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Introduction

Given a real projective algebraic set X we could hope that the equations describing
it can give some information on its topology, e.g. on the number of its connected
components. Unfortunately in the general case this hope is too vague and there is
no direct way to extract such information from the algebraic description of X. Even
the problem to decide whether X is empty or not is far from an easy visualization
and requires some complicated algebraic machinery.
A first step observation is that as long as we are interested only in the topology of
X, we can replace, using some Veronese embedding, the original ambient space with
a much bigger RPn and assume that X is cut by quadratic equations. The price for
this is the increase of the number of equations defining our set; the advantage is that
quadratic polynomials are easier to handle and our hope becomes more concrete.
At this point, in a very naive way we can expect that a measurement of the com-
plexity of X is given by the number k+1 of quadratic equations we need to cut it in
RPn. If we define b(X) to be the sum of the Betti numbers1 of X, the well known
Oleinik-Petrovskii-Thom-Milnor inequality would give the following estimate2:

b(X) ≤ O(2(k + 1))n+1.

This bound seems to contradict our guess: the complexity of the formula is the
number of variables n which appears at the exponent.
Surprisingly enough it turns out that the fact that X is defined by quadratic equa-
tions allows to interchange the two numbers n + 1 and 2(k + 1) and to get the
bound:

b(X) ≤ O(n+ 1)2(k+1) (1)

where now the complexity is the number of quadrics, which appears at the exponent
and confirms the genuinity of our naive idea.
The previous phenomenon suggests there is a kind of duality between the number of
variables and the number of quadratic equations defining X and this duality appears
in the formula (1) where the topology of X is involved. We will see that as we
consider finer invariants of the family of quadrics cutting X, the information on its
topology becomes richer and richer - the previous bound being given by considering
only the number of equations.
To fix notations we assume little more generally that X is given by a system of
homogeneous quadratic inequalities: we consider a polyhedral cone K in Rk+1 and
a quadratic map q : Rn+1 → Rk+1, i.e. a map whose components q0, . . . , qk are real
quadratic forms, and we set

X = {[x] ∈ RPn | q(x) ∈ K}.

Notice that the previous definition makes sense because q(x) = q(−x), and the case
X is algebraic is obtained by considering the zero cone; by a slight abuse of notations
we will write q−1(K) for X.

1From now on every homology group is assumed with Z2 coefficients.
2The following bounds are not sharp; we worsened them in order to put in evidence some

symmetry.



By composing q with a nonzero covector η in the target space we obtain a quadratic
form q(η) = ηq and as the covector varies we can reconstruct q itself. We can
imagine that the map q places linearly the space (Rk+1)∗ into the the space Q(n+1)
of quadratic forms on Rn+1; in classical algebraic geometry the image of this map
is called the linear system defined by the quadrics q0, . . . , qk. In the case K is the
zero cone, i.e. X is algebraic, the common zero locus set of the nonzero elements of
the previous linear system is X itself. Alternatively, in the realm of semialgebraic
geometry, we can rewrite this fact using inequalities:

q−1(0) =
⋂
η 6=0

{ηq ≤ 0}.

In a similar fashion, for a general cone K, is not difficult to show that:

q−1(K) =
⋂

η∈K◦\{0}

{ηq ≤ 0}. (2)

The previous equation suggests that it is not the whole linear system the object we
should be interested in, but only that part of it which keeps track of the cone K,
namely its polar K◦. It is natural at this point to consider for every nonzero covector
η the simpler invariant we can associate to ηq, namely its positive inertia index. This
number, which is usually denoted by i+(ηq), is the maximal dimension of a subspace
on which ηq is positive definite; it is clearly invariant by positive multiplication of
the form ηq. Thus we are irresistibly led to define the sets

Ω = K◦ ∩ Sk and, for j ∈ N, Ωj = {ω ∈ Ω | i+(ωq) ≥ j}

in the hope that some of their geometric features can give topological information
on X.
It is clear that the knowldege of the index function does note give all the richness of
the whole quadratic map q; nevertheless the following formula should convince the
reader that we are going in the right direction. In fact, setting χ(Y ) for the Euler
characteristic of a semialgebraic set Y and CΩ for the topological space cone of Ω,
we have:

χ(X) =
n∑
j=0

(−1)n+jχ(CΩ,Ωj+1). (3)

Example (The bouquet of two cirlces). Consider the map s : R4 → R2 defined by

s(x) = (x0x2 − x2
1, x0x3 − x1x2)

and the zero cone in R2. Then s−1(0) is the subset of RP3 consisting of the rational
normal curve and a projective line intersecting at one point; this set is homeomorphic
to a bouquet of two circles. Associating to a quadratic form a symmetric matrix
by means of a scalar product, the family ηs for η ∈ Ω = S1 is represented by the
matrix:

ηS =


0 0 2η0 η1

0 −η0 −η1 0
2η0 −η1 0 0
η1 0 0 0

 η = (η0, η1) ∈ S1



The determinant of this matrix vanishes at the points ω = (1, 0) and −ω = (−1, 0);
outside of these points the index function must be locally constant. Then it is easy
to verify that i+ equals 2 everywhere except at the only point ω (the positive inertia
index of −ωs is still 2). In this case we have:

Ω1 = S1, Ω2 = S1\{ω}, Ω3 = Ω4 = ∅.

Computing formula 3 for this example gives:

χ(s−1(0)) = −(1− χ(Ω1)− 1 + χ(Ω2)) = χ(S1)− χ(S1\{ω}) = −1.

This kind of reasoning culminates in the existence of a first quadrant spectral
sequence (Er, dr) such that

Ei,j2 = H i(CΩ,Ωj+1) and E∗∞ ' Hn−∗(X) (4)

Notice that Oleinik-Petrovskii-Thom-Milnor buond applied to the sets Ωj implies
the inequality (1) and the computation of the Euler characteristic of E2, which
equals the Euler characteristic of E∞, gives equation (3).
This spectral sequence has many interesting properties; as an example consider the
problem of computing the rank of the homomorphism induced on the homology by
the inclusion ι of X in the ambient space RPn. It is remarkable that this information
is encoded in the first column of (Er, dr); in fact we have:

rk(ι∗)k = dim(E0,n−k
∞ ). (5)

Example (The bouquet of two circles; continuation). The table of ranks of E2 for
the above example is the following:

rk(E2) =

1 0 0
1 0 0
0 0 0
0 0 1

Since there are no nonzero differentials (by dimensional reasons) then E2 = E∞.
Thus (4) gives b0(s−1(0)) = 1 and b1(s−1(0)) = 2. On the other hand formula (5)
gives rk(ι∗)1 = 1, which is confirmed by the fact that s−1(0) contains a projective
line.

In the general case the spectral sequence (4) degenerates after k+2 steps and the
elements of E2 are only the candidates for the homology classes of X. We can take
them at a firts approximation, but not all of them are genuine homology classes
in X and there are some criteria to decide whether they are or not - checking if
they satisfy these criteria is the spirit of computing the differentials of the spectral
sequence. In a very precise sense the differentials are the obstructions to extend
such elements to global classes in E∞ = Hn−∗(X).
To understand such obstructions let’s do a step back and consider the structure of
the set Q(n+ 1). Once we fix a scalar product, we can identify it with the space of



symmetric (n+ 1)× (n+ 1) real matrices; in these way we define the eigenvalues of
a quadratic form p to be those of the corresponding symmetric matrix:

λ1(p) ≥ · · · ≥ λi+(p)(p) > 0 ≥ · · · ≥ λn+1(p).

If Dk is the subset of Q defined by {λk 6= λk+1}, then its complement

Sk = Q\Dk

happens to be a closed pseudomanifold of codimension 2 in Q and for a film c with
boundary in Dk the linking number of ∂c with Sk is defined. We denote by γ1,k the
cohomology class in H2(Q,Dk) representing this operation. Now consider the map

p : Ω→ Q

defined by restricting the above correspondence η 7→ ηq to Ω. In a certain sense
the pullback p∗γ1,k is exactly the first of these obstructions we were talking about.
To be more precise: for x ∈ H i(CΩ,Ωj+1) the cup product with p∗γ1,j defines, by
restriction, an element in H i+2(CΩ,Ωj) and the homomorphism:

x 7→ (x ^ p∗γ1,j)|(CΩ,Ωj), x ∈ H i(CΩ,Ωj+1) (6)

coincides with the second differential di,j2 of the previous spectral sequence.

Example (The complex squaring). Consider the quadratic forms

q0(x) = x2
0 − x2

1, q1(x) = 2x0x1.

Identifying R2 with C via (x0, x1) 7→ x0 + ix1, the map q = (q0, q1) is the complex
squaring z 7→ z2. We easily see that the common zero locus set of q0 and q1 in RP1

is empty and thus the previous spectral sequence in this case must converge to zero.
The image of the linear map q : R2 → Q(2) consists of a plane intersecting the set
of degenerate forms Z only at the origin; we identify Q(2) with the space of 2 × 2
real symmetric matrices. Thus q(S1) is a circle looping around Z = {det = 0} and
the index function is constant:

i+(ωq) = 1, ω ∈ S1.

Thus Ω1 = S1 and the table for the ranks of E2 has the following picture:

rk(E2) =
1 0 0
0 0 1

The differential d2 : E0,1
2 = H0(CΩ,Ω2)→ E2,0

2 = H2(CΩ,Ω1) must be nonzero, as
we know that E3 = 0. In this case the set S1 = {q ∈ Q |λ1(q) = λ2(q)} equals the
set of scalar matrices; we see that q(S1) is linked with this set and thus q∗γ1,1 6= 0.

Unfortunately this is not the end of the story: the description of the second
differential is just the first step to the genuine homology E∞, and higher differentials,
as one could expect, seem to be harder to compute.
The set Dk above defined has the homotopy type of a Grassmannian Gk,n+1 and if



we denote by w1,k the first Stiefel-Whitney class of its tautological bundle and by
∂∗ the connecting homomorphism for the long exact sequence of the pair (Q,Dk),
then we have the following equality:

γ1,k = ∂∗w1,k.

The description of the obstructions as characteristic classes of some vector bundle
is more customary in algebraic topology and gives some new perspectives for the
computation of higher differentials. As an example in the case the index function
is constant i+ ≡ µ, there is only one obstruction, i.e. there is only one nonzero
differential: it is the last one and equals the cup product with the pullback through
q of the k-th Stiefel-Whitney class of the tautological bundle over Dµ.

Example (The Hopf fibration). Consider the quadratic map

h : R2 ⊕ R2 → R2 ⊕ R

defined, using the previous identification R2 ' C, by

(z, w) 7→ (2zw, |w|2 − |z|2).

Then it is not difficult to prove that h maps S3 into S2 by a Hopf fibration. Hence
it follows that

∅ = h−1(0) ⊂ RP3.

In this case we have i+(ωh) = 2 for every ω ∈ Ω = S2. The following table gives the
rank for E2 = E3:

rk(E2) = rk(E3) =

1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

The class h
∗
γ2,2 ∈ H2(S2) happens to be nonzero (this fact is related with the fact

that the Hopf invariant of h is odd) and thus the cup product with it, which is the
differential d3, is nonzero; the result is that E4 = 0.

Despite these evidences, the general problem of computing higher differentials
has not been solved yet.
We should however say that in many interesting cases these higher computations
are not necessary: for example the datas for the intersection of two real quadrics in
RPn are all encoded in (4) and formulas (6) and (5). This observation leads us to
explore the beautiful combinatorics of the index function on a circle. The space of
generic3 linear systems of two quadrics has a kind of algebraic extra structure; this
extra structure allows us to label each pencil with a binary array in such a way that
performing some rules (i.e. admitted permutations) on its characters corresponds to
make generic homotopies of pencils. The combinatorial nature of these ideas leads
to a bound on each Betti number of the set of the solutions X of a system of two
quadratic inequalities in RPn:

bk(X) ≤ k + 2, k ≥ 0 (7)

3Generic with respect to a certain nondegeneracy condition



The fact that the bound (7) holds for every pencil of quadrics is a consequence of a
very peculiar fact in real algebraic geometry: equations can be made regular4 using
inequalities. To be more precise a single algebraic equation f = 0 is equivalent to
the pair of inequalities f ≤ 0 and f ≥ 0; each of this inequalities can be slightly
perturbed to inequalities f ≤ ε and f ≥ −ε in such a way that they are regular and
the homotopy type of the set of the solutions has not changed. To our point of view
this fact is the cornerstone of the ’computability’ of the topology of semialgebraic sets
and plays a central role in all the theory. The same observation in particular applies
to complex algebraic set: up to homotopy the study of their topology, even their local
topology, is reduced to that of solutions of regular systems of inequalities. This trick
works particularly well for example in the case of the intersection of two complex
quadrics: here each complex equation is viewed as a pair of real equations and
regularization allows to efficiently apply all the previous theory (the fact that the new
equations come from complex ones also plays a crucial role). The duality between the
parameter space of the linear system and the topology of its base locus appears also in
this context; consider, for example, q0, . . . , qk degree two homogeneous polynomials
with complex coefficients and their zero locus set C in CPn. It is natural to consider
the following family of susbets of CPk (here k + 1 is the number of polynomials):

Y j = {[α0, . . . , αk] ∈ CPk | rkC(α0q0 + · · ·+ αkqk) ≥ j}, j ∈ N.

In terms of these sets, in the same spirit as for (1), we have:

b(C) ≤ b(CPn) +
∑
j≥0

b(Y j+1). (8)

The previous formula does not give improvement on the classical bounds on topo-
logical complexity (indeed these bounds can be proved using (8) in a similar way as
it was done for (1) before). Nevertheless its structure (the set Y j are the ’critical’
points of the linear system) is reminiscent of Morse theory and offers some possible
new perspectives.

4Any reasonable definiton of regularity works for this purpose
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CHAPTER 1

Basic theory

1.1 Vector bundles and characteristic classes

1.1.1 Classification of vector bundles

The material of this section is covered in [19] and [18].
Let Gk,n be the Grassmannian of k-dimensional subspaces of Rn. We consider the
tautological bundle τk,n over Gk,n: it is a vector bundle of real rank k whose fiber
(τk,n)W over the point W ∈ Gk,n is the vector space W itself and whose vector bundle
structure is given by the inclusion τk,n ↪→ Gk,n ×Rn; we denote by p the projection
τk,n → Gk,n. The inclusions Rn ⊂ Rn+1 ⊂ · · · give inclusions Gn,k ⊂ Gn,k+1 ⊂ · · ·
and we let Gk =

⋃
nGk,n endowed with the weak topology. The set Gk is called

the Grassmann space. The inclusions Rn ⊂ Rn+1 ⊂ · · · also give inclusions of
vector bundles τk,n ⊂ τk,n+1 ⊂ · · · and we let τk =

⋃
n τk,n endowed with the weak

topology; the projection p : τk → Gk gives a vector bundle structure.
Suppose now we are given a topological space X and a continuous map

f : X → Gk

then f defines a vector bundle of rank k over X, which is called the pull-back bundle
and denoted by f∗τk. As a topological space f∗τk is defined by:

f∗τk = {(x, v) ∈ X × τk | f(x) = p(v)}

and its vector bundle structure is given by the following procedure: if ψ : p−1(U)→
U × Rk is a trivialization of τk over an open set U ⊂ Gk, then the map (x, v) 7→
(x, p2ψ(v)), where p2 : U × Rk → Rk is the projection on the second factor, is a
trivialization over the open set f−1(U). The following proposition is the key result
in this context (see [18], Proposition 1.7). We denote by f : f∗(ξ) → τk the map
lifting f.

Proposition 1.1.1. If X is paracompact then the restrictions of a vector bundle
E → X × I over X × {0} and X × {1} are isomorphic.

In particular applying this result to a homotopy F : X × I → Gk,n between the
maps f0 = F |X×{0} and f1 = F |X×{1} we get the following corollary

Corollary 1.1.2. If X is paracompact and f0, f1 : X → Gk are homotopic maps,
then

f∗0 τk ' f∗1 τk.
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Remarkably enough if X is paracompact every rank k vector bundle ξ over
X arises in this way, i.e. there exists a continuous map f : X → Gk such that
ξ = f∗τk. Combined with the previous corollary, this is exactly the statement of
the following Theorem, which gives the classification of rank k vector bundles over
paracompact spaces. We use the notations [X,Y ] for the set of homotopy classes of
maps f : X → Y and Vectk(X) for the set of isomorphism classes of rank k vector
bundles over X.

Theorem 1.1.3. If X is paracompact, then the map [X,Gk] → Vectk(X) given by
[f ] 7→ [f∗τk] is a bijection.

We conclude with an observation: for a rank k vector bundle ξ over X, the
isomorphism ξ ' f∗τk is equivalent to a map

g : ξ → R∞

which is a linear injection on each fiber. To see this consider first the natural map
π : τk → R∞ which embeds each fiber in the ambient space R∞; then the composition
g = πf : f∗(ξ) → R∞ is a linear injection on each fiber. Viceversa given a map
g : ξ → R∞ which is a linear injection on each fiber, then the map f : X → Gk
defined by x 7→ g(ξx) induces the bundle ξ.

1.1.2 Stiefel-Whitney classes

Consider a rank k vector bundle ξ over the paracompact space X and a map g : ξ →
R∞ which is a linear injection on the fibers. If we let P (ξ) be the projectivization
of the bundle ξ (it is a fiber bundle over X with fiber RPk−1) we see that g defines
a map

P (g) : P (ξ)→ RP∞

which embeds each fiber linearly on a projective subspace. Let x ∈ H1(RP∞;Z2)
be the generator and

xi = P (g)∗yi ∈ H i(P (ξ);Z2), i = 0, . . . , k − 1

Since any two linear injections RPk−1 → RP∞ are homotopic through linear injec-
tions, then the classes yi, i = 0, . . . , k − 1, are independent of the choice of g and
their restriction to each fiber of P (ξ) generate its cohomology. Thus by Leray-Hirsch
theorem, writing q(x) for a polynomial in x, the map (α, q(x)) 7→ P (g)∗α · q(x) gives
an isomorphism of H∗(X;Z2)-modules

H∗(X;Z2)⊗ {1, . . . , xk−1} = H∗(P (ξ);Z2).

In particular there exist unique wi(ξ) ∈ H i(X;Z2), i = 1, . . . , k − 1, such that

xk + w1(ξ) · xk−1 + · · ·+ wk(ξ) · 1 = 0

Setting w0(ξ) = 1 and wj(ξ) = 0 for j > k, the classes w0(ξ), w1(ξ), . . . are called
the Stiefel-Whitney classes of the bundle ξ. The Stiefel-Whitney classes of the tau-
tological bundle τk are denoted simply by

wi = wi(τk) ∈ H i(Gk;Z2).
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Consider now the space (RP∞)k and the bundle η = τ1⊕· · ·⊕ τ1 over it, where each
addendum comes from one copy of RP∞ = G1. Since (RP∞)k is paracompact, then
by theorem 1.1.3 there exists a map ψ : (RP∞)k → Gk inducing η (indeed viewing
Gk = Gk((R∞)k) the map (l1, . . . , lk) 7→ l1 × · · · × lk is such a map). The induced
map ψ∗ on the cohomology turns out to be injective; on the other hand ψ∗wi is
the i-th elementary symmetric polynomial in x1, . . . , xk, where xi ∈ H1(RP∞;Z2)
is the generator. Since the elementary symmetric polynomials are algebraically
independent this tells that the restriction of ψ∗ to the algebra generated by the
classes w1, . . . , wk ∈ H∗(Gk;Z2) is also injective. Thus we have the isomorphism of
rings

H∗(Gk;Z2) = Z2[w1, . . . , wk]

Notice that if g : ξ → R∞ is a linear injection on each fiber and h : h∗ξ → ξ is a
bundle map lifting h : Y → X, then gh : h∗ξ → R∞ is a linear injection on each
fiber and thus

h∗(wi(ξ)) = wi(h
∗(ξ)) ∈ H i(Y ;Z2).

In particular given ξ a rank k vector bundle over X and a map f : X → Gk inducing
ξ, then wi(ξ) = f∗wi. Thus in a certain sense the Stiefel-Whitney classes of a vector
bundle ξ over X measure the failure of ξ to be trivial: if ξ is trivial, then it is induced
by a constant map f : X → Gk and thus all its characteristic classes are zero; on
the contrary since the Grassmann space is never simply connected, the triviality of
f∗ is weaker than f being homotopic to a constant map.

1.2 Semialgebraic Geometry

1.2.1 Semialgebraic sets and functions

The material of this section presented without proof is covered in [10].
The family of semialgebraic subsets of Rn is by definition the smallest family of
subsets containing all the sets of the form

{x ∈ Rn | f(x) > 0}

with f ∈ R[x1, . . . , xn], and closed under taking finite intersections, finite unions and
complements. Clearly an algebraic set is semialgebraic. Semialgebraic subset of R
are characterized: they are exactly the finite unions of points and of open intervals.
If f : A→ B is a map between semialgebraic sets, then f is said to be semialebraic
if its graph Γ(f) ⊂ A×B is semialgebraic.
The most important property of semialgebraic functions is that thay can be trian-
gulated, as stated in the following theorem.

Theorem 1.2.1 (Triangulation of semialgebraic functions). Let S be a closed and
bounded semialgebraic subset of Rn and f : S → R a continuous semialgebraic
function. There exist a finite simplicial complex K in Rn and a semialgebraic home-
omorphism Φ : |K| → S such that fΦ : |K| → R is affine on every simplex of K.
Moreover, given a finite collection Si, . . . , Sp of semialgebraic subsets of S, we can
choose K and Φ such that each Si is union of images by Φ of open simplices of K.
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If S is a semialgebraic set and B ⊂ S is a compact semialgebraic set then,
following [13], we say that f : S → [0,∞) is a rug function for B in S if f is proper,
continuous, semialgebraic and f−1(0) = B. The following proposition can be found
in [9] (pag. 229, Proposition 9.4.4).

Proposition 1.2.2. Let B ⊂ S be compact semialgebraic sets and f be a rug
function for B in S. Then there are δ > 0 and a continuous semialgebraic map-
ping h : f−1(δ) × [0, δ] → f−1([0, δ]), such that f(h(x, t)) = t for every (x, t) ∈
f−1(δ) × [0, δ], h(x, δ) = x for every x ∈ f−1(δ), and h|f−1(δ)×]0,δ] is a homeomor-

phism onto f−1(]0, δ]).

Proof. By triangulating f we obtain a finite simplicial complex K and a semialge-
braic homeomorphism φ : |K| → S, such that f ◦ φ is affine on every simplex of
K and B is union of images of simplices of K. Choose δ so small that for every
vertex a of K such that φ(a) /∈ B, then δ < f(φ(a)). Let x ∈ f−1(δ), y = φ−1(x).
The point y belongs to a simplex σ = [a0, . . . , ad] of K. We may assume that
φ(ai) ∈ B for i = 0, . . . , k, and φ(ai) /∈ B for i = k + 1, . . . , d. Let (λ0, . . . , λd)
be the barycentric coordinates of y in σ. Note that since f ◦ φ is affine on σ,
then δ = f(x) = f(φ(y)) =

∑d
i=0 λif(φ(ai)) =

∑d
i=k+1 λif(φ(ai)). Hence, if we set

α =
∑k

i=0 λi, we have necessarily 0 < α < 1. For t ∈ [0, δ], we define h(x, t) as the
image by φ of the point of σ with barycentric coordinates (µ0, . . . , µd), where

µi =

{
tα+δ−t
δα λi for i = 0, . . . , k;
t
δλi for i = k + 1, . . . , d.

Then h has the required properties.

Now we prove a result which describes the structure of some semialgebraic neigh-
borhoods of a semialgebraic compact set.

Proposition 1.2.3. Let B ⊂ S be compact semialgebraic sets. Let f be a rug
function for B in S. Then there exists δf such that for any δ′ < δf there is a
semialgebraic retraction

π : f−1([0, δ′])→ B.

Proof. First we show that there exists a semialgebraic retraction for small enough
semialgebraic neighborhoods. Let Tδ = α−1([0, δ]) and choose δf = δ and φ : |K| →
S as in Proposition 1.2.2. Given x ∈ Tδ, let y = φ−1(x). Then y belongs to some
simplex σ = [a0, . . . , ak]; let (λ0, . . . , λk) be its barycentric coordinates with respect
to σ. Since f(x) ≤ δ then there exist some vertices of σ belonging to φ−1(B) : let

a0, . . . , ak be these vertices. First notice that
∑k

i=0 λi 6= 0 : if it were zero, then

f(x) = f(φ(y)) = f(φ(
d∑

i=k+1

λiai)) =
d∑

i=k+1

λif(φ(ai)) > δ

since f ◦ φ is affine; but this contradicts f(x) ≤ δ.
Now we define pσ : φ−1(Tδ) ∩ σ → φ−1(B) by

p(x) = pσ(λ0, . . . , λd) = (
λ0∑k
i=0 λi

, . . . ,
λk∑k
i=0 λi

).



1.2 Semialgebraic Geometry

Then pσ is continuous and semialgebraic and its restriction to φ−1(B) ∩ σ is the
identity map. Defining pσ′ in the same way as for pσ for every simplex σ′ we
notice that since the pσ′ ’s agree on the common faces, then they together define a
semialgebraic continuous map p : φ−1(Tδ)→ φ−1(δ).
Now put π = φ−1

|Tδ ◦ p ◦φ : then π is a semialgebraic continuous retraction from Tδ to

B; given δ′ < δ simply compose π with the inclusion Tδ′ ⊂ Tδ to obtain the required
retraction.

In particular we derive the following corollary.

Corollary 1.2.4. Let S be a semialgebraic set and f : S → [0,∞) be a proper,
continuous semialgebraic function. Then for ε > 0 small enough the inclusions:

{f = 0} ↪→ {f ≤ ε} and {f > ε} ↪→ {f ≥ ε} ↪→ {f > 0}

are homotopy equivalences.

Proof. Let T = f−1([0, δ]) for δ small enough as given by propositions 1.2.2 and
1.2.3. Consider the function

g = π|f−1(δ) : {f = δ} → {f = 0}

where π is the retraction defined in the proof of proposition 1.2.3. Then propositions
1.2.2 and 1.2.3 combined together prove that T is a mapping cylinder neighborhood
of {f = 0} in S, i.e. there is a homeomorphism

ψ : T →Mg,

where Mg is the mapping cylinder of g, such that ψ|{f=δ}∪{f=0} is the identity map.
The conclusion follows from the structure of mapping cylinder neighborhoods.

1.2.2 Hardt’s triviality and the semialgebraic Sard’s Lemma

Hardt’s triviality theorem exploits the finiteness property of semialgebraic objects
and is a cornerstone of semialgebraic geometry.

Theorem 1.2.5 (Hardt’s Triviality). Let S and T be two semialgebraic sets, f : S →
T a continuous semialgebraic mapping, (Sj)j=1,...,q a finite family of semialgebraic
subsets of S. There exist a finite partition of T into semialgebraic sets T =

⋃r
l=1 Tl

and, for each l, a semialgebraic trivialization θl : Tl × Fl → f−1(Tl) of f over Tl,
compatible with Sj , for j = 1, . . . , q.

The following is a straightforward corollary of Hardt’s triviality.

Proposition 1.2.6. Let A,B be semialgebraic sets and g : A → B be a semi-
algebraic, surjective map. Then g admits a semialgebraic section σ, i.e. a map
σ : B → A such that g(σ(b)) = b for every b ∈ B.
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Proof. By Hardt’s triviality theorem there exists a finite partition

B =
m∐
l=1

Bl,

semialgebraic sets Fl and semialgebraic homeomorphisms ψl : Bl×Fl → g−1(Bl) for
l = 1, . . . ,m such that g(ψl(b, y)) = b or every (b, y) ∈ Bl×Fl. For every l = 1, . . . ,m
let al ∈ Fl and define

σ|Bl(b) = ψl(b, al).

Semialgebraic Sard’s Lemma strengthen the conclusion that the set of critical
values of a smooth map has measure zero to the fact that it is semialgebraic of
codimension at least one.

Theorem 1.2.7 (Semialgebraic Sard’s Lemma). Let f : A→ B be a smooth semi-
algebraic map between two smooth semialgebraic manifolds A and B. Then the set
of critical values of f is a semialgebraic subset of B of dimension strictly less than
the dimension of B.

1.3 Space of quadratic forms

1.3.1 Topology

Let V be a real vector space; we denote by Q(V ) the space of all quadratic forms on
V. Notice that in the case V is finite dimensional Q(V ) is a vector space of dimension
d(d+ 1)/2 where d = dim(V ). Once we fix a scalar product the equation

q(x) = 〈x,Qx〉, ∀x ∈ V

defines a unique real symmetric d × d matrix Q and the map q 7→ Q gives an
isomorphism of vector spaces

Q(V ) ' Sym(d,R).

We will denote with the symbol P(V ) the space of all symmetric bilinear forms on
V ; thus given q ∈ Q(V ) the equation

2p(x, y) = q(x+ y)− q(x)− q(y), ∀x, y ∈ V

defines a a bilinear p form called the polarization of q and gives an isomorphism of
vector spaces

Q(V ) ' P(V ).

We will sometimes use these isomorphisms and denote with capital letters symmetric
matrices associated to quadratic forms and with the same letter their polarization
by distinguish the latter two on the number of their arguments; in the case V = Rd
we will use the shortened notation Q(d) for the space of quadratic forms on it. In
many cases, when it will be clear from the context which is the space V in question,
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we will omit its symbol and simply write Q for the space Q(V ); a similar remark
applies for many other objects we are going to define and depending on V.
The positive inertia index i+(q) of a quadratic form is defined by

i+(q) = max{dim(W ) | W is a subspace of V and q|W > 0}

and analogously its negative inertia index is given by i−(q) = i+(−q). The kernel of
a quadratic forms q ∈ Q(V ) is defined by

ker(q) = {v ∈ V | q(x, v) = 0 ∀x ∈ V }

it is a vector subspace of V. The rank of q is defined by rk(q) = d− dim ker(q).
Sylvester’s law of inertia asserts that every quadratic forms q admits coordinates
x1, . . . , xa, y1, . . . , yb, z1, . . . , zc for which

q(x, y, z) = x2
1 + · · ·+ x2

a − y2
1 − · · · − y2

b

where a = i+(q), b = i−(q) and c = dim ker(q); alternatively this tells that there
exists a matrixM ∈ Gl(d,R) such thatMTQM is diagonal with the obvious diagonal
elements.
For every k = 0, . . . ,dim(V ) we define the set

Zk(V ) = {q ∈ Q(V ) | dim ker(q) = k}.

We easily see that Z(V ) = Cl(Z1(V )) is the set of degenerate quadratic forms, i.e.

Z(V ) = {q ∈ Q(V ) | ker(q) 6= 0}.

It is an algebraic hypersurface of Q(V ) which under the isomorphism Q(V ) '
Sym(d,R) is given by Z(V ) = {Q ∈ Sym(d,R) | det(Q) = 0}; moreover since its
equation are homogeneous Z(V ) is a cone.
For example, in the case d = 2 we have Q(V ) ' R3 and in coordinates Sym(2,R) =
{
( x+y z

z x−y
)
|x, y, z ∈ R} the set Z(V ) is given by the equation x2 = y2 + z2; notice

that in this case the set of singular points of Z(V ) reduces to the origin, which has
codimension 3 in Q(V ). This phenomenon is typical, as described by the following
proposition.

Proposition 1.3.1. Let q0 ∈ Q(V ) be a quadratic map and let V0 be its kernel.
Then there exists a neighborhood Uq0 of q0 and a smooth semialgebraic map φ :
Uq0 → Q(V0) such that: 1) φ(q0) = 0; 2) i−(q) = i−(q0) + i−(φ(q)); 3) dim ker(q) =
dim ker(φ(q)); 4) for every p ∈ Q we have dφq0(p) = p|V .

Proof. Let γ be a closed semialgebraic contour in the complex plane separating the
non zero eigenvalues of q0 from the origin. For any q such that the corresponding
operator does not have eigenvalues on γ we define πq to be the orthogonal projection
onto the invariant subspace Vγ(q) of the operator Q corresponding to the eigenvalues
which lie inside the contour - formally speaking we have to consider the semialgebraic
set S of the pairs (q, L) where L is a linear map from Rn+1 to Vγ(q) - and the
correspondence q 7→ πq is semialgebraic. Notice that in particular πq0 |V0 = idV0 .
Then the correspondence q 7→ Φ(q) = q ◦ πq|V is semialgebraic and satisfyies the
required properties.
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Thus for every k = 0, . . . ,dim(V ) we have that Zk(V ) is a smooth semialgebraic
subset of Q(V ) of codimension k(k + 1)/2. The closure of Zk(V ) is Cl(Zk(V )) =
∪j≥kZj(V ) = {q ∈ Q(V ) | dim ker q ≥ k} and its singular locus is Cl(Zk+1(V )); in
particular we get that the singular locus of Z(V ) has codimension 3 in Q(V ).

1.3.2 Geometry of the index function

In terms of the index functions i+, i− : Q(V )→ N above defined, we define the two
family of subsets of Q(V )

Qk(V ) = {q | i+(q) ≤ k} and Qk(V ) = {q | i+(q) ≥ k}.

Notice that Qk(V ) is a closed subset of Q(V ) whereas Qk(V ) is open. The set Q0(V )
is the set of nonnegative quadratic forms and it is a convex closed cone in Q(V );
to describe the topology of the sets Qk(V ), k ≥ 0 we use the following trick. We
fix a scalar product and for any q ∈ Q(V ) = Q(d) we consider the corresponding
symmetric matrices Q; we order its eigenvalues in decreasing way:

λ1(Q) ≥ · · · ≥ λi+(q)(Q) > 0 ≥ λi+(q)+1(Q) ≥ · · ·λd(Q).

Once the scalar product is fixed we will refer to the eigenvalues of q by actually
meaning the eigenvalues of Q. The λi are continuous (but not smooth) semial-
gebraic functions on Q(d). If I denotes the identity matrix, then the map Q 7→
Q+(λk+1(Q)−λ1(Q))I defines a semialgebraic homeomorphism of Q(d) onto itself,
carrying Qk(d) onto Q0(d) : thus the sets Qk(d) are all homeomorphic.
We define also the family of subset of Q(V )

Dk(V ) = {q ∈ Q(V ) |λk(q) 6= λk+1(q)}.

Notice that Qk(V )\Qk+1(V ) is a subset of Dk(V ) for every possible choice of the
scalar product in V. Let us fix the dimension of V = Rd; on the space Dk (we omit
for brevity the symbol V in parenthesis) is naturally defined the vector bundle

Rk ↪→ Λ+
k −→ Dk

whose fiber over the point q ∈ Dk is the vector space (Λ+
k )q = span{x ∈ V |Qx =

λix, 1 ≤ i ≤ k} and whose vector bundle structure is given by its inclusion in Dk×V.
Similarly the vector bundle Rd−k ↪→ Λ−k → Dk has fiber over the point q ∈ Dk the
vector space (Λ−k )q = span{x ∈ V |Qx = λix, k + 1 ≤ i ≤ d} and vector bundle
structure given by its inclusion in Dk × V. In the sequel we will need for q ∈ Dk the
projective spaces:

P+
k (q) = projectivization of (Λ+

k )q and P−k (q) = projectivization of (Λ−k )q.

For a given q ∈ Q with i−(q) = i (which implies q ∈ Dd−i) we will use the simplified
notation

P+(q)
.
= P+

d−i(q) and P−(q)
.
= P−d−i(q).
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(even if q ∈ Dn+1−i for every metric still there is dependence on the metric for these
spaces, but we omit it for brevity of notations; the reader should pay attention).
Notice that q|P−(q) < 0 whereas q|P+(q) ≥ 0, i.e. P+(q) contains also P(ker q). The
following picture may help the reader:

λ1(q) ≥ · · · ≥ λd−i−(q)(q)︸ ︷︷ ︸
P+(q)

≥ 0 > λd+1−i−(q)(q) ≥ · · · ≥ λd(q)︸ ︷︷ ︸
P−(q)

We set w−i,k for the i-th Stiefel-Whitney classes of the bundle Λ−k ; on the other hand

since our results will be stated in terms of the bundle Λ+
k we simplify the notation

for its characteristic classes and we simply denote by wi,k its i-th stiefel-Whitney
class:

wi,k = wi(Λ
+
k ) ∈ H i(Dk;Z2).

Notice that Λ+
k ⊕ Λ−k = Dk × Rd and thus Whitney product formula holds for

their total Stiefel-Whitney classes: w(Λ+
k )w(Λ−k ) = 1. In particular this implies

w1,k = w−1,k.

Proposition 1.3.2 (Agrachev). For any two real numbers α1 > α2 the set

Rk = {q ∈ Q(n) |λ1(q) = · · · = λk(q) = α1 > α2 = λk+1(q) = · · · = λn+1(q)}

is homeomorphic to the Grassmannian Gk,n of k-planes in Rn; moreover Rk is a
deformation retract of Dk.

Proof. The homeomorphism betweenRk and the Grassmannian Gk,n is given simply
by associating to each q ∈ Rk the eigenspace of Q associated to the eigenvalue α.
Since the symmetric matrix Q is determined uniquely by its eigenvalues and the
invariant subspaces corresponding to these eigenvalues, we define the deformation
retraction by sending the pair (q, t) ∈ Dk × [0, 1] to the quadratic map qt whose i-th
eigenvalue is tα1+(1−t)λi(q) for i = 1, . . . , k and tα2+(1−t)λi(q) for i = k+1, . . . , d
and whose invariant subspaces stay fixed.

We consider now the complement of Dk, namely the closed set:

Sk = Q\Dk.

It follows from proposition 1.3.1 that Sk is a pseudomanifold of codimension 2 in Q;
it is then possible to define, for a given 1-cycle c in Dk the linking number of c with
Sk. Using this linking number we can give an alternative description of the class
w1,k.

Proposition 1.3.3. The value of w1,k on [c] ∈ H1(Dk;Z2) equals the linking number
lk(c,Sk) of c with Sk.

Proof. Clearly the restriction of the bundle Λ+
k is the pullback of the tautological

bundle τk,n of the Grassmannian Gk,n under the previous homeomorphism; hence
w1,k|Rk is nonzero and since Dk deformation retracts onto Rk then w1,k is the only
nonzero class in H1(Dk;Z2); since by Alexander-Pontryagin duality the class deter-
mined by linking number with Sk is also nonzero, then these two classes are equal.
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We stress that the definition of the previous characteristic classes depends on the
scalar product we fixed on V ; on the other side since Qk(V )\Qk+1(V ) is contained
in Dk(V ) for every choice of scalar product and since the space of all scalar product
is connected, then the restrictions of the classes w1,k to Qk(V )\Qk+1(V ) do not
depend on the scalar product.

1.3.3 Families of quadratic forms

If V and W are vector spaces we define

Q(V,W ) = {p : V →W | ηp ∈ Q(V ) ∀η ∈W ∗}.

In the case V = Rn and W = Rk we will simply write Q(n, k) for Q(Rn,Rk).
Given p ∈ Q(V,W ) the correspondence η 7→ ηp gives by definition a linear map

p : W ∗ → Q(V )

If we are given q0, . . . , qk ∈ Q(V ) then x 7→ (q0, . . . , qx) defines a quadratic map
q : V → Rk+1, i.e. an element of Q(V,Rk+1) and the map q : (Rk+1)∗ → Q(V ) is
given by η = (η0, . . . , ηk) 7→ η0q0 + · · ·+ ηkqk. The image of q is a linear subspace of
Q(V ) which is called the linear system of q0, . . . , qk; the arrangement of this linear
space with respect to the set Z(V ) of degenerate forms will be the main ingredient
of our theory.
More generally if A is a semialgebraic set we can consider semialgebraic continuous
maps

f : A→ Q(V )

For such a map we define the following two family of subsets of A:

Ak = {a ∈ A | i−(f(a)) ≤ k} and Ak = {a ∈ A | i+(f(a)) ≥ k}.

We will often use also the following auxiliary construction: given a positive definite
form p ∈ Q(V ) we consider for ε > 0 the sets

Ak(ε) = {a ∈ A | i−(f(a)− εp) ≤ k}.

We have the following lemma.

Lemma 1.3.4. Let f : A→ Q(V ) be a semialgebraic continuous map and dim(V ) =
n+1. For every j ∈ N we have Aj+1 =

⋃
ε>0An−j(ε); moreover every compact subset

of Aj+1 is contained in some An−j(ε) and in particular

lim−→
ε

{H∗(An−j(ε))} = H∗(A
j+1).

Proof. Let a ∈
⋃
ε>0An−j(ε); then there exists ε such that a ∈ An−j(ε) for every

ε < ε. Since for ε small enough

i−(ε)(f(a)) = i−(f(a)) + dim(ker f(ω))
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then it follows that

i+(f(a)) = n+ 1− i−(f(a))− dim(ker f(a)) ≥ j + 1.

Viceversa if a ∈ Aj+1 the previous inequality proves a ∈ An−j(ε) for ε small enough,
i.e. a ∈

⋃
ε>0An−j(ε).

Moreover if a ∈ An−j(ε) then, eventually choosing a smaller ε, we may assume ε
properly separates the spectrum of f(a) and thus, by continuity of the map f , there
exists U open neighborhood of a such that ε properly separates also the spectrum
of f(a′) for every a′ ∈ U (see [20] for a detailed discussion of the regularity of the
eigenvalues of a family of symmetric matrices). Hence a ∈ An−j(ε) for every a′ ∈ U.
From this consideration it easily follows that each compact set in Aj+1 is contained
in some An−j(ε) and thus

lim−→
ε

{H∗(An−j(ε))} = H∗(A
j+1).

The map f : A → Q is used to pullback the characteristic classes previously
defined to the above families of subsets of A. Specifically we define the family of
subsets of A (with their corresponding characteristic classes):

Dk = f−1(Dk), f∗wi,k = wi(f
∗Λ+

k ) ∈ H i(Dk;Z2).

We notice also the following fact: the set Dk ∪ Ak+1 contains the set Ak. Indeed if
ω is in Ak then either i+(f(ω)) = k or i+(f(ω)) ≥ k + 1: in the first case certainly
λk(f(ω)) > 0 ≥ λk+1(f(ω)) and thus ω belongs to Dk, in the second case ω is in
Ωk+1. Thus if x ∈ H i(A,Ak+1) we can consider the cup product x ^ ∂∗f∗w1,k ∈
H i+2(A,Ak+1 ∪Dk;Z2), where

∂∗ : H1(Dk;Z2)→ H2(A,Dk;Z2)

is the connecting homomorphism in the long exact sequence of the pair (A,Dk).
Because of the previous observation, we can restrict the previous cup product to
H i+2(A,Ak) and define for x ∈ H i(A,Ak+1) the class

(x ^ f∗γ1,k)|(A,Ak) ∈ H i+2(A,Ak), γ1,k = ∂∗w1,k.

Since the restriction of the classes f∗w1,k on Ak\Ak+1 do not depend on the scalar
product we used to define them, the previous correspondence x 7→ (x ^ f∗γ1,k)|(A,Ak)

also do not depends on the scalar product; it will play a central role in the sequel.
Sometimes, when it will be clear from the context, to shorten notations we will write
simply wi,k and γi,k for the pull-back via p∗ of the previous classes.
Let now Ω be a closed semialgebraic subset of S1 and f : Ω → Q(Rn+1) be a
semialgebraic map. Consider the semialgebraic set

C = {(ω, [x]) ∈ Ω× RPn | f(ω)(x) ≥ 0}.

Since the projection p1 : C → Ω is a semialgebraic map, then by Hardt’s triviality
theorem there exixts a finite semialgebraic partition Ω =

∐
Sl such that p1 is trivial
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over each Sl. The semialgebraic subsets of Ω are union of points and intervals (arcs);
thus there exist a finite number of points {ωα}α∈A and a finite number of open arcs
{Iαβ}α,β∈A such that C is the disjoint union of the inverse image under p1 of them;
moreover p1 is trivial over each of these subsets of Ω. For each ω ∈ Ω we define the
number

a(ω) = n− i−(f(ω))

and notice that Ωn−k = {ω ∈ Ω | a(ω) ≥ k}. Using the notations introduced above
we clearly have that p−1

1 (η) deformation retracts to P+(f(η)) ' RPa(η). Consider
now the topological space

S = {(ω, [x]) ∈ Ω× RPn | [x] ∈ P+(ω)}.

Lemma 1.3.5. The inclusion S ↪→ C is a homotopy equivalence; indeed C defor-
mation retracts to S.

Proof. For every α ∈ A let Uα be a closed neighborhood of ωα such that the inclusion
P+(ωα) ↪→ C|Uα is a homotopy equivalence (such a neighborhood exists by lemma
1.2.4 applied to the function f : (ω, [x]) 7→ dist(ω, ωα) and noticing that the inclusion
P+(ωα) ↪→ {f = 0} is a homotopy equivalence). If Uα is sufficiently small, then S|Uα
deformation retracts to P+(ωα) : since the eigenvalues of f(ω) depend continuously
on ω and d(ωα) ≥ d(ω) for ω sufficiently close to ωα, the deformation retraction
is performed simply by sending each P+(ω) to limω→ωα P

+(ω) ⊆ P+(ωα). Now we
have that P+(ωα) ↪→ S|Uα and P+(ωα) ↪→ C|Uα are both homotopy equivalences;
since the second one is the composition P+(ωα) ↪→ S|Uα ↪→ C|Uα then S|Uα ↪→ C|Uα
also is a homotopy equivalence. Since (C|Uα , S|Uα) is a CW-pair, then the previous
homotopy equivalence implies C|Uα deformation retracts to S|Uα (see [17]).
Let now W = (∪αVα); since C|W c is a locally trivial fibration, then clearly it de-
formation retracts to S|W c ; since each Vα is closed, then C deformation retracts
to C|W ∪ S|W c . Since the deformation retraction of each C|Uα fixes S|Uα and
Cl(S|W c) ∩ C|W ⊆ S then all this deformation retractions matches together to give
de desired deformation retraction of C to S.

We can easily derive the following corollary which describes the cohomology of
C.

Corollary 1.3.6. Hk(C;Z2) ' H0(Ωn−k;Z2)⊕H1(Ωn−k+1;Z2).

Proof. We only give a sketch: the rigorous details are left to the reader. Notice that a
spectral sequence argument, as discussed later, immediately gives the result; however
we prefer not to introduce the machinery of spectral sequences in this chapter.
We can give a cellular structure to S in the following way: for every ωα such that
a(ωα) ≥ k we place a k-dimensional cell ekα representing a k-dimensional cell of
P+(ωα); for every arc Iαβ such that a(ω) ≥ k−1 for every ω ∈ Iαβ we place another
k-dimensional cell ekαβ representing a k dimensional cell of S|Iαβ . In this way, working
with Z2 coefficients we have:

∂ekα = 0 and ∂ekαβ = ek−1
α + ek−1

β

and the statement follows now from cellular homology (see [17]) and Leray-Hirsch
theorem.
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1.4 Systems of two quadratic inequalities

1.4.1 Homogeneous case

Let q0, q1 be in Q(Rn+1) and consider one of the three following systems:{
q0(x) = 0
q1(x) = 0

or

{
q0(x) = 0
q1(x) ≤ 0

or

{
q0(x) ≤ 0
q1(x) ≤ 0

If we let q ∈ Q(Rn+1,R2) be the map defined by (q0, q1) we have that the sets of the
solutions of the previous systems equals q−1(K) ⊆ R2 for

K = {0}, K = {x0 ≤ 0, x1 = 0}, K = {x0 ≤ 0, x1 ≤ 0}

The matter of this section will be the study of the cohomology of the two sets

Y = q−1(K) ∩ Sn and X = p(Y )

for a general convex polyhedral cone K ⊆ R2 (here we denoted by p : Sn → RPn the
covering map; notice that since q is homogeneous of degree two, then X = {[x] ∈
RPn | q(x) ∈ K}) and the three previous cases will be included as particular ones.
Indeed if K = {η1 ≤ 0, η2 ≤ 0, η3 ≤ 0, ηi ∈ (R2)∗, i = 1, 2, 3} (this is the general
form of a polyhedral cone in R2), then q−1(K) corresponds to the set of the solution
of the system {ηiq ≤ 0, i = 1, 2, 3}.
We start by proving the following theorem.

Theorem 1.4.1. bk(RPn\X) = b0(Ωk+1) + b1(Ωk) for every k ∈ N.

Proof. Consider the set B = {(ω, [x]) ∈ Ω×RPn |ωq(x) > 0} and the projection p2

to the second factor. This projection is easily seen to be a homotopy equivalence
(the fibers are contractible; a more precise proof will be given later in proposition
3.3.1) and its image is RPn\X (this follows from K◦◦ = K). Letting a : B → [0,∞)
be the semialgebraic function (ω, [x]) 7→ ωq(x), then by lemma 1.2.4 there is ε > 0
such that the inclusion C(ε) = {a ≥ ε} ↪→ B is a homotopy equivalence. On the
other side the set C(ε) admits the following description once we fix a positive definite
form p ∈ Q(Rn+1):

C(ε) = {(ω, [x]) ∈ Ω× RPn | fε(ω)(x) ≥ 0}

where fε : Ω → Q(Rn+1) is given by ω 7→ ωq − εp. Corollary 1.3.6 implies now for
ε > 0 small enough

Hk(C) = H0(Ωn−k(ε))⊕H1(Ωn−k+1(ε))

and the conclusion follows from lemma 1.3.4.

Using a similar argument one can prove the following formula, which relates the
cohomology of Y to that of the sets Ωk+1, k = 0, . . . , n.

Theorem 1.4.2. For k < n− 2 the following formula holds:

b̃k(Y ) = b̃n−k−1(Sn\Y ) = b0(Ωn−k,Ωn−k+1) + b1(Ωn−k−1,Ωn−k).
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In the spherical case our computations gives the cohomology of Sn\Y and Alexan-
der duality directly gives that of Y . In the case of the projective solutions to recon-
struct the cohomology of X from that of RPn\X we have to compute also the map
induced by the inclusion c : RPn\X → RPn on the cohomology.

Proposition 1.4.3. Set µ = maxω∈Ω i+(ω). Then for k ≤ µ− 1

Hk(RPn)
c∗→ Hk(RPn\X)

is injective and for k ≥ µ+ 1 is zero.

Notice that the case k = µ is excluded from this statement: it deserves a special
treatment.

Proof. Consider the commutative diagram of maps

RPn\X RPn

B Ω× RPn

c

p2|B

i

p2

Since p2|B is a homotopy equivalence, then c∗ = i∗ ◦ p∗2. If k ≤ µ − 1, then Ωk+1 6=
∅; thus let η ∈ Ωk+1. Then p−1

1 (η) ∩ B = {η} × P dη , where P dη is a projective

space of dimension dη = i+(η) − 1 ≥ k; in particular the inclusion P dη
iη→ RPn

induces isomorphism on the k-th cohomology group. The following factorization of
i∗η concludes the proof of the first part (all the maps are the natural ones):

Hk(Ω× RPn) Hk(B)

Hk(RPn) Hk(P dη)
i∗η

For the second statement simply observe that for k ≥ µ + 1 we have Ωk = ∅ and
thus

Hk(RPn\X) ' H0(Ωk+1)⊕H1(Ωk) = 0.

It remains to study Hµ(RPn\X) → Hµ(RPn). For this purpose we introduce
the bundle Lµ → Ωµ whose fiber at the point η ∈ Ωµ equals span{x ∈ Rn+1 | ∃λ >
0 s.t. (ηQ)x = λx} and whose vector bundle structure is given by its inclusion in
Ωµ × Rn+1. Notice that this vector bundle coincide by definition with q∗Λ+

k . Recall
that we defined q∗w1,µ ∈ H1(Ωµ) to be the first Stiefel-Whitney class of Lµ. We
have the following result.
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Proposition 1.4.4. rk(c∗)µ = 0 ⇐⇒ q∗w1,µ = 0.

Proof. In the case Ωµ 6= S1, then clearly q∗w1,µ is zero and also rk(c∗)µ is zero since
Hµ(RPn\X) = 0. If Ωµ = S1, then i+ is constant and we consider the projectiviza-
tion P (Lµ) of the bundle Lµ. In this case it is easily seen that the inclusion

P (Lµ)
λ
↪→ B

is a homotopy equivalence and, since rk(c∗) = rk(i∗ ◦ p∗2) we have rk(c∗) = rk(λ∗ ◦
i∗ ◦ p∗2). Let us call l the map p2 ◦ i ◦ λ; then l : P (Lµ) → RPn is a map which is
linear on the fibres and if y ∈ H1(RPn) is the generator, we have by Leray-Hirsch

H∗(P (Lµ)) ' H∗(S1)⊗ {1, l∗y, . . . , l∗yµ−1}.

By the Whitney formula we get

l∗yµ = w1(Lµ) · (l∗y)µ−1

which proves (c∗)µ is zero iff w1(Lµ) = q∗w1,µ = 0.

Collecting together Theorem 1.4.1 and the previous two propositions allows us
to split the long exact sequence of the pair (RPn,RPn\X) and, since H∗(X) '
Hn−∗(RPn,RPn\X), to compute the Betti numbers of X.
We first define the table E = (ei,j)i,j∈Z with ei,j ∈ N, and whose nonzero part
E′ = {ei,j | 0 ≤ i ≤ 2, 0 ≤ j ≤ n} is the following table:

E′ =

1 0 0
...

...
...

1 0 0

c 0 0

0 b0(Ωµ)− 1 d
...

...
...

0 b0(Ω1)− 1 b1(Ω1)

where c = e0,µ and we have (c, d) = (1, b1(Ωµ)) if w1,µ = 0 and (c, d) = (0, 0)
otherwise.

Theorem 1.4.5. If µ = n+1 then X is empty; in the contrary case for every k ∈ Z
the following formula holds:

bk(X) = e0,n−k + e1,n−k−1 + e2,n−k−2.

Moreover if j : X → RPn is the inclusion map and j∗ is the map induced on
homology, then

e0,n−k = rk(j∗)k.

The last statement follows from the formula

bn−k(RPn) = rk(c∗)n−k + rk(j∗)k.

A direct proof of the previous theorems will be given later, once we will have more
powerful instruments, i.e. spectral sequences, at our disposal.
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Remark 1. The previous theorem raises the question when can happen w1,µ 6= 0.
Since µ = max i+, then clearly Ω = S1 and i+ ≡ µ. Moreover since µ = i+(η) =
n+ 1− ker(ηQ)− i+(−η) = n+ 1− ker(ηQ)− µ it follows µ ≤ [n+1

2 ].
It is interesting to classify pairs of quadratic forms (q0, q1) such that i+ is constant;
this classification follows from a general theorem on the classification up to congru-
ence of pencils of real symmetric matrices (see [25]).

1.4.2 Quadratic maps to the plane: convexity properties

We discuss here some applications of the previous results; in particular we will see
that the image of a quadratic map q ∈ Q(n + 1, 2) has some convexity properties
both in the case of the whole map q and its restriction to the unit sphere Sn. The
material of this section is classical; for a reference the reader can see [4].

Theorem 1.4.6 (Calabi). Let q = (q0, q1) be in Q(n+ 1, 2) and n+ 1 ≥ 3. If q(Sn)
does not contain the zero, then there exists a real linear combination ωq0 + ω1q1

which is positive definite.

Proof. The hypothesis is equivalent to n + 1 ≥ 3 and X = {x ∈ RPn | q0(x) = 0 =
q1(x)} = ∅ and the thesis to Ωn+1 6= ∅.
First notice that for every k ≥ 2 we have b1(Ωk) = 0 : if it was the contrary, then
b0(Ωk) = 1 = b1(Ωk−1) and Theorem 1.4.1 would give bk−1(RPn\X) = bk−1(RPn) =
b0(Ωk) + b1(Ωk−1) = 2, which is absurd. Thus if n+ 1 > 2 we have

1 = bn(RPn) = bn(RPn\X) = b0(Ωn+1) + b1(Ωn) = b0(Ωn+1)

which implies Ωn+1 6= ∅.

Thus the previous theorem states that for n+ 1 ≥ 3

X = ∅ ⇒ Ωn+1 6= ∅.

Also the contrary is true, with no restriction on n : if X 6= ∅ then 0 = bn(RPn\X) =
b0(Ωn+1)+b1(Ωn) which implies Ωn 6= S1 and Ωn+1 = ∅. Thus we have the following
corollary.

Corollary 1.4.7. If n+ 1 ≥ 3, then X = ∅ ⇐⇒ Ωn+1 6= ∅.

Using the previous we can prove the well known quadratic convexity theorem.

Theorem 1.4.8. If n + 1 ≥ 3 and q : Rn+1 → R2 is defined by x 7→ (q0(x), q1(x)),
where q0, q1 are real quadratic forms, then

q(Sn) ⊂ R2 is a convex set.

Proof. First observe that if Sn = {g(x) = 1} with g quadratic form, then for a given
c = (c0, c1) we have Sn ∩ q−1(c) 6= ∅ iff Sn ∩ q−1

c (0) 6= ∅ iff X(qc) = ∅, where qc
is the quadratic map whose components are (q0 − c0g, q1 − c1g) and X(qc) = {x ∈
RPn | qc(x) = 0}. Thus by Corollary 1.4.7 we have X(qc) 6= ∅ iff Ωn+1(qc) = ∅ (here
n+ 1 ≥ 3).
Let now a = (a0, a1) and b = (b0, b1) be such that X(qa) 6= ∅ 6= X(qb) and suppose
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there exists T ∈ [0, 1] such that aT + (1 − T )b /∈ q(Sn). Then by Corollary 1.4.7
there exists η ∈ R2 such that

ηQ− 〈η, aT + (1− T )b〉I > 0.

Assume 〈η, a − b〉 ≥ 0, otherwise switch the role of a and b. We have 0 < ηQ −
〈η, aT + (1 − T )b〉I = ηQ + 〈η, T (b − a)〉I − 〈η, b〉I ≤ ηQ − 〈η, b〉I. Thus we got
ηQ − 〈η, b〉I > 0, which implies Ωn+1(qb) 6= ∅, but this is impossible by corollary
1.4.7 since X(qb) 6= ∅. Hence for every t ∈ [0, 1] we have at+ (1− t)b ∈ q(Sn).

The conclusion of the previous theorems are false if n + 1 = 2 : pick q0(x, y) =
x2− y2 and q1(x, y) = 2xy, then q0(x) = q1(x) = 0 implies x = 0 but any real linear
combination of q0 and q1 is sign indefinite. Moreover q(S1) = S1 which of course is
not a convex subset of R2.

Corollary 1.4.9. If q : Rn+1 → R2 has homogeneous quadratic components, then
q(Rn+1) is closed and convex.

Proof. Since q(Rn+1) is the positive cone over q(Sn), then it is closed and convex.

The previous proof works only for n+1 ≥ 3, but the theorem is actually true with
no restriction on n. The number of quadratic forms is indeed important, as the follow-
ing example shows: let q : R3 → R3 be defined by (x0, x1, x2) 7→ (x0x1, x0x2, x1x2);
then the image of R3 under q consists of the four hortants {x0 ≥ 0, x1 ≥ 0, x2 ≥
0}, {x0 ≤ 0, x1 ≤ 0, x2 ≥ 0}, {x0 ≤ 0, x1 ≥ 0, x2 ≤ 0}, {x0 ≥ 0, x1 ≤ 0, x2 ≤ 0}.

1.4.3 Level sets of quadratic maps: nonemptyness conditions

Consider the smooth map
ν : Rn+1 → Q(Rn+1)

which is given by (x0, . . . , xn) 7→ 1
2

∑
i,j xixj . The map ν is called the degree two

Veronese map (actually the standard definition considers the map ν̃ : RPn → RPN

induced by ν, where N = (n+1)(n+2)
2 − 1). The image V of ν is homeomorphic to

Rn+1 and named the Veronese surface (even though in general is not a surface):

V = ν(Rn+1)

The geometric interesting property of this Veronese map is that it transforms the
geometry of intersection of quadrics in Rn+1 in the geometry of intersection of linear
spaces with V in Q(Rn+1). Giving coordinates {zij = xixj}0≤i≤j≤n in Q(Rn+1), we
have that if A ⊂ Rn+1 is an algebraic set cut by quadratic equations

A = {ql(x) =
1

2

∑
i,j

alijxixj = 0, l = 0, . . . , k}

and Wq,0 ⊂ Q(Rn+1) is the linear space given by the equations∑
i,j

aijzij = 0, l = 0, . . . , k
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then ν gives a homeomorphism:

A = V ∩Wq,0.

In a similar fashion we want to study now level sets of quadratic maps q = (q0, . . . , qk) ∈
Q(Rn+1,Rk+1), the previous case being the description of q−1(0). If we fix a scalar
product on Rn+1 we can consider the identification Q(V ) = Sym(n+1,R) and endow
this space with the scalar product given by

〈Q1, Q2〉 = tr(Q1Q2), Q1, Q2 ∈ Sym(n+ 1,R).

If we still denote by ν(x) the symmetric matrix corresponding to ν(x), we have that
qi(x) = bi if and only if 〈Qi, ν(x)〉 = bi for i = 0, . . . , k as it is easily verified by short
computations. The equations

〈Qi, Y 〉 = bi, i = 0, . . . , k, Y ∈ Sym(n+ 1,R)

define an affine space Wq,b ⊂ Sym(n+ 1,R) and the previous observation gives

q−1(b) = Wq,b ∩ V, b = (b0, . . . , bk).

Observe that V ⊂ Sym(n+ 1,R) consists exactly of positive semidefinite matrices of
rank less or equal than one:

V = {Q ∈ Sym(n+ 1,R) |Q ≥ 0 and rk(Q) ≤ 1}

Indeed if Q is such a matrix, then by Sylvester’s law of inertia there exists M ∈
GL(n + 1,R) such that MTQM is diagonal with the first element of the diagonal
equal to one the others equal to zero; thus Q = ν(Me1). For example in the case
n+ 1 = 2 we have that V coincide with the positive half of the cone Z of degenerate
matrices.
Thus to check nonemptyness of level sets of quadratic maps is equivalent to check
emptyness of the intersection of affine subspaces of Q(Rn+1) with the Veronese
surface:

q−1(b) 6= ∅ ⇐⇒ Wq,b ∩ V 6= ∅.

A weaker formulation of this problem is that of finding a positive definite matrix Y
belonging to Wq,b; if such a matrix can be find of rank less or equal than one, then
q−1(b) 6= ∅. It turns out that in the case of k + 1 = 2 to find a positive semidefinite
solution to the previous equations is equivalent to find a positive semidefinite of
rank less or equal than one. This result is a direct corollary of the following general
theorem (see [4]).

Theorem 1.4.10. Let A ⊂ Sym(d,R) be an affine subspace of codimension strictly
less than c(r) = (r + 1)(r + 2)/2 for some nonegative r. If there exists Y ≥ 0 in A,
then there exists X ∈ A such that X ≥ 0 and rk(X) ≤ r.

In the case r = 1 we have c(r) = 3 and thus if we have a positive semidefinite
solution, then we have one positive semidefinite of rank less or equal then one.
The elementary condition we give to check emptyness in terms of the previous theory
is the following.
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Theorem 1.4.11. Let q ∈ Q(n+1, 2) and b = (b0, b1) ∈ R2. Set Ω(b) = ({t2b}t∈R)◦.
Then

q−1(b) = ∅ if and only if max
η∈Ω(b)

i+(η) = n+ 1.

Proof. Consider the set X = {[x] ∈ RPn | q(x) = t2b}; then

q−1(b) = ∅ if and only if X = ∅.

Indeed if q(x) = b, then since b 6= 0 also x 6= 0 and [x] ∈ X; if [x] ∈ X then q(x) = t2b
and thus q(x/t2) = b. By theorem 1.4.1

X = ∅ if and only if H0(Ω(b)n+1) = Hn(RPn\X) = Z2

from which the conclusion follows.
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CHAPTER 2

Nondegeneracy conditions

2.1 Convex sets

2.1.1 Tangent space and transversality

A convex subset K of Rn is a subset which verifies tx+ (1− t)y ∈ K for every t ∈ I
and x, y ∈ K. The polar K◦ ⊂ (Rn)∗ is defined by

K◦ = {η ∈ (Rn)∗ | η(x) ≤ 0 for every x ∈ K}.

Small convex sets have a kind of stability condition with respect to diffeomorphism;
we prove it here it for future reference. Recall that for a given convex function a
and c ∈ R the set {a < c} is convex.

Lemma 2.1.1. Let a : Rn → [0,∞) be a proper convex smooth function and x0 ∈ Rn
such that a(x0) = 0, dax0 ≡ 0 and the Hessian He(a)x0 of a at x0 is positive definite.
Let also ψ : Rn → Rn be a diffeomorphism. Then there exists ε > 0 such that for
every ε < ε

ψ({a < ε}) is convex.

Proof. Let φ be the inverse of ψ, y0 = ψ(x0) and â
.
= a ◦φ. Then the set ψ({a < ε})

equals {â < ε}. Since dax0 ≡ 0, then

He(â)y0 = tJφy0He(a)x0Jφy0 > 0

and thus, by continuity of the map y 7→ He(â)y, the function â is convex on B(y0, ε
′)

for sufficiently small ε′; hence for every c > 0 the set {â|B(y0,ε′) < c} is convex.
Since a is proper, then there exists ε such that {y | a(φ(y)) < ε} ⊂ B(y0, ε

′). Thus
{â < ε} = {â|B(y0,ε′) < ε} is convex.

Consider a family of functions aw : x 7→ a(x + x0 − w), w ∈ W ⊂ Rn with
compact closure, with a satisfying the conditions of the previous lemma. Since
He(aw)x = He(a)x, then the exstimate on He(aw)w can be made uniform on W. In
particular taking a(x) = |x|2 we derive the following corollary.

Corollary 2.1.2. Let U be an open subset of Rn and ψ : U → Rn be a diffeomor-
phism onto its image. For every x ∈ U there exists δc(x) > 0 such that for every
B(y, r) ⊂ B(x, 3δc(x)) with r < δc(x)

ψ(B(y, r)) is convex.

Moreover if ψ is semialgebraic, then the function x 7→ δc(x) can be chosen semial-
gebraic.
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Proof. The first part follows immediately from Lemma 2.1.1 and the previous re-
mark.
In the case ψ is semialgebraic, then the condition for δc(x) to satisfy the require-
ments of the previous corollary is a semialgebraic condition (according to Lemma
2.1.1 it is given by semialgebraic inequalities); thus the set

S = {(x, δ) ∈ U × (0,∞) | δ satisfies the condition of corollary 2.1.2}

is semialgebraic. Consider thus the semialgebraic function g : S → U given by the
restriction of the projection on the first factor. Then the first part of the proof tells
that g is surjective; proposition 1.2.6 ensures there exists a semialgebraic section
x 7→ (x, δc(x)) of g and the function δc is thus semialgebraic.

We define now the tangent space to a convex set; this definition applies also in the
case we have a set Ω ⊂ Rk+1 diffeomorphic to a convex set, using the diffeomorphism
to define it.

Definition 2.1.3. Let K ⊂ Rk+1 be a convex set and y ∈ K. We define the tangent
space to K at y by:

TyK = cone(K − y)

where cone(K − y) = {v ∈ Rk+1 : v = t(x− y) with t > 0 and x ∈ K}.

All the definitions concerning smooth maps can be extended to the case of convex
sets (see [3]). For Ω = K◦ ∩ Sk, with K◦ a convex cone, and ω ∈ Ω we define:

TωΩ = TωK ∩ TωSk.

We will say that a map K → M, where M is a smooth manifold, is a smooth map
if it extends to a smooth map on an open neighborhood of K in Rk+1; we will say
that f : Ω → M is smooth if it extends to a smooth map on K. If K is a convex
with empty interior and x is a point in the interior of K relative to the linear space
generated by K we still call x an interior point of K. With this in mind the tangent
space to an interior point of K is the standard tangent space, while much richer is
the structure of the tangent space to a boundary point: in analogy with the smooth
case, TyK is the cone which best approximates the convex K ate the point y.

Definition 2.1.4. Let f : M → Rn be a smooth map and K ⊂ Rn be a convex set.
We say that f is transversal to K if for every x ∈M such that f(x) ∈ K we have

dfx(TxM) + Tf(x)K = Rn.

This condition is analogous to the standard one and if K is a smooth submanifold
of Rn it is indeed equivalent; for this reason we will use the notation f t K for a
map transversal to K. Roughly speaking this condition requires transversality on
the interior points of K and on the points such that f(x) ∈ ∂K it requires that the
image of dfx is not contained in any supporting hyperplane for K at f(x).
In analogy with the smooth case, we have the following proposition.

Proposition 2.1.5. Let f : M → Rn be a smooth map and K ⊂ Rn be a closed
convex susbset. If f is transversal to K, then f−1(K) is a topological submanifold
with boundary ∂f−1(K) = f−1(∂K) of M .
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Proof. If the interior of K is empty, then f is still transversal to a small open
neighborhood U of K in the space generated by K and thus f−1(U) is a smooth
submanifold of M ; in this case we replace M with this submanifold. Thus we may
assume the interior of K is nonempty. Let x0 ∈ int(K) and consider the vector field
v(x) = x− x0 on Rn. This vector field is pointing inward at each point x ∈ ∂K :

−v(x) ∈ int(TxK), x ∈ ∂K.

The transversality condition thus implies there exist two vector fields w : M → TM
and r : M → TRn along f, with r(m) ∈ Tf(m)K if f(m) ∈ K and such that

v(f(y)) = dfyw(y) + r(y) for every y such that f(y) ∈ K.

Now if f(y) ∈ K then −dfyw(y) = dfy(−w(y)) ∈ int(Tf (y)K); (these vector fields are
first built locally and then glued together with a partition of unity). The integral
curves of −w define a collaring of the set f−1(∂K) and allow us to represent a
neighborhood Uy of an arbitrary point y ∈ f−1(∂K) as the product of f−1(∂K)∩Uy
times an interval. Since f−1(int(K)) is a smooth submanifold of M , the conclusion
follows.

2.1.2 Thom’s Isotopy lemma

In this section we prove a result analogous to Thom’s isotopy lemma: if we perform
a homotopy of maps ft : M → K all tranversal to K, then the topology of f−1

t (K)
stays invariate.

Lemma 2.1.6. Let M be a compact manifold, K ⊂ Rn a closed convex subset with
∂K 6= ∅. If ft : M → Rn, t ∈ [0, 1], is a smooth homotopy such that ft t K for
t ∈ [0, 1], then there exists a homeomorphism F : M →M such that F (f0

−1(K)) =
f1
−1(K).

Proof. Thanks to proposition 2.1.5 we have that B0
.
= f0

−1(K) is a topological
submanifold of M . Suppose f0

−1(∂K) 6= ∅, otherwise the result follows from the
standard isotopy lemma.
Following the proof of proposition of 2.1.5 we have a vector field w on M such that
the condition f(x) ∈ ∂K implies (df0)xw(x) ∈ int(Tf(x)K) and the integral curves
of this vector field define a collaring C(∂B0) of ∂B0 in M :

τ : ∂B0 × [0,∞)
'−→ C(∂B0).

Fix now a > 0 and consider the function α : ∂B0 → [0,∞) defined by

α(x) = dist(f0(τ(x, a)), ∂K).

Since M is compact then also ∂B0 is compact and α, which is continuous, has a
minimum c; moreover since dfw is pointing inward along ∂K, we have c 6= 0.
Consider now a new convex K̃ with smooth boundary, approximating K from the
interior, and such that for everty t ∈ I we still have ft t K̃, dfw is still pointing
inward along ∂K̃ and it verifies

max
k∈∂K,k̃∈∂K̃

{dist(k, ∂K̃),dist(k̃, ∂K)} ≤ c/2.
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Since ∂K̃ separates Rn in two connected components, the previous conditions on
K̃ guarantee that for every x in ∂B0 the two points f(x) and f(τ(x, a)) lie in two
different components. Thus for every x ∈ ∂B0 there exists tx ∈ [0, a) such that

f(τ(x, tx)) = f(γx(tx)) ∈ ∂K̃

where γx is the integral curve of w going out from x. Moreover such tx is unique: the
hypotheses on w imply that the curve fγx must be pointing inward at each point of
∂K̃.
Since tx depends continuously on x, then the map σ : ∂B0 → C(∂B0) defined by

σ(x) = τ(x, tx),

gives a section of C(∂B0) whose image is f0
−1(∂K̃). This implies there exists a

homeomorphism F̃0 : M →M such that

F̃0(f0
−1(K)) = f0

−1(K̃).

Applying the same reasoning to f1 we will get a homeomorphism F̃1 : M →M such
that F̃1(f1

−1(K)) = f1
−1(K̃).

Thom’s isotopy lemma for the convex K̃ gives an isotopy Ft : M →M such that for
every t it holds Ft(f0

−1(K̃)) = ft
−1(K̃) and the map

F = F̃−1
1 F1F̃0

defines the required homeomorphism.

2.2 Systems of quadratic inequalities

2.2.1 Systems of algebraic inequalities

In this section we consider in great generality systems of polynomials (quadratic)
inequalities. By such a system we mean a collection of inequalities

q1(x) ≤ 0
...

qk(x) ≤ 0

with qi ∈ R[x1, . . . , xn]. The set of the solutions of the previous system is a semial-
gebraic subset A of Rn :

A = {x ∈ Rn | qi(x) ≤ 0 i = 0, . . . , k}.

In the case the polynomials qi are homogeneous this set is contractible: if x is
in A then for every t > 0 also tx is in A; moreover in this case A is the cone
over its intersection Y with the sphere Sn−1. In the case each qi has even degree,
then it is also defined X = {[x] ∈ RPn−1 | qi(x) ≤ 0 i = 0, . . . , k}. Denoting by
p : Sn−1 → RPn−1 the covering map we have

Y = A ∩ Sn−1, X = p(Y ).

If now we perturb a little the inequalities describing Y the homotopy type of the
corrsponding set of the solutions on the sphere does not change, as stated in the
following lemma.
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Lemma 2.2.1. Let Y ⊂ Sn−1 be the set of the solutions of the system:
q1(x) ≤ 0

...
qk(x) ≤ 0

where the qi’s are polynomial functions.
Then there exists δ > 0 such that for every ε1, . . . , εk ∈ [0, δ] the inclusion of Y in
the set Yε of the solutions on the sphere of the system:

q1(x) ≤ ε1
...

qk(x) ≤ εk

is a homotopy equivalence.

Proof. Fix an index i ∈ {1, . . . , k} and consider the semialgebraic set Ŷi ⊂ Sn−1

defined by all inequalities defining Y but the i-th one, and the function αi : Ŷi → R
defined by:

αi = max{0, qi}.

Then Y = α−1
i (0) and, since Ŷi is semialgebraic and compact, αi is a rug function

for Y in X̂i. Then by corollary 1.2.4 there exists a positive δi such that for every
δi ≥ εi > 0 the set Y is homotopy equivalent to the subset Yi ⊂ Sn−1 of solutions of
the system: 

q1(x) ≤ 0
...

qi(x) ≤ εi
...

qk(x) ≤ 0

Now replace Y with Yi (notice that Yi is semialgebraic and compact) and repeat
the argument for one of the remaining indexes. Iterating for each index and putting
δ = min{δ1, . . . , δk} gives the result.

Remark 2. The previous statement is valid also if the qi are simply continuous
semialgebraic functions. In the case each qi is homogeneous of degree two, then the
result holds also for the set of the solutions of the previous system on the projective
space RPn−1.

Remark 3. Notice that an equation like p(x) = 0 is equivalent to the couple of
equations p(x) ≤ 0 and −p(x) ≤ 0. Hence the result of perturbing one single
equation are two inequalities.

The previous setting admits also a dual description. Namely, consider

f : Rn → Rk and K ⊂ Rk

where f is a polynomial mapping, i.e. the components (f1, . . . , fk) are polynomials,
and K is a polyhedral cone. Thus K admits a descripition as the set of y ∈ Rk such
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that ηj(y) ≤ 0 for certain covectors ηj ∈ (Rk+1)∗, j = 1, . . . , l. Using the ηi we can
define the functions qi = ηif, i = 1, . . . , k,: they are polynomials and by definition

A = f−1(K).

Using this convention we will often refer to a pair (q,K), with q a polynomial map
and K a polyhedral cone, as a system of polynomial inequalities.
In the case the polynomials fi are not homogeneous we can consider their homog-
enization hfi(x0, . . . , xn) = xdeg fi

0 fi(x1, . . . , xn) and the resulting homogenization
hf of the map f . If the fi were of even degree, then the hfi also are of even de-
gree and it is defined X = {[x] ∈ RPn | hfi(x) ∈ K i = 1, . . . , k}. Identifying Rn
with {x0 6= 0} ⊂ RPn and setting X0 for X ∩ {x0 = 0} we have the homeomor-
phism A = X\X0 (notice that in the case the fi were already homogeneous then
X0 = {x0 = 0} and A = X\RPn−1).

2.2.2 The quadratic case

Since we will be primarily interest in the case the polynomials qi are quadratic, we
deserve to them a special section. In this case a crucial observation is that perturbing
homogeneous quadratic inequalities on the sphere or on the projective space still gives
homogeneous quadratic inequalities. The reason for this is the following: suppose
we fix a positive definite form p ∈ Q(Rn+1) in such a way that the sphere is the
unit sphere with respect to this form. Then each inequality of the kind q ≤ ε with
q ∈ Q(Rn+1) and ε a real number can be written on this sphere as q ≤ εp and this
last inequality is homogeneous and quadratic and the same reasoning hold on the
projective space.
In this case if we consider quadratic polynomials qi (not necessarily homogeneous)
and a polyhedral cone K ⊂ Rk a kind of Alexander duality holds for A = f−1(K) ⊂
Rn ⊂ RPn and RPn\A.

Lemma 2.2.2. Let q : Rn → Rk be a quadratic map and K ⊂ Rk be a polyhedral
cone. Then, using Z2 coefficients, the following formula holds for A = q−1(K) :

b̃i(A) = bn−i−1(RPn\A)− bn−i−1(RPn), i ≥ 0

Proof. Consider the homogenization hq : Rn+1 → Rk of the map q and the sets
X = {[x] ∈ RPn | hq(x) ∈ K} and X0 = X∩{x0 = 0} in such a way that A = X\X0.
Embed semialgebraically RPn into some Rm and consider the semialgebraic function
α : X → [0,∞) defined by the distance from {x0 = 0}. Since X is compact we have
that α is a rug function for X0 = α−1(0) in X; thus if we set Uε for the preimage
α−1[0, ε) we have by corollary 1.2.4 that the inclusion

X\Uε ↪→ X\X0

is a homotopy equivalence for ε > 0 small enough. In particular, since X\Uε is
closed, we can use Alexander duality and get

H i(A;Z2) ' Hn−i(RPn,RPn\(X\Uε);Z2).



2.2 Systems of quadratic inequalities

Since A is affine, the homomorphism (i∗)n−i induced by its inclusion in RPn on
the cohomologies is injective for i = n and zero otherwise. Hence by naturality of
Alexander duality, the connecting homomorphism

∂ : Hi(RPn;Z2)→ Hi(RPn,RPn\A;Z2)

is injective for i = n and zero otherwise. This observation allows us to split the
long exact sequence of the pair (RPn,RPn\A) and to get the desired result (the
asymmetry at i = n disappears if we take reduced Betti numbers for A).

2.2.3 Regular systems

We introduce in this section the class of regular systems of quadratic inequalities.
We use the description of a system as a pair (q,K) where q ∈ Q(n, k) and K ⊂ Rk is
a convex polyhedral cone; thus if K is defined by the inequalities ηi ≤ 0 for certain
η0, . . . , ηl linear functionals on Rk, the system is that defined by the inequalities
ηiq ≤ 0 for i = 0, . . . , l. The definition of regularity is the following.

Definition 2.2.3 (Regular system). Let q ∈ Q(V,W ) be a quadratic map and K ⊂
W be a convex polyhedral cone. We say that the system (q,K) is degenerate (or
equivalently that the map q is degenerate with respect to K) if there exists a nonzero
x in V and a nonzero η in K◦ such that q(x) ∈ K and ηQx = 0. We say that the
system is nondegenerate (or that the map q is nondegenerate with respect to K) if
the previous condition is not verified.

We can reformulate the previous and say that q is nondegenerate with respect
to K if for every nonzero x in V and every nonzero ω in K◦ such that q(x) ∈ K
then the composition ωdqx is not identically zero. Given a polyhedral cone K in a
vector space W , we define the set

Q(V,W ;K) = {q ∈ Q(V,W ) | q is nondegenerate with respect to K}.

If we consider the restriction of a map q ∈ Q(V,W ;K) to the unit sphere we get
a smooth map which is transversal to K. Using the above notations this means
that for every point x in Sn the image of the differential dq̃x is not contained in any
supporting hyperplane for K at q(x). Indeed suppose on the contrary that the image
of dq̃x is contained in a supporting hyperplane of K at q(x): this means there exists
a nonzero η in K◦ such that ηdq̃x = 0 and also ηq(x) = 0. Since the image of dqx
equals im(dq̃x) + span{q(x)}, then such a covector η vanish on the whole image of
dqx, hence q would be degenerate with respect to K. Actually it turns out that for
q ∈ Q(V,W ) the conditions q̃ is transversal to K and q ∈ Q(V,W ;K) are equivalent,
as stated in the following proposition.

Proposition 2.2.4. Let K ⊂ Rk be a convex polyhedral cone and q ∈ Q(n + 1, k)
be a quadratic map. Then q is nondegenerate with respect to K if and only if q|Sn
is tranvsersal to K.

Proof. It remains to prove that if q|Sn is transversal to K then q is nondegenerate
with respect toK. Suppose x ∈ Rn+1\{0} is a point of degeneracy for q, i.e. q(x) ∈ K
and there exists η ∈ K◦\{0} such that ωdqx = 0; then

im(dqx) +K 6= Rk
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otherwise let v ∈ Rk such that η(v) > 0 and write v = dqxw + k for some w ∈ Rn+1

and k ∈ K; then it should be 0 < η(v) = ηdqxw + η(k) ≤ 0 which is absurd. Since
x = u‖x‖, with u ∈ Sn, then q̃(u) = ‖x‖−2q(x) ∈ K, since K is a cone. Moreover

im(dqx) +K = im(dq̃u) + span{q̃(u)}+K = im(dq̃u) + Tq̃(u)K 6= Rk

which shows that u is a point of tangency for q̃. This proves the lemma.

2.2.4 Regularization without changing homotopy type

In this section we prove that a system can be slightly perturbed in such a way that
it becomes regular without changing the homotopy type of the set of the solutions.
To this we introduce the following definition of nondegeneracy of a smooth map
f : Ω→ Q(V ).

Definition 2.2.5. Let Ω be a convex cone (or a set diffeomorphic to a convex cone)
and f : Ω→ Q(V ) be a smooth map. We say that f is degenerate at ω0 ∈ Ω if there
exists a nonzero x in ker f(ω0) such that for every v ∈ Tω0Ω we have (dfω0v)(x, x) ≤
0; in the contrary case we say that f is nondegenerate at ω0. We say that f is
nondegenerate if it is nondegenerate at each point ω ∈ Ω.

For a given q ∈ Q(V,W ) we defined the map q : W ∗ → Q(V ) by the correspon-
dence η 7→ ηq. If K is a convex polyhedral cone in W then the two nondgeneracy
conditions, the one on q and that on q|K◦ , are indeed equivalent, as shown in the
following lemma.

Lemma 2.2.6. If K ⊂ W is a polyhedral cone and q ∈ Q(V,W ) then q is nonde-
generate with respect to K if and only if q|K◦ is nondegenerate.

Proof. Suppose q|K◦ is degenerate; let η 6= 0 be in K◦ and x 6= 0 be in ker qη such
that for every v in TηK

◦ we have (dqηv)(x) ≤ 0. Then writing v as ω − t2η with
ω ∈ K◦ we have ωq(x) = (ω − η)q(x) = (dqη(ω − t2η))(x) ≤ 0 for every ω ∈ K◦
(where we have used the fact that x ∈ ker f(η)). This tells that q(x) ∈ K and thus
that q is degenerate with respect to K (ηdqx = 0 since x ∈ ker qη).
On the contrary suppose q is degenerate with respect to K. Thus there exists a
nonzero x and a nonzero η ∈ K◦ such that q(x) ∈ K and ηdqx = 0. Since q(x) ∈ K
then for every ω ∈ K◦ we have ωq(x) ≤ 0. Writing v ∈ TηK◦ as ω − t2η we have
(dqηv)(x) = (dqη(ω− t2η))(x) = ωq(x) ≤ 0; since ηdqx = 0 then x ∈ ker ηq and thus
q|K◦ is degenerate.

Before proving the main result of this section, we will prove two technical lem-
mata. We recall that we stratified the set of singular forms Z =

∐
Zj (we omit for

brevity of notations the symbol V in parenthesis); this stratification turns out to
be smooth and semialgebraic (the name Nash is used for such stratifications). This
stratification can be obtained by considering the set S = {(x, q) ∈ V ×Z |x ∈ ker q}
and the map p : S → Z which is the restriction of the projection on the second
factor: a trivialization for p gives a substratification of Z =

∐
Zj .

Lemma 2.2.7. Let r be a singular form and suppose r ∈ Zj for some stratum of Z
as above. Then for every q ∈ TrZj and x0 ∈ ker(r) we have q(x0, x0) = 0.
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Proof. Let r : I → Zj be a smooth curve such that r(0) = r and ṙ(0) = q. By the
triviality of p over Zj it follows that there exists x : I → Rn+1 such that x(0) = x0

and x(t) ∈ ker(r(t)) for every t ∈ I. This implies r(t)(x(t), x(t)) ≡ 0 and deriving
we get

0 = ṙ(0)(x(0), x(0)) + 2r(0)(x(0), ẋ(0)) = q(x0, x0).

Lemma 2.2.8. Let Ω =
∐
Yi be a finite partiton with each Yi smooth and semial-

gebraic, f : Ω → Q(V ) be a semialgebraic smooth map and Z(V ) =
∐
Zj as above.

Suppose that for every Yi the map f |Yi is transversal to all strata of Z(V ). Then f
is nondegenerate.

Proof. Let ω0 ∈ Ω and x ∈ ker(f(ω0))\{0}; we must prove that there exists v ∈ Tω0Ω
such that (dfω0v)(x, x) > 0. Let Yi such that ω0 ∈ Yi. Then Tω0Yi ⊂ Tω0Ω; suppose
f(ω0) ∈ Zj . Since f |Yi is transversal to Zj , then

im(df |Yi)ω0 + Tf(ω0)Zj = Q(V ).

Thus let q+ ∈ Q(V ) be a positive definite form, v ∈ Tω0Yi and ṙ ∈ Tf(ω0)Zj such
that

dfω0v + ṙ = q+.

Since x ∈ ker(f(ω0))\{0}, then the previous lemma implies ṙ(x, x) = 0, and plugging
in the previous equation we get

(dfω0v)(x, x) = (dfω0v)(x, x) + ṙ(x, x) = q+(x, x) > 0.

We are ready now to prove the main result of this section.

Theorem 2.2.9. Let f : Ω → Q(V ) be a semialgebraic smooth map. Then there
exists a definite positive form q0 ∈ Q(V ) such that for every ε > 0 sufficiently small
the map fε : Ω→ Q(V ) defined by

ω 7→ f(ω)− εq0

is nondegenerate.

Proof. Let Ω =
∐
Yi and Z =

∐
Zj be as above. For every Yi consider the map

Fi : Yi × Q+ → Q (we denote by Q+(V ) the set of positive definite forms) defined
by

(ω, q0) 7→ f(ω)− q0.

Since Q+ is open in Q, then Fi is a submersion and F−1
i (Z) is Nash-stratified by∐

F−1
i (Zj). Then for q0 ∈ Q+ the evaluation map ω 7→ f(ω)−q0 is transversal to all

strata of Z if and only if q0 is a regular value for the restriction of the second factor
projection πi : Yi × Q+ → Q+ to each stratum of F−1

i (Z) =
∐
F−1
i (Zj). Thus let

πij = (πi)|F−1
i (Zj)

: F−1
i (Zj)→ Q+; since all datas are smooth semialgebraic, then by

semialgebraic Sard’s Lemma, the set Σij = {q̂ ∈ Q+ | q̂ is a critical value of πij} is
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a semialgebraic subset of Q+ of dimension dim(Σij) < dim(Q+). Hence Σ = ∪i,jΣij

also is a semialgebraic subset of Q+ of dimension dim(Σ) < dim(Q+) and for every
q0 ∈ Q+\Σ and for every i, j the restriction of ω 7→ f(ω)− q0 to Yi is transversal to
Zj . Thus by the previous lemma f−q0 is nondegenerate. Since Σ is semialgebraic of
codimension at least one, then there exists q0 ∈ Q+\Σ such that {tq0}t>0 intersects
Σ in a finite number of points, i.e. for every ε > 0 sufficiently small εq0 ∈ Q+\Σ.
The conclusion follows.

As a corollary we immediately get that the following.

Corollary 2.2.10. Every system of quadratic inequalities can be regularized without
changing the homotopy type of the set of its spherical or projective solutions.

Proof. Given a system of quadratic inequalities (q,K), we apply the previous theo-
rem to the map q and the convex set K◦. Since nondegeneracy of q|K◦ is equivalent
to nondegeneracy of the systems, then for ε > 0 small enough lemma 2.2.1 gives the
result.

We conclude this section by stating a property of nondegenerate maps that will
be useful in the sequel. Let f : Ω → Q(V ) be a smooth map. We define, for every
U ⊂ Ω the set

Bf (U) = {(ω, x) ∈ U × RPn | f(ω)(x) > 0}.

Lemma 2.2.11. Let f : Ω → Q(V ) be a smooth nondegenerate map. Then there
exists δ1 : Ω → (0,+∞) such that for every ω ∈ Ω, for every U1 ⊂ U2 closed
convex neighborhoods of ω with diam(U2) < δ1(ω) and for every η ∈ U1 such that
i−(f(η)) = i−(f(ω)) and det(f(η)) 6= 0 the inclusions

(η, P+(f(η))) ↪→ Bf (U1) ↪→ Bf (U2)

are homotopy equivalences.
Moreover in the case f is semialgebraic, then the function δ1 can be chosen to be
semialgebraic (but in general not continuous).

Proof. The existence of δ1 is the statement of Lemma 8 of [3]. The fact that δ1

can be chosen to be semialgebraic if f is semialgebraic follows directly from the
proof of Lemma 7 of [3]: in fact the set S of pairs (ω, δ) ∈ Ω × (0,∞) such that
δ1 satisfies the requirement of the lemma is semialgebraic (it is given by a formula
with semialgebraic inequalities). Lemma 8 of [3] tells that the projection on the first
factor g|S : S → Ω is surjective and, arguing as in lemma 2.1.2, proposition 1.2.6
gives the semialgebraicity.

2.3 K-homotopy classes

2.3.1 K-homotopies

Consider now a polyhedral cone K ⊂ W. The set Q(V,W ;K) has many connected
components and given two maps q0 and q1 in the same component we can join them
by a path qt all made of non degenerate maps. In particular this path defines an
homotopy between q0|Sn and q1|Sn ; since at each time of the homotopy the map qt is
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nondegenerate with respect to K, then by lemma 2.2.9 we have qt|Sn is transversal to
K for every time and by lemma 2.1.6 we have that the set of the spherical (projective)
solutions of (q0,K) is homeomorphic to the set of the spherical (projective) solutions
of (q1,K). In the case q0 and q1 are in the same connected component of Q(V,W ;K)
we will say that they are K-homotopic.
The goal of classifications of K-homotopy classes is that of find a label to name each
connected component of Q(n,m;K). Here we will study two cases in which this label
is particularly simple; the first is the case K = {x0 ≤ 0, x1 ≤ 0} ⊂ R2 where to each
q ∈ Q(n, 2;K) we associate a partioned binary array and some rules to transform
one array into the other such that two maps are K-homotopic if and only if their
arrays can be transformed one into the other by mean of these rules; the second is
the case K = {0} ⊂ R3 and q : R3 → R3 where it is possible to associate a modulo
two invariant of the map.
The classification of K-homotopy classes for K = {0} ⊂ R2 is studied in [1].

2.3.2 Two quadrics

In this section the cone K is assumed to be the subset of R2 defined by x0 ≤ 0 and
x1 ≤ 0. It is a quadrant in the plane and indeed any system of quadratic inequalities
(q,K ′) with K ′ ⊂ R2 homeomorphic to K is equivalent to the system (q,K) by
a linear change of variable; thus in this section we are studying regular homotopy
classes of systems of two independent quadratic inequalities.
We begin by studying K-homotopy classes in Q(2, 2;K).

Lemma 2.3.1. If q ∈ Q(2, 2;K) then it is K-homotopic to p : R2 → R2 ' C

(x0, x1)
p7→ x2

0e
iθ0 + x2

1e
iθ1

such that θ0 6= ±θ1 and θ1, θ0 6= kπ/2, k ∈ Z.

Proof. Consider the following equation for [ω] ∈ RP1 :

det(ωp) = 0

and let ∆ : Q(2, 2)→ R its discriminant. Then ∆ is a polynomial function not iden-
tically zero and {∆(p) = 0} is a proper algebraic subset of Q(2, 2); since Q(2, 2;K)
is open, we may assume ∆(q) 6= 0.
If ∆(q) > 0 then there are two noncollinear roots [ω0] and [ω1] in RP1.
This means that the image of q∗ : ω 7→ ωq intersects the set Z of degenerate quadratic
forms in two distinct lines.
Since det(ωjQ) = 0, for j = 0, 1, then there exist x0 and x1 in R2 different from zero
and such that

xT0 (ω0Q) = 0, xT1 (ω1Q) = 0.

Moreover, since ω0 and ω1 are linearly independent, then

ω0(xT0 Qx1) = ω1(xT0 Qx1) = 0

It follows that
xT0 Qx1 = 0.
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Moreover if x0 and x1 were collinear, then writing η ∈ K◦\{0} as a linear combina-
tion of ω0 and ω1,

η = c0ω0 + c1ω1,

we would have q(x0) = 0 ∈ K, x0 6= 0, and

xT0 (ηQ) = xT0 (c0ω0 + c1ω1)Q = xT0 (c0ω0Q) + xT0 (c1ω1Q) = 0

against the nondegeneracy hypothesis on q.
The condition xTj (ωjQ) = 0 tells that the quadratic form ωjq restricted to {λxj} is
zero; nevertheless ωjq is not identically zero: if for example it was (ω1q)(x) = 0 for
every x ∈ R2, then in coordinates (ω0, ω1) we would have

q(x) = q(x0, x1) = (ax0
2, 0), Jq(x0, x1) =

(
2ax0 0

0 0

)
and for every λ 6= 0 we would have q(0, λ) = 0 ∈ K and Jq(0, λ) ≡ 0, against the
nondegeneracy assumption.
Thus q : R2 → R2 ' C is of the form

q(x) = 〈a0, x〉2eiθ0 + 〈a1, x〉2eiθ1 (2.1)

with θ0 6= ±θ1 (since ∆(q) 6= 0) and a0, a1 ∈ R2 such that

〈a0, x1〉 = 〈a1, x0〉 = 0 and q(λxj) = λ2〈aj , xj〉2eiθj for j = 0, 1.

The nondegeracy condition implies none of eiθ0 and eiθ1 is a generator of K and thus
slightly perturbing we obtain eiθj 6= kπ/2, k ∈ Z. We can clearly change a0 and a1

trough K-homotopies as to arrive to p.
If ∆(q) < 0 there are no real roots of the previous equation: [ω0], [ω1] ∈ CP1;
moreover since the coefficients of the equation are real, then [ω0] = [ω1]. In this case
the non existence of real roots guarantees automatically nondegeneracy. We exhibit
now a K-homotopy between q and a map with positive discriminant. First notice
that we have det(ωq) 6= 0 for every ω 6= 0 and thus dq|R2\{0} is surjective; moreover

for every η 6= 0 we have i+(ηq) = 1. Thus let η ∈ int(K) and e⊥ orthogonal to e. In
coordinates (e, e⊥) we have

q(x) = (〈e, q(x)〉, 〈e⊥, q(x)〉).

Diagonalizing the first component we find a basis (y0, y1) of R2 such that in coordi-
nates we have

q(x) = (x0
2 − x1

2, ax0
2 + bx1

2 + cx0x1).

We define the homotopy qt through the equation:

qt(x) = (x0
2 − x1

2, t(ax0
2 + bx1

2 + cx0x1)).

Naturally we have

Jqt(x0, x1) =

(
2x0 2tax0 + tcx1

−2x1 2tbx1 + tcx0

)
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det(Jqt(x0, x1)) = tdet(Jq1(x0, x1))

and thus qt is nondegenerate for every t: for t 6= 0 the differential of qt|R2\{0} is
surjective; for t = 0 we have ∆(q0) = 0 but the choice of e guarantees nondegeneracy.
Thus after this homotopy q will be of the form

q0(x) = 〈a0, x〉2eiθ + 〈b0, x〉2e−iθ,

with eiθ = λ2e and a0 and b0 nonzero; a small rotation of one of the two vectors eiθ

or e−iθ gives the K-homotopy between q0 and a map with positive discriminant, to
which the previous part applies.

Using the previous lemma we can attach to each q ∈ Q(2, 2;K) a word s(q) of
three characters from the sets {ω, ω̂, z} in the following way. Let p be given by the
previous lemma, fix the orientation (( 0

1 ) , ( 1
0 )) on R2 and let ωj = −ω̂j ∈ S1, j = 0, 1

be such that

〈eiθj , ωj〉 = 〈eiθj , ω̂j〉 = 0 and (eiθj , ωj) is positively oriented

Notice that by assumption on K we have K = cone{z = ( 0
1 ) , w = ( 1

0 )}. The
previous lemma implies no ωj , ω̂j , j = 0, 1 belongs to {z, w,−w}. Thus on the arc
joining −w to w clockwise there is one among {ω0, ω̂0}, one among {ω1, ω̂1} and z.
We define s(q) to be the word obtained writing the letters of the points we meet
going from −w to w clockwise without indices. Twelve possibilities can happen and
we partition them into four disjoint subsets (the reason for this partition will become
clear in a while):

(1) [ωωz] = {ωωz}

(2) [ωω̂z] = {ωω̂z, ωzω̂, ω̂ωz, ωzω}

(3) [ω̂zω] = {ω̂zω, zωω, zω̂ω, zω̂ω̂, ω̂zω̂, ω̂ω̂z}

(4) [zωω̂] = {zωω̂}.

For a given q ∈ Q(2, 2;K) we define

σ(q) = [s(q)]

and prove the following result, which classify K-homotopy classes (i.e. connected
components) of Q(2, 2;K).

Theorem 2.3.2. Two maps q0, q1 ∈ Q(2, 2;K) are K-homotopic if and only if

σ(q0) = σ(q1).

In particular P (2, 2;K) has four connected components.

Proof. Notice first that the four cases we described correspond to the following
situation:

(1) : both eiθ0 and eiθ1 belong to int(K);
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(2) : one among eiθ0 and eiθ1 belongs to int(K) and the other does not;

(3) : both eiθ0 and eiθ1 do not belong to K and p(R2) ∩K = {0};

(4) : both eiθ0 and eiθ1 do not belong to K and p(R2) ⊃ K.

Clearly if σ(q0) = σ(q1) then q0 and q1 are K-homotopic: first make a homotopy
from q0 to p0 given by the lemma. Then rotating the vectors eiθ0 and eiθ1 gives a
homotopy between p0 and p1, where p1 comes from the lemma applied to q1; this
homotopy is a K-homotopy because σ(q0) = σ(q1) (the reader can check it simply
drawing a picture). Finally perform the homotopy from p1 to q1.
On the contrary if q0 and q1 are K-homotopic, then also p0 and p1 are K-homotopic.
If σ(q0) 6= σ(q1), then the homotopy joining p0 and p1 must have zero discriminant
at a certain point ps, s ∈ [0, 1]. Let ps : R2 → Q(R2) ' R3 be the map ω 7→ ωps; then
ps is a linear map from R2 to R3. Since the set of linear maps L : R2 → R3 with rank
less than or equal to one has codimension two, then we may assume rk(ps) = 2 :
if there is a K-homotopy pt between p0 and p1 then there also is a K-homotopy
avoiding the codimension two set of maps with not maximal rank.
The nondegeneracy condition of ps traduced in the nondegeneracy for the linear map
ps is:

∀η ∈ K◦\{0}, ∀y ∈ ker(psη)\{0} ∃v ∈ TηK◦ s.t (dηpsv)(y) > 0.

Thus if we set Z = {q ∈ Q(R2) | det(q) = 0}, then we have ps(R2) intersects Z in a
line l. Now in principle three possibilities can happen: (i) ps(K

◦) ∩ l ⊂ int(K◦), in
which case ps would be degenerate with respect to K; (ii) ps(K

◦)∩ l ⊂ ∂K◦, a case
which has codimension at least two and thus that can be avoided; (iii) ps(K

◦)∩ l =
{0}, in which case ps is nondegenerate with respect to K.
Thus if the discriminant of ps vanishes performing a K-homotopy between maps
p0, p1 with positive discriminant, then it can happen only in the described way and
thus, recalling the proof of lemma 2.3.1, we have σ(p0) = σ(p1) which concludes the
proof.

We move now to the classification of K-homotopy classes in Q(m, 2;K). We
adopt the following convention: if q1, . . . , qk are quadratic maps with qj ∈ Q(nj , 2)
for j = 1, . . . , k, we define the quadratic map q1 ⊕ · · · ⊕ qk = q ∈ Q(n1 + · · ·+ nk, 2)
by the formula

q(x) = q(x1, . . . , xk) =

k∑
j=1

qj(xj).

The following is a classical result.

Lemma 2.3.3. Let q in Q(m, 2) such that ∆(q) 6= 0. Then there exist qj ∈ Q(2, 2)
for j = 1, . . . , l and pk ∈ Q(1, 2) for k = 1, . . . , b such that 2l + b = m and

q = (
l⊕

j=1
qj)⊕ (

b⊕
k=1

pk).

Proof. See [3]
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In particular lemma 2.3.3 implies that if q ∈ Q(m, 2;K) then each qj must belong
to Q(2, 2;K) and each pk to Q(1, 2;K).
For our purpose we need the following lemma.

Lemma 2.3.4. Let q0 ∈ Q(m, 2;K) such that q0 = s0 ⊕ r with r ∈ Q(m− 2, 2;K),
s ∈ Q(2, 2;K) and ∆(s0) < 0.
Then q0 is K-homotopic to a map q1 = s1⊕r such that σ(s1) = [ωω̂z] and ∆(s1) > 0.

Proof. Consider the K-homotopy st we built when we proved that ∆(s0) < 0 then
σ(s0) = [ωω̂z] and stop this homotopy once we reach a map s̃ = sT with zero
discriminant. Thus suppose we have a K-homotopy st between s0 and s̃. We define
qt = st ⊕ r; then we have qt(x) = (xTQ1(t)x, xTQ2(t)x) with

Qj(t) =

(
Sj(t) 0

0 Rj

)
j = 1, 2

If w = (w1, w2), then

wQ(t) = w1Q1(t) + w2Q2(t) =

(
w1S1(t) + w2S2(t) 0

0 w1R1 + w2R2

)
Suppose there exists τ ∈ (0, T ) such that qτ is degenerate with respect to K; then
there would exist a nonzero vector x = (xs, xr) ∈ R2 × Rm−2 and a covector w ∈
K◦\{0} such that qτ (x) ∈ K and w(dqτ )x ≡ 0. Since (dqτ )x = xT (ωQ(τ)) then
xs = 0, because for xs 6= 0 the linear map w(dsτ )xs = xs

T (w1S1(τ) + w2S2(τ)) is
nonzero; thus r(xr) = q(x) ∈ K and xr

T (w1R1 + w2R2) = 0 against the fact that r
is nondegenerate with respect to K. Thus we showed that for t 6= T the map qt is
nondegenerate with respect to K.
On the other side for t = T we have (dqT )(xs,xr) = (dsT )xsPs + drxrPr, where Ps
and Pr are the projections on the subspace respectively of the first 2 coordinates
and the remaining m− 2.
Thus suppose (xs, xr) 6= (0, 0) and qT (xs, xr) ∈ K. Then two cases can happen:
xs 6= 0 and xs = 0. If xs 6= 0 then no supporting hyperplane for K contains
the image of the differential (dqT )(xs,xr) because no supporting hyperplane for K
contains the image of the differential (dsT )xs ; if xs = 0 then since r is nondegenerate
with respect to K, then no supporting hyperplane of K contains the image of the
differential (dqT )(0,xr) = drxr . Thus in both cases qT is nondegenerate with respect
to K.
Let now {sn}n>1 ⊂ Q(2, 2;K) be a sequence of maps such that for every n we have
σ(sn) = [ωω̂z], ∆(sn) > 0 and sn → sT .
If we define qn = sn ⊕ r, then clearly qn → qT . Since Q(m, 2;K) is open in Q(n, 2)
and qT is nondegenerate with respect to K, then there exists n such that qn is
nondegenerate with respect to K and qn is K-homotopic to qT .
Let finally s1 = sn, q1 = s1 ⊕ r = qn and qt be the composition of the two K-
homotopies from q0 to qT and from qT to qn. Then σ(s1) = [ωω̂z], ∆(s1) > 0 and qt
is the required K-homotopy.

We describe now a procedure to associate to each q ∈ Q(m, 2;K) a word of m+1
letters on the set of characters {ω, ω̂, z}.
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Again let ∆ : Q(m, 2) → R the discriminant of the equation det(ωp) = 0 : it
is a polynomial function and {∆(p) = 0} is a proper algebraic set; hence q is K-
homotopic to q′ with ∆(q′) 6= 0. Applying lemma 2.3.3 we get that q is K-homotopic

to a map of the form (
l⊕

j=1
qj)⊕ (

b⊕
k=1

pk) with each qj and each pk nondegenerate with

respect to K. Lemma 2.3.4 allows now to change each qj with ∆(qj) < 0 in a q′j with

∆(q′j) > 0 without losing nondegeneracy w.r.t. K. Thus there exist eiθ1 , . . . , eiθm

such that q, up to K-homotopies, is of the form:

q(x) = q(x1, . . . , xm) =
m∑
j=1

eiθjxj
2

Slightly perturbing the eiθj ’s (which does not affect nondegeneracy w.r.t. K) we
may assume θi 6= ±θj for i 6= j and θj 6= kπ/2 for k ∈ Z and j = 1, . . . ,m. Fix now
the orientation (( 0

1 ) , ( 1
0 )) on R2 and let ωj = −ω̂j ∈ S1, j = 1, . . . ,m be such that

〈eiθj , ωj〉 = 〈eiθj , ω̂j〉 = 0 and (eiθj , ωj) is positively oriented

Exactly as we did for the case q ∈ Q(2, 2;K) we associate now to q ∈ Q(m, 2;K) the
word s(q) obtained by writing the characters of the point we meet going clockwise
on S1 from −ẑ to ẑ (omitting the indices). A lot of possibilities can happen now
and we introduce the following rules to change one word into another:

(A) s1ω̂zs2 = s1zω̂s2: we can commute ω̂ and z;

(B) sω = ω̂s for every word s with characters in {z, ω̂, ω} : if ω̂ is the last character
of one word, we can cancel it and place ω̂ at the beginning of the word as the
first character;

(C) s1ω̂s2ωs3zs4 = s1ωs2ω̂s3zs4 for every choice of words s1, s2, s3, s4 with char-
acters in {ω, ω̂} : we can commute ω̂ and ω to the left of z.

We will see that each rule correspond to a precise K-homotopy between two
quadratic maps and that the previous are exactly the K-homotopies we can perform.
In view of this idea we give the following definition.

Definition 2.3.5. We define S(m, 2;K) to be the set of equivalence classes of words
of maps q ∈ Q(m, 2;K) under the relation that two words are equivalent if and only
if we can change one into the other with the previous rules. We let σ(q) be the class
of s(q) in S(m, 2;K).

Before proving the main theorem of this section, we first prove one useful lemma.
If q ∈ Q(m, 2) is given by

q(x) = q(x1, . . . , xn) =
n∑
j=1

eiθjxj
2

then for every pair of distinct indices (a, b) we define qab ∈ Q(2, 2) by

qab(xa, xb) = eiθaxa
2 + eiθbxb

2.
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Lemma 2.3.6. Let q ∈ Q(m, 2) be defined by

q(x) = q(x1, . . . , xm) =

m∑
j=1

eiθjxj
2.

Then q is nondegenerate with respect to K if and only if qab is nondgenerate w.r.t.
K for every pair of distinct indices (a, b).

Proof. Clearly if q is nondegenerate w.r.t. K then for every pair (a, b) of distinct
indices qab is nondegenerate w.r.t. K.
Viceversa suppose q is degenerate w.r.t. K and let us prove that there exists a pair
of distinct indices (a, b) such that qab is degenerate w.r.t. K.
Degeneracy of q implies that there exists a nonzero vector x = (x1, . . . , xm) and a
covector ω ∈ K◦\{0} such q(x) ∈ K and ωdqx ≡ 0.
If all the components of x but xj were zero, then for every l 6= j we have qlj
degenerate w.r.t. K.
If x has k > 1 nonzero components, the first k for example, then since

dqx =

k∑
j=1

2xje
iθjdxj

all the vectors eiθ1 , . . . , eiθk must be collinear, otherwise the rank of dqx would be 2
(against the fact that there exists ω ∈ K◦\{0} such that ωdqx ≡ 0).
If eiθ1 = eiθ2 = · · · = eiθk then it must be eiθ1 ∈ ∂K and thus q12 is degenerate w.r.t.
K; if among eiθ1 , . . . , eiθk there are two vectors with different signs, for example eiθ1

and eiθ2 , then nondegeneracy of q implies no one among eiθ1 , . . . , eiθk belongs to
int(K); thus either one among them coincides with one generator of the cone K or
q(x) = 0 and thus q12(x1, x2) = 0 ∈ K : in both cases q12 is degenerate w.r.t. K.

Everything is ready now for the proof of the following theorem, which classifies
K-homotopy classes of Q(m, 2;K).

Theorem 2.3.7. The set S(m, 2;K) calssifies K-homotopy classes of Q(m, 2;K) :
two maps q0, q1 ∈ Q(m, 2;K) are K-homotopic if and only if

[s(q0)] = [s(q1)].

Moreover the sequence of rules we have to apply to change s(q0) to s(q1) describes
one possible K-homotopy.

Proof. Thanks to the previous lemma 2.3.6 if q ∈ Q(m, 2;K) and we perform a
rotation of the eiθj ’s such that for every pair of distinct indices (a, b) the map qab
is nondegenerate, then the result is a K-homotopy. Thus every rule corresponds
to a precise K-homotopy and σ(q0) = σ(q1) implies q0 and q1 are K-homotopic.
Moreover from the proof of lemma 2.3.4 it follows that if q = r⊕ s with s ∈ Q(2, 2)
and ∆(s) < 0 then q is nondegenerate w.r.t. K if and only if r is; thus iterating
the reasoning, if q = v1 ⊕ · · · ⊕ vk ⊕ s1 ⊕ · · · ⊕ sl with the vj ’s representing maps
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in Q(1, 2;K) and the sj ’s maps in Q(2, 2;K) with negative discriminant, then q
is nondegenerate w.r.t. K if and only if v1 ⊕ · · · ⊕ vk is nondegenerate w.r.t. K.
Moreover if

s(v1 ⊕ · · · ⊕ vk) = u1zu2

with u1 and u2 words in {ω, ω̂}, then we have

σ(q) = [s(v1 ⊕ · · · ⊕ vk ⊕ s1 ⊕ · · · ⊕ sl)] = [(ωω̂)lu1zu2]

where (ωω̂)l we mean the word ωω̂ repeated l times.
We prove now that if q0 and q1 are K-homotopic, then σ(q0) = σ(q1).
First notice we may assume q0 and q1 are in the form given by lemma 2.3.3. As before
we may suppose the K-homotopy is generic (i.e. we can avoid sets of codimension
grater or equal to two). To a given q ∈ Q(m, 2) we can associate a linear map

q : R2 → Q(Rm) ' R
m(m+1)

2 by the correspondence ω 7→ ωq. The set of linear maps
L : R2 → Q(Rm) with rank less or equal to one is an algebraic subset of codimension
greater than one, hence it can be avoided (i.e. if there is a K-homotopy qt then there
is also one with rk(q∗t ) = 2 for every t). The set of linear maps L : R2 → Q(Rm)
such that the image of L is tangent to Z = {q ∈ Q(Rm) | det(q) = 0} in at least two
distinct lines has codimension greater than one, hence can be avoided: generically a
K-homotopy will meet {∆(q) = 0} only a finite number of time and in these cases
only two roots of det(ωq) = 0 will coincide.
Let A be the set of maps in Q(m, 2;K) with exactly two equal roots of the equation
det(ωq) = 0. Thus let qt be a generic K-homotopy (in particular ∆(q1) 6= 0 and
∆(q2) 6= 0).
It is sufficient to show that each time we meet A the class of the word does not
change. Suppose qt1 = v1 ⊕ · · · ⊕ vk ⊕ s1 ⊕ · · · ⊕ sl for t1 < T, qT ∈ A and
qt2 = v′1 ⊕ · · · ⊕ v′a ⊕ s′1 ⊕ · · · ⊕ s′b for t2 > T, where the vj ’s and the v′j ’s
represent maps in Q(1, 2;K) and the remaining s′j ’s and sj ’s are in Q(2, 2;K) and
have negative discriminant. We adopt the convention that if there are no maps of a
certain type, then the corresponding number in {k, l, a, b} is zero. Assume between
t1 and t2 the discriminant of qt vanishes only at T.
When qt meet A two roots happen to coincide. These could be real before T and
real after, or real before T e complex after or viceversa.
In the first case qt2 = v′1⊕· · ·⊕v′k⊕s′1⊕· · ·⊕s′l and σ(v1⊕· · ·⊕vk) = σ(v′1⊕· · ·⊕v′k)
(we simply performed a rule); thus recalling what we stressed at the beginning of
the proof, we have σ(qt1) = σ(qt2).
In the second case two real roots became complex (switching t1 and t2 we get the
other case): then it must be σ(qt1) = [(ωω̂)lu1zu2] with l > 1 and [u1zu2] = σ(v1 ⊕
· · · ⊕ vk). In this case qt2 = v′1 ⊕ · · · ⊕ v′k−2 ⊕ s′1 ⊕ · · · ⊕ s′l+1 and thus σ(qt2) =
[(ωω̂)l+1u′1zu

′
2] with σ(v′1⊕· · ·⊕v′k−2) = [u′1zu

′
2]. On the other side, assuming the

last two roots became complex, then because of nondegeneracy they could have done
it only in the way we previously described. Moreover from lemma 2.3.6 it follows
that the K-homotopy between qt1 e qt2 induces a K-homotopy between v1⊕· · ·⊕vk−2

and v′1⊕· · ·⊕v′k−2. Since during this last homotopy the discriminant never vanishes,
then σ(v1⊕· · ·⊕vk−2) = σ(v′1⊕· · ·⊕v′k−2) and thus σ(qt1) = σ(qt2). This concludes
the proof.
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We can choose a canonical representative for [s(q)] ∈ S(n, 2;K) and adopt the
convention that xr, with r ∈ N, means that the character x is repeated r times. In
this way we have that each q ∈ Q(m, 2;K) is K-homotopic to a map q′ of the form:

s(q′) = ωaω̂bzωc1ω̂d1 · · ·ωcr ω̂dr

with a+ b+
∑
cj +

∑
dj = m.

We notice also the following, which immediately follows from the definitions.

Corollary 2.3.8. If η ∈ K◦ ∩ S1 and η 6= ω, 6= ω̂ :

ωaω̂bzωc1ω̂d1 · · · (η) · · ·ωcr ω̂dr

then we have
i+(η) = λ̂(η) + ρ(η),

where λ̂(η) is the number of ω̂ in s(q) on the left of η and ρ(η) is the number of ω
in s(q) to the right of η.

2.3.3 Three quadrics in the projective plane

The beautiful subject of this section is due to Agrachev and is developed in [1].
We studyK-homotopy classes of maps q inQ(3, 3;K) forK = {0}. It is customary to
call homotopies that are nondegenerate with respect to the zero cone rigid isotopies.
In this case nondegeneracy of the map q with respect to {0} is equivalent to q−1(0) =
0, i.e. the set Y (q) of spherical solutions of the system (q, {0}) must be empty. If we
were in the complex case, then the set of triples of complex homogeneous polynomials
of degree two such that their common zero locus in the complex projective plane is
empty will have only one connected component. Indeed its complement has complex
codimension at least one, which means that its real codimension is at least two: thus
it cannot separate the space of triples and we have only one component. In our case
the real codimension of the singular triples is at least one, hence it can separate the
space of real triples, namely Q(3, 3). To find an invariant of a connected component,
for every q ∈ Q(3, 3; {0}) we consider the map

q̂ : RP2 → S2, [x] 7→ q(x)/‖q(x)‖

Notice that the previous setting makes sense since Y (q) = ∅ and is well defined since
q(x) = q(−x). A well known theorem of Hopf states that two maps f0, f1 from a
nonorientable manifold M of dimension m to the sphere Sm are homotopic if and
only if they have the same modulo two degrees. Thus in particular if q0 and q1 are
in the same connected component of Q(3, 3; {0}) then they are homotopic and their
modulo two degrees coincide. We start by proving the following.

Proposition 2.3.9. For a generic q ∈ Q(3, 3) the condition deg(q̂) = 0 implies
q̂(RP2) 6= S2.

Proof. For any point y ∈ S2 in general position the sets q̂−1(y) and q̂−1(−y) must
consist of an even number of points. At the same time the set q̂−1(y) ∪ q̂−1(−y)
is a transverse intersection of two quadrics in RP2 and so by Bezout’s theorem its
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either empty or consists of two or four points. If at least one of the sets q̂−1(y) or
q̂−1(−y) is empty, there is nothing more to prove. There remains the case in which
both q̂−1(y) and q̂−1(−y) consist of two points, i.e. for any point y on S2 in general
position the preimage of y has two points. Since the map q̂ : RP2 → S2 cannot be
a cover, then it must have folds and the preimage of one point on one side of the
fold must have two points more than the preimage of a point on the other side of
the fold. This contradiction completes the proof.

We also prove the folowing lemma, which gives a condition for two quadratic
maps to be rigid isotopic.

Lemma 2.3.10. Let q0 and q1 be in Q(n, k; {0}) with k ≥ 2. If q0(Rn) 6= Rk and
q1(Rn) 6= Rk, then q0 and q1 are rigidly isotopic.

Proof. Let li ∈ Rk\qi(Rn) for i = 0, 1; clearly for t > 0 we have tli ∈ Rk\qi(Rn). Let
p · li denote the quadratic map x 7→ ‖x‖2li. The family (1− t)qi− tp · li defines a rigid
isotopy between qi and −p · li : indeed if x is nonzero then (1− t)qi(x)− tp · li 6= 0,
otherwise qi(x) would belong to the half line spanned by li which is not contained
in the image of qi. On the other hand the maps p · l0 and p · l1 are obviously rigidly
isotopic.

Everything is ready now for the proof of the main theorem of this section.

Theorem 2.3.11. Two maps q0 and q1 in Q(3, 3; {0}) such that the modulo two
degrees of q̂0 and q̂1 coincide and are equal to zero are rigidly isotopic.

Proof. As already noticed if q0 and q1 are rigidly isotopic, then by Hopf’s theorem
their degree modulo two is the same. On the contrary if the degrees of the associated
map are zero, then by slightly perturbing them (which does not affect their rigid
isotopy class since Q(3, 3; {0}) is open) we may assume by proposition 2.3.9 that
qi(R3) 6= R3 for i = 0, 1. The previous lemma 2.3.10 tells now q0 and q1 are rigidly
isotopic.
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Spectral sequences

Here we fix some notations and make some remarks concerning spectral sequences
which will be useful in the sequel. We always make use of Z2 coefficients, in order to
avoid sign problems; the following results still hold for Z coefficients, but sign must
be put appropriately. All the introductory material we present here is covered (up
to some small modifications) in [11], to which the reader is referred for more precise
details.

3.1 Mayer-Vietoris spectral sequences

We begin with the following.

Lemma 3.1.1. Let (C∗, ∂∗) be an acyclic free chain complex and (D∗, ∂
D
∗ ) be an

acyclic subcomplex. Then there exists a chain homotopy

K∗ : C∗ → C∗+1

such that ∂∗+1K∗ +K∗−1∂∗ = I∗ and K∗(D∗) ⊂ (D∗+1).

Proof. By taking a right inverse sDq−1 of ∂Dq , which exists since Dq−1 and hence ZDq−1

are free, a chain contraction KD
q for D is defined by: KD

q = sDq (Iq − sDq−1∂
D
q ). Since

Zq is free, then it is possible to extend sDq−1 to a right inverse sq−1 of ∂q:

sq−1 : Zq−1 = Bq−1 → Cq.

Then by setting

Kq = sq(Iq − sq−1∂q)

we obtain a chain contraction for the complex (C∗, ∂∗) which restricts to a chain
contraction for the subcomplex (D∗, ∂

D
∗ ).

Let now X be a topological space and Y be a subspace. Consider an open cover
U = {Vα}α∈A for X; we assume A to be ordered. For every α0, . . . , αp ∈ A we define
Vα0···αp to be Vα0 ∩ · · · ∩ Vαp (sometimes we will use the shortened notations α for
(α0, . . . , αp) and Vα for Vα0···αp). The Mayer-Vietoris bicomplex E∗,∗0 (Y,U) for the
pair (X,Y ) relative to the cover U is defined by

Ep,q0 (Y,U) = Čp(U ,U ∩ Y ;Cq) =
∏

α0<···<αp
Cq(Vα0···αp , Vα0···αp ∩ Y ).
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This bicomplex is endowed with two differentials: d : Ep,q0 (Y,U)→ Ep,q+1
0 (Y,U) and

δ : Ep,q0 (Y,U)→ Ep+1,q
0 (Y,U) defined for η = (ηα0···αp) ∈ E

p,q
0 (Y,U) by:

(dη)α0···αp = dηα0···αp and (δη)α0···αp+1 =

p∑
i=0

ηα0···α̌i···αp |Vα0···αp .

By the Mayer-Vietoris principle, each row of the augmented chain complex of E∗,∗0 (Y,U)
is exact, i.e. for each q ≥ 0 the chain complex

0→ CqU (X,Y )→ Č0(U ,U ∩ Y,Cq)→ · · ·

is acyclic - we recall that (C∗U (X,Y ), d) is defined to be the complex of U-small
singular cochains and that the following isomorphism holds:

Hd(C
∗
U (X,Y )) ' H∗(X,Y ).

From this it follows that

H∗(X,Y ) ' H∗D(E∗,∗0 (Y,U))

where H∗D(E∗,∗0 (Y,U)) is the cohomology of the complex E∗,∗0 (Y,U) with differential
D = d+ δ. We also recall that

r∗ : C∗U (X,Y )→ Č∗(U ,U ∩ Y,C∗)

induces isomorphisms on cohomologies; if we take a chain contraction K for the
Mayer-Vietoris rows of the pair (X,Y ), then we can define a homotopy inverse f to
r∗ by the following procedure. If c =

∑n
i=0 ci and Dc =

∑n+1
i=0 bi then we set

f(c) =

n∑
i=0

(dK)ici +

n+1∑
i=0

K(dK)i−1bi.

We define now E∗,∗1 (Y,U) = Hd(E0(Y,U))∗,∗. The bicomplex E∗,∗1 (Y,U) is naturally
endowed with a differential d1(U) defined in the following way: let η ∈ Ep,q0 (Y,U) be
such that dη = 0, i.e. η defines a class denoted by [η]1 in Ep,q1 (Y,U); then d1(U)[η]1
is defined to be [δη]1 ∈ Ep+1,q

1 (Y,U).
In general we say that an element η ∈ Ep,q0 (Y,U) such that dη = 0 can be extended

to a zig-zag of lenght r if there exist ηi ∈ Ep+i,q−i0 (Y,U) for for i = 0, . . . , r− 1 such
that η0 = η and δηi = dηi+1 for every i = 0, . . . , r−2 (notice that this is a necessary
condition for η to define a class in HD(E0(Y,U))).
Thus η ∈ Ep,q0 (Y,U) can be extended to a zig-zag of lenght 1 if and only if dη = 0, i.e.
η defines a class [η]1 ∈ Ep,q1 (Y,U). We define inductively Er(Y,U) from Er−1(Y,U)
in the following way:

Er(Y,U) = Hdr−1(U)(Er−1(Y,U))

and if η ∈ Ep,q0 (Y,U) is such that its class is defined in Ep,qr (Y,U) we denote it by
[η]r; moreover we define the differential dr(U) : Er(Y,U)→ Er(Y,U) by the formula:

dr(U)[η]r = [δηr−1]r,
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where η0, . . . , ηr−1 is a zig-zag of lenght r extending η (the fact that this zig-zag
exists is ensured by the fact that the class [η]r is defined and similarly for the fact
that [δηr−1]r is defined). If η ∈ Ep,q0 (Y,U) defines a class [η]r ∈ Ep,qr (Y,U), then
it is said to survive to Er(Y,U). If this inductive procedure stabilize, i.e. if we
have Er(Y,U) = Er+l(Y,U) for some r ≥ 0 and for every l ≥ 0, then we denote
by E∞(Y,U) this stable value. It is a remarkable fact that in this case, setting
E∗r (Y,U) = ⊕p+q=∗Ep,qr (Y,U), we have for every l ∈ Z :

El∞(Y,U) ' H l
D(E∗,∗0 (Y,U)) ' H l(X,Y )

but these isomorphisms are not canonical, i.e in general they only tell that the di-
mensions of the vector spaces coincide.
The sequence of vector spaces with differentials (Er(Y,U), dr(U))r≥0 is called the
Mayer-Vietoris spectral sequence relative to U and the fact that the previous isomor-
phism holds translates the sentence that the spectral sequence converges to H∗D(E∗,∗0 (Y,U)).
We recall also that the bicomplex E∗,∗0 (Y,U) is endowed with a Z2-bilinear product
Ep,q0 (Y,U) × Er,s0 (Y,U) → Ep+r,q+s0 (Y,U) defined for η ∈ Ep,q0 (Y,U), ψ ∈ Er,s0 (Y,U)
by:

(η · ψ)α0···αp+r = ηα0···αp |Vα0···αp+r ^ ψαp···αp+r |Vα0···αp+r ,

where on the right hand side we perform the usual cup product. The differentials
D, d, δ are derivations with respect to this product (we are using Z2 coefficients
and no signs are appearing) and each Er(Y,U) inherits a product structure from
Er−1(Y,U); it is worth noticing that the product structure of E∗∞(Y,U) is different
from that of H∗D(E∗,∗0 (Y,U)).

3.1.1 Leray’s spectral sequences

In the case we have a continuous map f : X → Ω and an open coverW of Ω we have
that f−1W is an open cover of X. Setting U = f−1W in the previous constuction,
the corresponding spectral sequence is named the relative Leray’s spectral sequence
of f with respect to the cover W (the case Y = ∅ correspond to the usual Leray’s
construction as presented in [11].)
If we take the direct limit over all the open covers of Ω (with the natural restriction
homomorphisms) we get what is called the (relative) Leray’s spectral sequence of the
map f :

(Er(Y ), dr) = lim−→
U=f−1W

{(Er(Y,U), dr(U))}

The following result can be stated in much more generality (see [15]), but for our
purpose the following version is sufficient.

Theorem 3.1.2. Let Y ⊂ X and Ω be semialgebraic sets and f : X → Ω be a
continuous, semialgebraic map. Then the Leray’s spectral sequence of f converges
to H∗(X,Y ) and the following holds:

Ep,q2 (Y ) ' Ȟp(Ω,Fq)

where Fq is the sheaf generated by the presheaf V 7→ Hq(f−1(V ), f−1(V ) ∩ Y ).
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3.1.2 Some more properties

If we let Z ⊂ Y be a subspace, then E∗,∗0 (Y ) is naturally included in the Mayer-
Vietoris bicomplex E∗,∗0 (Z) for the pair (X,Z) relative to the cover U (here we omit
to write the U to avoid heavy notations):

i0 : E∗,∗0 (Y ) ↪→ E∗,∗0 (Z).

Since i0 obviously commutes with the total differentials, then it induces a morphism
of spectral sequence, and thus a map

i∗0 : H∗D(E0(Y ))→ H∗D(E0(Z)).

At the same time the inclusion j : (X,Z) ↪→ (X,Y ) induces a map

j∗ : H∗(X,Y )→ H∗(X,Z).

With the previous notations we prove the following lemma.

Lemma 3.1.3. There are group isomorphisms f∗Y : H∗D(E0(Y )) → H∗(X,Y ) and
f∗Z : H∗D(E0(Z))→ H∗(X,Z) such that the following diagram is commutative:

H∗(X,Y ) H∗(X,Z)

H∗D(E0(Y )) H∗D(E0(Z))

j∗

f∗Y

i∗0

f∗Z

Proof. The augmented Mayer-Vietoris complex for the pair (X,Y ) relative to U is
a subcomplex of the augmented Mayer-Vietoris complex for the pair (X,Z) relative
to U . Thus by Lemma 3.1.1 for every q ≥ 0 there exists a chain contraction KZ for
the complex

0→ CqU (X,Z)→ Č0(U ,U ∩ Z,Cq)→ · · ·

which restricts to a chain contraction KY for the complex

0→ CqU (X,Y )→ Č0(U ,U ∩ Y,Cq)→ · · ·

We define fY and fZ with the above construction and we take f∗Y and f∗Z to be the
induced maps in cohomology. Then fZ restricted to E∗,∗0 (Y ) coincides with fY and
since j∗ is induced by the inclusion j\ : CqU (X,Y )→ CqU (X,Z), then the conclusion
follows.

Remark 4. Notice that i0 : E∗,∗0 (Y ) → E∗,∗0 (Z) induces maps of spectral sequences

respecting the bigradings (ir)a,b : Ea,br (Y ) → Ea,br (Z) and thus also a map i∞ :
E∞(Y ) → E∞(Z). Even tough E∞(Y ) ' H∗(X,Y ) and E∞(Z) ' H∗(X,Z), in
general i∞ does not equal j∗ (neither their ranks do); the same considerations hold
for the more general case of a map of pairs f : (X,Y )→ (X ′, Y ′).
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We recall also the following fact. Given a first quadrant bicomplex E∗,∗0 with
total differential D = d+ δ and associated convergent spectral sequence (Er, dr)r≥0,
then

E∗∞ ' H∗D(E0)

and there is a canonical homomorphism

pE : H∗D(E0)→ E0,∗
∞

constructed as follows. Let [ψ]D ∈ Hk
D(E0); then there exists ψi ∈ Ei,k−i0 for i =

0, . . . , k such that D(ψ0 + · · ·+ ψk) = 0 and

[ψ]D = [ψ0 + · · ·+ ψk]D.

By definition of the differentials dr, r ≥ 0, the element ψ0 survives to E∞. We check
that the correspondence

pE : [ψ]D 7→ [ψ0]∞

is well defined: since ψ0 ∈ E0,k
0 and Ei,j0 = 0 for i < 0, then [ψ0]∞ = [ψ′0]∞ if and

only if ψ0 and ψ′0 survive to E∞ and [ψ0]1 = [ψ′0]1; if ψ = ψ′+Dφ, then ψ0 = ψ′0+dφ0

and thus [ψ0]1 = [ψ′0]1.

3.2 Homogeneous spherical case

Let q ∈ Q(n+ 1, 2) and K ⊂ R2 be a closed polyhedral cone. Recall that we defined
the set of spherical solution of the system (q,K) to be

Y = {x ∈ Sn | q(x) ∈ K}.

We recall that the map q defines a map q : Ω→ Q(Rn+1), where Ω is the intersection
of the polar cone K◦ with the unit sphere. Using the above notations for a family
of quadratic forms we set

Ωj = {ω ∈ Ω | i+(ωq) ≥ j}.

In the first chapter we stated (without a proof) the following formula for the Z2-Betti
numbers of Y :

b̃k(Y ) = b̃n−k−1(Sn\Y ) = b0(Ωn−k,Ωn−k+1) + b1(Ωn−k−1,Ωn−k), k < n− 2

Here, using the technique of spectral sequence, we give a direct proof of the previous
formula.

Proof. As already noticed the first equality follows from Alexander duality. For the
second consider the set

B = {(ω, x) ∈ Ω× Sn | (ωq)(x) > 0}.

The projection p2 : B → Sn gives a homotopy equivalence B ∼ p2(B) = Sn\Y
(the fibers are contractible). On the other corollary 1.2.4 guarantess that for ε > 0
sufficiently small the inclusion

B(ε) = {(ω, x) ∈ Ω× Sn | (ωq)(x) ≥ ε} ↪→ B
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is a homotopy equivalence. Consider π = p1|B(ε) : B(ε)→ Ω and the Leray spectral
sequence associated to it:

(Er(ε), dr)⇒ H∗(B(ε);Z2), E2(ε)i,j = Ȟ i(Ω,F j(ε)),

where F j(ε) is the sheaf associated to the presheaf V 7→ H̃j(π−1(V )). Since B(ε)
and Ω are locally compact and π is proper (B(ε) is compact) then the following
isomorphism holds for the stalk of F j(ε) at each point ω ∈ Ω :

F j(ε)ω ' H̃j(π−1(ω)).

Let g ∈ R[x0, . . . , xn](2) such that Sn = {g(x) = 1}, then π−1(ω) ' {x ∈ Sn | (ωq −
εg)(x) ≥ 0} has the homotopy type of a sphere of dimension n − ind−(ωq − εg);
thus if we set i−(ε) for the function ω 7→ ind−(ωq − εg), we have that for j > 0 the
sheaf F j(ε) is locally constant with stalk Z2 on the set Ωn−j(ε)\Ωn−j−1(ε), where
Ωn−j(ε) = {i−(ε) ≤ n − j}, and zero on its complement. Since Ωn−j−1(ε) is closed
in Ωn−j(ε), we have for j > 0 :

Ȟ i(Ω,F j(ε)) = Ȟ i(Ωn−j(ε),Ωn−j−1(ε)).

Since the sets {Ωn−j(ε)}j∈N are CW-subcomplex of the one-dimensional complex

S1, then Ei,j2 (ε) = 0 for i ≥ 2 (we can take triple intersections of open sets in the
cover to be empty) and the Leray spectral sequence of π degenerates at E2(ε). By
semialgebraic triviality the topology of Ωn−j(ε) is definitely constant in ε and form
small ε we have

Ei,j2 (ε) ' lim←−{Ȟ
i(Ωn−j(ε),Ωn−j−1(ε))}, j > 0.

Lemma 1.3.4 implies Ei,j2 (ε) ' Ȟ i(Ωj+1,Ωj+2) and the conclusion follows.

Remark 5. In the case of more than two quadrics, the same argument yields a
spectral sequence (Er, dr)r≥0 converging to the cohomology of Y such that for j > 0:

Ei,j2 = H i(Ωj+1,Ωj+2).

The anomaly at j = 0 is due to the fact that there is no canonical choice of the
generator of H0(S0) ' Z2 ⊕ Z2.

3.3 The main spectral sequence

From now on the object of our interest will be the set of the solutions of projective
solutions of a system of quadratic inequalities. Namely we consider a quadratic map
p ∈ Q(n+ 1, k + 1) and polyhedral cone K ⊂ Rk+1 and we define the set

X = {[x] ∈ RPn | p(x) ∈ K}.

Using our standard notation we define the map p∗ : Ω→ Q(Rn+1) and the sets

Ωj = {ω ∈ Ω | i+(ωp) ≥ j}.
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In the previous section we introduced many times the correspondence space

B = {(ω, [x]) ∈ Ω× RPn | (ωp)(x) > 0}

and we stated some of its properties, the most important of which is that it is
homotopy equivalent to RPn\X. Here we investigate deeply the topology of B to
get result on the topology of X. We have that B ⊂ Ω× RPn and we call βl and βr
the restrictions to B of the projection on the first and the second factor.

Lemma 3.3.1. The projection βr on the second factor defines a homotopy equiva-
lence between B and RPn\X = βr(B).

Proof. The equality βr(B) = RPn\X follows from (K◦)◦ = K. For every x ∈ RPn

the set β−1
r (x) is the intersection of the set Ω × {x} with an open half space in

(Rk+1)∗×{x}. Let (ωx, x) be the center of gravity of the set β−1
r (x). It is easy to see

that ωx depends continuosly on x ∈ βr(B). Further it follows form convexity consid-

erations that (ωx/ ‖ωx‖, x) ∈ B and for any (ω, x) ∈ B the arc ( tωx+(1−t)ωx
‖tωx+(1−t)ωx‖ , x), 0 ≤

t ≤ 1 lies entirely in B. It is clear that x 7→ (ωx/ ‖ωx‖, x), x ∈ βr(B) is a homotopy
inverse to βr.

We first construct a slightly more general spectral sequence (Fr, dr) converging
to H∗(Ω × RPn, B) which in general is not isomorphic to Hn−∗(X). The required
spectral sequence (Er, dr) arises by applying the following Theorem to a modification
(q̂, K̂) of the pair (q,K) such that H∗(Ω̂× RPn, B̂) ' Hn−∗(X).

Theorem 3.3.2. There exists first quadrant cohomology spectral sequence (Fr, dr)
converging to H∗(Ω× RPn, B;Z2) such that for every i, j ≥ 0

F i,j2 = H i(Ω,Ωj+1;Z2).

Proof. Fix a positive definite form and consider the well defined function α : Ω ×
RPn → R defined by (ω, x) 7→ (ωp)(x). The function α is continuos, proper (Ω×RPn

is compact), semialgebraic and B = {α > 0}. By corollary 1.2.4, there exists ε > 0
such that the inclusion:

B(ε) = {α > ε} ↪→ B

is a homotopy equivalence.
Consider the projection βl(ε) : B(ε) → Ω on the first factor; then by theorem
3.1.2 there exists a cohomology spectral sequence (Fr(ε), dr(ε)) converging to the
cohomology group H∗(Ω× RPn, B(ε);Z2) ' H∗(Ω× RPn, B;Z2) such that:

F i,j2 (ε) = Ȟ i(Ω,F j(ε))

where F j(ε) si the sheaf generated by the presheaf V 7→ Hj(V×RPn, βl(ε)
−1(V );Z2).

Let now ω be in Ω; then for the stalk (Fj(ε))ω = lim−→ω∈V Fj(ε)(V ) we have from
Lemma 2.2.11

(Fj(ε))ω ' Hj(RPn,RPn−ind−(ωp−εq0))

Hence if we set i−(ε) for the function ω 7→ ind−(ωp− εq0), the following holds:

(F j(ε))ω =

{
Z2 if i−(ε)(ω) > n− j;
0 otherwise
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Thus the sheaf F j(ε) is zero on the closed set Ωn−j(ε) = {i−(ε) ≤ n − j} and is
locally constant with stalk Z2 on its complement; hence:

F i,j2 (ε) = Ȟ i(Ω,F j(ε)) = Ȟ i(Ω,Ωn−j(ε);Z2).

Consider now, for ε > 0, the complex (F0(ε), D(ε) = d + δ). Then for ε1 < ε2 the
inclusion C(ε2) ↪→ C(ε1) defines a morphism of filtered differential graded mod-
ules i0(ε1, ε2) : (F0(ε1), D(ε1)) → (F0(ε2), D(ε2)) turning {(F0(ε), D(ε))}ε>0 into an
inverse system and thus {(Fr(ε), dr(ε))}ε>0 into an inverse system of spectral se-
quences. We define

(Fr, dr) = lim←−
ε

{(Fr(ε), dr(ε))}.

We examine i2(ε1, ε2) : F i,j2 (ε1)→ F i,j2 (ε2); it is readily verified that for i, j ≥ 0 the

map i2(ε1, ε2)i,j : F i,j2 (ε1)→ F i,j2 (ε2) equals the map

i∗(ε1, ε2) : Ȟ i(Ω,Ωn−j(ε1))→ Ȟ i(Ω,Ωn−j(ε2))

given by the inclusion of pairs (Ω,Ωn−j(ε2)) ↪→ (Ω,Ωn−j(ε1)). By semialgebraicity
i∗(ε1, ε2) is an isomorphism for small ε1, ε2, hence i2(ε1, ε2) is definitely an isomor-
phism and thus i∞(ε1, ε2) and i∗0(ε1, ε2) : H∗D(F0(ε1)) → H∗D(F0(ε2)) are definitely
isomorphisms. Thus we have

F i,j2 ' lim←−{H
i(Ω,Ωn−j(ε);Z2)}.

Lemma 1.3.4 gives lim−→{H∗(Ω,Ωn−j(ε))} ' H∗(Ω,Ω
j+1) (using the long exact se-

quences of pairs). The chain of isomorphisms

lim←−{H
i(Ω,Ωn−j(ε);Z2)} ' (lim−→{Hi(Ω,Ωn−j(ε);Z2)})∗ = (Hi(Ω,Ω

j+1;Z2))∗

finally gives
F i,j2 = H i(Ω,Ωj+1;Z2).

Remark 6. Lemma 2.2.11 is not really needed to construct the spectral sequence (we
have not used it for the spherical case). If we consider C(ε) = {(ω, x) ∈ Ω× RPn :
(ωp)(x) ≥ 0)} then by lemma 1.2.4 the inclusion C(ε) ↪→ B is a homotopy equiva-
lence for ε small enough. Consider the projection βl(ε) : C(ε)→ Ω on the first factor;
then by theorem 3.1.2 there exists a cohomology spectral sequence (Fr(ε), dr(ε)) con-
verging to the cohomology group H∗(Ω×RPn, C(ε);Z2) ' H∗(Ω×RPn, B;Z2) such
that:

F i,j2 (ε) = Ȟ i(Ω,F j(ε))

where F j(ε) si the sheaf generated by the presheaf V 7→ Hj(V×RPn, βl(ε)
−1(V );Z2).

Since C(ε) and Ω are locally compact and βl(ε) is proper (C(ε) is compact), then the
following isomorphism holds for the stalk of F j(ε) at each ω ∈ Ω (see [15], Remark
4.17.1, p. 202):

(F j(ε))ω ' Hj({ω} × RPn, βl(ε)
−1(ω);Z2).

The set βl(ε)
−1(ω) = {x ∈ RPn | (ωp)(x) ≥ ε} = {x ∈ RPn | (ωp − εq0)(x) ≥ 0} has

the homotopy type of a projective space of dimension n − ind−(ωp − εq0) and it
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follows that, as above, F i,j2 (ε) ' H i(Ω,Ωn−j(ε)). Letting ε be small enough, Lemma
1.3.4 gives as before

lim←−
ε

{F i,j2 (ε)} = H i(Ω,Ωj+1).

It is possible to show that actually the two spectral sequences agree, but we prefer
the previous approach because it is more practical for computations.

Remark 7. In the caseK 6= −K, i.e. Ω 6= Sl, then (Er, dr) converges toHn−∗(X,Z2).
This follows by comparing the two cohomology long exact sequences of the pairs
(Ω×RPn, B) and (RPn,RPn\X) via the map βr. In this case βr : Ω×RPn → RPn

is a homotopy equivalence and the Five Lemma and Lemma 3.3.1 together give

H∗(Ω× RPn, B) ' H∗(RPn,RPn\X) ' Hn−∗(X)

the last isomorphism being given by Alexander-Pontryagin Duality.

Theorem 3.3.3 (The spectral sequence). There exists a cohomology spectral se-
quence of the first quadrant (Er, dr) converging to Hn−∗(X;Z2) such that

Ei,j2 = H i(CΩ,Ωj+1;Z2).

Proof. Keeping in mind the previous remark, we work the general case (i.e. also the
case K = {0}). We replace K with K̂ = (−∞, 0] × K, the map p with the map
p̂ : Rn+1 → Rk+2 defined by p̂ = (−q0, p), where q0 is a positive definite form and Ω
with

Ω̂ = K̂◦ ∩ Sk+1.

We also define

Ω̂j+1 = {(η, ω) ∈ Ω̂ | ind+(ωp− ηq0) ≥ j + 1}.

Then, by construction,
p̂−1(K̂) = p−1(K) = X.

Applying Theorem 3.3.2 to the pair (p̂, K̂), with the previous remark in mind, we
get a spectral sequence (Êr, d̂r) converging to Hn−∗(X;Z2) with

Êi,j2 = H i(Ω̂, Ω̂j+1;Z2).

We identify Ωj+1 with Ω̂j+1 ∩ {η = 0} and we claim that the inclusion of pairs
(Ω̂,Ωj+1) ↪→ (Ω̂, Ω̂j+1) induces an isomorphism in cohomology. This follows from the
fact that Ω̂j+1 deformation retracts onto Ωj+1 along the meridians (the deformation
retraction is defined since j ≥ 0 and i+(1, 0, . . . , 0) = 0, thus the “north pole” of
Sk+1 does not belong to any of the Ω̂j+1). If η1 ≤ η2 then ind+(ωp − η1q0) ≥
ind+(ωp − η2q0) : thus if (η, ω) ∈ Ω̂j+1 then all the points on the meridian arc
connecting (η, ω) with Ω = Ω̂ ∩ {η = 0} belong to Ω̂j+1.
Noticing that (Ω̂,Ωj+1) ≈ (CΩ,Ωj+1), where CΩ stands for the topological space
cone of Ω, concludes the proof.

Corollary 3.3.4. Let µ = maxη∈Ω i+(η), and 0 ≤ b ≤ n− µ− k then

Hb(X) = Z2.

In particular if n ≥ µ+ k then X is nonempty.
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Proof. Simply observe that the group E0,n−b
2 equals Z2 for 0 ≤ b ≤ n − µ − k and

that all the differentials dr : E0,n−b
r → Er,n−b+r−1

r for r ≥ 0 are zero, since they take
values in zero elements. Hence

Z2 = E0,n−b
∞ = Hb(X).

We can also derive the following formula, which gives the Euler characteristic of
X.

Corollary 3.3.5 (Euler characteristic formula).

χ(X) =
n∑
j=0

(−1)n+jχ(CΩ,Ωj+1)

Proof. It is a direct consequence of theorem 3.3.3 and the fact that in a spectral
sequence each term is the homology of its predecessor.

3.4 The second differential

3.4.1 Preliminaries

We continue in this section the discussion on the properties of a given smooth (semi-
algebraic) map

f : Ω→ Q(V )

where we assume Ω is diffeomorphic to a convex set (in the case of our major interest
we will have Ω = K◦ ∩ Sk. Recall that we have defined for every subset U of Ω the
correspondence space

Bf (U) = {(ω, x) ∈ U × RPn | f(ω)(x) > 0}.

Let now M(ω) < 0 be a number such that

λn+2−i−(f(ω))(f(ω)) < M(ω)

(notice that by definition λn+2−i−(ω)(f(ω)) is the biggest negative eigenvalue of
f(ω)). Then by continuity there exists δ′′2(ω) such that for every neighborhood V of
ω with diam(V ) < δ′′2(ω) and for every η ∈ V

λn+2−i−(f(ω))(f(η)) < M(ω).

Thus for every neighborhood U of ω with diam(U) < δ′′2(ω) we define:

P−(ω,U) = {x ∈ RPn | there exists η ∈ U s.t. x ∈ P−
n+1−i−(f(ω))

(f(η))}.

For x, y ∈ Ω we denote by dist(x, y) their euclidean distance and for r > 0 we set
B(x, r) = {ω ∈ Ω | dist(x, ω) ≤ r}. We claim the following.



3.4 The second differential

Lemma 3.4.1. For every ω ∈ Ω there exists 0 < δ′2(ω) < δ′′2(ω) such that for every
neighborhood of ω with diam(V ) < δ′2(ω)

Cl(P−(ω, V )) ⊆ RPn\{f(ω)(x) ≥ 0}.

Proof. By absurd suppose for every k ∈ N the two sets Cl(P−(ω,B(ω, 1/k))) and
{f(ω)(x) ≥ 0} intersect. Then for every k ∈ N there exists a sequence xlk → xk such
that for every xlk there exists ωlk ∈ B(ω, 1/k) such that xlk ∈ P

−
n+1−i−(ω)

(f(ωlk)) and

f(ω)(xk) ≥ 0.
Then it follows that f(ωlk)(x

l
k) < M(ω) and, by extracting convergent subsequences,

that
0 ≤ lim

k→∞
f(ω)(xk) = lim

k→∞
f(ωk)(xk) ≤M(ω)

which is absurd since M(ω) < 0 by definition.

Lemma 3.4.2. For every ω ∈ Ω there exists 0 < δ2(ω) < δ′′2(ω) such that for every
neighborhood V of ω with diam(V ) < δ2(ω) the following holds:

Cl(P−(ω, V )) ⊂ RPn\βr(Bf (V )).

Moreover in the case f is semialgebraic, then ω 7→ δ2(ω) can be chosen semialgebraic.

Proof. Let W be a neighborhood of ω with diam(W ) < δ′2(ω). Then the two compact
sets Cl(P−(ω,W )) and {f(ω)(x) ≥ 0} do not intersect by the previous Lemma.
Consider the continuous function a : Cl(W )×RPn → R defined by a(η, x) = f(η)(x)
and a neighborhood U of {f(ω)(x) ≥ 0} in RPn disjoint form Cl(P−(ω,W )). Then
β−1
r (U) ∩ {a ≥ 0} is an open neighborhood of {ω} × {f(ω)(x) ≥ 0} in {a ≥ 0}.

Consider now b : {a ≥ 0} → R defined by (η, x) 7→ d(η, ω). Then, since {a ≥ 0}
is compact, the family {b−1[0, δ)}δ>0 is a fundamental system of neighborhoods of
b−1(0) = {ω} × {f(ω)(x) ≥ 0} in {a ≥ 0}. Thus there exists δ such that b−1[0, δ) ⊂
β−1
r (U)∩{a ≥ 0}. Hence any δ2(ω) such that B(ω, 3δ2(ω)) ⊂ B(ω, δ)∩W satisfies the

requirement, since every neighborhood V of ω with diam(V ) < δ2(ω) is contained
in B(ω, 3δ2(ω)) and

Cl(P−(ω,B(ω, 3δ2(ω))) ⊂ Cl(P−(ω,W ))

⊂ RPn\βr({a ≥ 0}) ⊂ RPn\βr(Bf (B(ω, 3δ2(ω)))).

Suppose now that f is semialgebraic. Then the set S = {(ω, δ) ∈ Ω × (0,∞) | ∀r <
2δ, ∀x ∈ Cl(P−(ω,B(ω, r))) |x ∈ RPn\βr(Bf (B(ω, r)))} is semialgebraic too. Let
g : S → Ω be the restriction of the projection on the first factor; then g is semial-
gebraic and by the previous part of the proof it is surjective (for every ω ∈ Ω there
exists a δ satisfying the query). Proposition 1.2.6 implies that g has a semialgebraic
section ω 7→ (ω, δ2(ω)) and δ2 is the required semialgebraic function.

3.4.2 Construction of regular covers

The aim of this section is to detect a family of covers of Ω, cofinal in the family
of all covers, for which the direct limit map for our spectral sequence will be an
isomorphism and such that they will be practical for computations.



Spectral sequences

Lemma 3.4.3. Let f : Ω → Q(V ) be a smooth map transversal to all strata of
Z(V ) =

∐
Zj . For every ω ∈ Ω let Uf(ω) and φ : Uf(ω) → Q(ker(f(ω)) be defined

by setting q0 = f(ω) in proposition 1.3.1. Then there exists δ′3(ω) > 0 and ψ :
B(ω, δ′3(ω)) → Q(ker f(ω)) × Rl, where l + dim(Q(ker(f(ω))) = dim(Ω), such that
ψ is a diffeomorphism onto its image and the following diagram is commutative:

Q(ker f(ω))

B(ω, δ′3(ω)) Q(ker f(ω))× Rl
ψ

φ ◦ f p1

Moreover if f is semialgebraic then ω 7→ δ′3(ω) can be chosen to be semialgebraic.

Proof. If det(f(ω)) 6= 0 then let δ′3(ω) > 0 be such that f(B(ω, δ′3(ω))) ∩ Z = ∅;
in the contrary case let f(ω) ∈ Zj for some j. Consider φ : Uf(ω) → Q(ker f(ω))
the map given by the previous proposition. Since dφf(ω)p = p| ker f(ω) then dφf(ω) is
surjective. On the other hand by transversality of f to Zj we have:

im(dfω) + Tf(ω)Zj = Q

Since φ(Zj) = {0} (notice that this condition implies (dφf(ω))|Tf(ω)Zj = 0) then

Q(ker f(ω)) = im(dφf(ω)) = im(d(φ ◦ f)ω)

which tells φ◦f is a submersion at ω. Thus by the rank theorem there exists Uω and
a diffeomorphism onto its image ψ : Uω → Q(ker f(ω))×Rl such that p1 ◦ψ = φ ◦ f.
Taking δ′3(ω) > 0 such that B(ω, δ′3(ω)) ⊂ Uω concludes the proof.
In the case f is semialgebraic, then the set

S = {(ω, δ) ∈ Ω× (0,∞) : ψ|B(ω,δ) is a diffeomorphism}

is semialgebraic too (by semialgebraic rank theorem ψ is semialgebraic (see [10]) and
the condition to be a diffeomorphism is a semialgebraic condition on its Jacobian).
By the previous part of the proof we have that the restriction g|S of the projection
on the first factor is surjective and the semialgebraic choice for δ′3 follows (as in the
proof of lemma 3.4.2) from proposition 1.2.6.

Corollary 3.4.4. Under the assumption of lemma 3.4.3, for every ω ∈ Ω there
exists δ3(ω) > 0 such that for every B(ω′, r) ⊂ B(ω, 3δ3(ω)) with r < δ3(ω) then

ψ(B(ω′, r)) is convex.

In particular if ω ∈ B(ωk, rk) for some ω0, . . . , ωi ∈ Ω and r0, . . . , ri < δ3(ω), then
for every j ∈ N the space

{η ∈ Ω | i−(f(η)) ≤ n− j} ∩ (
i⋂

k=0

B(ωk, rk)) is acyclic.

Moreover if f is semialgebraic, then δ3 can be chosen semialgebraic.
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Proof. The first part of the statement follows by applying lemma 3.4.3 and corollary
2.1.2 to ψ : Uω → Q(ker f(ω))× Rl.
For the second part notice that by Proposition 1.3.1 we have for every η ∈ Uω (using
the above notations):

i−(f(η)) = i−(f(ω)) + i−(p1(ψ(η))).

This implies that, setting as above Ωn−j(f)
.
= {η ∈ Ω | i−(f(η)) ≤ n− j},

ψ(Uω ∩ Ωn−j(f)) ⊆ Qn−j(ker f(ω))× Rl,

where Qn−j(ker(f(ω))) = {q ∈ Q(ker f(ω)) | i−(q) ≤ n − j}. Since for each k =
0, . . . , i the set ψ(B(ωk, rk)) is convex, then

i⋂
k=0

ψ(B(ωk, rk)) is convex

and by hypothesis it contains ψ(ω). Since Qn−j(ker f(ω)) × Rl (if nonempty) has
linear conical structure with respect to ψ(ω), then

ψ(Ωn−j(f)) ∩
i⋂

k=0

ψ(B(ωk, rk)) is acyclic

and since ψ :
⋂
k B(ωk, rk) ⊂ Uω → Q(ker f(ω)) × Rl is a homeomorphism onto its

image the conclusion follows.
In the case f is semialgebraic, then ψ is semialgebraic and we let δ′3 and δc be given
by Lemma refcomm and Corollary 2.1.2 respectively. As both δ′3 and δc can be
chosen semialgebraic, then the same holds true for δ3 = min{δ′3, δc}.

Let now f : Ω→ Q(V ) be smooth, semialgebraic and transversal to all strata of
Z(V ) =

∐
Zj . Then we define δ : Ω→ (0,∞) by

δ(ω) = min{δ1(ω), δ2(ω), δ3(ω)}.

By construction δ can be chosen to be semialgebraic. Under this assumption we
prove the following.

Lemma 3.4.5. Let W be an open cover of Ω and f and δ as above. Then there
exists a locally finite refinement U = {Vα = B(xα, δα), xα ∈ Ω}α∈A satisfying the
following conditions: (i) for every multi-index ᾱ = (α0 · · ·αi) with Vᾱ 6= ∅ there
exists ωᾱ ∈ Vᾱ such that for every k = 0, . . . , i the following holds:

B(xαk , δαk) ⊂ B(ωᾱ, δ(ωᾱ));

for every ᾱ multi-index we let nᾱ be the minimum of i− ◦ f over Vᾱ 6= ∅, then the
cover U can be chosen as to satisfy (ii):

nα0···αi = max{nα0 , . . . , nαi}.
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Proof. We first set some notations. Let N =
∐l
i=1Ni ⊂ Ω be a finite family of

disjoint smooth submanifold such that δ|N is continuous. For i = 1, . . . , l let also
N ′i ⊂ Ni be a compact subset and define N ′ =

∐
N ′i .

Then there exists ε(N ,N ′) > 0 such that for i 6= j the two sets {x ∈ Ω | d(x,N ′i) <
ε(N ,N ′)} and {x ∈ Ω | d(x,N ′j) < ε(N ,N ′)} are disjoint.
Let WN ′ be the cover {W ∩N ′ |W ∈ W} and λN ′ > 0 be its Lebesgue number.
Finally let δ′N ′ = minη∈N ′ 3δ(η) > 0 which exists since δ|N is continuos and N ′ is
compact.
We define δ(N ,N ′) > 0 to be any number such that

δ(N ,N ′) < min{ε(N ,N ′), λN ′ , δ′N ′}.

We construct now the desired cover. Let h : |K| → Ω be a smooth semialgebraic
triangulation (i.e. smooth one each simplex) of Ω respecting the semialgebraic sets
{ω ∈ Ω | i−(f(ω)) = k}k∈N and such that δ is continuous on each simplex (see [10]).
Thus Ω =

∐
Si, where i = 0, . . . , k and Si is the image under h of the i-th skeleton

of the complex K.
Let S0 = {x0, . . . , xv} and define

U0
.
= {B(xi, δ(S0, S0)), i = 0, . . . , v}

and T0 = ∪iB(xi, δ(S0, S0)).
Now proceed inductively: first set Si =

∐
σi,j∈Ki h(σi,j) and S′i =

∐
h(σi,j)\Ti−1.

Then let Ui = {B(xji , δi) |x
j
i ∈ S′i and δi < δ(Si, S

′
i)} be such that Ui and Ui∩S′i have

the same combinatorics; let also Ti be defined by

Ti = ∪V ∈UiV.

With the previous settings we finally define

U .
= U0 ∪ · · · ∪ Uk.

Then U verifies by construction the requirements and this concludes the proof.

Definition 3.4.6. Let f : Ω → Q(V ) be a smooth semialgebraic map transverse to
all strata of Z =

∐
Zj and δ the semialgebraic function min{δ1, δ2, δ3} where δ1, δ2

and δ3 are given by Lemma 3.4.2, Lemma 2.2.11 and Corollary 3.4.4. Let W the
open cover of Ω defined by

W = {Vα = B(xα, δα)}α∈A

for certain xα ∈ Ω and δα > 0, α ∈ A. Then W will be called an f -regular cover of
Ω if it satisfies conditions (i) and (ii) of Lemma 3.4.5.

In particular Lemma 3.4.5 tells that the set of f -regular covers is cofinal in the
set of all covers of Ω.
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3.4.3 Computations

Suppose that a scalar product on Rn+1 has been fixed and let as above w1,j be the
first Stiefel-Whitney class of Λ+

j → Dj . We recall that we set ∂∗ for the connecting
homomorphism of the pair and we defined the class

γ1,j = ∂∗w1,j ∈ H2(Q(Rn+1),Dj).

Letting p : Ω → Q(Rn+1) be the map defined by ω 7→ ωp, then Ωk+1 = p−1(Qk+1)
and we noticed that given x ∈ H i(Ω,Ωj+1) then the product (x ^ p∗γ1,j)|(Ω,Ωj+1)

does not depend on the choice of the scalar product; indeed it gives the second
differential for the spectral sequence of Theorem 3.3.2.

Theorem 3.4.7. Let (Fr, dr)r≥0 be the spectral sequence of theorem 3.3.2. Then for

every i, j ≥ 0 the differential d2 : F i,j2 → F i+2,j−1
2 is given by:

d2(x) = (x ^ p̄∗γ1,j)|(Ω,Ωj).

Proof. We fix at the very beginning a scalar product g; for this proof we will use in
the notations for the various objects their dependence on g.
Recall from Theorem 3.3.2 that we have defined (Fr, dr) by:

(Fr, dr) = lim←−
ε

lim−→
β−1
l W

{(Fr(ε,U), dr(ε,U))}

where the (ε,U)-pair is the relative Leray’s spectral sequence for the pair (Ω ×
RPn, B(ε)), the map βl and the cover U = β−1

l W (the direct limit ranges over all
covers of Ω). The set B(ε) was defined using the function α : Ω × RPn → R,
α(ω, x) = (ωp)(x)/q0(x), where q0 is a positive definite form, as B(ε) = {α > ε}. By
lemma 2.2.9 we may assume q0 is such that the map:

fε : ω 7→ ωp− εq0

is nondegenerate (and also can be made transversal to Z and Q\Dg, where Dg =
∩jDgj ). In this way Lemma 3.4.5 ensures the existence of an fε-regular cover of Ω:

W = {Vα = B(xα, δα)}α∈A

Plan of the proof. The proof is long and we subdivide it in three parts. In the
first part we introduce some auxiliary materials. In the second part we compute
for ε small and U = β−1

l W the differential d2(ε,U). Since W is fε-regular, then by
Lemma 3.4.4, it is acyclic for each F j(ε) and thus the limit map gives for every
i, j ∈ Z isomorphisms:

F i,j2 (ε,U) ' F i,j2 (ε).

Under this isomorphism the differential d2(ε,U) happens to be given by:

x 7→ (x ^ f∗ε γ
g
1,j)|(Ω,Ωn−j+1(ε))

Thus under the limit map the second differential is given by the previous formula
for every fε-regular cover; since the set of such covers is cofinal in all covers of Ω,
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then the previous is actually the expression for d2(ε). In the last part we perform
the ε-limit and get the expression for d2.
We stress that the definition of our spectral sequence using direct and inverse limits
is somehow formal: both limits are attained for ε small enough and W a fε-regular
cover.

Auxiliary material. Let K∗,∗0 = K∗,∗0 (U) be the Kunneth bicomplex associated to
the map βl : Ω×RPn → Ω with respect to U . Notice that F ∗,∗0 (ε,U) is a subcomplex
of K∗,∗0 and we denote by δF , dF and δK , dK the respective bicomplex differentials
(the first two are the restriction to F ∗,∗0 of the second two).
For every ω ∈ Ω and ε > 0 we let i−(ε)(ω) = ind−(ωp−εq0) and for every multi-index
ᾱ = (α0, . . . , αi) such that Vᾱ 6= ∅ we let nᾱ be the minimum of i−(ε) over Vᾱ. We
take an order on the index set A such that

α ≤ β implies nα ≤ nβ.

In this way, by Lemma 3.4.5, for every multi-index ᾱ = (α0, . . . , αi) such that
Vᾱ 6= ∅ we have that nᾱ = nαi . For every multi-index ᾱ such that Vᾱ 6= ∅ let
ωᾱ be given by Lemma 3.4.5, i−(ε)(ωᾱ) = nᾱ, and we let ηᾱ ∈ Vᾱ be such that
det(fε(ηᾱ)) 6= 0, i−(ε)(ηᾱ) = nᾱ and fε(ηᾱ) ∈ Dg (such ηᾱ always exists, and by
transversality of the map fε to Z and to Q\Dg, which have respectively codimension
one and two, there are plenty of them).
For every 0 ≤ j ≤ n and α ∈ A we define

N(α, j) = (P−j )g(fε(ηα))

where the g on (P−j )g denotes the dependence on the fixed scalar product. More-

over we let ν(α, j) ∈ Cj(RPn) be the cochain defined by the intersection number
with N(α, j). This cochain is defined only on singular chains that are transverse to
N(α, j), but since such chains define the same homology groups as the singular ones
we may restrict to them. The reader that feels uncomfortable with this assumption
may prefer to use from the very beginning triangulations of all the topological spaces
we introduced (everything is semialgebraic) and a bicomplex with simplicial cochains
instead of singular cochains; then using dual cell decompositions the above cochains
happen to be everywhere defined. This procedure will end up with an isomorphic
spectral sequence, but it is remarkably more cumbersome.
We define a cochain ψ0,j ∈ K0,j

0 by

ψ0,j(α) = β∗rν(α, j).

Notice that if n−nα + 1 ≤ j ≤ n then , by Lemma 3.4.2, N(α, j) ⊂ RPn\βr(Bα(ε))
and thus ν(α, j) ∈ Cj(RPn, βr(Bα(ε)). Hence

n− nα + 1 ≤ j ≤ n implies ψ0,j(α) ∈ Cj(Vα × RPn, Bα(ε)) (3.1)

Moreover N(α, n− nα + 1) is a (nα − 1)-dimensional projective space contained in
RPn\βr(Bα0...αiα(ε)) for every (α0, . . . , αi); thus by Lemma 2.2.11 if n − nα + 1 ≤
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j ≤ n then the cohomology class of ν(α, j) generates Hj(RPn, βr(Bα(ε))). Hence it
follows that for every α = (α0 · · ·αiα) such that Vα 6= ∅

n− nα + 1 ≤ j ≤ n implies [ψ0,j(α)|α] generates Hj(Vα × RPn, Bα(ε)) = Z2

(3.2)
For every α0, α1 ∈ A such that Vα0α1 6= ∅ we consider a curve cα0α1 : I → Vα0 ∪ Vα1

such that cα0α1(i) = ηαi , i = 0, 1; since Ω\f−1
ε (Dg) has codimension two in Ω, then

we may choose cα0α1 such that for every t ∈ I we have fε(cα0α1(t)) ∈ Dg. Con-
sider the Rn−j+1-bundle Lgj (α0α1) = c∗α0α1

f∗ε (Λ−j )g over I and its projectivization

P (Lgj (α0α1)). Then the natural map

P (Lgj (α0α1))→ RPn

defines a (n − j + 1)-chain T (α0α1, j − 1) in RPn. Let τ(α0α1, j − 1) be the j − 1-
cochain defined by the intersection number with T (α0α1, j − 1). Notice that this
cochain is defined only on singular chains that are transverse to T (α0α1, j − 1) and
the same consideration we made above for the definition of ν(α, j) applies here.

Thus we define θ1,j−1 ∈ K1,j−1
0 by setting for every α0, α1 with Vα0α1 6= ∅

θ1,j−1(α0α1) = β∗r τ(α0α1, j − 1).

Notice that ∂T (α0α1, j−1) = N(α0, j)+N(α1, j), hence dτ(α0α1, j−1) = ν(α0, j)+
ν(α1, j); it follows that

δKψ
0,j = dKθ

1,j−1. (3.3)

Moreover by construction if n − nα0 + 1 ≤ j ≤ n and n − nα1 + 1 ≤ j ≤ n, which
implies n− nα0α1 + 1 ≤ j ≤ n, then

θ1,j−1(α0α1) ∈ Cj−1(Vα0α1 × RPn, Bα0α1(ε)). (3.4)

We compute now δKθ
1,j−1. Let (α0α1α2) = ᾱ be such that Vᾱ 6= ∅. Then the curves

cα0α1 , cα1α2 and cα2α0 define a map σα0α1α2 : S1 → Ω and we have the bundle
Lgj (α0α1α2) = σ∗α0α1α2

f∗ε (Λ−j )g and its projectivization P (Lgj (α0α1α2)) over S1. The
natural map

P (Lgj (α0α1α2))→ RPn

defines a (n − j + 1)-cochain whose pullback under β∗r by construction equals the
cochain δKθ

1,j−1(α0α1α2). Thus by definition of Stiefel-Whitney classes we have:

δKθ
1,j−1(α0α1α2) = w1(∂(α0α1α2))(ψ0,j−1(α2)|α0α1α2

) + dr2,j−1(α0α1α2) (3.5)

where w1(∂(α0α1α2)) = w1(Lgj (α0α1α2)). Let now ξi ∈ F i,j1 (ε,U); we define ξi,0 ∈
Ki,0

0 by

ξi,0(α0 . . . αi) ≡ ξi(α0 . . . αi)

i.e. the values of ξi,0(α0 . . . αi) on every 0-chain equals ξi(α0 . . . αi) ∈ Z2. Notice
that by construction dKξ

i,0 = 0 and that

d1ξ
i = 0 implies δKξ

i,0 = 0. (3.6)
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The computation of d2(ε,U). Pick x ∈ F i,j2 (ε,U) ' F i,j2 (ε) and ξi ∈ F i,j1 (ε,U)
such that d1ξ

1 = 0 and x = [ξi]2. According to the definition of d2(ε,U), to compute
it on x we must find in F0(ε,U) a zig-zag:

η0

0

η1

·
dF

δF

dF

such that [η0]2 = x. This will give

d2(ε,U)x = [δη1]2.

We claim that η0 = ξi,0 · ψ0,j , η1 = ξi,0 · θ1,j−1 is such a zig-zag. First notice that
since ξi ∈ F i,j1 (ε,U), then (3.1) implies ξi,0 · ψ0,j ∈ F i,j0 (ε,U). Moreover by (3.2) it
follows that [ξi,0 · · ·ψ0,j ]1 = ξi and thus

[ξi,0 · ψ0,j ]2 = x.

We calculate now:

δF (ξi,0 · ψ0,j) = δK(ξi,0 · ψ0,j) = ξi,0 · δKψ0,j = ξi,0 · dKθ1,j−1

= dK(ξi,0 · θ1,j−1) = dF (ξi,0 · θ1,j−1).

The first equality comes from F i,j0 (ε,U) ⊂ Ki,j
0 ; the second from d1ξ

i = 0; the third

from (3.3); the fourth from (3.6); the last by ξi,0 · θ1,j−1 ∈ F i+1,j−1
0 (ε,U), which is a

direct consequence of (3.4). Thus the chosen pair is such a required zig-zag and we
can finally compute d2(ε,U)(x) = [δF (ξi,0 · θ1,j−1)]2. We have:

δF (ξi,0 · θ1,j−1) = δK(ξi,0 · θ1,j−1) = ξi,0 · δKθ1,j−1

and thus by (3.5) we derive:

[δF (ξi,0 · θ1,j−1)]1(α0 · · ·αi+2) = ξi(α0 · · ·αi)w1(∂(αiαi+1αi+2)).

This gives the description of [δF (ξi,0 · θ1,j−1)]1 as the cochain representing (using
F2(ε,U) ' F2(ε)) the cohomology class (x ^ f∗ε γ

g
1,j)|(Ω,Ωn−j+1(ε)) (here we are using

the fact that the sum of the bundles Λ+
k and Λ−k is trivial and wg1,j = w1(Λ−j )). This

ends the first part of the proof.

Perfoming the limits. We proceed now with the second part of the proof. Con-
sider the following sequences of maps:

H2(Q,Dgj )
f∗ε−→ H2(Ω, Dg

j (ε))
r∗ε−→ H2(Ω,Ωn−j+1(ε)\Ωn−j(ε)).

Notice that r∗ε f
∗
ε γ

g
1,j does not depend on g and thus the differential d2(ε) is given by

x 7→ (x ^ f∗ε γ
g
1,j)|(Ω,Ωn−j+1(ε))



3.4 The second differential

for any g. Let now g = q0; then in this case Dq0
j = Dq0

j (ε) and f∗ = f∗ε . Consider
the following commutative diagram of inclusions:

(Ω,Ωn−j+1(ε)) (Ω,Ωn−j(ε) ∪Dq0
j )

(Ω,Ωj) (Ω,Ωj+1 ∪Dq0
j )

ι(ε)

ρ(ε)

ι

ρ̂(ε)

Then, using ρ(ε) also for the inclusion (Ω,Ωn−j(ε)) ↪→ (Ω,Ωj+1), we have for
x ∈ H i(Ω,Ωj+1) the following chain of equalities:

ρ(ε)∗((x ^ p∗γ1,j)|(Ω,Ωj)) = ρ(ε)∗ι∗(x ^ f∗γq01,j) = ι(ε)∗ρ̂(ε)∗(x ^ f∗γq01,j)

= ι(ε)∗(ρ(ε)∗x ^ f∗ε γ
q0
1,j) = d2(ε)(ρ(ε)∗x).

This proves that the following diagram is commutative:

H i(Ω,Ωn−j(ε)) H i+2(Ω,Ωn−j+1(ε))

H i(Ω,Ωj+1) H i+2(Ω,Ωj)

d2(ε)

ρ(ε)∗

(·^ p∗γj)|(Ω,Ωj)

ρ(ε)∗

From this the conclusion follows.

We are now ready to prove the statement concerning the second differential of the
spectral sequence of theorem 3.3.3. The only difference from the previous spectral
sequence is that the class γ1,j in this case is pulled-back via p to the whole (CΩ, Dj),
where CΩ = K◦ ∩Bk+1 and Bk+1 is the ball in Rk+1 whose boundary is Sk.

Theorem 3.4.8 (The second differential). For every i, j ≥ 0 the differential d2 :

Ei,j2 → Ei+2,j−1
2 is given by:

d2(x) = (x ^ p∗γ1,j)|(CΩ,Ωj).

Proof. We replace now K with K̂ = (−∞, 0] × K, the map p with the map p̂ =
(q0, p) : Rn+1 → Rk+2, where q0 ∈ Q+, and we apply the previoius Theorem
to (p̂, K̂). As for theorem 3.3.3 we use the deformation retraction (Ω̂, Ω̂j+1) →
(Ω̂,Ωj+1) = (CΩ,Ωj+1). Notice that we have also the deformation retraction

r : (Ω̂, D̂j)→ (Ω̂, Dj)

where Dj is identified with D̂j ∩ {η = 0} : by definition ω ∈ Dj if and only if

(η, ω) ∈ D̂j and for every 0 < j < n + 1 we have (1, 0, . . . , 0) /∈ Dj since all the
eigenvalues of 〈(1, 0, . . . , 0), p̂〉 = −q0 with respect to q0 coincide. Then by naturality
the conclusion follows.
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3.5 Projective inclusion

In this section we study the image of the homology of X under the inclusion map

ι : X → RPn.

Using the above notations, we define B̂ = {(ω̂, x) ∈ Ω̂× RPn | (ω̂p̂)(x) > 0} and we
call (Er, dr) the spectral sequence of theorem 3.3.3 converging to H∗(Ω̂× RPn, B̂).
Moreover we let K∗,∗0 be the Leray bicomplex for the map Ω̂× RPn → Ω̂ (it equals
the Kunneth bicomplex for Ω̂×RPn). Thus there is a morphism of spectral sequence
(ir : Er → Kr)r≥0 induced by the inclusion j : (Ω̂× RPn, ∅)→ (Ω̂× RPn, B). With
the above notations we prove the following theorem which gives the rank of the
homomorphism

ι∗ : H∗(X)→ H∗(RPn).

Theorem 3.5.1. For every b ∈ Z the following holds:

rk(ι∗)b = rk(i∞)0,n−b.

Moreover the map (i∞)0,n−b : E0,n−b
∞ → K0,n−b

∞ = Z2 is an isomorphism onto its
image.

Proof. First we look at the following commutative diagram of maps

Hb(X)

Hn−b(RPn,RPn\X)

Hn−b(Ω̂× RPn, B̂)

Hb(RPn)

Hn−b(RPn)

Hn−b(Ω̂× RPn)

P ∗

β∗l

(ι∗)b

(j′∗)n−b

(j∗)n−b

P ∗

β∗l

where the maps ι∗, j
∗ and j′∗ are those induced by inclusions and the P ∗’s are

Poincaré duality isomorphisms; commutativity follows from naturality of Poincaré
duality. Since Ω̂ ≈ CΩ, then it is contractible and βl : (Ω̂×RPn, B̂)→ (RPn,RPn\X)
is a homotopy equivalence; hence all the vertical arrows are isomorphisms. Thus we
identify (ι∗)b with (j∗)n−b.
Let now ε > 0 be such that B̂(ε) ↪→ B̂ is a homotopy equivalence, where B̂(ε) =
{(ω̂, x) ∈ Ω̂×RPn | (ω̂p̂)(x) > ε} (such ε exists by Lemma 1.2.4). Then the inclusion
of pairs

(Ω̂× RPn, B̂(ε))
ĵ(ε)−→ (Ω̂× RPn, B̂)

also is a homotopy equivalence and the inclusion (Ω̂ × RPn, ∅) j−→ (Ω̂ × RPn, B̂)
factors trough:
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(Ω̂× RPn, B̂(ε))

(Ω̂× RPn, ∅) (Ω̂× RPn, B̂)
j

j(ε) ĵ(ε)

Since ĵ(ε) is a homotopy equivalence, it follows that:

rk(j∗)n−b = rk(j(ε)∗)n−b.

Let now W be any cover of Ω̂ and U = β−1
l W. Consider the Leray-Mayer-Vietoris

bicomplexes F̂ ∗,∗(ε,U) and K∗,∗0 (U) with their respective associated spectral se-

quences; since i0(ε,U) : F̂ ∗,∗0 (ε,U) ↪→ K∗,∗0 (U) there is a morphism of respective
spectral sequences. Moreover by Mayer-Vietoris argument, the spectral sequence
(F̂r(ε,U), d̂r(ε,U))r≥0 converges to H∗(Ω̂ × RPn, B̂(ε)) and (Kr(U), dr(U))r≥0 con-

verges to H∗(Ω̂× RPn, ∅). We look now at the following commutative diagram:

Hn−b(Ω̂× RPn, B̂)

Hn−b
D (E0(ε,U))

E0,n−b
∞ (ε,U)

Hn−b(Ω̂× RPn)

Hn−b
D (K0(U))

K0,n−b
∞ (U)

(f∗E)−1

pE(ε,U)

(j∗)n−b

(i∗0(ε,U))n−b

(i∞(ε,U))0,n−b

(f∗K)−1

pK

The upper square is commutative, since if we let ψ = ψ0 + · · ·+ ψn−b ∈ En−b0 with
Dψ = 0, then (avoiding the (ε,U)-notations, but only for the next formula):

pK(i∗0)n−b[ψ]E = pK [ψ]K = [ψ0]∞,K = (i∞)0,n−b[ψ0]∞,E = (i∞)0,n−bpE [ψ]E .

The lower square is the one coming from Lemma 3.1.3 with the vertical arrows in-
verted, hence it is commutative.
SinceK∞(U) = K2(U) has only one column (the first), then pK(U) : Hn−b

D (K0(U))→
K0,n−b
∞ (U) is an isomorphism, hence for 0 ≤ b ≤ n and using the above identifications

we can identify the map (j∗)n−b with

(i∞(ε,U))0,n−b(pE(ε,U))n−b : Hn−b
D (E0(ε,U))→ Z2.

Since (pE(ε,U))n−b is surjective, then:

rk(j∗)n−b = rk(i∞(ε,U))0,n−b.

By Corollary 3.4.4 and Lemma 3.4.5 there exists a family C of covers which is cofinal
in the family of all covers such that for every U ∈ C the natural map F̂ i,j2 (ε,U) →
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F̂ i,j2 (ε) is an isomorphism. It follows that rk(i∞(ε,U)0,n−b) = rk(i∞(ε))0,n−b, and
thus by semialgebraicity we have

rk(i∞(ε))0,n−b = rk(i∞)0,n−b.

It remains to study the map (i∞)0,n−b : E0,n−b
∞ → K0,n−b

∞ = K0,n−b
2 .

If E0,n−b
∞ is zero, then (i∞)0,n−b is obviously an isomorphism onto its image.

If E0,n−b
∞ is not zero then, since E0,n−b

2 = H0(CΩ,Ωn−b+1), it must be Ωn−b+1 = ∅
and thus Ω̂n−b+1 = ∅ and

E0,n−b
∞ = E0,n−b

2 = Z2.

From this it follows that

i0,n−b∞ = i0,n−b2 .

By the definition of the two spectral sequences as direct limits, for ε sufficiently
small and U an fε regular cover, we see that i2(ε,U)0,n−b is the identity and thus

also i0,n−b2 : H0(Ω̂, ∅)→ H0(Ω̂)⊗Hn−b(RPn) is the identity and then the conclusion
follows.

Remark 8. Since here we do not need the cover to be convex, the existence of the
family C follows from easier consideration. Let h : Ω̂→ |K| ⊂ RN be a triangulation
respecting the filtration {Ω̂j}n+2

j=0 , and W be a cover of Ω̂. Let V ′ be a convex cover

of |K| refining h(W) and such that for every U ′ ∈ V ′ the intersection h(Ω̂j) ∩ U ′
is contractible for every j (the existence of such a V ′ follows from the fact that
h(Ω̂j) is a subcomplex of |K|). Then the cover V = h−1(V ′) refines W and since for

every j and U ∈ V the intersection Ω̂j ∩ U is contractible, then the natural map

F̂ i,j2 (ε, β−1
l V)→ F̂ i,j2 (ε) is an isomorphism.

We can immediately derive the following elementary corollary

Corollary 3.5.2. If b > n− µ then (j∗)b = 0.

Proof. Since n − b < µ then Ωn−b+1 6= ∅. This gives E0,n−b
2 = 0 and thus applying

the previous theorem the conclusion follows.

3.6 Hyperplane sections

We consider here the following problem: given X ⊂ RPn defined by quadratic
inequalities and V a codimension one subspace of Rn+1 with projectivization V̄ ⊂
RPn, determine the homology of (X,X ∩ V̄ ).
Thus let p : Rn+1 → Rk+1 ⊇ K be homogeneous quadratic and X = p−1(K) ⊂ RPn.
Let h be a degree one homogeneous polynomial such that

V = {h = 0} = {h2 = 0}.

We can consider the function i+V : Ω→ N defined by

i+V (ω) = i+(ωp|V )
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and we try describe the homology of (X,X ∩ V̄ ) only in terms of i+ and i+V .
We introduce the quadratic map ph : Rn+1 → Rk+2 defined by

ph
.
= (p, h2).

Then we have the following equalities:

X = p−1
h (K × R) and X ∩ V̄ = p−1

h (K × (−∞, 0]).

We consider Ω̂ = (K×(−∞, 0])◦∩Sk+1, and the function i+h : Rk+1×R→ N defined
by

i+h (ω, t) = i+(p̄h(ω, t)) = i+(ωp+ th2), (ω, t) ∈ Rk+1 × R.

For the moment we define, for j ∈ Z the set

Ω̂j+1 = {η ∈ Ω̂ | i+h (η) ≥ j + 1}

and we identify Ω with {(ω, t) ∈ Ω̂ | t = 0}.
With the previous notations we prove the following.

Lemma 3.6.1. There exists a cohomology spectral sequence (Gr, dr) of the first
quadrant converging to Hn−∗(X,X ∩ V̄ ) such that

Gi,j2 = H i(Ω̂j+1,Ωj+1).

Proof. Consider for ε > 0 the sets Ch(ε) = {(η, x) ∈ Ω̂ × RPn | (ηph)(x) ≥ ε} and
C(ε) = Ch(ε) ∩ Ω× RPn. By Lemma 1.2.4 for small ε the inclusion

(Ch(ε), C(ε)) ↪→ (Bh, B)

is a homotopy equivalence (here Bh stands for {(η, x) ∈ Ω̂×RPn | (ηph)(x) > 0} and
B for Bh ∩ Ω× RPn).
Consider the projection βr : Ω̂ × RPn → RPn; then βr(Bh) = RPn\(X ∩ H) and
βr(B) = RPn\X; moreover by Lemma 3.3.1 the previous are homotopy equivalences.
Hence it follows:

H∗(Ch(ε), C(ε)) ' H∗(Bh, B) ' H∗(RPn\(X ∩H),RPn\X) ' Hn−∗(X,X ∩H)

where the last isomorphism is given by Alexander-Pontryagin Duality. Consider now
βl : Ch(ε) → Ω̂. Then by Theorem 3.1.2 there is a cohomology spectral sequence
(Gr(ε), dr(ε)) converging to H∗(Ch(ε), C(ε)) such that

Gi,j2 = Ȟ i(Ω̂,Gj(ε))

where Gj(ε) is a sheaf such that for η ∈ Ω̂

(Gj(ε))η = Hj(β−1
l (η) ∩ Ch(ε), β−1

l (η) ∩ C(ε))

(here, reasoning as in Remark 6, we are using the fact that both Ch(ε) and C(ε) are
compact). We use now i−h (ε) : Ω̂ → N for the function η 7→ i−(ηph − εg) where g is

an arbitrary positive definite form, and we set Ω̂n−j(ε) = {i−h (ε) ≤ n− j}. If η /∈ Ω,
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then (β−1
l (η) ∩ Ch(ε), β−1

l (η) ∩ C(ε)) ' (RPn−i−h (ε)(η), ∅); on the contrary if η ∈ Ω

then (β−1
l (η)∩Ch(ε), β−1

l (η)∩C(ε)) = (RPn−i−h (ε)(η),RPn−i−h (ε)(η)). Since Ω is closed

in Ω̂, it follows that
Gj,j2 (ε) = Ȟ i(Ω̂n−j(ε),Ωn−j(ε)).

We define now
(Gr, dr) = lim←−

ε

{(Gr(ε), dr(ε))}

and Lemma 1.3.4 finally gives

Gi,j2 = H i(Ω̂j+1,Ωj+1).

We are ready now for the proof of the main theorem of this section; we define
for j > 0 the following set:

Ωj
V = {ω ∈ Ω : i+ (ωp|V ) ≥ j}.

Theorem 3.6.2. There exists a cohomology spectral sequence (Gr, dr) of the first
quadrant converging to Hn−∗(X,X ∩ V̄ ) such that

Gi,j2 = H i(Ωj
V ,Ω

j+1), j > 0, Gi,02 = H i(CΩ,Ω1).

Proof. Take the spectral sequence (Gr, dr) to be that of lemma 3.6.1; then it remains

to prove that Gi,j2 is isomorphic to the group described in the statement.

In the case j = 0 we have that Ω̂1 contains (0, . . . , 0, 1) and, since t1 ≤ t2 implies
ih(ω, t1) ≤ i+h (ω, t2), the set Ω̂1 is contractible. Thus, using the long exact sequences
of the pairs, we see that for every i ≥ 0 the following holds:

Gi,02 = H i(Ω̂1,Ω1) ' H i(CΩ,Ω1).

We study now the case j > 0.
We identify Ω̂\{(0, . . . , 0, 1)} with Ω × [0,∞) via the index preserving homeomor-
phism

(ω, t) 7→ (ω, t)/‖ω‖.

Thus, under the above identification, we have for j > 0

Ω̂j+1 = {(ω, t) ∈ Ω× [0,∞) | i+h (ω, t) ≥ j + 1}

and letting π : Ω× [0,∞) be the projection onto the first factor, we see that

π(Ω̂j+1) = {ω | ∃t > 0 s.t. i+h (ω, t) ≥ j + 1}.

We prove that π : Ω̂j+1 → π(Ω̂j+1) is a homotopy equivalence. Let ω ∈ π(Ω̂j+1),
then there exists tω > 0 such that (ω, tω) ∈ Ω̂j+1. Since Ω̂j+1 is open, then there
exists an open neighboroud Uω × (t1, t2) of (ω, t) in Ω̂j+1; in particular for every
η ∈ Uω we have (η, tω) ∈ Ω̂j+1 and σω : η 7→ (η, tω) is a section of π over Uω. Collating
together the different σω for ω ∈ π(Ω̂j+1), with the help of a partition of unity, we
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get a section σ : π(Ω̂j+1) → Ω̂j+1 of π. Since for every ω ∈ π(Ω̂j+1) the set {t ≥
0 | (ω, t) ∈ Ω̂j+1} is an interval, a straight line homotopy gives the homotopy between
σ ◦ π and the identity on Ω̂j+1. This implies π : Ω̂j+1 → π(Ω̂j+1) is a homotopy
equivalence. Using the five lemma and the naturality of the commutative diagrams
of the long exact sequences of pairs given by π : (Ω̂j+1,Ωj+1)→ (π(Ω̂j+1),Ωj+1) we
get (π|Ωj+1 = Id|Ωj+1):

Gi,j2 = H i(Ω̂j+1,Ωj+1) ' H i(π(Ω̂j+1),Ωj+1).

It remains to prove that for j > 0

π(Ω̂j+1) = Ωj
V .

First suppose that (ω, t) ∈ Ω̂j+1. Then there exists a subspace W j+1 of dimension
at least j + 1 such that p̄(ω, t)|W j+1 > 0. Then

ωp|W j+1∩V = p̄(ω, t)|W j+1∩V > 0

and by Grassmann formula

dim(W j+1 ∩ V ) = dim(W j+1) + dim(V )− dim(W j+1 + V ) ≥ j

which implies i+V (ω) ≥ j, i.e. π(ω, t) ∈ Ωj
V . Thus

π(Ω̂j+1) ⊂ Ωj
V .

Now let ω be in Ωj
V ; we prove that there exists t > 0 such that i+h (ω, t) ≥ j + 1.

Since ω ∈ Ωj
V then there exists a subspace V j ⊂ V of dimension at least j such that

ωp|V j > 0.

Fix a scalar product on Rn+1 and let e ∈ Rn+1 be such that V ⊥ = span{e}; consider
the space W = {λe}λ∈R + V j , whose dimension is at least j + 1 since e ⊥ V j ⊂ V.
Then the matrix for p̄h(ω, t)|W with respect to the fixed scalar product has the form:

QW (ω, t) =

(
ωa0 + t tωa
ωa ωQV j

)
where ωQV j is the matrix for p̄(ω, t)|V j = ωp|V j . Since ωp|V j > 0 we have that for
t > 0 big enough det(QW (ω, t)) = tdet(ωQV j ) + det(

ωa0 ωa
ωa ωQ

V j
) has the same sign

of det(ωQV j ) > 0. For such a t we have

p̄h(ω, t)|W > 0

and since dim(W ) ≥ j + 1 this implies (ω, t) ∈ Ω̂j+1 and ω ∈ π(Ω̂j+1). Thus

Ωj
V ⊂ π(Ω̂j+1)

and this concludes the proof.
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3.7 Higher differentials

Let X ⊂ RPn be a compact, locally contractible subset and consider the two inclu-
sions:

X
j−→ RPn and RPn\X c−→ RPn.

We recall the existence for every k ∈ Z of the following exact sequence, which is a
direct consequence of Alexander-Pontryagin Duality:

0→ ker(c∗)→ Hk(RPn\X)
c∗→ Hk(RPn) ' Hn−k(RPn)

i∗→ Hn−k(X)→ coker(i∗)→ 0

In particular we have the following equality for the k-th Z2-Betti number of RPn:

bk(RPn) = rk(c∗)k + rk(j∗)n−k (3.7)

Consider now p : Rn+1 → Rk+1 ⊇ K such that

i+(p̄η) = µ ∀η ∈ Ω.

Then in this case Ω1 = · · · = Ωµ = Ω and Ωµ+1 = · · · = Ωn+1 = ∅. For any scalar
product g on Rn+1 we have Dµ = Ωµ = Ω and we denoted by p∗wk,µ the k-th
Stiefel-Whitney class of the Rµ-bundle p̄∗Λ+

j → Ω (notice that this class does not

depend on g). As above we set γk,µ = ∂∗wk,µ ∈ Hk+1(Q,Dµ); thus the class p∗γk,µ
belongs to Hk+1(CΩ,Ω) ' Hk(Ω).
Letting (Er, dr) be the spectral sequence of theorem 3.3.3 converging to Hn−∗(X),
where as usual X = p−1(K) ⊆ RPn, we have that (Er, dr) degenerates at (k+ 2)-th
step and E2 = · · · = Ek+1. Moreover Ek+1 has entries only in the 0-th and the
(k + 1)-th column:

Ea,bk+1 =


Z2 if a = 0 and µ ≤ b ≤ n or

a = k + 1 and 0 ≤ b < µ
0 otherwise

Thus the only possible nonzero differential is dk+1, for which we prove the following.

Theorem 3.7.1. Suppose i+ ≡ µ. Then E2 = · · · = Ek+1 and the only possible

nonzero differential is dk+1 : E0,b
k+1 → Ek+1,b−k

k+1 for µ ≤ b ≤ n and it is given by:

dk+1(x) = x ^ p∗γk,µ

Remark 9. Notice that γk,µ and x are nothing but numbers modulo 2, thus since

E0,b
k+1 = Z2 = Ek+1,b−k

k+1 the element dk+1(x) is nothing but the product xγk,µ.

Proof. By theorem 3.5.1 we have that dk+1 : E0,b
k+1 → Ek+1,b−k

k+1 is identically zero if
and only if rk(j∗)n−b = 1 and formula (3.7) implies

(dk+1)0,b ≡ 0 iff rk(c∗)b = 0
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where c∗ is the map induced by c : RPn\X ↪→ RPn. Consider now the following
commutative diagram:

RPn\X RPn

B Ω× RPn

c

βr |B βr
βr ◦ ι

ι

Since βr |B is a homotopy equivalence, then

rk(c∗)b = rk(ι∗β∗r )b.

Let RPµ−1 ↪→ P (p̄∗Λµ)→ Ω be the projectivization of the bundle Rµ ↪→ p̄∗Λµ → Ω.
It is easily seen that the inclusion

P (p̄∗Λµ) ↪→ B

is a homotopy equivalence. From this, letting l : P (p̄∗Λµ)→ RPn be the restriction
of βr ◦ ι to P (p̄∗Λµ), it follows that:

rk(c∗)b = rk(l∗)b.

Let y ∈ H1(RPn) be the generator; since l is a linear embedding on each fiber, then
by Leray-Hirsch, it follows that

H∗(P (p̄∗Λµ)) = H∗(Ω)⊗ {1, l∗y, . . . , (l∗y)µ−1}.

Thus for µ ≤ b ≤ n we have:

l∗yb =(l∗y)b = (l∗y)µ ^ (l∗y)b−µ

=β∗l p
∗wk,µ ^ (l∗y)µ−k ^ (l∗y)b−µ

=β∗l p
∗wk,µ ^ (l∗y)b−k.

Thus (dk+1)0,b is zero if and only if p∗wk,µ = 0 and by looking at the definition of
p∗γk,µ we see that

dk+1(x) = x ^ p∗γk,µ.

Notice also that in the case i+ ≡ µ if we take l+v = {t2v}t∈R, then we can
easily calculate the homology of Xl+v

= {x ∈ Pn : p(x) ∈ l+v }) (the preimage of
a half line): using theorem 3.3.3 we immediatly see that E2 = E∞ which implies
H∗(Xl+v

) ' H∗(Pn−µ).

Example 1 (see [22]). For a = 1, 2, 4, 8 consider the isomorphism Ra ' A where A
denotes respectively R,C,H,O. Consider the quadratic map

ha : Ra ⊕ Ra → Ra ⊕ R
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defined, using the previous identification Ra ' A, by

(z, w) 7→ (2zw, |w|2 − |z|2).

Then it is not difficult to prove that ha maps S2a−1 into Sa by a Hopf fibration.
Hence it follows that

∅ = Ka
.
= h−1

a (0) ⊂ RP2a−1.

In each case we have i+(ωha) = a for every ω ∈ Ω = Sa. Using Theorem 3.7.1, since
Ka = ∅ then da+1 must be an isomorphism, hence

0 6= wa,a = wa(h̄
∗
aΛa) ∈ Ha(Sa).

For example in the case a = 2 we have the standard Hopf fibration h2|S3 : S3 → S2

and the table for E2 = E3 is:
Z2 0 0 0
Z2 0 0 0
0 0 0 Z2

0 0 0 Z2

The bundle R2 ↪→ h̄∗aΛ2 → S2 has total Stiefel-Whitney class

w(h̄∗aΛ2) = 1 + w2,2, w2,2 6= 0

and the differential d3 is an isomorphism.
Notice that for a = 1, 2, 4, 8 we have ker(ωha) = 0 for every ω ∈ Ω. It is an interesting
fact that the contrary also is true.

Fact 1. if p : Rm → Rl is such that ker(ωp) = {0} for every ω ∈ Sl and p|Sm−1 :
Sm−1 → Sl−1 then, up to orthonormal change of coordinates p = ha for some
a ∈ {1, 2, 4, 8}.

Proof. First observe that i+ ≡ c for a constant c and that m = 2c. Then, since p
maps the sphere S2c−1 to the sphere Sl−1, we have

∅ = p−1({0}) ⊂ RP2c−1.

Thus Theorem 3.7.1 implies that the differential dl must be an isomorphism and
this forces l = c+ 1. Moreover the condition ker(ωp) = {0} for every ω ∈ Sc−1 says
also p|S2c−1 : S2c−1 → Sc is a submersion. It is a well-known result (see [26]) that
the preimage of a point trough a quadratic map between spheres is a sphere, and
thus p|S2c−1 is the projection of a sphere-bundle between spheres, hence it must be
a Hopf fibration.

The situation in the case {ω ∈ Sl−1 | ker(ωp) 6= 0} = ∅ with only the assumption
X = ∅ (which is weaker than p(Sm−1) ⊂ Sl−1) is more delicate.

Example 2. For i = 1, . . . , l let pi : Rni → Rk+1 be a quadratic map and set
N =

∑
i ni. Define the map

⊕ipi : RN → Rk+1
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by the formula

(x1, . . . , xl) 7→
l∑

i=1

pi(xi) xi ∈ Rni .

Then for every ω ∈ Sk we have

i+(ω(⊕ipi)) =
l∑

i=1

i+(ωpi).

In particular if each pi has constant positive index function with constant value µi,
then ⊕ipi has also constant positive index function with constant value

∑
i µi.

Generalizing the previous example, we consider now for a = 1, 2, 4, 8 the map ha :
R2a → Ra+1 defined above and we take for n ∈ N the map

n · ha
.
= ⊕ni=1ha : R2an → Ra+1.

In coordinate the map n · ha is written by:

(w, z) 7→ (2〈z, w〉, ‖w‖2 − ‖z‖2), w, z ∈ An.

Then for this map we have

i+ ≡ na, and (n · h̄a)∗Λna = n(h̄∗aΛa) = h̄∗aΛa ⊕ · · · ⊕ h̄∗aΛa︸ ︷︷ ︸
n

The solution of {n · ha = 0} on the sphere S2a−1 is diffeomorphic to the Stiefel
manifold of 2-frames in An, and it is a double cover of

n ·Ka
.
= {n · ha = 0} ⊂ RP2na−1.

We can proceed now to the calculation of the Z2-cohomology of n·Ka, using Theorem
3.7.1: we only need to compute da+1, i.e. wa(nh̄

∗
aΛa). Since wa(h̄

∗
aΛa) = wa,a 6= 0,

and wk(h̄
∗
aΛa) = 0 for k 6= 0, k 6= a, then we have

wa(nh̄
∗
aΛa) = nmod 2 ∈ Z2 = Ha(Sa).
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CHAPTER 4

Complex theory

4.1 Real projective sets and complex projective sets

We start by considering the bundle

S1 → RP2n+1 π−→ CPn

where the map π is given by [x0, y0, . . . , xn, yn] 7→ [x0 + iy0, . . . , xn + iyn]. The
fiber of π over a point [v] ∈ CPn equals the projectivization of the two dimensional
real vector space spanR{v, iv} ⊂ Cn+1 ' R2n+2. Thus RP2n+1 is the total space
of the projectivization of the tautological bundle O(−1) → CPn view as a rank
two real vector bundle. Applying Leray-Hirsch we get a cohomology class x ∈
H1(RP2n+1;Z2), which restricts to a generator of the cohomology of each fiber, such
that the map α⊗p(x) 7→ π∗α ^ p(x), where p ∈ Z2[x]/(x2) and α ∈ H∗(CPn;Z2) =
Z2[α]/(αn+1), gives an isomorphism of H∗(CPn;Z2)-modules

H∗(CPn;Z2)⊗ {1, x} ' H∗(RP2n+1;Z2).

In particular this tells that π∗ is injective with image the even dimensional coho-
mology (recall that |α| = 2).
The following geometric description of the map π also gives an alternative proof
of the previous statement. Consider the restriction of π to {[x0, y0, x1, 0, . . . , 0]} '
RP2 : we see that it maps RP2 to {[z0, z1, 0, . . . , 0]} ' CP1 trough a homeomo-
prhism {x1 6= 0} ' {z1 6= 0} and by collapsing the line at infinity {x1 = 0} to the
point [1, 0, . . . , 0]. It follows that the modulo 2 degree of π|RP2 is one. Using the
isomorphism H∗(RP2n+1;Z2) ' Z2[β]/(β2n+2), |β| = 1, we see that

π∗ : H∗(CPn;Z2)→ H∗(RP2n+1;Z2)

is given by α 7→ β2, where β|RP2 generates H1(RP2;Z2). If we consider the Gysin
sequence with Z2 coefficients for π, then the injectivity of π∗ implies that for every
j the following portion of the sequence is exact

0→ Hj(CPn;Z2)
π∗−→ Hj(RP2n+1;Z2)→ Hj−1(CPn;Z2)

^e−→ 0

where e = e(π) is the modulo 2 euler class of π, which of course turns out to be zero.
Let now I ⊂ C[z0, . . . , zn] be a homogeneous ideal; we will denote by C = C(I) its
zero locus in CPn. If we restrict the bundle O(−1)→ CPn to C we get a bundle:

C CPn

E O(−1)
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and if we consider the previous as rank two real vector bundles and take their
projectivization we get:

C CPn

R RP2n+1RP1

iC

π|R

iR

π

where iR and iC are the inclusion maps.
It is clear that R is an algebraic subset of RP2n+1 whose equations are given by
considering each polynomial f ∈ I as a pair of polynomials fa = Re(f), f b =
Im(f) ∈ R[x0, y0, . . . , xn, yn]. Applying Leray-Hirsch to π|R, or the identity e(π|R) =
e(π)|C = 0, we get the isomoprhism of H∗(C;Z2)-modules:

H∗(C;Z2)⊗ {1, x|R} ' H∗(R,Z2).

The previous isomorphism allows us to compute Z2-Betti numbers of C once those
of R are known, via the following formula:

bj(C;Z2) =

j∑
k=0

(−1)kbj−k(R;Z2).

We have the following equalities for the Stiefel-Whitney classes of E, which come
from the fact that E is the realification of a complex bundle: w2k(E) = ck(E) mod 2,
where ck is the k-th Chern class of E seen as a complex bundle, and w2k+1(E) = 0.
Since E has real rank two we have:

w2(E) = i∗Cz and wi(E) = 0, i 6= 0, 2,

where z is the generator of H2(CPn,Z2) and we have used the equalities w2(E) =
c1(E) = i∗Cc1(O(−1)) = i∗Cz.
The following lemma relates the homomorphisms i∗C and i∗R.

Lemma 4.1.1. There exists an odd r such that (i∗R)k : Hk(RP2n+1;Z2)→ Hk(R;Z2)
is injective for k ≤ r and zero for k > r. Moreover for every k we have

rk(i∗C)2k = rk(i∗R)2k = rk(i∗R)2k+1.

Proof. Let a be such that (i∗R)a ≡ 0; then using the cup product structure of
H∗(RP2n+1;Z2) = Z2[β]/(β2n+2), we have

i∗Rβ
a+k = i∗Rβ

a ^ i∗Rβ
k = 0.

For the second part of the statement notice that R = P (E)
iR−→ RP2n+1 is linear

on the fibres and thus, letting y = i∗Rβ we have y2 = (w2(E) + w1(E)y) = w2(E)y
(since w1(E) is zero), where we interpret wi(E) as a class on R via π|∗R. It follows
that

y2k = w2(E)k and y2k+1 = w2(E)ky.

On the other hand, since w2(E) = i∗Cz, then the conclusion follows.
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4.2 The spectral sequence in the complex case

In this section we study the topology of R in the case C is cut by quadrics, i.e.

C = VCPn(q0, . . . , ql), q0, . . . , ql ∈ C[z0, . . . , zn](2)

For a given q ∈ C[z0, . . . , zn](2), q(z) = zTQz with Q = A− iB and A,B ∈ Sym(n+
1,R) we define the symmetric matrix

P =
(
A B
B −A

)
.

We set J =
(

0 I
−I 0

)
(it is a (n + 2) × (n + 2) matrix) and given q0, . . . , ql ∈

C[z0, . . . , zn](2) we define p : S2l+1 → Sym(2n+ 2,R) by

(a0, b0, . . . , al, bl)
p7→ a0P0 − b0JP0 + · · ·+ alPl − blJPl.

For every polynomial f ∈ C[z0, . . . , zn] recall that we have defined the polynomials
fa, f b ∈ R[x0, y0, . . . , xn, yn] by

fa(x, y) = Re(f)(x+ iy), f b(x, y) = Im(f)(x+ iy).

Thus if C = VCPn(q0, . . . , ql), we have

R = VRP2n+1(qa0 , q
b
0, . . . , q

a
l , q

b
l )

We easily see that i+(a0q
a
0 + b0q

b
0 + · · ·+ alq

a
l + blq

b
l ) = i+(p(a0, b0, . . . , bl, ql)) : this

is simply because Pj and −JPj are the symmetric matrices associated respectively
to the quadratic forms qaj and qbj .
Following the previous chapters for every j ∈ N we define

Ωj = {α ∈ S2l+1 | i+(p(α)) ≥ j}

and if we let B be the unit ball in R2l+2, ∂B = S2l+1 we recall the existence of a
first quadrant spectral sequence (Er, dr)r≥0 such that:

(Er, dr)⇒ H2n+1−∗(R;Z2), Ei,j2 = H i(B,Ωj+1;Z2).

For j ∈ N if we let P j ⊂ S2l+1 ⊂ Cl+1 be defined by

P j = {(α0, . . . , αl) ∈ S2l+1 | rkC(α0q0 + . . .+ αlql) ≥ j}

we can rewrite theorem 3.3.3 in the following more natural way.

Theorem 4.2.1. There exists a cohomology spectral sequence of the first quadrant
(Er, dr), converging to H2n+1−∗(R,Z2) such that Ei,j2 = H i(B,P j+1;Z2).

Proof. We will prove that for every j the two sets P j+1 and Ωj+1 are homeomorphic,
and in fact if τ : Cl+1 → Cl+1 denotes complex coniugation that we have

τ(P j+1) = Ωj+1.
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If we use the matrix notation for each qj we have qj(z) = zTQjz for Qj ∈ Sym(n+
1,C) and writing Qj = Aj − iBj with Aj , Bj ∈ Sym(n+ 1,R)

qaj (x, y) = 〈( xy ) ,
(
Aj Bj
Bj −Aj

)
( xy )〉, qbj(x, y) = 〈( xy ) ,

(
−Bj Aj
Aj Bj

)
( xy )〉.

In particular notice that the matrix associated to the real quadratic form a0q
a
0 +

b0q
b
0 + · · ·+ alq

a
l + blq

b
l is of the form

M =
(
A B
B −A

)
for A,B ∈ Sym(n + 1,R). If λ is an eigenvalue of M and Vλ is the corresponding
eigenspace, then the map (u, v) 7→ (−v, u) gives an isomorphism Vλ ' V−λ. This
implies

2i+(M) = rkR(M).

On the other side it is easy to show that

rkR
(
A B
B −A

)
= 2rkC(A− iB)

in fact the map (u, v) 7→ u+ iv gives an isomorphism of real vector space ker(M) '
ker(A− iB). Comparing now the matrices associated to a0q

a
0 +b0q

b
0 + · · ·+alq

a
l +blq

b
l

and to (a0 − ib0)q0 + . . .+ (al − ibl)ql we get the result.

Remark 10. Even more natural than the sets {P j}j∈N are the sets

Y j = {[α] ∈ CPl, α ∈ S2l+1| rk(p(α)) ≥ j}.

If we consider the hopf bundle S1 → S2l+1 h−→ CPl we see that h(P j) = Y j and
thus

P j 6= S2l+1 ⇒ H∗(P j) = H∗(Y j)⊗H∗(S1).

In this way we see that it is possible to express all the data for E2 of the pre-
vious spectral sequence only in terms of the linear system P(span(q0, . . . , ql)) ⊂
P(C[z0, . . . , zn](2)).

We focus now on the second differential of our spectral sequence; for convenience
of the reader we recall the construction made in the previous chapters.
For each P ∈ Sym(2n+ 2,R) we ordered the eigenvalues of P in increasing way:

λ1(P ) ≥ · · · ≥ λ2n+2(P )

and we defined
Dj = {α ∈ S2l+1 |λj(p(α)) 6= λj+1(p(α))}.

Then there is a naturally defined bundle Rj → Lj → Dj whose fiber over a point
α ∈ Dj equals (Lj)α = span{v ∈ R2n+2 | p(α)v = λiv, i = 1, . . . , j} and whose
vector bundle structure is given by the inclusion Lj ↪→ Dj × R2n+2. We defined
p∗w1,j ∈ H1(Dj) to be the first Stiefel-Whitney class of Lj and

p∗γ1,j = ∂∗p∗w1,j ∈ H2(B,Dj)
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where ∂∗ : H1(Dj)→ H2(B,Dj) is the connecting isomorphism. With this notation
theorem 3.4.8 gives the following description of d2 : H i(B,Ωj+1)→ H i+2(B,Ωj):

d2(x) = (x ^ p∗γ1,j)|(B,Ωj)

If we let [α0, . . . , αl] = [a0 + ib0, . . . , al+ ibl] ∈ CPl such that α = (a0, b0, . . . , al, bl) ∈
S2l+1 then p|h−1[α0,...,αl] : S1 → Sym(2n+ 2,R) equals

θ 7→
(
I cos θ −I sin θ
I sin θ I cos θ

)
p(α)

as one can easily check. The following lemma is the main ingredient for the explicit
computations of d2.

Lemma 4.2.2. Let A,B, I ∈ Sym(n + 1,R), with I the identity matrix, R(θ) =(
I cos θ −I sin θ
I sin θ I cos θ

)
and M =

(
A B
B −A

)
. Let c : S1 → Sym(2n+ 2,R) be defined by

θ 7→ R(θ)M.

Consider the bundle c∗L over S1 whose fibre at the point θ ∈ S1 is

(c∗L)θ = span{w ∈ R2n+2 | ∃λ > 0 | c(θ)w = λw}

and whose vector bundle structure is given by its inclusion in S1 ×R2n+2. Then the
following holds for the first Stiefel-Whitney class of c∗L :

w1(c∗L) = rkC(A− iB) mod 2.

Proof. First notice that if w = ( uv ) is an eigenvector of
(
A B
B −A

)
for the eigenvalue

λ, then Jw = ( v
−u ) is an eigenvector for the eigenvalue −λ. It follows that there

exists a basis {w1, Jw1, . . . , wn+1, Jwn+1} of R2n+2 of eigenvectors of
(
A B
B −A

)
such

that
(
A B
B −A

)
wj = λjwj with λj ≥ 0. Let now Wj = span{wj , Jwj}. Then Wj is

R(θ)-invariant: R(θ)wj = cos θwj − sin θJwj and R(θ)Jwj = sin θwj + cos θJwj .
Thus, using the above basis, we see that R(θ) is congruent to

MTR(θ)M = diag(D1(θ), . . . , Dn+1(θ)), Dj(θ) = λj
(

cos θ sin θ
sin θ − cos θ

)
If cj : θ 7→ Dj(θ), then clearly we have the splitting c∗L = c∗1L⊕ · · · ⊕ c∗n+1L. Since
wj(c

∗L) = 0 if and only if λj = 0, then

w1(c∗L) =
1

2
rkR

(
A B
B −A

)
= rkC(A− iB)

where the last equality comes from the proof of Theorem 4.2.1.

Corollary 4.2.3 (The cohomology of one single quadric). Let q ∈ C[z0, . . . , zn](2)

be a quadratic form with rk(q) = ρ > 0 and

C = V (q) ⊂ CPn

Then the Betti numbers of C are:

ρ even: bj(C) =


0 if j is odd;
1 if j is even, 0 ≤ j ≤ 2n− 2, j 6= 2n− ρ
2 if j = 2n− ρ

ρ odd: bj(C) =

{
0 if j is odd;
1 if j is even, 0 ≤ j ≤ 2n− 2
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Proof. We first compute H∗(R) using Theorem 4.2.1: in this case if Q = A − iB,
then R is the intersection of the two quadrics defined by the symmetric matrices P =(
A B
B −A

)
and −JP =

(
B A
A −B

)
and p : S1 → Sym(2n + 2,R) equals θ 7→ Rθ

(
A B
B −A

)
.

The function i+ has constant value ρ and thus the E2 table for R has the following
picture:

2n+ 1 Z2 0 0
...

...
...

ρ Z2 0 0

0 0 Z2
...

...
...

0 0 Z2

The only (possibly) nonzero differential is

d2 : E0,ρ
2 → E2,ρ−1

2

which by the previous discussion equals 1 7→ ∂∗w1(p∗L). Lemma 4.2.2 implies now

d2(1) = ρmod 2

Thus if ρ is even E2 = E∞ and if ρ is odd the (ρ−1)-th and the ρ-th row of E3 = E∞
are zero. Applying the formula bj(C;Z2) =

∑j
k=0(−1)kbj−k(R;Z2) gives the result.

Using the previous spectral sequence we can easily compute the rank of the map
induced on the Z2-cohomology by the inclusion

iC : C ↪→ CPn.

We recall that from theorem 3.5.1 we have dim(E0,2n+1−k
∞ ) = rk(i∗R)k; thus applying

Lemma 4.1.1 we get the following.

Theorem 4.2.4. For every k we have

rk(i∗C)2k = dimE0,2n+1−2k
∞

and the zeroth column of E∞ must be the following:

E0,∗
∞ =

Z2
...
Z2

0
...
0

where the number of Z2 summand is an even number r + 1, and r is that given by
Lemma 4.1.1.

Notice in particular that E0,2a
∞ = Z2 iff E0,2a+1

∞ = Z2.



4.3 The intersection of two quadrics

4.3 The intersection of two quadrics

We apply here the previous result to compute the cohomology of the intersection of
two complex quadrics:

C = V (q0, q1) ⊂ CPn.

As it can be expected, here all the data depends only on the complex pencil of
quadrics {αq}[α]∈CP1 . For example, assuming the pencil has [α1], . . . , [αl] singular
points (if l < n + 1 then C is not a complete intersection), then all we need to
compute the second differential for the spectral sequence converging to H2n+1−∗(R)
is the knowledge of the rank of αiq and the multiplicity of [αi] as a zero of det(αq) = 0
for i = 1, . . . , l.
More precisely we start defining

Σj = {[α] ∈ CP1 | rk(α0q0 + α1q1) ≤ j − 1}.

For j ≤ µ = max i+ we see that Σj consists of a finite number of points (it is a
proper algebraic subset) Σj = {[α1], . . . [ασj ]}, where we have set

σj = card(Σj), j ≤ µ.

The discussion of the previous sections implies that for every [α] ∈ CP1 the function
i+ is constant on the circle h−1[α] ⊂ S3 with value

i+|h−1[α] ≡ rk(α0q0 + α1q1) = ρ([α]).

Thus it is defined the bundle Rρ([α]) → L[α] → h−1[α] of positive eigenspace of
p|h−1[α] and Lemma 4.2.2 implies

w1(L[α]) = ρ([α]) mod 2.

Fore every [α] ∈ CP1 we let m[α] be the multiplicity of [α] as a solution of det(α0Q0+
α1Q1) = 0; notice that in general n+ 1− ρ([α]) 6= m[α].
For every j ∈ N we see that

Ωj+1 = S3\h−1(Σj+1)

If we let ν be the minimum of i+ over S3, we see that for i > 0 and ν+1 ≤ j+1 ≤ µ

Ei,j2 = H i(B,S3\h−1(Σj+1)) ' H̃3−i(h
−1(Σj+1)) =


0 if i 6= 2, 3;
Zσj+1

2 if i = 2

Zσj+1−1
2 if i = 3

This gives the following picture for the table of ranks of E2 :
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2n+ 1 1 0
...

...
1 0

µ 1 0

µ− 1 0 0 σµ σµ − 1 0
...

...
...

...
...

ν 0 0 σν+1 σν+1 − 1 0

0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

We proceed now with the computation of the second differential; the only two
possibly nonzero differential are d0,µ

2 and d2,ν
2 , for which the following theorem holds;

for an integer m we let m ∈ Z2 be its residue modulo 2.

Theorem 4.3.1. The following formula holds for the differential d2,ν
2 : Zσν+1

2 → Z2

d2,ν
2 (x1, . . . , xσν+1) = ν

σν+1∑
k=1

xk.

Moreover in the case µ = n + 1, we also have the following explicit expression for
d0,n+1

2 : Z2 → Zσn+1

2

d0,n+1
2 (x) = x(m1, . . . ,mσµ)

where mk = m[αk].

Proof. We start with

d2 : E2,ν
2 ' H̃1(h−1(Σν+1))→ E4,ν−1

2 = Z2

which is given by x 7→ (x ^ γ1,ν)|(B,Ων). In order to do that we choose a small

neighborhood U(ε) of Σν+1 = {[β1], . . . , [βσν+1 ]} and we define C(ε) = h−1(U(ε)). If
we set γ1,ν(ε) = γ1,ν |(B,C(ε)), then since C(ε) ∪ Ων+1 = Ων = S3,

d2,ν
2 (x) = (x ^ γ1,ν(ε))|(B,S3).

We let ∂∗c1, . . . , ∂
∗cσν+1 be the generators of H2(B,C(ε))

∂∗' H1(C(ε)), where ck
is the dual of h−1[βk], k = 1, . . . , σν+1. Lemma 4.2.2 implies now that w1(L[βi]) =
νmod 2 because ν = min i+ = rk(p(βk)) for every k = 1, . . . , σν+1. It follows that

γ1,ν(ε) = ν

σν+1∑
k=1

∂∗ck.

If we let now ∂∗g1, . . . , ∂
∗gσν+1 be the generators of H2(B,Ων+1)

∂∗' H1(Ων+1), where
gk = lk( · , h−1[βk]), k = 1, . . . , σν+1, we have the following formula

d2,ν
2 (x) = ν

σν+1∑
k=1

xk x =

σν+1∑
k=1

xk∂∗gk.
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We assume now that µ = n+ 1 and we compute

d2 : E0,n+1
2 ' Z2 → E2,n

2 ' H̃1(h−1(Σn+1)).

Consider thus Σn+1 = {[α1], . . . , [ασn+1 ]} and let f1, . . . , fσn+1 be the generators of

H̃1(S3\h−1(Σn+1)) :

fk(c) = lk(c, h−1[αk]) ∀c ∈ H̃1(S3\h−1(Σn+1)).

In this way we have

H2(B,Ωn+1) = 〈∂∗f1, . . . , ∂
∗fσn+1〉.

By proposition 1.3.3 we have

w1,n+1 = p∗lk( · , {λn+1 = λn+2})

In our case p−1{λn+1 = λn+2} = h−1(Σn+1) : if α /∈ h−1(Σn+1), then rk(p(α)) =
n + 1 and thus i+(p(α)) = n + 1 and λn+1(p(α)) > λn+2(p(α)); on the contrary
if α ∈ h−1(Σn+1), then rk(p(α)) ≤ n and λn+1(p(α)) = λn+2(p(α)) = 0. Since
γ1,n+1 = ∂∗w1,n+1, then we have

d0,n+1
2 (1) = γ1,n+1 =

σn+1∑
k=1

mk∂
∗fk

where mk = m[αk] comes from the fact that we are taking the pull-back of the class
lk( · , {λn+1 = λn+2}) through p and multiplicities have to be taken into account.

Remark 11. Notice that if µ = n+ 1 and ν = n, then

n
∑
i

mi = d2,n
2 ◦ d0,n+1

2 (1) = n(n+ 1) = 0.

Remark 12. Consider the bundle Rµ → Lµ → Dµ as defined in the second section

and its projectivization RPµ−1 → Pµ
π→ Dµ. Since Lµ ⊂ Dµ × R2n+2, then Pµ ⊂

Dµ × RP2n+1 and the restriction of the projection on the second factor

l : Pµ → RP2n+1

is a map which is a linear embedding on the fibres. It is not difficult to prove that
for this map we have rk(l∗)k ≤ 1− rk(iR∗)2n+1−k (see 3.7.1). Thus by theorem 3.5.1
we have the following implication:

rk(l∗)k = 1⇒ E0,k
∞ = 0.

Using the fact that l is linear on the fibres, we can compute l∗xµ where x is the
generator of H1(RP2n+1;Z2) and l∗x = y :

yµ = (w1(Lµ)y + w2(Lµ))yµ−2
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where we interpret wi(Lµ) as a class on Pµ via π∗. Thus we see that

(w1(Lµ) 6= 0 or w2(Lµ) 6= 0)⇒ E0,µ
∞ = 0.

Applying the same reasoning and computing yk for k ≥ µ+ 1 we get similar condi-
tions for the vanishing of E0,k

∞ . Notice in particular that w1(Lµ) = w1,µ, hence if it is

nonzero d0,µ
2 also is nonzero and E0,µ

3 = 0, which consequently gives E0,µ
∞ = 0. Such

considerations suggest that higher differential d0,∗
r for (Er, dr) are closely related to

higher characteristic classes.

We get as a corollary of the previous theorem the following well known fact from
plane geometry.

Corollary 4.3.2. The intersection of two quadrics in CP2 consists of four points if
and only if the associated pencil has exactly three singular elements.

Proof. Notice that a for a pencil of quadrics in CP2 generated by Q0, Q1 the following
four possibilities can happen for

{[α0, α1] ∈ CP1 | det(α0Q0 + α1Q1) = 0} =


CP1 (∞)

one point (1)
two points (2)

three points (3)

The general table for the ranks of E2(R) has the following picture:

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
a 0 c c′ 0
b 0 d d′ f
0 0 e e′ g

Now b0(C) = b0(R) ≤ 1 + c′ + f and

(∞) : a = 1, c = c′ = f = 0 and b0(C) = 1.

(1), (2) : a = b = 0, c′ = c− 1 ≤ 1, f ≤ 1 and b0(C) ≤ 3.

(3) : a = b = 0, c = 3, c′ = 2, f = 1 and by Theorem 4.3.1 d2,2
2 is identically

zero (ν = 2 is even); also, since E0,5
∞ = Z2, Theorem 4.2.4 implies E0,4

∞ = Z2

(the number of Z2 summands in E0,∗
∞ is even); thus d0,4

2 = d0,4
3 = d0,4

4 ≡ 0 and
b0(C) = 4.

It follows that
b0(C) = 4 ⇐⇒ (3).

Example 3 (The complete intersection of two quadrics). We recall from [24] that
the condition for C = V (q0, q1) to be a complete intersection is equivalent to have
µ = n+1, σµ = n+1 and ν = n. In other words the equation det(α0Q0 +α1Q1) = 0
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must have n + 1 distinct roots and at each root [α0, α1] the pencil must by simply
degenerate, i.e. the rank of α0Q0 + α1Q1 must be n (notice in particular that for
the case n = 2 we have the above result).
Thus the table for the rank of E2 is the following:

rk(E2) =

2n+ 1 1 0
...

...
1 0

n+ 1 1 0

n 0 0 n+ 1 n 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

We distinguish the two cases n even and n odd.

(n even) : In this case, by Theorem 4.3.1, d0,n+1
2 is injective and d2,n

2 is zero. Hence the
table for the rank of E3 is the following:

rk(E3) =

2n+ 1 1 0
...

...
1 0
1 0 0 0 0

n+ 1 0 0 0 0 0

n 0 0 n n 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

Since d0,n+3
3 = d0,n+3

4 = 0 then E0,n+3
∞ = Z2; since n is even, then by Theorem

4.2.4 we have E0,n+2
∞ = E0,n+3

∞ = Z2 and thus d0,n+2
3 = d0,n+2

4 = 0. This
implies

E3 = E∞.

Thus the Z2-Betti numbers of R are:

bj(R) =

{
1 if j 6= n− 2, n− 1, 0 ≤ j ≤ 2n− 1;

n+ 2 if j = n− 2, n− 1

Consequently the Z2-Betti numbers of C are:

bj(C) =


0 if j is odd;
1 if j is even, j 6= n− 2 and 0 ≤ j ≤ 2n− 2

n+ 2 if j = n− 2

(n odd) : in this case, by Theorem 4.3.1, d0,n+1
2 is injective and d2,n

2 is surjective. Thus
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the table for the rank of E3 is the following:

rk(E3) =

2n+ 1 1 0
...

...
1 0
1 0 0 0 0

n+ 1 0 0 0 0 0

n 0 0 n− 1 n 0
0 0 0 0 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

Since E0,n+1
∞ = 0 and n is odd, then by Theorem 4.2.4 we have E0,n+2

∞ = 0,
thus d0,n+2

3 must be injective and the table of rank of E4 = E∞ must be the
following:

rk(E4) = rk(E∞) =

2n+ 1 1 0
...

...
1 0
0 0 0 0 0

n+ 1 0 0 0 0 0

n 0 0 n− 1 n− 1 0
0 0 0 0 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

Thus the Z2-Betti numbers of R are:

bj(R) =

{
1 if j 6= n− 2, n− 1, 0 ≤ j ≤ 2n− 1;
n if j = n− 2, n− 1

Consequently the Z2-Betti numbers of C are:

bj(C) =


0 if j is odd and j 6= n− 2;
1 if j is even, 0 ≤ j ≤ 2n− 2

n− 1 if j = n− 2

Thus the complete intersection of two quadrics C in CPn has complex dimension
m = n− 2 and its m-th Betti number is m+ 4 if m is even and m+ 1 if m is odd.

Example 4. Consider the two quadrics

q0(z0, z1, z2, z3) = z0z2 − z2
1 and q1(z0, z1, z2, z3) = z0z3 − z1z2.

Then det(α0Q0 + α1Q1) = α4
1 and rk(α0Q0 + α1Q1) ≡ 4 except at the point [1, 0]

where we have rk(Q0) = 3. Notice in this case that rk(p([1, 0])) 6= n + 1 −m[α] =
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4−m[α] = 0. The table for the rank of E2 has the following picture:

rk(E2) =

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

Since µ = 4 = n + 1, then we can use the previous formula for d0,µ
2 and since

we have m[1,0] = 4 it follows d0,4
2 ≡ 0. On the other hand d2,4

2 is multiplication by
ν = 3 mod 2, hence it is an isomorphism. Hence the table for the rank of E3 has the
following picture:

rk(E3) =

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 1

Since d0,5
3 = d0,5

4 ≡ 0, then E0,5
∞ = Z2 and Theorem 4.2.4 implies also E0,4

∞ = Z2.
Thus E3 = E4 = E∞. Hence, for the only possible nonzero Betti numbers of R we
have b0(R) = b1(R) = 1, b2(R) = b3(R) = 2. This implies the following for the Betti
numbers of C :

b0(C) = 1, b2(C) = 2 and bi(C) = 0, i 6= 0, 2.

Using Theorem 4.2.4 we see that (i∗C)0 and (iC)∗2 are injective.
Looking directly at the equations for C we see that it equals the union of the
skew-cubic and a (complex projective) line meeting at one point; thus topologically
C ∼ S2 ∨ S2.

Example 5. Consider the two quadrics

q0(z0, z1, z2) = z2
0 − z2

1 and q1(z0, z1, z2) = 2z0(z1 + z2).

We have det(α0Q0 + α1Q1) ≡ 0 and rk(α0Q0 + α1Q1) = 2 for every [α0, α1] ∈ CP1.
Thus the table for the rank of E2 is:

rk(E2) =

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
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By dimensional reasons, the only possibly nonzero differential is d4. Since d0,2
4 = 0,

then E0,2
∞ = Z2 and by Theorem 4.2.4 also E0,3

∞ = Z2. Since E0,3
∞ = Z2, then d0,3

4 = 0;

hence E4,0
∞ = Z2. On the other side we have d0,5

4 = 0 and hence E0,5
∞ = Z2; Theorem

4.2.4 implies E0,4
∞ = Z2. Since E0,4

∞ = Z2, then d0,4
4 = 0 and E4,1

∞ = Z2.
All this tells us that E∞ = E2. The only possible nonzero Betti numbers of R are
b0(R) = b1(R) = 2, b2(R) = b3(R) = 1. This implies the following for the Betti
numbers of C :

b0(C) = 2, b2(C) = 1 and bi(C) = 0, i 6= 0, 2.

Looking directly at the equations of C we see that it equals the union of the point
[1, 1, 0] and the complex projective line {z0 + z1 = 0}.



CHAPTER 5

Applications and examples

5.1 An approach to complexity

5.1.1 Topological view on complexity results

Consider a smooth compact algebraic set X defined by the equation f = 0 in Rn,
where f is a degree d polynomial:

X = {f = 0}, deg(f) = d.

Then for almost every line in Rn the orthogonal projection of X to this line will be
a Morse function. Thus, eventually after performing a linear change of variable, we
may assume that the x1 coordinate is a Morse function for X. The set of critical
points of this Morse function is the algebraic set defined by the equations f =
∂f/∂x2 = . . . = ∂f/∂xn = 0 : thus it consists of at most d(d − 1)n−1 points. If we
denote with b(X) the sum of the Betti numbers of X, then standard Morse theory
gives the following bound, due to Milnor [21]:

b(X) ≤ d(d− 1)n−1

The number b(X) is sometimes called the topological complexity of X.
If we carefully observe the proof of Morse inequalities we see that if we want to
estimate the complexity of a set defined by one single inequality f ≤ 0, then this
can be bounded with the half of the complexity of the smooth variety defined by
the zeroes of f :

b({f ≤ 0}) ≤ 1

2
b({f = 0}).

If we plug-in some basic semialgebraic geometry we can estimate also the complexity
of algebraic sets (not necessarily smooth) defined by polynomials of degree at most
d. Here it goes as follows: suppose S is given by f1 = . . . , fs = 0 in Rn, where
each fi has degree at most d. Then the previous system of equations is equivalent
to the single equation g = f2

1 + · · · + f2
s = 0. By corollary 1.2.4 there exists ε > 0

such that the inclusion {g = 0} ↪→ {g ≤ ε} is a homotopy equivalence; moreover we
may assume also the previous inequality is regular, i.e. g = ε is smooth. Then the
previous estimate gives

b(S) ≤ d(2d− 1)n−1.

The previous argument is not exact at all (some modifications are needed in the
non-compact case), but is sufficient to give an idea of the general method. The
general statement goes under the name of Oleinik-Petrovskii-Thom-Milnor bound
and is the following.
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Theorem 5.1.1 (Oleinik-Petrovskii-Thom-Milnor). Let f1, . . . , fs be polynomials in
R[x1, . . . , xn] of degree at most d and consider the semialgebraic set

X = {f1 ≤ 0, . . . , fs ≤ 0}.

Then the following bound holds for the complexity of X :

b(X) ≤ O(sd)n.

The previous bound is thus exponential in the number n of variables. In the case
S is defined by k quadratic inequalities in Rn, it gives

b(S) ≤ O(2k)n ≤ O(2(k + 1))n+1.

In the previous chain we added the inequality to see more symmetry in comparison
with next result, which concerns bound for semialgebraic sets defined by system of
quadratic inequalities. In fact in this case the introduction of the correspondence
space allows us to switch the role of the number of variables and the number of
inequalities, as the following theorem shows.

Theorem 5.1.2. Let S be a semialgebraic susbet of Rn defined by k quadratic
inequalities. Then the following estimate holds:

b(S) ≤ O(n+ 1)2(k+1)

Proof. First notice that we can construct a semialgebraic set S′ in RPn defined by
homogeneous inequalities (one more than those defining S) and which is homotopy
equivalent to S. To do this we take the homogeneization hfi ≤ 0 of the inequalities
defining S and add the inequality x2

0 ≥ ε for ε > 0; these inequalities define S′. It
follows from corollary 1.2.4 that for ε small enough S and S′ are homotopy equivalent.
Moreover the inequality x2

0 ≥ ε is equivalent to x2
0 ≥ ε(x2

0 + · · · + x2
n); thus S′

is defined by a system of homogeneous quadratic inequalities and we can apply
our theory. We let (Er, dr) be the spectral sequence of theorem 3.3.3 converging
to Hn−∗(S

′;Z2) = Hn−∗(S;Z2). By the general theory of spectral sequence and
universal coefficients theorem we have that

b(S) ≤ b(S;Z2) ≤ rk(E2)

and the previous rank is estimated by the topological complexity of the sets Ωj+1

since b(CΩ,Ωj+1) ≤ 1 + b(Ωj+1). Consider the polynomial det(ωQ− tI) = a0(ω) +
· · ·+an(ω)tn+ tn+1; then by Descartes’ rule of signs the positive inertia index of ωQ
is given by the sign variation in the sequence (a0(ω), . . . , an(ω)). Thus the sets Ωj+1

are defined on the sphere Sk by quantifier-free formulas whose atoms are polynomials
in k+ 1 variables and of degree less than n+ 1. For such sets we have the estimate,
proved by Basu in [6]: b(Ωj+1) ≤ O(n+ 1)2k+1 (this estimate was later improved by
the same author, but for our purpose it suffices). Putting all together we get:

b(S) ≤
n∑
j=0

b(CΩ,Ωj+1) ≤ n+ 1 +

n∑
j=0

b(Ωj+1) ≤ O(n+ 1)2k+2

where we see that the number of variables and the number of equations are switched.
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Notice that, as stated in the proof, by universal coefficients theorem we always
have b(X;Z) ≤ b(X;Z2); thus in general any estimate for Z2 coefficients is valid also
for integer coefficients.
One should expect that in the complex projective case a similar result holds; we
formulate it in the following form. Recall that given q0, . . . , qk homogeneous degree
two polynomials with complex coefficients we can consider the following family of
susbets of CPk (here k + 1 is the number of polynomials):

Y j = {[α0, . . . , αk] ∈ CPk | rk(α0q0 + · · ·+ αkqk) ≥ j}, j ∈ N

Theorem 5.1.3. If C is the common zero locus in CPn of the polynomials q0, . . . , qk ∈
C[x0, . . . , xn](2), then using the above notation for the sets Y j, the following estimate
holds:

b(C) ≤ b(CPn) +
∑
j≥0

b(Y j+1).

Proof. Using the notation of the previous chapter, there exists a real algebraic set
R ⊂ RP2n+1 which is the total space of a S1-bundle with even Euler characteristic
over C. It follows that the Z2-Poincaré polynomials pC of C and pR of R are related
by pR(t) = (1 + t)pC(t). The previous equation in particular gives

b(R) = pR(1) = 2pC(1) = 2b(C).

We estimate b(R) using the spectral sequence of theorem 4.2.1: we have

b(R) ≤
2n+2∑
j=0

b(B,P j+1).

In the case P j+1 is not empty, i.e. in the case j + 1 ≤ µ we have b(B,P j+1) ≤
b(P j+1)− 1; in the case P j+1 is empty we have b(B,P j+1) = 1. Thus we have

b(R) ≤ 2n+ 2− µ+

µ−1∑
j=0

(b(P j+1)− 1) ≤ 2n+ 2 +
∑
j≥0

b(P j+1)

We saw that by definition of the set P j+1, in the case it is not the whole sphere
S2k+1, then there is a homeomorphism P j+1 = S1 × Y j+1 which gives b(P j+1) =
2b(Y j+1); on the other hand in the case P j+1 = S2k+1, then Y j+1 = CPk and
b(P j+1) ≤ 2b(Y j+1). This gives the inequality:

b(R) ≤ 2(n+ 1 +
∑
j≥0

b(Y j+1))

which, using b(R) = 2b(C), directly gives

b(C) ≤ b(CPn) +
∑
j≥0

b(Y j+1).
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5.1.2 General bounds for systems of two quadratic inequalities

In this section we give explicit estimates for each Betti number of the set of the
solutions of a system of two quadratic inequalities Y on the sphere and X in the
projective space. The techniques we are going to use are those introduced to prove
theorem 2.3.7: the idea is that of reduce the study of possibilities for the topology
of Y to the combinatorics of words as above. We first give some estimates in the
nondegenerate case and then we derive the estimates in the general case. We start
with the following proposition.

Proposition 5.1.4. Let q ∈ Q(n + 1, 2) be non degenerate with respect to K =
{x0 ≤ 0, x1 ≤ 0} and X = {[x] ∈ RPn | q0(x) ≤ 0, q1(x) ≤ 0}. Then for every k ∈ N
we have

bk(X) ≤ k + 2.

Moreover, in the case bk(X) = k + 2, then rk(j∗ : Hk(X)→ Hk(RPn)) = 1.

Proof. We start by proving the inequality

b0(Ωn−k) ≤ k + 2

for the canonical representative q′ of a map q ∈ Q(n+ 1, 2;K).
Assumnig b0(Ωn−k) ≥ 2, we have that there exist η1, η2 ∈ Ω such that i+(η1) =
i+(η2) = n− k and the index function decreases and increases at least once between
them; thus the word s(q′) must contain the string of characters (ω̂ω)r for a certain
r > 0 between η1 and η2. Since we are searching for the maximum of b0(Ωn−k) this
implies that the word for q′ must be the following:

s(q′) = ωazω̂b(ωω̂)r(η2)

for certain a, b, r ≥ 0, where the η2 in parenthesis indicates the position of η2 on Ω.
In particular we may assume a = 0 and since i+(η2) = n−k we have b+r = n−k. On
the other hand b+2r = n+1; combined together we get r = k+1 and b = n−2k+1.
For such a choice we see that b0(Ωn−k) = k+ 2 and the inequality for every other q′

follows. Now, using Theorem 1.4.5 we have that

bk(X) = e0,n−k + b0(Ωn−k)− 1 ≤ b0(Ωn−k) ≤ k + 2

where e0,n−k = rk(j∗)k; finally notice that in the first inequality have equality if and
only if rk(j∗)k = 1.

As a corollary, using the transfer exact sequence with Z2 coefficients for the
double covering p : Y → X (see [17]) we have the following.

Proposition 5.1.5. Let q :∈ Q(n + 1, 2) be non degenererate with respect to K =
{x0 ≤ 0, x1 ≤ 0} and Y = q−1(K) ∩ Sn. Then for every k ∈ N we have

bk(Y ) ≤ 2k + 4.

The following lemma allows to remove the hypothesis of nondegeneracy with
respect to K, at least for the case of inequalities.
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Lemma 5.1.6. Consider q ∈ Q(n + 1, 2) and K = {x0 ≤ 0, x1 ≤ 0} ⊂ R2; then
there exists q′ ∈ Q(n+1, 2;K) such that Y (q) = q−1(K)∩Sn has the same homotopy
type of Y (q′) = q′−1(K) ∩ Sn. The same result holds true for X(q) = p(Y (q)) and
X(q′) = p(Y (q′)) defined as above (p is the covering map).

Proof. If q = (q0, q1) then Y (q) = q−1(K)∩Sn coincides with the set of solutions of
the following system: 

q0(x) ≤ 0
q1(x) ≤ 0
x1

2 + · · ·+ xn+1
2 = 1

By semialgebraicity the set of solutions of the previous system is a deformation
retract, for small ε0 > 0 and ε1 > 0, of the set Yε(q) of the solutions of the following
one: 

q0(x) ≤ ε0
q1(x) ≤ ε1
x1

2 + · · ·+ xn+1
2 = 1

In other words Y (q) has the same homotopy type of Yε(q).
To conclude the proof it is sufficient to show that there exists qε = q′ ∈ Q(n+1, 2;K)
such that Y (qε) = Yε(q).
Thanks to Sard’s Lemma we choose two real numbers ε0 and ε1 such that (ε0, ε1)
is a regular value of q, such that εi is not an eigenvalue of Qi, i = 0, 1 and such
that Y (qε) and Y (q) are homotopically equivalent (this last condition is satisfiable
since the set of (ε0, ε1) satisfying the first two conditions is the complement of a
one-dimensional semialgebraic set). In this way the quadratic map qε, defined by

qε(x) = (q0(x)− ε0‖x‖2, q1(x)− ε1‖x‖2)

is nondegenerate with respect to K.
The condition (ε0, ε1) is a regular value of q guarantees nondegeneracy at {0}, while
the condition that εi is not an eigenvalue ofQi, for i = 0, 1, guarantees nondegeneracy
at ∂K.
The set Y (qε) coincides with the set of the solutions of

q0(x)− ε0‖x‖2 ≤ 0
q1(x)− ε1‖x‖2 ≤ 0
x1

2 + · · ·+ xn+1
2 = 1

and thus with the set Yε(q).
The proof works the same in the projective case.

In particular the previous lemma tells that for a general q ∈ Q(n + 1, 2) and
K = {x0 ≤ 0, x1 ≤ 0} we still have the estimates of the previous section.

Corollary 5.1.7. If q ∈ Q(n+ 1, 2), K = {x0 ≤ 0, x1 ≤ 0} and Y = q−1(K ∩ Sn),
p(Y ) ⊂ RPn, then we have

bk(Y ) ≤ 2k + 4 and bk(p(Y )) ≤ k + 2.
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5.2 Level sets of quadratic maps: topology

In this section we discuss more closely the topology of the level sets of a homogeneous
quadratic map. We start with the following observation, which was already used
in the proof of theorem 5.1.2. In the case we are given a semialgebraic subset A
in Rn defined by inequalities involving polynomials of degree two (the presence of
degree one polynomials reduce to this case by restricting to affine subspaces), then
we can find a semialgebraic subset A′ in RPn such that the inclusion of A in A′ is a
homotopy equivalence and A′ is defined by quadratic inequalities in RPn. Consider
first the projective closure A of A in RPn, which amounts to consider the system
of quadratic inequalities in RPn defined by the homoegenization of the polynomials
defining A. Then A is obtained from A by adding the set of the solutions of a
system of quadratic inequalities at infinity, namely on the hyperplane {x0 = 0},
where x0 is the new variable we added by homogenization (the restriction of the
homogenization of the system to this hyperplane is clearly homogeneous). Consider
now the inequality

lε(x0, . . . , xn) = ε(x2
1 + · · ·+ x2

n)− x2
0 ≤ 0.

Notice that this is not exactly the inequality used in theorem 5.1.2, but is preferrable
to use it for computations. We want to show that for ε > 0 small enough A and
A∩ {lε ≤ 0} are homotopy equivalent. Notice first that lε = 0 has no solutions with
x0 = 0: in fact in this case it must be x2

1+· · ·+x2
n ≤ 0 which implies x1 = · · · = xn =

0, but this is impossible on RPn. Thus on the projective space the inequalitty lε ≤ 0
is equivalent to the one x−2

0 (x2
1 + · · ·+x2

n) ≤ R where R = ε−1. In non-homogeneous
coordinates on Rn we can rewrite the last inequality as y2

1 + · · ·+ y2
n ≤ R, hence in

particular:
A ∩ {lε ≤ 0} = A ∩ {‖y‖2 ≤ R}.

Consider now the semialgebraic map ψ : Rn\{0} → Rn\{0} defined by sending x to
x‖x‖−2, and the semialgebraic set S = ψ(A) ∪ {0}. Then ψ maps A ∩ {‖y‖2 ≤ R}
to S ∩ {‖y‖2 ≤ R−1} and the conclusion follows from corollary 1.2.4 applied to the
norm function on S.
In summary this argument shows that A is homotopy equivalent to the set A(ε)
defined in the projective space by homoegenization of the inequalities defining A
and by adding the inequality lε ≤ 0 for ε > 0 small enough.
We apply the previous discussion to the study of a level set of a quadratic map to the
plane. Namely consider q = (q0, q1) ∈ Q(n, 2) and the preimage Ac of c = (c0, c1)
under q. In view of the previous discussion we are led to consider q̂ε ∈ Q(n + 1, 3)
whose components are (hq0,

hq1, lε) and the cone K̂ = R× (−∞, 0] ⊂ R3. Letting Ω̂
be the cone K̂◦ ∩ S2 in the space R2 × R, theorem 3.3.3 gives for small ε a spectral
sequence (Êr(ε), d̂r(ε)) such that

(Êr(ε), d̂r(ε))⇒ Hn−∗(A(ε)) ' Hn−∗(A) and Êi,j2 (ε) = H i(CΩ̂, Ω̂j+1(ε)),

where now the index filtration is given by the sets

Ω̂j+1(ε) = {(ω, t) ∈ Ω̂ | i+(ωhq + tlε) ≥ j + 1}.
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Using the previous spectral sequence we prove the following theorem, which describes
the homological structure of Ac for any c in R2.

Theorem 5.2.1. Let q be a map in Q(n, 2), c be a point in R2 and set Ac = q−1(c).
We define the following family of subsets of S1:

Ck = {ω ∈ S1 | 〈ω, c〉 < 0 and i−(ωq) ≤ k}

and the number
νc = min{i−(ωq) |ω ∈ S1, 〈ω, c〉 < 0}.

Then we have

(i) Ac = ∅ ⇐⇒ νc = 0;

(ii) if νc 6= 0, then b̃k(Ac) = b0(Ck+1, Ck) + b1(Ck+2, Ck+1) for 0 ≤ k ≤ n.

Proof. First notice that the condition νc = 0 is equivalent to

∃η ∈ q(Rn)◦ s.t. 〈η, c〉 > 0.

Suppose Ac = ∅; then if νc 6= 0 we would have ∀η ∈ q(Rn)◦ the inequality 〈η, c〉 ≤ 0,
namely c ∈ q(Rn)◦◦ = q(Rn) which is absurd - remeber that q(Rn) is a closed convex
(polyhedral) cone by corollary 1.4.9. On the contrary if Ac 6= ∅, then c ∈ q(Rn) and
hence {tc}◦t≥0 ⊃ q(Rn)◦; thus 〈η, c〉 ≤ 0 for every η ∈ q(Rn)◦. This proves part (i).
For part (ii) we are substantially going to prove that

Êi,j2 (ε) = H i(CΩ̂, Ω̂j+1(ε)) ' H i(Cn−j+1, Cn−j)

for small ε and that if Ac 6= ∅, then Ê2(ε) ' Ê∞(ε).
Notice also that for i ≥ 1 we have

H i(CΩ̂, Ω̂j+1(ε)) ' H̃ i−1(Ω̂j+1(ε)).

Set Ω̂≥(ε) = {(ω, t) ∈ Ω̂ | 〈(c, ε), (ω, t)〉 ≥ 0} and Ω̂≤(ε) = {(ω, t) ∈ Ω̂ | 〈(c, ε), (ω, t)〉 ≤
0}. Notice that if (ω, t) ∈ Ω̂k(ε) ∩ Ω̂≥(ε) for k ≤ n then for every t′ ≥ t we

have (ω, t′) ∈ Ω̂k ∩ Ω̂≥(ε). Define Ω(ε) = ∂Ω̂≥(ε) ∼ Ω and Ωk(ε) = {(ω, t) ∈
Ω(ε) | i+(ω, t) ≥ k}. Then since i+(0, 1) = n, for k ≤ n we have

Ω̂k(ε) ∼ (Ω̂k(ε) ∪ Ω(ε)) ∪ CΩk(ε).

Thus we derive the following chain of isomorphisms:

H̃∗(Ω̂k(ε)) ' H̃∗((Ω̂k(ε) ∪ Ω(ε)) ∪ CΩk(ε)) ' H∗(Ω̂k(ε) ∪ Ω(ε)),Ωk(ε)).

We define now the set Ωk
≥(ε) = Ωk(ε) ∩ Ω̂≥(ε) ⊂ Ωk(ε) and notice that its closure is

contained in the interior of Ωk(ε); thus we can apply the excision theorem and get:

H̃∗(Ω̂k(ε)) ' H∗((Ω̂k
≤(ε) ∪ Ωk(ε))\Ωk

≥(ε),Ωk(ε)\Ωk
≥(ε))

If we denote by Ω̃k(ε) the set Ω̂k
≤(ε)\{〈ω, c〉 ≥ 0} we finally have the isomorphism:

H̃∗(Ω̂k(ε)) ' H∗(Ω̃k(ε), Ω̃k(ε) ∪ ∂Ω̂≥(ε)).
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Now we consider the set C = {〈ω, c〉 < 0} and the function θε : C → N defined by

ω 7→ i+(ωQ− 〈c, ω〉εI).

We call Ck(ε) the set {θε ≥ k} and notice that for ε small we have isomorphisms:

H∗(Ω̃k(ε), Ω̃k(ε) ∪ ∂Ω̂≥(ε)) ' H∗(Ck−1(ε), Ck(ε)).

Since for ε1 ≤ ε2 we have Ck−1(ε1) ⊂ Ck−1(ε2), then for small ε > 0

Ȟ∗(Ck−1(ε), Ck(ε)) ' lim←−
ε

{Ȟ∗(Ck−1(ε), Ck(ε))} ' Ȟ∗(
⋂
ε

Ck−1(ε),
⋂
ε

Ck(ε)).

Moreover
⋂
εC

k(ε) = {ω ∈ C | i−(ω) ≤ n − k} (notice that i−(ω) = i+(−ω)) and
thus setting Cl = {ω ∈ C | i−(ω) ≤ l} we finally end up with

Êi,j2 (ε) ' H i−1(Cn−j+1, Cn−j) i ≥ 1, ε > 0 small.

We have maxΩ̂ i+ ≥ n and thus Ê0,j
2 (ε) = 0 for j ≤ n− 1 and small ε; on the other

side if Ac 6= ∅ then by theorem 4.2.4 we must have Ê0,n
2 (ε) = Z2 for small ε and

the only possibly nonzero differential is d̂2(ε)0,n : Z2 → Ê2,n−1
2 . Since Ac 6= ∅, then

C0 = ∅ and thus Ê2,n−1
2 = H1(C1, C0) = 0 and Ê∗2(ε) = Ê∗∞ ' Hn−∗(A). This

concludes the proof of part (ii).

As an easy corollary we get the following for q ∈ Q(n, 2).

Corollary 5.2.2. q(Rn) = {tv | v ∈ −Ω◦0, t ≥ 0}.

Proof. By property (i) of theorem 5.2.1 we have

q(Rn) = {c ∈ Rn | νc 6= 0} = {c ∈ Rn | c ∈ −{i− ≤ 0}◦}

where clearly {i− ≤ 0} is a convex cone.

Remark 13. The statement of the previous theorem still holds for systems of inequal-
ities: if A = {q0 ≤ c0, q1 ≤ c1) then A = q−1

c (K) for qc = (q0 − c0, q1 − c1) and K a
certain cone and the result is the same by setting Ck = {ω ∈ Ω = K◦ ∩ S1 | 〈ω, c〉 <
0, i+(−ω) ≤ k}.

5.3 Infinite dimensional case

We consider here the case H is a Hilbert space and q0, q1 are continuous quadratic
forms on on H :

qi(x) = 〈x,Qix〉 Qi is linear, continuous and selfadjoint.

In this case we easily prove the following generalization of theorem 1.4.9.

Theorem 5.3.1. Let q0, q1 be two quadratic forms on H and q : H → R2 the map
x 7→ (q0(x), q1(x)). Then q(H) is a convex subset of R2, but not necessarily closed.
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Proof. Let a = q(α) and b = q(β) be in the image of q. Consider V = span(α, β);
then q|V (V ) is convex by theorem 1.4.9 and thus for every t ∈ [0, 1] there exists
vt ∈ V ⊂ H such that ta+ (1− t)b = q|V (vt) = q(vt).

If c = (c0, c1) ∈ R2 we are interested in the set

Ac = {x ∈ H | q0(x) = c0, q1(x) = c1}

with its induced topology from Ac ⊂ H. Without any regularity assumption the
set Ac can be very wild, but we can however attach to it some algebraic invariant,
namely

H∗(Ac)
.
= lim−→

V ∈F
{H̃∗(Ac ∩ V )},

where F = {V ⊂ H |V finite dimensional subspace of H}, and then give conditions
for which H∗(Ac) coincides with H̃∗(Ac). We recall the definition of positive inertia
index for a quadratic form q on H :

ind+(q) = max{dim(V ) |V ⊂ H, q|V > 0}

and we define also, using the notation of the previous section,

C = {ω ∈ C | i+(−ω) <∞} and Ck = Ck ∩ C.

The set C happens to be a convex subset of C, but the subsets Ck are not in general
euclidean neighborhood retracts and thus their Cech cohomology may not coincide
with their singular cohomology.

Lemma 5.3.2. If Ac = ∅ then H∗(Ac) = 0. If Ac 6= ∅ then

Hk(Ac) = Ȟ0(Ck+1, Ck)⊕ Ȟ1(Ck+2, Ck+1)

Proof. If Ac = ∅ then clearly for every V ⊂ H we have Ac∩V = ∅ andH∗(Ac∩V ) = 0
which implies H∗(Ac) = 0.
On the contrary if Ac 6= ∅, then setting Ck(W ) = {ω ∈ C | ind−(ωq|W ) ≤ k} for

V ⊂ W subspaces we have Ck(W )
iWV
↪→ Ck(V ). We refer to [3] for the proof that

H∗(Ac ∩ V ) → H∗(Ac ∩W ) induces on the graded complex associated to spectral
sequence of theorem 4.2.4 the maps

H∗(Ck+1(V ), Ck(V ))
(iWV )∗

−→ H∗(Ck+1(W ), Ck(W )).

It follows from the properties of Cech cohomology that

lim−→{H
∗(Ck+1(V ), Ck(V ))} = Ȟ∗(

⋂
V ∈F

Ck+1(V ),
⋂
V ∈F

Ck(V ))

and since
⋂
V ∈F Ck(V ) = Ck then the conclusion follows.

Notice that the proof of part (i) of theorem 5.2.1 here does not apply, because
in general q(H) is not closed and hence q(H)◦◦ can be different from q(H). The
following proposition gives a sufficient condition for H∗(Ac) ' H̃∗(Ac).
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Proposition 5.3.3. Suppose c = (c0, c1) ∈ R2 is a regular value for the homogeneous
quadratic map q : H → R2. Then

H∗(Ac) ' H̃∗(Ac).

Proof. We give only a sketch; for details the reader is advised to see [3]. If c is a
regular value, then Ac is a Hilbert submanifold of H and has a tubular neighborhood
Uc. Thus H̃∗(Uc) ' H̃∗(Ac) and any singular chain in Ac can be turned in a chain
lying in a finite dimensional subspace of H without leaving Uc. The conclusion
follows.

In the case c = 0, then A0 is contractible and is possible to study the topology of
A0∩{x ∈ H | ‖x‖ = 1} in a similar way; for a precise treatment in the nondegenerate
case the reader is referred again to [3].

5.4 Examples

We collect in this section a series of examples, which should give an idea of the
method to effectively make computations using the previous theorems. We start
with the most simple case, i.e. that of a single quadric in RPn. Let q ∈ Q be a
quadratic form on Rn+1 with signature (a, b) with a ≤ b (otherwise we can replace
q with −q) and a+ b = rk(q) ≤ n+ 1. Consider

Xa,b = {q = 0} ⊂ RPn.

For example, in the case q is nondegenerate (i.e. a+ b = n+ 1) then Xa,b is smooth
and Sa−1 × Sb−1 is a double cover of it.
Define the two vectors h−(Xa,b), h

+(Xa,b) ∈ Nn by:

h−(Xa,b) = (1, . . . , 1︸ ︷︷ ︸
n+1−b

, 0, . . . , 0), h+(Xa,b) = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
a

).

Then a straightforward application of theorem 3.3.3 gives the following identity for
the array whose components are the Z2-Betti numbers of Xa,b :

(b0(Xa,b), . . . , bn(Xa,b)) = h−(Xa,b) + h+(Xa,b).

Moreover if we let j : Xa,b → Pn be the inclusion, then theorem 3.5.1 gives the
following:

(rk(j∗)0, . . . , rk(j∗)n) = h−(Xa,b).

Example 6. We compute the cohomology of the real grassmannian G2,4. Using the
Plucker embedding we realize it as the algebraic subset of RP5 cut by the single
quadratic equation:

q(z) = z0z5 − z1z4 + z2z3 = 0

Thus in this case q ∈ Q(6) and its signature is (3, 3); in particular, using the above
notations we have G2,4 = X3,3 and:

h−(G2,4) = (1, 1, 1, 0, 0), h+(G2,4) = (0, 0, 1, 1, 1).
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Notice in particular that h−(G2,4) gives the vector of the ranks of the map induced
by the Plucker emebedding i in RP5: let’s check this fact using some elementary
algebraic geometry. We let y be the generator of H1(RP5;Z2); then y is Poincaré
dual to a hyperplane. The intersection of i(G2,4) ⊂ RP5 with a generic hyperplane
is in RP5 is easily seen to be the schubert cycle σ1, hence its Poincaré dual f1 (this
cohomology class equals w1(τ2,4)) satisfies

i∗y = f1

and rk(i∗)1 = 1, since f1 is non zero in H1(G(2, 4);Z2). Now, using Pieri’s formula,
we have that σ1 ·σ1 = σ2 +σ1,1, which is nonzero and gives rk(i∗)2 = 1. Using again
Pieri’s formula we have that (σ1)3 = σ3 + 2σ2,1 + σ1,1,1; thus the Poincaré dual f3

1

of σ3
1 is zero in H3(G(2, 4);Z2) and this gives rk(i∗)3 = 0.

More interesting is the case of two quadrics. In the case q = (q0, q1) and i+ not
constant, then the spectral sequence of theorem 3.3.3 degenerates at the second step
and E2 = E∞. In the case of constant positive index we can use Theorem 3.7.1 to
find H∗(p

−1(K)) (notice that K 6= {0} again implies E2 = E∞.)

Example 7. Consider the two quadratic forms

q0(x) = 2x0x1 − x2
1, q1(x) = x2

1 + x2
2 − x2

3.

Their common zero locus set X in RP3 consists of two lines intersecting at one point
and one circle intersecting each line in one point. Thus X is homotopy equivalent to
a bouquet of four circles. The table for the ranks of E2 in this case is the following:

rk(E2) =

1 0 0
1 0 0
0 2 0
0 0 1

We see that there is no differential, hence E∞ = E3 = E2. The homomorphism (i∗)1

induced on the cohomology by the inclusion i : X → RP3 is injective (X contains a
line).

Example 8. Consider the two quadratic forms:

q0(x) = x2
0 + x2

1, q1(x) = x2
3 − x2

4.

Their common zero locus set X in RP3 consists of two points. The table for the
rank of E2 in this case is the following:

rk(E2) =

1 0 0
0 1 0
0 0 0
0 0 0

Since that there is no non-vanishing second differential we have E∞ = E3 = E2.

Clearly if the number of quadrics increases, then the computations for the dif-
ferentials became more difficult, whereas those for the second term of the spectral
sequence are still relatively simple.
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Example 9. Consider the map p ∈ Q(4, 3) given by

p(x0, x1, x2, x3) = (x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2).

Then C = {p = 0} ⊂ RP3 is the rational normal curve, the so called twisted
cubic. In this case Ω = S2 and the set {ω ∈ Ω | ker(ωp) 6= 0} consists of two
disjoint ovals in S2, bounding two disks B1, B2. Then S2 is the disjoint union of the
sets Int(B1), ∂B1, R, ∂B2, Int(B2), on which the function i+ is constant with value
respectively 2, 1, 2, 2, 2. Then

Ω1 = S2, Ω2 = S2\∂B1, Ω3 = ∅

and the table for the ranks of the second term of the spectral sequence of theorem
3.3.3 converging to H3−∗(C) is the following:

rk(E2) =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1

The differential d2 : E1,1
2 → E3,0

2 is an isomorphism; hence E3 = E∞ has the
following picture:

rk(E3) =

1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

From the previous, using theorem 3.5.1, we see that j∗ : H1(C) → H1(P3) is
an isomorphism (we can check this fact also by noticing that, since C is a curve of
degree 3, then the intersection number of C with a generic hyperplane H ⊂ P3 is
odd).

Example 10. Consider the quadratic map q ∈ Q(3, 3) defined by:

q(x0, x1, x2) = (x0x1, x0x2, x1x2)

and the convex cone K = {0}. Then we have:

Ω = Ω1 = S2, Ω2 = {ω ∈ S2 |ω0ω1ω2 < 0}, Ω3 = ∅.

In this case the table for the ranks of E2 has the following picture:

rk(E2) =
1 0 0 0
0 3 0 0
0 0 0 1

The element E1,1
∞ cannot be zero: in fact (E1,1

r )r≥2 can lose rank only because of d2

and in this case it can decrease at most by one. This implies the set {q = 0} in RP2

is nonempty. On the other side, because of theorem 3.5.1, nonemptyness of {q = 0}
implies E0,2

∞ = Z2. Since the term E3,0
r must become zero at a certain step, then the

differential d2 : E1,1
2 → E3,0

2 is nonzero. Hence rk(E∞) = 3 and {q = 0} consists of
3 points.
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There are some cases in which the problem of describing the index function can
be reduced to a simpler problem; this is the case of a quadratic map defined by a
bilinear one. We start noticing the following.

Lemma 5.4.1. Let L be a n × n real matrix and QL be the symmetric 2n × 2n
matrix defined by:

QL =

(
0 L
tL 0

)
Then, setting qL for the quadratic form defined by x 7→ 〈x,QLx〉 we have:

i+(qL) = rk(L).

Proof. Let x = (z, w) ∈ R2n ' Rn ⊕ Rn; then QL ( zw ) =
(
Lw
tLz

)
. Hence kerQL =

ker tL⊕ kerL and

dim(kerQL) = 2 dim(kerL).

Consider now the characteristic polynomial f of QL:

f(t) = det(QL − tI) = det(t2I − tLL) = (−1)n det(tLL− t2I) = (−1)ng(t2)

where g is the characteristic polynomial of tLL. Let now λ ∈ R be such that g(λ) = 0;
since tLL ≥ 0, then λ ≥ 0 and f(±

√
λ) = 0. Since QL is diagonalizable, then for

each one of its eigenvalues algebraic and geometric multiplicity coincide, hence

i+(qL) = i−(qL) =
1

2
rk(QL).

It follows that

i+(qL) =
1

2
(2n− dim(kerQL)) = rk(L).

In particular if b : Rn × Rn → Rk+1 is a bilinear antisymmetric map whose
components are defined by

(x, y) 7→ 〈(x, y),
(

0 Bi
tBi 0

)
(x, y)〉

for certain real squared matrices Bi, i = 1, . . . , k + 1, then we can consider the
quadratic map

pb : R2n → Rk+1

defined by (x, y) 7→ b(x, y). In this case we define for ω ∈ Sk the matrix ωB by

ωB = ω1B1 + · · ·+ ωk+1Bk+1.

By lemma 5.4.1 we have

i+(ωpb) = rk(ωB).
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Example 11. Let R8 be identified with the space of pairs of 2× 2 real matrices. We
apply the previous consideration to describe the topology of

Γ = {(X,Y ) ∈ R8 : [X,Y ] = 0}.

Since the equation for Γ are homogeneous, it is a cone, and we can study the ho-
mology of its projectivization

P(Γ) ⊂ RP7.

If we define V = {(X,Y ) ∈ R8 : tr(X) = tr(Y ) = 0} and ΓV = Γ ∩ V, then it is
readily seen that

Γ = ΓV ⊕ R2.

We proceed first to the computation of H∗(P(ΓV )) using the above theorems.
In coordinates (X,Y ) = (

( x y
z −x

)
,
(
w t
s −w

)
) we have

{[X,Y ] = 0} ∩ V = {tz − ys = xt− yw = sx− wz = 0}.

Consider the following matrices

B1 =

 0 0 0
0 −1 0
0 0 1

 , B2 =

 0 0 1
−1 0 0
0 0 0

 , B3 =

 0 1 0
0 0 0
−1 0 0


and the bilinear map b : R3 × R3 → R3 whose components are (x, y) 7→ 〈x,Biy〉.
Then pb : V → R3 equals the quadratic map defined by (X,Y ) 7→ [X,Y ] (we are
using the above notations for the quadratic map pb defined by a bilinear map b). It
follows that

ΓV = V ∩ Γ = {pb = 0}.

Using ωB for the matrix ω1B1 + ω2B2 + ω3B3, then by the previous fact we have

i+(ωpb) = rk(ωB) ∀ω ∈ S2.

Let ωQb the symmetric matrix associated to ωpb by the rule (ωpb)(x) = 〈x, ωQbx〉.
Then

ωQb =

(
0 ωB

tωB 0

)
The matrix ωB, for ω = (ω1, ω2, ω3) ∈ S2 has the following form: 0 ω3 ω2

−ω2 −ω1 0
−ω3 0 ω1


and we immediatly see that rk(ωB) = 2 for ω 6= 0; this gives

i+(ωpb) = 2 ∀ω ∈ S2.
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Since i+ ≡ 2, we can apply Theorem 3.7.1; letting (Er, dr) be the spectral sequence
of theorem 3.3.3 converging to Hn−∗(P(ΓV )), we have the following picture for E2 =
E3 :

rk(E2) = rk(E3) =

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

Consider the section σ : S2 → S2 × R6 defined for ω = (ω1, ω2, ω3) ∈ S2 by:

σ(ω) = (ω2, 0, ω1,−ω1ω3, ω2ω3, ω
2
1 + ω2

2).

Since for every ω ∈ S2

(ωQb)σ(ω) = σ(ω)

then it follows that σ is a section of the bundle p̄∗bΛ2. The index sum of the zeroes
of σ (which occur only at (0, 0, 1), (0, 0,−1) ∈ S2) is even, thus the euler class e of
p̄∗bΛ2 is even. This implies

w2(p̄∗bΛ2) = emod 2 = 0.

Thus by Theorem 3.7.1 we have d3 ≡ 0 and E2 = E3 = E∞. It follows that the only
nonzero homology groups of P(ΓV ) are:

H0(P(ΓV )) = H3(P(ΓV )) = Z2 and H1(P(ΓV )) = H2(P(ΓV )) = (Z2)2.

Actually since the equations for ΓV are given by the vanishing of the minors of the
matrix ( x z y

w s t ) , then ΓV is the Segre variety Σ2,1 ' RP1 × RP2.
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