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INTRODUCTION 
 
The Human Genome Projects: the Public effort and the Celera consortium 
 
The sequence of the human genome is of interest for different reasons: it is the largest genome to be 

extensively sequenced so far, being 25 times as large as any previously sequenced genome and 

eight times as large as the sum of all such genomes; it is the first vertebrate genome to be 

extensively sequenced and, uniquely, it is the genome of our own species. Along this, its analysis is 

going to allow to investigate the mechanisms underlying human evolution, the causation of diseases 

and the interplay between the environment and heredity in defining the human condition. 

The beginning of year 2001 was characterized by the simultaneous publication of two different 

works concerning the initial sequencing and analysis of the human genome, one presented by the 

International Human Genome Sequencing Consortium (Lander ES et al, Nature 2001) and the other 

by Celera Genomics in collaboration with partners from both public and private institutes (Venter 

CJ et al, Science 2001). 

One of the first feature the draft genome sequence makes it possible to explore is the variation in 

GC content, which appears to be extremely high, as there are huge regions (>10 Mb) with GC 

content far from the average. The so-called CpG islands (stretches of unmethylated DNA enriched 

in CpG dinucleotides) are particularly interesting  because  many  are  associated  with  the  5’  ends  of  

genes (Bird AP, Trends Genet 1987), while others may be part of repeat elements (playing 

sometimes the role of control regions). The relative density of CpG islands correlates reasonably 

well with estimates of relative gene density on the corresponding chromosomes, based both on 

previous mapping studies involving ESTs (Fig.1) and on the distribution of gene predictions 

obtained by analyzing the draft genome sequence. 

 
Figure 1. Number of CpG islands per Mb for each chromosome, plotted against the number 
of genes per Mb (From: Lander ES et al, Nature 2001). 
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On the basis of these first considerations, there seemed to be about 30,000-40,000 protein-coding 

genes in the human genome - only about twice as many as in worm or fly - corresponding to less 

than 5% of the human genome. However, more recent estimations that also introduced corrections 

for ploidy (Mattick JS, Nat Rev Genet 2004; Cheng J et al, Science 2005; Prasanth KV et al, Cell 

2005) have lowered the number of protein-coding genes to 20,000-25,000 while increasing the 

overall gene number, so that actually it is thought that, although about 4% of the human/mouse/rat 

genomes are under selective pressure, only about 1.5% appear to be protein coding. Along that, the 

genes are more complex, with more alternative splicing events generating a larger number of 

protein products and with definitely more complex mechanisms of transcription regulation. 

Moreover, the identification of new human genes is complicated by the fact that they tend to have 

small exons (encoding an average of only 50 codons) separated by long introns (some exceeding 10 

kb), which creates great accuracy problems to gene prediction algorithms. For this reason cDNA 

libraries are one of the more precious tools, as the comparison of cDNA sequences from different 

organisms can allow the attribution of functional roles to unknown human genome regions, 

although this method can only be applied to strongly conserved genes, while rapidly evolving genes 

are less identifiable.  

The remaining ~98% of the human genome is made of non-coding sequences, more than 50% being 

represented by repeat sequences of different kinds. The distribution of these repeated elements at a 

small genome scale is strikingly variant: while some regions of the genome are extraordinarily 

dense, some other regions are nearly devoid of repeats. The absence of repeats may be a sign of 

large-scale cis-regulatory elements that cannot tolerate being interrupted by insertions. The four 

regions with the lowest density of interspersed repeats in the human genome are the four homeobox 

gene clusters: HOXA, HOXB, HOXC and HOXD. Each locus contains regions of around 100 kb 

containing less than 2% interspersed repeats. Ongoing sequence analysis of the four HOX clusters 

in different gnathostome lineages shows a similar absence of transposable elements, and reveals a 

high density of conserved noncoding elements (Chiu C et al, Proc Natl Acad Sci USA 2002). If this 

consideration is correct, exploring the human genome looking for similar regions may allow to 

identify new elements regulating human genes of major importance.  
 

Noncoding transcribed regions 
Recently there has been a blast in the discovery of transcribed molecules that play roles different 

from these of templates or members of the protein synthesis apparatus (Mattick JS, Nat Rev Genet 

2004; Storz G et al, Annu Rev Biochem 2005; Griffiths-Jones S et al, Nucleic Acids Res 2005). 

Some of the best known members of this family of noncoding RNAs (ncRNAs) include small 
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nucleolar RNAs (snoRNAs), necessary for molecular processing and modification in the nucleolus, 

and small nuclear RNAs (snRNAs), that play a critical role in the spliceosome activity. However, 

along with these critical components of cellular enzymes, a huge number of newly identified RNAs 

have been found to function as regulators in almost all the steps of gene expression pathways 

(Fig.2), like microRNAs (miRNAs) that are involved in the regulation of higher eukaryotes 

processes – such as development, cell-death and fat metabolism- by repressing the translation of 

their targets. 
 

 
Figure 2. Steps in gene expression at which RNAs have been found to modulate gene 
expression. Bacterial and plasmid (red) and eukaryotic (blue) ncRNAs exert positive (arrows) and 
negative (bars) regulation at every step in gene expression (From: Storz G et al, Annu Rev Biochem 2005). 
 
The existence of RNA regulatory molecules represents a great advantage, from an evolutionary 

point of view, as many of the ncRNAs known thus far are expressed and function during specific 

developmental stages or under stress conditions, when resources are limited and when the lower 

input of energy and shorter time required to synthesize a short ncRNA compared to a protein can 

prove critical for cell survival. 

Actually, the best known mechanism by which ncRNAs fulfil their functional role is by base pairing 

with target transcripts. cis-encoded elements are encoded at the same genetic location, but on the 

opposite strand to the RNAs they act upon and therefore contain perfect complementarity to their 

target, while trans-encoded RNAs are encoded at a chromosomal location distinct from the RNAs 

they act upon and generally do not exhibit perfect base-pairing potential with their targets. 
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Among the human cis-encoded elements those that have received extensive attention are certainly 

the small interfering RNAs (siRNAs) (Montgomery MK, Methods Mol Biol 2004; Meister G and 

Tuschl T, Nature 2004). 

These ~21–25nt RNA fragments are usually derived from double-stranded RNA of exogenous 

origin and are thought to be a defense against foreign RNA. However, there are examples in which 

sense and antisense transcripts derived from endogenous sequences (i.e. repeated sequences) can 

“silence”  the  expression  of  the  sense  transcript by targeting the sense transcript for degradation or 

by modulating the structure of the chromosome encoding the RNAs (Lippman Z and Martienssen 

R, Nature 2004). The details by which siRNAs modulate chromatin structure remain to be 

delineated, as well as only a very limited number of the other antisense transcripts have been shown 

to exert a clear regulatory effect on the cis-encoded mRNAs. One rare, known example is the Rev-

ErbAα RNA, an antisense transcript detected in B lymphocytes. This antisense transcript overlaps 

one of two antagonistic sites in the mRNA encoding the thyroid hormone receptor, and expression 

of the Rev-ErbAα RNA correlates with a change in the ratio between the two splice forms of the 

thyroid hormone receptor transcript (Hastings ML et al, J Biol Chem 2000). 

In contrast to the relatively few chromosomal cis-encoded antisense RNAs known to have function, 

many chromosomal trans-encoded antisense RNAs have been found to exert regulation in 

eukaryotes, although the reasons of this behaviour are not clear. The trans-encoded microRNAs 

(miRNAs) found in worms, flies, plants, and vertebrates base pair with mRNAs and modulate 

mRNA stability and translation, analogous to many of the bacterial trans-encoded antisense RNAs. 

The consequences of base pairing, although, remain to be understood, but in general it seems that 

the perfect or near-perfect base pairing associated with siRNAs and some miRNAs leads to RNA 

degradation, whereas the imperfect base pairing associated with other miRNAs leads to repression 

of translation. However, it is not known what other factors contribute to the outcome of ncRNA- 

target-RNA pairing, and another problem that deserves further attention is the question of how 

trans-encoded RNAs are turned over once the environmental or developmental signal leading to 

their induction is removed. 

Along with ncRNAs that act by base pairing, it has been recently found that some other regulatory 

RNAs directly bind protein targets modifying their activity.  

One possibility is that these RNAs bind and modulate the function of proteins involved in 

transcription, and different examples of this kind exist among human ncRNAs: the U1 snRNA, part 

of the spliceosome, also binds to the general transcription factor TFIIH stimulating transcription 

initiation in a way that is still unknown (Kwek KY et al, Nat Struct Biology 2002); the steroid 

receptor RNA activator (SRA) RNA acts as a co-activator to stimulate the transcription of steroid 
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receptor-dependent genes, but its mechanism is unknown, too (Lanz RB et al, Cell 1999); finally, 

the NRSE dsRNA, a small, double-stranded RNA that is bound by the NRSF/REST protein (a 

negative transcriptional regulator that restricts neuronal gene expression to neurons) due to its 

similarity to the NRSF/REST-binding site and that also seems to be able to repress the activity of 

the NRSF/REST repressor, thus suggesting the hypothesis that NRSE dsRNA could compete for 

NRSF/REST binding to its promoter sequences (Kuwabara T et al, Cell 2004).  

Another mechanism (although quite rare) is that some ncRNAs can bind and modify the activity of 

proteins that regulate mRNA stability and translation: the dendritic BC1 RNA appears to promote 

the interaction between FMRP and its target mRNAs, thus helping FMRP in inhibiting mRNA 

translation (Zalfa F et al, Cell 2003). This possibility to regulate gene expression at a post-

transcriptional level is very important, as it ensures a fast response to developmental and 

environmental signals. 

It also seems that during evolution, probably due to reverse transcription events involving ncRNA 

genes, a great number of pseudogenes appeared, some of which being able to regulate the 

expression of their homologous protein-coding genes (Hirotsune S et al, Nature 2003), and different 

kind of SINEs and Alu repeats seem to have been generated, too, in this way. 

It is also important to remember that, thus far, the attention has always been focused mainly on 

polyadenylated RNAs that are processed and exported to the cytoplasm, but recently (Kampa D et 

al, Genome Res 2004) it has been demonstrated that the set of non-polyadenylated nuclear RNAs 

may be very large, and that many such transcripts arise from so-called intergenic regions (Cheng J 

et al, Science 2005), with 36.9% (called bimorphic) transcribed regions of the human genome 

existing also in the non-polyadenylated form and 43.7% (many with an exclusive nuclear location) 

existing ONLY in the latter status, suggesting that novel regulatory mechanisms may be involved in 

the identification of transcripts whose polyadenylation states are altered as means of regulation. 

Finally, compartmentalization has been identified as another possible way of regulating gene 

expression. A ~8 kb nuclear-retained poly(A)+ RNA has in fact been found (Prasanth KV et al, Cell 

2005) to regulate the level of its protein-coding partner, the shifting from one transcript to the other 

one occurring by alternative promoter and poly(A) site usage. This work, then, suggests a new role 

of the nucleus in harbouring RNA molecules that are not immediately needed to produce proteins 

but whose cytoplasmic presence is rapidly required upon physiologic stress. 

Until now, ncRNAs genes have been in general very hard to identify during genome sequence 

analysis owing to their lack of defined sequence features, and also because of their small size and 

because they are resistant to frameshift and nonsense mutations, which apply only to protein coding 

genes. For this reason, new methods are currently being developed for the detection of new 
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ncRNAs, both computational (heavily based on sequence conservation, thus limited in their range 

of application) and direct (such as size fractionation of total RNA or direct cloning after size 

selection steps), although many aspects of ncRNAs has still to be unveiled before exhaustive 

prediction become possible. 
 

Protein coding genes 
Although it has been demonstrated that noncoding regions of the human genome contain elements 

that play fundamental roles in many processes (both structural and functional), protein coding 

regions are thus far those on which the attention has been mainly focused. The identification of 

protein-coding genes, however, is also one of the most difficult tasks. 

The availability of full-length cDNA sequences, collected in the NCBI database called RefSeq 

(Pruitt KD et al, Nucleic Acids Res 2001), has allowed to draw the first, partial conclusions on the 

exon-intron structure of human genes. First of all, it seems that while there is considerable variation 

in overall gene size and intron size, the variation in the size distribution of coding sequences and 

exons is less extreme. This feature has also been verified in other organisms such as worm and fly, 

although in the latter cases the mean size for internal exons is larger (Fig.3a, b), thus suggesting the 

existence of an exon-driven component of the splicing machinery (Sterner DA et al, Proc Natl Acad 

Sci USA 1996). 
 

 
Figure 3. Size distribution of exons and introns in sequenced genomes (From: Lander ES et al, 
Nature 2001). 
 

RefSeq mRNAs mapping to the human draft genome sequence has also allowed to study the 

frequency of alternative splicing, an event that seem to have affirmed itself during evolution, 

reaching its top in mammals, and in particular in man, where it seems that at least 35% of genes 

undergo this process, compared to just 22% in worm. Accurate analysis has involved in particular 

human chromosomes 22 (whose complete sequence is available) and 19 (particularly gene-rich). 
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Chromosome 22 appears to have 60% of its genes involved in alternative splicing, with an average 

of 2.6 spliced transcripts per gene, while spliced genes located on chromosome 19 have an average 

of 3.2 splice forms. 70% of these splicing events occur inside the coding sequence, with 20% 

occurring in terminal exons (that in 24% of considered cases are also involved in alternative 

polyadenylation). 

Unfortunately the RefSeq database contains only a fraction of all the existing human transcripts and 

is not exhaustive, di per se, in allowing to define the overall amount of human protein-coding 

genes. New gene identifying approaches, then, are required in order to derive more accurate 

estimates and in the past 10 years different types of data have been used, such as ESTs (Fields C et 

al, Nature Genet 1994; Liang F et al, Nature Genet 2000), cross-species genome comparisons 

(Roest Crollius H et al, Nature Genet 2000; Waterston RH et al, Nature 2002; Gibbs RA et al, 

Nature 2004) and ab initio analysis (Burge C and Karlin S, J Mol Biol 1997; Kulp D et al, ISMB 

1996; Solovyev V and Salamov A, ISMB 1997) of finished chromosomes. Due to the extreme 

complexity of the human genome, these new approaches have not been able to completely solve the 

problem, as demonstrated by the work on human chromosomes 21 (Hattori M et al, Nature 2000) 

and 22 (Dunham I et al, Nature 1999), whose gene content still remain uncertain (with upper and 

lower estimates differing of as much as 30%) even with the availability of finished sequences and 

intensive experimental work. However, if conservative approaches are followed and only the most 

rigorous analyses are kept, all these methods tend to identify an overall number of 20,000-25,000 

human genes, corresponding to 35,000-40,000 different proteins (Fig.4), with an average coding 

length of 1,400bp and average genomic extent of about 30kb 
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Figure 4. History of human IPI (v3.10, September 2005). IPI and UniProt sets (areas) and 
references source entries (lines) (From: http://www.ebi.ac.uk/IPI/IPIhuman.html). 
 
It is important to remember that some classes of human genes may have been missed by all of the 

gene-finding methods. Genes could be missed if they are expressed at low levels or in rare tissues 

(being absent or very under-represented in EST and mRNA databases) and have sequences that 

evolve rapidly (being hard to detect by protein homology and genome comparison).  

A particular case is represented by single-exon genes encoding small proteins, that may have been 

missed, too, because EST evidence that supports them cannot be distinguished from genomic 

contamination in the EST dataset and because homology may be hard to detect for small proteins 

(Basrai MA et al, Genome Res 1997). These genes, also called intronless paralogs (Elliott DJ et al, 

Hum Mol Genet 2000; Makeyev AV et al, J Biol Chem 1999), may be the result of retro-

transposition events occurring to processed mRNA transcripts (the same mechanism is also 

involved in the production of pseudogenes) and seem to be able to encode the same proteins than 

the intron-containing forms of the same genes. Most of the single-exon genes identified so far are 

flanked by direct repeat sequences, although the precise nature of these repeats is not clear, and all 

of the cases for which there is high confidence contain poly(A) tails characteristic of 

retrotransposition. The distribution of intron-containing genes and of their intronless paralogs on 

human chromosomes is random, although there seem to be an over-representation of genes involved 

in translational processes and nuclear regulation, as well as metabolic and regulatory enzymes 

(Venter CJ et al, Science 2001). EST matches specific to a subset of intronless paralogs have been 
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identified, suggesting the expression of these intronless paralogs, and differences in the upstream 

regulatory sequences between the source genes and their intronless paralogs could account for 

differences in tissue-specific gene expression. Defining which, if any, of these processed genes are 

functionally expressed and translated, however, will require further elucidation and experimental 

validation.  

Finally, some genes may have been missed also because of the asymmetrical distribution of G+C 

content, CpG islands, and genes (Holmquist GP, Am J Hum Genet 1992). The genes, in fact, are not 

distributed quite as unequally as had been predicted: the most G+C-rich fraction of the genome 

constitutes more of the genome than previously thought (about 9%), and are the most gene-dense 

fraction, but contain only 25% of the genes, rather than the predicted ~40%. The low G+C, on the 

other hand, make up 65% of the genome, and 48% of the genes. This inhomogeneity, the net result 

of millions of years of mammalian gene duplication, has  been  described  as  the  “desertification” of 

the vertebrate genome (Ohno S, Trends Genet 1985), and it seem that almost 20% of the human 

genome   is   in   “deserts”   (regions   with   >500   kbp  without   a   gene).  However, the apparent lack of 

predicted genes in these regions does not necessarily imply that they are devoid of biological 

function,  as  well  as   it   is  not  clear  if   the  “desertification”  process  occurred  by  accident  or   if   it  has  

been driven by selection and evolution. 
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Vertebrate Genome Projects: expanding the human genome knowledge 
 

Although thousands of human genes have been identified and characterized during these years, over 

40% of the predicted human protein set (including many products of disease genes of unknown 

biochemical function) cannot be ascribed a molecular function by methods that assign proteins to 

known families.  

In order to fill the gaps that still remain in the knowledge of the human genome structure one 

powerful approach consists in producing and analysing cDNA libraries from multiple tissues of 

different organisms at suitable evolutionary distances to obtain a cross-species sequence 

comparison. Some of the best studied organisms include the laboratory mouse and the pufferfish, 

whose gene-specific patterns of alternative splicing are currently being studied along with human 

data. 
 

Conservation between human and the pufferfish Tetraodon nigroviridis 
One of the first organisms whose genome was studied with the aim of enriching the knowledge on 

the human genome was the pufferfish (Roest Crollius H et al, Nature Genet 2000), that diverged 

from human 400 Myr ago.  

By exploiting   the   concept   of   “ecores”   (evolutionary   conserved   regions)   a mechanism called  

“Exofish”   (exon   finding   by   sequence   homology)  was applied to select those alignments between 

human and T.negroviridis DNA overlapping human exons. Chromosome 22, the first to be 

completely sequenced, was used as a starting point for the comparison and lead in 1999 to an 

estimation of  28,000 – 34,000 genes in the human genome. This finding, thus far unexpected, 

suggested that organism complexity is not a direct consequence of gene number, but has its source 

in other mechanisms that may include alternative splicing and multi-domain proteins. Almost one-

third of human genes could not be detected at the time, including those for which the corresponding 

T. nigroviridis sequence was not yet known, those that evolve rapidly and for which protein 

sequence similarity is weak, and those that are strictly specific to mammals. However, the 

compactness of the T. nigroviridis genome was very useful to confirm that several neighbouring 

ecores that fell outside of existing annotations did belong to the same gene, as confirmed afterward 

by the cloning of new human cDNAs. By contrast, ecores identified inside the boundaries of the 

545 annotated genes, but outside exons (that is, in introns), would correspond to exons that 

remained undetected by other homology-based approaches, presumably because of alternative 

splicing, as lately verified by other genome projects. 

  

 



 11 

Conservation between human and mouse 
The second complete mammalian genome to be revealed after human was the mouse.  

The evolutionary distance between human and mouse has been evaluated in ~75 Myr. However, a 

significant fraction (over 90%) of the genomes shown synteny between the two (Fig.5), being 

preserved within conserved segments (Waterston RH et al, Nature 2002). 
 

 
Figure 5. Segments with conserved synteny in human are superimposed on the mouse 
genome. Each colour corresponds to a particular human chromosome (From: Waterston RH et al, Nature 
2002).  
 
Studying conserved segments between human and mouse has several uses, such as exploiting the 

conservation of gene order to identify likely orthologues between the species (particularly when 

investigating disease phenotypes) or using the two genome sequences as complementary scaffolds 

to assembly detailed comparative maps. Last but not least, with knowledge of both genomes 

biomedical studies of human genes can be complemented by experimental manipulations of 

corresponding mouse genes to accelerate functional understanding. In this respect, the mouse is 

unsurpassed as a model system for probing mammalian biology and human disease (Rossant J and 

McKerlie C, Trends Mol Med 2001). 

It seems that the proportion of mouse genes with a single identifiable orthologue in the human 

genome is approximately 80%, with less than 1% of genes being without any homologue currently 

detectable in the human genome (and vice versa), while another 5% of the mammalian genome is 

made of small segments (50-100 bp) under (purifying) selection. This proportion is much higher 

than can be explained by protein-coding sequences alone, implying that the genome contains many 

additional features (such as untranslated regions, regulatory elements, non-protein-coding genes, 

and chromosomal structural elements) under selection for biological function.  
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For this reason the attention has then been focused on regions located 200bp upstream of 

transcription start sites, where canonical promoter regions are located. Such analysis is necessarily 

limited by the fact that transcriptional start sites remain poorly defined for many genes, but by the 

way it has allowed to verify a significant degree of conservation, too, although not as significant as 

that observed   for   3’ UTR (where along with the polyadenylation signal other regulatory signals 

exist, such as those that affect mRNA stability and localization) and  especially  for  5’ UTR (~ 75-

76% conservation, higher than previously expected). It has also been shown that conservation levels 

vary   regionally   within   the   features   of   a   ‘typical’   gene.   Sequence identity rises gradually from a 

background level to 78% near the approximate transcription start site, where the level reaches a 

plateau. It is possible that sharper definitions of transcriptional start sites would allow the footprint 

of the TATA box and other common structures near the transcription start site to emerge. 

Conversely, many human promoters lack a TATA box, and transcription start at such promoters is 

not typically sharply defined (Suzuki Y et al, Nucleic Acids Res 2004).  

By increasing the number of regulatory control regions taken into account (Wasserman WW et al, 

Nature Genet 2000; Loots GG et al, Genome Res 2002), and in particular by enriching the 

contribution of elements < 2kb far from promoters, the extent of conservation increases, reaching 

levels  similar  to  5’  UTRs.   

Finally,  to  have  a  global  overview  of  the  “functional”  conserved  subset  of  the  mammalian  genome  

as a whole, an estimation has been made on the proportion of the genome that is better conserved 

than would be expected given the underlying neutral rate of substitution. The analysis thus suggests 

that about 5% of small segments (50 bp) in the human genome are under evolutionary selection for 

biological functions common to human and mouse, less than half corresponding to coding 

sequences. This corresponds to regions totalling about 140Mb of human genomic DNA, although 

not all of the nucleotides in these windows are under selection. In addition, some bases outside 

these windows are likely to be under selection, too. Conserved, non-coding sequences may for 

instance be sequences that control gene expression, such as the control element for the IGFALS 

gene (Fig.6); if a typical gene contains a few such regulatory sequences, there may be tens to 

hundreds of thousands of such elements interspersed in the whole human genome (Dermitzakis ET 

et al, Nature 2002). Furthermore, some of the conserved fraction may correspond to sequences that 

were under selection for some period of time but are no longer functional.  
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Figure 6. Conservation scores for 50-bp windows in a 4.5-kb region containing the human 
insulin-like growth factor binding protein acid labile subunit (IGFALS) gene. The two coding 
exons are displayed as taller blue rectangles, UTRs as shorter rectangles, and the intron is shown as 
a barbed line indicating direction of transcription. The red bar shows the location of the interferon-
g-activated sequence-like element (GLE), which is bound by transcription factors from the STAT5a 
and STAT5b protein family to control expression of this gene. Additional regulatory elements may 
be located in the other peaks of conservation (From: Waterston RH et al, Nature 2002).  
 
Of course, it should also be noted that non-conserved sequence may have important roles, too, for 

example, as a passive spacer or providing a function specific to one lineage.  

It should certainly be possible to pinpoint these regulatory elements more precisely with the 

availability of additional related genomes. However, mouse is likely to provide the most powerful 

experimental platform for generating and testing hypotheses about their function. An example is the 

demonstration, based on mouse–human sequence alignment followed by knockout manipulation, of 

several long-range locus control regions that affect expression of the Il4/Il13/Il5 cluster (Loots GG 

et al, Science 2000). 
 

Conservation between human and rat 
The Brown Norway rat was the third complete mammalian genome to be deciphered, and three-way 

comparisons with the human and mouse genomes allowed to resolve more details of mammalian 

evolution. 

First of all, this comparison confirmed that, despite the slight different size of the three genomes, 

they encode similar numbers of genes (Gibbs RA et al, Nature 2004), the number of coding exons 

per gene and average exon length being similar in the three species, and no significant deletion or 

duplication having occurred since their divergence. A billion nucleotides (~ 40% of the euchromatic 

rat genome) align orthologously to mouse and human and contains the vast majority (94-95%) of 

exons and known regulatory elements (1–2% of the genome). Another feature that was evaluated 

was the level of three-way conservation observed between the human, mouse and rat genomes in 

the ancestral core (Fig.7), to estimate the fraction of the human genome that is accumulating 

substitutions more slowly than the neutral rate in the three lineages since their divergence, and 
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hence may be under some level of purifying selection. The results confirmed what had been 

previously predicted by a human-mouse comparison, giving values in the range of 5–6% when 

measured by two quite different methods (Cooper GM et al, Genome Res 2004). In this constrained 

fraction, non-coding regions outnumber coding regions regardless of the strength of constraint, an 

observation that supports recent comparative analyses limited to subsets of the genome. The 

preponderance of non-coding elements in the most constrained fraction of the genome underscores 

the likelihood that they play critical roles in mammalian biology (Dermitzakis ET et al, Nature 

2002). 
 

 
Figure 7. Aligning portions and origins of sequences in rat, mouse and human genomes. 
Uncoloured areas are non-repetitive DNA — the bulk is assumed to be ancestral to the human–
rodent divergence. Numbers of nucleotides (in Mb) are given for each sector (From: Gibbs RA et al, 
Nature 2004). 
 
Being the third mammal to be fully sequenced, the rat can also add significantly to the utility of 

nucleotide alignments for identifying conserved non-coding sequences (Tagle DA et al, J Mol Biol 

1988; Gumuccio DL et al, Mol Cell Biol 1992; Boffelli D et al, Science 2003). This power 

increases roughly as a function of the total amount of neutral substitution represented in the 

alignment, and rat adds about 15% to the human–mouse comparison. Many conserved mammalian 

non-coding sequences are expected to have regulatory function, and can be predicted using further 

analyses based upon these alignments. These methods were thus applied for detecting significantly 

conserved elements and scoring regulatory potential (Kolbe D et al, Genome Res 2004) to the 

genome-wide human–mouse–rat alignments. Requiring conservation among mammalian genomes, 

in fact, greatly increases the specificity of predictions of transcription factor binding sites. 

Transcription factor databases such as TRANSFAC (Wingender E et al, Nucleic Acid Res 2001) 

contain known transcription factor binding sites and some knowledge of their distribution, but 
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simply searching a sequence with these motifs provides little discriminatory power. For example, it 

has been demonstrated that all known regulatory elements and functional promoters have 

TRANSFAC matches, but so do 99% of the 2,049,195 mammalian ancestral repeats, most 

representing false-positive predictions. The introduction of conservation as a criterion for regulatory 

element identification greatly increases specificity, with only a modest cost in sensitivity. By 

demanding that the TRANSFAC matches are present and orthologously aligned in all three 

species— human, mouse and rat— then only 268 matches are recorded in ancestral repeats (0.01%), 

while 63 (74%) of the matches in the aforementioned known regulatory elements and 121 (80%) in 

functional promoters are retained. In general it has been shown that demanding conservation in the 

human–mouse–rat three-way alignments lead to a 44-fold increase in specificity.  

Typical results show strong conservation for a coding exon, as well as for several non-coding 

regions (Fig.8). 
 

 
Figure 8. Close-up of PEX14 (peroxisomal membrane protein) locus on human chromosome 
1 (with homologous mouse chromosome 4 and rat chromosome 5). Conservation score 
computed on three-way human–mouse–rat alignments presents a clear coding exon peak (grey bar) 
and very high values in a 504 bp non-coding, intronic segment (right; last 100 bp of alignment are 
identical in all three organisms) (From: Gibbs RA et al, Nature 2004).  
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Mammalian Transcriptome Projects: depicting the full coding potential…  and  
more! 
 

In the past years, along with projects aiming at studying the overall structure and composition of 

genomic DNA, many others started in order to analyse in more detail the transcribed fraction. These 

projects, initially launched to identify the protein-coding regions interspersed among the non-coding 

material, quickly became invaluable tools for studying the complex mechanisms occurring during 

gene expression. All these approaches were characterized by the fact of using cDNA libraries, 

collections of DNA molecules complementary to the mRNAs expressed in a given tissue (or cell-

line) of a given organism at a given developmental stage. The production and sequencing of cDNA 

collections were obtained using different approaches but always converged to the same final result 

made of lists of possibly full-length Open Reading Frames (ORFs) that had to be mapped to the 

corresponding genes on the corresponding genome sequence. After a first phase made of random 

cloning, the attention is now being focused on protocols allowing to target the missing transcripts. 
 

The Mammalian Gene Collection 
This project, born to generate and sequence a publicly accessible cDNA resource containing a 

complete open reading frame (ORF) for every human and mouse gene, has actually led to the 

isolation of more than 11,000 human and 10,000 mouse genes represented by at least one clone with 

full ORF, whose coding potential has also been tested (Gerhard DS et al, Genome Res 2004). 

Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and 

zebrafish (Danio) cDNA projects were expanded to take advantage of the MGC experience. The 

random transcript sampling approach used thus far led to an under-representation of large and/or 

rare transcripts, as expected, and new, more directed cloning approaches are being used to solve this 

problem (50-80% of missing genes seem to be recoverable by using gene-specific primers (Baross 

A et al, Genome Res 2004)). In addition, a large number of previously uncharacterized full-ORF 

sequences, whose function is still unknown, have also been recovered and are going to be studied 

along with two other families of missing genes, the putative, computer-predicted genes for which 

there is some experimental evidence for the transcript’s  existence  (such as one or more ESTs, or an 

uncharacterized cDNA generated through a large-scale project) and the ab-initio predicted genes 

based solely on computational methods. No information is currently available about non-coding 

transcripts and regulatory elements. 
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The FLJ Collection 
The FLJ (Full-length Long Japan) collection started almost in the meantime than the MGC project 

and shares the same goals. The first characterization of the collected cDNAs (Ota T et al, Nat Genet 

2004) led to the selection and sequencing of 21,243 clones corresponding to 10,897 non-redundant 

clusters with no evident match to known transcripts. Half of them seemed to be protein-coding, 

including 1,999 clusters that had never been predicted by computational methods and that presented 

a GC content ~58%, suggesting the existence of a slight bias against GC-rich transcripts in current 

gene prediction algorithms. The remaining 5,481 cDNAs contained no obvious open reading frames 

and were classified as putative ncRNAs, also due to the presence of clear patterns of splicing in 

~25% of them and because of positive results from RT-PCR experiments; their GC content 

appeared to be different from that of new protein-coding cDNAs, suggesting the involvement of 

different region of the human genome, and their mapping regions were usually located more than 5 

kb upstream of any known or predicted genes. As in the case of the MGC project, FLJ lacks cDNAs 

derived from long and/or rare mRNAs (i.e. those originated from small organs or rare cell types) 

and technical development will be needed to solve these problems. 
 

The RIKEN Mouse Gene Encyclopaedia Project 
The   aim   of   this   project,   also   known   with   the   name   “FANTOM”   (Functional   ANnoTation   Of  

Mouse), can be considered the same as that of the MGC and FLJ: determining the full coding 

potential of the mouse genome by collecting and sequencing full-length complementary DNAs and 

physically mapping the corresponding genes to the mouse genome. However, one important aspect 

differentiates FANTOM from any previous similar project: given the limits of the semi-automated 

approach used to analyze the mouse cDNAs, it was thought that the best results would have been 

obtained if that automated analyses was followed by manual curation performed by experts in the 

fields of bioinformatics, genome science and biology. An international functional annotation 

meeting was then organized and 21,076 previously selected cDNAs were analyzed by using a web-

based annotation interface (Kawai J et al, Nature 2001); this first round of analysis clearly validated 

the overall strategy but also suggested the need for further refinements (i.e. at least some 

unclassifiable transcripts probably represented unprocessed nuclear RNA that could have been 

potentially avoided by isolating cytoplasmic RNA).  

For this reason one year later the second phase of the project (FANTOM2) started by re-analyzing 

all the 21,076 cDNAs that had already been previously studied, and by adding 39,694 new 

molecules, raising the pool of examined full-length cDNAs to 60,770 (Okazaki Y et al, Nature 

2002; see also Personal Publications).  These  transcripts  were  clustered  into  33,409  “transcriptional  
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units”  (a  computational  definition  indicating  a  cluster  of  transcripts  that  contains  a  common  core  of  

genetic information, in some cases corresponding to a protein-coding region), among which 4,258 

were new protein-coding messages. 

This project, actually representing the most comprehensive survey of a mammalian transcriptome 

ever made, recently underwent its third phase during which the number of independent analysed 

transcripts was raised to 181,047 (Carninci P et al, Science 2005; see also Personal Publications), 

about ten times more than the estimated gene number in mouse and human. As expected, 16,247 

new mouse protein-coding transcripts were isolated, including 5154 encoding previously 

unidentified proteins, many transcripts arising from mechanisms such as alternative promoter usage, 

splicing (whose frequency increased from 41% to 65%, with respect to the FANTOM2 analysis, 

and which seems to regulate in many cases protein domains content and organization, as among the 

protein-coding transcripts 79% of these splice variations alter the protein product) and 

polyadenylation (27 motif families with a putative modulator activity on polyadenylation were 

identified). 

Confirming what had already been observed in Drosophila (Spellman PT and Rubin GM, J Biol 

2002),  the  genomic  mapping  of  the  mouse  transcriptome  revealed  the  existence  of  “transcriptional  

forests”,   with   overlapping   transcription   on   both   strands,   without   gaps,   separated   by   “deserts”   in  

which few transcripts were found. Thanks to CAGE technology (Shiraki T et al, Proc Natl Acad Sci 

USA  2003)  it  was  also  possible  to  identify  the  3’  UTRs  of  protein  coding  loci as the initiation start 

sites for the transcription of many ncRNAs, thus allowing to classify as ncRNAs many transcripts 

that had been previously considered truncated coding mRNAs. This was an outstanding discovery, 

as non-protein-coding RNAs represent one  of  the  more  significant  classes  of  “genes”  missing  from  

the existing genome annotation. These RNAs, along with their involvement in protein synthesis 

(rRNAs and tRNAs), are also implicated in control processes such as genomic imprinting and 

perhaps more globally in control of genetic networks (Mattick JS and Gagen MJ, Mol Biol Evol 

2001). 

Globally, FANTOM3 led to the classification of 34,030 transcripts as ncRNAs (many of which 

matching  to  rat,  mouse  and/or  human  ESTs,  presenting  CpG  islands  in  5’  upstream regions, being 

subject to splicing process and having an antisense location); their function has not been elucidated, 

yet, although it was possible to demonstrate their positional conservation across species. Moreover, 

their promoters were highly conserved, too, even more than those of protein-coding mRNAs 

(Fig.10a, b), and they contain binding sites for known transcription factors (Cawley S et al, Cell 

2004). Their transcription may either be important for or be a consequence of genomic structure or 
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sequence, or the transcript may act through some kind of sequence-specific interaction with the 

DNA sequence from which it is derived or with other targets that have not been identified, yet.  
 

 
Figure 10. Noncoding RNA promoters conservation evaluated by alignment. a: mouse-human 
comparison. b: mouse-chicken comparison (From: Carninci P et al, Science 2005). 
 
During FANTOM3 there was also a re-evaluation of the sense-antisense (S/AS) pair phenomenon 

(Katayama S et al, Science 2005), with evidences suggesting it to be more widespread than 

previously thought: 4520 transcriptional units (TUs) were found to contain full-length transcripts 

forming S/AS pair on exons, whereas 4129 more TUs were transcribed from different strands of the 

same locus without apparently sharing overlapping exons, the first being characterized by a 

significantly lower mapping rate on chromosome X than the latter. Besides, sense and antisense 

transcripts tended to be isolated from the same libraries, while non-antisense bidirectional 

transcription pairs were not apparently co-regulated, thus suggesting a different basic, biological 

nature of the two types of transcription. 

By considering these results, then, it seems clear that the existence of large numbers of natural 

antisense transcripts implies that the regulation of gene expression by antisense transcripts is more 

common that previously recognized, and in particular could alter transcription, elongation, 

processing, location stability, and translation. They may be coding or noncoding RNA (ncRNA) 

complementary to mature processed sense coding mRNA, or they may be complementary only to 

the  primary  unprocessed  transcript,  being  contained  solely  within  an  intron  or  overlapping  a  5’  UTR  

or  3’  UTR  (Fig.9).  They  may  also  or  may  not  be  spliced.  
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Figure 9. Classification of sense–antisense transcript and non-antisense bidirectional 
transcription pair patterns (From: Kiyosawa H et al, Genome Research 2003). 
 

Despite the mechanism, there are now many examples of functional antisense transcripts in 

developmental gene regulation and imprinting, although the number of well-characterized antisense 

transcripts is still small. 

Although conservative, the combined S/AS prediction is 1.5- to 2-fold greater than that expected at 

the end of FANTOM2; moreover, S/AS interaction might also occur between immature RNAs 

(hnRNAs) in the nucleus, or introns themselves could originate smaller RNA with biological 

activity.  The  S/AS  pair  distribution  didn’t  seem  to  be  random,  as  some  chromosome  showed  greater  

or lower than average pair density, as well as their tissue regulation is not, as there seemed to be an 

over-representation for cytoplasmic proteins and under-representation for membrane and 

extracellular proteins. 
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Gene expression regulation: transcription factors and transcription factor 
binding sites 
 

The one-dimensional script of the human genome, shared by essentially all cells in all tissues, 

contains sufficient information to provide for differentiation of hundreds of different cell types, and 

the ability to respond to a vast array of internal and external influences. Much of this plasticity 

results from the carefully orchestrated symphony of transcriptional regulation made of a network of 

interactions between proteins, called transcription factors (TFs), and their targets on DNA, called 

transcription factor binding sites (TFBS). 

Much is known about the general process of DNA transcription and about the changes occurring in 

gene expression with respect to changes in the environment or to developmental constraints, but 

what is not clear, yet, is the mechanism that, given a quite limited battery of TFs, leads to the fine 

regulation of the expression levels of a complex genome like the mammalian genome. Along this, 

however, it is necessary to remember that although much has been learned about the cis-acting 

regulatory motifs of some specific genes, the regulatory signals for most genes still remain 

uncharacterized.  

The core of the transcriptional apparatus (Fig.11) in mammals is made by RNA Polymerase II, the 

enzyme directly responsible of the synthesis of RNA from a DNA template, and by a small number 

of so-called general transcription factors, which must be assembled at the promoter before 

transcription can begin. This assembly process provides, in principle, multiple steps at which the 

rate of transcription initiation can be speeded up or slowed down in response to regulatory signals, 

and many eukaryotic gene regulatory proteins influence these steps. 
 

 
Figure 11. The gene control region of a typical eukaryotic gene. The gene control region of a 
typical eukaryotic gene. The promoter is the DNA sequence where the general transcription factors 
and the polymerase assemble. The regulatory sequences serve as binding sites for gene regulatory 
proteins, whose presence on the DNA affects the rate of transcription initiation (From: Alberts B et al, 
Molecular Biology of the Cell, 4th Edition, Garland Publishing 2002). 
 
Transcription factors, more generally, bind regulatory sequences whose presence on the DNA 

affects the rate of transcription initiation. These sequences can be located adjacent to the promoter, 
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far upstream of it, or even within introns or downstream of the gene, and the fact that transcription 

factors can act even when they are bound to DNA thousands of nucleotide pairs away from the 

promoter that they influence means that a single promoter can be controlled by an almost unlimited 

number of regulatory sequences scattered along the DNA, as the mechanism of DNA looping allow 

gene regulatory proteins bound at any of these positions to interact with the proteins that assemble 

at the promoter. Whereas the general transcription factors that assemble at the promoter are similar 

for all polymerase II transcribed genes, the gene regulatory proteins and the locations of their 

binding sites relative to the promoter are different for each gene. Many gene regulatory proteins, for 

instance, bind to enhancer sequences and activate gene transcription, while many others function as 

negative regulators (Fig.12); among the roughly 20,000-25,000 human genes, an estimated 5–10% 

encode gene regulatory proteins. These regulatory proteins vary from one gene control region to the 

next, and each is usually present in very small amounts in a cell, often less than 0.01% of the total 

protein. Most of them recognize their specific DNA sequences using one of their DNA-binding 

motifs but sometimes some of them do not recognize DNA directly but instead assemble on other 

DNA-bound proteins. 
 

 
Figure 12. Integration at a promoter. Multiple sets of gene regulatory proteins can work together 
to influence transcription initiation at a promoter. It is not yet understood in detail how the 
integration of multiple inputs is achieved, but it is likely that the final transcriptional activity of the 
gene results from a competition between activators and repressors (From: Alberts B et al, Molecular 
Biology of the Cell, 4th Edition, Garland Publishing 2002). 
 
Some of the best known gene activator proteins are those involved in histone acetylation and 

nucleosome remodelling, events that generally render the DNA packaged in chromatin more 

accessible to other proteins in the cell, including those required for transcription initiation. In 

addition, specific patterns of histone modification directly aid in the assembly of the general 

transcription factors at the promoter. Transcription initiation and the formation of a compact 

chromatin structure can be regarded as competing biochemical assembly reactions, so enzymes that 

increase, even transiently, the accessibility of DNA in chromatin will tend to assist transcription 
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initiation. Gene activator proteins can sometimes act together to enhance a reaction rate 

(transcriptional synergy) and the joint effect is generally not merely the sum of the enhancements 

caused by each factor alone, but the product, or at least much higher than that produced by any of 

the activators working alone. Transcriptional synergy is observed both between different gene 

activator proteins bound upstream of a gene and between multiple DNA-bound molecules of the 

same activator. It is therefore not difficult to see how multiple gene regulatory proteins, each 

binding to a different regulatory DNA sequence, could control the final rate of transcription of a 

eukaryotic gene. For what concerns gene repressor proteins, the number of available mechanisms is 

as variable as in the case of activators, and some of them include the conversion of whole regions of 

chromosomes into heterochromatin, a form of chromatin that is normally resistant to transcription, 

or more fine regulations like those that lead to local repression of transcription of just a few genes. 

Like gene activator proteins, many eukaryotic repressor proteins act through more than one 

mechanism, thereby ensuring robust and efficient repression. A third category is made of gene 

regulatory proteins that do not themselves bind DNA but assemble on DNA-bound gene regulatory 

proteins: they are often termed co-activators or co-repressors, depending on their effect on 

transcription initiation, and as DNA-binding regulators can typically carry out multiple functions. 

Typically, the assembly of a group of regulatory proteins on DNA is guided by a few relatively 

short stretches of nucleotide sequence. However, in some cases, a more elaborate protein-DNA 

structure, termed an enhancesome, is formed. A hallmark of enhancesomes is the participation of 

architectural proteins that bend the DNA by a defined angle and thereby promote the assembly of 

the other enhancesome proteins. Since formation of the enhancesome requires the presence of many 

gene regulatory proteins, it provides a simple way to ensure that a gene is expressed only when the 

correct combination of these proteins is present in the cell. 

Different selections of gene regulatory proteins are present in different cell types and thereby direct 

the patterns of gene expression that give each cell type its unique characteristics. Each gene in a 

eukaryotic cell is regulated differently from nearly every other gene. Given the number of genes in 

eukaryotes and the complexity of their regulation, it has been difficult to formulate simple rules for 

gene regulation that apply in every case. For the same reason, it is also very difficult to formulate 

simple rules allowing to automatically recover, with the help of bioinformatics tools, the regulatory 

sequences involved in the expression of a given phenotype. 

Along with its distance from the genes it regulates, another important feature of a promoter is its 

orientation, as this determines the orientation that RNA pol II will assume during transcription and, 

as a consequence, which of the two DNA strands is to serve as a template for the synthesis of RNA. 
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In general, it is possible to say that along with the TFBS sequences di per se, three features that play 

an important role in transcription regulation are TFBS structure, distance and order. 

Thanks to the increasing number of DNA crystal structures determined it was possible to recognize 

general patterns of sequence specific helix distortion (Dickerson RE, Meth Enzymol 1992; Lu XJ 

and Olson WK, J Mol Biol 1999; Allemann RK and Egli M, Chem Biol 1997). Electrophoresis 

studies also demonstrated sequence dependent helix variations in DNA fragment mobility attribute 

to helix binding, thus it seems that groove width of helix might therefore be an important 

characteristic used by proteins for the recognition of specific sequences; due to the fact that TFBS 

are not always well conserved in primary sequence, conformational variations may play a role, too, 

in TFBS recognition and the use of this structure information could improve the predictive power of 

TFBS models. This was actually demonstrated in the case of the MetJ transcription factor of E.coli 

(Liu et al, Bioinformatics 2001), where the conformational model appeared to recognize features of 

TFBS different from those recognized by primary sequence based profiles. Combining the two 

approaches should then yield a hybrid model with improved discriminatory power compared to the 

single method alone. 

In addition, it is known that specific arrangements of binding motifs within the regulatory regions 

(regulatory clusters) are necessary to achieve proper biological function. For example, an optimal 

spacing between binding sites (NF-Y and SRE motifs) was demonstrated in the human SREBP-2 

promoter (sterol regulatory element-binding protein; Inoue J et al, J Biochem 1998). In vitro 

analysis of binding site arrangements in the rat collagenase-3 promoter (D’Alonzo  RC  et  al,  J  Biol  

Chem 2002) revealed that a 10 bp (`helical') phasing in binding site distribution provides maximal 

transcriptional activity. The importance of the `helical phasing' and specific binding site 

arrangement was also demonstrated in vivo for the murine CD4 promoter (Sarafova S and Siu G, 

Nucleic Acids Res, 2000). In some cases, even a very small difference in the distance between 

binding motifs results in dramatically different transcriptional outcomes, one of the most striking 

examples of this kind being the binding of the POU domain transcription factor Pit-1 to its target 

sites, differentially spaced (2 bp difference) in growth hormone and prolactin gene promoters 

(Scully KM et al, Science 2000). In many of the described quantitative experimental studies, the 

disruption of specific spacing (phasing) between binding sites resulted in reduction, but not 

abolishment, of transcription, suggesting the presence of a certain flexibility in site arrangement. 

The biological reasons of this phenomenon are quite clear: the transcription factors, bound to 

promoter DNA, are also involved in specific protein-protein interactions; therefore, the binding 

motifs must be distributed in the promoter in a non-random fashion. In other words, the 

arrangement of binding motifs can control the formation of 3D protein complexes involved in 
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initiation of specific transcription. Attempts to reveal and describe specific site arrangements 

resulted in a very interesting concept of composite elements (CEs) (Diamond MI et al, Science 

1990). In the simplest case, a CE corresponds to a pair of individual binding motifs located at a 

particular distance and involved in formation of specific tertiary (DNA-protein-protein-DNA) 

complexes. Identical CEs may perform related functions in different genes. Currently, the CE 

concept is widely used for finding co-localized, synergistic (antagonistic) binding motif pairs or 

combinatorial arrays of motifs responsible for the formation of similar gene expression profiles. 

Another study conducted in Drosophila (Makeev VJ et al, Nucleic Acids Res 2003) explored 

preferential site distances in cis-regulatory modules (CRMs), transcription regulatory units (~1 kb 

range), often located far from the transcription start site and responsible for spatiotemporal 

expression of their cognate developmental genes, that resulted to have their binding sites arranged 

in particular ways, indicating the presence of specific developmental CEs. This results demonstrated 

that the binding sites were not distributed in a random fashion, with a large fraction of them 

belonging to small closely spaced groups (50-70 bp range). These findings confirmed the presence 

of different hierarchical levels of information, with CRMs constituting one of the upper levels, 

TFBS   representing   the   bottom   level   and  CEs  being   present   in   the   “middle” of the hierarchy and 

acting independently in their response to the spectrum of native transcriptional signals. If this was 

true, repression of the same promoter (CRM) by two transcription factors might be achieved 

through an independent response of two or more corresponding CEs to the concentrations of these 

proteins, the maximal spatial independence of adjacent CEs being achieved through positioning of 

corresponding protein complexes on opposite sides of the DNA helix, and the existence of 

structurally different CEs (together with the different site affinity) might explain the differential 

gene response to concentrations of transcriptional regulators.  

Finally, some evidence is starting to appear concerning the importance of the order of elements. By 

analysing different regions upstream of S.cerevisiae genes (Terai G and Takagi T, Bioinformatics 

2004), several new element patterns that could not be found when considering a single kind of 

element or only combinations of elements were identified. For some of them the order was 

important without relation to the distance between them, for other instances the order and the 

closeness between elements were both important, and still others for which only the combination of 

elements or only the closeness were important, without relation to order. Accumulation of genome 

sequence data for closely related species will probably help in improving the accuracy if 

computational element prediction. 
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Transcription factor binding sites identification approaches 
 

The identification of TFBS on the genome sequence is one of the most important tasks to perform 

in order to understand the mechanisms regulating the co-expression of a given set of genes.  

The approaches that are currently used by promoter prediction programs (PPPs) to locate known 

and novel regulatory elements can be summarized in two categories: 

i) comparative genomics ( also called phylogenetic footprinting) 

ii) single genomic approach 
 

Comparative genomics 
Studies of sequence alignment of regulatory domains of orthologous genes in multiple species have 

shown a remarkable correlation between sequence  conservation,  dubbed  “phylogenetic footprints” 

(Tagle DA et al, J Mol Biol 1988), and the presence of binding motifs for transcription factors 

(Fig.13). 
 

 
Figure 13. Conservation in GABPA promoter region reveals functional Err-a motif. Asterisks 
denote conserved bases. The yellow box marks the experimentally validated Err-a-binding site 
(From: Xie X et al, Nature 2005). 
 

This approach could be particularly powerful if combined with expression array technologies that 

identify cohorts of genes that are co-ordinately regulated, implicating a common set of cis-acting 

regulatory sequences. Unfortunately, the compared analysis of mammalian genomes showed on one 

hand that the degree of homology between the coding regions was quite high, but on the other hand 

the conservation dramatically fell in the non-coding regions (especially those quite far from 

transcription start site), where TFBS are mostly expected to be located. Along this, it is also 

necessary to remember, as previously stated, that the primary sequence of DNA is not sufficient 
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alone to justify all the interactions occurring between a genome and all the proteins that, at different 

levels, are involved in the regulation of gene expression. However, this approach represents a useful 

way for identifying at least the more conserved regions that have been maintained during evolution 

and that could work as a starting point for more precise analysis. 
 

Single genomic approach 
The great majority of existing TFBS predictive tools are based on a single genomic approach. 

The identification of TFBS on a single genome sequence is a very difficult task, as they are short 

signals (typically about 10 bp long) in the midst of a great amount of statistical noise (a typical 

input being one regulatory region of length 1-3,000 bp upstream of each gene). To make matters 

worse, there is sequence variability among the binding sites of a given TF, and the nature of the 

variability itself is not well understood. 

Recognition technologies employed to fulfil this task make use of a great variety of approaches that 

can be based on neural networks (Dragon PF; Bajic VB et al, J Mol Graph Model 2003), linear and 

quadratic discriminant analysis (FirstEF; Davuluri RV at al, Nat Genet 2001), Relevance Vector 

Machine (Eponine; Down TA and Hubbard TJ, Genome Res 2002), statistical properties of 

promoter regions (CpGProD; Ponger L and Mouchiroud D, Bioinformatics 2002), interpolated 

Markov model (McPromoter; Ohler U et al, Genome Biol 2002) or a combination of these.  

Despite the method used by every single tool, it is possible to say that almost all of them rely on 

previous knowledge, that can be represented by weight matrices built by exploiting the knowledge 

on known TFBS (each position of the putative TFBS is associated to scores indicating the 

probability of occurrence of each one of the four possible nucleotides) or by some form of training, 

like in the case of methods relying on neural networks. 

Recently, two distinct assessments examined in an exhaustive way a great number of publicly 

available programs for TFBS search, giving very interesting results that will need to be considered 

by whoever decides to approach this field. 

In the first analysis, performed by evaluating the level of complexity of the whole human genome 

(Bajic VB et al, Nat Biotechnol 2004), one of the major points was that none of the programs 

achieved simultaneously balanced sensitivity and positive predictive value, with the most serious 

prediction inaccuracy being represented by non-CpG-island-related promoters. It was also quite 

clear that, with the technology used during the test, it was not possible to extrapolate the 

performance of the programs to the whole human genome, probably because the structure of 

promoters on different chromosomes varies and this variation could not be covered by the 

algorithms used. 
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The second analysis (Tompa M et al, Nat Biotechnol 2005) represented a different way of 

approaching the problem of TFBS search. First of all, along with examining human sequences also 

three other eukaryotes were considered: yeast, fly and mouse. The regions in which TFBS were 

searched changed, too, as the whole genome approach was abandoned and only the upstream 

regions (between -3,000 bp and 0, with respect to transcription start site (TSS)) were considered. As 

in the first assessment the tools that were compared were based on different algorithmic principles, 

exploiting Gibbs sampling method (AlignACE; Hughes JD et al, J Mol Biol 2000), weight matrices 

(ANN-Spec; Workman CT and Stormo GD, Pac Symp Biocomput 2000), consensus-based method 

(Weeder; Pavesi G et al, Nucleic Acids Res 2004) or exhaustive search algorithm (YMF; Sinha S 

and Tompa M, Nucleic Acids Res 2003), and all of them did not use auxiliary information, such as 

comparative sequence analysis, mRNA expression levels or chromatin immunoprecipitation results. 

The dataset was made of real TFBS, extracted from TRANSFAC, that were planted at their own 

position and orientation in three different types of background sequence:  a)  the  binding  sites’  real  

promoter sequences, b) randomly chosen promoter sequences from the same genome  and c) 

sequences generated by a Markov chain of order 3. Six of them were from fly, 26 from human, 12 

from mouse and 8 from yeast. 

The results, obtained by selecting the single best motif for each data set, gave rise to very 

interesting considerations. To summarize, the absolute measures of correctness of these programs 

were low: site sensitivity was at most 0.22 and correlation coefficient was at most 0.20. Different 

explanations can be given, to justify what seems to be a very negative final result: 

1) due to the very partial understanding of the biology underlying regulatory mechanisms, 

there is a lack of an absolute standard against which predictive tools can be measured 

2) comparative sequence analysis, that in some cases has proven to be a very powerful 

predictive tool, could not be used to refine the results by a cross-species comparison 

3) the source of the TFBS that were used, TRANSFAC, is far from being completely 

reliable, and its binding sites appear to be unusually long, indicating a possible lack of 

precision in the experimental methods used to define them 

In general, as can be seen in Fig.14, it seems that the threshold of genomic complexity beyond 

which the accuracy of TFBS predicting tools dramatically falls is represented by the yeast. As a 

further demonstration of this assumption, the program that predicted with the highest accuracy most 

of the considered domains is based on oligo frequencies analysis of all the available upstream 

sequences of the same organism (yeast TFBS, in this case). However, many tools perform much 

better on the yeast data sets than on other species, suggesting that the metazoan genome complexity 

is far from being elucidated at a satisfying level. The final suggestion given by the authors, in a  



 29 

certain sense a further proof of the inadequacy of existing approaches, consist in removing the 

“real”   dataset,  made   of   existing TFBS planted into their real genomic neighbourhood, and using 

only  the  “virtual”  dataset  in  order  to  test  the  accuracy  of  the  predictions. 
 

 
Figure 14. Accuracy comparison - Correlation coefficient by species (From: Tompa M et al, Nat 
Biotechnol 2005). 
 

The outcome of these two assessments clearly shows how the existing methods for TFBS prediction 

can’t  be  used  as  models  to  develop new programs for identifying novel binding sites.  

However, a recent work gives an even stronger confirmation of what was already clear, redefining 

the concept of promoter itself. With the aim of explaining into more details what had been 

previously observed (Kapranov P et al, Science 2002) during the mapping of transcribed regions on 

human chromosomes 21 and 22 (that is the existence of much more transcribed loci than could be 

accounted by the simple presence of protein coding RNAs), high-density tiled arrays representing 

essentially all non-repetitive sequences of these two chromosomes   were   used   in   a   “ChIP-chip”  

experiment to map the binding sites of three major transcription factors: Sp1, cMyc and p53 

(Cawley S et al, Cell 2004). This experiment revealed an unexpectedly large number of TFBS 

regions, and in particular many of them showed a very particular location, only 22% being located 

at  the  5’  end  of  protein-coding genes  while  36%  lied  within  or  immediately  3’  to  well-characterized 

genes (Fig.15) and were significantly correlated with ncRNAs.  
 

 
Figure 15. Location of TFBS regions with respect to annotated genes and transcripts on 
chromosomes 21 and 22 (From: Cawley S et al, Cell 2004). 
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The  5’  located  TFBS  were  generally associated with novel roles for the monitored TFs, while the 

presence of binding sites outside of known annotations could represent regulatory regions for novel 

transcripts based on the RNA transcription and EST data, thus making TFBS search a very 

interesting approach also for the discovery of novel genes, as proved by RT-PCR. 

On   the   other   hand,  TFBS   located  within   or   3’   to  well-characterized genes could either represent 

distal regulatory elements (i.e. enhancers or silencers) or promoters for non-coding transcripts. In 

particular, TFBS located into or downstream the last exon were particularly interesting, as they 

could  be  involved  in  interactions  with  antisense  transcripts  via  the  3’ UTRs of their genes (Lipman 

DJ, Nucleic Acids Res 1997). Most importantly, all but two of these TFBS were indeed positioned 

just upstream of possible novel transcripts based either on reported RNA transcription mapping or 

on mapped ESTs. A clear example was represented by the EWSR1 gene, whose conserved region in 

the   3’   UTR  was consistent with the evidence of antisense regulation. Additional evidence was 

found by relating these binding sites to full-length mRNAs and ESTs with confidently assignable 

strandedness, as significant association was found between the proximity to non-canonical TFBS 

(binding  sites  not   located  at   the  5’  end  of  known  genes)  and   the  presence  of   transcription on the 

opposite strand; more than a half of these sense-antisense pairs were also associated to the 

conservation of at least one site in mouse genome. 

The identified TFBS were also used to extrapolate the putative number of Sp1, cMyc and p53 

binding sites on a whole-genome scale; a total of about 12,000 Sp1 sites, 25,000 cMyc sites and 

1600 p53 sites were predicted, an amount surprisingly higher than the number of predicted genes 

itself.  

Many pairs of overlapping protein-coding and noncoding RNAs were also found, and quite often 

these couples were co-regulated (like in the case of the retinoic acid stimulation), suggesting the 

existence not only of common TFs in their promoter regions, but also the ability to respond to 

common environmental and developmental conditions. By examining the average correlation 

obtained during these experiments it was possible to find subpopulations of positively correlated 

coding and noncoding transcripts, while only a few showed anti-correlation, which would have 

been expected in the case of gene silencing due to noncoding antisense transcripts. This may 

suggest the existence of a coordinated expression strategy across the entire genome, or may be 

achieved via a large-scale chromatin domain that includes both the overlapping transcripts and that 

is either accessible or inaccessible in a regulated fashion. However, like in the case of protein-

coding genes, it seems possible that some (many?) ncRNAs may have biological functions 

unrelated to those of nearby protein-coding genes. 
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Finally, although the specific genomic profile of transcription factor binding is probably strictly 

dependent on the cell types that are being used, there is strong evidence that the behaviour obtained 

for the three aforementioned TFs will generally apply to other TFs and other cell types. 

 

Redefining the criteria: new approaches to TFBS identification 
 

Due to the significant limitations of existing tools for TFBS prediction, new approaches (often 

based on a combination of predictive methods) are being developed and two are particularly 

interesting. 

The first approach (Zhu Z et al, Genome Res 2005) is based on the assumption that the functional 

interactions between TFs often require physical proximity and that, for this reason, their binding 

sites are likely to be overrepresented in the vicinity of each other. Starting from a TFBS of interest, 

the algorithm first discovers significantly enriched neighboring motif(s) using human-mouse 

conserved sequences, then compares these neighbour motifs to known TFBS (obtained from 

TRANSFAC) in order to understand if they can correspond to new cis-regulatory elements, and 

then moves to examining the functional significance of their physical proximity through the 

assessment of similarity of their expression profiles (i.e. by analyzing a human cell cycle expression 

data set). Finally, a confirmation of the accuracy of the prediction can be obtained by comparing the 

in silico results with those obtained in vivo using ChIP-chip technology. 

The second approach (Xuan Z et al, Genome Biol 2005) integrates sequence conservation among 

mammalian genomes and a previously developed promoter prediction program called FirstEF 

(Davuluri RV at al, Nat Genet 2001) that performs an ab initio prediction to identify non-coding 

first exons and the corresponding promoters. The conservation of mammalian promoter sequences 

(evaluated to be around 66-68% between human and rodents) associated to FirstEF predictions and 

transcript information leads to an improvement of 20% and 2% in the specificity and sensitivity of 

the prediction. Actually the best results are obtained when looking for CpG-island related 

promoters, by selecting promoter regions defined as -700 to +300 bp around TSSs, but the strongest 

absolute improvement is associated to non-CpG-related ones. The application of this method is also 

mainly restricted to known genes, as predicted ones  frequently  lack  complete  5’  end  exons.  

All the data obtained thus far are stored in the Cold Spring Harbor Laboratory Mammalian 

Promoter Database (CSHLmpd, http://rulai.cshl.edu/CSHLmpd2). 

 

 

 

 



 32 

Personal contribution to the Transcriptome analysis 
 
I started my PhD activity at LNCIB being involved in a functional genomics project producing and 

analysing human full-length cDNA sequences.  

Since the beginning, I found myself very interested in studying the intrinsic information content 

carried by the human transcriptome. To fulfil this interest I needed first of all to evaluate the many 

publicly available bioinformatics tools in order to understand their function, selecting and tailoring 

them to my needs. However, the application of the existing in silico instruments highlighted a sum 

of problems and limitations that quickly pushed me to interacting with informatician colleagues in 

order to clarify the origin of these restraints, eventually leading to the development and 

implementation of an integrated computational system (called TSDB), both for an ordered storing 

of the data and for the scaling-up in the complexity of the executed tasks. This computational 

system was then used for the high-throughput analysis of cDNA sequences and allowed me, in the 

end, to define the so-called “LNCIB  5.8K  Unique  cDNAs  collection”. In the meantime, I was also 

able to identify a subgroup of 342 putative novel genes requiring further functional characterization. 

My participation to the FANTOM2 (and, lately, to the FANTOM3) project represented a great help 

to understand how deepening the analysis on these genes. The study of the mouse transcriptome, in 

fact, clearly draw my attention on the necessity of considering, along with the coding population of 

the human transcriptome, also events like antisense transcription and, more in general, the 

involvement of non-coding DNA and of the regulatory mechanisms being involved in these 

manifestation. 

cDNA microarrays experiments (along with other biological assays) were performed with the goal 

of obtaining a better characterization of the function of these transcripts and gave rise to gene 

clusters, groups of genes sharing the same level of expression in the examined tissues or cell-lines. 

The tricky aspect of this analysis consisted in giving a mechanistical characterization to gene 

clustering results, that is understanding if this behaviour occurred by chance or was regulated by 

common modulators. For this reason I evaluated the predictive potential of existing algorithms for 

promoter discovery applied to human genomic sequences, verifying once more the limited 

applicability of public tools to the required analysis. In particular, these programs seemed to have 

great problems while performing without a priori knowledge. I then exposed my thoughts and my 

doubts to mathematician colleagues and, in the end, we planned, implemented and validated 

together a novel algorithm (called ScanPro) that is currently being used for the de novo 

identification of TFBS. 
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MATERIALS AND METHODS 
 
Extraction of total RNA from tissues 

Total RNA was prepared from fresh tissues by modification of the guanidinium–thiocyanate 

method (Chomczynski P and Sacchi N, Anal Biochem 1987) with adaptation of the 

cetyltrimethylammonium bromide (CTAB) precipitation method (Del Sal G et al, Biotechniques 

1989). Messenger RNA was prepared using an Oligotex mRNA Kit (Qiagen) according to the 

manufacturer’s  instructions, starting from CTAB-purified total RNA. 
 

Extraction of total RNA from cell lines 

Cell line total RNA was prepared by using the lithium chloride method of Auffray and Rougeon 

(Auffray C and Rougeon F, Eur J Biochem 1980) with minor modifications. Messenger RNA was 

prepared using the Oligotex mRNA Kit   (Qiagen)   according   to   the   manufacturer’s   instructions, 

starting from CTAB-purified total RNA. 
 

Full-length-enriched cDNA preparation 

First-strand cDNA synthesis reaction was performed using trehalose-stabilized SuperScript II 

reverse transcriptase (Invitrogen/Life Technologies), which allows for a higher yield of full-length 

cDNAs (Carninci P et al, Proc Natl Acad Sci USA 1998). The following steps involving the cap-

structure biotin derivatization, the capture of the protected mRNA-cDNA hybrids, and the second- 

strand cDNA synthesis were performed as described in (Carninci P et al, Genomics 1996; Carninci 

P et al, DNA Res 1997) 
 

Restriction digestion and size selection of double-stranded cDNA 

The double-stranded cDNA was digested with the two selected restriction enzymes under standard 

conditions and subjected to a size selection on an agarose gel. After agarose gel electrophoresis, 

cDNAs longer than 1500 bp were located using a hand-held long-wavelength UV lamp and quickly 

excised by using a clean, sterile razor blade. Finally, the Bio-Rad Prep-A-Gene DNA purification 

kit was used to recover cDNA molecules from the agarose gel according   to   the  manufacturer’s  

instructions. 
 

Ligation of double-stranded cDNA to the vector and propagation of cloned cDNA 

cDNA was ligated overnight at 16°C to the chosen vector using 1U of T4 DNA ligase 

(Invitrogen/Life Technologies). The reaction was performed in a final volume of 10µl in the 

presence of 50mM Tris–HCl (pH 7.5), 10mM MgCl2, 10mM DTT, 1mM ATP, 25ng/µl BSA. 
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Reaction was then diluted to 100µl with water, and 2µl of 0.5M EDTA and 2µl of 10% SDS were 

added. After proteinase K treatment and phenol/chloroform extraction the recombinant plasmid 

DNAs were purified by using the Microcon YM-100 concentrators (Millipore) bringing the final 

volume to 10µl in water. Of these, 1µl was electroporated into the host cells, Electromax DH10B 

(Invitrogen). The number of primary colonies was evaluated by plating different aliquots of the 

electroporated cells. 
 

Preliminary library quality evaluation 

To test the quality of the newly generated cDNA libraries 96 colonies were randomly chosen, 

picked, and grown overnight in LB medium for subsequent plasmid extraction. Plasmid DNA was 

obtained using a protocol based on alkaline extraction and binding to diatomaceous earth in the 

presence of the chaotropic agent guanidinium hydrochloride (Boom R et al, J Clin Microbiol 1990). 

To check cloning efficiency (by evaluating the percentage of empty vectors) and to determine the 

average length of cloned cDNAs, these few clones were digested using the cloning restriction 

enzymes and electrophoresed through a standard 0.8% agarose/TAE gel. To determine the 

percentage of full-length inserts, 96 clones were subjected to 5V-end sequence analysis. 
 

Bacterial culture growth and plasmid isolation in 96-well format 

Clones from selected libraries were grown overnight in 1ml LB broth containing 100µg/ml 

ampicillin in deep 96-well culture plates. Plasmid isolation was performed in the 96-well format 

following an optimized protocol based on the alkaline lysis of the bacterial cells and ethanol 

precipitation of the plasmid DNA. 
 

5’-end sequencing 

Starting from plasmid DNA, the insert was cycle-sequenced with fluorescent dye-labeled 

terminators (Sanger F et al, Proc Natl Acad Sci USA 1977). To obtain 5’-end sequence data a linear 

amplification of the template was performed using the M13 reverse sequencing primer for 

pSPORT1 and pCMV-SPORT6 plasmids and the T3 primer for the pBluescript II SK(+) plasmid. 

The enzymatic dideoxy sequencing reaction was conducted following  the  manufacturer’s  protocol  

with minor modifications. The sequencing products were then precipitated in 60% isopropanol and 

run on the ABI Prism 3700 automated capillary sequencer (Applied Biosystems). 
 

3’-end and internal sequencing of the 12 unknown potentially coding cDNAs 

To obtain 3’-end sequence data a linear amplification of the template was performed using the 

M13/pUC forward sequencing primer or oligo(dT) anchored primers for those cDNAs in which the 
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poly(A) strand created problems in the linear amplification. To increase the length and significance 

of the available cDNA sequences, internal primers were designed based on the available 5’-end 

sequences. 
 

Microarray experiments 

1. cDNA microarray preparation. Microarray slides were prepared by spotting on Amersham 

Type 7* slides the purified PCR products of the cDNA clones, diluted in 50% DMSO, using 

the ChipWriter Pro microarrayer (Virtek). Two different arrays were prepared and used in the 

present work. The first array accounted for 6336 clones (corresponding to ~5300 unique genes) 

from the LNCIB full-length cDNA collection and was printed in quadruplicate.  

The first array was used to evaluate gene expression using total RNA extracted from a human 

tissue (placenta obtained from IRCCS Burlo Garofolo) and from four cell lines, U-118MG 

(human glioblastoma; obtained from INT, Milan, Italy), OVCAR-3 (human ovarian carcinoma; 

obtained from INT), CaCo-2 (human colon adenocarcinoma; obtained from INT), and THP-1 

(human acute monocytic leukemia cells stimulated with LPS for 12 h; obtained from EMBL, 

Heidelberg, Germany). The second array accounted for 8160 cDNA clones from the IMAGE 

collection (Research Genetics/Invitrogen) and for the 6336 LNCIB full-length cDNA clones 

and was printed in duplicate. This second array was used to obtain gene expression profiles 

from 30 human advanced ovarian cancer samples and from the four cell lines, obtained by 

various treatments of the original IOSE-hTERT_INT cell line (an SV40-immortalized normal 

ovarian surface epithelium line stably transfected with the human telomerase cDNA (hTERT), 

kindly provided by Dr. S. Canevari, Department of Experimental Oncology, Istituto Nazionale 

Tumori of Milan, Italy). In particular, in addition to the original IOSE-hTERT_INT cell line, 

the following three sublines were investigated: the first obtained after 5 weeks 5µM LiCl 

treatment of the original cell line (LiCl), the second obtained after 5 weeks treatment of the 

original cell line with 10ng/ml PDGF and 10ng/ml FGF2 (FGF2/PDGF), and the third obtained 

after 5 weeks treatment of the original cell line with 10ng/ml FGF2 and maintenance in RPMI 

(RPMI_FGF2). 

2. cDNA target preparation: study specimens RNA and reference RNA. For all experiments 

described total RNA was extracted from cultured cells or tissue using TRIzol reagent 

(Invitrogen) according  to  the  manufacturer’s  recommendations. 

Microarray targets were prepared by following the two-step indirect fluorescent labeling 

method (Xiang CC et al, Nat Biotechnol 2002) starting from 10µg total RNA. First-strand 

cDNA synthesis reaction was performed using random primers in the presence of aminoallyl–

dUTP and the resulting amino groups were then coupled to the NHS–ester of the fluorescent 
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dye. In the case of the first array all RNA samples were separately labeled with both Cy3 and 

Cy5 dyes and used in self-to-self hybridizations, while in the case of the second array tumor 

samples and the four IOSE-hTERT_INT sublines were labeled with Cy5, while the Cy3 dye 

was used to label the reference RNA, obtained by mixing equal amounts of human placenta, U-

118MG, OVCAR-3, CaCo-2, and THP-1 RNA. 

3. Hybridisation and slide washing. Hybridizations were performed in the presence of 3xSSC, 

0.2% SDS under coverslips as specified by the aforementioned fluorescent labeling method, by 

overnight incubation at 63°C using a manual hybridization chamber.  

4. Slides scanning and image analysis. After hybridization and washing, slides were scanned 

using the GenePix 4000B microarray scanner (Axon). Images were acquired for Cy3 and Cy5 

channels in a 16-bit TIFF format and then analyzed using GenePix software (Axon). All 

images were manually flagged to remove artifacts and bad spots. Only unflagged features 

displaying a mean fluorescence intensity greater than the local background plus 3 standard 

deviations and with that level of expression confirmed in both channels and in all the replicated 

measurements were considered as expressed in each self-to-self hybridization performed with 

human placenta, U-118MG, OVCAR-3, CaCo-2, and THP-1 RNA samples. In the case of 

expression profiling experiments only unflagged features displaying background-corrected 

positive intensities were considered. All the experiments were normalized using the Lowess 

method and a maximum of 10% missing values was allowed in the analysis. 
 

Cell culture and transfections 

U2OS cells (osteosarcoma cell line, with p53wt) were routinely   cultured   in  Dulbecco’s  modified  

Eagle’s  medium (Invitrogen) supplemented with 10% fetal bovine serum, penicillin (100U/ml), and 

streptomycin (100µg/ml). For the experiments, cells were grown on coverslips in 35-mm petri 

dishes containing 8 x 104 cells per dish. After a 24-h incubation at 37°C in 5% CO2 atmosphere, 

cells were transfected using the calcium phosphate precipitation method.  

Transfections were performed using 8 of the 12 cDNAs, cloned into the pCMVSport6 (Invitrogen) 

expression vector. To detect the transfected cells the green fluorescent protein was used in a 1:10 

ratio with respect to the DNA of interest.  

For clone 5000FJE08 anti-cytochrome c mAb (Promega) was used to study the mitochondrial 

localization and biotinylated concanavalin A (Roche) to investigate the endoplasmic reticulum.  

For clones 5000AFE01 and 5000EDD03 anti-human nucleolin mAb D3 (Deng JS et al, Mol Biol 

Rep 1996) was used to study the nucleolar localization.  

Actin filaments were detected in clones 5000CIC06, 5000GCA01, and 5000GDH05 using TRITC 

phalloidin (Sigma Chemical Co.).  
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Twenty-four and 48 h after transfection the cells were examined by epifluorescence with a DMLB 

Leica microscope or a Zeiss laser scan microscope (LSM510) equipped with a 488λ argon laser and 

a 543 λ helium neon laser. 
 

Northern blot analyses 

Northern blot analyses for the unknown transcripts of interest were performed essentially as 

described by (Hla T and Maciag T, J Biol Chem 1990). cDNA inserts (~500 nt) corresponding to 

the 5’ end of the unknown clones of interest or GAPDH were labeled to a high specific activity 

(<108cpm/µg DNA) by using a random primer labeling kit (Invitrogen). Membranes were then 

hybridized, extensively washed as described in the aforementioned manuscript, and subjected to 

autoradiography. Typically, the membranes were exposed at -80°C overnight. 
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RESULTS 
 
The first part of the work presented in this thesis is related to the LNCIB full-length cDNA project, 

more specifically on the high-throughput analysis of human cDNA libraries and the identification of 

the non-redundant collection of unique transcripts to characterize the subset of novel genes and their 

subsequent functional analysis. Many publicly available bioinformatics tools were evaluated and in 

the end an integrated computational system (called TSDB) was implemented to efficiently manage 

the analysis and annotation processes. 
 
PART 1.1 INTEGRATED BIOINFORMATICS PLATFORM FOR THE 
ANALYSIS OF THE TRANSCRIPTOME 
 
With the amount of genomic information now available, new software systems need to be 

integrated to approach the many analytical steps into high throughput pipelines. A particularly 

interesting field for this kind of application is the analysis of nucleotide sequences obtained from 

automated DNA sequencers from the analysis of cDNA libraries (Fig.16). 

 
Figure 16. General scheme of cDNA sequence analysis workflow. 
 
The chromatograms generated by the sequencer need to be checked in order to verify their quality, 

as bad quality and cloning vectors sequences need to be removed. This can be done by simply 

recording the base calling at a nucleotide level, or can be refined by introducing more accurate 

evaluation criteria defined by the operator. 

Along this, the complexity of a cDNA library is generally quite limited, thus leading to the 

necessity of identifying all the unique cDNAs available, including (if necessary) the putative 
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isoforms of each gene. This goal can be achieved in two ways: by a direct comparison across all the 

sequences, or in an indirect way, by assigning each cDNA a functional annotation, using this 

information as a filtering rule. In the first case the user must select a clustering algorithm and 

perform the assembling, in the second case a local alignment tool is required in order to define the 

regions of homology between the examined sequences and reference sequences which already 

possess a functional annotation. These two methods can also be used in parallel in order to 

strengthen the final result. 
 

Many public bioinformatics tools are available for the aforementioned specific activities and they 

were all tested in order to choose the most suitable for the analysis pipeline.  

Phred (Ewing B et al, Genome Res 1998) is the most used open source instrument for evaluating 

sequence quality and its choice was obvious, as well as the choice of Cross_match (P. Green, 

PHRAP and CROSS_MATCH, University of Washington, Seattle, WA, USA; unpublished) for 

cloning vector removal. No other open source tool, indeed, could have ever been chosen to perform 

these tasks. The same thing can also be said for sequence annotation, as BLAST is the most used 

local sequence alignment algorithm and many reference databases can be queried to study different 

aspects of cDNA sequences. The most tricky choice concerned sequence clustering, as many 

algorithms existed: StackPACK (Burke J et al, Genome Res 1999) was chosen as it was the only 

one that allowed incremental clustering, that is the possibility to compare new sequences with 

already analyzed ones without the need of disrupting existing gene clusters. Other specialized tools 

required during the different phases of cDNA sequence analysis, such as the one needed for exon-

intron boundaries definition or for the identification of coding regions located into unknown 

transcripts, were evaluated and selected after an appropriate comparison to other (if any) similar. 

Despite the existence of all these resources, integrating (in an open-source package) heterogeneous 

analysis tools is a difficult task. As a matter of fact, only a few of such tools exist (Shah M et al, 

http://compbio.ornl.gov/tools/pipeline 2000; Taudien S et al, Trends Genet 2000) and most of them 

do not contain a database component where information can be stored and easily accessed. 

Moreover, complex queries are limited within traditional database applications (Gupta A, SIGMOD 

RECORD 2004): the level of interaction that the few existing databases allow is fairly limited, 

enabling only a narrow range of analyses (Inman JT et al, IBM System Journal 2001). Finally, and 

most importantly, although queries could benefit from the availability of temporal information, no 

system is adequately equipped for time management. At best, available tools provide data with a 

version number and the date of the last update, but they do not allow to retrieve complete 

information with respect to their evolution over time. Along this line, available databases often 

undergo radical changes, due to the great amount of new data (that can also possibly introduce 
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assembly and/or human manual errors), and the availability of new releases becomes the source of 

relevant changes in information associated with a sequence. Hence, in order to fully understand the 

characteristics of clones/sequences from their annotation, it is necessary to record the history of 

each clone to trace the variations it undergoes. 
 

Integrated computational system for the temporal analysis of nucleotide sequences 

Given the above described problems, I pushed the decision to develop an integrated computational 

system (Braidotti M et al, reviewed manuscript re-submitted to BMC Bioinformatics; see also 

Personal Publications)  that supports the production and temporal analysis of biological sequences, 

focusing on nucleotide sequences obtained from the production and sequencing of full-length 

human cDNA libraries. 

This system consists of three main components: the software pipeline, that filters and analyzes the 

generated sequences, the temporal sequence database, that stores the data as well as the results of 

data analysis, and the user interface, that allows to query the database and to export its contents. 

1) The software pipeline. It consists of a series of Perl scripts which interact with the file system, 

the temporal database, and the internal and external analysis tools. Its behaviour can be 

summarized as follows. First, it receives a set of chromatograms generated by the sequencer as 

input, and it performs a quality control for the removal of bad quality sequences and of other 

unsatisfactory sequences (anomalous bases repetitions, too short sequences, etc.), keeping track 

of the outcomes of such an analysis. Successively, the selected sequences undergo the so-called 

“vector   trimming” phase, which identifies and removes the bases belonging to the cloning 

vector. The next phase is the annotation phase which consists of two main steps: the clustering 

step and the functional annotation step. The clustering step compares each sequence to all the 

others, looking for similarities that allow one to identify sets of sequences which correspond to 

the same gene (with the possibility of detecting alternative splicing forms). The functional 

annotation step compares all the generated sequences with those belonging to various public 

databases, with different degrees of functional significance, looking for local similarities 

between the query sequence(s) and the database ones. These two steps are somehow 

independent, and thus they can take place in either order. Moreover, they can also be executed 

on groups of FASTA-formatted sequences, with no chromatrograms available, obtained from 

external sources.  

If no available external tools exist for a given analysis task, the pipeline uses the internally 

developed software modules to perform such a task. All relevant information are stored into the 

temporal database. When only incomplete data are available one can force the process to start 

at a different entry point by setting a parameter of the pipeline activation script. This is very 
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useful when someone is analyzing sequences that have not been produced internally, such as 

those obtained from external laboratories or directly downloaded from a public sequence 

database.  

Phred. First of all sequence quality is estimated by Phred (Ewing B et al, Genome Res 

1998), which provides the probability of error for each base. A quality file is generated for 

each sequence read and every file is checked to keep only sequences with a sufficient 

number of good-quality bases. Q20 or higher accuracy was considered successful, where 

Q20 means one possible error in 100 bases.  

Cross_match. Then Cross_match (P. Green, PHRAP and CROSS_MATCH, University of 

Washington, Seattle, WA, USA; unpublished) is run on the good sequences left. This 

software masks the cloning vector sequence situated before the beginning of the cDNA 

sequence. Masked bases are then removed automatically to keep only insert sequences.  

Quality control. To improve the overall quality of the sequences a second quality check is 

made. cDNA sequences whose length is less than 80nt are removed by an internal Perl 

module, as well as sequences with more than 25 contiguous repetitions of the same 

nucleotide (Poly-C and Poly-A excepted) or sequences with an excessive abundance of a 

single nucleotide (more than 48% of the total length of the sequence).  

StackPACK. After filtering, an incremental clustering procedure is applied to the data to 

identify all the unique genes and their possible alternative splicing forms and, where 

possible, to select full-length representatives for each gene. This is done using StackPACK, 

a software based on the d2_cluster algorithm (Burke J et al, Genome Res 1999). By using 

PHRAP (P. Green, PHRAP and CROSS_MATCH, University of Washington, 

unpublished) the sequences grouped together by d2_cluster are aligned and assembled and 

alignment quality is improved by removing particularly distinct sequences: clusters are 

generated if at least two sequences share a common region of a given length (100 bp in this 

case). All sequences not belonging to any cluster are considered as “singletons”. For each 

cluster the best representative sequence (i.e., the 5’ more complete, longest sequence 

starting with the poly(C) stretch introduced during the cDNA synthesis) is chosen along 

with one or more alternative splicing forms, when present.  

BLAST queries. Sequence similarity searches are executed by using NCBI BLAST 

(Altschul SF et al, J Mol Biol 1990). The BLAST search looks for matches in RefSeq, 

Unigene, or nr databases. For each query, up to 5 alignments are stored, depending on the 

e-values associated to the results (fixed threshold: 1e-40 for RefSeq; 1e-50 for Unigene; 1e-

60 for nt). These thresholds have been chosen empirically, depending on the stringency I 
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decided to apply to my data, but they can be easily modified to user discretion. The number 

of stored alignments has been fixed assuming 700nt as the average length of cDNA 

sequences, and 150nt as the average length of human exons. In this way, it should be 

possible to store information about all the exons of the cDNAs, if they should give different 

High Scoring Pairs (HSP) in BLAST output. It is clear, however, that similarity searches 

usually do   not   provide   “certain”   results,   so   significant   matches   never   imply   a   “certain”  

functional annotation. This is another reason for storing information in a temporal way and 

for storing 5 different results that can be compared one another to verify cDNAs 

annotation. Matches from RefSeq are considered the best for the functional enrichment of 

cDNAs annotation, those from nr the worst. If there is no BLAST result fulfilling the e-

value threshold, the sequence is marked as unknown. 

BLAST analysis can also be made using other databases. In particular, searches on 

GenBank Human EST and Human Genomic databases are performed to retrieve additional 

information on, for instance, the genomic location of the sequences and the annotated 

elements, e.g., predicted genes and transcripts, proteins and orthologous matches, located in 

the same genomic region. 

2) The temporal sequence database. The Temporal Sequence DataBase (TSDB) is a fundamental 

component of the system. It records data related to sample plans, sequences and sequence 

analyses. In particular, it stores the results of the operations of sequence annotation (via 

BLAST) and rearraying. In fact, it allows to record multiple BLAST and clustering results, the 

first ones obtained by querying different public and private databases as well as by querying 

the same database at different times, the second ones obtained by multiple executions of 

possibly different clustering algorithms. The distinctive features of TSDB are its flexibility, 

that allows to deal with incomplete information, and the presence of a temporal dimension, 

which makes it possible to keep track of data history. Another relevant feature of TSDB is its 

user-friendly nature. It provides a number of predefined queries that allow the user to properly 

integrate information distributed over different tables (i.e. the user can retrieve all the clones 

belonging to a certain library, with the same clusterID, and whose alignment score difference is 

5% maximum). Moreover, specific additional queries can be easily formulated and executed. 

The last functionality of TSDB to be mentioned is its support to information sharing and 

exchange. Additional data, such as new information about genomic location, ontologies, or 

orthologous comparisons, possibly generated by other experiments carried out in the laboratory 

(e.g., cDNA microarrays gene expression experiments), can be easily integrated into TSDB. In 

a similar way, relevant data contained in TSDB can be easily exported to other databases.  
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TSDB is based on a temporally-extended data model obtained by adding suitable temporal 

features to the Enhanced Entity-Relationship (EER) model (Elmasri R and Navathe SB, 

Fundamentals of Database Systems 2004). This temporal data model integrates the basic 

constructs of the EER model with temporal primitives borrowed from the RAKE model (Ferg 

S, Proceedings of the 4th International Conference on the Entity-Relationship Approach 1985) 

and the TimeER one (Gregersen H and Jensen CS, TimeCenter Technical Report TR-35 1998). 

The TSDB temporal data model describes the evolution of data as a sequence of database states 

A,B,C, . . .. The transition from any given state A to the next state B is determined by the 

occurrence of a specific update X. Hence, for any sequence of states A,B,C, . . . there exists a 

sequence of updates X, Y,Z, . . . such that  ZYX CBA . . .. States persist over time, 

that is, they hold over a time period, while updates take place instantaneously, that is, they 

occur at time points. The time period during which a given state is current in the database is 

identified by a pair of timestamps: BEGINstamp and ENDstamp. BEGINstamp and ENDstamp 

are the occurrence time of the update that initiates the validity of the state and the occurrence 

time of the update that terminates it, respectively. Each timestamp is represented by a pair 

(date, time) that associates a time value with a data value (they correspond to the date and time 

elementary temporal domains of SQL).  

The TSDB temporal data model encompasses all the basic constructs of the EER model, 

namely, entity and relation types, attributes, internal and external identifiers, participation and 

cardinality constraints associated with entity-relation links (using the (min, max) notation), and 

generalization/specialization hierarchies. States are modelled by temporal relation types which 

are obtained by adding the BEGINstamp and ENDstamp timestamps to basic relation types. 

BEGINstamp and ENDstamp timestamps can also be used to model time-varying attributes, 

that is, attributes whose value can change over time. Updates are not explicitly represented. 

One of the most sophisticated temporal features of the TSDB model is the possibility of 

distinguishing between snapshot and lifespan constraints associated with entity-relation links. 

Given an entity E and a relation R, it is possible to label the E-R link with a snapshot constraint 

(minS, maxS) to state that, at any time point, each instance of E participates in at least minS and 

at most maxS instances of R. Moreover, it is possible to label the E-R link with a lifespan 

constraint [minL, maxL] to state that, over time, each instance of E participates in at least minL 

and at most maxL instances of R. It obviously holds that minS  ≤  minL  and maxS  ≤  maxL. 

This conceptual schema was translated into a relation one, which was implemented in MySQL. 

MySQL is a simple, fast, and stable DataBase Management System (DBMS), which scales 
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well. It supports most of the distinctive database features and it can be easily paired with the 

scripting languages used to implement the software pipeline and the interface. 

3) The user interface. The interface supports three different kind of search. The first one 

(Reporter) allows to obtain data on the status of the sequences. In particular, it allows the 

sorting of sequence IDs associated with sequence text, PHRED quality file, direction of 

sequencing, mapping location (container and fridge info), analysis status, Poly-C position and 

GenBank link (whenever the sequence has been submitted to NCBI). The second search 

(BLAST Results) allows the display of results from queries delivered to the GenBank RefSeq, 

Unigene, nr, Human EST, and Human Genomic databases. For each sequence, it is possible to 

obtain the corresponding  NCBI  accession  number  (with  the  link  to  the  specific  page  of  NCBI’s  

Entrez), the annotation, and its degree of full-lengthness with respect to the database entries. In 

addition, data can be queried, or filtered, by exploiting the GUI tools such as filter by selection 

and filter by form. The last search (Clustering) allows to display two different types of 

information about a given sequence  collection:  the  list  of  unique  “genes”  (singletons  or  cluster  

consensus sequence) that are present in it and, for each sequence, the cluster, or the singleton, it 

belongs to. For every query, a mask can be applied to restrict the sorting to a subset of the 

sequences  that  satisfy  user’s  criteria.  
 
[Pipeline software and temporal database can be downloaded from httb://www.bioinfo.lncib.it/] 
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PART 1.2 EXPERIMENTAL TESTING 
 
Library Selection 

All   the   libraries  were  produced  with   the  CAP   trapper  method   to  maximize   the  number  of  5’   end  

full-length cDNAs. 

After a preliminary phase of library quality evaluation (see Materials and Methods), four libraries 

constructed from RNA extracted from the MOLT-4 cell line (human T cell acute lymphoblastic 

leukemia), from human placenta tissue (39 weeks fresh placenta tissue from cesarean delivery), and 

from two distinct human fetal brain tissues (respectively 15 and 18 weeks from right frontal lobes) 

were selected for further sequencing characterization.  

During the sequencing phase ~23,000 5’-end sequences were generated: ~9000 from the MOLT-4 

library, another ~9000 from the 15-weeks fetal brain library, ~3500 from the placenta library, and 

~1500 from the 18-weeks fetal brain library.  
 

Integrated computational system analysis: data filtering 

By introducing the 23,000 initial sequences into the developed integrated computational system 

(Fig.17) it was possible to remove those that, for various reasons, did not match quality 

requirements.  
 

 
Figure 17. Integrated computational system analysis. Various analytical tools (both public and 
internally developed) were used to analyze sequence quality (Phred and Cross_match) and to find 
unique genes among the cDNA collection (StackPACK). 
 

After bad-quality sequences, empty cloning vectors and artifacts were removed, 16,400 good-

quality cDNA sequences were recovered and this group was used as input for the clustering 
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procedure. StackPACK generated ~2100 clusters with ~3300 sequences remaining as singletons. By 

choosing the best representative sequence for every cluster I found that, in some cases, two or more 

sequences had to be chosen, due to alternative splicing events. For this reason the ~2100 clusters 

generated ~2500 cluster representatives. This set of ~5800 sequences was then considered for 

further analysis to obtain a functional annotation for every sequence (Dalla E et al, Genomics 2005; 

see also Personal Publications). 
 

Integrated computational system analysis: data recording 

All the   information   belonging   to   the   cDNA  molecules   clustered   into   the   “LNCIB   5.8K   Unique  

cDNAs  collection”  were  stored  into  TSDB.  Along  with  nucleotide  sequences and analysis results, 

also information on technical aspects of libraries production such as sample plans, containers, and 

enzyme tables were recorded as relevant. 

As previously explained in Materials and Methods, one of the main features of TSDB is the fact of 

being a temporal database. This means that it allows to record the results of the execution of the 

same query at different time points, making it possible to detect the temporal evolution of the 

available knowledge about the features that characterize every sequence. Although results based on 

obsolete information should simply be discarded, since they are no longer supported, I do not 

consider this to be the best solution.  

Databases, in fact, undergo changes that need to be verified over time, as they are not always 

correct. The most common problems are small mistakes, like swapping the annotation of different 

isoforms of a given gene. For  example,   the   initial  annotation  of  a  clone  was  “Homo sapiens IMP 

(inosine monophosphate) dehydrogenase 1 (IMPDH1),  transcript  variant  1”  and  was  lately  replaced 

by   “Homo sapiens IMP (inosine monophosphate) dehydrogenase 1 (IMPDH1), transcript variant 

2”.  While   at   a   first   glance   this   could   represent   a   little   change,   it   is   indeed   quite   relevant   since 

different members of the same gene family, as well as alternative splicing forms of the same gene, 

can perform very different functions and be involved in very different biological behaviours. 

However more striking errors occur, too, and lead to the removal of the entry from public databases, 

like in the case of another   cDNA  whose   first   annotation  was   “Homo sapiens apoptosis inhibitor 

(FKSG2)”, located on chromosome 8p11.2, and that lately resulted to  be  “Homo sapiens FLJ44635 

protein”, located on chromosome Xq13.1.  

Overall, 1281 clones out of 20,266 submitted to at least two rounds of analysis underwent changes 

in their annotation since their recording into TSDB. In particular, 146 of these clones changed their 

LocusLink IDs. Another relevant group of 500 clones could not be compared because their 

GenBank accession number changed, the LocusLink ID being available either for the first or for the 
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second round of analysis, but not in both cases. Finally, 1600 clones matched to different GenBank 

accession numbers, but shared the same common LocusLink ID, suggesting the same gene. 

It is quite clear that, when dealing with cDNA microarrays gene expression experiments and TFBS 

search, it is not possible to accept this kind of mistake and it is also not possible to wait until an 

update of the database is released. For this reason, the temporal evolution of the sequence features 

becomes the best way of solving this kind of constraint, and this is the reason why, whenever new 

cDNA sequences are generated, a new and complete BLAST analysis is performed to update the 

cDNAs annotations. Similarly, a new analysis is also performed in the case of the release of a new 

version of one of the GenBank databases. 
 

Identification of known genes 

The 5295 clones that were identified as singletons or unique cluster representatives at the end of the 

clustering step were submitted to a BLAT (Kent WJ, Genome Res 2002) analysis for the 

identification of clones corresponding to known sequences.  

Altogether, ~79% of the unique sequences displayed significant matches with entries from RefSeq 

db (human division) with another ~11% of the sequences recovering significant matches when 

GenBank, EMBL, and DDBJ human mRNA entries were also considered. The last ~10% remained 

“unknown”.  

In those cases where I observed that the similarity between the clone and the mRNA sequence did 

not involve the whole clone sequence, I mapped both sequences on the human genome (assembly 

34). Only pairs mapping at the same genomic location were considered. There were 4137 clones 

that were identical or had a different 5’ length compared to the known sequence, while 662 

sequences were likely produced by alternative splicing of a known gene.  

Comparing the 5’ ends of LNCIB clones with the reported 5’ ends of RefSeq mRNAs I observed 

that 1769 of the analyzed clones (more than 40%) extended the previously annotated 5’ end, 1238 

(~30%) proved to be as long as the known sequences, and 292 (~7%) were a maximum of 200 nt 

from the reported 5’  end (the majority conserving the start codon), while a significant fraction, 884 

(~20%) of them, were more than 200 nt shorter (Fig.18).  
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Figure 18. Distribution  of  length  differences  of  5’  end  between  LNCIB  and  RefSeq  transcript  
sequences. 
 
Characterization of unmatched clones 

The remaining subgroup of 496 clones (Fig.19), corresponding to putatively unknown clones, was 

submitted to a BLAT query on the human genome sequence, and for 417/496 clones I identified 

their genomic location.  

 
Figure 19. Human genome BLAT analysis. Flowchart showing the analysis pipeline followed for 
the genomic characterization of the 496 poorly annotated clones. Dashed arrows mean negative 
answer. The Spidey program was applied comparing the clone sequence and the genomic sequence 
of the matching EnsEMBL transcript. 
 
 

Only the 383 clones with a genome match coverage of >90% were included in the second stage of 

the analysis pipeline.  
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By comparing the genomic coordinates of these clones with the features annotated in EnsEMBL 

(Rel 20 based on NCBI Rel 34, http://www.ensembl.org/Homo_sapiens/) I identified 33 more 

clones matching with EnsEMBL “known” transcripts. These transcripts are termed known since 

they are supported by the presence of full-length cDNAs or protein sequences already annotated in 

public databases and have thus been assigned an established gene symbol.  

To investigate further the remaining 350 clones I compared their sequence with the corresponding 

genomic sequence using the Spidey program (Wheelan SJ et al, Genome Res 2001) (http:// 

www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/). Spidey has been specifically designed to 

compare mRNAs to genomic sequences, mapping the genomic coordinates of exons, and checking 

for the presence of canonical donor/acceptor splice sites. I excluded from further investigation 

5/350 clones that showed a genome match at multiple locations without canonical splice sites. Of 

the remaining 345 clones fully matching with the genomic sequence, 307 showed a single match 

and 38 multiple matches separated by canonical splice sites.  

This set of 345 clones, possibly representing novel genes, was then subjected to further 

bioinformatics and expression analyses. Among the features annotated in EnsEMBL are matches 

with human cDNAs, UniGene and dbEST entries, proteins, Genscan predictions, and other 

vertebrate mRNAs. Three of 345 clones matched with human cDNAs not yet present in the RefSeq 

database, reducing the number of potentially novel genes to 342: 214 obtained from the human fetal 

brain libraries, 114 from the MOLT-4 cell line, and 14 obtained from the human placenta library.  
 

Functional annotation by comparison with human ESTs and other vertebrate transcripts 

Of the 19/342 clones showing a significant match with other vertebrate mRNAs, 16/19 also 

matched a predicted Genscan gene and 13/19 hit human ESTs, strongly suggesting that these may 

represent genuine novel human genes. Among the other 323 clones (33 with a spliced match), 155 

showed a match against human ESTs and 81 of these also matched with a predicted Genscan gene. 

Of the remaining 168 clones (12 with a spliced match), 76 showed a match with a Genscan 

prediction. Finally, 92 clones did not show any match with EnsEMBL features, with only 5 of them 

showing a spliced match with the genome.  
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Expression analysis 

cDNA microarray self-to-self hybridization were performed by using four different cell lines, U-

118MG (glioblastoma cell line), OVCAR-3 (human ovarian carcinoma), CaCo-2 (human colon 

adenocarcinoma), and THP-1 (human acute monocytic leukemia cell line stimulated with LPS), and 

a human tissue, placenta, as sources of mRNA molecules for studying the expression levels (if any) 

of the spotted cDNAs. All RNA samples were separately labeled with both Cy3 and Cy5 dyes and 

used in self-to-self hybridizations on a cDNA microarray slide, accounting for the 6336 different 

physical clones spotted in quadruplicate. In particular I focused on the group of 342 EnsEMBL 

unknown clones to evaluate whether these clones could represent transcribed sequences. I selected 

only those genes with a signal greater than the background intensity plus 3 standard deviations and 

with that level of expression confirmed in both channels and in all the replicated measurements.  
 

Fig.20A shows the scatter plot of the 260 unknown transcripts expressed in the investigated samples 

along with the expression values measured in placenta for 6 housekeeping genes. Fig.20B shows a 

portion of the hybridization performed on the LNCIB 5.3K unique cDNA collection by using 

cDNA target synthesized from placental RNA.  
 

 
Figure 20. DNA microarray gene expression analysis. (A) Scatter plot of the unknown 
transcripts expressed in the following investigated samples: human placenta, U-118MG cell line, 
OVCAR-3 cell line, CaCo-2, and THP-1 cell line. Cy3 and Cy5 values are expressed in logarithmic 
scale (base 2). Expression values measured in placenta for 6 housekeeping genes are shown as 
yellow circles (PRDX2, peroxiredoxin 2; ITPA, inosine triphosphatase (nucleosine triphosphate 
pyrophosphatase); DHFR, dihydrofolate reductase; RPS17, ribosomal protein S17; RPS19, 
ribosomal protein S19; and ACTB, β-actin). (B) Snapshot of the hybridization performed on the 
LNCIB 5.3K unique cDNA collection by using cDNA target synthesized from placental RNA. Red 
arrows point to 16 expressed unknown transcripts. 
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Table 1 summarizes the results on the subgroup of 260 clones expressed, at different levels, in all 

five experiments: 170 clones belong to the human fetal brain library, 79 from the MOLT-4 library, 

and 11 from the human placenta library.  
 

 
Table 1. Expression features, genome location according to the EnsEMBL annotation in the 
forward (and reverse) strand and occurrence of conserved sequence tags (CST) in the comparison 
with the mouse genome of the 342 clones likely corresponding to novel human genes 
 

About 60% of these clones (156/260) are expressed in more than three cell lines/tissues. These 

clones were mapped with respect to EnsEMBL genome features annotated both on the forward and 

on the reverse strand and the majority of them are located in intergenic regions; in particular, 107 

are located at least 10 kb from the nearest EnsEMBL transcript, thus possibly representing 

completely novel genes, while 17 more cDNA clones have a distance of at least 5 kb from the 

nearest EnsEMBL transcript. The exact meaning of these results, in particular for the cDNAs that 

are nearer to known genes or transcripts, could be explained considering that new transcriptional 

units can be located at the very end of known genes (Cawley S et al, Cell 2004) or that the CAGE 

technique (Shiraki T et al, Proc Natl Acad Sci USA 2003) has shown that new TSP can be found 

also 10 kb or more from the established  5’ end of a known gene. The remaining clones, mapping in 

intron regions of already annotated genes, could alternatively be representatives of novel gene 

splicing isoforms. Interestingly, 2 clones showed antisense matches with annotated exons.  

By looking in more detail it was finally possible to identify subgroups of genes that appear to be 

expressed or not expressed in a specific way and in particular different subgroups presenting a 

significant degree of co-expression in the different targets analyzed.  
 

In addition gene expression profiling was performed on 30 advanced epithelial ovarian cancer 

specimens and on several cell lines, after various treatments of the IOSE-hTERT_INT cell line (see 

Materials and Methods for details). This analysis showed that 289 of 342 unknown clones survived 

the filtering procedures, being differentially expressed in the samples considered (Fig.21A). This is 
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very important as it shows how in a microarray experiment, by using RNA sources that are different 

from those used for library construction, it is still possible to identify new expressed genes 

previously unidentified. To group the expressed genes in meaningful clusters it will be necessary to 

increase the number of available ovarian cancer specimens. By now, it is not yet possible to 

understand the function of the unknown clones by taking into consideration the known genes that 

cluster together. As outlined in the second part of my thesis, this problem pushed my interest in 

analyzing and developing tools for TFBS identification to identify conserved elements putatively 

responsible of gene co-regulation and co-clustering. 

 
Figure 21. (A) Gene Clustering. Gene expression pattern determined using agglomerative 
hierarchical clustering of 30 primary ovarian cancer samples and four cell lines using the 289 
unknown   clones   that   survived   the   filtering   procedures.   The   Pearson’s   metric   and   the   average  
clustering method were used. Expression levels are relative to a common reference obtained by 
pooling equal amounts of human placenta, U-118MG, OVCAR-3, CaCo-2, and THP-1 RNA. The 
colour scale is shown below, increased (orange) or decreased (blue) expression of the genes is 
reported for each sample. IOSE-hTERT_INT, the original SV40-immortalized normal ovarian 
surface epithelium cell line stably transfected with hTERT; LiCl, the IOSE-hTERT_INT cell line 
treated for 5 weeks with 5µM LiCl; FGF2/PDGF, the IOSE-hTERT_INT cell line treated for 5 
weeks with 10ng/ml PDGF and 10ng/ml FGF2; RPMI_FGF2, the IOSE-hTERT_INT cell line 
treated for 5 weeks with 10ng/ml FGF2 maintained in RPMI (RPMI_FGF2); EOC, human 
epithelial ovarian cancer. (B) Northern blot analyses. Analyses of the transcript abundance of the 
unknown potentially coding clones. Shown are the results of clone 5000EIA09 (lane B) and 
5000AFE01 (lane C), as expressed in the CaCo-2 cell line. GAPDH (lane A) was also checked as 
positive control. 
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Conserved sequence tags in the unknown clone sequences 

The observation of conserved sequence tags (CST) in cross-species comparison may contribute to 

the identification of new genes or gene isoforms or regulatory motifs in the untranslated regions of 

mRNA.  

A recently developed program – CSTminer (Mignone F et al, Nucleic Acids Res 2003; Castrignano 

T et al, Nucleic Acids Res 2004) - is able to identify statistically significant conserved tracts and to 

assess their coding or noncoding nature. To investigate further the 342 clones corresponding to 

potentially new genes I compared their sequences to the Mus musculus genome by using the 

CSTminer program. I observed at least one CST in 59 clones, and 12 clones contained coding CST 

(average coding potential score - CPS - 8.22). These 12 clones are very likely to contain a 

significant portion of a coding region, with 11 of them, falling in intergenic regions, the most 

reliable representatives of novel human genes. Forty-seven clone sequences containing a CST (11 

with a coding CST) were also expressed in at least one tissue, while 33 clones (7 with a coding 

CST) were expressed in more than two tissues (Table 3).  

A further confirmation of this hypothesis is given by the comparison of these 12 clones with the 

data contained in the DBTSS (Suzuki Y et al, Nucleic Acids Res 2004) collection: only 1 of them 

(clone 5000BHE02) matches with entries of this database and in particular with NM_024656 

(Homo sapiens hypothetical protein FLJ22329, mRNA length 3593 bp) and the M. musculus 

counterpart NM_146211 (M. musculus hypothetical protein MGC38524, mRNA length 3231 bp). 

The 11 other clones do not match at all with known or predicted human or mouse genes or 

transcripts.  

Finally, by considering also the 3’ end and the internal sequences obtained it has been possible to 

confirm the potential coding capacity of these 12 clones; it seems, in fact, that all of the 12 clones of 

interest possess open reading frames (ORF) leading to the production of peptides, with the best 

result represented by clone 5000FJE08, which presents an ORF of at least 171 aa.  
 

Northern blot analyses 

The expression levels of 11 of the 12 unknown potentially coding clones have also been evaluated 

by Northern blot analyses on one cell line, CaCo-2. Only 2 clones, 5000EIA09 and 5000AFE01 

(Fig.21B), are clearly expressed in the CaCo-2 cell line, while the 9 other clones give weak signals 

most probably indicative of low expression levels (data not shown). 
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Effects of the 12 unknown potentially coding clones on transfected cells 

The biological effects of 8 of the 12 unknown potentially coding clones (data not shown), cloned in 

expression vectors, were tested by transfecting U2OS cells together with GFP under different 

experimental conditions.  

Two of these clones, 5000BHE02 and 5000CBA02, do not seem to modify the overall aspect of the 

transfected cells as analyzed in the cells co-expressing the transfection marker GFP. On the other 

hand, six clones give rise to interesting phenotypes of different kinds. The most striking effect of 

clones 5000GCA01, 5000CIC06, and 5000GDH05 involves changes to the cytoskeleton (although 

they seem to act by following different mechanisms), while clones 5000AFE01 and 5000EDD03 

induce changes at the level of the nucleoli structures. The most striking effect was shown by clone 

5000FJE08. Fig.22 demonstrates that 24 h from the transfection the GFP marker seems to be 

concentrated in vesicular aggregates within the cytoplasm. The amount of such vesicles/aggregates 

increases during the next 24 h, leading to the most dramatic effect 48 h after transfection, when the 

cytoplasm is entirely filled with these vesicles and the cell nuclei have shrunk.  

 
Figure 22. Effect of clone 5000FJE08 on U2OS transfected cells. (A) Negative control: cellular 
distribution of GFP. (B) 24 h after transfection. (C) Cytoplasm of a U2OS cell 48 h after 
transfection. (D) Apoptotic nucleus of a U2OS cell 48 h after transfection. 
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Full-length sequencing of cDNA clone 5000JE08 
 
The complete sequence of clone 5000FJE08, responsible of the most striking biological effect 

among the 12 unknown protein-coding cDNAs, was recently obtained. 
 
ATCCCCCCCCGGAAGGCGGCCTCGGCCCAGTGCACAGCGGGACCAGGCAGAGTTCGGGGAAAGCGTCGG
AGTTCGGGAGACCAGGGTCCAGCATGGGTTTCAGCACAGCAGACGGCGGGGGCGGCCCAGGCGCCCGGG
ATCTGGAATCTCTTGATGCCTGTATCCAGAGGACGCTCTCTGCCTTGTACCCACCGTTTGAAGCCACGGCA
GCCACGGTGCTCTGGCAGCTGTTCAGCGTGGCCGAGAGGTGCCACGGTGGGGACGGGCTGCACTGCCTCA
CCAGCTTCCTCCTCCCAGCCAAGAGGGCCCTGCAGCACCTGCAGCAGGAAGCCTGTGCCAGGTACAGGGG
TCTGGTCTTCCTGCACCCAGGCTGGCCGCTGTGCGCCCATGAGAAGGTGGTGGTGCAGCTGGCGTCCCTG
CACGGAGTCAGGCTCCAGCCCGGGGACTTCTACCTGCAGGTCACGTCGGCGGGGAAGCAGTCAGCTAGA
CTGGTCTTGAAATGCCTGTCCCGGCTGGGAAGAGGCACAGAGGAAGTCACCGTCCCTGAGGCCATGTATG
GCTGTGTCTTCACGGGGGCGTTCCTGGAGTGGGTGAACCGGGAGCGGCGCCATGTCCCCCTGCAAACCTG
CTTGCTGACCTCAGGCTTGGCCGTCCACCGAGCCCCGTGGAGCGACGTCACTGACCCTGTCTTTGTCCCCA
GCCCTGGAGCCATCCTGCAGAGCTACTCCAGCTGCACAGGGTCCTGAGCGGCTGCCCAGCAGCCCCTCAG
AGGCCCCAGTCCCCACCCAAGCCACAGCAGGCCCCCATTTCCAGGGAAGCGCCTCTTGCCCCGACACCCT
GACCTCACCCTGCCGCCGAGGGCATACGGGCAGCGACCAGCTCAGGCACCTTCCTTATCCAGAAAGAGCC
GAGCTGGGAAGCCCCAGGGACCCTGTCTGGAAGCTCAGACAGGGACTTCGAAAAGGTCAGCCCCTCAGA
GCAGGGCCCACGGATGCCCCCTGAGAACTGTGGGGGGTCGGGGGAGAGGCCGGACCCCATGGACCAGGA
GGACAGACCCAAGGCCCTCACCTTCCACACAGACCTGGGCATCCCGAGCAGCAGGAGGCGGCCGCCGGG
GGACCCCACTTGTGTGCAGCCTAGACGCTGGTTCAGGGAGTCGTACATGGAAGCCTTGCGGAACCCCATG
CCCCTGGGCAGCTCTGAGGAGGCCCTCGGGGACCTGGCCTGCAGCTCCCTGACTGGAGCCAGCAGGGACC
TGGGGACTGGGGCAGTAGCCAGTGGGACCCAGGAGGAAACCTCTGGCCCCCGGGGAGACCCCCAACAGA
CCCCAAGTCTAGAGAAGGAGAGGCACACACCCAGCCGGACAGGTCCAGGAGCTGCAGGGCGGACTCTTC
CCAGGGAGATCTCGGTCCTGGGAAAGGGCACCCAGAAGCTCCAGAGGGGCCCAGGCTGCAGCCTGCCAC
ACCTCCCACCACTCAGCAGGCTCCAGGCCTGGGGGCCCACCTAGGAGGACAAGCTGTGGGGACCCCAAA
CTGTGTCCCAGTAGAGGGTCCCGGCTGCACCAAAGAGGAAGACGTTCTTGCATCCTCAGCCTGTGTCAGC
ACAGACGGCGGCAGCCTCCATTGCCACAACCCCAGCGGGCCTTCCGATGTGCCTGCCCGGCAGCCACACC
CCGAGCAAGAAGGGTGGCCACCCGGCACAGGAGACTTCCCCAGCCAGGTGCCCAAGCAGGTGCTGGACG
TCAGTCAGGAGCTGCTGCAGTCCGGGGTCGTCACCCTCCCAGGGACCCGAGACCGTCATGGCAGAGCAGT
GGTGCAGGTCCGCACCAGGAGCCTGCTCTGGACCAGGGAACACTCGTCCTGTGCTGAGCTGACCCGCCTG
CTGCTGTACTTCCATAGCATCCCCAGGAAAGAGGTCCGGGACCTGGGGGCTGGTTGTCCTGGTGGATGCA
CGCAGGAGTCCAGCTGCCCCTGCCGTCTCCCAGGCCCTCTCAGGATTGCAGAACAACACATCTCCTATAA
TTCATCTATAAATTCATAGTATCTTGCTGTTGGTAGATAAAGAATCTGCATTTAGGCCTGACAAGGATGCA
ATAATTCAGTGTGAGGTCGTGAGCTCCCTGAAGGCCGTGCACAAATTTGTTGACAGCTGCCAGCTGACCG
CAGACCTCGACGGCTCCTTTCCCTACAGCCATGGTGACTGGATCTGCTTCCGTCAGAGGCTGGAACACTTC
GCTGCAAACTGTGAAGAAGCCATCATTTTCCTACAGAATTCATTCTGCTCACTGAACACCCACAGAACAC
CAAGAACAGCCCAGGAAGTCGCCGCTTTAATTGACCATCATGAGACGATGATGAAGCTTGTCCTGGAAGA
TCCACTGCTTGTGTCTTTCAGGCTGGAGGGGGGCACCGTCCTGGCGCTGCTGAGGAGAGAAGAGCTTGGC
ACAGAAGACAGCCGGGACACCTTGGAGGCCGCCACAAGCCTGTACGACCGAGTGGATGAGGAGGTGCAC
AGGCTGGTCCTCACCTCGAACAATCGTCTCCAGCAGCTGGAGCACCTCCGGGAGCTGGCGTCACTCCTGG
AAGGGAATGACCAGGTCAGAGCTGCAGGAGGAAGGCGGCCCGGTCAGCATCTCCTCCAGTCCAGGCTGG
CCAAGGCAACCCTCTCACCTTCACACTGTGTCTTTAGGGCCTTGATCTGATTTCCATTTGGAATGAAATTA
TGTTCAGGATAGGGCATGCCTTGCTGCTTGTGTAAAAAGAAATAAATTTTATTTTTTACGTGTGAGATACT
GATAAAAAAAAAAAAA 
 
ATGpr (Salamov AA et al, Bioinformatics 1998), a program for identifying the initiation codons in 

cDNAs sequences, was used to study the coding potential of this clone. Two different ORFs were 

identified, thus confirming the initial results provided by CSTminer: 
 

Reliability Frame Start (bp) Stop (bp) ORF length Stop codon 

0.63 2 992 1504 171 Yes 

0.62 3 93 743 217 Yes 
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Further experiments will be soon performed to define which ORF is really used and what are the 

characteristics of the corresponding protein. 

New BLAST queries were performed, too, to verify if the functional annotation could improve by 

using the complete sequence of the novel gene. First of all the EnsEMBL human genome database 

was queried, to define the exact location of the cDNA, and 11 matches were found with exons of 3 

different unknown transcripts of the 5p15.33 region, suggesting that these different transcripts may 

be indeed produced by the transcription of the same gene. 

Along that, the sequence of clone 5000FJE08 was also compared to the nucleotide and protein 

versions of the NCBI nr database, showing a partial similarity to the predicted sequence of 

“KIAA1909 protein, mRNA”, which is associated to a GTPase activator activity but whose 

biological role and exact sequence remain hypothetical.  

The presence of significant gaps in the latter BLAST results, and the fact that the function of the 

KIAA1909 protein still remains almost completely unknown, put great expectations on the results 

of the biological essays that will be soon performed. 
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PART 2.1 BIOINFORMATICS PLATFORM FOR THE 
IDENTIFICATION OF TRANSCRIPTION FACTOR BINDING SITES 
 

The second part of the work presented in this thesis is focused on the analysis of the subset of novel 

genes previously identified and on their functional characterization, with cDNA microarrays used as 

a major source of information. In general, gene expression experiments give rise to gene clusters 

whose clear distinction between co-expression and co-regulation events becomes a key feature in 

predicting the molecular pathways that are involved in the basic cellular processes to be understood. 

Along this line, the predictive potential of existing algorithms for promoter discovery was then 

evaluated while working with human genome sequences, and their significant failure in performing 

analysis without a priori knowledge led to the planning, development, validation and use of a novel 

algorithm (called ScanPro) for the de novo identification of TFBS. 
 

Identification of Transcription Factor Binding Sites 

The first, most important application of motif search algorithms is their use in gene expression 

experiments, like cDNA microarrays experiments performed at LNCIB. After performing gene 

clustering, it is in fact essential to separate genes that are simply co-expressed by those which are 

really co-regulated, that is, to understand if a group of co-expressed genes shares a set of regulatory 

regions that can be the target of one or more Transcription Factors. Ideally, by analyzing the 

genomic neighbourhood of these genes, it should be possible to define the binding sites recognised 

by the common TF(s) and their locations in the genomic region. However, things are not this 

simple, from the very beginning.  

A second possibility is to have a genome-wide approach, without considering gene expression 

results: all (or at least a large number of) the non-coding regions of an organism are examined, and 

overrepresented motifs can be suspected to play some role in the regulation of the genes, and 

therefore considered to be candidate TFBS.  

A third very interesting application for these algorithms allows to infer the function of an unknown 

gene when homologous genes of known function are not available. If the TFBS of the unknown 

gene are identified and compared to those of known genes, it is possible to hypothesize that, if these 

binding sites are in common, known and unknown genes share the same function. 

Finally, it is possible to extend the concept of motifs searching from the single binding site 

approach to a broader, module-based approach, where a module is defined as a group of at least 3-4 

different TFBS that are conserved in different co-regulated genes and that maintain a constant 

overall distance with respect to one another. By encoding the single module as it has been 

previously done for single transcription sites, the algorithm can be easily converted to this new task. 
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As soon as I approached the topic of motif search, I had to face the same problem that already 

occurred during the sequence analysis phase: many tools were available, but none of them (from my 

point of view) was able to analyze the kind of dataset I was interested in (human genome 

sequences) efficiently extracting without a priori knowledge the information I was looking for, that 

is conserved sequences putatively corresponding to regulatory elements. 

Particularly troublesome to all approaches, whatever their aim, was the presence of too much noise, 

whether it came from stretches of repeated sequences with no biological function or from the 

presence in the data set of more than one family of independent promoter motifs.  

The algorithms for extracting conserved sets of single or combined words in a sequence are 

however growing increasingly more sophisticated and efficient, especially when using 

combinatorial approaches. Unfortunately, it is in the statistical evaluation of the motifs found that 

problems seem to persist, especially when errors are allowed and motifs may be composed of more 

than one element with adjacent parts standing at particular distances from one another. 

For this reason I pushed the decision to develop a new algorithm for TFBS search, called ScanPro. 
 

ScanPro algorithm 

The problem of identifying a conserved (regulatory) element among a set of genomic regions can be 

formulated as follows: find a substring or a small similar subsequence that is common to many of 

the strings in the set. Let’s consider DNA sequences over the alphabet Σ  =  {A,C,G,  T}.  I make use 

of the Hamming distance dH to  define  the  concept  of  “similarity”  among  substrings: the Hamming 

distance between two strings of the same length is the number of symbols that disagree. 
 

Let’s introduce the following notation: 

- |S| denotes the length of S; 

- S[i] is the i-th character of the string S; 

- Si,l =  S[i,…,i  +  l  -1] is the substring of l characters starting from S[i]; 

- S  T denotes that S is a substring of T; 

Let S1, S2 be two sequences of length m and a1, a2 Σ, then 

1 2
1 2 1 2 1 2

11 2

0, if 
( , )        ,      ( , ) ( [ ], [ ])

1, if 

m

H H H
i

a a
d a a d S S d S i S i

a a 


  

  

 

Karp - Rabin 

The algorithm proposed by Karp and Rabin (Karp RM and Rabin MO, IBM J Res Dev 1987), 

solves the pattern discovery problem on the exact string matching background. This 

algorithm assumes that it is possible to efficiently shift a vector of bits and that it is possible 
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to efficiently perform arithmetical operations on integers. To take advantage of this 

assumptions, a string can be seen like an integer, mapping each character of Σ in a digit using 

a function fm. For example, in the DNA context, Σ = {A,C, G, T} can be mapped into Σ’ = {0, 

1, 2, 3}. It is now possible to define the following function:  

1,
1

, 1,

( ) | | ( [ ])

( ) | | ( ( ) | | ( [ 1]) ( [ 1])

l
l i

l m
i

l i
r l r l m m

H S f S i

H S H S f S r f S r l








  

         

  

It is possible to assert that there is an occurrence of a pattern P starting at position r of T if 

and only if H(P) = H(Tr,l). 

Karp and Rabin introduced a method called the randomized fingerprint method, that 

preserves the spirit of the above numerical approach, but allows to deal with larger numbers 

in an extremely efficient way. It is a randomized method because it introduces a probability 

of error, but the probability that a false match occurs can be bounded. 
 

ScanPro exploits only the first part of the algorithm idea, because while working with approximate 

string matching it is not simple to introduce an efficient hashing function. 
 

Input:  , l, d and q, where   = {T1,…,  Tm} is the set of strings (not necessarily of the same 

length), d is the number of errors allowed in comparisons and q is a parameter denoting the 

minimum size of the set of  -elements containing a common substring of length l and with d 

errors. Without loss of generality, input strings of the same length n are considered. 

 

The (l, d, q) – consensus problem over   is S iff 

   a pattern p (consensus), |p| = l, such that S  {s   Σl | dH (s, p)  ≤  d} 

   sS,   Ti   | s Ti  

 |{i | sS, s Ti}|  ≥  q 

 

A useful assumption is that, given a motif (TFBS), only some of its characters (nucleotides) are 

important for the binding of the Transcription Factor. This can happen as, along with the intrinsic 

degeneracy of DNA and the possibility to have experimental errors in the genomic sequences, a TF 

may be able to bind a subregion of the complete TFBS and still accomplish its function. This 

feature, that is considered also by statistical approaches when creating the weight matrices, allows 

to co-cluster different results, apparently corresponding to different motifs, simplifying and 

reducing the number of consensus TFBS generated by the algorithm. Thus, an approximated 



 60 

algorithm based on the concept of localized nucleotide mutation is proposed:  a  protein  can  “accept”  

one or more mutations in a binding site, but always in the same positions. 
 

The fixed-layout (l, d, q) - consensus problem over   is Sfl iff 

o Sfl   Σl  

o   s’ Sfl,   Ti   | s’ Ti  

o |{i | s’ Sfl, s’ Ti}|  ≥ q 

o   a set of indexes fl = {i1,  …,  id},  1  ≤  i1 <  …  <  id ≤  l,  

such that for all si’ and sj’ in Sfl, si’ [k]  ≠  sj [k]  k   fl. 
 

 

Figure 23. ScanPro graphic interface: input. The left window displays the input sequences; the 
Input panel allows to select the parameters that will be used to run the TFBS search. 
 

Output: all the positions of the common subsequences of length l with d errors founded in at least q 

sequences, with the addition of the constraint that the errors, if occur, are in the same position 

(called layout). 
 

This algorithm (presented at Workshop on Constraints Based Methods for Bioinformatics 2005, 

manuscript in preparation; see also Personal Publications) has the purpose of solving the fixed-

layout (l, d, q) - consensus problem, and then extend the results to obtain an approximate solution 

for the (l, d, q) - consensus problem. The difference with solving immediately the former problem is 

in the generation of the consensus sequence and in the final complexity. The fixed-layout problem 

is a reduction of the consensus problem, with the aim to find some useful biological information. 
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Figure 24. ScanPro graphic interface: output. The left window displays the location of the 
results on the input sequences; the Options panel shows the TFBS sequences and allows to remove 
some results, or some input sequences, from the visualization in the left window. 
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PART 2.2 EXPERIMENTAL TESTING 
 

Selection of the best testing benchmark 

In order to test ScanPro efficacy it was necessary to identify a benchmark to perform TFBS search 

through a combinatorial approach. For this reason two very interesting benchmarks (Pevzner PA 

and Sze SH, Proc Int Conf Intell Syst Mol Biol 2000; Tompa M et al, Nat Biotechnol 2005), that 

had been previously used for the assessment of publicly available programs for TFBS search, could 

not be used due to incompatibilities in the underlying theory. 

I also wanted to validate ScanPro by immediately analysing the ultimate sequences that would have 

become its target, that is mammalian (and in particular human) sequences, so this was another 

reason for searching a more appropriate testing ground. 

Many interesting datasets, often associated with exhaustive gene expression results, existed and 

could have been used in this process. However, in order to obtain an output useful for an easy initial 

debugging phase, the benchmark had to be quite simple. 

The computational time required by ScanPro, for instance, had never been verified on nucleotide 

sequences and the analysis of a list made by hundreds of genes could have required too much time. 

The selection of a subset of sequences could have been a solution, but the risk of loosing precious 

data was too high, as TFBS searches are performed by ScanPro without a priori knowledge. 

Two other critical features were the length of the expected TFBS and the number of mutations 

introduced, as the lack of statistical considerations during motifs search could have led on one hand 

to the absence of any conserved element, if its length or the number of mutations were too high and 

if the differences between the examined sequences were significant, and on the other hand could 

have produced consensus sequences almost completely different from the expected TFBS in the 

case of an exaggerated number on mutations.  

A final consideration was however done in order to simplify the analysis. If a blind search had to be 

done and no previous knowledge was going to be used, it should have been useful to consider that, 

in general, Transcription Factors that regulate the expression of a group of genes involved in a 

given biological process tend to bind genes promoters in the same region (Segal E et al, Nat Genet 

2005), thus reducing the dimension of the sequences taken into account. 

Given these premises, my choice fell on a group of genes whose expression was regulated by the 

Hypoxia Inducible Factor 1 transcription factor (Semenza GL and Wang GL, Mol Cell Biol 2002; 

Wenger RH, FASEB J 2002). This factor, that was known to lead to the transcriptional induction of 

the gene encoding erythropoietin in conditions of oxygen deprivation, was recently found to 

regulate the expression of many more genes, and due to this discovery the molecular principles of 

oxygen sensing (Fig.25) are currently being elucidated. 
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Figure 25. Simplified schematic model of oxygen sensing and HIF regulation (From: Wenger RH, 
FASEB J 2002). 
 

HIF-1 is a phosphorylation-dependent and redox-sensitive protein composed of two different 

subunits: HIF-1 α is a novel protein, while HIF-1β is identical to the previously identified 

heterodimerization partner of the dioxin receptor/aryl hydrocarbon receptor (AhR), called AhR 

nuclear translocator (ARNT). Under hypoxic conditions, HIF-1α is stabilized, undergoes 

modifications, translocates into the nucleus, recruits cofactors, and activates gene expression. Under 

normoxic conditions, the ODD domain of HIF-1α is hydroxylated by oxygen-dependent prolyl 

hydroxylases (targeting HIF-1α for pVHL-mediated proteolytic destruction) and the carboxyl-

terminal TA domain is hydroxylated by an oxygen-dependent asparaginyl hydroxylase (blocking 

the interaction with the CBP/p300 coactivator). Many processes involved in oxygen homeostasis 

are mediated by hypoxia-inducible factors (HIFs), which transcriptionally regulate the expression of 

~ two dozens of target genes (Table 2). This list of regulated genes includes genes involved in iron 

metabolism and transport (as iron is required for heme formation), modulation of vascular tone and 

density, and in glucose metabolism (as anaerobic glycolysis becomes predominant when oxygen 

supply is limited). Thus, HIFs represent the link between oxygen sensors and effectors at the 

cellular, local, and systemic level. 
 

This dataset was chosen for two reasons in particular: first of all, the limited (26) number of genes 

that would have been analyzed; then, because the HIF-1 binding site is short and very simple: 

 CGTGA G|A  
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Table 2. HIF-1 target genes. Only proven (by DNA binding or transcription assays) direct HIF-
1 target genes are listed.  
 

The genomic regions to be analysed were extracted from  the  “homo_sapiens_core_26_35”  MySql  

database downloaded from the “Download” page of the EnsEMBL Genome Browser (http:// 

www.ensembl.org/info/data/download.html). In order to limit the complexity of the results, I 

decided to initially focus my attention on the (-500, -1) region of each gene, with respect to the 

Transcription Start Site as defined by EnsEMBL. The corresponding sequences were extracted by 

using the Application Programme Interfaces provided with EnsEMBL. 
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Validation of the testing benchmark: analysis with publicly available TFBS search tools 

First of all I decided to use some of the publicly available programs for TFBS search to analyse the 

HIF-1 dataset, as HIF-1 TFBS was probably only one of the binding sites located into the 

considered genomic regions. 
 

Transfac. Transfac (Wingender E et al, Nucleic Acids Res 2001) is a database on eukaryotic cis-

acting regulatory DNA elements and trans-acting factors, covering the whole range from yeast to 

human. The database is made of different tables:  

SITE gives information on (regulatory) transcription factor binding sites within eukaryotic genes. 

GENE gives a short explanation of the gene where a site (or group of sites) belongs to. FACTOR 

describes the proteins binding to these sites, while the MATRIX table gives nucleotide distribution 

matrices for the binding sites of transcription factors. 

The Transfac Factor table reports a list of genes that hold a HIF-1 binding site, as follows (Table 3). 
  

Target Location Start End Motif 
Aldolase A Exon H -204 -180 gtggtccgaGTCACGTCcgaggggg 

Enolase 1 TSS -416 -397 agggccgGACGTGgggcccc 

TSS -368 -349 ggagTACGTGACggagcccc 

TSS -390 -371 acgctgagTGCGTGCGggac 

Erythropoietin 3’  enhancer 3454 3471 gcccTACGTGCTgtctca 

Endothelin-1 TSS -132 -113 ctccggctGCACGTtgcctg 

Transferrin -3.6 kb 170 201 ttccTGCACGTAcacacaaagCGCACGTAtttc 

Transferrin receptor TSS -97 -77 cgcgagcgTACGTGCCtcagg 

VEGF TSS -982 -963 cagtgcaTACGTGggctcca 

Table 3. HIF-1 target genes as reported by the Transfac Factor Table (Accession Number 
T01609). For each gene are reported the location, with respect to the Transcription Start Site, the 
start and end position, and the identified motif. 
 
As can be clearly seen, none of the reported TFBS exactly corresponds to the expected motifs. The 

reasons of this behaviour could be due to the following reasons: the first one is biological, and is 

based on the fact that not all the nucleotides of a TFBS have the same importance in the TF-TFBS 

interaction; the second one is based on the algorithm used for TFBS search, which makes use of 

weight matrices in the case of Transfac. 

Along with the reported results, some other sites were reported, too, but no information was 

available and hence they are not presented. 
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The next step consisted in examining the existing TFBS in each one of the 26 genes supposed to be 

regulated by HIF-1, by looking at the information contained in the Transfac Gene table (Table 4). 
 

Gene Motif Start End Function Binding Factor 
Erythropoietin CCCCTGGCTCTGTCCCACTCCTGG 3380 3411   

GCAGCAGTGCAGCAGGTCCAGGTCC 3403 3427   

GTCCGGG 3424 3430   

AAACGAGGGGTGGAGGGGG 3431 3449   

CTGACCTCTCGACCTACCGGCCTA 3482 3504 3' enhancer Tf-LF1 (T01176) 
Tf-LF2 (T01177) 

Transferrin GAGGGCGGGAAGTTTTCCAGCCCA -614 -591   

TCTTTGACCTTGAGCCCAGCT -474 -454  Tf-LF2 (T00827) 
Tf-LF2 (T01229) 

TCCTCCCCCAAAAGGG -440 -425   

CTGTGCTGGACTCCTTCCACTCGCGG

GTCGTC 

-193 -162  CTF (T00174) 
NF-1 (T00535) 
(both CCAAT-
binding factors) 

GGGCGATTGGGCAACCCGGC -103 -83  C/EBPalpha 
(T00105) 

AACACGGGAGGTCAAAGATTGCGCC

C 

-76 -48  COUP-TF1 
(T00149) 

HNF-4alpha1 
(T00372) 

Tf-LF1 (T00825) 
Tf-LF1 (T00826) 

HNF-4alpha2 
(T02422)  

HNF-4alpha1 
(T02429) 

TGGAATAAAG -34 -18 TATA box TFIID (T01175) 

CTCTTTGTTTGCTTTGCTTCTGTGTCA
ACTGGGCAACATTTGGAAACAACAA

ATATTGGTTCAG 

58 125   

GTTTGCTTT 64 72  EBP40 (T01106) 
EBP45 (T01107) 

CTGGTCAG 145 161   

TTAAGGGCCAACTCGTG 189 222   

GTTTTGCCCTGTTTGCGGTGAAAGAT
TTGGCTCATGCTTGGGTTGGT 

232 281   

Transferrin 
Receptor 1 

CAGGAAGTGACGCACAGC -80 -63  TREF1 (T01069) 
TREF2 (T01070) 

Ceruloplasmin      

VEGF      

FLT-1      

PROK1      

Serpine 1 CCAGTGAGTGGGTGGGGCTGGAACA

TG 

-86 -60  HLTF (T04146) 
HLTF (Met123) 

(T04147)  
NOS2A TAAATAAATAAAT -742 -730  FOXF1 (T02461) 
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Gene Motif Start End Function Binding Factor 
Heme 

Oxygenase 1 
     

Adrenomedullin      

Alpha-1B 
Adrenergic 
Receptor 

     

Endothelin-1 TggccTTATCTccgg -141 -127  GATA-2 (T00308) 

GTGACTAA -109 -102  AP-1 (T00029) 
c-Fos (T00123)  
c-Jun (T00133) 

SLC2A1      

PFKFB3      

Phospho-
fructokinase L 

     

Aldolase A CGTTCCGCCCTCCCCCATTGCCAAC
ATTCTGGCTGAGTCACGGCGCCCC

AG 

-311 -261  AP-1 (T00029)  
AP-1 (T00032)  
Sp1 (T00752)  

GTCCGAGGGGGGTGGGGAGGGATC
GT 

-190 -165 enhancer for 
N and H 
promoter 

 

GGCGCCCGCCCCTTCCTAGC -158 -140 enhancer for 
N and H 
promoter 

 

CTGGGCTGGCCTCTCGGGGGCGGC
CCGT 

-131 -104  Sp1 (T00759)  

GAPDH CCCGCCTCtcagCCTTTGAAagaaagaaa
gggg 

-480 -435  SRY (T00996)  
IRE-ABP (T00998) 

 SRY (T01986)  
SRY (T01987) 

Phosphogly-
cerate kinase 1 

     

Enolase 1      

Lactate 
Dehydrogenase 

A 

     

CITED2      

P4HA1      

Intestinal Trefoil 
Factor 

     

ETS-1      

IGFBP-1 cactagCAAAACAaactTATTTTGaacac -124 -96  HNF-3alpha 
(T00371)  

HNF-3B (T01049) 
HMG I (T01851) 
HMG Y (T01980) 
FOXO3a (T02938) 

TGCGGCGCTGCCAATCATTAAC -79 -53  HNF-1A (T00368) 
HNF-1B (T01950) 
HNF-1C (T01951) 

Table 4. TFBS located in the (-500, -1) region of the 26 HIF-1 regulated genes - Transfac 
Gene Table data. For each gene are reported the motif, the start and end position, the function of 
the element (if any) and the identified binding factor. 
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All the reported TFBS correspond to binding sites for TFs with a quite broad action range, and none 

of them correspond to the expected HIF-1 binding site. Almost half of the 26 HIF-1 regulated genes 

do not present any significant TFBS reported in Transfac, while for some others there is no 

information available about any bound protein.  

From the available data it is however possible to identify a subgroup of genes that are involved in 

inflammatory response and cell proliferation control (Table 5). 
 

Gene Binding Factor Function 
Transferrin C/EBPalpha (T00105) inhibits cell proliferation by enhancing the level of p21 (WAF-1) 

COUP-TF1 (T00149) represses RXR-mediated activation and retinoic acid responses; also  

antagonizes HNF-4-mediated activation 

HNF-4alpha1 (T00372) transcriptional activator, may be antagonized by ARP-1 and/or COUP-TF;  

HNF-4alpha is involved in regulating cancer cell transmigration by  

modulating the Fas-FasL system 

Endothelin-1 GATA-2 (T00308) functional cross talk between RA and GATA-2-dependent pathways 

AP-1 (T00029) down-modulated by glucocorticoids through direct interaction with GR;  

induced by TPA 

Aldolase A AP-1 (T00029) down-modulated by glucocorticoids through direct interaction with GR;  

induced by TPA 

Sp1 (T00759) highly specific cooperation with NF-kappaB; may play a role in  

regulation of IL-1alpha gene expression 

IGFBP-1 HNF-3alpha (T00371) inhibits HNF-1 action on aldolaseB promoter; RA induces transcription;  

probably involved in some steroid hormone regulatory circuits 

FOXO3a (T02938) may have regulatory roles in immune response; triggers apoptosis by  

inducing the expression of genes that are critical for cell death, such as the  

Fas ligand gene and the Bcl-2 interacting mediator Bim 

HNF-1A (T00368) synergistic interaction with C/EBPalpha 

Table 5. Involvement of HIF-1 regulated genes in inflammatory response and cell 
proliferation control. For each gene are reported the binding factor and the associated function that 
suggest an involvement of HIF-1 regulated genes in these two biological processes. 
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YMF. Considering the results obtained with Transfac as only partially satisfying, I decided to 

analyze the dataset with YMF (Sinha S and Tompa M, Nucleic Acids Res 2003). YMF is a program 

that detects statistically overrepresented words   (motifs)   in   DNA   sequence,   with   “motifs”  

corresponding to short string of nucleotides, degenerate symbols, and spacers. It is possible to 

specify the characteristics of the motifs to be detected: 'Motif size' is the number of non-spacer 

characters in a motif. Spacers ('N's) are constrained to be in the centre of the motif. Degenerate 

symbols allowed in a motif are R (purine - A or G), Y (pyrimidine - C or T), W (A or T), and S (C 

or G). YMF constructs a third-order Markov model of the background sequences (all known 

promoter sequences) for the organism under study, Homo sapiens in this case. Given a set of 

sequences, YMF does an enumerative search among all motifs that match the specified 

characteristics, scoring each motif for its significance, and outputs the top several motifs, sorted by 

their significance. 

Given the HIF-1 binding site, I selected  “6”  as  the  “Motif size”,  with  a  maximum  of  “1”  tolerated  

“degenerate symbol”  and  no spacers in the middle of the results. 

The five best results that were obtained are presented in Table 6.  

They were compared to the Transfac Matrix table entries in order to link them to some known 

TFBS. 
 

Motif Count z-score Annotation 
ACACAC 42 16.68 modulator recognition factor 2 (M00454) 

 

ATARAT 22 6.73 SOX-9 (M00410) 
GATA-6 (M00462) 

TATA binding protein (M00471) 
Pax-2 (M00486) 

GCCCCS 88 6.28 STAT5A (M00460) 

ACGTRC 17 5.23 AREB6 (M00412) 

AGCGAR 24 4.65 IRF-7 (M00453) 

Table 6. YMF identification of the five best conserved motifs. When degenerate symbols were 
present, all the combinations were tested to identify associated TFs annotation. 
 
These results identify TFBS that are present in quite great quantity in the (-500, -1) region, probably 

indicating a low specificity in their functional mechanism. Along this, in many cases the identified 

hexamers constitute only a fraction of the whole TFBS recovered in Transfac, suggesting that they 

could simply represent short sequences (sometimes with low complexity) interspersed within the 

examined regions, thus being devoid of any real regulatory function. This seems also confirmed by 

the fact that it is quite difficult to identify a common pathway that may involve two or more of the 

TFs binding to the conserved motifs. STAT5A and AREB6, binding respectively to the third and 
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fourth conserved motifs, are indeed involved in immune response, in particular in IL2 response, but 

associating the conservation of these two motifs to this biological function is purely speculative. 

The fourth result is also very similar to the expected HIF-1 TFBS. However, YMF identifies it as 

putatively being ACGTGC, instead of ACGTGA, and its annotation is “AREB6  binding  site”. This 

is due, as stated above, to the fact that this hexamer is located in the middle of the AREB6 binding 

site (AACGTACCTGTGA)  and  the  “mutation”  that  would  be  required  to  convert  it  into  the  latter  

motif would occur in a critical region for the DNA-protein interaction. 

Finally, it is interesting to reaffirm how the YMF-generated results have almost nothing to share 

with those previously obtained from Transfac, thus demonstrating the (excessive) difference among 

the results obtained from different TSDB search algorithms. The  only  “conserved”  element,  that  is 

however present in only two different genomic regions, is luckily the HIF-1 binding site 

corresponding to the fourth motif identified by YMF: this element is in fact located within the HIF-

1 binding sites of the Erythropoietin and of the Transferrin Receptor as reported by the Transfac 

Factor Table, although its last nucleotide is different from the theoretically expected one. 
 
Consite. The third approach I considered was Consite (Lenhard B et al, J Biol 2003), which 

integrates binding site prediction generated with high-quality transcription factor models and cross-

species comparison filtering (phylogenetic footprinting). This tool is generally used to perform 

TFBS queries by comparing sequences from two different organisms, looking for evolutionary 

conserved regions that may contain regulatory elements. However, Consite also contains a 

collection of metazoan transcription-factor-binding profiles that is used as a reference database for a 

“single genome”  approach  by BLASTing the genomic sequence of interest. Unfortunately, HIF-1 is 

not among the many TFs stored into this database and for this reason the analysis could not take 

place. 
 
CSHLmpd. Finally, I decided to use a recently developed database, called Cold Spring Harbor 

Laboratory Mammalian Promoter Database (Xuan Z et al, Genome Biol 2005), that was built by 

exploiting both the conservation among mammalian genomes and an ab initio promoter prediction. 

This tool allowed me to identify the first exons of each one of the 26 studied genes, along with the 

known or predicted promoters associated to these regions. Unfortunately, only 9 out of 26 genes 

were associated to annotated elements (Table 7), with four of these being poorly meaningful, as 

containing the broadly distributed SP1 binding site, so the search for HIF-1 binding sites was 

almost impossible to complete. The remaining clones, in fact, did not give significant results, being 

completely devoid of any information or, sometimes, being only associated to an unknown 

sequence with a putative regulatory function. Only one gene, Heme Oxygenase 1, was associated 
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with the conserved element ctggcccACGTGAcccgc containing one of the two expected forms of the 

HIF-1 binding site. None of the five YMF results were identified, as well as almost none of the 

results obtained from Transfac. Only in the case of the Transferrin gene five matches were obtained, 

corresponding to the positions (-474, -454), (-440, -425), (-193, -162), (-103, -83) and (-76, -48), 

this being due to the presence of six Transfac entries in the CSHLmpd Transferrin table. 
 

Gene Known Motif Conserved unknown sequence 
Transferrin consensus Sp1  

binding site 
TCTTTGACCTTGAGCCCAGCT (DR I) 

CTGTGCTGGACTCCTTCCACTCGCGGGTCGTC (CR)  
GGGCGATTGGGCAACCCGGC (PR II) 

AACACGGGAGGTCAAAGATTGCGCCC (PR I) 
TCCTCCCCCAAAAGGG (DR 0) 

Transferrin  
Receptor 

consensus Sp1  
binding site 

 

Serpine 1 pot. NF1 binding  
site; poly(AC)  

stretch; glucorticoid  
regulatory element 

 

Heme  
Oxygenase 1 

newly defined  
heat-shock element 

ctggccCACGTGACccgc (HIF-1 binding site) 

ccagactttgtttcccaaggGTCATATGACtgctcctctccaccccacactggc 

SLC2A1  agccaatggccggggtcctataaacgctacggtccgcgcgctctctggcAAGAGGCAAGA 

Phospho- 
fructokinase L 

 cgcgcgcggggcggggcggggacggcgacgcggcgcaggcggcgggagtGCGAGCTGGGC 

 

GAPDH IRE-A, insulin- 
response element A 

 

Phosphogly- 
cerate kinase 1 

GC-box; CCAAT- 
box 

CGGTTCGCGGCGTGCCGGACG (D); 

AGACGGACAGCGCCAGGGAGCAATGGCAGCGCGCCGAC (D) 

Enolase 1 HBS C; HBS D;  
HBS U 

 

Lactate  
Dehydrogenase  

A 

 acgtcagcatagctgttccacttaaggcccctcccgcgcccagctcagaGTGCTGCAGCC 

Endothelin-1 AP1 consensus  
sequence; SP1  

consensus sequence 

 

IGFBP-1 SP1 consensus  
sequence 

 

Table 7. CSHLmpd results. For each HIF-1 regulated gene matching with entries of the 
database are reported the associated known motifs (9 entries) and/or the conserved unknown 
sequences (6 entries). 3 genes present both annotations. 
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Figure 26. CSHLmpd results for Heme Oxygenase 1 (Gene ID 2023). This is the only region 
were it was possible to locate an HIF-1 binding site. Element HSHO5G_1, on the other hand, 
contains a  “newly  defined  heat  shock  element”. 
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Validation of the testing benchmark: analysis with ScanPro 

After analyzing the (-500, -1) regions of the 26 HIF-1 regulated genes with the three selected public 

tools I finally applied ScanPro to the same dataset. 

As previously described, ScanPro looks for conserved elements with a fixed Motif size and a fixed 

number of tolerated   “mutations”.  Due   to   the   structure of the analysed TFBS, the Motif size was 

fixed  to  “6”  and  the  number  of  mutations to  “1”,  as  the  HIF-1 binding site itself has this length and 

this degree of  variability. 

The first step of the ScanPro analysis led to the generation of a list of conserved elements 

containing one mutation located in one of the six available positions of the resulting hexamers. The 

following step consisted in generating a consensus motif where the mutations were replaced by a 

single defined character, if one of the four nucleotides was over-represented in that given position, 

or by one of the IUPAC symbols currently used for defining ambiguities (R (purine - A or G), Y 

(pyrimidine - C or T) and N (undefined) ).  

The exact results, that is the presence of one of the two expected HIF-1 binding sites in the analyzed 

regions, are depicted in Table 8. 
 

Gene Motif Consensus Position 
Serpine 1 xCGTGA ACGTGA -454 

ACxTGA ACGTGA -131 

Heme Oxygenase 1 xCGTGA ACGTGA -40 

Phosphoglycerate kinase 1 xCGTGA ACGTGA -226 

Enolase 1 ACxTGA ACGTGA -496 

Adrenomedullin ACxTGA ACGTGA -443 

Phosphofructokinase L xCGTGA GCGTGA -158 

Table 8. ScanPro analysis: exact results. Six genes were identified presenting one of the two 
expected HIF-1 binding site. The motif, as well as the derived consensus sequence, is presented as 
well as its position with respect to the Transcription Start Site. 
 
These initial results were encouraging, indeed, as for the first time TFBS prediction succeeded in 

identifying six exact binding sites by examining the HIF-1 dataset.  

However, the output produced by ScanPro revealed other very interesting features, like shown in 

Table 9. 
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 Gene Motif Consensus Position 
Erythropoietin TCACGx TCACGy -211 

TCACGx TCACGy -135 

Phosphoglycerate kinase 1 TCACGx TCACGy -342 

Enolase 1 TCACGx TCACGy -75 

P4HA1 TCACGx TCACGy -87 

Table 9. ScanPro analysis: reverse complement exact results. Four genes were identified 
presenting one of the two expected HIF-1 binding site on the reverse complement sequence of the 
examined genomic region. The motif, as well as the derived consensus sequence, is presented as 
well as its position with respect to the Transcription Start Site. 
 
It seems that some of the HIF-1 regulated genes (including Erythropoietin, the first identified HIF-1 

target) do not bind the transcription factor on the same DNA strand that is supposed to be 

transcribed but on the other one, as shown by the conserved consensus TCACGy, exactly the 

reverse complement of the expected ACGTGA site. There seems to be no evidence, in literature, of 

this  kind  of  “enhancing”  effect  of  HIF-1 on its target genes, but the presence of this feature in five 

different regions of four known HIF-1 regulated genes, along with the proved efficacy of ScanPro 

in   identifying  regulatory  elements,   suggests   to  avoid   the  simple  removal  of   these  results  as  “false  

positive”,  as  this  could  represent  an  alternative  regulatory  method  used by HIF-1. 

Finally, I obtained a huge amount of data that, although not containing the exact expected TFBS, 

greatly strengthened the predictive ability of ScanPro, as the output was however more similar (and 

quite often nearly identical) to the exact binding   sites   than   almost   the  majority   of   the   “positive”  

results obtained thus far with other predictive tools, including Transfac. Table 10 presents the 

results  containing  one  “mistake”  with  respect  to  the  exact  HIF-1 binding sites. 
 

Gene Motif Consensus Position 
Transferrin AxGTGA AGGTGA -143 

Transferrin Receptor AxGTGA AGGTGA -91 

NOS2A AxGTGA AGGTGA -395 

AxGTGA AGGTGA -328 

Heme Oxygenase 1 AxGTGA AGGTGA -481 

AxGTGA AGGTGA -20 

PFKFB3 AxGTGA AGGTGA -312 

Phosphofructokinase L AxGTGA AGGTGA -472 

Enolase 1 AxGTGA AGGTGA -357 

AxGTGA AGGTGA -86 

CITED2 AxGTGA AGGTGA -412 

P4HA1 AxGTGA AGGTGA -486 
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Gene Motif Consensus Position 
VEGF GxGTGA GAGTGA -493 

GxGTGA GAGTGA -489 

PROK1 GxGTGA GAGTGA -410 

GxGTGA GAGTGA -406 

GxGTGA GAGTGA -257 

NOS2A GxGTGA GAGTGA -214 

GxGTGA GAGTGA -194 

GxGTGA GAGTGA -37 

Alpha-1B Adrenergic  

Receptor 

GxGTGA GAGTGA -475 

SLC2A1 GxGTGA GAGTGA -419 

CITED2 GxGTGA GAGTGA -403 

P4HA1 GxGTGA GAGTGA -99 

ETS-1 GxGTGA GAGTGA -443 

Alpha-1B Adrenergic  

Receptor 

GCxTGA GCCTGA -271 

GCxTGA GCCTGA -89 

SLC2A1 GCxTGA GCCTGA -231 

Phosphofructokinase L GCxTGA GCCTGA -380 

GAPDH GCxTGA GCCTGA -495 

Enolase 1 GCxTGA GCCTGA -265 

VEGF GCGTGx GCGTGC -477 

GCGTGx GCGTGC -264 

GCGTGx GCGTGC -125 

SLC2A1 GCGTGx GCGTGC -13 

PFKFB3 GCGTGx GCGTGC -469 

Phosphofructokinase L GCGTGx GCGTGC -252 

GAPDH GCGTGx GCGTGC -394 

GCGTGx GCGTGC -314 

GCGTGx GCGTGC -180 

Phosphoglycerate kinase 1 GCGTGx GCGTGC -235 

IGFBP-1 GCGTGx GCGTGC -85 

FLT-1 GCGxGA GCGGGA -339 

GCGxGA GCGGGA -23 

Adrenomedullin GCGxGA GCGGGA -500 

Endothelin-1 GCGxGA GCGGGA -451 

PFKFB3 GCGxGA GCGGGA -186 

Phosphofructokinase L GCGxGA GCGGGA -127 

Aldolase A GCGxGA GCGGGA -469 

GCGxGA GCGGGA -204 
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Gene Motif Consensus Position 
 GCGxGA GCGGGA -175 

GCGxGA GCGGGA -120 

GCGxGA GCGGGA -106 

GCGxGA GCGGGA -99 

GCGxGA GCGGGA -33 

GAPDH GCGxGA GCGGGA -51 

Phosphoglycerate kinase 1 GCGxGA GCGGGA -77 

P4HA1 GCGxGA GCGGGA -259 

ETS-1 GCGxGA GCGGGA -107 

GCGxGA GCGGGA -76 

GCGxGA GCGGGA -68 

Transferrin Receptor ACGTGx ACGTGr -103 

Alpha-1B Adrenergic  

Receptor 

ACGTGx ACGTGr -84 

PFKFB3 ACGTGx ACGTGr -107 

Phosphofructokinase L ACGTGx ACGTGr -287 

Enolase 1 ACGTGx ACGTGr -69 

Lactate Dehydrogenase A ACGTGx ACGTGr -366 

ACGTGx ACGTGr -181 

ACGTGx ACGTGr -83 

CITED2 ACGTGx ACGTGr -180 

VEGF ACGTxA ACGTrA -310 

FLT-1 ACGTxA ACGTrA -112 

Lactate Dehydrogenase A ACGTxA ACGTrA -46 

IGFBP-1 ACGTxA ACGTrA -264 

Transferrin ACGxGA ACGrGA -73 

Ceruloplasmin ACGxGA ACGrGA -165 

PFKFB3 ACGxGA ACGrGA -258 

IGFBP-1 ACGxGA ACGrGA -195 

Transferrin Receptor GCGTxA GCGTnA -366 

Table 10. ScanPro  analysis:  “one-mistake-containing”  exact  results.  Twenty-three genes were 
identified  presenting  one  “mistake”  inside  one  of  the  two  expected  HIF-1 binding site. The motif, as 
well as the derived consensus sequence, is presented as well as its position with respect to the 
Transcription Start Site. 
 
Quite interestingly, by allowing the variability of one nucleotide inside the hexamer (an 

approximation that is present, often even at a higher range, in almost all the available predictive 

tools), the number of positive results found by ScanPro increased to 25, including 18 genes that had 
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not been previously considered, the only gene not found to contain an HIF-1 binding site being the 

Intestinal Trefoil Factor. 

The location  of   the  “mistake”  insertion  is  quite  equally  distributed  among  the  six  positions  of   the  

hexamer, although there seems to be a weak overabundance in the second and in the last nucleotide. 

It is useful to underline, however, that due to the fact that some inserted mistakes correspond to 

IUPAC characters used to define ambiguities (see the end of Table 10), the number of exact results 

would  be   even  greater   than   the   seven  matches  previously   reported  on   the  “forward”  DNA  strand  

and the five reported on the “reverse”  strand. 

The identified locations of HIF-1 binding sites are spread all over the (-500, -1) region of each gene, 

with respect to the Transcription Start Site as defined by EnsEMBL, although there seems to be 

some representing a preferential DNA-protein interacting point (Fig.24). 
 

 
Figure 27. Location of the four more abundant TFBS identified among HIF-1 regulated 
genes. 
 

Eleven different genes present a binding site in the (-140, -120) region, while nine other genes (only 

two present also in the previous location) bind DNA in the (-80, -70) region. It is then possible to 

define a first, huge preferential site for HIF-1 binding to its DNA targets in the (-140, -70) region, 

where 18 out of 26 regulated genes are able to undergo this interaction. 

A second region that shows a relevant abundance of binding sites is the (-500, -460) region, with a 

peak of nine genes presenting the TFBS around the (-470, -460) position, and six other (only two 
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present also in the previous location) in the (-500, -490) position. This second site, although slightly 

less involved in HIF-1 binding to DNA than the first one, still represents another preferential 

location for 13 out of 26 genes. 

Globally, these two sites account for the interaction between the TF and 21 of its 26 target genes, 

with 10 of these presenting both the binding sites, while 8 exclusively depend on the first one and 3 

on the second one. 

Between these two regions that seem to play a major role in a large subset of genes, some other 

TFBS-rich locations can be found to be conserved in groups of five-seven genes. The common 

feature of all these sites, both the widely diffused and the more specific ones, is the spacing of ~40 

bp between each element and its neighbours, almost suggesting some sort of steric hindrance and 

3D requirement for the TF-TFBS interaction to occur. Finally, it is also possible to hypothesize 

different levels of involvement of HIF-1 binding sites depending on the kind of required regulation, 

with the two widely diffused binding sites being probably necessary for a more general, massive 

action of HIF-1, and the other that may be involved in more accurate and specific regulatory events. 

Along with these motifs corresponding to the expected HIF-1 binding sites, ScanPro identified also 

other conserved motifs whose nature was evaluated as well. 

I looked for conserved motifs with the same basic structure of the HIF-1 binding site, that is 

conserved motifs with size fixed  to  “6”  and  number  of  mutations to  “1”,    in  order  to  compare  two  

similar sets of ScanPro results. To simplify the analysis and to reduce the number of available 

results, I also imposed the discovered conserved elements to be present in at least 22 of the 26 HIF-

1 regulated genes. 
 

Motif Binding Factor Function 

CCCAGG TOPORS (T04734) 
tumor protein p53-binding protein/topoisomerase I binding; 

might be an important transcriptional regulator for lung cancer-associated  
genes including E-cadherin and talin 

CCTGCC  

AREB6 (T00625) 

encodes a human zinc finger transcription factor that represses T- 
lymphocyte-specific IL2 gene (MIM 147680) expression by binding to a 

negative regulatory domain 100 nucleotides 5-prime of the IL2  
transcription start site CCTGGG 

CTGCCC AhR:arnt (T01795) HIF-1 beta subunit 

 

GCAGAG 

 

 

STAT5A (T04683) 

member of the STAT family of transcription factors; this protein is  
activated by, and mediates the responses of many cell ligands, such as  
IL2, IL3, IL7 GM-CSF, erythropoietin, thrombopoietin, and different  

growth hormones. Activation of this protein in myeloma and lymphoma 
associated with a TEL/JAK2 gene fusion is independent of cell stimulus  

and has been shown to be essential for the tumorigenesis 
GCTCCC Unknown Unknown; not a repeated or low complexity sequence 
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Motif Binding Factor Function 
 
 
 

GCTGGG 

 
 
 

PPARG (T03731) 

member of the peroxisome proliferator-activated receptor (PPAR)  
subfamily of nuclear receptors.  PPARs form heterodimers with retinoid  

X receptors (RXRs) and these heterodimers regulate transcription of  
various genes. PPAR-gamma has been implicated in the pathology of  

numerous diseases including obesity, diabetes, atherosclerosis and  
cancer. Multiple transcript variants that use alternate promoters and  

splicing have been identified for this gene. 
Table 11. ScanPro analysis: other conserved elements. Seven motifs were found to be 
conserved in at least 22 genes regulated by HIF-1. For each motif are reported the known binding 
factor and the associated function (if any). 
 
By looking at the results (Table 11), it is interesting first of all to observe that the fourth conserved 

motif is nothing else than another HIF-1 binding site recorded in Transfac, and in particular it 

corresponds to the hexamer that comes immediately after the 2 binding sites that were initially 

searched with ScanPro (thus explaining its absence from the first set of results). 

The fifth, GCTCCC, could not be associated to any known Transfac TFBS; in the meantime, no 

match was found with any repeated sequence or low complexity element. It is not possible, yet, to 

affirm if this motif really corresponds to an unknown TFBS discovered by ScanPro or if its role 

goes beyond that function, but it is quite evident that its conservation in the regulatory regions of 

more than twenty genes probably underlies some biological function. 

The five other results, finally, are very appealing for two main reasons. The first one is an 

algorithmical consideration: AREB6 and STAT5A binding sites were among the five best results 

that YMF produced when analyzing the HIF-1 dataset, thus confirming once more ScanPro 

predictive capability. The second one is an important biological consideration: all the TFs that bind 

these motifs are involved in immune response, in particular in Retinoic Acid and Interleukins 

mediated pathways (as was already reported in Table 5 at the end of the analysis of the function of 

HIF-1 target genes described by Transfac). Along this, there is also a strong involvement of these 

TFs in tumorigenic events, a fact that was recently demonstrated also for HIF-1 (Ohh M et al, Nat 

Cell Biol 2000; Cockman ME et al, J Biol Chem 2000; Krieg M et al, Oncogene 2000; Clifford SC 

et al, Hum Mol Genet 2001; Pennacchietti S et al, Cancer Cell 2003; Fels DR and Koumenis C, 

Trends Biochem Sci 2005). The exact molecular mechanisms used by hypoxia to unleash invasive 

and metastatic potential of tumour cells are largely unknown, but the accumulated evidence is 

starting do define a list of candidate genes regulated in a coherent way by a group of TFs whose 

interactions will have to be further investigated in the future, extending the search of this common 

set of TFBS to a broader list of genes. 
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DISCUSSION 
 
A major effort in building the functional map of the human genome is its cross match with the 

transcriptional  units.  The  5’  end  boundary  of each  unit  is  defined  by  the  promoter  and  the  3’  end  by  

the   3’UTR,   with   no   compulsory   need   for   coding   potential.   Considering   the   currently   defined  

characters as contained in the EnsEMBL Genome Browser, it is critical to define other features and 

events such as alternative start sites and alternative splicing products, noncoding transcripts, TFBS, 

untranslated terminal repeats, and the role of other repeated sequences. 

 

During my PhD I had the possibility to adress most of these topics. 

Starting from the high-throughput production of human full-length cDNA libraries, I had the 

opportunity to evaluate and apply many tools to the analysis and functional annotation of cDNA 

sequences. The lack of publicly available tools allowing to perform some of the required 

bioinformatics analysis led me to interacting with informaticians, ad eventually to develop and 

implement an integrated computational system which is currently available for download and 

represents a useful and quite complete tool for the functional annotation of biological sequences. 

The  results  of  this  first  part  of  my  PhD  activity  allowed  me  first  of  all  to  define  the  “LNCIB  5.8K  

Unique   cDNAs   collection”   and,   lately,   to   identify   a   subgroup   of   342   clones   corresponding   to  

putative new genes, both coding and non-coding.  

The availability of cDNA sequences, particularly from full-length cDNAs, certainly represents a 

very precious tool to improve the quality of genome annotation, as these sequences enable to define 

the precise protein coding parts of the genome and, in conjunction with the genomic counterpart, 

also to define the composition of exons in alternatively spliced transcripts of the same gene.  

Both the sequence and the chromosomal location of genes constitute a very important piece of 

information supportive in the process of defining and analyzing candidate disease genes. 

The everlasting, ongoing discovery of new genes or transcripts from the analysis of cDNA 

sequences also demonstrates the great usefulness of this approach in the identification of genes that 

would not otherwise be discovered in genomic sequences, thus indicating the need for caution when 

using ab initio predictions as the primary source for genome annotation. 

All these considerations were clearly demonstrated during the analysis of the “LNCIB  5.8K  Unique  

cDNAs  collection”.  By  applying  a  method  allowing  to  enrich  the  full-length population of cDNA 

libraries (Carninci et al, Genomics 1996), followed by a simple additional procedure based on size 

selection of cDNAs >1500 bp applied to the library construction, it was possible to isolate from the 

three tissues and from the cell-line that were used for RNA extraction a total of ~5300 unique genes 

(~5800 considering the transcriptional spicing variants), representing almost one-third of the 
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already known human cDNAs and one-fourth of the currently predicted human transcripts. More 

strikingly, the functional annotation of these cDNA sequences revealed that a subset of 342 poorly 

annotated sequences presented a correct gene structure, with a canonical exon–intron alternation, 

thus suggesting that this group could therefore represent candidates for new genes, confirming in 

the meantime what has already been reported about the limited predictive ability of the existing 

gene-prediction algorithms. Since then, new cDNA libraries were produced and 20,266 good 

quality sequences were analyzed with our integrated computational system and are now stored in 

TSDB, raising the number of clones pointing to unique Unigene clusters to 15,000, corresponding 

to 9404 unique LocusLink IDs. These results give a further demonstration of the usefulness of the 

developed analytical system; however, the latter sequences have not been fully studied, yet, and will 

have to be analyzed in a way similar to that applied for identifying the first 342 unknown clones.  

A self-to-self hybridization cDNA microarray experiment confirmed that 260 out of 342 unknown 

genes were indeed expressed in the examined cell-lines or tissues used as source of RNA for the 

hybridization. The majority of these cDNAs derived from the human fetal brain or the human 

placenta libraries, thus confirming that the expressed cDNAs correspond to genes expressed during 

human development.  

A second experiment of gene expression profiling was performed by using 30 human advanced 

ovarian cancer samples and four cell lines obtained by various treatments of the original IOSE-

hTERT_INT cell line, and this time 289 unknown clones qualified as expressed.  

By comparing the two lists of expressed genes, it was possible to identify a group of 236 unknown 

cDNAs that were expressed in both experiments, while 24 were expressed only in the self-to-self 

hybridization and 53 only in the gene expression profiling of the 30 human advanced ovarian 

cancers, thus representing a subgroup of interesting genes that could be further analyzed to study 

their possible involvement in ovarian cancer. Interestingly they could be clustered into different 

subgroups of co-expressed clones showing a common expression profile in the different samples. 

Further analysis of their genomic regions for the presence of TFBS and the identification of 

common motifs will possibly explain whether they are subjected only to co-expression or co-

regulation. Construction of clusters of unknown genes and their comparison to known genes with 

similar expression profiles and shared TFBS will undoubtedly increase the knowledge of their 

functions.  

Given the particular developmental stages of the tissues from which the RNA used for cDNA 

libraries preparation was extracted, it is quite possible that the 29 remaining transcripts whose 

expression could not be demonstrated correspond to tissue-specific, rare genes (or transcripts 

variants) that are very difficult to be observed during functional assays.  
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The 342 unknown genes were then tested for their coding potential and only 12 (of which 10 

expressed in the previous cDNA microarrays experiments) showed a significant coding potential on 

the basis of the observation of the peculiar evolutionary dynamics of coding with respect to 

noncoding regions. As these clones fall in intergenic regions they reliably represent novel protein-

coding genes whose general structure will be established by full-length clone sequencing. This 

hypothesis was also strongly supported by the comparison performed against the entries in the 

DBTSS database; in fact, only 1 of these 12 cDNAs had matches with human and mouse entries, 

and in particular matches were with hypothetical proteins, thus confirming that all these clones, 

including the latter, still have an unknown functional role in both species.  

Finally, relevant information on the biological role of these unknown clones was given by  

transfections experiments, these data representing an initial survey for future functional studies. For 

six of the eight clones that were transfected in U2OS cells it was in fact possible to identify 

different interesting phenotypes, as followed by the change in the distribution of GFP used as co-

transfection marker. These effects were quite dramatic in the case of clone 5000FJE08. It is not yet 

possible to understand if these effects are due to the translation of the clones or if they act in other 

ways, for example as antisense regulators. Bioinformatics analyses seem to demonstrate that the 12 

unknown potentially coding clones indeed have coding capabilities, but further studies such as in 

vitro   translations   should   be   performed   to   confirm   this   hypothesis   definitely.   For   this   reason,   I’m  

currently setting up the biological experiments that will be needed to test more accurately the 

functional role of the 12 novel protein-coding genes (in particular for the one leading to the most 

striking effect), while examining different possibilities (both available and still to develop) to start 

defining the putative biological role of the remaining novel non-coding human genes that I 

identified. It will be particularly interesting to focus the attention on transcripts derived from 

intronic regions of protein coding genes, as this class of transcripts seems to be quite abundant, and 

on the methods required for their isolation, amplification and cloning. 

A recent work (Cheng et al, Science 2005) gives in fact a very interesting insight on these aspects, 

and introduces features that will certainly have a deep impact in the future of the human 

transcriptome analysis. It seems, from the analysis of the transcriptional maps of 10 human 

chromosomes, that only 19.4% of the transcribed regions of the human genome give rise to classical 

polyadenylated transcripts, with 36.9% (called bimorphic) existing also in the non-polyadenylated 

form and 43.7% (many with an exclusive nuclear location) existing ONLY in the latter status. The 

function of more than 50% of transcripts belonging to the first class is poorly characterized, while 

for the other two categories it is almost completely unknown. It seems that almost 50% of 

unannotated cytosolic poly A+ transcription is derived from the intronic regions within genes, as 
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observed for some of the unknown member of LNCIB cDNA collection; despite the new origin of 

these transcripts, there is however strong evidence supporting the existence of canonical splicing 

events that lead to mature transcripts with coding potential for < 100 aa proteins. The presence of 

such a large portion of bimorphic transcribed sequences suggests that novel regulatory mechanisms 

may be involved in the identification of transcripts whose polyadenylation states are altered as 

means of regulation, as many of the detected bimorphic sequences are well-characterized coding 

genes found on the 10 analyzed chromosomes, and the evaluation of the protein coding potential of 

poly A- transcribed sequences is currently awaiting efficient methods to isolate, amplify and clone 

these types of transcripts. 

 

In conclusion, the accumulated evidence on the characterization of these 342 clones firmly points to 

their definition as novel genes, only a minor fraction of them being protein coding. These results 

also suggest that these genes may be human-specific, thus confirming the usefulness of preparing 

cDNA libraries from less common tissues (like human fetal brain, used in this work) to identify 

genes that are expressed only in particular tissues during particular developmental stages. However, 

it is not yet possible to define their functional role, i.e., if they work with an antisense mechanism or 

by using other, less defined, noncoding methods, and future analysis will be needed. 

 

The experimental confirmation that these unknown cDNAs could indeed represent novel genes was 

obtained by producing cDNA microarrays containing the whole unique cDNAs collection and 

testing the expression status of the respective transcripts in many cell-lines and human tissues, both 

physiological and pathological.  The necessity to interpret gene expression results, and in particular 

to understand which of the generated clusters of co-expressed genes may indeed contain co-

regulated genes, drove me to start taking into consideration the problem of TFBS identification, 

finally leading to the development of a new algorithm for TFBS search and to the birth of ScanPro. 

In fact the further characterization of unknown cDNAs is being provided by the analysis of their 

genomic neighbourhood and by the identification of conserved elements involved in regulatory 

processes. The results presented in this thesis show how the promoter prediction programs that are 

currently being used on human sequences are indeed very useful while studying groups of 

promoters and regulatory regions associated to a certain amount of available information, while 

they tend to fail, or at least to perform not as well, in identifying unknown motifs. A significant 

improvement to this field has been provided by the application of phylogenetic footprinting, as the 

conservation of non-coding regions during evolution is supposed to be associated to functional 

conservation. However, as observed during the comparison of the human genome with other 
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vertebrate genomes (i.e. mouse and rat), the similarity is quite often limited to the coding regions 

and to small nearby non-coding regions. As suggested by Cawley et al (Cawley S et al, Cell 2004) 

these last regions should in fact be no longer considered as the promoters containing the exclusive, 

exhaustive binding sites responsible of the fine tuning of gene expression. This work, in fact, 

demonstrated that only ~22% of the TFBS for some of the most important TFs mapping to 

chromosomes  21  and  22  are  located  5’  to  known  genes,  the  great  majority  being  instead  distributed  

both in intronic locations and in intergenic regions. This is in line with the fact that current, 

traditional knowledge on transcription regulation is limited to a rather restricted number of TFs, that 

have been mapped to quite close genomic locations with respect to TSS and that, thus far, have not 

been able to give full satisfactory explanation to gene expression regulation questions. Certainly the 

network of TFs interactions is far from being clearly understood, and this is obviously one 

important source of ignorance. However it is also certain that the regions where binding sites have 

been searched thus far represent only a subset of those that should be investigated. 

ScanPro, the algorithm for TFBS search presented in this thesis, tries to solve the problem by 

applying a de novo approach that performs a blind analysis of the examined sequences, preventing 

bias that may arise by focusing the attention on a priori knowledge. The validation of ScanPro was 

performed with a conservative approach, by considering the (-500, -1) regions that I have just 

admitted to be far from being the best target for this analysis, but this was a necessary compromise 

in order to compare it with other existing tools. 

Given that premise, however, Scan Pro was able, along with identifying the expected TFBS in the 

HIF-1 dataset used for its validation, to also find other conserved elements that were shown to 

correspond to known TFBS. On the other hand the referenced algorithms, used in the comparison 

with ScanPro, could not find such TFBS. 

More interestingly, the recurrence of these sites allowed me to define subgroups of genes belonging 

to common functional pathways. Understanding whether these subgroups are made of genes that are 

really co-regulated will require further studies like, for instance, cDNA microarrays experiments. In 

general, cDNA microarrays experiments performed at LNCIB constitute the embodied source of 

lists of genes to be examined using ScanPro to increase the degree of biological knowledge 

available during the interpretation of ScanPro output, a very important aspect required for 

distinguishing true positive results from computational noise. 

Most importantly, along with algorithmical information my analysis also emphasized the role that 

HIF-1, along with other transcription factors, may play in pathological processes such as 

inflammatory response and tumorigenesis. The molecular mechanisms occurring during hypoxia are 

not well elucidated and it is certainly not possible, yet, to propose an exhaustive general model. 
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However, future work may find helpful to consider some of the ideas raised by this first analysis 

with ScanPro. 

In order to make ScanPro a general tool, the next step will consist in extending the size and the 

complexity of the analyzed regions, the final goal being the application of ScanPro to entire gene 

sequences. This is indeed a difficult problem to solve, from the biological point of view. While 

working without any previous knowledge, either concerning the gene list composition or the length 

and structure of the expected TFBS, it is in fact necessary to fix a motif length and a number of 

mutations in order to allow ScanPro to generate some output. This situation will probably require 

the choice of at least 2-3 different settings for the algorithm, and the different results will need to be 

merged in order to gain significance. Along that, also the statistical validation of the obtained 

results is going to be one of the major improvements that I will need to introduce. 

Meanwhile I have started to analyze a new group of genes, the p53 dataset. Along with the major 

importance that this pathway holds per se, there are two other reasons that led to its selection. First 

of all,  p53 constitutes a central theme of research interest at LNCIB: along with great knowledge 

concerning its mechanism of action there is also the availability of many reagents that could be used 

to validate ScanPro predictions. The second reason, centred on available knowledge of the 

associated dataset, is its connection with the HIF-1 pathway. 

The involvement of HIF-1 in tumorigenesis was firstly demonstrated some years ago (Ohh M et al, 

Nat Cell Biol 2000; Cockman ME et al, J Biol Chem 2000; Krieg M et al, Oncogene 2000; Clifford 

SC et al, Hum Mol Genet 2001) when it was shown that pVHL (von Hippel-Lindau tumour 

suppressor protein), that usually regulates physiological levels of HIF-1 by inducing its 

ubiquitinylation-mediated degradation, when inactivated led to constitutively high HIF levels and to 

the expression of many oxygen-regulated genes that in the end caused the formation of highly 

vascularized hemangioblastoma tumor, the most frequent manifestation of hereditary VHL disease, 

or of renal cell carcinoma. From a molecular point of view, the constitutive activation of anaerobic 

metabolism in tumor cells (Warburg effect) seems to provide an explanation for the cell 

autonomous response to oxygen deficiency, with HIF-1 function in hypoxic tumor adaptation that 

putatively involves VEGF-mediated angiogenesis and also increased glycolysis, pH buffering, and 

probably other key steps in tumor progression. Finally, the discovery of a direct interaction and 

regulatory effect of p53 on HIF-1 was recently reported (Fels DR and Koumenis C, Trends 

Biochem Sci 2005). These two TFs, that at first sight behave in an antithetical way, seem indeed to 

be involved in the same regulatory circuitry, as p53 was found to bind the ODD domain of HIF-1, 

thus inhibiting its transactivation and stimulating its degradation. This seems to occur under quite 

stringent hypoxic or anoxic conditions, when p53 accumulates and, after reaching a threshold level, 
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directly interacts with HIF-1. Usually, under normoxic conditions (e.g. near a tumor blood vessel), 

levels of both p53 and HIF-1a are on the other hand low because of proteasome-mediated 

degradation. Further away from the vessel, owing to oxygen-diffusion limits, mild hypoxia 

develops that activates the HIF-1-dependent angiogenic program but is not stringent enough to 

induce p53 accumulation. Then, in the end, the threshold is attained and the interaction takes place. 

The study of the p53 dataset is extremely interesting as, by now, there is no clear definition of the 

molecules that could co-participate in this very important tumour development control. It is also 

going to represent a further, significant step towards the complete validation of ScanPro as its 

significant complexity, both represented by the length of the palindromic motif and by the degree of 

variability in additional positions of the TFBS, represents a hard testing ground from the 

computational point of view. Finally, the availability of a tumor gene expression profiling DB at 

LNCIB  will  also  allow  me  to  verify  the  results  that  I’m  starting  to  obtain  from  the  analysis  of  a  list  

of 82 p53-regulated genes (data not shown in this thesis), along with the relationship existing 

between p53 and HIF-1 in complex biological processes such as  inflammatory response and 

tumorigenesis, as stated before.  

The chromosome-wide or genome-wide approaches for TFBS search, performed without 

considering gene expression results but including phylogenetic footprinting data, and the motif 

search based on previous gene expression experiments, will probably be held in parallel, as I 

consider them to be complementary and to be necessary to draw the attention to different regulatory 

events.  

 

In conclusion, I consider that the obtained results firmly suggest that ScanPro can be proposed as an 

accurate and efficient algorithm for the de novo discovery of human TFBS. In fact, in the HIF-1 

dataset used for ScanPro validation, 25 out of 26 genes regulated by HIF-1 were identified, only one 

being missed, a result that could not be achieved with any of the other tested promoter prediction 

programs. The success rate of ScanPro is further reinforced by the fact that additional conserved 

elements, both known and unknown, were identified during this analysis, increasing the predictive 

capacity of ScanPro and allowing further comparison with other predictive programs.  

Although considering that different improvements need to be introduced in the analysis, ScanPro 

has already laid the foundation as a successful tool in gene expression regulation. 
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