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Introduction

Speaking of gold, what comes to one’s mind first is that it’s a shiny, yellow, soft, precious and

chemically inert metal. Known as the first metal discovered by human beings, gold historically

has been considered valuable by many cultures. Throughout the history of human civilization, gold

metal has been widely used in many areas because of its unique properties [1]. As gold is shiny,

tarnish free and precious, it has high artistic value and has been used in jewelry and decoration

since ancient times. Gold is not only of aesthetic value, but has also been found of practical value

for ages in monetary exchange and dentistry. Besides, colloidal gold nanoparticles have a long

history of applications in glass staining and medicine [1, 2]. Nowadays, since gold metal is highly

conductive and ductile, and resistant to corrosion and oxidization, it is also used in the industrial

area of electronics [3].

Being regarded as the noblest of all the metals [4], gold was long considered not as important

as the other group 11 elements, i.e., Cu and Ag, in areas such as catalysis and surface chemistry.

However, despite that gold is a typical noble metal in the bulk form, it can be catalytically active

in the cluster form. In 1987, Haruta et al. found that when supported on base metal oxides such

as α− Fe2O3, Co2O4 and NiO, gold nanoclusters can catalyze CO oxidization effectively at a

temperature as low as 200 K [5]. This discovery of the unexpected novel catalytic property of gold

nanoclusters has triggered a surge of interest in the theoretical and experimental investigations of

the physical and chemical properties of gold nanoclusters in the past two decades. Today, a lot of

research has been concentrated on the potential applications of gold nanoclusters in nanotechnology,

catalysis, biology and medicine [6–17].

According to cluster science, metal nanoclusters, or metal clusters in short, refer to particles

of metal atoms with a size ranging from as small as two atoms, to as large as a few hundreds of

thousands of atoms [18]. Just like other metal clusters, the properties of small gold clusters such

as geometry, electronic structure and chemical reactivity strongly depend on the cluster size and

significantly differ from those of bulk gold. For example, the ionization potentials of small neutral

gold clusters are strongly dependent on the cluster size and are much higher than the work function

of bulk gold [19]. Small gold clusters are quite different from bulk gold because they have a large

surface-to-volume ratio [20]. The lower coordination numbers of surface atoms compared with those
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of body atoms put the surface atoms under different physical and chemical environments and lead

them to possess different properties. As a matter of fact, in the cases of small gold clusters, even a

unit change in the number of atoms or electrons could drastically change the physical and chemical

properties.

Gold clusters have some interesting properties not found in other metal clusters. One of them

is that small gold clusters favor two-dimensional structures at relatively large cluster sizes. By

comparing the calculated collision cross sections from the density-functional theory (DFT) and those

measured from ion mobility experiments, the cluster size up to which planar structures are favored

for cationic or anionic gold clusters has been determined. Gilb et al. found that cationic gold

clusters AuN are planar up to N = 7 [21], while Furche et al. found that anionic gold clusters AuN

can have planar structures up to N = 12 [22]. Unfortunately, the cluster size up to which planar

structures are favored for neutral gold clusters hasn’t been determined yet [23]. However, a large

amount of theoretical research exists and it is generally believed that neutral gold clusters AuN are

planar up to N = 11− 13 [24–31]. At variance with gold clusters, most of other metal clusters

are planar up to only a size of 4− 6 atoms, depending on the charge state. An extension to the

tendency of very small gold clusters to display planar structures is that larger gold clusters can have

interesting quasi two-dimensional structures. A hollow tetrahedral structure was reported by Li et

al. as the ground-state structure for the neutral and anionic Au20 clusters [32], and this finding

was confirmed by combinations of theoretical and experimental studies [23, 32]. Based on DFT

calculations, Johansson et al. and Gu et al. discovered a highly stable cagelike icosahedral structure

for the neutral Au32 cluster which has the same symmetry as C60 fullerene and can incorporate up

to 3 gold atoms inside its inner shell [33, 34]. Interesting cagelike structures have also been found

for some anionic gold clusters [35, 36].

The tendency of small gold clusters to display planar structures has been attributed to the strong

relativistic effects in gold [37, 38]. As a heavy element, gold has unusually large relativistic effects

larger than any of its neighboring elements, including the other coinage metals Cu and Ag. The

strong relativistic effects in gold lead to an orbital expansion and an energy increase of the 5d elec-

trons, and an orbital contraction and an energy decrease of the 6s electrons. As a result, on the one

hand, the energies of the 5d and 6s electrons are brought closer so that there is strong s-d hybridiza-

tion in gold; on the other hand, in gold clusters the overlap between the 5d electrons of neighboring

atoms is enhanced, resulting in a high directionality in bonding.

Even though the ground-state properties of gold clusters, especially the relative stabilities of

different structures at different cluster sizes, have been extensively investigated using DFT [24–

31, 35, 36], the excitation properties are relatively unexplored at the theoretical level. In the study of

the excitation properties of these systems, it is particularly important to have a thorough understand-

ing of the relation between the structure and the electron dynamics. This would be instrumental to

the identification of spectroscopic fingerprints of specific structural features, to be used for charac-
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terization purposes. However, DFT [39, 40] is not apt to this aim and such an understanding is still

lacking. Hence, more sophisticated techniques based on many-body perturbation theory (MBPT)

[41–43] are called for. The GW method [44] based on MBPT is deemed to be the state of the art for

the simulation of the photoemission (quasiparticle) spectroscopy in molecular and extended systems,

and is thus an ideal tool for the study of some of the excitation properties of gold clusters.

The main body of this thesis is devoted to the investigation of the quasiparticle spectra of neutral

gold clusters by using the GW method. We focus on the study of small clusters AuN (N = 1− 8)

(including the Au atom), as well as two larger quasi two-dimensional clusters, the tetrahedral Au20

cluster and the cagelike Au32 cluster. The Quantum Espresso density-functional package [45] is em-

ployed to perform electronic structure calculations. In particular, the GWL module [46] of Quantum

Espresso is used for the GW parts of the calculations. Our implementation of the GW method has in-

corporated recently introduced algorithms [47, 48] which address the main computational difficulties

involved in traditional GW calculations and can significantly enhance the scope of GW calculations.

Two specific aspects are considered concerning the GW calculations of gold clusters: the Au

semicore 5s and 5p states and the open-shell character of some symmetric molecular structures. We

find that an explicit inclusion of the Au semicore 5s and 5p states in the valence manifold is essential

to achieve a satisfactory accuracy in the calculated quasiparticle spectra. Based on this observation,

we use a recently developed simplified approach [49] to account for the effects of the Au semicore 5s

and 5p states without including them fully in the GW calculations. By doing so, a significant speed

up of the calculations is obtained, while the accuracy of the computed spectra is not compromised.

This simplified approach makes the GW method fit to the study of larger gold clusters, such as Au20

and Au32, which can not be tackled easily using more conventional approaches. The electronic

structure of open-shell molecules is hardly addressed in traditional GW calculations. However, in

the study of small clusters, one can frequently meet symmetric structures with open-shells. We show

how the electronic excitation properties of open-shell molecules can be studied by making some

compromise in the GW calculations of these molecules.

This thesis is organized as follows: In Chapter 1, we review the theoretical background relevant

to the GW method. A general introduction is first given for DFT, which is the starting point for

our GW calculations, then for MBPT, with emphasis on the GW approximation. In Chapter 2, our

implementation of the GW method is explained in detail, and illustrated with a particular example of

the application to the caffeine molecule. We present in the same chapter a few methodological details

with specific relevance to our GW study of gold clusters, including the role of the Au semicore 5s

and 5p states and the treatment of molecular open-shells. In Chapter 3, we report our results for the

electronic properties of small neutral gold clusters AuN (N = 1− 8), as well as of two larger neutral

gold clusters, the tetrahedral Au20 cluster and the cagelike Au32 cluster. Finally, we conclude the

work of this thesis and make an outlook for future research.
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Chapter 1

Theoretical Background of

Electronic Structure

In this chapter, we review the theoretical background underlying the work of this thesis. We first

briefly describe the basics of the density-functional theory, the theory on which our implementation

of the GW method in this work is based. After that, we present a short introduction to many-body

perturbation theory, with particular emphasis on the GW approximation.

Hartree atomic units, with ~ = m = e = 4π/ε0 = 1, are used throughout this thesis, unless oth-

erwise explicitly stated.

1.1 Density-Functional Theory

In this section, we briefly review the very basics of the density-functional theory. The subjects

discussed cover the foundation of the density-functional theory in terms of the two Hohenberg-

Kohn theorems, the Kohn-Sham formalism for the density-functional theory, approximations for

the exchange-correlation functional, and the plane-wave pseudopotential approach for the practical

implementation of the density-functional theory.

1.1.1 Hohenberg-Kohn Theorems

In the Born-Oppenheimer approximation [50], the non-relativistic many-body Schrödinger equation

for a system of N interacting electrons in the external potential from fixed nuclei reads:

Ĥ({r}; {R})Ψm({r}; {R}) = Em({R})Ψm({r}; {R}) (1.1)

where

Ĥ({r}; {R}) = K̂({r}) + Ŵ ({r}) + V̂ ({r}; {R}) (1.2)
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and

K̂({r}) = −1

2

∑
i

∂2

∂r2
i

, (1.3)

Ŵ ({r}) =
1

2

∑
i 6=j

v(ri, rj) =
1

2

∑
i 6=j

1

|ri − rj |
, (1.4)

V̂ ({r}; {R}) =
∑
i

Vext(ri; {R}) = −
∑
i,I

ZI
|ri −RI |

, (1.5)

ri and RI being the coordinate of the i-th electron and that of the I-th nucleus respectively, {r}
and {R} being the set of the electronic coordinates and that of the nuclear coordinates respec-

tively, and ZI being the atomic number of the I-th nucleus. In the above equations, Ĥ({r}; {R})
is the many-body Hamiltonian for the electronic degrees of freedom at a fixed configuration {RI}
of the nuclei; K̂({r}) describes the electronic kinetic energy; Ŵ({r}) gives the electron-electron

Coulomb interaction potential; V({r}; {R}) represents the electron-nucleus Coulomb interaction

energy, Vext(ri; {R}) being the corresponding one-electron external potential from the nuclei for

the i-th electron; Ψm({r}; {R}) is the many-body wavefunction that depends parametrically on

{R}, and Em({R}) is the corresponding eigenvalue. We put a hat on top of a quantity to indicate

explicitly that the quantity is a quantum mechanical operator. Here and in the rest of the thesis, un-

less otherwise explicitly specified, we neglect the spin dependence of electrons in order to simplify

the notation and the discussion. For simplicity, in the following we also omit to explicitly indicate

the parametric dependence of quantities on the configuration {R} of the nuclei. A direct solution to

the problem described by Eqs. (1.1)-(1.5) is almost impossible, due to the 3N electronic degrees of

freedom involved.

The above many-body problem at the ground-state level can be efficiently replaced by an ef-

fective one-body problem with the help of the density functional theory (DFT) developed since the

1960’s [39, 40], which is a powerful first principles method for the simulation of the electronic prop-

erties of many-particle systems. DFT is based on two basic theorems known as the Hohenberg-Kohn

theorems, which were first proposed by Hohenberg and Kohn in 1964 [39], and were later presented

in a more general formulation by Levy and Lieb [51, 52].

First Hohenberg-Kohn theorem. For any system of interacting particles in an external potential

Vext(r), the ground-state particle density n0(r) determines uniquely Vext(r), except for a constant.

It follows from the first Hohenberg-Kohn theorem that the ground-state particle density n0(r)

determines uniquely the full many-body Hamiltonian Ĥ, except for a constant shift in the external

potential Vext(r). As a result, in principle all the ground-state and excited-state properties of the

system can be calculated from n0(r), and n0(r) can be used as the basic variable in solving the

many-body problem.

Second Hohenberg-Kohn theorem. A universal functional F [n(·)] of the particle density n(r) can

be defined for any system of interacting particles in an external potential Vext(r), such that the
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particle density n(r) that minimizes globally the functional E[n(·)] = F [n(·)] +
∫
drn(r)Vext(r)

gives the exact ground-state energy E0[n0(·)] of the system, and is the exact ground-state particle

density n0(r).

F[n(·)] is the so-called Hohenberg-Kohn functional, where we have used a dot to indicate the

dummy dependence of the argument of the functional on the particle coordinate r. The second

Hohenberg-Kohn theorem provides a variational method for the exact determination of the ground-

state energy and the ground-state particle density of a many-body system of interacting particles.

For a system of N interacting electrons moving in an external potential, the problem is now

simplified by the two Hohenberg-Kohn theorems, such that instead of dealing with the many-body

wavefunction Ψm({r}) which contains 3N degrees of freedom, we now consider the electronic

charge-density n(r) which has only 3 degrees of freedom. The application of DFT based on the

two Hohenberg-Kohn theorems to solve the many-body problem of interacting electrons would be

straightforward, if a good approximated form of the Hohenberg-Kohn functional F[n(·)] was known.

Unfortunately, this is usually not the case.

1.1.2 Kohn-Sham Equations

It is the approach proposed by Kohn and Sham in 1965 that makes the practical application of DFT

to the numerical simulation of real systems possible [40]. The central idea of Kohn and Sham is

to replace the complicated many-body problem of interacting electrons with an equivalent auxiliary

independent-electron problem that is much easier to solve. To achieve this goal, following Kohn and

Sham, we separate the Hohenberg-Kohn functional F[n(·)] into three components:

F [n(·)] = T0[n(·)] + EH [n(·)] + Exc[n(·)], (1.6)

where T0[n(·)] is the kinetic energy of a system of non-interacting electrons in its ground state

with the electronic charge-density n(r)1, the so-called Hartree energy EH[n(·)] is the electrostatic

self-interaction energy for the charge-density n(r):

EH [n(·)] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′| , (1.7)

and the remaining term Exc[n(·)] referred to as the exchange-correlation functional defines all of our

ignorance about the exact form of the Hohenberg-Kohn functional:

Exc[n(·)] = F [n(·)]− T0[n(·)]− EH [n(·)]. (1.8)

At the ground-state charge-density n0(r), the exchange-correlation functional Exc[n0(·)] is just the

difference between the sum of the electronic kinetic energy K[n0(·)] with the electron-electron

1According to the first Hohenberg-Kohn theorem, the electronic kinetic energy functional T0[n(·)] is a well defined

functional of n(r). For a system of non-interacting electrons, the Hohenberg-Kohn functional F0[n(·)] is simply given by

T0[n(·)].
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Coulomb interaction energy W[n0(·)] for the fully interacting system, and that of the electronic ki-

netic energy T0[n0(·)] of the non-interacting system with the Hartree energy for the charge-density

n0(r). One hopes that the unknown term Exc[n(·)] is small enough so that it can be approximated

easily with sufficient accuracy. Now, in terms of Eq. (1.6), the energy functional E[n(·)] can be

written as:

E[n(·)] = T0[n(·)] + EH [n(·)] + Exc[n(·)] +

∫
drn(r)Vext(r). (1.9)

In order to obtain the ground-state energy of the fully interacting system, we apply the second

Hohenberg-Kohn theorem and minimize the energy functional E[n(·)] as given in Eq. (1.9) with

respect to the charge-density n(r), under the constraint of a constant electron number N:∫
drn(r) = N. (1.10)

The resulting equation is:

δT0[n(·)]
δn(r)

+ VH(r) + Vxc(r) + Vext(r) = µ, (1.11)

where the Hartree potential VH(r) is:

VH(r) =

∫
dr′

n(r′)

|r− r′| , (1.12)

the unknown exchange-correlation potential Vxc(r) is:

Vxc(r) =
δExc[n(·)]
δn(r)

, (1.13)

and µ is a Lagrange multiplier associated with the constraint Eq. (1.10). If we apply the second

Hohenberg-Kohn theorem to a system of N non-interacting electrons moving in an effective potential

Veff(r) defined as:

Veff (r) = VH(r) + Vxc(r) + Vext(r), (1.14)

then the same equation as Eq. (1.11) will be obtained. In light of this observation, solving the fully

interacting many-body problem is equivalent to solving the problem of N non-interacting electrons

moving in an effective potential Veff(r) given by Eq. (1.14), as both problems will yield the same

ground-state charge-density n(r).

The problem of N interacting electrons is now reduced to that of solving an equivalent one-body

Schrödinger equation for N non-interacting electrons:{
− 1

2

∂2

∂r2
+ VH(r) + Vxc(r) + Vext(r)

}
ψn(r) = εnψn(r), (1.15)

where εn is the one-body Kohn-Sham energy and ψn(r) is the corresponding Kohn-Sham orbital.

The ground-state charge-density n0(r) is evaluated from the N lowest lying Kohn-Sham orbitals as:

n0(r) =

N∑
i=1

|ψn(r)|2. (1.16)
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In the end, the ground-state energy of the original fully interacting system can be calculated as:

E0[n0(·)] =
∑
n

εn −
∫
drn0(r)Vxc(r)− EH [n0(·)] + Exc[n0(·)]. (1.17)

Eqs. (1.15)-(1.17) are known as the famous set of Kohn-Sham equations, which in practice are

usually solved self-consistently by using iterative approaches.

1.1.3 Approximations for the Exchange and Correlation

The Kohn-Sham formulation of DFT based on the two Hohenberg-Kohn theorems is exact in theory.

However, in practice the exact form of the complicated exchange-correlation functional Exc[n(·)] is

generally unknown and approximations must be made for it. The efficiency and the accuracy of the

actual applications of DFT clearly depend on the quality of the approximation for Exc[n(·)].

Many approximations of different complexities have been developed for the exchange-correlation

functional Exc[n(·)]. Among all of them, the local density approximation (LDA) suggested by Kohn

and Sham is the simplest one, and has been widely used in practical DFT calculations [40]. In LDA,

the exchange-correlation functional Exc[n(·)] of an inhomogeneous system of interacting electrons

is calculated as if at any position r, the exchange-correlation energy per particle was the same as that

of a homogeneous electron gas with the same charge-density n(r):

ELDAxc [n(·)] =

∫
drn(r)εxc(n(r)), (1.18)

where εxc(n) indicates the exchange-correlation energy per particle of a homogeneous electron gas

with a constant charge-density n. For a homogeneous electron gas, the exchange part of εxc(n) can

be given a simple analytical form as a function of n [53], while the correlation part can be calculated

accurately by using quantum Monte-Carlo methods [54]. The functional derivative of Eq. (1.18)

gives the LDA exchange-correlation potential VLDA
xc (r):

V LDAxc (r) = εxc(n(r)) + n(r)
dεxc(n)

dn

∣∣∣
n=n(r)

. (1.19)

In principle, LDA becomes exact in the limit of slowly varying electronic charge-densities. Nev-

ertheless, it works remarkably well even for very inhomogeneous systems, which can be understood

to some extent by exploiting the properties of the exchange-correlation hole [55]. LDA has been

shown to reproduce well the experimental results for the structural and vibrational properties of

weakly correlated systems. However, the binding energies of molecules and the cohesive energies

of solids are usually overestimated, and the bond lengths are correspondingly underestimated [56].

The generalized gradient approximation (GGA) first proposed by Perdew and Wang is a popular

scheme for the improvement of LDA [57]. GGA is better than LDA in that it also takes into account

the inhomogeneity of the charge-density as compared with the homogeneous electron gas. In GGA,

the exchange-correlation energy per particle εxc does not only depend on the local charge-density
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n(r), but also depends on its gradient On(r):

EGGAxc [n(·)] =

∫
drn(r)εGGAxc (n(r),On(r)), (1.20)

where εGGA
xc (n(r),On(r)) is the GGA exchange-correlation energy per particle at position r. GGA

generally gives improved results for the binding and cohesive energies and the bond lengths, espe-

cially in the cases when the electronic charge-densities are more rapidly varying, though sometimes

it could overcorrect the errors given by LDA [58].

LDA and GGA exchange-correlation functionals parametrized under different schemes usually

work well for weakly correlated systems, but not for strongly correlated ones. Some other types of

exchange-correlation functionals such as non-local functionals [59, 60], orbital-dependent function-

als [61–64] and hybrid functionals [65, 66] have been developed, and for some systems can improve

the results obtained with LDA and GGA. However, these functionals require more computational ef-

fort, and many of them are neither widely accepted, nor throughly tested. Note that spin dependence

can be properly generalized to different types of approximated exchange-correlation functionals to

account for the effects of spin polarization [67]. In this work, LDA is mainly used for the exchange-

correlation functional in our study of gold clusters.

1.1.4 The Plane-Wave Pseudopotential Approach

The plane-wave pseudopotential approach is one of the most popular schemes in the practical appli-

cation of DFT to the study of the ground-state properties of real materials. The heart of this method

is to use a plane-wave basis set to represent Kohn-Sham orbitals, and to use pseudopotentials to

account for the interactions between ionic cores and valence electrons.

The Plane-Wave Basis Sets

For computational convenience, periodic boundary conditions are often used in DFT calculations,

not only for extended systems, but also for finite ones. In periodic boundary conditions, an iso-

lated system is represented by a supercell periodically repeated so that Kohn-Sham orbitals can be

expanded in terms of plane-waves:

ψn(r) =
∑
G

cnGe
iGr, (1.21)

where G is the reciprocal lattice vector, and cn
G is the component of the plane-wave representation of

the orbital ψn(r) corresponding to the vector G. In practice, the number of plane-waves is restricted

such that the kinetic energies of the plane waves are smaller than a cutoff Ecut
2:

1

2
|G|2 < Ecut. (1.22)

2As the charge-density is evaluated according to Eq. (1.16) as the sum of the square moduli of Kohn-Sham orbitals, it can

also be represented by a plane-wave basis set, but the cutoff that restricts the number of plane-waves is four times as large as

that for the Kohn-Sham orbitals as in Eq. (1.22).
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Compared with other basis sets, plane-wave basis sets are advantageous in many aspects. As in-

dicated in Eq. (1.21), they give a simple and straightforward representation of Kohn-Sham orbitals.

In terms of plane-waves, the matrix elements of the Kohn-Sham Hamiltonian can be calculated

efficiently, and the convergence of the calculated results from DFT calculations can be checked sys-

tematically by increasing the Ecut cutoff. Moreover, since plane-waves are independent of nuclear

positions, atomic forces can be calculated directly without having to add any auxiliary term.

The Pseudopotential Method

Due to the strong oscillation of atomic orbitals in the vicinity of nuclei, a direct expansion of Kohn-

Sham orbitals in a plane-wave basis requires a very large basis size to achieve a satisfactory accuracy,

and is thus computationally expensive. It is possible to simply the problem if we consider the dif-

ferent properties of two groups of electrons, valence electrons and core electrons. Valence electrons

are higher in energy, and are the ones that participate in chemical bonding. In fact, the smooth

components of valence orbitals at distances far from the atomic nuclei determine most properties

of the chemical bonding. In contrast to valence electrons, the energies of core electrons are much

lower. Core electrons are strongly bound to the atomic nuclei and stay almost unchanged in different

chemical environments. In an atom, the core electrons together with the nuclei can be considered as

an ionic core.

In view of the above physical facts, the problem can be very much simplified by the pseudopo-

tential method. In this method, so-called pseudopotentials are constructed so as to represent the

interactions between valence electrons and ionic cores. All the degrees of freedom associated with

core electrons are eliminated by assuming that their energies and orbitals remain unchanged when

atoms form chemical bonds. Therefore, only valence electrons need to be considered explicitly. By

solving the Kohn-Sham equations with pseudopotentials, the same energies as in the all-electron

calculation should be obtained for the Kohn-Sham states. The resulting pseudo orbitals are smooth

and nodeless in the core region, and identical to the corresponding all-electron ones beyond some

distance rc from the nucleus which is called the cutoff radius. Pseudopotentials are transferable,

in the sense that they should give correct results in different chemical environments. Since pseudo

orbitals are smooth, they can be efficiently represented by plane-waves, making the many advan-

tages of the plane-wave basis possible. Relativistic effects can be incorporated into pseudopotentials

without having to be considered explicitly for valence electrons in the Kohn-Sham equations [68].

In DFT calculations, one most commonly used type of pseudopotentials is the norm-conserving

pseudopotential [69]. Norm-conserving pseudopotentials satisfy the condition that, for each pseudo

orbital, there is a chosen core radius rc, within which the integrated charge-density agrees with

the corresponding all-electron one. This condition guarantees that each pseudo orbital agrees with

the corresponding all-electron one at distances beyond rc. Smaller values of rc generally lead to

better transferability of pseudopotentials, but in the meanwhile make the plane-wave representation
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of pseudo orbitals more expensive.

Traditionally, norm-conserving pseudopotentials are formulated as:

V̂ PS = V PSloc (r) +
∑
l

(V PSl (r)− V PSloc (r))P̂l, (1.23)

where VPS
loc(r) is a long-range local term that behaves as −Zv/r for r→∞, Zv being the number of

valence electrons, and the sums on the right hand side of the above equation represent short-range

non-local terms. VPS
l (r) is the pseudopotential channel constructed separately for each angular

momentum l, which is selected for each l by the projection operator P̂l. The non-local terms vanish

beyond the cutoff radius rc, due to the fact that all VPS
l (r)’s coincide outside rc. Since P̂l does

not act on the radial part of the position vector r, V̂PS is still an operator that depends locally on

r. Therefore, the pseudopotential formulated in Eq. (1.23) is actually in a semi-local form. This

semi-local form looks simple, but the difficulty involved in the plane-wave representation of the

semi-local terms makes it computationally inconvenient.

Alternatively, the semi-local form as given in Eq. (1.23) can be recast into a computationally

more efficient fully non-local form:

V̂ PS = V PSloc (r) +
∑
ij

|βi〉Bij〈βj |, (1.24)

where βi(r)’s are a few projection functions that vanish for r > rc. A practical scheme for the

transformation of semi-local pseudopotentials into fully non-local ones was introduced by Kleinman

and Bylander [70]. Vanderbilt showed that fully non-local pseudopotentials can also be constructed

directly from all-electron calculations of atoms [71]. Fully non-local pseudopotentials usually work

well, but may fail badly in the cases when ghost states with wrong number of nodes appear.

In the pseudopotential method, it is difficult to treat nodeless states that are present in the valence

manifold, such as the 2p states of first-row elements and the 3d states of first-row transition metals.

Due to the nodeless nature of these states, their pseudo orbitals are not much different from the corre-

sponding all-electron ones and are strongly localized in the core region, thus require a large number

of plane-waves for their representation. To overcome this difficulty, Vanderbilt introduced a scheme

for constructing the so-called ultrasoft pseudopotentials [71, 72], such that the norm-conservation

condition can be relaxed and the resulting pseudo orbitals can be much smoother. Ultrasoft pseu-

dopotentials are softer than norm-conserving ones, since they produce pseudo orbitals that can be

expanded with a much smaller plane-wave basis set. Although some complications are introduced

in the representation of the Kohn-Sham equations, which can counteract the advantages of ultrasoft

pseudopotential, considerable computational gain can be achieved in many cases.

In practice, pseudopotentials are generate from the results of all-electron calculations of isolated

atoms. Many factors such as valence-core partition and the pseudization radius rc can influence the

quality of the generated pseudopotentials. One often needs to find a good compromise between the

transferability and the softness. In this work, we generated two norm-conserving pseudopotentials
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for the GW calculations of gold clusters. For the optimizations of the geometries, we employ an

ultrasoft pseudopotential.

1.2 Many-Body Perturbation Theory

In this section, we briefly describe many-body perturbation theory, with emphasis on the GW ap-

proximation. We first discuss the motivation for many-body perturbation theory. Following this,

we introduce the one-particle and two-particle Green’s functions. Afterwards, we present the set of

Hedin’s equations and the GW approximation made on top of them.

1.2.1 Motivation

The accurate description of the electronic excitation properties of many-particle systems has been

an important goal in first principles electronic structure calculations. This is particularly true if

one considers the fact that it is the excitation properties that are measured in most spectroscopic

experiments. Concerning electronic excitations, the most elementary type is the removal/addition

of an electron from/to a system originally in its ground-state. These processes are accessible to

direct/inverse photoemission experiments, which are schematically illustrated in Fig. [1.1]. In direct

photoemission, a photon with energy hν impinges onto the system, and ejects an electron, whose

kinetic energy EK is measured at some distance. The conservation of energy gives:

εi = EN0 − EN−1
i

= EK − hν,
(1.25)

where EN
0 is the ground-state energy of the original N-electron system, EN−1

i is the energy of the

resulting system in the i-th (N− 1)-electron state (the 0-th state being the ground-state), and (−εi)
gives the energy cost of removing an electron. For a finite system, the (vertical) ionization potential

(IP) is given by (−ε0). Inverse photoemission is the opposite process in which an electron with

energy EK impinges onto the system and a photon with energy ~ν is emitted. The conservation of

energy gives in this case:

εi = EN+1
i − EN0

= EK − hν,
(1.26)

where EN+1
i is the energy of the resulting system in the i-th (N + 1)-electron state (the 0-th state

being the ground-state), and (−εi) gives the energy gain of adding an electron to the system. For

a finite system, the (vertical) electron affinity (EA) is given by (−ε0). The difference between the

lowest energy cost of removing an electron and the largest energy gain of adding an electron defines

the fundamental quasiparticle band gap. The energies measured in a photoemission experiment

give rise to a photoemission spectrum. If the photoemission experiment is angle-resolved, then by

applying in addition the conservation of momentum, the obtained photoemission spectrum will give
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directly the band structure of solids. The photoemission spectrum can in general be described in

terms of quasiparticle excitations determined by the quasiparticle equation. For a system of non-

interacting electrons, the quasiparticle equation is nothing but a one-body Schrödinger equation.

Figure 1.1: Schematic illustration of direct and inverse photoemission experiments. This figure is taken from

Ref. [73].

Although DFT has been proved very successful for describing the ground-state properties, such

as the cohesive, structural and vibrational properties, of a wide range of materials, it is usually not an

appropriate method of choice for the investigation of electronic excitations. In DFT, since the Kohn-

Sham equation Eq. (1.15) is a one-electron Schrödinger equation, one is often tempted to identify

its eigenvalues as one-electron removal and addition energies. This has no theoretical foundation, as

the Kohn-Sham equation Eq. (1.15) is only a mathematical tool for obtaining ground-state proper-

ties and its eigenvalues should not be interpreted as electron removal and addition energies, but has

been a common practice for a long time. The only exception is the DFT highest occupied molecular

orbital energy, which in principle for finite systems gives the exact (vetical) IP and for metals equals

the exact chemical potential [75], but current approximations for the exchange-correlation functional

mostly fail to do so. As a consequence, many problems arise due to such a way of interpreting Kohn-

Sham energies [73, 76, 77]. Among all of them, one is that the band gaps of semiconductors and

insulators are often severely underestimated by DFT eigeneneriges. In Fig. [1.2], the theoretical

fundamental band gaps from DFT-LDA calculations are compared with the experimental values for

some sp semiconductors. Clearly, the experimental band gaps are systematically underestimated

by the DFT-LDA results. Another problem is that DFT electronic density of states (DOS) can not

give the correct quasiparticle spectrum. In Fig. [1.3], the theoretical DFT-LDA DOS spectrum

and the experimental direct photoemission spectrum are compared with each other for the free-base
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Figure 1.2: Comparison between the calculated DFT-LDA fundamental band gaps (left scale) and the experi-

mental ones (bottom scale) for some sp semiconductors. This figure is adapted from Ref. [74]

Figure 1.3: Comparison between the calculated DFT-LDA electronic density of states and the photoemission

spectrum from a direct photoemission measurement for the free-base tetraphenylporphyrin molecule (TPPH2)

(C44H30N4). A Gaussian broadening of 0.25 eV is for the theoretical curve. See Ref. [48] for more details.
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tetraphenylporphyrin molecule (TPPH2). A strong disagreement is found between the theoretical

curve and the experimental one, especially concerning the positions of the peaks. For finite sys-

tems, there is the particular problem that (the minus of) the DFT highest occupied molecular orbital

(HOMO) energy often severely underestimates the (vertical) IP, and (the minus of) the DFT lowest

unoccupied molecular orbital (LUMO) energy often severely overestimates the (vertical) EA.

Despite all the failures, there is a case when DFT is good in describing electronic excitations, that

is, when the IPs and the EAs of finite systems are calculated with the ∆SCF method. In the ∆SCF

method, the total energies of the cationic ((N− 1)-electron), the neutral (N-electron) and the anionic

((N + 1)-electron) systems are calculated from DFT at the same atomic configuration as that of the

neutral one. Then, the IP is obtained as the energy difference between the total energy of the cationic

system and that of the neutral one, and the EA is evaluated as the energy difference between the total

energy of the neutral system and that of the anionic one. Since DFT is usually pretty accurate in

describing total energies, there is the hope that the IP and the EA calculated as such may agree well

with experiment. Indeed, the IP and the EA calculated at the ∆SCF level usually compare quite

well with experiment, provided that the theoretical structure of the neutral system used in the DFT

calculations agrees with the experimental one [78]. In theoretical studies, the ∆SCF results can

be used as a first reference for the IP and the EA, when the experimental values or more accurate

quantum chemistry results for them are not available. Note that, as it goes to the thermodynamic

limit when the size of the system are infinite and the charge-density of the HOMO state becomes

zero, the IP calculated from ∆SCF would approach the minus of the DFT HOMO energy.

To study electronic excitations, especially those other than the IP and the EA, more sophisti-

cated techniques based on many-body perturbation theory (MBPT) [41–43] are called for. The GW

approximation [44] based on MBPT is the state of the art method which allows the accurate descrip-

tion of the quasiparticle spectra for both molecular and extended systems [73, 76, 77]. In addition to

calculating excitation energies, the GW approximation can also be used to obtain the ground-state

energy [73, 76, 77].

1.2.2 The Green’s Functions

The fundamental formulation of MBPT is rooted in the theory of Green’s functions. For a many-

body system of interacting electrons, the one-particle Green’s function G is defined as:

G(rt, r′t′) = −i〈N, 0|T̂ [ψ̂(r, t)ψ̂†(r′, t′)]|N, 0〉

=

−i〈N, 0|ψ̂(r, t)ψ̂†(r′, t′)|N, 0〉, for t > t′,

i〈N, 0|ψ̂†(r′, t′)ψ̂(r, t)|N, 0〉, for t < t′,

(1.27)

where |N, 0〉 is the ground-state (|N, i〉 being the i-th state with energy EN
i ) of the N-electron system

corresponding to a Hamiltonian operator Ĥ such as defined by Eqs. (1.2)-(1.5), T̂ is the time-

ordering operator which reorders a set of time-dependent operators such that operators with larger
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time are on the left of those with smaller time, and ψ̂(r, t) is the fermion annihilation operator in the

Heisenberg representation which destroys an electron at position r and time t, defined as:

ψ̂(r, t) = eiĤtψ̂(r)e−iĤt, (1.28)

ψ̂†(r, t) being the corresponding fermion creation operator in the Heisenberg representation. In

the Schrödinger representation, the fermion annihilation operator ψ̂(r) and the fermion creation

operator ψ̂†(r) obey the following anticommutation rules:

{ψ̂(r), ψ̂†(r′)} = δ(r− r′), (1.29)

{ψ̂(r), ψ̂(r′)} = {ψ̂†(r), ψ̂†(r′)} = 0. (1.30)

For t > t′, the one-particle Green’s function describes the probability amplitude that an electron

created at position r′ and time t′ in the system propagates to position r at time t. And for time

t < t′, the one-particle Green’s function gives the probability amplitude that a hole created at posi-

tion r and time t by removing an electron from the system propagates to position r′ at time t′. For a

time-independent Hamiltonian Ĥ, the one-particle Green’s function G(rt; r′t′) does not depend in-

dividually on t and t′, but only on the time difference t− t′. Therefore, it can be written equivalently

as G(r, r′; t− t′).

Now we introduce the quasiparticle amplitude ψN±1
i (r) and the corresponding quasiparticle en-

ergy εN±1
i , defined as:ψ

N−1
i (r) = 〈N − 1, i|ψ̂(r)|N, 0〉 with εN−1

i = EN0 − EN−1
i , for εN−1

i < µ,

ψN+1
i (r) = 〈N, 0|ψ̂(r)|N + 1, i〉 with εN+1

i = EN+1
i − EN0 , for εN+1

i ≥ µ,
(1.31)

where we use µ to represent (the minus of) the EA:

µ = EN+1
0 − EN0 . (1.32)

The quasiparticle energies εN−1
i and εN+1

i correspond simply to the electron removal and addition

energies respectively. If it is a system of non-interacting electrons that is under consideration, then

εN−1
i and εN+1

i would be the occupied and the empty non-interacting one-electron energies, and

ψN−1
i and ψN+1

i would be the corresponding orbitals. For Eq. (1.31) to be valid, we must have:

EN+1
0 − EN0 ≥ EN0 − EN−1

0 . (1.33)

This is guaranteed by the convexity of the total energy at fixed atomic configuration as a function of

the electron number N. Inserting the closure relation:∑
i

|N ± 1, i〉〈N ± 1, i| = 1̂N±1 (1.34)

into Eq. (1.27) between the annihilation and the creation operators, and Fourier transforming the

resulting expression, we obtain the Lehmann’s representation of the one-particle Green’s function:

G(r, r′;ω) =
∑
i

ψN−1
i (r)ψN−1

i

∗
(r′)

ω − εN−1
i − iη

+
∑
i

ψN+1
i (r)ψN+1

i

∗
(r′)

ω − εN+1
i + iη

, (1.35)
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where η is a positive infinitesimal number used to converge the Fourier transform. In the frequency

domain, the one-particle Green’s function has poles corresponding to εN−1
i + iη on the positive

complex plane for ω < µ, and poles corresponding to εN+1
i − iη on the negative complex plane for

ω ≥ µ. The small imaginary part ±iη reveals that the quasiparticle has an infinite lifetime. In the

case of an infinite system, the quasiparticle energy εN±1
i becomes complex, corresponding to a finite

lifetime of the quasiparticle.

From the one-particle Green’s function, we can obtain many fundamental properties of the sys-

tem, such as the expectation value of any one-particle operator in the ground-state, the ground-

state energy, and most relevant to this work, the electron removal/addition energies measured in

direct/inverse photoemission experiments [42, 43]. Compared with the full many-body wavefunc-

tions, the one-particle Green’s function contains much less information and is much less compli-

cated, nevertheless, in principle many properties of the system, such as those mentioned above, can

be calculated exactly from it. It is worth noticing that the ground-state charge-density n0(r) can be

calculated as:

n0(r) = −i lim
η→0

G(rt, rt+ η). (1.36)

Although the one-particle Green’s function is powerful in describing one-particle excitation pro-

cesses, it does not provide any direct knowledge of two-particle excitations, such as optical absorp-

tions. In the optical absorption process, an electron is excited from an occupied state to an empty

state by absorbing a photon, resulting in a hole originally occupied by the excited electron. Since

the electron is not completely removed from the system, the description of this transition process

requires the consideration of the interaction between both the electron and the hole. Therefore, the

optical absorption is a two-particle process and can not be properly described by one-particle Green’s

functions. To investigate two-particle excitations, one often employs the two-particle Green’s func-

tion, which is defined as:

G2(1, 2; 1′, 2′) = (−i)2〈N, 0|T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]|N, 0〉, (1.37)

where we have used numbers to represent space and time coordinates, such as, 1 for (r1,t1). The op-

tical absorption process can be described by enforcing the time order t1, t
′
1 > t2, t

′
2 or t1, t

′
1 < t2, t

′
2.

We won’t dig more into the two-particle Green’s function, as it is the investigation of one-particle

electronic excitations that is the main concern of this work.

1.2.3 Hedin’s Equations and the GW Approximation

The behavior of quasiparticles obeys the quasiparticle equation, which can be obtained from the

equation of motion for the one-particle Green’s function and the Lehmann’s representation Eq.

(1.35). In second quantization, the Hamiltonian operator defined by Eqs. (1.2)-(1.5) for a system of
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interacting electrons can be equivalently written as:

Ĥ =

∫
drψ̂†(r)ĥ(r)ψ̂(r) +

1

2

∫∫
drdr′ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r), (1.38)

where ĥ(r) is a one-body operator:

ĥ(r) = −1

2

∂2

∂r2
+ Vext(r). (1.39)

From the Heisenberg equation of motion for the fermion annihilation operator ψ̂(r, t):

i
∂ψ̂(r, t)

∂t
= [ψ̂(r, t), Ĥ]

= ĥ(r)ψ̂(r, t) +

∫
dr′v(r, r′)ψ̂†(r′, t)ψ̂(r′, t)ψ̂(r, t),

(1.40)

we find that the equation of motion for the one-particle Green’s function G(rt; r′t′) is:

i
∂

∂t
G(rt; r′t′) = δ(r− r′)δ(t− t′) + ĥ(r)G(rt; r′t′)

− i
∫
dr′′v(r, r′′)〈N, 0|T̂ [ψ̂†(r′′, t)ψ̂(r′′, t)ψ̂(r, t)ψ†(r′, t′)]|N, 0〉.

(1.41)

For simplicity, we use numbers to represent space and time coordinates, and define in addition:

1+ = (r1, t1 + η), (1.42)

v(1, 2) = v(r1 − r2)δ(t1 − t2)

=
1

|r1 − r2|
δ(t1 − t2),

(1.43)

δ(1, 2) = δ(r1 − r2)δ(t1 − t2), (1.44)

where η is a positive infinitesimal number used to enforce the correct time order. Now Eq. (1.41)

becomes:

i
∂

∂t1
G(1, 2) = δ(1, 2) + ĥ(1)G(1, 2) + i

∫
d(3)v(1+, 3)〈N, 0|T̂ [ψ̂(1)ψ̂(3)ψ̂†(3+)ψ̂†(2)]|N, 0〉.

(1.45)

By employing the definition of the two-particle Green’s function G2 in Eq. (1.37), the equation of

motion for the one-particle Green’s function can be written in a simpler way as:

i
∂

∂t1
G(1, 2) = δ(1, 2) + ĥ(1)G(1, 2)− i

∫
d(3)v(1+, 3)G2(1, 3; 2, 3+). (1.46)

Later in this subsection, we show that it is possible to eliminate the two-particle Green’s function

G2(1, 3; 2, 3+) in the above equation by introducing a self-energy operator Σ which satisfies:

−i
∫
d(3)v(1+, 3)G2(1, 3; 2, 3+) = VH(1)G(1, 2) +

∫
d(3)Σ(1, 3)G(3, 2), (1.47)

where VH(1) is the Hartree potential defined by Eq. (1.12) for the ground-state charge-density n0(r).

Considering Eq. (1.47), Eq. (1.46) becomes:{
i
∂

∂t1
− ĥ(1)− VH(1)

}
G(1, 2)−

∫
d(3)Σ(1, 3)G(3, 2) = δ(1, 2). (1.48)
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For a non-interacting system where the self-energy Σ vanishes, we have:{
i
∂

∂t1
− ĥ(1)− VH(1)

}
G0(1, 2) = δ(1, 2), (1.49)

where G0 is the corresponding non-interacting one-particle Green’s function. Combining Eq. (1.48)

with Eq. (1.49), we obtain the Dyson equation for the one-particle Green’s function:

G(1, 2) = G0(1, 2) +

∫∫
d(3)d(4)G0(1, 3)Σ(3, 4)G(4, 2) (1.50)

Fourier transforming Eq. (1.48), we get the equation of motion for the fully-interacting one-

particle Green’s function in the frequency domain:

{ω − ĥ(r)− VH(r)}G(r, r′;ω)−
∫
dr′′Σ(r, r′′;ω)G(r′′, r;ω) = δ(r− r′). (1.51)

Substituting the Lehmann’s representation Eq. (1.35) into Eq. (1.51), multiplying with (ω − εi) on

both sides of the resulting equation and taking the limit ω → εi, we obtain the quasiparticle equation:{
− 1

2

∂2

∂r2
+ VH(r) + Vext(r)

}
ψi(r) +

∫
dr′Σ(r, r′; εi)ψi(r

′) = εiψi(r), (1.52)

where ψi and εi are the quasiparticle amplitude and the quasiparticle energy respectively, which are

defined in Eq. (1.31). The real part of εi gives the single-electron excitation energy and the imaginary

part gives the excitation lifetime through its inverse. The quasiparticle equation Eq. (1.52) has the

form of a one-body Schrödinger equation, which is similar to that of the Kohn-Sham equation Eq.

(1.15). However, in contrast to the exchange-correlation potential Vxc(r), the self-energy Σ(r, r′;ω)

is a non-local, energy-dependent, and non-hermitian operator. Therefore, although the quasiparticle

amplitudes satisfy the closure relation: ∑
i

|ψi〉〈ψi| = 1̂, (1.53)

nothing makes it necessary for them to be orthonormal. In principle, the self-energy Σ contains

all the complicated many-body exchange and correlation effects beyond the Hartree potential. Its

presence makes Eq. (1.52) difficult to solve.

In 1965, Hedin proposed a set of self-consistent equations for the exact evaluation of the self-

energy Σ, which are usually referred to as Hedin’s equations [44]. Hedin’s equations can be derived

by employing Schwinger’s functional derivative method [79, 80]. In order to do so, we introduce an

additional auxiliary time-varying external potential U(1) which is set to zero in the end. The fully-

interacting Green’s functions now depend on U(1), but the equation of motion Eq. (1.46) remains

valid, provided that ĥ(1) is replaced with ĥ(1) + U(1). At this point, we introduce several related

quantities. The reducible polarizability operator Π describes the response of the charge-density with

respect to the changes in the external potential, and is defined as:

Π(1, 2) =
δn(1)

δU(2)

∣∣∣
U=0

. (1.54)
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The effective potential Ueff due to the changes in the external potential can be calculated as:

Ueff (1) = U(1) +

∫∫
d(2)d(3)v(1, 3)Π(3, 2)U(2), (1.55)

where the second term on the right hand side gives the induced potential due to the induced charge-

density. In terms of Ueff , the irreducible polarizability operator P is defined as:

P (1, 2) =
δn(1)

δUeff (1)

∣∣∣
U=0

. (1.56)

From Eq. (1.55), by using the chain rule for the functional derivative, we can obtain the relation

between the two polarizability operators:

Π(1, 2) =

∫
d(3)

δn(1)

δUeff (3)

δUeff (3)

δU(2)

= P (1, 2) +

∫∫
d(3)d(4)P (1, 3)v(3, 4)Π(4, 2).

(1.57)

The inverse of the dielectric matrix is:

ε−1(1, 2) =
δUeff (1)

δU(2)

∣∣∣
U=0

. (1.58)

From Eq. (1.55) and Eq. (1.57), we have:

ε−1(1, 2) = δ(1, 2) +

∫
d(3)v(1, 3)Π(3, 2)

= δ(1, 2) +

∫
d(3)v(1, 3)P (3, 2) +

∫∫∫
d(3)d(4)d(5)v(1, 3)P (3, 4)v(4, 5)Π(5, 2)

= δ(1, 2) +

∫
d(3)v(1, 3)P (3, 2) +

∫∫∫
d(3)d(4)d(5)v(1, 3)P (3, 4)v(4, 5)P (5, 2)

+ · · · .
(1.59)

Inverting Eq. (1.59), we have the dielectric matrix as:

ε(1, 2) = δ(1, 2)−
∫
d(3)v(1, 3)P (3, 2). (1.60)

Now we introduce the screened Coulomb interaction W(1, 2), which describes the effective potential

at point 2, due to the addition of a small unit test charge at point 1:

W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2). (1.61)

By using Eq. (1.59), we can obtain the relation between the screened Coulomb interaction W and

the polarizability operators P and Π:

W (1, 2) = v(1, 2) +

∫∫
d(3)d(4)v(1, 3)Π(3, 4)v(4, 2)

= v(1, 2) +

∫∫∫
d(3)d(4)d(5)v(1, 3)

δn(3)

δUeff(5)

δUeff (5)

δU(4)
v(4, 2)

= v(1, 2) +

∫∫∫
d(3)d(4)d(5)v(1, 3)P (3, 5)ε−1(5, 4)v(4, 2)

= v(1, 2) +

∫∫
d(3)d(4)v(1, 3)P (3, 4)W (4, 2).

(1.62)
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In order to proceed further, we have to consider the two-particle Green’s function G2 involved in

Eq. (1.47). By taking the functional derivative of the fully-interacting one-particle Green’s function

G with respect to the external potential U, it can be found that [44]:

δG(1, 2)

δU(3)

∣∣∣
U=0

= G(1, 2)G(3, 3+)−G2(1, 3; 2, 3+). (1.63)

Substituting Eq. (1.63) into Eq. (1.47), and taking use of Eq. (1.36), we have:∫
d(3)Σ(1, 3)G(3, 2) = i

∫
d(3)v(1+, 3)

δG(1, 2)

δU(3)
. (1.64)

From the definition of the inverse of the one-particle Green’s function:∫
d(2)G(1, 3)G−1(3, 2) = δ(1, 2), (1.65)

it follows that:
δG(1, 2)

δU(3)
= −

∫
d(4)d(5)G(1, 4)

δG−1(4, 5)

δU(3)
G(5, 2), (1.66)

which, if substituted into Eq. (1.64), yields:

Σ(1, 2) = −i
∫∫

d(3)d(4)v(1+, 3)G(1, 4)
δG−1(4, 2)

δU(3)
. (1.67)

We see that indeed the two-particle Green’s function G2(1, 3; 2, 3+) involved in the equation of

motion Eq. (1.46) for the one-particle Green’s function can be eliminated with the help of the self-

energy operator Σ which can be formally defined as in Eq. (1.67). From Eq. (1.67), we can further

have:

Σ(1, 2) = −i
∫∫∫

d(3)d(4)d(5)v(1+, 3)G(1, 4)
δG−1(4, 2)

δUeff (5)

δUeff (5)

δU(3)

= −i
∫∫∫

d(3)d(4)d(5)v(1+, 3)G(1, 4)
δG−1(4, 2)

δUeff (5)
ε−1(5, 3)

= i

∫∫
d(3)d(4)G(1, 4)Γ(4, 2; 3)W (3, 1+),

(1.68)

where the vertex function Γ is defined as:

Γ(1, 2; 3) = −δG
−1(1, 2)

δUeff (3)

∣∣∣
U=0

. (1.69)

Using Eq. (1.48), we have:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)

δUeff (3)

= δ(1, 2)δ(1, 3) +

∫∫
d(4)d(5)

δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δUeff (3)

= δ(1, 2)δ(1, 3) +

∫∫∫∫
d(4)d(5)d(6)d(7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)

δG−1(6, 7)

δUeff (3)
G(7, 5)

= δ(1, 2)δ(1, 3) +

∫∫∫∫
d(4)d(5)d(6)d(7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)Γ(6, 7; 3)G(7, 5),

(1.70)
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where we have used the identity in Eq. (1.66), with U replaced by Ueff . Similarly, for the irreducible

polarizability P:

P (1, 2) = −i δG(1, 1+)

δUeff (2)

= i

∫∫
d(3)d(4)G(1, 3)

δG−1(3, 4)

δUeff (2)
G(4, 1+)

= −i
∫∫

d(3)d(4)G(1, 3)Γ(3, 4; 2)G(4, 1+).

(1.71)

Summarizing the above results, we obtain the set of self-consistent Hedin’s equations:

Σ(1, 2) = i

∫
d(3)d(4)G(1, 4)Γ(4, 2; 3)W (3, 1+), (1.72)

G(1, 2) = G0(1, 2) +

∫∫
d(3)d(4)G0(1, 3)Σ(3, 4)G(4, 2), (1.73)

W (1, 2) = v(1, 2) +

∫∫
d(3)d(4)v(1, 3)P (3, 4)W (4, 2), (1.74)

P (1, 2) = −i
∫∫

d(3)d(4)G(1, 3)Γ(3, 4; 2)G(4, 1+), (1.75)

Γ(1, 2; 3) =δ(1, 2)δ(1, 3) +

∫∫∫∫
d(4)d(5)d(6)d(7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)Γ(6, 7; 3)G(7, 5),

(1.76)

In Hedin’s equations, the self-energy Σ is related to the quantities G0, G, P, W and Γ through a

set of complicated coupled integral-differential equations. In principle, if Hedin’s equations could

be solved exactly in a self-consistent way, then the exact one-particle excitation properties would be

obtained. However, this is generally not possible in practice, so that one has to resort to approxima-

tions.

From Hedin’s equations, Hedin further proved that the vertex function Γ, thus also the irreducible

polarizability P and the self-energy Σ, can be expanded as an infinite series in terms of two funda-

mental quantities only, the one-particle Green’s function G and the screened Coulomb interaction

W [44]. In evaluating the self-energy, the usage of W rather than the bare Coulomb interaction v

is well motivated: on the one hand, in traditional MBPT where v is used as a fundamental quantity,

there are various convergence problems in the density range of normal metals and semiconductors

[41, 44, 81, 82]; on the other hand, Coulomb interactions in a real many-body system are largely

screened, therefore W is much smaller than v and should behave consequently much better. For the

self-energy Σ, the lowest order in W gives rise to one of its most popular approximations, known as

the GW approximation. The GW approximation is obtained by approximating the vertex function Γ

in its zeroth-order form as:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3). (1.77)

Substituting the above equation into Hedin’s equations, we get the following set of self-consistent

equations for the GW approximation:

Σ(1, 2) = iG(1, 2)W (1+, 2), (1.78)
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G(1, 2) = G0(1, 2) +

∫∫
d(3)d(4)G0(1, 3)Σ(3, 4)G(4, 2), (1.79)

P (1, 2) = −iG(1, 2)G(2, 1). (1.80)

W (1, 2) = v(1, 2) +

∫∫
d(3)d(4)v(1, 3)P (3, 4)W (4, 2), (1.81)

Within the GW approximation, the self-energy Σ assumes a very simple form as the product of the

Green’s function G and the screened Coulomb interaction W. According to Eq. (1.62), the screened

interaction W can alternatively be expressed in terms of the reducible polarizability operator Π:

W (1, 2) = v(1, 2) +

∫∫
d(3)d(4)v(1, 3)Π(3, 4)v(4, 2), (1.82)

From Eq. (1.57), the reducible polarizability Π is related to the irreducible one as:

Π(1, 2) =

∫
d(3)P (1, 3)(1̂− vP )−1(3, 2). (1.83)

The screened Coulomb interaction W can be separated as the sum of the bare Coulomb potential v

and a correlation part Wc defined as:

Wc(1, 2) =

∫∫
d(3)d(4)v(1, 3)Π(3, 4)v(4, 2). (1.84)

Consequently, within the GW approximation, the exchange part of the self-energy Σx reads:

Σx(1, 2) = iG(1, 2)v(1+, 2), (1.85)

and the correlation part Σc reads:

Σc(1, 2) = iG(1, 2)Wc(1
+, 2) (1.86)

The exchange part of the self-energy Σc in the frequency domain is energy-independent and has the

form of the Hartree-Fock exchange operator:

Σx(r, r′) = −
occ∑
i

ψi(r)ψ∗i (r′)

|r− r′| , (1.87)

where the summation is over the quasiparticle amplitudes of occupied hole states. The evaluation of

the correlation part Σc is the most computationally expensive part in GW calculations.

1.2.4 The G0W0 Approximation and Beyond

The GW approximation provides a simple approximate form for the self-energy Σ. However, the set

of equations Eqs. (1.78)-(1.81) for the GW approximation are numerically difficult to solve in a fully

self-consistent manner. In practical GW calculations, a next level approximation that is commonly

used is the G0W0 approximation [83]. Within the G0W0 approximation, the starting point is the

evaluation of the non-interacting one-particle Green’s function G0 by using the eigenenergies and

the orbitals of a model system with a real one-particle Hamiltonian (which is energy-independent).
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Here we consider the most popular model Hamiltonian of choice, the Kohn-Sham Hamiltonian.

The self-energy in the frequency domain Σ(r, r′;ω) is hence calculated in a single iteration by the

following equations:

G0(r, r′;ω) =
∑
v

ψKSv (r)ψKSv
∗
(r′)

ω − εKSv − iη +
∑
c

ψKSc (r)ψKSc
∗
(r′)

ω − εKSc + iη
, (1.88)

P 0(r, r′;ω) = − i

2π

∫
dω′G0(r, r′;ω′)G0(r, r′;ω − ω′), (1.89)

Π0(r, r′;ω) =

∫
dr′′P 0(r, r′′;ω)(1̂− vP 0)−1(r′′, r′;ω), (1.90)

W 0(r, r′;ω) = v(r− r′) +

∫∫
dr′′dr′′′v(r− r′′)Π0(r′′, r′′′;ω)v(r′′′, r′;ω), (1.91)

ΣG0W 0(r, r′;ω) =
i

2π

∫
dω′G0(r, r′;ω + ω′)W 0(r, r′;ω′)eiω

′η, (1.92)

where we have indicated explicitly Kohn-Sham energies and orbitals with ”KS” in the superscript,

and have used ”v” and ”c” in the subscript to represent the quantities corresponding to Kohn-Sham

occupied (valence) and empty (conduction) states respectively. In Eq. (1.89), the irreducible polar-

izability P0 is calculated in the random-phase approximation (RPA).

The quasiparticle energy εi is obtained from a first-order perturbation correction to the Kohn-

Sham energy εKS
i :

εi ' εKSi + 〈ψKSi |ΣG0W 0(εi)ψ
KS
i 〉 − 〈ψKSi |Vxc|ψKSi 〉, (1.93)

where Vxc is the Kohn-Sham exchange-correlation potential used as a zeroth-order approximation

to the self-energy ΣG0W0 . Eq. (1.93) is a non-linear equation that can be solved iteratively, since

the value of εi depends on itself through the energy-dependent self-energy on the right hand side

of the equation. The perturbative evaluation of quasiparticle energies is based on two observations:

on the one hand, the form of the quasiparticle equation Eq. (1.52) is similar to that of the Kohn-

Sham equation Eq. (1.15), with the only difference that in Eq. (1.15) the self-energy Σ is replaced

with the exchange-correlation potential Vxc; on the other hand, for systems where they are known,

quasiparticle amplitudes are found to be close to Kohn-Sham orbitals [84]. The approximation used

in Eq. (1.93) is actually a diagonal approximation, since only the diagonal matrix elements of the

self-energy are considered. One can also calculate the off-diagonal matrix elements of the self-

energy with respect to the Kohn-Sham states. However, since this usually involves the evaluation

of a large number of matrix elements resulting from the consideration of a not-so-small number

of Kohn-Sham empty states, performing such calculations could be expensive, especially for large

systems.

Even at the very first iteration, the G0W0 approximation has been shown to be very successful

in many cases for describing electronic excitations [73, 76, 77]. One success is that the calculated

fundamental band gaps of semiconductors and insulators are often in good agreement with experi-

ment. In Fig. [1.4], the calculated fundamental band gaps of the same sp semiconductors as in Fig.
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Figure 1.4: Comparison between the fundamental band gaps calculated from DFT-LDA (squares, left scale),

calculated from GW at the G0W0 level (circles, left scale), and from experiment (bottom scale) for some sp

semiconductors. This figure is taken from Ref. [74]

Figure 1.5: Comparison between the calculated GW electronic density of states at the G0W0 level and the pho-

toemission spectrum from a direct photoemission measurement for the free-base tetraphenylporphyrin molecule

(TPPH2) (C44H30N4). A Gaussian broadening of 0.25 eV is for the theoretical curve. See Ref. [48] for more

details.
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[1.2] are compared again with experiments, including the results of G0W0 calculations. Clearly the

G0W0 results improve systematically the DFT-LDA ones and mostly agree well with experiments.

Another success is that the G0W0 approximation can predict accurately also the quasiparticle ener-

gies away from the ionization edges. In Fig. [1.5], the theoretical DOS calculated from G0W0 is

compared with the experimental photoemission spectrum from direct photoemission measurement

for the free-base tetraphenylporphyrin molecule (TPPH2). At variance with the DFT-LDA DOS

spectrum displayed in Fig. [1.3], the G0W0 one is in good agreement with the direct photoemission

spectrum concerning the positions of the peaks. Since oscillator strength effects are not considered in

the G0W0 calculation, the relative intensities of the peaks need not to be compared with experiment.

One important drawback of the G0W0 approximation is that due to its non self-consistent nature,

the calculated quasiparticle energies depend on the starting model Hamiltonian, such that some

ambiguities are involved in them. To go beyond the G0W0 approximation, one may first consider

the issue of self-consistency within the GW approximation [73, 76, 77]. For instance, if the screened

Coulomb interaction W0 is fixed at the RPA level, while the Green’s function G is updated at each

iteration, thus achieving partial self-consistency in G, the GW0 approximation would be obtained.

In a similar way, one may obtain other partially self-consistent levels of theory by keeping certain

quantities fixed while updating others. If all related quantities are updated at each iteration, full

self-consistency of the GW calculation can be obtained, the results of which would not depend on

the starting point of the calculation. Although partially and fully self-consistent GW calculations

are more expensive than G0W0 ones, sometimes they yield worse results and it is not clear how

good they are in general [85, 86]. For example, fully self-consistent GW calculations are found to be

systematically worse than G0W0 ones in describing quasiparticles and plasmon satellites [87–90].

However, in the meanwhile, some successes do exist. A main outcome is that the total energy of

the homogeneous electron gas given by fully self-consistent GW calculations is in strikingly close

agreement with quantum Monte-Carlo results [91–93]. Moreover, GW0 calculations are found to

improve the positions of plasmon satellites [94].

To proceed even further to go beyond the GW approximation, one has to resort to corrections

to the approximate vertex function given in Eq. (1.77) [73, 76, 77]. Vertex corrections are often

found to cancel the effects of the deterioration in the description of electronic excitations in fully

self-consistent GW calculations compared with that in G0W0 calculations. Vertex corrections may

be used to describe the multipole plasmon satellites observed in the alkali metals, for which only a

one-plasmon picture can be described in the GW approximation [95].

In this work, we employ the diagonal G0W0 scheme within the GW approximation to study the

electronic excitation properties of neutral gold clusters. Our implementation of the GW method is

described in the next chapter.
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Chapter 2

Methodological Details of GW

In this chapter, we present the methodological details of our implementation of the GW method used

within this work. We consider not only some general aspects in the implementation of GW, but also

two specific aspects relevant to our study of gold clusters.

2.1 Numerical Implementation of GW

In this section, we discuss our numerical implementation of the GW method, which is based on

the G0W0 approximation. First we present a brief overview of current schemes for the implemen-

tation of GW. After that, we describe in detail our schemes for solving two main computational

challenges involved in traditional GW calculations. To illustrate the efficiency and the correctness

of our schemes, we give an example of the electronic structure of the caffeine molecule.

2.1.1 Overview of Current Implementation

There are various schemes currently available for the implementation of the GW method based on

the G0W0 approximation. We review them briefly considering three aspects: the calculation of

the screened Coulomb interaction W, the basis for representing molecular orbitals, charge-density,

and the polarizability operators P and Π, and the sums over empty states in the calculation of the

irreducible polarizability P and the self-energy Σ.

Calculation of the Screened Coulomb Interaction W

Due to the pole structures on the frequency axis of the irreducible polarizability P involved in the cal-

culation of the screened Coulomb interaction W (see Eq. (1.88) and Eq. (1.89)), in GW calculations,

W has to be calculated on very fine energy grids in order to converge the calculated self-energies.

This makes the calculation of W very expensive.
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Among the several schemes available for the treatment of W, the most direct one has been to

calculate all related quantities on the real frequency axis, without making any further approximation

for W. However, this is computationally very expensive and can not be applied conveniently to the

study of large molecular systems.

One popular approximated scheme is to use a plasmon-pole model for the energy dependence

of W [96–98]. This is based on the observation that, on the one hand, the evaluation of the self-

energy Σ within the GW approximation depends on the convolution of the Green’s function G and

the screened Coulomb interaction W over the energy (see Eq. (1.92)), thus should not be sensitive

to the fine details of the energy dependence of W, and on the other hand, it is known that the

imaginary part of W is dominated by a strong peak which corresponds to a plasmon excitation. The

usage of a plasmon-pole approximation can reduce a lot the computational effort, but there are some

drawbacks. One is that it has limited accuracy if applied to systems other than sp bonded ones. And

another is that the quasiparticle lifetime can not be calculated by using it.

Enlightened by the GW space-time method [99, 100], instead of working on the real axis, one

can express and calculate all the quantities, including W, on the imaginary axis. This makes the

calculated quantities smooth in the imaginary frequency domain, or exponentially decaying in the

imaginary time domain, resulting in a much reduced computational effort. After the expectation

value of the correlation part of the self-energy is obtained on the imaginary frequency axis, it can be

fitted to a multipole form:

〈ψn|Σc(iω)|ψn〉 = a0
n +

∑
i

ain
iω − bin

, (2.1)

and analytically continued to the real frequency axis. Here |ψn〉 represents a one-particle state such

as a Kohn-Sham state, and ai
n and bi

n are complex fitting parameters. The parameter a0
n should

be zero in principle, but it has been proved helpful if a finite value for it is allowed. While very

little accuracy may be lost in the analytic continuation procedure, the computational cost is much

reduced and it is no longer necessary to use a plasmon-pole approximation in the calculation of W.

Instead of using a multipole form, one can use a Páde approximant form [101] for the fitting of

〈Σc(iω)〉n, with which one can also find good accuracy and stability in the calculated quasiparticle

energies. Optionally, one may choose to form the correlation part of the self-energy directly on the

real frequency axis by using a contour integration technique, which takes use of the value of W on

both the real and the imaginary frequency axis [102]. By doing so, one can obtain even more accurate

and stable results for the calculated quasiparticle energies, but at the cost of being computationally

more expensive. In this work, we perform all the GW calculations by using the analytic continuation

of the self-energy based on the multipole form Eq. (2.1).
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Basis for molecular orbitals, charge-density, and the polarizability operators

In conjunction with pseudopotentials, plane-wave basis sets are widely used for representing molec-

ular orbitals and electronic charge-density in DFT-based first principles electronic structure calcu-

lations. Naturally, the plane-wave basis is a most common choice used in GW calculations. The

usage of plane-waves has several advantages. For instance, the product of molecular orbitals can be

evaluated straightforwardly, and the convergence of the calculated results with respect to the basis

size can be controlled easily.

One main computational challenge in GW calculations is the representation of the polarizability

operators P and Π. In RPA, by assuming time-reversal invariance of the Kohn-Sham Hamiltonian

and work with real Kohn-Sham orbitals, the irreducible polarizability P0 in imaginary frequency is

calculated as:

P 0(r, r′; iω) = −4<
∑
vc

ψv(r)ψc(r)ψv(r
′)ψc(r

′)

εc − εv + iω
. (2.2)

As indicated in the above equation, P0 is a non-local operator that depends on the product of the

Kohn-Shan valence (occupied) and conduction (empty) orbitals. To represent P0, essentially what

one needs to do is simply to represent the pairs of the product of valence and conduction orbitals.

As a result, in the traditional implementation of the GW method, plane-waves are usually used, not

only for representing molecular orbitals, also for representing P0. Since the calculation of P0 in

principle involves an infinite number of pairs of valence and conduction states resulting from the

infinite summation over conduction states, a large number of basis functions are usually needed and

it is computationally prohibitive for large systems.

Furthermore, since according to Eq. (1.82), the reducible polarizability Π0 has a simple relation

with the irreducible one as:

Π0(r, r′; iω) = P 0 + P 0 · v · P 0 + P 0 · v · P 0 · v · P 0 + · · · , (2.3)

where a single dot indicates the product of two quantities, such as:

(P 0 · v)(r, r′;ω) =

∫
dr′′P 0(r, r′′;ω)v(r′′, r′), (2.4)

the same basis for representing P0 can also be used for representing Π0, and the plane-wave repre-

sentation of Π0 is also very expensive.

According to recent work, it is possible to construct an optimal basis set which is small yet with

controllable accuracy for the representation of the polarizability operators [48, 103]. The usage of the

optimal basis set results in small polarizability matrices that are much easier to operate numerically.

A scheme for constructing such an optimal basis set is applied in the study of this work, and is

described in detail in the next subsection.
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Sums Over Empty States

The difficulty in the treatment of the sums over empty states in the calculation of the irreducible

polarizability P and the self-energy Σ is another main computational challenge in GW calculations.

The need to consider the summation over empty states for P is evident as indicated in Eq. (2.2),

and this need for Σ within the GW approximation comes partly from the evaluation of the Green’s

function G (see Eq. (1.88)), and partly from the evaluation of the screened Coulomb interaction W,

which depends on P through Eq. (1.91) and Eq. (1.90).

A direct approach to deal with the sums over empty states is to include a finite number of empty

states in the calculation of P and Σ [47]. The problem with this treatment is that the convergence

of the calculated quasiparticle energies with respect to the number of empty states used can be

extremely slow. In fact, well converged results may be obtained only for very small systems.

Approximated schemes have been developed to solve the slow convergence problem. In one

scheme, those empty states not explicitly considered in the calculation of the irreducible polarizabil-

ity and the correlation part of the self-energy are taken into account by using an effective energy,

which is determined by imposing a sum rule for the first moment of the dielectric function. As a

consequence, there is a large reduction of the number of empty states needed to reach good conver-

gence in the calculated results [104]. In another scheme, an effective energy is used in the calculation

of the correlation part of the self-energy to account for the contribution from all the empty states.

This effective energy can be expanded exactly in an infinite perturbative series, but it is truncated in

practice. In such a way, no empty states have to be considered at all [105]. These two schemes are

efficient, but they both have the problem that some accuracy may be lost due to the approximations

used.

Recently, it has been proposed that it is possible to avoid the explicit consideration of any empty

state without making compromise on the accuracy of the calculated results. In one scheme, an itera-

tive solver is used in the calculation of P and Σ based on the Sternheimer approach [48]. In another

scheme, the screened Coulomb interaction W is obtained by solving a self-consistent Sternheimer

equation, and the Green’s function G is evaluated by using an approach similar to the Sternheimer

approach for W [101]. These two schemes are both accurate and efficient. The previous scheme is

applied in the study of this work, and is presented in detail in the next subsection.

2.1.2 Solutions to the Computational Challenges

As mentioned previously, two main computational challenges exist in traditional GW calculations,

especially in those calculations for large systems. One is that one needs to calculate and manipulate

large matrices for representing the polarizability operators P and Π. Another is that in the calculation

of the irreducible polarizability P and the self-energy Σ, the sums over empty states are usually very

slowly convergent. Because of these two challenges, the routine application of the GW method in the
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past has been limited to the scope of a few handfuls of inequivalent atoms, at most. In this subsection,

we focus on the solutions for solving these two challenges, which are used in our implementation of

the GW method in this work.

In the following, we briefly describe the above-mentioned two computational challenges, and

demonstrate that, indeed they can be solved by employing recently introduced algorithms, which are

the construction of the optimal basis for representing the polarizability operators P and Π [47, 48],

and the Lanczos chain technique for the calculation of the irreducible polarizability P and the self-

energy Σ [48].

The Optimal Polarizability Basis

The difficulty in representing the polarizability operators can be solved by constructing and employ-

ing an optimally small set of basis functions for the representation of the polarizability operators

[47, 48].

Suppose an optimally small and energy independent basis set {Φµ(r)} can be found for repre-

senting P0:

P 0(r, r′; iω) '
∑
µν

Φµ(r)P 0
µν(iω)Φν(r′), (2.5)

where P0
µν(iω) is the matrix representation of P0. Then, according to Eq. (2.3):

Π0(r, r′; iω) '
∑
µν

Φµ(r)Π0
µν(iω)Φν(r′), (2.6)

where Π0
µν(iω) is the matrix representation of Π0. Furthermore, since the correlation part of the

screened Coulomb interaction W0
c reads:

W 0
c (r, r′; iω) = v ·Π0 · v, (2.7)

by using the same basis set, it can also be expressed in a simple form as:

W 0
c (r, r′; iω) '

∑
µν

(v · Φµ)(r)Π0
µν(iω)(v · Φν)(r′). (2.8)

From Eq. (2.5), (2.6), (2.8), we see that if an optimally small and accurate basis set for the represen-

tation of the polarizability operators is found, then a high computational speed up can be achieved.

We call such a basis set the optimal polarizability basis.

To build the optimal polarizability basis, without losing generality, we consider the irreducible

polarizability at zero time:

P̃ 0(r, r′; τ = 0) =
∑
vc

ψv(r)ψc(r)ψv(r
′)ψc(r

′). (2.9)

Several possibilities are explored in the following.

By introducing the projector operator over the valence (hole) states Q̂h and the one over the

conduction (electron) states Q̂e, and noting that

Q̂e = 1̂− Q̂h, (2.10)
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Eq. (2.9) can be written as:

P̃ 0(r, r′; τ = 0) = Qh(r, r′)Qe(r, r
′)

= Qh(r, r′)[δ(r, r′)−Qe(r, r′)].
(2.11)

Taking use of the above equation and solve the eigenvalue problem:

P̃ 0(τ = 0)|Φµ〉 = qµ|Φµ〉, (2.12)

we can obtain a polarizability basis by taking the eigenvectors that correspond to the most important

eigenvalues. Here the explicit consideration of the conduction states is avoided. However, since one

has to use a not-so-small number of basis functions in order to achieve a satisfactory accuracy in the

calculated quasiparticle energies, the calculations by using this kind of basis set may be expensive.

A better way would be to consider a modified polarizability operator P̃0
′
, for which the number

of conduction states in Eq. (2.9) is defined by states with energy εc smaller than a given cutoff EC.

By solving a similar eigenvalue problem as in Eq. (2.12) for P̃0
′
, an optimal polarizability basis can

be constructed [47]. However, this involves the explicit calculation of a possibly large number of

conduction states, and is thus not computationally favorable.

To avoid the consideration of conduction states, we replace the Q̂e operator in Eq. (2.11) with a

projector operator over the space spanned by plane-waves which have a kinetic energy smaller than

an E∗ cutoff, are first orthogonalized to all the valence states and then orthonormalized:

Q̂∗e =
∑

1
2 |G|2,

1
2 |G′|2≤E∗

|Ḡ〉〈Ḡ′|, (2.13)

To be more specific, the orthogonalized plane-waves in {|Ḡ〉} is first calculated from a set of plane-

waves {|G〉} defined by E∗:

|Ḡ〉 = Q̂e|G〉, (2.14)

and are then orthonormalized. An optimal polarizability basis can be constructed by solving:∑
v

ψv(r)〈r|Q̂∗e|ψvΦµ〉 = qµ|Φµ(r)〉, (2.15)

and taking the eigenvectors with eigenvalues larger than a given threshold q∗ [48]. Here the space

representation of the vector |ψvΦµ〉 reads:

〈r|ψvΦµ〉 = ψv(r)Φµ(r). (2.16)

In this way, good accuracy can be achieved with only a relatively small number of basis functions

used. Note that the accuracy of this scheme can be systematically improved by adjusting the values

of the E∗ and q∗ parameters.

This scheme has been implemented for norm-conserving pseudopotentials in the GWL mod-

ule [46] of the plane-waves and pseudopotentials based Quantum Espresso (QE) density-functional

package [45], and has been used in our study of gold clusters.
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Figure 2.1: Structure of the caffeine molecule C8N4O2H10.
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Figure 2.2: Calculated vertical ionization potential of the caffeine molecule (discs, left scale) and dimension

of the polarizability basis (triangles, right scale) as a function of the q∗ threshold. The polarizability basis has

been constructed with E∗ = 5 Ry (blue) and E∗ = 10 Ry (red). The lines are a guide to the eye.
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To illustrate this scheme, we consider an example of the isolated caffeine molecule [106], whose

structure is drawn in Fig. [2.1]. The caffeine molecule under investigation is at the theoretically

optimized geometry with bond lengths that have an average deviation of < %1 and a maximum de-

viation of < %3 from experiment. All the GW calculations of the caffeine molecule in this chapter

were performed in a cubic supercell that has an edge of 25 Bohr, by using the H.pz-vbc.UPF, C.pz-

vbc.UPF, N.pz-vbc.UPF and O.pz-mt.UPF pseudopotentials from the QE distribution, and a kinetic

energy cutoff of 60 Ry and 240 Ry respectively for plane-waves representing molecular orbitals and

charge-density. The (vertical) IPs in Fig. [2.2] were calculated by using the optimal polarizability

basis constructed under the current scheme, with a dimension controlled by the E∗ and q∗ param-

eters, and also by using the Lanczos chain technique that is described later, with a number of 20

Lanczos steps for the calculation of the irreducible polarizability P and the self-energy Σ. As it can

been seen, the two set of calculations with E∗ = 5 Ry and E∗ = 10 Ry both reach the same value

of IP within a few tens of eV, which is close to the experimental value of 8.25 eV [107]. For both

values of E∗, good convergence within ∼ 0.15 eV can be achieved with a value of q∗ ∼ 10 Bohr3,

corresponding to a small polarizability basis with only ∼ 500 and ∼ 1000 basis functions respec-

tively. Note that 0.15 eV is just our estimated accuracy due to the analytic continuation procedure.

Indeed this scheme is accurate on the one hand, and computationally efficient on the other hand.

The Lanczos Chains

Another difficulty involved in traditional GW calculations is the slow convergence of the calculated

quasiparticle energies with respect to the sums over empty states in the calculation of the irreducible

polarizability P and the self-energy Σ.

To have an idea of how slow the convergence can be, we consider again the example of the

caffeine molecule [106]. In Fig. [2.3], we report with dots the GW (vertical) IPs of the caffeine

molecule calculated by using the method of Ref. [47], with inclusion a finite number of empty states

in the calculation of P and Σ. It is obvious that the convergence of the sums over empty states is ex-

tremely slow and well converged result seems impossible to reach. In order to obtain the converged

result, we fit the data displayed as diamonds to a simple formula IP(EC) = IP∞ − β/EC. By doing

this, an extrapolated IP of 8.02 eV is obtained, and is in good agreement with the experimental value

of 8.25 eV [107]. Such an extrapolation method based on experience works, but is very inconve-

nient. Since this method requires the performance of several sets of GW calculations with inclusion

of different number of empty states, it can be computationally very expensive especially for large

systems. By employing the Lanczos chain technique that is described later, the slow convergence

problem can be successfully solved, in that it is no longer necessary to consider the sums over empty

states [48].

Now suppose an optimal polarizability basis {Φµ(r)} has already been constructed. In terms of
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Figure 2.3: Calculated vertical ionization potential of the caffeine molecule and comparison with experiment

(magenta line) [107]. The black dots correspond to GW results obtained by including 2000, 3000, 4000, 5000

and 6000 empty states respectively in the calculation of the irreducible polarizability P and the self-energy Σ,

where the number of empty states included is controlled by the EC cutoff. The data indicated by diamonds

have been fitted accurately to a simple formula IP(EC) = IP∞ − β/EC, resulting in a fit given by the orange

line and an extrapolated IP given by the green line. The red line is the calculated IP from the DFT-LDA

HOMO energy level. The blue line represents the GW IP calculated by using the Lanczos chain technique with

20 Lanczos steps for P and Σ, and an optimal polarizability basis of 750 functions constructed by using the

previously described algorithm with q∗ = 7.38 Bohr3 and E∗ = 5 Ry.
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{Φµ(r)} and taking use of Eq. (2.3) and Eq. (2.5), the polarizability matrix P0
µν(iω) reads:

P 0
µν(iω) = −4<

∑
vc

∫
drdr′Φµ(r)ψv(r)ψc(r)ψv(r

′)ψc(r
′)Φν(r′)

εc − εv + iω
. (2.17)

Using the projector operator over the empty (electron) states Q̂e, the above equation can be written

as:

P 0
µν(iω) = −4<

∑
v

〈ψvΦµ|Q̂e(H0 − εv + iω)−1Q̂e|ψvΦν〉, (2.18)

where H0 is the Kohn-Sham Hamiltonian. Here the summation over empty states can be eliminated

with the help of Eq. (2.10). However, a direct approach to the above equation requires the application

of (H0 − εv + iω)−1 to a large number of Nv ×NP vectors at every imaginary frequency iω, where

Nv is the number of valences states and NP is the dimension of the optimal polarizability basis, and

is thus computationally inconvenient.

The computational cost can be substantially reduced by proceeding in the following steps [48]:

First, we build an optimal basis set {t0
α(r)} for representing the Nv ×NP vectors {Q̂e|ψvΦµ〉}:

〈r|Q̂e|ψvΦµ〉 '
NT∑
α=1

t0α(r)Tα,vµ, (2.19)

where

Tα,vµ = 〈t0α|Q̂e|ψvΦµ〉, (2.20)

and NT is the number of basis functions in {t0
α(r)}. By using Eq. (2.19), Eq. (2.18) reads:

P 0
µν(iω) ' −4<

∑
v,αβ

〈t0α|(H0 − εv + iω)−1|t0β〉 × Tα,vµTβ,vν . (2.21)

Since the value of NT can be made much smaller than that of Nv ×NP, the number of basis functions

to which the inverse shifted Hamiltonian has to be applied in Eq. (2.18) can be significantly reduced.

Instead of calculating the matrix elements in Eq. (2.18), the problem is now that of solving

〈t0
α|(H0 − εv + iω)−1|t0

β〉. To do this, we generate through a Lanczos chain algorithm [108] a set

of orthonormal vectors {ti
α} for each t0

α, with which we have:

〈t0α|(H0 − εv + iω)−1|t0β〉 =
∑
i

〈t0α|tiα〉〈tiα|(H0 − εv + iω)−1|t0β〉. (2.22)

In the {ti
α} basis, the Hamiltonian H0 is tridiagonal and can be easily and rapidly inverted at every

εv and at every iω.

The above-described algorithm can be also used in the calculation of the self-energy Σ. Consid-

ering Eq. (2.6), by using the same basis set for the reducible polarizability Π as for the irreducible

one P, we arrive at this equation for the expectation value of the correlation part of the self-energy:

〈Σc(iω)〉n =
1

2π

∑
µν

∫
dω′Πµν(iω′)× 〈ψn(vΦµ)|(H0 − i(ω − ω′))−1|ψn(vΦν)〉, (2.23)
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where the space representation of the vector |ψn(vΦµ)〉 reads:

〈r|ψn(vΦµ)〉 = ψn(r)

∫
dr′v(r, r′)Φµ(r′). (2.24)

Similarly as in the calculation of the irreducible polarizability matrix P0
µν(iω), an optimally small

basis set {sα(r)} can be constructed for the representation of the {|ψn(vΦµ)〉} vectors:

〈r|ψn(vΦµ)〉 '
Ns∑
α=1

sα(r)Sα,nµ, (2.25)

where

Sα,nµ = 〈sα|ψn(vΦµ)〉. (2.26)

Then an equivalent Lanczos chain algorithm can be applied to each sα and the matrix elements on

the right hand side of Eq. (2.23) can be easily calculated.

This Lanczos chain technique for the evaluation of P and Σ has also been implemented in the

GWL module [46] of the QE package [45], and is used in our study of gold clusters.
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Figure 2.4: Convergence of the calculated vertical ionization potential of the caffeine molecule with respect to

the number of Lanczos steps used in the Lanczos calculation of the irreducible polarizability P and the self-

energy Σ. The optimal polarizability basis used here is the same as that is used in the Lanczos calculation

reported in Fig. [2.3].

To illustrate this Lanczos chain technique, we come back to the example of the caffeine molecule.

In Fig. [2.3], we compare the calculated (vertical) IPs of the caffeine molecule with experiment. The

Lanczos result presented there was obtained by using 20 Lanczos steps respectively for P and Σ,

and an optimal polarizability basis of 750 functions constructed by using the previously described
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algorithm with q∗ = 7.38 Bohr3 and E∗ = 5 Ry. As it can be seen, with a single calculation, which

is more computationally efficient compared with the extrapolation method reported in the same

figure, the Lanczos chain technique gives a calculated IP of 8.16 eV, in very good agreement with

the experimental value of 8.25 eV. In Fig. [2.4], the dependence of the calculated GW IP as a

function of the number of Lanczos steps used in the Lanczos calculation of P and Σ is displayed.

The same optimal polarizability basis as used to obtain the Lanczos result reported in Fig. [2.3] was

used to obtain those reported in Fig. [2.4]. The convergence of IP with respect to the number of

Lanczos steps is obviously very fast. As a result, only a small number of Lanczos steps is needed in

order to reach well converged results.

2.1.3 Example of the Electronic Density of States for Caffeine
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Figure 2.5: Calculated DFT-LDA and GW electronic densities of states for the caffeine molecule and compari-

son with the photoemission spectrum from direct photoemission measurement [107]. The GW results are from

the same Lanczos calculation as reported in Fig. [2.4]. A Gaussian broadening of 0.25 eV has been used.

As a demonstration of the correctness of our schemes for solving the main computational chal-

lenges involved in traditional GW calculations in this work, we present in Fig. [2.5] for the caffeine

molecule the comparison between the calculated electronic density of states (DOS) from DFT-LDA

and GW calculations, and the photoemission spectrum from experiment [107]. As the experimental

spectrum is from a direct photoemission measurement, only the part of the spectrum that corresponds

to the valence states is available. While the positions of the peaks of the experimental spectrum can

not be reproduced by LDA, they are very well predicted by GW. In addition, GW opens the quasi-
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particle gap for the caffeine molecule, which is severely underestimated by LDA. Note also that as

we do not consider any oscillator strength effects, the intensities of the peaks from theoretical cal-

culations are not compared with experiment. In summary, we have justified here the correctness of

our implementation of the GW method for solving the main computational challenges involved in

traditional GW calculations.

2.2 Specific Considerations for Gold Clusters

In this section, we focus on two specific aspects concerning the GW calculations of gold clusters: the

Au semicore 5s and 5p states and the open-shell character of some symmetric molecular structures.

Their relevance to our study is discussed and our treatment for them is given.

2.2.1 Semicore States

The role that semicore states plays in GW calculations of systems containing metal elements was

first reported by Rohlfing et al. for bulk CdS [109]. It was found that the problem of the bad quality

of the calculated energy levels for states with Cd 4d feature comes mainly from the evaluation of

the exchange term of the self-energy, and can be solved by including also the Cd semicore 4s and

4p states in addition to the Cd 4d and 5s states in the valence manifold of the Cd pseudopotential.

Similar semicore effects have also been observed in the study of bulk GaN and Zn-based bulk

systems such as ZnS and ZnO [110–113]. The semicore states are important in the GW calculations,

not only of metal-based bulk systems, but also of finite systems containing metal elements [49], such

as gold clusters.

Figure 2.6: Lowest energy structure of the Au6 cluster.

In order to illustrate the semicore effects, as a paradigmatic example of gold clusters, we consider

a Au6 structure depicted in Fig. [2.6] which possesses D3h symmetry and is generally believed as the

lowest energy structure of the neutral Au6 cluster [24–31]. This structure was optimized with DFT-

LDA forces by using the pseudopotential Au.pz-d-rrkjus.UPF which includes 5d and 6s as valence

electrons from the QE distribution [45]. Two pseudopotentials for the gold atom were generated
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and were the only ones used in the study of the quasiparticle spectra of gold clusters in this work.

In the first pseudopotential, the Au 5d and 6s states are treated as the valence ones. We call this

pseudopotential the no semicore pseudopotential. In the second pseudopotential, in addition to the

Au 5d and 6s states, the Au semicore 5s and 5p states are also kept in the valence manifold. We refer

to this pseudopotential as the semicore pseudopotential. The no semicore pseudopotential requires a

plane-wave cutoff of 60 Ry to converge the calculated results, while in the case when the semicore

pseudopotential is used, a cutoff as large as 120 Ry is needed. More details of the pseudopotentials

used is presented in Chapter 3.
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Figure 2.7: Electronic densities of states for the Au6 cluster, calculated from: (a) GW without Au semicore

5s and 5p states in valence (red), (b) GW with Au semicore 5s and 5p states in valence (green), (c) DFT-LDA

without (blue) and with (magenta) Au semicore 5s and 5p states in valence. The dashed magenta line is the

Fermi level (the average of HOMO and LUMO energies) for the DFT-LDA calculation with Au semicore 5s

and 5p states in valence. A Gaussian broadening of 0.1 eV has been used.

44



In Fig. [2.7], we report the DOS for the Au6 cluster obtained from GW (with DFT-LDA as the

starting point) and DFT-LDA calculations by using the Au no semicore or semicore pseudopoten-

tial. We note that although the two LDA spectra calculated using different pseudopotentials closely

resemble each other, the two GW spectra look quite different. In particular, with the no semicore

pseudopotential, the GW calculation predicts an (vertical) IP of 6.59 eV, which severely underesti-

mates the experimental value of 8.80 eV [19]. However, by using the semicore pseudopotential, an

IP of 8.64 eV is obtained from the GW calculation and is in good agreement with experiment. Com-

bining with the results for some other gold clusters (see Chapter 3 for more details), we conclude

that the consideration of the Au semicore 5s and 5p states in valence is necessary for the accurate

calculation of the quasiparticle spectra of gold clusters by using the GW method.
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Figure 2.8: Radial parts of all-electron LDA orbitals for the Au 5s, 5p, 5d, 6s and 6p states.

Table 2.1: All-electron LDA energies for the Au 5s, 5p, 5d, 6s and 6p states.

State 5s 5p 5d 6s 6p

Energy (eV) -108.37 -59.78 -6.88 -5.76 -0.77

To find out the origin of the semicore effects, we performed an all-electron calculation for the

gold atom with LDA for the exchange-correlation potential. We plot in Fig. [2.8] the radial parts of

some all-electron orbitals, and list in Table. [2.1] their corresponding energies. From the results of

the all-electron calculation, we see that the energies of the semicore 5s and 5p states are much lower

than that of the 5d, 6s and 6p states. As a result, according to perturbation theory, the semicore 5s and
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Figure 2.9: Electronic densities of states for the Au6 cluster, calculated from GW with the Au semicore 5s and

5p states in valence (solid, green) and its projection over the Au 5d states (dotted, black). The dashed magenta

line gives the Fermi level for the DFT-LDA calculation with the Au semicore 5s and 5p states in valence.

5p states should participate very little in chemical bonding. This point is reflected by the existence

of the small difference between the LDA spectra of the Au6 cluster calculated with and without the

Au semicore 5s and 5p states in valence. However, although the semicore 5s and 5p states are much

lower in energy, they have spatial extension comparable to that of the 5d states. Within the G0W0

approximation, the expectation value of the exchange term of the self-energy 〈Σx〉i reads:

〈ψi|Σx|ψi〉 =
∑
v

∫
drdr′

ψi(r)ψ?v(r)ψv(r
′)ψ?i (r′)

|r− r′| , (2.27)

where ψ indicates the Kohn-Sham orbital. It is clear that the above term does not depend on the

energies of the orbitals, but only on their localization. Since the semicore 5s and 5p states do have

large spatial overlap with the 5d states, the calculated GW energies of those states with strong 5d

feature sensitively depend on the presence of the semicore 5s and 5p states in valence. In Fig. [2.9],

we highlight the contribution of the Au 5d states to the GW quasiparticle spectrum of the Au6

cluster calculated with the semicore pseudopotential. While the 5d states contribute very little to the

conduction part of the spectrum, it has large contribution all over the valence part. Consequently,

with or without the Au semicore 5s and 5p states in valence, the conduction part of the spectrum

remains almost the same, but the valence part differs a lot. Similar results are also found for the DOS

spectra of other gold clusters calculated at the LDA or GW levels (see Chapter 3).

The explicit inclusion of the Au semicore 5s and 5p states in valence is necessary in order to

make sure that the qausiparticle spectra of gold clusters are accurately described. However, such

a treatment requires the explicit consideration of more states in the valence manifold, i.e., the Au

semicore 5s and 5p states, and requires a much larger cutoff for plane-waves representing molecular

orbitals to converge the calculated results, in the case of our Au semicore pseudopotential as large
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Figure 2.10: Electronic densities of states for the Au6 cluster, calculated from: GW with Au semicore states

in valence, DFT-LDA with Au semicore states in valence, GW without Au semicore states in valence, GW

without Au semicore states in valence and with the exchange correction, GW without Au semicore states in

valence and with both the exchange and the correlation corrections. The GW semicore spectrum is put in each

subfigure to facilitate comparison. The other spectra have been shifted to match their HOMO levels with that

of the GW semicore spectrum. A Gaussian broadening of 0.1 eV has been used.
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as 120 Ry. This indeed can be computationally very expensive. In order to reduce the computational

cost, a simplified approach has been proposed to take account of the effects of the semicore states

without including them fully in the GW calculations [49].

As a first correction, the exchange term of the GW quasiparticle energy obtained without the

semicore states in valence is replaced by that calculated with the semicore states in valence:

E′i = εi + 〈ψwoi |Σwoc (E′i)|ψwoi 〉 − 〈ψwi |V wxc|ψwi 〉+ 〈ψwi |Σwx |ψwi 〉, (2.28)

resulting in a corrected quasiparticle energy E′i. Here ”w” and ”wo” indicate quantities calculated

with and without semicore states in valence respectively, and εi and |ψi〉 represent the Kohn-Sham

energy and state respectively. In particular, the correlation part of the self-energy Σwo
c is calculated

without the semicore states in valence, and the exchange-correlation potential Vw
xc and the exchange

part of the self-energy Σw
x are calculated with the semicore states in valence. In Fig. [2.10], we

compare the DOS for the Au6 cluster calculated at some other levels of theory with that calculated

from GW with Au semicore 5s and 5p states in valance. The LDA calculation with semicore states

and the GW one without semicore states obviously fail to reproduce the quasiparticle spectrum

calculated from GW with semicore states. Notably, with the exchange correction only, there is

already a large improvement towards the GW results calculated without semicore states.

A second correction is upon the correlation term of the self-energy calculated without semicore

states. In addition to the exchange correction, we add in the correlation part of the self-energy a term

〈ψw
i |Σ′c(E′′i )|ψw

i ) due to the contribution of the semicore states to the Green’s function G. Now the

quasiparticle energy E′′i is calculated as:

E′′i =εi + 〈ψwoi |Σwoc (E′′i )|ψwoi 〉 − 〈ψwi |V wxc|ψwi 〉+ 〈ψwi |Σwx |ψwi 〉

+ 〈ψwi |Σ′c(E′′i )|ψwi ),
(2.29)

where,

Σ′c(ω) =
1

2π

∫
dω′

∑
v′=1,Nsemicore

ψwv′
∗(r)ψwv′(r

′)

ω − ω′ − εwv′
Wwo
c (r, r′;ω′). (2.30)

Here Nsemicore is the number of the semicore valence states, with εwv′ indicating their energies,

and Wwo
c is the screened Coulomb interaction calculated without semicore states in valence. The

screened Coulomb interaction W itself is not corrected, as it is related to the bonding properties of

the system through the charge response and we do not expect it to change much with or without

including the semicore states in valence. With this additional correction, the shape of the spectrum

is further improved and is in excellent agreement with that calculated from GW with semicore states,

as can be seen from the comparison presented in Fig. [2.10]. Although the agreement is not perfect,

due to the fact that we only correct the Green’s function G, but not the screened Coulomb interaction

W, the accuracy should be good enough for the purpose of theoretical investigation.

We emphasize that, while the above-described approach can reproduce well the quasiparticle

spectrum of GW calculated with semicore states in valence, the computational cost corresponding to
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the additional corrections is negligible compared with that of GW calculated without semicore states

in valence. This makes it fit to the study of larger gold clusters, such as the ”magic” tetrahedral Au20

cluster [32] and the cagelike icosahedral Au32 cluster [33, 34], which are investigated in Chapter 3.

This approach has been implemented in the GWL module [46] of the QE package [45]. It was

first proposed for the simulation of the quasiparticle spectra of metal phthalocyanine molecules [49],

and is used for the first time in the study of pure metal clusters (i.e., gold clusters) in this work.

2.2.2 Molecular Open-Shells

The energy levels of highly symmetric molecules may be degenerate. When this is the case for

the HOMO, and the number of electrons is not sufficient to fill all the degenerate HOMOs, the

HOMO states are said to constitute an open-shell of the molecule. In open-shell molecules, it may

happen that the DFT electronic charge-density distribution has a lower symmetry than the structural

one. As a consequence, on the one hand the symmetry of the SCF potential is lowered, leading to

numerical instabilities of the SCF cycle, and on the other hand the molecular orbitals unphysically

lack the symmetry of the structure. In order to avoid the occurrence of such a situation, it is common

practice to assume that all the degenerate partners of the molecular HOMOs have the same fractional

occupancy, fixed so as to enforce the proper normalization of the charge-density distribution.

In the study of small molecules, such as small gold clusters, one can frequently meet symmet-

ric structures with open-shells. One typical example for gold clusters is the equilateral triangular

structure of the neutral Au3 cluster. According to group theory, it is a structure which has the D3h

symmetry. From DFT-LDA structural optimizations using the Au.pz-d-rrkjus.UPF pseudopotential

from the QE package [45], we find that this structure is one of the lowest energy structures of the

neutral Au3 cluster (see Chapter 3), and has a bond length of 2.585 Å. A DFT-LDA calculation us-

ing the same semicore pseudopotential as in our GW study of gold clusters exhibits that, the neutral

equilateral Au3 cluster with the same geometry has an open-shell consisting of two-fold degenerate

HOMO states which are occupied by one electron only, as indicated in Fig. [2.11]. Due to the ap-

pearance of the open-shell, the LDA LUMO energy is actually the same as the LDA HOMO energy,

resulting in a zero LDA HOMO-LUMO gap. The two-fold degenerate HOMOs belong to the E′ ir-

reducible representation, and are displayed in Fig. [2.12]. Once one electron is removed from/added

to this neutral molecule, the resulting positive/negative molecular ion will be a closed-shell ion.

In Table. [2.2], we compare for the neutral equilateral Au3 cluster the (vertical) IP, the (vertical)

EA and their difference (IP-EA) calculated at difference levels of theory. The IP and the EA are the

same at the LDA level, both being 4.91 eV. In contract to LDA, ∆SCF calculations based on the

Martyna-Tuckerman approach [114] give an IP of 7.36 eV and an EA of 2.36 eV, resulting in a finite

difference between the IP and the EA as large as 5.00 eV. In the same table, we report also the IP

and the EA calculated from GW with the open-shell treated using fractional occupancies, such that

the RPA irreducible polarizability used to compute the screened Coulomb interaction has the same
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Figure 2.11: Position of the energy levels for the majority spin channel and the minority spin channel of the

neutral equilateral Au3 cluster, calculated from DFT-LDA with the Au semicore 5s and 5p states in valence.

Full circles represent occupied states, and empty circles represent unoccupied states. There are only non degen-

erate and two-fold degenerate energy levels. A non degenerate energy level has one circle in the middle of the

energy line, and a two-fold degenerate energy level has two circles on the two sides of the energy line.

Figure 2.12: Two-fold degenerate HOMOs in the open-shell of the neutral equilateral Au3 cluster. The HOMOs

belong to the E′ irreducible representation.
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Table 2.2: Vertical ionization potential, vertical electron affinity and their difference for the equilateral triangular

structure of the neutral Au3 cluster, calculated from: DFT-LDA, GW with the open-shell treated using fractional

occupancies (GWf ), and ∆SCF, using the pseudopotential with the Au semicore 5s and 5p states in valence.

The structure was optimized with DFT-LDA, and the corresponding structural parameters are presented in

Table. [2.4]. All energies are in eV.

Theory IP EA IP-EA

LDA 4.91 4.91 0

GWf 4.46 4.46 0

∆SCF 7.36 2.36 5.00

form as that would be used in metallic extended systems:

P 0(r, r′;ω) =
∑
ij

(fi − fj)
ψi(r)ψ∗j (r)ψj(r

′)ψ∗i (r′)

ω + εi − εj + iη
, (2.31)

where the f’s represent the occupation numbers of Kohn-Sham states. Using this formula, a GW

value of 4.46 eV is obtained for both the IP and the EA, leading to a zero GW HOMO-LUMO gap.

As we have mentioned, the IP and the EA calculated at the ∆SCF level are usually pretty accurate,

and can be used as a first reference in theoretical calculations when experimental values or more

accurate quantum chemistry results are not available [78]. Therefore, a correct GW calculation of

the open-shell molecule should produce similar results as the ∆SCF ones for the IP and the EA, and

produce a non-zero HOMO-LUMO gap1. This is clearly not the case here where the open-shell is

treated using fractional occupancies in the GW calculation: the calculated IP and EA are far from

the ∆SCF ones, thus are qualitatively wrong, and the predicted GW HOMO-LUMO gap is zero. For

open-shell molecules, it is appropriate to use fractional occupancies to calculate the charge-density

in the DFT calculation, but not physically correct to do so for the evaluation of the self-energy based

on Eq. (2.31) in the GW calculation.

In the following, we show how the problem of molecular open-shells in GW calculations can be

addressed by making some compromise following several steps: As a first step, a DFT calculation is

performed for the open-shell molecule, which would result into an open-shell consisting of degener-

ate HOMO states with the same fractional occupancy. Then, we perform a GW calculation using a

new electronic configuration to evaluate the self-energy, with integer occupancies for the open-shell,

such that some of degenerate HOMO states in the open-shell are treated as fully occupied, while the

others are assumed to be fully unoccupied. In the meanwhile, the total number of valence electrons

is enforced to be the same as that in the DFT calculation. Sine the electronic charge-densities are

different between the new electronic configuration and the old one, to obtain the correct GW quasi-

particle energies, we must consider the correction to the Hartree energy due to the change in the

1For finite systems, in principle there should always be a non-zero difference between the IP and the EA.
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charge-density. In the end, the GW quasiparticle energies are calculated as:

Ei = εi + 〈ψi|Σ(Ei)|ψi〉 − 〈ψi|Vxc|ψi〉+ 〈ψi|∆VH |ψi〉, (2.32)

where the correction to the Hartree energy is given by the last term on the right hand side of the

equation. ∆VH is the correction to the Hartree potential, which reads:

∆VH(r) =

∫
dr′

∆ρ(r′)

|r− r′| , (2.33)

where ∆ρ(r) is the difference between the charge-density ρGW(r) in the GW calculation and the

one ρDFT(r) in the DFT calculation. ∆ρ(r) is calculated as:

∆ρ(r) = ρGW (r)− ρDFT (r)

=
∑
j

fj,GW |ψj(r)|2 −
∑
j

fj,DFT |ψj(r)|2, (2.34)

where fj,GW and fj,DFT are the occupation number in the GW calculation and that in the DFT

calculation respectively, for the Kohn-Sham sate j. The difference (fj,GW − fj,DFT) between the two

occupation numbers is non-zero only for the states in the open-shell.

Table 2.3: Vertical ionization potential, vertical electron affinity and their difference for the equilateral triangular

structure of the neutral Au3 cluster, calculated from: DFT-LDA, GW with the open-shell treated using fractional

occupancies (GWf ), our GW scheme with the open-shell treated using integer occupancies (GWi), and ∆SCF,

using the pseudopotential with the Au semicore 5s and 5p states in valence. The structure was optimized with

DFT-LDA, and the corresponding structural parameters are presented in Table. [2.4]. All energies are in eV.

Theory IP EA IP-EA

LDA 4.91 4.91 0

GWf 4.46 4.46 0

GWi 7.26 3.21 4.05

∆SCF 7.36 2.36 5.00

In the specific case of the GW calculation of the neutral equilateral Au3 cluster, we treat the

HOMO state that corresponds to the first orbital displayed in Fig. [2.12] as fully occupied, and

the other HOMO state as fully unoccupied. In Table. [2.3], we compare various schemes for the

calculation of the IP and the EA of this molecule. By using our GW scheme for open-shell molecules,

a value of 7.26 eV is obtained for the IP, which is in close agreement with the ∆SCF value 7.36 eV,

and much better than the LDA value 4.91 eV and the value 4.26 eV calculated from GW with

the open-shell treated using fractional occupancies. In contrast to LDA and GW with fractional

occupancies, a non-zero HOMO-LUMO gap is obtained by using our GW scheme. The agreement

between our GW scheme and ∆SCF for the EA is not as good as that for the IP. This may be

because the DFT-LDA calculation in this case is not a good starting point for the GW calculation
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Figure 2.13: Electronic densities of states for the neutral equilateral Au3 cluster, calculated from: GW with Au

semicore states in valence (GW semicore), DFT-LDA with Au semicore states in valence (LDA semicore), GW

without Au semicore states in valence (GW no semicore), GW without Au semicore states in valence and with

the exchange correction to the self-energy (GW no semicore +X), GW without Au semicore states in valence

and with both the exchange and the correlation corrections to the self-energy (GW no semicore +XC). The GW

semicore spectrum is put in each subfigure to facilitate the comparison. The other GW spectra have been shifted

to match their HOMO levels with that of the GW semicore spectrum. All the GW calculations were performed

by using our scheme for open-shell molecules. A Gaussian broadening of 0.1 eV has been used.
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of the empty (conduction) part of the quasiparticle spectrum. We think that the agreement may

be improved if some degree of self-consistency is added in the GW calculation. GW calculations

were also performed to test how good the simplified scheme for the treatment of semicore states

is, in conjunction with our scheme for open-shell molecules. In Fig. [2.13], we compare for the

neutral equilateral Au3 cluster the electronic densities of states calculated from various schemes. As

expected, the simplified scheme works well for this molecule in conjunction with our scheme for

open-shell molecules.

Table 2.4: The symmetry, the angle θe (in degree) between two bonds with equal length re (in Å), and the

relative energy (in eV) for different structures of the neutral Au3 cluster. All the structures were optimized

with either DFT-LDA by using the Au.pz-d-rrkjus.UPF pseudopotential or DFT-PBE by using the Au.pbe-nd-

rrkjus.UPF pseudopotential. The two pseudopotentials are from the QE package [45].

Pseudopotential Symmetry θe re ∆E

Au.pz-d-rrkjus.UPF C2v 64.1 2.543 0

D3h 60.0 2.585 0.01

Au.pbe-nd-rrkjus.UPF C2v 66.0 2.623 0

C2v 56.7 2.730 0.02

D3h 60.0 2.677 0.03

One interesting property of open-shell molecules results from the Jahn-Teller theorem [115],

which states that: Any electronically degenerate molecular system is intrinsically unstable, and will

undergo structural distortion to a structure with lower symmetry and energy, such that the electronic

degeneracy is removed, unless the system has a linear structure or the degeneracy is Kramers twofold

degeneracy. According to the Jahn-Teller theorem, the equilateral triangular structure of the neutral

Au3 cluster is intrinsically unstable. To illustrate the point, we display in Table. [2.4] for the Au3

cluster the structural parameters of the equilateral triangular structure, as well as of the distorted

triangular structures. Indeed with both DFT-LDA and DFT-PBE structural optimizations, we find

structure(s) with symmetry and energy lower than those for the equilateral triangular structure. With

DFT-LDA, we find one slightly distorted structure, an obtuse-angle triangular structure 0.01 eV

lower in energy. With DFT-PBE, we find two slightly distorted structures, an acute-angle triangular

structure 0.01 eV lower in energy, and an obtuse-angle triangular structure 0.03 eV lower in energy.

All the distorted structures possess the C2v symmetry, which is lower than the D3h symmetry of

the equilateral triangular structure. Due to the lower symmetry, the electronic degeneracy associated

with the equilateral triangular structure has been removed for the distorted structures.

As for the equilateral Au3 cluster, Jahn-Teller distortions are small, we expect that the electronic

properties corresponding to the undistorted and the distorted structures are similar. In Table. [2.5],

we report the (vertical) IP, the (vertical) EA, and their difference (IP-EA) calculated at different levels
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Table 2.5: Vertical ionization potential, vertical electron affinity and their difference for the equilateral triangular

structure and the obtuse-angle triangular structure of the neutral Au3 cluster, calculated from: DFT-LDA, GW

and ∆SCF, using the pseudopotential with the Au semicore 5s and 5p states in valence. For the equilateral

triangular structure, the GW calculation was performed by using our scheme with the open-shell treated using

integer occupancies. The two structures were optimized with DFT-LDA, and the corresponding structural

parameters are presented in Table. [2.4]. All energies are in eV.

Structure Theory IP EA IP-EA

Equilateral triangle LDA 4.91 4.91 0

GWi 7.26 3.21 4.05

∆SCF 7.36 2.36 5.00

Obtuse-angle triangle LDA 4.92 4.88 0.04

GW 7.50 2.95 4.55

∆SCF 7.42 2.34 5.08

of theory for the equilateral triangular structure and the distorted obtuse-angle triangular structure.

For the obtuse-angle triangular structure, the IP and the EA calculated from DFT-LDA are different

by 0.04 eV, meaning that there is no open-shell for this structure. In fact, because of the lower

symmetry compared with that of the equilateral triangular structure, the state that corresponds to the

first orbital drawn in Fig. [2.12] becomes a completely occupied valence state, while the state that

corresponds to the other orbital drawn in Fig. [2.12] becomes a completely unoccupied conduction

state. At a same level of theory, the calculated IPs/EAs for the two structures are close to each other,

indicating that indeed the two structures correspond to similar electronic properties. Between the two

structures, the difference in the calculated IPs/EAs at the GW level is larger than that at the ∆SCF

level. This comes mainly from the slightly poorer quality of the compromised GW calculation for

the equilateral triangular structure: since we have changed by hand the electronic configuration,

the quality of this calculation is not expected to be as good as that of the standard GW calculation

for the obtuse-angle triangular structure and those of the ∆SCF calculations for both structures.

Nevertheless, for the equilateral triangular structure, the agreement between the GW results and the

∆SCF ones are at a level of quality comparable to that for the obtuse-angle triangular structure.

This demonstrates that the GW scheme that we use for open-shell molecules does make sense, and

is capable of providing useful information of the quasiparticle spectra. This is also illustrated in

our study of the open-shell neutral hexagonal Au7 cluster. Note that, for the equilateral triangular

structure, the overestimation in the EA at the GW level as compared with the ∆SCF result is not

due to the problem of the compromised GW scheme, as similar overestimation is also found for the

obtuse-angle triangular structure.

Our scheme for molecular open-shells has been implemented in the GWL module [46] of the
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QE package [45]. It is used in our study of two neutral open-shell molecules, the equilateral Au3

cluster and the hexagonal Au7 cluster, as well as in our study of the neutral linear Au3 cluster, for

which the HOMO state and the LUMO state are almost degenerate and the smearing technique used

to converge the DFT calculation results in fractional occupancies for them (see Chapter 3).

56



Chapter 3

Results for Gold Clusters

In this chapter, we use the implementation of the GW method described in the previous chapter to

investigate the electronic properties of neutral gold clusters. We first give the computational details.

After that, we present the results for small clusters AuN (N = 1− 8) (including the Au atom), as

well as for two larger clusters, the tetrahedral Au20 cluster and the cagelike Au32 cluster. Sev-

eral aspects concerning equilibrium geometries, molecular orbitals, ionization potentials, electron

affinities, and electronic densities of states are discussed.

3.1 Computational Details

In this work, we use the Quantum Espresso (QE) density-functional package [45] to perform first

principles electronic structure calculations. The QE package is based on plane-waves and pseu-

dopotentials, and takes advantage of periodic boundary conditions. The GWL (GW + Wannier +

Lanczos) module [46] of QE is employed to perform all the GW calculations.

Our implementation of the GW method in the GWL module is described in detail in the previous

chapter. It is based on the G0W0 approximation, with the DFT calculation as the starting point for

the GW calculation, and has incorporated recently introduced algorithms which can significantly

reduce the computational cost of GW calculations, i.e., the construction of the optimal polarizability

basis [48] and the Lanczos chain technique for the evaluation of the irreducible polarizability and the

self-energy [48]. A simplified scheme is used to account for the effects of the Au semicore 5s and 5p

states without including them fully in the GW calculations [49]. Since this scheme can significantly

speed up the calculations without compromising much the accuracy of the calculated quasiparticle

spectra, it is suitable for the study of larger gold clusters and is thus used to investigate the electronic

properties of the neutral tetrahedral Au20 cluster and the neutral cagelike Au32 cluster. By making

some compromise, we have also treated properly molecular open-shells in our implementation of

the GW method. In the following, some numerical details of our calculations are presented.
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We perform spin-polarized calculations for gold clusters with an odd number of electrons, and

non spin-polarized ones for those with an even number of electrons. LDA is used for the exchange-

correlation potential. Only valence electrons are considered explicitly, and their interactions with

ionic cores are described by pseudopotentials including scalar-relativistic effects. Molecular orbitals

and electronic charge-density are expanded in terms of plane-waves. Since we are only interested

in finite systems, i.e., isolated gold clusters, all the calculations were performed in supercells that

are large enough such that the spurious Coulomb interactions between the system and its images in

neighboring cells do not influence much the calculated results. To converge the DFT calculations,

whenever necessary, we use either the Fermi-Dirac smearing technique with a smearing parameter

not larger than 0.0001 Ry, or a fixed electronic configuration in which an equal fractional occupancy

is enforced for each of the degenerate HOMOs in the open-shell. The evaluation of the IP and the

EA at the ∆SCF level involves the calculation of the total energy of charged clusters. In order

to obtain a well-converged value for the total energy of a charged cluster, the Martyna-Tuckerman

approach [114] is used to subtract the contribution due to the spurious Coulomb interactions between

the system and its images.

Table 3.1: Lattice constant a0 (in Å) and bulk modulus B0 (in GPa) of bulk gold, calculated with the three pseu-

dopotentials that we use to study gold clusters, and comparison with those calculated with the scalar-relativistic

all-electron full-potential linearized-augmented-plane-wave method and with the experimental values.

a0 B0

Au.pz-d-rrkjus.UPF 7.65 192

No semicore pseudopotential 7.65 196

Semicore pseudopotential 7.62 196

All-electron FPLAPW [116] 7.66 198

Experiment [116] 7.67 172

In the study reported in this chapter, we use three LDA pseudopotentials for the Au atom whose

electronic configuration is [Xe]4f145d106s1. The ultrasoft pseudopotential Au.pz-d-rrkjus.UPF from

the QE distribution is used for DFT-LDA structural optimizations, with a kinetic energy cutoff of

40 Ry and 600 Ry for plane-waves representing molecular orbitals and charge-density, respectively.

In this pseudopotential, the Au 5d and 6s electrons are treated as the valence ones. Since our GW

schemes have only been implemented for norm-conserving pseudopotentials and we do not have at

hand any available LDA one for the Au atom, we generated two norm-conserving pseudopotentials

with Perdew-Zunger LDA exchange-correlation potential [117] ourselves, by using the ld1.x code of

the QE package. The first norm-conserving pseudopotential was generated in a semi-local form with

the Rabe-Rappe-Kaxiras-Joannopoulos method [118]. In common with most other pseudopotentials

for the Au atom used in DFT calculations, this pseudopotential treats the Au 5d and 6s electrons
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as the valence ones, resulting in a total number of 11 valence electrons. In addition, the empty 6p

electrons are also considered. A pseudization radius of 1.8 Bohr, 2.8 Bohr and 3.3 Bohr is used for

the 5d, 6s and 6p electrons, respectively. We call this pseudopotential the no semicore pseudopoten-

tial. The second norm-conserving pseudopotential was generated in a fully non-local form with the

Troullier-Martins method [119]. In this pseudopotential, in addition to the Au 5d and 6s electrons,

the Au semicore 5s and 5p electrons are also included in the valence manifold, resulting in a total

number of 19 valence electrons. Similarly to the first norm-conserving pseudopotential, the empty

6p electrons are also considered. A pseudization radius of 0.95 Bohr, 1.0 Bohr and 1.1 Bohr is used

for the s (5s and 6s), p (5p and 6p) and d (5d) electrons, respectively. We call this pseudopotential the

semicore pseudopotential. In the calculations performed with the no semicore pseudopotential, we

use a kinetic energy cutoff of 60 Ry for representing molecular orbitals, while in the cases where the

semicore pseudopotential is used, a cutoff as large as 120 Ry is required to converge the calculated

results. To test these three pseudopotentials, in Table. [3.1] we compare the calculated lattice con-

stant and bulk modulus of bulk gold with those calculated by using the scalar-relativistic all-electron

full-potential linearized-augmented-plane-wave (FPLAPW) method and also with the experimental

values. All the three pseudopotentials are good in quality, since they produce results that are very

close to the all-electron ones on the one hand, and agree well with the experimental values on the

other hand.

For neutral gold clusters, we use a large cubic supercell with an edge of 50 Bohr to perform struc-

tural optimizations and ∆SCF calculations. Supercells of different sizes are used in GW calculations

of neutral gold clusters containing a different number of atoms. In particular, we use a cubic super-

cell with an edge of 20 Bohr for Au and Au2, an orthorhombic supercell of 25× 25× 20 Bohr3

for Au3, Au4, Au5 and Au6, an orthorhombic supercell of 30× 30× 24 Bohr3 for Au7 and Au8,

and a cubic supercell with an edge of 35 Bohr for Au20 and Au32. We use orthorhombic super-

cells for AuN (N = 3− 8) since only planar structures are considered for them, with the plane of

the structure lying parallel to the supercell face with the largest area. For each cluster, in the eval-

uation of both the exchange and the correlation terms of the self-energy, we truncate the spurious

Coulomb interactions by using a truncation radius as large as half of the length of the longest edge

of the supercell. The sizes of the supercells chosen for the GW calculations ensure that, for frontier

molecular orbitals, the convergence in the DFT-LDA energy levels is within ∼ 0.02 eV and that in

the corresponding perturbative Hartree-Fock energies1 is within ∼ 0.05 eV.

An optimal polarizability basis is constructed for each neutral gold cluster by using a cutoff

E? = 5 Ry and a threshold q? < 10 Bohr3 (see Eq. (2.13) and Eq. (2.15)), which guarantees that

the constructed basis is small, and the convergence in the calculated quasiparticle energies of frontier

molecular orbitals is within ∼ 0.1 eV. 30 and 200 Lanczos steps are used for the evaluation of the

1The perturbative Hartree-Fock energy is calculated as the sum of the DFT-LDA energy and the exchange contribution to

the self-energy.
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irreducible polarizability and the self-energy, respectively, and have been checked to make sure

that the convergence in the calculated quasiparticle energies of frontier molecular orbitals is within

∼ 0.02 eV.

Overall, the convergence in ∆SCF results for the IP and the EA is well within 0.01 eV. A final

convergence of ∼ 0.15 eV is estimated for the calculated GW quasiparticle energies around frontier

molecular orbitals, with convergence in the corresponding DFT energy levels within ∼ 0.02 eV.

3.2 Electronic Properties of Small Gold Clusters AuN (N = 1− 8)

In this section, we present the results for small neutral gold clusters AuN (N = 1− 8). Several

aspects concerning equilibrium geometries, molecular orbitals, ionization potentials, electron affini-

ties, and electronic densities of states are discussed.

3.2.1 Equilibrium Geometries

As mentioned, the geometries of neutral gold clusters were optimized with DFT-LDA by using

the Au.pz-d-rrkjus.UPF pseudopotential from the QE distribution. In Fig. [3.1], we display the

equilibrium geometries for low energy structures of AuN (N = 2− 8). At each cluster size, only

structures corresponding to a calculated total energy within ∼ 0.2 eV from the lowest energy one

are considered. This is because 0.2 eV is the typical accuracy of DFT calculations for the total energy

of these systems [21, 22]. Candidate low energy structures are taken from the literature [24–31].

In the size range N = 4− 8, all the low energy structures are found to be planar. The tendency

of small gold clusters to favor planar structures has been attributed to the strong relativistic effects

in gold [37, 38]. We find that there are several energetically competing structures for Au3, Au4 and

Au7, respectively. In particular, for Au3, the lowest energy structure is the obtuse-angle triangular

structure 3a, which is actually a Jahn-Teller distorted structure of the equilateral triangular structure

3b. Only one low energy structure is found for Au5, Au6 and Au8, respectively. When there are

several energetically competing low energy structures at the same cluster size, due to the intrinsic

limitation of the accuracy of DFT calculations, we can not determine which structure is actually the

ground-state one by only looking at the calculated total energies.

Different studies may have found different total energy orderings for the various structures at

different cluster sizes, but most of them found the same set of low energy structures [24–31]. To the

best of our knowledge, the lowest energy structure at each cluster size of neutral AuN (N = 3− 8)

hasn’t been determined experimentally yet, expect for Au7, for which the 7a structure has been

determined as the lowest energy one by a combined study of the vibrational spectroscopy from DFT

calculations and experiment [23].
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Figure 3.1: Equilibrium geometries for low energy structures at each cluster size of AuN (N = 2 − 8). Struc-

tural parameters are given along with each structure, with bond lengths given in Å, and the structural symmetry

is listed inside the parenthesis beside the structural label. For some structures, the relative energy ∆E (in eV)

from the lowest energy structure at the same cluster size is also presented. The structural labels here are used

throughout the rest of this thesis.
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3.2.2 Molecular Orbitals

In Fig. [3.2], we display (the moduli square of) the HOMO(s) and the LUMO calculated from DFT-

LDA, for different structures of AuN (N = 2− 8). For the structures 3b and 7b, with which neutral

gold clusters become open-shell molecules, we plot the half-occupied two-fold degenerate HOMOs

in the open-shell. The HOMOs of the Au6 cluster are also two-fold degenerate, but they are fully

occupied instead of being half occupied. For the Au3 cluster with the 3d structure, the HOMO and

the LUMO are almost degenerate, and the Fermi-Dirac smearing technique used to converge the

DFT calculation results in fractional occupancies for them2. Here the fact that the HOMO is almost

degenerate with the LUMO is not due to the structural symmetry, since the degeneracy can be broke

by changing the bond length while keeping the D∞h symmetry of the structure.

For the Au atom, the Au3 cluster with the 3c structure, the Au5 cluster, and the Au7 cluster with

the 7a or 7c structure, the HOMO belongs to the majority spin channel while the LUMO belongs

to the minority spin channel. For the Au3 cluster with the 3b structure and the Au7 cluster with

the 7b structure, the half-occupied two-fold degenerate HOMOs in the open-shell both belong to the

majority spin channel. For the Au3 cluster with the 3d structure, the HOMO and the LUMO both

belong to the minority spin channel.

The shapes of molecular orbitals reflect the symmetry of the structure. When a state is non-

degenerate with any other state, its charge-density must have the same symmetry as the structure.

An example is for the non-degenerate LUMO of the Au6 cluster, which is displayed in Fig. [3.2]. In

constrast, when a state is degenerate with any other state due to the structural symmetry, its charge-

density does not necessarily possess the same symmetry as the structure, but the equally weighted

linear combination of the charge-densities of the degenerate states must. For example, as displayed

in Fig. [3.2], the charge-density of each of the two-fold degenerate HOMOs of the Au6 cluster does

not possess the same D3h symmetry as the structure, but it can be shown that the equally weighted

linear combination of them has exactly the D3h symmetry. Moreover, in any case, a molecular orbital

should belong to an irreducible representation associated with the structural symmetry.

3.2.3 Ionization Potentials

In Table. [3.2], we report the (vertical) IPs of AuN (N = 1− 8) calculated at different levels of

theory, and compare them with experiment. For the GW calculations of two open-shell molecules,

the Au3 cluster with the 3b structure and the Au7 cluster with the 7b structure, the first HOMO in

the open-shell displayed in Fig. [3.2] is treated as fully occupied, while the other HOMO is treated

as fully unoccupied. Our scheme for open-shell molecules is also used in the GW calculation of

2We use a smearing parameter of 0.00001 Ry. By using the no semicore norm-conserving pseudopotential, we find that

the HOMO is ∼ 91.2% occupied and the LUMO is ∼ 8.8% occupied, with an energy difference between them as small as

0.6 meV. By using the semicore norm-conserving pseudopotential, we find that the HOMO is ∼ 93.8% occupied and the

LUMO is ∼ 6.2% occupied, with an energy difference between them as small as 0.8 meV.
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Table 3.2: Vertical ionization potentials for different structures of AuN (N = 1 − 8), calculated from: DFT-

LDA with Au semicore states in valance (LDA), GW without Au semicore states in valence (GWnsc), GW

without Au semicore states in valence and with the exchange correction to the self-energy (GWX
sc), GW without

Au semicore states in valence and with both the exchange and the correlation corrections to the self-energy

(GWXC
sc ,), GW with Au semicore states in valence (GWsc), and ∆SCF with Au semicore states in valence

(∆SCF). The calculated results are compared with the experimental values. All energies are in eV.

Cluster LDA GWnsc GWX
sc GWXC

sc GWsc ∆SCF Expt [19]

1 6.31 8.79 9.66 9.58 9.76 9.89 9.23

2 6.52 7.78 9.86 9.66 9.77 9.90 9.50

3a 4.92 6.88 7.37 7.24 7.50 7.42 7.50

3b 4.91 6.88 7.13 7.00 7.26 7.36

3c 6.29 7.33 8.72 8.51 8.72 8.77

3d 6.39 7.10 8.68 8.59 8.97 9.12

4a 5.86 6.85 8.48 8.17 8.30 8.27 8.60

4b 6.08 6.67 8.41 8.47 8.60 8.65

5 5.62 6.89 7.63 7.44 7.63 7.82 8.00

6 6.04 6.59 8.98 8.42 8.64 8.34 8.80

7a 5.44 6.48 7.38 7.13 7.52 7.41 7.80

7b 4.96 6.74 6.77 6.62 6.92 6.88

7c 5.73 6.14 7.63 7.42 7.64 7.66

8 5.88 5.97 8.65 8.15 8.37 7.93 8.65
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the Au3 cluster with the 3d structure, with the HOMO treated as fully occupied while the LUMO

treated as fully unoccupied. In the cases of the Au atom, the Au2, Au5, Au6 and Au8 clusters,

where we find only one low energy structure at the theoretical level, the IPs calculated at the GW

semicore and ∆SCF levels are in good agreement with experiment. In the cases of the Au3, Au4

and Au7 clusters, where we find more than one low energy structures, the IPs calculated at the

GW semicore and ∆SCF levels for the lowest energy structure at each cluster size also agree well

with experiment. In fact, for the lowest energy structure at each cluster size, we find that the IP

calculated at the GW semicore level agrees better with experiment than that calculated at the ∆SCF

level, except for Au5, for which the IP calculated at the GW semicore level is 0.19 eV further

from experiment than that calculated at the ∆SCF level. The good agreement between the GW

semicore results and the experimental values indicates that the IPs of neutral gold clusters can be

calculated accurately at the GW semicore level. As mentioned before, since the IPs calculated at the

∆SCF level are usually pretty accurate for finite systems, they can be used as a first reference when

the experimental values or more accurate quantum chemistry results are not available. The good

agreement between the IP calculated at the GW semicore level and that calculated at the ∆SCF level

for each considered structure further demonstrates the good accuracy of the GW semicore results.

Furthermore, for all the structures considered, the IPs calculated at the GW semicore level are often

severely underestimated by the DFT-LDA and GW no semicore calculations, but are generally well

reproduced by the GW no semicore +X and GW no semicore +XC calculations, thus proving the

good quality of the simplified scheme that we use to account for the semicore effects.

When compared with the experimental values, the IPs calculated at the GW semicore level (also

those calculated at the GW no semicore+X, GW no semicore +XC and ∆SCF levels) can help to

identify the structures of gold clusters appearing in experiment. Since the IPs calculated at the GW

semicore level for the 3c and 3d structures, being 8.72 eV and 8.97 eV respectively, are much larger

than the experimental value of 7.50 eV for Au3, the structure appearing in experiment can not be

the 3c or 3d structure. For Au4, since the IPs calculated at the GW semicore level for the 4a and 4b

structures, being 8.30 eV and 8.60 eV respectively, are close to each other and both agree with the

experimental value of 8.60 eV, we can not tell which structure is the one appearing in experiment

by only comparing the calculated IPs with experiment. The same thing happens to Au7, for which

close IP values in agreement with experiment are found at the GW semicore level for the 7a and 7c

structures. In the cases of the Au5, Au6 and Au8 clusters, where only one low energy structure is

found at each cluster size, the good agreement between the IPs calculated at the GW semicore level

and the experiment values suggests that the structures found are very likely to be the ones appearing

in experiment.

Since there may be energy level crossings after applying the GW quasiparticle energy corrections

to the LDA energy levels, the GW HOMO state is not necessarily the LDA HOMO state3. We

3LDA HOMO and GW HOMO in the sense of considering both spin channels.
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find two cases where energy level crossing occurs to the GW semicore HOMO state: for Au2, the

GW semicore HOMO state corresponds to the LDA HOMO-2 state, with a crossing energy (the

difference between the GW quasiparticle energy correction for the GW HOMO state and that for the

LDA HOMO state) of 0.61 eV; for the Au3 cluster with the 3d structure, the GW semicore HOMO

state corresponds to the LDA HOMO-2 state of the majority spin channel, with a crossing energy of

1.71 eV. The Au8 cluster is the only case where the GW no semicore +X, GW no semicore +XC and

GW semicore HOMO states do not correspond to the same state. In this case, the GW no semicore

+XC and GW semicore HOMO states indeed correspond to the LDA HOMO state, but the GW no

semicore +X HOMO state corresponds to the LDA HOMO-4 state4, with a crossing energy of 0.86

eV. However, between the LDA HOMO-4 state and the LDA HOMO state, there is only a 0.14 eV

difference in the calculated GW no semicore+X energies. More energy level crossings for the GW

HOMO state are found at the GW no semicore level. The crossing energy for the GW HOMO state

can be as large as ∼ 2 eV.
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Figure 3.3: Vertical ionization potentials for the lowest energy structure at each cluster size of AuN

(N = 1 − 8), calculated from: DFT-LDA with Au semicore states in valance (LDA semicore), GW without

Au semicore states in valence (GW no semicore), GW without Au semicore states in valence and with the

exchange correction to the self-energy (GW no semicore +X), GW without Au semicore states in valence and

with both the exchange and the correlation corrections to the self-energy (GW no semicore +XC), GW with

Au semicore states in valence (GW semicore), and ∆SCF with Au semicore states in valence (∆SCF). The

calculated results are compared with the experimental values (Experiment).

In Fig. [3.3], we plot the IPs calculated at different levels of theory for the lowest energy structure

at each cluster size, and compare them with experiment. Again, we see that while the DFT-LDA and

4Note that there is two-fold degeneracy in the LDA HOMO-1 states.
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GW no semicore calculations often severely underestimate the experimental IPs, the GW semicore

and ∆SCF calculations give results that are in good agreement with experiment, with the GW semi-

core results generally agreeing better with the experimental values than the ∆SCF results; by using

our simplified scheme to account for the semicore effects, the GW semicore results are well repro-

duced by the GW no semciore +X and GW no semicore +XC calculations, with the GW no semicore

+XC curve being almost a small constant shift down of the GW semicore one. Even-odd oscillations

are found for all the IP curves except for the GW no semicore one, with the IPs of the clusters with

an even number of atoms larger than that of its odd-numbered neighbors. This oscillatory behavior

can be explained by the electron spin-pairing effect: an electron in a spin-paired orbital (an orbital

occupied/unoccupied by two electrons with different spins) feels a stronger effective core potential,

due to the fact that the electron screening is weaker for electrons in the same orbital than inner-shell

electrons. Since the orbitals of even-numbered neutral gold clusters are paired in spin, while those

of odd-numbered ones are not, it is more difficult to remove an electron from an even-numbered

neutral gold cluster, indicating that they are more stable than neighboring odd-numbered ones. The

GW no semicore curve does not show any obvious oscillatory behavior. This is because on the one

hand, the IPs calculated at the GW no semicore level are not the correct GW IPs; on the other hand,

the GW no semicore HOMO state often does not correspond to the GW semicore one, which should

be the correct HOMO state at the GW level.

In Fig. [3.4], we display the exchange term of the self-energy for the state that corresponds to

the GW semicore HOMO state, calculated at different levels of GW theory, for the lowest energy

structure at each cluster size. The exchange term at the GW no semicore +X or GW no semicore +XC

level is the same as that at the GW semicore level, thus is not plotted separately. Compared with the

GW semicore calculations, the GW no semicore calculations severely underestimate the exchange

contribution to the self-energy, due to the neglect of the semicore effects. The only exception is in

the case of the Au atom, where good agreement is found between the GW no semicore and GW

semicore results. This is due to the fact that the LDA HOMO state to which the GW quasiparticle

energy correction is applied has almost no contribution from the Au 5d states, thus its exchange

term is not affected much by the presence or not of the Au semicore 5s and 5p states in the valence.

Even-odd oscillations are also found for the exchange term of the self-energy, with the values for

even-numbered clusters smaller than those for neighboring odd-numbered ones. This is because the

electrons in a spin-paired orbital feel a stronger effective core potential, so that their orbitals are more

localized compared with those in non spin-paired cases. As a result, the overlaps of the orbitals of

even-numbered clusters are larger than those of odd-numbered ones, leading to a smaller value of

the exchange term. In the size range N = 1− 8, both the magnitudes and the oscillation amplitudes

of the exchange have the tendency of increasing with the cluster size.

In Fig. [3.5], we display the correlation term of the self-energy for the state that corresponds to

the GW semicore HOMO state, calculated at different levels of GW theory, for the lowest energy
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from GW without Au semicore states in valence (GW no semicore), and GW with Au semicore states in valence

(GW semicore), for the lowest energy structure at each cluster size of AuN (N = 1 − 8). All calculated energies

correspond to the HOMO levels of the GW semicore calculations.
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Figure 3.5: Dependence of the correlation term of the self-energy as a function of the cluster size N, calculated

from GW without Au semicore states in valence (GW no semicore), GW without Au semicore states in valence

and with the exchange correction to the self-energy (GW no semicore +X), GW without Au semicore states in

valence and with both the exchange and the correlation corrections to the self-energy (GW no semicore +XC),

and GW with Au semicore states in valence (GW semicore), for the lowest energy structure at each cluster size

of AuN (N = 1 − 8). All calculated energies correspond to the HOMO levels of the GW semicore calculations.
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structure at each cluster size. In contrast to the behavior of the exchange term, the correlation

term calculated at the GW no semicore level agrees much better with that calculated at the GW

semicore level. This is as expected, since the semicore effects influence mainly to the exchange

term and should not affect much the correlation one. With our simplified scheme to account for the

semicore effects, the GW no semicore +X and GW no semicore +XC calculations reproduce well

the correlation term calculated at the GW semicore level. In addition, the GW no semicore +XC

curve is almost a small constant shift up of the GW semicore one. Even-odd oscillations are found

again, for the correlation term of the self-energy. Differently from the exchange term, the correlation

term oscillates in an opposite direction, with the value for an even-numbered cluster in most cases

larger than those of neighboring odd-numbered ones. In the size range N = 1− 8, similarly to the

case of the exchange, both the magnitudes and the oscillation amplitudes of the correlation have the

tendency of increasing with the cluster size.

3.2.4 Electron Affinities

In Table. [3.3], we compare the (vertical) EAs of AuN (N = 1− 8) calculated at different levels of

theory. For the Au atom, the calculated EAs are also compared with experiment, while for the other

clusters, no experimental EA values are available for comparison. For the EA of the Au atom, the

experimental value of 2.31 eV is best reproduced by the ∆SCF result of 2.63 eV, and reasonably

well reproduced by the different GW ones, but is severely overestimated by the LDA one of 5.77

eV. For each multi-atomic structure, DFT-LDA also overestimates the EA calculated from ∆SCF,

which is supposed to be a good first reference value. The EAs calculated at different levels of GW

theory generally agree well with each other. This is because the empty states responsible for the EAs

have very little, if any, Au 5d character, so that the corresponding quasiparticle energies are hardly

affected by any semicore effects. However, compared with the ∆SCF results, the calculated EAs are

systematically larger at the different levels of GW theory. This is to be expected, since at the DFT

level, the low-lying empty states for small neutral gold clusters are weakly bounded, thus are usually

not good starting points in GW calculations for the evaluation of the corresponding quasiparticle

energies, including the calculation of the EAs. Therefore, for the GW calculations of small neutral

gold clusters, we do not expect a quality for the EAs as good as that for the IPs. We think that the

quality may be improved if some degree of self-consistency is added in the GW calculations.

There are also a few cases where energy level crossing occurs to the GW LUMO state, but the

crossing energy (in this sense the difference between the GW quasiparticle energy correction for the

GW LUMO state and that for the LDA LUMO state) is in a much smaller scale than that for the GW

HOMO state, and in any case is smaller than 0.4 eV. At all four levels of GW theory, the GW HOMO

states always correspond to the same state. The only exception is for the Au3 cluster with the 3b

structure, where although the GW no semicore HOMO sate corresponds to the LDA HOMO state in

the open-shell that is treated as fully occupied in the GW calculation, the GW no semicore+X, GW
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Table 3.3: Vertical electron affinities for different structures of AuN (N = 1 − 8), calculated from: DFT-LDA

with Au semicore states in valance (LDA), GW without Au semicore states in valence (GWnsc), GW with-

out Au semicore states in valence and with the exchange correction to the self-energy (GWX
sc), GW without

Au semicore states in valence and with both the exchange and the correlation corrections to the self-energy

(GWXC
sc ), GW with Au semicore states in valence (GWsc), and ∆SCF with Au semicore states in valence

(∆SCF). The calculated electron affinities for the Au atom are also compared with experiment. All energies

are in eV.

Cluster LDA GWnsc GWX
sc GWXC

sc GWsc ∆SCF Expt [120]

1 5.77 3.24 2.92 2.88 2.78 2.63 2.31

2 4.59 2.75 2.51 2.42 2.70 2.08

3a 4.88 2.93 2.88 2.75 2.95 2.34

3b 4.91 3.17 3.13 3.01 3.21 2.36

3c 6.01 3.81 4.45 4.21 4.39 3.57

3d 6.39 4.69 4.57 4.48 4.58 4.00

4a 4.88 2.96 3.11 2.96 3.23 2.68

4b 4.95 3.26 3.38 3.24 3.47 2.82

5 5.37 3.57 3.98 3.77 3.88 3.29

6 4.08 2.85 2.81 2.67 2.94 2.28

7a 5.25 3.58 4.17 3.91 3.81 3.38

7b 4.96 3.49 3.54 3.39 3.61 2.99

7c 5.56 4.04 4.28 4.10 4.03 3.68

8 4.69 3.34 3.41 3.25 3.47 2.99

70



no semicore+XC and GW semicore HOMO states all correspond to one of the two-fold degenerate

LDA LUMO states of the minority spin channel5.
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Figure 3.6: Vertical electron affinities for the lowest energy structure at each cluster size of AuN (N = 1 − 8),

calculated from: DFT-LDA with Au semicore states in valance (LDA semicore), GW without Au semicore

states in valence (GW no semicore), GW without Au semicore states in valence and with the exchange correc-

tion to the self-energy (GW no semicore +X), GW without Au semicore states in valence and with both the

exchange and the correlation corrections to the self-energy (GW no semicore +XC), GW with Au semicore

states in valence (GW semicore), and ∆SCF with Au semicore states in valence (∆SCF).

In Fig. [3.6], we compare the EAs calculated at different levels of theory for the lowest energy

structure at each cluster size. Again, we find that the ∆SCF results are severely overestimated by

the LDA ones; the EAs calculated at different levels of GW theory agree well with each other, but

systematically overestimate those calculated from ∆SCF. There are even-odd oscillations in the

size range N = 1− 3 and N = 5− 8 for all the EA curves, with the direction of the oscillations

opposite with respect to that for the IPs in Fig. [3.3]. The oscillations indicate that odd-numbered

neutral gold clusters are more willing to accept one more electron, so as to become more stable by

making its orbitals paired in spin. The oscillation amplitudes of the calculated EAs are smaller than

those of the calculated IPs in Fig. [3.3]. The magnitudes of the calculated EAs have the tendency of

increasing with the cluster size.

In Fig. [3.7], we display the exchange term of the self-energy for the state that corresponds to

the GW semicore LUMO state, calculated at different levels of GW theory, for the lowest energy

structure at each cluster size. For the exchange term, the differences between the GW no semicore

and GW semicore curves are much smaller than those in Fig. [3.4], due to the fact that the semicore

5The two-fold degeneracy in the energy levels is broke by our compromised GW scheme for open-shell molecules.
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Figure 3.8: Dependence of the correlation term of the self-energy as a function of the cluster size N, calculated

from GW without Au semicore states in valence (GW no semicore), GW without Au semicore states in valence

and with the exchange correction to the self-energy (GW no semicore +X), GW without Au semicore states in

valence and with both the exchange and the correlation corrections to the self-energy (GW no semicore +XC),

and GW with Au semicore states in valence (GW semicore), for the lowest energy structure at each cluster size

of AuN (N = 1 − 8). All calculated energies correspond to the LUMO levels of the GW semicore calculations.
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effects do not affect that much the exchange energies for empty states. Even-odd oscillations due

to the electron spin-paring effect exist for both curves in the size range N = 4− 8. The oscillation

direction is opposite with respect to those in Fig. [3.4], and the oscillation amplitudes are corre-

spondingly smaller. Both the magnitudes and the oscillation amplitudes of the exchange have the

tendency of increasing with the cluster size.

In Fig. [3.8], we display the correlation term of the self-energy for the state that corresponds to

the GW semicore LUMO state, calculated at different levels of GW theory, for the lowest energy

structure at each cluster size. Good agreement is found between the results calculated at different

levels of GW theory, due to the fact that the semicore effects do not influence much the correlation

term of the self-energy. Some even-odd oscillations exist for all the four curves, with the oscillation

amplitudes smaller than those in Fig. [3.5]. The magnitudes of the correlation have the tendency of

decreasing as the cluster size increases.

3.2.5 Electronic Densities of States

In Figs. [3.9]-[3.22], we display the electronic density of states (DOS) calculated at the LDA level

or the GW semicore level, for each considered structure of AuN (N = 1− 8). The corresponding

projected density of states (PDOS) from the Au 5d, 6s or 6p states is also plotted. In Appendix

A, we also present the DOS spectrum and the corresponding PDOS spectra calculated at the GW

no semicore level and those calculated by using our simplified scheme to account for the effects of

the Au semicore 5s and 5p states, and compare them with those calculated at the LDA and GW

semicore levels. We do not compare the calculated DOS spectra with experiment, since it is difficult

to perform photoemission experiments for neutral gold clusters and the corresponding experimental

spectra are unavailable at this moment.

For each structure, the LDA DOS spectrum is in general quit different from the GW semicore

one, particularly concerning the peak positions. However, there are some similarities between the

shape of the DOS spectrum at the LDA level and that at the GW semicore level, often in the lowest

and highest energy valence parts and the lowest energy conduction part. Most major differences are

usually present in the middle energy parts of the valence DOS spectra. It can be seen that DFT-

LDA calculations can provide some useful information about the quasiparticle spectra, especially

considering the spectrum shapes, but they are evidently incapable of predicting the absolute peak

positions, for which GW calculations would be needed. We see that for Au3, Au4 and Au7, although

the calculated total energies are close between the different structures at the same cluster size, the

calculated DOS spectra always display major differences in peak numbers, shapes or positions. The

different characters in the GW DOS spectra can help to identify the ground-state structures once the

corresponding experimental photoemission spectra become available.

For each structure, the HOMO-LUMO gap is small at the LDA level, but is opened largely at

the GW semicore level. At the LDA level, the calculated HOMO-LUMO gap for an odd-numbered
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Figure 3.9: Electronic densities of states

for the Au atom, calculated from: (a)

DFT-LDA with Au semicore states in va-

lence (upper half of the figure), (b) GW

with Au semicore states in valence (lower

half of the figure). In subfigure (a) or

(b), the upper/lower half is for the major-

ity/minority spin channel. For each spin

channel, the projected density of states

from the Au 5d (blue), 6s (red) or 6p

(green) states is plotted together with the

total density of states (gray). The dashed

magenta line represents the Fermi level for

the LDA semicore calculation. A Gaussian

broadening of 0.1 eV has been used.
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Figure 3.10: Electronic densities of states

for Au2, calculated from: (a) DFT-LDA

with Au semicore states in valence, (b)

GW with Au semicore states in valence.

In each subfigure, the projected density of

states from the Au 5d (blue), 6s (red) or 6p

(green) states is plotted together with the

total density of states (gray). The dashed

magenta line represents the Fermi level for

the LDA semicore calculation. A Gaussian

broadening of 0.1 eV has been used.
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Figure 3.11: Electronic densities of states

for the 3a structure of Au3. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.12: Electronic densities of states

for the 3b structure of Au3. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.13: Electronic densities of states

for the 3c structure of Au3. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.14: Electronic densities of states

for the 3d structure of Au3. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.15: Electronic densities of states

for the 4a structure of Au4. The different

lines in this figure have the same meaning

as those in Fig. [3.10].
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Figure 3.16: Electronic densities of states

for the 4b structure of Au4. The different

lines in this figure have the same meaning

as those in Fig. [3.10].
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Figure 3.17: Electronic densities of states

for Au5. The different lines in this fig-

ure have the same meaning as those in Fig.

[3.9].
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Figure 3.18: Electronic densities of states

for Au6. The different lines in this fig-

ure have the same meaning as those in Fig.

[3.10].
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Figure 3.19: Electronic densities of states

for the 7a structure of Au7. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.20: Electronic densities of states

for the 7b structure of Au7. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.21: Electronic densities of states

for the 7c structure of Au7. The different

lines in this figure have the same meaning

as those in Fig. [3.9].
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Figure 3.22: Electronic densities of states

for Au8. The different lines in this fig-

ure have the same meaning as those in Fig.

[3.10].

cluster is in general much smaller than that for an even-numbered one. In a few cases, the LDA

HOMO-LUMO gap is very small or even zero. In particular, it is zero for the 3b structure of Au3

and the 7b structure of Au7, is only 0.04 eV for the 3a structure of Au3, and is within 1 meV (thus

is almost zero) for the 3d structure of Au3. The HOMO-LUMO gap does not show in the DOS

spectrum when it is smaller than the Gaussian broadening used to smear the calculated spectrum.

For an odd-numbered cluster, at the LDA level, the shape of the DOS spectrum for the majority

spin channel is almost the same as that for the minority spin channel, with the DOS spectrum for the

majority spin channel displaced a little bit to the lower energy direction. The same thing happens

at the GW semicore level, but there is the difference that the HOMO peak, which is in the majority

spin channel, is well separated from the LUMO peak (for the 3a structure of Au3, the peak that

contains the LUMO), which is in the minority spin channel. At the GW semicore level, the only

exception is for the 3d structure of Au3, where the shape of the valence DOS spectrum for the

majority spin channel in ∼ [−11.5,−9.3] eV differs significantly from that for the minority spin

channel in ∼ [−12,−10] eV, and the HOMO peak is in the majority spin channel while the LUMO

peak is in the minority spin channel. In this case, by using our GW scheme for open-shell molecules

to treat the fractionally occupied HOMO and LUMO, which are more localized compared with the

fractionally occupied HOMOs for the 3b structure of Au3 and the 7b structure of Au7, the change in

the electronic configuration breaks partly the similarities in the shapes of the DOS spectra between

the two spin channels.

Inspection of the PDOS spectra indicates a strong Au 5d character for the valence states, thus

confirming the importance of a proper account of the Au semicore 5s and 5p contributions to the

electron self-energy operator. The strong s-d hybridization found for each considered structure of

AuN (N = 2− 8) has been attributed to the strong relativistic effects in gold, and is believed to be

responsible for the enhanced stabilities in planar structures of small gold clusters [37, 38]. For each

structure, both the HOMO and LUMO peaks (or the peaks that contain the HOMO or the LUMO)

have strong or non-negligible contributions from the Au 6s states. In particular, the HOMO and
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LUMO peaks for the Au atom are formed solely by the Au 6s states. The only exceptions are for

the highest-lying valence peak for Au2 at the LDA level, the HOMO peaks for Au6 and Au8 at both

the LDA and GW semicore levels. In these cases the peaks are mainly of 5d character and have very

little contribution (in the cases of Au2 and Au6) or almost no contribution (in the case of Au8) from

the Au 6s states. In the case of Au2, after applying the GW quasiparticle energy corrections, the

LDA HOMO state and the two-fold degenerate LDA HOMO-1 states that give rise to the highest-

lying valence peak at the LDA level do not contribute any more to the highest-lying valence peak

at the GW semicore level (the GW semicore HOMO peak). At the GW semicore level, the HOMO

peak is given by the LDA HOMO-2 state, which is mainly of 6s character. The energy crossing for

the GW HOMO state here is due to the strong 5d character, which makes the LDA HOMO state

and the LDA HOMO-1 states more sensitive to the GW quasiparticle energy corrections, so that

their energies become lower than that of the neighboring LDA HOMO-2 state which has strong 6s

character.

3.3 Electronic Properties of Au20 and Au32

As mentioned before in this thesis, due to the strong relativistic effects in gold, small gold clusters

favor planar structures even at relatively large cluster sizes. An extension to the tendency of small

gold clusters to display planar structures is that larger gold clusters can have interesting quasi two-

dimensional structures. For example, a hollow tetrahedral structure was found as the lowest energy

structure for the neutral and anionic Au20 clusters [32]. The correctness of this finding has been

confirmed by combined theoretical and experimental investigations [23, 32]. Another example is

that DFT studies predicted that the lowest energy structure for the neutral and anionic Au32 clusters

is an icosahedral cage [33, 34, 121]. Unlike other cagelike structures that have been reported, this

structure is free-standing and does not contain any carbon atom. In addition, the neutral cagelike

Au32 cluster can incorporate up to 3 gold atoms inside without being strongly deformed. However,

it was found that this structure is not the most stable one observed for the anionic Au32 cluster in

the photoemission experiment, due to the contribution from the vibrational entropy to the structural

stability [121].

The common characteristics of the tetrahedral Au20 cluster and the cagelike Au32 cluster in the

neutral or anionic state are that they all possess highly symmetric structures and are highly stable at

least at the DFT level. Due to their high structural symmetry and high stability, they may have novel

physical and chemical properties, which may lead to a wide range of potential applications in areas

such as nanotechnology, catalysis, biology, medicine, and so on [6–17]. The understanding of their

electronic properties is therefore particularly important for future applications.

In this section, we study the electronic properties of the tetrahedral Au20 cluster and the cagelike

Au32 cluster in the neutral state. We have seen that the consideration of the Au semicore 5s and 5p
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states is necessary for the accurate simulation of the quasiparticle spectra of gold clusters. However,

the explicit inclusion of the semicore states in the valence requires more computational effort and

is prohibitive for the relatively large Au20 and Au32 clusters. In this work, with our simplified GW

scheme to account for the semicore effects, we are able to calculate the quasiparticle spectra for Au20

and Au32 by using moderate computational efforts without compromising much the computational

accuracy.

3.3.1 Equilibrium Geometries

Figure 3.23: Equilibrium geometry for the tetrahedral Au20 cluster.

Figure 3.24: Equilibrium geometry for the cagelike Au32 cluster.

In Fig. [3.23] and Fig. [3.24], we display the equilibrium geometries optimized with DFT-LDA

by using the Au.pz-d-rrkjus.UPF pseudopotential from the QE distribution, for the tetrahedral Au20

cluster and the cagelike Au32 cluster, respectively.

The tetrahedral Au20 cluster has Td symmetry, with each of its face being an almost planar Au10

cluster with D3h symmetry. Since this cluster has only surface atoms, it is actually a quasi two-

dimensional cluster. There are three symmetry-independent sites on this cluster, 4 three-coordinated

sites at the apexes (apex sites), 12 six-coordinated sites along the edges (edge sites), and 4 nine-

coordinated sites at the centers of the faces (face sites). There are five different types of bonds,

whose lengths are: 2.61 Å for a bond connecting two neighboring edge sites along the same edge,

2.63 Å for a bond connecting an apex site and its nearest neighboring edge sites, 2.73 Å for a bond
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connecting a face site and its nearest neighboring edge sites, 2.84 Å for a bond connecting two

nearest neighboring edge sites along different edges, and 3.01 Å for a bond connecting two face

sites.

The cagelike icosahedral Au32 cluster has the same symmetry as C60 fullerene, i.e., the Ih sym-

metry. Its structure can be obtained by capping one atom on each pentagon of a dodecahedron. Since

all the atoms lie on the surface of the cage without even a single one lying inside, this cluster is also

a quasi two-dimensional cluster. There are two symmetry-independent sites on this cluster, 12 five-

coordinated sites and 20 six-coordinated sites, and two different types of bonds, whose lengths are:

2.67 Å for the five-coordinated sites, and 2.74 Å for the six-coordinated sites.

3.3.2 Molecular Orbitals

In Fig. [3.25] and Fig. [3.26], we display the HOMOs and LUMOs calculated from DFT-LDA, for

the tetrahedral Au20 cluster and the cagelike Au32 cluster. Due to the Td symmetry of the struc-

ture, the Au20 cluster has fully-occupied two-fold degenerate HOMOs belonging to the irreducible

representation E, and fully-unoccupied three-fold degenerate LUMOs belonging to the irreducible

representation T2. Due to the Ih symmetry of the structure, the Au32 cluster has fully-occupied

four-fold degenerate HOMOs belonging to the irreducible representation Gu, and fully-unoccupied

four-fold degenerate LUMOs belonging to the irreducible representation Gg. For Au20, besides

two-fold and three-fold degenerate states, there are also non-degenerate states. And for Au32, be-

sides four-fold degenerate states, there are also non-degenerate, three-fold degenerate and five-fold

degenerate states.

3.3.3 Ionization Potentials and Electron Affinities

In Table. [3.4], we report the (vertical) IPs, the (vertical) EAs, and their differences calculated

at different levels of theory, for the tetrahedral Au20 cluster and the cagelike Au32 cluster. The

calculated IPs for Au20 are compared with experiment.

Similar patterns as in the cases of small gold clusters are found. For Au20, the IPs calculated

at the GW no semicore +X and GW no semicore +XC levels both agree well with the experimental

value. For both clusters, the IPs calculated at the GW no semicore +X and GW no semicore +XC

levels agree well with each other and both reproduce well the ∆SCF results used as a reference,

while those calculated at the LDA and GW no semicore levels severely underestimate the ∆SCF

results. As to the calculated EAs, we find again severe overestimation at the LDA level compared

with the ∆SCF results used as a first reference. In contrast to the cases of small gold clusters, the

EAs calculated at the ∆SCF level are well reproduced at all three levels of GW theory. The better

agreement between the GW results and the ∆SCF ones for Au20 and Au32 as compared with those

for small neutral gold clusters is not surprising, since for larger gold clusters, such as Au20 and
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HOMOs (E)

LUMOs (T2)

Figure 3.25: Fully-occupied degenerate HOMOs and fully-unoccupied degenerate LUMOs for the tetrahedral

Au20 cluster. The corresponding irreducible representations are given in the parentheses.

HOMOs (Gu)

LUMOs (Gg)

Figure 3.26: Fully-occupied degenerate HOMOs and fully-unoccupied degenerate LUMOs for the cagelike

Au32 cluster. The corresponding irreducible representations are given in the parentheses.
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Table 3.4: Vertical ionization potentials, vertical electron affinities, and their differences, for the tetrahedral

Au20 cluster and the cagelike Au32 cluster, calculated from: DFT-LDA with Au semicore states in valance

(LDA), GW without Au semicore states in valence (GWnsc), GW without Au semicore states in valence and

with the exchange correction to the self-energy (GWX
sc), GW without Au semicore states in valence and with

both the exchange and the correlation corrections to the self-energy (GWXC
sc ), and ∆SCF with Au semicore

states in valence (∆SCF). The calculated ionization potentials for Au20 are compared with experiment. All

energies are in eV.

Cluster Energy LDA GWnsc GWX
sc GWXC

sc ∆SCF Expt [19]

Au20 IP 5.98 6.08 7.92 7.51 7.48 7.82

EA 4.25 3.01 3.16 2.98 2.88

IP-EA 1.73 3.07 4.76 4.53 4.60

Au32 IP 6.11 5.56 7.56 7.18 7.42

EA 4.58 3.52 3.53 3.30 3.31

IP-EA 1.53 2.04 4.03 3.88 4.11

Au32, the low-lying empty states are not that weakly bounded, thus can possibly be good starting

points for the GW calculations of the corresponding quasiparticle energies.

Energy level crossings are also found for the GW HOMO and LUMO states of Au20 and Au32:

for Au20, the GW no semicore HOMO states correspond to the three-fold degenerate LDA HOMO-2

states6, with a crossing energy of 0.78 eV; for Au32, the GW no semicore HOMO states correspond

to the three-fold degenerate LDA HOMO-1 states, with a crossing energy of 0.94 eV, and the GW

no semicore +X LUMO states correspond to the five-fold degenerate LDA LUMO+1 states, with a

small crossing energy of 0.38 eV.

For each cluster, the HOMO-LUMO gap, which is calculated as the difference between the IP

and the EA, is severely underestimated at the LDA and GW no semicore levels compared with

the ∆SCF result used as a first reference. The GW no semicore +X and GW no semicore +XC

calculations open the LDA and GW no semicore HOMO-LUMO gaps and give results that are both

in good agreement with the ∆SCF one. It is worth noticing that the HOMO-LUMO gaps calculated

at the GW no semicore +X, GW no semicore +XC and ∆SCF levels are very large and much larger

than that calculated at the LDA level, further supporting that both clusters are highly stable.

3.3.4 Electronic Densities of States

In Fig. [3.27] and Fig. [3.28], we display the DOS calculated at different levels of theory for the

tetrahedral Au20 cluster and the cagelike Au32 cluster, respectively. The corresponding PDOS from

the Au 5d, 6s or 6p states is also plotted.

6Note that the LDA HOMO-1 states are three-fold degenerate.
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Figure 3.27: Electronic densities of states

for the tetrahedral Au20 cluster, calcu-

lated from: (a) DFT-LDA with Au semi-

core states in valence, (b) GW without Au

semicore states in valence, (c) GW with-

out Au semicore states in valence and with

the exchange correction to the self-energy,

(d) GW without Au semicore states in va-

lence and with both the exchange and the

correlation corrections to the self-energy.

In each subfigure, the projected density of

states from the Au 5d (blue), 6s (red) or 6p

(green) states is plotted together with the

total density of states (gray). The dashed

magenta line represents the Fermi level for

the LDA semicore calculation. A Gaussian

broadening of 0.1 eV has been used.
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Figure 3.28: Electronic densities of states

for the cagelike Au32 cluster. The differ-

ent lines in this figure have the same mean-

ing as those in Fig. [3.27].
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Similar patterns as in the cases of small gold clusters are found. For each cluster, the LDA and

GW no semicore DOS spectra are in general quit different from the GW no semicore +X and GW no

semicore +XC ones, particularly concerning the peak positions. The GW no semicore +X and GW

no semicore +XC calculations do not only produce DOS spectra that are in good agreement with

each other, especially in the conduction parts, but also open the HOMO-LUMO gap compared with

the DFT-LDA and GW no semicore calculations. Note that the GW no semicore +XC DOS spectrum

is the best quasiparticle spectrum we have for each cluster. We do not compare the calculated DOS

spectra with experiment, since the corresponding experimental photoemission spectra are unfortu-

nately not available at this moment. From the PDOS spectra, we see that there is large contribution

from the Au 5d states to the valence part of each DOS spectrum, but not to the conduction part. This

indicates why the valence part of the GW DOS spectrum depends sensitively on the Au semicore 5s

and 5p states, but the conduction part does not. In addition, strong s-d hybridization, which comes

from the strong relativistic effects responsible for the stability of these two quasi two-dimensional

clusters, is observed in the valence part of each DOS spectrum.

For Au20, although the peak positions of the DOS spectrum at the LDA level do not agree with

those at the GW no semicore +XC level (the level which gives the best theoretical quasiparticle

spectrum here), there are some similarities in the shapes of the DOS spectra. The shapes are close

between the valence DOS spectrum at the LDA level in ∼ [−13.2,−8.4] eV and that at the GW

no semicore +XC level in ∼ [−14.4,−10.4] eV, between the highest-lying valence DOS peak at

the LDA level and that at the GW no semicore +XC level, and between the first four low-lying

conduction DOS peaks at the LDA level and those at the GW no semicore +XC level. Similarities

are also present in the shapes of the corresponding PDOS spectra. Moreover, the highest-lying

valence DOS peak at the LDA level have non-negligible contributions from the Au 6s and 6p states

similar to that at the GW no semicore +XC level, and the same thing happens to the first two low-

lying conduction DOS peaks at the LDA and GW no semicore +XC levels. Major differences in the

shapes are found between the DOS valence spectrum at the LDA level in ∼ [−8.4,−6.2] eV and

that at the GW no semicore +XC level in ∼ [−10.4,−7.8] eV.

For Au32, the shapes are similar between the first four low-lying valence DOS peaks at the LDA

level and those at the GW no semicore +XC level, with similarities also found for the corresponding

PDOS spectra. The highest-lying valence DOS peak at the LDA level is larger than that at the

GW no semicore +XC level, but they both possess similar non-negligible 6s and 6p character. The

conduction DOS spectrum at the LDA level is similar to that at the GW no semicore +XC level, but

the first two low-lying conduction DOS peaks merge into one peak at the GW no semicore +XC

level at ∼ −3.3 eV, and the fourth and the fifth low-lying conduction DOS peaks at the LDA level

merge into one peak at the GW no semicore +XC level at ∼ −0.5 eV. Moreover, the first two low-

lying conduction DOS peaks at the LDA level and the lowest-lying conduction DOS peak at the GW

no semicore +XC level all have non-negligible contributions from the Au 5d and 6s states. Major
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differences in the shapes exist between the rest of the valence DOS spectrum at the LDA level and

that at the GW no semicore +XC level.

From the DOS spectra for Au20 and Au32, we see that DFT-LDA can give some useful informa-

tion about the shapes of the lowest and the highest energy parts of the valence quasiparticle spectra,

but not those of the parts with energies in between, where for both clusters the GW calculations are

needed. In addition, some information about the shapes of the low-energy parts of the conduction

quasiparticle spectra can be obtained from DFT-LDA. However, for both clusters, DFT-LDA is not

good in predicting the absolute peak positions. In this sense, GW calculations are needed for good

descriptions of the quasiparticle spectra of Au20 and Au32.
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Conclusions and Outlook

In this work, we used the GW method to study the electronic properties of small neutral gold clusters

AuN (N = 1− 8), and two larger neutral gold clusters, the tetrahedral Au20 cluster and the cagelike

Au32 cluster. At the DFT-LDA level, all the very low energy structures we considered for small

neutral gold clusters were found to be planar, while the Au20 and Au32 clusters under investigation

both have quasi two-dimensional structures.

For the GW calculations of gold clusters, we found that the explicit inclusion of the Au semi-

core 5s and 5p states in the valence manifold is essential to achieve a satisfactory accuracy in the

calculated quasiparticle spectrum. Based on this observation, we used a simplified approach to ac-

count for the effects of the Au semicore 5s and 5p states without including them fully in the GW

calculations, and demonstrated that it works well for small neutral gold clusters. Since this sim-

plified approach can reduce a lot the computational cost without compromising much the accuracy

of the calculated quasiparticle spectrum, we used it to study two larger neutral gold clusters, the

tetrahedral Au20 cluster and the cagelike Au32 cluster, which could not be tackled easily by using

more traditional GW implementation, and predicted accurately the IPs and the EAs. We addressed

the problem of molecular open-shells in GW calculations by devising a compromised scheme. This

compromised GW scheme was shown to work well for two open-shell molecules, the neutral equi-

lateral Au3 cluster and the neutral hexagonal Au7 cluster, also for the neutral linear Au3 cluster,

for which the fractional occupancies in the almost degenerate HOMO and LUMO are not due to the

structural symmetry, but result from the smearing technique used to converge the DFT calculation.

By comparing the calculated DFT-LDA DOS spectra with the corresponding GW ones, we found

that DFT calculations can provide some useful information about the quasiparticle spectra of neutral

gold clusters, especially concerning the shapes in the lowest-energy and highest-energy valence parts

and the lowest-energy conduction part. However, they were found to be incapable of describing the

absolute peak positions, for which GW calculations would be needed. For Au3, Au4 and Au7, we

saw that although the calculated total energies are close between the different structures at the same

cluster size, the calculated DOS spectra are quite different, indicating the strong dependence of the

spectra on the geometry of the structure.

Future work can proceed in several possible directions. In the first place, since in our GW scheme
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for open-shell molecules, the way of choosing integer occupancies for the degenerate HOMOs is

not unique7, it is necessary to check how the different possibilities would influence the calculated

quasiparticle energy levels. There is also the possibility to construct a new set of orthonormal orbitals

in the subspace formed by the degenerate HOMOs, and choose to use integer occupancies in GW

calculations for these new orbitals. It should be interesting to see how the results would be. Secondly,

it is straightforward to study the quasiparticle spectra of three-dimensional neutral gold clusters.

Inspection of the differences between the quasiparticle spectra of two-dimensional (including quasi

two-dimensional) and three-dimensional clusters can help us understand better the relation between

structure and electron dynamics. Thirdly, since photoemission spectra are available for a wide size

range of charged gold clusters, it would be valuable to investigate the quasiparticle spectra of charged

gold clusters, so as to make direct comparisons between theory and experiment. There should be

no essential difficulties to do so, but one needs to pay particular attention to the spurious Coulomb

interactions between the supercell and its images due to the non-zero net charge, which can influence

largely the calculated DFT energy levels and orbitals, thus also the calculated GW quasiparticle

energies. This problem can be dealt with by using the Martyna-Tuckerman approach [114], which

was also used in our ∆SCF calculations of gold clusters. Finally, since the optical excitation energies

of a neutral molecule can in principle be obtained from the difference between different conduction

quasiparticle energies of the same molecule in a positively charged state, or the difference between

different valence quasiparticle energies of the same molecule in a negatively charged state, it is

important to gain insight into whether the optical excitation energies can be obtained accurately

from GW calculations. A lot of effort may be needed in this direction, and it is possible that the level

of self-consistency and the vertex corrections have to be considered for GW calculations.

7Two ways in the case of the equilateral Au3 cluster or the hexagonal Au7 cluster that we considered in this work, since

one can choose to occupy either of the two degenerate HOMOs in the GW calculation.
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Appendix A

Electronic Densities of States for

Small Gold Clusters AuN (N = 1− 8)

In Figs. [A.1]-[A.23], we display the electronic density of states calculated at different levels of

theory for small neutral gold clusters AuN (N = 1− 8). The corresponding projected density of

states from the Au 5d, 6s or 6p states is also plotted.

For each structure, the GW semicore DOS spectrum is the best theoretical quasiparticle spectrum

that we have. Since the LDA and GW no semicore DOS spectra are always quite different from the

corresponding GW semicore one, particularly concerning the peak positions, it can be concluded that

DFT-LDA and GW no semicore calculations can not provide good descriptions of the quasiparticle

spectra of neutral gold clusters. In contrast, the GW semicore DOS spectrum is well reproduced by

our simplified scheme to account for the effects of the Au semicore 5s and 5p states. By using our

simplified scheme, with a sole exchange correction to the self-energy on top of the GW no semicore

results, there is a large improvement in the shapes and positions of the DOS peaks. With also the

addition of a correlation correction, the agreement with the GW semicore DOS spectrum is even

better. Such good agreement is found for each considered structure, and is found not only in non

spin-polarized calculations, but also in spin-polarized ones for each of the two spin channels, thus

demonstrating the correctness of this scheme. Our simplified scheme also works well in conjunction

with our scheme for the treatment of molecular open-shells. Moreover, the GW no semicore +X,

GW no semicore +XC and GW semicore calculations open the quasiparticle gap that is severely

underestimated at the LDA level. Note that with our simplified scheme, while the accuracy of

the calculated spectra is not compromised much, the computational cost compared with the GW

semicore calculations is significantly reduced.

From spin-polarized calculations of odd-numbered clusters, at a same level of theory, similarities

in the shapes and positions of the DOS peaks can always be found for the two different spin channels.

From the PDOS spectra, it can be seen that at any theoretical level the Au 5d states always contribute
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Figure A.1: Electronic densities of states

for the majority spin channel of the Au

atom, calculated from: (a) DFT-LDA with

Au semicore states in valence, (b) GW

without Au semicore states in valence, (c)

GW without Au semicore states in valence

and with the exchange correction to the

self-energy, (d) GW without Au semicore

states in valence and with both the ex-

change and the correlation corrections to

the self-energy, (e) GW with Au semicore

states in valence. In each subfigure, the

projected density of states from the Au 5d

(blue), 6s (red) or 6p (green) states is plot-

ted together with the total density of states

(gray). The dashed magenta line repre-

sents the Fermi level for the LDA semicore

calculation. A Gaussian broadening of 0.1

eV has been used.

a lot to the valence part of the DOS spectrum, but very little or almost nothing to the conduction

part. As a consequence, the valence part of the GW DOS spectrum depends sensitively on the Au

semicore 5s and 5p states, while the conduction part does not. Strong s-d hybridization is found for

all the considered structures of AuN (N = 2− 8), and comes from the strong relativistic effects in

gold which have been assumed to have large contributions to the tendency of small gold clusters to

favor planar structures [37, 38].

92



(a) LDA semicore(a) LDA semicore

(b) GW no semicore(b) GW no semicore

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

(d) GW no semicore +XC(d) GW no semicore +XC

-10 -5 0

Energy (eV)

(e) GW semicore

-10 -5 0

Energy (eV)

(e) GW semicore

Figure A.2: Electronic densities of states

for the minority spin channel of the Au

atom. The different lines in this figure have

the same meaning as those in Fig. [A.1].

(a) LDA semicore(a) LDA semicore

(b) GW no semicore(b) GW no semicore

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

(d) GW no semicore +XC(d) GW no semicore +XC

-10 -5 0

Energy (eV)

(e) GW semicore

-10 -5 0

Energy (eV)

(e) GW semicore

Figure A.3: Electronic densities of states

for Au2. The different lines in this fig-

ure have the same meaning as those in Fig.

[A.1].
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Figure A.4: Electronic densities of states

for the majority spin channel of the 3a

structure of Au3. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Figure A.5: Electronic densities of states

for the minority spin channel of the 3a

structure of Au3. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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structure of Au3. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Fig. [A.1].
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Fig. [A.1].
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Figure A.11: Electronic densities of states

for the minority spin channel of the 3d

structure of Au3. The different lines in this
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Figure A.12: Electronic densities of states

for the 4a structure of Au4. The different

lines in this figure have the same meaning

as those in Fig. [A.1].
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Figure A.13: Electronic densities of states

for the 4b structure of Au4. The different
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as those in Fig. [A.1].

98



(a) LDA semicore(a) LDA semicore

(b) GW no semicore(b) GW no semicore

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

(d) GW no semicore +XC(d) GW no semicore +XC

-10 -5 0

Energy (eV)

(e) GW semicore

-10 -5 0

Energy (eV)

(e) GW semicore

Figure A.14: Electronic densities of states

for the majority spin channel of Au5. The

different lines in this figure have the same

meaning as those in Fig. [A.1].
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Figure A.15: Electronic densities of states

for the minority spin channel of Au5. The

different lines in this figure have the same
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Figure A.16: Electronic densities of states

for Au6. The different lines in this fig-

ure have the same meaning as those in Fig.

[A.1].
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Figure A.17: Electronic densities of states
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Figure A.18: Electronic densities of states

for the minority spin channel of the 7a

structure of Au7. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Figure A.19: Electronic densities of states

for the majority spin channel of the 7b

structure of Au7. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Figure A.20: Electronic densities of states

for the minority spin channel of the 7b

structure of Au7. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Figure A.21: Electronic densities of states

for the majority spin channel of the 7c

structure of Au7. The different lines in this

figure have the same meaning as those in

Fig. [A.1].

102



(a) LDA semicore(a) LDA semicore

(b) GW no semicore(b) GW no semicore

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

D
O

S
 (

a
rb

. 
u
n
it
s
)

(c) GW no semicore +X

(d) GW no semicore +XC(d) GW no semicore +XC

-15 -10 -5 0

Energy (eV)

(e) GW semicore

-15 -10 -5 0

Energy (eV)

(e) GW semicore
Figure A.22: Electronic densities of states

for the minority spin channel of the 7c

structure of Au7. The different lines in this

figure have the same meaning as those in

Fig. [A.1].
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Figure A.23: Electronic densities of states

for Au8. The different lines in this fig-

ure have the same meaning as those in Fig.

[A.1].
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H. Grönbeck, and H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 9157 (2008).

[14] R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, Langmuir 25, 13840 (2009).

[15] M. Homberger and U. Simon, Phil. Trans. R. Soc. A 368, 1405 (2010).

[16] D. Giljohann, D. Seferos, W. Daniel, M. Massich, P. Patel, and C. Mirkin, Angew. Chem. Int. Ed. 49,

3280 (2010).

[17] W. Cai, T. Gao, H. Hong, and J. Sun, Nanotechnol. Sci. Appl. 1, 17 (2010).

104



[18] W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

[19] C. Jackschath, I. Rabin, and W. Schulze, Ber. Bunsenges. Phys. Chem. 96, 1200 (1992).

[20] C. Lemire, R. Meyer, S. Shaikhutdinov, and H.-J. Freund, Angew. Chem. Int. Ed. 43, 118 (2004).

[21] S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002).

[22] F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117,

6982 (2002).

[23] P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke,

Science 321, 674 (2008).
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