example of sci-
entific co-authorship graph. A scientist writing a lot of papers have in general
a larger probability to write a paper with another scientist who has also a
lot of papers, than with one with a few papers. In fact, if F; is the number
of papers of scientist ¢ and F; < N then the probability that two scientist
write a paper together is roughly F;F;/N. Now, F; is in general a monotonic
increasing function of the scientist degree d; (number of collaborators) and,
therefore, scientists with a high degree will have a better chance to make a
new article together, 1.e. to be connected.

In Fig. 3.8 we plot (c), vs d for the different real networks. According
to this measure, two different classes of graphs emerge. One in which (c),
does not exhibit a strong dependency with d, except for finite size effects
at the largest degrees. This behavior is typical of random graphs, where
the probability that two neighbors of a vertex are connected by an edge is
a constant, and equal two the probability that any two vertices selected at
random are connected. On the contrary, there is another class where (c),
follows an evident decay with increasing the vertex degree d. Thus, in this
case, low degree vertices form local sub-graphs that are well connected. At
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Figure 3.8: Clustering coefficient as a function of the vertex degree for some
real graphs. AS and Router are the autonomous system [102] and router [69]
level graph representations of the Internet, respectively. WWW a sub-graph
of the WWW network, a data set collected by the Notre Dame group on Com-
plex Networks (http://www.nd.edu/ networks). Gnutella is the Gnutella
peer to peer network, provided by Clip2 Distributed Search Solutions. PIN
if the protein-protein interaction graph of Saccharomices Cerevisiae as ob-
tained from two hybrid experiments [70]. Math is the co-authorship graph
obtained from all relevant journals in the field of mathematics and published
in the period 1991-1998 [13].

the same time they are connected to other parts of the graph by high degree
vertices, having a few edges between the subgraphs they connect but giving
a small average minimum path distance. This picture makes evident the
existence of some hierarchy [115, 138] or modularity [121}.

In Fig. 3.9 we plot (dy,) vs d for several real networks. Also in this case
we found the emergence of two different classes of graphs. In one of them the
average nearest neighbor degree exhibits a power law decay with increasing
vertex degree. This is a strong evidence of the existence of disassortative (or
negative) correlations, where large degree vertices tend to be connected with
low degree ones and viseversa. On the other hand, for some of the graphs
an increasing tendency is observed denoting the presence of assortative (or
positive) correlations, where the edges connect vertices with similar degrees.
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Figure 3.9: Average nearest-neighbors degree as a function of the vertex
degree for some real graphs.

Notice, that the subdivision attending either the clustering coefficient or the
average nearest-neighbor degree coincide.

3.6 Conclusions

The increasing availability of larger Internet maps and the proliferation of
growing networks models with scale-free features have recently stimulated
a more detailed statistical analysis aimed at the identification of distinctive
metrics and features for the Internet topology. At this respect, in the present
work we have presented a detailed statistical analysis of several metrics on
Internet maps collected at the router and autonomous system levels. Our
analysis confirms the presence of a power-law (scale-free) behavior for the
degree distribution, as well as for the betweenness distribution, that can be
associated to a measure of the load of the vertices in the maps. The expo-
nential cut-offs observed in the IR maps, associated to the limited capacity of
the routers, are absent in the AS level, which conglomerate a large number of
routers and are thus able to bear a larger load. The analysis of the clustering
coefficient and the nearest neighbors average degree show in a quantitative
way the presence of strong correlations in the Internet degree at the AS level,
correlations that can be related to the hierarchical distribution of this net-

41




42 3.6. CONCLUSIONS

work. These correlations, on the other hand, seem to be nonexistent at the
IR level. The correlation properties clearly indicate the presence of strong
differences between the IR and AS levels of representation. Our findings rep-
resent a step forward in the characterization of the Internet topology, and
will be helpful for scrutinizing more thoroughly the actual validity of the
network models proposed so far, and as ingredient in the elaboration of new
and more realistic Internet topology generators. A first step in this direction
has been already given in the network model proposed in Ref. [59].

The conclusions obtained from the analysis of the Internet maps were
extended to the study of other real graphs. It was corroborated that the
metrics introduced here can be used to discriminate between different graphs
that appear similar with respect to the degree distribution. They have been
used for instance in Refs. [121, 89] to get a better understanding of the
topology of some real networks.
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Chapter 4

Growing networks with local
rules

Once we know the existence of power law degree distributions, degree cor-
relations and clustering hierarchy it is interesting to know their origin. It
is known that growing network models with global evolution rules exhibit
degree correlations. For instance, non-trivial degree correlations has been
obtained in the linear preferential attachment models discussed in the sec-
ond chapter [79] and in a growing network model without any preferential
attachment [31]. However, the degree correlations obtained in these global
models are not sufficiently strong to account for the features observed in
real graphs. In this chapter we study different “microscopic” mechanisms
that lead to graphs with the degree correlations and clustering hierarchy as
observed in the previous chapter. The term “microscopic” means that we
will investigate local evolution rules that involve a vertex and its neighbors.
As it will be shown the preferential attachment, the inverse proportionality
between the average clustering coefficient and the vertex degree, and degree
correlations are common features of graph models build by local rules.

4.1 Random walk on a net

In this section we will study the evolution of a graph where we know about
new vertices by simply exploring the graph, with applications to the citation
and WWW graphs. We will focus on different “microscopic” mechanisms,
where the term “microscopic” means that we will investigate local evolution
rules that involve a vertex and its neighbors. A “macroscopic” approach
based on effective attachment rates can be found in [80]. There are differ-
ent ways to obtain information about the documents (articles, web pages)
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Figure 4.1: How users find about WWW pages according to the 1998 GVU'’s
WWW Survey [128]. The different sources are: books (B), friends (F), other
web pages (OP), search engines (SE), (D) directories, printed media (PM),
(S) signatures at end of email messages, television advertisements (TV) and

other (O). Notice that the higher percent is reached for other web pages
(OP).

in these graphs, like looking at directories (citation index, web crawler),
commercial spots, pointed by a friend, or following the references (citations,
hyper-links) that are contained in the documents that we already know. In
the case of the citation graph, we very often found new articles from the
citation list of an article that we already know and, later on, we can repeat
the process with these new articles. On the other hand, it is known that

with a high probability people know about new web pages by surfing on the
WWW.

In Fig. 4.1 we can see that the two major contribution to how people find
out about new web pages are following the hyper-links of other web pages
or using search engines. The first source can be characterized modeling the
WWW 7surfers” as random walks on the WWW graph. Let us assume that
the walk starts from a page selected at random and, on each page, with
probability g, it decides to follow one link on that page or else to jump to
another random page. Then, the probability v; that a page 7 will be visited
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is given by .
— {e Vj
=gy Tyt 1

where J;; is the adjacency matrix. It is quite interesting to notice that this
probability of being visited by a random surfer is often used by search engines
as a page rank criteria [64], as it is the case of the popular Google [27]. Hence,
the two main sources through which new pages are visited are characterized
by Eq. (4.1) and, therefore, the main properties of the in-degree distribution
of the WWW graph should be computed starting on it. Moreover, when
we visit new pages we in general do not create a hyper-link to it. In a first
approximation this can be modeled introducing a probability g, that a visited
vertex (page) increases its in-degree by one (a hyper-link is created to it).
In a mean-field approximation one can replace the sum in Eq. (4.1) by
Od", resulting
1- de
N
where © is the average probability that a vertex pointing to vertex ¢ is visited.
To compute © we should take into account that the probability that a vertex
i has an in-edge coming from a vertex with out-degree d”" is d®*pgou /(d°*).
This edge will be selected at random among the d°* out-edges and, therefore,
with probability 1/d°*. Thus,

_ d®pges 1 (v
0= ; <d0u> douwdou - <d0u>' (43)

Uy = -+ qe@dﬁn. (4.2)

Moreover, when a walk is performed (v) N vertices are visited and, therefore,
gy (v) N edges are added in average, resulting

, v
(d™) = (d") = g (v) N~ (4.4)
where v, and v, are the number of surfers and the number of newly added
pages per unit time, respectively. Thus, from Egs. (4.3) and (4.4) we finally
obtain ,
2
- . 4.
© quvs N ( 5>
On the other hand, the probability that the in-degree of a vertex of in-
degree d) increases by one when a surfer walks on the graph is given by

A(d®)) = g,v(d™) and, therefore, from Egs. (4.2) and (4.5) it follows that

: 1 Va (i
A(d(m))=7v~ QU(l"Qe)‘!‘QEU—d( . (4.6)
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46 4.1. RANDOM WALK ON A NET

The degree distribution corresponding to this attachment rate can be easily
obtained using the rate equation approach [81, 79]. Indeed, the number of
vertices ngin (1) with in-degree d™ satisfy the rate equations

andin
ot

Now we should take into account that the number of vertices on the WWW
graph grows exponentially and, in such a case, v, & N. Moreover, assuming
that each surfer has its own (or group of) web page (pages) then the number

of surfers is expected to be proportional to the number of web pages, i.e.
vs < N. Thus,

- l/sAdin__]_ndin_l — VSAdin'l’Ldin -+ 7/a6din0. (47)

US

o @, (4.8)
where « is a constant. If this condition is satisfied then the in-degree distri-
bution reaches a stationary state and we can write ngin(t) = Npgin, where
pgin is the stationary probability that a vertex has in-degree d™. Substituting

this expression in Eq. (4.7) we obtain

1 Tlaly—1)+d T[I+a)(y—-1)+1]

in == 49
Pa 1+a Dla(y—1)] T[(1+a)(y—1)+d+1] (4.9)
where )
y=14—, a=agq(l-aqg) (4.10)
with the asymptotic behavior for large in-degree
pain ~ (d™)77. (4.11)

Hence, the random walk model on a directed graph leads to a power law
in-degree distribution, with an exponent v > 2. Notice that the power law
exponent does not depend on g, and, therefore, we expect that generaliza-
tions of the rule of creating an edge to a visited vertex will not change this
exponent. For instance, one can divide the vertices in classes in such a way
that the edges can be only created among vertices of the same class, and the
resulting power law exponent should be the same. Moreover, the power law
exponent does not depend on «.

We can go beyond the in-degree distribution and compute the clustering
coefficient as a function of the total degree d = d** + d°® of a vertex. For
this purpose we consider the graph as undirected and compute the number
e; of edges among the neighbors of a vertex . Since the only dynamics in
this model is given by the random walk it results that

(")ei

”(‘3.? =y (Qe@dz’ + Qevi> . (412)
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Figure 4.2: In-degree distribution of the random walk model for different
values of the probability to continue the walk g, and for graph size N =
108, In all cases we take average over 100 realizations. The inset shows the
exponent v obtained from the fit to the power law pgin ~ (d")™7 (circles)
together with the analytical prediction (continuous line).

The first term in the right hand side is the probability that a vertex with an
out-edge to 4 is visited and the second the probability that vertex 4 is visited
and the walk follows one of it out-edges to visit an out-neighbor vertex. In
all cases the visited vertex is selected with probability g,. Using Eqs. (4.2),
(4.5) and taking into account that 9,d = A(d¥") we can rewrite (4.12) as

Oe; od®

— ~ (1 —
Integrating this equation with the boundary condition e(d™ = 0) = 0 we
obtain the clustering coefficient.

2e(d) 2(1 + QB) 2(1 -+ %)(1 - dou)

(4.13)

= = 4.1
(e = =1 d dd—1) (4.14)
Thus, for large d the clustering coefficient scale as
2(1+qe
(), ~ -.(_d—_l (4.15)

Random walk model

We now study a particular random walk model by means of numerical simu-
lations and compare its properties with the analytical results obtained above.
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48 4.1. RANDOM WALK ON A NET

Figure 4.3: Clustering coefficient as a function of vertex degree of the random
walk model, for different values of the probability to continue the walk ¢, and
for graph size N = 10°. In all cases we take average over 100 realizations.
The solid lines correspond with the power law decay C'(d) = 2(1 + ¢.)/d.

We have made some simplifications in order to reduce the number of param-
eters and investigate the influence of the most important parameter g.. The
model is defined as follows: Initial condition: starting with one vertex and
an empty set of edges, iteratively perform the following rules,

e Adding: A new vertex is created with an edge pointing to one of the
existing vertices, which is selected at random.

e Walking: if an edge is created to a vertex in the network then with
probability ¢. an edge is also created to one of its nearest neighbors.
When no edge is created go to the adding rule.

The first simplification is that there is only one “surfer” in the network,
i.e. vg = 1. Second, each time the “surfer” decides not to follow one of
the edges of the visited vertex it stops its search, and a new vertex starts
a new search from a vertex selected at random. In other words the jump
to a random vertex is coupled with the addition of new vertices resulting
vy, = 1 — q.. Finally, each time a vertex is visited an edge is created to it,
thus ¢, = 1. Hence, the in-degree distribution is given by Eq. (4.9) with

=142, a=1 (4.16)

e
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Figure 4.4: Average neighbor degree as a function of vertex degree of the
random walk model, for different values of the probability to continue the
walk ¢, and for graph size N = 10° In all cases we take average over 100
realizations.

We have made numerical simulations of this random walk model up to graph
sizes N = 10% making average over 100 realizations. In Fig. 4.2 we show a
log-log plot of the in-degree distribution for different values of ¢.. The power
law decay for large degrees is evident. The exponent 7y obtained from the
fit to the numerical data is shown in the inset, together with the predicted
dependency in Eq. (4.16). The analytical values overestimate the power law
exponent but the qualitative picture is the same. For ¢. — 0 the power
law exponent is so large that the degree distribution cannot be distinguished
from an exponential. On the contrary, for ¢ — 1 it approaches is minimum
value v = 2. We attribute the quantitative disagreement to the mean-field
approximation performed in the step from Eq. (4.1) to (4.2). On the other
hand, the behavior of the average clustering coefficient with respect to the
vertex degree is shown in Fig. 4.3. In this case the analytical asymptotic
behavior in Eq. (4.15) is in very good agreement with the numerical data.

We were not able to obtain a prediction for the scaling of the average
neighbor degree with the vertex degree. In this case our analysis relies on
numerical simulations. In Fig. (4.4) we plot (dn,) vs. d for two values of
ge. For g, = 0.3 and for small values of g, the average neighbor degree does
not exhibit a strong dependency with d and, therefore, the graphs appear as
uncorrelated. On the contrary, for ¢. = 0.5 and in general for larger values
of g, it shows a peak around d = 10 and then decays with increasing degree.
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50 4.1. RANDOM WALK ON A NET

This decay becomes even faster with increasing g.. We have not found an
explanation for this qualitative change of behavior yet. It is worth noticing
that the experimental data for the WWW yield v ~ 2.1, that can be obtained
in our model for some ¢, > 0.5, resulting in negative correlations as in the
real data (see Fig. 3.9).

Recursive search model

In the random walk one follows only one edge of the visited vertices. However,
one may consider an exhaustive search following all the edges recursively. The
main idea of a recursive search is thus to be connected to one vertex of the
network and any time we get in contact with a new vertex we follow all
its edges, exploring in this way a larger part of the network. This can be
modeled modifying the walking rule as follows,

o Walking: if an edge is created to a vertex in the network then with
probability ¢, an edge is also created to each of its nearest neighbors.
When no edge is created go to the adding rule.

As for the previous model we have v, = 1, v, = 1 — g, but A(d™) is not given
by Eq. (4.6).

¢e = 0: In this case only the adding rule is performed, hence A(d™) =
1/N independent of d. The fact that A(d™) scales as N~! carries as a
consequence that ngi=(N) = Npgn is the stationary solution of Eq. (4.7),
where pgin is the stationary probability to find a vertex with in-degree d*".
Substituting this expression in Eq. (4.7) one obtains

Dgin = 27 @), , (4.17)

ge = 1: Also for this limiting case the in-degree distribution can be computed
exactly. Let us determine A(d™) using the following fact. Any vertex 4 with
in-degree d® has di* vertices with an edge to it, which will be denoted by
z; (7 =1,2,...,d™). At the same time each of these z; vertices may have
other vertices with an edge to it. The following result holds: any vertex
with an edge to any of the vertices z; has also an edge to ¢. The proof is
straightforward, if when a vertex is added it creates an edge to any of the
vertices x; then with probability g, = 1 it creates an edge to all the nearest
neighbors of z;, among which vertex 4 is contained; end of the proof. Hence,
the probability that when a vertex is added it creates an edge to vertex 7 is
just the probability (1 + di®)/N that the first edge is connected to 4 or to
any of the di" vertices with an edge to 7, i.e. A(d™) = (1+ d™)/N. As for
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Figure 4.5: Log-log plot of the in-degree distribution of the recursive search
model for different values of g.. The inset shows the exponent - obtained
from the power law fit pgin ~ (di)”7 to the numerical data.

ge = 0 A(d™) scales as 1/N and, therefore, the stationary solution is of the
form ngin(N) = Npgn. Then from Eq. (4.7) it follows that

1
(@™ + 1)(dm+2)

Dgin = (4.18)
Notice that also in this case, although it is not implicitly assumed, there is
a preferential attachment.

The limiting cases ¢, = 0 and ¢, = 1 are described by in-degree distribu-
tions which are qualitative different. For g, = 0 the distribution is exponen-
tial with a finite average in-degree. On the contrary, for ¢. = 1, the distribu-
tion follows a power law decay pgin ~ d™ " for large d”, with v = 2. This
power law decay goes up to the largest possible degree d™ ~ NY(r=1) ~ N
while pgn = 0 for d'* > N. Hence, for g = 1 and large N the average
in-degree scale as |

(d™)(N) = (d*")(N) = a + In N, (4.19)

where a is independent of N and clearly (d") diverges in the thermodynamic
(large network sizes) limit. In a mean-field approximation one can neglect
the existence of loops in the network and, in such a case, the "walking”
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52 4.1. RANDOM WALK ON A NET

rule will take place on a tree. Each vertex on the tree will have in average
(d°)(N) sons, which is just the average out-degree after IV vertices have been
added. Moreover, if a vertex is visited then each of its sons will be visited
with probability ¢.. Hence, when the vertex N + 1 is added, its average out-
degree (d°“)(N + 1) will be given by the average number of vertices visited
during the walk, i.e.

B 1
1= ge{d) ()

(™Y (N+1) = 14ge(d™) (N) +[ge{d™) (N)]*+. .. . (4.20)
If there is a stationary state then (d°“)(N + 1) = (d°*)(N) = (d°*). In this
case Eq. (4.20) yields two solutions. One of them diverges when g. — 0,
which is not admissible since (d°) = 1 for g, = 0. The other solution is

1 —T—14g,

(@) = (@) =~

(4.21)
This solution is valid for ¢, < ¢. = 1/4 and, therefore, the average out degree
does not converge to an stationary value when g, > ¢.. In this last region the
average out degree will increases logarithmically with /V, as in the extreme
case g, = 1 (see Eq. (4.19)). Now, since (d™) = (d°*) and (d™) approaches
a stationary state for any v > 2 and diverges otherwise, we expect that the
in-degree distribution has a power law exponent v > 2 for ¢, < g, and v < 2
for ¢. > q.. Moreover, taking into account that the fastest divergence is
obtained for ¢, = 1, where v = 2, we conclude that for g, > g, the power law
exponent is constant and equal to v = 2.

To investigate the behavior for 0 < ¢ < 1 and the existence of a non
trivial threshold ¢, as predicted by the mean-field approach, we have made
numerical simulations of the recursive search model for different values of ¢,
up to graph sizes N = 10°. For each value of ¢, the in-degree distribution was
averaged over 100 runs of the algorithm. The resulting in-degree distribution
is shown in Fig. (4.5). For ¢, = 1 the decay for large in-degrees is very
fast, and can be fitted by a power law decay with a very large exponent
or equivalently by an exponential decay. On the contrary, for larger g. the
exponent becomes smaller and the power law behavior becomes more evident.
Finally, for g, > g, = 0.5 + 0.1 the exponent becomes independent of ¢, and
equals v = 2, in agreement with the mean-field prediction. However, the
numerical threshold is two times the value obtained from Eq. (4.21).

In ordinary critical phenomena the absence of any typical length scale
takes place at the critical point, which is observed at a precise value of the
order parameter. For the present model, however, the absence of a charac-
teristic in-degree is not only manifested at a precise value of g, but in the

o2



CHAPTER 4. GROWING NETWORKS WITH LOCAL RULES 53

whole interval g, < g, < 1. These features are very similar to those observed
in some sandpile models [129, 139], the paradigm of self-organized critical
systems [7, 8]. As in these models[141, 142], there is a time scale separation
between the addition of new vertices and their ”walk” through the network.
In the thermodynamic limit (N — oo) the phase diagram of the model is
divided in a sub-critical (0 < g, < g.) and a critical region (g, < ¢. < 1.),
where the power law exponent does not depend on the control parameter.
Hence, the results presented here suggest that for g. < ¢g. < 1 the present
model is in a self-organized critical state.

4.2 Connecting nearest-neighbors

In social graphs it is more probable that two vertices with a common neigh-
bor get connected than two vertices chosen at random [104]. Clearly this
property leads to large clustering coefficients since it increases the number
of connections between the neighbors of a vertex, as it has been already ob-
served in a model proposed by Davidsen, Ebel and Bornholdt [39]. The basic
assumption of their model is that the evolution of social connections is mainly
determined by the creation of new relations between pairs of individuals with
a common friend.

In this context we introduce the concept of potential edge, as the poten-
tial connection between two disconnected vertices with common neighbors.
Moreover, the graph dynamics will be defined by the transition rates between
the three possible states of a pair of vertices: disconnected (s), connected by
a potential edge (p) or by an edge (e). Let df be the number of potential
edges incident to vertex 4, potential degree to abbreviate. We can write the
rate equations for the evolution of the number of vertices with degree d and
potential degree d* however we have found problems in solving them. In-
stead we will use the continuum approach [11, 46]. In this case we neglect
fluctuations and write mean-field equations for the evolution of d; and d;,

aN = Vs»—)e(N - dz - dz) + Vp—)edi - (Ve-—>s + Ve——)p)di;
od:

where v;_,, is the transition rate from state z to state y per unit of N, and
N — d; — df is just the number of remaining nodes, that are not connected
by a potential edge nor by an edge to node i. The creation (deletion) of a
potential edge incident to a vertex is associated with the creation (deletion)
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54 4.2. CONNECTING NEAREST-NEIGHBORS

of an edge incident to one of its neighbors and, therefore,

Vsyp = Vs—)ediy

Vp__)s - Z/e_.%gdi. (423)
In the following we will neglect any process where an edge is deleted, i.e.
Vess = Vesp = 0. (4.24)

This assumption may seem to crude for social networks where it is known that
social relations can be lost but it is realistic in many cases. For instance, in
the network of scientific collaborations two scientists are said to be connected
if they have co-authored a paper. It is clear that this connection cannot be
lost in time because the fact that they have written a paper together cannot
be changed. In general, if the connection between two vertices is given by the
occurrence of certain event (co-authoring a paper, being in the cast of a the
same film, having a sexual relation) in the past history then this connection
cannot be lost and, therefore, our approximation holds. Another crucial
assumption is related to the fact that the transition from potential edge
to an edge has a higher probability of occurrence than the transition from
disconnected to an edge. In fact, the connection of two disconnected vertices
without a common neighbor is a process that models the creation of a social
relation between two social entities chosen at random. We thus assume

Ho

Vse = 77z (4.25)

On the other hand, the creation of an edge between two vertices with a
common neighbor, that is with a potential edge between them, models the
creation of a social relation between two “friends” of a social entity. In this
case we assume

H1
Vpsre = 7 (4.26)
Under these approximations the system of equations (4.22) is reduced to
ad;
2 — d*
Ny = Hot s,
od;
L= pod; — i ds, 4.27

This system of differential equations is linear and, therefore, can be easily
integrated resulting that, for N > N,

di(N) = d <ij\\;—)ﬁ BN = (ﬂ)ﬁ , (4.28)
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Figure 4.6: Schematic representation of the two evolution rules of the con-
necting nearest-neighbors model. Top: with probability u a potential edge
(dashed line) becomes an edge (continuum lines). Bottom: with probability
1 — u a new vertex is added to the graph (disconnected vertex in the left),
then it is connected with an edge to a vertex selected at random and by
potential edges to its neighbors (right).

where N is the size of the graph when vertex ¢ was added to it and

==L (—1 + /1 +4—“—0> . (4.29)
2 H1

Now, if the vertices are added at a constant rate then

Pld;>d) = P {da <7V]Y-)ﬁ > d}

_ ON d]f\\[’i@ {do (%)ﬁ - d} , (4.30)
and, therefore, |
by 8P(c;¢d> d) - (431)
with ]
y=1+ 5 (4.32)
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Figure 4.7: Degree distribution of the connecting nearest neighbors model
for different values of the addition rate u, graph size N = 10°% and average
over 100 realizations. The inset shows the exponent v obtained from the fit
to the power law pg = ad™" (circles) together with the analytical prediction
(continuous line).

Notice that the main ingredient leading to this power law behavior is given
by Eq. (4.23). On the contrary, if v,_,, would be independent of the vertex
degree an exponential decay would be obtained.

We can also compute the clustering coefficient as a function of the vertex
degree. The main contribution to the evolution of e;, the number of edges
among the neighbors of vertex 4, is given by the transition potential edge —
edge. In fact, if the potential edge connecting a vertex ¢ to another vertex 7,
with common neighbor k&, becomes an edge then vertex i gain one neighbor
(vertex 7) and a new edge among its neighbors (that connecting j and k).
Neglecting other contributions we have

di

8ei £

Integrating this equation using Eq. (4.28) it results that

2e(d) 2
(c)g= qd-1 " d"

Thus, once again we obtain the inverse proportionality between (c), and

(4.34)
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Figure 4.8: Clustering coefficient as a function of vertex degree of the con-
necting nearest neighbors model for different values of the addition rate w,
graph size N = 10° and average over 100 realizations. The solid line is a
power law decay with exponent 0.6.

vertex degree d, in this case due to the conversion of potential edges between
vertices with a common neighbor into edges.

Connecting nearest-neighbors model

To check these results we have made numerical simulations of a variant of
the model proposed by Davidsen, Ebel and Bornholdt [39], defined as follows:
Starting with a single vertex and an empty set of edges iteratively perform
the following rules,

e With probability 1 — u introduce a new vertex in the graph, create an
edge from the new vertex to a node j selected at random, (implying
the creation of a potential edge between the new vertex and all the
neighbors of 7).

e With probability u convert one potential edge selected at random into
an edge.

A schematic representation of this rules is shown in Fig. 4.6. Actually, in
the Davidsen, Ebel and Bornholdt [39] model the number of vertices is fixed
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58 4.2. CONNECTING NEAREST-NEIGHBORS

and each time a new vertex is added one vertex is removed from the graph.
We consider the growing variant because in this case is easier to determine
some properties analytically. For very large N we expect that both variants
have the same qualitative behavior.

These evolution rules fit into the equations written above after setting

u
1—u

o =1, (4.35)

Thus, from Eqgs. (4.29) and(4.32) it follows that

y(u):1+@<—~1+\/1+41;“> , (4.36)

with the limiting cases

7(0) =00, 7(1)=2. (4.37)

Thus, the power law exponent ~y takes its minimum value when u — 1 cor-
responding to a low rate of addition of vertices and it grows with decreasing
u corresponding to higher rates of vertex addition. In Fig. 4.7 we plot the
degree distribution as obtained from numerical simulations. For intermediate
degrees it exhibits a power law decay pg ~ d~7. The value of y obtained from
the fit to the numerical data is shown in the inset, together with the analytic
curve given by Eq. (4.36). In the region u — 0 where the graph is quite
sparse ((d) ~ 1) there is a good quantitative agreement between theory and
simulations. However, when u gets closer to 1 deviations are observed. In
this last region the exponent v = 2, yielding large fluctuations in the vertex
degrees. These fluctuations were nevertheless neglected in the continuum
approach.

In Fig. 4.8 we plot the clustering coefficient as a function of the vertex
degree. It follows a power law decay for large degrees but with an expo-
nent smaller than 1. Thus, also in this case we found a disagreement be-
tween the continuum approach predictions and numerical simulations. On
the other hand, the average neighbor degree as a function of the vertex de-
gree is shown in Fig. 4.9. It increases with increasing d, i.e. the graphs
generated using this model exhibit positive degree correlations. This result
is in very good agreement with the observations made for social graphs that
are also characterized by positive degree correlations. Hence, the connecting
nearest-neighbors mechanism generates many of the topological properties of
social networks.
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Figure 4.9: Average degree among the neighbors of a vertex with degree d of
the connecting nearest neighbors model for different values of the addition
rate u, graph size N = 10° and average over 100 realizations. The solid line
is a power law grow with exponent 0.6.

4.3 Duplication-divergence

The evolution of some real graphs is given by a replication or partial repli-
cation of its local structure. An example is the genome that evolves, among
other mechanisms, through single gene or full genome duplications [113] and
mutations that lead to the differenciation of the duplicate genes. The evolu-
tion of the genome can be translated into the evolution of the protein-protein
interaction network where each vertex represents the protein expressed by a
gene, as we will see in the sixth chapter. After gene duplication both the
expressed proteins will have the same interactions. This corresponds to the
addition of a new vertex in the network with edges pointing to the neighbors
of its ancestor. In addition positive and negative mutations can be modeled
by the creation and lost, respectively, of the edges leading to the divergence
of the duplicates. Another example is the WWW where new web pages may
be created making a copy or a partial copy of the hyperlinks present in other
web pages [78]. In this case the duplication models the copy process and the
divergence the deletion or addition of hyperlinks in the duplicated pages.

In a first approximation we will assume that the processes of duplication
and divergence are not coupled but take place independently one of the other.
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60 4.3. DUPLICATION-DIVERGENCE

Moreover, we will also assume that the creation and deletion of edges take
place at random and that they are independent of the degree of the vertices
at the edges ends, or any other topological property. Under these approxi-
mations, the evolution of the degree of a vertex (the number of interacting
partners) is given by

8dL . Vq A
N Ndz + V(N — d;) — vd;, (4.38)

where v4, V., and v, are the rates per unit of vertex added of duplications,
edge creation and edge lost, respectively. By definition, each duplication
implies the addition of a new node and, therefore,

vy = 1. (4.39)
We will further assume that
L 7
Ve = 5—\/_9 w=" (4.40)

otherwise the stationary graph will be empty or fully connected, both being
unreal. Then, substituting Egs. (4.39) and (4.40) into Eq. (4.38) we obtain

ad;

NBN = pp + (1 — p1)d;. (4.41)
"The integration of this equation yields
B
Lo N Lo
- = { d;(N; — ] - 4.

where NN; and d;(N;) are the graph size and degree of vertex ¢ when vertex i
was added to the graph, and

B=1—ps. (4.43)
Here we have implicitly assumed that
uy < 1, (4.44)

otherwise the stationary state will be an empty graph.
From Eq. (4.42) it follows that

(di(NZ-) + 1’1‘)“) (%)ﬁ - 16()” > d} . (4.45)
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This probability should be computed taking into account that both N; and
d;(N;) are random variables. If the duplications take place at a constant
rate then the probability density of N; is given by p(lN;) = 1/N independent
of N;. Moreover, the probability that a node has degree d;(IV;) when it is
introduced is just the probability that its ancestor has this degree. If the
graph is in a stationary state then P[d;(N;) = d] = pa, is just the degree
distribution. Hence

N : B
P(di>d) = pa d_]]\\?@@Kd/Jr_ﬁiﬂ__) (%) o >d}

7 1 I—n I—p
(4.46)
For N > 1 we finally obtain
GP(dZ > d) o -
= ~ d 4.4

Pd od (1 — 1 -+ ’ ( 7)

with 1
=1+ : 4.48
v — (4.48)

The origin of this power law degree distribution is determined by the second
term in the right hand side of Eq. (4.41), associated with the vertex du-
plications and subsequent edge lost. These are local mechanisms and, as in
the models describe before, they lead to an effective preferential attachment
manifested as a power law degree distribution.

The next step is thus to investigate if the duplication-divergence model
satisfies the inverse proportionality between the average clustering coefficient
and vertex degree. If the creation of new interactions takes place at random,
i.e. they appear between randomly chosen vertices, then the average cluster-
ing coefficient will be negligible for large graph sizes N. There is however one
source of new interactions giving an appreciable contribution. In the dupli-
cation process, if the ancestor is a self-interacting protein then the ancestor
and the duplicate may have an interaction among them [144]. Let us assume
that this happens with a probability ¢,. Thus, if a neighbor of a vertex 1
is duplicated it will gain a new neighbor (the copy) and with probability ¢,
an edge between its neighbors (that between the copy and its ancestor) and
therefore Be; o4,

ER
where we have neglected any other process leading to new interactions and
the edge lost. The integration of this equation yields

_ 2e(d)  2g
= qa-1"d

(4.49)

(4.50)
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Figure 4.10: Schematic representation of the coupled duplication-divergence
model evolution rules. Left and middle: A vertex ({) is being duplicated.
Right: The divergence of the duplicates is manifested as a coupled lost of
interactions, where the coupling is given by the restriction that for each
neighbor (e) at least one of the duplicates should preserve an edge to it.
Moreover, due to the existence of self-interactions, a new edge can be created
between the duplicates (dashed line).

Hence, under these assumptions we obtain the inverse proportionality behav-
ior. The inclusion of the edge lost may change this result. We do not have
any analytical prove but since this process contributes to the lost of triangles
and it has a higher impact in high degree vertices then we expect that (c),
decays faster than d—1.

Coupled duplication-divergence model

In practice the processes of duplication and divergence cannot be decoupled.
The protein-protein interaction network has a functional role in the organism
and, therefore, the lost of certain interactions can result in the death of the
corresponding organism. According to the classical model [113] after dupli-
cation the duplicate genes have fully overlapping functions. Later on, one of
the copies may either become nonfunctional due to degenerative mutations
or it can acquire a novel beneficial function and become preserved by natural
selection. In a more recent framework [54, 87] it is proposed that both du-
plicate genes are subject to degenerative mutations loosing some functions
but jointly retaining the full set of functions present in the ancestral gene.
To investigate the influence of the coupling between duplication and diver-
gence we introduce the following model: At each time step a vertex is added
according to the following rules
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e Duplication: a vertex i is selected at random. A new vertex 4/ with an
edge to all the neighbors of ¢ is created. With probability ¢, an edge
between 7 and i/ is established (self-interacting proteins).

e Divergence: for each of the vertices j connected to ¢ and i/ we choose
randomly one of the two edges (¢, 7) or (i, j) and remove it with prob-
ability 1 — g..

A schematic representation of this rules is shown in Fig. 4.10. For prac-
tical purposes the algorithm starts with two connected vertices and repeat
the duplication-divergence rules N times. Since genome evolution analysis
[144, 68] supports the idea that the divergence of duplicate genes takes place
shortly after the duplication, we can assume that the divergence process al-
ways occurs before any new duplication takes place; i.e., we are in presence
of a time scale separation between duplication and mutation rates. This
allows us to consider the number of vertices in the network, NV, as a mea-
sure of time (in arbitrary units). It is worth remarking that the algorithm
does not include the creations of new edges, i.e. the developing of new in-
teractions between gene products, other than those due to self-interactions.
This process has been argued to have a probability relatively smaller than
the divergence one[144]. However, we have tested that the introduction in
the coupled duplication-divergence algorithm of a probability to develop new
random connections does not change the network topology substantially.

In order to provide a general analytical understanding of the model, we
use a mean-field approach for the moments distribution behavior. Let (d) (V)
be the average degree of the network with N vertices. After a duplication
event N — N + 1 we have that the average degree is given by

N {(d) (N) +2q¢y + (2¢. — 1) (d) (N)
N +1 '

(d)(N+1) = (4.51)
On average, there will be a gain proportional to 2¢, because of the inter-
action between duplicates, to 2(d) (V) because of duplication, and a loss
proportional to 2(1 — ¢.) (d) (N) due to the divergence process. For large
N, taking the continuum limit, we obtain a differential equation for (d).
For ¢ > 1/2, (d) grows with N but saturates to the stationary value (d) =
2¢u/ (1 — 2¢.) + O(N?%~1), On the contrary, for g, > 1/2, (d) grows with V
as N2%~1 At g, = ¢; = 1/2 there is a dramatic change of behavior in the
large scale degree properties. Analogous equations can be written for higher
order moments (d') using the rate equations

on, n
8—.7{? = Ag-1ng-1 — Aqng — —ﬁd + 2¢yGa1 + 2(1 — ¢,)Ga, (4.52)
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Figure 4.11: The exponent o,(¢.) as a function of g, for different values
of [. The symbols were obtained from numerical simulations of the model.
The moments <dl> were computed as a function of N in networks with size
ranging from N = 10° to N = 10°. The exponents o,(g) are obtained
from the power law fit of the plot <dl> vs. V. In the inset we show the
corresponding mean-field behavior, as obtained from Eq. (4.56), which are
in qualitative agreement with the numerical results.

where

A" = 1 (a0 + ) (4.53)

=T ()HE DT s

The first two terms in the right hand side of Eq. (4.52) result from the
duplication of a neighbor of a vertex (with probability ¢.d/N) and the dupli-
cation of a vertex with the creation of an edge between the duplicates (with
probability g,/N), yielding the attachment rate in Eq. (4.53). Moreover, the
last three terms are given by the divergence of the duplicates, where with
probability ng/N a vertex with degree d is replaced by two duplicates (fac-
tor two in the last two terms). Thus, the coupling of the duplication and
divergence mixes the equations for different ny. We cannot give an exact
derivation of n; but we can compute the moments of the degree distribution
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Figure 4.12: Clustering coefficient as a function of vertex degree of the
coupled duplication-divergence model for different values of ge, graph size
N = 10¢ and average over 100 realizations. The solid line is a power law
decay with exponent 1.

[77]. Multiplying Eq. (4.52) by d' and summing over d we obtain

Zpdd ~ Ne1(8e) (4.55)

(142‘Ql)l—-1}, (4.56)

provided o;(¢.) > 0. If 0y(g.) < O the corresponding moment approaches a
stationary value for large N. Then, for all [ we find a value g; at which the
moments cross from a divergent behavior to a finite value for N — oco. In
particular for { = 1 we have ¢; = 1/2 (as obtained above) and for | = 2
“we obtain gs = 24/3 — 3 =~ 0.46. Moreover, the nonlinear behavior with [ is
indicative of a multi-fractal degree distribution.

In order to support the analytical calculations, we performed numeri-
cal simulations of the coupled duplication-divergence model with graph size
ranging from N = 10° to 10%. In Fig. 4.11 we report the generalized ex-
ponents o;(g.) as a function of the divergence parameter g. As predicted
by the analytical calculations, oy = 0 at a critical value g. The general

where

Ul(‘]e) =lge +2
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phase diagrams obtained is in good qualitative, but not quantitative, agree-
ment with the mean-field predictions and the multi-fractal picture. Notice-
ably, multi-fractal features are present also in a recently introduced model
of growing networks [47] where, in analogy with the duplication process,
newly added vertices inherit the network degree properties from parent ver-
tices. Multi-fractality, thus, appears related to local inheritance mechanisms.
Multi-fractal distributions have a rich scaling structure where the scale-free
behavior is characterized by a continuum of exponents. This behavior is,
however, opposite to usual exponentially bounded distributions. Even if the
evolution rules of the coupled duplication-divergence model are local they
introduce an effective linear preferential attachment. However, because the
edge deletion of duplicate vertices introduce additional heterogeneity in the
problem we obtain a multi-fractal behavior.

The coupling between duplication and divergence is however less relevant
to determine the scaling of the average clustering coefficient with vertex
degree. In fact, for the coupled duplication-divergence model Eq. (4.49) also
applies, obtaining the inverse proportionality in Eq. (4.50). In Fig. 4.12
we plot (c), vs. d for different values of ¢., manifesting a power law decay
but with an exponent larger than 1. With decreasing ¢, (increasing the lost
of edges) the power law decay deviates more and more from the predicted
behavior (c), ~ d~!. This picture corroborates our hypothesis that if the
edge lost is sufficiently large then a faster decay should be observed. On the
other hand, the average neighbor degree as a function of the vertex degree
for different values of ¢, is despited in Fig. 4.13. The existence of negative
degree correlations are manifested by a power law decay (d,,) ~ d=%1.

4.4 Conclusions

After analyzing these models we can conclude that growing networks based
on local evolution rules exhibit an effective linear preferential attachment. It
1s true that when we take a vertex at random the selection does not imply
any degree preference, other than the one imposed by the degree distribution.
However, if we take a neighbor of that vertex then some preference is induced.
In fact the probability that vertex i is a neighbor of the randomly selected
vertex is simply ;

— 4.57

Zj dj ( )
which is exactly the linear preferential attachment considered in the Barabdsi
et al model [12]. Therefore, the connection to a neighbor of a vertex selected

at random leads an effective linear preferential attachment.
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Figure 4.13: Average degree among the neighbors of a vertex with degree d
of the coupled duplication-divergence model for different values of ¢, graph
size N = 10° and average over 100 realizations. The solid line is a power law
decay with exponent 0.1.

Another important consequence of the local models considered above is
the inverse proportionality between the average clustering coefficient and
the vertex degree, or more general (c) ~ d~#. This result is determined
by the fact that when a new edge is created to a vertex then with a certain
probability an edge will also be created to one or more of its neighbors. Thus,
locality is again a crucial point. On the other hand, even if we were not able
to find an analytical explanation, these local models are also characterized
by degree correlations among connected vertices.

Hence, the growing models with local rules exhibit some of the common
features of real graphs, the effective preferential attachment [73, 13, 104, 115,
138], an average clustering coefficient that decreases with increasing vertex
degree [138, 121], and degree correlations [115, 138, 103].
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Chapter 5

Statistical mechanics on graphs
with degree correlations

In the previous chapter it was shown that many real networks exhibit corre-
lations. In particular, we observed the existence of two types of correlations:
degree-degree correlations and clustering hierarchy. A second step will then
be to study the influence of correlations and compare the results with those
obtained for uncorrelated graphs. Some works in that direction are starting
to emerge. Newman [103] have studied the problem of percolation on graphs
with an arbitrary degree distribution and degree correlations. Moreover,
Bogufia and Pastor Satorras [101] have analyzed the problem of epidemic
spreading. In both cases they observed that the precise value of the thresh-
old depends on the magnitude of the degree correlations.

In this chapter we develop a statistical mechanics approach on top of
random graphs with an arbitrary degree distribution and arbitrary degree
correlations. Using the Bethe-Peierls [19, 118] and the replica formalism [96]
for dilute systems we compute the free energy and related thermodynamic
properties. We discuss the problem of percolation and its generalizations to
site and bond percolation making emphasis on the influence of degree cor-
relations and the general conditions for the existence of a giant component
[136]. Latter we focus our attention in the NP-hard optimization problem of
vertex covering [55]. We have chosen the vertex covering problem because
in this way we can also investigate the influence of the degree distribution
and degree correlations on the computational complexity [55, 114]. We show
that such correlations may lead to a qualitatively different solution structure
as compared to uncorrelated networks, resulting in a higher complexity of
the network in a computational sense. We also investigate the influence of
correlations on the performance of different heuristic algorithms to find the
minimal vertex cover, obtaining that simple heuristic algorithms fail to find
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a minimal vertex cover in the highly correlated case, whereas uncorrelated
networks seem to be simple from the point of view of combinatorial optimiza-
tion. Moreover, a real application, to the vertex cover of the Internet and

other real graphs, is also discussed. Part of these results have been published
in [140].

5.1 Statistical mechanics on graphs

Consider the set of undirected graphs with N vertices and arbitrary degree

distribution p,. Following a randomly chosen edge, we will find a vertex of
degree d with probability

_ dpa

44 ()

We further assume correlations between adjacent vertices: The probability
that a randomly chosen edge connects two vertices of degrees d,d’ is given
by (2 — d44)eqwr. The conditional probability that a vertex of degree d is
reached following any edge coming from a vertex of degree d’, is

(5.1)

p(d'|d) = ear /g4, (5.2)

thus explicitly depends on both d and d’. Consistency with the degree distri-
bution requires ) o _, €asr = g4, and eqe has to be symmetric. For uncorre-
lated graphs ey = qqqu factorizes resulting p(d'|d) = go that is independent
of d.

Let us now consider a general statistical-mechanics model with discrete
degrees of freedom z; = 0, 1 defined on vertices ¢ = 1, ..., N, and interactions
Jij = 0,1 defined on edges, with the partition function

4 = Z 6“2““ H X(fL‘i,iEj), (53)

{z;=0,1} i<j|Ji;=1

where 4 is the chemical potential. J is the adjacency matrix with entries
Jij = 1 if vertices ¢ and j are adjacent (connected), and J;; = 0 else.
x(zi,z;) is an arbitrary interaction term and its precise form will depend
on the model under consideration. The only disorder present in Eq. (5.3) is
given by the edges J;;. Generalizations to disordered interactions, as present
e.g. in spin-glasses, random local fields or non-binary discrete variables are
straightforward. The free energy will then given by

—F=InZ, (5.4)
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Figure 5.1: Schematic representation of the Bethe-Peierls approach. We focus
on the subtree rooted in i with deleted edge (i,7) and iteratively compute
the partition function, expressed in terms of that of the subtree rooted in j
with deleted edge (7, k).

where the over-bar denotes the disorder average over interactions J;;,

A= % / Ed.fijp(.]ij) ga (; Jij — dz-) A, (5.5)

where
, N
N = HdJijP(Jij) H ) (Z Jij — di) ) (5.6)
i<j i=1 J

is a normalization factor and P(J;;) is the probability distribution of the
interaction matrix elements. Notice that the delta functions enforce the
constraints on the degree distribution while the degree correlations are taken
into account in the definition of P(Jy),

(d) ed;d; > (d) eqq;
PJ) = (1= XL 204 5 () + ~L 585 (g~ 1), 5.7
() ( D) 51+ s Uy =), (67

where (d) is the average degree.
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5.1.1 DBethe-Peierls iterative approach

Since the graphs are locally tree-like, the model can be solved by the it-
erative Bethe-Peierls scheme which becomes exact if only one pure state is
present. The free energy can be expressed in terms of simple effective-field
distributions acting on vertices of given degree. In the case of multiple pure
states this has to be generalized to the cavity approach, see e.g. [94] for
the example of a spin-glass on a Bethe lattice with constant vertex degree.
Alternatively, one can apply the replica approach. The simple Bethe-Peierls
solution corresponds to the assumption of replica symmetry (RS), whereas
the full cavity approach is able to handle also the case of replica symmetry
breaking (RSB).

Take any edge (4,7), i.e. J;; = 1. Let us introduce Z8) a5 the partition
function of the subtree rooted in ¢, with deleted edge (4, 5), and with z; fixed

to the value x. This partition function can be calculated iteratively (see Fig.
5.1),

k#j] Jix=1
A | | (X(l,O)Z’“")+ x(1, 1)z ) (5.8)
k#j| Jip=1

The effective fields
Zyij)
h ili) — 111 —_— s 59
(il7) 70 (5.9)

are thus determined by the iterative description (dividing the second by the
first equation in (5.8))

hapy =pn+ Y ulhe) (5.10)
ket Te=

where u(hy;) is the effective field induced by zj on site 7, and is given by

X(1,0)+X(l,1)eh(km> | (5.10)

5) =1
) = (5 e

Let us now assume, that the model has only one pure state, which corre-
sponds to the assumption of RS. In this case, the iterative procedure given
by Eq. (5.10) converges to well-defined distributions P;(h) and Qg(u) of ef-
fective fields h;;y and wu(hgyj)) restricted to vertices of excess degree d. They
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are determined by the self-consistency equation

Py(h) = /ﬁdthd(ut)é (h — - Zut) : (5.12)
= Zp(dl,d)/ ﬁ duQay ()0 \'u —Ju (/J + Zut>} , (5.13)

1 Fha(1,1 1,0

2 Lenx(0,1) + x(0,0)
Notice that u is the contribution to the local field given by one neighbor
while h given by all d — 1 neighbors.

where

(5.14)

5.1.2 Replica approach

The Bethe-Peierls solution corresponds to the assumption of replica symme-
try. Hence, the iterative equations for the local fields can be also obtained
by a direct calculation of the partition function and the free energy using
the replica formalism [96]. The main difficulty in computing the free energy
is caused by the average over the disorder in Eq. (5.4). The replica trick
overcome this exploiting the identity

07— lim 21

n—0 n

(5.15)

Now, for integer n the n** moment of the partition function in Eq. (5.3) can

be rewritten as
Zn = Z eh 2ia O H x(zf, %), (5.16)
{z;=0,1} ai<j|Ji;=1

where a = 1, ..., n is the copy, or replica, index. To compute the average over
the disorder we write the degree constraints in the integral form

<ZJ” ) / o), (5.17)

For sparse graphs ({(d) < N) from Eqs. (5.5), (5.7) and (5.16), it follows

that
v 2, i)

{ ¢=0,1}
X exp (_____2_ ZNZG "M"H/’J)"’,U‘Ho i,a %4 HX x?, j > 5 18)
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In analogy with a previou calculation for uncorrelated graphs [84] we
introduce the functional order parameter

1 L
pa(d) = —]\726(0~ ;)8 4a,€™, (5.19)

and its complex conjugate j4(5). Then, tracing over the spins z¢ and inte-
grating out the 1); variables [83] one is left with the following expression for
the n* moment of the partition function

/Hdpd Vdpa(&)e N, (5.20)
with the free energy

nF = —<d>Zpd<5>ﬁd<5>+Zm1ﬂZ@“Z““a (6a(3))"

L+ Z Pdl(Ul)Pdo g Hx (of,08) | . (5.21)

do

0102d1d2

The main contribution to the free energy in the thermodynamic limit is
evaluated via the following functional saddle point equations:

e Te 7 ()"

pa(7) = qa T seeel (5.22)
s, e et (pa(54))"
N — € — a a
pa(@) =D = py (1) [ [ x(o®, 0%). (5.23)
5ra, 149 A

In the limit n — 0 we can check that the order parameters are normalized.

Replica symmetric ansatz

Under the assumption of replica symmetry the local fields are given by

hYhe10a

pa(d) = Qd/dhpd(h)%ﬁ“g)—m (5.24)
uEZ:la-“

5a(&) = / dqu(u)%TW. (5.25)

Substituting these expressions in Eqs. (5.22) and (5.23) we obtain the fol-
lowing set of coupled equations

. d—1
= / T duQa(us)s (h — - Zut) , (5.26)
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di—1
Qq(u) = Ep(dlid)/ H duQq, (ug)d l:u — fu (/,4—1— Zut>} ,  (5.27)
dy t=1 t
where

1 te*"‘x(l, 1)+ x(1, Oq _ (5.28)

JulP) =310 | R 0.1) + (0, 0)

P,(h) is the average probability distribution of effective fields and Qq(u) is
that of cavity fields, acting on sites with degree d. These equations coincide
with those obtained using the Bethe-Peierls scheme (see Egs. (5.12) and
(5.13)). Moreover, we would like to stress that the strong inhomogeneities
present in the graph are correctly taken into account and handled via the
computation of the whole probability distributions. Finally, substituting Eqs.
(5.24) and (5.25) into Eq. (5.21) we obtain the following expression for the
free energy

Fo= Y (d-1)p / [T dueQulue) In (1 + e#+ %)

d
d
_ %Z}:em / dhydhy Py, (h1)pa, (he)
dids :
X In [er Ry (1,1) + e x(1,0) + e*"2x(0, 1) + x(0, 0)] (5.29)

Then, using Eqs. (5.26)-(5.29) we can compute the different thermodynamic
quantities.

5.2 Percolation

The problem of percolation is equivalent to the Ising model at zero temper-
ature and zero magnetic field, where the size of the giant component is just
the magnetization [52]. We can exploit this analogy to study the percolating
properties of random graphs with arbitrary degree correlations. In the infi-
nite temperature Ising model if two vertices interact they have to be in the
same state and, therefore, percolation theory corresponds with

Xperc(xia xj) - 59:,-,9:j7 (530)

and y = 0. Thus, substituting x(z;,z;) and u by these expressions in Eq.
(5.27) it results that

Qa(u) = Zp(dﬂd)/ ﬁ duQq, (ut)5 (U - ZW) . (5-31)
: dy t=1 t
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Let my = 1 — Q4(0) be the probability that an edge incident to a vertex
of degree d carries a constraint, i.e. the neighbor is in the state 1. According
to Eq. (5.31) u = 0 corresponds with Y, u;, = 0 resulting

1—mg =Y pldi|d) (1 — mg,)" " (5.32)

d1

Moreover, if we assume that the magnetization of the largest cluster is posi-
tive then the local fields acting on a vertex can be either 0 or strictly positive.
If it is strictly positive then the vertex is in the largest cluster and, therefore,
the fraction of vertices S in the giant component is given by

S=1- pa(l—m)e (5.33)

These results have been already obtained by Newman [110] using the gener-
ating function formalism.

5.2.1 Dilute percolation

Let us generalize this result to the site percolation problem. In this case
a fraction f of the vertices is removed from the graph and the new giant
component is computed. Since the vertex removal is independent of the
vertex degree this is equivalent to replace the original degree distribution
and correlations by: (i) the probability that a vertex selected at random has
degree d and it has not been removed, and (iz) the probability that if we
select a vertex at random and follow one of its edges we end in a vertex with
degree d' that has not been removed, i.e.

pa— (L= flpe,  pld'|d) — (1= f)p(d|d), (5.34)
Substituting Egs. (5.34) in Egs. (5.33) and (5.32) we get
S=1-f—-(1-F) Zpdug, (5.35)
d
wg=f+ 1= )Y pldldug™, (5.36)
7

where the term —f (f) in Eq. (5.35) ( Eq. (5.36)) gives the probability of
hitting a removed vertex. One solution to these equations is uy = 1 yielding
S = 0. This solution is valid whenever the equation for the uy is stable
under successive approximations. That is, if we start with ug(t) = 1 — pa(t)
and compute the successive approximation py(t + 1) then we should obtain
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that pg(t) — 0 in the limit ¢ — co. For pg(t) < 1 the last equation is
approximated by the linear map

t -+ 1 2 dej pd/ (537)

with
Lig = (1= f)Cas, Caa = (d = 1)p(d'|d). (5.38)
The stability of the solution ug = 1 is then related to the largest eigenvalue

of Lgg. If it is smaller (larger) than 1 the solution is stable (unstable). Since
Ly is linear in f the stability condition can be written as

f > fm (]— - fc)Amaz = 17 (539)

where A, is the largest eigenvalue of Cyg provided that Ape, > 1. I
Apmaz < 1 the graph does not have a giant component even for f = 0.
Moreover, since Cyg is a positive matrix then Ag,q, has the lower and upper
bounds ming Y, Cye and maxy ) 4 Caar, yielding

ming (d),, (d) <14 Apge < maxg (d) (). (5.40)

where

= > pld|d)d, (5.41)

is the average degree among the neighbors of a vertex with degree d [115].
Eq. (5.40) can be used to determine, based on a simple topological measure,
whether or not a given graph is robust under vertex removal.

On the other hand, in the bond percolation problem a fraction f of the
edges is removed from the graph and the new giant component is computed.
Since the edge removal is made at random this is equivalent to keep the origi-
nal degree distribution and replace the degree correlations by the probability
that if we select a vertex at random and follow one of its edges we end in a
vertex with degree d' that has not been removed, i.e.

pa—pa,  p(dld) = (1 - f)p(d|d). (5.42)
Substitution of Eq. (5.42) in Eqgs. (5.33) and (5.32) yields
S=1- pgul, (5.43)
d
ug=f+(1- Zp d'|d)ud " (5.44)
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Note that the only difference between the site and bond percolation problems
(see Egs. (5.35) and (5.36)) is the equation for the giant component while
that for ug is identical. Hence, Egs. (5.39) and (5.40) are also valid for the
bond percolation problem.

In what follows we consider some particular graphs in order to analyze
the effects of correlations. Depending on the monotony of (d), (d) the de-
gree correlations can be classified in: uncorrelated if it is independent of
d, assortative or positive if it increases with increasing d and disassortative
or negative if it decreases with decreasing d. A similar definition has been
introduced in Ref. [103] using a correlation coefficient.

5.2.2 Graphs with random mixing

For random graphs with no constraint other than the one imposed by the
degree distribution we have p(d',d) = gw. In this case the lower and upper
bounds in Eq. (5.40) are equal giving for the largest eigenvalue

Arneo — %% —2. (5.45)

Alternatively one can compute A directly from the eigenvalue problem of
Cag- Then from Eq. (5.39) we obtain 1 — f. = 1/({d?) / (d) — 2) [37]. Hence,
if the second moment (d?) diverges the threshold equals 1, i.e. the network is
robust under random vertex or edge removal. Furthermore, consider the case
in which the degree correlations can be decomposed into two components

p(d'|d) = agy + (1 — a)ép(d'|d) (5.46)

with 0 < @ < 1 and ép(d’|d) > 0 for all (d,d’). Varying the parameter o
one interpolates between the uncorrelated graphs (o = 1) and a graph with
arbitrary degree correlations given by dp(d'|d). In this case from Eq. (5.40)
we obtain Ap.s > aAl and, therefore, if the network is robust for the
uncorrelated case it will also be robust for any « > 0. This immediately
implies that any graph with a divergent second moment and a finite amount

of random mixing of the edges does not have a percolation threshold.

5.2.3 Graphs with assortative mixing

Assortative correlations allow us to show that the divergence of the second
moment is not a necessary condition for the absence of the threshold. Let us
consider a network with degree correlations

p(d'd) = adaa + (1 — a)dp(d'|d), (5.47)
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S(/S(0)

Figure 5.2: Size of the giant component for a graph with py = cd™>® (2 <
d < 100) and degree correlations p(d'|d) = adge + (1 — a)ge with «, as
computed from Eq. (5.35). The dashed line marks the percolation threshold
obtained using perturbation theory (Eq. (5.49)). The inset shows the largest
eigenvalue relative to dpmg, as a function of . The points where computed
numerically and the line is the perturbation theory dependency Apmgz [Qrae =
a.

with 0 < o« < 1 and &p(d'|d) > 0 for all (d,d'). a = 1 corresponds to a
fully assortative graph made up of sub-graphs with fixed degree. In this case
Cuy = d'649 (see Eq. 5.38) is already diagonal. The largest eigenvalue is
Az = maz, Where dpgg is the largest degree. If dp,, diverges for N — oo
then f, = 1. For the more general case 0 < o < 1 we compute the largest
eigenvalue using perturbation theory [127] around « = 1, obtaining

Amﬂm(a) = admam + (1 - a)cdmawdmaz' (548)

This result is valid whenever (1—a)Cy, . dmee K 0lmasz. In general Cy, o dmas
decreases with increasing d,,z, resulting

Armas (@) = adpmas, (5.49)

for dpmas > 1/c. Hence, for any o > 0 and any unbounded degree distribution
we have f, = 1, i.e. there is no percolation threshold. In Fig. 5.2 we show
the validity of the perturbation theory for a particular perturbation dp(d'|d).
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Figure 5.3: Comparison between the degree distribution in the full graph and
in the giant component in disassortative graphs, with degree correlations and
degree distribution in Eq. (5.53), with v = 2.5 and o = 0.5.

Thus, as in the fully assortative case, if & > 0 and d,,, diverges f, = 1.
Therefore, we can conclude that the divergence of the second moment is not
a necessary condition.

5.2.4 Graphs with disassortative mixing

Is the divergence of the second moment a sufficient condition for f, = 1? The
answer is no as shown by the following example of a disassortative graph.
Consider a graph made by a collection of stars, with a central vertex con-
nected to vertices of degree 1, interconnected among them. Take a vertex
with degree d > 1 (the center of a star) and an edge incident to it. Then
with probability g a vertex at the other end is chosen at random among all
vertices with degree d’ > 1, otherwise it is connected to a vertex with d' =1
chosen at random, 7.e.

(1 — ga)d'pa
23(1 - gs)sps
-+ (1 —_ gd)éd/,l@(d - 1)

gard' Dy )
=0(d - 1)0{d — 1). 5.50
gdzs G5 SDs ( ) ( ) ( )

80
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where ©(z) is the unitary step function (©(z) = 0 for z < 0 and O(z) =1
for £ > 0). The first term in the right hand side is the contribution from the
connection of vertices with degree 1 to the centers of the stars. The second
accounts for the connection of the stars to their leafs. The last one represents
the interconnection among the stars.

The fraction of vertices with degree 1 is obtained self-consistently from
the condition p; = »_,.;(1 — ga)dps. Moreover, the average degree of the
neighbors of a vertex with d > 1 is given by

r1 g d pa
Las19¢d P —1), (5.51)

Aon =119
(=150 Z e

and, therefore, these graphs are disassortative for any monotonic decreasing
function g4. To analyze the percolation properties of this graph we computed
exactly the largest eigenvalue of Cyy = (d' — 1)p(d'|d), resulting

max ZS gssps

(5.52)

Hence, the conditions for the existence of a giant component (Apa, > 1) or
resilience to damage (A = 00) are modulated by gq and, therefore, the
disassortative correlations given by g have a great impact on the percolation
properties. For instance, let us consider

ga=d % pp=cd, (5.53)

with v < 3 ((d®) = o0). From Eq. (5.51) it follows that (d),, — 1 ~
d—“ so that with increasing o the graph gets more and more disassortative.
Moreover, Ay, diverges for a < o, where

a=(3-17)/2 (5.54)

and it is finite otherwise. Thus, for small values of a the graph is robust
but for o > «, it becomes fragile. It is worth noticing that the value of
« above which the giant component disappears (Apmq; < 1) is larger than
.. Besides, for large degrees, the degree distribution of the vertices in the
giant component is still a power law, and it decays slower than that of the
whole graph, as shown in Fig. 5.3. Thus, disassortative correlations compete
against the formation of the giant component and, the divergence of (d?) is
not a sufficient condition to get a robust graph with f. = 1.

81




82 5.2. PERCOLATION

5.2.5 Epidemic spreading

The connection between percolation theory and models of epidemic spreading
is well known [61]. Two general classes of epidemiological models can be
related to percolation problems, the Susceptible-Infected-Removed (SIR) and
the Susceptible-Infected-Susceptible (SIS) classes. The SIR model assumes
that individuals can exist in three classes and that once they get infected
they can not catch the infection again. This model can be mapped into a
bond percolation problem taking f as the probability that the disease will be
transmitted from one vertex to another and the size of the giant component as
the size of the outbreak. Hence, all the conclusions drawn above for the bond
percolation problem can be translated to the language of epidemic spreading
for the SIR model on top of graphs with degree correlations, extending in
this way a previous study by Newman for uncorrelated graphs [109].

On the other hand, the SIS model allows individuals to move through
the cycle of infection so that the prevalence (number of infected individuals)
attains a stationary value. The SIS model on top of graphs with degree
correlations has been recently analyzed by Boguila and Pastor-Satorras [101]
as a function of the effective spreading rate A\. They obtained the epidemic
threshold (the value of A above which the solution with zero prevalence is

unstable) A = 1/A] . where Al . is the largest eigenvalue of the matrix

Oy = dp(d)d). (5.55)

This approach is quite similar to the one presented here for site percolation
with the remark that C7, is different (see Eq. (5.38)). In fact, if y, is an
eigenvector of C}, = dp(d'|d) corresponding to the eigenvalue A’ then vy,/d
is an eigenvector of Clj, = d'p(d'|d) corresponding to the same eigenvalue.
This last matrix is that of Eq. (5.38), but replacing d' by d' — 1. However,
this subtle difference makes the SIS and dilute percolation different. We
have computed the largest eigenvalue of CJ, for the disassortative graph
considered above(Eq. (5.50)). Taking the limit (d?) > 1 one gets

~ Zd(l - gd)dQPd
DL —gs)sps

where g4 is again a decreasing function of d. In this case, independent of the
form of g4, the divergence of the second moment of the degree distribution
implies the divergence of A/ , . Moreover, the same conclusion is obtained if
g4 1s an increasing function of d. The conditions for the existence of a finite
prevalence in the SIS model have been recently addressed in [21], where the

divergence of the second moment has been shown to be a sufficient condition

!
Amaa:

(5.56)
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for the absence of the phase transition in the SIS model. Nevertheless, we
have shown that this conclusion does not hold for dilute percolation. This
essential difference is rooted in the existence of an additional dimension in
the SIS model, given by the time evolution of the density of infected sites.

5.3 Vertex covering

Another application of the formalism developed above is given by the vertex
cover problem. It belongs to the basic NP-hard optimization problems [55]
and, therefore, it is expected to require a solution time which is growing
exponentially with the graph size. Let us be more precise. Given a graph
with vertices 7 € {1,..., N} and edges {(,7)|1 < i < j < N,J;; =1}, a
vertex cover V is a subset of vertices, V C {1, ..., N}, such that at least one
end-vertex of every edge is contained in V. So no edge (7,7) is allowed to
exist with ¢ ¢ V and j ¢ V. Of course, the set of all vertices forms a trivial
vertex cover. The hard optimization problem consists in finding the minimal
vertexr cover.

Using the the hard-sphere lattice gas representation introduced by Hart-
mann and Weight [149]: z; = 1if¢ ¢ V, and z; = 0if i € V, the vertex cover
condition can be rewritten as

T a-zaz) =1, (5.57)

i< Ji=1
Hence, in our formalism, the minimal vertex cover will correspond with
Xoe(Ti, 7)) = 1 — ;35 (5.58)

Moreover, the chemical potential x can be used to fix the cardinality (the
fraction of covered vertices) of the vertex cover, minimal ones are obtained
in the limit p — oo.

In this case from Eq. (5.27) we obtain

di—1

Qulu) = Zp(dlld)/HdUthl(ut)

u+(1+zt:ut>®(1+zt:ut)] (5.59)

where ©(z) is the unitary step function, ©(z) = 0 for z < 0 and O(z) = 1
for z > 0. From Eq. (5.59) it follows that the cavity fields can only take

X 0
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the values u = —1 and uw = 0. Let my = Q4(—1) be the probability that an
edge incident to a vertex of degree d carries a constraint, 7.e. that is not
yet covered by the neighbor vertex. Then, form Eq. (5.59) we obtain the
following self-consistent equation

Ty = Zp(dlld) (1 — Wdl)dl—l . (560)

Moreover, taking into account that the minimal size of the vertex cover is
the average fraction of vertices with z; = 0 we obtain

-2
T = 1- g pd(l - Wd)d—1 (1 - d 5 ﬂ'd) . (561)
d

The expressions obtained above are related to the validity of the replica
symmetry, i.e. to the existence of a single connected cluster of minimal vertex
covers in configuration space. As observed in [150, 149], the replica symme-
try is related to the local stability of this solution. In presence of replica
symmetry breaking, Eq. (5.60) has no stable solution. Since it has to be
solved by numerical iteration in the general case, an instability prevents the
program from convergence and thus provides a precise tool to detect replica
symmetry breaking without any replica symmetry breaking calculation. In
fact, if we substitute the approximate solution my(¢) in the right hand side
of Eq. (5.60) then we will obtain the successive approximation 7y(t + 1).

Let us write my(t) = TFC(ZO) + pa(t), where 75 is one root of Eq. (5.60) and

pa(t) < 75(1 ) a perturbation around it. Substituting this expression into Eq.
(5.60) and neglecting quadratic terms in pg(t) we obtain

t + 1 Z del pdl (562)
where .
Lagy = (dy — V)p(dy|d) (1 — 7)1, (5.63)

Hence, the stability of the root 7r( ) is related to the largest eigenvalue Ao,
of Lgq,. In this case the solution is asymptotically stable for

Amaz < 1. (5.64)

5.3.1 Uncorrelated graphs

For uncorrelated graphs p(di|d) = gg, and the expressions obtained above
become simpler. In this case 74 = 7 is independent of d resulting

7=G(1-7), z.=1-Go(l—m)~— <—g>~7r2, (5.65)
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Figure 5.4: Minimal vertex cover for uncorrelated graphs with power law
degree distribution pg ~ d™7 with dmin < d < dingg, for dpin = 1 (continuous
line) dpmin = 2 (dashed line) and dyne; = 10°. In the inset we plot the largest
eigenvalue as a function of v for the same parameters.

where

Golz) = Zpda:d, Gi(z) = quxd_l, (5.66)

are the generating functions of p; and g4, respectively. Moreover, from Eq.
(5.63) it follows

Laa, = (dy — 1)ga, (1 — m)71, (5.67)

Notice that Ly, is independent of d and the largest eigenvalue can then be
computed easily resulting

Apmas = G4(1 — 7). (5.68)

In particular let us consider uncorrelated networks with power law degree
distribution
d-7
pd - zd’ d/“77

where d,;n and dpee are the minimum and maximum degree, respectively.
In Fig. 5.4 we plot z, as computed from Eq. (5.65) as a function of « for
Amin. = 1, 2 and dpee = 105, With increasing d;, the size of the minimal

dmin S d S dma:v- (569)
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vertex cover increases but the qualitative picture is the same: z,. decreases
with decreasing -y, that is with increasing the probability to find high degree
vertices. Moreover, in the inset we plot A, as a function of . For this
magnitude we observe a different behavior dependent on the minimum de-
gree. For dy;, = 1 we have that A,,,, decreases with increasing « while for
dmin, = 2 the opposite takes place. In any case M. < 1 and, therefore, the
replica symmetric solution is stable.

5.3.2 Assortative graphs

To see the influence of correlations, we concentrate on networks having equal
degree distributions but different correlation properties. We restrict our at-
tention to scale-free graphs with the degree distribution in Eq. (5.69). For
vertex cover, interesting effects are expected to appear for positive correla-
tions, or assortative networks. We therefore consider

p(dl‘d) = T(Sdth + (1 - r)qd]_J (570)

where 0 < r < 1. Varying the parameter r we can interpolate between
uncorrelated graphs r = 0 and fully assorted graphs r = 1. In fact, one
can easily check that the parameter r is exactly the correlation coefficient
introduced in Ref. [103].

In Fig. 5.5 we show the resulting size of the minimal vertex covers for
different values of «y as a function of r. The replica symmetric solution, as
obtained from Eq. (5.61) breaks at a certain value of 7 that depends on +.
There, the solution-space structure changes drastically, from being unstruc-
tured, or replica symmetric, in the low correlated case to being clustered, or
replica symmetry breaking, for sufficiently high correlations. To check the
stability of the solution we have computed the largest eigenvalue A, as a
function of r. The results are also shown in Fig. 5.5. The replica symmetric
solution breaks when A,z = 1.

5.3.3 Heuristic algorithms

Once we know the minimal vertex cover size we can test the performance
of heuristic algorithms to determine it. In particular we will consider: gen-
eralized leaf-removal, high degree vertex removal and a local method. The
first two are global algorithms in the sense that we need to know the whole
network topology while in the third one we will need only information about
nearest neighbors.

The leaf-removal algorithm was proposed by Bauer and Golinelli [17, 16].
It is based on the fact that if we have an edge connecting a vertex A with
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Figure 5.5: Left: Minimal vertex cover size for a network with degree dis-
tribution pgy ~ d~7 and degree correlations given by Eq. (5.70). The lines
correspond to the analytical solution for v = 2.5 (continuous line) and v = 3.0
(dashed line). The curves stop at the point where replica symmetric solution
breaks. Right: Largest eigenvalue Ay, as a function of r for the same values
of .

degree 1 and a vertex B with degree d > 1 then covering vertex B is better or
equally better than covering vertex A. Thus, one iteratively select a vertex
with degree one, cover its neighbor and removes both vertices together with
their incident edges. Moreover, all vertices with current degree zero are also
removed from the graph. The procedure stops when there are no more leafs.
If the remaining graph is empty then all edges will be covered and the fraction
of vertices covered is the minimal vertex cover size. On the contrary, if some
loops remain then we need a generalization of the algorithm to cover the
remaining edges. Let Seore be the fraction of vertices in the graph after the
leaf-removal algorithm stops. Bauer and Golinelli [16] have shown that for
random graphs with (d) < e the core size goes to zero when N — co. On the
contrary for (d) > e Sy is finite. Later, Weigt [148] pointed out that this
transition for Sepre = 0 t0 Seore > 0 corresponds with the replica symmetry
breaking.

To determine the vertex cover size in the region S.e > 0 Weigt [148]
introduced a generalization of the leaf-removal algorithm that gives an upper
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Figure 5.6: The core size Score and error Az for graphs with degree distri-
bution and correlations given by Eq. (5.69) and (5.70) as a function of r for
v = 2.5 . The networks were generated using a modification of the Molloy
and Reed algorithm [98] using dyin=1 and dp,, limited by the graph size V.
The arrow marks the value of  above which the replica symmetric solution
become unstable.

bound for the minimal size. It is defined as follows.

e Generalized leaf-removal: Select the vertex of minimal current degree
from the graph and cover all its neighbors. Then remove the considered
vertices together with their incident edges. This step is iterated until
the full graph is removed.

If, for some graph, this algorithm stops without having ever chosen vertices
of current degree d > 2, then the algorithm is identical to leaf-removal and,
therefore, the constructed vertex cover is minimal. Overestimations may
appear if the algorithm is forced to select also vertices of higher degree d > 2,
where the error can be at most d — 1. Thus, summing (d — 1)(1 — 649)/N
over all iteration steps, we get an upper bound Az on the total error made
in estimating z. using the above heuristic algorithm [140]. If Az goes to zero
in the large-/NV limit, the algorithm has consequently constructed an almost
minimal vertex cover.

The replica symmetry breaking was also found above for random graphs
with degree correlations given by Eq. (5.70). Hence, we expect that the
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leaf-removal algorithm is able to find the minimal vertex cover size for low
degree correlations but it can fail for strongly correlated graphs. To check
this hypothesis we have generated random networks, with the degree dis-
tribution in Eq. (5.69) and dy,, limited by the graph size and computed
the vertex cover size x, core size S,re and error Az using the generalized
leaf-removal algorithm. The results for v = 2.5 are shown in Fig. 5.6. Below
the replica symmetry breaking point both Score and Az goes to zero with
increasing graph size. Thus, as for random graphs, in the replica symmet-
ric region the leaf-removal algorithm gives the minimal vertex cover size.
On the contrary, above the replica symmetry breaking point both Ser. and
Az becomes finite and therefore we cannot guarantee that the generalized
leaf-removal algorithm yields the minimal vertex cover size.

In power law networks the existence of an appreciable probability to find
high degree vertices suggest us that covering the high degree vertices can be
also satisfactory. Thus, we propose the following heuristic algorithm for leaf
removal.

e Maz-d-removal: Select a vertex of current maximal degree, cover it and
remove all its incident edges. Continue until the full graph is removed.

In general one can select the vertex to be covered with a probability

w(d)/ Y w(d)

as proposed by Weigt [148] but we have found that choosing a vertex with
maximal degree is the must efficient way. As it is shown in Fig. 5.7 the
max-d-removal algorithm is nearly as good as the generalized leaf-removal.

In general the structure of real networks is only partially known and there-
fore global algorithms like the generalized leaf-removal or the max-d-removal
become useless. In this case we need local algorithms that use information
about the structure of the network in their neighbor to decide, locally, a
partially efficient vertex cover. For instance, vertex covers have found appli-
cations in monitoring the Internet traffic [26] and in denial of service attack
prevention [120]. However, the structure of the router level graph represen-
tation of the Internet is far for being complete. To construct the vertex cover
in this case we propose the following procedure.

o Local algorithm: For each edge cover the ending vertex with the largest
degree, if they are equal chose one of them at random.

Thus, each vertex with degree d will be covered if at least one of its neighbors
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Figure 5.7: Vertex cover size obtained from different heuristic algorithms,
for graphs with degree distribution and correlations given by Eq. (5.69) and
(5.70) as a function of 7 for v = 2.5. The networks were generated using a
modification of the Molloy and Reed algorithm [98] using dnim—1 and die,
limited by the graph size N. The replica symmetric solution for dy,., > 1 is
also shown for comparison.

has degree d; < d, i.e.

d

o =1- 3 pa| 3 pleld) + pldld) (5.71)

di>d

where the term 1p(d|d) takes into account that in case the degrees are equal
the selection is made at random. Notice that Eq. (5.71) is valid for any
graph because the decision to cover each edge depends only on the degree of
the ending vertices.

Surprisingly, this simple algorithm have a good performance as its is
shown in Fig. 5.7. For a power law degree distribution with v = 2.5 and the
assortative degree correlations considered above it overestimate the vertex
cover size in less than 10% and similar results are obtained for other values
of v. Moreover, it performs better the slower is the degree of correlations.
This last observation is of great importance because we have shown that many
real networks exhibit negative correlations and, therefore, the performance of
the local algorithm will in these cases be even better. In fact, using this local

90



CHAPTER 5. STATISTICAL MECHANICS ON GRAPHS WITH DEGREE

CORRELATIONS

91

0.2 . \
& Q o0 |gaf~-removal
0.19 +
0.18 |
= Y s
0.17 t 1@
\\\‘\\\ . \\Q\
0.16 + N e 1
SN
\%Q:\
0.15 : : !
2000 4000 6000 8000 10000
N

12000

Figure 5.8: Vertex cover size of the AS graph representation of the Internet
as a function of the number of vertices IV using different heuristic algorithms.
The size of the error bars is given by Az as defined in the text.

Graph | N gen. leaf-removal | max-d removal | local algorithm | Az
AS 10515 | 0.15607 0.1511 0.1569 0.0003
Router | 228298 | 0.286 0.289 0.313 0.003
Math | 78837 | 0.51 0.51 0.53 0.1

Table 5.1: Vertex cover size for different real graphs (see Tab. 2.1) and
obtained using different heuristic algorithms

algorithm, we has computed the vertex cover of the AS graph representation
of the Internet obtaining that in this case it overestimates the minimal vertex
cover size in less that 5%, as it is shown n Fig. 5.8. However, for real graphs
with assortative correlations, like the mathematical co-authorship and the
Internet router level graphs, the error becomes larger. The vertex cover size
for these graphs is shown in Tab. 5.1, as computed from the three heuristic
algorithms discussed above. As it can be seen, for the co-autorship graph
(Math) the error Az is of the order of the vertex cover size.
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5.4 Conclusions

The existence of a finite amount of random mixing of the connections be-
tween vertices is sufficient to make the graph robust under vertex or edge
removal provided (d*) — oo. Assortative correlations makes the situation
even better, they can lead to a graph robust to random damage even with
a finite second moment of the degree distribution. However, the solution of
optimization problems become harder. On the contrary, disassortative corre-
lations compete again the formation of the giant component and can make a
graph fragile even with a divergent second moment. Moreover, the solution
of optimization problems becomes easier.
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Chapter 6

Assigning proteins functions
from protein-protein
interaction data

The determination of proteins’ activity and functionality in cells is a costly
task requiring an extensive biochemical analysis. The inevitably faster tech-
niques for genes and protein sequencing has largely increased the number of
known protein sequences but the determination of their structures and func-
tions proceeds at a much slower pace. Furthermore, in the last few years,
the possibility to study organisms on a genome or proteome wide-scale has
radically changed the approach to the problem at hand. The sequencing of
entire genomes and the possibility to access gene’s co-expression patterns
have moved the attention from the study of single proteins or small com-
plexes to that of the entire proteome (see [67] for an historical perspective ).
In this context, the search for reliable methods for proteins’ function assign-
ment is of uttermost importance. These methods ought to be useful both to
complement experiment of functional genomics and to correct possible errors
due to the experimental method itself.

Previous approaches to deduce the unknown function of a class of pro-
teins have exploited sequence similarities with proteins of known function
or clustering of co-regulated genes [154, 62]. It has been noted [76], how-
ever, that the correlation between sequence and function is far less evident
than that between sequence and structure. A different perspective has been
proposed by Pellegrini et al. [119]. They explored the hypothesis that func-
tionally linked proteins (those participating in the same metabolic pathway,
for example) have evolved in a correlated way and , therefore, very likely
have the same phylogenetic profile. Uetz [132] and Ito [70] adopted a two-
hybrid assay technique to map the pairwise interactions among proteins of
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Saccharomyces Cerevisiae and used such map to classify proteins of un-
known function depending on the known functions of the partners directly
interacting with them. This relies on the assumption that if two proteins in-
teract, then they are most likely participating to some common activity and
therefore they share at least one functional class. Similar methods exploit-
ing this idea have been presented in [125, 65]. More recently, two different
groups [56, 66] have envisaged a strategy to identify complexes composed of
three or more proteins. A function was assigned to all the proteins which
participate in a complex with at least a component of known function. On
the other hand, two-hybrid experiments are known to be prone to false pos-
itives and it is hard to establish to which extent protein-protein interaction
networks can be considered complete and error free. It would be therefore
highly desirable to dispose of a general approach which allows not only to
make predictions for otherwise uncharacterized proteins, but that, at the
same time, addresses the reliability/robustness of the prediction itself upon
eventual errors or incomplete informations.

Here we propose a general and flexible approach to make function pre-
diction once the map of physical interactions between proteins and the func-
tional classification of them is only partially given. The strategy is based on
the assumption that “interaction implies a common function”, and optimizes
the number of shared functionalities among all interacting proteins, with the
constraints imposed by the whole network of interactions and by the subset
of proteins with already assigned functional classes. With this method the
whole network of interactions through its complex topology is taken into ac-
count and it is worth noting that the study of the network topology itself
offers unexpected insights on the functionality of the relative organism as a
whole [143, 72].

6.1 Protein interaction network

Protein-protein interactions are intrinsic to virtually every cellular process
ranging from DNA replication, transcription, splicing and translation, to
secretion, cell cycle control, intermediary metabolism, formation of cellular
macro-structures and enzymatic complexes. The formation of large cellular
structures such as the cytoskeleton, the nuclear scaffold, and the mitotic
spindle result from complex interactions between proteins. Relatively smaller
structures such as nuclear pores, centrosomes and kinetochores are beginning
to be characterized and, in each case, protein-protein interactions seem to
play a crucial role.

Apart from the evident structural requirements provided by a plethora of
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Figure 6.1: Principle of the two-hybrid experiment. (A), (B) Two prove
proteins, one containing the DNA-binding domain (DB) and one that con-
tains an activation domain (AD), are co-transfected into an appropriate host
strain. If the proteins interact the DB and AD are brought into proximity
and can activate the transcription of reporter genes (here LacZ). Reprinted
from [133].

protein-protein interactions, there are a large number of transient protein-
protein interactions that control and regulate a large number of cellular pro-
cesses. All modifications of proteins involve such transient protein-protein
interactions. Indeed kinases, phosphatases, glycosyl transferases, acyl trans-
ferases and proteases interact only transiently, i.e. for a limited period of
time, with their protein substrates. Such protein-modifying enzymes encom-
pass a large number of fundamental processes such as cell growth, the cell
cycle, metabolic pathways and signal transduction. Surprisingly, very large
protein complexes also mediate many of these enzymatic activities.

In general, assemblies of proteins have been analyzed using two comple-
mentary approaches: the biochemical and the genetic. Apart from these
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Figure 6.2: Degree distribution of the protein interaction graph. The solid
line is a power law decay pg ~ d~7 with v = 2.5.

two methods, a new technology has been developed during the past decade
[88]. This technique, entitled “two-hybrid” or “interaction trap”, enables not
only the identification of interacting partners but also the characterization
of known interaction couples and even embodies the technological means to
manipulate protein-protein interactions. The two-hybrid technique exploits
the fact that the DNA-binding domain of the transcription factor GAL4
is incapable of activating transcription unless physically, but not necessary
covalently associated with an activating domain (see Fig 6.1).

We have analyzed the graph representing the protein interaction net-
work (PIN) of Saccharomices Cerevisiae [125, 70] as obtained from different
two-hybrid experiment sets. The first data set reported by Uetz et al [132]
contains 957 identified interactions (edges) among 1004 proteins. The sec-
ond data set reported by Schwikowski et al [125] is composed 2238 identified
interactions between 1825 proteins. On the other hand, Ito et al [70] have
reported two data sets. A full data set with all the 4549 interactions they
detected among 3278 proteins and a core data set with less uncertainty con-
taining 841 interactions among 997 proteins. The degree distribution of these
data sets is shown in Fig. 6.2. As it can be seen, there is an appreciable over-
lap between the degree distribution obtained form the three different sources.
Moreover, they can be fitted by a power law decay pg ~ d™7 yielding a power
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Figure 6.3: Average nearest-neighbors degree as a function of the vertex
degree for the protein interaction graph.

law exponent y ~ 2.5 in agreement with previous reports [144, 72].

Nevertheless, the plot of the average degree among nearest-neighbors in
Fig. 6.3 reveals some visible differences. The full data set of Ito et al,
the largest among them, exhibits a stronger decreasing dependency with
increasing vertex degree than the rest. Hence, we do not know up to what
extent this data is reliable and, therefore, in the following we will use the
second largest data set, that reported by Schwikowski et al [125].

6.1.1 Comparison with the coupled duplication diver-
gence model

Proteins are divided in families according to their sequence and functional
similarities [63, 131]. The existence of these families can be explained using
the evolutive hypothesis that all proteins in a family evolved from a com-
mon ancestor [113]. This evolution is thought to take place through gene or
entire genome duplications, gaining redundant genes. After the duplication
redundant genes diverge evolving to perform different biological functions.
According to the classical model [113] after duplication the duplicate genes
have fully overlapping functions. Later on, one of the copies may either be-
come nonfunctional due to degenerative mutations or it can acquire a novel
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beneficial function and become preserved by natural selection. In a more
recent framework [54] it is proposed that both duplicate genes are subject to
degenerative mutations loosing some functions but jointly retaining the full
set of functions present in the ancestral gene.

The evolution of the genome can be translated into the evolution of the
protein-protein interaction network where each vertex represents the protein
expressed by a gene. After gene duplication both the expressed proteins
will have the same interactions. This corresponds to the addition of a new
vertex in the network with edges pointing to the neighbors of its ancestor.
In addition positive and negative mutations can be modeled by the creation
and lost, respectively, of the edges leading to the divergence of the duplicates.
These are the main ingredients of the coupled duplication divergence model
discussed in the fourth chapter and defined as follows. At each time step a
vertex is added according to the following rules

e Duplication: a vertex i is selected at random. A new vertex i/ with an
edge to all the neighbors of 7 is created. With probability ¢, an edge
between i and i/ is established (self-interacting proteins).

e Divergence: for each of the vertices j connected to ¢ and i/ we choose
randomly one of the two edges (z,7) or (47, j) and remove it with prob-
ability 1 — ge.

The peculiarities of the coupled duplication-divergence model manifest
quantitatively in different features characterizing the topology of the protein
interaction network. Among these the tendency to generate biconnected
triplets and quadruples of vertices. These are sets of vertices connected by
a simple cycle of edges, thus forming a triangle or a square. In the coupled
duplication divergence model triangle formation is a pronounced effect since
with probability ¢,q. the duplicating genes and any neighbor of the parent
gene will form a new triangle. Analogously, duplicating genes and any couple
of neighbors of the parent gene will form a new square with probability Q.

An indication of triangles formation in networks is given by the cluster-
ing coefficient Ca = 3Na/N, [110] where Ny is the number of biconnected
triplets (triangles) and N, is the total number of simply connected triplets.
Similarly it is possible to define the square coefficient Co = 4Ng/Ny, with
Ng the number of squares in the network and Ny the number of simply
connected quadruples. By measuring these quantities in the yeast Saccha-
romices Cerevisiae protein interaction network [125], we obtain Ca = 0.23
and Cr = 0.11. These values are one order of magnitude larger than those
obtained for a scale-free random graph and with other growing network mod-
els, for which it has been shown that the clustering coefficient is algebraically
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Figure 6.4: Zipf plot of vertex degrees for the Saccharomices Cerevisiae pro-
tein interaction network [125] and the coupled duplication-divergence model
with ¢, = 0.1, ¢. = 0.3 with /V = 1825. The vertex degree d is plotted as a
function of its rank in decreasing order of d. Error bars represent standard
deviation on a single network realization. The straight line is a power law
with exponent 1/(1 — ) with v = 2.5, which will correspond to a power law
connectivity distribution p(k) ~ k7.

decaying with the network size [3]. On the contrary, the coupled duplication-
divergence model shows clustering coefficients saturating at a finite value, and
it is possible to tune the parameters g, and g, in order to recover the real
data estimates, keeping the average degree as that of the PIN (d) ~ 2.4.
A reasonable agreement with the values obtained for the real PIN is found
when ¢, ~ 0.1 and ¢, ~ 0.3, which yield networks with Cx = 0.10(5) and
Co = 0.10(2). The value of ¢, obtained in this way is close to the fraction of
self-interacting proteins reported for S. Cerevisiae (0.04) [132]. Thus, consid-
ering that g, is an effective parameter that takes into account self-interactions
but that may also include other effects, the agreement is very good.

Noticeably, for these values of the parameters the coupled duplication-
divergence model generates networks where other quantities are in good
agreement with those obtained from experimental data. A pictorial represen-
tation of this agreement is provided in Fig. 6.4, where we compare the Zipf
plot of the degree obtained from 10® realizations of the coupled duplication-
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Figure 6.5: Comparison of the average nearest-neighbors degree as a func-
tion of the vertex degree for the protein interaction graph and the coupled
duplication-divergence model.

divergence model with optimized ¢, and ¢. and that of the yeast Saccha-
romices Cerevisiae protein interaction network. The generated networks are
composed by N = 1825 vertices as for the real data. The agreement is very
good, considering the relatively large statistical fluctuations we have for this
network size. Error bars on the numerical data refer to statistical fluctu-
ations on single realizations. It is worth noticing, that despite the evident
multi-fractal nature of the coupled duplication-divergence model, for a single
realization of size consistent with that of the protein interaction network, the
intermediate d behavior can be approximated by an effective algebraic decay
with exponent 1/(y—1) with v =~ 2.5 as found in Ref.[72]. However, the plot
in Fig. 6.4 shows a curvature that deviates form the algebraic behavior, evi-
dencing the multi-fractal nature of the degree distribution. Moreover, using
the same parameters we also found a reasonable agreement with the degree
correlations, as it is shown in Fig. 6.5 for the average nearest-neighbor degree
as a function of the vertex degree. The different for the largest degrees is
probably due to finite size effects.

The existence of a multi-fractal behavior does not change, at least quali-
tatively, the main results obtained in the previous chapter. To show that we
examine the behavior of the coupled duplication divergence model under ran-
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Figure 6.6: Relative size of the giant component after a fraction f of the
vertices is removed for the coupled duplication divergence model and the
yeast protein interaction network.

dom vertex removal and compare it with those obtained for the yeast protein
interaction network. Resilience to damage is indeed considered an extremely
relevant property for a network. From an applicative point of view it gives a
measure of how robust a network is against disruptive modifications and how
far one can go in altering it without destroying its connectivity and therefore
functionality [74, 72]. In the random deletion process (site percolation prob-
lem) a fraction f of vertices and their incident edges is removed. Fig. 6.6
shows the relative size of the giant component versus the fraction of removed
vertices for the yeast protein interaction network and graphs generated us-
ing the coupled duplication-divergence model, using the model parameters
obtained above. As in pure power law graphs, the tolerance to damage is
determined by the scale-free nature of its multi-fractal distribution and the
obtained curves are in very good agreement with the corresponding ones for
the yeast data.

6.2 Global optimization method

Once we know the topology of the graph substrate let us introduce our pro-
tein function assignment method. Suppose that a subset of the proteins are
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Figure 6.7: Schematic representation of the protein function assignment
method. Sub-graph of the protein-interaction network of the yeast Sac-
charomices Cerevisiae. Proteins in gray boxes are unclassified (unknown
function) while the others are classified proteins with the functions within
the brackets and labelled according to the following criteria: 1- cell growth;
2- budding, cell polarity and filament formation; 3- pheromone response,
mating-type determination, sex-specific proteins; 4- cell cycle check point
proteins; 5- cytokinesis; 6- TRNA synthesis; 7- tRNA synthesis; 8- transcrip-
tional control; 9- other transcription activities; 10- other pheromone response
activities; 11- stress response; and 12- nuclear organization. Given one of
these proteins of unknown function if we take as a prediction the function
that appears more in the neighbor proteins of known function then we obtain
the following classification (from top to bottom) YNLI127W (2), YDR200C
(3,4,10) and YLR238W (12). Our method, however, considers also the inter-
actions among unclassified proteins. If we iterate once more the “majority
rule” by taking into account the interactions between the three unclassified
proteins, we obtain the following classification YNL127W (2,4), YDR200C
(3,4,10) and YLR238W (12). In this way we find another possible function
for YNL127W. This is actually the spirit of our method, we take advantage
of the prediction we are making for proteins of unknown function and apply
a global optimization method.
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known to belong to one or more functional classes. A function o;, chosen
among all F' possible functions is assigned to each unclassified protein 7. F
is the total number of functions we consider and the finer the definition of
function the greater is F'. Assigning to an unclassified protein the most com-
mon function(s) present among the classified interacting proteins (“majority
rule” assignment) is rather straightforward and it is the method adopted in
[125, 65]. In most cases [93], however, very few unclassified proteins have
more than one interacting protein with known function. In addition, in these
few lucky cases, the interacting proteins with known functions do not usually
have shared functionalities (see Fig.(6.7)). In this perspective, the use of the
“majority rule” assignment of the functionality is rather unsatisfactory since
all links between proteins with unknown function are completely neglected.
This implies a very partial use of the knowledge of the protein-protein inter-
action network. Most important, the final configuration of assigned functions
to unclassified proteins ought to be consistent with the rules used to deter-
mine the functions themselves. In other words to an unclassified protein with
one or more unclassified partner(s) must be assigned functions consistently
with the functions assigned to the unclassified partners themselves. This
points out to a method in which unknown proteins influence the “major-
ity rule” assignment in a self-consistent way once their functions have been
selected.

Our functional prediction strategy is based on a global optimization prin-
ciple: a score or energy is associated to any given assignment (configuration)
of functions for the whole set of unclassified proteins. The score is lower
in configurations that maximize the overlap of functions in interacting pro-
teins. The new ingredient is that the contribution to the total score of a given
functional assignment of an unclassified protein is computed as the number
of classified and unclassified neighbor proteins with that function.

To each unclassified protein ¢ a function o; is assigned, chosen among the
F possible ones in order to globally minimize the following score function:

E=- zn: Jijég-i’o'j - ihz(az) (61)
i=1

i<j=1

where J; ; is the adjacency matrix of the interaction network for the unclassi-
fied proteins ( J; ; is equal to 1 if protein ¢ and j interact and are unclassified,
0 otherwise), d;; is the discrete delta function and h;(o;) is proportional to
the number of classified partners of protein ¢ with function o;. The “major-
ity rule” of [132, 70] corresponds to minimize solely the second term on the
r.h.s. of equation (6.1). The above can be achieved with local methods ( i.e.
considering successively and independently each protein ). In our method,
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the contribution to the total score of assigning a protein ¢ to functional class
o; depends also on the assignment made to all other proteins, resulting in
a much harder computational task. The advantage is that the underlying
requirements that “interaction requires a common function” is applied also
to interactions between previously unclassified proteins, that are completely
ignored with the “majority rule”.

Hence, the determination of the functions of all unclassified proteins in
the network becomes a global optimization problem and can not be done on
the basis of the local environment only. Finding the optimal function assign-
ment corresponds to determine the minimal energy (ground state) of what
in statistical mechanics is known as the Pott’s model [152] with a random
field, the latter represented by the proteins with known function. In general
the resulting computational problem is frustrated. It is, in fact, generally
impossible to satisfy all the constraints imposed by classified proteins on
their interacting unclassified partners. This lead to a multiplicity of optimal
solutions which contains the minimal amount of frustration. The existence
of multiple solutions allows the objective assignment of multiple functions to
most unclassified proteins (see Fig. 6.7). Depending on the complexity of the
underlying graph and on the boundary conditions, the energy minimization
represents a hard computational task.

To overcome the computational difficulties and find the configuration or
configurations that minimize E we perform a simulated annealing [123] intro-
ducing an effective temperature 7. We start with an initial random configu-
ration {o;}. Then, at each Monte-Carlo step, we select one protein at random
and change its state from o; to o}, where o is selected at random among the
possible states of protein 4 with the constraint oj # o;. We then compute
the energy difference AE = E' — E between these two configurations. If
AE < 0 we accept the new configuration. If AE > 0 we accept the new
configuration with probability exp(—AE/T). Otherwise we return to the
original configuration. This Monte-Carlo step is repeated until E reaches an
stationary value and, when this happens, T" is decreased by a tiny amount.
These two process, equilibration at a given T and decrease of T' is repeated
until the protein states remain unchanged for a sufficiently long time. At the
end the protein states are our predicted functional classification. Since the
minimum energy solution is not unique the simulating annealing process was
repeated several times starting from different initial configurations. Finally
we compute the fraction of times p;s the protein ¢ was observed in the final
state s, which give us an estimate of the probability that protein ¢ belongs
to the functional classification s.

In instances of this type simulated annealing technique is an appropri-
ate tool, allowing to obtain the optimal solutions. Indeed, the optimization
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Figure 6.8: Prediction accuracy of the protein function assignment method.
The success rate of our method after a fraction f, of classified proteins have
been set unclassified. Each point represents the probability that the func-
tional classification of these proteins, as predicted by our method, coincides
with their real classification as a function of the number of their interacting
partners d and for two values of f,. The inset shows the overlap (©;(f.)
average over all unclassified proteins) between the functional predictions ob-
tained using two different interaction networks, the original and one with a
fraction f. of its links rewired, as a function of f..

procedure is repeated several times to account for the non uniqueness of the
optimal configurations and a prediction for the functional classification is
finally made by taking those functions that, for each unclassified protein,
occurred more often in the whole set of simulated annealing processes .

The dataset used in this work is relatively small and, therefore, simulating
annealing techniche should in principle give the exact ground states. In is in-
teresting to know however what will happens when the method is applied to
other organisms with a larger protein-protein interaction graph. We do not
have any definitive answer but we can make some partial conclusions taking
into account our analysis for the vertex covering problem. In particular, we
found that in uncorrelated or negatively correlated graphs with power law
degree distributions we can solve hard optimization problems using poly-
nomial time algorithms with an error of the order N~!'. Fortunately, the
protein-protein interaction network, and more generally biological networks
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[103], exhibit negative correlations. Hence, we expect that optimization prob-
lems on top of them can be solved in polynomial time exploiting the graph
topology.

6.3 Prediction accuracy

We have applied our functional-prediction method to the yeast Saccharomices
Cerevisiae protein-protein interaction network. The interaction data was ob-
tained from Ref. [125], it contains N = 1826 proteins with £ = 2238 identi-
fied interactions, and some of its topological properties were discussed above.
The functional classification was obtained from the MIPS database [1]. The
MIPS finer classification scheme contains F' = 424 functional categories, plus
two categories for proteins with no assigned function: ”CLASSIFICATION
NOT YET CLEAR-CUT” and "UNCLASSIFIED PROTEINS”. The data
contains n = 441 proteins in these two last categories [125]. We used our
global optimization method obtaining functional assignments for all the pro-
teins listed within these two categories.

6.3.1 Protein function uncertainty

In order to asses the reliability and robustness of our method we have done
several tests. As a first test we consider a single protein in the classified
proteins set as unclassified. We then assign a function to this protein and
define a successful prediction if the most probable function obtained using
our method is in the list of the functions actually performed by that pro-
tein. By repeating this experiment on several different classified proteins, we
measured the success rate in recovering the actual protein functions. This
procedure can be repeated by progressively loosing information by ignoring
the functional classification of a fraction f, of classified proteins and adding
them to the set of unclassified proteins. In this way, we can get a quantita-
tive estimate of the reliability of our predictions as a function of the amount
of available information on the network. Fig. 6.8 shows the percentage of
successful predictions as a function of the degree of the proteins for different
values of f,. Some interesting conclusions can be drawn from this test. First
we note that the prediction quality for poorly connected vertices, degree 1
and 2, decreases to just 30%. On the contrary, in the case of unclassified pro-
teins with degree larger than 2, even with the loss of a substantial part of the
information (up to f, = 0.4) a correct prediction can be made between 60%-
70% of the cases, quite independently of the degree of the protein involved
in the prediction. This implies that the availability of further information
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regarding the number of classified proteins would not radically change the
rate of prediction success on the proteins with a higher number of interacting
partners.

6.3.2 Protein interaction uncertainty

A second test concerns the presence of errors in the protein network. Tt is
known that protein-protein interactions obtained from two hybrid experi-
ments contain an amount of false positives and negatives. The effect of this
uncertainty can be modeled by re-wiring a certain fraction f, of protein in-
teractions. More precisely, with a probability f., each reported interaction is
ignored and a new interaction is randomly drawn between two proteins that
do not interact according to the available data. In this way we obtain a new
network with a certain degree of similarity, depending upon f,, with the orig-
inal one. We implement our method on this modified network and determine
new predictions for the unclassified proteins. A quantitative comparison with
the predictions made using the original network is provided by the overlap
function defined as follows. Let p;s(f.) the probability, as obtained from our
method implemented on the network with a fraction f. of re-wirings, that
the unclassified protein ¢ belongs to the functional classification s. The case
Pis(0) then corresponds to the functional classification obtained using the
original network. The overlap between the protein function prediction in the
two networks can be expressed as

F

Gi(fe) = Z V pis(o)pis(fe)a (62)

s=1

that equals 1 when pi(f.) = pis(0) for all s. We computed the average of
©;(f.) restricted to unclassified proteins with d interacting partners, obtain-
ing that it does not vary too much with the node degree. In the inset of Fig.
6.8 we plot the average of ©;(f.) over all unclassified proteins as a function
of fe. For 10% of errors (f, = 0.1), the overlap is around 0.85%. This shows
that a few misplaced interactions due to experimental erroneous results do
not preclude an effective evaluation of the proteins’ functions. Of course
larger levels of errors lower the overlap, signaling that the two networks pro-
vide rather different configurations of functional assignment.

6.4 Conclusions

The method we propose appears as a more general tool for the assignment
of protein function pointing out that protein-protein interaction data can
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be an effective framework for deducing the function of unclassified proteins.
The method allows also to determine multiple functionalities and takes into
account self-consistently the effect of unclassified proteins in the final as-
signment configuration. Finally, the validity tests performed show that the
method tolerates the inherent imperfection and the not complete nature of
the protein networks. Since data of protein-protein interactions are accu-
mulating rapidly, we are confident that our method might provide a relevant
contribution in obtaining valuable informations from the global-web like view
of the protein interactions.
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Chapter 7

(zeneral conclusions

In this thesis the existence, origin and consequences of degree correlations
and hierarchy in complex networks have been investigated. Different met-
rics were proposed to characterize these correlations and hierarchy. Using
them we conclude that, in addition to power law degree distributions, degree-
degree correlations and clustering hierarchies are common features of many
real networks. Moreover, they can be used to discriminate between differ-
ent networks that that appear similar simply on the basis of their degree
distribution.

As a further step in the understanding of complex networks, one hypoth-
esis for the origin of these degree correlations and clustering hierarchy was
analyzed. It was shown that preferential attachment, degree correlations
and clustering hierarchy appear naturally in growing graph models with lo-
cal rules, offering an explanation for the ubiquity of these properties in real
graphs.

The properties of models defined on top of graphs with degree correlations
were also studied. A Bethe-Peierls and a replica symmetric schemes were
developed to compute different magnitudes characterizing these models. A
particular attention has been devoted to the problems of dilute percolation
and vertex covering. It was obtained that assortative correlations lead to
graphs that are more robust under random vertex or edge removal but, at
the same time, the problems of combinatorial optimization on top of these
graphs become harder. On the contrary, dissasortative correlations make the
graph more fragile and facilitates the solution of combinatorial optimization
problems.

All these results were applied to the study of the protein-protein inter-
action network and the protein function prediction. A statistical mechanics
model was developed to make protein function predictions using protein in-
teraction data, resulting in a global optimization problem. The reliability
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of this method was analyzed through its application to the yeast, obtaining
satisfactory results. In a more general scope, taking into account that biolog-
ical networks exhibit disassortative correlations, the results described above
indicate that the use of global optimization methods to determine some of
their properties is quite efficient, with a better performance than heuristic
methods based in simple local schemes.
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