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Preface

In many physical situations, separation of scales plays a fundamental role in
understanding the dynamical behavior of the system. In particular, we focus
on physical systems in which it is possible to distinguish between fast and slow
degrees of freedom. The goal is to obtain an effective Schrodinger equation gov-
erning the dynamics of the slow degrees of freedom, thereby greatly simplifying
the complexity of the problem.

The previous lines summarize the spirit and the goals of the theory outlined
in this thesis. The thesis collects original results obtained as a joint work with
Herbert Spohn and Stefan Teufel, who initiated this research project some years
before and introduced me into this field of research. The results have been ob-
tained during the second part of my Ph. D. studies at SISSA, Trieste, under the
internal supervision of Gianfausto Dell’ Antonio.

Since the reader will be probably looking forward to read the main body of
the thesis, I will spend just few more words about the novelty of the results and
the references to the literature.

As far as the novelty of the results is concerned, all the results appearing in
the main body of the thesis are essentially new, with the exception of Egorov’s
theorem in Ch.2 and few minor propositions. As opposed, the results reviewed
in the Appendix appeared already in the literature, see for example [Ho, Fo, Iv,
GMS]. :

Detailed references to the literature and to related approaches will be given
sectionwise, so that the comparison of the methods and the results will be easier.
However, I wish to mention here that the results in [EmWe, NeSo| have been
greatly inspiring for us.

At the risk of being pedantic, I wish to emphasize that all the results should
be considered as the fruit of a joint work with Herbert Spohn and Stefan Teufel,
although this will not be explicitly mentioned sectionwise.

The introductory chapter looks very much as the transcription of the talk I
had the occasion to give in many places (Vienna, Taxco, Trieste, Rome, Cala
Gonone, Bielefeld,...) in the last months. Indeed it is. But this is a consequence
of the precise choice to make the first chapter as readable as possible, so that I




avoided any use of technical concepts in the Introduction. This is also the reason
why references to the literature do not appear in the introduction.

Finally, I took for myself the freedom to break a very solid convenction. In-
deed, in this thesis the word ”hamiltonian” is written without the capital letter,
since in the last eight years - since my first course in rational mechanics - nobody
was able to explain to me why the words "algebraic”, "bosonic”, ”euclidean” or
"fermionic” are usually written in small letters, while "hamiltonian” should be
promoted to the capital letter. I hope that Sir Hamilton will not be too much
offended for that and, more important, will not take this fact too seriously.

Miramare, Trieste, Gianluca Panati
September 20, 2002

i






v



Acknewledgements

The last day before the conclusion of a thesis is probably the right occasion to
look back and to think about all the people who helped me during these years.

My thought goes, first of all, to my father, who taught me the love for knowl-
edge and research, and the fact that "books are written by human beings”. To
his dear memory, I wish to dedicate this thesis.

I am very much indebted to my teachers. Looking back many years ago, I wish
to thank Prof.sa Castagnetti, from whom I learned the love for clearness of rea-
soning. As for the years at university, I wish to remember Prof. Paganoni, Prof.
Rigoli, Prof. Valz Gries, Prof. Lanz and Prof. Cantoni who greatly contributed
to introducing me in the mysteries of mathematics and physics. But I wish spe-
cially to thank Luigi Galgani, whose enthusiasm and passion for mathematical
physics have deeply fascinated many students, including me.

As for the recent past, I am very indebted to Gianfausto Dell’Antonio, who
introduced me to the world of scientific research and, as a middle-age painter,
has been teaching me day-by-day the art of doing research. I am also grateful to
the people in his "delocalized group”, namely Rodolfo Figari, Sandro Teta, Ric-
cardo Adami and Domenico Finco, for their friendship and for many interesting
discussions.

I am very grateful to Herbert Spohn, who taught me the importance of com-
bining the mathematical rigor with a deep insight into the physical problems and
who introduced me to the realm of adiabatic problems in quantum physics. I also
appreciated very much his constant encouragement in the last two years.

Last but not least, I wish to thank Stefan Teufel for his friendship and for the
day-by-day "friendly competition” who greatly accelerated the progress of this
work. And for listening to me, when I tried to convince him that reality does not
exist...

Finally, I wish to thank my relatives and all my friends, both in Trieste and
in Miinchen, for the "healthy distractions” during the preparation of this thesis.
Without them, I would have gone crazy many months ago....

A special thanks to Sarah Joy for providing me the music, her music, that I
mostly listened to during the typing of this thesis.

A%







Contents

Preface
Acknowledgements
Table of contents

1 Introduction

2 General space-adiabatic theory

2.1 General setting and assumption . . . . . .. ...
2.2 The almost-invariant subspace . . . . . . .. . ...
2.3 Reference subspace and intertwining unitaries . . . . . . . .. ..
2.4 Adiabatic perturbation theory . . . . .. . ... ...
2.4.1 The effective hamiltonian . . . . . . . . . .. . ... ...
2.4.2 Leading order terms in the expansion of the effective hamil-
tonianm . . . . . e

2.4.3 Born-Oppenheimer type hamiltonians . . . . . . . . . . ..
2.4.4 The time-adiabatic theory revisited . . . . . . . . .. ...

2.5 Semiclassical analysis for effective hamiltonians . . . . . . . . ..
2.5.1 Semiclassical analysis for matrix-valued symbols . . . . . .

2.5.2 An Egorov theorem . . . . . . . ... ...

3 Application to the Dirac equation
3.1 Adiabatic decoupling of electrons and positrons . . . . . . . . ..
3.2 Howsmallis €7 . . . . . . .
3.3 The semiclassical limit and the BMT equation . . . . ... . ...

4 Application to non-relativistic QED
4.1 Introduction to the Pauli-Fierz model . . . . . . . .. .. .. ...
4.2 Effective dynamics for the Pauli-Fierz electron . . . . . . . .. ..
4.3 The g-factor for the Pauli-Fierz electron . . . .. ... ... ...

vii

ii

vii

vii

25
27
29
33
33
38

41
41
44
45



5 Interlude: operator-valued Weyl calculus over the torus

6 Effective dynamics for the Bloch electron
6.1 Introduction . . . . . . . . . . ..
6.2 Dynamics in periodic structures: setup and main results . . . . .
6.2.1 The Bloch-Floquet transform . . . . ... .. ... .. ..
6.2.2 The free hamiltonian . . . . . . . . ... ... ...
6.2.3 Themainresult . . . . . . . . . ...
6.3 Mathematical proofs . . . . . .. e
6.3.1 The almost invariant subspace . . . . . . . . ... ... ..
6.3.2 The intertwining unitaries . . . . .. . . . . ... ...
6.3.3 The effective hamiltonian . . . . . . . . . ... ... ...
6.3.4 Leading order expansions and physical consequences . . . .
6.3.5 Semiclassical observables . . . . .. .. ... e

7 Conclusions and perspectives

A Operator-valued Weyl calculus
A1 Weyl quantization . . . . .. .. ... L
A.2 The Weyl-Moyal product . . . . . . .. ... ... ... ... ...

viil

55

65
65
69
69
71
73
75
76
81
83

84

36

91



Chapter 1

Introduction

In the dynamics of many classical and quantum systems a multi-scale dynamics
appears, i.e. there is a clear distinction between ”fast” and ”slow” degrees of free-
dom. As a consequence of the separation of time-scales, or equivalently of energy
scales, the fast degrees of freedom readjust almost instantaneously and without
an appreciable exchange of energy to the dynamics of the slow ones. This phys-
ical situation, well known both in classical and quantum physics, is summarized
under the name of adiabatic decoupling, where the greek root ¢ (=not)-duc
(=through)-faivw (=to pass, to penetrate) reminds us that exchanges are neg-
ligible on the microscopic time scale. Clearly, the previous claims can be made
precise by introducing a suitable dimensionless parameter £ < 1 which roughly
correspond, by the physical viewpoint, to the ratio between the typical time scale
for fast and slow degrees of freedom.

The phenomenon of adiabatic decoupling appears in a great variety of physical
systems. Focusing on the realm of quantum systems, we consider the following
ones.

Ex.1 Molecular physics The first and prototypical example of adiabatic de-
coupling in a quantum system comes from molecular physics. Indeed, in
the spirit of the well-known Born-Oppenheimer approximation, one expects
that in a molecule the fast electron dynamics adiabatically readjusts to the
slow motion of the nuclei.

Ex.2 Electron dynamics The second relevant example of adiabatic decoupling
appears if we consider an electron, moving in a slowly varying external
electromagnetic potential, as, for example, in a storage ring or in a cloud
chamber. Roughly speaking, the term slow variation means that the scale
of the space variation of the potentials is much larger that the Compton
wavelenght of the electron at the typical energy scale (see Sec.?? for a de-
tailed discussion). In this physical situation one expects that the dynamics
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of the translational degrees of freedom (position and momentum) is much
slower than the dynamics of other internal degrees of freedom. What are
the internal degrees of freedom? The answer depends on the particular
model one is considering.

Ex. 2.1 Pauli electron If the electron dynamics is described by the (rel-
ativistic) Pauli equation then the internal fast degrees of freedom are
simply given by the two-component Pauli spin. One expects that, for
slowly varying external potentials, the Pauli spin has a fast precession
around the direction of the instantaneous magnetic field, which varies
slowly in time because of the slow translational motion. Although a
separation of time-scales appears, this example is not really interesting
for us, since the fast and slow degrees of freedom are already decoupled
at the leading order.

Ex. 2.2 Dirac electron For a particle described by the Dirac equation
the internal degrees of freedom corresponding to four-component Dirac
spin can be regarded, from the physical viewpoint, as a combination
of a discrete degree of freedom corresponding to the electron-positron
duality and the degrees of freedom associated with the physical Pauli

>

spin. This example will be discussed in full detail in Ch. 3.

Ex. 2.3 Pauli-Fierz electron A more sophisticated model should take
into account the interaction of the electron with the self-generated
(quantized) electromagnetic field. A mathematically rigorous model
describing this situation is the Pauli-Fierz model (see Sec. 4.1) some-
times called non-relativistic QFED. In this case both the dynamics of the
photon cloud dynamics and the spin dynamics adiabatically readjust
to the slow translational motion. This example is outlined in detail in

Ch. 4.

Ex.3 Constrained motion It is an old problem in mathematical physics to
determine effective equations of motion for a particle which is constrained to
a smooth submanifold ¥ of the configuration space through strong external
confining forces. Following a remark in [Te], we notice that this problem is
related to a separation of time-scales. Indeed, one expects that, for strong
confining forces, the dynamics in the direction transverse to % is much faster
than the longitudinal dynamics, the ratio of the time-scales being related
to the steepness of the confining potential. !

1To avoid confusion, a remark is due. Usually, see [FrHe], the limit of strong confinement
is realized through dilations in the transverse direction. At the level of classical mechanics one
can equivalently rescale the tangential direction by the opposite factor obtaining, up to a total
rescaling of space-time, the same limit dynamics. However at the quantum mechanical level



Ex.4 Bloch electron A subtler example, in which the separation of time scales
is not clear a priori, appears when one considers an electron in a periodic
crystal with an external slowly varying electromagnetic potential. Here it
is assumed that the scale of variation of the external potential is much
larger than the lattice scale. It is part of the common lore in solid state
physics, that in this physical situation the dynamics of the wavefuction at
the macroscale is much slower than the dynamics at the lattice scale, and
that the latter adiabatically readjust to the first one. The first rigorous
proof of this fact and of the related Peierl’s substitution has been obtained
in and is given in Ch. 6

The ultimate goal of our theory is to prove that, in all the previous examples,
the dynamics of the slow degrees of freedom is decoupled from the dynamics of
the fast ones (adiabatic decoupling) and to give an algorithm to compute an
effective hamiltonian governing the motion of the slow ones to an arbitrary order
of approximation (adiabatic perturbation theory). Moreover, in this thesis
we outline a model-independent technique, developed in [PST;], which is in our
opinion vastly superior to a case by case study.

The first step of our analysis is the observation that all the previous examples
share the same mathematical structure, which can be nicely expressed by using
the operator-valued Weyl quantization (summarized in Appendix A) or a suitable
newly developed extension of it (see Ch. 5) in the case of the Bloch electron. The
common mathematical structure can be summarized in the following terms:

(i) the Hilbert space 7 corresponding to the pure states of the quantum system
can be decomposed, after a suitable unitary transformation, as the tensor

product
H = LX) ® He (1.1)

where X denotes the classical configuration space for the slow degrees of
freedom and Hy is a (separable) Hilbert space corresponding to the fast
degrees of freedom. Notice that in Ex.1 and 2.x one has simply X = R? for
a suitable d.

(ii) from the parameters appearing in the hamiltonian operator H® describing
the full dynamics of the system can be extracted a dimensionless parameter
e k1 and

(i) the operator H¢ is the e-Weyl quantization of an operator valued symbol
H(g,p) defined on the classical phase space T*X for the slow degrees of
freedom. (This is not literally true in Ex.4 where one should consider,

the two approaches are not equivalent anymore. The second approach, which in a sense better
describe the physical situation, fits in the framework of space-adiabatic theory.
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more generally, morphism of an Hilbert-space bundle over the phase space
T*X 2 T¢ x RY)

It is convenient to work out in full detail two simple examples.

Ex.1 Molecular physics. Let us consider a molecule with n nuclei and n, elec-
trons. The Hilbert space for the corresponding quantum theory (neglecting
spin considerations) is given by H = L*(R*") ® L*(R3"), so that the split-
ting (1.1) is trivial, with #; simply given by the electronic Hilbert space.
Let denote with z = (z1,...,7,) € R*" the nuclei configuration and with
Y= (y1,..,Yn,) € R the electrons configuration. Assuming for simplic-
ity that all the nuclei have the same mass M, the full hamiltonian is given

by hQ hQ

—mA‘T 2,

where V;, contains the nuclei repulsion, V, the electrons repulsion and V,.(z, v)

the electron-nuclei interaction. Here the interaction can be the Coulomb

potential or any other convenient interaction (e.g. Coulomb interaction
smeared out with the nuclear form factor). By introducing natural units

(me =1 = h) and the adiabatic parameter € = \/m./M < 1, the hamilto-

nian can be rewritten as

Hopo = — Ay + V() + Vae(z, y) + Ve(y) (1.2)

2

c £
mol = ——Q—Am + Hel(ib') (13}

where Hg(x) is the electronic hamiltonian for a given configuration of the
nuclei,

Ha(z) = ~58 + Va(s) + Vau(5,9) + Vo(0) (1.4

From (1.3) it is evident that Hy, is the e-Weyl quantization of the symbol

Hmol(Q:p) = p21Hf + Hel (Q)7 (15)

which takes values in the space of the (eventually unbounded) operators over
Hs. Notice that, apart from the fact that one has to face the unboundness
of the operators, this example is, from a certain viewpoint, very simple.
Indeed, in (1.5) the non-scalar part of the symbol, depends only on one
of the canonical variables. This yields a major simplification, as will be
pointed out in Sec.2.4.3.

Ex.2 Dirac equation. The first interesting example in which the non-scalar
part of the symbol depends on both the canonical variables appears when
one considers the Dirac equation. The Hilbert space of the quantum theory

4



is simply given by L?(R®, C*) so that the splitting (1.1) is again trivial, with
H; = C* and X = R®. In a fixed reference frame, the Dirac dynamics is
given by

iha{(ﬁt - ,E[D’Z,Dt (16)

with ~ e
Hp = ca - <~z'7iVy — —C—A(ey)> -+ BmCQ -+ eV(ey)

Here o and 8 are the Dirac matrices in Pauli representation, i.e.

o 0 (oF] 5”’ 1@2 0
%=\ g 0 ) L0 -1 )

where o = (01,02, 03) denotes the vector of the Pauli spin matrices. The
functions A € CP(R3,R*) and V € C°(R®, R) are the potentials of an
external electromagnetic field and the dimensionless parameter ¢ < 1 ex-
press mathematically the physical assumption that the potentials are slowly
varying on the microscopic space scale. It is convenient to switch to macro-
scopic units = ey and s = et so that the hamiltonian can be rewritten (in
natural units A=1=¢) as

Hp =a- (—ieVy — eA(z)) + mp + eV (z) (1.7)
and one has to consider the Schrodinger equation
i 8,15 = Hp 1), (1.8)

for macroscopic times of order 1, i.e. |s| = O(1). It is clear that Hp is the
e-Weyl quantization of the matrix-valued function

Hp(g,p) = o (p—eA(q)) + mB +eV(g)

defined on the phase space T*X = R°.

In other examples the Hilbert space splitting (1.1) can be not evident a pri-

ori. For example, in the case of the Pauli-Fierz electron (Ex. 2.3, see Ch.4)
the splitting becomes apparent only after a unitary transformation to the repre-
sentation for which the total momentum (electron + photon field) is diagonal.
For the Bloch electron (Ex. 4, see Ch6) a convenient form of the Bloch-Floquet
transformation is required.

By considering the spectrum of the operator H(q,p), regarded as an (even-

tually unbounded) operator over Mg, when (g,p) varies over the classical phase
space the typical band structure appears. Moreover, in many cases, there is a
phisically relevant band which is uniformly separated from the remainder of the
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spectrum (see Sec. 2.1 for a precise condition). This will be called the relevant
band.

It is worthwhile to mention that the mathematical structure summarized in
(i)-(iii) can be regarded as the starting point for the usual quantum adiabatic
theory, that in the context of the present thesis will be referred to as the time-
adiabatic theory. Indeed, in the spirit that the slow degrees of freedom are
classical degrees of freedom, one considers a given path (g, p;) in the classical
phase space T*X, as for example the flow induced by a classical hamiltonian.
Then one considers the Schrodinger equation in Hs

10ppy = H(Qtapt)% = H(Et)%, o € Hs, (1-9)

where the parameter ¢ appears as a consequence of the slow variation of (g, py).
But equation (1.9) is nothing but a Schrédinger equation in H¢ with a slowly
time-dependent hamiltonian f{, i.e. the starting point of the usual time-adiabatic
theory?(see references).

In this thesis we assume a different point of view: all the degrees of freedom
are considered quantum mechanical and the adiabatic decoupling is carefully dis-
tinguished from the semiclassical limit. This approach has been baptized space-
adiabatic approach in [SpTe]. The use of the word space fits many different
interpretations: for example, it is related to the fact that in many situation (Ex.
2.x-3-4) the external potentials have a a slow variation in space which induces
the separation of time-scales; alternatively, it can be related to the fact that, by
using microlocal analysis, we develop an adiabatic theory over the classical phase
space (=~ space) rather than over the time axis (> time).

The goals, and the results®, of the space adiabatic theory can be summarized
in the following scheme:

A. Existence of almost invariant subspace. The first goal in space-adiabatic
theory is to show that interband transitions are exponentially small in
the adiabatic parameter €. In other words, one expects that to any rele-
vant band, which is uniformly separated from the remainder of the spec-
trum, corresponds an orthogonal projector II¢ € B(#) so that the subspace
Ranll® C H is almost invariant under the unitary evolution induced by H¢,

in the sense that* o
(1= IF)e U I1° = Oy (e™). (1.10)

*Tn Sec.2.4.4 we will show, by exploiting a method due to Howland, that (1.9) fits in the
more general framework of space-adiabatic theory.

3The reader should refer to the specific sections for precise mathematical statements. The
only purpose of this scheme is to give to the reader an Ariadne’s thread to guide him in the
main body of the thesis.

4The meaning of the symbol Og(¢*°) is explained in Appendix A.
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For example, in the case of the Dirac electron, the band structure reduces
to two twofold degenerate eigenvalues Ey(q,p) = £+/(p — eA(g))? + m2 +
eV (q) separated by an energy gap A > 2m.c*. When the external potentials
are slowly varying one expects, from the physical viewpoint, that transitions
from the "electronic band” E. to the ”positronic band” E_ are forbidden to
any order in € (although exponentially small transitions are still possible).
Then one expects that there exist two projectors I1% which satisfy (1.10)
and which physically correspond to electronic, resp. positronic, states.

Coming back to the general theory, it is moreover interesting to prove, as we
shall do, that the operator I1% is O(£°°)-close to a pseudodifferential operator
# and to give an algorithm which allows to compute the the asymptotic
expansion of its symbol 7 =< > ; eim; to any given order in e. The existence
of almost invariant subspaces will be discussed in detail in Sec. 2.2 and in
Sec. 6.3.1 for the case of the Bloch electron. ‘

B. Intertwining unitaries. The second goal of space-adiabatic theory is to
study the intraband dynamics, i.e. the dynamics inside the almost invari-
ant subspace RanII®. Since the almost invariant subspace is e-dependent
and not easily accessible, it is convenient to map the dynamics into a fixed
e-independent subspace. It is then important to show that there exist a
unitary operator U € B(#) such that

UITFU = T, (1.11)

where I, is an a priori fixed and e-independent orthogonal projector. At
this point there is a certain degree of arbitrariness in the choice of Il,¢r and
U. The existence of intertwining unitaries is discussed in Sec.2.3 and in
Sec. 6.3.2 in the case of the Bloch electron.

C. Effective hamiltonian. Finally we are interested in an explicit description
of the intraband dynamics, as represented in the reference Hilbert space
Kret := Ranlle. In q]\fder to do that we will show that there exist a pseu-
dodiffential operator heg which approximates the true intraband dynamics,
in the sense that '

(e—int U e—iﬁefri U*)HE — 00(800(1 + lt[))a (112)

or a stronger property, holds true. The operator Eeﬁ‘ will be called the effec-
tive hamiltonian for the dynamics inside the relevant band. Moreover we
will exhibit an algorithm which allows to compute, at least in principle, the
asymptotic expansion of the symbol heg < 3 y e7h; to any order in e. This
procedure, baptized space-adiabatic perturbation theory in [PST,], is

7




crucial in order to obtain from the theory physically relevant information,
to be compared with experiments. This topic will be covered in detail in
Sec. 2.4 and in Sec.6.3.3 in the case of the Bloch electron.

D. Dynamics of observables. The ultimate goal of any physical theory is to
formulate predictions on experimentally measurable quantities. In this
spirit we will discuss how to obtain from the previous construction, by using
the well-known Egorov theorem, an estimate on the expectation value of the
relevant quantum observables on states which initially belong to the almost
invariant subspace Ranll¢. This is the only step in which the semiclassical
limit is performed. This topic will be discussed in detail in Sec. 2.5 and in
Sec.6.3.5.

In the following chapters this scheme will be performed in many relevant cases,
according to the following plan. In Ch. 2 it is treated the abstract case of a B(H;)-
valued principal symbol H (g, p), defined over the phase space T*X = R?¢ whose
spectrum contains a relevant band which satisfies a global gap condition (see
Condition (Gap),). A method to extend this theory to the case of unbounded-
operator-valued symbols and/or to situations in which only a local gap condition
is fulfilled is outlined in Sec. 777. With this extension the theory covers the case
of molecular hamiltonians (Sec. ), the Pauli equation and the Dirac equation
(Ch. 3). Moreover, by using the extended space formalism [Ho], the time-adiabatic
approach is reconsidered as a special case of the space-adiabatic approach, and
usual results recovered, see Sec. 2.4.4. The application to the Pauli-Fierz model is
sketched, at a premathematical level, in Ch.4. A rigorous treatement is possible,
but it will be given elsewhere. Finally, the application to the case of the Bloch
electron (Ex.4) requires a major additional effort, for two main reason:

e in the case of the Bloch electron the classical phase space is given by the
cotangent bundle of a torus, 7*X = T x R?, and so an (operator-valued)
Weyl calculus over the torus must be developed, as is done in Ch. 5.

e the symbol takes values in a space of unbounded operators, with constant
domain D, and so a suitable Weyl calculus for B(D, H¢)-valued symbol is
needed. This is incorporated in the theory outlined in Ch. 5.

With this preparation, the application to the case of Bloch electron is possible,
and it is performed in Ch. 6. The final chapter reviews open problems and future
perspectives.



Chapter 2

General space-adiabatic theory

The results appearing in this Chapter and in the following one already appeared
in [PST,] and are the fruit of a joint work with Herbert Spohn and Stefan Teufel.

In this chapter, space-adiabatic perturbation theory is developed for the case
of a B(Hs)-valued symbol defined over the phase space R?¢. All the proofs relies
heavily on the Weyl quantization of operator-valued symbols, which is summa-
rized in Appendix A for reader’s convenience.

2.1 General setting and assumption

Equipped with the concepts and the terminology introduced in the Appendix A,
we can state the general assumptions on which the adiabatic perturbation theory
will be based in the following.

Setting. Let Hs be a separable Hilbert space and 7 = L2(R?, He) = L*(R*)®@H;.
The hamiltonian H of the full system is given as the Weyl quantization of a
semiclassical symbol H € S7'(e, B(H;)) and we assume that H is essentially self-
adjoint on S(R? H¢). A point in the classical phase space R** is denoted by
z = (q,p) € R*.

The adiabatic decoupling relies on the following gap condition for the principal
symbol Hy of H.

Condition (Gap),. For any z € R* the spectrum o(z) of Ho(z) € B(H:)
contains a relevant subset o, (z) which is uniformly separated from its complement
o(2)\o:(z) by a gap. More precisely there are two continuous functions -; : R —
R (j = +) (with 7- < 74) such that:

(G1) for every z € R* the spectral component o,(z) is entirely contained in the
interval 1(z) := [7-(2), 7+(2)};




(G2) the distance between o(z) \ 0,(z) and the interval I(z) is uniformly bounded
away from zero and increasing for large momenta, 1.e.

dist(o(2) \ 0x(2),1(2)) 2 Cy (p)” (2.1)
(G3) the width of the interval I(z) is uniformly bounded, i.e.

sup 74 (2) = 7-(2) < C. (2.2)

We denote the spectral projector corresponding to o(z) by mo(z). As ex-
plained in the Introduction, one expects interband transitions to be suppressed
for small . To prove such a property we need either one of the following assump-
tions to be satisfied.

Condition of increasing gap (IG),. Let H be an hermitian symbol in
ST (e, B(Hy)) (with p> 0 and m > 0) such that the principal symbol Hj satisfies
condition (Gap), with o = m.

Condition of constant gap (CG). Let H be an hermitian symbol in S§(e, B(Hz))
such that the principal symbol Hy satisfies condition (Gap), with o = 0.

Note that for the case H € S7(g,B(H;)) one can show that H — the Weyl
quantization of H — is essentially self-adjoint on the domain S(R%, Hs) C H. The
proof is postponed after the space-adiabatic theorem.

2.2 The almost-invariant subspace

In analogy with the usual time-adiabatic theorem of quantum mechanics, see
Section 2.4.4, we baptize the following result as space-adiabatic theorem. It es-
tablishes that there are almost invariant subspaces associated with isolated energy
bands. In spirit the result is not new. However, to our knowledge it appears in
this explicit form only recently in the literature. Brummelhuis and Nourrigat
[BrNo] give a proof for the Dirac equation, Martinez and Sordoni [MaSo] con-
sider Born-Oppenheimer type hamiltonians (cf. Section 2.4.3) based on results
from [So], and Nenciu and Sordoni [NeSo| sketch the general scheme and apply
it to a matrix-valued Klein-Gordon type problem.

Theorem 1 (Space-adiabatic theorem). Assume either (IG),, or (CG). Let

H be the Weyl quantization of H. Then there exists an orthogonal projector
IT € B(H) such that

1H, ) = O(e%) (2.3)

10



and I = 7 + Oy (e%°), where 7 is the Weyl quantization of a semiclassical symbol

T < Zsjﬂ'j in Sj(e)

320

whose principal part m(2) is the spectral projector of Hy(z) corresponding to o.(2).

The subspace Ranll C 7 is an almost invariant subspace for the dynamics
generated by the hamiltonian H, i.e. [e7*# TI] = Op(e*[t]), and it is associated
with the spectral band o.(z). The terminology was borrowed from [Ney] although
Ranll is, in general, not an almost invariant subspace in the sense of [Nes], since
II need not have a limit as € — 0.

Remark 2. Note that the growth condition on the gap in (IG),, is stronger
than one would expect from the analysis in [NeSo] and [Tey]. Indeed, in both
examples a gap which is bounded globally over phase space suffices to prove
uniform adiabatic decoupling also in the presence of a hamiltonian with principal
symbol increasing linearly in momentum. However, [NeSo, Tey] use the special
structure Ho(g,p) = D(p) + V(g). This is only implicit in [NeSo], but in the
general case it seems difficult to establish that [H, 7]z € S%(g). This is the
reason why we use the symbol classes S* with p > 0, as is done in the same
context also in [BrNo]. As a consequence the somewhat stronger assumption
(IG)n, is needed.

Proof. To clarify the scheme of its construction, we decompose the proof into
two steps.

Step I. Construction of the Moyal projector

In general 7 is not a projector in the Moyal algebra, i.e. my # mo # m. The
following lemma shows that my can be corrected, order by order in €, so to obtain
a true Moyal projector 7 which Moyal commutes with H. Similar constructions
appeared in the context of the Schrodinger equation several times in the literature
[NeSo, BrNo, EmWe]. Our proof is strongly influenced by the one in [NeSo], but
differs in relevant details, since we consider different symbol classes. It relies on
the construction of the local Moyal resolvent of Hy(z). The construction of the
global inverse of an elliptic symbol, often called the parametrix, is well known
[DiSj, Fo, NiJ.

Lemma 3. Assume either (IG)y, or (CG). Then there exists a unique formal
symbol

T = Zejﬂj m; € 5,77 (B(He))
30
such that mo(2) is the spectral projector of Hy(z) corresponding to ov(z), with the
following properties:

11




(i) m#7m=m,

B

(ii) 7* =,

(iii) [H,w|p =H#m—n#H =0.

Proof. We give the proof under the assumption (IG),,. The proof under assump-
tion (CQG) is simpler, since all the symbols which appear belong to S¢(g).

We first provide a constructive scheme for the special case where o,(z) =
{E.(2)} is an eigenvalue, which, at the same time, proves uniqueness of 7 in the
general case. It follows basically the construction as given in [EmWe]. The reason
for including this scheme is that the aim of adiabatic perturbation theory is, in
particular, to give an as simple as possible recipe for explicitly computing the
relevant quantities. The inductive scheme for constructing 7 in the special case
0:(z) = {E.(2)} is much better suited for explicit computations than the general
construction which will follow later on.

Note that mo # mg — 79 = O(e) and [Hp, mp) = O(e) and proceed by induction.
Assume that we found 7() = D j—o T such that

7 M) ) = LG O™ (2.4)

where, in particular, (2.4) defines G,,41. Thus the next order term in the expan-
sion m,.; must satisfy

Tn41 M0 + 70 Tnp1 — Tng1 = —Gpg1

which uniquely determines the diagonal part of m,41 to be
7r,,?+1 = 79 Gry1mo + (1 — ) Gy (1 — 7o) - (2.5)
Since Gpyy = T Grg1 Mo + (1 — 7g) Ga1 (1 — 7o) follows from the fact that Gy
is the principal symbol of e} (7 (™ 4 7™ — 7)) (V) = () 4 en+17D indeed

satisfies (i) up to an error of order O(e"*2).
By induction assumption we also have that [H,7(™], = O(¢"*!) and thus

[H,w™)y =" Fppy + OE™?). (2.6)
Hence, the diagonal part of m,,1 being fixed already, the off-diagonal part of 7,1,
must satisfy [Ho, 7QP,] = —Fnt- In particular,
Ho(2) (m0(2)Tn41(2)(1 — mo(2))) — (mo(2)Tn41(2) (1 — mo(2))) Ho(z)
= —mo(2) Fry1(2) (1 — mo(2)) (2.7)

12



for all z € R24. We first show that if (2.7) has a solution mq (2)m41(2) (1 =70 (2)) =
7ODY(2), it is unique, i.e. that the kernel of the map 75 (2) = [Ho(z), 79D ()]
restricted to Ran(1—my(z)) contains only zero. To see thislet 7¢(2) := (sup o, (2)—

inf 0,(2))/2 and note that, due to the gap condition, Hy(z) — 7+(z) is invertible

on Ran(1 — mo(2)) with ||(Ho(z) — :(2)) "' (1 — mo(2))|| < 2/diam(o,(2)). Hence

[Ho(2), moi? (2)] = 0 & [Ho(2) — T2 (2), my (2)] = 0
& 70PN (z) = (Hol2) = 5:(2))mii) (2) (Ho(2) — 72(2)) ™

and therefore

[7OBH N < (Holz) = Tel2)mo() I () [ (Ho(2) = T(2) 7 (1 = mo(2))

= Cllr23 (2]

with C' < 1. Hence 7¢2}(z) = 0 and we conclude that m,; is unique when it
exists.
In the special case that o,(z) = {E:(2)}, (2.7) can be solved, and one finds

’/T07Tn+1(1 —_ 7T0) = Ty Fn—l—l (HO — Er)dl (1 — ﬂ'o) . (28)

Using that Fj,; is the principal symbol of e " '[H, w(”)}#, that 7 is the principal
symbol of w™ and that w™ satisfies (i) up to O(e"*?), one finds that 7o Fry1mp =

(1 = 7o) Fpyr(1 — ) = 0 and thus that 7" defined through (2.5) and (2.8)
satisfies (i) and (iii) up to O(e"*?).

We conclude that by induction we have uniqueness of 7 in the general case,
and an explicit construction for 7 when o,(z) = {E;(z)}. The latter one involves
four steps at each order: [a] Evaluation of Gny1 as in (2.4), [b] computation of
72,1 asin (2.5), [c] evaluation of F, .1 as in (2.6), [d] computation of 7P, as in
(2.8).

We now turn to the construction of m in the general case. Since the Moyal
product is a local operation (it depends only on the pointwise value of the symbols
and their derivatives) it suffices to construct 7 locally in phase space and then
uniqueness will liberate us from gluing the local results together.

Let us fix a point zy € R?¢. From the continuity of the map z — Hy(z) and
the gap condition it follows that there exists a neighborhood U, of zy such that
for every z € U,, the set o:(z) can be enclosed in a positively-oriented complex
circle I'(zo) (independent of z) in such a way that I'(zo) is symmetric with respect
to the real axis, '

dist(I'(z0),0(2)) > =C,y(p)” forall z € U,, (2.9)

e

and
Radius(I'(z9)) < C; sup (p)?, (2.10)

Zeuzg
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where Radius (T'(zg)) is the radius of the complex circle I' = I'(zp). The constant
Cyin (2.9) is the same as in (2.1) and the existence of a constant C; independent
of zy such that (2.10) is satisfied follows from assumption (G3). We keep ¢ in
the notation as a bookkeeping device, in order to distinguish the contributions
related to the gap, although o = m.

Let us choose any ¢ € I' and restrict all the following expressions to z € U,,.
There exist a formal symbol R(C) — the local Moyal resolvent of H — such that

R(C)# (H—Cl)y=1=(H—-Cl) # R()  onl, (2.11)
The symbol R(C) can be explicitly constructed. We abbreviate

Ro(¢) = (Hy—<¢1)™!

where the inverse is understood in the B(#;)-sense and exists according to (2.9).
By induction, suppose that R, (¢) = Z?:o e’ R;(¢) satisfies the first equality in
(2.11) up to O(g"*1)-terms, i.e.

RW(¢) # (H = (1) = 1+ " Eppa(C) + O(e™).

By choosing Ryy1 = —Fnt1 (Ho—C1)7!, we obtain that R®FY) = R e 1R
satisfies the same equality up to O(e™*?)-terms. Then the formal symbol R(¢) =
> 508 R;(C) satisfies the first equality in (2.11) which — by the associativity of
the Moyal product — implies the second one.

Equation (2.11) implies that R(C) satisfies the resolvent equation

R(¢) = R({') = (( =) R(Q) # R(C)  on U, (2.12)

From the resolvent equation it follows — by using an argument similar to the
standard one in operator theory [Ka;] — that the symbol 7 = 3 e/m; defined
by _ -
3
)= [RiGAd,  zeth, (2.13)
r

27

is a Moyal projector such that [H, 7]z = 0 on U,,. Indeed, for every fixed z € U,,
and j € N, the map ¢ — R;(¢, z) is holomorphic in a neighborhood of the circle
I'(20). Then I'(20) can be expanded to a slightly larger circle IV without changing
the left hand side of (2.13) and we obtain

(m# ), = ({;)2 [ ac [ ac iy # RO, R
- (5;) [ ac [ac¢ = iRee) - Ric))
= %/FRJ'(C) d¢ = m;

14



where (2.12) has been used. The first equality in (2.14) follows by noticing that
for every v € N

7 N : ,
Nmi(z) = ﬂ/ra;Rj(g,z) a¢ z € Uy,

and by expanding the Moyal product order by order in €. -

Since the circle I' is symmetric with respect to the real axis one immediately
concludes that 7* = , since R(¢)* = R(() as a consequence of (2.11). From
(2.13) it follows that = Moyal-commutes with R(A) for any A € I'. Then, by
multiplying m # R()\) = R(\)# 7 by (H — A1) on both sides, one obtains that
HH#rm=n#H.

Finally we have to show that m; € S, JP for every 7 € N. From the Riesz
formula (2.13) it follows that for every v € N*¢ one has

1(0275) (2)]l sgaey < 27 Radius (I'(20)) S 107 R;) (S5 2) s aeyy -

According to (2.10) we are left to prove that
su(p | H (aqaagpbj) (gv Z)”B(”H.f) < Oaﬂj <p>—a—jp—|ﬁ]p, &, B e N? , JEN,
20

¢er
(2.15)
where C,p; must not depend on zp. As for Ry, we notice that according to (2.9)

one has
1 . 4

1) = O sy < Foicomamy ST @ (2.16)
and moreover,
AN? o
9 Bolaey = =T Dlagey < () 07 19Hb(e

< Cp)™mTP =0 (p)TT7

where the last bound follows from the fact that Hy € S7* (recall that o = m).
By induction one controls higher order derivatives and (2.15) follows for j = 0.
Again by induction, assume that Ry, ..., R, satisfy the bound (2.15). Then, by
writing out

Bppr = (Ry(Q) # (H—C1) = 1),
and using (A.7), one concludes that R,i1 = —E,41 R, satisfies (2.15) with ¢ =
m. U

Step II. Quantization

First of all, by resummation (Prop. 53) we obtain a semiclassical symbol 7 :
R x [0,e0) — B(H¢) whose asymptotic expansion is given by > 7., gm;. Then,
by Weyl quantization, one gets a bounded operator T € B(H) (see Prop. 48)
which is an almost-projector, in the sense that

15



(iii) [H,7] = O_o(e®)

Notice that the assumption p > 0 is crucial in order to obtain (iii) for an un-

hounded H.

In order to get a true projector we follow the idea of [NeSo] and notice that
|7* — 7|| = O(e*) and the spectral mapping theorem for self-adjoint operators
imply that for each n € N there is a C,, < co such that

o(7) C [~Cre™, Cre™ U [l — Cre™, 14 Cre™] =: o5 U o1 .
Hence one can define for £ < 1/(4Ch)
0= — (F—¢)Ldc.

27 Jjc-1=4

Then I1? = II follows and we claim that IT = 7 4+ Og(e*°). Indeed,

T = / AE(dN) = Og(e™) + / E(d)\) =TI+ Oy(e") for all n € N,
JofUog Jof
where E(-) is the projection valued measure of 7. Finally notice that

[HI = — [H, 7 — ¢)~d¢

which implies that
H, Wl sy < CNH Tllppg = Oo(e%)
This concludes the proof of Theorem 1. &

Essential self-adjointness of H. R
Since H is an hermitian symbol its Weyl quantization H is symmetric on the
invariant domain S(R?, B(H¢)) € H. If H belongs to S%(e) then H is a bounded
operator, and there is nothing to prove.

In order to prove essential self-adjointness in the case H € S (g), we use an
argument of [Ro]. The proof does not exploit the smallness of € and we therefore
consider any € > 0. For s > 0 let

Bay(q,p) = (Ho(q,p) £1is1)7",

16



which, according to Proposition 50, belongs to ST (B(H)). Moreover
(Hﬂ:iSl) # By =1+¢e54,,

where Sy, € S%(¢), since H € Si(g) and By, € S)(g). After Weyl quantization
we obtain that

(H +is1) By, = 1+Ss,  with [|Sisllggy < B
the latter bound following (for s large enough) from Proposition 48 and from
estimating the Fréchet semi-norms of Si,. Essenmal self-adjointness of H on the
domain S follows, if we can show that Ker(H* +1is) = {0} for some s > 0. For
this let ¢ € Ker(H* +is) and ¢ € S. Using B.S C 8, we obtain

0 = ((H* Tis)p, Bavh) = (o, (H £ 1is)Bsvp) = (¢, (1 +eSe,)0) .

Since ||eSxs|| < 1 for s large enough, (1 + £5.,)S is dense in # and hence ¢ = 0
follows.

2.3 Reference subspace and intertwining unitaries

The fact that the subspace associated with an isolated energy band decouples
from its orthogonal complement up to small errors in € leads immediately to
the following question. Is there a natural way to describe the dynamics of the
system inside the almost invariant subspace Ranll? The main obstruction for
such a simple description is the fact that the subspace Ranll depends on ¢ and
is not easily accessible. Even worse, in general the limit lim. o IT does not exist,
meaning that Ranll is not even close to an e-independent subspace. In order to
obtain a useful description of the effective intraband dynamics we thus need to
map Ranll to an easily accessible and e-independent reference subspace.

From the continuity of z — Hy (z) and the gap condition it follows that there
is a subspace K¢ C Hs¢ independent of (g, p) such that the subspaces Ranmo(g, p)
are all isomorphic to Kr. Let m, be the projection on K, then II, := 1 ®
(= 7;) will serve as the projector on the reference subspace Krer := RanlIl,. Of
course K¢ is highly non-unique and a convenient choice must be made in concrete
applications.

Once the reference Hilbert space is fixed we next chose a unitary operator
valued smooth function ug(z) which pointwise in phase space intertwines mq(2)
and T, i.e.

ug(2) mo(2) uo(2) = mr . (2.17)
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The existence of such a smooth map follows from a bundle-theoretic argument
given at the end of this section. Again ug(z) is not unique and must be chosen
conveniently. We will see in Chapter 3 that, in the case of the Dirac equation,
there is an optimal choice for ug(z), which reflects the physics of the problem.

Unfortunately we cannot prove that it is possible to choose ug in S)(B(#Hy)).
Indeed, relation (2.17) does not imply any bound at infinity on the derivatives of
U, as can be seen by multiplying ug with a highly oscillating phase. Hence we
assume that ug is in SY(B(#Hs)), as will be the case in the physical examples. In
the following U(#) will denote the group of unitary operators over H.

Theorem 4. Assume either (IG),, or (CG) and that there exists a U(Hs)-valued
map ug € SY(B(Hs)) which satisfies (2.17). Then there exist a unitary operator
U € B(H) such that

UTLU =10, (2.18)

and U = U+ Og(e™), where u < 3. e7u; in S)(e) with principal symbol uy.

Step I. Construction of the Moyal unitaries.

Again ug fails to be a Moyal unitary (i.e. uf# uo # 1) and to intertwine 7 and
7. However, the following lemma shows that uy can be corrected order by order
to reach this goal. The idea of constructing a pseudodifferential operator which
is almost unitary and diagonalizes a given pseudor has a long tradition, cf. [Ni]
Section 7 and references therein, and was applied in different settings many times,
e.g. [Ta, HeSj].

Lemma 5. Assume either (IG), or (CG) and that there exists a U(H¢)-valued
map ug € SY(B(Hs)) which satisfies (2.17). Then there is a formal symbol u =
> is0 0wy, with uy € S;7P(B(Hy)), such that

(i) w#u=1 and uFU =1,
(i) v*# rH#Hu=m,

where 7 is the Moyal projector constructed in Lemma 3.

Remark 6. We emphasize that — as opposed to the Moyal projector = appearing
in Lemma 3 — the Moyal unitary w is highly non-unique even for fixed ug. As it will
follow from the proof, all the possible choices of Moyal unitaries intertwining «
and 7, with prescribed principal symbol ug are parametrized by the antihermitian
Moyal symbols which are diagonal in the 7.-splitting.
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Proof of Lemma 5. Observe that ug satisfies (1) and (ii) on the principal symbol
level. We proceed by induction and assume that we found u®) = > 70 glu;
satisfying (1) and (i) up to O("*!). We will construct w41 such that u("*) =
u™ 4 ently, i satisfies (i) and (i) up to O(e™?). To this end we write without
restriction ‘

Un1 = Uo(Ont1 + bna1)

with @,41 hermitian and b,1 anti-hermitian. By induction assumption we have

w1 = e"A L + O(e"?)
u(”) # ?,L(n):k -1 = En+1fin+1 -+ O(€n+2) .

Thus w41 has to solve

’LLE Up+1 + u::H—l Ug = #An—}—l;
L i (2.19)
Uppr g+ Uty = —Anpr.
The first equation in (2.19) fixes apy1 = ——;—Anﬂ, since A, .1 is hermitian as it

is the principal symbol of e~ (u(™* # ™ — 1). The second equation in (2.19)
is then also satisfied, since the compatibility equation ug Anq1 = Apyy ug follows

from
1

1‘ m n)*x n I )% n
g_nﬁu( >#(u( P (M) 1) = En+l(u( D™ 1) (M

by noticing that ug A,11 (resp. A1 wp) is the principal symbol of the Lh.s (resp.
r.h.s). ‘

Note that (2.19) puts no constraint on bne1 and we are left to determine it
using (ii). Let w®™ = u™ + e lyga,, 1, then by induction assumption

W o ™ = "B L+ O(™?)
and thus
D e g (D o = "By — (b, ) O(e"*?).
Hence we need to find an anti-hermitian b, satisfying
Bui1 = [bpy1,m] =0,

which is given by

bny1 = [Bay1, M), (2.20)
provided‘ that By is hermitian and off-diagonal in the m-splitting, i.e. m Bpy1 mr
and (1 — 7;) Bny1 (1 — m) vanish. This follows by noticing that Bpiq is the
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principal symbol of e~(*+1) (w(“)* #o#w— 7Tr) and then

1 ) *k mn
(1=m) Bpyy (1 —mp) — gm(l —Ty) (w( Vg () wr) (1—m)

where for the last equality we inserted 1 — m = w(™* # (1 — ) # w™ +
e"1B 11 + O(e™?) and used that w(™ solves (i) up to O(e"*?) and that 7 is a
Moyal projector. A similar argument shows that 7, B,4; 7 vanishes too. Note
also that (2.20) fixes only the off-diagonal part of b,4; and one is free to choose the
diagonal part of b,,1 arbitrarily, which is exactly the non-uniqueness mentioned
in Remark 6.

It remains to show that the assumption uy € Sf,’ implies that u; belongs to

S'p_jp. Assume by induction that u(™ € Mg(s). Then the formula

shows that a,1 belongs to S; (P a5 it is the (n 4 1)-th term of an element of
M} (g). By Proposition 49, wgani1 € Sy ("1 a5 well. Analogously we have that

Bni € Sp (nt1)e ? by induction assumption, therefore b,.; € S, +D0 and thus

Uobp 11 € S;mH)p which finally gives uy,11 € S (n+1)p

Step II. Quantization

Now let u denote a resummation of the formal power series u = 7, ¢’u; in
Sg(g) (see Prop. 53). Then, by Weyl quantization, one gets a bounded operator
u € B(H) (see Prop. 48) such that:

(i) T =14 O_xn(e™) and  UU* =1+ O_x(e%)
(i) 27T u =1L, + O_ (™).

As a first step we modify U by an Og(e*)-term in order to get a true unitary oper-
ator U € U(H) (which, in general, does not correspond to the Weyl quantization
of any semiclassical symbol). Let

U=(@u*) 7 a. (2.21)

Notice that wu* is a self-adjoint positive operator which is Og(e*)-close to the
identity operator. Then (G4*)"2 is well-defined and again Op(e)-close to the
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identity operator. Hence (2.21) defines a unitary operator which moreover is
Oy (e*)-close to .

Finally we modify U in order to obtain a unitary which exactly intertwines
T, and TI. Since |[U*TIU — IL|| < 1 for ¢ sufficiently small, the Nagy formula as
used in [NeSo]

W= [1 - (00 - Hr)g]

defines a unitary operator W € U(#) such that W* UTIUW = II, and W =
1+ Op(e®). Thus by defining U = U W one obtains (2.18), with the desired
properties.

DI

[ﬁ*nﬁnr v (1-UU)( - Hr)}

Remark 7. We sketch how to prove the existence of a smooth map u, satisfying
(2.17). Given
E={(z19) ¢ R? x H; : ¢ € Ranmo(z) }

the map g : B — R%, (z,1) + z defines a fibration of Hilbert spaces over the
base space R2¢,

The fibration is locally trivial. Indeed for any 2z, € R? there exists a neigh-
borhood U,, such that ||mo(z) — mo(2)|] < 1 for any z € Uy, so that the Nagy
formula

w(z) = [1— (mo(2) — m0(20))*] * [ro(2)mo(20) + (1 — m0(2)) (1 — mo(20))]

locally defines a unitary operator w(z) such that w(z)*mo(2)w(z) = mo(20). A
local trivialization of the fibration is then explicitly given by

wl»—x

0: Mz (U,) — U, x Ranm(z) — U,y % Ks
(z,9) =  (pwEY) = (2¢(2)w(z)Y)

where we use the fact that there exists a unitary operator ¢(zp) : Ranm(z) — K.
The existence of ¢(z) follows from the fact that the dimension of Ranm(z) is
independent of 7y, but the map z, — ¢(20) may be a priori even discontinuous.

Moreover one can check that any two such trivializations are U/ (/C;)-compatible,
and the previous data define a linear U (/C;)-bundle.

Since the base space is contractible, the bundle is trivial and the associated
principal U(/C;)-bundle (i.e. the bundle of the orthonormal frames) admits a
global smooth section. This implies the existence of a smooth map up : R —
U(H,) such that (2.17) holds true.




2.4 Adiabatic perturbation theory

2.4.1 The effective hamiltonian

In the previous section we constructed a unitary U on H which exactly intertwines
the almost invariant subspace Ranll and the reference subspace K = Ranll,. U
and II are Oy(e*)-close to pseudodifferential operators with symbols u and =
both in S (g).

We define the effective hamiltonian 1 as the quantization of a resummation h

of the formal symbol
h=u"#H%#u. (2.22)

Recall from Appendix A that we do not distinguish semiclassical symbols and
formal symbols in the notation. The following theorem is the basis for the adi-
abatic perturbation theory, as it relates the unitary time-evolution generated by
the original hamiltonian H to the one generated by the effective hamiltonian h.

Theorem 8. Under the assumptions of Theorem 4, one has that h € S;*(e) and

T is essentially self-adjoint on S. Furthermore

(7, IL] =0, (2.23)
et _ gt g = 0y (e t)) (2.24)

and
e~ e R = O(e(1 + 1)) (2.25)

Proof. Since u € S)(¢) and H € S7'(¢), the composition rule for semiclassical
operators (see Prop. 51) yields h € Sm( ) and thus h; € S;P=77.

Let h = u* H. Since % is bounded with bounded inverse, one finds, by
checking definitions, that h is self-adjoint on u 1D(H ) and that his essentially
self-adjoint on u”‘lS Accordmg to Equation (8.10) in [DiSj], which generalizes
to B(H,)-valued symbols, & 1€ OPS%e) and thus 'S = S. Hence S is a core
for h and, since h— h € B(H), the same conclusions hold for h.

Next observe that, by construction, [h;, 7] = 0 for all 7 € N and thus
[hj, 7z = 0 because m, does not depend on (¢,p) € R*. Hence [h;,IL] = 0
and thus (2.23) follows.

For (2.24) observe that

- Kol S ‘t .= o~ —~
e—th . ae—zhta — _ie—th/ ds esz (Ha_ ’Eh) ~zhs/\* OO< OO’tD
0

since, by construction, (ﬁ] ﬂ—ﬂﬁ) = O_x (™). Finally (2.25) follows from (2.24)
using U — & = Oy(e™).



Remark 9. It might seem more natural to define the effective hamiltonian as
He=U'TTHNU+U*(1-IH(1-IU.

Clearly one should have Heg — h o= O(e*) in some sense. However, if H is
unbounded, this closeness does not follow in the norm of bounded operators from
our results, since I/ need not be a semiclassical operator. As a consequence no
asymptotic expansion of Heg in the norm of bounded operators would be available.

In the remainder of this section we will study the finite order asymptotic

approximations
n

/}\L(n) = Z Sj 7:Lj

7=0

to the effective hamiltonian . By virtue of (2.23), we can, whenever appropriate,
restrict our attention to the reduced Hilbert space K = Ranll;. Furthermore we
define 0™ = > 30 7 1; and obtain a finite order expansion of the unitary U as
U =T ||y = O(e™).

Our main interest are approximations to the solution of the time-dependent
Schrédinger equation

over times of order e *7, where 7 does not depend on € and k£ € N is arbitrary.
Starting with (2.24) on the almost invariant subspace we obtain

em BT = e ML T* + Oy (e™|t])

= G e RO g (1 )0 ("), Jt] < e7Fr, (2.26)

where p(n +k + 1) > m is assumed in order to have h— /ﬁ(”f’“) € B(H). Hence,
given the level of precision €" and the time scale 7%, the expansion of h must
be computed up to order h,,; and the expansion of U up to order u,. Put
differently, in order to improve the error, a better approximation to the unitary
transformation is necessary. On the other hand, in order to enlarge the time-scale
of validity for the space-adiabatic approximation, only the effective hamiltonian
h must be computed to higher orders.

Specializing (2.26) to n = 0 and k = 1, one obtains the leadmg order solution
of the Schrodinger equation as

e I = gy e R0t MU L G5 4 (14 7)) Ooe), [t < e7'7, (2.27)

where m < 2p. Here the choice of & = 1 corresponds to the macroscopic or
semiclassical time-scale t/e. On this time-scale the effective dynamics e —iht/eT],
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on the reference subspace is expected to have a nice semiclassical limit, under
suitable conditions on hA.

Note that one can replace in (2.26) and analogously in (2.27) 7 by e~ and
obtains

e~ AT = W =B LG 4 (14 POy, i < e *H . (2.28)

Thus one can enlarge the time-span for which the approximation holds without
the need to compute further terms in the expansion. The price to be paid is a
larger error, of course.

We emphasize that (2.26) and (2.27) are purely space-adiabatic expansions
with no semiclassical approzimation invoked yet. As a consequence one obtains
uniform results and a simple bound on the growth of the error with time. Note in
particular that the space-adiabatic approximation holds on time-scales far beyond
the Ehrenfest time-scale, the maximal time-scale for which semiclassical approxi-
mations are expected to hold. For some particular cases semiclassical expansions
of the full propagator e~iHt/s have been derived directly, e.g. in the context of
the Dirac equation [Ya, BoKes]. These expansions hold, in general, only for short
times, in the sense that they must be modified each time a caustic in the corre-
sponding classical flow is encountered. More important, the clear separation of
the space-adiabatic and the semiclassical expansion is not maintained, which is
a severe drawback, since in many physical situations the space-adiabatic approx-
imation is valid to high accuracy, while the semiclassical approximation is not,
cf. Chapter 3. On the other hand, a semiclassical expansion of the right hand
side of (2.27) is straightforward in many interesting cases, as will be discussed in
Section 2.5.

In parentheses we remark that the space-adiabatic approximation can be used
also in the time-independent setting, 1/\ e. to estimate spectral properties of H.If
one is able to compute eigenvalues of A™ up to errors of order o(e™),

A ) = B ) 4 (e

it follows that N
Ha¢(n) — (n)aw(n) + o(e").

If, in addition, one knows from some a priori arguments that H has pure point
spectrum near E™ it follows that H has an e1genva1ue o(e™)-close to EM. Oth-
erwise one can at least conclude that there is a “resonance” in the sense of a
quasi bound state o(e™)-close to E™. We stress that no explicit knowledge of U is
needed as long as the interest is in approximate eigenvalues only. For example, the
scheme just described can be applied to the time-independent Born-Oppenheimer
theory, where one is interested in the low lying spectrum of a molecule. The
standard approaches to the time-independent Born-Oppenheimer approximation
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[CDS, Ha;, KMSW] yield in some respects mathematically stronger results. How-
ever, our scheme suffices for estimating asymptotic expansions of eigenvalues and
is simpler to handle, in general.

2.4.2 Leading order terms in the expansion of the effective
hamiltonian

We turn to the explicit determination of the leading order terms h; in the ex-
pansion of h using (2.22). Of course, in concrete applications only H and uqg
are given explicitly, while the higher order terms in the expansion of u must be
calculated using the construction from Section 2.3. For a general hamiltonian H
such a program is feasible only for the terms hg, h; and possibly hgy, which will
be our concern in the following.

The principal symbol of h is given by

ho = ug Houo -

Higher order terms can be obtained using (2.22). The double Moyal product
becomes rather awkward to handle, and alternatively we proceed inductively by
observing that

H#u—u#hy=cus#th +0OE>) =cugh + O, (2.29)
with the subprincipal symbol on the left hand side being
(H#u—uthy), = Hour + Hiug — urho + (Ho # uo)1 — (uo # ho)r . (2.30)

Recall the notation a# b= 372 7 (a4 b); for the expansion of the Moyal prod-
uct, cf. Section A. Combining (2.29) and (2.30) one obtains

h,1 = 'Ll,é (H()Ul + Hluo - u1h0 + (Hg #UO)l - (’LLO # hO)l) . (231)

The expression (2.31) further simplifies if one specializes to the case where o,(g, p) =
{E.(q,p)} consists of a single eigenvalue of Hy(g,p) and one projects on the rele-
vant subspace,

B A —— (u; H o -+ ul (Ho 2 u0)1 — (o # Er)1>7rr . (2.32)

The right hand side has the nice property to be independent of u; and thus to

depend only on known quantities. ;
Along the same lines and under the same condition on o:(g, p), one computes

7Trh27rr = Tl"r;lﬁz (HQUO -+ Hlul - u1h1 (233)
+ (Ho#u1)1 + (Hi#uo)1 — (ur # Ev)y — (uo # ha)r
o+ (Ho # o)z = (o # Er)a ) mr.
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Again, (2.33) does not depend on us for the special case under consideration, but
it does depend on u;, which must now be computed using the construction from
Section 2.3.

Although (2.33) looks still rather innocent, in general, it requires some work
to compute it explicitly. This is partly because the second order expansion of
the Moyal product in (2.33) tends to become rather tedious to obtain. But, in
general, also the determination of u; is nontrivial. To convince the reader, we
state without details that the construction from Sections 2.2 and 2.3 yields

Uy :uO< {u07uo}+[uo oP UDJTJJFZ[({u&Wo}UoJruo{Wo;uo})ﬂTr})a (2.34)

with

OD = 7TD7"1(1 - Wo) -+ (]_ - 7T0)7T17T0 s

where we used that (a# b); = —%{a, b}. Recall the definition (A.8) of the Poisson
bracket {-,}.

To compute m; from the given quantities one has to use the construction
explained in Section 2.2. One finds

oD _
Ty =

(Ro(E)(1 — mo){Ho + Er, mo}mo + mo{mo, Ho + Er} Ro(E:) (1 — 7)) ,

[\3| =8

where Ro(E.)(1 —my) = (Hy — E;)~*(1 —mp) is uniformly bounded because of the
gap condition. For sake of completeness we mention that m = 720 + 9{71'0,71'0}
in this case.

For the higher orders in the expansion of & we only remark that, in general,
h, depends on u™, H™ and Y. In the special, but interesting case of an
isolated eigenvalue F.(g,p), hn depends only on w9, H and h(*Y and is
thus considerably easier to obtain.

Remark 10. Note that in the case of o.(¢,p) = {F:(q,p)}, the principal symbol
ho(q, p) = F:(q,p)1%, and the subprincipal symbol h; (g, p) as given by (2.32) are
well defined regardless of the gap condition, provided that the spectral projection
mo(q, p) is sufficiently regular. Indeed, it can be shown, at least in some special
cases, that there is still adiabatic decoupling to leading order and an effective
dynamics generated by ho + ¢ hy without a gap condition [Tey], [Tey].

To get even more explicit formulas for h; and hg, note that in most applications
one has no naturally given transformation ug. Instead one chooses a suitable basis
{¥a(4,p) acr of Ranmy(g, p) and defines uo(q, p) = 3 oer [¥ald, P)) (Xal + 7(q,p),
where the vectors y, form a basis for Ranm, and 7(g, p) is some arbitrary unitary
intertwining Ran} and Ranmo(q, p)*. m: h;(g, p) 7; is independent of the choice
of the unitary r(q,p) for all j € N.
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We remark that such a basis {1a(q, ) }aer of global smooth sections of the
bundle over R2? defined by mo(g,p) always exists, since R** is contractible (see
Remark 7). However, we are not aware of a proof which insures u, € Sy . The
situation changes completely, once one considers local domains in the base space
which are not contractible. Then it might become necessary to chose as reference
space the space of sections of a globally nontrivial bundle.

Assuming that o.(q,p) = {E:(g,p)} consists of a single eigenvalue of Ho(q,p)
of multiplicity £ (including ¢ = c0), we obtain the £ x {-matrix 7, hW(q,p) 7 as

B3 = (Xar Kxg) = Erag + M, (2.35)

with

Prag = (o hra) = (o, Hithg) — (e (o + B2), )
= (b, Hythp) — (s {Bes 1) — (b, {(Ho — B),05}) . (2.36)

The indices « and f are matrix-indices, both running from 1 to . Equations
(2.35) and (2.36) are one of our central results. They are still of a simple form
and mostly suffice to compute the basic physics. The first term in (2.35) is referred
to as Peierls substitution and the first order correction carries information on the
intraband spinor evolution. E.g., as will be discussed in Chapter 3.3, for the Dirac
equation h; governs the spin precession. The reason for the particular splitting
of the terms in (2.36) will be discussed in Section 2.5. Here we only remark that
the second term in (2.36) is related to a “generalized” Berry connection. We omit
the analogous formula for hg,pg, since it is too complicated to be helpful.

2.4.3 Born-Oppenheimer type hamiltonians

An instructive example to which formula (2.36) applies are Born-Oppenheimer
type hamiltonians of the form

Hgolg,p) = %pzlm +V(q), (2.37)
V € SO(B(H;)), with an electronic energy band e:(g) of constant multiplicity £,
ie. V(g)m(q) = er(g)mo(q). Adiabatic decoupling for Born-Oppenheimer type
hamiltonians is established with exponentially small errors by Martinez and Sor-
doni [MaSo], see also [So]. Their result partly triggered our interest to develop a
general theory.
Note that the quadratic growth of Hpo(q,p) as a function of p prevents from
applying the general results directly. At this point, energy cutoffs need to be
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introduced. For the moment we ignore this problem and proceed by working out
the perturbative scheme formally.

We fix arbitrarily an orthonormal basis {t,(q)} -, of Ranmy(q) depending
smoothly on ¢ which then satisfies Hpo(q, p)%a(q) = Ex(q, p)¢ba(q) with E.(q,p) =
ip* +e(g) for 1 < a < £ Only the second term of our formula (2.36) contributes
and yields

h1ap(q,0) = =10 (Yal(q), Vetbs(a)) = —p - Aap(q),

which is well known in the case of a nondegenerate eigenvalue, [ShWi, LiWe,
TeSp]. Aap(g) has the geometrical meaning of a gauge potential, i.e. coefficients
of a connection on the trivial bundle R? x C*, the so called Berry connection. As
mentioned already, a more detailed discussion of the origin of the Berry connection
will be given in Section 2.5.

For the Born-Oppenheimer hamiltonian the calculation of hg4p is still feasible
without much effort and the result is

L
1 1 ‘
]12 aff — 5 E Aau ) Ayﬁ + §<vq¢a7 'vq¢ﬂ> - <p Vq’l/)m RO(EI) b Vt]¢ﬁ> : (238)

u=1

Recall the definition of Rg(E;) = (Ho—E;) ™' (1—m), which reduces to Ry(E;)(q) =
(V(g)—e:(q)) " (1 —mp(q)) in the present case. Although we omit the details of the
computation leading to (2.38), we shortly describe how (2.33) relates to (2.38).
Since H; = 0 and Hy = 0 the corresponding terms in (2.33) do not contribute.
Since ug and my are functions of ¢ only, the second term in (2.34) is the only one
contributing to u;, and thus the third term in (2.33) also vanishes after project-
ing with the 7,’s from outside the brackets. The last two terms in (2.33) cancel
each other. The seventh term in (2.33) yields the first term in (2.38) and the
fourth and sixth term in (2.33) combine to the second and third term in (2.38).
In particular the calculation yields for the symbol of the unitary

L

upo(,p)me = Y (Ita(a)) + ie Ro(E:)(a) [P Vothala)) ) (Xal + O(?).

a=1

Thus the symbol of the second order effective Born-Oppenheimer hamiltonian
reads

1 2 g

hoos(a.7) = 5(p—cA(0) -+ ela)o + 5 (Viald), Vars(a)

—e?(p- Voa(q), Ro(E:)(q) p- Vetp(q)) + O(e%), (2.39)
where the first term from (2.38) nicely completes the square to the first term in
(2.39). Note that the third term on the right side of (2.39) depends on ¢ only
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and is interpreted in [ShWi] as a geometric electric potential in analogy to the
geometric vector potential A(g).

In the special case of a nondegenerate eigenvalue e, and a matrix-valued hamil-
tonian H, (2.39) reduces to the expression obtained by Littlejohn and Weigert
[LiWe]. They also remark that the previous studies [ShWi, AhSt] of the ex-
pansion of the effective Born-Oppenheimer hamiltonian missed the last term in
(2.39). This strengthens our point of the usefulness of a general and systematic
space-adiabatic perturbation theory.

The full power of our scheme is in force in cases where Ranmg is degenerate
~ and depends both on g and p, since then the known techniques [LiF1, LiWe, NeSo,
MaSo] cannot be applied. The simplest example of this kind is the one-particle
Dirac equation with slowly varying electric and magnetic potentials, which will
be discussed in Chapter 3.

2.4.4 The time-adiabatic theory revisited

With little additional effort our scheme can be applied even to the time-adiabatic
setup. As for notation, we replace the phase space RZ x Rf by R, x R, in the fol-
lowing. Given a Hilbert space H and family H*(t), ¢t € R of self-adjoint operators
such that He(t) =: H(t,n,e) € S°(e, B(H)), the solutions of the equations

10U (t, s) = H (U (¢, s) , s € R, (2.40)

define a unitary propagator. A unitary propagator is a unitary operator-valued
map U(t, s) strongly continuous in ¢ and s jointly, such that

Ult,t) = 1y and  U(t,r)U(r,s) =U(t,s)

for any r,s,t € R. In particular we have that U ¢(t, 0)1)y solves the time-dependent
Schrodinger equation for any 1 € H.

Tt is assumed in addition that Ho(t), the principal symbol of H®(t), has a
relevant part o, () of its spectrum, which is separated by a gap from the remainder
uniformly for t € R. As before we denote the spectral projection on oy (t) by mo(t).

The following theorem is a variant of the time-adiabatic theorem of quan-
tum mechanics [Kag, ASY, JoPf, Ne,], however formulated in the language of
adiabatic perturbation theory. Sjdstrand first recognized the usefulness of pseu-
dodifferential calculus in this context [Sj] and we are grateful to G. Nenciu for
pointing this out to us. We remark that the proof below can be adapted to the
case of a time-dependent operator-valued classical symbol H(g,p,t), as — for ex-
ample — the Dirac hamiltonian or the Pauli-Fierz hamiltonian with slowly varying
time-dependent external potentials.
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Theorem 11 (Time-adiabatic theorem). Let H(t) and o.(t) be as above.

(i) Decoupled subspace. There exists a family of orthogonal projectors T1(t)
such that 11(-) € S%(e, B(H)), TI(t) — mo(t) = Oy(e) and

Ut s)* TI(E) U(t, s) = TI(s) + O (et — s|) (2.41)

uniformly for s,t € R. Whenever 0fH(t) = 0 for some t € R and all
a €N, then I1(t) = mo(2).

(ii) Intertwining unitaries. There exists a family of unitaries ug(-) € C°(R, B(H))
with uf(t) mo(t) uo(t) = 70 (0) =: 1 and a family of unitaries U(-) € S%(e, B(H))
such that

U IIE)UE) =7 and U(E) —u(t) = Ople).
(iii) Effective dynamics. There erists a family of self-adjoint operators h(t),
h(-) € S%e, B(H)), such that
[A(t), 7] =0  forall +t€R (2.42)
and the solution of the initial value problem
10 Uek (t, ) = h(t)Uer (t, 5) seR, Ueg (£, 1) = 14

satisfies
U(t,s) =U) U (t, s) U (s) + Op(e™|t — s]) . (2.43)
The asymptotic expansion of h(t) in B(H) reads
hH) = 3 e ( S wOEOwO Y (w0 ) - i) uka))) ,

J+k+i=n Jt+k+1=n
(2.44)
where ), €™ Hy () is the asymptotic expansion of H(t) in B(H) and Y, e"u,
is the asymptotic expansion of U(t) in B(H).

Before we turn to the proof we remark that, for o,(t) = {e,(¢)} and {@,(t)}:,
an orthonormal basis of Ranm (¢), the effective hamiltonian including second order
reads

hap(t) = ex(B)dap — i€ (alt), $5(1)) + S (Palt), Roler) 9o(1)) + O(Y),

where Ro(e;) = (H(t) — e;(t)) ™' (1 — mo(¢)). For the unitary U(¢) one finds

Utme = (Iealt)) +ie Roler) (1) 1¢a(t)) ) (wa(0) + O

a=1
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Proof. In order to apply the general scheme developed in the previous sections
it is convenient — in analogy with the extended configuration space in classical
mechanics — to introduce the extended space IC = L*(R, H) fR ‘H dt and to
define the extended hamiltonian

K = —ied, + H(t)

which is self-adjoint on the domain D(EK) = o’ (R, H) C K. By following How-
land [Hol, we notice that the unitary group e 9 o € R, is related to the unitary
propagator (2.40) through

(e”if(”z/)) ) =U(t,t —o)(t—o). (2.45)

Moreover, the unitary group e=K7 can now be studied by means of the techniques
developed in the previous sections, since K is nothing but the Weyl quantization
of the operator-valued function K (t,7) = n -+ H(t), and K belongs to S1(B(H)).

By assumption K € S} satisfies assumption (Gap), with o = 0. However,
because of the simple dependence of K (¢,7) on 7, the conclusion of Theorem 1
and 4 hold still true in a sense to be made precise.
Indeed, by following the proof of Lemma 3 one gets a semiclassical symbol
7 € S9(e, B(H)), depending on t only, such that [K, 7]z =< 0 in Si(g). On the
other hand,

(K, mly = [H, 7]y + 7]y = [H,7]5 — ie (Oy)

where the last equality follows from the fact that [n,n] Ty is the Weyl symbol of
[—ied;, w(t)] = —ie (D) (t). Since both [H, 7]y and 7w belong to S3(g), one
concludes that the asymptotic expansion [K, W]# = 0 holds true in Sj(¢), and

hence [K,7] = Op(¢*). Finally one defines
1
=5 (m(t) = ¢)71d¢
27 Jig-11=4
and finds T1(-) € S°(e, B(H)), II(t) — 7(t) = Op(e™) and [e=E7 1] = Op(e|o])
as in Section 2.2. Together with (2.45) this implies
esssup ||U(t,t — o) () U(t,t — 0) =11t — 0)|lpgy = Oy (e%|o]) .

teR
However, since I1(¢) and U(t, s) are continuous functions of ¢, the pointwise state-
ment (2.41) follows.

For uo(t) one can use for example Kato’s construction [Kas] and define uo(t)
as the solution of the initial value problem
4

;ﬁUO(f) = [iro(£), mo ()] uo(t), uo(0) =1.
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Clearly uq(t) belongs to S°(B(H)). Notice that the same construction does not
work in the multidimensional case, since the evolutions in different directions do
not commute. U can be obtained as in Section 2.3, where the fact that 7 (¢) and
ug(t) both depend on ¢ only and not on 7 simplifies the construction considerably
and yields, in particular, a fibered unitary U(t).

As in the general setting let the effective hamiltonian be defined as a resum-
mation of

k(nt,e) = (W' # K #fu)(n,t,e) = 0+ h(te),
with the explicit expansion (2.44). According to Theorem 8 we then have
€~if{'a _ uewiggu* — O(goola_D 7
which implies according to (2.45) that

ess s]gp Ut —0) —UR) Uer(t, 2 — o) U™ (t — 0) || 530y = Oo(e*|0]) -
te

The pointwise statement (2.43) follows again from the continuous dependence on
t of all involved expressions.
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2.5 Semiclassical analysis for effective hamilto-
nians

The results of the previous sections are genuine quantum mechanical: semiclassi-
cal symbols have been used only as a tool in order to construct (and, eventually,
to approximate) IT and U, but no semiclassical limit has been performed. Indeed,
the adiabatic decoupling of energy bands is a purely quantum phenomenon, which
is, in general, independent from the semiclassical limit.

However, under the assumption that o.(¢,p) = {E:(g,p)} consists of a single
eigenvalue of Hy(g,p) of necessarily constant multiplicity £, the principal symbol
of b is a scalar multiple of the identity, i.e. ho(g, p)m = F:(q,p)1k,, and a semi-
classical analysis of % can be done in a standard way. In particular, the dynamics
of quantum observables can be approximated by quantities constructed using only
the classical flow @ generated by the (classical, scalar) hamiltonian E;(g,p). This
results in a generalized Egorov’s theorem, see Theorem 12. We emphasize that
for more general energy bands o.(g,p) one cannot expect a simple semiclassical
limit, at least not in the usual sense.

2.5.1 Semiclassical analysis for matrix-valued symbols

Egorov’s Theorem. For the moment, we identify K¢ with C* and h with 7, A7,
an £ x f-matrix-valued formal symbol. At least formally, Egorov’s theorem is
obtained through an expansion of the Heisenberg equations of motion for semi-
classical observables: Let a(g,p, ) € S¥(g, B(CY)), then the quantum mechanical
time evolution of @ is given by

a(t) — eiﬁt/sae—iﬁt/e

and satisfies

o E[Tz, at)]. (2.46)

Expanding both sides of (2.46) on the level of symbols and using [E;1, a,(t)] = 0,
1 = 1, one obtains the following hierarchy of equations:

dacgt(t) = {E:1,a0(t)} +i[h, ag(t)] (2.47)
14l — {B1,0(0) +ilhs, 0] - 5 ({8} = {aolt), )

+ i{h, 0o ) (2.48)
da;t(t> = {B1,a(t)} +i[h, aa()] + ... - (2.49)
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Since day,(t)/dt does not depend on higher orders, the equations can be solved
iteratively. The solution of (2.47) with initial condition ag(q,p,0) = ag(g,p) is
given through

ao(q, p,t) = D*(q,p,t) ao(®%(¢,p)) D(g,p, 1), (2.50)

where ®? : R*¢ — R?? is the solution flow corresponding to the scalar hamiltonian
E.(q,p). More precisely, ®*(go,p0) = (q(t),p(t)), where (¢(t),p(t)) is the solution
of the classical equations of motion

q - Vp—E]ra p - ‘"qur

with initial condition (g, po). D(g,p,t) is the solution of

—%D(q,p, t) = —ihi(®(q,p)) D{g,p, 1) . (2.51)

with initial condition D(q, p,0) = 1. One can think of (2.51) for fixed (q,p) € R*
as an equation for the Schrodinger-like unitary evolution induced by the time-
dependent hamiltonian h;(®%(g,p)) on the Hilbert space C*. Since hi(g,p) is
self-adjoint for all (¢,p) € R?*¢, the solution D(q, p,t) of (2.51) is unitary for all
(g,p,t) € R¥* x R

To see that (2.50) is indeed the solution of (2.47), note that the mappings

U(t) : Co(R*, B(CY)) = Co(R*, B(C"))
defined through (2.50) for ¢ € R, i.e.

(U(t) ao)(g,p) = D*(g,p, 1) ao(®*(q,p)) D(g,p,1), (2.52)

form a one-parameter group of linear automorphisms on the Banach space Cy (R, B(CY)),
since

U(s)U(t)ao)(g,p) = D*(g,p,5) D"(®*(q,p),t) ao(®” 0 *(q,p)) D(®*(q,p),t) D(a,p, 5)
= D*(q,p,t+5) a(®*°(¢,p)) D(g,p,t + 5)
= U+ s)ao)(gp).

Here the group structures of ®* and of the solutions of (2.51) are used. Hence
U(t) is a group and it suffices to check that (2.50) solves (2.47) at time ¢ = 0,
which is easy to see. ‘

The physical interpretation becomes simpler when translated to the states: a
“classical” particle which started at time O at the phase space point (g, p) with
spinor ¢y € C*, is at time ¢ located at the phase space point ®'(q, p) with spinor
w1 = D(q,p,t)po. Hence (2.51) implies that

d(pt .

— = —ih(®(q,p)) @1 . (2.53)
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One can also think of 2(t) as being the action on observables of a “classical” flow
@} on phase space R* x SU({) defined as

dt(q,p,U) = (®*(q,p), D(¢,p,t) U) .

Turning to the higher order corrections (2.48), (2.49) etc., they are of the form

dap(t )
nlE) (5,1, 0n(0)) + ol (0] + (8] 2ns (1)
with an inhomogeneity I,(t) depending only on the known functions ag(t), .. ., an-1(%).

Thus, assuming a,,(0) = 0, one finds

an(t) = /o dsU(t — s) I,(s). (2.54)

In order to solve Equation (2.48) for the subprincipal symbol one needs to
know hs. However, if one is interested in semiclassical observables with a principal
symbol which is a scalar multiple of the identity, e.g. in the position ao(0) = ¢1,
the last term in ( 2.48) vanishes at all times, since, according to (2.50), ao(t) is
a scalar multiple of the identity for all times. In Section 3.3 the back reaction of
the spin of an electron on its translational motion will be discussed on the basis
of (2.48).

We summarize the preceding discussion on Egorov’s theorem.

Theorem 12 (Egorov). Let H satisfy either (IG )y form < 1 and p =1 or
(CG) with p = 0. Let 0:(q,p) = {Ex(q,p)} be an eigenvalue of Ho(q,p) of finite
multiplicity £.

Then the classical flow ®* generated by E.(q,p) and the solution of (2.51) with
initial condition D(q,p,0) = 1 exist globally in time. For ag € SS(B((CK)), ao(t)
given by (2.50) is a solution of (2.47) and ao(t) € SJ(B(C")) for all t.

For each T < oo there is a constant Cp < oo such that for all t € [T, T)]

la(®) = We(ao(®)ll < &Cr, (2.55)

where a(t) = et/e Gy e~

Proof. Up to the modifications discussed before, the proof follows easily along
the lines of Egorov’s theorem for scalar valued observables (cf. [Ro, BoRo]): To
make the expansion of the Heisenberg equation (2.46) rigorous, note that £y =
mhome € SPHR) with m < 1 and thus the corresponding hamiltonian vector
field is smooth and bounded. It follows by standard ODE techniques [Ro] that
B,a0(®Y) € S? and hence also dyao(t) € SY, where aq(t) is given by (2.50). Thus
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one can interchange quantization and differentiation with respect to time and
obtains

a(t) = We(ao(t)) = /O t dsgdg(eiﬁs/fwg(ao(t~s))e—fﬁs/e)

L e ([ d _
= /o ds et/ <—ZE— {h, We(ao(t — S))} - W (_&?(t — S))) e~thsle.
Now, by construction, FL; @c@?s)] — W (%2(t - 5)) is a semiclassical oper-

dt
ator in OPS}(g) with vanishing principal symbol. Hence the integrand is really
O(e) as a bounded operator and (2.55) follows. O

This matrix-valued version of Egorov’s theorem has been discussed several
times in the literature [Iv, BrNo].

Berry connection. With this preparation we explain the motivation behind
the particular splitting of the terms in (2.36). It is of geometrical origin and
related to the Berry connection. Recall that in the Born-Oppenheimer setting
h1ap(q,p) = —p- Aap(g) and thus A,ps(g) acts as a gauge potential of a connection
on the trivial bundle R x C£. Its origin is purely geometrical, since it comes from
the connection which the trivial connection on the trivial bundle R¢ x H; induces
on the subbundle defined by m(g). If one assumes that Ranmg(g) is 1-dimensional,
the internal rotations along classical trajectories are just phase changes, the so
called Berry phases, and are due to parallel transport with respect to the Berry
connection [Be, ShWi, Si].

In the general case the second term of hj,p(q,p) in (2.36), which we denote
by

h'Be aﬁ(Q7p) - _i<¢a(Q:p)7 {Er; 1/1/3}((2;20)),

corresponds exactly to this parallel transport along the generalized Berry connec-
tion. More precisely, the trivial connection on the trivial bundle R?? x H; induces
a U({)-connection on the subbundle defined by mo(g,p). After unitary rotation
uo(q, p) the coefficients of this connection on the bundle R?¢ x C* are

| (ala,p), Veibs(a, p))
Aap(¢.P) = ¢ ( ($ala, ), Vois(a, ) ) ’

in the sense that a section s(g,p) is parallel if (V —iA4)s = 0. It is parallel along
some curve (1) = (g(7),p(7)) in R* if

(6, - é(r) - 1A(a(r), (7)) s(a(r). () = 0.
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For classical trajectories, where ¢é(t) = (VpEr, —V,E;)T, this condition becomes

(0. + 1 hiela(8),p(®)) ) (a(8),p(8)) = 0. (2.56)

If hy = hge, (2.56) is exactly Equation (2.53) for the rotation of the spinor
¢:(q(t), p(t)) = D(q,p,t)po along the trajectory of the particle. This means if
hy = hpe, the spin dynamics corresponds to parallel transport with respect to the
Berry connection along classical trajectories.

Emmrich and Weinstein [EmWe] give a geometric meaning also to the remain-
ing terms in their analog of h;. While this is a natural venture in the context
of geometric WKB approximation, it seems to be less natural in our approach,
since we work in a fixed basis in order to obtain simple analytic expressions.

Wigner function approach. The previous results on the time-evolution of
semiclassical observables translate, by the duality expressed through

(¥, o) = /w Tree (ao(, )W¥(a,p) dadp,
JR
to the time-evolution of the Wigner transform

(g, p) = Symb(Py)(g,p) = (21)~ /

Ré dé e* P (g +££/2) ©@ 9" (q — £/2)

as

(W, Go(t)¥) = /de Tree (ao(g,p) D*(q,p, —t) W¥(®7*(q,p)) D(g,p, —1)) dadp+0(e).

Transport equations for matrix-valued Wigner measures are derived in [GMMP]
and applied to the Dirac equation in [Spy).

Semiclassical propagator. Often one is not only interested in the semiclassical
propagation of observables, but more directly in a semiclassical expansion of the
kernel K (z,y,t) of the unitary group

) = [ | K, 60). (257)

As in the case of Egorov’s theorem, generalizing the known results for hamiltoni-
ans with scalar symbols to the case of operator-valued symbols is straightforward,
whenever the principal symbol hg of h is a scalar multiple of the identity. As in
the scalar case, see [Ro], one makes an ansatz of the form

e _ 1 i(S(ept)-yp) S i
K (Z’,’y,t) - (271'6)d Ad dpe (;6 a’y(mvpat)) )
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where S(z,p,t) is real valued and the a;’s take values in the bounded linear
operators on C'. Demanding (2.57) at time t = 0, i.e. K¢(z,y,0) = d(z — y),
imposes the following initial conditions on S and {a;};>o:

S(z,p,0)=z-p, ao(z,p,0) =1 and aj(z,p,0)=0 forj>1.

For later times the coefficients are determined by formally expanding the Schrédinger
equation for K¢(z,y,1t)

z’s%KE(-,y,t) =hK*(-,y,1t)

in orders of €. At leading order only ﬁo = EO contributes and one obtains as in
the scalar case

0; S(x,p,t) + Ee(z,VS(z,p,t)) =0, (2.58)

the Hamilton-Jacobi equation for the symbol hg. The next to leading order
equation is the so called transport equation for ay:

iata@(mypa 2L) = 'C(CC;p) t) a’O(mea t) + ]7'1(3:7 VIS(Q;:pa t)) Cbo(ll]',p, t) . (259)

The differential operator L(z,p,t) is the same as in the scalar case, see [Ro] for
an explicit formula. Here we just want to point out that the known techniques
from the scalar case apply with one modification: as in (2.47), also in (2.59) hy
contributes as an additional rotation in the transport equation for the leading
order term. Since the solution of (2.58) exists only until a caustic is reached, the
approximation (2.58), (2.59) to the propagator is a short time result only. The
extension to arbitrary times is a complicated task, in general [MaFe].

2.5.2 An Egorov theorem

Ultimately the goal is to approximate expectation values of observables in in the
original Hilbert space H = L?(R%, H;) rather than in # = L?(R%, K;). Before
stating a theorem an obvious, but important observation should be made, which
seems to have been overlooked, or at least not stressed sufficiently, in related
discussions, e.g., [LiF1, LiWe, BoKe,, MaSo]: We proved that in the case o(g, p) =
{E:(g,p)} the effective hamiltonian % projected on the subspace K = RanTl, has
a semiclassical limit in the sense of a generalized Egorov theorem, in principle,
to any order in €. However, the variables ¢ and p in the rotated representation
are not the canonical variables of the slow degrees of freedom in the original

problem. More precisely, let gy = 7 ® 1y, and Py = —icV, @ 1y, be the
position and momentum operators of the slow degrees of freedom acting on H
and let gx = =z ® 1k, and px = —1eV,; ® 1, be the same operators acting on
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K. Then G = ILU* G UIL + O(e) and px = ILU*pp Ul + O(e), with a,
in general, nonvanishing e-correction. Physically this means that the quantities
which behave like position and momentum in the semiclassical limit are only close
to the position and momentum of the slow degrees of freedom, but not equal. This
phenomenon is well known in the case of the nonrelativistic limit of the Dirac
equation. The Newton-Wigner position operator and not the standard position
operator goes over to the position operator in the Pauli equation. The standard
position operator has neither a nice nonrelativistic limit nor, as we will see, a
nice semiclassical limit, because of the Zitterbewegung. Switching to the Newton-
Wigner position operator corresponds to averaging over the Zitterbewegung, or,
in our language, to use the position operator gk in the rotated representation.
We remark that in the Born-Oppenheimer case, and more generally whenever mo
depends on ¢ only, one has g = ILU* gy U I, + O(g?).

With this warning we exploit that semiclassical observables do not change
after unitary rotation in leading order and state the Egorov theorem for the
observables in the original representation.

Corollary 13. Let H satisfy either (IG )y, with m <1 and p =1 or (CG) with
p = 0 and let o.(q,p) = {E:(q,p)} consist of a single eigenvalue of Ho(g,p)
of finite multiplicity £. Let by € SY(B(H,)) such that [bg,m] = 0 and B(t) =
e ft/epy e=illte Lot g i= moulbouom, and define ag(t) is in (2.50). Then for
each T < oo there is a constant Cp < oo such that for allt € [=T,T]

H(B(t) - WE(’U,O Cl,o(t) ’LLS))H” < EOT. (260)
For by = f 14, with f € SY(R), one obtains as a special case of (2.60) that
|8 - ha(@))n| < e0r.

Corollary 13 follows from Theorem 12 and a straightforward expansion in
of the terms to be estimated after rotation with U.
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Chapter 3

Application to the Dirac equation

3.1 Adiabatic decoupling of electrons and positrons

As pointed out in the Introduction, the Dirac equation represents the first phys-
ically relevant example in which the full power of space-adiabatic perturbation
theory is needed, since the not-scalar part of the symbol depends on both the
canonical variables. In order to give an estimate on the magnitude of £ in rele-
vant applications (see Sec. 3.2), in this section the use of natural units is avoided
and all the relevant constrants (%, c, . ..) restored.

For reader’s convenience, we recall here from the Introduction that our goal
is to study the Schrodinger equation

i ehdshs = Hp b, (3.1)

for macroscopic times of order 1, i.e. |s| = O(1), where Hp is the Weyl quanti-
zation of matrix-valued symbol

Ho(g.p) = ca- (p = SA(@)) + fme® + eV (g) (3.2)

defined on the phase space T*X = R°, where now Weyl quantization is in the
sense of p — —ighV,, i.e. on the right hand side of (A.3) ¢ must be replaced by
¢h. h appears here for dimensional reasons and is a fixed physical constant. The
small parameter of the space-adiabatic expansion is €.

We notice that Hp(g,p) has two two-fold degenerate eigenvalues

E+(g,p) = £cpo(g, p) + eV (q)
with the corresponding eigenprojectors
1 1 e
Pi(g,p) = 5 (1 + (w (p - EA(Q)) +ﬂm0)> :

po(g,p)
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where po(q,p) = \/m?c® + (p — £A(g))?. Obviously

Ei(q,p) — E_(q,p) = 2epo(q,p) > C(p) >0,

whenever A is uniformly bounded. Therefore the corresponding subspaces are
adiabatically decoupled and the effective dynamics on each of them can be com-
puted using our general scheme. Assuming A € CP°(R?, R®*) and V € C°(R3, R),
one finds that HO € ST and thus the assumptions from Sectlon 2.2 are satisfied.
In particular, Hp, is essentially self-adjoint on S(R*,C*) and B on S(RY).

To be consistent with the notation from the previous sections, let mo(q,p) =
P, (g,p) be the projector on the electron band. The reference subspace for the
electrons is JCrer = L?(R3, C?) and it is convenient to define it as the range of

. 1z O
()

in L?(R3,C*). The only choice left is the one of ug(g, p) or, equivalently, of a basis
{%a(q,p)}a=12 of Ranmy(q, p). Since the degeneracy of Ranmy(q, p) is related to
the spin of the electron, a natural choice is the o,-representation with respect
to the “mean”-spin S(g,p) which commutes with Hp(q,p) [FoWo, Th]. The
eigenvectors 14 (g, p) of the operator es - S(g,p) in Ranmgy(g,p) are

Py (po+mc) 0
Do 0 Po Py (po+mc)
, =C,| ; -\ =c a7/ | N ’
¢+ (C] p) N 2(p0 + mc) v3 (4 (q p> 2<po -+ mc) V1 —iv2
1 +iva —v3

We abbreviated v(g,p) := c(p — £A(q))/po(q, p) for the velocity. The relevant
part of ug for the analysis of the electron band is thus given by ug(q,p) =
(¥4(q,p),%—(g,p), *,*) with ug € S?. Of course the positron part indicated
by *’s would be given through charge conjugation. In our construction we want
to emphasize, however, that no specification is needed in order to determine the
expansion of the effective electron hamiltonian h = 1L hH up to arbitrary
order.

An alternative way to arrive at the same wug(g,p) is to note that the Foldy-
Wouthuysen transformation upw (p), c.f. [FoWo], diagonalizes the free Dirac hamil-
tonian Hy(p), i.e. Hp with A,V = 0. Including the fields uo(q,p) = upw(p —
€A(q)) then diagonalizes Hp(q,p).

For the principal symbol of A, one finds of course

heo(q,p) = E+(q,p)1c2 .
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For the subprincipal symbol after a lengthy but straightforward calculation our
basic formula (2.36) yields

ot (g
he,l <Q7p) - 2p0(q’p) (B(q> c(po(q,p) -+ mc)

v(g,p) A E(Q)) =: ~-§ o-Q(q,p) .

(3.3)
Note that the factor i comes from the fact that the nth term in the space-adiabatic
expansion carries a prefactor A". Defining

v(@,p) = 1/+/1 = (v(g,p)/)? = polg, )/ (mc)

one concludes that

e 1 1 :
Qg,p) = — (m B(g) - mU(Q7P) /\E(Q)) : (3.4)

We remark that the second term in (2.36), the “Berry term”, does not coincide
with the second term in (3.4), in contrast to the claim in [BoKe;]. Indeed, the
compact expression (3.4) is obtained only through cancellations in more compli-
cated expressions coming from both terms contributing in (2.36).

We summarize our results on the adiabatic decoupling and the effective dy-
namics for the Dirac equation in the following

Theorem 14. Let A € C°(R3,R?) and V € C°(R*,R). Then there exist or-
thogonal projectors 11y with 1, + 11 = 1 such that [HD,Hi] Op(e®), and
there exists a unitary U and he oPSt with

~ he 0
h=1{ " 2 |, 5
(51 55

=Dt _ [ ¢ = Oy (et]) . (3.6)

Here ?ze and ﬁp are semiclassical operators on L?(R3, C?) with

such that

he(q,p,€) < By (q,p)1e + Y, & he;(a,p) (3.7)

J=1

and hej = m(u* # Hp # u)jm € e Si(B(C?)) for all j > 0, where u € SY(¢) is
constructed as in Section 2.8. In particular, he1(q,p) is given by (8.8) and thus

he = (c\/ch2 + (—iehV — —EA(:C))2 + eV(q)) e — € f o m) + O(?).

2
(3.8)
Analogous results hold for hy,. The errors in (3.6) and (3.8) are in the norm of
bounded operators on L*(R®,C*), resp. on L*(R?,C*).

43



According to the effective hamiltonian (3.8) the giromagnetic ratio of the
electron is ¢ = 2. There would be no problem to add to the Dirac hamiltonian the
standard subprincipal symbol [Th], which accounts for the slightly larger g-factor
of real electrons. Blount [Bls] computes the second order effective hamiltonian
he 2, which he finds to be proportional to 1¢cz. heg is a sum of terms allowed by
dimensional reasoning, i.e. proportional to VB, VE, B? E? FEB. Second order
corrections seem to be of interest for the dynamics of electrons in storage rings.
Ignoring the contribution [Bly], nonsystematic expansions are [DeKo] and [HeBal.

3.2 How small is 7

To decide whether the space-adiabatic approximation is appropriate in a concrete
problem one needs a, at least heuristic, formula for the dimensionless constant €.
Let us consider an arbitrary band function E.(g,p) with AE(g, p) > 0 the size of
the gap. Then t, = A/AF(q,p) defines, locally in phase space, the microscopic
time scale. Since for any eigenfunction of Hy(g,p) with eigenvalue E;(q,p)

Vib(q,p) = — (Holq,p) — Ex(q,p)) 'V (Ho(g,p) = E:(q,0)) ¥(q,p),
one obtains from (2.36) with H; = 0 that

H Ty hl(q,p) 7[_1_ ” ~ h ‘VpEr(z;gz!Z)qEr(q)p)[ |

The norm of h; measured in units given by the size of the gap is an indicator for
the numerical value of € and hence

[ ha (g, p) mell 7 [VpEir(a, P)[ [V (g, p)|
AE(g,p) (AE(g,p))* '

At first glance it might be surprising to have € to depend on the region in phase

space. But in fact such a dependence is very natural. For example, in the Born-

Oppenheimer setting the adiabatic decoupling becomes poor for large momenta.
For the Dirac equation (3.9) yields

(g, p) = (3.9)

fie

100 —17
e < pg (IVA|+[VV]) = 107 BIT] + 1077 B[V /m].

The electric field strength F in the laboratory devices hardly exceeds 107V /m,
which would correspond to eg < 107!%, and the magnetic field strength B reaches
at most 10T yielding e < 1078, Thus, since ¢, ~ 10795, the second order term
he o of the space-adiabatic expansion is expected to become important for times
on the order of seconds, compare with (2.26) and (2.28). The space-adiabatic
approximation of the Dirac equation has a rather wide range of validity. It only
breaks down in fields near nuclei or charged elementary particles.
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3.3 The semiclassical limit and the BMT equa-
tion

Equipped with heg and he; we can apply the general results of Section 2.5 on
the semiclassical limit to the Dirac equation. Let ®% be the hamiltonian flows
generated by Fi(g,p) on phase space R® and let B=0b1,0b¢ SY(R), be a
semiclassical observable in the unrotated Hilbert space which does not depend on
spin. From Corollary 13 we conclude for each 7" < co the existence of a constant
Cr such that for all t € [=T,T]

| (BO-w.e@, N1 < eCr and ”(B(ﬁ)—Wg(b(iﬁ))l)H_HSSCT,

where B(t) = ¢ifint/(eh) B o=iHot/(eh)  Ylence, to leading order, states in the range
of II, behave like classical relativistic electrons and states in the range of II_ like
classical relativistic positrons. We emphasize that, in general, I1; are not spectral
projections of Hp, since the variation of V' can be larger than the mass gap
2mc®. Hence in the limit of slowly varying potentials a natural characterization
of “electronic” and “positronic” subspaces is obtained which does not come from
spectral projections of the free or full Dirac hamiltonian.

Next we discuss the leading order spin dynamics, which in the first place
requires to figure out which operator represents the spin of the electron. There has
been a considerable discussion on this point, cf. [Th], with no general consensus
reached. We suspect that the problem is void. The wave function is spinor
valued and what is observed is the spatial splitting of different spinor components
in inhomogeneous magnetic fields. Hence we should pick the “spin observable”
Y such that the splitting can nicely be attributed to it. E.g., in a magnetic
field with gradient along the z-direction the eigenvectors of X, should have the
property that their spatial support goes either parallel to +z or to —z, but should
not split. In view of (3.8) a natural choice is to take as spin operator the vector of
Pauli-matrices o in the rotated electronic subspace. In the original Hilbert space
this amounts to

0

where S(q,p) is the “mean” spin defined before.

The leading order semiclassical approximation for o(t) = e
follows from Theorem 12. For each T’ < oo there is a constant Cr < oo such that
for t € [T, T

o 0 «_ 25 |
E*U< J) Ut =2 8+0(),

ihet/(ch) o €~iﬁet/(s)‘i)

llo(t) = ao(t)]| < eCr, | (3.10)
where oo (q,p, 1), k € {1,2,3}, is obtained as the solution of
0 b )
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with initial condition ogx(g,p,0) = ok. This follows from the Equations (2.50)
and (2.51) by setting ook (q,p,t) = D*(q,p,1t) 0k D(q, p, t).
To solve Equation (3.11) one makes an ansatz oow(q,p,t) = sg(g,p,t) - o
with s;(¢,p,0) = ex. Using [0, 0m] = 2% €pmk 0%, one finds that the spin- or
magnetization”-vector sx(g,p,t) is given as the solution of

0 s4(q,p, 1)
DoY) gy (g,,1) A O, (0,1). (3.12)
(3.12) is the BMT-equation [BMT, Ja] on the level of observables. It was derived
by Bargmann, Michel and Telegdi in 1959 on purely classical grounds as the
simplest Lorentz invariant equation for the spin dynamics of a classical relativistic
particle.

The semiclassical limit of the Dirac equation has been discussed repeatedly
and we mention only some recent work. Yajima [Ya] considers time-dependent
external fields and proves directly a semiclassical expansion for the corresponding
propagator. As mentioned already at the end of Section 2.5, this program is
mathematically rather involved, since one faces the problem of caustics in the
classical flow, and different expansions have to be glued together in order to
obtain results valid for all macroscopic times. A non-rigorous treatment of the
same approach is given by Bolte and Keppeler [BoKey], who derive a Gutzwiller
type trace formula. Since Hp and U* Hp U are 1sospectra1 and since (3.6) holds,
a trace formula for the eigenvalue statistics of HD Acould as well be derived from
the semiclassical propagator of h = he ® 1 + 1 ® hp. As argued in Section 2.5,
the latter is somewhat easier to obtain. In [GMMP, Sps] the semiclassical limit
of the Dirac equation is discussed using matrix-valued Wigner functions. Their
results hold for an arbitrary macroscopic time interval, but fuse, as does the
WKB approach, adiabatic and semiclassical limit. No higher order corrections
seem to be accessible and the results are weaker than ours in the sense that the
approximations do not hold uniformly in the states.

This leads us to the next natural question: What can be said about higher
order corrections? While in general one would need heg, according to (2.48)
the semiclassical limit of observables of the type b = 601@, by € SY(R), can
be determined without this explicit information. For such a scalar symbol the
principal symbol by(%), i.e. the solution to (2.47), will remain scalar and thus its
commutator with heo in (2.48) vanishes identically for all times. The solution
by(t) of (2.48) with initial condition b,(0) = 0, is not scalar, in general. Hence, at
this order there is back reaction of the spin dynamics on the translational motion.
We illustrate this point for the position operator z(g,p) = x¢(¢,p) :== ¢ 1c=. Then
zo(q,p,t) = zo(®%(g,p)) and z1(¢) is obtained, according to Equation (2.48), as
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the solution of

d T (t)
dt

= {E+1, 5L1(t>} -+ i[he,la CCl(t)} - {he,ly LEo(t)} (313)

with initial condition #1(0) = 0. The homogeneous part of this equation is just
the classical translational and spin motion and the inhomogeneity is

{henal®) = —5 0 {0,500}, (314

which is not scalar and thus responsible for the splitting of trajectories of electrons
with distinct spin orientation. Hence, as in (2.54),

A t
z1(t) = -5 / dsUd(t —s)o-{Q, zo(s)},
2 Jo
where U(t) is the “classical flow” defined through (2.52).

Without claim of rigor, we observe in (3.4) that for small velocities v(g, p) one

has

e
Qg,p) ~ EEB(Q)-

Let us further assume that B(g) = bg. e, then

I he OB 00! e (b 0
o A0z = —0,— —F =t
2 ¢ {83 20(t)} ome’ dq, Op. t2m2c ( 0 —b )

and thus according to (3.13), (3.14) the correction to the velocity is proportional
to ¢, corresponding to a constant force with absolute value he/(2mc)|V B, as
expected for a sp'm—% particle.
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Chapter 4

Application to non-relativistic
QED

The results appearing in this Chapter already appeared in [PST,] and are the
fruit of a joint work with Herbert Spohn and Stefan Teufel.

4.1 Introduction to the Pauli-Fierz model

A mathematically rigorous formulation of Quantum Electro Dynamics is one of
the most outstanding challenges for mathematical physicist of the present century.
However, especially in the realm of quantum optics, there are many measurable
physical effects which are related to the quantized electromagnetic field but which
involve only a finite and constant number of electrons, since at this energy scale
the probability of pair production or annichilation is negligible.

It is then of interest a mathematically rigorous model for a system in which a
finite number of electrons interact with the quantized self-generated electromag-
netic field and, eventually, with the external electromagnetic field generated by
the experimental setup, regarded as a classical field. This model is known as the
Pauli-Fierz model or the non-relativistic QED and can be regarded, in a sense,
as a rigorous description of the N-electrons sector of QED. A complete list of
references to the wide literature on this model is beyond the scope of this thesis,
so we simply refer to [Sp| and references therein.

For sake of a simple exposition, we introduce the model in the case of a single
electron, but the generalization to any finite number of electrons is straightfor-
ward. The Hilbert space for the model is H = Hq ® F, where He = L*(R?) @ C?
corresponds to the electron states and

Fo = P Su(L*(RY) ® C)*", (4.1)

neN
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with S, the symmetrizer, is the bosonic Fock space, corresponding to the elec-
tromagnetic field. An element of 7 is a sequence W = (49 ™) ) such that
P e (LA(RY) & (CQ)@n and [|¥|* = 2 e Hlb(n)HQ < +00.

As for the hamiltonian operator, we introduce it by using physics’s notation,
specializing to the case d = 3. The translation in mathematical language will
follow. First we introduce the annichilation operators a(k, ), acting on F, where
k € R? corresponds to the wave number and A to the elicity of the photon. They
satisfy the canonical commutation relations

[a(k, /\), CL(:ICI, )\l)] = 5(/€ - kl)a)\’)\/. (42)

The hamiltonian for the free electromagnetic field is given, in natural units A =
=c, by
Hi= ) / w(k)a®(k, \a(k, \)dk (4.3)
Rfﬁ

A=1,2

with dispersion relation w(k) = 1/k? +m2,. The need to introduce a non-zero

photon mass mpy will be discussed later on.

The electron is minimally coupled to the electromagnetic field through the
transversal self-generated electromagnetic field A(z). To assure transversality
one introduces the standard dresbein e (k), es(k), W];_l so that

A(z) = (2m) 73/ Z /}R3 ! ex(k) (e®%a(k, \) + e *%a* (k,\))dk  (4.4)

A=1,2 Vw(k)

The simplicity of (4.4) should not hidden the fact that A(z) is an operator-
valued distribution, therefore a very untractable mathematical object. To get an
unbounded operator acting on #, we smoothen it over a form factor p, which in
the corresponding classical theory would be the charge distribution. Therefore
we introduce

Ae) = [ | ol =) Aty (45)

and we assume that p is spherically symmetric, smooth, rapidly decreasing and
normalized as [ps p(z)dz = 1.

Equipped with this terminology, we introduce the Pauli-Fierz operator for a
free self-interacting electron as

1
~ 2m
acting on H = Heq ® Fy, where o denotes the vector of Pauli matrices and z the

position operator in L?(IR?*). The hamiltonian (4.6) describes an electron interact-
ing with the self-generated electromagnetic field. If the interaction with external

Hy (0 (—iV,®1—ed, () +1® H; (4.6)
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slowly varying electromagnetic potentials is included, then the hamiltonian reads

1
Hpp = 5 (0 (-iVe ® 1 = ed, (1) — eAex(e7))? + 1 ® Hy + Vielez)  (4.7)
where, as usual, the adiabatic parameter € < 1 controls the scale of space-

variation of the potentials Aex(ex), Vex(€2).

4.2 Effective dynamics for the Pauli-Fierz elec-
tron

From (4.7) it is not clear at all that the Pauli-Fierz model fits into the gen-
eral scheme of space-adiabatic perturbation theory. Indeed, a suitable unitary

transformation is needed.
First of all one notices that the free hamiltonian (4.6) is invariant under trans-
lations jointly of the electron and the photons. Therefore, the total momentum

P=P@ltl@P, FB=3 / ka*(k, Na(k, )k, (4.8)
R3

A=1,2

is conserved, [Hy, P] = 0. Indeed, following [TeSp], this can be seen more clearly
in two steps. First one rewrites the hamiltonian (4.6) in the representation in
which P, is diagonal, getting

1 4
HO - %(U ’ (pel ®1- eAp(ZvPel))>2 +1® Hf’ (49)

4

Then, by the unitary transformation T', defined by
(TD) ™ (0, ke, k) =™ (0= > ik, k), (4.10)
=1

one transforms it to the representation in which the total momentum P is diag-
onal. The transformed hamiltonian 7" Hy 7', still denoted by Hy, is given by

1
Hy = %(O’ . (p — P — EAP(O)))2 + H;. (411)
which clearly commutes with multiplication by p. As a consequence Hy is an
operator fibred over o(P) =R, i.e.

® ®
H= . Hydp  Ho = Hy(p)dp (4.12)
R R3
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where the fibers H,, are naturally isomorphic to H; := C?*® F.
Performing the same transformation on the hamiltonian (4.7) one gets

1 : :

Hpp = 5—(0- (p— It —e4,(0) - eAe (ieV,)))° + Hy + eV (i£V,).  (4.13)
Clearly (4.13) is not a fibred operator. However, from the representation (4.13)
it is clear that the Pauli-Fierz hamiltonian Hgy can be regarded as the e-Weyl
quantization of the operator-valued symbol

Hop(a,) = 50+ (0 = Pr = eA4y(0) - edux(@))” + Hr + V@), (4.14)

where Weyl quantization should be intended in the sense p + p and ¢ — €V,
The symbol (4.14), which takes values in the space of unbounded operators over
Hs, can be rewritten as

1 1
HPF<qJ p) = %(p—Pf‘*EAP(O) —eAex(Q))2+Hf+e%X(q> " ’Z‘e(Bp(O) +5BeX(Q)) 0.
(4.15)
Notice that this symbol has a rather particular structure, which we abbreviate as
1
Hpr(q,p) = D(p — eAex(9)) + Vex (@)1, — 5ecBex(q). (4.16)

Therefore, any information on the band structure can be deduced from the knowl-
edge of the function D(p), which is the same for the interacting hamiltonian (4.7)
and for the free hamiltonian (4.6).

The physically relevant band consists of the eigenvalue of lowest energy, for
any fixed (g,p). By the special structure (4.16), the eigenvectors of lowest en-
ergy ¥q(q,p) (here « is a degeneracy index) are characterized by the property
D(p)ta(p) = Eo(p)a(p) which involves only the free hamiltonian. Therefore we
can use the results proved in [HiSp]: by spin degeneracy, the ground state sub-
space turns out to have dimension 2, and the eigenvalue Ey(p) is isolated from
the rest of the spectrum for |p| < p., provided that the interaction is cut off in
in the infrared. Indeed, physically one expects that states with |p| > p, decay
through Cerenkov radiation.

It is now evident that the general scheme developed in Ch.2 can be applied
to the Pauli-Fierz model, apart for the problem related to the presence of un-
bounded-operator valued symbols and to the fact that the gap condition is only
locally satisfied. Although these problems can be cured, a detailed and rigorous
treatment will be given elsewhere. Here we simply apply formally the scheme
outlined in Ch. 2.

The last step missing to apply space-adiabatic theory consists in a choice for
the fundamental unitary wgy or, equivalently, a choice of a basis in the lowest
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energy eigenspace. It is convenient to choose a basis {1 (p),%—(p)} such that
Y4 (p) corresponds to the electron pointing along the positive z direction. For
this purpose, one notices that the total angular momentum J in the direction p
is conserved, i.e. [D(p),p-J] = 0. With this choice of the basis, the effective
hamiltonian is given by

heﬁ(Q>p)a,ﬂ - (EO(p - eAex Q)) -+ e"fex(q))éa,ﬂ

(
— 2ee{Bucla) - (al), oo ()

+ (VVex(q) — v(B) A Bex(a)) - (¥a(D), 1V5(D)) 24
+ Bex(q) - (¥ (ﬁ);VD( 5) A iV ()t + O(e”)

where o, § € {£} are degeneracy indexes, p = p — eAec(q) and v(p) = VEy(p).
The zeroth-order term in (4.17) corresponds to the analogous of Peierl’s sub-
stitution, i.e. the replacement of the free kinetic energy Enee(p) = £p* with the
modified kinetic energy Ey(p), which takes into account the effect of the "photon
cloud” around the electron. The first-order term contains the spin-dynamics.

4.3 The g—féctor for the Pauli-Fierz electron

An interesting consequence of (4.17) is that it allows us to obtain a non-perturbative
definition of the giromagnetic ratio (the g-factor) of the electron in the Pauli-Fierz
model.

The experimental situation we are referring to consists of an electron moving
in a constant magnetic field B. One expects that the electron follows a circular
orbit with frequency w.. On the other hand, one measures the spin precession,
with frequency w,. By definition, the experimental g-factor is given by

g = 2“5/"% (4.17)

where the experimentally measured values of w, and w, appear.

What about the theoretical predictions of the Pauli-Fierz model? We consider
the effective hamiltonian (4.17) with Bex(q) = B, Vex(¢) = 0 and small velocities
v = VEy(p), which means p ~ 0 in good approximation. Moreover in this
section we reintroduce the bare mass m of the electron, the velocity of light ¢
and the Planck constant A. As far as the translational motion is concerned, by
considering the semiclassical limit on (4.17) we obtain that, at the leading order
- in €, the trajectory satisfies the equation

Meﬁdz—i—qAB
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with effective mass Mg = (FY7(0))™. Moreover, by the rotational invariance of
the Pauli-Fierz model, the effective mass Meg is a multiple of the identity, denoted
as meg. Therefore, the prediction on the cyclotron frequency is w, = e/megc. In
other words, the only effect of the self-generated electromagnetic field on the
translational motion consists in a redefinition of the electron mass.

As for the spin, from (4.17) we get

bt =~ B(0) - (a(0), 595(0)) i + 1(4al0), TD(O) A Vs(0)) ). (4.18)

The previous hamiltonian implicitly defines the frequency ws, yielding a non
perturbative definition of the g-factor in the Pauli-Fierz model.

The matrix elements in (4.18) and for E”(0) are not available as closed for-
mulae. In order to have numerical predictions, the only possibility is a perturba-
tive expansion in e around e = 0, or equivalently in the fine-structure constant

o := 47e?. To second order in e and after removing the infrared cut off one
obtains
214+ 22 1 0(e?) (4.19)
9= 327 ) '

This result is in agreement with [GrKa], in which the static perturbation the-
ory for the Zeeman splitting. We emphasize that, as opposed to other approaches,
the approach in this section gives a dynamical and non perturbative definition
of the giromagnetic ratio. A perturbative approach has been used only as a last
step, in order to obtain a numerical prediction. :
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Chapter 5

Interlude: operator-valued Weyl
calculus over the torus

The results appearing in this Chapter and the following one will appear in a
forthcoming paper [PST3] and are the fruit of a joint work with Herbert Spohn
and Stefan Teufel.

The first act in the drama of space-adiabatic perturbation theory is concluded:
we developed a general theory in Ch. 2 and we applied it to molecular hamiltoni-
ans, to the Dirac equation and finally to the Pauli-Fierz model. Before we start
with the second act, namely the application of this scheme to the Bloch electron,
a mathematical interlude is due, in order to develop the needed mathematical
tools.!

Indeed, in order to apply the general scheme to the Bloch electron, two main
obstacles should be overwhelmed. First, one should face the problems related
to the appearance of unbounded-operator-valued symbols. Luckily, we have to
face the case of unbounded operators with a common dense domain D, and so
they can be regarded as elements of B(D, H;) when D is equipped with a suitable
inner product. Second, and more important, in the case of the Bloch electron
the classical phase space is given by T*X = T¢ x R?. This means that one
should consider the Weyl quantization of (operator-valued) functions over the
cotangent bundle of the torus. Moreover, it will be clear in Ch.6 that this is
not enough: we need, more generally, a Weyl quantization scheme for morphism
of a specific Hilbert space bundle over the cotangent bundle of the torus. From
another point of view, these morphisms can be regarded as usual operator-valued
symbols over R?? which are 7-equivariant (see Definition 21 below) with respect
to some representation 7 of the group of lattice translations. Their quantization

I The reader interested mainly in physical applications can skip this Chapter at a first reading.
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acts on a space of locally-L? sections of a specific Hilbert space bundle over the
cotangent bundle of the torus.

It is worthwhile to mention that in the literature there are many schemes
to generalize Weyl quantization to (scalar) functions defined over the torus or
even over a general riemannian manifold. However, no one of them retain the
full computational power of the Weyl calculus, namely a suitable generalization
of the Weyl product which allows to compute the symbol of the product of two
pseudors from the knowledge of the symbols of the factors. For this reason in
[PST3] we had to developed the theory by ourselves. Similar ideas were used by
Gérard and Nier [GeNi] in the case of (scalar-valued) functions over T% x R, i.e.
in the case of a trivial bundle. We recover their results in this case.

We start with fixing some notation and recalling a few facts from from the
usual pseudodifferential and semiclassical calculus for operator valued symbols,
which complements the review given in the Appendix A. For an extended expo-
sition of the general calculus for scalar symbols we refer, for example, to [DiSj]
and for an explicit discussion of the operator valued case to [GMS].

Definition 15. A function w : R* — [0, +00) is said to be an order function
if there ezist Cy > 0 and Ny > 0 such that w(z) < Co (z — y)™ w(y) for every
T,y € R,

Let w be an order function and #; and H, separable Hilbert spaces.

Definition 16. A function A € C® (R, B(Hy, Hs)) belongs to the symbol class
S(w, B(Hy, Ha)) if for every o, B € N there exists a positive constant Cqp such
that

H(ac?agA)(%p)”B(Hth) S Ca,ﬂ w(Q7p) (51)

for every q,p € RY.

Definition 17. A map A : [0,e0) — S(w, B(H1,Hs)), e — A. is called o semi-
classical symbol of order w if (5.1) holds uniformly for € € [0,e0). The space
of semiclassical symbols of order w is denoted as S(w, B(H1, Ha)).

The spaces S(w, B(H1, Hz)) and S¢(w, B(H1, H2)) are Fréchet spaces and a family
of seminorms is given, for example, by the minimal constants C, g satisfying (5.1).

Definition 18. A formal power series A = 72 &’ A; with coefficients {A;}jen C
S(w, B(Hy, Hz)) is called o formal symbol. If a semiclassical symbol A, €
S¢(w, B(H1,Hs)) satisfies

n—1
g " (As - Zngj) € Sg(w:B(Hh,HZ))
=0
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for all n € N, then A, is said to be asymptotically equivalent to the formal symbol
A and one writes -
A =< Z el A;.
7=0

The space of formal symbols is denoted as M*(w, B(Hq, Ha)).

If A, is asymptotically equivalent to the series in which A; = 0 for every j € N,
we write A, = O(e®) in S(w, B(H1, Ha)).
The Weyl product of two symbols is, at first formally, given as

(Ae # Be)(q,p) = exp (%(Vp Vo= Ve Vq)> (A<(g,P) B(2,£)) la=q £=p- (5-2)

Proofs of the following two propositions for operator valued symbols can be found
in the Appendix of [GMS].

Proposition 19. Let A, € S¢(wy, B(H1, Hz)) and B, € S(ws, B(Ha, Hs)). Then

A, # B, belongs to S¢(wyws, B(H1,Hs)) and the map (A., Be) — A, # B is
continuous.

The Weyl product for semiclassical symbols induces a corresponding product
on the level of formal power series, called the Moyal product and denoted by #.

Proposition 20. Let A, € S%(wy, B(H1, Ha)) and B, € S(ws, B(Hz, Hs)) such
that A, < A € M*®(wy, B(Ha, H3)) and Be < B € M*®(wq, B(H1,H3)). Then

A #B, < C = A# B € M*(wiwy, B(H1,Hs)) .

After these general definitions we now introduce an operator valued Weyl
calculus for T-equivariant symbols acting on 7-equivariant functions.
Let I' € R? be a regular lattice and let

d ,
B = {xERd :x:Zajfyj for aje[-%,%]} (5.3)
j=1
be the corresponding centered fundamental cell. Clearly the translations on R?
by elements of I form an abelian group G isomorphic to Z%.

Let M be a separable Hilbert space and let 7 be a representation of G in
B*(H), the group of invertible elements of B(#) , i.e. a group homomorphism

T:G — B (H), v () . (5.4)

If more than one Hilbert space appears, then 7 denotes a collection of such rep-
resentations, i.e. one on each Hilbert space.

Let L. be the operator of translation by v € G on S(R%, ), i.e. (Lyp)(z) =
@(z — ), and extend it by duality to distributions, i.e. for T € S&'(R?%, H) let

(LyT)(p) = T(L—p).
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Definition 21. A tempered distribution T € S'(R*, H) is said to be T-equivariant

if
LT =7(y)T forallvyeG, (5.5)

where (1(7)T) (@) = T(r(y) ") for ¢ € SR, H). The subspace of T-equivariant
distributions is denoted as S.. Analogously we define

H, = {zb e L2 (REH) - p(z— ) =71(y)¢(x) forally € G} , (5.6)

which, equipped with the inner product

(0, ¥, = / 4 (i(2), ()t (5.7)
is a Hilbert space. Clearly
o= {weC™®,H): Y- =7(1)(a) JorallyeGl,  (58)

15 a dense subspace of H.. &

Notice that if 7 is a unitary representation, then for any ¢,% € H, the map
z = (p(z),¥(z))% is periodic, since

(o(z — ), ¥z = 7)yu = (T(V)e(@), T(V)Y ()3 = (o(z), P (2)) -
Now that we have T-equivariant functions, we define 7-equivariant symbols.

Definition 22. Let w be an order function. A symbol A, € S¢(w, B(H1,Hs)) 1s
T-equivariant (more precisely (1, T2)-equivariant), if

Aclg = 7,p) = na(7) Ae(g,p) (7)™ forally € G.
The space of T-equivariant symbols is denoted as SE(w, B(H1, Ha))- &

Notice that the coefficients in the asymptotic expansion of a 7T-equivariant
semiclassical symbol must be as well T-equivariant, ie. if A, = Z;io e—:jAj,

A, € Si('LU,B(’Hh’Hz)), then Aj € ST('ZU,B(%l,H2)>.

Given any T-equivariant symbol A € S.(w, B(H1,H2)), one can consider the
usual Weyl quantization A, regarded as an operator acting on S'(R%, M) with
distributional integral kernel

1

eyt o, AT 9)E) e Emvle gg, (5.9)

KA(CU,y) =
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Notice that integral kernel associated to a T-equivariant symbol A is 7-equivariant
in the following sense:

Ka(® — 7,y —7) = (1) Kalw,y) n(7)"" forall y € G. (5.10)

The simple but important observation is that the space of T-equivariant dis-
tributions is invariant under the action of quantizations of T-equivariant symbols.

Proposition 23. Let A € S.(w, B(H1,H2)), then AAS;1 (RE, Hy) € 8L, (R, Ha).

Proof. Since A maps S'(R%,H;) continuously into S'(R?, ), we only need to
show that (L,Y/IT)(QQ) = (13 (7)AT)(¢p) for all T € SL (R, H,) and ¢ € S(RY, Hao).

To this end notice that as acting on S(R?, H,) one finds by direct computation
using (5.9) that ;l:Lﬂ, = L, (m(y)"Y)* A* ()", Indeed, let 1 € S(R?, Hs), then

F L) = [ Ke@ni=mn= [ dkeyn) 60

_ / dy (1 (7)) K= ( — 7, 1) 72(7)" ¥ (v)

Rd

= (Ly(n() ) B na(y) ¢ ()
Hence, using the fact that 7 is a representation and that L,7" = 7,(y)7T,
(LyAT) () = TA Loyp) =T(Lym(7) A (n(1) ™) ¢)
= () An() T Ly T)(p) = (r2(v) AT) () -
O

Next observe that T-equivariance of symbols is preserved under the pointwise
product, the Weyl product and the Moyal product.

Proposition 24. Let A, € S¢(wy, B(Ha, Hs)) and B, € SE(ws, B(H1, Hs)), then

ASBE & S.f(lUlwz,B(%l,'Hg)) and Ae#Bg S Si(wlwg,B(Hl,%g)),

Proof. One has

Ag—1D)Belg—10) = 75(7)Ac(0P)m(7) " 72(7) Belg, p)ma (7)™

A .
(7)Ae(g,p)B:(g,p)1a (7)™,

which shows éng € Se(wywg, B(H,,H3)) and inserted into (5.2) yields immedi-
ately also A, # B. € St(wyws, B(H1, Hs)). O
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As for the Moyal product of formal symbol, an analogous statement holds
true.

A not completely obvious fact is the following variant of the Calderon-Vaillancourt
theorem.

Theorem 25. Let A € S.(1,B(H)) and 7 a unitary representation, then Ae
B(H.) and for A, € SE(1,B(H)) we have that sUp.epg qo) || Ae 5.y < 00

Proof. Fixn > d/2 and let w(z) =

B ={ve @) [ wuErhEr <o}

(z)~™. We consider the weighted L?-space

Then H, C L? and for any ¢ € H, one has the norm equivalence

Ch ||l < 2 [l (5.11)

for appropriate constants 0 < Cp, Cy < co. The first inequality in (5.11) is obvious
and the second one follows by exploiting T-equivariance of 9 and unitarity of 7:

Wit = 3 [, doutel Ine viollh= 32 | awue? vl

vEG Bty

< Z sup (=} [ de @)l < Ca .

vea zEB+y

According to (5.11) it suffices to show that A € B(L2) and to estimate the norm
of [/T in this space. - ‘ R

Let ¢ € C2°(R?, H), then by the general theory At is smooth as well (cf. [Fol,
Corollary 2.62) and thus, according to Prop. 23, Ap € C2(RY, H). Hence we
can use (5.11) and find

1Al = llwAsllpe < llwhw ™ lwpll. = o Aw ™ 5z 193, -

However, by Prop. 19, we have that w #A#wt € S(1,B(H)). Thus from the
usual Calderon-Vaillancourt theorem it follows that

|w A w—l”s(m‘) < Collw #A#w“lilcgwam :

This shows that for A € S.(1, B(#)) we have A € B(7L,). Sincealsow # A, #w™! €
Se(1, B(H)) for A, € SE(1,B(H)), we conclude that

sup HA\EHB(HT) < oo (5.12)
£€[0,e0)

by the same argument. O
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By essentially the same argument, one proves the following proposition in-
volving two Hilbert spaces.

Proposition 26. Let A, € S5(1,B(H1,H2)) a (11, 72)-equivariant symbol with

o~

both 7 and T unitary representations. Then A, is a bounded operator from
L2 (R4, Hy) to L2 (R, H,) and

sup HA\EHB(L% 2y < 00, (5.13)
e€[0,e0) h

Proof. We use the shorthands L2 for L2 (R*, B(#;)) and L, for LZ(R?, B(H,)),
with w as in the previous proof. By exploiting the unitarity of 7; one gets that
for any ¢ € L2

CillYllee, < [[¥llza, < C2ll¥llzz - (5.14)
For any ¢ € C°(R?, 1) we know a priori (by combining [Fo], Corollary 2.62 and
Prop.23) that Ay € C2(R*,Hs). Hence we can use (5.14) so that the problem

is reduced to prove that A, belongs to B(L2, ,L%,) and to estimate its norm in
this space. This can be done exactly as in the previous Theorem, exploiting the
fact that w# A, #w™! € S¢(1, B(H1,Hs)) for any A, in S2(1,B(H1,Hs)). O

Remark 27. It is clear from the proof that both the previous result still hold
true under the weaker assumption that 71 and 75 are uniformly bounded, i.e.

yeEG

Finally we would also like to show that for A € S, (w, B(H)) the adjoint of
A as an operator in B(H,), denoted by fAlT, is given through the quantization
of the pointwise adjoint, i.e. through A*. Here it is crucial that 7 is a unitary
representation.

Proposition 28. Let S.(w, B(H)) with a unitary representation 7 and let AT be
the adjoint of A € B(H.), then AT = A*.

Proof. Let ¢ € H, and ¢ € C such that ¢ := 1pp € CP(R?, H), where 15
denotes the characteristic function of the set B. Such ¢ are dense in H, and the
corresponding @ can be used as a test function:

(0, Ay, = /Bdﬂc (), (A)(2))y, = f 4z (@(2), (Ap)(2))
_ /Rd dz ((A*3) (), V(T))
— /Rd dx</Rd dy Ka-(z,y)0(y), ¢(x)>H
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= [ @ [ Wiz, ve),

- [aX (] dyKAx+%y)@(y),¢(93+“/)>7{
B yeq
_ / do 3 / dy 7 (N Ka(z,y = DT W), T ()
- /dez</dyf<* 2.y~ 1)ely =), $(2) )
— [ @ ([ Ko, vw),

_ /B dz (A7) (), () = (B0, P,

In particular, we used the T-equivariance of the kernel (5.10) and of the functions
in H., and the unitarity of 7. By density we have A% = At O

Remark 29 (A bundle theoretic rephrasing). The previous construction can
be nicely understood in the framework of the theory of G-bundles (see Steenrod,
Husemoller, Eilenberg, ....). This rephrasing gives a geometrical understanding
of the construction, but it is not needed as far as the applications in Sec. 6.3 are
concerned.

The universal covering R? 5 T¢ defines a principal G-bundle with structural
group G = Z¢ which will be simply denoted as P. To any representation 7 :
7% — U(H) of the structural group corresponds, in a canonical way, an Hilbert
space G-bundle, called the T-associated bundle and usually denoted as P x, H;.
Notice that the previous bundles are trivial as U (#)-bundles whenever dim# =
+o00 (since U(H) is contractible in such a case) but they are in general not trivial
as Z%bundles.

It is well known the following crucial fact: a continuous section of the bundle
P x,H can be regarded as a T-equivariant H-valued function on the total space
of the principal bundle P, i.e.

COP %, Hp) = {90 RS He oz ) = T(’v)‘lw(x)}

in the category of Banach spaces. In a similar way, locally-H*® sections (defined
as sections that are H{, with respect to an atlas of local G-trivializations) can
be seen as locally-H* equivariant functions,

L3(P x, He) = {go : R —Ii;i% He: oz +7) = T(fy)‘lw(a:)} =H,
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H3(P x, Hy) == {90 RS e p(z ) = T(’)’)’lw(ﬂﬂ} :

In the same spirit, one notices that T-equivariant symbols are nothing but mor-
phisms of P x, H, regarded as an an Hilbert space G-bundles over the torus with
fixed base space. O
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Chapter 6

Effective dynamics for the Bloch
electron

6.1 Introduction

An outstanding problem of solid state physics is to understand the motion of
electrons in a periodic potential which is generated by the ionic cores. While
this problem is quantum mechanical, many electronic properties of solids can
be understood already in the semiclassical approximation [AsMe, Ko, Za]. One
argues that for suitable wave packets, which spread over many lattice spacings,
the main effect of a periodic potential Vr on the electron dynamics correspond
to changing the dispersion relation from the free kinetic energy Epee(k) = —é— k? to
the modified kinetic energy B, (k) given by the n® Bloch function. Otherwise the
electron responds to external potentials A, W as in the case of vanishing periodic

potential. Thus the semiclassical equations of motion

7= ViHsy(r k), k= —V,Hg(r k) (6.1)
are generated by the hamiltonian
Hsc('ra k) = En(k - A(T)) + W(T) ) (62)

where r is the position and k the quasimomentum of the electron. Note that
there is a semiclassical evolution for each Bloch band separately.

One of the main goals of this chapter is to understand on a mathematical
level how these semiclassical equations emerge from the underlying Schrodinger
equation

10 %(z,t) = (3(—1Va + Alex))” + Vo(z) + W (ez)) W’ t) (6.3)
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in the limit ¢ — 0 at leading order and to determine e-dependent higher order
corrections. In (6.3) the potential V4 : R? — R is periodic with respect to some
regular lattice I' generated through the basis {7,...,74}, 7; € R%, i.e.

d
F:{xeRd :x:Zajfyj forsomeaEZd}

J=1

and Vr(- + ) = Vr(+) for all v € I'. The lattice spacing defines the microscopic
spatial scale. The external potentials A(ex) and Wi(ez), with 4 : R — R4
and W : R* — R, are slowly varying on the scale of the lattice, as expressed
through the dimensionless scale parameter €, ¢ < 1. In particular, this means
that the external fields are weak compared to the fields generated by the ionic
cores, a condition which is satisfied for real metals even for the strongest external
electrostatic fields available and for a wide range of magnetic fields, cf. [AsMe],
Chapter 13.

Note that the external forces due to A and W are of order £ and therefore
have to act over a time of order e™! to produce finite changes, which defines the
macroscopic time scale. We will mostly work in the microscopic coordinates (z,t)
of (6.3). For sake of comparison we note that the macroscopic space-time scale
(z',1') is defined through z’ = ex and ¢’ = et. With this scale change Equation
(6.3) reads

ey (o', t) = (5( —ieVy + A@)? + Ve (o fe) + W () w(a, ) (6.4)

with initial conditions ¥(z') = £ %%¢(2'/e). If Vp = 0, Equation (6.4) is the
usual semiclassical limit with € set equal to f.

The problem of deriving (6.1) from (6.3) in the limit ¢ — 0 has been at-
tacked along several routes. In the physics literature (6.1) is usually accounted
for by constructing suitable semiclassical wave packets, cf. [Ko, Za]. The few
mathematical approaches to the time-dependent problem consider (6.4) and ex-
tend techniques from semiclassical analysis as the WKB ansatz [GRT] or Wigner
measures [GMMP, MMP] to the modified picture. However, in [GRT] a constant
magnetic field and no electric field is assumed, while in [GMMP, MMP] there are
no external fields at all.

To get a better understanding note that the step from (6.3) to (6.1) involves
actually two limits. Semiclassical behavior can only emerge if a Bloch band is
separated by a gap from the other bands and thus the corresponding subspace
decouples adiabatically from its orthogonal complement. In [HST], where the
semiclassical model (6.1) is derived for the case of zero magnetic field, the adi-
abatic decoupling and the semiclassical limit are carefully separated. First it is
shown that Bloch subspaces corresponding to isolated bands are approximately
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invariant under the time evolution. Secondly the effective hamiltonian which gen-
erates the dynamics inside such a subspace is determined. As a third step one
obtains the semiclassical equations of motion (6.1) as the semiclassical limit of
the effective dynamics.

The present Chapter is, in spirit, a continuation of the program started in
[HST] to the case of both, external magnetic and electric fields. Our results
constitute not only the first derivation of the semiclassical model in this generality,
but they add, as we shall explain, new insight to the structure of the problem
and allow to compute higher order corrections to the semiclassical equations.

Since the precise statements of our results require considerable technical prepa-
rations, they are postponed to Section 6.3. At this point we briefly describe some
easy to formulate but central consequences of our main results. For this we write
the unitary group which provides the solutions to (6.3) in # := L?(R%) as e7 7%,
t € R, with hamiltonian

H® = 1(— iV, + A(ex))” + Vo(z) + W (ez). (6.5)
We will assume that A and W are smooth and bounded together with all their
derivatives.

For each Bloch band E,, (k) which does not cross or touch any other Bloch band
we construct an orthogonal projector I such that the associated subspace II7H
of the full Hilbert space H is approximately invariant under the time evolution.
More precisely, I1¢ satisfies

IEHS 115 sy = O(%)

and thus .
| [e7 7, T ] sy = O(e™[2]) -

Recall that a function ¢ : {0,&¢) — [0, 00) is O(e%°), if for every m € N there is a
constant C,, < oo, such that g(e) < Cpne™. Hence transitions between II;H and
its orthogonal complement (I )" are asymptotically smaller than any power of
¢ uniformly for all initial states. In this sense II7 A is an adiabatically decoupled
subspace.

As the seconds step we show that on this subspace the hamiltonian H* allows
for an asymptotic expansion in £ with the zeroth order term given through Peierls
substitution, 1.e.

HEIE = (En( iV, + Ale)) + W(Em)) I + Ofe),

where O(g) holds in the norm of B(#), the space of bounded operators on #.
The operator E,( — iV, + A(ex)) has to be understood in the sense of Weyl
quantization.
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We remark that the natural representation for the study of the effective hamil-
tonian is the Bloch-Floquet representation. As we do not want to burden the
introduction with technicalities, we only mention that our results allow, in par-
ticular, to compute corrections to Peierls substitution, that is higher order terms
in the expansion of II7 H°II;. We shall explicitly compute and discuss the first
order correction.

Since all errors in our results are small in the norm of bounded operators and
thus uniformly in all initial states, the third step, i.e. the semiclassical analysis of
the effective Schrodinger equation on the decoupled band subspace, is straightfor-
ward. We will exemplify this point by proving an Egorov theorem with classical
flow ®! given through the semiclassical model (6.1). To leading order, the semi-
classical observables are those functions on phase space R??, which are I'*-periodic
in the second argument, where I'* is the dual lattice.

Corollary 30. Let A € C(R*) be I™*-periodic, i.e. A(r,k+~*) = A(r, k) for all
v €T, and let A = Alex,—1V,) be understood in the sense of Weyl quantiza-
tion. Then the corresponding time-evolved Heisenberg observable vs approzimately
gren through the quantization of the classically transported function,

]l (eiHst/s;{ e—iHEt/E - E(@;t(’f‘, :ZC))) Hfz

= 0(e). (6.6)

Note that the results presented in Section 2 contain much stronger and more
detailed statements than Corollary 30, but require several technical prerequisites
for their formulation, which we decided to omit in the introduction. Still Corollary
30 is, to our knowledge, the first rigorous result relating the full time-dependent
Schrodinger equation (6.3) to the semiclassical model (6.1) for general external
magnetic and electric fields.

Let us give a brief plan of the Chapter. In Section 2 we present and discuss
our main results in full detail after introducing the necessary concepts and as-
sumptions. The proofs are given in Section 3 and are an adaption of a general
perturbative scheme as developed in [PST;], see also [NeSo], to the present set-
ting. As mentioned and as to be explained in more detail, the problem at hand
is first an adiabatic problem and only on the adiabatically decoupled subspaces a
semiclassical one. The key observation for applying space-adiabatic perturbation
theory as in [PSTy] is that the hamiltonian H® can be written, after a suitable
Bloch-Floquet transformation, as the Weyl quantization of an operator valued
symbol. However, the underlying Hilbert space is not of the form L?(R¢, Hs), as
for usual Weyl quantization, but L?(B,H;), where B is the first Brillouin zone,
the fundamental domain of the dual lattice I'*. And the symbols are not func-
tions on the phase space R¢ x R?, but on B x R%. Hence a suitable version of the
parameter dependent pseudodifferential calculus needs to be developed in Section
4.
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6.2 Dynamics in periodic structures: setup and
main results

6.2.1 The Bloch-Floquet transform

The dual lattice T* is defined as the lattice generated by the dual basis {7, ..., 71}
determined through the conditions ;- vj = 2mds5, 4,7 € {1,...,d}. The centered
fundamental domain of I' is denoted by

d
M:{:CERdm:Zaj”yj forozje[wé,%]}, (6.7)
j=1

and analogously the centered fundamental domain of I'* is denoted by M*. In
solid state physics the set M* is called the first Brillouin zone, and for this reason
we will denote it as B. In the following M* is always equipped with normalized
Lebesgue measure denoted by dk. We introduce the notation z = [z] + v for the
a.e. unique decomposition of € R? as a sum of [z] € M and v € I'. We use the
same brackets for the analogous splitting k = [k] + 7"

Tt is convenient to define the Bloch-Floquet transformation as

UY)(k,z) ==Y e @ EY(z+ ), (k2) € R, (6.8)

vyel
for any ¢ € S(R?%). Clearly, one finds the following periodicity properties:
U)(k,y+7) = Uw)(k,y) forall yeT (6.9)

(Up)(k + " y) = e 7T (Up)(k,y) forall 7" eTl*. (6.10)

From (6.9) it follows that, for any fixed & € Re, (U)(k,), is a T-periodic
function and can then be regarded as an element of L?(T%), T* being the flat torus,
ie. T¢ .= R*/T". Notice that the distinction between the naturally isomorphic
spaces L2(T%) and L*(M) is meaningful, and useful to avoid confusion, when one
focuses on a subspace of continuous functions.

Moreover, one notices that (6.10) involves a unitary representation of the
group of lattice translation on I'* (denoted again as I'* with a little abuse of
notation), given by

T S UATY), = () (6.11)

where 7(7*) is given by multiplication times ¥ in L*(T¢ dy). It is then con-
venient to introduce the Hilbert space

H, = (g € IR 2(T) s wl(k—7") = () w(k)} (6.12)
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equipped with the inner product

) Q). = / dk (k) (k) pagm -

Notice that if one considers the trivial representation, i.e. 7 = 1, then H, is
nothing but a space of I'*-periodic vector-valued functions over R%.

Obviously, there is a natural isomorphism between #, and L?(B, L?(T¢))
given by restriction from R? to B, and with inverse given by T-equivariant con-
tinuation, as suggested by (6.10). The reason for working with #, instead of
L*(B, L*(T%)) is twofold. First of all it allows to apply the pseudodifferential cal-
culus as developed in Chapter 5. On the other hand it makes statements about
domains of operators more transparent as we shall see.

The map defined by (6.8) extends to a unitary operator

U: L*(RY) — M, = L*(B, L*(T%) = L*(B) ® L*(T%) (6.13)
The facts that I is an isometry and that &/~* given through

U ) (x) = / dk 6=* (K, 2] (6.14)

satisfies U~ U = ¢ for ¥ € S(R?) can be checked by direct calculation. It is
also straightforward to check that &/~* extends to an isometry from ., to L?(R4).
Hence U/~! must be injective and as a consequence U must be surjective and thus
unitary.

Next we discuss how differential and multiplication operators behave under
Bloch-Floquet transformation. The following assertions follow in a straightfor-
ward way from the definition (6.8). Let P = —iV, with domain H'(R?) and Q
be multiplication with z on the maximal domain, then

UPU™ = 18 —iVP" +k@1 (6.15)
UQU™ = V], (6.16)

where —iVI®" is equipped with periodic boundary conditions or, equivalently,
operating on the domain H*(T?). The domain of iV} is H, N HL_(R¢, L*(T)),
i.e. it consists of distributions in H*(B, L*(T¢)) which satisfy the y-dependent
boundary condition associated with (6.10).

The central feature of the Bloch-Floquet transformation is, however, that mul-
tiplication with a I periodic function like V- is mapped into multiplication with
the same function, i.e. U Vr(z) U™t =1 ® Vr(y).



6.2.2 The free hamiltonian

Equipped with this remarks, one notice that the Bloch-Floquet transform of the
free hamiltonian

1
Hper = —5 A+ Vi (6.17)
is given by o
UHp U™ = / dk Hye (k) (6.18)
B
with )
Hyper(k) = 5( =iV, + k)2 +Voly), keB. (6.19)

P4

Hper (k) acts on L?(T%) with domain H*(T¢) independent of k € B.

Remark 31. The reason for taking the particular form of the Bloch-Floquet trans-
form given n(6.8) is that the domain of Hyer(k) is independent of k that way.
¢

Before going on with the analysis of (6.19) we state the assumptions on the
potentials.

Assumption (A;). We assume that Vp is infinitesimally bounded with respect
to —A and that W e C®(R%, R) and 4; € CP(R%, R) for anys € {1,...,d}. <

From this assumption it follows in particular that H® is self-adjoint on H 2(RY).
The previous assumption excludes the case of globally constant electric and mag-
netic field. However, for the questions we shall address, locally constant fields
can be considered in place of globally constant fields.

The resolvent R = (Hy(k) — A)~" of the operator Hy(k) = $(—iVy + k)
is compact for fixed k € B. Since, by assumption, R,V is bounded, also
Ry = (Hpee(k) — N)™' = R} + R\Vr R} is compact. As a consequence Hper(k)
has purely discrete spectrum with eigenvalues of finite multiplicity which accu-
mulate at infinity. For definiteness the eigenvalues are enumerated according to
their magnitude, By (k) < Ey(k) < E3(k) < ... and repeated according to their
multiplicity. The corresponding normalized eigenfunctions {¢n (k) bnen C H?(T%)
are called Bloch functions and form, for any fixed k, an orthonormal basis of
L2(T%). We will call E,(k) the n'® band function. Notice that, with this choice of
the labelling, E,(k) and ¢, (k) are generally not smooth functions of k if eigen-
value crossings are present. Since

Hper(k -7 = 7(v") Hper(k) 7(7*)_1 ) (6.20)
the band functions E, (k) are periodic with respect to I™.
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Definition 32. We say that a band E, (k) or a group of bands {E, (k) }ner, Z =
[I_,I:] NN, is an tsolated energy band, if

gggdist( UiE0) U {Em(k)}) =0y > 0. (6.21)

n€l m¢T
¢

For the following we fix an index set Z C N corresponding to an isolated group
of bands. Clearly from Def. 32 it follows that there exists an interval J(k) :=
[J_(k), J.(k)], defined by smooth and periodic functions J.. : R* — R, such that:

(1) Uner{BEn(k)} € T (k) forany k€ B

(il) infres dist(j(k), Umﬂ{Em(k)}> > i,

Let Pr(k) be the spectral projector of H,e (k) relative to the interval [J(k).
Clearly, Pr(k) does not depend on the choice of J (k) but only on the set Z C N.
Then Pr := f;e dk Pz(k) is, by definition, the projector on the given isolated
energy band.

In terms of Bloch functions, one has that Pr(k) = > . lon(k))(¢n(k)|. How-
ever, in general o, (k) are not smooth functions of k if eigenvalue crossing are
present, while Pr(k) is, by construction, a smooth function of k. Moreover, from
(6.20) it follows that

Pr(k—~") = 7(v*) Pe(k) 7(v*) ™. (6.22)

We will need the following assumption. For the meaning of 7-equivariance see
Def. 21.

Assumption (A;) Given an isolated group of bands {E,(k)}nez, we assume
that there exists an orthonormal basis {i;(k)}.~, of RanPr(k) whose elements
are smooth and 7-equivariant with respect to k. O

The meaning of this assumption, and the condition under which is satisfied
will be discussed in Section 6.3. For the moment, we just notice the following. In
the special but important case in which the relevant band consist of an isolated
m-fold degenerate eigenvalue (i.e. E,(k) = E.(k) for every n € I, |Z| = m)
Assumption (Aj) is equivalent to the existence of an orthonormal basis consisting
of smooth and 7-periodic Bloch functions. However, in the general case, in which
eigenvalue crossings inside the relevant band are eventually present, Assumption
(Ay) is weaker, since each ;(k) is not required to be eigenfunctions of the free
hamiltonian Hye (k) but only of the corresponding eigenprojector Pr(k).
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Let Po(k) = |@n(k))(@n(k)|, then the projector on the n' band subspace is
given through P, = fgs dk P,(k) and Pr = .7 B,. By construction the band
subspaces are invariant under the dynamics generated by Hper,

[e_i”Hpel‘“_ls, Pn} = [e“iEn(k)s, Pn] =0 forallneN, seR.

th

In the original representation Hpe acts on the n™ band subspace as

Hoeth = U HEn(k) @ YUY = B (=iVy) Y,

where ¥ € U~ P, U L2(R%). In other words, wave functions in the n'™ band sub-
space propagate freely but with a modified dispersion relation given through the
n®™ band function.

The main question we shall address in this Chapter is weather this picture
still holds approximately true in the case in which slowly-varying external elec-
tromagnetic potential are present. In particular: there exist a correspondence
between isolated energy bands and subspaces which are almost-invariant under
the time evolution, as RanP, is invariant under the free evolution? Is it possible
to describe the dynamics in one of these subspace by an appropriate effective
hamiltonian, as E,(—iV,) describes the dynamics in the free case? How can this
effective hamiltonian be computed? How the error implicit in this approximation
can be controlled?

6.2.3 The main result

In this subsection we shall answer the previous questions, referring to Section 6.3
for more detailed results and rigorous proofs.

Generalizing from (6.12) it is convenient to introduce the following notation.
For any separable Hilbert space ¢ and any unitary representation 7 : I'* —
U(H¢), one defines the Hilbert space

L2, Hy) = {0 € L (R He) - b= 7) = T(7) w0}, (6.23)

equipped with the inner product

(%, @)pz = / ak (1K), 0 (k)

Using the results of the previous section and imposing Assumption (A1), the
Bloch-Floquet transform of the full hamiltonian (6.5) is given through

. 1 2
Hip = UH U = 5( ~iV, k- AGEVD)) + V) + W=V (6.24)
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with domain L2(R%, H?(T%)).

As previously pointed out, one expects that, for any initial datum in a suitable
almost-invariant subspace, the true dynamics is close to an effective dynamics. In
particular, if one considers an isolated group of bands { £y, (k) }rez the effective dy-
namics is described in the Hilbert space Ko =2 L?(T¢) @ C™ with m = dimPr(k).

Theorem 33 (Peierl’s substitution and higher order corrections). Let
{Ey}ner be an isolated group of bands, see Definition 32, and let Assumptions
(A1) and (A;) be satisfied. Then there exists an orthogonal projection I1° € B(#H,)
such that

[Hgp, 11°] = Op (%) (6.25)
and there emist a partial isometry U € B(H,,Kiwet) and an hermitian operator
et € B(Kyef) so that

(e Bt — U &= et U*)TI7 = Op(e*t]). (6.26)

Moreover /E,eﬁ‘ is the Weyl quantization (in the sense of Section 5) of a semiclas-
sical symbol heg € M:_; (1, B(C™)) which allow for an asymptotic expansion in €
which can be computed at any order.

In particular, for an isolated m-fold degenerate eigenvalue E.(k) the B(C™)-
valued symbol heg(k,7) = ho(k, 1) + ehy(k,7) + Oo(e?) has matriz-elements

holk,T)as = (BE(k — A(r)) + W (r))das (6.27)
and, for d =3,
ik, r)ag = (VW(r) = (v(k) A B(r))) - Aperry (k)ag
B(r) - (Vea(k), A(Hper(k) = E(k))Vips(k)),, (6.28)

where a, B € {1,...,m} and we abbreviated B = dA, k = k—A(r), v(k) = VE(k)
and

ABerry<k)aﬁ = Z<¢a(k)7 Vwﬁ(k» (629)

The physical interpretation of the effective hamiltonian ﬁeﬁ is the following.
The zero-order term (6.27) corresponds to the well-known Peierl’s substitu-
tion (references) and express the fact that an electron in a periodic potential
propagates, at the leading order, as a free electron with modified dispersion re-
lation given by FE.(k). Moreover, the fact that the physical velocity is given by
o(k,r) == VE.(k — A(r)) = v(k) suggests that, for m = 1, the first order term

hi(k, ) = —Aperey (k) - Fror(r, (k, 7)) — M (k) - B(r)
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can be regarded as the sum of the energy of an electric dipole with velocity

dependent momentum Agery (k) and the energy of a magnetic dipole with velocity
dependent momentum M (k). As suggested by the notation, ABerry () corresponds
to a (generalized) Berry connection, i.e. a U(m)-connection on a suitable U(m)-
bundle.

Theorem 33 is a direct consequence of the results proved in Prop. 34, 36, 37

and 38.

6.3 Mathematical proofs

In this section we proof a number of propositions that, in particular, imply our
main result, namely Theorem 33. The main idea of the proof is to adapt to the
case of the Bloch electron the general scheme of space-adiabatic perturbation the-
ory, developed in [PST;] and related to previous works by Blount [Bl;], Littlejohn
and coworkers ([LiF1],[LiWe]) and Nenciu and Sordoni [NeSo].

To this end, one has to face two mathematical problems. First of all, one
has to face the fact that in the present case the symbols are unbounded-operator-
valued functions. The second problem consists in generalizing the Weyl calculus
to operator-valued functions defined over the cotangent bundle of the torus or,
more generally, to morphism of (non trivial) Hilbert-space bundles over the torus.
This goal is achieved by the theory developed in Ch.5. In this section, we will
widely use terminology and notations introduced there.

Equipped with the concepts and the terminology introduced in the Appendix,
we notice that the hamiltonian Hgp is the Weyl quantization of the 7-equivariant
symbol

Holk, r) = -;- (=¥ 4 & — A()? 4+ Volz) + W) (6.30)

acting on the Hilbert space H; := L?*(T¢, dz) with constant domain D := H?(T%).
For sake of the clarity, we spend two more words on this point. For any fixed
k,7 € RY, Hy(k,r) is regarded as a bounded operator from D to H; which is 7-
equivariant with respect to the bounded representation 7 := 7|p acting on D and
the unitary representation 75 := 7 acting on Hy (see Def. 22). Then the general
theory developed in Sec. 4 can be applied. The (usual) Weyl quantization of Ho
is an operator from S'(R%, D) to S'(R?, H¢) given by

By= 3 ( -1V, + k- AGeV)” + Vely) + W(EeVy) (6.31)

where Vj is the usual gradient, with domain H ! (Rd, D). ﬁo can be restricted to

L% (R%,D), since A and W are smooth and bounded. Since Hy is a T-equivariant
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symbol, then ﬁo preserves T-equivariance and can then be restricted to an op-
erator from L2(R¢,D) to LZ(R% Hs). To conclude that (6.31), restricted to
LA(R%, D), agrees with (6.24), it is enough to recall that iV} is defined as 1V,
restricted to H* N A, and to use the spectral calculus.

Moreover, if one introduces the order function w(k,r) := (1 + k%) (see Def.
15), then Hy € S(w, B(D,H)). More generally, we will give the proofs for any
symbol H € S¢(w, B(D,H)).

6.3.1 The almost invariant subspace

The first result in a space-adiabatic theory is the existence of the almost invariant
subspace associated to an isolated group of bands. More introduction....

Given an isolated group of bands {E,, (k) }nez we define mo(k, 7) as the spectral
projector of Hy(k,) corresponding to the interval J(k — A(r)) introduced after
Def. 32. Equivalently, mo(k, ) := Pr(k — A(r)). From both definitions it is clear
that mg € S, (1, B(Hs)). In terms of Bloch functions one has

mo(k,7) = D_ (k= A(r))) {en(k — A(r) (6.32)

nel

However, if eigenvalue crossing inside the relevant band are present the explicit
representation (6.32) is not very convenient, since @y, (k) is, in general, either not
smooth at the crossing points or not 7-equivariant.

Proposition 34 (Existence of almost invariant subspaces). Let {E, }ner be
an isolated group of bands, see Definition 32, and let Assumption (A1) be satisfied.
Then there ezists an orthogonal projection 1€ € B(H.,) such that

[ Hgp, 1] = Oy (™) (6.33)

and II° = 7 4+ O(e*), where T is the Weyl quantization of a T-equivariant semi-
classical symbol '
T = Zéjﬂ‘j in SE(1, B(He))
320
whose principal part wo(k, ) is the spectral projector of Hy(k,r) corresponding to
the given isolated group of bands.

Proof. The following construction is analogous to the one given in [PST;] with
two main differences. The symbol H takes values in the unbounded operators on
H; and all symbols appearing are T-equivariant. Since the necessary changes are
not all obvious, we present again the full argument. As in [PST,], the first part
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of the proof consist in the construction of a Moyal projector, i.e. a projector at
the level of formal symbols.

Lemma 35. Let w(k,r) = (1 + k?). There exists a unique formal symbol
7=y e € MI(1,B(He) N M (w, B(H, D))
7=0

such that wo(k,r) = Pr(k — A(r)) and

i) nH#Hr=m

(i) H#m—n# H =0.

Proof. As in [PST;] we construct the formal symbol 7 locally in phase space and
obtain by uniqueness, which can be proved as in [PST,], a globally defined formal
symbol.

Fix a point zy = (ko,70) € R?¢. From the continuity of the map z — H(z)
and the gap condition it follows that there exists a neighborhood U,, of % such
that for every z € Us, the set {E,(2) }ner can be enclosed by a positively-oriented
circle A(z) C C independent of z in such a way that A(zp) is symmetric with
respect to the real axis,

dist(A(z0), 0 (H(2))) > %Cgu for all z €U, (6.34)

and
Radius(A(zo)) < Cr. (6.35)

The constant C, appearing in (6.34) is the same as in Definition 32 and the
existence of a constant C, independent of zy such that (6.35) is satisfied follows
from the periodicity of {Fn(z)}nez and the fact that A and W are bounded.
Indeed, A can be chosen I'-periodic, i.e. such that A(ko + v*,7m0) = A(ko, 7o) for
all v* e I'™.

Let us choose any ¢ € A(z) and restrict all the following expressions to
2 € U,,. We will construct a formal symbol R(() with values in B(Hs;, D) — the
local Moyal resolvent of H — such that '

(H—CO#R() =1z and R(O#H-¢)=1p only,. (6.36)

To this end let
RD(C) - (H - C)_l )
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where according to (6.34) Ro(()(2) € B(Hs, D) for all z € U,,, and, using differ-
entiability of H(z), 0%Ro(()(2z) € B(H;, D) for all z € U,,. By construction one
has

(H = Q) # Ro(¢) = Loy, + Oo(e)

where the remainder is O(g) in the B(#H;)-norm. We proceed by induction. Sup-
pose that

RM(¢) = Z £'R;(C)

with R;(()(z) € B(He, D) for all z € U,, satisfies the first equality in (6.36) up
to O™, i.e.

(H = ¢) # R™(() = 1gy, + " Bny1 (¢) + Oo(e™?) (6.37)
where E,.1(¢)(z) € B(H¢). By choosing

Ro1(€) = —Ro(Q) Enta (6.38)

we obtain that R™F(¢) = RM(¢) + ™R, 1 () takes values in B(H, D) and
satisfies the first equality in(6.36) up to O(e"*?). Hence the formal symbol R(() =
> io0 € Ri(¢) constructed that way satisfies the first equality in (6.36) exactly.
By the same argument one shows that there exists a formal symbol R(¢) with
values in B(H, D) which exactly satisfies the second equality in (6.36). By the
associativity of the Moyal product, they must agree:

RO=RQO#H-QO#RCO=R(C)  onlh,, (6.39)

Equations (6.36) imply that R({) satisfies the resolvent equation

R(¢) = R(¢) = (€~ () R(O#R(() only, (6.40)

for any ¢,(’ € A(zp). From the resolvent equation it follows as in [PST;] that the
B(#s, D)-valued formal symbol 7 = 3772 e7m; defined through

i

m;(2) dC R;(C,z) on Uy, ‘ (6.41)

- 27 A(z0)

satisfies (i) and (ii) of Lemma 35. As for (iii) a little bit of care is required. Let
J : D — H¢ the continuous injection of D into H;. Using (6.41) and (6.40) it
follows that m J # R(¢) = R({) J#x for all { € A(zp). Moyal-multiplying from
left and from the right with H — ¢ one finds H # 7 .J = J 7 # H as operators in
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B(D, H). However, by construction H # 7 takes values in B(H;) and, by density
of D, the same must be true for 7 # H.

We are left to show that m € MP(e, B(H¢)) N M. (g,w, B(H¢, D)). To this end
notice that by construction 7 inherits the 7-equivariance of H, i.e.

mi(k =" q) = (7)) mi(k, @) () |
From (6.41) and (6.35) we conclude that for each o € N** and j € N one has

l@gm) () < 2nCr sup [[(97R;)(C 2], (6.42)
¢eA(z0)

where || - || stands either for the norm of B(#;) or for the norm of B(H;, D). In
order to show that m € ME(1, B(H;)) it suffices to consider z = (k,r) € B x R?
since 7(v*) is unitary and thus the B(H¢)-norm of 7 is periodic. According to
(6.42) we must show that

H(GSR])(C7 Z)HB(H{) < Caj Vze Z/{zm C € A(ZO) (643)

with C,; independent of z, € B x R%.
To prove (6.43) we use an induction argument. Assume, by induction hypoth-
esis, that for any j < n one has that '

R;(¢) € S,(1, B(He)) N Sy (w, B(Hs, D)) (6.44)

uniformly in ¢ (in the sense that the Frechet seminorms are bounded by (-
independent constants). Then, according to Prop. 19, E,.1(¢), as defined by
(6.37), belongs to S, (w?, B(H¢)) uniformly in . By 7-equivariance, the norm of
E,4+1(¢) is periodic and one concludes that En41(¢) € S-(1, B(H¢)) uniformly in
¢. It follows from (6.38) that (6.44) is satisfied for j = n + 1.

We are left to show that (6.44) is fulfilled for j = 0. We notice that according to
(6.34) one has for all z € R*

(Ol = 1@ = O s = S o777 < B
By chain rule, |
11(8:R0) (¢, 2) |l seaeey = 11 (Ro(€)(0:Ho) Ro(€)) (2) || B(aee) (6.45)

Since 8,Hy Ro(¢) is a T-equivariant B(H¢)-valued symbol, its norm is periodic
and then can be estimated for z € B x R?, getting the required bound. For a
general o € N?? the norm of 02Ry(¢) can be bounded in a similar way. This
proves that Ro(() belongs to S;(1, B(#;)) uniformly in ¢.
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On the other hand

[Ro(k, ) lrepy = 11+ Do) Rol[k] + 97, )z = 11+ As) 7(v* ) Ro([k], )7 (7))
CHL+ ) (1 + Ag) Ro([k], ")llsgey < C'(1+ ") < 2C"(1+ &)

A

where we used the fact that ||(1 + A.)Ro(2)||@) is bounded for z € B x R%.
The previous estimate and the fact that 9, Hy Ro(¢) € S;(1, B(Hs)) yield

1(8.R0) (¢, 2) 15034e,m) = | (Ra(€)(0:Ho) Ro(C)) (2) | 53,0y < C(1+ K. (6.46)

Higher order derivatives, are bounded by the same argument, yielding that Ry(¢)
belongs to S, (w, B(H¢, D)) uniformly in ¢. This conclude the induction argument.
From the previous argument it follows moreover that

102 R;) (¢, 2) B,y < Coj w(z) V2 € Uy, € € A20) (6.47)

with C,; independent of zy € R**. By (6.42), this imply that 7 € ME(w, B(H¢, D))
and concludes the proof.
]

Proof of Proposition 84. From the projector constructed in Lemma 35 one
obtains, by resummation, a semiclassical symbol 7 € S%(1, H¢) whose asymptotic
expanslon is given by > .- oe’m;. Then, by Weyl quantization, one gets a bounded
operator 7 € B(H,) (see Prop. 25) which is an almost-projector, in the sense that

72 =7+ Op(e®) and 7T =T,

We notice that from Prop. 19 it follows that H # 7 € S,(w?, B(H;)). But
T-equivariance implies that the norm is periodic and then H #w belongs to
Sr(1, B(#s)). Thenw# H = (H # )" belongs to the same class, so that [H, 7]z €
S, (1,B(H¢)). This a priori information on the symbol class, together with
Lemma 35.iii, assure that R

[H,7] = Oy(e™) (6.48)
with the remainder bounded in the 5(#¢)-norm.

In order to get a true projector, we follow an idea by Nenciu. For £ small
enough, let ‘

I = — (7 - O)tde. (6.49)
27 Jic-1)=4 |
Then it follows as in [PST;] that (IT%)% = II¢, II* = 7 + O (¢*°) and

IH, |50 < CIH, 7520y = O (™).



6.3.2 The intertwining unitaries
The Assumption (A,) is equivalent to the following assumption, which claims for

the existence of a fundamental unitary.

Assumption (A}). We assume that there exists a projector m, € B(H;) and a
unitary-operator valued map ug : R* — U(H¢) so that

ug(k, ) mo(k,7) uo(k, ) = m; (6.50)
for any (k,r) € R4,
| uo(k + ") = 7(v") uo(k, ), (6.51)
and ug belong to S(1, B(Hs)). O
Clearly, V
up(k +v,7) = ug(k, 7)1 (7). (6.52)

An operator valued symbol satisfying (6.51) (resp.6.52) will be called left 7-
covariant (resp. right 7-covariant).

To be explicit, according to Assumption (A,), there exists an orthonormal
basis {¢;(k)}~, of RanPr(k) which is smooth and 7-equivariant with respect to
k. Let 7, := my(ko, 7o) for any fixed point (kg, ). By the gap condition, dimm, =
dimPz(k). Then for any orthonormal basis {x;};-, for Ranm,, the formula

o (k,7) = Z Wik — A(r) {xil (6.53)

defines a partial isometry which can be extended to a unitary operator ug(k,r) €
U(Hs). The fact that {v;(k)}ir, spans RanPr(k) implies (6.50), and the 7-
equivariance of 1;(k) reflects in (6.51).

Viceversa, given ug fulfilling Assumption (A%), one can check that the formula

vi(k — A(r)) == uo(k, ) X4, (6.54)

with {x;};~, spanning Ranw,, defines an orthonormal basis for RanPr(k) which

satisfies Assumption (Aj).

The goal of this section is to construct a unitary operator which allow us to
map the intraband dynamics from Ranll® to an e-independent reference space
Kref C Hyes. Since all the twisting of H, has been absorbed in the T-equivariant
basis {Xi}?;l, or equivalently in ug, the space H,er can be chosen to be a space of
periodic vector-valued functions, i.e.

Hrer i= L2, (R, Hy) = L2(T%, Hy). (6.55)
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It is convenient to introduce the orthogonal projector Il es := 7, € B(Hyer) since
the effective intraband dynamics can be described in

Kot := Ranlles = L2 (RY, C™) = L*(T¢, C™) (6.56)

as it will become apparent later on. Recall that m = dimPr(k) = dimn,.

Proposition 36 (Existence of intertwining unitaries). Let {E,}nez be an
isolated group of bands, see Definition 32, and let Assumptions (A1) and (A}) be
satisfied. Then there erist a unitary operator U : Hiee — H, such that

U TIEU = Tl (6.57)

and U = 0 + Og(e*®), where u < Y. ,&'u; belong to S*(1,B(Hy)), is left 7-
covariant at any order and has principal symbol ug.

Proof. As usual, there are two logical steps.

I. Construction of the symbol. The proof follows step by step the construc-
tion given in Chapter 2. Since ug is left 7-covariant, one proves by induction that
the same holds true for any u;. Indeed, by referring to the notation in [PST;],
one has that

Upg1 = Uo(Gpgr + bng1)

with app1 = —%Anﬂ and by.1 = [Bnt1, 7). From the defining equation
u(n)* 4 u(n) 1= 5n+1An+1 + O(€n+2)

and the induction hypothesis, it follows that A,y is a periodic symbol. Then
w™ = y™ 4 e lyga, . is left 7-covariant. Then the defining equation

w(n)* # ™ # w(n) = Tref = 5n+lBﬁ+1 + 0(5.”_*—2)

shows that B,,; is a periodic symbol, and so is by Then any u; is left -
covariant, and in particular there exists a semiclassical symbol u < >~ &/u; so
that u € S¢(1, B(Hs)).

II. Quantization. One notices that left 7-covariance is nothing but a special
case of (7, 72)-equivariance, for 7 = 1 and 7 = 7*. Then from Prop. 26 it
follows that the Weyl quantization of u is a bounded operator & € B(Hyet, H.r)

such that:
(1) W = 1Href + 00(800> and wi* = 1g, + 00(800)
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(i) G*TI° G = Tlrer + O (%)

We wish now to modify % by an Og(e™)-term in order to get a true unitary
operator U € U(Hyep, H,). Let us define

~ 1
U= (a0")" 24 (6.58)
Notice that 44* is a self-adjoint positive operator which is Oy (e*)-close to the
identity operator; then (44*)"2 is well-defined and again Og(%)-close to the
identity operator. Hence (6.58) defines a unitary operator which moreover is
Oy (e%)-close to @. Then from (ii) and the boundness of II° and Il it follows
that . 3
U* TIF U = et + Op(e%°).

Finally, by using Nagy’s formula one gets a unitary operator U € B(Hiet, H-)
which ezactly intertwines I1° and Il and is Oy (e*°)-close to 4. O

6.3.3 The effective hamiltonian

The next step in space-adiabatic perturbation theory is to describe the intraband
dynamics and to compute an effective hamiltonian for it.

Proposition 37 (Effective hamiltonian for the Bloch electron). Let {Ep }ner
be an isolated group of bands and let Assumptions (A1) and (Ay) be satisfied. De-

fine

Heg = U* 7 Hip 7 U (6.59)
Then Heg € B(Huet), [Hesr, Hret] = Oo(e°) and
(e7t et — U 7ot )T = Op(e™(1 + |t])). (6.60)

Moreover Heg = heg+Oy () with heg a periodic symbol in St (1, B(Hs)) given
by a resummation of the formal symbol

uwtH T H H AT H# (6.61)

Finally [heg, ] = 0, i.e. P 48 ezactly diagonal in the splitting of Her induced
by Href.

Notice that from (6.60) it follows that
(emillErnt — [T g=thert [*)II° = Oy (et]). (6.62)

This is the crucial fact we will use later on.

In the proof we denote Hgp as H to emphasize the fact that it is the Weyl
quantization of H € S,(w, B(D, Hs)).

83




Proof. We know a priori, by the proof of Prop. 34, that H #7 and # H belong
to S¢(1, B(H¢)). Then, by Theorem25, H7 € B(H,) and 7 H € B(H.). In
particular, Heg € B(H,er). By the intertwining property (6.57) one has

Hullo = U F HFE U =U*7 H7 U+ Oy(e%) = MyosHep + Op(e™)

where we used the fact that 72 = 7+ Oy (¢*) and the a priori estimate to bound
the remainder. From (6.59) and the fact that I1° = 7 + Oy(e*°) it follows that

(e_if[t U e~iHeﬁ~7§U* )HE — (e—iﬁt . e~ﬁﬁ7’?t )7’7\' + 00(600)
—~ t L o~ —~ o~ FF~
= —ie [ ds s (H — %H?F) e” TR 4+ Oy (%)
0

t 5 -~ el [N
= —z’e_th/ ds ¢S (H - %H?F) Te THTS R 1 0y(e™)
0
= Op(e*(1+1t]))-

where we used that H7 — TH7 = (%) as a consequence of (6.48).

From the fact that H# 7 € M7 (1,B(H;)), the comment following Prop.24
and the 7-covariance of u it follows that heg € St;(1, B(Hs)). Since heg and
w4 HHE #A u have, by definition, the same asymptotic expansion in ¢,
one concludes that heg = 4" # H 71 + Og(e*). Then, by the a priori estimate,

o~

one obtains Heg = heg + Op(e™). Finally, by the fact that
wHTHHFErHFu=m W HFuHF L= (U HTHH HFTH )T

one concludes that /ﬁeﬁ = Hrefﬁeﬁﬂref. In particular, Eeﬁ‘ is diagonal in the splitting
induced by . O

-~

Since [heg, Her] = 0, the effective hamiltonian will be regarded, without dif-
ferences in notation, either as an element of B(H.e) or as an element of B(Kre).
Analogously, heg can be confused with 7 hegm, and regarded as a B(C™)-valued
symbol.

6.3.4 Leading order expansions and physical consequences

The next step in adiabatic perturbation theory consists in explicitly compute the
symbol heg(k,r) of the effective hamiltonian.

We first consider the special but most relevant case of an isolated m-fold
degenerate eigenvalue, i.e. E,(k) = E(k) for every n € Z, |Z| = m. Recall
that in this special case Assumption (Ay) is equivalent to the existence of an
orthonormal system of smooth and 7-equivariant Bloch functions relative to the
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eigenvalue E, (k). The part of uo intertwining mp and , is given by equation
(6.53) where 1;(k) are now Bloch functions, i.e. eigenvectors of Hpe (k) relative
to the eigenvalue E, (k).

In the following proposition, heg is identified with 7 heqm, and regarded as a
B(C™)-valued symbol. We consider the matrix elements

h’eﬁ(k’; T)aﬂ = <Xa; heff<k>T)X,B> (663)
for i, 8 € {1,...,m}. For sake of simplicity, the result is stated only for d = 3.

Proposition 38. Let E(k) an isolated m-fold degenerate eigenvalue and let As-
sumptions (A;) and (As) hold true. Let d = 3. Then

ho(k,m)ap = (E(k — A(r)) + W (r))dus (6.64)

and

hi(k,m)ep = (VW(T)—(’0(75)/\3(7")))'ABerry(%)aﬂ

5 B() - (Viba(k), N(Hper(k) = B(k)Vg(k))sy,  (6:65)
where we abbreviated B = dA, k =k — A(r), v(k) = VE(k) and |

Apeary (k) ap = i(ta(k), Viba(k)). (6.66)

Proof. Equation (6.64) follows immediately from the fact that iy = ug Ho up and
that 1, are Bloch functions. As for h;, by the general argument developed in
[PST;, Sec. 5.2] it follows that

Tl = —~—;— e (ug{ Ho, uo} — ug{uo, Ex})mr, (6.67)

where E,(k,7) = E(k— A(r)) + W (r) and {4, B} := V,A-V,B—V,A-V,B are
the Poisson brackets. To extract the Berry connection it is convenient to rewrite
(6.67) as

Ty Ty = —% To(ug{ Hper — E,uo} + 2 ug{ Ex, uo })m;. (6.68)
Inserting (6.53) and performing a straightforward computation the second term

gives the first term in (6.65) while the first term contributes to the o matrix
element with

d

a Al A T) <¢a( ) ( per ——E)(iﬂ) ajwﬁ(l‘%)>%f (6'69)

RN

Ji=1
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The derivative on (Hpe — £) can be moved to the first argument of the inner
product by noticing that '

0= V(a, Hper = B)¢) = (Va, (Hper = E)$) + (Yo, V(Hper — E)¢)  (6.70)

since 1), is in the kernel of (Hper — E). A rearrangement of the sum in the indexes
7,1 yields (6.65), concluding the proof. O

In the general case in which crossings of eigenvalues inside the relevant band
are presents, the previous method still allow to compute the symbol heg(k,7) of
the effective hamiltonian at the leading orders. However, in general, the prin-
cipal symbol ho(k,r) is not a multiple of the identity matrix as in (6.64). As
a consequence, the pseudodifferential operator heg does not allow a convenient
semiclassical limit, i.e. expectation values of time-evolved observables cannot be
approximated by using a classical hamiltonian flow (see Sec. 6.3.5). This corre-
spond, from the physical viewpoint, to the well-known fact that the dynamics at
the crossing points is essentially not classical.

6.3.5 Semiclassical observables

All over this section it is assumed that Assumptions (Ay) and (As) hold true and
that the relevant band consist of an isolated m-fold degenerate eigenvalue F (k).

The ultimate goal of the semiclassical model is to approximate the expectation
values of a suitable class of observables with quantities which can be computed
by the knowledge of the hamiltonian flow ®} induced by the semiclassical hamil-
tonian Hy(k,7) = E(k— A(r))+W/(r). Clearly, not any quantum observable can
be approximated by the semiclassical model, so we have to focus on a suitable
subclass. This class depend on the degree of approximation we are looking for.
A convenient choice can be the following one.

Definition 39 (O(g")-semiclassical observables in BF representation).
Let v € NU {+o0}. An operator B € Bs(H,) is called a O(e”)-semiclassical
observable if there exists a semiclassical symbol b € SE(1, B(H;)) such that

B = b(k,iV]) + Oy(e").

The case of unbounded self-adjoint operators can be recovered by consid-
ering the spectral measure associated to them. In this spirit, the hamiltonian
Hgp and the "not-electrostatic energy” Hpe(k — A(1V})) can be regarded as
O(e>)-semiclassical observables. Notice moreover that we do not assume’that
[b,7]5 = O(¢”) (the reason will be clear later on) so that this definition is in-
dependent from the hamiltonian and from the choice of the relevant band. The

o~
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price to pay is that a semiclassical observable can be ”semiclassically estimated”
only on a suitable class of states.

A natural question is the following: how do semiclassical observables look like
in the original representation? A partial answer is given by the following result.

Proposition 40 (O(g¥)-semiclassical observables in original repr.). Let
B € Ba(H,) a O(e")-semiclassical observable whose symbol is a multiple of 1y, .
Let A = U*BU € B(H). Then there exist a scalar semiclassical symbol a €
Se(1,C), with the property that

a(g,p+~") =alg,p)  Vyxel7, (6.71)

such that
A =alz,—iVy) + Oy(e”).

Moreover, denoting by F the Fourier transform, one has that Fa is supported
over R x I' and formally

(Fa)(n,v) = (Fb)(v,m)  ¥(n,v) €RI xT (6.72)

Clearly, equation (6.72) has nothing to do with pointwise values and is just a
shorthand to say that Fa agrees with Fb after exchanging the order of the vari-
ables.

Example 41. Here some interesting and non trivial example. Physical discus-
sion... , o

Remark 42. An analogous statement cannot be true for a general operator-
valued T-equivariant symbol. For example, the symbol b(k, ) = Hper(k—A(r)) is
r-equivariant. However, the corresponding operator in the original representation
is

A = U bk, ie VU = —é( iV, — A(ex))? + Ve(2) (6.73)

which cannot be written as a(ex, —iV,) for any symbol a(g, p) I'"-periodic in the
second variable. &

Proof. Since the class Op(g”) is invariant under unitary equivalence one has just
to prove that b(k,ieV}) corresponds to a(ex, —iVy). We first recall that for any
a € S(1,C) and any v € L*(R*) one has that

(afez, =iVa)¥) (@) = /R dndé(Fa)(n, &) O dney(z + ). (6.74)
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On the other side, let (U)(k,y) =: @(k,y). Then, since b is I"™*-periodic in the
first variable, one has

(hieVDO) ) = 3 [ an(F0)o,m) eI (e ey (675
yel

This will be made rigorous later on. For the moment we notice that, since Fb is
a multiple of the identity, one has

U b(k, £ V) o) (a ) (6.76)
- Z / dk / dn(Fb)(y,m) e* e =N 2T p(k — e, [a])
el R
= 3 [ anEn ez [ gk eyl e, o).
el

The 7-equivariance of ¢ implies that the function f(k,y) := e*¥p(k, [y]) is exactly
periodic in the first variable. Then the integral in dk can be shifted by an arbitrary
amount, so that

/ dk GE= D e [a]) = / dk e* Nk, [z 4 1)) = (e + )
B B

Inserting this expression in the last line of (6.76) and comparing with (6.74) one
concludes the proof. O

As pointed out, we want to approximate the expectation values of the time-
evolved operator B(t) := exp(iHgpt) B exp(—iHgpt) on a state 1 € Ranll®.
More generally, let p any density operator in B(#,) such that II°p = p = pII°.
Then the expectation value Try (B(t)p) can be approximated, uniformly in time
and in p, in the following way:

(i) consider the symbol ¢y := m, ujboug 7 € S,y=1(1, B(C™)),

(i) define
ci(k,7) := D*(k,r,t) (D% (k, 7)) D(k, 7, 1) (6.77)

where D(-,t) is the solution of the Cauchy problem
O, D(k,r,t) = —ihy (L (k, 7)) D(k,7,1) (6.78)
with initial datum D(k,r, 0) =1,
(iii) define C(t) == ci(k,4Vy) acting in Hyer,
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(iv) then Try,  (C(t)U*pU) approximate Try, (B(t)p).
The precise sense of the approximation is made clear in the following proposition.

Proposition 43. Let B € B(H,) an O(e)-semiclassical observable and B(t) :=
exp(iHgpt) B exp(—iHggt). Let be p a traceclass operator in H, with Tr(p) = 1,
such that TIp = p = plI¢. Let be C(t) defined as above. Then for any T < +00
there exist a constant Cr such that

|Trye, (B(t) p) — Tra, (C(R)UTpU)| < e Cp (6.79)

for every t € [=T,T). The constant Cr is independent from p. In particular,
it is part of the statement that the classical flow @, generated by Hg and the
solution of the Cauchy problem (6.77) exist globally in time and that c; belong to
S,=1(1, B(C™)) for everyt € R.

The proof of the proposition is a combination of the usual first-order Egorov-
type theorem and the following lemma, which hold true to any order of approxi-
mation.

Lemma 44. Let B any operator in B(H.) and B(t) := exp(iHgpt) B exp(—1Hzpt).
Let p as in the previous proposition and C(t) any B(Hret)-valued function. Then

| Trp, (B(t) p) = Tra (CQUTPU)| <
< HHref(eihemnrefUBU*Hrefe_ihefft - C(t))nrefng(%ref)+O(€wltl)
where the remainder is independent from p.

Proof. Let p = U*pU so that p' = I, Iler. By the invariance of the trace
under unitary equivalence and the ciclic property one gets

Try, (B(t) p) = Tia, (C(OU V)| = [Tra (U"B{H)U = C(1)) 0]
= |Tr7{ref (Href(U*eiHEFtBe_ngFtU - O(t))nrefpl)l
< |Tees (U85 Be ™ 55 T U — C'(8)) et [l (70,00

where we used the intertwining property (6.57). Inserting (6.62) one gets that

ot (U TEB(OIIFU —  C(t))ler =
= Tep(TTee e U* BUe e T op — C'(£) ) Ter + Oo(£%°)t])
== Hréf(6iﬁegtﬂrefUBU*HrefeﬁihEHt It C(t))ﬂref -+ OQ(EOOIZ?D

where we used that [e~%ea! ILee] = Op(e|t]). , O
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The claim of Prop.43 follows easily by noticing that [t U BU* Tl = 7,0 bii, +
0y(%) and applying one of the usual formulations of first order Egorov theorem
(see, for example, [PST;, Theorem 6.1]).

Example 45. As an easy but relevant application, one can show that the physical
macroscopic velocity is given, at the leading order, by o(k,r) := VE,(k — A(r)).
This result has been implicitly used in the physical interpretation of the effective
hamiltonian (6.28).

Higher order estimates on the expectation values of semiclassical observables
can be obtained by using Lemma 44 and an higher-order version of Egorov theo-
rem for matriz-valued symbols, as developed, for example, in [Iv].
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Chapter 7

Conclusions and perspectives

At this point the reader should be convinced, I hope, that the space-adiabatic
approach gives a powerful and general theory which can be applied to a wide range
of physically interesting problems in which a separation of time-scales appears.
Moreover, we wish to underline the following points:

the space-adiabatic perturbation theory yields a model-independent tech-
nique which is, in our opinion, vastly superior to a case by case study.

in this approach, all the degrees of freedom are quantum mechanical, and
the main results are formulated in terms of operators over the full Hilbert
space H.

as a consequence, in this approach the adiabatic decoupling, a purely
quantum mechanical phenomenon based on separation of time-scales, and
the semiclassical limit are carefully distinguished. In other approaches
(references...) the two limits are mixed.

all the estimates are given in term of the norm of bounded operators over
H, so that the estimates are uniform with respect to the initial state of
the system. Moreover, the use of techniques based on Weyl calculus, allow
us to obtain an abiabatic decoupling up to an O(e*)-error, a result which
is impressively better than what can be proved by techniques based on
" classical” operator theory.

last but not least, the theory yields a perturbation scheme which allow
us to compute the effective hamiltonian to, in principle, any order in €.
Unfortunately, computational effort prevents to go far beyond the first two
orders.

As far as applications are concerned, in the present thesis we already give a
wide range of applications, including:
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Ex.1 Molecular physics. In Sec.2.4.3 we computed the first order correction
to the Born-Oppenheimer approximation, showing that it contains a gen-
eralized Berry’s connection.

Ex.2.2 Dirac electron. In Ch.3 we obtained the leading order term and the
first order correction in the expansion of the effective hamiltonian. Moreover
we obtained the first rigorous deduction of the BMT equation, an equation
derived by Bargmann, Michel and Telegdi in 1959 [BMT], on purely classical
grounds, as the simplest Lorentz-covariant equation for a classical spin (i.e.
a vector in S? C R?). The BMT equation has been used for years, until the
discovery of particle traps, to compute the anomalous magnetic moment of
the electron from experimental data. Therefore, the experimental test of
the most outstanding prediction of QED, namely the anomalous g-factor,
relied on BMT equation.

Ex.2.3 Pauli-Fierz electron. We obtain in Ch.4, for the moment at a pre-
mathematical level, an effective hamiltonian for the dynamics of the dressed
electron in non-relativistic QED. The first order correction gave us the
opportunity to obtain a non-perturbative definition of the g-factor.

Ex.4 Bloch electron. The most impressive application of space-adiabatic per-
turbation theory is probably the case of an electron in a crystal. In Ch.6
we obtained the first rigourous proof of the Peierl’s substituition, widely
used in solid state physics. Moreover, Prop. 38 gives the first order cor-
rection to the Peierl’ s substitution, whose physical meaning is still to be
explored.

The realm of possible future applications is very rich too. First of all, the gen-
eral scheme could be applied to the constrained quantum motion, as mentioned
in the introduction. A second relevant application is the case of the magnetic
Bloch electron, i.e. an electron moving in a periodic crystal potential with an
additional strong and constant magnetic field superimposed. This case, which is
relevant for a dynamical understanding of the quantum Hall effect, fits perfectly
in the theory formulated in Ch. 5 and 6. However, in the case of a magnetic Bloch
electron, Assumption (Ajy) (see Sec.6.3), is generically violated. Therefore one
should probably introduce a reference space H,e consisting of sections of a suit-
able Hilbert space bundle, which incorporates the intrinsic twisting of the bundle
pointwise defined by mo(g,p) (see Sec.6.3).

Finally, I wish to outline a possible long-term application of space-adiabatic
theory. Indeed, if a rigorous formulation of QED would be available, one could
try to prove that the /N-electrons sector of the theory is adiabatically decoupled
from the remaining sectors, provided that the initial state is such that all the
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velocities and accelerations of the electrons are uniformly bounded, in some suit-
able sense (see [Te] for a similar condition in a different context). Since a rigorous
formulation of QED seems far from being available, for the moment these ideas
can only be tested on some toy-model, as for example a low-dimensional QF'T.

Apart from other possible applications to physically relevant models, the the-
ory can be further developed along three main directions:

e exponentially small errors. Assuming analyticity of the symbol of the
hamiltonian, one could prove, by using a technique analogous to the one
used in [NeSo], that the interband transitions are suppressed up to terms
of order e‘g, then improving our O(e*)-estimates. One cannot expect to
go beyond exponentially small errors, since better estimates would be in
contrast with physical expectations. Although important from a mathe-
matical viewpoint, exponentially small estimates are not so relevant from
the physical viewpoint, since the relevant physical effects depend on the
leading orders expansion of the effective hamiltonian.

e adiabatic decoupling without gap. As previously pointed out, it is
crucial for space-adiabatic perturbation theory that the relevant band is
uniformly separated from the remainder of the spectrum by a finite energy
gap. However, there are examples, as the massless Nelson model or the
massless Pauli-Fierz model, in which the relevant band consist of a single
eigenvalue at the bottom of the absolutely continuous spectrum. In a recent
paper on the massless Nelson model [Tey| it has been shown, by using
methods of operator theory, that even in this case the adiabatic decoupling
holds true up to O(e+/In(1/e))-errors. Moreover, the effective hamiltonian
in [Tey] coincide, up to the first order, with the one obtained by formally
using the perturbation scheme outlined in Sec.2.4.2. Further research in
this direction seems to be very interesting.

e crossing of eigenvalues. Another natural question is what happens when
the relevant energy band crosses another energy band. As pointed out, our
results can be generalized to the case in which a local gap condition is
fulfilled, and then the adiabatic decoupling holds true up to times of the
order of the classical hitting time, which can be roughly estimated as the
time at which the support of the initial wavefunction, evolved according
to the classical hamiltonian flow, hits the crossing manifold. But, despite
of this fact, it is very interesting, both from the mathematical and the
physical viewpoint, to understand what happens when the support of the
wavefunction hits the crossing manifold. Pioneering work in this direction
has been done in [Hay] by using gaussian wave-packets. More recent results
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are obtained in [FeGe] and [FeLa] by using techniques related to Wigner
measures. Further progress in this direction would be of major interest.
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Appendix A

Operator-valued Weyl calculus

Space-adiabatic perturbation theory deals with quantum systems in which it is
possible to distinguish between fast and slow degrees of freedom. In particular we
assume that the Hilbert space . admits a natural decomposition as % = L*(R*)®
He, where L?(IR?) is the state space for the slow degrees of freedom and Hy is the
state space for the fast degrees of freedom.

As the second structural ingredient we require that the hamiltonian is given
as the quantization of a B(H¢)-valued function on the classical phase space R4
of the slow degrees of freedom. Hence we need to consider the generalization of
the usual quantization rules to the case of B(#;)-valued functions on R**. This
theory is well covered in the literature, see for example [Ho, Fo, Iv, GMS]. Still,
for the convenience of the reader and to settle the notation, we prefer to provide
a self-contained review of the basic results.

Notation. Let & be a Banach space. We will denote as C(R?, &) the space
of E-valued continuous functions on R?. In the same spirit we will employ the
notation S(R?, £), LP(RY, £), with the obvious meaning. Note that, in the special
case where & = H; is an Hilbert space, one has L*(R?, H;) =2 L?(R?) ® H¢. The
space of the bounded operators on £ will be denoted as B(£).

A.1 Weyl quantization

Let A be a B(H¢)-valued rapidly decreasing smooth function on R je A €
S(R?, B(#s)). If we denote by FA the Fourier transform of A then, by Fourier

inversion formula,

1

Alg,p) = W

/ (FA)(n,€) T dnde,
R2d
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where the integral is a Bochner integral for B(H¢)-valued functions. This sug-
gest to define an operator Ae B(H), called the Weyl quantization of A, by
substituting eTTtEP) with efTHEP) @ 15, where ¢ is multiplication by = and
P = —ieV, in L*(R%). The exponential is defined by using the spectral theorem
and it is explicitly given by

(61(77?1\‘}‘517)7#) (IL’) — 6i5(77‘f)/26'571.x¢($ + 56) for w c LZ(Rd) (Al)
Thus '
A= i(nG+EP)
A= (2m)¢ /IR?EZ(fA)(Uaﬁ) (eftmaren ® lgy ) dndé, (A.2)

and, in particular,
-~ 1
1Rl < T L NFAY oy e

which implies that A belongs to B(#) provided the Fourier transform of A belongs
to L' (IR?¢, B(H;)). We will also use the notation W.(A) = A in order to emphasize
the £ -dependence.

Substituting (A.1) in (A.2) one obtains that for every 1 € S(R*, H;)

~ 1

(Av)(z) = e /R Ad(z +y), ) e Ev/E g (y) dédy, (A.3)

ie. Aisan integral operator with kernel

1 o
W/[[gdA(%(m+y)’€)ef( v}/ df

Taking (A.3) as a definition, the Weyl quantization can be extended to much

larger classes of symbols A(g, p).

Definition 46. A function A € C®(R*,B(H;)) belongs to the symbol class
ST (B(Hs)) (with m € R and 0 < p < 1) if for every o, f € N? there ezists
a positive constant Cq g such that

sup H(aqaag/—l) (q,p)”smf) < Cup <p>m—pw[
geRd

KA(LE,Q) =

for every p € RY, where (p) = (1 + |p|)¥/2.

The space S7"(B(Hy)) is a Fréchet space, whose topology can be defined by the
(directed) family of semi-norms

JAI = supsup (o) G50 AN @,0) [y . REN. (A4
lal-+81<k g,peR?

The following result is proved exactly as in the scalar case, cf. also [GMS].
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Proposition 47. Let A € S7*(B(Hs)), then A given trough (A.8) maps S(RY, Hs)
continuously into itself.

Since A € S7(B(H¢)) implies A™ € ST (B(Hs)), the previous result allows to

extend A to a continuous map on S'(R%, H).
It is convenient to introduce a special notation for such classes of operators
on S(R?, Hs), called pseudodifferential operators,

OPST = {W.(A): A€ STHB(H:))} .

In the following we will sometimes denote S7*(B(#Hz)) simply as 57" and we will
use the shorthand S™ := Sg*. Notice that S7* C S for any p > 0.

TIf A belongs to S°(B(H;)) then the corresponding Weyl quantization is a
bounded operator on H = L*(R%, H;). The following proposition sharpens this
statement (see [Fo], Theorem 2.73).

Notation. Denote by CF(R?, &) the space of £-valued, k times continuously
differentiable functions on R%, such that all the derivatives up to the order k are
bounded. Equipped with the norm

[ All g = sup sup [{O7A) ()| 53¢,

la|<k zeR4
it is a Banach space.

Proposition 48. (Calderon-Vaillancourt) There exists a constant Cy < o0 such
that for every A € C2TH(R*, B(Hs)) one has

Al gy < Cq sup  sup ||(8285A)(q,p) — Oy || Al] pess -
B(H) ol |f| <21 q,peRdH qp HB(%{) HCb

This implies, in particular, that the Weyl quantization, regarded as a map W,
SO(B(H)) — B(H), is continuous with respect to the Fréchet topology on SOB(Hs))-

A.2 The Weyl-Moyal product

Next we consider the composition of symbols. The behavior of the symbol classes
with respect to the pointwise product is very simple, as can be proved by using
the Leibniz rule.

Proposition 49. If A € ST (B(H;)) and B € S72(B(My)), then AB belongs to
Smtme (B(Hg)) for every my, my € R.

The behavior under pointwise inversion is described in the following proposition.
For every T' € B(Hy) let the internal spectral radius be pit (T) := inf {|A| : A € o(T)} .
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Proposition 50. Assume that A € S7'(B(H¢)) is a normal symbol which is
elliptic, in the sense that there exists a constant Cy such that

pm(Alg,p)) = Co (W)™ for any p € R
Then the pointwise inverse A~ ezists and belongs to S;™(B(Hs)).

Proof. As a consequence of the spectral theorem (for bounded normal operators)
one has

ATNa D)l gy = Pioe (Al p)) 7 SO

Similar bounds on derivatives can be obtained by noticing that
- -1 -1 —m-—
VoA gz = =47 (Vo A) A7 gy < €)™
and applying the chain rule. O

The crucial result for pseudodifferential calculus is the following. One can
define an associative product in the space of classical symbols which corresponds
to the composition of the operators. Given A € ST (B(Hz)) and B € S;*?(B(Hs))
we know that A and B map S(R%, H) into itself. Then AB is still an operator
on S(R%, H;) and one can show that there exists a unique e-dependent symbol
Symb(AB) =: A# B € SmM+m2(B(H)) such that

Wa(A)W.(B) = W.(4 # B).

The symbol A+ B is called the Weyl product (or the twisted product) of the
symbols A and B. For the proof of the following proposition in the operator
valued case we refer again to [GMS].

Proposition 51. Let A € S (B(Hr)) and B € S72(B(Ms)), then AB = C with
C e Spt™(B(H)) given through

Clg,p) = exp (%(Vp Vo= Ve Vq)> (Alg,p) B(,€)| _ _ = (A#B)(gp).
(A.5)

In particular, SY(B(Hy)) and S°(B(Hs)) = Upmer S (B(H1)) are algebras with
respect to the Weyl product ;Z#

Since the product A # B depends on ¢ by construction, one can expand (A.5)
in orders of £. To this end, it is convenient to define suitable classes of e-dependent
symbols, called semiclassical symbols, which — roughly speaking — are close to
a power series in € of classical symbols with nicer and nicer behavior at infinity.
Our definition is a special case of the standard ones (see [DiSj, Ma, Fo, Ho}).
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Definition 52. 4 map A :[0,g0) — Sy, € v Ae is called a semiclassical symbol
of order m and weight p if there exists a sequence {A;}jen with A; € SP79° such
that for every n € N one has that (A — 250 Yy ) belongs to ST~ uniformly

in e, in the following sense: for any k € N there ewists a constant Ch,k such that
for any € € [0,€0) one has

n—1
(m—np)
HA Seid, H < Cppe®, (A.6)
7=0
where ||.. .||, (m) s the k-th Fréchet semi-norm in ST, introduced in (5.1)-

One calls Ag and A, the principal symbol and the subprincipal symbol of
A. The space of semiclassical symbols of order m and weight p will be denoted
as ST'(e). If condition (A.6) is fulfilled, one writes

A= ZEjAj in S;*(e)

720

and one says that A is asymptotically equivalent to the series > .-, el Ajin S (e).
If A is asymptotically equivalent to the series in which 4; = 0 for every j € N,
we write A = O(e®). To be precise, we should write A = O(¢*) in S7*(g), but
the latter specification is omitted whenever it is unambiguous from the context.

In general a formal power series Zpo el A; is not convergent, but it is always
the asymptotic expansion of a (non unique) semlclassmal symbol (e.g. [Mal).

Proposition 53. Let be {A;}jen an arbitrary sequence such that A; € S;”‘jp.
Then there ezists A € ST'(e) such that A < 3,5, Aj in S () and A is unique
up to O(e™®), in the sense that the difference of two such symbols is O(e*®) in
Sm( ). The semiclassical symbol A is called a resummation of the formal sym-

bol > im0l A;.

The Weyl product of two semiclassical symbols is again a semiclassical symbol
with an explicit asymptotic expansion (see [Fo], Theorem 2.49).

Proposition 54. If A = .. &' A; in SJ(e) and B < ) 5, e1B; in ST (e),
then A # B € St (g) has an asymptotic expansion given by

- —1)led
(438) eo=ei* Y S(ereayessn) @ @)

| 1
i 1AL
where it is understood that k, 7,1 € N and o, B € N,
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For example (A # B)g is simply given by the pointwise product AqBy and
- 7
(A # B)1 = A¢By + A1 By — -Q‘{AO,BU}
where {-,-} denotes the Poisson bracket on S;°(B(Hs)), defined through

d
0A OB 0AOB
ABy=S 227 T027 A8
4,5} ‘= 9p; 9¢;  9q; Op; (A.8)

Notice that, in general, {4, B} # —{B, A} since operator-valued derivatives do
not commute, in particular {4, A} # 0. The usual Poisson algebra is recovered
in the special case in which one of the two arguments is a multiple of the identity,
ie. A(z) = a(z)1ly,.

As a consequence of the previous result, it is convenient to introduce the space
of the formal power series with coefficients in S5°(B(#;)). This space, equipped
with the associative product given by (A.7) and with the involution defined by
taking the adjoint of every coeflicient, will be called the algebra of formal
symbols over B(H¢). In particular we will denote as M"(e) the subspace of the
formal power series with a resummation in S7*(¢), i.e.

M7 (e) = {Zgﬂ‘Aj A€ S;”“jp} .

j20

In the context of formal power series, the product defined by (A.7) will be called
the Moyal product and denoted simply as # . Notice that # defines a map
from MJ™ (g) x M}*(e) to M*™(g). The Moyal product can also be regarded
as a map from MM (e, B(H)) x M (e, Hs) to M ™2 (H;), where in (A.7) the
operator A and its derivatives act on the vector B and its derivatives.

To sum up the previous discussion, we wish to point out that one can prove
statements on three levels: formal symbols (i.e. formal power series), semiclassical
symbols, and operators on S(R?, H;) C L*(R?, H;). A simple example illustrates
the interplay between these levels. Suppose that two formal symbols A € M;™ (¢)
and B € M} (¢) Moyal commute, i.e. [4, Bly = A#DB — B#A = 0. Let A, €
Si(e) and B € S72(g) be any two resummations of A and, respectively, B.
Since we know a priori (by Prop. 54) that the Weyl product A, # B, belongs
to ST+ (e) it follows that the Weyl commutator [Ae, Bely is asymptotically
close to zero in S7"*™2(¢), which can be rephrased in the following way: for any
n,k € N there exists a constant C, x such that for any € € [0,&p) one has

1[4z, Bl |7 < G ®
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If p > 0 we obtain that definitely my +my — np < 0 for some n € N and then
Prop. 48 assures that the operator commutator [AE,B | can be bounded in the
B(H)-norm. Moreover, for p > 0, we can conclude that [AE,B | is a smoothing
operator (i.e. it belongs to OPS;* = NpuerOPST") and in particular one can
prove that it is a “small” bounded operator between the Sobolev spaces H? and
H for any ¢,r € N. To be precise, for any ¢,7,n € N there exist a constant
Ch, g such that

|, 5| < Cppre”

B(HY,He+r) —
for any ¢ € [0,¢&p), where HY stands for H?(R?, ;). Notice that for p=0and
my+msy =: m > 0it is not possible to conclude from [A4, Bl = 0 that [A,, B ] is a

bounded operator, since it could happen — for example - that [Ac, B ]# =e ¢ p ,
which is asymptotically close to zero in S7*(¢). In the following we will use the
same symbol for an element in S7*(e) and its expansion in M}"(g). As suggested
by the preceding discussion, we introduce the following synthetic notation.

Notation. Let be A and B semiclassical symbols in S7*(g). We will say that
B = A+ O_(e®)if B~ A is asymptotically close to zero in S7'(e) for p > 0.

With a little abuse, we will employ the same notation for pseudodifferential oper-

ators too, i.e. we write B = A+O_oo(e®)if B = A+0_(e ). As noticed above

this is a strong concept of closeness, since it implies that B—4 isa smoothing
operator. Compare with the following weaker concept.

Notation. Let be R and S two (e-dependent) operators on H. We will say that
R =8 + Oy(e*) if for every n € N there exists a constant C, such that

1R — Sz < Cag”

for every € € [0,&0). In such a case we will say that R is Og(e*°)-close to S.
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