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Chapter 1

Introduction

In this first chapter we briefly review the general phenomenology of
metal-molten salt solutions and the peculiar behavior of Na-NaX solu-

tions.

1.1 A short review on metal-molten salt
solutions

Solutions of alkali metals in their liquid halides (M-MX) display an
intriguing variety of behavior as a function of temperature and concen-
tration [1,2]. They exhibit a range of liquid-liquid immiscibility below a
critical temperature T,. At elevated temperature above T, a transforma-
tion from non-metallic (NM) to metallic (M) states can be continuously
studied in a homogeneous liquid phase. The critical metal mole fractions
z near the consolute temperature typically range from 0.2 <z < 0.6 in
the different M-MX solutions.

Despite the long history of research on metal-metal halide melts,




vigorous activity has continued to grow up to the present. Much of
the most recent work has been motivated by strong interest in the elec-
tronic states and metal-nonmetal transition. In the last few years not
only further studies of basic physical properties such as electronic con-
ductivity, density and magnetic susceptibility, but also increasing use of
spectroscopic techniques such as optical absorption, nuclear magnetic
resonance, electron spin resonance and neutron scattering, as well as
computer simulation techniques. These new approaches have resulted
in the resolution of some long-standing problems concerning the elec-
tronic properties of the solutions and have uncovered new features of
the transition of a metal into a nonmetallic ionic state.

The structure of pure molten salts is closely related to the degree
of dissociation. Alkali halide melts are fully dissociated ionic liquids in
which the inter-ionic coulomb forces impose a large measure of composi-
tional order. This means that a metal cation M* has a high probability
of being surrounded by a number (4-6) of halide anions X~ and vice
versa. Many polyvalent metal halides, in contrast, retain substantial
molecular character in the melt. Whatever the structure of the pure
molten salt, the central question raised by solution of small quantities
of metal concerns the state of the ‘excess’ electrons — the valence elec-
trons of the dissolved metal. There are many possible states that may be
formed: retention of the electrons by the ions to form dissolved neutral
atoms; delocalized dilute metallic states; Mott-Anderson multi-site lo-
calized states; polaronic states (F-center); metal dimers and small metal
clusters. Determination of the electronic state and transport mechanism

for low metal concentrations in molten halides is not only basic for un-



derstanding the physics inside, but also crﬁcial for understanding the
subsequent transition to the metallic state at higher concentrations. We
shall see, after comparing Na-NaBr with K-KCl solutions, that there is
bno universal description of the excess electron and different possibilities
mentioned above maybe occur in different solutions.

In this thesis we shall restrict our attention to extremely small con-
centration of excess metal (z ~ 3.1% and ~ 6.2%). At present the
general consensus in this dilute limit is that the added metal atom
dissociates into M* and e~ and forms a localized state analogous to
F-centers in ionic solids. The physical picture underlying the model
is that the e~ substitutionally occupies the place of an X~. This F-
center model describes quite well several sets of experimental data in
various M-MX system and is confirmed by recently developed computer
simulation techniques.

Freyland et al. [3,4] investigated the optical properties of liquid al-
kali metal-alkali halide solutions for different metal concentrations and
temperatures. If one adds a small amount (z ~ 0.01) of alkali metal to
one of its molten halides, the otherwise colourless melt becomes strongly
coloured. This effect is due to a strong absorption band in the visible or
near infrared. These bands are remarkably similar to those associated
with F-centers in additively coloured alkali halide crystals, although the
liquid-state spectra are typically shifted to the red by a few tenths of an
electron-volt. Absorption bands essentially identical to those in liquid
alkali metal-halide solutions were also obtained by Schmitt & Schinde-
wolf {5] using direct injection of electrons into pure alkali halides.

Pitzer [6] proposed that excess electrons in liquid alkali halides form




F-center analogues. The optical absorption would be due to electronic
transitions to the first excited state. These may differ from those in the
crystal in the cavity size, number of coordinating metal ions, lack of well
defined symmetry, etc.

Nicoloso & Freyland [7] obtained that the electrons contribute Curie-
type paramagnetism. This indicates that excess electrons are localized
in the dilute limit. Warren et al. [8] studied nuclear magnetic relaxation
of Cs-CsI and showed that the localization times are comparable with
the diffusion-limited lifetime of a local configuration of ions.

One indication of the structure of the localized states is provided by
the magnitudes of the hyperfine fields. Warren et al. [8] found that the
fields are too low to be explained by atomic or multi-site localized states.
The hyperfine field is a measure of the charge on the sites of the resonant
nuclei, so these results indicate that the charge is distributed mainly off
the size as should be the case for the F-center. Electron spin resonance
has been observed for low metal concentrations in various alkali halide
eutectic mixture by Nicoloso & Freyland[9]. The measured shifts of the
electronic g-factor are consistent with the F-center model.

Parrinello & Rahman [10] have shown how the dilute metal-salt so-
lutions can be modelled using a combination of molecular dynamics and
Feynman path integral techniques. In this approach the quantum prob-
lem is shown to be isomorphic to z;n appropriate classical problem. The
solvated electron is mapped on a closed flexible polymer of P points.
In their calculation the electron tends to form a compact highly local-
ized charge distribution. Their result for the electron-cation correlation

function g.,4(r) shows the F-center character of the electronic state by



the peak in g, 4 () at finite 7o ~ 2(4). The coordination number for the
electron is approximately 4 metal ions.

Selloni et al. [11] have adopted a mixed quantum-classical approach
to study electronic states and dynamical properties of dilute liquid K-
K(Cl, in which electrons are dealt with quantum mechanically, while ions
‘classically. This method will be reviewed below in Chapter 2. In their
calculations excess electrons spend most of their time in localized F-
center states. The calculation confirmed the F-center model and clarified

the nature of the electronic states and dynamical properties.

1.2 The peculiar behavior of Na-NaBr so-
lutions

Some properties of liquid Na solutions are known to differ significantly
from those of solutions involving heavier alkali metals. Much attention
has been focused in particular on the so called “conductivity dilemma” [12].
Addition of only a few mole % of alkali metal to a molten halide intro-
duces an electronic contribution to the electronic conductivity. Na solu-
tions have a stﬁking different property compared with the heavier alkali
metals K, Rb and Cs. Whereas the conductivity of the latter systems
increases rapidly, roughly exponentially with z, the increase in Na solu-
tion is sublinear at temperature T' < T,. At much higher temperatures,
the conductivity variation becomes comparable with those of the other
metal solutions.

In the early work of Bronstein & Bredig [12] it was suggested that

formation of Na, dimers at low température might effectively reduce the




concentration of conducting electrons and thus lower the conductivity
at higher metal concentrations. Later, Katz & Rice [13] and Durham
& Greenwood [14] offered alternative explanations based on reduced
electronic mobilities at higher metal concentrations. More recently the
formation of Na~ species has been also suggested [15].

A comparison of nuclear magnetic resonant properties of Na-NaBr,
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Figure 1.1: Electronic conductivity versus excess metal content in dilute
alkali metal-alkali halide melts. Negative curvature is typical of Na-NaX

solutions at temperatures well below T,[1].



Cs-CsCl and Cs-CsI by Warren et al. [16] separates the effects of electron
concentration and the mobility and supports the original ideas of Bron-
stein and Bredig. The electron concentration in Na-NaBr is reduced at
high metal concentration by formation of states which are both non-
magnetic and non-conducting. The dimer Na, and/or the Na~ ion
would satisfy this criterion.

The following picture of transport at low metal concentrations has
emerged from the foregoing experiments. In Na solutions at low temper-
ature, a certain fraction of excess electrons is removed from the conduc-
tivity process by formation of species such as Na, and/or Na~. These
are stable for times long compared with the jump times of the remaining
electrons. The mobility of the remainder is determined by the lifetime
of a favourable site for localization and is independent of concentration.
When such a site is disrupted by ionic diffusion, the electron enters an
extended state at the conduction band edge [17] and moves rapidly a
distance to a new localization site. Warren et al.[16] found the mean-
square jump distance < a? >2~ 204 from the correlation time and
conductivity values. A similar distance is found for the Cs solutions,
but the mobility is strongly dependent on concentration. A possibility
suggested by the authors is that species such as Cs; also tend to form in
the caesium solutions, but they afe in rapid equilibrium with localized
states so that their lifetime are less than or comparable with the solva-
tion time. The mobility would be enhanced by this equilibrium since an
electron can be localized at a new site after formation and dissociation

of the species.

Another example of the special behavior of Na-NaX systems is pro-
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vided by the optical absorption spectrum, which is usually considered
as the strongest evidence in favor of the F-center model. In the crys-
talline state, Mollwo and Ivey reported an empirical relation between
the maximum energy of the F-band, €, and the interionic separations,
T4 + r_, which reveals the main optical characteristic of the F-center,
the so-called Mollwo-Ivey relation (see, e.g., Ref.[18,19]). The investiga-
tions of the optical absorption constant by Freyland et al. [4] show that

the peak energy of Na-NaBr does not satisfy the Mollwo-Ivey relation,
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Figure 1.2: Optical absorption constant versus photon energy of lig-
uid Na-NaBr solutions at metal concentration ¢ = 4.2% for different

temperatures[4].



while in the other solutions, the relation is satisfied:
€m = 13.0(ry +r_)"2% (1.1)

Here ¢,, is in electronvolts at a constant reduced temperature of T'/T;, =
1.08 with T, the melting point of salts, and interionic distance in angstroms.
The spectrum of Na-NaBr is particular broad and the absorption band
at 1.65 eV occurs which can be deconvoluted into two bands, one at
1.42 €V that the authors interpreted as the F-band, due to that this
energy satisfies the relation (1.1), and an additional band at 1.8 eV (see

Figure 1.2). The origin of this behavior is not clear.

1.3 Plan and goal of the thesis

In this thesis we have studied the electronic states and dynamical prop-
erties of dilute liquid Na-NaX solutions by using a recently developed
Quantum Molecular Dynamics (QMD) method[11,20]. The aim of our
research is to understand the peculiar behavior of Na-NaX solutions de-
scribed above. We performed calculations for one (z ~ 0.031) and two
(z ~ 0.061) excess electrons in‘ molten NaBr. In the single electron case
we found that the excess electron forms a dipolar Na atomic-like state
that is rather different from the F-center-like states formed in the so-
lutions involving heavier alkali metals. Several features of the peculiar
behavior of Na-NaBr solution can be related to formation of this dipo-
lar atomic states, which is similar to that proposed by Logan [21,22,23]
and offers a simple clue to understand the optical spectrum. At higher
concentration spin pairing occurs and various species are observed. The

most likely complexes are found to be Na~ and Na,, in agreement with



earlier speculations {12,16] and at variance with that found in K-KCl
[20,24]. We also show that the greater strength of the Na* — e potential
in mostly responsible for the different behavior of the electronic states
in Na-NaBr.

This thesis is organised as follows. In chapter 2 the QMD method is
reviewed both for one and two excess electrons. In chapter 3 we present
+ our model calculations for NaBr solutions. Here some technical aspects
are also described. In Chapter 4 we describe the structure of electron
states in Na-NaBr solutions by calculating the electron-ion correlation
functions and studying the time evolution of the relative distance be-
tween the center of mass of the electron and ions closest to it. The
results for K-KCl solution are also shown for comparison. In chapter
5 the dynamical properties, and in particular the optical spectra are

discussed. Finally, in chapter 6 we present our conclusions.
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Chapter 2

The QMD Method

Recently developed computer simulation methods such as the Path In-
tegral (PI) [10], the Car-Parrinello [25] and the Quantum Molecular
Dynamics (QMD) methods [11,20] provide very powerful tools to study
the static and dynamical properties of a variety of materials.

In this chapter first we give a brief description of the classical Molec-
ular Dynamics (CMD) method and then the QMD method for a single
and two solvated electrons is reviewed. In QMD approach we confine
ourselves to the Born-Oppenheimer (BO) approximation. Namely, we
assume that the electrons always remain in the ground state pertaining
to the instantaneous ionic configuration. In the case of a many elec-
tron system, a further approximation is that of treating the electronic
quantum many body problem in the Local Spin Density (LSD) approx-
imation. In so doing we will loose information on the full many body
Wavefunétion and focus only on the electron density and spin polariza-
tion. The validity of these two approximations will be discussed again

below, for the various systems of interest.
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2.1 Classical Molecular Dynamics

The molecular dynamics method [26] consists in computing phase space
trajectories of a collection of molecules, which individually obey the
classical laws of motion, and to perform time average along the com-
puted trajectories. By the ergodic hypothesis, such time averages are
then treated as the thermodynamic ensemble averages for equilibrium
systems.

The approach taken by the MD method is to solve the equations
of motion numerically on a computer. To do so the equations are ap-
proximated by suitable schemes, ready for numerical evaluation on a
computer. The order of the error depends on the specific approxima-
tion, i.e., the resulting algorithm. In principle, the error can be made
as small as desired, restricted only by the speed and memory of the
computer.

Let the system consist of N particles. For practical re’asons, N is
chosen to be finite. Since we restrict ourselves to propertiéé of the
bulk at a specific density p we must introduce a volume, the MD-cell, to
retain a constant density. For computational simplicity a cubic volume is
usually chosen with volume V = L®. The introduction of the box creates
six unwanted surfaces. To reduce the effect of the surfaces periodic
boundary conditions, i.e., the basic cell is repeated identically an infinite
number of times, is imposed.

From a numerical point of view the MD method is an initial value
problem. One can derive recursion relations for the positions and/or
velocities (momenta) from the differential equations. These algorithms

perform in a step-by-step way. At each step an approximation for the
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positions and velocities is obtained, first at time ?;, then at ¢, > %,
etc. Hence, the integration proceeds in the time direction (time inte-
- gration algorithms). The recursion relation must clearly allow efficient
evaluation. In addition, the scheme must be numerically stable.

The implementation of the classical MD is straightforward. For a sys-
tem of N classical particles with the interaction potential @(ﬁl, e ,EN),
the trajectories, i.e. the coordinates Rj(t) and velocities ﬁl(t) at time
t, (I =1,...,N), can be obtained through a numerical integration of

Newton’s equations
MRy = -V ®Ry,...,Ry), I=1,...,N (2.1)

where the dots indicate time derivatives, and My is the mass of the I-th
particle. The major input is the interaction- potential that governs the
motion of particles.

The CMD method is, however, restricted to the treatment of classi-
cal particles and cannot give information about quantum effects in the
systerﬁ, which is an important facet of the physics of metal-molten salt
solutions. In particular questions such as the electronic states, the na-
ture of electronic diffusion processes and excitation spectra cannot be
answered by classical MD method. From this point of view, it is neces-
sary to introduce an approach which deals with the quantum particles,

“i.e., the excess electrons, by quantum mechanics.

2.2 One electron

We adopt a mixed quantum-classical approach in which the excess elec-

tron is described by its wavefunction ¥(r,t) and the ions by their po-
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sition {R}. The time evolution of ¢(r,t) is obtained by solution of the
time-dependent Schrédinger equation (TDSE)

20D b (BN 1) (2.2
with Hey = T + Ve, Where T = —1/2V? is the kinetic energy operator
and V.r = Ver(r,{R}) the electron-ion potential. Since V.; depends on
the ionic coordinates which vary in time due to the ionic motion, the
operator H({R}) changes in time. We shall denote by ¢,({R}) and
E.({R}) the n-th electronic eigenstate and eigenvalue corresponding to
the instantaneous ionic configuration {R}. The ionic motion is in turn

obtained by solving the classical equations

Mlagt]jft 6VU({R} /d W’( t)lz aVeI(T {R})

where M7 is the mass of the I-th ion and Vj; the interionic potential.

(2.3)

It is important to realize which are the conditions of validity of the set
of Egs. (2.2) and (2.3). Since these equations assume separability of
the electronic and ionic motions, they will be valid only if the motion
is adiabatic, i.e. if the electron is always in a given eigenstate of the
instantaneous Hamitonian [27], e.g. in the ground state ¢o({R}). This
requires the electronic excitation energy A to be always greater than
the ionic kinetic energies (~ kT'), for any accessible ionic configuration.
Viceversa, if for some {R}, A becomes of the order of or smaller than
kT, an electronic transition may take place. In this approach the occur-
rence of a non-adiabatic event is indicated by the fact that %(r,t) does
no longer coincide with the ground state ¢o({R(¢)}), but becomes a lin-
ear combination of various ¢,({R(¢)}). In this method it is therefore

14



important to periodically check the adiabaticity of the motion. This is
done by projecting the current electronic state onto the ground state

do({R(t)}) of the instantaneous Hamitonian H({R(t)}), i-e.

Po(t) = | < po({RONIB() > I (24)
Non-adiabatic events are indicated by a rather sudden change ‘of Py(2).
After such events the scheme becomes invalid.

For our special example of electrons solvated in a molten salt, we
found that at equilibrium the energy gap A between the ground state
and the first excited state is usually much greater than kT. In one of
our runs for NaBr we found a small departure from adiabaticity (Po ~
0.97) for which no special intervention was used, whereas in another
run the electronic motion was alwayé in the ground state (P, > 0.99)
in a rather long calculation (~ 6 x 10°At). This indicates that the
behavior of the system is ground state dominated and non-adiabatic
events occur with extremely low probability. For the calculation of most
physical properties the neglect of these non-adiabatic effects should thus
be justified.

The coupled set of Egs. (2.2) and (2.3) is solved numerically by
sequential updating of 1 and ({R}). The standard Verlet algorithm [28]
is used to solve Eq. (2.3)

RI(t + At) = ""‘RI(t — At) + 2R1(i) + fIAtz + O[(At)ﬂ (25)

where

BVII {R} BVeI( {R}) .

fr=- = [ arlp(r ) =

For the TDSE we use mstead the product formula

P(ryt + At) = e HEOAp()
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~ e—iVetAt/ze-iTAte—iVeIAt/2¢(T’t) + O[(At)a] (26)

Successive applications of the operators e~*Verdt/2 3nd ¢=iTAt 510 per-
formed switching from real space (where V,; is diagonal) to réciprocal
space (where T is diagonal) and viceversa by Fast Fourier Transform
(FFT) techniques[29,30] (A more detailed description of the solution of
the TDSE is given in Appendix A). It appears that the approximation
formula (2.6) maintains the unitarity of the Schrédinger time evolution,
and therefore the norm of the wavefunction .

The time step At to be used in the integration procedure (2.6) must
be small with respect to the inverse of a typical electronic frequency,
e.g. A~'. On the other hand, the difference in time scale between
the electronic and ionic motions usually allows us to use a larger time
step AT to integrate the equation (2.5). In our calculations we used
At ~ law. = 24 x 107Y"s and AT = 10 x At. With this choice, _

conservation of the total energy
Br =< $OIERODIE > + 3 S Vu({RDY)  (27)

was rather satisfactory (|AEr/Er| <1072 in a run of ~ 6 x 105At).

2.3 Two electrons

In this section we will extend the approach described in the previous
section to a multielectron system. Due to the great difficulty of dealing
with a many-body wavefunction, an exact treatment is impossible in
practice. An accurate and practically very convenient solution of the

quantum many-body problem can however be obtained by using the
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Local Spin Density (LSD) approximation to Spin Density Functional
(SDF) theory [31,32]. Using this approach, we describe a N-electron
system in terms of N one-particle wavefunctions ¥;.(r,t) (here o =T, |
is the spin label respect to spin up and down). The ;.(r,%) obey the
time-dependent Kohn-Sham (KS) equations

h@———%—t—) =[5 V" +Vetlr, LBY) + Vi) + Veear)ia(rt) (28)

subject to the initial conditions

'Lbia(tﬂ) = ?a({R(tO)})y

where Vg and V,., are the Hartree and spin-dependent exchange-correlation
potentials respectively, and {¢2, ({R(%0)})} is the set of one-particle
wavefunctions describing the electronic ground state corresponding to

the ionic configuration {R(%0)}. The set {¢2,({R(%0)})} is obtained by

minimization of the energy functional

1 ” 2
B=—3% [ dréia(r)V? bualr)
—I—/drn(r)Vez(T,{R})
—i——l-/dr/dr'M-l—E [n1,my] (2.9)
2 p—] T .

with respect to the {¢io(r)}. Here E,c[n1,n]is the exchange-correlation

functional. In the LSD approximation

BESPlng,ny] = [ dra(r)eac(na(r),ni(r)) (2.10)

where €,.(n1,n}) is the exchange correlation energy per particle of the

homogeneous electron gas with spin density ny and n;. The total density

n(r) is defined as
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n(r) = Z |git(m)* + Z i, (7))

1

= nT(r) +nl(r) (211)

It is customary to discuss ¢, in terms of

r— (_{)1/3 (2.12)

dmn

for the density, and spin polarization

{(r) = n—-——————T(TL€r; () (2.13)

The Monte Carlo results of Ceperley and Alder [33], parametrized by
Perdew and Zunger [34], are used for the calculations of ¢,. for both the
unpolarized (U, { = 0) and polarized (P, ¢ = 1) cases. For intermediate
spin polarizations 0 < {( < 1, we used a standard interpolation formula,
in which the correlation energy has the same polarization dependence

as the exchange energy

€ac(T25¢) = eoe(re) + F(Q)len(rs) — eZ(r.)] (2.14)

where
L+ Y+ (1= —2
24/3 2

The explicit spin dependence exchange—correlation potential is given

V) = LNy o

f(¢) =

(2.15)

thus splitting into two orthogonal subspaces.
For the set of {¢,(r)} which minimizes the energy functional (2.9),

n(r) and {(r) coincide with the true ground state density ng(r) and spin

18



polarization (o(r) of the system respectively, while E becomes equal to
the ground state energy Eo({R}).

Finally the ionic motion is described by classical equations similar

to Eq.(2.3)

3VH

g =~ 22 [ oy 20 )

(2.17)

We solve the coupled set of Eqs.(2.8) and (2.17) using techniques
similar to those described in the previous section for the single elec-
tron case. Due to the unitarity of the approximate formula (2.6), if
the wavefunction ;, are initially orthogonal, they will maintain this
property during all subsequent time evolution. For a system of two
electrons, this remark is particularly relevant in the case of parallel spin
electrons where orthonormality of the t;, is a necessary consequence
of the Pauli principle. The time step to be chosen to integrate the
equation (2.8) is At ~ 0.5a.u., while for the ionic motion the time step
AT = 20 x At = 10a.u.. In one of our runs, we used At = 0.4a.u. to

‘maintain the conservation of the total energy.
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Chapter 3

Model Calculations

In this chapter we describe in detail our calculations for a model of

electrons solvated in NaBr.

3.1 MD cell and representation of the elec-
tronic wavefunction

In our system periodic boundary conditions are imposed, each unit box
containing 32 Na* cations and 31(30) Br~ anions and 1(2) electron(s)
in order to keep the system neutral. We represent each wavefunction on
a discrete mesh of 16° points in the cubic Molecular Dynamics (MD) cell
of length ~ 25.4a.u.. Such a small simulation box was found adequate
for the study of most properties, since, as we shall see, the electron
states are usually well localized. Fourier transforms used to switch to
reciprocal space, are performed using 16° reciprocal lattice vectors, i.e.,

all the G vectors compatible with the choice of the mesh in direct space.
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3.2 Potentials

a) Ion-ion interactions

In the case of the alkali halides the interionic forces are predom-
inantly coulombic and each ion is usually assumed to have a charge
numerically equal to the charge on an electron. The other important
term in the interionic potential is that describing the short-range repul-
sion, which arises physically from the ‘overlap’ forces between ions. We

take the Born-Meyer potential [35]

@,-j(r) = Cijbe(ai+aj_r)/p + (31)

r
where b is the same for all salts, o; and o; are lengths characteris-
tic of the ion ¢ and 7, p is a ‘hardness parameter’ characteristic of
the particular salt, and c;; are the numerical coeficients introduced
by Pauling. Z; and Z; are the ionic charges. The calculation of the
parameters in the repulsive terms has been carried through by Tosi
and Fumi [36] for all the alkali halides. The calculations were made
by fitting experimental crystal data. For NaBr salt the parameters
are: b = 3.38 x 107%erg,cy,y = 1.25,¢,. = 1.00 and c__ = 0.75,
op = 1.170(4),0_ = 1.716(A), and p = 0.340(4).

We treat the short-range part of the ion potential in real space,
while the long-range part was treated by Ewald summation method in
reciprocal space.

b) Electron-ion interactions

The electron-ion pseudopotentials were taken to be a smoothed ver-

sion of those used in Ref.[10], i.e.

Vet = IF%erf(r/Ri) (3.2)
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where the core radius R, = 3.0a.u. for Nat and R_ = 2.2a.u. for
Br~. Such smoothing is required by our use of a discrete mesh to
represent the wavefunction 3 and does not introduce any significant
quantitative effect. The R. is not physically meaningful but is just a
cutoff radius which is again related to the use of a discrete si)atial mesh.

Reasonable variations of this value leave our results unchanged. The
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Figure 3.1: 3s pseudo-wavefunctions for Na, obtained using the ab initio
pseudopotential of Ref.[38] (solid line) and our model potential (dashed
line).
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R*/6.0 (a.u.)

core radius for Na* is chosen to approximately fit the atomic ionization
potential. With the form (3.2) of our electron-ion pseudopotential, the
value R, = 3.0a.u. is found more appropriate than the value 3.2a.u.
commonly used in Heine-Abarenkov pseudopotentials[37]. The resulting
atomic 3s pseudofunction is reasonably close to that given by ab initio

pseudopotential [38] (see Figure 3.1).

3.3 Preparation of the initial state

An important feature of the calculations is the preparation of the initial

state. First of all we prepare a well equilibrated liquid of 32 Na™ and

4 I 1 ! !

0 10 20 30 40
time (1000.a.u.)

Figure 3.2: Time dependence of the ionic mean square displacement,

obtained using 20 starting points in an ionic trajectory of run 240,000a.u.
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31(30) Br~ in a neutralizing uniform background at temperature of
about 1250K and density of 2.3 g/cm? for both cases. We start from
a crystal supercell where 1(2) Br~ ion(s) are substituted by a negative
charge background with the same total charge. We heat this system
by rescaling the velocities of the all ions, the temperature being simply
related to the average ion kinetic energy.

To check whether the system is in the liquid state, we follow the

mean square displacement of the ions

1 T
R (t) = Jim 7o /O dt'zlj[R,(t' +1) — Ry(t')]? (3.3)

where Ny is the total number of ions and summation is over all ions. In
a liquid the value of the mean square displacement increases with time.
As shown in Figure 3.2, the long-time part of R*(t) is approximately

linear, indicating a diffusive motion. By using the Einstein formula

Dy = lim R*(t)/6t (3.4)
we can obtain the diffusion coefficient D; ~ 1.0 x 10~*c¢m?/s. The radial
pair correlation function gye+- B»-)(r) between positive and negative
ions, as well as the pair correlations between all positive (9(Wa+—Na+)(T))
and all negative (g(g,--p--)(r)) ions are shown on Figure 3.3. They
are very similar to the pure molten salt pair correlations and exhibit
the characteristic alternation of positively and negatively charged shells.
This is to be expected here since the electron concentration (z = 0.031

and 0.062 for the single and two electron case, respectively) is very low.

A typical liquid configuration was stored, and for such a fixed ionic

configuration we remove the uniform background and calculate the ground
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state of the 1(2) electron(s) system. The ground state eigenvalue Eo and

eigenfunction ¢ of the electrons were determined in the different way

for the one and two electron cases, respectively.

For the system of 32 Na', 31 Br~ and one electron, we calculate the
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Figure 3.3:

10.0 12.0

Radial ion-ion pair correlation functions g(ya+-p.-)(7) (dotted line),

g(Na+-Na+)(r) (solid line) and g(p,-_p,-)(r) (dash line) in molten salt

Na-NaBr. On the right scale the corresponding coordination numbers

are also indicated.
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ground state of the Hamitonian H({R(¢)}) by standard diagonalization

using a plane wave basis set. Due to the smoothness of our electron-ion

NS

A

o
4

i
D) E

(X

Figure 3.4:
Charge density contour plots for the initial states of our run integrated
along z(left), y(center) and x(right). Top panels: one electron case.

Middle and bottom panels: two electron case.
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pseudopotentials, we found that a kinetic energy cut-off of the order of
2 Ry, which corresponds to 500-600 plane waves, is sufficient to ensure
very good convergence. For the system of 32 Na™, 30 Br~ and two
antiparallel spin electrons, the ground states were calculated by mini-
mizing the energy functional (2.9) with Steepest Descent(SD)[39] and/or
Conjugate Gradient(CG) [40] (see Appendix B) methods. The CG is
much more rapidly convergent. The criterion we used to ensure the
convergence is that the energy difference between two sequence steps is
less than 10~"a.u.. The contour piots of the integrated electronic charge
density p(z,y) = [dzn(z,y,z) etc. for the initial state of one and two
electron cases are shown in Figure 3.4. The ground state ¢o({R(%0)}) of
the electrons together with the stored ionic configuration {R(%o)} were

used as the initial conditions for running our dynamics.

3.4 Initial dynamics

a) Single electron

Initially the electronic energy E =< v|H.r|$p > decreased steadily.
This was found to correspond to an adiabatic localization of the electron
from an initial fairly delocalized state into a well localized state. This

is indicated by the behavior of the participation ratio [41]

p=10 [ drip(r)') (3:5)

which is a measure of the localization of the particle wavefunction (0 <
p <1, where p = 0 and 1 for a perfectly localized and delocalized state
respectively). The value the participation ratio changed from the initial
value ~ 0.12 to ~ 0.025 at time 15,000 a.u. in our case. In Fig. 3.5 we
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show the typical charge density of the ground state of our run, which is
s-like, and that of the first excited state, which is p-like.

b) Two electrons with antiparallel spins

For two antiparallel spin electrons no constraint must be imposed
to satisfy Pauli’s exclusion principle. Initially the electrons localized
to form two distinct localized states from the initial quite delocalized
ones. By the time 25,000 a.u., the two electrons with antiparallel spins
have paired, giving arise to a single-center localized state which is more

spread out than single electron state. These qualitative feature are sum-
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Figure 3.5:
Top panel: Contour ploté of the electronic density of the ground state
¢o for a typical configuration. Bottom panel: the corresponding first

excited state ¢,.
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marized in Fig. 3.6 where we show contour plots of the charge density
p(z,y) = [ dzn(z,y,z) etc. at time 15,000 a.u. (when the two electrons

are separated) and 25,000 a.u.. (when the two electrons are paired).
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Chapter 4

Structure of Electronic States

in Dilute Na-NaX Solutions

In this chapter we describe the structure of one and two electron states

in dilute Na-NaBr solutions and compare it to that in K-KCl solutions.

4.1 Single electron: dipolar atom

a) Electron-ion correlation functions
In order to characterize the electronic structure and the ionic dis-
tribution around the localized electron, we introduce the following pair

correlation functions between the electron and the Nat and Br~ ions

Q

0e(1) = e <§j/dm )6(|"' — Re,| —7) >  (41)

Here () is the volume of the simulation box, N, the number of elec-

trons, and N, (N_) the total number of cations (anions) to which the
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sum over I (I_) is extended, and the bracket indicates temporal aver-

age.

6‘0' ¥ T T T T T T 1 ' i

5.0

Figure 4.1:

Electron - cation (full line) and electron - anion (dashed line) radial pair
correlation functions for an electron in NaBr. In the inset are the results

of a similar calculation for an electron in KCI at ~ 1200K.
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The functions (4.1) are displayed in Fig. 4.1. In the inset we also
show, for comparison, the same quantity for K-KCI. It is apparent that
in both cases the electron is localized in a region where the probability of
finding an anion is very low. However a substantial difference of electron-
cation correlation function between Na-NaBr and K-KCl is evident, and
in particular it is clear that the electron states in NaBr are much more
localized and atomic-like than in KCl. Also indicated in Fig. 4.1 are a

few values of the coordination function

47N, ¢
Zi(r) = == [ goa(s)s?ds (4.2)

from which we may roughly estimate that the average coordination num-
ber Z, is between 2 and 3 in NaBr, Whe‘reas the corresponding number
for the F-center -like state in KClis Z; ~ 4.

b) Ionic trajectories in proximity of the electron

Since the electron is on average well localized, we can define the
center of mass W of the electron . In order to determine W, one has to
first to define the position operator 7 for a periodic system. A possibility
which works well for localized wavefunctions is to define the expectation

values < 7 > as follows [20,42]

L L
< o >= o= Im(In < ple?™e/T|p >) (4.3)
a=T,Yy,z

where L is the size of the unit box (which we assume cubic) and 7,
is the standard definition of the position operator.
Using Eq.(4.3), we calculate first the center of mass W of the wave-

function 9 and then calculate the relative distance between the center
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of mass and the ions closest to it. In Fig. 4.2 we show the typical time
evolution of the distance (< 9a.u.) during one of our runs. For com-

parison, in the right panel of Fig. 4.2 a similar plot for K-KCl is also

given, showing typical F-center configurations. It appears that the con-

0 ) 10 0 ) 10
time (1000 a.u) time (1000 a.u)

Na—NaBr K—KCl

Figure 4.2:
Typical time-evolution of the distance between the center of mass of
the electron and the ions closest to it. The trajectories of the cations
(anions) are drawn as full (dotted) lines. Left panel: Na-NaBr. Right
panel: K-KCI.
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figurations in NaBr are typically atomic-like, i.e. there is a single Na*
ion which is much closer to the electron than all the others, clarifying
the origin of the low coordination number Z, in Na-NaBr. However,
Naf-molecular-like (see Fig. 4.3.) and F-center-like configurations are
also observed. In the atomic-like configuration, the distance between
Nat and the electron is of the order ~ 2 — 2.5a.u., whereas the next
Nat neighbors sit at distance of ~ 5a.u. or more. For the F-center in
KO, in contrast, the distance between the electron and the cations of
the first solvation shell is typically in the range 4 - 8 a.u., as illustrated
in the right panel of the Fig. 4.2.

¢) Dipolar-atomic states

In the atomic-like configurations there is a strong admixing of p
state into the s atomic state, which leads to the formation of a dipole
moment. The mechanism for stabilizing the hybrization is provided by
the solvent electric polarization induced by the atomic dipole. This
mechanism, suggested by Logan [21,23], has been shown to be operative
in a variety of situations.

The total energy AE of such a dipolar atom relative to the atomic
non-polar state, after a simple manipulation of the formulas given by
Logan, can be expressed in terms of the fraction f, of p-character in the

electron wavefunction as (A detail description see Appendix C)

where Ey = E,— E, is the atomic excitation energy. Correspondingly,

the dipole moment p is given by

p=2M/F(1 - £,) (4.5)
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R(a.u.)

where M =< slex|[p > is the intra-atomic matrix element of the
dipole operator ex. For our dipolar atomic states in NaBr the projec-
tions of the electron wavefunction onto the s and p states centered on the
nearest Na* ion are given in Fig. 4.4. These are typically f, ~ 0.75 and
fp ~ 0.2. Using this value of f, together with Eq = 2.1eV and M ~ 8 D
in Egs.(4.4) and (4.5), we obtain AE ~ —0.14eV and g ~ 6.4 D.

The latter value is in reasonable agreement with the dipole moment

0.0 . { . 1 . 1 L 1 )
0.0 2.0 4. 6.0 8.0 10.0

0
time(1000a.u.)

Figure 4.3: Ionic trajectories in proximity of the electron showing a
Naj- molecular-like state. The trajectories of the cations (anions) are

drawn as full (dotted) lines.
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Projections

of ~ 5 —6 D which is estimated using the observed average distance
~ 2—2.5 a.u. between the center of mass of the electron and the closest

Nat jon. We note that the dipolar atom can be continuously changed
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Figure 4.4:
Projections of the electron wavefunction onto the s (dotted-dash line)
and p (dotted line) states centered on the nearest Na* ion for 66 con-
figurations spaced by 5000a.u. in time. The line is just a guide for the

eye. The summation of the s and p states is plotted as a solid line.
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into the F-center state upon increasing the amount of hybridization into
the higher excited states.

For typical F-center configurations in KCl in fact the projections
of the electronic Wavefun-ction on the nearest cation are f, < 0.6 and
f» = 03. It is interesting to note that also the highly simplified
expression (4.4) for AE predicts a breakdown of fhe dipolar atom picture
for f, — 0.5. |

The key parameter which appears to control the relative stability
of the dipolar atomic state vs. the F-center in our calculations is the
strength of the electron-cation potential, which determines, in particu-
lar, the values of the excitation energy and iomization potential of the
metal atom. We have indeed verified that the dipolar atomic state of
NaBr evolves gradually to an F-center state when the Na*-potential
is changed abruptly to that of K+ (with all the other parameters of
the calculation left unchanged), in agreement with the results of similar

Path-Integral calculations [10].

4.2 Two electrons: spin paired species Na~

and Nas

We performed calculation for the two electrons with paired spins. Para-
magnetic susceptibility measurements [9] indicate that as the solvated
electron concentration increases, spin pairing becomes operative. Simi-
larly, numerical PI [24] and QMD [20] calculations for K-KCl solutions
have shown that two antiparallel spin electrons attract each other and

tend to form a bielectronic complex.
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We used Eq.(4.1) to characterize the ionic distribution around the
two antiparallel electrons in terms of radial pair correlation functions

between the electrons and Nat and Br~ ions. The functions g. + are

TWO ELECTRONS
T T T T 140

—_ 10.0

6.0

2.0

Figure 4.5:

Electron-cation (full line) and electron-anion (dashed line) radial pair
correlation functions for two antiparallel electrons in NaBr. Curves re-
ferring to the scale on the right give the number of ions surrounding the

electron.
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shown in Fig. 4.5, which is substantially identical to that in Fig. 4.1 for
the single electron case.

As in the single electron case, we have studied the time evolution of
the distance between the centers of mass W, of the two single-particle
wave functions ¢, and the ions closest to these. These trajectories are
shown in Fig. 4.6 for two electrons in the same time period. The analy-
sis of the the ionic trajectories indicates that the two electrons are most
frequently close to a single Na%t, thus forming a Na~ species with a
pronounced dipolar character. Other species are also observed, most
noticeably Na; molecular and bipolaron-like complexes where the two
electrons sit in a fluid cavity which is surrounded by ~ 4 cations [20,24].
All these spin-paired species can change into one another via two dif-
ferent mechanisms. The first is due to the ionic diffusion which con-
tinuously causes the evolution of one species into another making the
distinction between the two different species sometimes arbitrary. The
second is more abrupt since it occurs via jumps similar to those in the
one electron system. Such a situation is illustrated in Fig. 4.6, where
the jump is indicated by an arrow. These jumps lead to dissociation
of the current species followed by localization of the two electrons in
different spatial positions. Recombination of the two electrons to form
spin-paired species can also occur via jumps of one electron to the same

spatial position of the other.
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Figure 4.6:
Ionic trajectories in proximity of the two electrons with antiparallel spins
during the same period. The trajectories of the cations (anions) are
drawn as full (dotted) lines. Various species formed by the two elec-
trons are also indicated. The noise of the curves shown is due to the
fluctuations of the c.o.m. of the electrons. The arrow indicates a jump-

ing event.
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Chapter 5

Dynamical Properties:
Optical Spectrum and
Diffusion Coeflicient

Iﬁ this chapter we study the dynamics of the electrons and consider both
short and long time scale properties, namely the optical spectrum and
transport. In doing so, we shall neglect the non-adiabatic effects men-
tioned in chapter 2, which should not affect significantly such physical

properties.

5.1 Optical absorption spectra

a) single electron case

We calculate the optical conductivity o(w), using the Franck-Condon
approximation, i.e. evaluating the spectrum for a fixed ionic configu-

ration and averaging over several different configurations. For a given
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ionic configuration {R}, o(w) is given by the Kubo-Greenwood formula

1 ! i * I

(arb. uhit)

opt.

g

Figure 5.1:
Optical spectrum for Na-NaBr (solid line) and K-KCL (dashed line) at

concentration z ~ 3.1%. These spectra were calculated by averaging
83 and 60 configurations for NaBr and KCl, respectively. A Gaussian
broadening of width § = 0.136eV has been used in both cases. Curves

have been normalized to the same area.
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[43]:

o) = T = 3| < da{BNelgo({RY) > [*6(EBA({RY) ~ Bo({R}) ~ )
i (5.1)
where v = —(thV/m) is the electron velocity operator and the sum-

mation is extended to all excited state. In our calculations, we av-
eraged over 80 different ionic configurations generated using Egs.(2.2)
and (2.3). Successive configurations differ by a time interval of 5000A¢,
which roughly corresponds to a typical ionic period. The eigenvalues
and eigenstates were obtained by standard diagonalization using a plane
wave basis set. The results of such a calculation are displayed in Fig. 5.1.
The spectrum is dominated by transitions from the ground state (typi-
cally s-like) to the first few excited states (typically p-like). The gap in
energy between ¢, and ¢; is usually > 1.0 eV, whereas all high excited
states are quite close in energy. For comparison, the result of a similar
calculation for the F center in KCl at 1200K is also shown in Fig. 5.1.
It appears that the shape of the spectrum in NaBr is broader that in
KCl, in agreement with the experiment [4].

b) two electron case

The calculation of the spectrum for the two-electron system has been
performed in a similar way. If we assume that the KS wave functions
and eigenvalues correspond to single-particle properties of our system,
one can approximately calculate the optical conductivity as in the single

electron system

o) = T LTS < Balolgla > Po(Bus— Bow —h)  (52)

a v,

where v(c) refers to occupied (unoccupied) KS states. The KS ground-
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state and self-consistent potential were calculated by Steepest Descent[39]
and/or Conjugate Gradients[40] methods. The excited states were ob-
tained by matrix diaganalization. In Fig.5.2 we show the spectrum ob-
tained from Eq.(5.2) averaging 60 different configurations equally spaced
by 5000At. Some noise is caused by our limited sampling.

(arb. unit)

opt.

o)

0.0 1.0 2.

E(€V§

3.0 4.0

Figure 5.2:
Optical spectrum for Na-NaBr at concentration z ~ 6.3%, calculated

using the LSD approximation and averaging over ~ 60 configurations.
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¢) comparison with experiment

(arb. unit)

opt.

o)

0.0 1.0 3.0 4.0

2.0
E(eV)
Figure 5.3:
Optical conductivity of Na-NaBr at metal concentration of 4.2%. The
experimental (dashed ﬁﬁe) and theoretical (full line) results have been
scaled to the same height. The theoretical prediction for this concentra-

tion are obtained by linear combination between the calculated spectra

for the one (z ~ 3.1%) and two (z ~ 6.2%) electron systems.
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We have compared our results with the experimental data for an
excess metal concentration of 4.2%. We obtained the theoretical pre-
dictions for the same concentration by linear interpolation between the
calculated spectra for one (z ~ 3.1%) and two (z ~ 6.2%) electron sys-
tems. The results at z ~ 4.2% are shown in Fig.5.3. together with the
experimental spectrum. The agreement between theory and experiment
is remarkable. Although the calculated lineshape is obtained as an av-
erage of spectra that pertain to different configurations of the liquid,
the experimental ‘observation that the absorption band results from the
superposition of two gaussian bands, can be tentatively related to the
presence of dipolar-like states, where the p-like excited states split into
a singlet and a doublet. The absorption peaks should correspond to
transitions from the ground state to these singlet and doublet states.
A simple estimate of their splitting has been given by Logan for the
case of alkali atoms in rare gas solids[23]. In this case the splitting is
Aw = Eof, /(1 — 2f,) (see Appendix C). With our value Eo ~ 2 €V we
find Aw ~ 0.4 eV (the experimental separation between the two bands)
for f, ~ 0.15, which is in reasonable agreement with our calculated

values for this quantity (see Fig 4.4).

5.2 Diffusion coefficient

In this section we consider the calculation of electronic transport prop-
erties, namely the electron diffusion coefficient D,, for which the Franck-
Condon approximation is no more adequate. Since in our problem the

electron is most of the time well localized, we can calculate its mean
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R*R/6. (a.u)

square displacement as
1 /T 2
r(1) = Jlim = / A< r(t' +1) > — < r(t) >] (5.3)
— o0 0

where < r() > is the expectation value of the electron position, which
is defined in Eq.(4.3) for a periodic system.

a) one electron case

Our result for r?(t) for the single electron case is shown in Fig. 5.4,
which is averaged by choosing different tiﬁes as starting points in a
single electron trajectory. It is apparent that the long time behavior
of r2(¢) is approximately linear, indicating diffusive motion. Using Ein-

stein formula D, = lim,;_7%(t)/6t for the electron diffusion coefficient

100. T T T T i T T T T T

5. ‘ -

25. ~ —

0. L 1 i 1 L 1 L i 1 | L
0. 5. 10. 15. 20. 25. 30.

Time(1000.a.u)

Figure 5.4: Mean square displacement of the electron as a function of

time.

48



we find the value D, ~ 2.0 x 1073¢m?s~t. It is remarkable that in our
calculation D, is more than one order of magnitude larger than the ionic -
diffusion coeflicient Dy ~ 1.0 x 10™%em?s™!, despite the fact that the mo-
tion of the electron is adiabatic. The high electronic diffusivity appears
to be related to jumps between two spatially separated sites. Such jump
are caused by the ionic diffusion which may successively make different
sites in the liquid more favorable for the electron localization. During
the hopping process the electron remains in the ground state, despite
its wavefunction is quite delocalized, and the energy gap decreases sub-
stantially. It is possible that the gap becomes so small that transitions
to excited states occur. This is the case in the rare non-adiabatic events.
After this fast hopping process the electron becomes localized again.

b) two electron case

We follow the dynamics of the two electrons in a way similar to that
for a single electron. The results of the mean square displacement are
shown in Fig. 5.5. In both curves the long time behavior of r3(t) is
approximately linear. We take the average of two values of diffusion
coeflicients and find D, ~ 1.5 x 10™3cm?2s~1.

It is interesting to point out that the dissociation of the bielectron
complex is usually related to the sudden jump of one of the two paired
electrons, as indicated by an arrow in Fig.4.6. These jumps appear to be
rather similar to those described above for a single electron. We did not
observe events where both electrons of the paired species jump together
from one localized states to another one in different place. Instead, the
spin paired species moves smoothly, approximately on the same time

scale of the ions.
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R*R/6.

c¢) electronic conductivity
These jumps are the essential mechanism that determines the elec-
tronic conductivity o. of our systems. The electron mobility is related

to the diffusion coefficient by

fre = EE?D" (5-4)
From the electron mobility we obtain for o, = n. éue the values o, ~ 1.0
and 1.6 Q7! ¢m™? for the one and two electron cases respectively. This
corresponds to a sublinear increase of o. with electron concentration,

in agreement with experiments{2]. This behavior is to be related to the

fact that the mobility of the spin-paired species is very low, as indicated

150, —————F——F——1—————————

100. [ . -

50. [ . =

Time(1000.a.u)

Figure 5.5: Mean square displacement of the. two antiparallel spin elec-

trons as a function of time.
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also by the NMR result[16]. The calculated value of o, are however
about a factor 5 smaller than the experimental ones [2,44]. One might
probably ascribe this discrepancy to the crudeness of our electron-ion
pseudopotentials, and to the smallness of our molecular dynamics cell

which hampers dissociation and recombination processes.
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Chapter 6

Summary and Conclusions

In this thesis we have studied the electronic states and dynamical proper-
ties of dilute Na-NaBr solutions bvy using a recently developed Quantum
Molecular Dynamics method.

The static structure of electron states in Na-NaBr has been charac-
terized by the radial electron-ion pair correlation functions. Comparing
with KCl, we have found that the electron states in NaBr are much
more localized and atomic-like than in KCl. The average coordination
number is between 2 and 3 in NaBr, whereas the corresponding number
for F-center-like states in KCl is about 4. By studying the typical time
evolution of the distance between the center of mass of the electron and
the ions closest to it, we observed that usually there is a single Na*t
ion which is much closer to the electron than all the others. This means
that the configurations in NaBr are typically atomic-like. However Naj -
molecular-like and F-center-like configurations are also observed. We
have also studied a system with two antiparallel spin electrons. The

electron-ion pair correlation function is substantially identical to that
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for the single electron case. Furthermore the two electrons attract each
other to form a non magnetic complex. The two electron complex is
most frequently close to a single Na* to form a Na~ species, although
other species such as Na, molecules and bipolaron-like complexes are
also observed. Dissociation of the spin-paired species occur via jumps
of one of the electrons. After such jump the two electrons localize in
separate spatial positions forming states similar to those of the single
electron case.

The jumps are the essential mechanism that determines the elec-
tronic conductivity o, in our system. The sublinear increase of ¢, with
the electronic concentration can be related to the fact that the mobility
of the spin-paired species is very low, of the order of the ionic mobility.

Our calculation for the optical absorption spectrum is in very good
agreement with the experiment. The experimental observation that the
lineshape results from the superposition of two bands can tentatively be
related to the existence of dipolar-like states, where the p-like excited
states a.fe split into a singlet and a doublet.

In conclusion, we have seen that the structure of the electronic states
in dilute metal-metal halide solutions in not uniquely F-center-like, but
rather depends on the strength of the potential of the alkali metal
atom. In the cases where this potential is sufficiently strong, e.g. in
Na-solutions, but most probably also in Li-LiX solutions for which very
little experimental information is available, atomic-like states with some
dipolar character appear to be favored with respect to the F-center. A
dipolar Li atom characteristic of the excitonic state appears to have

been observed in the path integral quantun Monte Carlo calculations
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of Sprik et al.[45], for a single Li atom dissolved in liquid ammonia at
T = 265K.

The results presented in this thesis are in agreement with earlier
speculations and theoretically interpret the anomalous behavior of Na-

NaX solutions.
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Appendix A

Solution Method for the
Time-dependent Schrodinger

Equation

We shall be concerned in this appendix with solutions to the time-
dependent Schrédinger equation(TDSE) in three Cartesian coordinates,

which in atomic units is:

0y (z,y, 2,1 1
z_ib_(féz_z_.)_ = _§V2¢(m,y,2,t) + V(z,y,2)¢(z,y,2,t). (A1)
where
2 2 2

= Ba? + Oy? + 8z
We review briefly the symmetrically split operator algorithm for ad-

vancing the solution to Eq.(A.1) by an incremental time At. This can

be expressed formally as

(7, to + At) = e HBALY (1)
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— e-—iAtV’/tle—iAtVe—iAtVz/4¢(r, to) + O[(At)s] (A.S)
Alternatively,
1/)(7’,750 + At) — e—iAtV/Ze—iAtV7/2e—iAtV/2¢(T’ to) + O[(At)a] . (A4)

In Eqgs.(A.3) and (A.4), commutation errors give rise to the third order

term in At¢, and the operator
exp(iAtV?/4) (A.5)

applied to ¥(r, 1) is equivalent to solving the free particle wave equation

.0 1, 0° o

Yot T 2'0z2 + Oy? + 8z2)¢

(A.6)

over a time At/2, with ¥(z,y, z,to) as the initial wavefunction at ¢ =
to. The solution to Eq.(A.6) is obtained with help of the band-limited
Fourier series representation

N/2 N/2 N/2

Wemnd= L S L bimea (e +my+na)

l:—N/Z-i-l m:-—N/2+1 n=—N/2+1
(A7)

where
Yima(to + A8) = Pima(to)eop[—(At/2)(2n/ Lo (I +m? +n?)], (A.5)

and Ly is the length of a side of the computational box. The right-hand
side of expression (A.3) is thus equivalent to free particle propagation
over a half time increment, a phase change from the action of the po-
tential applied over the whole time increment, and an additional free
particle propagation over a half time increment. If many factors of the
form (A.3) are applied in sequence, pairs of half-step free particle propa-

gation combine into full-step propagations, applied in momentum space,
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alternating with phase changes of the wave function executed in config-
uration space. The only exceptions to this rule are the half steps of
propagation applied at the beginning and end of the calculation. This
procedure is very efficient and accurate, when implemented with the

help of the Fast Fourier Transform (FFT) algorithm.
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Appendix B

Conjugate Gradient
Minimization of the Energy

Functional

Let us suppose that the function f to be minimized can be approximated
by a multidimensional quadratic form around some point P taken as the

origin of the coordinates
f(X)=mce—<bX >+ <X|A|X > (B.1)

where
o of
v B:cié)wj

with a symmetric positive definite L x L Hessian matrix A. An iterative

X = (o1,82,21) , = f(P), b=—Vflp, A p (B.2)

minimization procedure is then defined by the sequence:
pirtl) = p() L AR p=0,1,2... (B.3)

where A(™ is a scalar and A(™ is a vector in multidimensional space. By

using the information contained in the matrix of second derivatives A, a
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single operation is sufficient to minimize a perfectly quadratic function
f. For large L it is impractical to deal with the large matrix 4. In
the conjugate gradient (CG) method [46] information on A4 is only used
implicitly to define an optimal set of directions h(™ in the sequence of
equations (B.3), where the scalar A" is obtained by a one-dimensional
minimization along the line defined by h{®). The directions A(™ are given
by

a =) 97 =0 (B.4)

g £ =Ry =123,

where

g™ =~V f(P™)

< gD gl
A = g > (B.5)
< g|g(n) >

The directions h(™ are said to be conjugate. One can show [46] that
for a quadratic function like the one in equation (B.1), the following

conjugacy property is satisfied
<h A R™ >=0 Vn#m. (B.6)

This property guarantees that each step is actually an improvement over
all the preceding ones, a property not shared by steepest descent (SD)
based methods. The reason is that SD steps are often orthogonal or
nearly orthogonal to one another.

It is natural to apply the CG procedure (equations B.3-5) to the elec-
tronic minimization problem. A difficulty arises in this respect because
of the existence of orthonormality constraints in the electronic problem.

These originate forces of constraint that must be taken into account
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when the line minimizations are done. In order to deal with such con-
straints it is convenient to reformulate the electronic problem in terms
of linearly independent but not orthonormal orbitals {y;,} (here a is
spin label) [40]. The orthonormal orbitals {1;,} may be related to the

{pia} via
-1
= }: SijaPia s (B.7)
7
where Sij o =< @ja|@ia > is the overlap matrix. The energy functional

E can be written in terms of the {p;,} as

occ

= 255" < pal = Vo > + [ a7 V() () +

dqdﬁ,n(r n(7"') ELSD ’ ﬂ B.8
/ T [nTnl+§;|RI~RJ] (B-8)

For initially orthonormal orbitals {¢;,}, one obtains the constrained
electronic forces

6()05:‘51(117) - HSD{Q(F) - ; <. ‘PmalHlSOia > (pma(F’)- (Bg)

It is convenient to reorthonormalize the {¢;,} at any step. This will
ensure that the S matrix remains nonsingular and allows the use of
equation (B.9). Equation (B.9) defines the gradient ¢(® from which
one obtains the conjugate direction A(™ using equation (B.4). A one-
dimensional minimization of the functional E along A{™ allows to com-
pute A(™) and to accomplish the CG step defined in equation (B.3). One
possible way to carry out the one-dimensional minimization is to pro-
ceed as in nonself-consistent calculation and instead of E minimize E

given by [40]

BOW) =3 < oA > 5510, (Ba0)

i,
ij,0

60



where (") = o™ 4 AMp{M and 7 = H[{eMY]; ice. VH and p®° are
not varied as A(") is changed but are instead determined by the density
corresponding to {gofg)} In our case of two antiparallel spin electrons,
the two wavefunctions must not obey any orthogonalization constraint,

but only need to be normalized. In this case the S matrix is simply the

norm of the wavefunctions with respect to spin up and down.
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Appendix C

Dipolar Atomic States

Logan [21,23] proposed the occurrence of dipolar atomic states in alkali
metal-doped matrix systems, based on continuum dielectric theory.
Neither the ns ground state of normal alkali atom nor the np excited
states possess any dipolar character, i.e., < s|i|s >= 0 =< p|ilp« >,
where [ is the dipole moment operator. In contrast, matrix elements of 2
between s and p states are nonzero: < s|piy|ps >= M # 0. If, therefore,
the alkali atom could hybridize its electrons to produce a state which is

a superposition of the s and p states

|s + Ap, >
T(N) >= ————— C.1
PN >= T (G1)
the resultant sp-hybrid state would have a dipole moment
<p >=<TYA)|aT(A) > (C.2)

A
= 12+]‘/{2 =2M fp(l - fp)' (0'3)

where f, is the fraction of p, in the ground state wavefunction, i.e.,

AZ

fp = 1+ N2’ (64)
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But this involves an energy cost: The hybridization free energy relative

to the A = 0 nonpolar state is given approximately by

En(2) =< U(A\)|Ho|T(X) > — < T(0)|Ho|¥(0) > (C.5)
A2

where Hy is the Hamitonian for free alkali atom, Fy is the ns—np energy
difference. In addition, however, the atomic dipole would polarize its
surroundings, and would subsequently interact with and be stabilized
by the electric reaction field arising due to the polarization induced in

the solvent by itself. The stabilization free energy E,(}) is given by

B3 =~ o(p) <>, (c.7)

= —2g(p)M? <0. (C.8)

(14 A2)2 —
where g = (87/3)p(e — 1)/(2¢ + 1) is the reaction field factor for an
insulating matrix, p the solvent density, and ¢ = €(p,T) the solvent

dielectric constant[47].

The total free energy E(A) = Ex(A) + E,()), given by

B = - sz {EO _ %} (C.9)
Eg)? aog(p)
:1+A2{1_1+A2} (C.10)

is the free energy change of the system consequent upon production of
the dipolar atomic state, and relative to the normal ground state with
A=0. ag =2M?/FE, is also defined.

E()) may be minimized with respect to A. The minima E()) occur
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at Apin = 0 and at

)\2 o Qog — 1
min aog+1’

if aug>1 (C.11)

which correspond to the normal and dipolar atomic states respectively.

Thus, the total free energy F may be expressed in terms of A

BQ) = 1Ei>‘:2 {1 "1 jAz} (G.12)
Eo)*
T (C.13)

We can also express F in terms of f,

I
0 B
1-27,

B(f,) = ~E (C.14)

Now let us consider the excitation spectrum of the dipolar atom. The
model Hamitonian H, for the isolated alkali atom is taken by Logan as a
simple quantum mechanical four-level system (FLS), which only includes
a single ns orbital with energy ¢y = —hwy and three np orbitals lying at
energy €; = hwog, where the zero in energy is arbitrarily taken as midway
between the ns— and np— orbital energies. Higher excited states of the
atom are neglected due to the fact that the lowest excited n*P term
being well separated in energy from higher excited states.

The electric reaction field arising due to the dielectric response of
the alkali metal-doped matrix, induced by the dipolar alkali atom itself,
introduces a perturbation V to H,. With the chosen basis, the four
eigenvalues obtained by diagonalizing the Hamitonian H = Hy + V are,

hw? , fiw® (double degenerate), and AwY, where w® and w} are given by

wl = w4+ (gM < p >o /B)}M? (C.15)
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We now relable the np wavefunctions in |P,, > notation (m = 0, %),
where mf gives the component of the electronic orbital angular mo-
mentum about the axis specified by the direction of the induced atomic
dipole moment. The normalized, orthogonal eigenfunction correspond- .
ing to w?,wo, and wf are denoted by [¥% >,|¥] >, and [T} >, respec-

tively, and are given by

. |S+Apo>

|93 >= |p1 > and|p_; > (C.17)

VIt

In Fig. C.1 a summary in terms of the eigenvalues and eigenfunctions
are presented for the normal state and for the dipolar atomic state. For

convenience when discussing the optical spectra, the splitting Agr is

defined such as

wi(O) = i(wo -+ AE[) (0.19)
where
oo 12
Agr = wo {1+ﬁ[g<,u,>o] } -1 (C.20)

By using eqs.(C.4) and (C.11), it can be expressed in terms of f, and
E(): »

I
= . 21
AEI Eol — 2fp (C )
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Y
fw, (0) - [-Asyl1+n]
‘ fwlaa
fuy] B} === =), IP-0)
ENERGY
0.
—hw, I8 ., '}
ha
‘ ... | EI 0,
$ w_(0) 1 e S+ A R[N
normal state dipolar atomic state

Figure C.1: Summary of the eigenvalues and eigenvectors of the normal

state and the dipolar atomic state.
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