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Chapter 1

Introduction

The properties of gallium arsenide (GaAs) have been the subject of in-
tensive study for over 20 years due to its fundamental and technological
interest. At room temperature, GaAs is a compound semiconductor
combining group III and group V elements from the same row in the
periodic table as the archetypal group IV semiconductor, germanium.
Crystalline GaAs(c-GaAs) has a zinc blende structure which consists
of two interpenetrating face-centred cubic lattices containing Ga and
As atoms respectively. Atoms thus arrange themselves in chemical or-
der, i.e. one atom bonds with four unlike-atoms. Similarly to silicon
and germanium, which have diamond structure, the bond angle in the
c-GaAs is 109°, giving a locally tetrahedral sttucture. What is signif-
icantly different from silicon and germanium is a valence charge shift
from Ga to As atoms, adding an ionic component to the predominantly
covalent bohd. This has very important effects on the electronic band
structure. For instance, the wider band gap, among others, maintains
device performance to higher temperature, whereas the larger curva-

ture at the bottom of the conduction band gives a lighter effective mass




(m* « [d*E/dk*]7!) and hence high electron mobility. It is well known
that the electronic properties of semiconductors can be changed dra-
matically by doping. In Si and Ge, impurity atoms from groups Il and
V' can substitute host atoms to produce shallow donors and acceptors
in the material. In c-GaAs, because substitutional impurity atoms from
groups II, IV and VI can act as shallow donors and acceptors, extra de-
grees of freedom are available when compared to the situations in Si and
Ge. In summary, GaAs is a material of great interest, both from a fun-
damental point of view, as a prototype compound semiconductor, and
for technological applications, such as the formation of lattice-matched
heterojunction (and/or superlattice) structures with, e.g. GaAlAs.
Studies of disordered semiconductors have become more and more
active recently. A major part of this activity is concerned with the
solid, i.e. amorphous phase, but the liquid has also received increasing
attention both for its fundamental interest and because of its relevance
to technologically important processes such as crystal growth from the
melt. Although most experimental and theoretical efforts so far have
focused on the disordered phases of the elemental semiconductors, par-
ticularly Si and Ge, the disordered compound semiconductors are of
much potential interest, because they offer the possibility of investi-
gating, among others, how the mixed(covalent/ionic) bonding between
the two constituent atomic species affects the structure and hence the
electronic properties of the material. In compound disordered semicon-
ductors, for example, chemical defects such as “wrong”(or like-atom)
bonds —which are absent in elemental semiconductors as well as in the
perfect crystalline phase of such materials—emerge with a relatively large

probability, particularly in the liquid phase. These defects are expected



to have a considerable influence on optical and electronic properties.

Experiments show that similar to Si and Ge, GaAs becomes metallic
and increases its density upon melting [1]. Neutron diffraction results in-
dicate that the larger density of the liquid phase is related to a variation
of the coordination number, from the value 4 typical of the crystal to a
value of approximately 5.5(40.5), while a slight increase of the average
interatomic separation takes place [2]. Amorphous (a-) Gals, instead,
is still a semiconductor and exhibits short range tetrahedral order as
a-Si and a-Ge, with a coordination number of ~4 and a bond angle of
~ 109°[3]. In a-GaAs, there are not only structural defects related to
the occurrence of “dangling bonds”(i.e. broken bonds) like in a-Si and
a-Ge, but also chemical defects consisting in “wrong bonds”. These de-
fects strongly depend on the process of preparation of the amorphous
materials.

Theoretically, because of the lack of periodicity, symmetry and long
range order in a disordered system, there is no simple formalism that
can be used in the calculation of its microscopic properties, as those
used to study crystals. The small number of available experiments,
such as a diffraction or EXAFS, usually give only the radial distribution
function, from which the generation of the underlying three-dimensional
structure is not unique. Understanding the microscopic structure of dis-
ordered semiconductors and its influence on the electro;nic properties is
an attractive and difficult task. One way is the construction of mod-
els. Unfortunately, no acceptable model for liquid semiconductors has
been reported so far. For the amorphous phase, a widely used model is
the so-called “continuous random network” (CRN)[4], which constructs

a random network by connecting a number of tetrahedra with some




degree of bond-angle distortion and more or less complete freedom for
values of the dihedral angle. However, defects such as dangling bonds
or “wrong bonds” which are important to the electronic properties are
hardly included in these models, and a possible bias may be introduced
into the network by the model builder. More systematic approaches to
the description of disordered systems are molecular dynamics(MD) or
Monte Carlo techniques. However, the application of these schemes to
semiconductors is largely limited by our knowledge of the interatomic
interactions in these materials (to be discussed in chapter 2). These lim-
itations are overcome in a first-principle MD scheme proposed recently
by Car and Parrinello [5]. Its success has been witnessed in numerous
studies of the liquid [6] [7] and amorphous phases [§] [9] of some elemen-
tal materials, e.g. Si, C, Se etc.. The noticeable feature of this scheme is
that the interatomic potential is constructed directly from the electronic
ground state calculated by density-functional formalism.

In this thesis, this first-principle MD, to be introduced in chapter 2,
is applied for the first time to the study of a compound system—GaAs.
A careful test of the pseudopotentials used for Ga and As is given in
chapter 3. In chapter 4, we present our simulation of liquid GaAs at
a temperature near the melting point. Both the atomic and electronic
properties are obtained, which are in good agreement with available
experimental data. A few results on a-GaAs are presented in chapter 5.

In chapter 6, we give our conclusions.



Chapter 2

‘Car-Parrinello Method

2.1 Classical Molecular Dynamics

The basic ingredient of a molecular dynamics(MD) simulation is to com-
pute trajectories of a system and to perform time averages along the
computed trajectories. By the ergodic hypothesis, such time averages
are then treated as the thermodynamic ensemble averages for equilib-
rium systems. The implementation of the classical MD is straightfor-
ward. For a system of N classical particles with the interaction potential
@(ﬁl, cee, ﬁN), the trajectories, i.e. the coordinates ﬁ;(t) and velocities
ﬁz(t) at time t, (I = 1,...,N), can be obtained through a numerical

integration of Newton’s equations -
MR = -V 8(Ri,...,Ry), I=1,...,N (2.1)

where the dots indicate time derivatives, and M7 is the mass of the I-th
particle. For practical reasons, the number of particles, IV, is chosen to
be finite. To simulate a bulk system, periodic boundary conditions are

therefore used to eliminate surface effects.




In the classical MD, the major input are the interatomic intefactions
that govern the motions of atoms. The application of MD to a real
system is largely limited by our knowledge of the interaction potential
@(ﬁl,...,ﬁN) among the particles. Generally speaking, a potential
describing interactions among N particles can be resolved into one-,

two-, three-, etc., up to N-body contributions,

—

é(Rl’“')ﬁN):Zvl(ﬁ1)+zv2(é17ﬁJ)+ Z 1)3(.&[,&],}?}{)’}‘
I I<J I<J<K

...+vN(ﬁ1,...,RN) (22)

In practice, to perform a simulation, it is necessary that the component
functions v, converge quickly to zero with increasing n. Traditionally,
simple two-body potentials such as the hard sphere or the Lennard-
Jones potential have been used to perform MD simulations and reason-
ably good results have been obtained for simple systems such as noble
gases[10]. More elaborate effective pair potentials have been used quite
successfully to describe some simple metals[11]. However two-body po-
tentials (pair interactions) can hardly give a good description of a large
group of systems including semiconductors[12].

The one-body term is normally contributed by external fields. Its
main role, in most cases, is to affect the thermodynamics of a system.
The structural aspect, on the other hand, is largely determined by the
higher order terms. The expansion including one- and two-body terms
is therefore the simplest approximation. As already pointed out, its
application is unfortunately limited to a rather small number of simple
systems. For systems of increasing complication, higher order terms, say,
three- and even four-body terms, are needed. For example, a number of

empirical interatomic potentials including three-body contributions have



been proposed for Si, as no reasonably good pair potentials succeeded
in stabilizing its characteristic tetrahedral structure. In spite of some
progress, none of these models can describe satisfactorily the structural
properties of the various phases of Si[13]. Furthermore, the information
about electronic properties is missing completely in these classical MD
simulations. This is, perhaps, the most serious defect of the classical
MD simulation.

On the other hand, much progress has been made during the past
few decades in the first-principle calculation of various properties of crys-
talline solids by using density-functional(DF) theory[14]. The local den-
sity approximation (LDA)[15] has been successfully applied to calculate
the static and dynamic structures of c¢-Si and c-Ge, the relative stability
of different phases, and their pressure-induced phase transformation[16].
Also, the valence charge density computed from LDA is in satisfactory
agreement with experiment. However, these computations often involve
many iterations to reach self-consistency. Furthermore, such a compu-
tational complexity makes it difficult to apply the LDA to investigate
disordered systems.

Recently, Car and Parrinello[5] have proposed an efficient scheme
which combines DF theory with MD simulations. Their scheme allows
for an equal treatment of electrons and ions, in a self-consistent way
under the Born-Oppenheimer approximation. In such an ab-initio MD
simulation, the interatomic forces are derived directly from the electronic

ground state, calculated using the LDA.




2.2 Adiabatic Approximation

Real materials consist of an enormous number of electrons and nuclei.
In general, electrons and ions are coupled together. In solid state physics
such a coupling is weak in most cases, because electrons and ions move
under different time scales. The heavier ions are then treated classically
while the lighter electrons quantum mechanically. Electrons are said
to evolve adiabatically around ions. This separation is justified on the
basis of the Born-Oppenheimer(BO) adiabatic approximation.

Let’s first write the total Hamiltonian as
h=Ty+T.+V (2.3)

where Ty and 7. are the kinetic energy operators for ions and electrons
respectively, and V includes the various contributions to the potential

energy. We then expand the total wave function as the product
o= xithi (2.4)

where the {x;}'s are expansion coeflicients (depending on {R;}), and
the electronic state v; is the i-th eigenstate of H =T, + V

H; = E; (2.5)

Of course, here ¥; itself is a many-body wave function. Since the ionic
coordinates {R;} enter H as parameters, E;’s and 1;’s depend on {E;}
parametrically. By substituting the expansion (2.4) into the Schrodinger
equation hy = ep, multiplying it by ¥ and integrating over the elec-
tronic degrees of freedom, we obtain an equation which the function

Xi({};j:[}) satisfies

1 . .
(TNn+E)x: = exi— Y. > i < i Prlsb; > -Prx;— Y < %i|Twlv; > x;
iH(#) I J
(2.6)



Here we have used the explicit expression Ty = > 1 -;j—% where Pr and M;
are the momentum and mass of the I-th ion. Since usually the typical
ionic frequencies are much smaller than the electronic ones and the ionic
masses are much larger than ionic ones, the non-adiabatic interactions,
i.e. the second and the third terms on the right hand of Eq.(2.6), can
be neglected[17]. Eq.(2.6) then becomes

(Tn + Ei)x: = ex: (2.64)

In addition, it is most frequently possible to use classical mechaniecs to
describe the ionic motion since ionic energy spectra are usually almost
continuous compared with the electronic ones. Thus the eigen-energy
E; of the electrons acts as ionic potential ® in Eq.(2.1). This is a surface
spanned in a 3N-dimensional space. In particular we shall refer to the
ground-state energy as to the BO surface.

According to Eq.(2.5), the electrons follow the ionic motion in an
adiabatic way. However Eq.(2.5) is a many-body problem. It is not a
trivial task to solve it. Within DF-LDA[15], the many-electron problem
is conveniently converted to many one-electron problems, in which the

electron moves in a self-consistent effective single-particle field.

2.3 FElectronic Ground State at a Fixed
Ionic Configuration

According to DF theory, the total ground-state energy @[{ﬁf}] of a sys-
tem of interacting electrons and ions, corresponding to the ionic config-
uration {R;}, is a unique functional of the electronic density n(7). This

can be written in terms of occupied one-electron orthonormal orbitals




as
occ

)= () (2.7)

For a fixed set of {ﬁ[}, the ground-state energy can be obtained by
minimizing the functional E[{t;},{R;}] with respect to the ‘electronic
degrees of freedom’ {t;}

S[{Br}] = min E{{y:}, {B}] (2.8)

where the functional E[{v;},{E;}] is given by

oce

B, (Bl = 3 [ i (=5 V() + [ dve=t(em(7)

n(F)n(7) 1 VAYE
dFdF =L B ] 4= S T
2//rr ] [] I%J:IRI—RJI

and the {1;}'s are subject to the orthonormality constraints

(2.9)

[ ami(7)5(7) = 8 (2.10)

In Eq.(2.9), atomic units (a.u.) e = A = m, = 1 are used for
convenience. V" is the external field, E*¢[n] is the exchange-correlation
energy and Z;’s are the charges of the ionic cores. To reach the ground
state, one proceeds by minimizing the total energy with respect to a

trial wave function of electrons. This amounts to solving

oF

= 2.11
;=" (241
with the constraints (2.10). This yields the so-called Kohn-Sham (KS)
equations
‘7 6E$C
Hy; = [-—v2 Ve -I—/d"ln Tll —i(7) = () (2.12)
7 —

10



Eqgs. (2.12) must be solved self-consistently since the Hartree Vi =
Jdr |’rf_r:.,| and exchange-correlation p*¢ = ‘—s—%zi potentials depend them-
selves on the {1;}'s. The self-consistent solution is usually obtained by
iterative diagonalisations, after expanding the {%;}'s on a suitable basis
set.

More recently however, a different way of solving Eq.(2.8) has been
pointed out[18]. This is to simply find the local minimum of E[{¢:}, {R}}]

by a steepest descent(SD) approach

+ orthonormality constraints

SFE
G
= —Hy(7,t) + orthonormality constraints (2.13)
The orthonormality constraints can be satisfied using either the Gram-
Schmidt scheme or the Lagrangian multiplier scheme. Remark that
neglecting the constraints, Eq.(2.13) can be formally thought as a time-
dependent Schrédinger equation in imaginary time. Starting from an

initial trial state v;, the ground state v; can be obtained using

¥;i(7) = im e b Hdt;/;i(f',t) + orthonormality constraints  (2.14)

t—o0
For large systems, this SD scheme is more convenient than the tra-
ditional diagonalization techniques because only the occupied states are
taken into account. Recently, minimization procedures similar to SD

but significantly faster from the computationalgpoint of view have been

developed[19,20].

2.4  ab-initio Molecular Dynamics

As pointed out in the first section of this chapter, one of the most

important problems in classical MD is the determination of the interac-

11




tion potential between the atoms. This problem is particularly serious
for open shell systems, where the interaction depends strongly on the
electronic configuration. An accurate and at the same time practical
solution to this problem has been proposed a few years ago by Car and
Parrinello[5]. In the so-called Car-Parrinello(CP) method, the electronic
and ionic degrees of freedom are treated simultaneously. For each ionic
configuration {R;}, the interatomic potential is obtained directly from
the electronic ground state calculated within DF theory. The electrons
move adiabatically along the iomic trajectory, i.e. they are always in
the ground state (or very close to it) corresponding to the instanta-
neous {R;}. The adiabatic motion of the coupled electron-ion system
is achieved by introducing a fictitious classical system described by the

Lagrangian
L= op [ il + 3 My Bal? — B}, (B

+ZAij/dF(¢f¢j — 6i;) (2.15)

where the {1;}'s and {R}' refer to the electronic and ionic degrees of
freedom respectively, A is an Hermitian matrix of Lagrangian multi-
pliers introduced to impose the orthonormality comstraints Eq.(2.10),
El{4:}, {R[}] is the functional given by Eq.(2.9) which acts as the po-
tential energy of the generalized system, and p is a fictitious mass associ-
ated with the electronic degrees of freedom. The choice of p is such that
it is sufficiently smaller than the ionic masses to ensure the adiabatic
motion of the electrons.

The Lagrangian (2.15) generates a dynamics for {¢:;}’s and {R}}’s

12



through the equations of motion,

) SE B
pipi(7,t) = RG] + Z A (7)) (2.16a)
= —Hepi+ 3 Mgy (7, 0)
MiBi= -V, E (2.165)

where H is the KS hamiltonian (2.12).

In this coupled system, the energy U = K. + K1 + E, where K, =
Yitufdrli]? and K; = > %M}]ﬁ;!z are classical kinetic energies
for electronic and ionic degrees of freedom respectively, is conserved
since the orthonormality constraints are just time-independent holo-
nomic constraints and hence do not do work[22]. K, is much smaller
than K; if electrons are very close to the ground-state. In this case,
Ur =K+ Eis approximately constant and very close to /. In all
systems (both insulators and metals), however, the Lagrangian (2.15)
will eventually lead to final equilibration between electrons and lons,
i.e. energy transfer from the ionic to the electronic subsystem. Dur-
ing such a process, K, increases continuously and, correspondingly, the
ionic trajectories deviate from the BO surface. In insulators, by appro-
priate choice of i and initial conditions {¥:(t = 0)}, {e(t = 0)}), it
is possible to make the equilibration time so long that practically no
energy transfer occurs during typical MD simulation times. In metals,
vice versa, some energy transfer occurs on a relatively small time scale
in spite of the choice of 1 and of the initial conditions. In order to main-
tain the adiabaticity of the ionic motion, one has therefore to perform
periodic minimizations to bring the electrons on the ground-state. Cor-

respondingly, because of the energy loss in K7, one should couple the

13



ions to some external reservoir in order to maintain the temperature at
the required value. In this work the ionic temperature is kept constant
by using the scheme which was proposed a few years ago by Nosé[30]
and which is described in detail in appendix A.

For the numerical calculations, the Verlet algorithm[21] has been

shown to be very efficient. Eqs.(2.16) are thus rewritten as

2
¥i(t + At) = —;(t — At) + 295(t) + fi% (2.17a)
- - - - At?
Ri(t + At) = —R;(t — At) + 2R;(t) + FIA_/_I? (2.17b)

where f; and F'; are the forces appearing on the right hands of Eqs.(2.16a)
and (2.16b) respectively. The forces on the ions are calculated by using

the Hellmann-Feynman theorem
Vi, E=—- <3|V HYT > (2.18)

where ¥° is the ground state of the many-electron system. Thus the
interionic forces are derived directly from the electronic ground state

and the ions move along the BO surface.
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Chapter 3

Technical Aspects:
Pseudopotentials for Ga and

As and the

Kleinman-Bylander Scheme

3.1 General Discussion
The usual procedure of solving the Schrédinger equation
Hy; = (T + V)‘Q/), = &;¢; (31)

is by expanding the unknown wave function P; on a given basis {¢;}

(usually being orthonormal)

=) cid; (3.2)

3
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The eigenvalues ¢; and the {c}} are then obtained either by solving the

secular equation

| Hij — €idnj ||= 0 (3.3)

where Hy; =< ¢x|H|p; >, or using the SD method described in the last
chapter. In many cases, it is convenient to choose a plane wave(PW)

basis set

- 1 om e L
k_' — 1(G+k).r 3.4
$5(7) = e (34

where ) is the volume of the system, kis a representative point in the
first Brillouin zone(BZ) and G is a reciprocal lattice vector. Eq.(3.2)

then becomes

= Z C’é(ﬁ% (3.5)
G
and Eq.(3.3) can be expressed in Fourier space:
1 = =
H5(G = #)" = exlbae + Voo 1= 0 (3.6)

In practice, the plane wave expansion (3.5) has to be truncated at a

2
maz

suitable size (i.e. G2, < Ecut). Since electron-ion Coulomb interac-
tions are very strong at small #(~ r~!), an exceedingly large number of
PW's are in principle required to represent electrons strongly localized
around the core of the nuclei. Pseudopotential theory [23] has been
introduced to eliminate this disadvantage. Pseudopotentials describe
the interaction of an electron outside the ionic core region (a region
with » < r., where 7, is the “core radius”) with the ion(nucleus plus
cloud of core electrons) and should yield the same physical properties as
the true potential. Instead of the strong attractive potential at small r,

pseudopotentials are smooth inside the core region but for valence states

they yield the same eigenvalues as the ones given by the real potential.
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Because of the smoothness of pseudopotentials, a relatively small num-
ber of PW’s is sufficient to describe a real system. Until some time
ago pseudopotentials were usually obtained either by adjusting Fourier
expansion coeflicients to agree with some experimentally determined fea-
tures of the energy bands or by fitting model potentials to atomic energy
values. More recently a first-principle approach has been introduced for
the construction of pseudopotentials. The so-called Norm Conserving
Pseudopotentials(NCPS)[24] belong to the category of the first-principle
pseudopotentials. They have the following desirable properties:

(1) Real and pseudo valence eigenvalues agree for a chosen “proto-
type” atomic configuration.

(2) Real and pseudo atomic wave function agree beyond r..

(3) The integrals from 0 to 7 of the real and pseudo charge densities
agree for r > 7. for each valence state (norm conserving).

(4) The logarithmic derivatives of the real and pseudo wave function
and their first energy derivatives agree for r > r..

The last two properties ensure that NCPS have optimum transfer-
ability among a variety of chemical environments.

In general, pseudopotentials can be broken into local and nonlo-
cal(NL) parts, i.e.

~

Vos = Vioe(7) + Vi (7, 7') (3.7)
Vapd(7) = / Vi (7,7 ) (7 )& (3.8)

and usually only the orientation is involved in this non-locality. There-

fore Viyr, can be expressed as

VNL = Zvl(r)lsl. (39)
l

17




Here P, is the projection operator which projects out the I-th angular

momentum component ¢;(7) from the function @(7)

A7) = Y Xim(T)Yim(6,) = Pig

where Y;,,(0, ) is a spherical harmonic function. The explicit form of

P is

pl = an(eﬂp)y;;(elﬁol) (3‘10)
Big(7) = 32 Yinl0,0) [ Yir(8',0)8(7) sin 0'd6' des' (3.11)

It can be shown that
Sh=1 | (3.12)
1
In practice, high [ components of the wave function are negligible. In

Eq.(3.9), we can assume

V(7)) = vpes(7) for 1>l (3.13)

where .., is some truncated ! value and Vnes 15 a reference function.

Using eqs.(3.12) and (3.13), Eq.(3.9) becomes

lnas X
Var = ’U,.ef(r) + Z Av P, (3.14)
=0

where Av; = v;—v,f. The first term on the right hand is a local operator
and hence can be put into Vi, of Eq.(3.7), leaving the rest as the pure
NL part.

Using a PW basis set, the matrix element of the pseudopotentials
(3.7) becomes
Ve = Vie(G — @) + V(G &) (3.15)

where the explicit expression of VNL(@, (-}’”) is [25]

4

Vwr(G,G) =Y a

l

(21 + 1)Pi(cos(05 &) /0 " drr? i (Gr)jy (G'r) Avy(r)
(3.16)

18



where P, is a Legendre polynomial, 0 ¢ is the angle between the vectors
G and G’ and Ji is a spherical Bessel function.

For each pair of G vectors, the two terms on the right hand side
of (3.15) are obtained by two different integrals. It appears that an
n-dimensional (n PW’s) matrix needs 2n integrals for the local terms
and 3(n +1) integrals for the NL ones. As the number of PW employed
grows, the calculation of the NL term becomes very demanding. This is
the case especially for systems containing a large number of atoms.

Kleinman and Bylander(KB)[26] proposed a factorized form for the
NL pseudopotentials

I;, _ li” IAvl@?m >< @?mA?Jl’
NL = <39 [Av |30 >

l m

(3.17)

where @ is the atomic pseudo wave function corresponding to the pseu-
dopotential of Eq.(3.7). It is noticeable that Vy|®? >= Av|®) >,
i.e. factorized and unfactorized NL pseudopotentials are equivalent un-
der the state j .. By the replacement (3.17), the number of integrals
for Vyz(G,G") is n rather than 2(n 4+ 1). Explicitly

2

V(G G =3 %ﬁ(zz + 1) Picos(05,5)) [ drr? il @r)gi(r)du(r) x

I
x /0 " drr (G i (r) Avi(r)/ /O T drr ()P Au(r)  (3.18)

Here ¢;(r) is the radial part of ® . i
The KB scheme reduces significantly the effort of calculating the
NL pseudopotential elements. It is found however that the accuracy of
the scheme depends strongly on the choice of the reference function in
Eq.(3.13). In the following we shall present the results of several tests

aimed at finding an appropriate reference potential for the KB scheme

in GaAs.
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3.2 Testing the KB scheme for c-GaAs

In the present work, the NCPS obtained by Bachelet et al[27] are em-
ployed for Ga and As where 152s2p3s3p3d are dealt with as core states.
We perform our tests on crystalline GaAs (c-GaAs) since self-consistently
diagonalising the Hamiltonian of such a small system (only two atoms
per unit cell) is very economical. For a given choice of the reference
potential of Ga and As, we calculated the energy eigenvalues by both
using the unfactorized formula (3.16) (we denote these results as “ex-
act”) and the KB scheme. The k points in the first BZ used to represent
the charge density within the DF scheme are those which fold into the
I'-point of the cubic supercell of 64 atoms used in our calculations with
the CP method (see section 4.1). Very similar eigenvalues are obtained
with a converged set of special k-points[28]. An energy cutoff of 14 Ry
(~140 PW's per atom) was used for wavefunctions, while a cutoff of
14x1.58 Ry=22.12 Ry was found sufficient to represent the charge den-
sity and the potential. This choice yields reasonably well converged
energy eigenvalues[28] (with a lower energy cutoff, e.g. 12 Ry, the cal-
culated energy gap of c-GaAs is found to become indirect). Our results
are given in Table 3.1.

We tested two different reference potentials, i.e. v, = vy (d-
potential) and v..; = v; (p-potential). In the i-irst case vy = AvgBy +
Av, P, (we denote it as sp-NL) whereas in the second case vyp =
AvoPy + Avy Py (we denote it as sd-NL). From Table 3.1, we can see
that, unlike the “exact” results, the KB scheme is quite sensitive to the
choice of the reference potential. In the sp-NL case, the KB results

deviate appreciably from the “exact” ones. The most important dif-
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ference occurs for the energy gap between the valence and conduction
bands (T'; — I'i5), which is only ~ 0.25 the value of the “exact” one.

Of course, the “exact” itself is smaller than the experiment due to the

Table 3.1:
Energies (in eV) at some selected k-points for c-GaAs, obtained by the
“exact” and the KB scheme. The sixth column reports experimental

results[28].

sp-NL sd-NL
exact KB exact KB Exp.
Iy | -12.56 | -12.69 | -12.55 | -12.55 | -13.1
I'is 0 0 0 0 0
Iy | 0.62 0.15 | 0.63 0.72 1.42
I's | 3.75 3.77 | 3.75 3.76
X3 [ -10.14 | -10.13 | -10.13 | -10.13 | -10.75
X3 | -6.72 | -6.79 | -6.72 | -6.72 | -6.70
Xs | -2.59 | -2.57 | -2.59 | -2.58 | -2.80
Xi | l41 1.03 1.41 1.43 1.81
Xz | 1.61 1.46 1.61 1.62 2.38
Xs | 10.15 | 10.16 | 10.16 | 10.17
Ly | -10.90 | -10.94 | -10.89 | -10.89 | -11.24
Ly | -6.54 | -6.57 | -6.54 | -6.53 | -6.70
Lz | -1.09 | -1.08 | -1.09 | -1.09 | -1.30
Ly | 1.03 0.54 1.04 1.08 1.72
Ly | 4.62 | 4.62 | 4.62 4.62 5.41
Ly | 7.68 5.26 7.70 7.71

a4

21



local-density approximation(LDA). From Table 3.1 it is evident that the

KB scheme with sd-NL is a better choice. However, this choice is com-

4 I l [

[AV]

l
[4V]

Vi(r) (Hartree)

I
N

Vi(r) (Hartree)

r (a.u.)

Figure 3.1:
NL terms of the Pseudopotential for: (a) Ga and (b) As[27]. The full

?

dashed and dot line correspond [ = 0, 1 and 2 respectively.



putationally costly because the calculation of the NI pseudopotential

matrix elements is proportional to (21 +1).

In Fig.3.1 we show the NL terms of the pseudopotential, v;, for Ga

Table 3.2: Energies (in eV) of c-GaAs at some selected k-points using
sp-NL for As and only s-NL for Ga. The three columns refer to three dif-
ferent treatments of the NL pseudopotential. The symbol in parentheses

denotes which wave function is used in KB formula

k| exact KB(®).) | KB(&,,)
I'y [-12.32] -12.30 -12.28

I'is 0 0 0

I'y | 0.86 1.09 1.01
I's | 3.94 3.95 3.95
X1 | -9.96 -9.96 -9.95
Xs | -6.52 -6.53 -6.53
Xs | -2.38 -2.38 -2.39
X | 1.44 1.49 1.47
Xs | 1.64 1.65 1.65

Xs | 10.30 | 10.20 10.21
Ly |-10.70 | -10.70 | -10.68

Ly | -6.32 -6.32 -6.33
Lz | -0.97 -0.96 -0.97
Ly | 1.19 1.28 1.25
Ly | 4.64 4.64 4.64
Ly | 7.85 7.83 7.84
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and As. It appears that the vy(r) and v1(r) potentials for Ga are quite
close. We approximately take v, ~ vy for Ga, and thus treat Ga as
s-NL but As as sp-NL. The results of the test for this choice are listed in
Table 3.2. It appears that the KB results are quite close to the “exact”
ones. This choice, which has the advantage of being rather accurate
and computationally convenient, is the one which we shall adopt in the

following.

3.3 Using the KB scheme for ab-initio molec-
ular dynamics

The systems we are interested in are usually much larger than the el-
ementary cell of a crystal. The number of PW, n, is therefore large
compared with that used for the crystal calculation. In these case it is
undoubtedly convenient to use the factorized KB scheme to calculate
the NL pseudopotentials matrix elements. One possible drawback of us-
ing the KB scheme within the CP method is related to the denominator
of Eq.(3.17). As described in the last chapter, Hi works as the force
on the electronic degrees of freedom. If one or more denominators in
the KB formula happen to be very small, Vy1(Eq.3.18), and hence H,
will become very large in magnitude. In the numerical solution of the
equations of motion, such as Eq.(2.18a), At must then be restricted to
very small values in order to get an accurate solution. This makes the
calculations more costly and somehow offsets the advantage of the KB
scheme. This case happens indeed for As when we use v, or v; as the
reference potential.

The justification of the KB scheme is based on the fact that when the
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Im»

KB-NL pseudopotential acts on the atomic state ®7_, it is equivalent to

the “exact” one

|Avl@?m >< @?mA’U[ l

®) >=|Ayd° 3.19
<@?m|Ale@?m> ’ Im > I N, > ( )

In practice, however, the atomic state @ is represented in PW's
8 (7) = 3 %S (3.20)
G

and truncated at some G,z

Gmaz "

8,(7) = 3 %S (3.21)

G=0
It appears that in order to satisfy the equality (3.19) all ®? appearing
in the KB factorized potential must be changed consistently to ®° . We
found that when this is done, also the “denominator problem” men-
tioned above is largely removed. In the 3rd column of Table 3.2, we re-
port selected eigenvalues of c-GaAs calculated using the KB-® scheme.
It appears that the comparison with both the KB using true atomic
states and the “exact” scheme is very favorable.

The effect of the different forms of NL pseudopotentials can be illus-
trated by the calculated lattice constants of c-GaAs. The lattice con-
stant, computed employing s-NL for Ga and sp-NL for As is ~10.35 a.u.,
i.e. 3% smaller than the experimental value {10.68 a.u.[29]), whereas if
both Ga and As are treated as sp-NL the lattice constant is ~10.45 a.u.,
i.e. 2% smaller than the experiment( the same results are found both

with the “exact” and the KB schemes). We see no essential difference.
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Chapter 4

Liquid GaAs

The first-principle molecular dynamics (CP) method is used to simulate
a liquid GaAs(l-GaAs) system. A detailed picture of the atomic and

electronic structure of the liquid is obtained.

4.1 Technical Detalils

A cubic MD cell containing 64 (32 Ga and 32 As) atoms with periodic
boundary conditions is used. The cell size is chosen as 20.864 a.u., giving
the experimental density at the melting point, p ~ 5.71gr em~3[1]. The
electronic wave functions at the I-point in the first BZ are expanded
in plane waves with a kinetic energy cut-off of 14 Ry. Norm conserving
pseudopotentials[27] within the local-density approximation(LDA)[15]
are used together with Kleinman and Bylander’s factorized form of the
non-local pseudopotentials(see ch.3). Due to the reason explained in
Chapter 3, s-nonlocality for Ga and sp-nonlocality for As are adopted.

To prepare a liquid system, the atoms are initially arranged in a zinc-

blende crystal structure with some random displacement, and are then
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Figure 4.1: The instantaneous temperature(full line) during the simula-

tion fluctuates around the equilibrium temperature(dashed line).

relaxed. The temperature of the system is gradually raised (by rescaling
the ionic velocities) up to 3000K to ensure a molten system. This is
indicated by the diffusing behavior of the mean square displacement.
The temperature is then gradually reduced to ~1600K, a little bit above
the experimental melting point 1511K. The system is equilibrated at this
temperature for a few thousand time steps.

When applying the CP method to a metallic system such as [-GaAs,
an energy transfer from the ionic to the electronic degrees of freedom
can take place within a rather short time scale, as already discussed in

chapter 2. This implies a deviation from the ground-state BO surface,
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or a thickness of the BO surface. We found that using a time step
At=15 a.u. (~3.6x107'%sec.) and the fictitious mass parameter of the
electronic degrees of freedom p=7500 a.u., it was sufficient to perform
a systematic minimization of the electrons every 200 At. Within this
time scale, the thickness of the BO surface is ~100K, much smaller than
the equilibrium temperature of the real system.

The statistical atomic configurations are collected for 4800 time steps
(~1.72 ps.). The temperature is kept constant (in average) by coupling
the ions to two thermostats (one is for Ga and another is for As), as
proposed by Nosé[30] for a purely classical system, giving a canonical
ensemble statistics (NVT). A detailed description of this procedure is
given in appendix A. The instantaneous temperature shown in Fig.4.1
always oscillates around the equilibrium temperature during the simu-

lation.

4.2 Structural Properties

The most basic characteristic of a disordered system, such as a liquid
or a glass, is that it possesses short-range order, differing from the long-
range periodicity of a crystal. The X-ray or neutron diffraction pattern
are still important experimental ways to dete}'mine the structure. The
static structure factor S(k), which is the Fourier transform of the pair

correlation function g(r)

sin kr

kr

S(k)=1+ p/:o drr?[g(r) — 11225 gy (4.1)
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where p=N/V is the average number density of N atoms in volume V,

is related to the intensity of the scattering I(k) by
I(k)
Nf(k)>

Here f(k) is the scattering form factor of an individual atom and k is

S(k) = (4.2)

the momentum transfer. The pair correlation function g(r) is defined
by setting 4mpr’g(r)dr equal to the total number of atoms in a spher-
ical shell of radius r and thickness dr centered on a given atom, which
can give us a direct microscopic picture of the short-range order. The
relation between the two-particle distribution

N — —

I#J

and g(r) (r = |F1 — 72]) is
< p(71,7) >= p’g(r) (4.4)

where the bracket < --- > denote the statistical average. Considering

the translational invariance of the system, we obtain

polr) = 3 < 387~ (B = Fn)} >

I#£J
_ % <TTer- (Br— Bp)} > —6() (4.5)
By Fourier transformation, we can also get
S(h) = — < 3 SRR (4.6)
N o

In a two-component system, Ashcroft and Langreth[31](AL) proposed
the following definition for the partial pair correlation functions and

partial structure factors,

cppgap(r) = ; ZJ: §{7 — (Rar — Rps)} > —6ap8(7)  (4.7)

Ot
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Figure 4.2:
The structure factor of liquid GaAs. The full line is the present re-
sult and the dashed line is the result from the neutron scattering

experiment.[2]

N, Ng oL .
Sap(k) = (NaDNg) /2 < 33" exp{—ik-(Rar—Rps)} > —(NoNg) %67,
I J

(4.8)
where N, is the number of a-type atoms and ¢, = N, /N is the respec-
tive number concentration.

From the ionic coordinates of the configurations collected in the sim-
ulation, by using Eqgs.(4.7) and (4.8), we obtain the partial pair cor-
relation functions gas(r) (Fig.4.3b) and the partial structure factors
(a =Ga, As; 8 =Ga, As). To compare our results with the neutron

scattering experiment[2], we should combine the partial S,3(k) with the
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experimental neutron scattering lengths b, as follows

S(k) = b%aSGaca(k) + 2bGaba,Scans(k) + b%, S asas(k)
B (bga + b4, )2

(4.9)

where bg,=7.2 and b4,=6.7[32]. The comparison for the structure factor
S(k) is shown in Fig.4.2. The agreement between theory and experiment
is very good. The calculated S(k) is a little bit noisy because of the
limited configurations collected. Like I-Si and [-Ge, the first peak is
accompanied by a shoulder at higher k& value. The small shift of the
calculated S(k) to higher k-value with respect to the experiment is due
to the theoretical underestimate of the Ga-As equilibrium bond length

which was mentioned in chapter 3.

Better insight into the structure of the liquid is provided by ¢(r). In
Fig.4.3a, the experimental g(r), which was obtained by Fourier transfor-
mation of the experimental S(k), and our result are shown. We notice
that the theoretical g(r) is obtained by combining the partial g.g(r)—
which are calculated directly in r space—with the bls,in a way similar to
that of Eq.(4.9). A noticeable feature of both curves in Fig.4.3a is the al-
most complete absence of structure beyond the first neighbor peak. This
feature is usually attributed to non-compact structures, since in these
systems the structure is not “nested” shell by shell. It also appears
that, in spite of an inward shift which is corresponds to the outward
shift in S(k), the theoretical peak reproduces quit well the height and
width of the experiment. From the area below the first peak of g(r),
one can estimate the average coordination number Z in the liquid. By
fitting the first peak with two Gaussians, we find 7=5.0, whereas by di-
rect integration of 4wpr?g(r) up to the first minimum at Trmin ~ 3.26 A,

we find Z=6.3. The corresponding experimental value is 74=5.5£0.5, the
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Figure 4.3: (a) The pair correlation function g(r), where the circles
denote the experimental one; (b) the partial correlation functions. Full

line: Ga-As. Dashed line: AsAs. Dotted line: Ga-Ga.
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Figure 4.4: The number-concentration structure factors. The full line is

Swnn, the dot line is Sce and the dashed line is the cross term Syc.

incertitude being related to the procedure used to analyse the first peak.

The calculated partial pair correlation function g.s(r) are shown in
Fig.4.3b. Unfortunately, experimental results for these quantities are
not available, although in principle they can be obtained by scattering
through isotopic substitution. In a strongly ionic system, such as molten
salts, peaks and minima of 9ap(7) for like-atoms are out of phase with
respect to those of unlike-atoms, reflecting the characteristic alternation
of cation and anion shells. This is not the case i;l Fig. 4.3b, indicating a
strong covalent character for the binding in [-GaAs. The probability of
finding a like-atom in the nearest neighbor shell of one atom is appre-
ciable. By integrating to Tmin, €ach Ga/As has on the average 2.6/2.2
and 3.9 neighbors of the like- and unlike-species respectively.

In Fig.4.4 we show the Bhatia and Thornton’s[33] partial structure
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factors which are obtained from their relationships with the AL’s partial
structure factors. These are the mean-square fluctuations in the particle

number, the concentration and their cross term, ¢.e.

Swn(k) = “11\7 < N'(F)N(F) > (4.10a)
Sco(k) = N < C*(k)C (k) > (4.100)
Snc(k) = Re < N*(k)C(k) > . (4.10¢)

Here N(k) and C(k) are Fourier components of the local fluctuations of

the number density
Ap(F) = o) - (4.11)
and the concentration

Ac(F) =¢(F) — € (4.12)

respectively. Their relationships to the AL’s partial structure factors

S.s(k) are[34]
Snn(k) = e1511(k) + c2522(k) + 2(cye2)t?85(k) (4.13a)

SCC(k) = 0102[62511(k) + 01522(19) - 2(C162)1/2512(k)] (413b)
Snc(k) = crea[S1(k) — Saa(k) + (c5 — ¢1)S1a(k)/(c1e2)?]  (4.13¢)

where ¢; and c, are the concentrations of the two different species 1 and
2 (c1+cz = 1). From Fig.4.4, it appears that Syn(k) is almost equivalent
to S(k) of Fig.4.2, and Sgc(k) has a peak at about 1.8 A~%, about half
of the position of the first peak of Syn(k), revealing a tendency to an
alternative arrangement of atoms although it is not as pronounced as

that in a pure ionic system.
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Figure 4.5: The mean square displacements of Ga(full line) and

As(dashed line). They are averaged over 10 different starting points.
4.3 Dynamical Properties

Also the dynamical properties of the liquid are well described by our
simulation. The diffusion coefficients of Ga and As can be evaluated
from the large ¢ behavior of mean square displacements by Einstein
relation

D =lim <r*> /6t (4.14)

as Dga = 1.6 X 107* and Dy, = 1.2 x 10~¢ em2s—1 respectively. The
experimental value, which does not distinguish between the two different

species, is Dgaas = 1.6 x 107% em?2s~! at T ~ 1550K[35]. The auto-
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Figure 4.6: The auto-correlation function of atomic velocities for [-GaAs.

correlation function of the atomic velocity

2(s) = <V(t)-V(t+s)> (4.15)
< V() - V(t) > '

is shown in Fig.4.6. The diffusion coeflicient estimated from this function

coincides with that from Einstein relation. The vibrational density of

states spectrum D(w) is obtained by Fourier transformation of Z(s), i.e.

D(w) x /oo Z(t) cos(wt)dt, (4.16)

0

and is shown in Fig.4.7. A shoulder occurs at about w ~ 25T H z which
should be related to the optical phonon peak in the crystal. This value
is w ~ 50T H z at zero temperature. As temperature rises, it will shift
to lower value. Unfortunately no experimental data near the melting

point seem availabe.
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Figure 4.7: The vibrational density of states for I-GaAs. The unit for

D(w) is arbitrary.
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4.4 Bonding

It is interesting to obtain a microscopic picture of bonding in [-GaAs.
By studying the electronic charge distribution between an atom and
its surrounding neighbors, we find that not all the atoms at distances
7 < Thmin are bonded to the central atom. This point is illustrated in
Fig.4.8 where we show contour plots of the charge density for a few
typical configurations in the liquid, as compared to the charge density
(in a (110) plane) of c-GaAs (4.8a). Actually the covalent bonds are
not present if the interatomic distance d exceeds some deov, which we
approximately estimate as d.,, ~ 2.654, i.e. ~ 10% larger than the
equilibrium bond length for c-GaAS (we assume the same d,,, for all
types of bond, although the average As-As separation is found to be
slightly larger than the Ga-As and Ga-Ga ones). By integrating g(r) up
to d.o, we obtain that the average number of bonds formed by each atom
is ~ 2.9, implying that about 50% of the atoms within the distance 7,,;,
are not bonded to the central atom.

A similar indication is provided by the behavior of the bond-angle-
distribution(AD), as illustrated in Fig.4.9. The figure shows the to-
tal AD calculated using two different values of the cut-off distance R.,
namely R, = r,;, and R, = dcov(dashed line).- A significant difference
between the two curves is remarkable. It appears that the curve with
R. = d., has a pronounced peak at 8 ~ 109° i.e. the bond-angle
of c-GaAs, whereas for the curve with R, = Tmin the peak has become
broader and shifted to § ~ 100°, while at the same time a second feature
at § ~ 54° has emerged. The latter corresponds to configurations where

at least one atom within r,,;, is not bonded to the central one.(see lower
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Figure 4.8:

Contour plots of the valence electronic charge density for some config-
urations. Small and large dots denote Ga and As ions respectively. (a)
charge density in the (110) plane of c-GaAs (bond length d.=2.45 4).
(b), (c), (d) are some selected configurations of the liquid. In (b), both
As atoms form bonds with the Ga atom at tl;e center (bond distances:
di = dy = 2.1421). In (c) the As atom bonds to the Ga on the left
(dy = 2.214) while it does not form a bond with the Ga at the bottom
(dy = 2.704). In (d) the Ga atom does not form bonds with either As
(dy = 3.224, d, = 2.814).
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Figure 4.9: Total bond angle distribution calculated using two dif-
ferent values of the cut-off distance R., R. = Pmin(full line) and
R. = d..(dashed line). The vertical arrow denotes the value of the
tetrahedral angle, 109°.

panels of Fig. 4.8)

Charge density contour plots for several bonding configuration in
the liquid are shown in Fig. 4.10, including “crystal-like” configurations
such as (a) and (d), wrong bonds such as in (b) and (e), and three atom
“clusters” as in (c) and (f). The “crystal like” configurations of type
(a) and (d) are the prominent configurations, but configurations like (b)
and (e) also occur frequently. We find statistically that about 18% and
9% of the total number of bonds are Ga-Ga and As-As respectively.
The probability of the “three-atom cluster” configurations (c) and (f)
is instead significantly lower ( 4% and 2% respectively). Fig.4.11 shows

the relative probability for different number of atoms in a “cluster”. It
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Figure 4.10: Contour plots of the valence electronic charge density

in [-GaAs for different atomic configurations: (a) Ga-As-Ga; (b)
Ga-Ga-As; (c) Ga-Ga-Ga; (d) Ga-As-Ga; (e) As-As-Ga; (f) As-As-As.

The small and large dots denote Ga and As ions respectively.

decays quickly as the number of atoms increase. “Clusters” with atoms
larger than 4 only occur occasionally.

The charge density plots in Fig.4.10 also show that the Ca-As bond
in the liquid is weakly ionic, as in the crystal. The Ga-Ga bonds show
a small pile-up of charge at the center, similar to that observed in or-

thorombic ¢-Ga[36]. Finally, the As-As bond is dominated by p elec-
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Figure 4.11: The relative probability for like-atom “clusters” of different
size: (a) Ga; (b) As.
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Figure 4.12: Partial bond angle distribution (calculated with R, = deow )
for: (a)AsGaAs; (b) AsAsAs; (c) GaAsGa; (d) GaGaGa.
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trons as found in c-As[37]. Fig. 4.12 shows the partial AD correspond-
ing to configurations like those in Figs.4.10(a), (c), (d) and (f). The
distributions are wide spread. The AD for AsGaAs has a peak cen-
tered at ~ 105°, 1.e. rather close to the tetrahedral angle of 109°; the
AD for AsAsAs which is relatively noisy due to less statistics, has a
sharp peak at ~ 95°, in agreement with that in pure [-As[38]. Finally
Figs.4.12(c) and (d) show that when two Ga atoms bond with a cen-
tral atom (Ga/As), the AD’s are quite flat, suggesting weak interactions

between the two Ga atoms.

4.5 Electronic Properties

To obtain the electronic properties, such as the single-particle density
of states D(E) and the electrical conductivity o(w), the empty single-
particle states above the Fermi level are taken into account. These are
calculated for 12 different ionic configurations, using an SD procedure
similar to that of Eq.(2.13)(where however the electronic density n(r) is
fixed).

D(E) for I-GaAs is shown in Fig.4.13 where results for c-GaAs are
also displayed for comparison. Some similarity in the main features of
the two curves is visible. Also in the liquid, for instance, there is at low
energies, between ~ —12 and ~ —8eV, the band of s-like states origi-
nating from the As atoms. In the liquid, however, D(E) is finite at the
Fermi level Ey, thus indicating that this is metallic, in agreement with
the experimental transport data[l]. The localization of single-particle

‘states increases smoothly along the band, as shown by the behavior of
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Figure 4.13:
The single particle electronic density of state D(E). The upper panel is
the result for c-GaAs, from [39]. The lower panel is for I-GaAs, where

the vertical arrow denotes the position of the Fermi energy.
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Figure 4.14: The participation ratio

the participation ratio P(E) shown in Fig.4.14. P(FE) is defined as

P(E) = ) Z ffllez‘:‘:flflz 6(E — E;) (4.17)
where {2 is the volume of the MD cell, %; a single-particle state and E.
is its eigen-energy. For a pure plane wave state, P(E) =1 at that point
whereas for a localised é-function state P(E) = 0.

In Fig.4.15, we show the electrical conductivity o(w) calculated as
the configurational average of [40]

o, {Br}) = 2“32!<¢mtpwn>|é<E B hw) (4.18)

where {R;} denotes the given ionic configuration and P is the momen-
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tum operator. The lowest 256 Kohn-Sham states are used for each set
of {R}}, t.e. twice the number of occupied states. We remark that
the use of these states to describe single-particle properties is not well
justified[41] and thus introduces an additional approximation, beside the
Franck-Condon approach implicit in the use of BO states in Eq.(4.18).
The calculated value ~ 75002 1cm =1 of the static d.c. conductivity, ob-

tained by extrapolating o(w) to zero frequency, is in remarkable agree-

o (10* 07'em™)

0 l l ] l l
0 2 4 6
how (eV)

Figure 4.15: The electrical conductivity o(w) of I-GaAs (full line). The
horizontal arrow indicates the experimental value of the d.c. conductiv-
ity. The dashed line is obtained by approximately fitting the calculated

curve with Drude formula.
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ment with the experimental value of ~ 79000 1ecm~'[1]. In the classical
Drude model, the real part of conductivity is

a(0)

o(w) = Troie

A crude fitting of this formula to our results is shown as the dashed line
in Fig 4.15. From the fitting, we obtain the values o(0) ~9400 w™tem ™}
and 7 ~ 9.4 x 1071® sec. Although there is no available experimental
value of T to compare with, the 7 obtained from the fitting is of the
same order of magnitude as that of I-Si (7 ~ 2.2 X 10716 sec[43]). From
Fig.4.15, it appears that the Drude model does not describe well the
conductivity of I-GaAs at energies below ~2eV, thus suggesting signifi-
cant deviations from free electron-like behavior. This is in contrast with
the situation in I-Si[44], where Drude formula gives a very good descrip-
tion of the conductivity at all energies. This different behavior is also
observed in the single particle density of states: this looks significantly
more free electron-like in [-Si[44] than in [-GaAs.

In summary, a first-principle MD simulation has been performed on
the liquid GaAs. The physical quantities obtained arein good agreement
with experiments. Although the coordination number increases after
melting, not all the atoms in the first coordination shell bond with the
central atom. Each atom has ~ 2.9 bonds on average, less than that
in the crystal. These broken bonds contribute to the increase of the

electrical conductivity.
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Chapter 5

Simulated Quenching of

GaAs

A crystal phase corresponds to the global minimum of the multidimen-
sional potential energy surface, while an amorphous phase is metastable,
i.e. associates with local but relative stable minima of the surface. Ex-
perimentally amorphous semiconductors are usually produced by evap-
oration , rf glow discharge or sputtering. Freezing from the liquid phase
in fact does not give rise to amorphous systems, since the cooling rates
which can be achieved experimentally are not sufficiently fast to prevent
crystallisation. In a MD simulation, however, it is possible to quench a
liquid so rapidly that an amorphous solid rather than a crystal is ob-
tained. In this chapter, the CP method is used in a numerical simulated
quenching to obtain an amorphous GaAs sample from the corresponding
liquid.

We start from the equilibrium liquid described in chapter 4. The
temperature is reduced from 1600 K to room temperature(300 K). At

present however this process has not been completed yet. The results of
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Figure 5.1: The mean square displacements of Ga (full line) and As

(dashed line) atoms at three different temperatures.
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this chapter refer to temperatures down to T=900 K, where a number
of features of the amorphous phase seem already to be present.

The technical details of the simulation are almost the same as those
used in chapter 4. We find however that the deviations from the BO sur-
face decrease with decreasing temperature (the thickness of BO surface
at T=900K is only ~20 K). This suggests that a gap is opening in the
energy spectrum and thus a transition from a metallic to a semiconduct-
ing phase is taking place. The size of the MD cell is relaxed gradually
to give the same density as in solid GaAs. The mass associated with
the Nosé thermostats is adjusted with the temperature according to
Eq.(A15). We decrease 100 K of temperature in 3000 time steps, giv-
ing a cooling rate ~ 1 x 10 K /s, whereas the experimental quenching
techniques can usually achieve only ~ 10° K/s[4].

The mean square displacements, < r?> >, of Ga and As atoms in
the system at three different temperatures (T=1600, 1100, 900 K) are
shown in Fig. 5.1. In the upper panel the results for the liquid are shown
for comparison. The behavior of <r?> in the middle panel indicates
the system is a supercooled liquid even at T=1100 K, while that in the
lower panel shows a tendency to saturation, implying a sharp increase of
viscosity and hence suggesting that freezing is undergoing in the system.

Fig.5.2 shows the BT partial structure factors at T=900K. The par-
ticle number structure factor Swn(k) of the liquid (see Fig.4.4) has a
broad first peak which is here split into two sharper peaks. The arrows
in Fig.5.2 give the position of the first two peaks in a X-ray study of
a-GaAs at room temperature, which coincide with the first two peaks in

c-GaAs([3]. The concentration structure factor Sco(k) has a more pro-
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Figure 5.2:
The number-concentration (or BT) structure factors. The full line is
Snnw, the dot line is Sco and the dashed line gives the cross term SNC;
the two arrows denote the position of the first two peaks in X-ray

diffraction results for a-GaAs[3].
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Figure 5.3: Upper panel: pair correlation function g(r) of the system
at T=900 K. Lower panel: 9Gaas(r) (full line), 9GaGa(T) (dot line) and
gasas(r) (dashed line).

nounced peak than that in I-GaAs at k& ~ 1.954-1, indicating a better
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Figure 5.4: The bond angle distribution of the system at T=900 K.

chemical order at lower temperatures.

The pair correlation function is shown in Fig.5.3(a). The first peak
is sharper than that in I-GaAs and the second which is almost absent in
the liquid case has become quite prominent. The coordination number
can be approximately estimated as 5.0 by integration of dmpr?g(r) up
to the first minimum at 7, ~ 2.91;{, to be compared with the value
6.3 in {-GaAs.

A dramatic change of the partial pair correlation functions can be
seen in Fig.5.3(b), where it appears that the first peak of unlike-atom
pairs has increased appreciably while that of like-atom pairs is reduced.
This means that the nearest neighbour shell is dominated by unlike

atoms. However “wrong bonds” still have an appreciable portion.



The bond angle distribution calculated using a cut-off distance d,,, ~
2.564 (see chapter 4) is shown in Fig. 5.4. A pronounced peak locates
around 6 ~ 109°, suggesting that a tedrahedral structure is formed by
reducing the temperature.

In summary, the results of this chapter suggest that an amorphous
structure forming during the simulated quenching, although the tem-

perature so far is as high as 900K.
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Chapter 6

Conclusion

In this work, a first-principle molecular dynamics (Car-Parrinello) method
is used to investigate the disordered phase of GaAs. This is the first time
that this method is applied to a compound system. In this approach
both atomic and electronic properties are obtained simultaneously.
Our results for the liquid phase of GaAs agree well with the limited
experimental information available. A detailed picture of the local order
is obtained as well. In agreement with experiments, we have found that
this compound system has many similarities with [-Si and I-Ge[l]: a
transition from semiconducting to metallic behavior occurs upon melting
and the first-shell coordination number is increased at the same time.
Although more atoms are found in this shell on average, it is observed
that not all of them bond to the central atom. Each atom has ~2.9 bonds
on average, which is less than that in c-GaAs, and hence the portion of
dangling bonds must be appreciable. In addition, we have found that
the occurrence of “wrong bonds” between like-atoms is very frequent,
while the formation of clusters of more than three atoms of a single

species, is unlikely. These dangling bonds and “wrong bonds” should be
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responsible for the dramatical increase of electrical conductivity upon
melting.

A quenching process from liquid to amorphous GaAs is also sim-
ulated. The saturation of the atomic mean square displacements at
the temperature around 900 K suggests a freezing in the system. The
analysis of the bond angle distribution at this temperature indicates a
prominent tetrahedral structure, revealing that amorphisation is taking
place. However, an appreciable fraction of “wrong bonds” still exist at
this temperature. A better amorphous structure is expected at room
temperature.

As shown also by the previous studies on elemental systems, the
Car-Parrinello method is an effective tool for the study of a variety of

properties of disordered materials.
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Appendix A

The Nose Thermostat

In the standard classical molecular dynamics(MD) method, the newton's
equations of motion for the particles (e.g. eq.(2.1)) are solved numeri-
cally. The total energy FE is conserved, and thus the ensemble generated
by the simulation is the microcanonical or (E, V, N) ensemble. The tem-
perature in this ensemble is not constant, making it difficult to compare
the simulation results with experiments.

To perform a MD simulation at constant temperature, one can sim-
ply keep the kinetic energy constant by periodically scaling the velocities
of the ions. However, there seems to be no rigorous proof that this ap-
proach produces configurations belonging to the canonical ensemble.

A method to generate canonical ensemble averages via MD simula-
tions was proposed by Nose[30] a few years ago. He introduced an extra
degree of freedom s in addition to the coordinates {ﬁ;} of the N parti-
cles in a fixed volume V. The interaction between the physical system

and s is expressed via the scaling of the velocities of the particles,

17[ = SRI (Al)
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and v7 is considered as the real velocity of particle I. This can be
interpreted as an exchange of heat between the physical system and the
external system (thermostat).

The Lagrangian of Nosé's extended system is as
L= Z 2RI {RI}) —(f+1)kTylns (A2)

where M is the mass of the I-th particle, ¢({§1}) is the potential of
the physical system, the parameter Q) can be thought as the fictitious
mass associated with s, f is the number of degrees of freedom in the
physical system, k£ is Boltzmann’s constant and 7., the externally set
temperature value. The Lagrangian (A2) generates a dynamics for {]%I}

and s through the equations of motion,

P 1 28 &
Br= -5 Vas—Th (A3)
. =2 + 1)kT.
QS = ZMI‘SRI — '(i‘—‘*s")—-g (A4)
I

If we denote the average in the extended system by < --- >, the relation

2
Mrs*R 1
< -ZJ——;’——I— >=(f+1)kT < ~ > (45)
is obtained from (A4), because the time average of a time derivative
(e.g. @3) vanishes. This suggests that the average of the kinetic energy
coincides with the externally set temperature. Teg.

The hamiltonian

2

1_Z2M 5+ ¢( Q +(f+1)kTylns (A6)
is a conserved quantity, where the momenta are given by
L 0L
1= = M;s® RI (A7)
8RI
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and

Nose¢ proved that the equations of motion (A3) and (A4) produce
configurations in the canonical ensemble at temperature T,,. The argu-
ment is the following. The extended system produces a microcanonical
ensemble of (f41) degree of freedom. The partition function of this
ensemble is defined by

N,/dp,/ds/dp/dm 2M 2+¢(R)+

+(f+1)kTeq Ins—E)
(A9)
where the shortened form dp = dp; - - - dpy,dR = dR, - - - dRy are used.
If we transform

— =pf (A10)

we obtain

f
= % /dp, / dp/ /dR/ dss 5(2 v Q +(f+1)kT., In s—E)
(A11)
Using the equivalence relation for §—function 6(g(s)) = é(s — s0)/g'(s),

where so is the value which makes g(s9) = 0, and the shortened form

H(p, R) = ZzM + $(R)

we obtain
1 5[5 st H(p',R) +p?/2Q - E
X fap, [ap [dB [ dst—§(s—exp[- TP T LS
i [ [ | R/ds(f+1)kTeq (s—exp] Gk, O
2

! 5 [ 4 o= P
(f+1)kTeqN!/dp’/dp /dReXp[*(H(p,R)wL 20

where

ca]

H+p2/2Q - E
(f + kT,

.

so = exp[—
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Carrying the integration with respect to p,, we finally obtain

1 27Q

Z= 7T 1)(@;)1/2 exp(E/kT.y)Z, (412)

where Z, is the partition function of the canonical ensemble

1 -— = e ey
Z. = N!/dp /dR exp|—H (¢, B)/kT.,). (A13)

Hence Z only differs from Z, by a constant factor. With the quasier-
godic hypothesis which relates the time average along the trajectory to
the ensemble average, the average of any static quantity expressed as
function of {p/s(= p'), R;} along the trajectory determined by (A3)

and (A4), is exactly a canonical ensemble average, i.e.

1 t[) — — — —
lim -/ A(p/s,R) dt =< A(p/s,R) >=< A(p, B) >..  A(14)
0

tg— oo tO

In principle, static quantities are independent of the value chosen for
the parameter Q. However, in practice due to the finite number of time
steps in the simulation, eq.(A14) is not always satisfied. Too small Q
values may give decoupling of s from the physical system, whereas too
large @ values lead to insufficient sampling of phase space. According
to Nose[30], @ can be chosen as

2fkT,
e (15
where w is of the order the second moment of the frequency spectrum
of the velocity autocorrelation function of the physical system. With
this choice, variable s has the same order of time scale of the physical
system.

As pointed out by Nose[42], it is easy to extend this method to

multiple thermostats.
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