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Abstract 
 
 
Ca2+-activated Cl¯ channels are an important component of olfactory 

transduction. Odorant binding to odorant receptors in the cilia of olfactory sensory 

neurons (OSNs) leads to an increase of intraciliary Ca2+ concentration by Ca2+ entry 

through cyclic nucleotide-gated channels. Ca2+ activates a Cl¯ channel that leads to an 

efflux of Cl¯ from the cilia, contributing to the amplification of the OSN depolarization. 

The molecular identity of this Cl¯ channel remains elusive. Recent evidences have 

indicated that bestrophins are able to form Ca2+-activated Cl¯ channels channels in 

heterologous systems. Immunohistochemistry revealed that mBest2 was expressed on the 

cilia of OSNs, the site of olfactory transduction, and co-localized with the main subunit 

of cyclic nucleotide-gated channels, CNGA2. We performed a functional comparison of 

the properties of Ca2+-activated Cl¯ channels from native channels expressed in dendritic 

knob/cilia of mouse OSNs with those induced by heterologous expression of mBest2 in 

HEK-293 cells. Even if the two channels did not display identical characteristics, they 

have many similar features such as the same anion permeability, the Ca2+ sensitivity in 

micromolar range and the same side-specific blockage of the two Cl¯ channel blockers 

commonly used to inhibit the odorant-induced Ca2+-activated Cl¯ channels in OSNs, 

niflumic acid and 4-acetamido-4’-isothiocyanato-stilben-2,2’-disulfonate (SITS). 

However electroolfactogram recording from mBest2 null mice showed a normal 

sensitivity to odorant stimulation. Therefore mBest2 is a good candidate for being a 

molecular component of the olfactory Ca2+-activated Cl¯ channels but its precise role in 

olfactory transduction remains to be clarified. 
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1. Introduction 

 

 
1.1 The sense of smell 

 

Chemosensation can be defined as the ability of a living organism to detect and 

discriminate different chemical molecules in the external environment. Its precursors can be 

found in the most primitive unicellular organisms, reflecting the need of every organism to 

sense its chemical milieu. This task is essential for survival of the individual and of the 

species, indeed it enables animals to locate nutritious food and suitable mating partners, and 

to avoid being eaten by predators or eating toxic substances. 

Chemosensory systems (smell, taste) are distinguished from the other senses (vision, 

hearing, touch) by the qualitative heterogeneity of the stimuli: the chemical senses are 

responsible for detecting molecules of immense chemical variety. The olfactory repertoire 

contains aliphatic and aromatic molecules with varied carbon backbones and diverse 

functional groups, including aldehydes, esters, ketones, alcohols, alkenes, carboxylic acids, 

amines, imines, thiols, halides, nitriles, sulphides and ethers. A “normal” odor is usually 

composed by a mixture of different molecules in which the relative concentrations of each 

component participate to determine the particular perception response. 

Moreover the olfactory system is also responsible for the sensing of pheromones, 

chemicals released by animals that act on conspecifics to regulate populations of animals 

and their social actions (Karlson & Luscher, 1959). Pheromones are detected by the 

vomeronasal organ and elicit programmed neuroendocrine controlled behaviors mediated by 

activation of the amygdala and the hypothalamus (Dulac & Wagner, 2006).  
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1.2 Anatomical organization of the olfactory system 
 

1.2.1 The olfactory epithelium and the olfactory sensory neurons 

 

The general features of the olfactory system are remarkably conserved across 

vertebrates. The primary receptor cells are organized to form a neuroepithelium, the 

olfactory epithelium that lines a series of cartilaginous outcroppings, called turbinates, 

located in upper reaches of the nasal cavity in mammals. The olfactory epithelium is usually 

situated posterior to vestibular and respiratory regions (Fig 1.1 A).  

The olfactory epithelium is a columnar pseudo-stratified epithelium and it contains 

essentially three types of cells: olfactory sensory neurons (OSNs), the primary receptor cell, 

supporting cell (also called sustentacular cells) and basal cells. Moreover the olfactory 

epithelium of all vertebrate except fish has tubulo-alveolar glands called Bowmann’s glands 

with the alveoli lying in the lamina propria and opening their ducts at the epithelial surface. 

The olfactory epithelium is thicker than the surrounding respiratory epithelium as seen in 

histological sections. Its thickness varies from one animal to the other ranging from 30 µm 

in moles to 150-200 µm in frogs and turtles. The nuclei of the three cellular components are 

directly arranged in separate layers as can be seen in Fig 1.1 B and C. The epithelial surface 

is normally covered by layer of mucus 10 to 40 µm thick that is produced by the secretion of 

Bowmann’s glands. 

The olfactory sensory neurons are typical primary sensory neurons with bipolar 

morphology. The receptor cell has a flask-like shape, its length is directly proportional to the 

thickness of the epithelium, while the diameter of its processes remains more constant (Fig 

1.1 D) The cell body has a diameter of 5-8 µm located within the lower two thirds of 

neuroepithelium. The dendrite, 1-2 µm in diameter, reaches up to the surface of the tissue 

and ends in a knob-like swelling with an approximate diameter of 2-3 µm. Tens of very fine 

cilia, usually 20-30, project from the knob and are embedded in mucus covering the 

epithelium (Fig 1.2). The OSNs of lower vertebrates typically have about 6 motile cilia that 

can be as long as 200 µm (Menco, 1980). The diameter of a frog cilium tapers from 0.28 µm 

near the base of the cilium to 0.19 µm in the distal portion (Menco, 1980). In mammals, the 

cilia are shorter (15–50 µm), thinner (tapering to 0.11 µm), more numerous (averaging 17 

per neuron), and nonmotile (Menco, 1980; Lidow & Menco, 1984; Menco, 1997). Graziadei 



______________________________________________________________1. Introduction 

 3

DC 

A B

30 µm4 mm

10 µm

and Bannister (1967) have estimated that cilia of duck may increase the cell bare surface 

some one thousand or more times. The cilia are the site of the sensory transduction 

apparatus (Fig 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Olfactory epithelium and olfactory sensory neurons. 
The olfactory epithelium in rodents is located in the upper part of the nasal cavity and lines on convolute 
cartilaginous structures called turbinates (A, from www.apuche.org/OIA/). Histological section of mouse 
olfactory epithelium stained with eosin (B, from http://education.vetmed.vt.edu/-
curriculum/VM8054/Labs/Lab25/lab25.htm) and schematic diagram showing the various cell types and 
structures composing the neuroepithelium (C, from Anatomy and Physiology Laboratory Manual, Benjamin 
Cummings). Photograph of an isolated frog olfactory sensory neuron under differential interference optic, c: 
cilia; d: dendrite; s: soma; a: axon, (D, from Kleene & Gesteland, 1981). 
 

 

The supporting cells are columnar epithelial cells and they extend vertically from the 

epithelial surface, where they show a series of irregular microvilli at the apical surface and 

they contact the basal lamina with branched digitiform processes. 
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The olfactory neuroepithelium undergoes a constitutive turnover of the neuronal 

population analogous to cellular replacement in other non-neural epithelia, as well as a 

wholesale reconstitution of that population after lesion as a kind of wound healing 

(Graziadei et al., 1978) 

 

 

 

 

 

 

 

 

 

Figure 1.2 Cilia of olfactory sensory neurons are the site of olfactory transduction. 
Microphotograph of human olfactory epithelium obtained with scanning electron microscopy. The cilia in 
mammals are tiny structures with diameter of 100-200 nm and length of 15-50 µm (B, Morrison & Costanzo, 
1990). 
 

1.2.2 Beyond the olfactory epithelium 

 

The axons of OSNs cross the cribriform plate and directly reach the most rostral part 

of the brain known as the olfactory bulb. Molecular-genetic studies using transgenic mice 

have shown that all the neurons expressing a particular receptor, no matter where they are 

found on the epithelial sheet, converge to a single ‘target’ in the olfactory bulb (Mombaerts 

et al., 1996b), for review see (Mombaerts, 2004a; Fig. 1.3). These targets are the glomeruli, 

spherical conglomerates of neuropil some 50–100 μm in diameter that consist of the 

incoming axons of OSNs and the dendrites of the main projection cell in the bulb, the mitral 

cells (Fig. 1C). In the olfactory bulb complex processing of olfactory information is also 

taking place. Indeed, each glomerulus contains the axons of several thousands of OSNs and 

the dendrites of ~50 mitral and tufted cells, which are the output neurons of the olfactory 

bulb. These neurons are activated by OSNs, but odorant information is further processed by 

the activity of inhibitory interneurons, periglomerular cells, and granule cells (Lowe, 2003; 
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Schoppa & Urban, 2003) The axons of mitral and tufted cells project through the lateral 

olfactory tract to the olfactory cortex.  

The olfactory cortex is composed of several anatomically distinct areas: the piriform 

cortex, olfactory tubercle, anterior olfactory nucleus, and specific parts of the amygdala and 

the entorhinal cortex. Further projections from the olfactory cortex, reach through the 

thalamus the orbitofrontal cortex, that are thought to be responsible for perception and 

discrimination of odors. In contrast the pathways leading to the amygdala and hypothalamus 

are thought to be involved in the emotional and motivational aspects of smell as well as the 

behavioral and physiological effects of odors (Menini et al., 2004; Buck, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Projection of olfactory sensory neurons to the olfactory bulb. 
All olfactory sensory neurons in the olfactory epithelium expressing the same odorant receptor project to the 
same glomerulus in the olfactory bulb (A-B, from Mombaerts, 2004b). Genetic labeled olfactory sensory 
neurons expressing the odorants receptor P2 send their axons to a specific glomerulus in the olfactory bulb (C, 
from Mombaerts et al., 1996a) 
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1.3 Odorant receptors 
 

The identification of the genes encoding for odorant receptors opened the molecular 

era in olfactory research and it allowed the comprehension of the basis of olfactory system 

organization and its physiology. 

In the late 1980s, it was becoming evident that the main pathway of olfactory signal 

transduction involved heterotrimeric G proteins. Indeed it has been shown that exposure of 

isolated cilia from rat olfactory epithelium leads to the rapid stimulation of adenylyl cyclase 

and an increase in cyclic AMP that is dependent on the presence of GTP (Pace et al., 1985; 

Sklar et al., 1986; Jones & Reed, 1989; Breer et al., 1990). Moreover in 1987 (Nakamura & 

Gold, 1987) Nakamura and Gold reported that a cation channel that can be directly activated 

by cAMP is present in olfactory cilia.  

This implied that receptors for odorants have a seven-transmembrane domain (7TM) 

structure, as we now know is the case for all other G protein-coupled receptors (GPCRs). 

The few GPCRs that had been cloned at that time showed conserved motifs. By application 

the novel strategy at that time, degenerate polymerase chain reaction (PCR), a diverse 

superfamily of ~1,000 genes that encoded 7TM proteins was identified in the rat and RNA 

transcripts were localized to the olfactory mucosa (Buck & Axel, 1991). 

Degenerate PCR with pan-OR primers has permitted the cloning of OR genes from 

many vertebrate species (Mombaerts, 1999). The intronless structure of OR coding regions 

greatly facilitates this endeavour, as it is much easier to obtain genomic DNA from an 

animal than cDNA of the olfactory mucosa. In human, 50–60% of OR sequences are 

pseudogenes (Del Punta et al., 2002; Del Punta et al., 2002; Zozulya et al., 2001; Niimura & 

Nei, 2003; Mombaerts, 1999; Mombaerts, 2001). Only ~350 human OR sequences have an 

intact open reading frame, and are potentially functional. As expression in OSNs remains to 

be demonstrated for any human OR gene, some receptors might not qualify as ‘ORs’. The 

massive pseudogenization of the OR repertoire in humans and Old World primates (Gilad et 

al., 2004) is preceded by a moderately high level of pseudogenes (28–36%) in lower primate 

species (Gilad et al., 2003). By contrast, of the 1,300–1,500 OR sequences in the mouse 

genome (Zhao & Firestein, 1999; Godfrey et al., 2004; Young et al., 2002; Young et al., 

2003), only 20% are pseudogenes, and at least 419 are expressed in the olfactory epithelium 

(Young et al., 2003). The mouse repertoire of ~1,000 potentially functional OR genes is by 
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far the largest gene superfamily in a mammalian genome, and perhaps in any genome. The 

intact mouse OR genes can be grouped into families, defined by an amino-acid identity of 

>40% (Zhang & Firestein, 2002) and containing between 1 and 50 member genes. Class I 

genes (~10% of the mouse repertoire) resemble the OR genes of fish, but class II genes are, 

so far, unique to terrestrial vertebrates. The amino-acid similarity is 37% on average across 

the OR repertoire, but it can be as low as 25% between two ORs. Of the plethora of short 

motifs that can be discerned among mouse ORs (Liu et al., 2003), certain combinations are 

diagnostic for ORs as opposed to other GPCRs, and this also extends to other vertebrate 

species. The genomic organization of the human and mouse OR repertoires is diffuse and 

complex. OR genes are spread over ~50 clusters localized on nearly all chromosomes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Odorant receptors. 
Schematic topology of ORs with the typical 7 transmembrane domains of G-protein coupled receptor (A). 
Different regions of OR proteins show a different level of variability. The odorant binding domain is located in 
variable region of TM3, TM5 and TM6 (B, from Mombaerts, 2004b) 
 

 

Every OSN expresses a single OR gene and in each OSN only one allele is 

expressed. (Chess et al., 1994; Serizawa et al., 2003; Serizawa et al., 2004; Malnic et al., 

1999; Shykind, 2005). Moreover, based on the spatial distribution of OR genes, the olfactory 

epithelium can be divided in four zones along the antero-posterior axis. Each OR gene is 

expressed only in one zone but, inside it, the OSNs expressing that OR gene are randomly 

scattered (Ressler et al., 1993; Sullivan et al., 1994; Vassar et al., 1993; Strotmann et al., 

1992). 
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The transcription regulation of OR genes is not yet fully understood. It is known that 

multiple levels of regulation exist, both at the gene, at the gene cluster, and more global 

levels (for review see Rodriguez, 2007). The choice of OR gene is apparently a stochastic 

process, which when stabilized is likely to remain stable during the entire life of the OSN. 

However not all ORs are chosen at the same frequency. Two models, not necessarily 

exclusive, have been proposed to explain the expression pattern of OR genes: (i) a proximal 

and gene-specific activation element and (ii) sequence acting over longer distances and 

shared among OR genes. At the moment the only long acting sequence that has been 

identified is the H element, a sequence of about 2 Kb. All data support a model in which the 

regulatory element loops and interact with specific OR genes to promote receptor choice, 

which is able to interact with one single promoter at a time. Some of these elements have 

been identified, such as homeodomain and O/E binding site just upstream of the 

transcription start site (Vassalli et al., 2002; Rothman et al., 2005; Hoppe et al., 2003; 

Hoppe et al., 2006; Michaloski et al., 2006). 

A more complex question is to understand why OSNs express just one receptor. It is 

not due to a non reversible genomic rearrangement occurring after OR gene choice as shown 

by nuclear transfer experiments (Eggan et al., 2004; Li et al., 2004). A model that has been 

proposed is the negative selection by which the neurons that express more than one gene are 

more sensitive to apoptosis and die. At present there is no evidence that support this model. 

The current and most obvious explanation for monogenic expression involves the expressed 

receptor itself, similar to what is observed in the immune system (Martensson et al., 2007). 

After the choice of the first OR gene either directly or indirectly a feedback loops prevent 

expression of other OR genes. The expression of nonfunctional OR alleles allows the 

cotranscription of novel OR genes, pointing to a role played by the protein itself rather than 

by its corresponding transcript. However, the mechanism by which the expressed OR 

mediates this feedback is still unknown (Serizawa et al., 2003; Sato et al., 2007; Lewcock & 

Reed, 2004; Shykind, 2005; Feinstein & Mombaerts, 2004). Vertebrate ORs share many 

features with other GPCRs, including a structure that predicts seven α-helical membrane-

spanning domains connected by intracellular and extracellular loops of variable lengths, and 

numerous conserved short sequences. Other characteristics are specific to ORs, such as: an 

unusually long second extracellular loop, an extra pair of conserved cysteines in this loop, 

and other short sequences (see Fig 1.4 B, Mombaerts, 1999). Katada et al. (2005) found that 
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the most critical residues involved in odor binding are hydrophopic and are located in TM3, 

TM5 and TM6. Spatial localization of the binding pocket was similar to that for other 

biogenic GPCRs (Rivkees et al., 1999; Church et al., 2002; Manivet et al., 2002; Berkhout 

et al., 2003) however the environment was quite different. For example the catecholamines 

have been shown to form multiple electrostatic interactions with adrenergic receptors 

(Klabunde & Hessler, 2002). In contrast, the interaction of odorants in odor binding pockets 

in ORs is based on hydrophobic and van der Waals interaction, generating less rigid binding. 

This causes a higher EC50 but is still selective for shape, size and length of the ligand and its 

selectivity is due to the environment of the binding site. 

Up to now the identification of the ligands for ORs is still very limited (Mombaerts, 

2004b). This is due to the difficulty to express ORs in heterologous systems suitable for 

high-throughput screening. The main difficulty seems to be the OR protein trafficking to the 

plasma membrane. Indeed, the OR protein, although produced in transfected cells, remains 

trapped in the endoplasmic reticulum, Golgi and endosomal compartments, with little or no 

receptor finding its way to the membrane (Gimelbrant et al., 2001). This issue will be likely 

resolved by the discovery of accessory proteins that are involved in processing and 

trafficking of OR proteins. Indeed, it has been found that members of the RTP protein 

family, RTP1L, RTP1S and RTP2, and REEP1 were able to interact both in vivo and in vitro 

with OR proteins and induced their functional expression in heterologous systems (Saito et 

al., 2004; Zhuang & Matsunami, 2007). Moreover Von Dannecker et al. (2005; 2006) 

reported that also Ric-8B, a putative guanine nucleotide exchange factor interacts with Gαolf 

and is able to promote the expression in heterologous systems. 

 

1.4 Olfactory transduction: an overview 
 

Once the receptor has bound an odor molecule, a cascade of events is initiated that 

transforms the chemical energy of binding into a neural signal (that is, a change in the 

membrane potential of the OSN). Although for a long time two possible mechanisms have 

been proposed, involving the production of cAMP or of IP3, there are now converging 

evidences for only one common pathway for transduction of odorant stimulation in OSNs 

(Schild & Restrepo, 1998; Gold, 1999; Kleene, 2008; Menini et al., 2004). 
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Odor molecules bind to odorant receptor proteins, and this interaction triggers an 

increase in the ciliary concentration of cAMP through the activation of a receptor-coupled G 

protein and an adenylyl cyclase. Cyclic nucleotide-gated (CNG) channels located in the 

ciliary membrane are directly activated by cAMP, causing a depolarizing influx of Na+ and 

Ca2+ ions (Nakamura & Gold, 1987). The increase of [Ca2+]i generated by Ca2+ entry 

through CNG channels directly gates a Ca2+-activated Cl¯ channels (Lowe & Gold, 1993b; 

Kleene, 1993; Kleene & Gesteland, 1991; Kurahashi & Yau, 1993). OSNs maintain an 

unusually high internal concentration of Cl¯ that is in the same range of the Cl¯ 

concentration present in the mucus at the external side of the ciliary membrane (Kaneko et 

al., 2001; Reuter et al., 1998; Nakamura et al., 1997; Kaneko et al., 2004). Therefore in 

physiological conditions, the opening of Ca2+-activated Cl¯ channels causes an efflux of Cl¯ 

ions from the cilia, corresponding to an inward current that further contributes to the 

depolarization of OSNs (see Fig 1.5, Kurahashi & Yau, 1993; Kleene, 1993; Kleene & 

Gesteland, 1991; Lowe & Gold, 1993b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Olfactory transduction. 
The binding of odorant molecules to ORs induces the G protein mediated activation of adenylyl cyclase. cAMP 
directly gates CNG channels generating a depolarizing influx of Na+ and Ca2+. [Ca2+]i increase mediates both 
excitatory and inhibitory events. Ca2+ gates a Cl¯ channel that produces a depolarizing efflux of Cl¯. On the 
other hand Ca2+, through calmodulin and/or other Ca2+-binding proteins, mediates the reduction of cAMP 
sensitivity of CNG channels and activates the PDE that hydrolyzes cAMP to AMP. [Ca2+]i returns to basal 
level through the activity of a Na+/Ca2+ exchanger. 
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1.5 Olfactory sensory neurons at rest: electrical and ionic conditions 

 

The resting electrical proprieties of OSN as well as the ion gradient across the ciliary 

membrane play a fundamental role in shaping the proprieties of odor-induced responses. 

 

1.5.1 Electrical resting condition 

 

The membrane capacitance was measured in OSN of many vertebrates: it ranges 

from 0.7 pF in zebrafish (Corotto et al., 1996) to 35 pF in newt (Schild & Restrepo, 1998), 

with a value of 2-4 pF in rat (Lynch & Barry, 1989; Okada et al., 1994). With the 

assumption of a standard value of 1 µF/cm2, the membrane surface of OSNs is thus in the 

range between 70 and 3,500 µm2. 

The input resistance of OSNs was estimated to be 4-6 GΩ in frog (Pun & Kleene, 

2004), 3-4 GΩ in mouse (Ma et al., 1999; Liman & Corey, 1996) and a bigger value, 26 GΩ 

was found in rat (Lynch & Barry, 1991). This high input resistance allows a great 

depolarization for very small receptor currents. Indeed Lynch and Barry (1989) reported that 

in rat OSN the opening of a single channel was enough to induce the generation of action 

potentials. 

The resting membrane potentials in mouse OSNs measured with whole cell recording 

ranges from –45 to –90 mV, with a mean value of –55 mV (Lagostena & Menini, 2003). 

Maue & Dionne (1987) using the cell-attached technique estimated a membrane potential in 

the range from –30 to –80 mV, with a mean of –52 mV. Ma et al. (1999) using the 

perforated patch technique found a mean value of –55 mV. In the rat, the resting membrane 

potential measured by Lynch & Barry (1991) was in the range –40 to –73 mV, with a mean 

of –52 mV, while in amphibians measurements of the resting membrane potential in the 

whole-cell configuration gave values ranging from –30 to –72 mV (Trotier, 1986; Firestein 

& Werblin, 1987; Kawai et al., 1996; Schild, 1989). However, these measured membrane 

resting potentials are likely to be underestimations. In fact, to have a reliable measurement 

of the membrane resting potential, it is necessary that the resistance of the seal between the 

patch pipette and the cell membrane is much higher than the resistance of the cell membrane 

(Lynch & Barry, 1991; Lynch & Barry, 1989; Schild & Restrepo, 1998; Schild, 1989). 

However OSNs have a very high membrane resistance and, since seal resistances have a 
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similar value, usually a few GΩ (with occasional higher values up to 50 GΩ), the measured 

membrane resting potential is often underestimated and the real resting potential is more 

negative than the measured one (Schild & Restrepo, 1998). As a result, it is likely that the 

mean value does not have a physiological relevance and that the real resting potential is near 

the more negative measured values between –70 and –90 mV. 

 

1.5.2 Ionic environment of olfactory transduction 

 

Olfactory cilia are embedded in mucus covering the olfactory epithelium and 

therefore the understanding of ionic fluxes according during the odor-induced response 

requires the knowledge of ion concentrations in the mucus and inside the cilia. Data 

available about the intra- and extra-ciliary concentrations of major physiological ions are 

summarized in Table 1.1. Two features are immediately obvious: both [Na+]in and [K+]out are 

unusually elevated. There is no single ion with an equilibrium potential as negative as the 

neuronal resting potential. Such apparent discrepancies may be misleading. Although the 

estimates shown in Table 1.1 are the best available, the free ionic concentrations across the 

ciliary membrane are still not known with high precision. It may also be that the resting 

potential in the cilium is determined in the cell body, where the ionic gradients are unknown. 

Alternatively, it may depend on an electrogenic, multi-ion transport system with a negative 

reversal potential. In frog vomeronasal neurons, for example, activity of the Na+,K+-ATPase 

sets a negative resting potential (Trotier & Doving, 1996). 

With the exception of Cl¯, the mechanisms of ionic homeostasis at rest have not been 

studied. Cl¯ is accumulated by OSNs (Table 1.1). A Na+,K+,2Cl¯ cotransporter (NKCC1) 

contributes substantially to Cl¯ uptake at rest as shown using knock out mice for NKCC1 

(Reisert et al., 2005; Kaneko et al., 2004), but other still unidentified Cl¯ transporters are 

also involved (Nickell et al., 2006; Nickell et al., 2007). 
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Ion [Ion]in (mM) [Ion]out (mM) ENernst (mV) 
Na+ 53 ± 31 55 ± 12 +1 
K+ 172 ± 23 69 ± 10 -24 
Free Ca2+ 40 ± 9 nM 4.8 +156  
Cl- 54 ± 4 55 ± 11 0 

 

Table 1.1 Resting electrochemical gradients at the apical end of olfactory sensory neurons. 
Most of the ionic concentrations shown were measured by energy-dispersive X-ray microanalysis in dendritic 
knobs of rat OSNs (Reuter et al., 1998). Those values represent total rather than free ionic concentrations. 
Three of the concentrations were measured by other methods, as follows. [Ca2+]in was measured in salamander 
cilia with a Ca2+-sensitive fluorescent dye (Leinders-Zufall et al., 1997). [Ca2+]out was determined with a Ca2+-
sensitive microelectrode in olfactory mucus of rat (Crumling & Gold 1998); the value shown is the midpoint of 
the reported range (2.6–7.1 mM). [Cl¯]in was measured in dendritic knobs of rat OSNs with a Cl¯-sensitive 
fluorescent dye (Kaneko et al., 2004) 
 

1.6 The odorant-induced response in olfactory sensory neurons 
 

Even if OSNs are physiologically devoted to detect odors, measuring an odor 

response in a single OSN has been very demanding. Since each OSN expresses only one 

OR, a given neuron responds to a small and unpredictable subset of the many available 

odorants (Fig 1.6). Grosmaitre et al. (2006) reported that all tested OSNs expressing the 

MOR23, identifiable by coexpression of EGFP, respond to lyral, a known MOR23 ligand. 

Even among isolated OSNs from rat, every neuron tested that was found to express the I7 

receptor responded to n-octanal (Zhao et al., 1998). However, in a mouse engineered to 

express the same receptor in every mature OSN, only 20% of the OSNs responded to an 

appropriate ligand (Reisert et al., 2005). One can imagine that many cilia break off during 

dissociation. However, 94% of murine OSNs respond when cAMP is released inside the 

neuron (Lagostena & Menini, 2003). Because most of the cAMP-gated channels are on the 

cilia, this suggests that the cilia remain after isolation of the neurons. Most often, an 

effective stimulus must be found by trial and error. In this case, anywhere from 2% to 30% 

of isolated amphibian OSNs respond, depending on the choice of odorant (Fig 1.6; 

(Kurahashi, 1989; Firestein et al., 1993; Takeuchi et al., 2003; Takeuchi & Kurahashi, 

2005). Success rates are lower in mouse, typically ranging from 3% to 12% (Lagostena & 

Menini, 2003; Oka et al., 2004; Reisert et al., 2007). Some evidence suggests that more 

neurons respond to odors when the epithelium is intact. In frog, rat, and catfish, several 

odorants elicited responses in 30–80% of single OSNs in situ (Sicard & Holley, 1984; Kang 

& Caprio, 1995; Duchamp-Viret et al., 2000). 
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In isolated OSNs, the response to odor stimuli in solution has been well 

characterized. Most often, the response has been measured under voltage-clamp upon 

presentation of a brief pulse of odor. The odor stimulation generates a transient inward 

receptor current that would be expected to depolarize the neuron in situ (Fig 1.6). The 

response typically lasts 1 s or more. In amphibians, the latency between arrival of the 

stimulus and the onset of the current ranges from 150 to 600 ms (Kurahashi, 1989; Firestein 

& Werblin, 1987; Firestein et al., 1990; Takeuchi & Kurahashi, 2003; Tomaru & Kurahashi, 

2005). In mouse and rat, the latency is at most 160 ms (Reisert & Matthews, 2001a; 

Grosmaitre et al., 2006). This shorter latency is observed even in the intact epithelium, 

which requires that the odorant diffuses through the mucus (Grosmaitre et al., 2006). For a 

strong stimulus, the amplitude of the peak receptor current can be of several hundred pA: 

700 pA in salamander (Firestein et al., 1990); 950 pA (Lowe & Gold, 1993b) to 1.5 nA in 

rat (Ma et al., 1999). By directing the stimulus to various parts of the cell, it has been shown 

that the sensitivity to odorants is largely restricted to the cilia (Kurahashi, 1989; Firestein et 

al., 1990; Lowe & Gold, 1991; Takeuchi & Kurahashi, 2003). During the odor response, 

cytoplasmic Ca2+ increases transiently (Omura et al., 2003; Restrepo et al., 1990; Leinders-

Zufall et al., 1997; Reisert & Matthews, 2001b; Hirono et al., 1992) with a time course that 

parallels that of the odor induced current (Leinders-Zufall et al., 1997; Reisert & Matthews, 

2001b). The Ca2+ increase is first seen in the cilia, and the Ca2+ signal decays faster in the 

cilia than in the dendrite or soma (Leinders-Zufall et al., 1998; Leinders-Zufall et al., 1997). 

The amplitude of the peak of the receptor current can be increased by increasing either the 

concentration or the duration of the stimulus pulse (Takeuchi & Kurahashi, 2002). The 

relation between odor dose and peak receptor current is generally well fitted by a Hill 

equation: 

nn

n

KC
CII

2/1
max +

=     eq 1.1 

 

where Imax is the maximum macroscopic current, C is the concentration of odorant, K1/2 is 

the half-maximally effective concentration, and n is the Hill coefficient. In isolated 

salamander OSNs under whole-cell recording conditions, K1/2 for the 3 odors 

isoamylacetate, cineole and acetophenone ranged from 3 to 90 µM (Firestein et al., 1993). A 

similar range (4–104 µM) was observed when mouse OSNs were studied under more 



______________________________________________________________1. Introduction 

 15

physiological conditions (Grosmaitre et al., 2006). However, some neurons in that study 

responded to as little as 10 nM of the odor lyral. In frog, some OSNs in intact epithelium 

responded to just 1 pM cineole (Frings & Lindemann, 1990). The other Hill parameter, n, 

describes the slope of the dose–response relation. As n decreases, the slope also decreases, 

causing an increase in the range of stimulus strengths over which the neuronal response 

varies (dynamic range). In isolated amphibian OSNs under whole-cell recording conditions, 

n ranges from 2.7 to 9.7 (Firestein et al., 1993; Takeuchi & Kurahashi, 2005; Tomaru & 

Kurahashi, 2005). When recordings are made without disrupting the neuronal membrane, 

with suction electrode recordings or perforated patch analysis, n is much smaller (between 

0.8 and 1.8; frog: (Reisert & Matthews, 1999), mouse: (Grosmaitre et al., 2006), and rat: 

(Ma et al., 1999), and the neurons respond over as much as a 1000-fold range of odorant 

concentration. For a given odorant, the dose–response relation varies considerably from one 

neuron to the next (Firestein et al., 1993; Tomaru & Kurahashi, 2005), even among neurons 

known to express the same odorant receptor (Grosmaitre et al., 2006).  

The relation between odor dose and frequency of action potentials in OSNs is similar 

to that for the receptor current. However, the relation for action potentials is shifted to 

somewhat lower odorant concentrations (Tomaru & Kurahashi, 2005; Reisert & Matthews, 

1999). In physiological solutions, the current-voltage relation of the odor-induced current is 

nearly linear with a slight outward rectification (Kurahashi, 1989; Takeuchi & Kurahashi, 

2003; Kurahashi & Shibuya, 1990). The reversal potential ranges from 0 to +2.8 mV (Lowe 

& Gold, 1993a; Takeuchi & Kurahashi, 2003; Takeuchi et al., 2003). 
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Figure 1.6 Odorant responses of olfactory sensory neurons under voltage-clamp. 
Responses of isolated salamander OSNs to odorant stimulation measured with the voltage-clamp whole-cell 
configuration at -55 mV holding potential. Different OSNs respond to a specific subset of odorants (A). 
Responses of an OSN to various concentration of isoamyl acetate presented for 1.2 s (B). Plot of the odorant-
induced current versus the odor concentration. The solid line is the best fit of the Hill equation to the data with 
K1/2 = 53 µM and n= 4.2 (C, from (Firestein et al., 1993) 
 

1.7 The G protein 
 

The first evidence that olfactory transduction involved the increase of cAMP in 

olfactory cilia was the finding that adding GTP to purified olfactory cilia caused the 

production of cAMP (Pace et al., 1985; Sklar et al., 1986). This suggested that the 

production of cAMP is G protein dependent. Jones & Reed (1989; 1987) reported that OSNs 

express a new variant of the Gs protein, named Gαolf, which is able to stimulate the adenylyl 

cyclase in vitro. Menco et al. (1992) with ultrastructural experiments found that Gαolf is 

localized in rat olfactory cilia. Electrophysiological experiments using non hydrolysable 

GTP and GDP analogs confirmed the role of a G protein in odor signaling in OSNs. Indeed, 

in the presence of GTP-γ-S the response was prolonged (due to long lasting activation of G 

proteins), whereas addition of GDP-γ-S to the patch pipette progressively reduced the 

response to repetitive stimulations (due to block of the G protein, Firestein et al., 1991a). 
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The essential role of Gαolf in olfactory transduction was finally proven by Belluscio et al., 

(1998) who showed that knock out mice for Gαolf are anosmic.  

Various β and γ G-protein subunits have been found in catfish (Bruch et al., 1997). 

Kulaga et al. (2004) reported that in the cilia of OSNs was express the γ13 subunit. 

Moreover Tirindelli & Ryba (1996) reported that γ8 was expressed in developing rat OSNs. 

 

1.8 The adenylyl cyclase 
 

The first evidence that olfactory transduction involved a cAMP signaling cascade 

was the discovery in olfactory cilia of rat and frog of an odor-induced adenylyl cyclase 

activity (Pace et al., 1985; Sklar et al., 1986; Shirley et al., 1986). 

After a report that some odor did not activate AC (Sklar et al., 1986), it was 

demonstrated that odors activate either AC or phospholipase C (PLC) alternatively 

(Boekhoff et al., 1990). However, this interpretation seems to have been revised: the odor-

induced cAMP formation showed a different time course and different Ca2+-dependence 

between types of receptors. When the experiments were carefully designed in consideration 

of the Ca2+ concentration and its kinetics, all the odors activated the AC (Jaworsky et al., 

1995). The primary structure of this AC, obtained by screening the cDNA library of 

olfactory epithelium by PCR, was distinct from AC type I or II (Bakalyar & Reed, 1990) 

and it was named type III (ACIII). 

The rapid production of cAMP was revealed by a more detailed look at the time 

course of odor-induced cAMP generation in a cilia preparation. Using rapid quench methods 

it was shown that cAMP concentration increases within 50 ms to the maximum which can 

be almost 10-fold greater than the basal levels. For low odor concentration, the increase in 

cAMP is transient and may last only 100 ms; while for higher concentration cAMP levels 

settle after a initial peak to a lower level around half the maximal value (Boekhoff et al., 

1990; Breer et al., 1990) 

Lowe et al. (1989) reported that the odor-induced cyclase activity by different odors 

is strictly correlated with the EOG response. This gave a strong support to the role of 

adenylyl cyclase in olfactory transduction. Wong et al., (2000) reported that knock out mice 

for AC III are completly anosmic, further supporting that cAMP signaling is the unique 

system by which OSNs transduce odorant stimulation. 
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The production of cAMP in the cilia of newt OSNs has been measured directly by 

Takeuchi & Kurahashi (2005) during prolonged odor stimulation. During the rising phase of 

the response, the rate of cAMP production was found to increase linearly with time. At 

most, all neuronal cilia combined generated ~ 200 000 molecules of cAMP per second per 

cell. Given the high surface-to-volume ratio of the cilium cAMP concentrations were as high 

as 129 µM, which was 6 times the half-maximally effective concentration of cAMP (K1/2).  

 

1.9 Ion channels: 
 

1.9.1 The CNG channel 

 

In 1987 Nakamura & Gold discovered how the odor-induced production of cAMP is 

linked to neuronal excitability. As previously described in photoreceptors (rod, Fesenko et 

al., 1985; cone, Haynes & Yau, 1985) they discovered a cAMP-gated current in excised 

patches from olfactory cilia of toad OSNs. The channel was then described in many another 

species including salamander, frog, newt, rat and mouse (Firestein et al., 1991b; Kleene et 

al., 1994; Kurahashi & Kaneko, 1991; Munger et al., 2001; Frings et al., 1992) Kaupp et al. 

(1989) first cloned the gene encoding for the CNG channel in bovine retinal rods beginning 

investigations at the molecular level of the physiological and biophysical properties of these 

ion channels. At present, six CNG channel genes have been identified in mammalian 

genomes. These genes code for four types of A subunits and two types of B subunits 

(Hofmann et al., 2005). CNG channels are composed of four subunits forming a tetramer 

with a central pore. The topology of each subunit is similar to that of the cationic voltage-

activated channels with six transmembrane-spanning domains, a pore-loop domain between 

the fifth and sixth transmembrane domain, and intracellular N- and C-terminal regions. CNG 

channels are activated by the direct binding of cyclic nucleotides to a large C-terminal cyclic 

nucleotide-binding domain and are only weakly sensitive to membrane voltage (Fig 1.7 A).  

Native retinal rod channels are composed of two types of subunits: CNGA1 and 

CNGB1 (Chen et al., 1993; Kaupp et al., 1989) with a stoichiometry of three CNGA1 and 

one CNGB1a (a B1 splice variant) subunits (Weitz et al., 2002; Bonigk et al., 1993). Retinal 

cone channels are also composed of two types of subunits: CNGA3 and CNGB3 (Bonigk et 

al., 1993; Gerstner et al., 2000) with a stoichiometry of two CNGA3 and two CNGB3 
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subunits (Peng et al., 2004). Native channels of olfactory sensory neurons are instead 

composed of three types of subunits: CNGA2, CNGA4 and CNGB1 (Dhallan et al., 1990; 

Ludwig et al., 1990; Bradley et al., 1994; Liman & Buck, 1994; Sautter et al., 1998) with a 

stoichiometry of two CNGA2, one CNGA4 and one CNGB1b (a B1 splice variant) (see Fig 

1.7, Zheng & Zagotta, 2004). Ultrastructural data show that CNGA2 is localized at a higher 

density in the cilia of OSN as other components of olfactory transduction (Matsuzaki et al., 

1999). 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Olfactory CNG Channels. 
Topological model and assembly of subunits of the olfactory CNG channel. Each transmembrane domain is 
indicated by a number, the pore loop is located between 5 and 6. The cyclic nucleotide binding site (brown) is 
located in the C-terminal domain. Calmodulin binding sites of the calcium-dependent ‘Baa type’ are 
represented in black, whereas the calcium-independent ‘IQ-type’ are in blue (A). Dose-responses from 
membrane patches excised from dendritic knob/cilia of OSNs containing olfactory channels activated by 
cAMP. The continuous line is the best fit of the Hill equation to the data with K1/2 = 2.7 µM, n=1.5. (B, from 
(Pifferi et al., 2006a) 
 

 

The channel density in the cilium has been estimated by electrophysiological 

methods with widely differing results: 1750 channels/µm2 in toad (Kurahashi & Kaneko, 

1993), 67–202 channels/µm2 in frog (Kleene et al., 1994; Larsson et al., 1997), and 8 

channels/µm2 in rat (Reisert et al., 2003). Flannery et al., (2006) combining both 

mathematical modeling and experimental data reported that the proximal segment of frog 

olfactory cilia, the first 20% of the cilium, appears to express a small fraction of the CNG 

channels, whereas the distal segment contains the majority, mostly clustered in one region. 

However, this conclusion was partially challenged by Takeuki & Kurahashi (2008) who, 
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using local uncaging of cAMP, found that the sensitivity to cyclic nucleotides along newt 

olfactory cilia is uniform. The soma and dendrite also express CNG channels but at much 

lower densities (Lowe & Gold, 1993a; Kurahashi & Kaneko, 1993). 

Recently, knock out mice for each gene coding for the CNG channel subunits 

expressed in OSN have been developed. The analysis of the phenotype of each knock out 

line clarified the fundamental role of CNG in olfactory transduction and how the modulation 

of this channel participates in shaping the odor-induced response in OSNs (Brunet et al., 

1996; Munger et al., 2001; Michalakis et al., 2006).  

Knock out mice missing the CNG channel subunit CNGA2 lacked EOG responses to 

most odorants tested (Brunet et al., 1996). However other studies, showed that residual 

responses to some odorants are present in mice lacking CNGA2 (Zhao & Reed, 2001; Lin et 

al., 2004). Knock out mice for CNGA4 or B1 showed alteration in odor adaptation (see 

later, 1.9.1.1, Munger et al., 2001; Bradley et al., 2001; Michalakis et al., 2006) but also a 

defective trafficking to the cilia of other CNG subunits. These latter results points out that 

OSNs have mechanisms that ensure the targeting to the cilia of CNG channel only 

composed by the three types of subunits. Jenkins et al. (2006) reported that, in MDCK cell 

line and in mouse OSNs ciliary targeting of olfactory CNG channels requires the CNGB1b 

subunit and the interaction with kinesin-2 motor protein KIF17.  

The properties of CNG channels are strongly affected by the presence of divalent 

ions both intracellularly and extracellularly; first, I will discuss the properties in absence of 

divalent cations. 

The olfactory CNG channels are permeant to all monovalent alkali cation with 

permeability ratios of Na+ (1): K+ (0.81): Li+ (1): Rb+ (0.6): Cs+ (0.52) in rat (Frings et al., 

1992) and Na+ (1): K+ (0.93): Li+ (0.93): Rb+ (0.91): Cs+ (0.72) in newt (Kurahashi, 1990). 

Using organic cations Balasubramanian et al. (1995) estimated that the channel pore in rat 

CNG must measure at least 6.5x6.5Å. The current-voltage relation is almost linear with a 

slight outward rectification (Frings et al., 1992; Kurahashi, 1990; Bonigk et al., 1999). Once 

activated, the CNG channel current does not spontaneously inactivate (Zufall et al., 1991a; 

Kramer & Siegelbaum, 1992; Kurahashi & Kaneko, 1993). The single channel conductance 

varies from 8 to 46 pS between species (Zufall et al., 1991a; Frings et al., 1992; Zufall & 

Firestein, 1993; Larsson et al., 1997; Kurahashi & Kaneko, 1993) with a maximum open 

probability of 0.7-0.8 (Kurahashi & Kaneko, 1993; Larsson et al., 1997; Kleene, 1997; 
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Reisert et al., 2003). The relation between concentration of cAMP and CNG current is well 

fitted with a Hill equation (eq 1.1, Fig 1.7 B). Half-maximal activation (K1/2) is in the 

micromolar range and varies in different species: about 3 µM in mouse (Song et al., 2008; 

Michalakis et al., 2006; Pifferi et al., 2006a), 4.1 µM in rat (Bonigk et al., 1999), 2 µM in 

frog (Kleene, 1999), 19 µM in toad (Kurahashi & Kaneko, 1993). The Hill coefficient 

ranges from 1.3 and 2.3 suggesting that at least 2 molecules of cAMP must bind before the 

channel gating. Recently, Nache et al. (2005) and Biskup et al. (2007) demonstrated that in 

homomeric CNGA2 channel the binding of the second cAMP molecule brings the channel 

almost to its maximum open probability of about 0.7–0.8 (Kurahashi & Kaneko, 1993; 

Larsson et al., 1997; Reisert et al., 2003; Kleene, 1997).  

CNG channels are modulated by divalent cations on both sides of the ciliary 

membrane. Ca2+ and Mg2+ acting directly and indirectly play a fundamental role in shaping 

the odor induced response in OSNs. 

Modulation by extracellular divalent cations will be described first. Zufall & 

Firestein (1993) reported that Ca2+ and Mg2+ entry at negative potential produces an open 

channel block causing an increase in flickering activity of the channel. This temporary block 

reduces the current carried by all cations producing a very small single channel conductance 

(~ 1.5 pS, Zufall & Firestein, 1993, 0.56 pS, Kleene, 1997). It has been demonstrated that 

the block of Ca2+ and Mg2+ is voltage-dependent with a smaller effect at positive voltages. In 

salamander the IC50 at saturating concentration of cAMP and at -50 mV is 30 µM for Ca2+  

and 200 µM Mg2+ (Zufall & Firestein, 1993), while in frog is 180 µM for Ca2+  and 280 µM 

Mg2+ (Kleene, 1995). Moreover, the block of extracellular divalents is more effective at 

lower concentration of cAMP causing a reduction in the sensitivity of the channel to cyclic 

nucleotide (in frog the K1/2 at -50 mV is 1.3 µM in absence of extracellular Ca2+ and became 

10.6 µM in the presence of 3 mM extracellular Ca2+ (Kleene, 1999). The block of CNG 

channels by divalents plays a relevant physiological role. Indeed at a resting membrane 

potential lower than -50 mV, 1 mM external Ca2+ blocks most of the channels. Without this 

Ca2+ block, the opening of a single CNG channel would be enough to produce a 

considerable depolarization of the cell given that OSNs have a high input resistance. In the 

absence of divalent current block an increase in intracellular cAMP concentration could 

trigger the generation of action potentials in the absence of odor stimulation. The detection 

of odor would therefore be unreliable. 
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Ca2+ is also able to permeate through the CNG channels. Dzeja et al. (1999) reported 

that the fraction of current carried by Ca2+ is 0.4 in heterologously expressed rat CNG 

channels with 2 mM of extracellular Ca2+ at -70 mV. There is not yet a measurement of this 

parameter in OSNs but using Ca2+ sensitive dye it has been reported that during odor 

stimulation there is an increase in intracellular Ca2+ concentration in cilia through the 

activation of CNG channel (Leinders-Zufall et al., 1998; Leinders-Zufall et al., 1997). 

The modulation by intracellular Ca2+ has been shown to play a pivotal role in 

adaptation and it will be discussed in the following paragraph.  

 

1.9.1.1 Modulation of CNG and adaptation 

 

With prolonged or repeated odor stimulation, the OSN shows a property variously 

described as adaptation, desensitization, or inactivation. Two experimental approaches have 

been used to demonstrate this process.  

In the first, a prolonged odor stimulus is applied. Despite the continued presence of 

the stimulus, the receptor current decreases with time (Kurahashi & Shibuya, 1990; Firestein 

et al., 1990; Zufall et al., 1991b; Reisert & Matthews, 1999). A similar result was obtained 

if cAMP is allowed to diffuse into the cell through the patch pipette (Kurahashi, 1990; 

Lagostena & Menini, 2003). In both cases, the decrease in current can be largely eliminated 

by removing of Ca2+ from the extracellular bath (see Fig 1.8 A; Kurahashi & Shibuya, 1990; 

Zufall et al., 1991b; Kurahashi, 1990). 

In another protocol two brief odor pulses are delivered with a short interval. If the 

interval between the pulses is sufficiently short, the amplitude of the response to the second 

pulse is reduced (Kurahashi & Shibuya, 1990; Kurahashi & Menini, 1997). At that point, the 

cell is in an adapted state, the first (conditioning) pulse having desensitized the neuron to 

subsequent stimuli. The desensitization is greater with shorter interstimulus intervals (see 

Fig 1.8 B; Kurahashi & Shibuya, 1990; Kurahashi & Menini, 1997; Takeuchi et al., 2003). 

The desensitization disappears gradually and the OSN recovers from adaptation if the 

interval between pulses is sufficiently long. Adaptation both shifts and broadens the 

dynamic range of the neuron (Kurahashi & Menini, 1997; Reisert & Matthews, 1999; 

Boccaccio et al., 2006). In the adapted state, a stronger stimulus is required to produce a half 

maximal response. The slope of the dose–response curve is also reduced, indicating that the 
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neuronal response is graded with stimulus strength over a greater range of concentrations. 

During a prolonged exposure to an odorant, adaptation is expected to continuously reset the 

neuron to discriminate higher odorant concentrations without saturating the transduction 

process. Many studies have clearly shown that adaptation is mediated via modulation of 

olfactory CNG channels by intracellular Ca2+. 

For native CNG channels it has been demonstrated that the addition of micromolar 

concentrations of intracellular Ca2+ is able to decrease the channel sensitivity to cAMP, 

probably by activating a Ca2+-responsive endogenous factor already pre-associated with the 

channel (Kramer & Siegelbaum, 1992; Lynch & Lindemann, 1994; Balasubramanian et al., 

1996; Bradley et al., 2004). Bradley et al. (2004) have shown that Ca2+-free calmodulin, 

called apocalmodulin, is able to bind to the heterologously-expressed heteromeric olfactory 

CNG channels even in the absence of Ca2+. Moreover, when Ca2+ concentration rises above 

100 nM, Ca2+ can rapidly modulate the CNG channel sensitivity by binding directly to the 

pre-associated calmodulin. Furthermore, it was suggested (Bradley et al., 2004) that also in 

native channels the pre-associated endogenous factor could be apocalmodulin, although a 

demonstration is still missing. Since Ca2+ enters into the olfactory cilia through the CNG 

channel itself, the pre-associated Ca2+-responsive factor could provide a very fast feedback 

modulation at the channel level.  

Early works (Chen & Yau, 1994; Liu et al., 1994; Varnum & Zagotta, 1997; 

Grunwald et al., 1999; Zheng et al., 2003) identified in the N-terminus of CNGA2 a classic 

basic amphiphilic α-helix (Baa) motif with high affinity for Ca2+–calmodulin and showed 

that the sensitivity to cAMP of heterologously-expressed homomeric CNGA2 channels was 

decreased by the binding of Ca2+–calmodulin to the Baa motif (Fig 1.7 A). However, in 

recent years, there has been considerable progress in elucidating the molecular events 

producing modulation of the native channels and it has been shown that the Baa motif of 

CNGA2 does not play any role in Ca2+–calmodulin modulation of heteromeric channels. 

Instead, by comparing properties of native channels with heterologously-expressed 

heteromeric channels, the modulatory subunits CNGA4 and CNGB1b have been shown to 

be responsible for the physiological modulation of Ca2+–calmodulin (see Fig 1.7 B, Bradley 

et al., 2004; Bradley et al., 2001). Munger et al. (2001) measured, in excised patches 

containing native heteromeric olfactory CNG channels, a fast current inhibition upon 

addition of Ca2+–calmodulin that persisted for several seconds also after calmodulin was 
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removed in Ca2+-free solution. In contrast, homomeric CNGA2 showed a slower onset of 

inhibition by Ca2+–calmodulin and a faster recovery suggesting  that CNGB1 and A4 

mediated the physiological relevant modulation of the channel (Bradley et al., 2001).  

Indeed, the modulatory subunits also have calmodulin binding sites: CNGA4 has an 

IQ-type calmodulin binding site located at the C-terminal region, while CNGB1b has a 

similar IQ-type site located at the N-terminal region and a Baa motif in the C-terminal 

region. It has been shown that the IQ-type sites are necessary and sufficient for Ca2+–

calmodulin channel inhibition, whereas the Baa-type site is not necessary (Bradley et al., 

2004; Bradley et al., 2001). Moreover OSNs from knock out mice for CNGA4 showed a 

reduced adaptation both after prolonged odor stimulation and with double pulse protocol 

(Munger et al., 2001). However these data have partially been challenged by a subsequent 

report showing that the lack of the CNGA4 or B1 greatly reduced the sensitivity of the 

channel to cAMP but also impaired the trafficking of subunits to olfactory cilia (Michalakis 

et al., 2006). Indeed Song et al. (2008) reported that in mice with CNG channels lacking the 

IQ-type calmodulin binding site in the B1 subunit, so that they are insensitive to calmodulin 

modulation, but with normal trafficking and cAMP sensitiviy the adaptation to double 

stimulation is not affected suggesting that calmodulin did not play a pivotal role in this 

process. However in this mouse line the response to odors shows a longer termination both 

after brief and long lasting odor stimulation pointing out the role of Ca2+- calmodulin 

modulation in shaping the termination of the odor response (Song et al., 2008).  

These results can also suggest that calmodulin is not the Ca2+-responsive factor that 

is coassembled with the CNG channel (Bradley et al., 2004). Other experimental evidences 

argue against this hypothesis, in particular the endogenous factor appears to bind the CNG  
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Figure 1.8 Adaptation and desensitization in isolated OSNs and modulation of CNG 
channels. 
Desensitization during prolonged odor stimulation. In each recording, the bar at the top represents a prolonged 
stimulation with 10 mM n-amyl acetate. The left recording was made in the presence of 3 mM extracellular 
Ca2+; the response was transient. When the Ca2+ was removed (replaced with 3 mM Mg2+ to maintain the 
divalent block of CNG channel), the response did not appreciably decay. Holding potential -34 mV. (A, from 
Kurahashi & Shibuya, 1990), Desensitization during repeated odor stimulation. In each recording, the top trace 
indicates 2 identical 100-ms pulses of the odorant lilial (1 mM) delivered with an interval in between. When 
the interval was 1 s (recording at the left), the response to the second pulse was reduced by 67%. With a 5-s 
interval (recording at the right), the response was reduced by just 15%. Holding potential -54 mV. (B, from 
Takeuchi & Kurahashi, 2003). Native olfactory CNG channels are inhibited by Ca2+-calmodulin in excised 
inside-out patches. A patch was exposed to 10 µM cAMP in a solution containing nominally 0 Ca2+. Then the 
same patch was exposed to a solution containing, in addition to 10 µM cAMP, 1 µM calmodulin and 67 µM 
Ca2+ (in the presence of 1 mM NFA to block native Ca2+-activated Cl¯ current). The addition of Ca2+-
calmodulin quickly inhibited the cAMP-gated current that slowly recovered to its initial value after removal of 
Ca2+-calmodulin (C, from Pifferi et al., 2006a). 
 

 

 



______________________________________________________________1. Introduction 

 26

channels in a very stable manner, being washed away only after intense rinsing in Ca2+-free 

solution (Kramer & Siegelbaum, 1992; Kleene, 1999; Bradley et al., 2004). However, it is 

also possible to speculate that the binding of ‘‘native’’ calmodulin is more stable because 

the channel or the calmodulin itself undergoes post-transductional modifications that change 

the properties of the interaction. On the other hand, it cannot be excluded that also other 

proteins, in addition to calmodulin, contribute to the Ca2+-mediated modulation of olfactory 

CNG channels. 

 

1.9.2 The Calcium-activated Chloride Channel 

 

The first report of the presence of Calcium-activated chloride channel (CaCC) in 

OSN was made by Kleene and Gestand in 1991 using excised cilia of frog OSN. After this 

first report, CaCC has been described in ORNs of amphibia (Kleene & Gesteland, 1991; 

Kurahashi & Yau, 1994), mammals (Lowe & Gold, 1993b; Reisert et al., 2003; Reisert et 

al., 2005), and fish (Sato & Suzuki, 2000). In frog, the channels are present in virtually all 

the olfactory cilia (Kleene et al., 1994). The channel density in the cilium is estimated to be 

62–78/µm2 (Larsson et al., 1997; Reisert et al., 2003). In frog, the densities of the CNG and 

Cl¯ channels are similar (Larsson et al., 1997). In rat, though, Cl¯ channels are in excess by 

a factor of about 8 (Reisert et al., 2003). The current conducted by a single olfactory Cl¯ 

channel is so small that single-channel studies have not been possible. By noise analysis of 

macroscopic currents, the unit conductance was estimated to be just 0.8 pS in frog (Larsson 

et al., 1997). Low-pass filtering below 100 Hz reduces the measured conductance to 0.5 pS 

(Kleene, 1997). In a neuron, which is expected to cut off frequencies below ~16 Hz (Schild 

& Restrepo, 1998), it is likely that the effective conductance is smaller still. The unit 

conductance is ~1.5 pS in rat (Reisert et al., 2003). These values are similar to the unit 

conductance of the CNG channel in physiological solutions (1.5 pS, Zufall & Firestein, 

1993; 0.56 pS, Kleene, 1997). Not surprisingly, then, the ratio of maximum CNG and Cl¯ 

currents in physiological solutions primarily reflects the relative abundances of the 2 types 

of channel. In frog, the maximum currents are almost equal (Kleene, 1997; Kleene, 1993). In 

rat, where the Cl¯ channels are more numerous, the maximum Cl¯ current is greater than the 

maximum CNG current by a factor of 33 (Reisert et al., 2003). Indeed, under voltage clamp 

conditions, the fraction of odor-induced current carried by Cl¯ channel ranges from 36% in 
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newt and salamander (Kurahashi & Yau, 1993) 60 % in Xenopus laevis (Zhainazarov & 

Ache, 1995) and 85% in rat (Lowe & Gold, 1993b) and up to 90% in mice (Reisert et al., 

2005; Boccaccio & Menini, 2007). 

The relation between [Ca2+]i and Cl¯ current is well-fitted by the Hill equation. 

Studies in frog (Kleene & Gesteland, 1991), rat (Reisert et al., 2003), and mouse (Reisert et 

al., 2005; Pifferi et al., 2006b) have shown that half maximal activation (K1/2) occurs from 

2.2 to 4.7 µM Ca2+. In one other study, K1/2 was much higher, 26 µM; (Hallani et al., 1998); 

the reason can be related to the unbuffered Ca2+ solution used in that study. Gating of the 

channel is probably cooperative; the Hill slope parameter n ranges from 2.0 to 2.8. The 

channel’s maximum open probability is 0.97. The very small single channel conductance 

with high maximum open probability allows a high amplification without an increase of 

noise giving OSNs the ability to improve their signal to noise ratio (Kleene, 1997). In frog 

OSNs the shape of the current-voltage relation varies with concentration of the gating 

ligand. At 2–3 µM Ca2+, significant outward rectification is apparent. At saturating Ca2+ 

levels, though, inward rectification is seen (Kleene & Gesteland, 1991). In neither case is the 

mechanism of rectification known. One cannot yet exclude the possibility that 2 Cl¯ 

channels, one with each type of rectification, contribute to the current. 

In amphibian OSN the CaCCs did not show spontaneous inactivation after exposure 

to Ca2+ (Kleene, 1993; Kleene & Gesteland, 1991). In contrast in inside-out patches excised 

from dendritic knob/cilia of rodent (mouse and rat) OSNs it was reported that CaCC 

undergoes a Ca2+-dependent inactivation which is reversible after removal of Ca2+ for some 

seconds (Reisert et al., 2003; Reisert et al., 2005). In contrast in rat OSN, Hallani et al. 

(1998) did not find this type of inactivation. Moreover, in rodents an irreversible run-down 

of current mediated by CaCC was also observed suggesting that some modulatory 

component of the channel is lost after the excision of the membrane (Reisert et al., 2003; 

Reisert et al., 2005). 

The ionic selectivity of olfactory CaCCs was studied in two different studies with 

different results (Reisert et al., 2003; Hallani et al., 1998). In the first report the permeability 

sequence was Cl¯>F¯>I¯>Br¯ with (Hallani et al., 1998), whereas Reisert et al. (2003) 

reported the sequence I¯>Br¯>Cl¯>F¯. The reason of this discrepancy is not clear. In 

general most of the CaCCs show the permeability sequence reported by Reisert et al. (2003). 

This sequence indicates that the permeability is primarily determined by the hydration 



______________________________________________________________1. Introduction 

 28

energy of the ion. The theory of ion selectivity (reviewed in (Wright & Diamond, 1977; 

Eisenman & Horn, 1983) shows that a binding site with a low electrical field strength 

(where the interaction of ions with the channel is weaker than ion-water inter-actions) 

generates the permeability sequence I¯>Br¯>Cl¯>F¯, as observed in CaCCs channels. The 

selectivity pattern of such a weak site is mainly determined by differences between the 

hydration energies of the individual ion species, while differences in binding energy play a 

minor role. In contrast, a binding site with high field strength generates a permeability 

sequence with the reverse order F¯>Cl¯>Br¯>I¯. 

 

1.10 Mechanisms of response termination 
 

Even as the receptor current is generated, processes commence that inactivate it. As 

noted before there is abundant evidence that normal inactivation requires an influx of Ca2+. 

The falling phase of the odor response is slowed or eliminated at positive potentials 

(Kurahashi & Shibuya, 1990; Takeuchi & Kurahashi, 2003; Lowe & Gold, 1993a) in the 

absence of extracellular Ca2+ (Kurahashi, 1990; Kurahashi & Shibuya, 1990; Zufall et al., 

1991b) or on addition of an intracellular Ca2+ chelator (Kurahashi & Shibuya, 1990). Each 

of these conditions inhibits the accumulation of cytoplasmic free Ca2+. Adaptation to 

repeated brief stimuli is also greatly reduced at positive potentials (Kurahashi & Menini, 

1997; Takeuchi & Kurahashi, 2003; Boccaccio et al., 2006). Finally, the receptor current 

begins to decline just as the Ca2+ concentration peaks (Leinders-Zufall et al., 1998; Reisert 

& Matthews, 2001b). The current generated by photorelease of cAMP also shows Ca2+-

dependent adaptation (Boccaccio et al., 2006; Kurahashi & Menini, 1997). Thus, at least, 

part of the inactivation occurs at steps in the cascade following the activation of the cyclase. 

However, the inactivation during a prolonged odor stimulus is faster than that seen during 

prolonged release of caged cAMP (Takeuchi & Kurahashi, 2002). This indicates that other 

mechanisms of inactivation exist upstream of the channels. Many mechanisms may 

contribute to termination of odor-induced currents even if we still lacks a general knowledge 

of the relative importance of different processes. For brief stimulation the termination can be 

determined by: 
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(i) Gαolf is inactivated by its intrinsic GTPase function; as noted before the adding of non-

hydrolysable GTP-γ-S via the patch pipette produced a prolonged odor-induced 

response (Firestein et al., 1991a). 

(ii) cAMP and Ca2+ should diffuse away from the channels. 

(iii) Phosphodiesterases hydrolyze cAMP. PDE1C2 is localized to OSNs cilia and it is 

activated by Ca2+-calmodulin via CaMKII (Borisy et al., 1992; Yan et al., 1995). 

However the PDE is not involved in adaptation during a double pulse protocol since 

the photorelease of non-hydrolysable 8Br-cAMP showed a Ca2+-dependent adaptation 

(Boccaccio et al., 2006). 

(iv) Ca2+ is expelled from the cilia through a Na+/Ca2+ exchanger (Reisert et al., 2003; 

Reisert & Matthews, 1998; Pyrski et al., 2007). Indeed, blocking of the Na+/Ca2+ 

exchanger by bathing the OSN with Li+ or Choline+ prolonged the odor-induced 

response due to longer activation of the Ca2+-activated Cl¯ channel (Reisert & 

Matthews, 1998). Moreover, Castillo et al. (2007) reported that also a Ca2+ATPase, 

PMCA, contributes to clearance of intracellular Ca2+ during odor stimulation. 

(v) Ca2+-calmodulin modulation of CNG channel: Song et al. (2008) reported that in 

mouse with CNG channels insensitive to calmodulin the response to odor shows a 

longer termination both after brief and long lasting odor stimulation.  

Other mechanisms contribute to termination of responses to prolonged or intense 

stimulation: 

(i) G-protein–coupled receptor kinase 3 (GRK3) and β-arrestin-2 can inactivate the 

odorant receptor protein through internalization and degradation in lysosomal 

compartments (Dawson et al., 1993; Schleicher et al., 1993; Mashukova et al., 2006; 

Peppel et al., 1997). 

(ii) Ca2+–CaM activates CaMKII, which in turn phosphorylates the type III adenylyl 

cyclase (Boekhoff et al., 1996; Wei et al., 1996; Leinders-Zufall et al., 1999). Early 

results (reviewed by Boekhoff et al., 1996) were complex, but it is now believed that 

this inhibits the cyclase, thus reducing the production of cAMP. The cyclase is also 

inhibited by RGS2, but the role of this in transduction is uncertain (Sinnarajah et al., 

2001). 
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(iii)  Intraciliary Cl¯ should be depleted during a prolonged response (Lindemann, 2001), 

and this would limit or prevent further Cl¯ efflux. Such depletion does not occur 

during brief stimulation (Boccaccio et al., 2006). 

 

1.11 Calcium-activated chloride channels in other cell types 
 

Many cell types express Cl¯ channels that are activated by intracellular [Ca2+] in the 

micromolar range. This type of conductance was first described in Xenopus oocyte (Miledi, 

1982; Barish, 1983) and subsequently characterized in taste receptors cells, in 

photoreceptors, in different neuronal cell types, in smooth muscle cells, in airway and 

intestinal epithelial cells, in exocrine gland, in kidney, in cardiac muscle cells and in 

endothelial cells (for review see Hartzell et al., 2005a). CaCC plays different physiological 

roles in various cell types.  

In Xenopus oocyte, CaCC play a fundamental role in blocking polyspermy by 

generating the so-called fertilization potential (Webb & Nuccitelli, 1985) Upon fertilization, 

the membrane potential increases from the resting potential of ~ - 40 mV to ~ + 20 mV for 

several minutes. This depolarization is dependent on the activation of CaCCs. The initial 

activation of CaCCs is due to the release of Ca2+ from internal stores through the production 

of IP3 that is triggered by egg activation after fertilization (Hartzell et al., 2005a). In the 

following phase the activation of CaCCs is maintained by the entry of Ca2+ through the 

store-operated Ca2+ channels (Hartzell, 1996; Kumura & Hartzell, 2000). 

CaCCs are also present in both mammalian and amphibian taste receptors (McBride, 

Jr. & Roper, 1991; Herness & Sun, 1999). Taste stimuli produce a depolarizing current in 

taste receptor cells that may result in a discharge of action potentials (Lindemann, 1996). In 

Necturus, action potentials in the taste receptors are followed by an outward current that is 

mediated by CaCCs, which open in response to Ca2+ influx during the action potentials 

(McBride, Jr. & Roper, 1991; Taylor & Roper, 1994). The CaCCs produce a 

hyperpolarization in these cells because ECl is between −60 mV and −80 mV. This 

hyperpolarization could play a role in taste adaptation (Taylor & Roper, 1994). 

In photoreceptor (both cones and rods) CaCCs are localized in inner segment (Barnes 

& Hille, 1989; Barnes, 1994; Maricq & Korenbrot, 1988; Bader et al., 1982). The 

depolarization produced by the dark current opens voltage-gated Ca2+-channels located at 
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the synaptic terminal causing a Ca2+ influx that activates a large Cl¯ conductance. Upon 

illumination, the dark current turns off, the cell membrane hyperpolarizes, and transmitter 

release stops (Yau, 1994). The role of CaCCs in rods is not known, but it has been suggested 

that in cones they play a role in modulating lateral inhibition (Barnes & Hille, 1989; Maricq 

& Korenbrot, 1988; Thoreson & Burkhardt, 1991). Cones in the dark center of an 

illuminated annulus often exhibit action potentials whose repolarization is afforded by 

CaCCs. However, the precise role of CaCCs in photoreceptors remains ambiguous because 

of uncertainties about [Cl¯]i.  

CaCCs are expressed in a variety of different neurons, including dorsal root ganglion 

(DRG) neurons, spinal cord neurons, and neurons of the autonomic nervous system. 

Generally, CaCCs are not expressed in all neurons of a group, but rather in a subset, 

suggesting that these channels perform a specific function for this subset of neurons. The 

functions of CaCCs in neurons remain poorly established, but it has been suggested that they 

are involved in action potential repolarization, generation of after-polarizations, and 

membrane oscillatory behavior. About 45–90% of the somatosensory neurons from the 

DRG that sense skin temperature, touch, muscle tension, and pain express CaCCs (Bader et 

al., 1987; Scott et al., 1988; Stapleton et al., 1994; Currie et al., 1995). In the mouse DRG, 

CaCCs are expressed selectively in a subset of medium diameter (30– 40 μm diameter) 

sensory neurons (Andre et al., 2003), suggesting that signaling in these neurons is somehow 

different from the rest of the population. It has been proposed that CaCCs in DRG are 

responsible for after-depolarizations following action potentials (Mayer, 1985; De Castro et 

al., 1997). The estimated [Cl¯]i in DRG neurons is 30 mM (Gilbert et al., 2007), which 

produces an ECl of −35 mV. Thus opening CaCCs by Ca2+ entry or Ca2+ release from stores 

would depolarize the cell membrane or produce after-depolarizations (Deschenes et al., 

1976; Duchen, 1990; Crain, 1956).  

In smooth muscle cells CaCCs are involved in regulation of myogenic tone and 

contraction activated by various agonists (Davis & Hill, 1999; Large & Wang, 1996). 

Because in these cells ECl is more positive than the resting potential, opening CaCCs will 

produce a depolarization (Chipperfield & Harper, 2000). The activation of CaCCs is mediate 

by Ca2+ entry through the voltage-gated Ca2+-channels or through the Ca2+ released from 

intracellular stores by inositol 1,4,5-trisphosphate (IP3) generated through the PLC pathway 

(Large & Wang, 1996; Davis & Hill, 1999). For example norepinephrine, released by 
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sympathetic stimulation, induces smooth muscle contraction by activation of Gq-coupled α-

adrenergic receptors (Wahlstrom, 1973; Bolton, 1979; Byrne & Large, 1985; Byrne & 

Large, 1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Ca2+-activated Cl¯ channels in epithelial cells. 
Ca2+-activated Cl¯ channels are involved in regulation of secretion in many types of epithelial cells. Schematic 
diagram showing the mechanisms involved in secretion activation in airway epithelium. ATP activates P2Y 
receptors, that through Gαq, stimulates the production of IP3 by PLCβ. Ca2+ is released by intracellular stores 
and gates Ca2+-activated Cl¯ channel causing an increase of fluid secretion. 
 

In airway epithelia CaCCs control the level of airway surface liquid, which is 

important for mucous hydration and protection against infection. Secretion of fluids is 

accomplished by basally located transporters that accumulate Cl¯ in the cell against the Cl¯ 

electrochemical gradient and by apical Cl¯ channels that permit Cl¯ to flow into the 

extracellular space down its electrochemical gradient. Airway epithelial cells coexpress 

CaCCs and cystic fibrosis transmembrane regulator (CFTR) in their apical membrane 

(Boucher et al., 1989; Kartner et al., 1991). The stimulation of secretion by ATP or UTP is 

dependent on the activation of CaCCs (Knowles et al., 1991; Tarran et al., 2002). UTP/ATP 

stimulates Gq-coupled P2Y purinergic receptors to increase IP3 production and subsequently 

Ca2+ release from internal stores that actives CaCCs causing, in turn, the increase of 

secretion of fluids (Fig 1.9, Gabriel et al., 2000; Donaldson et al., 1989).  
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CaCCs are also expressed in various types of exocrine glands such as lachrymal, 

parotid, submandibular, sublingual and pancreas. Also in these cell types CaCCs are 

involved in regulation of fluid secretion. The parasympathetic neurotransmitter acetylcoline 

stimulates fluid secretion through the activation of muscarinic receptor-induced production 

of IP3 that releases Ca2+ from internal stores (Botelho & Dartt, 1980; Hunter et al., 1983; 

Melvin et al., 1991; Douglas & Poisner, 1963). 

 

1.12 Bestrophin and Best Disease 
 

Best Vitelliform Macular Dystrophy (BVMD, also known as Best Disease, ONIM 

no. 153700) is an autosomal-dominant, progressive, juvenile-onset retinal macular 

degeneration that is due to an alteration in retinal pigment epithelium (RPE) function (Fig 

1.10; Best, 1905; Gass, 1987; Mohler & Fine, 1981; Pianta et al., 2003). RPE is a monolayer 

of cells in direct contact with photoreceptors and it plays a central role in controlling the 

communication between the retina and the choroidal blood vessels (Fig 1.10 A-B). Best 

Disease is associated with large deposits of a yellow pigmented material in the subretinal 

and sub-retinal pigment epithelium (RPE) spaces. The deposits initially resemble an egg 

yolk (vitelliform). The lesion then often passes through a pseudohypopyon stage that is often 

accompanied by detachment of the neural retina from the RPE (Jaffe & Schatz, 1988; Men 

et al., 2004; Pianta et al., 2003; Pierro et al., 2002; Vedantham & Ramasamy, 2005). With 

age, the deposits become disorganized (the vitelleruptive stage) and the RPE/choroid layer 

becomes thickened partly as a consequence of pigment accumulation in the RPE layer 

(Pianta et al., 2003; Pierro et al., 2002). The retinal layer above the thickened area becomes 

thinner, the photoreceptors degenerate, and deterioration of central vision follows (Fig 1.10 

A). There is a considerable variability in the age of onset and the expressivity of vitelliform 

lesions. The nature of the yellow pigment in BVMD is not known, but from its histological 

appearance, it is often assumed to be lipofuscin. 

Lipofuscin is a yellow pigment that normally accumulates with age in granules in the 

lysosomal compartment of RPE cells (Sparrow & Boulton, 2005). Lipofuscin originates at 

least partly from photoreceptor outer segments that are phagocytosed by the RPE and is 

composed partly of oxidized proteins and lipids as well as fluorescent compounds. The 

major fluorophores include a diretinal conjugate, N-retinylidene-N-retinylethanolamine 
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(A2E), and its photooxidation products (Eldred & Lasky, 1993; Bui et al., 2006). A2E may 

disrupt membrane integrity by a detergent-like effect (Eldred & Lasky, 1993), and its 

photooxidation products may activate complement (Zhou et al., 2006) and promote 

apoptosis (Sparrow & Cai, 2001). It has been shown that A2E mediates blue-light-induced 

damage in the retina (Sparrow & Cai, 2001) and is believed to be an important causal factor 

in macular dystrophy. 

The gene responsible for Best disease was positionally cloned in 1998 from families 

exhibiting macular degeneration with a juvenile age of onset (Marquardt et al., 1998; 

Petrukhin et al., 1998). The gene was named bestrophin-1, Best1 (or VDM2). The 

expression of human Best1 (hBest1) is highly restricted. The levels in retina and RPE are 

much higher than in any other tissue, although some expression is noted in brain, spinal 

cord, kidney, and testis. Protein expression for hBest1 has been reported only in RPE. In 

mouse, mBest1 protein expression has been reported in colon, kidney, and trachea in 

addition to RPE (Bakall et al., 2003; Barro et al., 2006). In particular, Best1 is localized in 

baso-lateral membrane of RPE (Bakall et al., 2003; Marmorstein et al., 2000).  

Although it was initially hypothesized that hBest1 might be a transporter of lipid 

components of lipofuscin (Petrukhin et al., 1998), there is now considerable evidence that 

bestrophins function as Ca2+-activated Cl¯ channels (Sun et al., 2002; Tsunenari et al., 2003; 

Qu et al., 2003; Hartzell et al., 2008). The suggestion that bestrophins are Cl¯ channels is 

particularly intriguing because the hallmark diagnostic feature of Best disease is a decreased 

slow light peak in the electrooculogram that is correlated with permeability of baso-lateral 

membrane of RPE (Fig 1.11 A). To measure electrooculogram electrodes are placed on 

either side of the eye at the canthus and the subject is instructed to look alternately left and 

right. At the extremes of the saccades, the voltage recorded by the external electrodes is 

different because of the different orientation of the dipole set up by the RPE transepithelial 

potential. Typically, the recorded voltage is on the order of 20–150 μV in the dark-adapted 

eye. The voltage increases about twofold within 5–15 min after turning on the lights. The 

dark-adapted value is called the dark trough, and the maximum voltage in the light is termed 

the light peak (LP). Because the voltages can depend on many factors including placement 

of the electrodes, the ratio of the dark trough to the LP, the Arden ratio (Arden et al., 1962), 

is usually used as the relevant comparative parameter. The Arden ratio in normal individuals 

is usually >2 and is considered pathologic if it is <1.5. Still, there is considerable variability 



______________________________________________________________1. Introduction 

 35

in the Arden ratio, at least partly as a consequence of variability in eye movements (Fig 1.11 

A; Riemslag et al., 1989). 

There is considerable evidence that the LP is generated by a Cl¯ channel in the 

basolateral membrane of the RPE (Gallemore et al., 1988; Gallemore & Steinberg, 1993). 

When the basolateral Cl¯ conductance increases, the basolateral membrane depolarizes, 

which thus increases the transepithelial potential. Because hBest1 immunoreactivity is 

located basolaterally in RPE cells (Bakall et al., 2003; Marmorstein et al., 2000; Mullins et 

al., 2007), it has reasonably been assumed that BVMD is caused by a defect in the 

basolateral RPE hBest1 (Hartzell & Qu, 2003; Sun et al., 2002). The mechanisms that turn 

on the basolateral Cl¯ conductance in the light remain obscure. There is evidence that the 

LP, although generated by the RPE, requires intact photoreceptors. This has led to the 

suggestion that photoreceptors in light produce a diffusible signal (“the light peak 

substance”) that binds to receptors on the RPE to activate the Cl¯ conductance (Fig. 1.11 B; 

(Gallemore et al., 1988; Gallemore & Steinberg, 1993; Linsenmeier & Steinberg, 1982). A 

second messenger cascade is implied by the very slow time course of the LP (~10 min). The 

identity of the diffusible signal and the second messenger pathway remains unknown. 

Although several candidates have been proposed for the LP substance, ATP is favored 

because ATP mimics the LP (Peterson et al., 1997; Strauss, 2005). It has been suggested that 

ATP released by photoreceptors acts on G protein-coupled purinergic receptors (P2Y) in the 

RPE to elevate cytosolic Ca2+, which in turn activates the Cl¯ conductance (Fig. 1.11 B). 

Although bestrophins function as Cl¯ channels, the question remains whether BVMD 

is caused by a defect in plasma membrane bestrophin Cl¯ channel function. A strong 

argument supporting the idea that hBest1 mutations produce macular dystrophy by altering 

hBest1 Cl¯ channel function is the finding that of the 31 disease-causing mutations that have 

been studied, all of them except 3 alter the Cl¯ channel function of hBest1 expressed in 

HEK-293 cells (Marchant et al., 2007; Sun et al., 2002; Yu et al., 2007; Yu et al., 2006; 

Hartzell et al., 2008). Of the mutants that affect Cl¯ channel function, the current amplitudes 

of the mutants are almost zero or much smaller than wild type. Often the mutants suppress 

the current produced by coexpression of wild-type channels. This is consistent with the 

dominant mechanism of inheritance, but data regarding the mechanisms of the dominant 

negative effects are lacking.  
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Figure 1.10 Best Vitelliform Macular Dystrophy  
Schematic organization of the mammalian retina (A, from Hartzell et al., 2005b). Outer segments of 
photoreceptors are in contact with the retinal pigment epithelium (RPE), a monolayer of cells that are 
specialized to service the adjacent photoreceptors (A-B, from Rattner & Nathans, 2006). Schematic illustration 
of the RPE and Bruch’s membrane (BM) histopathology associated with Best disease (C): normal retina and 
RPE. (a); accumulation of lipofuscin in RPE cells (b); a  druse (deposits composed of a complex mixture of 
lipids) sandwiched between the RPE and Bruch’s membrane (c); a druse with adjacent geographic RPE 
atrophy and loss of overlying photoreceptors (d); choroidal neovascularization (e) (CH, choroid, OS, outer 
segment, IS, inner segments). Typical fundus images of normal (D-a) and of Best vitelliform macular 
dystrophy affected retina at vitelliform stage (D-B). Accumulation of large yellow-pigmented material (arrow) 
is a typical hallmark of Best disease (from Hartzell et al., 2005b). 
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The hypothesis that BVMD is caused by Cl¯ channel dysfunction has recently been 

challenged by Marmostein’s lab (Marmorstein & Marmorstein, 2007; Marmorstein & 

Kinnick, 2007; Marmorstein et al., 2004; Rosenthal et al., 2006). The most compelling 

evidence is that mice with the mBest1 gene disrupted (mBest1-/- null) have no retinal 

pathology. A surprising and important finding is that the LP is not generated solely by 

Best1, at least in mice. Furthermore, RPE CaCC currents are not obviously affected by 

knockout of mBest1 (Marmorstein et al., 2006). Although the amplitude of the LP in 

response to maximum light intensity was unchanged in mBest1-/- mice, the luminance-

response curve (the sensitivity of the LP to light intensity) was altered. At low illumination 

intensities, the LP was enhanced in the knockout. This suggests that mBest1 expression 

reduces the sensitivity of the LP to light and that knockout relieves this inhibition. 

Marmorstein and co-workers (Marmorstein et al., 2006; Wu et al., 2007) have shown that 

voltage-gated Ca2+ (Cav) channels play an important role. The LP is reduced by the Ca2+ 

channel blocker nimodipine (Marmorstein et al., 2006) and is also reduced in mice lacking 

the α 1.3 Cav channel subunit (Wu et al., 2007) or the Cav channel β4 subunit (Marmostein 

et al., 2006). In addition, Rosenthal et al. (2006) have shown that hBest1 expression in RPE-

J cells affects the function of endogenous Cav channels in these cells. Overexpression of 

wild-type hBest1 shifts the voltage dependence of Ca2+ channel activation to the left and 

accelerates activation (Rosenthal et al. 2006). Moreover Yu et al. (2008) reported that 

hBest1, expressed in HEK-293 can inhibit Cav channel by direct interaction between the 

SH3 domain in C-terminus of bestrophin and β subunit of Cav 1.3. Interestingly this 

inhibition was not seen with mBest1 suggesting a possible species-specific function of 

Best1. Moreover, it could partially explain the lack of a retinal alteration observed in 

mBest1-/- mice.  
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Figure 1.11 Ca2+-activated Cl¯ channels in RPE. 
Typical electrooculogram recording in a normal subject (upper panel in A) or in a Best disease-affected subject 
(lower panel in A). The light peak shows a big reduction. Schematic mechanism of generation of the  light 
peak in RPE cells (B, from Hartzell et al., 2005b). Cl¯ is accumulated in RPE at the apical level by NKCC 
activity. The activation of photoreceptors by light stimulates the release of a unidentified “light peak 
substance” that via a second messenger cascade induces the activation of Ca2+-activated Cl¯ channels in the 
basolateral membrane. 
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1.13 Bestrophins: a new family chloride channel 
 

After the first identification of hBest1 as the gene responsible for BVMD bestrophins 

have been unambiguously identified in mammals, birds, bony fish, amphibians, 

echinoderms, insects, nematodes, and flat worms (reviewed in Hartzell et al., 2008). All of 

the vertebrate bestrophins fall into one of four paralogous branches. The human genome 

contains four bestrophin paralogs (hBest1, hBest2, hBest3, and hBest4; Tsunenari et al., 

2003; Stohr et al., 2002). All other mammals have either three or four bestrophin paralogs. 

Mice, for example, have three paralogs and one pseudogene (Kramer et al., 2004). 

Bestrophins in all of these species have a conserved N-terminal domain that includes the 

putative transmembrane regions, and a C-terminal domain that is highly variable in both 

length and sequence. 

The first clear evidence that bestrophins are Cl¯ channels was presented by Sun et al. 

(2002) who showed that expression of hBest1 and several other bestrophins in HEK-293 

cells induced Cl¯ currents. Now several different arguments support the idea that 

bestrophins are Cl¯ channels.  

(i) Bestrophins from different species expressed in HEK-293 cells produce a novel 

Ca2+-activated Cl¯ current (Qu et al., 2004; Qu et al., 2003; Sun et al., 2002). The 

type of current induced by mouse Bestrophin 2 (mBest2) is the same in different cell 

lines (Qu et al., 2004). Because one would not necessarily expect upregulation of the 

same kind of Cl¯ channel in different cell types, the appearance of similar currents in 

different cells minimizes (but does not eliminate) the concern over upregulation of 

endogenous channels (Qu et al., 2004). 

(ii) Different bestrophins produce currents with different current-voltage relations and 

kinetics of activation (Sun et al., 2002;T sunenari et al., 2003). For example, hBest1 

currents have linear current-voltage relationships and are essentially time 

independent, whereas hBest3 currents strongly inwardly rectify and activate slowly 

with time (Tsunenari et al., 2003). These different characteristics provide some 

confidence that the currents are specific to the type of bestrophin expressed.  

(iii) hBest1 and mBest2 currents are inhibited by the modification of sulfhydryl groups 

with membrane impermeant MTSET+ (Tsunenari et al., 2003; Qu et al., 2004; Qu & 

Hartzell, 2004). Modification of ionic currents by MTSET+ is a common approach 
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used to identify amino acids that line the permeation pathway (Karlin & Akabas, 

1998). 

(iv) Expression of mutant bestrophins can act as dominant-negative on wild-type 

channels. Notably G299E and W93C inhibit the current induced by expression of the 

wild-type bestrophin (Sun et al., 2002; Qu et al., 2003), suggesting that the channels 

are multimers. Semiquantitative coimmunoprecipitation shows that bestrophins form 

multimeric complexes composed of four or five subunits, as one would expect for a 

channel protein (Sun et al., 2002).  

(v) Point mutations in both hBest1 and mBest2 produce changes in Cl¯ channel 

properties such as the permeability of various anion and/or change of channel gating. 

Because it is generally agreed that the selectivity of a channel is determined by the 

channel pore, the ability to change the selectivity by a mutation provides strong 

evidence that bestrophin is responsible for forming the channel (Qu et al., 2004; 

Pusch, 2004). 

(vi) Endogenous Ca2+ activated Cl¯ currents in Drosophila S2 cells can be specifically 

abolished by several RNAi constructs for dBest1 and dBest2, suggesting the 

involvement of these protein in CaCCs (Chien et al., 2006). 

The properties of bestrophins were generally investigated after transient 

heterologously expression in HEK-293 cells. Ca2+ sensitivity has been investigated for some 

bestrophins. hBest1 is activated by increase of [Ca2+]i  with an EC50 ~ 150 nM (Fischmeister 

& Hartzell, 2005). Sun et al. (2002) reported that hBest1 current can be rapidly activated by 

release of Ca2+ from caged Ca2+, suggesting a direct activation by Ca2+ without the 

involvement of phosphorylation or other enzymatic processes. Xenopus best2 and mBest2 

has an EC50 ~ 200 nM (Qu et al., 2004; Qu et al., 2003). Tsunenari et al. (2006) reported the 

activation by Ca2+ of hBest4 in excised inside-out patches with EC50 ~ 200 nM further 

suggesting a direct activation by Ca2+. They also suggest that the Ca2+ binding site might be 

located in the C-terminus immediately after the last transmembrane domain because this 

region contains a high density of acidic amino acids that could coordinate positively charged 

Ca2+. This region exhibits some similarity to the Ca2+ bowl of BK potassium channels. 

Finally endogenous Drosophila bestrophins in S2 cells can be activated in excised patches 

by Ca2+, suggesting that Ca2+ acts on the channel directly (Chien et al., 2006). However, 

addition of ATP accelerates the activation (Chien et al., 2006). 
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The only data available on single channel properties derives from Drosophila 

bestrophins. Indeed, Chien et al. (2006) reported that in inside-out patches dBest1 has a 

single channel conductance of ~ 2 pS. This small single channel conductance is a common 

feature of many CaCCs expressed in many cell types (Hartzell et al., 2005a; Frings et al., 

2000).  

The ionic selectivity of bestrophins was investigated with some details for mBest2 

and xBest2 (Qu et al., 2004; Qu et al., 2003). In both cases the channel showed a weak 

selectivity among various anions, as reported for many CaCC (Hartzell et al., 2005a; Frings 

et al., 2000) with the following  permeability sequence: SCN¯> I¯>Br¯>Cl¯>F¯ (Qu et al., 

2004; Qu et al., 2003). 

Two different topology models have been proposed for hBest1 (Fig 1.12, Tsunenari 

et al., 2003; Milenkovic et al., 2007). Tsunenari et al. (2003) performed a very detailed 

analysis of hBest1 topology and suggested that of the six hydrophobic domains predicted by 

hydropathy, TM1, TM2, TM3, TM4, and TM6 traversed the membrane and that TM5 might 

be a reentrant loop (Fig. 1.12 A). This prediction was based on data from three different 

methods. (i) Substitution of cysteine residues for selected amino acids in hBest1 and 

examination of the effect of extracellular MTSET+ (a membrane impermeant sulfhydryl 

reagent) on heterologously expressed Cl¯ currents. (ii) Tsunenari et al. (2003) also 

examined the ability of inserted N-glycosylation sites to be glycosylated, that occurs in a 

topologically extracellular compartment (Fig. 1.12 A, glycosylated, solid red residues; not 

glycosylated, red letter). (iii) Finally, TEV protease sites were inserted and their ability to be 

cleaved by protease added to the topologically cytoplasmic compartment were examined 

(Fig. 1.12 A, TEV protease sites cleaved, solid cyan residues; not cleaved, cyan letter). In 

contrast, Milenkovic et al (2007) tested the topology of hBest1 by examining the ability of 

various hBest1 fragments consisting of predicted transmembrane domains or groups of 

predicted transmembrane domains to be incorporated into the membrane in the presence of a 

Lep H1 membrane targeting domain. They found that TM1, -2, -4, -5, and -6 were capable 

of being incorporated into the membrane when they were alone. TMD4 was able to 

incorporate into the membrane when it was presented alone or with TMD3; however, it was 

not able to incorporate when it was presented with TM5, TM2 + TM3, TM3 + TM5, or TM5 

+ TM6. These results suggested that only TM1, -2, -5, and -6 cross the membrane (Fig. 1.12 

B). These two models are directly contradictory. The Tsunenari model places amino acids 
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A B

~200–231 in an extracellular loop, whereas in the Milenkovic model, this domain is 

included in a large cytoplasmic loop (aminoacids 106–230). It is possible to speculate that 

the differences derived from the different experimental approaches used in these studies. 

Although experimental data for bestrophin transmembrane topology exist mainly for hBest1, 

the high conservation of the N-terminal 350 amino acids, which includes all the predicted 

transmembrane domains, suggests that the topology will be similar for each vertebrate 

bestrophins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 hBest1 topology models. 
A: Model proposed by Tsunenari et al. (2003). Hydrophobic domains determined by hydropathy analysis are 
labeled 1–6. The amino acids are colored according to the evidence supporting their topological location. 
Green background: modified by MTSET; green letter: not modified by MTSET; red background; inserted N-
glycosylation site is glycosylated in an in vitro translation system with microsomes (extracellular); red letter: 
not glycosylated; cyan background: inserted TEV protease site is cleaved in an in vitro translation system 
without detergent (cytosolic); cyan letter: cleaved by TEV protease in presence of detergent. B: Model 
proposed by Milenkovic et al. (2007). Topology was determined by examining the ability of fragments of 
hBest1 to insert into the membrane in an in vitro translation assay with microsomes (from Hartzell et al., 2008) 
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2. Materials and Methods 

 

 
2.1 Immunohistochemistry  
 

The mice (P15 and adult) were sacrificed by cervical dislocation and decapitated. 

These procedures are in accordance with the Italian Guidelines for the Use of Laboratory 

Animals (Decreto Legislativo 27/01/1992, no. 116). The turbinates were exposed by 

hemisection of the head sagittal along the septum and the olfactory epithelium was 

dissected. After fixation in 4% formaldehyde, 15% aqueous saturated picric acid, 150 mM 

sodium phosphate pH 7.4 for 1 hour at 4 ºC, the olfactory epithelia were washed in 

phosphate-buffered saline (PBS), equilibrated in 30% sucrose overnight (for OE from adult 

mice, tissues were previously decalcified by overnight incubation in 0.2 M EDTA) and 30 

µm coronal sections were cut on a cryostat. Sections were air-dried overnight, treated for 15 

minutes with 0.5 % sodium dodecyl sulphate in PBS for antigen retrieval, incubated in 

blocking solution (2% normal goat serum, 0.2% Triton X-100 in PBS) for 90 minutes and 

incubated overnight at 4 ºC in primary antibodies diluted in blocking solution (anti-mBest2 

was diluted 1:50). After rinses in 0.1 % Triton X-100 in PBS, sections were incubated with 

fluorophore-conjugated secondary antibodies in blocking solution for 2 hours at room 

temperature, washed and mounted with Vectashield (Vector Laboratories). The staining was 

analyzed with an Olympus Fluoview 300 confocal microscope (BX51WI). Primary 

antibodies were: mouse monoclonal anti-CNGA2 (provided by F. Müller and U. B. Kaupp, 

Forschungszentrum Jülich, Jülich, Germany) and goat anti-OMP (provided by F. Margolis, 

University of Maryland, Baltimore, MD, USA), used respectively at 1:200 and 1:500. 

Secondary antibodies were: Alexa 488-conjugated donkey anti-goat, Alexa-594 conjugated 

chicken anti-rabbit, Alexa 488-conjugated goat anti-rabbit, Alexa 594-conjugated goat anti-

mouse diluted 1:200 (Molecular Probes). For competition experiments anti mBest2 antibody 
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was incubated with antigen for 2.5 hours at 37 ºC (2 µl of antibody for each antigen in 50 µl 

of PBS). After centrifugation at 13,000 g the supernatant was used for staining OE sections.  

To generate the anti-mBest2 the C-terminal 431-bp fragment of mBest2 was 

amplified by PCR and ligated to GST sequence in the isopropyl-β-D-thiogalactoside (IPTG)-

inducible pGEX vector (Amersham Pharmacia Biosciences, Piscataway, NJ) to generate a 

GST-mBest2 344-Cend fusion. Protein production was achieved in BL21 bacteria after a 

0.5-mM IPTG induction for 2 h at 30 °C. GST-mBest2 was affinity-purified on GSH-

Sepharose resin (Amersham Pharmacia Biosciences), following the manufacturer’s 

protocols. Purified protein was used to immunize rabbits (the production of anti mBest2 

antibody was performed by Giovanni Pascarella and Silvia Zucchelli in the lab of Prof. 

Stefano Gustincich at the Neurobiology Sector, SISSA, Trieste, Italy). 

 

3.4 Cell culture and transfection 
 

HEK-293 cells were grown in DMEM (Gibco, Italy) supplemented with 10% fetal 

bovine serum (Sigma, Italy), 100 IU/ml penicillin and 100 µg/ml streptomycin (Sigma) at 

37°C in a humidified CO2 incubator. Transfection of HEK-293 cells with mBest2 construct 

in pCMV-Sport6 (obtained by RZPD, Germany, GenBank accession no. BC019528) was 

performed by using FuGENE 6 reagent (Roche Diagnostics, Germany) according to the 

manufacturer’s protocol. Cotransfection with EFGP in pGFP (Clontech, USA), at 1:5 ratio 

was used as reporter and only green fluorescent cells were used for experiments. After 36-48 

hours after transfection the cells were plated on Petri dishes treated with poly-L-lysine 

(Sigma, Italy) to improve the adhesion and used for electrophysiological recording in the 

following 24-48 hours. 

 

2.3 Dissociation of mouse olfactory sensory neurons  
 

Olfactory sensory neurons were dissociated enzymatically from the olfactory 

epithelium of 1-2-months-old mice. The mice were sacrificed as described in 2.1 and then 

the turbinates were exposed by hemisection of the head along the septum. The olfactory 

epithelium was removed and transferred in 1 ml of zero-divalent mammalian Ringer’s 
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solution (for composition of all solution, see 2.7.1). The tissue was incubated in 1 mM 

cystein and 1 U/ml papain (Sigma, Italy) for 20 minutes at room temperature. The reaction 

was stopped by adding 1 ml of Ringer’s solution with 0.1 mg/ml BSA (bovine serum 

albumin), 200 µg/ ml leupeptin, and 0.025 mg/ml of DNaseI (all from Sigma, Italy). The 

olfactory epithelium was loosened by trituration with a flame polished pipette. After 

centrifugation (300 g for 5-7 min) the cells were resuspended in 1 ml of Ringer’s solution 

and plated on Petri dishes (Nunc, USA) coated with poly-L-lysine and concanavalin A 

(Type V, Sigma, Italy). 

 

2.4 The experimental setup for patch-clamp recording 
 

Both experiments with HEK-293 cells and olfactory sensory neurons were performed 

on the same experimental setup. The preparation was visualized with an Olympus IX70 

inverted microscope (Olympus, Japan) placed on an antivibration table (TMC, USA). A 

homemade Faraday cage provided adequate electrical shielding. All recordings were 

performed using an Axopatch 1-D amplifier controlled by Clampex 9.2 via a Digidata 

1322A (all from Axon Instruments, USA). Data were sampled at 10 kHz and low- pass 

filtered at 4 kHz with a variable Filter VBF/8 (Kemo, UK). Patch-pipettes were made from 

borosilicate glass (outer diameter, OD, 1.65 mm; inner diameter, ID, 1.1 mm, WPI, USA) 

with a PP-830 puller (Narishige, Japan). They had a resistance of 2-4 MΩ, for HEK-293, 

and 7-10 MΩ for olfactory sensory neurons, when filled with standard intracellular solution. 

Pipettes were mounted in a pipette holder with an Ag/AgCl electrode for electrical 

recording. The holder movements were controlled by a mechanical micromanipulator for 

bigger displacements (MC-35A, Narishige, Japan) and by a hydraulic micromanipulator for 

smaller movements to approach the cells (MWO-3 Narishige, Japan). In experiments in 

which the bath concentration of Cl¯ was changed, the bath was grounded through a 3 M KCl 

agar bridge connected with a Ag/AgCl reference electrode. Experiments were done at room 

temperature (20-24 ºC). 

In inside-out recordings from excised patches from dendritic knob/cilia of OSNs leak 

currents in the respective Ca2+-free solution were subtracted. Dose–response relations for the 

Ca2+-activated Cl¯ conductance were constructed by normalizing individual patches to their 
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maximal current in order to average data across patches. For whole-cell recordings from 

HEK-293 cells leak currents were not subtracted. 

 

2.5 The perfusion system for patch-clamp recording 
 

The perfusion system was based on that described by Hodgkin et al. (1985). Rapid 

exchange of the solution was achieved by translating the boundary between two flowing 

streams of solution in front of the cell attached to the patch pipette (or the excised patch in 

inside-out experiment). Streams of solution emerged from up to four glass tubes with ID of 

0.90 mm (Vitro Dynamics, USA). Changes between these four streams were performed by 

Perfusion Fast-Step SF-77B (Warner Instrument Corp., USA) under control of Digidata 

1322A (Axon Instruments, USA). Solution exchange was complete within less than 20 ms. 

The perfusion system was entirely gravity driven; the solutions were stored in 25-50 ml 

syringes and polyethylene tubes (ID 1.14 mm) were used for connection with the recording 

chamber. The flow of solution was controlled by solenoid valves that could be manually 

controlled (see Fig 2.1). The recording chamber was continuously bathed with mammalian 

Ringer solution while an aspiration tube, placed at the opposite site and connected with a 

trap bottle, controlled the level of solution in the recording chamber. 

 

2.6 The experimental setup for eletroolfactogram recording (EOG) 
 

The mouse was sacrificed as described in 2.1. The head was cut sagittaly to expose 

the medial surface of the olfactory turbinates. The method used to perform EOG recordings 

was very similar to that described by Zhao et al. (1998). The recording electrode was made 

with borosilicate glass (OD, 1.65 mm; ID, 1.1 mm, WPI, USA) pulled with a PP-830 puller 

(Narishige, Japan) to obtain a tip with 10-20 µm in diameter after fire polishing. The tip of 

the pipette was filled with Ringer’s solution with 0.6 % agar and finally back filled with 

Ringer’s solution. The pipette was mounted in a pipette holder with an Ag/AgCl for 

electrical recording and placed on the surface of the olfactory epithelium. The data were 

collected with an Axopatch 200B amplifier controlled by Clampex 9.2 via a Digidata 1322A 

(all from Axon Instruments, USA). The signals were recorded at a sampling rate of 1 kHz 
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and low-pass filtered at 25 Hz with a variable Filter VBF/8 (Kemo, UK). The ground 

electrode was located directly in the brain of the mouse. 

Vapor-phase odorant stimuli were generated by placing 0.9 ml of odorant solution in 

a 10 ml glass test tube and capped with a rubber stopper. Two 20-gauge needles provided 

the input and output ports for the odorant-containing vapor above the solution. For 

stimulation, a 100-ms pulse of the odorant vapor at 8 psi was injected into the continuous 

stream of humidified air. The pulse was controlled by a Picospritzer solenoid-controlled 

valve (Intracel, UK). The odorant stimulus pathway was cleaned by air between each 

stimulus presentation. The minimum interval between two adjacent stimuli was at least one 

minute (see Fig 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Perfusion system used for patch clamp recordings. 
Four parallel streams of solutions, emerging from glass pipes, were delivered in front of the patch pipette. 
Stepping the pipes sideway, it was possible to change rapidly (less than 20 ms) the solution bathing the cells 
(or the excised patches) attached to the patch pipette. 
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Figure 2.2 Setup for EOG recording. 
Odorant solutions in the vapor phase were delivered to a semi-intact preparation of mouse olfactory epithelium 
in a continuous stream of humidified air. 
 

2.7 Solutions 
 

2.7.1 Ionic composition 

 

Solutions with different ionic compositions were used for experiments. The 

compositions of solutions used for recording from olfactory sensory neurons are listed in the 

following table: 

 

 
 

All solutions contained also 10 mM HEPES as pH buffer and all were adjusted to pH 

7.2 with NMDG or HCl as appropriate. The Ringer solution contained also 10 mM D-

 NaCl 
(mM) 

KCl 
(mM) 

LiCl 
(mM) 

CaCl2 
(mM) 

MgCl2 
(mM) 

HEDTA 
(mM) 

EDTA 
(mM) 

Ringer  140 5  1 1   
Zero-divalent 
Ringer 

140 5     1 

Li sol.   140   10  
Na sol. 140     10  
0.5 µM Ca2+   140 1.242  10  
1.5 µM Ca2+   140 3.209  10  
3.8 µM Ca2+   140 5.866  10  
13 µM Ca2+   140 8.263  10  
100 µM Ca2+   140 9.98  10  
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glucose and 1 mM sodium pyruvate. For permeability experiment the NaCl in “Na sol” was 

completely replaced with Na+ salt of different anions. The program WinMAXC (C. Patton, 

Stanford University, Palo Alto, CA USA) was used to calculate free divalent concentrations 

in buffered solutions. The free Ca2+ concentrations in the HEDTA-buffered Ca solutions 

were determined by Fura-4F (Molecular Probes-Invitrogen, Italy) measurements by using an 

LS-50B luminescence spectrophotometer (PerkinElmer, USA). 

The composition of solutions used for recording from HEK-293 are listed in the 

following table: 

 

 

All solutions contained also 10 mM HEPES as pH buffer. The Ringer solution was 

adjusted to pH 7.4 or 7.2 with NaOH or HCl as appropriated. For permeability experiment 

the NaCl in Ringer was completely replaced with Na+ salt of different anions. For solution 

with F– all divalents were omitted to avoid precipitation of insoluble salts. All salts used 

were purchased from Sigma (Italy). 

 

2.7.2 Odorant solutions 

 

Odor solution for EOG experiments were made daily by dilution from 2.5 M stock 

solution in DMSO (dimethyl sulfoxide). The odors used were amylacetate, cineole and 

acetophenone (all purchased by Sigma, Italy). 

 

 

 NaCl 
(mM) 

KCl 
(mM) 

CsCl 
(mM) 

CaCl2 
(mM) 

MgCl2 
(mM) 

HEDTA 
(mM) 

EGTA 
(mM) 

Ringer  140 5  2 1   
0 Ca2+ intra   140   5  
5 µM Ca2+ 
intra 

  140 2.5  5  

0.05 µM Ca2+   140    1.25 
0.1 µM Ca2+   140 0.309   1.25 
0.14 µM Ca2+   140 1.1805   1.25 
0.2 µM Ca2+   140 1.41   1.25 
0.25 µM Ca2+   140 1.622   1.25 
0.4 µM Ca2+   140 1.968   1.25 
4.5 µM Ca2+   140 2.444   1.25 
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2.7.3 Other solutions 

 

Various blockers for mBest2 and native Ca2+-activated Cl¯ were used. Niflumic acid 

(NFA, Sigma, Italy) was dissolved in DMSO at 200 mM, stored at + 4 ºC and diluted in 

saline solution to the final concentration. 4-acetamido-4'-isothiocyanato-stilben-2,2'-

disulfonate (SITS, Sigma, Italy) was directly dissolved in saline solution up to 5 mM. 4,4'-

diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, Sigma or Molecular Probes) was 

directly dissolved in saline solution up to 200 µM. 5-Nitro-2-(3-phenylpropylamino)benzoic 

acid (NPPB, Tocris, UK) was dissolved in DMSO at 83 mM , stored at -20 ºC and diluted in 

Ringer’s solution to 100 µM. To activate the CNG channel in inside-out excised patches 

from olfactory sensory neurons 100 µM of cAMP or cGMP were directly added to “Li sol” 

or “Na sol”. 

 

2.8 Data analysis 
 

Data analysis and figures were made with Igor software (Wavemetrics, USA). Data 

are given as mean ± SEM.  

 

2.9 mBest2-/- null mouse line  
 

The mBest2 null mouse line was purchased from Deltagen (USA). The targeting 

vector was constructed using 0.8-kb (5') and 2.9-kb (3') mouse Best2 genomic DNA 

fragments as homology arms. The two arms flanked a promoterless lacZ and a neomycin-

resistant gene cassette (lacZ-neo). Homologous recombination in mouse embryonic stem 

cells resulted in the insertion of the lacZ-neo cassette, replacing a region spanning exon 1 

through a part of exon 3 of the mouse Best2 locus. Germ-line–transmitting chimeric mice 

generated from the targeted embryonic stem cells were bred with C57BL/6 mice to produce 

mBest2+/- mice. Intercrossing of heterozygous mice generated Best2-/- mice.  
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Figure 2.3 Targeted disruption of the mouse Best2 gene.  
Schematic representation of wild-type locus, targeting vector, and mutant locus. Thick lines: fragments used 
for constructing the targeting vector 5' and 3' arms. Thin lines: genomic DNA or vector backbone sequence. 
Numbered solid boxes: Best2 exons. Labeled boxes: the LacZ and neor expression cassette. 
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3. Results 

 

 
3.1 Localization of mBest2  

 

The olfactory sensory transduction occurs in specialized cilia extended from the 

knobs of OSNs on the surface of the olfactory epithelium (OE). To examine the subcellular 

localization of mBest2 in OSNs we performed immunohistochemistry experiments on OE 

cryosection from adult and P15 mice using the anti-mBest2 polyclonal antibody. We found a 

homogenous staining on the surface of OE (Fig. 3.1 A-C) without any remarkable difference 

among zones of OE both in adult and in P15 mice (not shown). The staining was abolished 

when the antibody was pre-incubated with the recombinant protein proving signal specificity 

(Fig. 3.2). Specific antibodies against OMP, a typical marker of mature OSNs (Keller & 

Margolis, 1975), and the olfactory CNG channel subunit CNGA2 (Meyer et al., 2000), 

known to be present in the cilia, were used as cellular or subcellular markers. Double-

staining for mBest2 and OMP showed that mBest2 is expressed in mature OSNs (Fig. 3.1 D-

F). Double-staining experiments for mBest2 and CNGA2 proved that mBest2 was present 

on the luminal surface of the OE (Fig. 3.3 A-C) restricted to the cilia of OSNs, where it 

colocalized with CNGA2 (higher magnification, Fig. 3.3 D-F). Therefore, mBest2 appears 

to be expressed at the site of olfactory transduction. 
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Figure 3.1 Localization of mBest2 on the sensory cilia of OSNs. 
Olfactory epithelium (bright field in B) labeled with affinity-purified anti-mBest2 polyclonal antibody (green) 
is shown as the fluorescence signal (A) or a digital addition of the fluorescence and bright-field images (C). 
mBest2 is located at the luminal surface of the sensory epithelium. Double staining for mBest2 (red) and OMP 
(green). mBest2 was located at the end of dendrites of mature OSNs (D-F). 
 

 

 

 

 

 

 

 

 

Figure 3.2 Control of specificity of anti-mBest2 antibody. 
Olfactory epithelium was stained with anti-mBest2 antibody previously incubated with C-terminus of mBest2 
protein used for antibody production. The absence of the staining suggests the specificity of anti-mBest2 
antibody. 
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Figure 3.3 Localization of mBest2 on the sensory cilia of OSNs. 
Double staining for mBest2 (A) and CNGA2 (B). Label is shown as the red fluorescence channel digitally 
combined with the green channel. mBest2 and CNGA2 colocalized at the luminal surface of OE (C). In D-F 
higher magnification of the OE as in A-C. mBest2 was expressed on cilia of OSNs and colocalized with 
CNGA2. 
 

 

3.2 Properties of mBest2 
 

The localization of mBest2 strongly suggests that it could be involved in olfactory 

transduction. Therefore electrophysiological properties of mBest2 after heterologous 

expression in HEK-293 cells were measured and compared with those of native Ca2+-

activated Cl¯ channels of OSNs. Many attempts have been done to record mBest2 current in 

inside-out configuration but no detectable Ca2+-activated Cl¯ currents were measured in 

mBest2-transfected cells. Tsunenari et al. (2006) reported that Ca2+-activated Cl¯ currents 

induced by heterologous expression of hBest4 could be detected in excised inside-out 

patches. They suggest, though, that measurements in excised patches could be obtained only 

because of the particularly large Cl¯ current induced by heterologous expression of hBest4 

when compared with the other bestrophins. Therefore the functional properties of mBest2 

have been determined in the whole-cell configuration.  

mBest2 was expressed in HEK-293 cells by transient transfection. Cells were 

subjected to whole-cell patch clamp using solutions that either eliminated cation currents 

(intracellular solution contained Cs+ to block endogenous K+ currents) or set the Nernst 

potentials of cation currents and Cl¯ currents at very different values. The calculated 
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reversal potential for Cl¯ (ECl) was -1 mV. Free [Ca2+]i was buffered to various values using 

EGTA or HEDTA. The holding potential was 0 mV and for most experiments the voltage 

was stepped from -100 mV to +100 mV with 20 mV increments for 200 ms (Fig 3.4 A upper 

panel).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 mBest2 generates a Ca2+-dependent current in HEK-293 cells. 
HEK-293 cells transfected with mBest2 and EGFP. Recordings in whole-cell voltage clamp were made with a 
pipette solution containing nominally 0 free [Ca2+]i (< 10 nM, A) or 5 µM of [Ca2+]i  (B). The voltage protocol 
is shown above A. Mean steady-state current amplitudes measured at -60 mV (C) and at +60 mV (D) in cell 
transfected with EGFP alone or with mBest2 and EGFP with pipette solution containing either 0 or 5 µM of 
free [Ca2+]i (n=8-26). 
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3.2.1 Calcium sensitivity 

 

Fig 3.4 A/B shows representative current recordings obtained in cells transfected 

with mBest2 with nominally 0 [Ca2+]i (< 10 nM) or with a solution containing 5 µM of 

[Ca2+]i showing a robust induction of current after adding of intracellular Ca2+. The analysis 

of different cells shows that in HEK-293 cells transfected only with EGFP currents were 

consistently small regardless of free [Ca2+]i. Currents at -60 mV were -39 ± 8 pA (n=8) with 

nominally 0 [Ca2+]i and -31 ± 7 pA with 5 µM of [Ca2+]i (n=8); at +60 mV the currents were 

57 ± 10 pA (n=8) with nominally 0 [Ca2+]i and 78 ± 19 pA with 5 µM of [Ca2+]i (n=8). In 

contrast, the cells transfected with mBest2 showed a big Ca2+-activated current. Indeed, the 

currents at -60 mV were -35 ± 8 pA (n=12) with nominally 0 [Ca2+]i  but -2308 ± 309 pA 

with 5 µM of [Ca2+]i (n=26); at +60 mV the currents were 108 ± 28 pA (n=8) with 

nominally 0 [Ca2+]i and 2444 ± 19 pA with 5 µM of [Ca2+]i (n=8, Fig 3.4 C-D). 

The Ca2+-activated current was voltage and time independent and its amplitude 

remained stable for long time after that whole cell was obtained (until 10 min). The 

measured reversal potential was, after correction for liquid junction potential, -2.4 ± 0.4 mV, 

a value in good accordance with the calculated ECl of -1 mV. The I-V relation is almost 

linear with a slight outward rectification: the ratio of the current at +50 mV and at -50 mV 

was 1.24 ± 0.04 (n=45). 

Dose response relations were obtained activating the current with intracellular EGTA 

buffered solutions with various free [Ca2+]i. Currents from different cells were normalized to 

the cell capacitance measured with the method described by Lindau & Neher (1988) and 

dose response relations were fitted with the Hill equation (eq 1.1). At -50 mV the K1/2 was 

0.4 µM and n was 6.6, in good accordance with previous data available on mBest2 (Qu et 

al., 2004), see Fig 3.5). 
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Figure 3.5 Dependence of mBest2 on [Ca2+]i. 
Representative whole-cell recording traces from mBest2 transfected cells with various intracellular free [Ca2+]i 
(A). The amplitude of average density currents at -50 mV is plotted versus [Ca2+]i and fitted with the Hill 
equation with K1/2= 0.4 µM and n= 6.6 (n=5-12 cells, B). 

 

 

3.2.2 Anion selectivity 

 

To confirm that Ca2+-induced current in mBest2-transfected cells was carried by Cl¯, 

all NaCl in the extracellular solution was replaced with sodium gluconate, an anion that is 

impermeable in most Cl¯ channels ([Cl¯]o= 11 mM, Frings et al., 2000). Fig 3.6 A-C shows 

that this ionic substitution caused a big shift in reversal potential toward a more positive 

value in accordance with Nernst equation. The average of reversal potential with gluconate 

as the main extracellular anion was 53 ± 10 mV (n=11) slightly smaller than the calculated 

ECl (~65 mV). The not perfect Nernstian behavior could be due to a slight permeation of 

gluconate or to the presence in HEK-293 of a small endogenous non-selective cation current 

that interfered with the measurement of mBest2 currents. 

The ability to select among various ions is a key feature of ion channels and different 

channels exhibit very different kinds of selectivity. Therefore anion substitutions were used 

to investigate the selectivity of mBest2 current. Chloride ions outside the cells were replaced 
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and the permeability ratios relative to chloride were calculated using the Goldman-Hodgkin-

Katz equation with the following relation:  

o

o

revo

i
ClX X

Cl
RTFEX

ClPP
][
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)/exp(][
][/

−−

−
Δ

=  

where [Cl¯]i is the concentration of chloride in the pipette, [Cl¯]o, [X¯]o are the 

concentrations of anions after ionic substitution, ΔErev is the shift in reversal potential, T is 

the absolute temperature, F is the Faraday constant (~96,4685 C mol-1) and R is the gas 

constant (~ 8.31 J K-1 mol-1). 

mBest2 current exhibited the following permeability sequence: 

SCN¯> I¯ > NO3¯ > Br¯ > Cl¯ > F¯ > MeS¯ (Methylsulfate) 

and the permeability ratios were:  

2.62: 1.79: 1.4: 1.15: 1: 0.56: 0.32 

showing that mBest2 are relatively non-selective anion channels as reported for many native 

Ca2+-activated Cl¯ currents (Hartzell et al., 2005a). A difference to voltage-gated K+ 

channels (that exhibit >100-fold selectivity between ions having radii that differ by less than 

0.5 Å) is that mBest2 channels change their ion selectivity only ~3-fold between ions that 

differ in radius by ~1.2 Å (Fig. 3.7). Furthermore, mBest2 differs from K+ channels in that 

there is no peak in the relationship between ionic radius and permeability. Rather, the 

relationship is monotonic with larger anions being more permeable than smaller anions.  

Permeability ratios provide an estimate of the difference between the hydration 

energy in water and the solvation energy provided by the channel. Because there is no 

current at the reversal potential, this measurement is an indication of the ability of the ion to 

enter the channel. The process of moving from the aqueous environment to the channel pore 

involves exchanging the energy of stabilization of the ion in bulk water for the energy of 

stabilization of the ion by its interaction with the channel. Because ions are stabilized in bulk 

water by shells of water molecules surrounding the ion, stabilization of the ion in water can 

be characterized by its hydration energy (Ghyd). Stabilization of the ion by interaction with 

the pore can involve solvation of the ion by part of the channel protein, as in the case of the 

KcsA channel or other mechanisms (Dawson et al., 1999; Smith et al., 1999). The ease of 

ion permeation is determined by the difference between Ghyd in bulk water and the energy of 

stabilization (or solvation) by the channel. The smaller the difference, the more easily an ion 

enters the channel. Generally, larger ions, that have a lower effective charge density (if the 
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charge is uniformly distributed in the ion) have lower hydration energies. Thus larger ions 

are relatively more permeant than smaller ions. Permeability ratios, however, do not 

measure the ability of the ion to traverse the channel, which is measured by the conductance 

or the slope of the current-voltage relationship. To some extent, the conductance of an ion 

through the channel reflects how rapidly it dissociates from the ligands that stabilize the 

permeant ion in the channel. Figure 3.8 shows the relative conductance of anions through 

mBest2 channel. As reported for other Ca2+-activated Cl¯ channel (Hartzell et al., 2005a; Qu 

& Hartzell, 2000) the relative permeability and conductance sequences may be different. 

The ease with which an ion enters the pore (permeability) depends on the ease with which 

the anion loses its bound water. However, the ease with which an ion passes through the 

channel (conductance) exhibits a bell-shaped relationship to hydration energy. These 

relationships suggest that anions with large hydration energies are poorly conductive 

because they do not enter the channel well (as shown by the PX/PCl versus ΔGhyd plots), 

whereas ions that have small hydration energies are poorly conductive (as shown by the 

GX/GCl versus ΔGhyd plots) because they become lodged in the pore, even though they enter 

the channel easily.  
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Figure 3.6 Ionic selectivity of mBest2 currents. 
Currents in mBest2-transfected HEK-293 cells were activated by 5 µM of free [Ca2+]i. Typical recording with 
symmetrical Cl¯ solution in (A) or after replacing extracellular NaCl with Na-gluconate in (B). The IV 
relationship from the experiment in (A-B) show the shift in Erev (C) indicating that mBest2 current is carried by 
Cl¯. Relative permeability ratios (PX/PCl) of mBest2 were calculated with the Goldman-Hodgkin-Katz equation 
from measured shifts of Erev (D). 
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Figure 3.7 Selectivity and permeation through mBest2 channel. 
Relative permeability of anions through mBest2 as function of ionic radius compared with the permeability of 
cations through the Shaker K+ channel.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Relative conductance of anions through mBest2 channel. 
Conductance  was measured as the slope of the current-voltage relationship calculated between Erev and Erev 

+50 mV (or Erev -50 mV) in symmetrical Cl¯ solution or in bionic conditions after substitution of extracellular 
NaCl with solutions containing other anions as sodium salts. 
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3.2.3 Pharmacological properties  

 

Specific blockers for calcium-activated chloride channels with high binding affinity 

are not available. Most blockers require high concentrations to completely block Cl¯ 

currents and may have undesirable side effects. Several compounds have been used to 

characterize the pharmacological profile of mBest2 current. First I will describe the results 

of application of the drugs to the extracellular side. 

The most common blocker for native Ca2+-activated Cl¯ currents is niflumic acid 

(NFA). It blocks Ca2+-activated Cl¯ currents in Xenopus oocyte in the 10 μM range (Qu & 

Hartzell, 2001) and at 300-500 μM the Ca2+-activated Cl¯ currents of OSNs (Lowe & Gold, 

1993b; Reisert & Matthews, 1998; Reisert et al., 2005; Boccaccio & Menini, 2007; Kleene, 

1993).  

Figure 3.9 A shows the effect of application of 1 mM of NFA on mBest2 current. 

NFA rapidly blocked the Ca2+-induced current measured at -50 mV and, after NFA removal, 

the current slowly returned toward its initial value. The block by NFA did not show a 

voltage-dependence and, on average, the extracellular application of 1 mM NFA blocked 75 

± 5 % of the Ca2+-activated current at -50 mV and 77 ± 4 %.at +50 mV (n=15; Fig. 3.9 B).  

The study of the dose-dependence of the extracellular blocking effect of NFA in the 

range from 10 μM to 1 mM revealed a more complex phenomenon. Current blockage by 

NFA developed with time and reached almost the same steady-state blockage level at every 

tested concentration, whereas the time necessary to reach steady state was longer as the NFA 

concentration was decreased. This behavior has been observed both at -50 mV and +50 mV 

(Fig 3.9 C-E). This particular behavior could suggest that NFA, after crossing the plasma 

membrane, blocks mBest2 by interaction with an intracellular binding site. However the 

precise mechanism of NFA blockage is not clarified at the molecular level yet. 

Two other structurally-related blockers were tested: 4-acetamido-4'-isothiocyanato-

stilben-2,2'-disulfonate (SITS) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid 

(DIDS). SITS is a well characterized blocker of Ca2+-activated Cl¯ current involved in 

olfactory transduction at 2-5 mM concentration (Lowe & Gold, 1993b; Kurahashi & Yau, 

1993 ;Kurahashi & Menini, 1997). DIDS is able to block the Ca2+-activated Cl¯ currents in 

Xenopus oocytes with a K1/2 of 48 µM at +100 mV and previous report showed that it also 

blocks mBest2-induced currents (Qu et al., 2004; Qu & Hartzell, 2001). Figure 3.10 A 
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shows the effect of application of 2 mM of SITS on mBest2 currents. SITS rapidly blocked 

the Ca2+-induced current measured at -50 mV and, after its removal, the current rapidly 

returned toward its initial value. The extracellular SITS blockage was measured in the range 

from 10 µM to 5 mM and it was rapid and reversible. A fit of the data with the Hill equation 

gave a K1/2 of 0.4 mM and a Hill coefficient of 0.7 (Fig. 3.10 B). Similar results were 

obtained with DIDS. mBest2 showed a higher sensitivity to DIDS with a K1/2 of 44 µM and 

a Hill’s coefficient of 0.7. 

Finally, 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) was tested. NPPB is 

reported to block the Ca2+-activated Cl¯ currents in Xenopus oocyte with a K1/2 of 22-68 µM 

(Wu & Hanill, 1992). The application of 100 µM was able to rapidly blocked the mBest2-

induced current both at -50 mV and +50 mV (Fig 3.12). After the removing of the drug the 

current took a long time to recover to the initial value (up to 5 min). On average the 

extracellular application of 100 µM NPPB blocked 87 ± 13 % of the Ca2+-activated current 

at -50 mV and 86 ± 13 % at +50 mV (n= 5, Fig. 3.12 B). 

The intracellular blocking action of some compounds has been also tested by adding 

them in the patch pipette. Figure 3.13 A shows representative current recordings of mBest2 

activated with 5 µM [Ca2+]i in control condition, with 2 mM SITS or with 300 µM NFA in 

pipette. Amplitude of currents recorded with SITS in the pipette did not shown a significant 

reduction in comparison with recordings in control condition, whereas the addition of NFA 

caused a big reduction of mBest2-mediated currents. Indeed at -50 mV the mean current was 

-2499 ± 362 pA in control solution, -2314 ± 251 pA but only -168 ± 30 pA with NFA (n=6-

7, Fig 3.13 D/E). The same effect was observed also at +50 mV. 
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Figure 3.9 Extracellular blockage by NFA on mBest2 currents. 
Current in mBest2-transfected HEK-293 cells were activated by 5 µM of free [Ca2+]i.1 mM of NFA was bath-
applied for the time indicated (A). Mean ratios between the amplitude of the currents in control condition and 
after application of 1 mM of NFA at -50 mV and +50 mV (n= 15, B). Time course of blockage of mBest2 
currents by various NFA concentrations at -50 mV (C) and at +50 mV (D). Time necessary to block half of the 
current (t½) at various NFA concentration (n=2-5, E). 
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Figure 3.10 Extracellular blockage by SITS on mBest2 currents. 
mBest2-expressing HEK-293 cells were voltage clamped at -50 mV with 5 µM of free [Ca2+]i. 2 mM of SITS 
were bath-applied for the time indicated (A). Sensitivity of mBest2 currents to extracellular SITS. Amplitude 
of the currents in the presence of various SITS concentrations normalized to control currents was plotted 
versus SITS concentration and fitted with the Hill equation with K1/2= 380 µM and n= 0.7 (n= 5-9 cells). 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Extracellular blockage by DIDS on mBest2 currents. 
mBest2-expressing HEK-293 cells were voltage clamped at -50 mV with 5 µM of free [Ca2+]i. 200 µM of 
DIDS were bath-applied for the time indicated (A). Sensitivity of mBest2 currents to extracellular DIDS. 
Amplitude of the currents in the presence of various DIDS concentrations normalized to control currents was 
plotted versus DIDS concentration and fitted with the Hill equation with K1/2= 44 µM and n= 0.7 (n= 5-9 
cells). 
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Figure 3.12 Extracellular blockage by NPPB on mBest2 currents. 
mBest2-expressing HEK-293 cells were voltage clamped at -50 mV with 5 µM of free [Ca2+]i.1 mM of NPPB 
was bath-applied for the time indicated (A). Mean ratios between the amplitude of the currents in control 
condition and after application of 1 mM of NPPB at -50 mV and +50 mV (n= 5, B). 
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Figure 3.13 Intracellular blockage by NFA and SITS on mBest2 currents. 
Representative mBest2 current traces activated by 5 µM of free [Ca2+]i in control condition (A), with 2 mM 
SITS in pipette (B) or 300 µM NFA (C). Mean steady state current amplitudes measured at -50 mV (D) and at 
+50 mV (E) in control condition and with blockers in the pipette solution (n=6-7). 

 

 

3.3 Properties of the native calcium-activated chloride channel 
 

The electrophysiological properties of Ca2+-activated Cl¯ channels involved in 

olfactory transduction were studied in acutely dissociated mouse OSNs using inside-out 

patches excised from dendritic knob /cilia. By this method it is possible to isolate the 

channels responsible for odorant-induced currents and selectively activate them by bath 

application of Ca2+ and cyclic nucleotide. 

Figure 3.14 D shows the typical recordings obtained from an inside-out patch using 

symmetrical NaCl, divalent-free solution at holding potentials of -50 mV and +50 mV. The 

bath application of cAMP rapidly activated the CNG channel generating an inward non-
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inactivating current at -50 mV and an outward current at +50 mV. Similarly the bath 

application of a solution containing 100 µM of free Ca2+ activated the Cl¯ channel. In this 

recording condition the CNG and Ca2+-activated Cl¯ currents had similar amplitude. Indeed, 

at -50 mV the CNG current was -71 ± 28 pA (n=19) and the Cl¯ current was -52 ± 15 pA 

(n=29, Fig 3.14 E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Recordings of ion channels involved in olfactory transduction. 
Acutely dissociated mouse OSNs were used to record ion channels responsible for odorant-induced receptor 
current using inside-out patches excised from dendritic knob and cilia (A-C). Representative recording of 
channel activity: cAMP activated the CNG channel whereas Ca2+ gated the Cl¯ channel (D). Mean amplitude 
of peak currents mediated by transduction ion channels (n=19-29, E). 
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3.3.1 Calcium sensitivity 

 

The Cl¯ channel in excised inside-out patches from OSNs showed a reversible 

reduction of the current with a time course of some seconds after activation by Ca2+. This 

reduction was present at every [Ca2+] tested and it can be rescued by removing of Ca2+ for at 

least 1 minute. This effect was observed in previous studies in rat (Reisert et al., 2003) and 

in mouse (Reisert et al., 2005) whereas another report in rat by Hallani et al. (1998) did not 

found any inactivation. In contrast, recordings from amphibian OSNs with the excised 

cilium technique did not show any Cl¯ current inactivation (Kleene, 1993; Kleene & 

Gesteland, 1991). These differences could be due to species-specific properties of the 

channel or to the loss of some component in inside out patches from rodent OSNs that is 

preserved in the frog excised cilium. 

The dose response to [Ca2+]i was determined by application on the same patch of 

different solutions with various free [Ca2+]i for 3 s at a holding potential of -50 mV or + 50 

mV using symmetrical LiCl solutions (Fig 3.15 A-B). Li+ was used to disable the Na+/Ca2+ 

exchanger present in cilia of OSN (Reisert et al., 2003; Reisert & Matthews, 1998), so that 

the Ca2+ concentration near the membrane patch could be properly controlled by the bath 

solution. The peak normalized currents were plotted versus [Ca2+] and fitted with the Hill 

equation (Fig 3.15 C-D). At -50 mV the K1/2 was 4.7 µM and n was 2.5, whereas at +50 mV 

K1/2 was 2.6 µM and n was 3.2.  

The slight decrease in K1/2 at positive voltages could in principle reflect a voltage 

sensitivity in the Ca2+ binding step or the gating step, while the Hill coefficient suggest that 

at least 3 Ca2+ ions are necessary to gate the channel.  

The IV relationship was measured using a ramp protocol from -100 mV to +100 mV 

and back with a frequency of 1 mV/ms. To avoid possible bias due to Ca2+-dependent 

inactivation the ramp protocol was always delivered after 500 ms from application of the 

Ca2+ containing solution. In symmetrical Cl¯ solutions the channel showed a slight inward 

rectification, indeed the ratio of the current at +50 mV and at -50 mV was 0.61 ± 0.08 (n=9, 

Fig 3.16). 
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Figure 3.15 Dependence of olfactory Cl¯ channels on [Ca2+]i. 
A membrane patch was excised from the dendritic knob/cilia of an OSN, and the cytoplasmatic side was 
exposed to the indicated free [Ca2+] at -50 mV (A) or at +50 mV (B). Normalized current was plotted versus 
[Ca2+]i and fitted to Hill equation. At -50 mV K1/2 was 4.7 µM and n was 2.5 (C), whereas at +50 mV K1/2 was 
2.6 µM and n was 3.2 (D). 
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Figure 3.16 IV relationship of olfactory Cl¯ channel. 
The IV relation was measured using a ramp protocol delivered after 500 ms from activation by Ca2+ application 
(A). The Cl¯ channel exhibited a slight inward rectification. 

 

3.3.2 Single channel conductance 

 

Single-channel measurements are not feasible because the unitary current is too 

small. Therefore stationary noise analysis was performed using Cl¯ current recorded at 

various [Ca2+]i. Each trace was subdivided in 100 ms intervals to minimize the effect of 

Ca2+-dependent inactivation and the mean and the variance was calculated. The data were 

fitted with the following equation: 

N
IIi

2
2 −=σ  

where σ2 is the variance of the current, i is the single channel current, N is the number of the 

channels in the patch and Ī is the mean current (Fig. 3.17 A). The single channel 

conductance of the olfactory Cl¯ channel at -50 mV was 1.6 ± 0.3 pS (n=3). The maximum 

open probability was calculated with the relation: 

iN
IPopen

max
max =  

and it results 0.81 ± 0.13 (n=3).  

The same procedure was applied to CNG channels with symmetrical LiCl solution 

and the single channel conductance at-50 mV was 14 ± 1 pS (n=13) and the maximum open 

probability was 0.84 ± 0.05 (n=13, Fig 3.17 B). 
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Figure 3.17 Single-channel properties of olfactory transduction channels. 
The single-channel conductances of Cl¯ channel (A) and CNG channel (B) were estimated by stationary noise 
analysis. 

 

3.3.3 Anion selectivity 

 

As for mBest2, the anionic selectivity of the Ca2+-activated Cl¯ channel of OSNs 

was measured. The Cl¯ channels were activated previously in each patch first with Ca2+ in a 

solution containing 140 mM of NaCl (as in the pipette) and in a solution in which NaCl was 

replaced by the Na+ salt of other anions. The IV relation was measured as reported in Fig 

3.18 A and the shift in reversal potential was used to calculate the permeability ratio 

between a given anion and chloride using the Goldman-Hodgkin-Katz equation with the 

following relation: 
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mBest2 current exhibited the following permeability sequence: 

SCN¯> I¯ > NO3¯ > Br¯ > Cl¯ > MeS¯ (Methylsulfate) 

and the permeability ratios were:  

14.58: 4.69: 3.44: 2.20: 1: 0.12 

Also for the olfactory Cl¯ channel the selectivity for different anions is relatively 

low. Moreover, as reported for mBest2 the bigger anions, with lower hydratation energy, are 

more permeable indicating that the permeation mechanism is the same in both channels. 
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Figure 3.18 Ionic permeabiliy of olfactory Cl¯ channels. 
(A-B) A membrane patch was excised from the dendritic knob/cilia of an OSN and the Cl¯ channel was 
activated by bath application of Ca2+ with symmetrical Cl¯ solution (black traces) or with solution in which 
most Cl¯ was replaced with MeS (A) or with I¯ (B). Relative permeability ratios (PX/PCl) were calculated with 
the Goldman-Hodgkin-Katz equation from measured shifts of Erev (C, n=5-8). 

 

 

3.3.4 Pharmacological properties 

 

Previous studies have shown that the Cl¯ component of the olfactory transduction 

current is blocked by 300 µM-1 mM of NFA or 2-5 mM of SITS (Reisert et al., 2005; Lowe 

& Gold, 1993b; Kurahashi & Yau, 1993; Kurahashi & Menini, 1997). Here, these 

compounds were applied at the intracellular side of patches in the inside-out configuration. 

The application of 1 mM of NFA within the Ca2+ solution was able to completely block the 
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Ca2+-activated Cl¯ current (Fig 3.19 A). Ramp protocol demonstrated that the blockage is 

not voltage-dependent (Fig 3.19 C). In contrast, as reported for mBest2, intracellular 

application of 2 mM SITS was not able to significantly block the Cl¯ channel at any 

potential tested (Fig 3.19 B-D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Pharmacology of olfactory Cl¯ channels. 
Olfactory Cl ¯ channels were activated by 100 µM of Ca2+ at -50 mV.  In the same patch bath application of 1 
mM of NFA with Ca2+ failed to activate the channel (A). The block was completely reversible (wash, gray 
trace in A) and voltage-independent as measured with voltage ramp protocol (C). On the contrary the bath 
application of 2 mM of SITS did not cause the block of olfactory Cl¯ channels. 
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3.4 Odorant-induced responses in mBest2-null mice 
 

To investigate the role of mBest2 in olfactory transduction, a mose line in which 

mBest2 is genetically inactivated was used. The odorant sensitivity of OSNs has been 

measured by recording the response to brief odorants pulses (100 ms) using 

elecetroolfactogram (EOG) recordings (Scott & Scott-Johnson, 2002). Odorants were 

delivered in the vapor phase to the surface of olfactory epithelium. Each of three commonly 

used odorants, amylacetate, acephonenone and cineole gave very similar results. Figure 3.20 

shows EOG amplitude responses to 2.5 M amylacetate (a saturating concentration, see 

below) from 13 locations across the turbinates. The EOG amplitude varied at different 

recording locations, but there was no difference between the wild-type and the mBest2-/- 

mice in comparable locations. 

Dose responses to odorant stimulation were obtained by delivering the vapor phase 

of odor solutions at concentrations raging from 2.5x10-5 M to 2.5 M to the olfactory 

epithelium. Figure 3.21 A shows the representative recordings obtained in wild type and 

mBest2-/- mice with amylacetate. The maximum EOG amplitudes were similar in wild type, 

0.74 ± 0.13 mV (n=14) and mBest2-/-, 1.16 ± 0.33 mV (n=13). Also the dose response 

relations were very similar with an EC50 of ~ 10-3 M both for wild type and mBest2-/- (Fig 

3.21 B). 
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Figure 3.20 Sensitivity to odorant stimulation in mBest2-null mice 
Averaged EOG amplitudes to a 100 ms pulse of odorant vapor from a solution containing 2.5 M amylacetate 
solution measured at 13 different locations along turbinate (B). These locations are indicated in the photograph 
in (A). D, dorsal; A, anterior. 

 

 

 

 

 

 

 



__________________________________________________________________3. Results 

 77

A 

B 

C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Dose-response of EOG responses in mBest2 null mice. 
The epithelium was exposed to 100 ms pulses of odorant vapor of increasing concentrations of amyl acetate 
solutions. Representative EOG recordings from wild type (A, in black) and mBest2-/- (A, in red) mice. 
Normalized EOG responses were plotted versus the odorant concentration (B). Wild type and mBest2-/- had a 
similar dose-response. 
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4. Discussion 

 

 
 

The olfactory transduction is the molecular cascade, occurring in the cilia of OSNs, 

that transforms the binding of odorant molecules to a specific odorant receptor into a graded 

changing of membrane potential through the activation of two different ion channels: the 

CNG channel and the Ca2+-activated Cl¯ channel (Schild & Restrepo, 1998; Menini et al., 

2004; Kleene, 2008). While the CNG channel has been characterized at molecular level 

(Kaupp & Seifert, 2002; Pifferi et al., 2006a), the molecular identity of the Ca2+-activated 

Cl¯ channel remains elusive. The data presented in this Thesis reveal the mBest2 could be a 

component of the Ca2+-activated Cl¯ channel involved in olfactory transduction.  

mBest2 is expressed in mature OSN and it is targeted to the cilia of OSNs, where it 

colocalizes with CNGA2, the principal subunit of the CNG olfactory channel responsible for 

the primary transduction current. Electrophysiological properties of Ca2+-activated Cl¯ 

currents of native channels in dendritic knob/cilia of OSNs and of mBest2 expressed in 

HEK-293 cells are remarkably similar. In fact, both currents have the same anion 

permeability sequence, current–voltage relations quite close to linearity, voltage-

independent and side-specific blockage by NFA and SITS but a Ca2+ sensitivity difference 

of one order of magnitude. The data of odorant sensitivity obtained by EOG recordings from 

mBest2-/- mice do not show significant differences from wild-type mice indicating that the 

lack of mBest2 does not produce a big impairment of olfactory transduction. It is possible to 

speculate that mBest2 is a modulatory subunit of Ca2+-activated Cl¯ channel of OSNs and 

its absence does not cause an effect detectable by EOG recording. 
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Comparison of functional properties between Ca2+-activated Cl¯ currents from OSNs 

and mBest2-mediated currents 

To functionally compare native of Ca2+-activated Cl¯ channels of OSNs and 

heterologously expressed mBest2 channles, we performed an electrophysiological analysis 

of the two currents. A side-by-side comparison in excised inside-out patches for both types 

of Ca2+-activated Cl¯ channels was not possible, because we did not detect any measurable 

current in inside-out excised patches from HEK-293 cells expressing mBest2. Therefore, we 

determined mBest2 functional properties with the whole-cell voltage–clamp technique. 

Although several properties between native and mBest2 currents were very similar, the non-

perfect match could be due to several reasons. First, the use of different recording 

configurations could produce different results. Second, there could be a lack of 

posttranslational modification of mBest2 in heterologous systems, such as phosphorylation 

or sumoylation, that can modulate ion channels (Muller et al., 2001; Rajan et al., 2005). 

Third, ion channels are often composed of more than one type of subunit and/or have 

additional regulatory proteins that modify the functional properties. 

The most significant difference between the two currents was found to be their 

sensitivity to intracellular Ca2+. In fact, currents were half-maximal at a Ca2+ concentration 

of 0.4 µM for mBest2, similar to previous results (Qu et al., 2004; Qu et al., 2003), whereas 

native currents required a higher Ca2+ concentration, 4.7 µM, in general agreement with 

micromolar values measured in rat (Reisert et al., 2003) and mouse (Reisert et al., 2005). 

Dose–response relations obtained from isolated frog olfactory cilia also showed a similar 

K1/2 of 4.8 µM (Kleene & Gesteland, 1991). Moreover native Ca2+-activated Cl¯ channels 

showed a higher Ca2+ sensitivity at positive voltage (4.7 µM at -50 mV vs 2.6 µM at +50 

mV) in accordance with previous results both in frog and rodents OSNs (Kleene & 

Gesteland, 1991; Reisert et al., 2003; Reisert et al., 2005). In contrast, mBest2 shows almost 

the same Ca2+ sensitivity at each tested voltage (Qu et al., 2004). Another study by Hallani 

et al. (1998) measured electrophysiological properties of a Ca2+-activated Cl¯ current from 

rat excised patches that did not show similar characteristics to those reported here and by 

Reisert et al., (2003;2005). Finally as previously reported (Reisert et al., 2003; Reisert et al., 

2005) the native Ca2+-activated Cl¯ current slowly inactivated in the presence of a constant 

Ca2+ concentration when measured in excised patches, whereas mBest2 currents in whole-

cell recordings did not show any time-dependent change in the presence of any given Ca2+ 
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concentration, as described before (Qu et al., 2004; Qu et al., 2003; Qu & Hartzell, 2004; 

Qu et al., 2006). However, in isolated frog olfactory cilia, Kleene and Gesteland (1991) did 

not find any current inactivation during prolonged exposure to Ca2+. The difference in 

inactivation properties may reflect specific differences between amphibian and mammalian 

channels or may indicate that some factor remains inside the isolated cilia, whereas it is lost 

upon excision of the membrane patch. It also unknown if this inactivation occurs also in 

intact OSNs, however it is possible to speculate that also this phenomenon could be involved 

in desensitization after long-lasting odor stimulation. In contrast, in fast adaptation it seems 

that Ca2+-activated Cl¯ channels are not involved (Boccaccio et al., 2006; Kurahashi & 

Menini, 1997). 

The current–voltage relations activated by high Ca2+ concentrations in symmetrical 

Cl¯ solutions were quite close to linearity, with only a moderate inward rectification in 

native channels, as reported by Kleene & Gesteland (1991) and Reisert et al. (2005), and a 

slight outward rectification in mBest2 currents. Previous reports found a more linear current-

voltage relation for mBest2 currents (Qu et al., 2004; Qu & Hartzell, 2004).  

Single-channel events have not been directly measured because of small unit 

conductances. The single-channel conductance has been estimated by noise analysis to be 

1.6 pS for native channels, in good agreement with previous estimates of 0.5–1.7 pS (Reisert 

et al., 2003; Larsson et al., 1997). Data from endogenous Drosophila bestrophin in S2 cells 

and heterologous expression of dBest1give show a single channel conductance of about 2 pS 

(Chien et al., 2006), very similar to those of native olfactory Ca2+-activated Cl¯ channel. 

Both native olfactory and mBest2 currents exhibited the same anion permeability 

sequence SCN¯>I¯>NO3¯>Br¯>Cl¯>>MeS¯, although the calculated permeability ratios 

were not identical showing that native Ca2+-activated Cl¯ channel is more selective than 

mBest2. This permeability sequence corresponds to the Eisenman ‘‘weak field strength’’ 

lyotropic series (Eisenmann & Horn, 1973), indicating that in both channels, the interaction 

between the permeant ion and the channel is weak, since permeability is related to the ease 

with which the permeant ion leaves the bulk solution and enters the channel. These data are 

in general agreement with previous measurements from mBest2 current and from rat OSNs 

(Qu et al., 2004; Qu & Hartzell, 2004; Bakall et al., 2008).  

The blocking properties of NFA and SITS were revealed to be similar in native 

olfactory and mBest2 currents. From the extracellular side, both NFA and SITS block the 
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mBest2 current in the same range of concentration in which the native current is blocked 

(Kurahashi & Yau, 1993; Kurahashi & Menini, 1997; Lowe & Gold, 1993b; Reisert & 

Matthews, 1998; Reisert et al., 2005) From the intracellular side, only NFA blocks both 

native Ca2+-activated Cl¯ channel and mBest2, whereas SITS does not have a significant 

effect, in agreement with previous measurements in frog olfactory cilia (Frings et al., 2000; 

Kleene, 1993).  

 

Mechanism of Ca2+ activation. 

Native olfactory channels appear to be rapidly activated by Ca2+ in inside-out patches 

(Reisert et al., 2003; Reisert et al., 2005) and in isolated olfactory cilia (Kleene, 1993; 

Kleene & Gesteland, 1991), whereas similar experiments for Ca2+ activation of mBest2 are 

missing. In a recent study Tsunenari et al. (2006) have shown that hBest4 can be activated 

by Ca2+ in excised inside-out patches, indicating that diffusible messengers or protein 

phosphorylation are not implicated in Ca2+ activation. However, because the current 

activates and deactivates very slowly in response to Ca2+ (time constant of 10–20 seconds), 

indirect Ca2+ activation through a membrane-associated messenger cannot be excluded. 

Moreover data from endogenous Drosophila bestrophin in S2 cells and heterologous 

expression of dBest1 showed that it is possible to activate the channel in inside-out 

configuration (Chien et al., 2006).Also in these cases the time course of activation is quite 

slow (half time ~ 1 min) but it can be faster, at least two-fold, by addition of ATP to Ca2+ 

solution, suggesting the involvement of some ATP-dependent enzymatic process (Chien et 

al., 2006). However Kranjc et al. (unpublished results) found that specific mutation (D301A, 

D304A) in a stretch of negative charged aminoacids, located in the C-terminus immediately 

after the last transmembrane domain, completely abolished the Ca2+ sensitivity of mBest2, 

suggesting that a direct binding of Ca2+ is necessary to gate mBest2. 

 

Odorant response and mBest2 

The odorant-induced response was analyzed in mBest2-/- mice by EOG recording. 

The overall responses were not significantly different in comparison with wild-type mice 

suggesting that the absence of mBest2 does not cause a big impairment of olfactory 

transduction. However it is not possible to exclude that the differences are too weak to be 

detectable by EOG or that some compensatory mechanisms occur in mBest2-/- mice. Single-
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cell recording will be necessary to better clarify the role of mBest2 in odorant-induced 

response in mouse OSNs. 

 

Conclusions 

The colocalization of mBest2 with CNGA2 on the cilia of OSNs, together with the 

functional data, strongly indicates that mBest2 is a component of Ca2+-activated Cl¯ channel 

involved in olfactory transduction. Future studies should examine the involvement of 

additional components in forming and/or modulating the native olfactory channel. Recently 

is has been found a novel protein, TMEM16A, that is able to mediate Ca2+-activated Cl¯ 

current in different types of epithelial cells and in Xenopus oocyte has been found (Caputo 

et al., 2008; Schroeder et al., 2008; Yang et al., 2008). Very interestingly a homolog of this 

protein, TMEM16B, has been reported to be expressed in olfactory epithelium (Sammeta et 

al., 2007). It is possible to speculate possible that interactions of mBest2 with this protein 

could be important to generate the Ca2+-activated Cl¯ current of OSNs. Indeed, recently it 

has been found that hBest1 can also bind voltage-gated Ca2+ channel Cav 1.3 and modulate 

its biophysical properties, suggesting that bestrophins could act a multifunctional regulator 

of membrane permeability as previously reported for CFTR (Hartzell et al., 2008; Yu et al., 

2008; Mehta, 2005; Schwiebert et al., 1999). 
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