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Abstract

The thesis is concerned with the construction and the study of moduli spaces
of holomorphic Lie algebroid connections. It provides a classification of
sheaves of almost polynomial filtered algebras on a smooth projective com-
plex variety in terms of holomorphic Lie algebroids and their cohomology
classes. This permits to build moduli spaces of holomorphic Lie agebroid
connections via Simpson’s formalism of Lambda-modules. Furthermore, the
deformation theory of such connections is studied, and the germ of their
moduli spaces in the rank two case is computed when the base variety is a
curve.
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Résumé

La thèse est consacrée à la construction et à l’étude des espaces de mod-
ules des connexions holomorphes algébroïdes de Lie. On commence par une
classification des faisceaux d’algèbres filtrées quasi-polynômiales sur une var-
iété complexe lisse projective en termes d’algébroïdes de Lie holomorphes et
de leurs classes de cohomologie. Cela permet de construire les espaces de
modules de connexions holomorphes algébroïdes de Lie par le formalisme
des Lambda-modules de Simpson. Par ailleurs, on étudie la théorie des dé-
formations de telles connexions, et on calcule le germe de leur espace de
modules dans le cas de rang deux, lorsque la variété de base est une courbe.
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Chapter 1

Introduction

The moduli spaces of coherent sheaves over an algebraic variety X are
geometric objects parametrizing the isomorphism classes of coherent OX -
modules. Their study is one of the leading themes of contemporary alge-
braic geometry. There are various precise definitions for these spaces. Some
of these introduce a notion of (semi)stability of coherent sheaves such that
one can construct moduli spaces of (semi)stable coherent sheaves by using
GIT techniques. As a consequence, one obtains moduli spaces that are quasi
projective schemes.

Besides moduli spaces of sheaves, one is interested in moduli spaces of
sheaves with some additional structure, as flat connections or Higgs fields. A
connection on a coherent sheaf E is a sheaf map ∇ : E → E ⊗ ΩX satisfying
the Leibniz rule ∇(fs) = f∇s + s ⊗ df for any f ∈ OX and s ∈ E . This
is equivalent to have a linear map TX → DerOXE . A connection is said flat
or integrable when this map is a Lie algebra morphism. A Higgs field on a
coherent sheaf E is a OX -linear morphism φ : E → E ⊗ΩX satisfying the in-
tegrability condition φ∧φ = 0. For X a complex curve of genus greater then
1, it was shown in [15] that an open part of the moduli space of Higgs sheaves
can be identified with the cotangent bundle of the moduli space of vector
bundles on X, and that the induced symplectic structure is an algebraically
complete integrable system. These constructions have then been generalized
in many directions, and nowadays moduli spaces of Higgs sheaves are impor-
tant in many branches of algebraic geometry and mathematical physics (for
example geometric Langlands program, non abelian Hodge theory). Moduli
spaces of flat connections are much studied too, since they play a fundamen-
tal role in the non abelian Hodge correspondence and they are diffeomorphic
to the moduli spaces of representations of the fundamental group of X (see
[35]).

In [34], Simpson develops a uniform approach to construct moduli spaces
of sheaves with structures as this kind: namely, let X be a smooth algebraic
variety and Λ a sheaf of filtered algebras satisfying some axioms that we
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12 CHAPTER 1. INTRODUCTION

will state in Section 3.2. Then Simpson shows how to construct, for each
numerical polynomial P , a quasi projective scheme MΛ(P ) parametrizing
semistable Λ-modules. By varying the algebra Λ, one obtains moduli spaces
for a large class of objects. For example, for Λ = OX , semistable Λ-modules
are just semistable coherent sheaves, while for Λ = DX , the sheaf of differen-
tial operators of X, Λ-modules are flat connections, and for Λ = SymOXTX
semistable Λ-modules are semistable Higgs sheaves. Moreover, via this the-
ory one can construct other interesting spaces. For example, when Λ is the
one parameter deformation of the symmetric algebra SymOX into DX , the
corresponding moduli spaceMΛ(P ) parametrizes semistable λ-connections,
and realizes the twistor space of the hyperkähler structure of the moduli
space of Higgs bundles (see [36]).

In this thesis, the moduli spaces of Λ-modules are the main object of
study. In particular, we give them another interpretation, proving that they
are in fact moduli spaces of holomorphic Lie algebroid connections.

Among the axioms that the sheaves of algebras Λ have to satisfy, there
is the almost commutativity. We say that a filtered k-algebra A is almost
commutative when its associated graded algebra is commutative. It is well
known that the first graded piece Gr1A of an almost commutative filtered k-
algebra carries naturally a structure of (k,R)Lie-Rinehart algebra, for R =
A(0). A (k,R)-Lie-Rinehart algebra L is a k-Lie algebra carrying an R-
module structure and acting on R by derivations in a compatible way. Lie-
Rinehart algebras are the algebraic analogues of Lie algebroids, and we will
see that the almost commutativity of Λ induces naturally a holomorphic Lie
algebroid structure on Gr1Λ.

Lie algebroids are a generalization of both Lie algebras and the tangent
bundle of a manifold: on one side they are the infinitesimal objects associated
to Lie groupoids, just as Lie algebras are the infinitesimal objects associated
to Lie groups; on the other side, they are naturally vector bundles over a
manifold with a morphism to the tangent bundle of the manifold, and this
allows to generalize many constructions of differential geometry.

Holomorphic Lie algebroids are the generalization of smooth Lie alge-
broids to the holomorphic case. One constructs their theory in a similar
way to the theory of complex manifolds, and many important features of the
latter generalize to holomorphic Lie algebroids. In particular, the cohomo-
logical theory of a holomorphic Lie algebroid L is very rich: the cohomology
groups H i(L;C), defined as the hypercohomology of a suitable complex,
carry a natural filtration F pH i(L;C) similar to the Hodge filtration of the
cohomology of a complex variety. Moreover, there are generalization of the
holomorphic De Rham theorem, Dolbeault theorem, etc. (see for example
[20] and [7]).

In particular, one can generalize to holomorphic Lie algebroids the notion
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of a holomorphic connection: for a holomorphic Lie algebroid L, a holomor-
phic L-connection on a coherent OX -module E is a sheaf map∇ : E → E⊗L∗.
This is equivalent to having a linear map L → DerOXE , and one says that
the L-connection is flat or integrable when it is a morphism of Lie algebras.

One of the main results of this thesis is a generalization of [37] leading to
a classification of sheaves of filtered algebras Λ: first to any Λ we naturally
associate the short exact sequence

0→ OX → Λ(1) → Gr1Λ→ 0

that, since Λ is almost commutative, is an extension of holomorphic Lie
algebroids. Then we generalize Sridharan’s construction of twisted envelop-
ing algebra to associate to any of such extensions a sheaf of filtered al-
gebras. Finally we show that these two constructions are inverse to each
other. Thus, since holomorphic Lie algebroids extensions are parametrized
by F 1H2(L;C), we obtain

Theorem 1. There is a one to one correspondence between

• pairs (Λ,Ξ), where Λ is a sheaf of filtered algebras satisfying the axioms
we state in Section 3.2 and Ξ an isomorphism of graded algebras be-
tween GrΛ and the symmetric algebra over the first graded piece Gr1Λ;

• holomorphic Lie algebroid extensions where the first term equal OX ;

• pairs (L,Σ), where L is a holomorphic Lie algebroid and Σ is a coho-
mology class in F 1H2(L,C).

Then we see that for a sheaf of algebras Λ corresponding to the pair
(L,Σ), a Λ-module structure on a coherent OX -module E is equivalent to
a collection of holomorphic L-connections on E satisfying an integrability
condition involving the cohomology class Σ.

As a consequence, we deduce from the theory of Λ-modules a construc-
tion of moduli spaces for semistable flat L-connections for any holomorphic
Lie algebroid L. We obtain an interesting application of this to generalized
complex geometry [13]: a generalized complex structure on a smooth mani-
fold M is defined in terms of a maximal isotropic subspace L ⊆ TM ⊕ T ∗M ,
where the latter is equipped with the Courant algebroid structure. Since L is
maximal isotropic, the Courant bracket restricts to a Lie algebroid structure.
When M is a complex manifold and Π is a Poisson bivector on M , there is
a natural way to associate to Π a generalized complex structure LΠ on M ,
and it turns out that actually LΠ is induced by a holomorphic Lie algebroid
LΠ (see [20]). For L a generalized complex structure, flat L-connections on
vector bundles are called generalized holomorphic bundles. So we see that
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our construction provides moduli spaces for semistable generalized holomor-
phic bundles, with respect to generalized complex structures associated to
holomorphic Poisson bivectors.

In the latest chapters of the thesis, we adress problems of deformation
theory for Lie algebroid connections. The theory of deformations of coherent
sheaves is well estabilished: the first order deformations of a coherent sheaf
E over a smooth projective variety X are naturally parametrized by the
group Ext1OX (E , E), while obstructions to integrate a first order deformation
to higher orders lie in Ext2OX (E , E) (cf. [6], [14]). This is a manifestation of
the general theory of deformation functors, that associates to a deformation
problem a differential graded Lie algebra (DGLA) L•, and says that the
tangent space to the deformation functor is H1(L•), while an obstruction
theory is given by H2(L•) and the Maurer-Cartan equation (cf. [29]).

In [26] these results are generalized to the case of (integrable) connections
with poles along a divisor, and we will further generalize these results to L-
connections for L any holomorphic Lie algebroid on X. In particular, we
will find that the DGLA associated to the deformation functor of the L-
connection (E ,∇) is the total complex computing the hypercohomology of
the complex

E ndE → E ndE ⊗ ΩL → E ndE ⊗ Ω2
L → . . . ,

where the differential is given by the L-connection induced by ∇ on E ndE .
We will finally use this result and Luna’s slice theorem [24] to study

the local structure of the moduli spaces in a simple case: for X a smooth
projective curve and L = TX the canonical Lie algebroid, we will try to
understand the structure of the moduli space MX(2, 0) around the “most
degenerate point” z0 = (O⊕2

X , d). We will give explicit equations for K2//H,
where K2 is obs−1

2 (0), the variety defined by the degree 2 homogeneous part
of the Kuranishi map of of z0. If the higher degree terms of the Kuranishi
map vanish, as in the genus 1 case, or the deformation functor is rigid as in
[21], this is isomorphic to the germ of the moduli spaceMX(2, 0) at z0.

In particular, we show that K2//H is a symplectic reduction, so that
there is a symplectic form on its smooth locus. Moreover we will see that,
for C of genus g ≥ 2, the germ of K2//H at a singular point different from
zero is the germ of an affine cone over the Segre embedding of the incidence
divisor in PN × PN for N = 2g − 3, and that the singularities of K2//H are
symplectic, i. e. for any resolution of singularities the symplectic form lifts
to a globally defined 2-form.

The second chapter of the thesis concerns with the theory of Lie alge-
broids. The first 2 sections are a quick review of basic definitions about
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Lie algebras and Lie-Rinehart algebras; in particular, we focus on the defi-
nitions of the Chevalley-Eilenberg and Lie-Rinehart cohomology, and recall
the correspondence between the isomorphism classes of abelian extensions

0→M → L′ → L→ 0

of Lie algebras (resp. Lie-Rinehart algebras) and the second cohomology
group H2

CE(L;M) (resp. H2
LR(L;M)). These are classical results, and one

can refer to [39] and [17] for a systematic treatment. Section 2.3, is an intro-
duction to the general theory of smooth Lie algebroids, Lie algebroid con-
nections and the L-characteristic ring of a vector bundle, L being a smooth
Lie algebroid. The exposition follows mainly [28] and [11]. In Section 2.4 we
introduce complex and holomorphic Lie algebroids, and develop their the-
ory: first (Subsection 2.4.1) we introduce matched pairs of Lie algebroids
and construct the canonical complex Lie algebroid associated to a holomor-
phic Lie algebroid. We follow [20], though this construction had previously
been introduced in [23]. Then (Subsection 2.4.2) we present various results
about the cohomology of a holomorphic Lie algebroid: first we recall from
[20] and [7] the generalizations to holomorphic Lie algebroids of the holo-
morphic De Rham theorem and Dolbeault’s theorems, and then study the
Čech-DeRham spectral sequence of a holomorphic Lie algebroid. In partic-
ular, we show a mild degeneration of this spectral sequence, that gives a
description of F 1H2(L;C) in terms of Čech cocycles. Finally (Subsection
2.4.3) we present a generalization of Atiyah’s theory on holomorphic con-
nections to a Lie algebroid setting: for a holomorphic Lie algebroid L and
its associated canonical complex Lie algebroid Lh, first we study some rela-
tions between holomorphic L-connections and smooth Lh-connections; then
we define the L-Atiyah classs of a holomorphic vector bundle E and show
that it generates the Lh-characteristic ring of E . In particular, this gives
a necessary criterion for the existence of holomorphic L-connections on E .
Finally we study the situation where E is not locally free: this is a situation
that does not occur in the theory of usual connections, and we are able to
generalize these results to the case where E is torsion free.

In Chapter 3 we will show Theorem 1. In Section 3.1 we will present
the main ideas, that come from the work of Sridharan [37]: he classifies the
isomorphism classes of pairs (A,Ξ), with A a filtered k-algebra with the 0th
piece isomorphic to k and Ξ an isomorphism of the associated graded algebra
with the symmetric algebra over the first graded piece Gr1A, in terms of pairs
(L,Σ), with L a k-Lie algebra and Σ ∈ H2

CE(L, k). In the second part of
the section we generalize this result, letting the 0th graded piece of A to be
any commutative k-algebra R: in this case, A(1) and Gr1A acquire a natural
structure of (k,R)-Lie-Rinehart algebra, and the construction of Sridharan
readily generalizes to this case. In particular, for any a (k,R)-Lie-Rinehart
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algebra L and 2-cocycle F in the Lie-Rinehart cohomology of L with values
in R, we construct an F -twisted Rinehart-enveloping algebra ŨF (L), which is
a filtered k-algebra with graded object isomorphic to the symmetric algebra
SymRL.

In Section 3.2 we sheafify these reults: first we classify the isomorphism
classes of extensions of a holomorphic Lie algebroid L by OX , and show that
these are in a one to one correspondence with F 1H2(L;C), the first filtration
of the second cohomology group of L. Then we generalize the construction of
the twisted enveloping algebra to Lie algebroids: we will see that if we have a
cohomology class Σ ∈ F 1H2(L;C) and a representative σ = (Qα, φαβ) with
respect to a sufficiently good open covering U = {Uα}α, we can glue the
sheafifications of the algebras ŨQα(L(Uα)) using the φαβ , to define a sheaf
of filtered CX -algebras.

We then conclude the chapter with some examples of this correspondence.

Chapter 4 gives applications of this result to moduli spaces of Λ-modules:
first we recall from [34] the construction of moduli spaces for Λ-modules.
Then we see that, for the sheaf Λ of filtered algebras associated to the Lie al-
gebroid L and the class Σ, the Λ-modules structures on a coherent sheaf E are
equivalent to a collection of holomorphic L-connections satisfying a gluing
condition depending on Σ. In particular, for Σ ∈ F 2H2(L;C), a Λ-module
structure corresponds to a globally defined holomorphic L-connection ∇
and we show, using the results of section 1.9, that the moduli spaces are
empty unless Σ = 0, and when this happens the corresponding moduli space
parametrize semistable holomorphic L-connections. The ideas on the cor-
respondence between Λ-module structures and Lie algebroid connection are
already contained in [34]: there Simpson introduces triples (H, δ, γ) that are
equivalent to holomorphic Lie algebroid structures on H∗. Then, the alge-
bra that he constructs from such a triple correspond, in our notations, to
the algebra Λ associated to the Lie algebroid H∗ and the class Σ = 0. Our
construction completes this correspondence and embeds it in the more natu-
ral setting of holomorphic Lie algebroid connections. In the last subsections
we show examples of moduli spaces that one can construct with this theory:
we see that flat connections, Higgs bundles, co-Higgs bundles are holomor-
phic L-connections for L = TX , (TX)0, (ΩX)0. Finally, using some results of
[20] we show how with this techniques one can construct moduli spaces of
semistable generalized holomorphic vector bundles for a generalized complex
structure associated to a holomorphic Poisson bivector Π.

In Chapter 5 we study deformations of L-connections: first we recall some
background theory on deformation functors from [29] and [14], while in Sec-
tion 5.2 we study the deformation functor associated to a flat L-connection.
We will see that there is not much difference from the case of usual integrable
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connections, that has been studied in [26]. In the last section we first study
the tangent space to a subscheme of Quot(Λ(1) ⊗ V (−N), P ) parametriz-
ing flat L-connections then, following [31], we will present an application of
Luna’s slice theorem to study the local structure of the moduli spaces of
integrable L-connections.

In Chapter 6 we study the local structure of the moduli spaces of flat
(TX -)connections in a particular case: for X a smooth projective curve and
z0 = (O⊕2

X , d) the “most degenerate point”, the tangent space and the first
obstruction map have an easy description in terms of linear data. In Section
6.1 we review some theory of invariants for the groups O(V ) and SO(V ) act-
ing on the direct sums of the vector space V , while in section 6.2 we use this
result to find equations for K2//H, the quotient of the versal space of second
order deformations of z0 by the stabilizer of z0. This is an approximation of
the germ of of the moduli spaceMX(2, 0) at z0, that when the deformation
functor is rigid is actually isomorphic to it.

In the last chapter, we present some ideas about possible developments of
this work. First we present a proposal for an extension of Theorem 1 which
would involve the whole cohomology group H2(L;C) instead of its first fil-
tration. This requires a stacky generalization of holomorphic Lie algebroid
extensions, and the corresponding algebras Λ have to be generalized to some
Lie algebroid version of twisted differential operators, similarly to [5]. In the
second section we present some links of Theorem 1 to deformation quantiza-
tion problems; connections of this with the arguments of the previous section
are very strong. Finally, we propose a generalization of the moduli space of
λ-modules using the theory of deformations of Lie algebroids [8].
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Chapter 2

Lie algebroids

Lie algebroids are geometric objects which generalize both of the concepts
of a Lie algebra and the tangent bundle of a manifold. One of the ideal
principles in the theory of Lie algebroids is that one can generalize to a Lie
algebroid setting classical construction of differential geometry, by replacing
the vector fields with sections of the Lie algebroid, differential forms with
sections of the exterior power of its dual and the exterior differential with
the Lie algebroid differential. This pilosophy will be clear later with the
examples we present.

Before to develop the theory of Lie algebroids that we will need, we
review some known facts about extensions of Lie algebras and Lie-Rinehart
algebras, that we need to recall because they will be central in our further
constructions.

2.1 Extensions of Lie algebras

Let k be a commutative unital ring.

Definition 1. A Lie algebra over k is a k-module L equipped with an oper-
ation [·, ·] : L× L→ L satisfying:

• [·, ·] is k-bilinear;

• [·, ·] is antisymmetric;

• [·, ·] satisfies the Jacobi identity, that is

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for any x, y, z ∈ L.

For a k-module M , a Lie algebra morphism ρ : L → Endk(M) (where
the latter is given the Lie algebra structure of commutation: [A,B] = A ◦

19



20 CHAPTER 2. LIE ALGEBROIDS

B−B ◦A) is called representation of L, and M is said to have the structure
of L-module.

Now, we are going to assume that L is a projective k-module. For the
constructions of this section, this is not really necessary: with some more
effort one has the same results for any k-Lie algebra. Anyway, in next sections
we will work with free k-algebras, and the proof in this setting are much more
intuitive, and we prefer this to a broader generality. We refer to [39] for the
general constructions.

Let L be a projective k-Lie algebra, and M an L-module. Define the
cochain groups:

Cn(L;M,ρ) = Homk(

p∧
k

L,M)

and the coboundary operator

(δθ)(x1 . . . xp+1) =
∑

i<j(−1)i+jθ([xi, xj ], x1, . . . , x̂i, x̂j , . . . , xp+1)+

+
∑

i ρ(xi)θ(x1, . . . , x̂i, . . . xp+1)

for θ ∈ Cp(L,M) and xi ∈ L. We have that δ2 = 0, and we call the the corre-
sponding cohomology groups Hp

CE(L;M,ρ) Chevalley-Eilenberg cohomology
groups.

Let L be a projective k-Lie algebra and M a k-module. An abelian
extension of Lie algebras (or an extension of L by the k-module M) is a
short exact sequence of k-Lie algebras

0→M → L′ → L→ 0

whereM is equipped with the abelian (i. e. trivial) Lie algebra structure. A
morphism between two extensions L′, L′′ of L by M is a morphism of short
exact sequences

0 // M // L′ //

��

L // 0

0 // M // L′′ // L // 0

By the 5-lemma, every morphism of extensions of L byM is an isomorphism.
Remark that any extension of L by M induces on M an L-module struc-

ture: let
0→M

ι→ L′
π→ L→ 0

be an extension of L by M , and for x ∈ L and m ∈ M set ρ(x)(m) =
[y, ι(m)]L′ , where y is an element of L′ mapped to x. The above expression
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takes value in M because π([y, ι(m)]) = [π(y), π(ι(m))] = 0, and is well
defined because for another elements y′ of L′ mapped to x, one has y′− y =
ι(n), and [n,m] = 0 because M is abelian.

The following theorem is classical:

Theorem 2. Let k be a commutative ring, L a projective k-Lie algebra, M
a k-module and ρ a representation of L on M .

Then the set of equivalence classes of extensions of L by M inducing ρ as
L-module structure on M is in a one to one correspondence with the second
cohomology group H2

CE(L;M,ρ).

Proof. Let F ′ be a closed 2-cochain in C2(L;M,ρ). Define on M ⊕ L the
k-bilinear antisymmetric bracket [·, ·]L′ by

[m+ x, n+ y]L′ = (ρ(x)(n)− ρ(y)(m) + F ′(x, y)) + [x, y] .

Since F ′ is a cocycle, we have that [·, ·]L′ satisfies the Jacobi identity, so we
have a k-Lie algebra structure L′ on M ⊕ L. Moreover by construction the
standard injection M ↪→M ⊕ L and projection M ⊕ L→ L are Lie algebra
morphisms, so we have that

o→M → L′ → L→ 0

defines an extension of L by M .
Let F ′′ be another 2-cocycle cohomologous to F ′, with F ′′−F ′ = δφ, and

construct the extension L′′ of L by M as before. Define the endomorphism
φ̃ of M ⊕ L by

φ̃(m+ x) = (m+ φ(x)) + x .

This is a actually a morphism of k-Lie algebras φ̃ : L′ → L′′, so we see that
cohomologous cochains define the same equivalence class of extension of L
by M .

Let
0→M → L′ → L→ 0

be an extension of L by M . Since L is projective, this sequence splits.
Choose a splitting ζ ′ : L → L′. This yields an isomorhpism of k-modules
ζ̂ ′ : L′ → M ⊕ L. According to this, we obtain a k-Lie algebra bracket on
M ⊕ L, that we write

[m+ x, n+ y]′ = [m,n]′ + [x, n]′ − [y,m]′ + [x, y]′

Since M is abelian [m,n]′ = 0, and since the L-module structure on M
coincide with ρ, we have [x,m]′ = ρ(x)(m). Finally, write [x, y]′ = F ′(x, y)+
G(x, y) with F ′(x, y) ∈ M and G(x, y) ∈ L. Since the map L′ → L is a Lie
algebra morphism, G(x, y) coincide with the Lie bracket in L. Further, F ′ is
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an antisymmetric, k-bilinear map from L toM , so it is a 2-cochain of L with
values in M . Moreover, one can check that, since the bracket on L′ satisfies
the Jacobi identiy, it is closed w. r. t. the Chevalley-Eilenberg differential,
so it F ′ is a 2-cocycle, and the Lie algebra L′ is obtained from F ′ as above.

If ζ ′′ is another splitting, the difference φ = ζ ′′ − ζ ′ is a k-linear map
from L to M , so it is a 1-cochain. The composition of the isomorphisms ζ̂−1

and ζ̂ ′ is the automorphism of M ⊕ L given by m+ x→ m+ φ(x) + x. Let
F ′, F ′′ be the 2-cocycle associated to ζ ′, ζ ′′ respectively. It is then clear that
F ′′ − F ′ = δφ, so the proof is complete.

2.2 Extensions of Lie-Rinehart algebras

We now present a generalization of the results of the previous section to Lie-
Rinehart algebras, that are Lie algebras endowed with additional structures
making them an algebraic analogue of the algebra of vector fields over a
manifold. See for example [17] for more details.

Let k be a commutative ring, and R a commutative k-algebra.

Definition 2. A (k,R)-Lie-Rinehart algebra is a k-Lie algebra L with the
following structures:

• an R-module structure on L, i. e. an associative algebra momorphism
R→ Endk(L);

• an L-action by derivations on R, i. e. a Lie algebra morphism ] : L→
Derk(R);

• this actions are compatible, i. e. satisfy

[x, ay] = a[x, y] + ](x)(a)y

for any x, y ∈ L and a ∈ R.

Morphisms between two (k,R)-Lie-Rinehart algebras are morphisms as
k-Lie algebras that are compatible with the additional actions.

If X is a real manifold and TX is is tangent bundle, then Γ(TX) the
vector space of smooth sections of TX is a real Lie algebra, with the bracket
given by the commutator of vector fields. Moreover this has a structure of a
(R, C∞(X))-Lie-Rinehart algebra, where ](V )(f) is given by the derivative
of f along V , for any vector field V and a smooth function f .

Remark that if L is a (k,R)-Lie-Rinehart algebra and L acts trivially
on R, then L is actually an R-Lie algebra, since the compatibility condition
implies that the bracket is R-linear.

Let L be a (k,R)-Lie-Rinehart algebra, and M an R-module.
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Definition 3. An L-connection on M is a map ∇ : L⊗kM →M satisfying

• ∇((ax)⊗m) = a∇(x⊗m),

• ∇(x⊗ (am)) = a∇(x⊗m) + ](x)(a)m

for any a ∈ R, x ∈ L and m ∈M .

Remark that an L-connection on the R-module M induces a map L →
Endk(M), that in general is not a Lie algebra morphism. When it is a Lie
algebra morphism, we will say that the connection is flat, and M is said to
be an L-module.

If L = Γ(TX) is the (R, C∞(X))-Lie-Rinehart of the vector fields of a
manifold and M = Γ(E) is the C∞(M)-module of the smooth sections of
a vector bundle E, we see that the notion of a Γ(TX)-connection on M is
equivalent to the usual notion of connection on the vector bundle E.

As before, from now on assume that L is a (k,R)-Lie-Rinehart algebra
wich is projective as an R-module. Let (M,∇) be an L-module, and define
the cochain groups

Cp(R,L;M,∇) = HomR(

p∧
R

L,M)

and the coboundary operator

(δθ)(x1 ∧ . . . ∧ xp+1) =
∑

i<j(−1)i+jθ([xi, xj ] ∧ x1 ∧ . . . x̂i, x̂j . . . ∧ xp+1)

+
∑

i(−1)i∇xiθ(x1 ∧ . . . x̂i . . . ∧ xp+1)

for θ ∈ Cp(R,L;M,∇) and xi ∈ L. Denote the associated cohomology
groups by Hp

LR(R,L;M,∇), and call them Lie-Rinehart cohomology groups.
Remark that the coboundary operator δ is R-linear if and only if L acts

trivially on R. When this happens, we have isomorphisms between the Lie-
Rinehart cohomology of L and its Chevalley-Eilenberg cohomology as an
R-Lie algebra.

When L = Γ(TX) is the (R, C∞(X))-Lie-Rinehart algebra of the vector
fields of a real manifold X, the Lie-Rinehart cohomology of Γ(TX) coincides
with the De Rham cohomology of X.

Let L be a (k,R)-Lie-Rinehart algebra and M an R-module. An exten-
sion of L by M is a short exact sequence

0→M → L′ → L→ 0

in the category of (k,R)-Lie-Rinehart algebras, where M is equipped with
the trivial Lie algebra structure. As before, a morphism of two extensions
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of Lie-Rinehart algebras is a morphism of short exact sequences with the
identity corresponding to M and L.

An extension of (k,R)-Lie-Rinehart algebras is in particular an extension
of k-Lie algebras. So whenever we have an extension of L byM , this induces
on M an L-module structure.

We have the following generalization of Theorem 2:

Theorem 3. Let k be a commutative ring, R a commutative unital k-algebra,
L a (k,R)-Lie-Rinehart algebra wich is projective as R-module, M an R-
module and ∇ an L-module structure on M .

Then the equivalence classes of extensions of (k,R)-Lie-Rinehart algebras
of L byM are in one to one correspondence with H2

LR(R,L;M,∇) the second
Lie-Rinehart cohomology group of L with values in M

Proof. Let L′ be a (k,R)-Lie-Rinehart algebra extension of L by M . In
particular, this is a k-Lie algebra extension, so, as in in the second part of
Theorem 2, for any R-linear splitting ζ ′ : L → L′ we obtain a 2-Chevalley-
Eilenberg cocycle F ′. Recall that F is a k-linear antisymmetric map F ′ :
L∧k L→M . This is a 2-Lie-Rinehart cocycle if and only if F ′ is R-bilinear.
But this is true since [m+x, f(n+y)]L′ = f [m+x, n+y]L′+](x)(f) ·(n+y).

On the other hand, a 2-Lie-Rinehart cocycle F ′ is in particular a 2-
Chevalley-Eilenberg cocycle, so, as in the first part of Theorem 2, we can
define a k-Lie algebra structure [·, ·]L′ on M ⊕ L. It is then easy to see that
since F ′ is R-bilinear, the bracket [·, ·]L′ , together with the anchor ]L′ = ]◦pL,
define a (k,R)-Lie-Rinehart algebra extension of L by M .

2.3 Smooth Lie algebroids

Let M be a smooth manifold, and TM its tangent bundle. For any smooth
vector bundle E on M we will denote by Γ(E) the space of smooth sections
of E.

Definition 4. A real Lie algebroid on M is a triple (L, ], [·, ·]) such that:

• L is a vector bundle on M ;

• [·, ·] is a R-Lie algebra structure on Γ(L);

• ] : L → TM is a vector bundle morphism, called the anchor, that
induces an R-Lie algebra morphism on global sections and satisfies the
following Leibniz rule:

[u, fv] = f [u, v] + ](u)(f)v

for any u, v ∈ Γ(L) and f ∈ C∞(M).
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A morphism between two Lie algebroids L and L′ over the same manifold
M is a vector bundle morphism L→ L′ that commutes with the anchors and
such that the induced morphism on global sections is a Lie algebra morphism.

Clearly, a real Lie algebra is equivalent to a real Lie algebroid defined over
a point. The tangent bundle has a canonical structure of a Lie algebroid,
with anchor equal to the identity and the bracket equal the ommutator of
vector fields.

If (L, ], [·, ·]) is a real Lie algebroid, we see that the space Γ(L) of smooth
sections of L is naturally endowed with a (R, C∞(M))-Lie-Rinehart struc-
ture: functions act on sections of L by multiplication, a section s of L acts on
functions via the derivation along the vector field ](s), and the Lie bracket
is just [·, ·].

As differential forms on a manifold are sections of the exterior powers of
the cotangent bundle, we call k-L-forms the sections of the vector bundle∧k L∗; we denote the corresponding sheaf of sections by AkL, and by AkL the
vector space of global sections of

∧k L∗.
Consider the map (f, u) 7→ dLf(u) := ](u)(f) for f ∈ C∞(M) and

u ∈ Γ(L). It is linear w. r. t. u, so it defines a map dL : C∞(M)→ A1
L. It

satisfies the Leibniz rule dL(fg) = fdLg + gdLf , so it is a derivation, that
we will call the exterior differential of L. Remark that it is obtained simply
by composing the usual exterior differential with the dual of the anchor
]∗ : T ∗M → L∗.

It extends to a derivation dL : ApL → Ap+1
L via the formula

(dLθ)(u1, . . . , up+1) =
∑

i(−1)i+1a(ui)(θ(u1, . . . , ûi, . . . , up+1)) +
+

∑
i<j(−1)i+jθ({ui, uj}, u1, . . . , ûi, ûj , . . . up+1)

for θ ∈ ApL and u1, . . . , up+1 ∈ Γ(L).
One can check that d2

L = 0, so the pair (A•L, dL) forms a complex. We de-
fine the Lie algebroid cohomology of L to be the cohomology of this complex,
and denote it by Hp(L, ], [·, ·];R) (or simply by Hp(L;R)).

Remark that the definition of the Lie algebroid cohomology for a Lie
algebroid L coincides with the definition of the Lie-Rinehart cohomology for
the (R, C∞(M))-Lie-Rinehart algebra Γ(L) with coeffficients in the trivial
Γ(L)-module R.

The construction of the Lie algebroid cohomology is contravariantly func-
torial: a morphism of Lie algebroids ψ : L → L′ induces a morphism of
complexes ψ∗ : A•L′ → A•L, yielding pull-back morphisms in cohomology
Hp(L′,R)→ Hp(L,R). In particular, we can always see the anchor of a Lie
algebroid L as a Lie algebroid morphism between L and TM equipped with
the canonical Lie algebroid structure, so, since the Lie algebroid cohomology
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of the canonical Lie algebroid is just the De Rham cohomology of M , we
always have morphisms Hp

DR(M,R)→ Hp(L,R).

2.3.1 Basic examples

As noted previously, the tangent bundle TM has a canonical structure of Lie
algebroid. Similarly, if F ⊆ TM is any subbundle of TM that satisfies the
involutivity condition [F ,F ] ⊆ F , we can define a natural Lie algebroid
structure over it, taking the inclusion as anchor and the restriction of the
commutator of vector fields to Γ(F ) as bracket. Remark that in this case
F , by Frobenius theorem, defines a foliation of M .

Vice versa, if L is a Lie algebroid with injective anchor, it is a subbundle
of TM , and since the anchor has to be a morphism of Lie algebras we see
that it defines an integrable foliation.

Let K be a vector bundle such that each fiber Kx is equipped with a R-
Lie algebra structure [·, ·]x. Assume that the coefficients defining the bracket
w. r. t. any local frame of K vary smoothly. This is a so called bundle of Lie
algebras. Then, for any open subset U ⊆ M such that there exists a frame
of K over U , the R-Lie algebra structures [·, ·]x glue together to define a
C∞(U)-Lie algebra structure on Γ(K|U ), and these glue to define a C∞(M)-
Lie algebra structure on Γ(K). So we can define a Lie algebroid structure
on K with anchor equal to 0 and the bracket just defined.

Vice versa, any Lie algebroid (L, ], [·, ·]) with ] = 0 defines naturally a
structure of bundle of Lie algebras on L.

In particular, we can equip any vector bundle with the trivial Lie alge-
broid structure, since we can put the 0 Lie algebra structure on each of its
fibers.

Let (L, a, {·, ·}) be a Lie algebroid. The image of the anchor F = Im (])
defines a subsheaf of TM involutive under the commutator of vector fields, so
it defines a (not necessarily regular) foliation onM , that is usually called the
foliation of the Lie algebroid. On the other hand, the kernel of the anchor
K = Ker (]) is clearly invariant under the bracket of L.

When the anchor is regular, i. e. the dimension of kernel and image of ]x
are constant as x varies, both F and K are vector bundles overM , and they
inherit a natural Lie algebroid structure from L: F with injective anchor,
i. e. a foliation, and K with anchor equal 0, i. e. a bundle of Lie algebras.
Moreover they form an exact sequence of Lie algebroids

0→ K → L→ F → 0 .

Another situation where Lie alebroids arise naturally is Poisson geometry:
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let M be a smooth manifold and Π ∈ Γ(
∧2 TM ) a Poisson bivector. Then

we can define a Lie algebroid structure on T ∗M with

• anchor ] : T ∗M → TM given by the contraction with Π,

• bracket defined by the formula

[α, β] = d〈Π, α ∧ β〉 −L](β)α+ L](α)β

for any α, β ∈ Γ(T ∗X), where LV is the Lie derivative along the vector
field V .

2.3.2 Lie algebroid connections and characteristic classes

For the whole subsection, fix a Lie algebroid (L, ], [·, ·]) on a manifold M .
Let E be a vector bundle over M . There are many equivalent notion of

a connection on E. One of these is given in terms of an operator

∇ : Γ(E)→ Γ(E)⊗A1
X

satisfying the Leibniz rule ∇(fs) = f∇s + s ⊗ df for any f ∈ C∞(M) and
s ∈ Γ(E). Similarly, we give the following:

Definition 5. An L-connection on a vector bundle E is a map ∇ : Γ(E)→
Γ(E)⊗A1

L satisfying the Leibniz rule

∇(fs) = f∇s+ s⊗ dLf

for any f ∈ C∞(M) and s ∈ Γ(E).

Remark that any (TM -)connection on E induces an L-connection: if
∇ : Γ(E)→ Γ(E)⊗A1

X is a connection, composing it with 1E⊗]∗ : E⊗T ∗M →
E⊗L∗ we obtain a L-connection. In particular, this shows that on any vector
bundle E there always exist L-connections.

One can extend an L-connection to higher degree E-valued L-forms: set
AkL(E) = Γ(

∧k L∗ ⊗E), the space of E-valued global k-L-forms, and define
∇ : AkL(E)→ Ak+1

L (E), by

∇(η ⊗ s) = dLη ⊗ s+ (−1)kη ∧∇s

for any η ∈ AkL and s ∈ Γ(E).
As for usual connections, an L-connection∇ on a vector bundle E induces

an L-connection ∇∗ on E∗ via the formula

〈∇∗σ, s〉+ 〈σ,∇s〉 = dL〈σ, s〉 ,

while L-connections ∇E ,∇F on two vector bundles E,F induce, in an appro-
priate way, an L-connection∇E⊕F = ∇E⊕∇F on E⊕F and an L-connection
∇E⊗F = ∇E ⊗ 1F + 1E ⊗∇F on E ⊗ F .
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Define the curvature of ∇ as

F∇ = ∇ ◦∇ : A0
L(E)→ A2

L(E).

One can easily check that this is a C∞(M)-linear mapping, so it defines an
element of A2

L(End E). Moreover one can easily express it in terms of the
covariant derivative associated to ∇:

F∇(u, v)(e) = [∇u,∇v](e)−∇{u,v}e , u, v ∈ Γ(L), e ∈ Γ(E) ,

where ∇w : E → E denotes the 1st order differential operator e→ 〈∇e, w〉.
We have the analogue of Bianchi identity for Lie algebroids (cf. [11]):

Proposition 4. Let ∇ be an L-connection on the vector bundle E, and F∇
its curvature. Denote by ∇̃ the L-connection induced by ∇ on End E.

Then ∇̃F∇ = 0.

We will say that an L-connection on the vector bundle E is flat when
its curvature vanishes. When this happens, the map Γ(L) → Der(E) given
by w → ∇w is a morphism of R-Lie algebras. We shall sometime use the
terminology representation of L or L-module to mean a flat L-connection on
a vector bundle E.

If (E,∇) is a L-module we have that (A•L(E),∇) is a complex, so we can
define the cohomology groups of L with values in E, and denote them by
Hk(L;E,∇).

Remark that if we consider Γ(L) the (R, C∞(M))-Lie-Rinehart algebra
associated to L, andM = Γ(E) is the C∞(M)-module of sections of the vec-
tor bundle E, then an L-connection on E is equivalent to a Γ(L)-connection
on M , and the cohomologies Hk(L;E,∇) and Hk

LR(C∞(M),Γ(L); Γ(E),∇)
coincide.

Let us recall the construction of the charateristic ring of a vector bundle:
let E be a rank r complex vector bundle on M . Consider the complex
general linear group GL(r,C) and its Lie algebra glr; the group GL(r,C)
acts on glr via the adjoint representation, so it acts naturally on gl⊕kr for
any positive integer k. Consider Ik(GL(r,C)) the set of k-multilinear maps
P : glr × . . . × glr → C invariant w. r. t. the adjoint representation of
GL(r,C).

Let ∇ be an L-connection on E and F∇ ∈ A2
L(EndE) its curvature. For

any P ∈ Ik(GL(r,C)) define λ∇(P ) ∈ A2k
L via

λ∇(P )(u1, . . . , u2k) =
∑
σ∈S2k

(−1)σP (F∇(uσ(1),σ(2)), . . . , F∇(uσ(2k−1), uσ(2k)))

for any u1, . . . , u2k ∈ Γ(L). To give a precise meaning to the right hand side
of the equation, one has to work a little. Let U ⊆ M be an open set such
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that over it a trivialization τ of E is given. Then τ∗(F∇)|U ∈ A2k
L (glr), so

over any such U we have τ∗F∇(u, v)) ∈ glr, and we can apply P to it. Now,
if τ ′ is another trivialization of E, the matrix of 2-L-forms τ ′∗F∇ is obtained
from τ∗F∇ by conjugation. So, since P is AdGL(r,C)-invariant the right hand
side is well defined.

Now, from [11] we have:

Lemma 5. 1. The 2k-L-forms λ∇(P ) are dL-closed.

2. Their cohomology class in H2k(L,C) does not depend on the choice of
the L-connection ∇.

Via this lemma, for any vector bundle E we have a morphism

λ : I•(GL(r,C))→ H•(L,C) ,

that we will call the L-Chern-Weil homomorphism. Define the L-characteristic
ring of E to be the image of this morphism, and denote it by R•L(E).

Remark that actually we have not defined anything new: since the cur-
vature of any L-connection computes the L-characteristic ring of E, we can
choose a L-connection ∇ induced by a TM -connection ∇TM ; then, since
F∇ = ]∗F∇TM , we obtain the commutative diagram:

I•(GLr) //

&&NNNNNNNNNNN
H•DR(X,C)

��
H•(L,C)

where the upper arrow is the usual Chern-Weil morphism. So we see that
the L-characteristic ring of E is just the pull-back in cohomology of its usual
characteristic ring. The construction we gave of RL(E) provides another
way to compute this ring, and later we will exploit this fact.

2.4 Holomorphic Lie algebroids

As real Lie algebroids generalize the tangent bundle of a real manifold, com-
plex and holomorphic Lie algebroids generalize the tangent bundle of a com-
plex manifold.

Let X be a complex manifold, TX its tangent bundle and TX the asso-
ciated sheaf of holomorphic vector fields. As a general notation, if E is a
complex vector bundle, we denote by A0(E) the associated sheaf of smooth
sections. When it is equipped with a holomorphic structure we will denote
by the corresponding calligraphic letter E the coherent OX -module of its
holomorphic sections, and we may use also A0(E) the to denote A0(E). Re-
call that we denote by AkX the sheaf of smooth k-forms on X, while when X
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is a complex manifold we denote by Ωk
X the sheaf of holomorphic k-forms of

X.

Definition 6. A holomorphic Lie algebroid is a triple (L, ], [·, ·]) with

• L a coherent locally free OX-module;

• [·, ·] a CX-Lie algebra structure on L (i.e. for each open U of X the
bracket is a C-Lie algebra structure on L(U) compatible with the re-
striction morphisms);

• the anchor ] : L → TX is a morphism of OX-modules which is also a
morphism of sheaves of CX-Lie algebras, satisfying the Leibniz rule

[u, av] = a[u, v] + ](u)(a)v

for any local sections a ∈ OX and u, v ∈ L.

We will call holomorphic k-L-forms the sections of Ωk
L =

∧k L∗, and,
similarly to the smooth case, we have an exterior differential dL : Ωk

L → Ωk+1
L .

The underlying real Lie algebroid LR of the holomorphic Lie algebroid L
is the real Lie algebroid obtained forgetting the holomorphic structures: if
L is the smooth bundle underlying L, we have that ] induces a real anchor
]R : L → TX , and that the bracket naturally extends in a unique way to
smooth sections of L.

Moreover, we can associate to L two complex Lie algebroids L1,0 and
L0,1: consider the complexification LC = L⊗C of the smooth Lie algebroid
underlying L. The complex structures on the fibers of L gives a bundle
map J : LC → LC whose square is −1. So we have a splitting of LC in
eingenbundles L1,0 and L0,1 according to the eigenvalues ±i of J . Since the
anchor ]R : L→ TX comes from a holomorphic Lie algebroid, it is easy to see
that L1,0 and L0,1 are complex Lie subalgebroids of LC, that we will denote
by L1,0 and L0,1 respectively.

Let (L, ], {·, ·}) be a real Lie algebroid over X.

Definition 7. An almost complex structure on (L, ], {·, ·}) is a vector bundle
endomorphism JL : L → L such that J2

L = −1L and commuting with the
canonical almost complex structure JX on TX , i.e. JX ◦ ] = ] ◦ JL.

An almost complex structure JL on a Lie algebroid L induces a splitting
L ⊗ C = L1,0 ⊕ L0,1 according to the eigenvalues ±i of JL. This induces a
splitting on L∗ and its exterior power:

k∧
(L∗ ⊗ C) =

⊕
p+q=k

p∧
(L∗)1,0 ⊗

q∧
(L∗)0,1.
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We denote by Ap,qL the sheaf of local sections of
∧p(L∗)1,0 ⊗

∧q(L∗)0,1 and
call them (p, q)-L-forms. Accordingly to this splitting, one has the splitting
of the exterior differential dL = ∂′L + ∂L + ∂̄L + ∂′′L, where

∂′L : Ap,qL → A
p+2,q−1
L , ∂L : Ap,qL → A

p+1,q
L

∂̄L : Ap,qL → A
p,q+1
L , ∂′′L : Ap,qL → A

p−1,q+2
L .

We will say that an almost complex structure JL on a Lie algebroid
(L, ], [·, ·]) is integrable if there exists a holomorphic bundle structure L on
L such that L1,0 = L1,0.

Clearly, when an almost complex structure on a real Lie algebroid (L, ], [·, ·])
is integrable, the operators ∂′L, ∂

′′
L clearly vanish, and the differentials dL, ∂L, dL

coincide on the subspaces Ωk
L ⊆ AkL,C.

2.4.1 Algebraic Lie algebroids

If X is a smooth algebraic variety over an algebraically closed field k of
characteristic 0, we have can define an algebraic Lie algebroid as a triple
(L, ], [·, ·]) with L a coherent OX -module, ] : L → TX a morphism of OX -
modules (TX being the tangent sheaf of X) and [·, ·] a k-Lie algebra structure
on L that satisfies the usual Leibniz rule with respect to the anchor ].

If X is projective and defined over C, by the GAGA principle the notions
of algebraic and holomorphic Lie algebroid over X coincide. In the following
chapters, we will often work on smooth projective algebraic varieties over
C, and we will often switch from the algebraic to the holomorphic setting
without mentioning. In particular, all the statements where we will work
on complex algebraic varieties with holomorphic Lie algebroids are to be
understood in this way.

2.4.2 Matched pairs of Lie algebroids and the canonical com-
plex Lie algebroid

We say that two real (or complex) Lie algebroids (Li, ]i, [·, ·]i), i = 1, 2,
form a matched pair if we are given a L1-module structure on L2 and a L2-
module structure on L1 (that we both denote by ∇) satisfying the following
equations:

[]1(u1), ]2(u2)] = −]1(∇u2u1) + ]2(∇u1u2) ,
∇u1([u2, v2]2) = [∇u1u2, v2]2 + [u2,∇u1v2]2 +∇∇v2u1u2 −∇∇u2u1v2 ,

∇u2([u1, v1]1) = [∇u2u1, v1]1 + [u1,∇u2v1]1 +∇∇v1u2u1 −∇∇u1u2v1 .

Consider the groups Kp,q = ApL1
⊗AqL2

. The Li-module structures on Lι̂
(where ι̂ = 2 for i = 1 and î = 1 for i = 2) induces an Li-module structure
on ApLι̂ , so we have two differentials dL1 : Kp,q → Kp+1,q and dL2 : Kp,q →



32 CHAPTER 2. LIE ALGEBROIDS

Kp,q+1 induced by these module structures. The three equations above are
equivalent to dL1dL2 = (−1)pdL2dL1 , i.e. the triple (K•,•, dL1 , dL2) is a
double complex.

If (L1, L2) is a matched pair of Lie algebroids, define the following Lie
algebroid L1 ./ L2:

• the underlying vector bundle is L1 ⊕ L2;

• the anchor is the sum: ] = ]1 + ]2;

• the bracket is defined by

[u1 + u2, v1 + v2] = ([u1, v1]1 +∇v1(u2)−∇v2(u1))+
+ ([u2, v2]2 +∇u1(v2)−∇u2(v1))

for any ui, vi ∈ Γ(Li), i = 1, 2.

Proposition 6 (see [20]). The Lie algebroid cohomology of L1 ./ L2 is the
cohomology of the total complex associated to K•,•.

Proof. This follows directly from the fact that, because of the previous com-
patibility equations, the exterior differential of the Lie algebroid L1 ./ L2 is
dL1./L2 = dL1 + (−1)pdL2 .

We recall the following result of [20]:

Theorem 7. Let L be a holomorphic Lie algebroid, and L1,0 the associated
complex Lie algebroid.

Then the pair (L1,0, T 0,1
X ) is naturally a matched pair of complex Lie

algebroids.

The T 0,1
X -module structure on L1,0 is given by the holomorphic structure

of L, while the L1,0-module structure on T 0,1
X is given by

∇u(V ) = pr0,1([](u), V ])

for u ∈ Γ(L1,0) and V ∈ Γ(T 0,1
X ), and where pr0,1 denotes the projection

from the complexified tangent space TX,C to T 0,1
X .

L1,0 ./ T 0,1
X carries naturally an almost complex structure, and we call

it the canonical complex Lie algebroid associated to the holomorphic Lie
algebroid L, and denote it by Lh. Remark that we have a natural morphism
of complex Lie algebroids

LC = LR ⊗ C→ Lh.
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2.4.3 Cohomology of holomorphic Lie algebroids

We now study some cohomological properties of a holomorphic Lie algebroid
(L, ], [·, ·]). In particular, we present some results from [20] and [7] generaliz-
ing to holomorphic Lie algebroids the theorems of De Rham and Dolbeault.

Let L be a holomorphic Lie algebroid. Consider the complex of coherent
sheaves over X

0 // OX = Ω0
L

dL // Ω1
L

dL // . . . dL // Ωn
L

dL // 0 ,

and define the holomorphic Lie algebroid cohomology of L to be the hyper-
cohomology of this complex:

Hp(L;C) = Hp(X; Ω•L, dL) .

Let Lh = L1,0 ./ T 0,1
X be the canonical complex Lie algebroid associated

to L. Then we have:

Theorem 8. Let L be a holomorphic Lie algebroid. Then we have the fol-
lowing isomorphisms:

1. (holomorphic De Rham) Hp(L;C) ∼= Hp(Lh;C);

2. (Dolbeault)
Hq(X,Ωp

L) ∼= Hq(Ap,•Lh , ∂̄Lh).

Proof. Both the statement are a direct consequence of the holomorphic
Poincaré Lemma: consider the double complex

...
...

. . . // Ap+1,q
Lh

∂̄Lh //

∂Lh

OO

Ap+1,q+1
Lh

∂̄Lh //

∂Lh

OO

. . .

. . . // Ap,qLh
∂̄Lh //

∂Lh

OO

Ap,q+1
Lh

∂̄Lh //

∂Lh

OO

. . .

...

OO

...

OO

associated to Lh. As we have seen previously, the associated total complex
computes the (smooth) Lie algebroid cohomology of Lh with values in C. On
the other hand, by the holomorphic Poincaré Lemma the rows of the double
complex are exact, so the total complex computes the hypercohomology of
the complex of the kernels K• = Ker (A•,0Lh → A

•,1
Lh). But Kp = Ωp

L, so (1) is
proven.

(2) follows by the same argument, considering each row separately.
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The second of these statements can be readily generalized to the case of
coefficients in a holomorphic vector bundle: let E be a holomorphic vector
bundle. Then we can define the E-valued holomorphic k-L-forms as the
sections of

Ωk
L(E) = Ωk

L ⊗OX E ,

and the E-valued (p, q)-Lh-forms as the sections of

Ap,qLh(E) = E ⊗OX A
p,q
Lh .

Now, ∂̄Lh(f) = 0 for f ∈ OX , so ∂̄Lh is an OX -linear homomorphism
Ap,qLh → A

p,q+1
Lh ; then we can extend it to E-valued forms as

∂̄E = 1E ⊗OX ∂̄Lh : Ap,qLh(E)→ Ap,q+1
Lh (E) .

Consider the global sections Ap,qLh(E) = Γ(Ap,qLh(E)); since ∂̄2
E = 0 we have a

complex of vector spaces (Ap,•Lh , ∂̄E) whose q-th cohomology group we denote
by Hp,q(Lh, E).

Theorem 9. Let L be a holomorphic Lie algebroid, Lh its canonical complex
Lie algebroid, and E a holomorphic vector bundle.

Then there are isomorphisms

Hp,q(Lh, E) ∼= Hq(X,Ωp
L(E)) .

Proof. Since (Ap,•Lh , ∂̄Lh) is a fine resolution of Ωp
L, tensoring it by a locally

free sheaf E we still obtain a fine resolution

0→ Ωp
L(E)→ Ap,•Lh(E) .

The thesis then follows.

We now study closely the Čech-DeRham double complex of a holomor-
phic Lie algebroid L to have a better description of some of its cohomology
groups (in particular H2(L,C)).

Let U = {Uα} be a sufficiently fine open covering of X, such that we have
an isomorphism between sheaf and Čech cohomology over it.

Consider the double complex

Kp,q
L = Čq(U,Ωp

L) ,

with differentials dL, δ̌; its associated total complex (T •L, δ) computes the
hypercohomology of Ω•L, so it computes Hk(L,C).

The filtration by columns of the total complex

F rT kL =
⊕

p+q=k, q≥r
Kp,q
L
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induces a filtration in the Lie algebroid cohomology (the bête filtration):

F pHk(L,C) = Im (Hk(F pT •L)→ Hk(L,C)).

The associated spectral sequence has E1 and E2 terms given by

Ep,q1 = Hq(X,Ωp
L) Ep,q2 = Hp(Hq(X,Ω•L), dL).

In the classical case, when L = TX and X is a smooth projective variety, the
Hodge decomposition implies that Ep,q1 = Ep,q∞ and that the differential d1 is
zero. Let us rewrite this fact as:

Lemma 10. Let X be a smooth projective variety, and φi0,...,iq a closed Čech
q-cochain of Ωp

X .
Then the Čech q-cochain dφi0,...,iq is Čech-exact, i.e. dφ = δ̌τ for some

τ ∈ Čq−1(U,Ωp+1
X ).

Now, for a general holomorphic Lie algebroid L there is no analogue
of Hodge decomposition, so we do not have degeneration of the spectral
sequence at the first step. Anyway, we can use this lemma to find a mild
degeneration of the spectral sequence:

Lemma 11. Restricted to p = 0, the differential d1 of the spectral sequence
d1 : E0,q

1 → E1,q
1 is zero.

Proof. Remark that on functions dL coincides with the composition of the
exterior differential d with the dual of the anchor, i.e. dL(f) = ]∗(df) for
any f ∈ OX .

The differential d1 coincide with dL. More precisely, an element ξ ∈ E0,q
1

is a q-Čech cocycle of the sheaf OX , so ξ = {ξi0,...,iq}, and d1ξ = {dLξi0,...,iq}.
By previous lemma {dξi0,...,iq} = δ̌τ , so d1ξ = δ̌(]∗τ), so its class is

zero.

In particular, we have the following corollary:

Corollary 12. We have an isomorphism

F 1H2(L,C) ∼= H2(F 1T •L) .

Proof. We have the exact sequence

0→ N

F 1B2
L
→ H2(F 1T •L)→ F 1H2(L,C)→ 0

where by F rBp
L we denote the p-coboundaries of the complex F rT •L, while

N is the set of 2-coboundaries of T •L living in F 1T 2
L, i. e.

N =
{
δx | x ∈ T 1

L and δx ∈ F 1T 2
}
.
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We need to show that N = F 1B2
L.

Let δx ∈ N . We have x = x1,0 + x0,1 according to T 1
L = K1,0

L ⊕ K
0,1
L .

We already have δx1,0 ∈ F 1B2
L, we need to show that δx0,1 ∈ F 1B2

L. This
happens if and only if dLx0,1 = δ̌y1,0 for some y1,0 ∈ K1,0

L . But x ∈ N
if and only if δ̌x0,1 = 0, so we can apply the previous lemma and obtain
1-forms ωα ∈ ΩX(Uα) such that dx0,1 = δ̌ωα. So, dLx0,1 = δ̌(]∗ωα), since
]∗ωα ∈ K0,1

L .

This corollary and the following computations will be useful in the next
sections: remark that the elements of H2(F 1T •L) are represented by closed
elements of F 1T 2

L = K2,0 ⊕ K1,1, that is, pairs (Qα, φαβ) satisfying the
equations

(δ̌φ)αβγ = 0,

dLφαβ = (δ̌Q)αβ,
dLQα = 0;

(2.1)

while coboundaries of F 1T 2
L are of the form (dLηα, (δ̌η)αβ) for ηα ∈ K1,0.

Hence we have a natural projection

F 1H2(L;C)→ H1(X,Ω1
L) , [(Q,φ)]→ [φ] ,

well defined by the fact that if (Q,φ) = δη then φ = δ̌η.

One can check that the constructions so far are controvariantly functo-
rial: any holomorphic Lie algebroid morphism Ψ : L → L′ yields pull back
morphisms Hp(L′,C)→ Hp(L,C) and F pHk(L′,C)→ F pHk(L,C).

Moreover these are compatible with the holomorphic De Rham and Dol-
beault theorems: Ψ induces a morphism of the associated canonical com-
plex algebroids Ψh : Lh → L′h, that gives a pull-back in cohomology Ψ∗ :
Hp(L′h;C)→ Hp(Lh;C) and the following diagrams commute:

Hp(L′;C)
∼= //

Ψ∗

��

Hp(L′h;C)

Ψ∗h
��

Hp(L;C)
∼= // Hp(Lh;C)

, Hq(X; Ωp
L′(E))

∼= //

Ψ∗

��

Hp,q(L′h; E)

Ψ∗h
��

Hq(X; Ωp
L(E))

∼= // Hp,q(Lh; E) .

2.4.4 Holomorphic L-connections

In this subsection we introduce holomorphic L-connections on holomorphic
vector bundles for L a holomorphic Lie algebroid. While there always exist
smooth L-connections on smooth bundles, we will see that, similarly to what
happens with usual connections, the existence of holomorphic L-connections
has topological obstructions.

Let L be a holomorphic Lie algebroid over a smooth complex manifold
X, and E a holomorphic vector bundle on X. Similarly to the smooth case,
we have:
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Definition 8. A holomorphic L-connection on E is a map of sheaves ∇ :
E → E ⊗ L∗ satisfying the Leibniz rule ∇(fe) = f∇e + e ⊗ dLf for any
f ∈ OX and e ∈ E.

Define the curvature F∇ ∈ H0(X,E nd(E) ⊗ Ω2
L) of a holomorphic L-

connection ∇ in the same way as in the smooth case.

Let L be a holomorphic Lie algebroid and consider the associated Lie
algebroid Lh = L1,0 ./ T 0,1

X . Let E be a smooth vector bundle and ∇ a
Lh-connection on it. Since Lh = L1,0 ⊕ T 0,1

X as a vector bundle, ∇ splits in
two operators

∇′ : Γ(E)→ Γ(E)⊗A1
L1,0 , ∇′′ : Γ(E)→ Γ(E)⊗A0,1

X ,

satisfying the Leibniz rules

∇′(fs) = f∇′(s) + ]L1,0(f)⊗ s , ∇′′(fs) = f∇′′s+ ∂̄f ⊗ s ,

for f ∈ C∞(X) and s ∈ Γ(E).
It is well known that giving a holomorphic structure on a smooth vector

bundle E is equivalent to giving an operator ∂̄E : Γ(E) → Γ(E) ⊗ A0,1
X

satisfying the latter Leibniz rule and such that ∂̄2
E = 0. So we see that the

∇′′ piece of an Lh-connection defines an operator of this kind. We call a Lh-
connection holomorphing ∇ if (∇′′)2 = 0, so that it induces a holomorphic
structure on E.

If D is a holomorphic L-connection on the holomorphic vector bundle E ,
we can define a Lh-connection ∇ on E, the smooth vector bundle underlying
E , as follows: set ∇′′ = ∂̄E , the operator defining the holomorphic structure
of E , ∇′ = D ⊗OX A0

X , and ∇ = ∇′ + ∇′′. Since ∇′ is defined from a
holomorphic connection, we see that

∇′∇′′ +∇′′∇′ = 0 . (2.2)

Vice versa, if ∇ is a holomorphing Lh-connection satisfying equation (2.2),
it is easy to see that there exists a holomorphic L-connection inducing it as
described above.

Finally consider, for an Lh-connection ∇ on the smooth vector bundle
E, the flatness condition ∇2 = 0: it implies the following 3 conditions:

• on
∧2(T 0,1

X )∗, we have (∇′′)2 = 0, that is, ∇ is a holomorphing Lh-
connection on E;

• on (L1,0)∗ ⊗ (T 0,1
X )∗, we have equation (2.2), that is, ∇′ is induced by

a holomorphic L-connection D : E → E ⊗ L∗;

• on
∧2 L∗, the condition is (∇′)2 = 0, that is equivalent to D to be a

flat holomorphic L-connection.
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Summing up, we have the following:

Proposition 13. Let L be a holomorphic Lie algebroid over X and E a
smooth vector bundle on X.

Then

1. a Lh-connection ∇ on E with F 0,2
∇ = 0 induces a holomorphic structure

on E;

2. a Lh-connection ∇ on E with F 1,1
∇ + F 0,2

∇ = 0 is equivalent to a holo-
morphic structure E on E and a holomorphic L-connection on E;

3. a flat Lh-connection on E is equivalent to a holomorphic structure E
on it and a flat holomorphic L-connection.

We now study the problem of existence of holomorphic L-connections
over a holomorphic vector bundle E .

For L = TX the problem is well known: let J 1
X(E) be the bundle of holo-

morphic first order operators on E with scalar symbol. It admits naturally
a Lie algebroid structure, whose anchor is the symbol and whose bracket is
the commutator of differential operators. It is usually called the Atiyah Lie
algebroid of E . There is a natural short exact sequence

0→ E nd(E)→ J 1
X(E)→ TX → 0 . (2.3)

A holomorphic (TX -)connection on E is equivalent to a splitting of this
exact sequence, so there exists a holomorphic connection on E if and only if
the extension class

a(E) ∈ Ext1(TX ,E nd(E)) = H1(X,E nd(E)⊗ ΩX)

is zero. It is a theorem of Atiyah (cf. [2]) that the class a(E) generates the
characteristic ring of E , so one has:

Theorem 14. Let E be a holomorphic vector bundle over a smooth projective
variety X.

Then R(E) = 0 is a necessary condition for the existence of a holomorphic
connection on E.

Let us recall how one can prove this: fix a Hermitian metric on E . Let ∇
be the Hermitian connection on E ; by definition it is the unique connection
compatible with both the metric and the holomorphic structure of E . Its cur-
vature F is of type (1, 1). The cohomology class [F ] ∈ H1,1(X,E nd(E)) does
not depend on the choice of the metric, and via the generalized Dolbeault
isomorphism

H1,1(X,E nd(E)) ∼= H1(X,E nd(E)⊗ ΩX) ,
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[F ] corresponds to the class a(E). The theorem then follows since, by defi-
nition, R(E) is generated by F .

Let now L be a holomorphic Lie algebroid, Lh = L1,0 ./ T 0,1
X , and E a

holomorphic vector bundle.
Let

aL(E) = ]∗(a(E)) ∈ Ext1(L,E nd(E)) ∼= H1(X,E nd(E)⊗ ΩL)

be the pullback via the anchor ] of the Atiyah class of E . We have the
corresponding diagram:

0 // E nd(E) //

��

J 1
L(E) //

��

L

��

// 0

0 // E nd(E) // J 1
X(E) // TX // 0.

An L-connection on E is equivalent to a splitting of the upper row, so it
exists if and only if aL(E) = 0.

We have the following:

Proposition 15. Let L be a holomorphic Lie algebroid and E a holomorphic
vector bundle over a smooth projective variety X.

Then the class aL(E) generates the Lh-characteristic ring RLh(E).

Proof. By the generalization of Dolbeault Theorem given in Theorem 9 we
have a commutative diagram

H1(X,E nd(E)⊗ ΩX) //

∼=
��

H1(X,E nd(E)⊗ ΩL)

∼=
��

H1,1(X,E nd(E)) // H1,1(Lh,E nd(E)) .

Consider the images of a(E), aL(E), living in the lower row.
In general there are not inclusions of Hk,k(Lh,C) in H2k(Lh,C), so

Atiyah’s argument does not apply straightforwardly. To obtain the the-
sis, we need, for each invariant polynomial P , the existence of a dLh-closed
representative of the class P (aL(E)) ∈ Hk,k(Lh,C). But P (aL(E)) is the
pullback of P (a(E)), and, since X is a smooth projective variety, we can
choose a d-closed representative of P (a(E)), whose pullback is a dL-closed
representative of P (aL(E)).

It is well known that if a coherent OX -module E admits a smooth TX -
connection then it is locally free. This is no more true in the Lie algebroid
case: if L is a holomorphic Lie algebroid and G the associated holomorphic
foliation, E a coherent OX -module and ∇ a holomorphic L-connection on E ,
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then we can only say that E|G is locally free for any leaf G of G (see [11]). We
want to generalize Atiyah’s construction to the case when E is not locally
free, and we will show the following:

Theorem 16. Let L be a holomorphic Lie algebroid over a smooth projective
variety X, and E a torsion free OX-module.

Then if there exists a holomorphic L-connection on E we have thatRLh(E) =
0.

We now follow [25] to define the L-Atiyah class for general coherent OX -
modules: consider the following sheaf J 1

L = ΩL ⊕ OX and equip it with the
unital associative OX -algebra structure given by the product

(α, a)(β, b) = (aβ + bα, ab)

for α, β ∈ ΩL and a, b ∈ OX .
ΩL is a sheaf of ideals of J 1

L of square 0, and we have the exact sequence

0→ ΩL → J 1
L → OX → 0

of OX -algebras; moreover this sequence splits via the morphism of OX -
algebras a→ (0, a).

For E a coherent OX -module, over the sheaf J 1
L(E) = ΩL ⊗ E ⊕ E define

the following left and right J 1
L-module structures:

(α, a)(β ⊗ e, f) = (α⊗ f + aβ ⊗ e+ dLa⊗ f, af)

(β ⊗ e, f)(α, a) = (aβ ⊗ e, af)

Via the previous splitting, the J 1
L-module structures induce a left and

a right OX -module structure on J 1
L(E): the right OX -module structure co-

incides with the OX -module structure of the direct sum, while the left OX -
module structure is given by:

a(β ⊗ e, f) = (aβ ⊗ e+ dLa⊗ f, af) . (2.4)

We have the exact sequence

0→ ΩL ⊗ E → J 1
L(E)→ E → 0 (2.5)

of both left and right OX and J 1
L-modules. This sequence is always split as

right OX and J 1
L-modules, while we have

Proposition 17. The above sequence splits as left OX-modules if and only
if there exists a holomorphic L-connection on E.
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Proof. Write a splitting ζ : E → J 1
L(E) as

ζ(e) = (∇(e), e)

with, a priori, ∇(e) : E → E ⊗ ΩL a sheaf map. Then it is easy to see
that by equation (2.4) ζ(ae) = aζ(e) if and only if ∇ is a holomorphic L-
connection.

We define aL(E), the L-Atiyah class of the coherent OX -module E , as
the class of the sequence (2.5) seen as an extension of left OX -modules in
Ext1OX (E , E ⊗ ΩL). Clearly we have that aL(E) = 0 if and only if there
exist holomorphic L-connections on E . Remark that when E is locally free
this definition coincide with the previous one, since Ext1OX (E ,ΩL ⊗ E) ∼=
Ext1OX (TX ,E nd E).

The next step in generalizing Atiyah’s construction is the following:

Proposition 18. Let L a holomorphic Lie algebroid over X and E a holo-
morphic Lie algebroid.

Then the L-Atiyah class of E generates RL(E).

Proof. One can check that when L = TX this definition coincides with the
usual definition of the Atiyah class of a coherent sheaf (see for example [18],
chapter 10). In particular, the proposition is well known in the case L = TX .
We can then apply the same arguments of Proposition 15 and obtain the
assertion.

To conclude the proof of Theorem 16 it remains to show that one can
compute the Lh-characteristic ring of E (that, recall, is just the pull-back of
the usual characteristic ring) by means of a holomorphic L-connection on it.
This is shown in the following:

Lemma 19. Let L be a holomorphic Lie algebroid, Lh = L1,0 ./ T 0,1
X , E a

torsion free OX-module on X and ∇ a holomorphic L-connection on it.
Then F∇, the curvature of ∇, generates RLh(E).

Proof. We show how one can obtain the first Lh-Chern class of E from F∇,
for the other Lh-characteristic classes it works similarly.

Let U ⊆ X be the open subset where E is locally free. Since E is tor-
sion free, its complement has codimension at least 2. Consider det(E), the
determinant line bundle of E : on the open U where it is locally free we have

det(E)|U ∼=
r∧
E|U ,

where r is the rank of E . Since c1,Lh(E) is the pull back of c1(E), we have
c1,Lh(E) = c1,Lh(det(E)).

Over U , ∇ induces a holomorphic L-connection ∇̃ on det E , defined as the
rth exterior power of ∇. Now, since the complement of U has codimension
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at least 2, we can extend ∇̃ to the whole X by Hartogs lemma: for any
s ∈ det(E)|U , σ ∈ (det(E)|U )∗ and u ∈ L, the function

fs,σ,u = 〈σ, ∇̃u(s)〉

is holomorphic on U , so it extends uniquely to X. So we can define ∇̃u(s) =
fs,u ∈ det(E), since σ 7→ fs,σ,u is a OX -linear map.

Let F̃ be the curvature of ∇̃. Since over U we have F̃|U = Trace(F∇)|U ,
by the same extension argument this equality holds on the whole X.

Since det(E) is locally free, c1,Lh(det(E)) = [F̃ ] holds, and since F̃ =
Trace(F∇) we finally have the equality c1,Lh(E) = [Trace(F∇)].

2.4.5 Example: logarithmic connections

Let X be a smooth projective variety and D an effective normal crossing
divisor on it. Consider the sheaf ΩX(logD) of meromorphic 1-forms with
logarithmic poles along D. This is the locally free OX -module locally gener-
ated by dx1

x1
, . . . , dxt

xt
, dxt+1, . . . , dxn, where x1, . . . , xn are local coordinates

on X such that D has equation x1 · · ·xt = 0 in this coordinates. Remark
that we have a natural inclusion ΩX ↪→ ΩX(logD), and the quotient is
isomorphic to the structure sheaf of D̃, the normalization of D. The exte-
rior differential extends naturally to d : Ωp

X(logD) → Ωp+1
X (logD), where

Ωp
X(logD) =

∧p ΩX(logD).
Consider TX(logD), the dual of ΩX(logD). Dualizing the sequence

0→ ΩX → ΩX(logD)→ OD̃ → 0

we obtain an inclusion TX(logD) ↪→ TX . This subsheaf is locally free and
closed under the commutator of vector fields, so it inherits a holomorphic
Lie algebroid structure.

The holomorphic Lie algebroid cohomology Hp(TX(logD),C) is equal,
just by definition, to the hypercohomology of the logarithmic deRham com-
plex Hp(X,Ω•X(logD)), that is well known to be isomorphic to the deRham
cohomology Hp

DR(U,C) of the open U = X \D.

Starting from important works of Deligne, holomorphic integrable con-
nections with logarithmic poles along a divisor D have been extensively
studied, see for example [9], [10]. From our point of view, an integrable
connection with logarithmic poles along D on a coherent sheaf E is just a
flat TX(logD)-connection on E .

In the Appendix B of [10], it is shown how one can compute the Chern
classes of a holomorphic vector bundle in terms of a connection with loga-
rithmic poles anong D. In particular, it is shown:
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Theorem 20. Let X be a smooth projective variety and D an effective nor-
mal crossing divisor on X, E a coherent OX-module and ∇ a TX(logD)-
connection on E. Let D =

∑
aiDi with Di irreducible, and [Di] the class of

Di in H2(X,C).
Then the p-th Chern class of E is a complex linear combination of [Di1 ]k1 · · · [Dit ]

kt

with
∑
kα = p.

Now we can easily see that this theorem implies Theorem 16 when L =
TX(logD): since

Hp((TX(logD))h,C) ∼= Hp
hol(TX(logD)) ∼= Hp

DR(U,C) ,

the pullbacks of [Di] to the Lie algebroid cohomology vanish. So if E admits
a holomorphic connection with logarithmic poles along D, the pullback of
its Chern classes to Hp(TX(logD);C) vanish, i. e. its its TX(logD)-Chern
classes vanish.
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Chapter 3

(Sheaves of)Filtered algebras
and their classification

In this chapter we present subsequent generalizations of Sridharan’s con-
struction of the twisted enveloping algebra associated to an almost polyno-
mial filtered algebra.

In [37], the author classifies the almost polynomial k-algebras with the
0th piece isomorphic to k by means of a Lie algebra structure on the first
graded piece and a class in the second cohomology of this Lie algebra with
trivial coefficients. First we recall this construction, then generalize it to the
case when the 0th filtration is any k-algebra and finally use this result to
classify sheaves of almost polynomial filtered algebras on a smooth projective
variety over C by means of holomorphic Lie algebroids and their cohomology
classes.

3.1 Classification of almost polynomial filtered al-
gebras

Let k be a commutative ring. A filtered k-algebra is a unital associative
k-algebra A equipped with an increasing filtration of k-submodules A(i) ⊆
A(i+1) ⊆ . . . ⊆ A for i ≥ 0, such that A(i)A(j) ⊆ A(i+j).

Define the associated graded modules GriA = A(i)/A(i−1), and let [a]i
denote the class in GriA of a ∈ A(i). Define on Gr•A =

⊕
iGriA a product

by [a]i[b]j = [ab]i+j , for any a ∈ A(i), b ∈ A(j). This gives Gr•A the structure
of a k-algebra, that we call associated graded algebra.

A graded k-algebra is a k-algebra A with k-submodules Ai such that
A =

⊕
iAi and the product satisfies AiAj ⊆ Ai+j . Any graded algebra is

naturally a filtered algebra defining the filtration A(i) =
⊕

j≤iAj . Remark
that if A is a graded algebra, the graded algebra associated to its filtration
is naturally isomorphic to A itself.

45
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Remark that the filtered condition on the product implies that A(0) is a
k-subalgebra of A, and each of the A(i) carries an A(0)-bimodule structure.
Moreover since the algebra is unital and the product is k-bilinear, k is a
subalgebra of A(0) and is contained in the center of A.

We will say that the filtered algebra A is almost polynomial when the
associated graded algebra is isomorphic to the symmetric algebra over A(0)

of the first graded piece, i. e. Gr•A ∼= SymA(0)
Gr1A.

In particular, the graded algebra of an almost polynomial filtered algebra
is commutative. This implies that for any a ∈ A(i) and b ∈ A(j) their
commutator ab−ba belongs toA(i+j−1), because [ab−ba]i+j = [a]i[bj ]−[b]j [a]i
and the latter is 0 because of the commutativity condition.

Proposition 21. Let A be a filtered k-algebra such that the associated graded
algebra is commutative.

Then R = A(0) is a commutative k-algebra, and A(1) and Gr1A carry a
natural structure of (k,R)-Lie-Rinehart algebra.

Proof. Since Gr0A = A(0), clearly R is commutative.
Because of the previous observation, the commutator of two elements of

A(1) belongs to A(1). One can check that the bracket [a, b] = ab − ba for
a, b ∈ A(1) defines a k-Lie algebra structure on A(1).

For x, y ∈ Gr1A, for any two representative a, b ∈ A(1) define

[x, y] = [ [a, b] ]1 ;

one can check that since R = A(0) is commutative this definition does not
depend on the representatives, and that it gives a k-Lie bracket on Gr1A.

The anchor ] : A(1) → Derk(R) is given by the commutator ](a)(f) =
[a, f ] = af − fa for f ∈ R and a ∈ A(1). The Jacobi identity assurres that ]
is a morphism of Lie algebras. Finally,

[a, fb] = a(fb)− fba = f(ab− ba) + (af − fa)b = f [a, b] + ](a)(f)b

so the bracket on A(1) forms with ] a (k,R)-Lie-Rinehart algebra structure
on A(1).

Since R is commutative, we have that ](a) = ](a + f) for any a ∈ A(1)

and f ∈ R, so ] factors through the quotient, and induces a map ] : Gr1A→
Derk(R). The same calculation of before shows that this is an anchor for the
Lie bracket on Gr1A, and so that we have a (k,R)-Lie-Rinehart structure on
Gr1A.

3.1.1 The subalgebra A(0) isomorphic to k

Now we proceed to the classification of almost polynomial filtered k-algebras
with A(0) = k. Remark that in this case the structures of the previous
proposition are reduced to a k-Lie algebra structure.
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Let A be an almost polynomial filtered k-algebra with A(0) = k. We can
associate to it the exact sequence of k-Lie algebras:

0→ k → A(1) → Gr1A→ 0 ;

where A(0) is equiped with the abelian structure. This is an extension of
Gr1A by k, as studied in section 2.1, and k has the trivial Gr1A-module
structure since in A we have aµ− µa = 0 for any a ∈ A(1) and µ ∈ k.

The main idea of Sridharan is that from an extension of Gr1A by k
equipped with the trivial Gr1A-module structure it is possible to construct
an almost polynomial filtered algebra, and show that this operation is an
inverse to the previous one. To have a precise correspondence, fix a poly-
nomial k-algebra S and consider the category of pairs (A,Ξ), where A is
an almost polynomial filtered k-algebra with A(0) = k and Ξ : Gr•A → S
is an isomorphism of graded algebras. Morphisms between two pairs (A,Ξ)
and (A′,Ξ′) are morphisms of filtered algebras A→ A′ such that the induce
graded morphism Gr•A→ Gr•A′ commutes with the isomorphisms Ξ,Ξ′.

We have (cf. [37]):

Theorem 22. Let k be a commutative ring and V a free k-module.
Then there is a one to one correspondence between

1. isomorphism classes of pairs (A,Ξ), where A is a filtered k-algebra
with A(0) = k and Ξ : Gr•A → Sym•kV is an isomorphism of graded
algebras;

2. pairs (L,Σ), where L is a k-Lie algebra structure on V and Σ ∈
H2
CE(L; k) (k endowed with the trivial L-module structure).

Proof. Let (A,Ξ) be as in (1). Let L be the k-Lie algebra structure on Gr1A
given by Proposition 21. Consider the extension of k-Lie algebras

0→ k → A(1) → Gr1Λ→ 0 .

The isomorphism Ξ1 : Gr1A → V equip V with the k-Lie algebra structure
of Gr1A, while the extension gives a class Σ ∈ H2

CE(L; k) by Theorem 2. So
we obtain a pair (L,Σ) as in (2).

The converse follows from the following construction: let (L,Σ) be as in
(2), and F be a representative of Σ. In the full tensor algebra T •kL consider
the ideal IF generated by elements of the form

x⊗ y − y ⊗ x− [x, y]− F (x, y)

and define UF (L) as the quotient T •kL/IF . This is a twist on the universal
enveloping algebra of L, and we will call it F -Sridharan enveloping algebra
of L. It inherits a filtration from the grading of T •kL. It is easy to see that
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Gr•UF (L) is commutative, and that the quotient map T •kL→ UF (L) induces
a homomorphism T •kL → Gr•UF (L). So there is a natural homomorphism
ΞF : Sym•kL → Gr•UF (L), that in the next proposition we show to be an
isomorphism.

For another representative F ′ of Σ, with F ′−F = δη, define the following
endomorphism of T •kL: for f ∈ k, x ∈ L let

Υη : f 7→ f Υη : x 7→ x+ η(x)

and extend it to the full tensor algebra requiring it to be an algebra homo-
morphism. This is clearly a surjective endomorphism, since x = Υη(x−η(x))
for any x ∈ L, and L generates T •kL. So Υη determines a surjective mor-
phism of algebras T •kL → UF (L). The following calculation shows that the
ideal IF ′ is in the kernel of Υη, and so this induces an isomorphism between
UF ′(L) and UF (L), concluding the proof:

Υη(x⊗ y − y ⊗ x− [x, y]− F ′(x, y)) =
= [(x+ η(x))⊗ (y + η(y))− (y + η(y))⊗ (x+ η(x))+
−[x, y]− η([x, y])− F (x, y)] =

= [x⊗ y − y ⊗ x− [x, y]− η([x, y])− F (x, y)] = 0 ,

where the last equality follows from the definition of the coboundary:

(δη)(x, y) = −η(x, y) .

In the proof of the theorem, we used the following fact:

Proposition 23. The morphism of graded algebras ΞF : Sym•kL→ Gr•UF (L),
constructed in the second part of the previous proof, is an isomorphism.

Proof. Let LF be the k-Lie algebra defined as the central extension associ-
ated to the 2-cocycle F :

0→ k → LF → L→ 0 ;

let e0 denote the generator of k in LF , and consider the universal enveloping
algebra U0(LF ).

There is a natural algebras morphism U0(LF )→ UF (L) given by

(f1e0 + x1)⊗ . . .⊗ (fle0 + xl) 7→
∑

I⊆{1,...l}

∏
i∈I

fi
⊗

j∈{1,...,l}\I

xj ,

wich is clearly surjective, and whose kernel is the ideal generated by e0 − 1.
So we have the algebra isomorphism U0(LF )/(e0 − 1) ∼= UF (L).

Now, since L is k-free, let {ei}i∈I be a basis of L; assume that I is ordered,
that 0 /∈ I and extend the order of I to I ∪ {0} by 0 < i for any i ∈ I. So
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{ei}i∈I∪{0} is a basis of LF . Now we can apply the Poincaré - Witt theorem
to the algebra U0(LF ), and obtain that the images of {eα1 ⊗ . . . ⊗ eαl}
in Gr•U0(LF ) form a basis of the latter, where α1 ≤ α2 ≤ . . . ≤ αl ∈
I ∪{0} run over all non-decreasing sequence of indices of finite length. Since
this is a basis of the symmetric algebra Sym•kLF , this gives an isomorphism
Gr•U0(LF ) ∼= Sym•kLF .

Now the proof is complete, since we have the diagram

Sym•kLF /(e0 − 1)
∼= //

∼=
��

Gr•U0(LF )/(e0 − 1)

∼=
��

Sym•kL
ΞF // Gr•UF (L) .

3.1.2 The case of arbitrary A(0)

We now let A(0) to be any commutative k-algebra, and generalize Sridharan’s
constructions.

As before, we assocciate to each almost polynomial filtered k-algebra A
the exact sequence

0→ R→ A(1) → Gr1A→ 0 .

This is an exact sequence of (k,R)-Lie-Rinehart algebras, with R abelian
and endowed with the Gr1A-module structure given by the anchor.

Then we will show that from such an extension it is possible to construct
an almost polynomial filtered k-algebra, and that this construction is the
inverse to the one above.

Theorem 24. Let k be a commutative ring, R be an associative k-algebra
and V a free R-module.

Then there is a one-to-one correspondence between:

1. isomorphism classes of pairs (A,Ξ), where A is a filtered k-algebra
with A(0) = R and Ξ : Gr•A → Sym•RV is an isomorphism of graded
algebras;

2. pairs (L,Σ), where L is a (k,R)-Lie-Rinehart algebra structure on V
and Σ ∈ H2

LR(L;R, ]), where ] is the L-module structure on R associ-
ated to the anchor of L.

From a pair as in (1) one obtains a pair as in (2) simply repeating
the argument of Theorem 22 and using Theorem 3 to associate a class in
H2
LR(L;R, ]) to the extension of (k,R)-Lie-Rinehart algebras.
Now let (L,Σ) be a pair as in (2), and let F :

∧2
R L→ R be a represen-

tative of Σ.
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The construction of the algebra UF (L) has to be modified to take account
of the (k,R)-Lie-Rinehart algebra structure of L: set

T̃ 0L = R , T̃ 1L = L⊗k R ,

and equip T̃ 1L with the following R-bimodule structure:

f(x⊗ g)h = (fx)⊗ (gh) ,

for x ∈ L and f, g, h ∈ R. Define T̃ iL to be the ith R-tensor power of
T̃ 1L, where on T̃ 1L ⊗R T̃ 1L we equip the first factor with the right R-
module structure, and the second factor with the left R-module structure.
On T̃ •L =

⊕
i≥0 T̃

iL the tensor ⊗R defines a k-bilinear graded product.
Let IF be the two-sided ideal of T̃ •L generated by elements of the form

fx⊗k 1− x⊗k f − ](x)(f) ,

(x⊗k 1)⊗R (y ⊗k 1)− (y ⊗k 1)⊗R (x⊗k 1)− [x, y]⊗k 1− F (x, y) ,

for x, y ∈ L and f ∈ R.
Define the algebra ŨF (L) to be the quotient of T̃ •L by IF . Now we see

some properties of the algebra ŨF (L):

Lemma 25. 1. ŨF (L) is a filtered algebra with (ŨF (L))(0) = R;

2. the first graded piece Gr1ŨF (L) is isomorphic, as a left R-module, to
L;

3. the left and right R-module structures on the graded objects GriŨF (L)
coincide;

4. the graded algebra Gr•ŨF (L) is commutative;

5. there is a natural morphism of graded algebras ΞF : Sym•RL→ Gr•ŨF (L);

6. for F = 0, the algebra Ũ0(L) is isomorphic to the universal enveloping
algebra V (R,L) of the (k,R)-Lie-Rinehart algebra L, as defined in [32].

Proof. (1) is clear from the construction of ŨF (L), since T̃ •kL has a natural
grading and the ideal IF does not contain any element of R.

To see (2), let η ∈ (ŨF (L))(1). Then η is the class of an element of the
form x⊗k f + g with x ∈ L and f, g ∈ R. We may assume that f = 1, since
fx⊗ 1− x⊗ f − ](x)(f) is in the ideal IF . But g ∈ (ŨF (L))(0), so the map
x→ [x⊗k 1]1 is an isomorphism between L and Gr1ŨF (L).

(3) and (4) follow from the fact that the generators of IF are of the form
"commutator of two elements" + "lower degree terms", so for ξ ∈ (ŨF (L))i
and η ∈ (ŨF (L))j we have that fξ − ξf ∈ (ŨF (L))i+j−1.
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To prove (5), since by (4) the associated graded algebra is commutative,
it suffices to construct a morphism of graded algebras T •RL → Gr•ŨF (L).
This is given by

x1 ⊗R . . .⊗R xt → [(x1 ⊗k 1)⊗r . . .⊗R (xt ⊗k 1)]t

for xi ∈ L, where on the righ hand side, the bracket [·]t denotes the class
modulo (ŨF (L))t−1 of the class modulo the ideal IF of the element of T̃ tL.
To show that this map is well defined one has to check that

f [(x1⊗k1)⊗R. . .⊗R(xt⊗k1)]t = [(x1⊗k1)⊗R. . .⊗R(xi⊗f)⊗R. . .⊗R(xt⊗k1)]n

for any f ∈ R. This is true by the same argument as before, since fx⊗k 1−
x⊗k f − ](x)(f) is in the ideal IF , and the last summand has degree lower
than the others.

For (6), recall how to define V (R,L): we can equip the R-module R⊕L
with the k-Lie bracket given by

[(f, x), (g, y)] = (](x)(g)− ](y)(f), [x, y])

and consider the universal enveloping algebra Uk0 (R ⊕ L) of R ⊕ L over
k. Let U † be the subalgebra generated by the canonical image of R ⊕ L
in Uk0 (R ⊕ L), and P the ideal in U † generated by elements of the form
(f, 0)⊗k (g, x)− (fg, fx) for f, g ∈ R and x ∈ L. Set

V (R,L) =
U †

P
.

To show that Ũ0(L) is isomorphic to V (R,L), consider the algebra morphism
from T̃ •L to V (R,L) defined by

Ψ : f 7→ [(f, 0)] ,
Ψ : x⊗k 1 7→ [(0, x)] ,

for f ∈ R = T̃ 0L and x⊗k 1 ∈ T̃ 1L, where the bracket [·] on the right hand
side denotes the class in V (R,L) of an element of T •k (R⊕ L), and extended
to T̃ •L by Ψ(ξ ⊗R η) = Ψ(ξ) ·Ψ(η).

The map Ψ is surjective: elements of the form [(f, x)] are in its image,
since

[(f, x)] = [(f, 0) + (x, 0)] = Ψ(f) + Ψ(x⊗k 1) ,

and if A,B ∈ T •k (R ⊕ L) are such that [A], [B] are in the image of Ψ, then
the class of their tensor product [A⊗k B] is in the image of Ψ too, since

[A⊗k B] = [A][B] = Ψ(ξ)Ψ(η) = Ψ(ξ ⊗R η) ,

so Ψ is onto, since V (R,L) is generated by elements of R⊕ L.
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It remains to show that the ideal I0 is in the kernel of Ψ:

Ψ(fx⊗k 1− x⊗k f − ](x)(f)) =
= Ψ(fx⊗ 1)−Ψ((x⊗k 1)⊗R f)−Ψ(](x)(f)) =
= [(0, fx)]− [(0, x)⊗k (f, 0)]− [(](x)(f), 0)] =
= [(0, fx)]− [(f, 0)⊗k (0, x)− [(f, 0), (0, x)]]− [(](x)(f), 0)] =
= [(0, fx)]− [(0, fx)] + [(](x)(f), 0)]− [(](x)(f), 0)] = 0 ,

and

Ψ((x⊗k 1)⊗R (y ⊗k 1)− (y ⊗k 1)⊗R (x⊗k 1)− [x, y]⊗k 1) =
= [(0, x)⊗k (0, y)− (0, y)⊗k (0, x)− (0, [x, y])] = 0

Proposition 26. The morphism ΞF constructed above is an isomorphism.

Proof. Let LF be the (k,R)-Lie-Rinehart algebras extension defined by the
class F

0→ R→ LF → L→ 0

and consider its Rinehart enveloping algebra V (R,LF ). Denoting by e0 the
generator of R in LF , we have V (R,LF )/(e0 − 1) ∼= ŨF (L).

Now, a Poincaré - Witt theorem for V (R,LF ) is proven in [32], so we have
Sym•RLF ∼= Gr•V (R,LF ). The thesis then follows by the same argument of
Proposition 23.

To conclude the proof of Theorem 24, we need to see what happens when
one changes representative of Σ.

Lemma 27. Let F, F ′ be two representatives of Σ ∈ H2
LR(L;R), with F ′ −

F = δη for η ∈ HomR(L,R).
Then there exists an isomorphism of filtered algebras Υη : ŨF ′L → ŨFL

such that the induced morphism of graded algebras commutes with the iso-
morphisms ΞF ′ and ΞF .

Proof. We construct this isomorphism as we did in Theorem 22: consider
the endomorphism of T̃ •L given by

f 7→ f for f ∈ R = T̃ 0L

x⊗ 1 7→ x⊗ 1 + η(x) for x⊗ 1 ∈ L⊗k R = T̃ 1L

and extended naturally to a morphism of algebras. Clearly Υη is surjective,
so it induces a surjective morphism of algebras T̃ •L → ŨFL. To conclude
the proof, one just needs to check that IF ′ is in the kernel of Υα, which is a
straightforward calculation.
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3.2 Classification of sheaves of almost polynomial
filtered algebras

In this section, by sheafifying the arguments of the previous section, we
classify the sheaves of rings Λ satisfying the axioms of Simpson’s paper [34].

Let X be a smooth algebraic variety over C. We denote by TX its tangent
sheaf. By a sheaf of filtered algebras on X we shall mean what Simpson calls
"almost polynomial sheaf of rings of differential operators", that is, a sheaf
of CX -algebras Λ over X (CX being the constant sheaf on X with group C)
with a filtration of subsheaves of abelian subgroups Λ(i) ⊆ Λ(i+1) ⊆ . . . ⊆ Λ
for i ∈ Z≥0, satisfying the following axioms:

1. Λ0 = OX , Λ(i)Λ(j) ⊆ Λ(i+j) and Λ =
⋃

Λ(i);

2. the left and right OX -module structures on GriΛ = Λ(i)/Λ(i−1) coin-
cide;

3. the graded OX -modules GriΛ are coherent and locally free;

4. the graded algebra Gr•Λ is isomorphic to the symmetric algebra over
the first graded summand Gr1Λ.

By a splitting of Λ we mean a left OX -module morphism ζ : Gr1Λ→ Λ(1)

that splits the exact sequence

0→ OX → Λ(1) → Gr1Λ→ 0 . (3.1)

For each open subset U ⊆ X, we have that Λ(U) is a filtered C-algebra
with Λ(U)(0) = OX(U), and Gr•Λ(U) ∼= Sym•OX(U)Gr1Λ(U), so is an object
that we studied in the previous section. In particular, Gr1Λ(U) carries a
(C,OX(U))-Lie-Rinehart algebra structure. These structures glue in a nat-
ural way, and give Gr1Λ a holomorphic Lie algebroid structure:

Proposition 28. The coherent OX-modules Λ(1) and Gr1Λ carry a natural
holomorphic Lie algebroid structure.

Proof. • For each x ∈ Λ(1), consider the map

]Λ(x) : f → [x, f ] = xf − fx .

Since the graded object is commutative, this map takes values in Λ(1).
Moreover it satisfies the Leibniz rule, so ]Λ(x) is a derivation of OX .
This yield a map ]Λ : Λ(1) → TX .

• For x ∈ Λ(1) and g ∈ OX , one has ]Λ(x+ g) = ]Λ(x), since

[x+ g, f ] = (x+ g)f − f(x+ g) = xf − fx+ fg − gf = xf − fx ,

so that ]Λ factors through the quotient, and we obtain the anchor
]G : Gr1Λ→ TX .
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• Since the graded object is commutative, for x, y ∈ Λ(1) one has [x, y] =
xy − yx ∈ Λ(1). It is easy to check that this bracket satisfies the
Jacobi identity and the Leibniz rule w. r. t. the anchor aΛ, so that
(Λ(1), ]Λ, [·, ·]) is a holomorphic Lie algebroid.

• For each u, v ∈ Gr1Λ, define

[u, v]G = [x, y] mod OX

where x, y ∈ Λ(1) are representatives of u and v respectively. It is
standard to check that this definition does not depend on the choice of
x and y in their classes, and that the bracket [·, ·]G satisfies the Jacobi
identity and the Leibniz rule w. r. t. the anchor aG.

We will call (Gr1Λ, aG, [·, ·]G) the Lie algebroid associated to Λ.
It follows straightforwardly from the definition that the projection Λ(1) →

Gr1Λ is a Lie algebroid map, so we can look at (3.1) as an exact sequence of
Lie algebroids, where OX is given the trivial Lie algebroid structure. Hence
Λ(1) is an extension of holomorphic Lie algebroids of Gr1Λ by OX .

We will classify such extensions in the next section.

3.2.1 Lie algebroid extensions

Let L be a holomorphic Lie algebroid, and

0→ OX → L′ → L → 0

an abelian extension of holomorphic Lie algebroids.
First assume that there exists a global splitting ζ : L → L′ of the sequence

considered as a sequence of left OX -modules. This gives an isomorphism of
left OX -modules ζ̂ : L′ → OX ⊕ L, and let [·, ·]ζ be the bracket on OX ⊕ L
obtained via this isomorphism. So we can write

[f + u, g + v]ζ = [u, v]L +Q(u, v) + aL(u)(g)− aL(v)(f)

with Q(u, v) ∈ OX . Obviously, Q is antisymmetric and OX -bilinear, so it is
a holomorphic 2-L-form; moreover, one can check that the Jacobi identity
for [·, ·]ζ implies that dLQ = 0.

We have the following:

Lemma 29. Let ζ1, ζ2 be two global left OX-module splittings of

0→ OX → L′ → L → 0 ,

and let ψ = ζ2 − ζ1 ∈ Hom(L,OX) = H0(X,ΩL).
Let Q1, Q2 be the closed holomorphic 2-L-forms associated to the short

exact sequence via ζ1, ζ2 respectively.
Then Q2 −Q1 = dLψ.
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Proof. This works in the same way as in the case of Lie-Rinehart algebras:
on OX ⊕ L we have brackets [·, ·]ζi , for i = 1, 2, induced by ζi. For ξ, η ∈ L′
we have

ζ1(ξ) = (f, u) , ζ1(η) = (g, v) ,

ζ1([ξ, η]) = (](u)(g)− ](v)(f) +Q1(u, v), [u, v]) ,

ζ2(ξ) = (f + ψ(u), u) , ζ2(η) = (g + ψ(v), v) ,

ζ2([ξ, η]) = (](u)(g + ψ(v))− ](v)(f + ψ(u)) +Q1(u, v) + ψ([u, v]), [u, v])

with f, g ∈ OX and u, v ∈ L. On the other hand

ζ2([ξ, η]) = (](u)(g)− ](v)(f) +Q2(u, v), [u, v]) ,

so that we obtain (Q2 −Q1)(u, v) = ψ([u, v]) = (dLψ)(u, v).

Remember the notation and results of Section 2.4.3:

H0(X,Ω2
L)closed

dL(H0(X,ΩL))
= E2,0

2
∼= F 2H2(L,C) ,

Then the previous discussion and lemma imply:

Corollary 30. The isomorphism classes of holomorphic Lie algebroid ex-
tensions

0→ OX → L′ → L → 0

which are split as sequences of left OX-modules are in one to one correspon-
dence with the elements of F 2H2(L,C).

Now we will see what happens if the extension does not split as a sequence
of OX -modules: let Φ ∈ Ext1(L,OX) ∼= H1(X,ΩL) be the class of the
extension of left OX -modules

0→ OX → L′ → L → 0 .

This sequence admits a global splitting if and only if Φ = 0. For a sufficiently
good open covering U = {Uα} of X we can represent Φ by a closed 1-Čech-
cocycle φαβ , and choose local splittings

ζα : L|Uα → L
′
|Uα

satisfying ζβ − ζα = φαβ . Then we can do the previous construction on each
Uα and obtain a closed holomorphic 2-L-form Qα ∈ H0(Uα,Ω

2
L). Because of

Lemma 29, these satisfy Qβ −Qα = dLφαβ on the double overlaps Uαβ . So
the pair (Qα, φαβ) is a closed element of F 1T 2

L.
Now let φ′αβ be another representative of Φ; then φ′αβ−φαβ = (δ̌η)αβ for

some η ∈ Č1(U,Ω1
L). Let ζ ′α be local splittings over Uα satisfying ζ ′β − ζ ′α =
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φ′αβ = φαβ + (δ̌η)αβ , and Q′α ∈ H0(Uα,Ω
2
L) the closed 2-L-forms associated

to the splittings ζ ′α. Then δ̌(Q′ − Q)αβ = dL(δ̌η)αβ , which means, since δ̌
and dL commute, that the local 2-L-forms Q′α −Qα − dLηα glue to a global
2-L-form G. So

(Q′α, φ
′
αβ)− (Qα, φαβ) = δ(ηα +G|Uα),

Hence the cohomology class of (Qα, φαβ) in H2(F 1T •) = F 1H2(L,C) is
independent of the choices we made. Summing up, we have shown:

Theorem 31. Let L be a holomorphic Lie algebroid.
The isomorphism classes of abelian extensions of L by OX are in a one to

one correspondence with the elements of the cohomology group F 1H2(L,C).

Remark that through this correspondence, the map

F 1H2(L,C)→ H1(X,ΩL)

described at the end of Section 2.4.3 associates to an extension of Lie alge-
broids its class as an extension of OX -modules, while Corollary 30 describes
the fiber of this map over 0.

3.2.2 Sheafifying the twisted enveloping algebras

Now we sheafify the construction of twisted enveloping algebras of the pre-
vious section, to give analogous results for Lie algebroids: we will see that
the datum of an extension of L by OX as holomorphic Lie algebroids is
equivalent to a pair (Λ,Ξ) with Λ a sheaf of filtered algebras over X and
Ξ : GrΛ→ Sym•L an isomorphism of sheaves of graded algebras.

Let
0→ OX → L′ → L → 0

be an abelian extension of holomorphic Lie algebroids, with OX endowed
with the L-module structure given by the anchor, and let σ = (Qα, φαβ) be
a representative of the class Σ ∈ F 1H2(L,C) associated to this extension.

Consider the OX -bimodule structure on L ⊗CX OX given by

f(u⊗CX g)h = (fu)⊗CX (gh)

and let T̃ •L its OX -tensor algebra. Let T̃ •αL and T̃ •αβ be its restriction to
Uα, Uαβ respectively. In T̃ •αL consider the ideal IQα generated by sections
of the form

fu⊗CUα 1− u⊗CUα f − ](u)(f) ,

(u⊗CUα 1)⊗OUα
(v⊗CUα 1)−(v⊗CUα 1)⊗OUα

(u⊗CUα 1)−[u, v]⊗CUα−Qα(u, v)

for f ∈ OUα and u, v ∈ L|Uα , and let Ũσ,αL be the quotient.
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Now, on double overlaps Uαβ define the map

T̃ •αβL → T̃ •αβL

by
f → f f ∈ OUαβ ,

u→ u+ φαβ u ∈ L|Uαβ .

One can check that this map descends to an isomorphism of sheaves of alge-
bras

gαβ : (Ũσ,αL)|Uαβ → (Ũσ,βL)|Uαβ .

Since φαβ is δ̌-closed, we have gαβgβγgγα = 1 on the triple intersections, so
we can glue the local sheaves Ũσ,αL via the isomorphisms gαβ , and get a
sheaf of algebras Ũσ(L) on X.

Now, it is easy to generalize Lemma 25 to the following:

Lemma 32. 1. ŨσL is a filtered algebra with (ŨF (L))(0) = OX ;

2. the first graded piece Gr1ŨσL is isomorphic, as a left OX-module, to
L;

3. the left and right OX-module structures on the graded objects GriŨσL
coincide;

4. the graded algebra Gr•ŨσL is commutative;

5. there is a natural morphism of sheaves of graded algebras Ξσ : Sym•OXL →
Gr•ŨσL.

Proposition 33. The map Ξσ defined in the last point of the previous lemma
is an isomorphism.

Proof. It suffices to show that locally Ξσ is an isomorphism. On each Uα, by
construction, we have that each Ũσ,αL is the sheafification of the OX(Uα)-
algebra ŨQα(L(Uα)).

So
Ξσ|Uα : Sym•OUαL|Uα → Ũσ,αL

is the sheafification of

ΞQα : Sym•OX(Uα)L(Uα)→ ŨQα(L(Uα)) ,

and so is an isomorphism by Proposition 26.
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If σ′ is another representative of Σ and σ′ − σ = δ(η), it is possible to
construct from η an isomorphism

Υη : Uσ′(L)→ Uσ(L)

commuting with the isomorphisms Ξσ′ and Ξσ: let σ′ = (Q′α, φ
′
αβ) and

σ = (Qα, φαβ); then Q′α −Qα = dLηα and φ′αβ − φαβ = −(δ̌η)αβ = ηα − ηβ .
Over each Uα define Υη,α as the sheafification of the Υηα as defined in Lemma
27. These are isomorphisms of Ũσ′,αL with Ũσ,αL. For these to define an
isomorphism of the sheaf Ũσ′L with ŨσL we need the following diagram to
commute on the double overlaps Uαβ :

Ũσ′,αL
Υη,α //

g′αβ
��

Ũσ,αL

gαβ

��
Ũσ′,βL Υη,β

// Ũσ,βL .

This is true because

gαβ(Υη,α(u⊗ 1)) = gαβ(u⊗ 1 + ηα(u)) = u⊗ 1 + φαβ(u) + ηα(u) ,

Υη,β(g′αβ(u⊗ 1)) = Υη,β(u⊗ 1 + φ′αβ(u)) = u⊗ 1 + ηβ(u) + φ′αβ(u)

and φαβ + ηα = ηβ + φ′αβ .
Summing up, we have shown:

Theorem 34. Let X be a smooth projective variety and L a holomorphic
Lie algebroid on X.

Then there is a 1-to-1 correspondence between

• holomorphic Lie algebroid extensions of L by OX ;

• elements of the vector space F 1H2(L,C);

• isomorphism classes of pairs (Λ,Ξ), where Λ is a sheaf of filtered al-
gebras on X and Ξ : Gr•Λ → Sym•OXL an isomorphism of sheaves of
graded algebras.

In particular, if L is a holomorphic Lie algebroid and Σ ∈ F 1H2(L,C),
we will denote the associated sheaf of filtered algebras by ΛL,Σ.

Moreover, this construction is functorial: if L,L′ are two holomorphic Lie
algebroids and Ψ : L → L′ is a Lie algebroid morphism, we have an induced
pull back morphism between the cohomologies Ψ∗ : Hp(L′,C) → Hp(L,C)
preserving the filtration.

Then it is easy to show the following:
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Lemma 35. Let Ψ : L → L′ be a morphism of holomorphic Lie algebroids
and Σ ∈ H2(L′,C). Then Ψ extends to a morphism of sheaves of filtered
algebras

Ψ : ΛL,Ψ∗Σ −→ ΛL′,Σ.

3.2.3 Examples: algebras associated to the canonical Lie al-
gebroid

Let X be a smooth projective variety over C, and consider L = TX the holo-
morphic tangent bundle with the canonical Lie algebroid structure. Remark
that since X is smooth projective, we have the Hodge decomposition, that
implies

F 1H2(TX ,C) = F 1H2
DR(X,C) = H2,0(X)⊕H1,1(X) .

If Σ = 0, then ΛTX ,0 is the sheaf of algebras of holomorphic differential
operators DX .

For Σ = [(0, Q)] we can describe ΛTX ,[(0,Q)] in terms of local coordinates
as follows. Let x1, . . . , xn be local holomorphic coordinates of X and ∂xi the
corresponding frame of TX . Let Qij be such that Q =

∑
i,j Qijdx

i ∧ dxj .
Then the commutator of elements in ΛTX ,[(0,Q)] is determined by:

[xi, xj ] = 0 ,[
xi, ∂xj

]
= δij ,[

∂xi , ∂xj
]

= Qij .

This is the operator algebra corresponding to a magnetic monopole of charge
Q.

Another case that has an explicit description is when [φ] ∈ H1,1(X) ∩
H2(X,Z). Let M be a holomorphic line bundle on X given by transition
functions gαβ : Uαβ → C∗; this defines a class in H1,1(X) ∩ H2(X,Z) rep-
resented, through Dolbeault isomorphism, by a cocycle φαβ = g−1

αβdgαβ ∈
H1(X,ΩX). For Q = 0, the class [(φ, 0)] defines the Atiyah Lie algebroid of
M:

0→ OX → J 1
X(M)→ TX → 0 ,

so we have ΛTX ,[(φ,0)]
∼= D(M), the algebra of differential operators on the

line bundleM. One can then think of ΛTX ,[(φαβ ,Q)] as the operator algebra
of a twisted magnetic monopole with charge Q and twisting line bundleM.

3.2.4 Other examples

Remark that when Σ = 0, the corresponding algebra ΛL,0 are the algebras
that arise from a triple (H, δ, γ) as in paragraph XX of [34]: actually the
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definition of that triples is equivalent to define a holomorphic Lie algebroid,
with anchor induced by δ and bracket induced by γ.

Let now L = K be a holomorphic bundle of Lie algebras. Then K(U) is
actually an OX(U)-Lie algebra for each open U ⊆ X, and Hp(Ω•K(U), dK)
coincides with the Chevalley-Eilenberg cohomology Hp

CE(K(U),OX(U)).
For Σ = 0, the associated sheaf of filtered algebras ΛK,0 is the sheaf

of universal enveloping algebras of K: indeed, we have that ΛK,0(U) is the
universal enveloping algebra of the OX(U)-Lie algebra K(U) for each open
U ⊆ X.

For a general Σ = [(Qα, φαβ)], we have that ΛK,Σ(Uα) is the Sridharan
enveloping algebra of the OX(Uα)-Lie algebra K(Uα) associated to the class
Qα ∈ Ω2

K(Uα) = H2
CE(K(Uα),OX(Uα)). (ΛK,Σ)|Uα is the sheafification of

this algebra. In a similar way as in the proof of Theorem 34, the φαβ give
isomorphisms on the double overlaps satisfying the gluing condition.

For any regular integrable holomorphic foliation F ⊆ TX , we have a
holomorphic Lie algebroid structure induced by the canonical one on TX .

If Σ = 0, then ΛF ,0 is isomorphic to the algebra DF of differential
operators along the foliation. For more general Σ we obtain operator algebras
of (twisted) monopoles propagating along the foliation.



Chapter 4

Λ-modules

In this chapter we provide an application of Theorem 34 to moduli spaces:
first we quicly review the construction of the moduli spaces of Λ-modules
of [34], then see that this provides moduli spaces for semistable flat L-
connections for any holomorphic Lie algebroid L.

4.1 The moduli spaces of semistable Λ-modules

Let X be a smooth projective variety over C, OX(1) an ample line bundle
and Λ a sheaf of filtered algebras. Let E be a coherent sheaf on X.

Definition 9. A Λ-module structure on E is a OX-morphism µ : Λ⊗E → E
satisfying the usual module axioms and such that the OX-module structure
on E induced by OX → Λ coincides with the original one.

We will say that a Λ-module (E , µ) is (semi)stable if E is torsion free and
for any subsheaf F ⊆ E invariant under µ (i.e. such that µ(Λ ⊗ F) ⊆ F),
one has p(F) < p(E) (resp. p(F) ≤ p(E)), where p(E) is the reduced Hilbert
polynomial of E , defined as the ratio P (E)/rnk(E), where P (E)(n) = χ(E ⊗
OX(n)) is the Hilbert polynomial of E , and rnk(E) its rank.

Remark that if (E , µ) is a Λ-module and F ⊆ E is a µ-invariant subsheaf,
then µ induces a Λ-module structure on both F and E/F .

If (E , µ) is a semistable Λ-module, there exist filtrations Ei ⊆ Ei−1 of µ-
invariant subsheaves of E such that each griE = Ei/Ei+1 is a stable Λ-module
with Hilbert polynomial equal to the Hilbert polynomial of E . In general,
such filtrations (that we call Jordan filtration of the semistable Λ-module
(E , µ) are not unique, but the graded object grE =

⊕
griE associated to

different Jordan filtrations of the same semistable Λ-module are isomorphic.
In general, different semistable Λ-modules may have graded objects isomor-
phic, so this induce an equivalence relation on semistable Λ-modules. We
say that two Λ-modules are Jordan equivalent when their graded objects are
isomorphic.

61
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For any scheme S, let pS , pX denote the projections from the product
S×X to the factors, and ΛS be the pullback p∗XΛ. Consider the contravariant
functorMΛ(P ) : Schemes→ Sets such that

• to each scheme S associates the set of isomorphism classes of ΛS-
modules (F , µ) such that F is flat over S and each fiber (Fs, µs) is
a semistable Λ-module and has Hilbert polynomial P . Two such fami-
lies F ,F ′ are isomorphic if there exist a line bundleM on S such that
F ′ = F ⊗ p∗SM and µ′ = µ⊗ 1p∗SM;

• to each morphism of schemes ψ : T → S associates the pull back: if F
is a ΛS-module flat over S, then ψ∗F is a ΛT -module flat over T .

In [34] is shown the following:

Theorem 36. Let X be a smooth projective variety, Λ a sheaf of filtered
algebras on X and P a numerical polynomial.

Then there exists a quasi projective varietyMΛ(P ) that universally corep-
resents the functorMΛ(P ). The closed points ofMΛ(P ) are in a one to one
correpondence with Jordan equivalence classes of semistable Λ-modules over
X with Hilbert polynomial equal to P .

The scheme MΛ(P ) is obtained as a GIT quotient of a locally closed
subscheme of a Quot-scheme by the action of a special linear group: let F
be the family of coherent sheaves E over X with Hilbert polynomial P that
admits a Λ-module structure µ such that the pair (E , µ) is semistable. It
can be shown (see [34], Corollary 3.5) that F is a bounded family, so that
there exists an integer N such that, letting V = CP (N), for each E ∈ F
there exist a surjective map q : V (−N) → E , where by V (−N) we denote
V ⊗C OX(−N). In particular, since OX ↪→ Λ(1), for each E ∈ F there exist
a surjective map

Λ(1) ⊗ V (−N)→ E .

Now consider the scheme Quot(Λ(1) ⊗ V (−N), P ).

Theorem 37 (cf. [34], Theorem 3.8). There exist a locally closed subscheme
Q ⊆ Quot(Λ(1) ⊗ V (−N), P ) parametrizing triples (E , µ, α), with (E , µ) a
semistable Λ-module and α : V → H0(X; E(N)) an isomorphism of vector
spaces.

The moduli space MΛ(P ) is the quotient Q//SL(V ). We review the
construction of Q, since later we will study its tangent space. First of all
consider the open subscheme Q1 ⊆ Quot(Λ(1) ⊗ V (−N), P ) consisting of
quotients q : Λ(1) ⊗ V (−N) → E such that q̃, the composition V (−N) ↪→
Λ(1) ⊗ V (−N) → E is surjective. If we let K1 be the kernel of q and K0 be
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the kernel of q̃, we have the diagram

0 // K0

��

// V (−N) //

��

E // 0

0 // K1
// Λ(1) ⊗ V (−N) // E // 0

Now, tensoring the first row of this diagram by Λ(1), we obtain the map
Λ(1) ⊗ K0 → Λ(1) ⊗ V (−N) → E . Define Q2 to be the closed subscheme of
Q1 consisting of the quotients q such that this map vanishes. For a point q
in Q2 we have the following diagram:

0

��

0

��
Λ(1) ⊗K0

��

Λ(1) ⊗K0

��
0 // K1

//

��

Λ(1) ⊗ V (−N) //

��

E // 0

0 //W1
//

��

Λ(1) ⊗ E //

��

E // 0

0 0

(4.1)

Denote by µ1 the morphism Λ(1) ⊗ E → E on the bottom row.
For any positive integer j, let Bj be the kernel of the product (Λ(1))

⊗j →
Λ(j). Let Q3,j ⊆ Q2 the closed subscheme of points q such that the compo-
sition Bj ⊗ E → (Λ(1))

⊗j → E vanishes, where the last map is obtained by
iterating µ1 j times. Let Q3 denote the intersection of all Q3,j ’s, that is a
closed subscheme of Q2 since the latter is Noetherian. For q ∈ Q3, the map
µ1 extends to define a Λ-module structure µ on E .

Finally, the open subscheme Q ⊆ Q3 of quotients q : Λ(1) ⊗ V (−N)→ E
such that E is semistable as Λ-module, is the scheme parametrizing the triples
(E ,∇, α) as in the statement of the theorem.

4.2 Λ-modules and L-connections

The ideas underlying this subsection are already contained in the section
"The split almost polynomial case" of [34]: Simpson’s definition of triple
(H, δ, γ) is equivalent to define a holomorphic Lie algebroid structure on H∗,
and we remark that Simpson’s Lemma 2.13 is equivalent to our Proposition
38 for Q = 0.
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Let L be a holomorphic Lie algebroid, Σ ∈ F 2H2(L,C) and Λ = ΛL,Σ.
Since we have taken Σ in the second filtration piece, there exist left OX -
module splittings of the sequence

0→ OX → Λ(1) → L → 0 .

Choose a splitting ζ, which provides a representative Q ∈ H0(X,Ω2
L)closed of

Σ.
To a Λ-module structure µ on E , we canonically associate a sheaf map

∇ : E → E ⊗ L∗, defined by

〈∇e, v〉 = µ(ζ(v)⊗ e)

for all v ∈ L. This map satisfies the dL-Leibniz rule ∇(fe) = f∇e+ e⊗dLf
for any f ∈ OX and e ∈ E , so it is a holomorphic L-connection on E .

Vice versa, if we have a holomorphic L-connection ∇ on E , we can define
a morphism µ1 : Λ(1) ⊗ E → E by

µ1((f + ζ(u))⊗ e) = fe+ 〈∇e, v〉.

This morphism can be extended to a Λ-module structure if and only if

µ1(a⊗ µ1(b⊗ e))− µ1(b⊗ µ1(a⊗ e)) = µ1([a, b]⊗ e)

for any a, b ∈ Λ(1), e ∈ E . Since [a, b] = ζ([[a], [b]]) + Q([a], [b]), we see that
this condition is satisfied if and only if

〈∇e, [u, v]〉+Q(u, v)e− 〈∇(〈∇e, u〉), v〉+ 〈∇(〈∇e, v〉), u〉 = 0

for any u, v ∈ L and e ∈ E , that is, if and only if the curvature of ∇ satisfies

F∇ = Q · 1E .

So we have:

Proposition 38. Let L be a holomorphic Lie algebroid, Q ∈ H0(X,Ω2
L) a

closed 2-L-form, and E a coherent sheaf on X.
Then giving a ΛL,[(0,Q)]-module structure µ on E is equivalent to giving a

holomorphic L-connection ∇ : E → E ⊗ L∗ such that F∇ = Q1E .

By virtue of this proposition and Theorem 36, there exist quasi projective
moduli schemes ML,Q(P ) that are coarse moduli spaces for semistable pairs
(E ,∇) with E a torsion free OX -module with Hilbert polynomial P , ∇ a
holomorphic L-connection on E satisfying F∇ = Q·1E , and semistable means
that for any subsheaf F ⊆ E with ∇(F) ⊆ F ⊗ ΩL one has p(F) ≤ p(E).

Now, if Q,Q′ are two cohomologous closed 2-L-forms, for any η ∈ Ω1
L

such that Q′ − Q = dLη we can construct an isomorphism of algebras Υη :
ΛL,[(0,Q)] → ΛL,[(0,Q′)]. This induces an isomorphism of the moduli spaces
ML,Q(P )→ML,Q′(P ). Moreover, we have:
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Proposition 39. If Q is not cohomologous to 0, the moduli spaces ML,Q(P )
are empty for any polynomial P .

Proof. On one side, by Theorem 16, if E is a torsion free OX -module and ∇
is a holomorphic L-connection on it, its Lh-characteristic ring is 0. So the
cohomology class of the trace of F∇ is zero.

On the other side we have

Trace(Q · 1E) = rnk(E) ·Q ,

so if Q is not cohomologous to zero we have a contradiction.

Summing up, we have:

Corollary 40. Let L be a holomorphic Lie algebroid over a smooth projective
variety X, Q ∈ H0(X,Ω2

L)closed and P a numerical polynomial.
Then for Q not cohomologous to 0 the moduli spaces ML,Q(P ) are empty,

while for Q cohomologous to 0 the moduli spaces ML,Q(P ) parametrizes
semistable flat holomorphic L-connections with Hilbert polynomial P .

For a general Σ ∈ F 1H2(L,C), we do not have a global splitting of the
1st-order sequence. But, if (Qα, φαβ) is a representative of Σ, we can choose
local splittings ζα over Uα such that ζβ − ζα = φαβ on the overlaps, and
repeat the previous argument to find that a ΛL,[(Qα,φαβ)]-module structure on
a coherent sheaf E is equivalent to a collection of holomorphic L-connections
∇α on E|Uα such that

• F∇α = Qα1E|Uα ,

• ∇β −∇α = 1E ⊗ φαβ over the double intersections Uαβ .

Any morphism of holomorphic Lie algebroids Ψ : L → L′ induces by
Lemma 35 a morphism of sheaves of filtered algebras Ψ : ΛL,0 → ΛL′,0.

Let E be a coherent sheaf on X and µ′ a ΛL′,0-module structure on it.
Then µ = µ′ ◦Ψ is a ΛL,0-module structure on E . If ∇ (resp. ∇′) is the flat
L (resp. L′)-connection associated to µ (resp. µ′), then ∇ = (1E ⊗Ψ∗) ◦∇′.

Lemma 41. Let Ψ : L → L′ be a morphism of holomorphic Lie algebroids,
and denote by C its cokernel. Let E be a coherent OX-module and ∇ a L-
connection on it.

If there exist a L′-connection ∇′ inducing ∇ by the previous construction,
then the set of all L′-connection inducing ∇ is parametrized by Hom(E , E ⊗
C∗).
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Proof. The kernel of Ψ∗ is C∗, so the sequence

0→ E ⊗ C∗ → E ⊗ ΩL′ → E ⊗ ΩL

is exact. So for any ξ ∈ Hom(E , E ⊗ C∗) the composition (1E ⊗ Ψ∗) ◦ ξ is
zero. Then, if ∇′ is a L′-connection inducing ∇, so is ∇′ + ξ.

Vice versa, if ∇′1,∇′2 are two L′-connection inducing ∇ their difference
is a OX -linear map taking values in E ⊗ C∗.

If F is a ∇′-invariant subsheaf of E , then it is clearly ∇-invariant too.
So if (E ,∇) is a semistable L-connection, then (E ,∇′) is a semistable L′-
connection. In particular, this implies the following:

Proposition 42. Let Ψ : L → L′ be a morphism of holomorphic Lie alge-
broids, (E ,∇′) a L′-connection such that (E , (1⊗Ψ∗)◦∇′) is a semistable L-
connection. Denote by Z,Z ′ the irreducible components of the moduli spaces
ML(P ),ML′(P ) to wich respectively (E , (1E ⊗Ψ∗) ◦∇′) and (E ,∇′) belong.

Then there is a rational map

Z ′ 99K Z

whose fibers are linear spaces.

Proof. We need to show that the set of semistable L′-connections inducing
semistable L-connections is open inML′(P ).

Let S be a scheme, and consider a family of semistable L′-connections
parametrized by S, that is a (p∗XL′)-connection (G, D′) on S × X flat over
S such that for any closed point s ∈ S the fiber (G, D′)s×X is semistable.
Composing D′ with (1G⊗p∗XΨ∗) we obtain a (p∗XL)-connection (G, D). Now,
the set of points of S such that (G, D)s×X is a semistable L-connection is an
open in S, so the assertion is proved.

This proposition generalize the usual construction of the “forgetful” map
from the moduli space of semistable flat connections (resp. Higgs sheaves)
to the moduli space of coherent OX -modules, that can be used to study the
structure of the moduli spaces of flat connections (resp. Higgs sheaves) (see
for example [22]).

In particular, for any holomorphic Lie algebroid L the anchor is a mor-
phism of holomorphic Lie algebroids to TX , so the irreducible components
of MDR(P ) have rational morphisms to appropriate irreducible components
of ML(P ).

4.3 Examples

If the Lie algebroid is the canonical one (TX ,1, [·, ·]), then TX -connections
on a sheaf E are just usual connections. So MTX (P ) is the moduli space
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of semistable flat connections with Hilbert polynomial P , that usually is
denoted by MDR(P ).

If (K, 0, {, }) is a holomorphic bundle of Lie algebras, then a K-connection
∇ on a sheaf E is an OX -linear map ∇ : E → E ⊗ K∗, because, since the
anchor is zero, so is the restriction of dK to functions. So ∇ may be seen as
a section of End(E)⊗L∗. Remark that, since the anchor is 0, the bracket is
OX -bilinear, hence we can see it as a section Θ ∈ H0(

∧2 L∗ ⊗ L).
The curvature of a K-connection in this case is given by

F∇ = ∇∧∇+ 〈Θ,∇〉 ∈ H0(End(E)⊗
2∧
K∗) .

A particular case of this is when K = TX equipped with the trivial Lie
algebroid bundle structure. In this case a flat (TX , 0, 0)-connection on E is
an OX -linear map φ : E → E ⊗ ΩX satisfying φ ∧ φ = 0, i.e. it is a Higgs
field on E .

Another interesting case is when K = ΩX with the trivial structure:
similarly to the above, a flat (ΩX , 0, 0)-connection on E is a OX -linear map
φ : E → E ⊗ TX satisfying φ ∧ φ = 0, that is, a co-Higgs field as introduced
by Hitchin in [16]. This is a particular case of the construction described in
the next subsection.

4.3.1 Holomorphic Poisson structures and generalized com-
plex geometry

Let X be a smooth projective variety and Π ∈ H0(X,
∧2 TX) a Poisson

bivector. As is Section 2.3.1, it defines a holomorphic Lie algebroid structure
on ΩX that we denote by (ΩX)Π.

According to [13] and [20], this Lie algebroid defines a generalized com-
plex structure on X. It can be described as follows. Recall that a gener-
alized complex structure on a smooth manifold M is defined by the (+i)-
eigenbundle L of an endomorphism J of (TM ⊕ T ∗M )⊗ C satisfying J2 = −1
and J∗ = −J. Since L is an isotropic subbundle of the Courant algebroid
TM ⊕ T ∗M , the resriction of the Courant bracket of TM ⊕ T ∗M to L defines a
real Lie algebroid structure on it.

If E is a vector bundle on M , a L-generalized holomorphic structure on
E is a flat L-connection on E.

When X is a holomorphic Poisson manifold with holomorphic Poisson
bivector Π, we can define the following endomorphism of TX ⊕ T ∗X :

J4Π =

(
−J 4]I
0 J∗

)
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where J is the almost complex structure on X and ]I is the morphism
T ∗X → TX associated to the bivector ΠI , where Π = ΠR + iΠI for ΠR,ΠI ∈
Γ(
∧2 TX). It is easy to see that J4Π defines a generalized complex structure

on X, that we call L4Π.
Remark that the elements of L4Π are of the form (V + i4]Iξ, ξ) with

V ∈ T 0,1
X and ξ ∈ T ∗1,0X , which gives an isomorphism L4Π

∼= T 0,1
X ⊕ T ∗1,0X .

Moreover we have L∗4Π
∼= T ∗0,1X ⊕ T 1,0

X , and the Lie algebroid differential on
functions is dL4Π

f = ∂̄f + ]I(∂f).
The following theorem is proved in [20]:

Theorem 43. The Lie algebroid L4Π is isomorphic to (ΩX)Π ./ T 0,1
X .

By Proposition 13, flat L4Π-connections on a smooth bundle E are equiv-
alent to a holomorphic structure E on E and a flat (ΩX)Π-connection on E .
For the latter we have constructed moduli spaces of semistable objects, so
we have the following:

Corollary 44. Let X be a smooth complex projective variety, and Π ∈
H0(X,

∧2 TX) an algebraic Poisson bivector on X inducing a generalized
complex structure L4Π on X.

Then for any numerical polynomial P , there exists a quasi-projective
scheme MΠ(P ) parametrizing semistable L4Π-generalized holomorphic vec-
tor bundles with Hilbert polynomial P .



Chapter 5

Deformation theory of
L-connections

In this chapter we adress some questions of deformation theory for integrable
L-connections: we find the DGLA associated to the deformations of an inte-
grable L-connection (E ,∇), and give an application of Luna’s slice theorem
to study the local structure of the moduli spaces of integrable L-connection.

5.1 Generalities on deformation functors

Following [14] and [29] we recall some facts about deformation theory.
Let k be an algebraically closed field of characteristi zero, and consider

Artk, the category of local Artin k-algebras with residue field equal to k.
For a local Artin k-algebra A, we denote by mA its (unique) maxiaml ideal.

Remark that there exist fibered products in Artk: if B → A and C → A
are morphisms in Artk, then B ×A C is the k-algebra whose elements are
pairs (b, c) such that b, c have the same image in A, and the multiplication
is defined componentwise.

A small extension of artinian rings is a short exact sequence

0→ I → B
φ→ A→ 0 ,

where φ is a morphism of local artinian rings, I is its kernel satisfying ImB =
0. Remark that this implies that I2 = 0, and so I inherits a natural structure
of A-module. Moreover I is a finite dimensional vector space over B/mB = k.

Now consider covariant functors Artk → Sets on Artin rings. A partic-
ular class of these is given by hR = Homk(R, ·) for R ∈ Ârtk, where Ârtk
denotes the category of local complete Noetherian k-algebras with residue
field k. A functor of Artin rings F is said pro-representable if it is isomorphic
to hR for some R ∈ Ârtk.

69
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A functor of Artin rings F is said homogeneous if the natural map F (B×A
C)→ F (B)×F (A) F (C) is a bijection whenever B → A is surjective.

For the functors hR, the maps hR(B ×C A) → hR(B)×hR(A) hR(C) are
always isomorphisms, so homogeneity is a necessary condition for a functor
of Artin rings to be prorepresentable.

Now we are going to relax these hypothese to define a larger class of
functors of Artin rings, that usually arise in deformation problems:

Definition 10. A deformation functor is a functor

F : Artk → Sets

such that F (k) = {pt.} and for any two morphisms B → A, C → A in Art,
the natural map η : F (B ×A C)→ F (B)×F (A) F (C) satisfies:

• η is surjective whenever B → A is surjective;

• if A = k, η is an isomorphism.

We call the set F (C[ε]/ε2) tangent space to F , and denote it by T 1
F . The

second condition in the previous definition allows us to define a C-vector
space structure on the tangent space of a deformation functor: any λ ∈ k
defines the endomorphism of k[ε]/(ε2) given by the multiplication by λ; this
induces a morphism λ : T 1

F → T 1
F , that gives the structure of multiplication

by scalat. Moreover, by the second axiom

T 1
F × T 1

F
∼= F (k[ε1]/(ε21)×k k[ε2]/(ε22)) ;

now, the morphism k[ε1]/(ε21)×kk[ε2]/(ε22)→ k[ε]/(ε2) given by a+bε1+cε2 7→
a+ (b+ c)ε defines the sum.

A functor of Artin rings F : Artk → Sets can be extended to a functor
F̂ : Ârtk → Sets by F̂ (R) = lim←n F (R/mn

R). Now, to give an element
ξ ∈ F̂ (R) is equivalent to define a morphism of functors Θ : hR → F :
if we are given hR → F , we can complete it to a morphism of functors
ĥR → F̂ , and ξ is the image to the identity in ĥR(R). If we are given
ξ ∈ F̂ (R), for any A ∈ Artk there exists a positive integer n such that
Hom(R,A) = Hom(R/mn

R, A); let ξn ∈ F (R/mn
R) be the image of ξ via the

natural map F (R)→ F (R/mn
R). Then we define ΘA : hR(A)→ F (A) to be

the map f 7→ F (f)(ξn).
So to a prorepresentable functor of Artin rings F we associate a pair

(R, ξ), with R ∈ ˆArtk and ξ ∈ F̂ (R) inducing an isomorphism of functors
hR → F . We call (R, ξ) a universal family for the functor F . If there
exist a universal family for a functor F , then this is unique up to unique
isomorphism.

We call versal family for a functor F a pair (R, ξ) with R ∈ Ârtk and
ξ ∈ F̂ (R), such that the associated morphism hR → F is surjective and
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such that for any surjection B → A in Artk, the corresponding morphism
Hom(R,B) → Hom(R,A) ×F (A) F (B) is surjective. If moreover the mor-
phism between the tangent spaces T 1

hR
→ T 1

F is bijective, we call (R, ξ) a
miniversal family.

If (R, ξ) and (R′, ξ′) are (mini)versal families of the same functor F , then
one can construct an isomorphism between the two (that is an isomorphism of
the algebras R→ R′ that induces a commuting diagram with the morphisms
to F ), but in general this isomorphism is not unique.

It is a theorem of Schlessinger [33] that a deformation functor with finite
dimensional tangent space admits a miniversal family (R, ξ).

Let X be a Notherian scheme over k, and consider the functor of points
X : Schemes→ Sets that associates to any scheme S the set of morphisms
of schemes Mor(S,X). For any closed point x ∈ X, we have a functor of
Artin rings Defx that to an Artin algebra A ∈ Artk associates the morphism
from SpecA to X that send the closed point of SpecA to x. Clearly this
functor is pro-represented by the local complete Noetherian algebra ˆOX,x.

Actually, we can do the same construction for any contravariant functor
F : Schemes/k → Sets: given x ∈ F (Spec k), we can define Defx :
Art → Sets as the functor that associates to A the subset Defx(A) ⊆
F (Spec A) of elements η that are mapped to x by the map F (Spec A) →
F (Spec k). Clearly, if F is represented by a scheme X, the two deformation
functors coincide, so we see that a necessary condition for a functor to be
representable is that the functors Defx are prorepresentable, for any x ∈
F (Spec k). The converse is not true, since there are functors of schemes
that are not representable but whose associated deformation functors are
prorepresentable.

The tangent of the deformation functor Defx associated toa closed point
of a scheme X coincide with the fiber of the tangent sheaf over x: T 1

Defx
=

TX,x ⊗OX,x k(x).

An obstruction theory for a deformation functor D is a pair (W, obs),
where W is a finite dimensional vector space and obs is a functor associating
for any small extension in Artk

e : 0→ I → B → A→ 0

a map obs(e) : D(A)→W ⊗ I such that:

• if for x ∈ D(A) there exists a y ∈ D(B) suhc that y 7→ x via the
natural map D(B)→ D(A), then obs(x) = 0;

• the assignment e 7→ obs(e) is functorial in the following sense: for any
morpihsm φ : e → e′ of small extensions, we have the commutativity
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of the diagram

D(A)
obs(e) //

φ
��

W ⊗ I

1W⊗φ
��

D(A′)
obs(e′)// W ⊗ I ′

Remark that with this definition (0, 0) is always an obstruction theory
for any deformation functor. An obstruction theory is said complete when
obs(e)(x) = 0 if and only if there exist a lifting of x to B. A deformation
functor D is said smooth when (0, 0) is a complete obstruction theory for
D, i. e. when D(B) → D(A) is surjective for every surjective morphism
B → A.

One can check that the prorepresentable functors hR are smooth if and
only if R is the algebra of formal power series k[[x1, . . . , xn]]. From this
follows that the functors Defx are smooth if and only if x is a smooth point
of X.

5.2 Deformation of L-connections

Fix a smooth complex projective variety X and L a holomorphic Lie alge-
broid onX. We study deformation theory for flat holomorphic L-connections.
For A ∈ ArtC, let XA = SpecA×X and pX : XA → X the projection. Let
X0 = {pt}×X, with pt the closed point of SpecA; we have x ∼= X0 ↪→ XA.
As C-vector spaces, we have A = C ⊕ mA, and mA is finite dimensional.
Then OXA = OX ⊗A = OX ⊕ (OX ⊗mA).

Let (E ,∇) be a flat L-connection with E a vector bundle of rank r, and
consider the functor of Artin rings Def(E,∇) that associates to any A ∈ ArtC
the set of isomorphism classes of flat p∗XL-connections (E ′,∇′) on XA such
that the restriction of (E ′,∇′) to mA ×X is isomorphic to (E ,∇).

We know that if (E ,∇) is stable the functor Def(E,∇) is prorepresentable,
since the functor for stable L-connection is representable. More generally,
from [6] we know that Def(E,∇) is prorepresentable for (E ,∇) simple.

Let (E ,∇) be a flat L-connection. Fix an open cover U = {Uα} of X and
trivializations ψα : Uα×Cr → E|Uα of E over Uα, and let e(α) = (e

(α)
1 , . . . , e

(α)
r )

be the corresponding frame of E over Uα. Let gαβ ∈ OX(Uαβ) × GLr be
transition functions for E , defined by gαβ = ψ−1

β ◦ ψα.
Let A ∈ ArtC and (E ′,∇′) be a deformation of (E ,∇) over XA. If

g′αβ ∈ OXA(UA,αβ) are transition functions for E ′ relatively to the open
cover UA,α = Spec A × Uα, we can write g′αβ = gαβ + gAαβ , with gAαβ ∈
OX(Uαβ) ⊗ mA ⊗ glr. Since E ′ is a vector bundle, the following equations
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have to be satisfied:

g′αβg
′
βα = 1 , g′αβg

′
βγg
′
γα = 1 . (5.1)

Relatively to the frames e(α), let Gjα,i ∈ ΩL(Uα) be such that ∇e(α)
i =∑

j G
j
α,ie

(α)
j . Then we can see the matrix Gα as an element of ΩL(Uα)⊗ glr,

and write formally ∇ = dL +Gα. The gauge transformation is the same as
for a usual connection, namely on the double overlaps Uαβ we have

Gβ = gβαGαgαβ + gβαdLgαβ . (5.2)

Simliarly, for ∇′ we have ∇′ = dL +G′α, and since it is a deformation of
∇, we can write G′α = Gα +GAα .

Finally recall that the integrability equation for ∇ translates, in terms of
the local 1-L-form of connection Gα, as

Gα ∧Gα + dLGα = 0 . (5.3)

5.2.1 First order deformations

First order deformations of (E ,∇) are deformations (E ′,∇′) over XA for
A = C[ε]/(ε2). In this case mA = C · ε, so it is one dimensional.

Then in this case

g′αβ = gαβ + εg1
αβ , G′α = Gα + εG1

α

with g1
αβ ∈ OX(Uαβ)× glr and G1

α ∈ ΩL(Uα)⊗ glr.
Define sections cαβ of E ndE over Uαβ as follows: for any endomorphism

θ of E we denote by (θ)(α) the matrix associated to θ w. r. t. the frame
e

(α)
i , i. e. θ(e(α)

i ) =
∑

j(θ
(α))jie

(α)
j ; then cαβ is defined by (cαβ)(α) = g1

αβgβα

(so that, respectively, we have (cαβ)(β) = gβαg
1
αβ). We look at the collection

{cαβ} as a 1-Čech cocycle of E ndE .
The first of the equations (5.1) implies that g1

βα = −gβαg1
αβgβα; in terms

of cαβ this gives

(cβα)(α) = gαβg
1
βα = −g1

αβgβα = −(cαβ)(α)

i.e. cβα = −cαβ .
The second of the equations (5.1) implies

g1
αβgβγgγα + gαβg

1
βγgγα + gαβgβγg

1
γα .

Now,

g1
αβgβγgγα = g1

αβgβα = (cαβ)(α) ,

gαβg
1
βγgγα = gαβg

1
βγgγβgβα = (cβγ)(α) ,

gαβgβγg
1
γα = gαγg

1
γα = (cγα)(α) ,
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so that cαβ + cβγ + cγα = 0, i. e. cαβ is a closed Čech 1-cocycle.
Similarly to the definition of cαβ , let Cα be the section over Uα of E ndE⊗

ΩL defined by (Cα)(α) = G1
α.

The equation (5.2) implies that

G1
β = g1

βαGαgαβ + gβαG
1
αgαβ + gβαGαg

1
αβ+

+g1
βαdLgαβ + gβαdLg1

αβ ,
(5.4)

that we can rewrite as

(Cβ − Cα)(α) = gαβg
1
βαGα +Gαg

1
αβgβα+

+gαβg
1
βα(dLgαβ)gβα + (dLg1

αβ)gβα =

= (cβα)(α)(Cα)(α) + (Cα)(α)(cαβ)(α) + (dLcαβ)(α)

where we used

(dLcαβ)(α) = dL(g1
αβgβα) = g1

αβdLgβα + (dLg1
αβ)gβα =

= g1
αβgβα(dLgαβ)gβα + (dLg1

αβ)gβα .

So, the Čech cocycle C satisfies

(δ̌C)αβ = [Gα, cαβ] + dLcαβ . (5.5)

Finally, from the integrability condition (5.3) the cocycles Cα have to
satisfy

Cα ∧Gα +Gα ∧ Cα + dLCα = 0 . (5.6)

So we have:

Proposition 45. Cochains c ∈ Č1(U,E ndE) and C ∈ Č0(U,E ndE ⊗ ΩL)
define a first order deformation of the flat L-connection (E ,∇) given if and
only if the following are satisfied:

(δ̌c)αβγ = 0 , (5.7)
(δ̌C)αβ = [Aα, cαβ] + dLcαβ , (5.8)

dLCα +Gα ∧ Cα + Cα ∧Gα = 0 . (5.9)

We can rewrite these equations in a more invariant form: let ∇̃ be the L-
connection on E ndE induced by ∇. Recall that it satisfies ∇̃φ = ∇◦φ−φ◦∇
as endomorphism of E . If e(α)

i is a local frame of E , the matrix associated
to this endomorphism is given by (∇̃φ)(α) = [Aα, φ

(α)] + dLφ(α). So we can
rewrite the equations (5.7), (5.8) and (5.9) as

δ̌c = 0 δ̌C = ∇̃c , ∇̃C = 0 .

Now, since ∇ is flat, ∇̃ is flat too, so we have the complex of holomorphic
bundles

C• : E ndE → E ndE ⊗ ΩL → E ndE ⊗ Ω2
L → . . . . (5.10)
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Consider its hypercohomology groups Hp(X; C•). If U is a sufficiently nice
open cover of X, they are computed as the cohomology of the total complex
associated to the double complex

Kp,q = Čp(U,E ndE ⊗ Ωq
L) ,

with differentials δ̌ : Kp,q → Kp+1,q and ∇̃ : Kp,q → Kp,q+1. In particular,
elements of H1(X; C•) are cohomology class of pairs (sαβ, tα) that are closed,
i. e. satisfy the equations

δ̌s = 0, ∇̃s = δ̌t, ∇̃t = 0.

So we have:

Proposition 46. To any 1st order deformation (E ′,∇′) of a flat L-connection
(E ,∇) we can associate a hypercohomology class [(c, C)] ∈ H1(X; C•), where
C• is the complex defined by (5.10).

Recall that two first order deformation (E ′,∇′), (E ′′,∇′′) of (E ,∇) are
equivalent when there exist an isomorphism of flat L-connections Θ : (E ′,∇′)→
(E ′′,∇′′) such that its restriction to E ′|X0

is equal to the identity of (E ,∇).
If the deformations are given by the local data

g′αβ = gαβ + εg1
αβ, G′α = Gα + εG1

α

g′′αβ = gαβ + εg̃1
αβ, G′′α = Gα + εG̃1

α,

they are equivalent if there exist functions ξα : Uα → GLr such that on Uαβ

g′′αβ(g′αβ)−1 = ξβξ
−1
α (5.11)

and on Uα
G′′α = ξ−1

α G′αξα + ξ−1
α dLξα . (5.12)

Writing ξα = 1 + εηα, we see that equation (5.11) becomes

gαβg
1
βα + g̃1

αβgβα = ηβ − ηα .

Defining the 1-Čech cochains cαβ , c̃αβ as above, we see that this is equivalent
to

c̃αβ − cαβ = (δ̌η)αβ .

Similarly, equation (5.12) is equivalent to

G̃1
α = G1

α − ηαGα +Gαηα + dLηα .

Defining the 0-Čech cocycles C, C̃ as above, this implies

C̃α − Cα = [Gα, ηα] + dLηα = ∇̃ηα .

These equations imply that if (E ′,∇′) and (E ′′,∇′′) are two equivalent de-
formations of (E ,∇), then the associated cocycles (c, C), (c̃, C̃) differ by
(δ̌η, ∇̃η) = δ(η). So we have shown
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Theorem 47. Let X be a smooth projective variety, L a holomorphic Lie
algebroid and (E ,∇) a flat L-connection, with E locally free.

Then the equivalence classes of first order deformations of (E ,∇) are in
one to one correspondence with the first hypercohomology group H1(X; E ndE⊗
Ω•L).

In particular, the tangent space of the deformation functor Def(E,∇) is
H1(X; E ndE ⊗ Ω•L).

5.2.2 Cup product in hypercohomology

Recall the construction of cup product in cohomology: if E and F are two
sheaves over the same variety X, and U is any open cover of X, we have a
map

^: Čp(U, E)⊗ Č(U, F )→ Čp+q(U, E ⊗ F )

given by
(ξ ^ η)i0,...,ip+q = (−1)qξi0,...,ip ⊗ ηip,...,ip+q .

for ξ ∈ Čp(U, E) and η ∈ Čq(U, F ). The Čech differential satisfies a graded
Leibniz rule δ̌(ξ ^ η) = δ̌ξ ^ η + (−1)pξ ^ δ̌η, so ^ defines a map in
cohomology

^: Ȟp(U;E)⊗Hq(U;F )→ Ȟp+q(U;E ⊗ F ) .

In the case F = E and E has a ring structure, we can compose ^ with the
product of E, and we have a ring structure over the cohomology Ȟ•(U;E).

If we replace E and F by complexes of sheaves we have a similar con-
struction: let (E•, dE) and (F •, dF ) be two complexes of sheaves over X.
We can build the complex (E ⊗ F )• given by (E ⊗ F )k =

⊕
p+q=k E

p ⊗ F q
and differential dE⊗F = dE ⊗ 1F + 1E ⊗ dF . Define the map

^: Čp(U;Er)⊗ Čq(U;F s)→ Čp+q(U; (E ⊗ F )r+s)

by
(ξ ^ η)i0,...,ip+q = (−1)qrξi0,...,ip ⊗ ηip,...,ip+q

This induces a map at the hypercohomology level

^: Hi(X;E•)⊗Hj(X;F •)→ Hi+j(X; (E ⊗ F )•).

In the case E• = F • has a graded ring structure, i. e. there are maps

Er ⊗ Es → Er+s

making E• a graded ring, we can compose ^ with the product of E•, and
obtain maps

Hi(X;E•)⊗Hj(X;E•)→ Hi+j(X;E•) .
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For L a Lie algberoid over a smooth projective variety X, and E a co-
herent OX -module, the complex C• = E ndE ⊗Ω•L has a natural graded ring
structure, given by

(θ ⊗ µ)(σ ⊗ ν) = (θ ◦ σ)⊗ (µ ∧ ν) .

As before, this induces a cup product in hypercohomology:

^: Hi(X; C•)⊗Hj(X; C•)→ Hi+j(X; C•) .

Since we are going to use it soon, we write explicitly the ^-product
for elements of the first hypercohomology group of C•. Let (a,A), (b, B)
be two cocycles representing two elements [a,A][b, B] ∈ H1(X; C•). Let
(a,A) ^ (b, B) = (f, F,Φ). Then

fαβγ = aαβ ◦ bβγ ,
Fαβ = Aα ◦ bαβ − aαβ ◦Bβ ,

Φα = Aα ∧Bα .

5.2.3 First obstruction

Let (E ′,∇′) be a deformation of (E ,∇) over XA for A = C[ε]/(ε3). We can
write the local data of (E ′,∇′) as

g′αβ = gαβ + εg1
αβ + ε2g2

αβ ,

G′α = Gα + εG1
α + ε2G2

α

for giαβ ∈ OX(Uαβ)⊗ glr and Gi ∈ ΩL(Uα)⊗ glr.
As before, for i = 1, 2 introduce ciαβ , the 1-Čech cochains of E ndE given

by (c1
αβ)(α) = giαβgβα, and C

i
α, the 0-Čech cochains of E ndE ⊗ ΩL given by

(Ciα)(α) = Giα.
By the previous subsection we know that δ(c1, C1) = (δ̌c1, δ̌C1−∇̃c1, ∇̃C1 =

0.
Now, the term in ε2 of the first of the equations (5.1) is

g2
αβgβα + g1

αβg
1
βα + gαβg

2
βα = 0 ,

that gives the equation

c2
βα = −c2

αβ − c1
αβc

1
βα . (5.13)

The term in ε2 of equation (5.1) is

0 = g2
αβgβγgγα + gαβg

2
βγgγα + gαβgβγg

2
γα+

+ g1
αβg

1
βγgγα + g1

αβgβγg
1
γα + gαβg

1
βγg

1
γα .

(5.14)
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A quick computation shows that the right hand side of the equation is the
matrix w. r. t. the frame e(α) of the endomorphism

c2
αβ + c2

βγ + c2
γα + c1

αβc
1
βγ + c1

βγc
1
γα + c1

γαc
1
αβ .

Since (δ̌c2)αβγ = c2
αβ + c2

βγ − c2
αγ , using the equation (5.13) we see that

equation (5.14) implies

(δ̌c2)αβγ = −c1
αβc

1
βγ − (c1

αβ + c1
βγ)c1

γα + c1
αγc

1
γα

and since δ̌c1 = 0 we obtain

(δ̌c2)αβγ = (c1 ^ c1)αβγ .

Remark that the left hand side of the equation is the (2, 0) part of δ(c2, C2),
while the right hand side is equal to the (2, 0)-part of the cup product
(c1, C1) ^ (c1, C1).

The term in ε2 of the equation (5.2) is

G2
β = gβαG

2
αgαβ + g2

βαGαgαβ + gβαGαg
2
αβ + g1

βαG
1
αgαβ + g1

βαGαg
1
αβ+

+ gβαG
1
αg

1
αβ + g2

βαdLgαβ + gβαdLg2
αβ + g1

βαdLg
1
αβ .

Adjoining both terms of the equation by gαβ , we see that this is the
equation of the matrices w. r. t. the frame e(α) of the cochains

C2
β − C2

α = c2
βαGα +Gαc

2
αβ + c1

βαC
1
α + c1

βαGαc
1
αβ+

+ C1
αc

1
αβ + dLc2

αβ − c1
αβdLc

1
αβ

(5.15)

where we have used

(dLc2
αβ − c1

αβdLc
1
αβ)(α) =

= dLg2
αβgβα + (−g2

αβgβα + g1
αβgβαg

1
αβgβα)(dLgαβ)gβα+

−g1
αβgβα(dLg1

αβ)gβα =

= dLg2
αβgβα + gαβg

2
βα(dLgαβ)gβα + gαβg

1
βα(dLg1

αβ)gβα .

Now, using equation (5.13) and recalling the definition of ∇̃, we can
rewrite equation (5.15) as

(δ̌C2)αβ − ∇̃c2
αβ = −c1

αβ∇̃c1
αβ + [C1

α, c
1
αβ] .

Finally, since ∇̃c1
αβ = (δ̌C1)αβ , this is equivalent to

(δ̌C2)αβ − ∇̃c2
αβ = C1

αc
1
αβ − c1

αβC
1
β

where the left hand side of the equation is the (1, 1)-part of δ(c2, C2), while
the right hand side is equal to the (1, 1)-part of the cup product (c1, C1) ^
(c1, C1).
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Finally the ε2 term of the equation (5.3) is

0 = G2
α ∧Gα +G1

α ∧G1
α +Gα ∧G2

α + dLG2
α .

that we rewrite as
∇̃C2

α = C1
α ∧ C1

α .

Since the left hand side of the equation is the (0, 2)-part of δ(c2, C2) and the
right hand side is the (0, 2)-part of the cup product (c1, C1) ^ (c1, C1), we
have shown

Proposition 48. Let (E ′,∇′) be a second order deformation of the flat L-
connection (E ,∇) as above.

Then δ(a2,A2) = (a1,A1) ^ (a1,A1).

We can interpret this result in terms of obstruction for the deformation
functor Def(E,∇): consider the small extension in ArtC

e1,2 : 0→ C→ C[ε]/(ε3)→ C[ε]/(ε2)→ 0 .

A k-th order deformation of (E ,∇) is an element of Def(E,∇)(C[ε]/(εk+1)).
Let (E ′,∇′) be a first order deformation given by the cohomology class

[c1, C1] ∈ H1(X; C•), and consider the cup product [c1, C1] ^ [c1, C1] ∈
H2(X; C•). This is zero if and only if there exist a 1-cochain (c2, C2) satis-
fying δ(c2, C2) = (c1, C1) ^ (c1, C1), that is if and only if there exists a lift
of (E ′,∇′) to a second order deformation.

So

obs2 : H1(X; C•)→ H2(X; C•) , obs2 : [c1, C1] 7→ [c1, C1] ^ [c1, C1]

is an obstruction map for the extension e1,2.

5.2.4 General obstruction and miniversal deformation space

Consider T = H1(X; C•) the tangent space to the deformation functor. Fix
a basis τ1, . . . , τN and let t1, . . . , tN be the dual coordinates. The k-th in-
finitesimal neighbourhood of T is, by definition, the spectrum of

C[t1, . . . , tN ]/(t1, . . . , tN )k+1 ,

and we denote it by T(k). We can construct a versal first order deformation
(E(1),∇(1)) of (E0,∇0) on T(1) × X as follows: let (c1

αβ,i, C
1
α,i) be cocycles

representing the classes τi, and g1
αβ,i = (c1

αβ,i)
(α)gβα, G1

α,i = (C1
α,i)

(α). Then
define the L-connection (E ′,∇′) on T(1) ×X by local data

g
(1)
αβ = gαβ +

∑
i

g1
αβ,iti
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G(1)
α = Gα +

∑
i

G1
α,i .

The family (E(1),∇(1) is a versal first order deformation of (E0,∇0) in
the following sense: by the results of Section 5.2.1, any deformation over
SpecC[ε/(ε2) is uniquely determined by a vector in T , that is equivalent to
a morphism SpecC[ε]/(ε2)→ T(1).

Now, let ρij = τi ^ τj and f2 =
∑

i,j ρijtitj ∈ H2(X; C•)⊗C[t1, . . . , tN ].
Let I2 be the ideal of C[t1, . . . , tN ] generated by the image of the adjoint
f∗2 : H2(X; C•)→ C[t1, . . . , tN ]. By the results of Section 5.2.3 we see that for
τ ∈ T such that f2(τ) = 0 there exists second order deformations of (E0,∇0)
integrating τ . Let K2 ⊆ T(2) be defined by the ideal I2. Then on K2 × X
there exists a flat p∗XL-connection (E(2),∇(2)) extending (E(1),∇(1))|K2∩T(1)

,
which is a versal second order deformation of (E0,∇0).

Now, by induction on l ≥ 2 we can construct closed subvarietiesKl ⊆ T(l)

such that there exist a versal l-th order deformation of (E ,∇) on Kl ×X.
Assume we have a versal (l − 1)-th order defosrmation (E(l−1),∇(l−1))

over Kl−1 × X. Let Il−1 be the ideal in C[t1, . . . , tN ]/(t1, . . . , tN )l defining
Kl−1, and let g(l−1)

αβ =
∑

k≤l−1 g
k
αβ , C

(l−1)
α =

∑
k≤l−1C

k
α be the local data

defining (E(l),∇(l)).
Let F 2,0

αβγ,l, F
1,1
αβ,l, F

0,2
α,l be the homogeneous parts of degree l of, respec-

tively, the following expressions:

g
(l−1)
αβ g

(l−1)
βγ g(l−1)

γα − 1 ∈ GLr × OX(Uαβγ) , (5.16)

G
(l−1)
β − g(l−1)

βα G(l−1)
α g

(l−1)
αβ − g(l−1)

βα dLg
(l−1)
αβ ∈ glr ⊗ ΩL(Uαβ) , (5.17)

G(l−1)
α ∧G(l−1)

α + dLG(l−1)
α ∈ glr ⊗ Ω2

L(Uα) . (5.18)

Lemma 49 (see [26]). The triple (F 2,0, F 1,1, F 0,2) defines a cochain of the
total complex associated to the double complex Kp,q = p̌(E ndE ⊗ Ωq

L) ⊗
C[t1, . . . , tN ].

Moreover, this cochain is closed modulo Il−1.

Let fl be the cohomology class of the triple (F 2,0, F 1,1, F 0,2) inH2(X; C•)⊗
C[t1, . . . , tN ]/Il−1, and Il be the ideal generated by Il−1 and the image of
the adjoint of fl. Then it is clear that, as a cocycle on C[t1, . . . , tN ]/Il,
(F 2,0, F 1,1, F 0,2) is exact, so we can choose (clαβ, C

l
α) whose coboundary is

(F 2,0, F 1,1, F 0,2). So we can define glαβ = (clαβ)(α)gαβ and Glα = (C lα)(α) that

provide an integration of (g
(l−1)
αβ , G

(l−1)
α ) to the l-th order. Now define Kl to

be the subvariety of T(l) defined by Il, and the induction step is proved.
Consider the formal power series ring C[[t1, . . . , tN ]], and let I be the

ideal generated by f =
∑∞

k=2 fk, and K the analytic space defined by
C[[t1, . . . , tN ]]/I. The families (E(l),∇(l)) onKl×X define a family (E∞,∇∞)
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on K × X. This family is versal by construction, and since K1 = T it is
miniversal.

Summing up, we have:

Theorem 50. Let X be a smooth projective complex variety, L a holomor-
phic Lie algebroid and (E ,∇) a flat holomorphic L-connection. Associate
to this the complex of sheaves C• = (E ndE , ∇̃), and let T = H1(X; C•),
W = H2(X; C•).

Then there exist fk ∈ W ⊗ C[T ] homogeneous of degree k such that the
following holds. Let f =

∑∞
k=2 fk ∈W⊗C[[T ]]; sinceW is finite dimensional

this is equivalent to a map f∗ : W ∗ → C[[T ]]. Let I be the ideal in C[[T ]]
generated by the image of f∗. Then K, the spectrum of C[[T ]]/I, has a
natural versal family (E ,∇) making it a miniversal deformation space of
(E ,∇).

5.3 Versal deformations spaces and Luna’s slices

5.3.1 The tangent to Q

Recall from Section 4.1 that Q denotes the locally closed subscheme of
Quot(Λ(1)⊗V (−N), P ) parametrizing triples (E , µ, α), with (E , µ) a semistable
Λ-module with Hilbert polynomial P and α an isomorphism between V and
H0(X; E(N)).

Now we want to compute the tangent space TqQ at a closed point q ∈ Q.
It is well known that if q represents the quotient 0→ K1 → Λ(1)⊗V (−N)→
E → 0, the tangent space to Quot(Λ(1) ⊗ V (−N), P ) at q is isomorphic to
HomOX (K1, E). Q1 is an open subscheme of the Quot-scheme, so TqQ1

∼=
HomOX (K1, E).

Now consider the following: for q ∈ Q, define qi : Λ(i) ⊗ V (−N)→ E by

qi(λ⊗ s) = µ(λ⊗ q̃(s)) .

From the diagram (4.1) we see that qt|Λ(1)⊗V (−N) coincides with q. Moreover,
by the definition of Q3, these maps are compatible, i. e. for i < j we have
the diagrams

0

��

0

��
0 // Ki //

��

Λ(i) ⊗ V (−N) //

��

E // 0

0 // Kj // Λ(j) ⊗ V (−N) // E // 0

Let qt : Λ ⊗ V (−N) → E denote the quotient obtained as the limit of the
qi. qt is a Λ-module morphism, so its kernel Kt has a natural Λ-module
structure.



82 CHAPTER 5. DEFORMATION THEORY

Lemma 51. HomΛ(Kt, E) naturally injects in HomOX (K1, E).

Proof. The inclusion K1 ↪→ Kt gives a morphism

HomΛ(Kt, E)→ HomOX (K1, E) .

We have to check that this is injective, i. e. that a Λ-module morphism
φ : Kt → E vanishing on K1 is zero.

Let Ki be the intersection of Kt∩Λ(i)⊗V (−N). We show that if we know
that φ vanish on Ki, then it vanish on Ki+1, and by induction we obtain the
thesis.

So, assume that the Λ-module morphism φ : Kt → E vanish on Ki−1 for
some i ≥ 0. An element in Ki is of the form x1 · · ·xi⊗ s. Let σ ∈ V (−N) be
such that q̃(σ) = qt(x2 · · ·xi ⊗ s). Since 0 = qt(x1 · · ·xi ⊗ s) = µ1(x1 ⊗ σ),
we have x1 ⊗ σ ∈ K1, so that φ(x1 ⊗ σ) = 0. Now, σ − x2 · · ·xi ⊗ s ∈ Kt, so

φ(x1 · · ·xi ⊗ s) = φ(x1 ⊗ σ − x1 · · ·xi ⊗ s) = µ1(x1 ⊗ φ(σ − x2 · · ·xi ⊗ s)) .

Since σ − x2 · · ·xi ⊗ s ∈ Ki−1 we can conclude.

Proposition 52. The tangent space TqQ is naturally isomorphic to the vec-
tor space HomΛ(Kt, E).

Proof. Let φ1 ∈ Hom(K1, E) = TqQ1. We want to show that φ1 is extendable
to a Λ-module morphism φ : Kt → E if and only if φ1 ∈ TqQ.

Since q ∈ Q1, K0 → K1 induces a morphism

HomOX (K1, E)→ HomOX (K0, E) .

We will denote by φ̃ the image of φ1 ∈ HomOX (K1, E) via this map.
The condition Q2 is easy to translate for tangent vectors: φ1 ∈ TqQ2 if

and only if the following diagram commutes

Λ(1) ⊗K1
1⊗φ1 // Λ(1) ⊗ E

µ1

��

Λ(1) ⊗K0

88qqqqqqqqqq

&&NNNNNNNNNNNN

K1
φ1 // E

This is equivalent to say that for s ∈ K0 and x ∈ Λ(1) we have φ(x ⊗ s) =

µ(x⊗ φ̃(s)).
To understand the condition Q3, consider the following: let Wj denote

the kernel of the morphism (Λ(1))
⊗j ⊗ E → E obtained applying j times µ1.
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We have the following diagram:

0

��

0

��

0

��
0 // Aj //

��

Bj ⊗ V (−N) //

��

Wj−1 //

��

0

0 // (Λ(1))
⊗j−1 ⊗K1

//

��

(Λ(1))
⊗j ⊗ V (−N) //

��

(Λ(1))
⊗j−1 ⊗ E //

��

0

0 // Kj //

��

Λ(j) ⊗ V (−N) //

��

E //

��

0

0 0 0

for an appropriate Aj . It turns out that φ1 ∈ TqQ3j if and only if the
composition of the morphism

1⊗ φ̃ : (Λ(1))
⊗j−1 ⊗K1 → (Λ(1))

⊗j−1 ⊗ E

with (Λ(1))
⊗j−1 ⊗ E → E vanish on Aj .

Now let φ1 ∈ HomOX (K1, E) be a tangent vector in TqQ3. Then we can
extend φ1 to φj : Kj → E as follows: for η ∈ Kj there exist ξ ∈ K1 and
x1, . . . , xj−1 ∈ Λ(1) such that x1 ⊗ · · · ⊗ xj−1 ⊗ ξ is mapped to η. Then set
φ(η) = µ(x1 · · ·xj−1 ⊗ φ1(ξ)). This defines a Λ-module morphism from Kt
to E , and the claim is proven.

Lemma 53. Let (E ,∇), (F ,∇) be two flat L-connection, and µE , µF the
associated Λ module structure. Let C• be the complex H om(E ,F) ⊗ Ω•L
with differential ∇̃, the flat L-connection on H omOX (E ,F) induced by the
L-connections on E ,F .

Then there are natural isomorphisms Hi(X; C•) ∼= ExtiΛ(E ,F).

Proof. We show this for i = 1.
An element in Ext1Λ(E ,F) represents an equivalence class of an extension

of Λ-modules
0→ F → Z → E → 0 . (5.19)

In particular, this is an extension of OX -modules, so we have an associated
class x ∈ Ext1OX (E ,F).

Fix a good open cover U of X, and let xαβ ∈ Č1(U,H omOX (E ,F) be
a representative of x. Recall that xαβ are obtained by choosing local OX -
splittings of (5.19) giving isomorphisms ζα : Z|Uα ∼= (F ⊕E)|Uα , and xαβ are
such that on Uαβ we have

ζβ ◦ ζ−1
α =

(
1F 0
xαβ 1E

)
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as endomorphism of (F ⊕ E)|Uαβ .
Now consider the Λ-module structure µZ of Z|Uα : via ζα, since (5.19) is

an exact sequence of Λ-modules we have

µZ(λ⊗ (f, e)) = (λf + Yα(λ, e), λe)

for any λ ∈ Λ, e ∈ E and f ∈ F . Remark that Yα is OX -linear w. r. t. both
arguments, and satisfies

Yα(λλ′, e) = λYα(λ′, e) + Yα(λ, µE(λ
′ ⊗ e)) . (5.20)

Now, suppose a splitting of Λ(1) → L is fixed, and define yα : E|Uα →
(F ⊗ ΩL)|Uα via 〈yα(e), v〉 = Yα(v, e) for any e ∈ E|Uα and v ∈ L|Uα (where
on the right hand side of the equation we see it in Λ via the splitting).
Now, equation (5.20) implies that ∇̃yα = 0, while by the compatibility of
the OXand Λ-module structures of Z follows that on the double overlaps
we have (δ̌y)αβ = ∇̃xαβ , so the pair (xαβ, yα) defines a cohomology class in
H1(X; C•).

It is the easy to verify that the converse holds, i. e. that if (xαβ, yα)
is a representative of a cohomology class in H1(X; C•), then yα defines a
Λ-module structure on the OX -modules extension defined by xαβ , and that
equivalence classes of extensions correspond to the same cohomology class.

5.3.2 An application of Luna’s slices theorem

Let k be an algebraically closed field of characteristic 0 and X a k-scheme.
Let G be a k-algebraic group acting on X. Let σ : G ×X → X denote the
action morphism. For any point x ∈ X let O(x) be the orbit of x, that is
the image of σ|G×{x}.

A good quotient of X by the action of G is a pair (Y, φ) with Y a scheme
and ϕ : X → Y a G-equivariant morphism (where Y has the trivial G-action)
such that

• ϕ is affine, surjective and open;

• the morphism OY → (ϕ∗OX)G is an isomorphism;

• for any Z ⊆ X closed and G-invariant, the image ϕ(Z) is closed in
Y , and for any two Z1, Z2 ⊆ X closed, G-invariant and disjoint, the
images ϕ(Z1) and ϕ(Z2) are disjoint.

Given an action of an algebraic group G on a scheme X, a good quotient
may not exist. When it does it is unique up to isomorphism, and we will
denote it by X//G.

Let H ⊆ G be an algebraic subgroup, and let H act on a scheme Y .
Define the H-action on G × Y by h(g, y) = (gh−1, h · x). Then there exists
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a good quotient (G×Y )//H such that the corresponding map ϕ : G×Y →
(G× Y )//H is a principal bundle with fiber H. Denote this by G×H Y : it
has a natural action of G (on the left).

Let X be a scheme on which an algebraic group G acts. Let x be a closed
point in X, O(x) its orbit under the G-action and Gx ⊆ G the stabilizer of
x. A normal slice of O(x) at x is an affine subscheme S ⊆ X such that

• x ∈ S and S is invariant for the action of Gx;

• the natural morphism G ×Gx S → X has an open image and is étale
over its image.

Luna’s slice theorem (cf. [24]):

Theorem 54. Let X be a scheme, G a reductive algebraic group acting on
X admitting a good quotient X//G. Moreover, let x ∈ X be a closed point
such that its orbit O(x) is closed, and Gx its stabilizer.

Then there exists a normal slice S to O(x) at x, and the Gx-action on
S admits a good quotient S//Gx. Moreover, there is a natural morphism of
good quotients S//Gx → X//G, whose image is affine and open in X//G,
and which is étale over the image. Furthermore, the following diagram is
commutative:

S ×Gx G //

��

X

��
S//Gx // X//G

.

Proposition 55 (cf. [31], Proposition 1.2.3). Let (E ,∇) be a semistable
L-connection, and z ∈ Q(j) representing a triple (F , µ, α), with F = E,
µ the Λ-module structure corresponding to the L-connection ∇ and α an
isomorphism as before. Assume that the SL(V )-orbit of z is closed, so that
there is a normal slice S of O(z) at z, and let T|S be the pull-back of the
tautological bundle to S.

Then (S, z, T ) is a miniversal family for (E ,∇).

Proof. The fact that T is a versal family for (E ,∇) follows directly from
the fact that T is the restriction of the tautological bundle of the Quot
scheme. So it remains to show the morphism between the tangent spaces
κ̃ : TzS → H1(X; C•) is an isomorphism. By the universality of T we already
know that κ is surjective, so it suffice to show that it is injective.

The tangent to the slice TzS is isomorphic to the quotient TzQ/TzO(z).
Let κ : TzQ → H1(X; C•) = Ext1Λ(E , E) be the map between the tangent
spaces associated to the tautological bundle TQ on Q. We have to show that
TzO(z) = Ker (κ).
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The map κ is given by the connection morphism obtained by applying
HomΛ(•, E) to the exact sequence

0→ Kt → Λ⊗ V (−N)→ E → 0 .

So it suffices to show that TzO(z) is equal to the image of

HomΛ(Λ⊗ V ((−N), E)→ HomΛ(Kt, E) .

Now, a point z′ ∈ O(z) is obtained as the composition (1Λ⊗M)◦z, where
M : V (−N) → V (−N) is the isomorphism associated to a M̃ ∈ SL(V ), so
the tangent to O(z) is naturally identified with the image of the composition

HomOX (V (−N), V (−N)) ∼= HomΛ(Λ⊗ V (−N),Λ⊗ V (−N))
β→

β→ HomΛ(Λ⊗ V (−N), E)→ HomΛ(Kt, E) ,

so it suffices to show that β is surjective, but this follows directly from
V ↪→ H0(X; Λ⊗ V ) and V ∼= H0(X; E(N)).



Chapter 6

The singularity ofMX(2, 0) at
(E0,∇0)

Let X be a smooth projective curve, L = TX and (E0,∇0) = (O⊕2
X , d). We

describe the tangent space at (E0,∇0) ofMX(2, 0) and the first obstruction
in terms of linear data, and find equations for the quotient K2//H.

6.1 Some invariant theory

Let V be a complex vector space of finite dimension d, and 〈·, ·〉 a non
degenerate symmetric bilinear form on V . Denote by O(V ) the orthogonal
group of V associated to this bilinear form, that is the group of k-linear
endomorphisms B ∈ End(V ) such that 〈BX,BY 〉 = 〈X,Y 〉 for any X,Y ∈
V . The special orthogonal group SO(V ) is the subgroup of O(V ) consisting
of endomorphisms whose determinant is 1.

For any positive integer n, both O(V ) and SO(V ) act on V ⊕n by B ·
(X1, . . . , Xn) = (BX1, . . . BXn). We study the invariant theory of these
actions.

The algebra of functions on V ⊕n is the polynomial algebra C[V ⊕n] in
d · n variables. The functions

Ti,j = 〈Xi, Xj〉 ∀i, j = 1, . . . , n

are clearly O(V )-invariant. It is known (see Appendix F of [12]) that any
O(V )-invatiant function on V ⊕n can be written as a linear combination of
products of the Ti,j ’s. We have:

Theorem 56. The algebra (C[V ⊕n])O(V ) is isomorphic to C[Ti,j ]/I, where
I is the ideal generated by

Ti,j − Tj,i (6.1)
det(Mi0,...,id;j0,...,jd) = 0 (6.2)

87
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for i, j, 10, . . . , id, j0, . . . , jd ∈ {1, . . . , n}, where. Mi0,...,id;j0,...,jd is the (d +
1)× (d+ 1) matrix obtained by choosing the rows i0, . . . , id and the columns
j0, . . . , jd of (Ti,j).

The relations Tj,i = Ti,j come from the fact that the biliear form is
symmetric, while the relations det(Mi0,...,id;j0,...,jd) = 0 are due to the fact
that since V has dimension d, any d+ 1 vectors of V are linearly dependent.
Clearly the equations (6.2) are non trivial only if n > d.

So, for n ≤ d the quotient V ⊕n//O(V ) is the spectrum of

C[Ti,j ]/(Ti,j − Tj,i) ∼= C[Ti,j ]i≤j ,

i. e. it is a linear space of dimension n(n+ 1)/2.

For n > d, the quotient V ⊕n//O(V ) = SpecC[V ⊕n]O(V ) is the spectrum
of the algebra C[Ti,j ]/I where I is the ideal generated by Ti,j − Tj,i and
det(Mi0,...,id;j0,...,jd). From this we see that V ⊕n//O(V ) is a determinantal
variety in the space of symmetric maps. We denote by W (k,m) the variety
of symmetric maps of an m-dimensional complex vector space of rank at
most k; then V ⊕n//O(V ) ∼= W (d, n) These have been studied for instance
in [38], where the following theorem is proven:

Theorem 57. The singular locus of W (k,m) coincide with W (k − 1,m).
The blow up of W (k,m) along W (k − 1,m) is naturally isomorphic to

S(Kk), where Kk is the tautological bundle of the Grassmannian Gr(k,m),
and for any vector bundle F we denote by S(F) the dual of the subbundle of
H om(F∗,F) consisting of symmetric maps.

In particular, we see that W (k,m) has dimension k(m− k) + k(k+ 1)/2,
and that it is smooth in codimension m− k + 1

Now we go over to the case of SO(V ). The Ti,j are invariant for SO(V )
too. Moreover we have another class of SO(V )-invariant functions, namely:

Si1,...,id = det(Xi1 | · · · |Xid) ,

for any i1, . . . id ∈ {1, . . . , n}, where the vertical bar means juxtapposition
of vectors. Any SO(V )-invariant function on V ⊕n is a linear combination
of products of Ti,j and Si1,...,id (cf. [12]). These have to satisfy the rela-
tions Tj,i = Ti,j and (6.2). Moreover, Si1,...,id = (−1)σSiσ(1),...,iσ(d)

for any σ
permutation of {1, . . . , d}, while polarizing the Gram relation

det(X1| · · · |Xd)
2 =

 〈X1, X1〉 · · · 〈X1, Xd〉
...〉 . . .

...
〈Xd, X1〉 · · · 〈Xd, Xd〉


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we obtain

Ri1,...,id;j1,...,jd = Si1,...,idSj1,...,jd −

∣∣∣∣∣∣∣
Ti1,j1 · · · Ti1,jd
...

. . .
...

Tid,j1 · · · Tid,jd

∣∣∣∣∣∣∣ = 0 . (6.3)

So we have:

Theorem 58. The algebra C[V ⊕n]SO(V ) is isomorphic to C[Ti,j , Si1,...,id ]/J ,
where J is the ideal generated by

Ti,j − Tj,i , (6.4)
det(Mi1,...,id;j0,...,jd) , (6.5)

Ri1,...,id;j1,...,jd . (6.6)

Moreover, SO(V ) is a subgroup of O(V ) of index 2, so the quotient
V ⊕n//SO(V ) has a natural double covering ϕ to V ⊕n//O(V ).

Lemma 59. The ramification locus of ϕ : V ⊕n//SO(V ) → V ⊕n//O(V ) is
the set of SO(V )-equivalence classes of n-tuples of vectors (X1, . . . , Xn) such
that Rank(X1| · · · |Xn) < d.

Proof. The ramification locus is the set of equivalence classes of n-tuples
(X1, . . . , Xn) whose SO(V )-orbit coincides with the O(V )-orbit. So we have
to look for elements of V ⊕n having this property.

Recall that O(V ) acts tranitively on the d-tuples of orthonormal vectors,
and that SO(V ) acts transitively on the d-tuples of orthonormal vectors
having a fixed orientation.

Assume for the moment that n < d, and let (X1, . . . , xn) be a n-tuple
of elements of V . For any A ∈ O(V ) we have to find a B ∈ SO(V ) such
that A(X1, . . . , Xn) = B(X1, . . . , Xn). Consider W the linear subspace of
V span of X1, . . . , Xn, and let AW be its image via A, that is the span of
AX1, . . . , AXn. Since n < d, we can complete {xi} and {Axi} to bases e
and f of V having the same orienatation. Since A is an isometry of W in
AW , by Witt’s theorem there exists an isometry B sending e to f , and since
these have the same orientation B ∈ SO(V ).

For general n, we can repeat the argument above whenever we can com-
plete the basis of W to a basis of V having the freedom to choose the orien-
tation of the base, and this is possible if and only if the rank of (X1| · · · |Xn)
is less then d.

From this lemma, we see that the ramification locus of φ in V ⊕n//O(V )
coincide with its singularity locus. In particular, V ⊕n//SO(V ) is smooth
outside its ramification locus, has dimension k(m − k) + k(k + 1)/2 and is
smooth in codimension m− k + 1.
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6.2 The germ of the moduli space of connections
on a curve at the most degenerate point

Let X be a genus g smooth projective complex curve. Consider M(2, 0),
the moduli space of semistable flat connections of rank 2 and Chern class
equal to 0. Let E0 = O⊕2

X be the trivial rank 2 bundle, and ∇0 = d the
trivial flat connection on it. Clearly (E0,∇0) ∈M(2, 0), and this is a strictly
semistable point. We study the singularity of M(2, 0) at (E0,∇0), i. e. we
look for equations of the germ ofM(2, 0) around (E0,∇0).

By Proposition 55, we know that the germ of M(2, 0) at (E0,∇0) is
isomorphic to the germ of the quotient of K, a miniversal deformation of
(E0,∇0), by H = Stab(E0,∇0) = PGL2. Recall that K = obs−1(0) for
obs : H1(X; C•) → H2(X; C•) the Kuranishi map constructed in Theorem
50.

Actually, in the following we will find equations for the quotient of
K2//H, K2 being the variety defined by obs2, the degree 2 homogeneous
part of obs. In the case when X is a curve of genus 1, the terms of degree
> 2 of obs vanish, so the germ of K2//H is actually the germ of the moduli
spaceM(2, 0) at (E0,∇0) (cf. [27]). In the higher genus case, we expect that
one can generalize the argument of deformation to the normal cone of [21]
to conclude that K2//H is the germ ofMX(2, 0).

Let γ1, . . . , γg be generators of H1(X; OX) and ζ1, . . . , ζg the dual gener-
ators of H0(X; ΩX). With respect to a good open cover U of X, we represent
γi by 1-Čech cocylces {γαβ,i} and ζi by 0-Čech cocycles {ζα,i}. Since ζi’s are
dual to γi’s, the cohomology class of the 1-Čech cocyle eαβ,i,j = γαβ,iζβ,j
equals ω for i = j and 0 for i 6= j, where ω is the generator of H1(X; ΩX).

Consider a g-tuple of 0-Čech cochains φi, i = 1, . . . , g such that δ̌φi = dγi.
Then the map H1(X; OX)⊕H0(X; ΩX)→ H(X; Ω•X) given by

(
∑
i

aiγi,
∑
i

biζi) 7→ (
∑
i

aiγi,
∑
i

biζi −
∑
i

aiφi)

is an isomorphism of vector spaces. Since H1(X; Ω•X) ∼= H1(X;C), g-tuples
φi as above exists. Via this isomorphism, the cup product ^: H1(X; Ω•X)×
H1(X; Ω•X) → H2(X; Ω•X) induces a product on the De Rham cohomology
H1(X;C)×H1(X;C)→ H2(X;C).

Lemma 60. There exist φi, 0-Čech cocycles of ΩX , such that the induced
product on De Rham cohomology coincides with the cup product induced by
the wedge product of differential forms.

Proof. We need to show that there exist φi’s such that the class inH2(X; Ω•X)
of ei,j = (γi, φi) ^ (γj , φj) is zero.

Since X is a curve, γi ^ γj = δ̌gi,j for some gi,j ∈ Č1(U,OX). Let
φi be any g-tuple of 0-Čech cocycles such that δ̌φi = dγi. Let Ψ be the
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isomorphism Ψ : H2(X; Ω•X) → H1(X; ΩX). This is given by Ψ(ei,j) =

[e1,1
i,j − dgi,j ]. Let λi,j ∈ C be such that Ψ(ei,j) = λi,jω.
Let φ̃i = φi −

∑
j λi,jζj , and ẽi,j be the class in H2(X; Ω•X) defined as

ei,j ’s replacing the φi’s with the φ̃i’s. Then Φ(ẽi,j) = 0.

Consider the trivial flat connection of rank 2 (E0,∇0). Since X is a curve,
C = [E ndE → E ndE ⊗ΩX ], so we can compute its hypercohomology via the
exact sequence

0 // H0(X, C•) // H0(X,E ndE0)
d1 // H0(X,E ndE0 ⊗ ΩX) //

// H1(X, C•) // H1(X,E ndE0)
d2 // H1(X,E ndE0 ⊗ ΩX) //

// H2(X, C•) // H2(X,E ndE0) = 0 .

By Serre’s dualityH0(X; E ndE0⊗Ωx) ∼= H1(X; E ndE0)∗ andH1(X; E ndE0⊗
ΩX) ∼= H0(X; E ndE0)∗. Moreover, since E0 is trivial, E ndE0 = gl2 ⊗C OX .
So

H0(X; E ndE0) ∼= gl2 ⊗H0(X; OX) ∼= gl⊕g2

and
H1(X; E ndE0) ∼= gl2 ⊗H1(X; OX) ∼= gl⊕g2 .

Now, the map d1 above is just ∇̃0, the connection on E ndE0 induced by
∇0 = d. So, since H0(X; E ndE0) = gl2, it is zero.

The map d2 is the adjoint of d1 via the Serre isomorphism, so it is zero
too.

So we have isomorphisms

H1(X, C•) = H0(X,E ndE ⊗ Ω1
X)⊕H1(X,E ndE) ∼= gl⊕g2 ⊕ gl⊕g2 ,

H2(X, C•) = H1(X,E ndE ⊗ Ω1
X) ∼= gl2 .

Fix an open cover U of X, and for i = 1, . . . , g, let φi ∈ Č(U,ΩX) be
a cocycle such that δ̌φi = dγi. Choose φi as in Lemma 60. These give an
isomorphism gl⊕g2 ⊕ gl⊕g2 → H1(X; C•) via the formula

(Ai, Bi) 7→ (Aiγi, Biζi −Aiφi) .

Via this isomorphisms, the map obs2 is given by

obs2(A1, . . . An, B1, . . . Bn) =
∑
i

[Ai, Bi] ,

where the bracket is the commutator of matrices and Ai, Bi ∈ gl2.
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Remark that the target is a traceless element. Moreover, remark that
[A+λ1, B+µ1] = [A,B] for any λ, µ ∈ C. Via the isomorphism gl2

∼= C⊕sl2
given by A 7→ (Trace(A), A− 1

2Trace(A)1), this implies that obs2 factors as

gl⊕2g
2

obs2 //

��

sl2

sl⊕2g
2

˜obs2

==||||||||

.

So K2
∼= C2g × K̃, where K̃ is the preimage of 0 via ˜obs2.

Now consider W = sl⊕2g
2 . The following 2-form

ω(A1, . . . , A2g;B1, . . . , B2g) =
n∑
i=1

Trace(AiBn+i)− Trace(An+iBi) .

is symplectic.
Let PGL2 act on W by symultaneous conjugation: for M ∈ PGL2 and

Ai ∈ sl2 define

M(A1, . . . , A2g) = (MA1M
−1, . . . ,MA2gM

−1) .

Since the trace is invariant for conjugation, this action is symplectic. The
corresponding moment map is given by

F : W → sl2

F (A1, . . . , A2g) =

n∑
i=1

[Ai, Ag+i] ,

that coincides with ˜obs2.
Summing up, we have shown

Proposition 61. The quotient K2//H is isomorphic to the symplectic re-
duction of V = sl⊕2g

2 with the symplectic form

ω(A1, . . . , A2g;B1, . . . , B2g) =

g∑
i=1

Trace(AiBg+i)− Trace(Ag+iBi)

by the PGL2 action.

For A ∈ sl2, write

A =

(
a(0) a(1)

a(2) −a(0)

)
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with a(k) ∈ C. This realizes an isomorphism of vector spaces between sl2
and C3. In this coordinates, the determinant det(A) = −(a(0))2 − a(1)a(2)

gives a quadratic form on C3. The associated matrix is

D =

 −1 0 0
0 0 −1

2
0 −1

2 0


that is non-degenerate. The associated bilinear form is 〈A,B〉 = −1

2Trace(AB).
On C3 equipped with a non degenerate quadratic form there exists a unique
antisymmetric operation [·, ·] such that 〈[X,Y ], Z〉 = det(X|Y |Z). If X,Y
are the vectors of C3 corresponding to A,B ∈ sl2, we have [X,Y ] = 1

4 [A,B],
where the bracket on the right hand side is the commutator of the matrices.

Now consider the action of PGL2 on sl2: it is linear and preserves the
determinant. So, if we denote by XA the vector of C3 corersponding to A,
for any M ∈ PGL2 there is an N ∈ O(3) such that MAM−1 = NXA, where
the orthogonal group is taken w. r. t. the matrix D.

Moreover, since an orthogonal matrix N is in N ∈ SO(3) if and only
if det(X|Y |Z) = det(NX|NY |NZ), the action of PGL2 corresponds to
the action of the special orthogonal group, because [MAM−1,MBM−1] =
M [A,B]M−1.

So we have the isomorphism of vector spaces with group action between
(sl2,PGL2) and (C3, SO(3)).

In particular, W with the PGL2 action coincides with the vector space
V = (C3)⊕2n with the SO(3)-action given by simultaneous multiplication,
studied in Section 6.1.

Recall that the SO(3)-invariant functions on V are, for (X1, . . . , X2g) ∈
V , Ti,j = 〈Xi, Xj〉 for i, j = 1, . . . , 2g and Si,j,k = det(Xi|Xj |Xk) for i, j, k =
1, . . . , 2g, subject to relations Ti,j = Tj,i, (6.2) and (6.3).

Writing Xi = (x
(0)
i , x

(1)
i , x

(k)
i )t with x(k)

i ∈ C, the moment map is given
by

F (A1, . . . , A2n) =


∑n

i=1(x
(1)
i x

(2)
n+i − x

(2)
i x

(1)
n+i)∑n

i=1(x
(2)
i x

(0)
n+i − x

(0)
i x

(2)
n+i)∑n

i=1(x
(0)
i x

(1)
n+i − x

(1)
i x

(0)
n+i)

 . (6.7)

The differential of F is given by

dF =

 0 0 x
(2)
n+i −x(2)

i −x(1)
n+i x

(1)
i

−x(2)
n+i x

(2)
i 0 0 x

(0)
n+i −x(0)

n+i

x
(1)
n+i −x(1)

i −x(0)
n+i x

(0)
i 0 0


where the elements of the (2k + 1)i-th column are the derivatives w. r. t.
x

(k)
i , and those of the (2k + 2)i-th are derivatives w. r. t. x

(k)
n+i, for k =
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0, 1, 2. From this we see that the rank of dF is zero only at (X1, . . . , X2n) =
(0, . . . , 0), that it can never be 1, that it is 2 exactly at points (X1, . . . , X2n)

such that the three vectors (x
(k)
i )i=1,...,2n for k = 0, 1, 2 span a 1-dimensional

vector space, while the rank of dF is 3 in all the other points. In particular,
F is smooth in the open subset of V consisting of (X1, . . . , X2g) such that
the matrix (X1| · · · |X2g) has rank 3.

This yields a stratification of K̃ = K̃3 t K̃2 t K̃0, where K̃3 are the
smooth points of K̃, and K̃0 is a single point. This stratification descends
to the stratification Z3 t Z2 t Z0 of the quotient Z = K̃//SO(3).

Proposition 62. The singularities of Z are symplectic, i. e. for any reso-
lution of the singularities Z̃ → Z the symplectic form defined on the smooth
locus of Z by the symplectic reduction is extendable to a globally defined 2-
form.

Proof. Recall that the natural 2 : 1 cover ϕ : V//SO(3) → V//O(3) is
ramified in the locus R, wich is exactly the singularity locus of the quotient,
that is the set of vectors (X1, . . . , X2g) whose associated matrix has rank
lesser than 3, and outside the ramification locus both V//SO(3) and V//O(3)
are smooth (cf. Lemma 59).

In particular, F is smooth outsideR, so the quotient Z = F−1(0)//SO(3)
is smooth in Z3. Now, the dimension of Z is the dimension of V minus 3 by
the equation F = 0 and minus 3 by the dimsension of SO(3), so it is 6g− 6.
The dimension of Zsing is 4g− 4, so Z is smooth in codimension 2g− 2, that
is greater or equal than 4 for g ≥ 2. So by Proposition 1.4 in [4] we can
directly conclude.

Now we add the equations F (X1, . . . , X2g) = 0, wich wee have to express
in terms of the invariant coordinates Ti,j , Si,j,k. First we use the relation
〈F (X), Y 〉 = 0 for any Y ∈ C3; for Y = Xl this gives

0 =

g∑
i=1

〈[Xi, Xg+i], Xl〉

that, with the formula 〈[X,Y ], Z〉 = det(X|Y |Z), brings us to the following
linear equations:

g∑
i=1

Si,g+i,l = 0 (6.8)

for any l = 1, . . . , 2g. The smallest possible degree of the relations involving
Ti,j only is 2. These are obtained as before, for Y = [Xk, Xl] we have

0 =

g∑
i,j=1

〈[Xi, Xg+i], [Xk, Xl]〉
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that, with the formula 〈[X,Y ], [Z,U ]〉 = 〈X,Z〉〈Y,U〉 − 〈X,U〉〈Y,Z〉, leads
to

g∑
i,j=1

Ti,kTg+i.l − Ti,lTg+i,k = 0 ∀k, l = 1, . . . , 2g. (6.9)

This brings to a complete set of equations for Z:

Proposition 63. The quotient Z = F−1(0)//SO(V ) is isomorphic to the
spectrum of C[Ti,j , Sa,b,c]i,j,a,b,c=1,...,2g/I where I is the ideal generated by

Ti,j − Tj,i (6.10)
Sa,b,c + Sb,a,c , Sa,b,c + Sa,c,b (6.11)∣∣∣∣∣∣∣∣
Ti1,j1 Ti1,j2 Ti1,j3 Ti1,j4
Ti2,j1 Ti2,j2 Ti2,j3 Ti2,j4
Ti3,j1 Ti3,j2 Ti3,j3 Ti3,j4
Ti4,j1 Ti4,j2 Ti4,j3 Ti4,j4

∣∣∣∣∣∣∣∣ (6.12)

Sa1,b1,c1Sa2,b2,c2 −

∣∣∣∣∣∣
Ta1,b1 Ta1,b2 Ta1,b3

Ta2,b1 Ta2,b2 Ta2,b3

Ta3,b1 Ta3,b2 Ta3,b3

∣∣∣∣∣∣ (6.13)

g∑
i=1

Si,g+i,j (6.14)

g∑
i,j=1

Ti,kTg+i,l − Ti,lTg+i,k (6.15)

We can give an explicit description of these equations for low genera: for
g = 1 the problem has been studied in [27], where the author finds that the
germ of M(2, 0) at (E0,∇0) is isomorphic to C2 × Q at 0, where Q is the
quadric in C3 defined by the equation z2

0 = z1z2.
For g = 2 the problem ireduces to the one examined in [21]: first of

all remark that in this case equation (6.14) is simply S1,3,i + S2,4,i = 0 for
i = 1, . . . , 4. This with equation (6.11) implies that all Si,j,k vanish. So
equation (6.13) reduces to Rank(Ti,j) ≤ 2, while equation (6.15) reduces to
three quadratic equations.

6.2.1 Singularities in Z2

In this subsection we determine the type of singularities of Z along the
stratum Z2.

Let U be the open set of F−1(0) where x(0)
1 6= 0. On this open U for

k = 1, 2, and for i = 2, . . . , g, g + 2, . . . 2g set

µk = x
(k)
1 /x

(0)
1 , (6.16)

x
(1)
i = µ1x

(0)
i + yi , (6.17)

x
(2)
i = µ2x

(0)
i + zi . (6.18)
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Let U be the open set of C2g+2 where the first coordinate is different from
zero. Then

Lemma 64. The open set U ⊆ F−1(0) is naturally isomorphic to U × Y ,
where Y is the hypersurface of C4g−4 defined by the equation G(y, z) = 0,
where yi, zi for i = 2, . . . , g, g + 2, . . . , 2g are coordinates on C4g−4 and

G(y, z) =

g∑
i=2

yizg+i − yg+izi .

Proof. We prove this showing that x(0)
i , µk, yj , zj for i = 1, . . . , 2g, k = 1, 2

and j = 2, . . . , g, g + 2, . . . , 2g, with y, z satisfying G(y, z) = 0, are coordi-
nates for V .

Remark that x(1)
g+1, x

(2)
g+1 can be recovered in terms of µk, yi, zi from the

second and third equations for the coefficient of F (A) = 0:

x
(1)
g+1 = 1

x
(0)
1

(−x(0)
g+1x

(1)
1 −

∑g
i=2 x

(0)
i a

(1)
g+i − x

(1)
i x

(0)
g+i) =

= 1

x
(0)
1

(−µ1x
(0)
g+1x

(0)
1 −

∑
x

(0)
i yg+i − x(0)

g+iyi)

and similarly

x
(2)
g+1 =

1

x
(0)
1

(−µ2x
(0)
g+1a

(0)
1 −

∑
x

(0)
i zg+i − x(0)

g+izi)

while the first of these equations becomes
g∑
i=2

(yizg+i − yg+izi) = 0

that is exactly G(y, z) = 0.
This, together with equations (6.16), proves the lemma.

Remark that U × {0} coincide with K̃2 ∩ U , while if we fix ξ ∈ U , then
{ξ} × Y povides a slice of K̃ passing through ξ and "orthogonal" to K̃2.

So by Luna’s slice theorem we have that Y//Stab(ξ) is isomorphic to the
germ of Z near the class of ξ.

Take for simplicity ξ = ξ0 = (a
(0)
i , µ1, µ2) with (a

(0)
i ) = (1, 0, . . . , 0) and

µ1 = µ2 = 0, for the calculation in the general case is only notationally
different: if µi are different from 0, we can change coordinates in such a way
to diagonalize A1, so that we can assume that µi vanish; if a

(0)
i 6= 0 for some

i > 1, we can repeat the argument that follows in the same way, since all
matrices Ai are proportional to A1.

The stabilizer of ξ0 via the PGL2-action is isomorphic to C∗, acting by

λA =

(
λ 0
0 λ−1

)
A

(
λ 0
0 λ−1

)−1
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The action of C∗ on Y is given by

λ(y2, . . . , y2g; z2, . . . z2g) = (λ2y2, . . . , λ
2y2g;λ

−2z2, . . . , λ
−2z2g) .

From this we see that uij = yizj for i, j = 2, . . . , g, g + 2, . . . , 2g is a basis of
C∗-invariant functions on Y , subject to the relations

ui1j1ui2j2 = ui1j2ui2j1 .

These are the equations of the Segre embedding

P2g−3 × P2g−3 ↪→ P(2g−2)2−1 ,

so that the quotient of Span(yi, zi) = C4g−2 by this C∗-action is isomor-
phic to the affine cone over P2g−3 × P2g−3 embedded in the affine cone of
P(2g−2)2−1.

In these coordinates, the equation G = 0 becomes

g∑
i=2

(ui,g+i − ug+i,i)

that determines a hyperplane in the cone of P(2g−2)2−1.
The polynomial G is a homogeneous non-degenerate quadric. We asso-

ciate to it the matrix G given by G(y, z) = ytGz. We have

G =

(
0 1
−1 0

)
.

This defines on C2g−2 a non-degenerate bilinear form, that yields an isomor-
phism (C2g−2)∗ ∼= C2g−2. So we have the identification C4g−4 ∼= C2g−2 ⊕
(C2g−2)∗.

Via this identification, we see that the equation defining the hyperplane,
is actually the incidence divisor

{(y, η) ∈ C2g−2 ⊕ (C2g−2)∗ | η(y) = 0} ,

so the variety Y/C∗ is isomorphic to the affine cone over the Segre embedding
over this incidence variety.

So we have shown that

Proposition 65. The germ of Z at a point ξ ∈ Z2 is isomorphic to the germ
of the affine cone over the Segre embedding P2g−3 × (P2g−3)∗ ↪→ P(2g−2)2−1

restricted to the incidence divisor D = {(y, η)|η(y) = 0}.
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Chapter 7

Further developments

7.1 Generalization to linear stacks

As far as Theorem 34 is concerned, it looks somewhat unnatural to have a
cohomology class in the first filtered piece F 1H2(L,C) of the cohomology of
L, so a natural question is in which way one should generalize the sheaf of
filtered algebras Λ (and the corresponding holomorphic Lie algebroid exten-
sions) to have a correspondence with the full cohomology group H2(L,C).

Relatively to a nice open cover U = {Uα}, we can represent a cohomology
class in H2(L,C) by a triple (Qα, φαβ, fαβγ) with Qα ∈ Ω2

L(Uα), φαβ ∈
ΩL(Uαβ) and fαβγ ∈ OX(Uαβγ).

Over each Uα it is possible to construct the sheaf of twisted enveloping
algebras ŨQαL, and with φαβ on the double overlaps Uαβ one can construct
isomorphisms

gαβ : (ŨQβL)|Uαβ → (ŨQαL|Uαβ )

as in Section 3.2. The problem is that on the triple intersections Uαβγ these
isomorphisms do not satisfy a cocycle relation, but

gαβgβγgγα = Fαβγ

where Fαβγ is constructed from the fαβγ , and precisely satisfies:

Fαβγ(f) = f Fαβγ(x) = x+ dLfαβγ(x)

for f ∈ OX and x ∈ L. Since δ̌f = 0, on the four-fold intersections the
isomorphisms Fαβγ satisfy a cocycle condition.

This situation is typically a stacky one. To have a correspondence sim-
ilar to the one of Theorem 34, one can try to generalize [5], and introduce,
for each open subset U ⊆ X, the category ExtOX

L (U) of extensions of Lie
algebroids defined over U , whose objects are holomorphic Lie algebroid ex-
tensions

0→ OX|U → L′ → L|U → 0

99
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over U , and the morphisms between two objects are morphisms of Lie al-
gebroid extensions. Since each morphism of Lie algebroids extensions is
invertible, ExtOX

L (U) is a groupoid for each U . So we can see ExtOX
L as a

controvariant functor from the category of open subsets of X to the category
of groupoids.

One can show the following:

Proposition 66 ([1]). ExtOX
L is a stack.

Then one should try to generalize Theorem 31, and show that ExtOX
L (X)

is in a one to one correspondence with H2(L;C), and define the enveloping
algebra for elements of ExtOX

L (X). The resulting object of this operation
will be some kind of generalization of rings of twisted differential operators
to the Lie algebroid case.

7.2 Links with deformation quantization

The main question deformation quantization theory asks is: given a manifold
(or a variety) and a Poisson structure $ on it, whether it is possible to
integrate it to a formal ∗-product whose first term equals $? (cf. [3])

Kontsevich’s formality theorem gives a complete positive answer to this
question in the smooth case, while in the algebraic case there are obstructions
for the integration (see [19]).

Our construction of the enveloping algebra for holomorphic Lie algebroids
gives an explicit construction of a star product in some cases: let L be a
holomorphic Lie algebroid and Q ∈ H0(X; Ω2

L). Then we can define the
Poisson structure on the total space of L∗, the dual of the vector bundle
underlying L, as follows:set

$(f, x) = −](x)(f) , $(x, y) = [x, y] +Q(x, y)

for f ∈ OX and x, y ∈ L and extend it to Sym•OXL by requiring it to be a
biderivation. So $ is a Poisson structure on Sym•OXL, that we see as the
sheaf of holomorphic functions on L∗ that are polyomial along the fibers.

Then for Σ = [Q] ∈ F 2H2(L;C), the algebra ΛL,Σ is a deformation of
Sym•OXL, so gives a ∗-product, whose first term is exactly $. This is an
algebraic analogue of the result obtained in [30].

Hopefully also the algebras ΛL,Σ for Σ ∈ F 1H2(L;C) (or even inH2(L;C)
when properly defines) admit an interpretation in terms of deformation quan-
tization. It is an interesting question for further works.
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7.3 Generalization of λ-connections

Let E be a coherent OX -module. For λ ∈ C, define a (integrable) λ-
connection on E to be a map of sheaves

∇ : E → E ⊗ ΩX

satisfying the Leibniz rule ∇(fs) = f∇s+λdf⊗s for any f ∈ OX and s ∈ E .
Clearly, for λ 6= 0 this is equivalent to a usual (integrable) connection, while
for λ = 0 this is just a OX -linear map (Higgs field).

One can construct the moduli space of integrable λ-connections using
the formalism of Λ-modules, for Λ a one parameter deformation of Sym•TX
into DX . This construction is particularly interesting because the moduli
space of λ-connections is a realization of the twistor space of the hyperkähler
structure of the moduli space of Higgs bundles (cf. [36]).

We expect that the theory of Lie algebroids can be used to generalize
this construction for a better understanding of the moduli spaces of Higgs
bundles and flat connections.

In [8] it is studied (in the smooth case) deformation theory for Lie alge-
broids. In particular, it is shown that, if we fix a vector bundle L, the space
of Lie algebroid structure that L admits is a subspace of the sections of a
bundle of differential operators associated to L. In the holomorphic case,
this space is finite dimensional.

In the particular case of L = TX , the Lie algebroid structure in L that
can be deformed to the canonical one are all of the form (TX ,Θ, [·, ·]Θ), where
Θ is an endomorphism of TX and the bracket is given by

[U, V ]Θ = [U,Θ(V )] + [Θ(U), V ]−Θ([U, V ])

and satisfies the Jacobi identity.
If it is possible to define a “universal” algebra Λ on the space parametriz-

ing the Lie algebroid structures on TX , it should be interesting to study the
corresponding moduli space of Λ-modules, that, just as the moduli space
of λ-connections does, should encode important informations on the moduli
space of Higgs bundles.
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