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I. Introduction

In this work we report our results achieved during the PhD. study in Trieste.
The main objective of this work was understanding the physics of the disordered
silicon phases, i.e. liquid (I-Si) and amorphous (a-Si) silicon at the microscopic level
using ab-initio methods.

The reason for studying this subject is twofold. Silicon is the most studied
prototype of elemental semiconductor. Its crystalline phases, including the high
pressure metallic phases, have been extensively studied (Yin and Cohen 1982b,
Chang and Cohen 1985). The metallic liquid phase, however, was relatively little
explored, both experimentally (Gabathuler and Steeb 1979, Waseda and Suzuki
1975, Hague et al 1980) and theoretically (Stillinger and Weber 1985, Car and
Parrinello 1987, Hafner and Kahl 1984, Allan and Broughton 1987). The crystal
to liquid transition occurs at the unusually high temperature of ~ 1700K, which
makes experiments difficult to make. Nevertheless, I-Si is physically interesting. The
atomic structure is dissimilar to that of most other liquid metals. The coordination
number of ~ 6.4 is intermediate between that characteristic of open tetrahedral
systems and the highly coordinated closed packed systems, raising the question of
the nature of chemical bonding. The reason for the metallic character of the melt
and its electrical conductivity have been only poorly understood. The dynamical
properties of 1-Si are essentially unknown.

Much more work has been devoted to a-Si in the past twenty years. There is
a vast number of physically interesting properties of a-Si. They include structural,
dynamic, electronic, and defect-controlled properties (Elliot 1984, Zallen 1983).
Until recently, the modeling of a-Si at the microscopic level was a highly empirical
procedure. As a further step in this old but never fully understood field one would
like to have a nonempirical scheme to study these properties.

The other motivation for this work is that the disordered Si phases besides
being physically interesting are also technologically important. Single crystals are
grown from the liquid phase. Novel dopant profiles are generated by zone refin-
ing at advancing liquid interfaces in laser-melted Si surfaces. The metallic nature
of the melt is used to determine the thickness of the laser-melted region and an
alternating magnetic field is used to improve the quality of crystal growth. While
crystalline Si (c-Si) is of overwhelming importance in electronic industry and in spe-
cial photovoltaic applications, it is too expensive for use in large-scale solar energy
applications. On the other hand, large-area films of a-Si to be used in solar energy
. application can be prepared at a significantly lower cost than c-Si.



The properties we intend to study range from structural to dynamical and
electronic properties in a wide range of temperatures. A first principles approach
that allows to treat all these properties on the same footing was pioneered by Car
and Parrinello (1985). This method is a first-principles molecular dynamics scheme
where the interatomic forces are calculated from the potentials that are derived
from the instantaneous electronic ground-state calculated within density functional
theory in the local density approximation. Thus no arbitrary assumptions are made
on the form of the many-body potentials.

We applied this technique to study the properties of I- and a-Si. For both sys-
tems the resulting atomic structure compares very favorably with the experimental
data. The knowledge of atomic coordinates enables to study other correlation func-
tions, like, e.g., the triplet correlations, that are difficult to obtain experimentally.
A vibrational spectrum for 1-Si was obtained which is quite dissimilar to that of
most simple liquids. The calculated diffusion coeflicients are in good agreement
with indirect experimental estimates. The calculated electronic density of states
and electrical conductivity show metallic behavior in agreement with experiments.
A significant portion of covalent chemical bonds was found in the metallic 1-Si. The
prevalence of broken bonds, however, leads to a high value of the diffusion coefficient
and to the metallic nature of the melt. Both vibrational and electronic densities of
states of a-Si agree well with available experimental data. Our MD simulation has
revealed the existence of interesting mechanisms of defect dynamics that correlate
well with proposed theoretical models.

The thesis is organized as follows. The method is described in chapter 2. Chap-
ter 3 contains a detailed study of 1-Si including structural, dynamical, bonding and
electronic properties. The results on a-Si as well as the structural changes occur-
ring upon cooling are presented in chapter 4. Finally, we present our conclusions in
chapter 5.



II. Interatomic Potentials
and
First-Principles Molecular Dynamics

I1.1 Interatomic Potentials Within Density Functional Theory

As stated in the introduction, we intend to study structural, dynamical, and
electronic properties of condensed systems in a wide range of temperatures. Numer-
ical simulations based on molecular dynamics (MD) have proven to be a powerful
tool in this respect (Rahman 1978, Binder 1979,1984, Hoover 1986, Heermann 1986).
MD generates the ionic trajectories which allow to calculate both equilibrium and
nonequilibrium statistical averages. A considerable insight into microscopic details
of atomic dynamics, which often is not easily available in (real) experiments, is
accessible to numerical simulations.

MD is based on the assumption that atomic dynamics obeys the equations
of classical mechanics, i.e. Newton’s equations. It means that (i) the electronic
and ionic degrees of freedom are separable (Born-Oppenheimer BO approzimation)
and (ii) the quantum effects on the atomic dynamics are negligible. Assumption (ii)
requires validity of (i) and is satisfied for most systems of interest, pr0v1ded the tem-
perature is not too low. Let us consider N atoms with coordinates {Rl,Rg, RN}
The BO approximation assumes that the atomic forces are derived from the poten-
tial @ [{RI}] that is calculated from the electronic ground-state ¥ as

Z1Z

®[{R1}] = (do|Her + 3 HA&'RJ%> (I1.1.1)

where H.; is the operator of the electron-ion interaction and Zy are the ionic charges.
Then the main ingredient of MD is the calculation of the atomic forces

ﬁ:—§ﬂéﬂ. (I1.1.2)

OR;

The BO many-body energy surface ® [{R}}] may be obtained either from first
principles by explicitly finding the electronic ground-state ¥y for any ionic config-
uration {RI} or by a suitable empirical parametrization. The discussion of the
empirical interatomic potential is left to Appendix 1.

A more fundamental and satisfactory approach treats explicitly also the elec-
tronic degrees of freedom and finds directly the potential ® [{RI}] defined in equa-
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tion II.1.1. This difficult electronic quantum many-body problem is formally equiv-
alent to a simpler self-consistent single-particle problem, that can be solved by
making certain approximations. This is the standard approach used in most elec-
tronic structure calculations. According to density functional theory (DFT) the
total ground-state energy of a system of interacting electrons and ions is a unique
functional of the electronic density n(7) (Hohenberg and Kohn 1964). If n(7) is
expressed in terms of N, doubly occupied single-particle orbitals %;()

occ

) =2 Z ()17, (I1.1.3)

then the ground-state energy surface can be found by minimizing the functional
E[{¥:}, {RI}] with respect to the ”electronic degrees of freedom” {1,}, i.e.

®[{R1}] = min B[{v:}, {F1}]. (I1.1.4)

The functional E[{%;}, {R}}] is given by:

occ

El{y:}, {Rr}] =23 / dFp1(7) (—192) p(7) + / 47 Vo (7) () +

VA
/d d-*ln(r) (, ) _{_Ezc[n] + % Z ———__-*——é-‘é———, (II.1-5)
|’f’"~T‘ l I;éJIRI—RJ,

Atomic units e = A =m, =1 are used throughout the thesis. E®‘[n] is the
exchange-correlation energy (see e.g. Lundqvist and March 1983), Veri(r) is the
total external potential felt by electrons, and Z; are the ionic charges. E*¢[n] is a
universal functional of n and represents all corrections to the independent-electron
model (nonclassical many-body effects of xc), but remains unknown. This difficulty
is circumvented by making approximations, such as local density approzimation
(LDA) (Kohn and Sham 1965, Lundqvist and March 1983) or the more general
local spin density approzimation (LSD) (Gunnarson and Lundqvist 1976). In the
LDA scheme one assumes that the real inhomogeneous electron system behaves
locally as the uniform electron gas of the same density:

E*[n] ~ / din(7)e*< (7], (I1.1.6)

where ¢*¢[n(7)] is the xc energy per electron of a uniform gas of density n (see e.g.
Lundqvist and March 1983). A number of prescriptions for £*¢ are available: Kohn-
Sham (1965) (pure exchange), Wigner (1937), Gunnarsson and Ludgqvist (1976),
Ceperley and Alder (1980), and X, (Slater 1974). The quantum Monte-Carlo
scheme of Ceperley and Alder, however, is considered to be the most accurate
among the approximate prescriptions available. Since the other terms in equation
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I1.1.5 may be (in principle) evaluated with arbitrary accuracy, approximations to
E*¢[n] play a central role in this theory. The single-particle orbitals {;} are subject
to the orthonormality constraints

/df‘ PI(7) P;(7) = bi;. (I1.1.7)

Chemical bonding is mediated by outer electrons. Core electrons are little
affected by bonding but represent additional complications. The orthonormality
constraints force the wave functions to have rapid oscillations in the core region
and also the external potential must be very strong in order to bind them. The
core states may be projected out by replacing the core electrons plus the nuclei
by pseudoions (Cohen et al 1970). This approach will be adopted here. Then
in equation II.1.5 first-principles norm-conserving pseudopotentials (Hamann et al
1979) will be used for V**!(), and Z are the charges of the ionic cores. The
first-principles norm-conserving pseudopotentials have been constructed so as to
(i) reproduce the all electron eigenvalues ¢; for a chosen atomic configuration, (ii)
reproduce the atomic wave functions beyond some core radius rc, (iii) reproduce
the integrals of the charge densities for » > 7. for the valence states, (iv) make
the logarithmic derivatives of the real and pseudo wave function and their first
energy derivative to agree for r > r.. Properties (iii) and (iv) are crucial for
the pseudopotential in order to have optimal transferability in different chemical
environments. Calculations have shown that norm-conserving pseudopotentials give
structural and vibrational properties of similar quality to all-electron calculations
for a variety of systems.

Clearly, the first-principles approach outlined here is able to describe fine details
of the potential & [{RI}] but is much more computationally demanding than the
approach based on empirical potentials. Thus the size of the tractable systems is
limited.



11.2 Minimization of the Energy Functional

In this section we describe methods of solving equation II.1.4 subject to the
constraints of equation II.1.7. This subject has been discussed at length elsewhere
(Stich 1987, Stich 1989, Stich et al 1989a), so only a brief sketch of the main ideas

and methods is given here.

In the following we shall assume that E[{¢z},{ﬁj}] as a functional of {¢;}

for fixed atomic positions {ﬁ;} has a single minimum. Experience has shown the
validity of this assumption. The standard approach to this problem consists in
solving the associated Euler-Lagrange equations, i.e.

§ Flba(F Y2 ) =
) (E-Z;€j/dr [%;(7 ) ) =0, (I1.2.1)

which leads to

Hpi(7) = eipi() (11.2.2)
where
H = =3V + VU 7) + VE(7) + p(7). (I1.2.3)
Here VH(7) = fd—"lz(r:,)l is the Hartree potential and p®¢(7) = M( .;‘ is the

exchange-correlation potential. The Schrédinger-type equations I1.2.2 are called
Kohn-Sham (K-S) equations (Kohn and Sham 1965). By expanding the {1;} in a
basis set the K-S equations are converted into a self-consistent matrix eigenvalue
problem. In the following we adopt the plane-wave pseudopotential formalism (Yin
and Cohen 1982b), i.e.

$i(P) =, 1(7) = Y i+, (I1.2.4)

The use of plane waves assumes periodic boundary conditions. This is also the
usual way of terminating free surfaces in MD simulations. The sum over G is
usually truncated to include only M plane waves up to a cutoff Gines, which in
turn determines the accuracy of the calculation. We assume here that the unit cell
is so large that the band dispersion in the Brillouin zone (BZ) can be neglected. In
this case it is sufficient to consider the & = (0,0,0) point only. If the band dispersion
is nonegligible, a more accurate BZ sampling is obtained by using the special points
(Baldereschi 1973, Chadi and Cohen 1973). The Hamiltonian matrix is given by

=~ H
Hsg = 31G 5,6 + V3

zc ezt
G T RS 5 VST (I1.2.5)

In equation II.2.5 the index k has been dropped and V¢*! is treated as local. We
leave the discussion of nonlocal pseudopotentials to Appendix 2.

10



The standard approach is rather costly in large-scale problems, since it requires
O(M?) floating-point operations for each diagonalization, which must be repeated
I;c times to achieve self-consistency. This approach becomes prohibitively inconve-
nient as the system size is increased. To find the ground-state energy within DFT,
only the lowest N, occupied K-S orbitals are necessary. In plane-wave schemes, N,
is normally much smaller than M and a more convenient formulation is provided
by iterative methods such as e.g. the Davidson method (see e.g. Davidson 1983)
or the direct minimization of the energy functional II.1.5 without using the K-S
equations (Stich et al 1989a). Here we concentrate on the latter approach. That
can be conveniently done by introducing an appropriate fictitious dynamics in the
space of the electronic degrees of freedom.

Conceptually the simplest way of finding a minimum of a function with many
variables is provided by the steepest descent (SD) method (Press et al 1986). It is
natural to use this idea also for the electronic structure problem (Car et al 1987).
In the present case SD can be formulated in terms of the equations:

e _GE
pilnt) = 5¢3(F,t)+00 (I1.2.6)

= —Hy;(7,t) + OC,

where the dot indicates the derivative with respect to a fictitious time variable t,
and OC stands for the orthogonality constraint of equation II.1.7. When a min-
imum is attained, {#; = 0} and equations I1.2.6 are equivalent, within a unitary
transformation, to the K-S equations. The SD may be seen as an alternative way
of solving the K-S equations without treating them as a self-consistent eigenvalue
problem.

In practice, equations I1.2.6 are discretized and a SD step can be written as
Pi(Ft + At) = 9;(7,t) — AtHvi(7,t) + OC. (I1.2.7)

The elementary time step At in equation I1.2.7 fixes the time scale and therefore is
the parameter controlling the convergence rate of the SD scheme (i.e. the number
of "time steps” Isp). The initial trial guess {4;(7,¢ = 0)} must be nonorthogonal
to the ground-state in order for the SD procedure to work correctly. Since E
Is invariant with respect to unitary transformations among occupied states, the
orthonormalization scheme chosen is in this context largely arbitrary. The simple
Gram-Schmidt procedure is one of the possible choices.

There are two basic ingredients of a single SD step: action on the {1;} with the
Hamiltonian H and orthonormalization of {1;}. In a plane-wave formulation the
latter operation requires O(N2 M) floating-point operations. The former operation
can be made efficient by making use of fast Fourier transform (FFT) techniques (Car
and Parrinello 1985) and carrying out operations always in the ”easy” space. Some
relevant details are presented in Appendix 3. The kinetic energy term is diagonal
in reciprocal space, requiring O(N, M) operations. The action of the local potential
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is conveniently calculated in real space requiring O(N.M log M) operations. In
conclusion, the big dimension M enters only linearly or via M log M in the count
of the operations. Thus a single SD step represents a significant improvement over
standard diagonalization where M enters as M?*. This is partially counterbalanced
by a larger number of steps Isp necessary to achieve convergence (Isp > Ise)-

The straightforward SD method is known not to be the most efficient mini-
mization algorithm, and may be improved in several ways (Press et al 1986). In
order to increase the maximum time integration step At in equation I1.2.7 and so
accelerate convergence, one can use some properties of the minimization problem,
such as the diagonal dominance of the Hamiltonian matrix for sufficiently large G.
If we assume it to be diagonally dominated for all G’s then we can separate in
equation II.2.7 the action on the wave functions of the diagonal part of H from that
of the off-diagonal part. The result is

c'g = —[%Uz—}- é"lz +Va_a— s;]c% — Z Va_an cic-;, 4+ 0C
G'#G (I1.2.8)
= —w@cié - R+ 0OC.

In equation 11.2.8 a constant 6; = (¥;(¢)|H(t)|¥:(t)) has been subtracted from the
diagonal part of H. By explicitly integrating the diagonal term and treating the
off-diagonal one as a perturbation we obtain:

7 i R
e5(t+ A1) = exp(~wgAt){ (1) + o 1 —exp(wgAt)] } +0C.  (I1.29)

Equation I1.2.9 replaces the ordinary SD equations 11.2.7 and we call this scheme the
modified steepest descent (MSD). MSD represents an adaptation to SD of the idea
introduced by Payne et al (1986) for MD equations. In some cases MSD constitutes
a definite improvement over SD by allowing a larger time integration step At and
consistently increasing the convergence rate. However, in many important cases
and particularly in low symmetry situations the MSD algorithm does not improve
over SD (Stich et al 1989a). We found this method useful if employed in nonself-
consistent calculations, i.e. with fixed potential.

We have developed a very robust method for minimization of the energy func-
tional (Stich et al 1989a, Stich 1989) based on the well-known method of conjugate
gradient (CG) minimization (Press et al 1986, Hageman and Young 1981). An
important advantage of CG methods over other approaches is that they take full
advantage of the matrix of second derivatives without explicitly calculating it. Con-
vergence tests of the CG method are given elsewhere (Stich et al 1989a). Details of
the CG method are summarized in Appendix 4. Further distinct advantage is the
absence in the CG method of any convergence controlling parameter, such as the
time integration step At. The conclusion is that the CG approach is significantly
superior to any SD-based method. A heavy use of the electronic CG minimization
has been made in computations presented in sections III and IV.

12



I1.3 First Principles Molecular Dynamics

Since the ab-initio * MD method recently introduced by Car and Parrinello
(1985) (CP) is the main methodological aspect of this thesis we briefly introduce
this technique. More details are given elsewhere (Car and Parrinello 1988b).

One conceivable way of an ab-initio MD would consist in calculating the
Hellman-Feynman (HF) forces
. 0®[{R
B [{# r}]

0h, -3

(Hef +1 i@i’r) |tbo) (I1.3.1)
I#J IRI - RJ}

needed in an MD scheme for the ions by finding explicitly the electronic ground-
state. This naive straightforward approach has been found significantly less conve-
nient (Stich 1987) than the generalized Lagrange formulation (Car and Parrinello
1985). This point is more fully discussed in Appendix 5. Generally, besides the HF
forces also the Pulay (1969) forces must be taken into account. With plane-waves
these forces do not arise.

The CP technique consists in considering the parameters {1;} and {E;} in
the energy functional to be time dependent and writing the Lagrangian (Car and
Parrinello 1985)

L=3n2, f AP + 3 30 MeFp - Bl (] + Y Ay / AF(pi; - 6:)
(I1.3.2)

where 2 is the unit cell volume, M are physical masses of the ions, and p is an
arbitrary parameter of appropriate units which serves to define the fictitious kinetic
energy of the K-S orbitals. In equation I1.3.2 the first two terms are classical
kinetic energies associated with electronic and ionic degrees of freedom and the
energy functional E plays the role of potential energy. The Lagrange multipliers
A;; impose the orthonormality constraints of equation II1.1.7.

The Lagrangian 11.3.2 generates a dynamics in the coupled electron-ion param-
eter space through equations of motion

_— SE .
= 0FE
Iy BRI ( )

Equation I1.3.3b generates the correct classical dynamics of the ions if at each time
step also equation II.1.4 is satisfied. This is approximately the case if the time

* A method is ab-initio if it doesn’t contain any empirical relationship or ad-
justable parameter, i.e. the potential is calculated from first principles.
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scale for the motion of the electronic degrees of freedom is much shorter than that
for the ions. To set up such a regime requires p << My and {#;} to be initially
in the ground-state. In these conditions, the electronic degrees of freedom acquire
only a very small classical kinetic energy to follow adiabatically the ions, and the
lonic trajectories, initially lying on the BO surface, deviate from it very slowly
on the time scale of the MD simulation. Thus very few or no separate electronic
minimizations are necessary to keep the system on the BO surface during an MD
run. The electronic minimizations, when necessary, can be efliciently carried out
by employing methods described in section II.2. Equation I1.3.3b, thus describes
a true atomic dynamics. Equation I1.3.3a instead, describes a fictitious dynamics
and must be viewed only as a tool of finding the ground-state potential ‘I’[{RI}].
A distinct feature of the ab-initio MD is that it generates simultaneously atomic
trajectories and the corresponding ground-state charge densities and potentials.
These make possible to follow directly the evolution of the chemical bonds resulting
from atomic motion or to compute electronic properties, like densities of states and
conductivities.

For an ergodic system one can identify temporal averages with ensemble aver-
ages. In particular, the equilibrium value of the classical kinetic energy of ions can
be related to the temperature T’ of the system through the equipartition theorem

2
(> 3MiR;) = iNkpT. (I1.3.4)
I

By variation of the ionic velocities {R;}, one can control the temperature of the
system and let it vary. In this way thermal treatments, such as annealing and
quenching, are possible with the ionic subsystem. Also the concept of simulated
annealing recently introduced by Kirkpatrick, Gelat, and Vecchi (1983) can be ap-
plied.

In practice, equaiions I1.3.3 are integrated numerically. If the integration time
step At is short, low-order formulae, such as the Verlet (1967) algorithm, are con-
venient. This leads to

¢i(F,t + At) = -—“l,bi(FJ — At) + 2¢i(7?,t)

At? SE )
T (“6¢;(F,t)+;/\i:‘¢j(r,t)) (I1.3.5a)

R 3 s . A#2 OE
Ri(t+ At) = —Ry(t — At) + 2R (t) — — -, 1135
1 ) i ) (1) iy 9, ( )

The method of finding the Lagrange multipliers in equation I1.3.3a has been de-
scribed elsewhere (Car and Parrinello 1988b) and is not elaborated further here.
The operations to calculate the unconstrained electronic forces (first term on RHS
of equation II.3.3a) are identical as for the SD equations (IL.2.6). Srivastava and
Weaire (1987) give a detailed account of evaluation of ionic forces within plane-wave

14



pseudopotential formalism (RHS of equation I1.3.3b). The operations required to
solve these equations scale essentially as described in section IL.2.

A small p requires a small maximal integration time step At¢. It turns out
that At in the CP scheme can sometimes be as large as ~ % At used with empirical
potentials. This makes the CP method efficient. In practice, in the case of insulators
and semiconductors the ionic trajectories show no deviation from the BO surface on
the time scale given by the MD observation time in a wide range of temperatures.
As explained in Appendix 5, this can be checked by monitoring the constant of
motion in the microcanonical ensemble ‘

> %Mfﬁi + E[{¢:},{E1}] = const. (I1.3.6)
I

Now we turn to the application of the CP method to metallic systems. In
this case we have observed a tendency to thermal equilibration between electronic
and ionic subsystems related to the existence of empty electronic states degenerate
or nearly degenerate with the occupied states (Stich et al 1989b). It means that
there is some energy transfer from the ionic to the electronic subsystem. This
process can not be fully eliminated but may be controlled by the difference in the
time scales of electronic and ionic processes, i.e. by p. These effects have two
consequences: (i) the electronic wave functions deviate from ground-state, (ii) the
ionic subsystem spontaneously decreases its temperature due to the energy transfer
between the electronic and ionic subsystems. As for (i), it turns out that the
electronic subsystem and hence also the forces acting on ions are relatively weakly
perturbed by the effects of equilibration and the perturbation can be remedied
by systematic electronic minimizations. Hence as long as the deviation of the wave
functions from the ground-state is ”small enough” and does not substantially change
the character of the wave functions, the resulting noise in the ionic forces is not
critical. As for (ii) we have tested several solutions and in order to stabilize the
ionic temperature we found most useful to couple the ionic subsystem to a Nosé
thermostat (Nosé 1984 a,b). The resulting modified equations II.3.3 read

a SF -
#%@bi(’l’,t) = ——W + ; Aijp;(7,1) (I1.3.7a)
d? 80E  M;j dR;ds
A= s .3.7b
MrgBr 8R, s dt dt (I1.3.7)
d? d];’:I 2 Q sds\2?
QES—s;MI<—di~> —sngT—}—-;(Et—) . (I1.3.7¢)

Note that the equations II.3.7a-c are written in real variables (Nosé 1984 a,b). In
equations I1.3.7b,c the extra degree of freedom s, having the dynamical "mass” Q,
couples the ionic subsystem, with g = 3N degrees of freedom, to a heat bath at
a temperature 7. Note that the ionic degrees of freedom move both under the
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action of the interparticle forces and of the coupling to the heat bath. It is this
coupling that continuously rescales the particle velocities {%L} and supplies to the
ions kinetic energy necessary to maintain 7 constant. As demonstrated by Nosé
(1984a,b), equations 11.3.7b,c lead to a canonical distribution in the ionic phase
space.

The constant of motion in the canonical ensemble is the sum of kinetic plus
potential energies of the ions and of the extra particle s

Z %M[ﬁ[z + E[{¢:},{R1}] + $Q($s)* + gkTlns = const (11.3.8)
I

and the average temperature

(T') = const. (I1.3.9)

We have also tested the Gaussian isothermal method (Hoower 1986) which
constraints the total kinetic energy term of the ions

2
> LME; = LgkpT (I1.3.10)
I

and thus suppresses the total kinetic energy fluctuations. This method, however,
turned out to be much less stable in combination with CP than sampling in the
true canonical ensemble.

By supplying energy to the ions from an external heat bath the temperature of
the ions is stabilized in the above scheme. Nevertheless, the deviation of the single-
particle orbitals from ground-state will continue (equations I1.3.3a and I1.3.7a are
identical) and must be accounted for by reoptimization of the electronic structure
when some preset toleration is exceeded. By setting appropriately the time scales
of the fast electronic and the slow ionic degrees of freedom, the rate of equilibration
between the two subsystem can be made so slow that only few electronic mini-
mizations are necessary during an MD run. This guarantees the usefulness of our
method even for metals.

In the case of metals the validity of the BO approximation may be questioned.
In practice, however, this does not pose serious problems as demonstrated numer-
ically by the sucess of the phonon calculations or theoretically by the Migdal’s
theorem. Generally, one should use the quantum dynamics, what constitutes a dif-
ficult problem. An intermediate approach might consist in treating the ions still
classically and considering the finite temperature effects on the electrons; i.e. substi-
tuting the K-S functional by the Mermin (1965) functional. However, the blurring
of the Fermi surface at the temperatures of interest here is still relatively small.
Hence it is reasonable to consider a perfectly sharp Fermi surface as at T' = 0K.
Moreover, the generalization of the CP method to the Mermin functional is not
trivial.
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III. Liquid Silicon

I11.1 Principal Properties of Liquid Silicon

The prototype elemental semiconductor Si (similarly to Ge) has in its liquid
state several intriguing and poorly understood properties. Some of them, which are
related to the properties we study in the following, are listed below.

1-Si has an unusually high melting point occurring at the temperature 75, =
1683K (Glazov at al 1969). Upon melting the density of Si increases by ~ 10%
(Waseda 1980) (Tab.IIl.1.1 and Fig.IIL.1.1) and its structure goes from an open
structure with a coordination number 4 to a more compact liquid structure charac-
terized by a coordination number exceeding 6 (Waseda and Suzuki 1975, Gabathuler
and Steeb 1979). It is fairly unusual for a liquid metal to have a coordination num-
ber between 6 and 7, because most liquid metals are more closely packed with a
coordination ~ 12 (Faber 1972, Croxton 1974). This indicates a partial collapse of
the tetrahedral network.
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FigIIL.1.1. Left panel: Temperature dependence of the density of Si. Right
panel: Temperature dependence of the electrical conductivity of Si.
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Table III.1.1. Density p and electrical conductivity o of Si and Ge in the solid
state and near the melting point (Glazov et al 1969)

Ps Pl (—’-’—’p;”—-) o, ol o
gem™  gem™3 % Q7 rem™r Q7 lem™?
Si 2.30 2.53 ~10 ~580 ~12000 ~20
2,591
Ge 5.26 5.51 ~4.75 ~1250 ~14000 ~11

TWaseda 1980

Liquid silicon (I-Si) undergoes on melting a semiconductor to metal phase tran-
sition as evidenced by the jump in conductivity by a factor of 20 (11 for Ge) (Glazov
et al 1969) (Fig.II1.1.1 and Tab.I11.1.1). The a.c. electrical conductivity has also
been studied (Shvarev et al 1975) and the results indicate a Drude-like behavior,
even though the electronic mean free path is short (Shvarev et al 1975). The elec-
tronic structure was only partially explored and only the 3p band was measured

(Hague et al 1980).

The low coordination of 1-Si indicates a persistence of some covalent bonds
in the liquid. However, no quantitative description of such effects has so far been
provided.

This unusual properties of 1-Si are a challenge for the theory. An analysis of
these properties of the melt based on a first principles MD will be given in the
following. '
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II1.2 MD Simulation of Liquid Silicon

In order to study the structural, dynamical, and electronic properties of 1-Si
outlined in section III.1 we employed the CP method suitably modified as explained
in section II.3 (equations II.3.7a-c).

We have performed a Nosé-type constant temperature, constant volume MD

simulation at the experimental density p = 2.59gem™3 ( 0.05554° ) (Waseda
1980). The MD cell contained 64 atoms with periodic boundary conditions of the
simple cubic type. The average temperature was kept at 7' = 1800K, close to
the experimental melting point T3, = 1680K.We used nonlocal norm-conserving
pseudopotentials of the Bachelet-Hamann-Schliter (1982) type with s-nonlocality
only. Kleinman and Bylander’s (1982) factorized form was adopted to speed up
the calculation. Exchange and correlation effects were treated within LDA in the
parametrized form (Perdew and Zunger 1981). The electronic orbitals were ex-
panded in plane-waves. The I' point, k= (0,0,0), only was used to sample the
Brillouin zone of the MD supercell. To ascertain the validity of this approximation
with a relatively small cell size, we have tested it against the variations of the total
energy vs. atomic volume for both semiconducting and metallic Si phases. A sat-
isfactory agreement with a more elaborate calculation (Yin and Cohen 1982b) has
been found. The occupation numbers of the K-S orbitals were kept fixed during the
simulation. A tiny integration time step of 5.5a.u. (1.3 x 1071%s) was chosen, while
the fictitious "mass” p was taken to be 300a.u. This choice is very close to that
made in the previous study of the disordered Si phases (Car and Parrinello 1988a)
and guarantees a slow rate of thermal equilibration between electronic and ionic
degrees of freedom. Some attention must be paid to the choice of the dynamical
"mass” @ in order to guarantee an efficient sampling of the phase space. As sug-
gested by Nosé (1984b) the most efficient sampling will be achieved by choosing the
same order of time scales for both the physical system and the variable s. If only
small fluctuations of s around the average value (s) are considered, the frequency
of this motion can be found to be

Wk = 29kpT
— Qs

We set Q = 2.5x10%a.u., what makes w comparable to the optical phonon frequency
in the c¢-Si.

. (II1.2.1)

The initial configuration was generated by starting from atoms in diamond
lattice positions with small random displacements. Then the system was heated
up to ~ 6000K by rescaling the particle’s velocities. After melting has occurred
the temperature was reduced to T = 1800K and the Nosé thermostat switched
on. After equilibration we have followed the system for a total time of 1.2ps. This
observation time is much larger than the typical relaxation times.

We have checked the convergence of the calculation with respect to periodic
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boundary conditions, cell size, inclusion of p-nonlocality in the pseudopotential,
and energy cutoff in the plane-wave expansion of the electronic wave functions. We
present the results of the convergence study in Appendix 6.

We end this section by showing how equations I1.3.8, I1.3.9 are satisfied in our
simulation. Fig.II1.2.1 shows the variation of the canonical constant of motion vs.
time step at the temperature 7' = 1800K.

—250.0

H
L]

—250.5[,
© :

—251.0
0 3000 6000 9000

N

Fig.II1.2.1. Constant of motion in canonical ensemble as a function of MD step
N (full line). Dotted line shows the variation of kinetic plus potential energy of
ions. The discontinuities correspond to periodic quenches of electrons and resetting
of initial conditions of the Nosé thermostat.

A periodic discontinuity in this curve appears every 500 time steps (~ optical
phonon period in ¢-Si), where a quench of the electrons to the instantaneous ground-
state was performed and the initial conditions of the Nosé thermostat reset. We
note that this choice ensures that the maximal deviation of the electrons from the
BO surface is <~ 1.3 x 107%eV/atom and the electrons remain very close to the
BO surface in the course of the whole simulation. Fig.II1.2.2 shows the variation of
the instantaneous temperature during the simulation. The rather large temperature
fluctuations are consistent with the canonical ensemble where

((6T)%) = 212 (I11.2.2)

and are larger than in the microcanonical ensemble (Nosé 1984a). This constitutes
an indirect check that the system is well equilibrated.
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Fig.II1.2.2. Instantaneous temperature of the ions as a function of MD step N.
The horizontal line indicates the externally set temperature 7' = 1800K.
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I11.3 Short Range Order in Liquid Silicon

In this section we study the short range order (SRO) in I-5i and compare our
MD results with available experimental data. In connection with our model we
discuss the plausibility of existing empirical and microscopic structural models of

1-Si.

It is known that the structural correlations in liquids fall off rapidly and only
the SRO up to 5 — 64 persists. SRO is conveniently characterized by equilibrium
distribution functions Let us assume canonical ensemble (2,7, N) and a configura-
tion of the system {Rl, LR N} Then the probablhty of s1multaneously finding
particle 1 in a volume de around Rl, particle 2 in dR, around Rz, ., particle n in
dR around Rn is

—

P\Y(Ry, Ray.oy By) = (8(B1 — RY)6(Rz — Ry), ..., §(Rn — R,)).  (I11.3.1)

In the limit . .
|Rr — Ry| — o0 1<I,J<n (II1.3.2)
PU(Ry, By, .y Bo) = PG (By). PG (Ra). P (Bn).- (II1.3.3)

From equations II1.3.1, I11.3.3 the n-particle distribution function can be defined as

P{Y(Ry, Ry, ..., )

() p. B 5
9N (Bi1, Ray .oy Rn) = (I11.3.4)
| iz, 75 ()
In the limit III.3.2 .
gV RN — 1. (II1.3.5)
For a homogeneous system
— 1
PRy = a (I11.3.6)
and the definition II1.3.4 can be written as
I {E) = PP ({Ra)). (II1.3.7)

We find important besides the pair correlation function which in an isotropic system
is given as

gg\?)(ﬁl,ﬁz) = g(|R1 — Rs) = g(r) (I11.3.8)

also the higher-order dlstrlbutlon functions, especially the triplet correlation func-
tion gN)(Rl,Rg, R3) The g ) is important in our case, since we want to describe
systems that retain some covalent bonds and have directional forces.

In principle, information on these two functions can be obtained experimen-
tally. The scattering intensity I(k) measured in a scattering experiment (X-rays,
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neutrons) is proportional to the static structure factor which in turn is related to
g(r) via
1 E (B R
S(k) — ﬁ <elk'(R1n—Rn)>
sl - (I11.3.9)
=1+ 47rp/r2 = r{g(r) — 1)dr.

kr

Information on g% might be obtained from an X-ray absorption spectroscopy (XAS)
measurement (Filipponi 1989). However, no such experiment has been done for 1-Si
as yet. Thus presence of disorder precludes an experimental determination of the
individual atomic coordinates since only incomplete and averaged information can
be obtained experimentally.

Only very few experimental data are available on g(r) and S(k) in 1-Si. Waseda
and Suzuki (1975) have carried out an X-ray study of 1-Si at a temperature of

1730K for k from the interval 0547 < &k < 1247". Gabathuler and Steeb
(1979) have studied 1-Si at 1700K by neutron diffraction for angles corresponding

to 02471 < k < 1047". The X-ray scattering data are summarized in Fig.III.3.1
and Tabs.IT1.3.1, II1.3.2; the neutron diffraction data are given in Fig.II1.3.2 and
Tabs.I11.3.1,I11.3.2. '

al

Fig.II1.3.1. X-ray scattering data of Waseda and Suzuki (1975).
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Fig.I11.3.2. Neutron diffraction data of Gabathuler and Steeb (1975)."

Table II1.3.1. g(r) from X-ray (Waseda and Suzuki 1975) and neutron
(Gabathuler and Steeb 1979) scattering data

Technique T RT RII RIII B_RITI_ lf%;i 9(r) NI

K A A A

X-rays 1730 2.40 3.70 5.50 1.54 2.29 2.46 6.4
neutrons 1700 2.50 5.33 2.14 2.23 6.4

Table I11.3.2 S(k) from X-ray (Waseda and Suzuki 1975) and neutron
(Gabathuler and Steeb 1979) scattering data

Technique T K1 K 'I%I— S(KT)
K AT A

X-rays 1730 2.70 5.60 2.07 1.62

neutrons 1700 2.78 5.70 2.05 1.68

It is evident from these data that the first peak of S(k) is highly asymmetric
with a well pronounced shoulder on the high k side. Also the g(r) is unusual, unlike
simple liquids that have a symmetric first peak and oscillate regularly around one.
Especially the second peak appears in an anomalous position with respect to simple
liquids. The low coordination number N7 = 6.4 indicates an open structure and
presence of directional covalent bonds, while most simple liquids are closely packed
with coordination ~ 12 (Faber 1972, Croxton 1974).
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A closer inspection reveals marked differences between the two experimental
data sets. In principle, one should expect some differences, because neutrons are
sensitive to the distribution of nuclei, whereas X-rays measure the distribution of
electrons. Moreover, to obtain g(r), eq. I11.3.9 must be inverted. Thus g(r) with

k"'lﬂ‘w
dmwpr(g(r) — 1] = 3/ k[S(k) — 1] sin krdk, (II1.3.10)
k

T min
rather the true g(r) is obtained, corresponding to different experimental resolution
and data processing.

The structural characteristics of liquids may be taken from a wider perspective.
It is well known that the structure of simple liquids can be qualitatively described by
hard-spheres model (Hansen and McDonald 1976), i.e. once the volume is fixed the
most important effect is the excluded volume. For nonsimple liquids the interparticle
interactions are more complex and the structure deviates accordingly from that
given by hard-spheres. Roughly one can classify structure of liquids into three
classes (Hafner and Kahl 1984):

-Simple structures (Mg,Al,Pb) with S(k) similar to that of hard-spheres with sym-
metric first peaks of g(r) and S(k) and peak ratios

The coordination number is

NT~9—11.
-Distorted structures (Zn,Cd,Hg) with asymmetric first peaks of g(r), S(k) and
peaks ratios slightly different from that of simple liquids and

NI ~10-11.

- Open structures (Si,Ge,Sn) with highly asymmetric first peak of S(k), with a shoul-
der on high-k side. There is a secondary maximum of g(r) that appears at the
position where simple liquids have the first minimum. The ratio of peak positions
is anomalous with *

KII RII
and ,
NI ~64—1.

* Actually, in these structures R is the third peak of g(r) but corresponds to
the second peak in other structures.
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Clearly, 1-Si is a particular case where the detailed microscopic nature of the
interparticle many-body potential plays an extremely important role. In 1-Si the
structural departure from the hard-sphere behaviour is most pronounced as evi-

denced by the failure to fit a hard-sphere S(k) to 1-Si (Fig.II1.3.3).

1 1 - T 1 I

2.0+ Inl -
I Si
,' |
1.5 —
=
" 1.0+ —
0.5 Experiment _|
n=0.34
/ ———— 720.397
/ | ! | [ [
0
0 2 4 6 8 10
k (R-")

Fig.JI1.3.3. Percus-Yevick hard-sphere fit of S(k) to 1-Si (Shih and Stroud 1984).
Full line indicates the experimental data of Gabathuler and Steeb (1979). Dotted
line corresponds to the packing fraction that fits the height of the first peak and
the dashed line to the packing fraction that yields the best overall fit.

It is an indirect indication of the importance in 1-Si of the attractive interactions
and probably their directionality relative to the repulsive forces that take care of
excluded volume effects. This is a situation where the ab-initio MD is particularly
suitable, because no arbitrary assumption is made on the interaction potential which
is obtained as discussed in section II from an accurate LDA calculation. Since the
atomic correlations fall off rapidly in liquids, the effect of a relatively small size of
the unit cell does not pose serious limitations on our model.

In Fig.IT1.3.4 we show the results obtained for S(k) and g(r) (Stich et al 1989b,
Stich 1989). Comparison with X-ray and neutron scattering experiments is very
favorable, especially if one considers the differences between the two sets of exper-
imental data and the absence of any fitting parameter in the theory. The theory
correctly predicts the shoulder on the first peak of S(k), the anomalous secondary
peak of g(r) and the first peak position at Rf = 4.65a.u. appreciable larger than the
value 4.44a.u. in c¢-Si. The coordination number, as obtained by integrating g(r)
up to the first minimum r,,, = 5.85a.u.

NT = 4np / "tzg(t)dt (III.3.11)
1]

is ~ 6.5 in close agreement with the experimental value of ~ 6.4 * (Gabathuler and
Steeb 1979, Waseda and Suzuki 1975).

* The experimentally determined coordination numbers may be subject to large
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As shown in Fig.II1.3.5, our results indicate presence of a broad distribution of
27

local coordinations.
Triplet correlations in the melt are conveniently measured by bond angle dis-

Fig.I11.3.5. Distribution d(NN) of local coordinations in 1-Si. The neighbour is

defined by r,,, the first minimum of g(r).
uncertainty. They depend besides the experimental real space resolution also on

the way in which they are determined (Waseda 1980)




tribution function g3(6,7.,). Here 6 is the angle between the two vectors that join
a central particle with two neighbours at a distance less than 7. Our ¢3(6,7,,)
shown in Fig.II1.3.6 is rather broad with maxima centered at § ~ 60° and § ~ 90°.
In section III.4 we shall argue that covalent bonds persist in the melt and almost
always form between pairs of atoms separated by a distance <~ 4.7a.u.. For larger
separations the great majority of the bonds are broken. We can therefore define
re = 4.7a.u. as the cutoff distance for covalent bonds. The triplet correlation func-
tion g3(#,r.) corresponding to these atomsis shown in Fig.II1.3.6. g3(8,r.) is peaked
around an angle close to tetrahedral (6 ~ 109.5°). A similar, albeit considerably
narrower bond-angle distribution, is found in a-Si (c.f. sect.IV.4).

0.0 90.0 180.0

Fig.II1.3.6. Bond angle distribution functions g3(6,7). The cutoff distance  is
equal (a) to 74, the first minimum of g(r) (full line) and (b) to covalent cutoff r. de-
fined in text (dash-dotted line). The arrow indicates the position of the tetrahedral
angle.

In the past various empirical models have been proposed to describe SRO in
1-5i. They either assume presence of two kinds of atom differing either in size (Orton
1975, Gabathuler and Steeb 1979) or coordination (Waseda and Suzuki 1975) (either
fourfold covalent or twelvefold metallic type) or suggest that SRO in 1-Si is close to
B—tin or Simple cubic (SC) structures (Gaspard et al 1984) which both are sixfold
coordinated and metallic. Our results do not support these models. They indicate
presence of a broad distribution of local coordinations and bond-angle distribution
distinctly different from that of SC or 84— tin.

We now consider two microscopic models for 1-Si based on few-body poten-
tials. Hafner and Kahl (1984) consider an effective two-body pseudopotential of
- the empty-core type screened by the Ichimaru-Utsumi (1981) dielectric function.
The potential has a repulsive part, a first minimum followed by damped Friedel
oscillations. The form of the potential is controlled by two parameters: the elec-
tronic density p. and the pseudopotential core radius R.. They use the O.R.P.A
(optimized random phase approximation) technique to describe the structure of 1-
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Si. The agreement with experiment is qualitatively correct; the 5 (k) deviates from
the experimental curve at large k resulting in less satisfactory g(r) near the first
peak. This may be the consequence of considering only the two-body interactions
and neglecting three- and higher- order terms which are supposed to be important
when covalent bonds are effective.

Stillinger and Weber (SW) (1985) constructed a potential that includes also
the three-body terms (c.f. Appendix 1) and used it in an MD study of 1-Si. Again
agreement with experiments is qualitatively correct. The model, however, yields a
too high coordination of ~ 8 and S(k) and g(r) slightly out of phase with respect
to experiments (Fig.II1.3.7).

Even though these methods may yield S(k) and g(r) that are in reasonable
agreement with experiments, they may represent liquids whose structure is quali-
tatively different form ours. This can be seen e.g. by comparing the SW g3(0,7m)
(Luedtke and Landman 1988) with our result (Fig.II1.3.8). As can be seen from this
figure, the SW liquid overestimates the tendency to tetrahedrality (built in in the
potential). On the other hand, the g3(6,7m) of Hafner and Kahl (1984) (calculated
by MD for 1-Ge) is very similar to ours.
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Fig.II1.3.7. g(z) of the Stillinger-Weber (1985) 1-Si (full line) compared with
the X-ray scattering data of Waseda and Suzuki (1975) (dash-dotted line) and the
neutron scattering data of Gabathuler and Steeb (1979) (dotted line).

29



g,(coso)

—-1.0-0.5 0.0 0.5 1.0
cos P

Fig.JII1.3.8. Bond angle distribution function g3(8,7) of the Stillinger-Weber
(1985) (full line) and our (dash-dotted line) I-Si. The arrow indicates the position
of the tetrahedral angle.

The structural characteristics of our model compare well with other existing
microscopic models. Moreover, electronic, ionic, and vibrational properties are all
treated on the same footing in our model.

We have carried out an extensive convergence study of our calculation with re-
spect to parameters quoted in section III.2. These results are presented in Appendix

6.

In conclusion, the calculated g(r) and S(k) agree well with experiments. A
converged calculation is necessary to produce a ¢

..
correct coordination number.
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I11.4 Bonding Properties of Liquid Silicon

In this section we study the valence electronic charge density and the related
bonding properties of 1-Si.

Siin its semiconducting phases has strong covalent directional bonds. A cova-
lent bond can be conveniently represented by the Bond-Charge (BC) model (Phillips
1973). In this model the covalent bond is schematized by a point charge (BC) mid-
way between neighboring atoms. Here we study how this picture is changed on
melting.

A plot of the valence charge density

occ

7) = }: %, 5o (P (IIT.4.1)

in a plane defined by three neighboring atoms in the liquid is shown in Fig.II1.4.1
where for comparison we also report p.(7) in the (110) plane of ¢-Si. In Fig.II1.4.1b,c
the bonding distances between the two pairs of atoms in 1-Si are very close to those in
¢c-Si (Fig.Il1.4.1a) and consequently the two p.(7) have several common characteris-
tics. In both cases the charge density is strongly nonuniform and there is an accumu-
lation of charge density (BC) between pairs of adjacent atoms. Fig.III.4.1 provides
striking evidence for the persistence of covalent bonds in the liquid. Fig.IIl.4.1b
shows a snapshot of an instantaneous local configuration which changes in time
with the typical time scale of the diffusive motion of the atoms. Its subsequent
evolution at intervals of time of ~ 5.5 x 107 3ps is shown in Fig.II.4.1c-i. We no-
tice that in Fig.Ill.4.1le one of the two bonds starts to break, while the other is
substantially weakened. Finally, in Fig.III.4.1i both bonds have disappeared, while
in the upper left corner one can see the formation of a new bond with an incom-
ing atom not shown in the picture. Another striking feature one can recognize in
Fig.Il1.4.1 is the tendency towards creating tetrahedral order between covalently
bonded atoms. The pile up of the electronic charge density in the covalent bonds is
formed upon bonding. This can be seen by taking the difference between the self-
consistent charge density p¢F (7') and the superposition of the free atom valence

pseudocharge densities p2¥(|7 — R_rl)

Ape(7) = p3°F (7 Zp (|7 = E1l). (II1.4.2)

Ape(7) for the configurations from Fig.IIl.4.1 are shown in Fig.II1.4.2. This fig-
ure provides an evidence that the covalent chemical bonds are relatively weakly
influenced by subtraction of the free atom densities and hence are formed upon
bonding. A spatial view of these processes is shown by means of a ball-stick model
in Fig.Il1.4.3. The rebonding from one zig-zag chain to another is clearly visible.
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Fig.I11.4.2. Difference charge densities Ap,
itive densities are plotted by full lines and negative densities by dashed lines. The

dots indicate the position of atoms.



Fig.II.4.3. Ball-stick model of the local atomic configurations (b)-(i) in 1-Si.
The triplet of atoms from Fig.I11.4.1 corresponds to atoms No. 3,13,56. All the
atoms shown are in the first coordination shell of atom No. 3. The different bond-
lengths indicated correspond to cutoffs of 4.4,4.7,5.0a.u. for strong bonds, weak
bonds, and atoms without covalent bonds, respectively.
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The presence in 1-Si of such strongly covalently bonded chains may play an impor-
tant role in explaining why Si is able to reconstruct easily a tetrahedral network
upon cooling. An extensive analysis shows that covalent bonds almost always form
between pairs separated by a distance less than ~ 4.7a.u. For larger separation dis-
tances the great majority of bonds are broken. We can therefore define r. = 4.7a.u.
as the cutoff distance for covalent bonds. This is slightly larger than the equilib-
rium bond length of 4.44a.u. of ¢-Si. Only a fraction of ~ 30% of the atoms in the
first peak of g(r) are at distances less than r.. In section IT1.3 we gave the bond-
angle distribution function gs(6,r.) corresponding to these atoms. This function is
peaked around an angle close to tetrahedral, thus making the above conjecture of
fluctuations toward local tetrahedral order more quantitative. We have calculated
the time decay of these fluctuations. We define the time dependent normalized
covalency c(t) as
C(t) — <NC(t + ‘S)>3
TS

where N,(t) is the number of atoms retaining the covalent bonds at time t. (...)s
implies the time-averaged value taken over a set of initial conditions at times ex-
pressed by s. As can be seen from Fig.II1.4.4 the life time of these fluctuations is
t ~ 0.04ps, i.e. comparable to the falloff of the velocity autocorrelation function
(c.f. Fig.I11.5.2) and to the optical phonon period in ¢-Si.

1.0

(IIT.4.3)
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Fig.II1.4.4 Time decay c(t) of the covalent bonds in 1-Si.

Now we want to make the above concept of covalent bonding effects in 1-5i more
quantitative. In accordance with the BC model the BC’s may be viewed as a sort of
extra particles and can be characterized by distribution functions similar to those for
real particles (equations II1.3.1-II1.3.8). Since the valence electronic density p.(7)
is a multimaximum function it is convenient to use statistical methods to locate its
maxima. We used the combination of simulated annealing (Kirkpatrick et al 1983)
with Monte-Carlo (MC) (Metropolis et al 1953) methods. The pe(7) generated in

our MD simulation are defined on a mesh of spatial points. The MC search was
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started from a randomly chosen point on the mesh. A sequence of MC moves
was generated according to the Metropolis (1953) algorithm with the acceptance
probability for a given move defined as

Ap.
T )} (I11.4.4)

p= min{l, exp(—

with Ap. being the difference between charge densities at two neighboring mesh
sites and T' an effective "temperature”. Starting at high T, the temperature was
then reduced thus forcing the search to freeze in a maximum of pe(7).

In Fig.I11.4.5 we show the pair-correlation functions gBc-Bc(r) (bond charge-
bond charge), g1-po(r) (ion-bond charge), and once again gr_z(r) (ion-ion) calcu-
lated as described above. The correlation functions were averaged over 34 config-
urations well separated in time. The bond-breaking, bond-forming processes give
rise in the g(7)’s to well pronounced features. The gr-Bc(r) is peaked at ~ 1.7a.u.
which does not correspond to a BC midway between ions and has a characteristic
shoulder at ~ 3.0a.u. The average value between the peak and shoulder positions is
exactly at the half distance of the first peak position of g1—1(r). This provides an
evidence for bond-breaking (-forming) processes, since a broken bond is character-
ized by two maxima (see Fig. I11.4.1). The first peak of g1-Bc(r) is much stronger
than the shoulder because it includes besides genuine (unbroken) covalent bonds
also the weak residual maxima almost always present when the bond begins to dis-
appear completely (c.f. Fig.II1.4.1i). The broken bonds give also rise in ggo_po(r)
to peaks at ~ la.u., which correspond to the double maxima of a broken bond.
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Fig.II1.4.5 Characterization of bonding properties of 1-Si by pair correlation
functions. Left panel: Correlation functions gBc-Bc(r), 91-pc(r), and gr—1(r)
defined in text. Right panel: distribution of BC density. The arrow indicates the
value of BC in c-Si.

The distribution of BC density is shown in Fig.III.4.5. A significant part of the
maxima is appreciably weaker than in c-Si. The compressed bonds such as those in
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Fig.II1.4.1b give rise to the tail on the high BC density side of the distribution.

The knowledge of the BC locations can be used to characterize the tendency to
maintain tetrahedral order between covalently bonded atoms. The BC-I-BC angle
distribution d(#) shown in Fig.II1.4.6 is peaked at the tetrahedral angle. Our MC
procedure finds for a broken bond two maxima which correspond to a very small
BC-I-BC angle. Thus the peak in Fig.I11.4.6 at small angles provides once more the
evidence for the presence of broken bonds in 1-Si.

The partial loss of the strong directional character of the chemical bond in the
liquid with respect to c-Si can also be seen as follows. In ¢-Si the wave functions
around the atoms are sp® hybrids. Hence using the projector Pl,m and projecting
out the ({,m) component from the wave function ;(7)

Prmthi(F) = b5 (1,m) (7)Y, (7) (I1I.4.4)

allows to define the state- and atom-averaged ratio

HS/p(R)

R N —
_ Y Xrhy r*8l.(I7 - Bil)dr
= - e o —
S fo r2 (83, (IF = Ril) + 62, (7 = Ril) + ¢, (7' = Ril))dr
(II1.4.5)
which for a suitable R is a measure of the hybridization. Taking R equal to the ¢c-Si

bond length (R=4.44 a.u.) yields H,/, ~ 0.38 in ¢-5i and H,;, ~ 0.48 in the melt,
pointing toward a partial dehybridization.

d (0) (arb. units)

Fig.I11.4.6 Distribution d(8) of BC-I-BC angles in 1-Si. The arrow indicates the
position of the tetrahedral angle.

Above we have identified the presence of covalent bonds in metallic 1-Si. In
simple metals the valence charge density is almost uniform, whereas in c-Si the
charge piles up in covalent bonds leaving large empty spaces (c.f. Fig.lIl.4.1a). The
low density regions in c-Si have the structure of infinite pipes. The 1-Si retains to
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some extent the covalent bonding effects and has, as in the c-Si case, regions of very
low density (Fig.III.4.1b). We have studied the structure of low density regions in 1-
Si, in particular whether or not they are interconnected as in c¢-Si. The method used
was based on random walks in low density regions. First a simulated annealing- MC
search for low charge density regions similar to that described above was carried out.
Starting from that point a random walk on the mesh was done with high density
regions acting as hard walls. The travelled distance d was monitored. Clearly, if the
low density regions are closed bubbles the travelled distance as a function of step
number d(N) must saturate. The d(NV) for three such random walks started from
different low density regions are shown in Fig.I11.4.7. The quasi linear behaviour
of the travelled distance indicates that, at least within limits given by a relatively
small size of our cell, the low density regions in 1-Si are interconnected.

We have shown the presence in 1-Si of covalent bonds and bond breaking-
(forming-) processes. In principle, in this situation the system can develop local
spin fluctuations and they in turn could drive the system to explore other parts
of phase space than those normally explored within LDA. To account properly for
these effects one has to generalize the K-S scheme to the SD formalism. The study
of this interesting aspect is now underway.

In summary, the persistence of some covalent bonding effects in metallic 1-Si has
been identified. These effects are accompanied by fluctuations toward local tetra-
hedral order. The bond-breaking (-forming) processes were studied in detail. These
features together with the highly nonuniform valence charge density distinguish 1-Si
from simple metals.

60.0

0.0
0 9000 18000

N

Fig.II1.4.7 Travelled distance d(N) for random walks in low density regions
of 1-Si. Three representative walks started from different low density regions are
shown.
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II1.5 Atomic Motion in Liquid Silicon

In this section we study phenomena related to atomic motion in 1-5i with a
particular emphasis on the diffusion constant and vibrational density of states.

Besides static correlation functions, such as g(r) or S(k) also dynamic prop-
erties and their description in terms of time correlation functions are important.
In this respect the MD method has the great advantage of allowing the study of
time-dependent phenomena and transport coefficients.

The generalized flux J; = % is in linear response theory proportional to the

applied forces X j :
Ji= LijX; (II1.5.1)
J

where L;; are transport coefficients. The transport coefficients are expressible in
molecular terms (Hansen and McDonald 1976) as

(e ]
L;; :/ (@;(t)@;(0))dt. (II1.5.2)
0
The transport coefficients thus appear as the time integrals over the correlation
functions of the appropriate fluxes. Thus, for example, the diffusion constant D

in an isotropic system is given (Faber 1972, Croxton 1974, Hansen and McDonald
1976) as

oo N
D:/O %(EI%I(HS)%I(S»SM

_ [ (@t s)A(s)s o, 3kBT [ (O(t 4 5)0(5))s (II1.5.3)
I R S VAl N 12 P55 Ml
kgT [

where Z(t) is normalized velocity autocorrelation function (VACF). The notation
(...)s implies the time-averaged value taken over a set of initial conditions at times
expressed by s.

We shall limit our discussion here and in the following analysis of our data to
the diffusion constant D and the corresponding Z(t). Generally, to describe the
evolution of Z(t) is a restatement of the general N-body problem which can be
conveniently studied by MD techniques.

If the displacement of a particle I in the time interval ¢ is R 1(t), then

—

. to+1 to+1
Rj(t).RI(t) ::/ 'l?](tl)dtl./ g[(tz)dtg (III.5.4)

to to
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and the mean square displacement (MSD) (R?(t)) is given (Faber 1972, Croxton
1974, Hansen and McDonald 1976) as

= 2(v(0).v(0))s /Ot(t —38)Z(s)ds ({11.5.5)

from which for very short times

3kpT
2(4)) = ZBL 42 1.5.
(B2(1)) = =t (II.5.6)

characteristic of a ballistic regime. For very long times

GkBT 6kBT
2 _ —_—
(R* (1)) = —~ t/o Z(s)ds — —-

= 6Dt + const;

sZ(s)ds
0 (I11.5.7)

the linear ¢ dependence being characteristic of diffusive liquid behaviour. Equation
IT1.5.7 is equivalent to the well-known Einstein formula

o,
D = lim M (I11.5.8)
t—oo 6t
For a Markovian system the constant in equation III.5.7 is zero, whilst for the non-
Markovian evolution is non zero and contains information on the initial history of
the diffusing centers. The sign of this constant tells whether the diffusion is ahead
or behind the corresponding Markovian process. Thus if the constant is positive (as
e.g. in 1-Ar) the diffusion is impeded relative to a Markovian evolution. Moreover, in
that case Z(t) must somewhere reverse in sign. This is described as the backscatter
effect of the diffusing particle within its cage of nearest neighbours and amounts to
reduction of D as is evident from equation II1.5.3.

Let us now apply the above arguments to 1-Si and evaluate the diffusion con-
stant from the MSD (equation I11.5.8) and from VACF (equation III.5.3). The two
relations can be proved identical. However, it is useful to see whether or not these
two different procedures in a computer give the same results.
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Fig.I11.5.1. Time dependence of the mean square displacement R2(t) in 1-Si.

The time dependence of the MSD is shown in Fig.IIL.5.1. For very short times
the MSD has a characteristic ~ t? dependence, whereas for long times it shows a
quasi linear behaviour. The constant in equation IIL.5.7 is found to be negative
(unlike I-Ar) and we can infer that Z(¢) must be everywhere positive leading to a
high value of D. Using the formula II1.5.8 we extract D ~ 2.20 X 10~*cm?s™t. This
value of D implies a mean distance travelled in our simulation of ~ 7a.u. (3.74). Tt
means that a substantial part of the phase space has been sampled.

MD suggests that we can determine not just the area under the Z(t) curve (D)
but also its shape or else its frequency spectrum Z(w) defined by
2 (e ]
Z(w) = —/ Z(t) cos(wt)dt (II1.5.9)
T Jo
and we might see significant differences between one liquid and another associated
with differences in the interparticle potential. Thus the task of calculating reliable
atomic correlations for a real liquid is obviously one of a great complexity.

There have been several attempts to describe Z(t) by simple models (Faber
1972, Croxton 1974). For a sufficiently dilute system one can expect a purely
Gaussian behaviour. Otherwise one can expect an initially quasi-Brownian motion
with a Gaussian decay of Z(t) followed by some momentum exchange of the particle
with the surrounding ones, evidenced by the departure of Z(¢) from a Gaussian
behaviour. The subsequent quasi-Brownian motion completely decorrelates the
particle’s velocity with its initial value. Essentially one can distinguish the low
frequency diffusive modes from the distinct high frequency vibratory modes (Croxton
1974). In the simplest model the liquid can be pictured as a system of diffusing
Einstein oscillators.
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The vibrational behaviour is also evident from the VACF (equation III.5.3)
shown in Fig.III.5.2. Z(t) is always positive and has an oscillatory decay to zero
after ~ 0.15ps. This has to be contrasted with close packed liquids like 1-Ar where
as a result of the caging effect of the neighboring atoms a negative oscillation in
Z(t) is observed. 1-Si has a much more open structure and exhibits no caging but
only a milder effect due to the occasional formation of covalent bonds between pairs
of atoms giving rise to the vibrational motion.

Z (@) (arb. units)

0.0 0.1 0.2 0.0 75.0 150.
t(ps) W (THZ)

Fig.II1.5.2. Vibrational properties of I-Si. Left panel: velocity autocorrelation
function Z(t). Right panel: the corresponding power spectrum Z(w).

Tab.II1.5.1 Comparison of measured diffusion coefficients of some impurities in
[-Si (compiled from Landolt-Bornstein 1982: different entries correspond to different
experiments). The calculated values of self diffusion coefficient of I-5i are 2.20 X
107%*cm?s™ (MSD) and 2.02 x 10™*em?s™? (VACF).

Impunty Al P Ga As

D x10* 0.23 2.3 0.66 2.4

em?s™! 5.3 2.7 3.6 2.5
3.9

We have determined the diffusion coefficient D also from Z(t) based on equation
I11.5.3. This yields the value D ~ 2.02x 10" *cm?s™! in remarkably good agreement
with the value estimated from MSD. Although we are not aware of any direct
experimental measurement of D for 1-Si, our finding is consistent with indirect
estimates. In Tab.II1.5.1 we compare the calculated value of D with the diffusivity
of some substitutional impurities in 1-Si (Landolt-Bornstein 1982). The calculated
value of D of 1-5i is significantly larger than that found e.g. in l-Ar (Croxton
1974). The large value of D is a consequence of the more open structure in 1-Si
combined with the prevalence of broken chemical bonds (c.f. section III.4). We
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note that the empirical Stillinger-Weber (SW) (1985) potential yields a value of
D ~ 6.94 x 107 %c¢m2s~! (Broughton and Li 1987) which is significantly smaller

than our estimate.

The Z(w) (equation IT1.5.9) of our 1-Si is shown in Fig.II1.5.2. Here the bonding
effects are reflected in the shoulder at the frequency of ~ 607 H z which is very close
to the optical vibrational frequency of ¢-Si just below the melting point (Wang et al
1989). Our Z(w) is again markedly different from that of the SW liquid (Fig.IIL.5.3),
which bears some resemblance of the crystalline Z(w) (Luedtke and Landman 1988).
This is not surprising since the tetrahedrality is built in in the SW potential.

We have studied in more detail the effects of formation of chemical bonds on
the atomic motion and vibrational spectra. For this purpose we define the filtered

VACF ( ) ( )
((F5(t+ ) (f5(5)))s
Z:t) = . 2
) ((f9(s))-(f5(5)))s

where f is an operator choosing only atoms with a particular bonding character-
istics. As explained in section III.4 on average only ~ 2 atoms out of 6.5 nearest
neighbours are covalently bonded. Hence it is useful to distinguish atoms with
ny = 0,1,2,... covalent bonds. The spectra corresponding to ny = 0 and ny = 2
are shown in Fig.II.5.4 and Fig.II11.5.5, respectively. Clearly, the vibratory modes
originate from covalently bonded atoms.

: (II1.5.10)

7(@) (arb. units)

0.0 75.0 150.0
W (THZ)

Fig.II[.5.3. Vibrational density of states Z(w) of the SW liquid (Luedtke and
Landman 1988).
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Fig.IIf;E)AT Vibrational characteristics of atoms without covalent bonds, ny =
0. Left panel: velocity autocorrelation function Z(t). Right panel: the correspond-
ing power spectrum Z(w).
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Fig.II1.5.5. Vibrational characteristics of atoms with two covalent bonds, n; =

2. Left panel: velocity autocorrelation function Z(%). Right panel: the correspond-
ing power spectrum Z(w).
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II1.6 Electronic Properties and Conductivity of Liquid Silicon

In this section we deal with the electronic structure and electrical conductivity
of 1-Si. Our approach is based on finding (within DFT) instantaneous adiabatic
eigenstates {|3)} and eigenvalues {&;} which are functions of the atomic coordinates
{ﬁf} at some time t. Strictly speaking the DFT applies only to ground-state
properties and the {e;} are only Lagrange multipliers (see e.g. Lundqvist and
March 1983). In many cases, however, the {¢;} are a rather realistic approximation
of the excitations energies and the formalism can be extended also to excited states.
In this spirit we use the {|i)} and {e;} and calculate the electronic structure and
conductivity by averaging over a set of representative configurations.

To our knowledge there is very little information on electronic structure and
properties of 1-Si both theoretically and experimentally. Only a partial information
on the 3p electronic structure is available since only the 3p — 1s (k) emission band
has been recorded by soft X-ray spectroscopy (SXS) (Hague et al 1980). There are
several experimental results for the d.c. conductivity (Glazov et al 1969). The
a.c. conductivity, however, has been much less explored. The only experimental
data are those based on measurement of the complex refractive index (Shvarev et
al 1975). On the theoretical side the only calculations of the electronic structure of
molten Si are due to Gaspard et al (1984) and Allen and Broughton (1987). The
former assumed the geometric structure to be dominated by sixfold-coordinated
Si atoms which are modelled by SC and $-Sn forms, the latter have followed an
approach similar to ours by generating a SW-liquid and applying a simple tight-
binding model to it. In section III.3 we argued that it is not very useful to interpret
the local order of 1-Si in terms of crystalline phases, like SC or 3-Sn. The drawback
of the tight-binding model of Allen and Broughton is a serious underestimate of the
conductivity by a factor of 3. In this situation our approach treating structural and
electronic properties on equal footing may be useful.

Our model for the conductivity of a liquid metal is to assume that current is
carried by electrons and the charged ionic cores are elastic scattering sites for mobile
electrons. The contribution of positive atom cores to currents can be evaluated from
the Einstein relation (Ze)2pD

e)’p

where the charge Z is taken to be 4, p is the number density, and D is the dif-
fusion constant estimated from our MD simulation as ~ 2 X 10~%ecm?s™t. At
the temperature T = 1800K equation IIL.6.1 gives a conductivity of 4 x 10™%a.u.
(1.8 10™*(uQem) ™). Published values of o for I-Si are (1.0 - 1.3) x 107 2(uflemn) ™!
(Glazov et al 1969) which is typical of highly resistive metals but is about two or-
ders of magnitude larger than the above estimate. Hence, the ionic contribution is
negligible.

As mentioned above we generate eigenvectors and energies for given ionic con-
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N(E) (arb. units)

figurations and used them in the Kubo-Greenwood (K-G) formula for the conduc-
tivity (Economou 1983)

2 occ unocc

M;
o(w) sz Z Z | IJ' €j — € — hw)), (I11.6.2)

where M;; is the momentum matrix between states |7), |7). We remark that this
is the only consistent way of calculating o in the present case. The alternative
Ziman theory (Faber 1982) has also been used in the past to calculate o (Waseda
and Suzuki 1975). The Ziman’s theory, however, applies only to the case where the
electron-atom scattering cross section is small and consequently the mean free path
I >> a (where a is an interatomic separation). In 1-Si, taking free electron Fermi
gas parameters, a mean free path [ ~ 4.54 follows from the measured conductivity
(Shvarev et al 1975). This is not large compared with a ~ 2.5A. Hence, the Ziman
theory should not be applied to 1-Si.
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Fig.I11.6.1. Electronic properties of 1-Si. Left panel: Density of Kohn-Sham
eigenvalues N(FE) calculated by (a) averaging over 12 configurations (full line), (b)
averaging over the entire MD trajectory (dash-dotted line). The vertical line in-
dicates the Fermi level. The p-band measured by SXS spectroscopy (Hague et al
(1980) is indicated by dotted line. Right panel: Electrical conductivity o(w) calcu-
lated from Kubo-Greenwood formula (full line), and the Drude fit to the measured
data (Shvarev et al (1975) (dash-dotted line). The atomic unit of conductivity used

here is f:—n =4.6 x 10°(Qm)~1.

To implement the K-G formula we need, besides the occupied states already
generated in the course of the MD run, also the unoccupied states. We took 12
self-consistent potentials from the MD run, well separated in time to generate the
K-S eigenstates and eigenvalues (both occupied and unoccupied). In the present
case we found convenient to use the iterative MSD algorithm. In Fig.JII.6.1 we
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report the density of K-S states (Stich et al 1989b)

N(E) =Y 6(E - ). (I11.6.3)

Because of finite sample size we broadened the é-functions into a histogram with a
finite bin width. For comparison we show in the same figure also the N(E) for oc-
cupied states averaged over the entire MD trajectory. The comparison shows that,
at least for the occupied states, the 12 configurations provide a sufficiently repre-
sentative sample. N(E) displays metallic behaviour as evidenced by the absence
of a gap at the Fermi level Er. The E~point sampling may be more stringent for
calculation of density of states than for the ionic forces. A more careful sampling
might lead to a smoother N(E) but would not have changed the metallic character
of the system. The metallicity of the system can be understood qualitatively as
follows. 1-Si has a coordination number exceeding six. Only a fraction of ~ 30% of
these atoms are covalently bonded. The least bonded atoms can be imagined as a
sort of interstitial atoms that introduce gap states and fill up the gap. The com-
parison with the experimental 3p — 1s emission band (Hague et al 1980) indicates
that the states immediately below Er are dominated by p-states. On the whole
the calculated N(E) relatively closely resembles that expected for a simple metal, a
conclusion supported also by the SXS data. Our density of states is less structured
but qualitatively similar to that obtained by Allen and Broughton (1987) with a
tight-binding model.

The calculated o(w) is shown in Fig.I11.6.1 (Stich et al 1989b). By extrapolating
the o(w) to w — 0, we obtain o4.. = 0.38a.u.(0.0175(pﬂcm)“1) in fairly good
agreement with the experimental value of 0.27a.u.(0.0124(pQcm) ™) (Glazov et al
1969). In our calculation the d.c. limit has the largest uncertainty. The reason
is that the number of energy pairs (¢;,¢;) with &; < Ep and ¢; > EF diminishes
rapidly as w — 0. We have also dropped the usual Fermi occupation numbers from
the K-G formula (Economou 1983) in order to keep it consistent with the potentials
that have been generated by assuming a sharp Fermi surface. The behaviour of the
calculated o(w) in Fig.II1.6.1 looks quite like classical Drude (1 + w?r2)7! falloff
and has also been found experimentally (Sharev et al 1975). The origin of this
behaviour in a strong-scattering liquid with a short mean free path [ is not entirely
clear. The overall good agreement with the experimental data indicates once more
a realistic description of the electronic properties of 1-5i by our model. We note
that the tight-binding approach of Allen and Broughton (1987), in spirit similar to
ours, gave qualitatively similar N(E) but is off by a factor of 3 in description of the

o(w).
An alternative simple estimate of ¢4, can be obtained from the approximate
expression (Mott and Davies 1979)

. Spe?lg?
Tde T omp

(II1.6.4)
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with Sp being the Fermi surface, [ the mean free path, and g = er\g—(ﬁ%%;. Equation

IT1.6.4 is the usual result from the Boltzmann treatment corrected for the deviations
of N(E) from the free-electron value. The final formula follows by assuming the
scattering to be so strong that [ ~ a (an average nearest neighbour distance). This
gives 04, = 0.18a.u. (0.0083(uQlcm)™!) in reasonable agreement with both the
K-G expression and with experimental data.

In summary, we have presented the electronic properties of 1-5i resulting from
our model. The single-particle electronic density of states shows metallic behaviour.
We used the Kubo-Greenwood formula for the a.c. conductivity in the strong-
scattering environment of 1-Si. In accordance with experimental data a Drude-like
behaviour has been found. An independent approach to the d.c. conductivity based
on the simple Mott’s formula was also considered and found in reasonable agreement
with the Kubo-Greenwood result.
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IV. Amorphous Silicon

IV.1 Principal Properties and Methods of Preparation
of
Amorphous Silicon

The vast number of interesting properties of amorphous silicon (a-Si) cannot
be enumerated here. We only briefly summarize some of the important properties
with emphasis on those that can be addressed by our approach. We mention also
the preparation techniques since they determine crucially some of the properties.

a-Si is a metastable phase. The amorphous state in Si could also be termed
glassy state because it can be prepared by very rapid quench from the melt (laser
glazing) (Thompson et al 1983, Galvin et al 1983) and experimental findings
(Spaepen and Turnbull 1978) led to the proposal that the phase transition it un-
dergoes on melting is of first order.

The average density of a-Si is usually lower than that of the crystal because
of presence of voids (Elliot 1984). The characteristics of the voids are strongly
dependent on the growth conditions and subsequent thermal treatment. Radii of
gyration of the voids ranging from 54 to 2704 (Postol et al 1980) have been esti-
mated experimentally leading typically to 5 — 15% decrease in density (Mott and
Davies 1979).

The diffraction experiments (Fortner and Lannin 1988,1989) revealed that the
pair-correlation function of a-Si is not simply a broadened version of that of ¢-Si.
The most striking feature being the absence in a-Si of the third, prominent, peak
of the crystalline g(r). Thus modeling the structure of a-Si presents an intriguing
problem in space filling.

The absence of long-range order (LRO) has profound consequences also on
electronic and dynamical properties of a-Si. Both electronic (Ley et al 1972) and
phonon (Kamitakahara et al 1984,1987) densities of states have been studied exper-
imentally. The results indicate that, besides the broadening effect of disorder with
respect to the crystalline counterparts there are also new and more subtle effects
present in these spectra. We will elaborate more on these new features in sections

IV.5 and IV.7.

Many properties of a-Si, similarly to the crystalline case, are defect controlled.
In the amorphous environment the natural defect can be identified as a departure
from the perfect 4-fold coordination, i.e. under- and over-coordination. It has been
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suggested that the coordination defects have a state in the gap that would contain
a single electron when the defect is neutral (Pantelides 1988). Hence, the electron
spin resonance (ESR) should provide a characteristic signature for the coordination
defects (called D-centers) with large observed spin densities ~ 10'® — 10*%¢m~—°
(luminiscence, absorption, DLTS, etc. also yield signals from defect states ) (Elliot
1984). The D-centers can be easily created by prolonged exposure to light (Staebler-
Wronski effect). The gap states exhibit a certain degree of localization. In real
materials which may contain a high concentration of defects and consequently a high
density of gap-states, electron transport can take place via hopping conductivity in
localized states. Until recently only rigid, frozen in dangling bonds resulting from
undercoordination have been considered. In section IV.6 we will study in detail the
coordination defects and their dynamics.

Besides the density and coordination defects there may be also topological
distortions (disclinations) (Rivier 1979) present in a-Si. Unlike the ¢-Si that consists
only of six-membered rings in the structure, the amorphous form may contain a large
variety of ring sizes, both odd and even. They influence the elastic energy of the
amorphous form. Indirect conjectures correlate the presence of topological defects
with some characteristic features experimentally observed in the atomic (Temkin
1978) and electronic (Joannopoulos and Cohen 1973, Singh 1981) structures of the
amorphous form. We study the topological defects in section IV.6.

The properties of a-Si may depend sensitively on preparation technique. There
are at least a dozen different techniques that can be used to prepare materials in
an amorphous state. Here we introduce those that are relevant to a-Si (Elliot 1984)
and that we shall refer to in comparing the calculated properties with experiments.
Those are:

- thermal evaporation

-sputtering

-glow discharge decomposition

-laser glazing (LG) (Thompson et al 1983, Galvin et al 1983)

In the first technique the material is vaporized from the solid by bombardment
with high-energy electrons and deposited in vacuo on a cold substrate. In the
sputtering an r.f. field is applied to a target causing the striking of a plasma
(usually Ar) and creating a negative bias on the target. The ions attracted from
the plasma by the bias potential eject material from the target that is than collected
on a cold substrate. The glow discharge is similar to sputtering, but the amorphous
film is directly deposited from the plasma produced by applying an r.f. field. The
essential common feature of all these techniques is that atomic surface mobility is
greatly diminished because of the cold substrate, causing the adatoms to be frozen
in the random positions at which they arrive.

A different strategy is followed in LG. By applying very short (ns) laser pulses
thin surface layers can be melted. By energy conduction into the substrate ex-
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tremely high quench rates of ~ 102K /s are achievable that allow amorphisation
from the melt. Because of these high quench rates, our numerical model of a-Si
should be more closely related to a-Si produced by LG. The available experimental
data, however, refer mainly to the former three methods of preparation.
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IV.2 MD Simulation of Amorphous Silicon

In this section we describe the details of preparation of a-Si by using the CP
method (Stich et al 1989¢c). The general strategy is close to that followed in real
preparation of a-Si by LG, i.e. a rapid cooling of the melt.

During thermal treatment complicated processes must take place. The coor-
dination number ~ 6.4 (Waseda and Suzuki 1975, Gabathuler and Steeb 1979)
characteristic of a liquid must reduce to ~ 4 (Filipponi et al 1989) in the amor-
phous. Besides changes in SRO, the medium-range order (MRO) is also expected
to develop (Elliot 1984). These changes are accompanied by a metal to semicon-
ductor phase transition. In our approach all these changes must be entirely driven
by the changes in the potential.

The present simulation was started from the 1-Si data described in chapter III at
the temperature T' = 1800K. Similarly to the 1-Si simulation we used the constant
temperature MD (equations I1.3.7a-c). The presence of the Nosé thermostat allows
to control accurately both the temperature and the cooling rate. In order to describe
well all the processes mentioned above we fixed a linear cooling with the rate of
101*K/s in the region of temperatures from 1600 to 600K. This is presently the
slowest cooling rate attained within the CP. We chose the cooling rate 4 times faster
in the region 600 — 300K and 8 times faster in the 1800 — 1600K region. The faster
cooling rates in those temperature regions have little effect because in the high T
region the structure has not yet started to change appreciably and at low T' the
structure has already essentially been captured in a representative minimum of the
potential energy surface. The total thermal treatment took ~ 11ps.

To make such a long run possible we used a time step At = 20a.u. (4.82 x
1071%5) and scaled accordingly the electronic "mass” u to 3200a.u. Another saving
was achieved by using a smaller cutoff for the plane-wave expansion of the potential
than formally required for a given energy cutoff imposed on the wave functions. The
discussion of this point is left to Appendix 3. To keep the same efficiency of phase
space sampling the dynamical "mass” of the Nosé thermostat ¢ was reset at each
temperature using equation II1.2.1. All the other parameters, like number of atoms
in the simulation, shape of the supercell, pseudopotential, number of plane waves,
use of the I'-point only in the BZ sampling, were the same as in the 1-Si simulation.
In the course of the cooling we performed periodic quenches of the electrons to
the instantaneous ground-state every 250 time steps. This choice ensures that the
maximal deviation of the electrons from the BO surface is <~ 6 x 107 2eV/atom.
This value is larger than that we tolerated in the 1-Si simulation (c.f. section III.2).
To test whether or not the new choice of parameters and approximations is adequate
we have run the system for ~ 0.5ps at the temperature T' = 1800K. The structural
characteristics of this new liquid were virtually identical to those of a more carefully
prepared liquid described in chapter III. This confirms once more that the noise
introduced into ionic forces by "reasonably” small deviations from the BO surface
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is not critical. We remark that at lower temperatures where the system starts
developing a band gap the nonadiabatic effects in the fictitious classical dynamics
diminish.

The density of the melt is ~ 10% above the density of the crystal. To account
for the density change, the volume of the cell was linearly changed in the tempera-
ture range 1600 — 600K from the volume = 7781.225a.u. in the liquid to the value
Q) = 8640.365a.u. characteristic of the crystal. In real a-Si the density is usually
lower (c.f. section IV.1). The volume changes were accompanied by corresponding
changes in the energy cutoff in order to keep the number of plane waves (i.e. the
precision) constant. Thus the final cutoff for the a-Si was of ~ 11.2Ry.

At the final temperature T = 300K the Nosé (1984a,b) thermostat was
switched off and the system was run in the microcanonical ensemble using equations
11.3.3a,b. In order to enable a long run without any drift in the microcanonical con-
stant of motion (equation II.3.6), the integration of the MD equations I1.3.3a,b was
performed with the Verlet (1967) algorithm and a time step of 10a.u. (2.42x 1071%s),
while the "mass” parameter p was set equal to 612a.u. Tests with this new set of
parameters have shown that the system remains on the BO surface for very long
observation times. At the final temperature we have followed the system for a total
time of ~ 3.2ps, much larger than the typical relaxation times.

Compared to the original simulation by Car and Parrinello (1988a) this new
amorphous structure was obtained with a more careful treatment. The calculation
was started from a better liquid structure with a converged value of the energy
cutoff. 64 atoms in a cubic cell have been used instead of an FCC cell with 54
atoms. Also the cooling rate used in the present study was substantially (almost
an order of magnitude) slower than that in the work by Car and Parrinello (1988a).
This newly generated amorphous structure, however, exhibited presence of some
relaxation processes in the final structure at 7' ~ 300K. Further annealing of
the data presented here would be necessary to better equilibrate the structure.
However, the effect of such processes on average properties, like g(r) or the electronic
properties, appears to be negligible.

The structural relaxations can be seen from the mean square displacement
and the variation of the instantaneous temperature shown in Figs.IV.2.1, IV.2.2,
respectively. As can be seen in Fig.IV.2.1 the system underwent two marked struc-
tural relaxations during which few atoms moved substantially, driving the system
toward a state of lower energy, leaving the pair-correlation and bond-angle dis-
tribution functions little changed but reducing the number of coordination defects.
This structural relaxation were accompanied by a slight increase in the temperature

(Fig.IV.2.2).
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Fig.IV.2.1. Temporal evolution of the mean square displacement R2(t).
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~ Fig.IV.2.2. Variation of the instantaneous system temperature. The horizontal
line indicates the temperature T' = 300K. Note the correlation of the increase in
temperature with the variation of the MSD shown in Fig.IV.2.1.
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IV.3 "Glass” Transition

The system prepared as described in the previous section is a glass where the
crystallization at the melting temperature is precluded by a rapid cooling rate. Our
data do not allow us to make general conclusions about the glass transition based
on considerations of entropy, thermodynamics or relaxation processes. Instead, we
can monitor how SRO and MRO are incorporated in the system upon cooling as
the system goes through the structural changes from the liquid to the amorphous
structure.
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Fig.IV.3.1. Temperature dependence of the mean square displacement R?(¢).

In Fig.IV.3.1 we show the decrease in MSD (proportional to the diffusion
constant) with temperature. The diffusion is essentially zero at the temperature
~ 950K . The cease of diffusion manifests also in the static structure factor S(k)
shown for three different temperatures in Fig.IV.3.2. The S(k) at the temperature
~ 950K is practically indistinguishable from the measured S(k) at the room temper-
ature. The transition from a liquid-like to a solid-like structure factor, characterized
by the splitting of the broad first peak in the liquid is well visible.

As will be seen in the next section, an idealized structural model of an amor-
phous solid in which directional covalent bonding is predominant can be based
on the continuous random network (CRN) model (Elliot 1984). The CRN model
put forward by Zachariasen, assumes that the atomic structure of the crystalline
and amorphous phases must be similar in certain regards. If the Si atom with its
four bonds is schematized by a tetrahedra, the only difference is the variable ori-
entation of the tetrahedra in a glass, giving rise to a nonperiodic structure. An
important aspect of this approach is that a nonperiodic arrangement of atoms can
be attained solely as a result of the incorporation of variations in bond-angles and
dihedral-angles. The dihedral angle determines the relative angle of twist between
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neighboring tetrahedral units and hence the MRO.

0 3 6 9 12 3 6 9 12 3 6 9 12
I-(M(a.ui) K(a.u.) K(a.u.)

Fig.IV.3.2. Temperature dependence of the static structure factor S(k). The
temperatures are (from the left) 1550K, 1250K, and 950K. The dash-dotted line
in the left panel is the X-ray data of Waseda and Suzuki (1975) and in the right
panel the neutron scattering data of Fortner and Lannin (1988,1989).
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Fig.IV.3.3. Temperature dependence of triplet correlation function g3(¢) mea-
sured by the bond-angle distribution. The temperatures are (from the left) 1550 K,
1250K, and 950K.
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Fig.IV.3.4. Temperature dependence of the dihedral angle distribution function
P(6). The temperatures are (from the left) 1550K, 1250K, and 950K.

The rearrangement in the SRO toward local tetrahedral order upon cooling can
be monitored by the bond-angle distribution function g3(#) shown in Fig.IV.3.3. At
~ 950K the system has already developed the tetrahedral order. The effect of
temperature is a larger variation of bond-angles og. The normalized dihedral-angle

distribution P(6)
l/ P(9)dd =1 (IV.3.1)
0

™

for three temperatures is compared in Fig.IV.3.4. Our definition of dihedral angle
gives for the crystal the 2 : 1 ratio of 60° : 180° angles. The distribution is not flat
at lower temperatures with maxima near 60° and 180° indicating the development

of MRO.

All the structural changes on cooling we described above are driven by the
changes in the potential. This changes must have consequences also on the electronic
properties. In fact, the system must undergo a metal to semiconductor transition.
To monitor this changes we have calculated the density of K-S states N (E) and
the conductivity o(w) at T ~ 1050K. The method used was that described in
section IIL.6. The results are averages over 5 configurations and are reported in
Fig.IV.3.5. The system has developed a minimum at the Fermi level accompanied
by a deviation from a Drude-behaviour and a decrease of o(w) at small energies.
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Fig.IV.3.5. Electronic properties of undercooled 1-Si at T' ~ 1050 K. Left panel:
Density of Kohn-Sham eigenvalues N(E). The vertical line indicates the position
of the Fermi energy. Right panel: Electrical conductivity o(w) calculated from
Kubo-Greenwood formula (equation III.6.2).
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IV.4 Structural Properties of Amorphous Silicon

This section deals with the atomic structure of a-Si. Our MD results are
compared with experimental data and with other existing theoretical models.

Because of the small size of our cell only the microscopic structure up to ~
5.54 can be studied, i.e. SRO and some aspects of MRO, such as dihedral-angle
distribution. Experimentally, also other elements of MRO have been observed, such
as regions having linear dimensions up to ~ 154 yielding coherent diffraction (Elliot
1984). In a real a-Si also the macroscopic structure plays an important role. The
electron microscopy and small-angle scattering (SAS) (Postol et al 1980) of radiation
give direct evidence of density fluctuations - voids - in a-Si.

The experimental information on the atomic structure of a-Si is rather limited.
There were experimental structural studies made on a-Si using electron (Barna et
al 1977) and X-ray diffractions. However, the elastic neutron scattering technique
was applied only recently. Apart from an earlier study in a limited range of %
(< 8.751&—1) providing an evidence for SAS from voids (Postol et al 1980) there are
only two other very recent experiments. Fortner and Lannin (1989) carried out a
measurement on a-Si prepared by r.f. sputtering for k£ < 22477, Kugler et al (1989)
studied evaporated a-Si in the momentum transfer range 0.5 < k < 164" ". The
structure factors of the two experiments are compared in Fig.IV.4.1. The differences
between this two data sets may be a result of different preparation techniques of
a-S5i used in these experiments.
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Fig.IV.4.1. Experimentally determined S(k) of a-Si. Left panel: Neutron
diffraction experiment of Fortner and Lannin (1989) (full line corresponds to as
deposited and dotted line to annealed sample), Right panel: Neutron diffraction
experiment of Kugler et al (1989).
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To compare the real-space data is even more difficult because of a finite real-
space resolution. The termination error involved in equation 111.3.10 can be alle-
viated to a certain extent by multiplying the integrand in equation III.3.10 by a
modification function M(k), usually the one due to Lorch (1969)

wk maz

M(k) = Fmes sin( k”k ) (IV.4.1)

replacing a sharp discontinuity at kma.. by a smoothly varying function. If the
correlation function is taken to be

t(r) = 4wrpg(r) (IV.4.2)

the effect of all this is that from the experimental data the function (Etherington
et al 1982)

t(r) = / t(r)P(r —r") = P(r+7")]dr' (IV.4.3)
0

broadened with the peak function

Pr) = = / M(k) cos(rk)dk (IV.4.4)
™ Jo

is extracted. The reason for using ¢(r) rather than g(r) is that it is in #(r) and
not g(r) that the experimental broadening by P (r) is symmetric and r independent
(Etherington et al 1982). The real-space data are little affected, if due to sufficiently
broad peaks in the real-space correlation functions, the oscillations in § (k) have
died away at k = kmaz. Thusin covalent amorphous solids usually the first peak is
strongly affected while the features at higher r are left relatively unchanged by the
transformation in equation IV.4.3.

In Fig.IV.4.2 we show results obtained for the S(k) and g(r) and compare
them with neutron scattering data (Fortner and Lannin 1989). The agreement
with experiment can be considered as perfect. The reason why we compare the
g(r) and not t(r) with experiment is that we found that #(r) depends sensitively
on the density p. Our model is free of voids and hence its density is higher than
that of a real a-Si. The close agreement between the calculated and experimental
g(r) in the region of the second peak implies also a good agreement in the mean
value of the bond-angles and their variation. The data reveal the disappearance
of the third crystalline coordination shell. The area under the first peak of g(r)
(equation I11.3.11) gives a local coordination NI = 4.04. The distribution of local
coordinations as calculated by setting the cutoff distance of the first minimum of
g(7), 7m = 5.la.u., is in Tab.IV.4.1. We find a relatively high concentration of
both threefold (T3) and fivefold (T5) atoms. Our finding is consistent with a recent
suggestion that T5 defects might exist and play an important role in real-life a-Si
(Pantelides 1988). The high concentration of the coordination defects found may
be a consequence of the system size and absence of any annealing treatment in our
model. The structural defects will be more fully discussed in section IV.6.
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Fig.IV.4.2. Structural properties of a-Si. Left panel: Calculated static struc-
ture factor S(k) of a-Si (full line) compared with neutron scattering data for the
as deposited sample of Fortner and Lannin (1989) (dash-dotted line). Right panel:
Calculated pair correlation function g(r) of a-Si (full line) compared with data ex-
tracted from neutron scattering data for the as deposited sample of Fortner and

Lannin (1989) (dash-dotted line).
Table IV.4.1. Distribution of local coordinations in a-S51

N (Tm = 51&%) 3(T3) 4 5(T5)

% atoms 2.7 90.6 6.5

To assess the effect of finite experimental real-space resolution on the first
peak of g(r) we applied equations IV.4.1-4 with kmez = 2247 (Fortner and Lan-
nin 1988,1989) in the region of the first peak. The g(r) was extracted from i(r)
using equation IV.4.2. The result is reported in Fig.IV.4.3. In the same Fig. we
report also the smoothed version of the calculated static structure factor S(k). The
results confirm an excellent agreement with the experimental data. An amorphous
structure contains disorder in bond-lengths and bond-angles. The information on
bond-length and its variation can be extracted from the first peak of the correlation
function, while the information on bond-angles and their variation is contained in
the second peak. We have fitted the first two peaks of

t(r) = 4nrpg(r) (IV.4.5)
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Fig.IV.4.3. Structural properties of a-Si. Left panel: the smoothed version of
the calculated S(k). Right panel: the calculated g(r) with the first peak convoluted
with the experimental resolution (full line). The dash-dotted lines show the neutron
scattering data for the as deposited sample of Fortner and Lannin (1988,1989).
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Fig.IV.4.4. The peak fits of the calculated correlation functions by Gaussians
(dash-dotted line). The dotted line reports the residual. Left panel: #(r), Right
panel: J(r).

and of the radial distribution function
J(r) = 4nr?pg(r) (IV.4.6)

by Gaussians. The second peak is only partially resolved and so in order to achieve
a peak fit it was assumed that the second neighbour distribution is symmetric about
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the maximum of the second peak (Etherington et al 1982). The result is shown in
FigIV.4.4 and Tab.IV.4.2. Our bond-length variance o, (Table IV.4.2) is in very
good agreement with recent X-ray absorption spectroscopy (XAS) measurements
(Filipponi et al 1989). The triplet correlation function g3(8) is usually obtained
from the pair-distribution function with the approximate relation (Lannin 1987)

35(6) = a(ra)rs cos(5) (IV.4.7)

2
assuming a relatively symmetric distribution of the second peak about the maxi-
mum. There is also the thermal contribution present in g3(8) which in the Gaussian
approximation is just summed to the structural one (Etherington et al 1982)

o =0l 40}, (IV.4.8)

We used the Gaussian fit of the second peak of t(r) corrected for the thermal con-
tribution (taken from the thermal width of the second peak of c-Ge) oy = 0.197a.u.
(Etherington et al 1982). The result is shown in Fig.IV.4.5. and yields a variance
oo = 12.93° (Table IV.4.2).¥ The atoms that correspond to coordination defects
usually build the tails of the distribution of bond-angles. Thus the above proce-
dure is equivalent to cutting the tails of the distribution. The value so obtained
is slightly larger than that extracted from neutron scattering data (Fortner and

Lannin 1988,1989) or XAS data (Filipponi et al 1989) (c.f. Table 1v.4.2).

Table IV.4.2. Gaussian fit parameters of t(r) and J(r) of a-51

f

71 79 0 or Ory T N, Ny
(au.) (au.) (deg) (aw.) (au.) (deg)

calc. t(r) 4.437 7.185 108.127 0.148  0.643 12.93

cale. J(r) 4.442 7.238  109.120 0.149  0.637 3.807 13.873
exp. H(r) 4.422* 7.256" 0.209*  0.602** 11.0**

exp. J(r) 108.4™* 10.8**

exp. 0.143% 9.6+

1 thermal disorder subtracted
*  Kugler et al 1989
** Fortner and Lannin 1989 (refers to as-deposited sample)

i Filipponi et al 1989

* Note that the coordination number N; obtained by Gaussian fit is smaller than
that obtained from formula I11.3.11. Gaussian fits are often used to determine the
coordination number experimentally (Etherington et al 1982).
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The rms bond-angle deviation has become almost a figure of merit for structural
models. However, the comparison with experiment must be done with caution. The
¢ parameter is a function of conditions of formation and may vary by more than
20% (Lannin 1987). Tests with other models (Wooten et al 1985) have shown that
with systems of our size it is difficult to get o4 significantly <~ 13° (Wooten 1989).
The angle variance also depends on the density of coordination defects and the way
in which it is estimated. In Fig.IV.4.5 we show g¢3(0) calculated directly from the
atomic coordinates taking r, = 5.la.u. This yields the value () = 108.15° and
cgp = 16.289° without thermal correction. Hence, the rms bond-angle deviation
must not be given undue weight.

The normalized dihedral-angle distribution P(#) of our model is shown in
Fig.IV.4.6. The definition used here gives for the perfect staggered configuration a
2 : 1 ratio of 60° : 180° angles and a 2 : 1 ratio of 60° : 0° angles for the eclipsed
configuration. Even though the distribution of dihedral angles in Fig.IV.4.6 is broad
the large value of the distribution near ~ 180° indicates a nonrandom distribution
with the prevalence of staggered configuration over the eclipsed one in accordance
with the modeling studies of Temkin (1978). Our distribution should be interpreted
carefully because the dihedral-angle distribution involves the third neighbours which
are at the limits of present model. The study of Temkin has also suggested sensitiv-
ity of the third peak position of the pair- correlation function and the related 4.74
feature in a-Ge to the dihedral-angle distribution. Experimentally, the constancy of
the third peak in a-Si and the weak 4.6A shoulder in the annealed sample suggest
that evidence for substantial MRO is not strong (Fortner and Lannin 1988,1989).
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Fig.IV.4.5. The triplet correlation function of a-Si measured by the bond-
angle distribution function g3(#). Left panel: Equation IV.4.7 used and thermal
contribution subtracted. Right panel: Calculated directly from atomic coordinates.
No thermal correction. The dash-dotted lines are Gaussian fits.

Finally, we shall discuss some of the vast number of existing structural models of
a-51 (or a-Ge) and compare them with our model. The simplest models are quasi-
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crystalline models (Etherington et al 1982, Elliot 1984) modeling the amorphous
solid by a related polymorph, such as the normal diamond or Wurtzite structures
or the Si ITI or Ge III (Joannopoulos and Cohen 1973) structures. Some of them in-
corporate distorted tetrahedral bonding and/or topological defects. Their common
feature is that they yield too much structure in the pair-correlation function with
peaks that are absent in the experimental data. The problem with this approach
is that to achieve even a moderate agreement with scattering data, the crystal-
lites must be made so small that they comprise only ~ 50% of the structure, the
other half being an unspecified random tissue. Therefore these models are highly
unsatisfactory.
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Fig.IV.4.6. Dihedral-angle distribution P(#) in a-Si.
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An idealized structure of covalently bonded amorphous solid may be mod-
eled by continuous random network model (CRN) (Elliot 1984, Etherington et al
1982), where the fundamental tetrahedra (an atom with its four bonds) are con-
nected together in the network, with their relative orientation being characterized
by the dihedral-angle. CRN allow some degree of bond-angle distortion and more
or less complete freedom of the dihedral-angle distribution. Also the topology in-
cludes odd-rings in addition to sixfold rings characteristic of the diamond structure.
Some of these models consist of a ball-and-stick arrangement (Polk 1971, Polk and
Boudreaux 1973, Connel and Temkin 1974, Henderson 1974), while others are com-
puter generated (Henderson and Herman 1972, Duffy et al 1974). The CRN models
usually reproduce the main features of the experimental correlation functions. The
deficiency of the CRN models is that they usually do not yield any coordination de-
fects and their dynamical and electronic properties are completely decoupled from
structural modeling. Normally they don’t have periodic boundaries, which are the
most convenient and realistic way to terminate free surfaces.

Another rather realistic model from the CRN family is due to Wooten, Winer,
and Weaire (WWW) (Wooten et al 1985, Wooten and Weaire 1984) which start

from the diamond structure conformed to periodic boundary conditions. A series of

65



simple bond-switching operations is carried out which preserve tetrahedral bonding
and introduce five- and sevenfold rings. The structure was finally relaxed to an
energy minimum with both Keating (1966) and Weber (1977) interactions. The
real-space correlation function shows no serious discrepancy with experiment in
description of SRO. The static structure factor, however, exhibits a pronounced
long-range residual diamond-structure order (Biswas et al 1987, Winer 1987). The
WWW model is a purely structural one and doesn’t incorporate any coordination
defects.

There have been recent attempts to prepare a-Si (a-Ge) by molecular dynamics
using empirical two- and three-body potentials either of the SW- (Ding and Ander-
sen 1986, Broughton and Li 1987, Kluge et al 1987, Luedtke and Landman 1988) or
the BH-type (Biswas et al 1987). The problem with the empirical potentials is that
they cannot describe all the phases: crystal, liquid, and amorphous, with the same
parametrization unless a highly empirical scaling of the three-body term is applied
on cooling (Broughton and Li 1987, Luedtke and Landman 1988, Biswas et al 1937).
If these difficulties are overcome they model reasonably well the SRO, incorporate
the defect sites, and conform to periodic boundary conditions. The information on
the electronic structure must be treated as a separated problem.

Our model is qualitatively similar to the original model of Car and Parrinello
(1988a) but is prepared more carefully and hence is more accurate.
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IV.5 Dynamical Properties of Amorphous Silicon

In the last section we discussed at length the static arrangement of atoms in
a-Si. In this section we turn to the dynamical behaviour of such atoms and discuss
the vibrational excitations of the atoms from their equilibrium positions.

The dynamical properties of an amorphous solid can be characterized by
the vibrational density of states

Z(w) = Z §(w—w;). (IV.5.1)

This quantity is relatively easy to obtain in our simulation by taking the Fourier
transform of the velocity autocorrelation function Z(t) (equations III.5.3,II1.5.9).
The results are displayed in Fig.IV.5.1 and compared with recent inelastic neutron-
scattering data for r.f. sputtered a-Si (Kamitakahara et al 1984, Kamitakahara et
al 1987). A Gaussian appodization of Z(t) was used in order to take account of the
finite span of time records. In order to facilitate the comparison with experiments
all the spectra in Fig.IV.5.1 have been normalized so as to give

/oo Z(w)dw = 1. (IV.5.2)
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Fig.IV.5.1. Dynamical properties of a-Si. Left panel: Velocity autocorrelation
function Z(¢). Right panel: Corresponding power spectrum Z(w) (full line). Dash-

dotted line reports the experimental data of Kamitakahara et al (1984) and the
dotted line the data of Kamitakahara et al (1987).

The agreement between theory and experiment is very good, especially if one
considers the difference between the two sets of experimental data and the absence
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of any fitting parameter in the theory. One possible explanation for the difference
in the experimental data might be the use of neutron wave vector Q) of insufficient
magnitude in the earlier experiment (Kamitakahara et al 1984). Only in the "in-
coherent approximation” where Qa >> 1 (with a being the average interatomic
distance) the scattering data are proportional to the phonon density of states (El-
liot 1984). In fact, our data are especially close to the later, more reliable, data
(Kamitakahara et al 1987). The main difference is a small almost rigid shift by
~ 6T Hz of the theoretical spectrum toward lower frequencies. We note that pseu-
dopotential phonon calculations for c-Si with a 10Ry cutoff (Yin and Cohen 1982a)
give phonon frequencies ~ 3% smaller than experiment. The Z(w) for a-Si is quite
similar to that of its crystalline counterpart, suggesting that it is the short-range
order which essentially determines the vibrational properties. The van-Hove sin-
gularities are smeared out but otherwise the correspondence between the TA, LA,
LO, and TO peaks in Z(w) is very close. Kamitakahara et al (1984) have noted
three main differences between Z(w) of a- and ¢-Si. (i) the peak at the top edge of
the TA band observed in ¢-Si is missing, (ii) the position of the LA feature occurs
at higher frequency in the crystal, and (iii) the relative intensity of the TO peak
(with respect to TA) is smaller compared to that of the crystal. We observe that,
in accordance with (iii), the TO strength in our calculation is less than that of the
TA peak, whereas all other models (Winer 1987, Winer and Bose 1988, Broughton
and Li 1987, Luedtke and Landman 1988, Biswas et al 1988) except for that of Car
and Parrinello (1988a) assign a larger strength to the TO peak. On the other hand,
according to Lannin (1987), structurally more ordered samples are characterized by
higher intensity of the TO peak with respect to the TA peak. This suggests that
the TO/TA intensity ratio is a measure of the order implied by the g3(8) distri-
bution, thus indicating more disorder in our model. Generally, a high density of
low-frequency modes with respect to the crystalline case is a common feature of
amorphous systems and can be seen, for instance, in low-T measurements of the
specific heat (Mott and Davies 1979).

The dominance of the TO and TA peaks in a-5i can be inferred from the Weaire-
Alben (1972) theorem as a result of the fourfold coordination and tetrahedral
bonding present in a-Si and is usually reproduced by all structural models. The LA,
LO peaks (LO peak as a shoulder superimposed on the broad TO peak), present
in all experimental spectra, are usually missing from the phonon density of states
calculated for poor structural models. The presence of these features in our model
in remarkable agreement with experiments is an indirect indication for a realistic
structural model.

Even though we have not studied the localization of the vibrational states, the
presence of coordination defects is likely to enhance the disorder-induced localization
at both high and low frequency band edges (Biswas et al 1988).

In conclusion, our calculated density of phonon states is in excellent agreement
with recent inelastic neutron-scattering data. All important features are present in
our spectra included the shift of strength from the TO to the TA peak in a-Si. The
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slight overestimate of this tendency may be a consequence of some overstrain in our
structural model.
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IV.6 Coordination and Topological defects
in
Amorphous Silicon

We describe here coordination defects found in our simulation and their dy-
namics. An additional type of line defect associated with odd rings in the structure
is also discussed.

To study the coordination defects we have assigned to the coordination shell
all atoms with bond distances r; < 7m where 7, = 5.1a.u. corresponds to the first
minimum position of g(r). On average we find 2.7% of T3 and 6.5% of Ty defects.
The presence of Ts’s in our model is consistent with a recent suggestion that T3 and
Ts are both natural conjugate defects in a-Si (Pantelides 1986, Pantelides 1988). We
note that the number of coordination defects may change as a consequence of the
relaxation processes present in our structure. In fact, a reduction of the number of
Ts’s was observed during the run. Further annealing of the data would be necessary
to obtain a more conclusive answer regarding the number and possible dynamics of
the defect sites. No defect on a rather large time-scale of our simulation (~ 3.2ps)
is an immobile, frozen in, defect. The division of the atoms into 73,7y, and T}
is rather conventional and depends strongly on the cutoff distance imposed. The
prevailing part of the defect sites are not truly three- or fivefold coordinated atoms
but correspond rather to weak bonds (Car and Parrinello 1988a).
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Fig.IV.6.1. Defect dynamics in a-Si. Left panel: Mutual interconversion of T
and Ts defects. Right panel : Migration of T} sites by bond-switching mechanism.
(According to Pantelides 1988)

We have observed several mechanisms of defect dynamics but the basic and
most frequent mechanism found in our simulation is the mutual interconversion of
T3’s and T5’s via small network distortions (Pantelides 1986, Car and Parrinello
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1988a) (Fig.IV.6.1)

Fig.IV.6.2. Contour plots of valence electronic charge density in a-Si (for ex-
planation see text). The dots indicate the positions of ions.

We have also studied the valence electronic charge density in the vicinity of de-
fect sites. In Fig.IV.6.2a we report a central (fourfold coordinated) particle bonded
to two neighbours at distances close to that of ¢-Si. The bonding picture in this case
is very much like in perfect ¢-Si (Fig.III.4.1a). The central particle in Fig.IV.6.2b is
a T5 site. One of its bonds can clearly be recognized as a weak bond. On the other
hand, the central atom in Fig.IV.6.2¢c is a T3 which, however, has a weak bond to
the atom in the upper left part of Fig.IV.6.2¢c (7, ~ 5.1a.u.). This analysis confirms
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the validity of the concept of weak bonds in a-Si.

The defect dynamics will require a more detailed analysis, but already a pre-
liminary study has revealed existence of T3, Ts sites migration by bond-switching
mechanism (Fig.IV.6.1) (Pantelides 1987a, Pantelides 1987b, Pantelides 1988). This
effect together with the T3 — T interconversion may play an important role in the
Staebler-Wronski effect (1987b) or in peculiar low-T phenomena in hydrogenated
a-Si (Pantelides 1987a). We have also observed clustering of the defect sites. To
illustrate better this effect we have calculated the g(r) of these sites. Only the
configurations of ~ 1ps were included, corresponding to the data before the first
relaxation process set on. This result may be subject to changes upon further an-
nealing of the data. The result is shown in Fig.IV.6.3. The pronounced first peak
indicates that the coordination defects are clustered. The integral over the first peak
gives a coordination number ~ 1.7. As we have explicitly checked, this coordination
number is due to formation of chains of defect sites.
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Fig.IV.6.3. g(r) of the coordination detects in a-Si.

The weak-bond character of the coordination defects suggests also that the wave
function associated with such defects should not be as localized as one expects for an
ideal dangling bond state pointing toward a microvoid. This may be consistent with
the localization properties of the D-center wave function (Stathis and Pantelides
1988). Clearly a more detailed study of the electronic properties of the defects
generated in the simulation would be very interesting.

In a-Si there are additional structural elements- odd rings. The chemically
bonded pairs of atoms (i.e. atoms whose bonding distance is in the first peak
of g(r)) form closed rings in the structure. Unlike c-Si that consists only of six-
fold rings, there is a large variety of ring sizes, both odd and even in a-Si. We
have carried out a ring statistics characterization of our model based on shortest
path (King 1967) analysis. The shortest path analysis takes in turn each atom in
the structure as starting point and connects each couple of bonds attached to it
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through the structure in the shortest possible path. This definition of ring statistics
has the advantage of yielding a distribution for n-fold rings which is zero at high
n. The results are in Fig.IV.6.4. The neighbour was defined by the same cutoff
distance as in the analysis of coordination defects, i.e. mm = 5.la.u. The result is
an average over 12 atomic configurations generated by MD. The analysis reveals a
large portion of odd rings dominated by fivefold rings. In our model no atom lies in
a local diamond-structure environment. Thus this model is a member of the purely
amorphous class of structures.
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Fig.IV.6.4. Ring statistics n(N) of a-Si (shortest path analysis).

The odd-membered rings can all be threaded through by continuous lines
(called odd-, Rivier-, or disclination-lines), which avoid any even-membered ring
and form closed loops in the network or terminate at surfaces (Rivier 1979). An
odd-membered ring may be imagined to be produced by cutting a sixfold ring
through the center, adding or removing a wedge of material and reconnecting the
cuts; the edges of the cut have been rotated to make space for the wedge and
so odd-membered rings surround the core of a disclination. Topological arguments
also confirm that disclination lines are stable universal constituents of random struc-
tures. The chief conclusion of this analysis is that in three dimensions there is a one
to one correspondence between the group Z - the group isomorphic to the integers
modulo 2 - and the physical states of the amorphous solids (Rivier 1987). There
have been attempts to explain the anomalous low- and high-T properties, electronic
and vibration states, elastic energy etc. of amorphous solids purely by disclinations
(Rivier 1987). In the next section we shall briefly discuss the possible consequences
of disclinations on the electronic density of states.

In conclusion, a large number of both T3 and T3 defects has been found in
our model exhibiting a variety of possible dynamics mechanisms. In addition to
the coordination defects there are topological defects i our model, dominated by
fivefold rings.
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IV.7 Electronic Properties of Amorphous Silicon

In this section we analyze the electronic properties of our model: the density
of states, their localization, and the imaginary part of the dielectric function.

Similarly as in section III.6 we generated instantaneous adiabatic eigenstates
{]?)} and eigenvalues {e;} for 12 ionic configurations {R;} generated by MD. The
iterative MSD algorithm was used with fixed self-consistent potentials generated in
course of the MD run. The single-particle electronic density of (K-S) states

N(E) =Y §(E —¢i) (IV.7.1)

1

is reported in Fig.IV.7.1. The é-functions have been broadened into a histogram
because of a finite sample size. In the same figure we show also the density of
occupied states averaged over the entire MD trajectory. The comparison shows
that the two curves are almost identical; hence the 12 configurations provide a
sufficiently representative sample. The system has opened a gap at the Fermi level
as a result of the atomic rearrangements upon cooling. Most likely the gap states
in our amorphous structure are due to defect states introduced by the presence of
weak bonds. The rather large density of gap states is a consequence of the large
concentration of defects in our structure.

N(E)(arb. units)

—-15.0 0.0 10.0
E(eV)

Fig.IV.7.1. Density of Kohn-Sham states N(E) for a-Si. Full line: average over

12 ionic configurations. Dash-dotted line: average over the entire MD trajectory.
The vertical line indicates the position of the Fermi energy.

The valence density of states of evaporated a-Si (and a-Ge) have been deter-
mined experimentally by X-ray photoemission spectroscopy (XPS) (Ley et al 1972).
The results are shown in Fig.IV.7.2 for both crystalline and amorphous states. The
gross features of c- and a-Si are similar. A striking aspect is that both have almost
the same band width. Two significant differences between c-Si and a-Si are first that
the two lower (s-like) peaks (II and III) merge into a single hump and second that
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the topmost (p-like) peak (I) remains essentially unchanged but slightly skewed to
higher energies. In the experiment the N(E ) is weighted by the photoemission cross
section, hence the relative intensities of s-like and p-like peaks are affected. The
merging of the s-peaks has been ascribed to the presence of odd-membered rings.
This argument is strengthened by calculations on Si polymorphs (Joannopoulos
and Cohen 1973) and CRN’s with and without odd rings (Kelly 1980). Subsequent
theoretical studies (Joannopoulos and Cohen 1976) concluded that no structural
element other than odd rings is likely to add spectral weight between peaks 1I and
ITI. Recently, however, there was some doubt about this conclusion and merging
of peaks II and III was attributed to oxygen contamination of a-Si samples (Hayes
et al 1985). The sharpening of the p-band has been studied using polymorphs
(Joannopoulos and Cohen 1973) and analytic means (Singh 1981, Yonezawa and
Cohen 1981). Joannopoulos originally attributed this effect to bond-angle disorder.
In contrast, Singh attributed the sharpening to dihedral-angle disorder, what seems
us more likely.

COUNTS

COUNTS
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|‘O .% E‘f ||O é E‘f
Fig.IV.7.2. Density of valence states in c- and a-Si (Ge) from the XPS mea-
surement (Ley et al 1972).

Similarly as in the case of 1-5i, strictly speaking the K-S eigenvalues are only
Lagrange multipliers and the k-point sampling may be here more stringent than in
calculation of ionic forces. Despite the poor resolution in our calculation we observe
in agreement with experiment: (i) a correct band width ~ 12.7¢V (Ley et al 1972,
Pierce and Spicer 1972), (ii) no significant structure in the s-like peaks (Ley et al
1972), (iii) correct position of the p-like peak from the Fermi level (~ 1.9¢V) (Ley
et al 1972, Pierce and Spicer 1972), (iv) no significant structure in the conduction
band (Pierce and Spicer 1972). Our results agree qualitatively with the previous
CP calculation (Car and Parrinello 1988a).

Now we turn to the nature of the electronic states, i.e. their spatial localization.
This occurrence is more probable the greater the degree of disorder in the potentials
experienced by the electrons, and so is more likely in the band tails, since these arise
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in general from the most distorted sites (like weak bonds). The localization is not
easy to study within our small model, because the localization length may become
greater than the system size. Several criteria may be used to distinguish between
localized and extended states (Elliot 1984, Thouless 1974). One way is to study the

the participation ratio, i.e.

AT
0 [ ()t

A localized state is characterized by a participation ratio tending to zero (which
corresponds to a §-function localization), whereas an extended state has a finite
p. The participation ratio averaged over 12 configuration is depicted in Fig.IV.7.3.
The gap states are characterized by a marked increase in the localization of the
wave functions, the valence band states being more influenced than the conduction
states. The Fermi level lies among a series of localized states. Experimental studies
suggest that tailing of N(E) is strongly affected by a given sample preparation
(Pierce and Spicer 1972).

0.2

(IV.7.2)
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Fig.IV.7.3. Participation ratio p(E) for electronic states in a-Si.

Finally, we discuss optical properties of a-Si. These are almost entirely deter-
mined by the imaginary part of the complex dielectric function

g(w) = e1(w) + e2(w), (IV.1.3)

where €2(w) is given in a one-electron approximation (Bassani and Pastori Par-
ravicini 1975, Connell 1979) as

Sr2e? occ umnocc M;; 2
€z(w) = Q2 (Z Z ‘ wz.].‘ (5(6‘]' - &; — hw)), (IV74)
7 J Jr
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where M;; is the momentum matrix between states |7) and |j). In practice, the

e2(w) is often obtained by a Kramers-Kronig transformation of reflectivity data
(Pierce and Spicer 1972).

The calculated ¢;(w) for our model is compared with experimental data de-
rived from measured reflectivity on evaporated a-Si (Pierce and Spicer 1972) in
Fig.IV.7.4. Our data are averaged over 12 configurations. Except for small energies
(< 2eV), the agreement is decent. At small energies our data are influenced by
excitations into gap states. We assume here all the states up to the Fermi level
to be doubly occupied. The experimental data in Fig.IV.7.4 correspond to a-Si
where the presence of coordination defects and microvoids have been minimized. In
less carefully prepared samples the optical-absorption edge may be shifted to lower
energies (Pierce and Spicer).

30.

0.0 5.0 10.0
ho(ev)

Fig.IV.7.4. Imaginary part of the complex dielectric function e3(w) of a-Si.
Full line: calculation. The curve was interrupted in the low energy region where
our calculation is influenced by gap states. Experimental data of Pierce and Spicer

(1972) are shown by dash-dotted line.
g2(w) must satisfy the plasma sum rule

wo

wes(w)dw (IV.7.5)

m
n — —
2mr2e?

where n is the density of electrons contributing to the optical absorption up to an
energy hw,. An important consistency check is obtained by integrating equation
IV.7.5 over all possible transitions. This has been explicitly checked. In our calcula-
tion the RHS of equation IV.7.5 is typically ~ 10% smaller than the LHS. This error
is due to the matrix elements M;; that are in our calculations simply treated as if
the potential were local (i.e. by taking M;; = (¥;| —iV|¢¥;)). In a more elaborated
calculation the nonlocality of the potential could be taken into account (Baroni and

Resta 1986, Hybertsen and Louie 1987).
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The optical spectra of a-Si are distinctly different from those of the crystal.
The latter are sharply peaked at 4.4eV, while the amorphous spectrum has a broad
peak displaced toward lower energies (Pierce and Spicer 1972). The changes are
due partly to the lack of & selection rule in a-Si (optical transitions without phonon
assistance are vertical in lg) The k selection rule delays transitions in indirect gap
crystals to higher energies. In amorphous semiconductors valence states can be
excited to all conduction states. This has important practical implications. Both
c- and a-Si are important solar cell materials. In c-Si the optical absorption is
much lower than in a-Si in the region of 1 — 3e¢V. The sum rule IV.7.5 requires the
absorption in ¢-Si to be shifted to a higher energy region (3 — 5eV). The 1 — 3eV
region is just the region which contains most of the solar spectrum. This is a
significant advantage of a-Si for large-scale applications.

In summary, a realistic electronic structure has been obtained for our a-Si which
is in qualitative agreement with experimental data. The study of the participation
ratio indicates a marked increase in the localization of the wave functions in the
gap region.
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V. Conclusions

In this thesis we have presented an extensive ab-initio molecular dynamics
study of liquid and amorphous silicon. A reliable description of both phases at the
state-of-the-art level was achieved. Until recently, such calculations were feasible
only for crystals. In our study the interatomic potential was constructed from the
electronic ground-state within the density functional framework in the local density
approximation (LDA). This pushes these calculations at the limits of present-days
computers and restricts the size of tractable systems. The small system size in our
calculation is not necessarily a severe drawback since most properties of interest
are determined essentially by short-range order. The computational intensity is
justified by the absence of any fitting parameter in the theory and by the fact that
all the results (structural, dynamical, and electronic) are a product of one single
calculation. A numerical approach is generally required also in more traditional
applications of statistical mechanical methods to real systems where, however, the
results are biased by the choice of the model interatomic potential.

From the methodological point of view the most important results of this work
are :

- Confirmation of the feasibility of the first-principles MD treatment of metallic
systems

_ Test of the validity of the BO and LDA approximations for I- and a-Si

- Test of the influence of precision and quality of the interatomic potentials on the

MD

_Introduction and test of new robust and efficient methods for electronic structure
calculation

Our simulation of 1-Si is probably the first successful application of the ab-initio
molecular dynamics to a metallic system. Problems arising from the nonadiabatic
behaviour have been overcome. The description of the atomic structure is in ex-
cellent agreement with X-ray (Waseda and Suzuki 1975) and neutron (Gabathuler
and Steeb 1979) scattering experiments. A careful analysis of bonding properties
revealed a persistence in 1-5i of some covalent bonding effects. Bond breaking and
bond forming effects have been found important. Covalent bonding gives rise to a
well identifiable feature in the power spectrum of the system dynamics. The calcu-
lated self-diffusion coefficient agrees well with indirect experimental estimates. The
system shows metallic behaviour. The calculated a.c. electrical conductivity has a
Drude-like falloff in close agreement with experimental data (Shvarev et al 1975).



Convergence tests have shown that the results are quite sensitive to variations in the
energy cutoff. A cutoff of 12Ry was necessary to achieve convergence and produce
a coordination in close agreement with experiments.

Upon cooling the system underwent profound structural changes; the coordina-
tion decreased from ~ 6.5 in the liquid to ~ 4 in the amorphous phase. The system
developed a strong tetrahedral order and some degree of medium range order. The
changes in atomic structure are accompanied by changes in electronic structure; the
system developed an energy gap.

The structural characteristics of our model of a-Si agree well with recent diffrac-
tion data (Fortner and Lannin 1989). Also the bond lengths variance is close to
experimental XAS (Filipponi et al 1989) findings. The only difference is a slightly
larger bond angle variance in our model. This is likely a consequence of a small
size of our model and a too fast cooling rate. Apart from an almost rigid shift to
lower frequencies (~ 6THz) the calculated vibrational spectrum exhibits all the
features found experimentally (Kamitakahara et al 1987). There are both under-
and over-coordination defects in our model. They have a character of weak bonds
and exhibit dynamics that correlates well with recent theoretical models (Pantelides
1988). Our model is also topologically nontrivial. It contains a large portion of odd-
membered rings, dominated by five-fold ones. Even though the poor resolution in
the electronic structure calculation does not allow us to correlate the presence of
topological defects with the shape of the electronic density of states, it does not
show significant discrepancies with the XPS spectra (Ley et al 1972). The coor-
dination defects introduce a relatively high density of gap states. Measurement of
the participation ratio indicates an increase in the localization of wave functions
belonging to gap states.

The bond angle variance and the intensity of the TO peak of the phonon density
of states indicate the possibility of some overstrain in our structural model. There
were also structural relaxations present at 7' = 300K and the system was not yet
well equilibrated. For these reasons it would be interesting to let the system go
through an additional annealing cycle. Such a procedure is normally followed also
in a real preparation of a-Si.

To complete fully the study of disordered Si phases one would like to anneal
the a-Si data presented here and to study the electronic structure of defects present
in the simulated structure. Another interesting point that deserves further study
is the inherent structure of 1-Si (Stillinger and Weber 1985, La Violette and Still-
inger 1987). Preliminary calculation (Stich 1987) showed that our model may yield
an inherent structure different from that originally found by Stillinger and Weber
(1985) with an empirical potential.
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Appendix 1. Empirical Interatomic Potentials

In chapter II.1 we discuss how the many-body energy surface ® [{ﬁ[}] can be
found from first-principles. An alternative approach consists in its suitable empirical
parametrization. In empirical schemes the potential @ [{RI}] is usually partitioned
as

®[{E}) = > ¢"EN+ > *EnEn+ > ¢ (Er,EnEBx)+..

1<ISN 1<I<SILEN 1<KISISKSN
(A4.1.1)

where ¢™ is an "n-body potential”. In particular, the one body term corresponds
to an external potential. The expansion A.1.1 is often truncated at the two-body
term. This approach may be appropriate for simple closed-shell systems, like rare
gasses or for simple metals. For covalent systems, more terms have to be included
in order to describe the directional covalent bonds. Recently, various attempts have
been made to model the many-body interactions for covalent systems by empirical
potentials (Stillinger and Weber 1985, Biswas and Hamann 1985, Tersoff 1988) *
These classical models were developed by fitting first-principles calculations and/or
experimental data. We consider here the Stillinger-Weber (1985) (SW) potential,
as a specific example. The SW potential includes two- and three-body terms which
have the form (R;y = |R; — Ry|)

¢*(Rrs) = A(BR7j = 1)g+(B1y)
¢*(Rrs, Ryxc, Bicr) = brox + o + drcs (A4.1.2)

2
PriK = /\gw(RIJ)gv(RJK)(COS Oror + '13‘) .

A, B, ),y are parameters, g,(R) = exp[ﬁ'{—g] is a cutoff function that cutoffs at

distances R > a, and 67k is the angle between vectors ffu and ﬁjfg. The three-
body term is zero at the ideal tetrahedral angle and positive otherwise. The system
may develop a competition between the three-body term favoring tetrahedral co-
ordination, which dominates at low temperature, and the two-body term which
dominates at high 7" and prefers closer packing. In section III.3. we argue that the
SW system at high T is qualitatively different from ours. It seems also a general
conclusion that the SW potential (with one set of parameters) is unable to describe
all Si phases: crystal, amorphous, and liquid (Ding and Andersen 1986, Broughton
and Li 1987). This is not surprising, because the electronic structure that varies
considerably going from one phase to another is taken into account only implicitly

* There is a different group of empirical potentials which formally correspond to
Taylor expansion of the energy about the minimum. They may accurately describe
small displacements, such as phonons and elastic deformations, but fail for large
displacements. The Keating (1966) model is the most famous of them.
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and in an averaged way. Although often very useful, the empirical potentials are
not entirely satisfactory since (i) they miss the close connection between the elec-
tronic and atomic structure, (ii) the range of their validity is not known, and (iii)
it is generally difficult to make detailed quantitative predictions for a particular
material. There are other classical models tailored to Si (similar to SW in spirit)
like Biswas-Hamann (1985) (BH) or Tersoff (1988) which may work better than SW

in some special configurations, but leave the above general conclusions unchanged.
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Appendix 2. Nonlocal Pseudopotentials

The total external potential can be expressed in terms of ionic pseudopotentials

V) =D vpe(F = Ey). (A.2.1)
I

as

The ionic pseudopotential is usually taken to be nonlocal and can be represented
as

vpe(?) = 3 wi(7) By | (4.2.2)
=0

where P, is the projector onto the I-th angular momentum. In our case v;(r) are
norm-conserving pseudopotentials (Hamann et al 1979, Bachelet et al 1982). If
we assume that v; = v; for [ > .4, the infinite sum in equation A.2.2 can be
written as

macx

l'rna.z -1

Vps(7) = V1 (F) + D Awy(F) P,

=0

(A.2.3)

= Vioe + Vnonloc

with Av(7) = v(F) — vy,,..(F) = Av(r). The total nonlocal potential is most
conveniently written in momentum space as

lm.u.:t"']-
AVaontoo & 7) = 33 exp(—iq.Br)Av(d,§ Yexplid ' Fr)  (A.2.4)
I =0
where
I 4
Av(q,q") = ") —(2l+1)Pi(g )/ drr? Avy(r)ji(gr)71(q'r). (A.2.5)

In equation A.2.5 P and j; are Legendre polynomials and spherical Bessel functions,
respectively. ¢ and ¢ ' are unit vectors in directions ¢ and ¢ ' respectively, and 0
is the unit cell volume. A straightforward application of this operator to the wave
function in Fourier space requires O(M?) operations. This can be reduced to O(M)
operations if Av; is separable in momentum space

S
Av(§,§") = > WAQWa(d) S << M. (A.2.6)
8=1

This can be achieved in several ways (Stich et al 1989a, Allan and Teter 1987). Here
we have used the separable nonlocal correction potential of the form suggested by

Kleinman and Bylander(1982)
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- 4 o
Av(q,q") = 5(21 +1)Pi(g-¢")x
)J

fooodrrzAvl( (gr)di(r) fo dr"f’zAvl( )it(g'r)éi(r) (A.2.7)
I drr2 g2 Av(r)

where ¢;(r) are atomic radial pseudo-wave functions of the state used to generate the
pseudopotential. The use of equation A.2.7 with l,,,,, = 1 is a convenient and stable
choice for Si. By construction the operator A.2.7 reduces to A.2.5 when applied to
the reference state, so either choice of pseudopotential identically reproduces the
all-electron properties of a reference atomic state. They both have the properties of
transferability of norm-conserving pseudopotentials. Generally, however, they are
different operators.
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Appendix 3. Momentum Space Expansions

The methods introduced in chapter II were all based on the use of FFT tech-
niques. The principal ingredient of these techniques is calculation of the uncon-
strained electronic forces

K
§9(r)

= — Hopy(7). (A.3.1)

Here we shall suppose that the Hamiltonian H = —~—21—V2 + V(%) in equation A.3.1
is purely local. The discussion of nonlocal operators was presented in Appendix 2.
Inspection of equation A.3.1 shows that the electronic force Ff(7)is a product of H
and (™) and can be conveniently calculated through the use of FFT techniques.
The action of the kinetic energy operator is easy to calculate in momentum space,
while the action of the potential energy operator is easy to calculate in real space.
Thus the product V * ;(7) is obtained by trivial multiplication on a uniform real
space grid and the result is back transformed by an inverse Fourier transform to
the momentum space. Under certain conditions these operations may constitute an
exact algorithm.

Both V() and 4;(7) are periodic functions in coordinate space represented

by their Fourier components V(G) and ¢1(@) at the reciprocal lattice vectors G.

The expansion of v¥; is truncated at G,.,, to include only M plane-waves, fixed
by an kinetic energy cutoff %’G |? < E.u:. The inspection of the convolution term

Doar V(é - @") *1&1(@') shows that the expansion of V can be truncated at 2G qa.
The result of the convolution will also be truncated at Gmaz- In this case we
obtain exactly the first M Fourier components of the convolution product V x
. Note, however, that it has been suggested recently that the assumption of
a unique cutoff ijw for all expansions in plane-waves might also be adequate
(Martins and Cohen 1988). For the systems treated in this thesis we found this
approximation inappropriate. Stable and converged results were instead obtained
by using momentum space cutoffs intermediate between the full expansion and
that suggested by Martins and Cohen (1988). This has been used for calculations
presented in chapter IV,
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Appendix 4. Conjugate Gradient Minimization
of the Energy Functional

Let us suppose that the function f to be minimized can be approximated by
a multidimensional quadratic form around some point P taken as the origin of the
coordinates

FX)me—{b] X)+L(X | 4] X) (44.1)
where
8% f

XE(wl,wz,...,wL) s cEf(P) 3 bE——Vflp , Aianm'at'
1Yy

P (A.4.2)

with a symmetric positive definite L x I Hessian matrix A. An iterative minimiza-
tion procedure is then defined by the sequence:

P(Tl+1) — P(n) + A(n)h(n) , n = 0, 172... (A4:.3)

where A(™) is a scalar and (") is a vector in multidimensional space. By using the
information contained in the matrix of second derivatives A, a single operation is
sufficient to minimize a perfectly quadratic function f. For large L it is impractical
to deal with the large matrix A. In the conjugate gradient (CG) method (Press
et al 1986) information on A is only used implicitly to define an optimal set of
directions ~(™ in the sequence of equations A.4.3, where the scalar A(™ is obtained
by a one-dimensional minimization along the line defined by h(™). The directions
h(™) are given by

(n) -0
(") — g b n
R\ = {g(n) + 7(n—~1)h(n~1)’ n=1,2.3... (4.4.4)
where
g\ = =V H(P™)
7@h:wWngwﬂ» (A.4.5)
(g™ | (™)

The directions 2™ are said to be conjugate. One can show (Press 1986) that for a
quadratic function like the one in equation A.4.1, the following conjugacy property
is satisfied

(W™ A R™) =0 Vn#m. (A.4.6)

This property guarantees that each step is actually an improvement over all the
preceding ones, a property not shared by steepest descent (SD) based methods. The
reason is that SD steps are often orthogonal or nearly orthogonal to one another.

It is natural to apply the CG procedure (equations A.4.3-5) to the electronic
minimization problem. A difficulty arises in this respect because of the existence
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of orthonormality constraints in the electronic problem. These originate forces of
constraint that must be taken into account when the line minimizations are done.
In order to deal with such constraints it is convenient to reformulate the electronic
problem in terms of linearly independent but not orthonormal orbitals {¢;} (Stich
et al 1989a). The orthonormal orbitals {1;} may be related to the {y;} via

i = Z S22 ei (A.4.7)
J

where S;; = (p; | i) is the overlap matrix. The energy functional E can be written
in terms of the {y;} as

occ

B= Y Slei | -390 lwg) + [ a7 Vo) ni)+
ij

s - 7
-lz-/dFdF LW RSN P o 2 A (4.4.8)
|7‘—'T"l I#J‘RI"RJI

For initially orthonormal orbitals {¢;}, one obtains the constrained electronic forces

§o(7) Hepi(r) = ;<¢m | H | pi)om(7)- (A.4.9)

It is convenient to reorthonormalize the {;} at any step. This will ensure that the
S matrix remains nonsingular and allows the use of equation A.4.9. Equation A.4.9
defines the gradient g{™ from which one obtains the conjugate direction R using
equation A.4.4. A one-dimensional minimization of the functional F along R(m)
allows to compute A(™ and to accomplish the CG step defined in equation A.4.3.
One possible way to carry out the one-dimensional minimization is to proceed as
in nonself-consistent calculation and instead of E minimize £ given by (Stich et al
1989a)

= n n+1 - n+1 —1(n+1

BO™) = S | 7 o) s5 (4.4.10)

ij

where gogn+l) = <p§") + )\(n)hgn) and H = ff[{cpgn)}]; i.e. VH and p®¢ are not varied

as A(™) is changed but are instead determined by the density corresponding to

{gogn)}. Such an approach requires ~ 2N, M log M + 4NZ2M operations for a local
potential. An alternative approach consists in a series of parabolic approximations.
This method was used in calculations presented here.
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Appendix 5. Efficiency of Calculation of the BO Forces

As pointed out in section II, in order to calculate the BO or Hellman-Feynman
ionic forces within DFT one has to minimize the energy functional E[{s;},{E}]
with respect to the "electronic degrees of freedom” {#;}, i.e. the corresponding
point on the BO surface @[{R}}] must be reached in some way for each ionic

configuration {F;} . B
®[{R}] = i{ff}lE [{w:}, {Rr}]. (4.5.1)

This objective can be reached essentially by two strategies. One way, which
will be referred to as adiabatic, consists in solving the equations II.3.3a,b. In an
MD with the system defined by the Lagrangian I1.3.2 the system will keep the total
energy of this dynamical system

B =3 bu [ 4O + 3 §MafEy + B[}, ()] (4.5.2)

constant. In the instantaneous electronic ground-state, when A.5.1 is valid, {1bl =0}
and effectively the total energy of the ionic subsystem

2 - .
EItot — Z %MIRI + @[{RI}] (A53)
I

is kept constant. Only when equation A.5.3. is a constant of motion, the ionic
dynamics will be correct. It means that the electronic configuration must have
always enough time to relax to the instantaneous ground-state of the simultaneously

changing ionic configuration. This can be achieved by setting two time scales:
slow one for the ionie Apﬂraac of freedom and a fast one for the electrons. To set up

such a regime requires g to be small compared to M. A small g in turn requires a
small time integration step At in integration of the equations II.3.5a,b. This poses

the question about whether the adiabatic dynamics is really the most eflicient one.

An alternative way of calculation of the BO forces for the ionic dynamics, which
will be referred to as decoupled, is based on a complete decoupling of the electronic
and ionic dynamics by carrying out explicitly the minimization indicated in A.5.1
at any ionic step. Since there are very eflicient minimization techniques, such as
e.g. the CG method, to relax the electronic configuration, this alternative dynamics
might be more efficient than the adiabatic one. In particular, the decoupled dy-
namics should relax the requirement of keeping the time step in the integration of
the equations

=, 0P ﬁ
I

small.
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We have done rather extensive tests to compare how the above mentioned meth-
ods work in practice (Stich 1987). We have excited a phonon mode in the system
consisting of eight Si atoms in the diamond lattice sites. The atoms were initially
displaced from their equilibrium lattice positions in the direction of the eigenmode
of the optical phonon at the I' point of the supercell BZ. The system initially pre-
pared in the electronic ground-state was then left to evolve under the action of the
ionic forces calculated both within the adiabatic and decoupled dynamics. Here we
give only the general conclusions. The details can be found elsewhere (Stich 1987).
The general result of this test was that, within the adiabatic dynamics the ions
performed periodic oscillations with correct frequencies (in the limits given by pre-
cision of that calculation). In the decoupled dynamics, instead, the phonon resulted
to be damped what means that the forces on the ions were not calculated correctly.
This tendency continued until an extremely high precision
(~ ten significant figures) in the electronic minimization was required.

This rather surprising behavior has the origin in the dynamical optimization
of the electronic degrees of freedom by MD (Stich 1987, Car and Parrinello 1989).
The MD equation of motion for the electronic wave functions is

pips = Ff', (4.5.5)

stating the proportionality of the acceleration of the wave functions to the force
acting on it. In the ground-state the wave functions do not move; the forces are
zero. When the ions displace, the forces on the wave functions become nonzero
and proportional to the ionic displacement. Thus the electronic wave functions will
accelerate and catch up the delay until overtaking the ions when the forces begin to
brake the motion of the wave functions. The electronic oscillations make the ionic
forces to oscillate, thus stabilizing the calculation. In other words, the electronic
and ionic dynamics are correlated. On the other hand in the decoupled dynamics
the electronic wave functions obey first order equations of the SD type

pip; = Fft (A.5.6)

making the velocity of the wave function proportional to the forces on orbitals,
leading to a systematic delay and error in the BO forces.

In conclusion, the use of the decoupled dynamics results in incorrect BO forces,
unless an extremely high precision of the electronic minimization is required. The
costly part of any first-principles MD is always the electronic structure calcula-
tion. This fact makes the adiabatic dynamics substantially more efficient than the
decoupled dynamics.
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Appendix 6. Convergence Study of the I-Si Simulation

We have carried out a convergence study of our 1-Si calculation with respect to
parameters quoted in section I11.2, i.e. with respect to periodic boundary conditions,
cell size, inclusion of p-nonlocality in the pseudopotential, and energy cutoff in the
plane-wave expansion of the electronic wave functions.

The results were quite sensitive to variations in the energy cutoff. The results
obtained with an energy cutoff of 6Ry and 8Ry are shown in Figs.A.6.1, A.6.2,
respectively.

2.0 3.0
2.0

1.0 ~
D, |
0.0 == 0.0

0.0 2.0 4.0 6.0 0.0 2.5 5.0 7.5 10.
k(a.u.) r(a.u.)

Fig.A.6.1. S(k) and g(r) of 1-Si. Full line: MD simulation with an energy
cutoff of 6Ry. Here the cutoff in the expansion of the potential was taken equal
to the cutoff for the wave functions (Martins and Cohen 1988, Appendix 3). The
total time of the simulation was ~ 0.6ps. Dotted line: neutron diffraction experi-
ment (Gabathuler and Steeb 1979), dash-dotted line: X-ray diffraction experiment
(Waseda and Suzuki 1975).

Generally, a low energy cutoff reduced the tendency toward metallization and
resulted in more structured system having lower average coordination. A closer
inspection of the 6 Ry 1-Si structure reveals some similarity with the a-Si structure
(section IV.4); this low cutoff structure may be close to the structure of a super-
cooled liquid. The latter conjecture is also in agreement with the reduced diffusion
coefficient observed for this system. However, even this relatively poor model of
1-Si does not change completely the underlying physics and shares many common
features (like presence of some covalent bonds, bond-breaking (-forming) processes,
form of g3(8), etc.) with the more accurate models. With the energy cutoff of
6Ry we reproduced, with the 64 atom SC cell, the structure already found in a
preliminary calculation done with a 54 atom FCC cell and a similar cutoff (Car and
Parrinello 1987). The observed relative independence of the structural properties
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on the unit cell size and shape provides an indication that the calculation of the
interatomic forces, which requires a BZ average, is essentially well converged with
respect to k-point sampling.

2.0 3.0
_ 2.0
=0 o)

“: " ' '

0.0 ~ 0.0
0.0 2.0 4.0 6.0 0.0 25 5.0 7.5 10.0

k(a.u.) r(a.u.)

Fig.A.6.2. S(k) and g(r) of 1-Si. Full line: MD simulation with an energy
cutoff of 8Ry. Here the cutoff in the expansion of the potential was taken equal
to the cutoff for the wave functions (Martins and Cohen 1988, Appendix 3). The
total time of the simulation was ~ 1.2ps. Dotted line: neutron diffraction experi-
ment (Gabathuler and Steeb 1979), dash-dotted line: X-ray diffraction experiment
(Waseda and Suzuki 1975). )

We have also tested the effect of inclusion of the p-nonlocality in the pseudopo-
tential. The result is reported in Fig.A.6.3. As can be seen the result does not
exhibit strong dependence on the p-nonlocality in the potential. For this reason we
carried out our study with the s-nonlocality only.
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2.0

z 1 1

0.0 2.0 4.0 6.0
k(a.u.)

Fig.A.6.3. S(k) of 1-Si. Full line: result for s+p-nonlocality; Dash-dotted line:
result for s-nonlocality. Both results correspond to an energy cutoff of 12Ry and
the total time of simulation of ~ 1.2ps. To facilitate the comparison both curves

have been smoothed.
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