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Introduction

The overabundance of matter over antimatter in the universe is one of the
most amazing puzzles of modern physics and at the same time one of the few ob-
servational evidences that we have of the physics of very high energies. much higher
than those experimentally accessible in the accelerators. In spite of the fact that
the C'PT theorem ensures that the laws of physics must be symmetric for particles
and anti-particles, the world around us seems unaware of this and the existence of

antimatter went unnoticed until the discovery of the positron in 1933.

The problem of explaining such phenomenon is one of the issues of cosmol-
ogy where particle physics plays a fundamental role. At the basis of the dvnamical
generation of the baryvon asymmetry, i.e. of the creation of the present matter abun-
dance from a symmetric initial state, lies the existence of an elementarv particle
theory containing barvon number violation and C and CP violation. From the start
it has been therefore clear that the evidence of matter-antimatter asymmetry could
be a hint of physics beyond the Standard Model (SM in the following). based on the
gauge group SU(3). x SU(2);, x U(1)y, and the usual perturbative expansion: baryon
number seemed to be conserved in such a picture and the known CP violation in the

SM is too small to be helpful in generating the observed baryon asymmetry.

Since the pioneering work of Sakharov in 1967 [1], various scenarios for the



baryogenesis have been put forward with different particle physics content, based on
extensions of the Standard Model, like Grand Unified Theories (GUT’s), Supersym-
metric GUT’s or Superstrings, or on non-perturbative effects of the SM itself (for an
inclusive review see [2, 3]). None of such proposal for the baryogenesis has prevailed
until now and this is still an open question after 30 years of study.

A very attractive mechanism, proposed by Fukugita and Yanagida in 1986
[4], is based on the production of a lepton asymmetry by the out of equilibrium
decays of heavy electroweak singlet neutrinos. Their decays into light leptons and
Higgs bosons can violate C'P if the Yukawa couplings involved have unremovable
phases, and can then lead to the production of an excess of anti-leptons over leptons
in the final state. The lepton asymmetry so produced is then partially converted
into a baryon asymmetry by anomalous electrdweak processes [5, 6], which are in
equilibrium at temperatures larger than the electroweak phase transition one, and as
a result, the amount of baryons present in the Universe, ng/n, ~ 5 x 10719 can be
accounted for {7, 8, 9].

To postulate the existence of right-handed ‘sterile’ neutrinos constitutes one
of the simplest and most economical extensions of the Standard Model, being strongly
motivated by Grand Unified theories such as SO(10). It also allows to implement
the see-saw mechanism which naturally accounts for non—zero, but still very small,
light neutrino masses. In this context, the values of the light neutrino masses sug-
gested by the MSW solution to the solar neutrino problem, the atmospheric neutrino
anomaly and the hot dark matter scenarios [10], point towards an intermediate scale,
M ~ 10°-10'® GeV, for the right-handed neutrino masses. This further encourages
the consideration of scenarios where the heavy neutrino decays act as sources for the
generation of the baryon asymmetry of the Universe, since for these large masses it

becomes easier to achieve the out of equilibrium conditions required for the efficient



generation of an asymmetry, and also because temperatures comparable to the inter-
mediate scale are more likely to be produced as a result of the re-heating process at
the end of inflation than the temperatures required in the conventional baryogenesis
GUT scenarios.

In addition to the non-supersymmetric version originally considered by
Fukugita and Yanagida, the extension of this scenario to the supersymmetric case
has been studied by Campbell, Davidson and Olive [11], and also a related scenario
where the asymmetry is produced in the decay of heavy scalar neutrinos produced
non-thermally by the coherent oscillations of the scalar field at the end of inflation
has been discussed by Murayama et al. [12]. A key ingredient for all these scenarios
is the one-loop CP violating asymmetry involved in the heavy (s)neutrino decay, and
the reconsideration of this quantity will be the main issue of this work. As will be
showed, there are contributions to the asymmetry that have not been included previ-
ously, so we will compute the total C'P violation both in the non-supersymmetric and
in the supersymmetric case and discuss the different results present in the literature
on this subject, clarifying some common misconceptions [13].

We will also consider the possibility of using the baryon asymmetry to get
an insight into the problem of neutrino masses and discuss the limiting cases of strong
hierarchy and mass degeneracy of the mass matrix. We will see that a considerable
enhancement of the C' P asymmetries is achieved when the masses of the mixed states
are comparable, and the enhancement is maximal for mass splittings of the order of the
widths of the decaying particles. Applying the results to the leptogenesis scenarios,
we will find that large enhancements of the asymmetries may become possible as a
consequence of the oscillations among the nearly degenerate mixed states [14]. This
can be helpful to obtain the required lepton number even for low neutrino masses

since a partial erasure by the L violating processes which are still active after the



decay can be compensated by an enhanced L overproduction in the decay.

Finally we will take into account the effect of the thermal bath on the baryon
number generated and compute the finite temperature corrections to the CP asym-
metry [15]. The thermal bath dynamics is usually treated as a classical problem and
the Boltzmann equation for the particle number density is integrated, considering the
particles as classical objects with Boltzmann statistics. Although such approximation
appears to be reasonable due to the high temperatures and low densities involved, we
will show that in general quantum thermal effects can modify strongly the size of the
CP violation. Interesting cancellations are anyway to be found for our model and in
particular for any supersymmetric model in such a wayv to leave validity to the T =
0 result.

Throughout we will use units such that A = ¢ = kg = 1. In this system
masses, energies and temperatures are all measured in GeV, while time and distance
are expressed in GeV~!. For comparison with the usual units, remember that 1 GeV

=18 x 107%kg =12 x 108K and 1 GeV~! = 2.0 x 10" %m = 6.6 x 10~ 5.



Chapter 1

Overview on baryogenesis

1.1 Experimental evidence of baryon asymmetry

It is an undeniable experimental fact that on earth and in the solar syvstem
antimatter is very rare. Apart from the interplanetary explorations of the last vears,
where probes have landed on most of the planets without annihilating, we know also
that the solar wind is made of matter and would make very bright in our sky any

anti-planet present in its reach.

Even if the evidence of local baryon asymmetry is very strong, it becomes
weaker for what concerns bigger scales. Cosmic rays, also constituted mainly by parti-
cles (the ratio of anti-proton to proton content is 10#, as expected by the anti-proton
production in spallation processes, and no anti-nucleus has ever been detected). are
an indication that nearby galaxies are made of matter, but for further distances we
lack direct evidence and we are obliged to rely on indirect hints. The possibility that
we live in a baryon symmetric universe with large matter and antimatter domains

has not been ruled out, but recently a lower limit on the domain size comparable to



the current size of the universe has been derived [16] from comparison of the cosmic
diffuse gamma flux with the expected red-shifted annihilation photons flux from the
matter-antimatter boundary regions. No physical mechanism able to explain barvons
anti-baryons segregation on such a large scale has been found yet.

Another indirect, but very strong argument in favor of a baryonic asymmet-
ric universe is the successful model of nucleosynthesis. which is able to predict the
observed abundances for light elements. The basic parameter of the model is exactly
the baryon-to-photon ratio n = :lf, which is constrained by the experimental data on

the abundances to be of the order of 107!°, more precisely [17]
4x1070 < np<7x 107, (1.1)

While nowadays the world seems extremely barvon-asymmetric, with no
antimatter around, this n amounts to a very small asvmmetry if we consider the
universe before the quark-gluon plasma phase transition at T =~ 1350 — 200 MeV,

when quark and antiquarks were free and approximately as many as the photons:

Ng — TNy

~ 107°. (1.2)
g

It is therefore plausible to be able to explain such a number dynamically, as an initial

very small fluctuation in the particle numbers.

1.2 Dynamical generation of the Baryon Number

The three conditions necessary for the dynamical generation of the Barvon
Number (denoted from now on by B) have been found by Sakharov in his article of
1967 [1]. Analyzing the general picture he concluded that the following ingredients

were necessary for any theory in order to build up B from the symmetric B = 0 state:



e obviously B violation; otherwise B would stay at the initial value, B = 0;

e C and CP violation in such a way to produce an asymmetry between particles
and anti-particles carrying B-number; on the contrary in case of C and CP
conservation the same number of baryons and anti-baryons would be created so
that they would annihilate almost completely; notice moreover that B is odd
under C and CP transformations and therefore to generate any baryon number

this symmetries must be broken;

e a departure from thermal equilibrium; since the maximal entropy state is char-
acterized by zero chemical potential, it is impossible to create dynamically a

state with p # 0 maintaining thermal equilibrium.

The first two conditions concern directly the elementary particle models,
while the third links particle physics with cosmology.

Notice that the Standard Model presents strong C violation through the chi-
rality of the interaction and very small C'P violation due to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix phase, but no B violation, at least at the perturbative level.
At the beginning, therefore, only extensions of the SM, like GUT’s, seemed viable to
solve the puzzle of the baryon asymmetry of the Universe (BAU). Later on it was
realized that B violating processes are possible in the SM as non perturbative effects,
and the possibility has been proposed to generate the B-number through electroweak
processes.

In the following sections we will first discuss the general picture of Stan-
dard Cosmology where the generation of matter-antimatter asymmetry should have
taken place and review some generalities on the thermodynamics of the Barly Uni-

verse. Then we will describe two models for baryogenesis, fulfilling in different way
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Sakharov’s conditions: electroweak and GUT barvogenesis. We will concentrate in
particular on the mechanism of out-of-equilibrium decays, first proposed in the con-
text of GUT baryogenesis, since it is at the basis also of the Fukugita-Yanagida

model.

1.3 The Standard Cosmology

The hot big bang model (for a more detailed discussion see [18]) that con-
stitutes the standard cosmology describes an isotropic and homogeneous universe
beginning with a space-time singularity and expanding through its history until the
present time. The space-time evolution of the universe can be described through the .

Friedmann-Robertson-Walker metric
dr?
1—kr?

where k£ = 1,0. —1 in the case of positively curved and finite, flat and infinite, nega-

ds> = —d® + R2(2) +r%(d6” + sin®0dg?) | (1.3)

tively curved and infinite universe respectively. The basic quantity is then the cosmic
scale factor R(t), related to the distance of two points on the comoving frame. The
time evolution of R(¢) is given by the Hubble parameter H(t¢), which measures the

expansion rate: ]
) =20
~R(t)
The evolution of the universe due to the gravitational interaction is then ruled by the

(1.4)

Friedmann equation:

87Gp k
2 — o -
H? = 3 7 (1.5)

with p denoting the total energy density of the universe, and by the first law of

thermodynamics for the perfect cosmic fluid:

dU + PdV = d(pR*) + pd(R*) = 0 (1.6)
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where p is the pressure and is given by the spatial part of the stress-energy tensor,
T} = 3p. The relation between the energy density and the pressure for any particle
species 1s connected to the equation of state; so for non-relativistic matter p = 0
and for radiation p = p/3. It is then clear from eq. (1.6) that the energy density
of non relativistic particles is decreasing in the expanding universe as 1/R3, while
that of radiation as 1/R*. Nowadays we are in a matter dominated epoch, but in
the earlier times the energy density of the universe was mainly stored into radiation,
i.e. relativistic particles. It is in that period that dynamical generation of the baryon

asymmetry should have taken place.

1.3.1 Thermodynamics in the early universe

Let us consider how it is possible to define a temperature in the standard
cosmology picture. We have seen that in the earlier epoch the universe was radia-
tion dominated and therefore large numbers of relativistic particles were present and
continuously interacting among themselves through the electroweak (EW) or strong
interactions. We can then suppose that if the interaction rates of those forces were
much larger than the expansion rate of the universe, the particles could reach the
thermal equilibrium in a short time compared to the expansion and then the ther-
mal bath so formed would adjust itself to the universe evolution passing through a
succession of nearly equilibrium states. The single species number densities would
therefore be given by the Bose-Einstein or Fermi-Dirac distribution computed at the

equilibrium temperature T:

-9 / d? _ 93 1.7
" (27)3 Pae—wT+1~ m (17)
where g is the number of degrees of freedom and p the chemical potential. The last

approximate expression is valid for u, M < T.



Due to the adiabatic expansion, anyway, the temperature decreased as 1/R:
in the isolated system of the universe the entropy is constant and its density in the

radiation dominated epoch was given by the relativistic species densities and pressure:

S +p 2x?

where
3, 7'\"‘
9« = Zhosons 9 T g ~fermions g (1.9)

is the effective number of relativistic bosonic and fermionic degrees of freedom that
were in equilibrium. So for constant g,, the temperature nriust change as 1/R.

The equilibrium condition for any process is then the comparison of its rate
with the Hubble parameter: since T/T = —H, as long as T' > H(t), the number
densities can adjust theirselves to the temperature change, otherwise, for I <« H(¢)
the interactions are no more able to maintain the thermal equilibrium and the particle
distributions fall out of it. Anyway in the case of massless particles, as are photons
of the Cosmic Background Radiation, the number density is not distorted and re-
mains that of a thermal distribution, with a temperature red-shifted by the universe
expansion. For this reason the CBR spectrum resembles closely that of a black body.

In case of a massive species the problem is more complex. At temperatures
of the order of the mass M, the particles become non-relativistic and their equilibrium
distribution falls rapidly to zero; approximating with the Boltzmann distribution, one

obtains:

IT 3/2
n:g(ju ) e~ (-n/T (1.10)

So we see that a chemical potential is needed for preserving a net number of heavy

particles at low temperature; for x4 = 0 the number density tends exponentially to

Zero.
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Moreover for T =~ M some processes involving the species, like scattering
processes or inverse decay, fall naturally out of equilibrium due to the fact that very
few of the lighter particles in the thermal bath have enough energv to create one
heavy particle. Other processes, like the decay, are still active, but if they happen to
be slower than the expansion rate of the universe, out of equilibrium conditions can

be reached.

To follow the density distribution for massive particles out of equilibrium,

the unique tool is the classical Boltzmann equation for their number density [19]:
iy + 3Hny = A (1.11)

where the term proportional to H takes into account the dilution due to the universe
expansion, while A indicates the collision integral for the species X, usually involving
the number densities of other species. To solve the equation, one has to compute the
collision integral explicitly and integrate the equation numerically [2, 18, 7]. Only
if the particle are way out of equilibrium, i.e. the decay process is dominant and

I'p << H, it is possible to find an approximate analytical solution.

In that case one can neglect all the scattering processes and solve the ap-
proximate equation, obtained assuming thermal equilibrium for all the decay products

of the particle X:

nx +3Hnyx = —(nx — ny¥)(I'p) (1.12)

where n¥ is the equilibrium density for the species X and (I'p) its thermally averaged

decay rate.
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1.4 EW baryogenesis

We know from the experiments that C and C'P are not good symmetries of
the Standard Model, but since now no evidence of baryon number violation has been
observed (e.g. proton decay, neutron anti-neutron oscillation, etc...) in the labora-
tories. In fact the electroweak lagrangian automatically conserves barvon number,
even if such symmetry has not been explicitly imposed. However in 1976, 't Hooft
discovered [20] that quantum correction break this symmetry for any non Abelian
gauge theory, due to the non trivial vacuum structure of such theories. Vacuum field
configurations can belong to different homotopy classes and also have different B + L
number, while B — L is still conserved.

We have in fact that the currents satisfy the equations [5]:

2 _— —_—
Oulbsr = o (FOE™ + fu ™) (1.13)

1672 \" @

8Tt , = 0 (1.14)

where F#¥ f# are the gauge field strengths for the SU(2), and U(1)y respectively
and F*, f® their dual tensors. It is possible to write the r.h.s. of eq. (1.13) as a total
derivative and define a conserved current if we assign a B + L number to the vacuum
field configurations; changing vacuum background implies then a change in the total
B + L charge of the particle content. The vacua are separated by a potential barrier
so that at zero temperature the probability of tunneling between the different field
configurations is strongly suppressed and the baryon number is effectively conserved.

At temperatures larger than zero, another possibility of transition arises, i.e.
passing over the barrier. Such processes are called sphaleronic, since they proceed
through the semi-classical unstable field configuration called sphaleron, i.e. the con-

figuration at the top of the energy barrier between the two topologically inequivalent



vacua [5].

For temperatures larger than 100 GeV, these baryon-number violating in-
teractions are not only active, but in thermal equilibrium with respect to the universe
expansion [6]. Baryon number is then violated in the thérmal bath, but surprisingly
the presence of a net conserved B — L number prevents the vanishing of the total

baryon number as we will see in the next paragraph.

Since both the first two Sakharov’s conditions are fulfilled by the Standard
Model, the question arises if it is possible to generate the baryon number within this
model. We need the third ingredient, i.e. departure from thermal equilibrium, and
this may be realized in the EW phase transition. Since sphalerons are in equilibrium
up to the EW scale, to explain the present day B-asymmetry it is necessary for the
phase transition to be strongly of the first order so that in the broken phase the
anomalous processes are no more active. The basic picture [6, 3, 21] is the nucleation
of bubbles of broken phase that quickly expand in the symmetric phase; the bubble
wall is the place of out of thermal equilibrium processes able to build up a baryonic
asymmetry inside the bubble, where the baryon number is conserved. At the same
time, outside the bubble sphaleron processes are still active and wash out the anti-

baryon number.

The minimal model, where the C'P violation in the bubble wall is given only
by the CKM matrix phase, has been shown to give a too small B number [22], but
more complex scenarios, like the Minimal Supersymmetric Standard Model, are still
viable. In general, all these models need a strongly first order phase transition and
therefore require a small mass for the Higgs field; their higher bounds are not far from

the lower bounds coming from LEP.
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1.4.1 Sphalerons and preexisting B-asymmetry

It has been computed [6] that in the early universe, for temperature larger
than 100 GeV, baryon-number violating interactions are in equilibrium. We will
have then that sphaleronic processes would modify any B + L number produced
at early stages and so menace any baryogenesis model at high energies. Relating
among themselves the chemical potentials for all the particles of the SM taking part
to interactions in thermal equilibrium before the EW phase transition, sphaleronic

processes included, the following relations have been obtained [23]:

6N; + 5Ny ]
L —_—— (B~ [ 1.1:
B+ 22N, v 13N, B ) (1.13)
81Vf + 4Ny
B — (B — L 1.16
22N, +13vg 0~ (1.16)
N
L = M—E—(B— L) (1.17)

22N; + 13Ny
where Ny is the number of flavors and Ny the number of Higgs doublets of the model.
We see clearly from the relations that no baryonic asymmetry will survive if B — L is
zero, so that any baryogenesis model which conserves B — L, like the SU(5) GUT, is
ineffective, but at the same time, even if the sphaleronic processes are at equilibrium.
they cannot cancel completely B + L if B — L # 0. The preexistence of anet B — L

number will be translated into a final matter-antimatter asymmetry.

1.5 GUT baryogenesis

The first attempts to explain the presence of a net baryon number were
those based on Grand Unifying Theories, precisely the simplest one with unifving
group SU(5) [24]. B-number violating interactions are in this case mediated by

the exchange of exotic gauge bosons transforming quarks and leptons in the same



multiplet among themselves or by exchange of the colored, fractionally charged Higgs

bosons.

C violation is naturally present like in the Standard Model, while the break-
ing of the CP symmetry is given by the unremovable phases in the Yukawa couplings.
In particular C'P violations appears in the decay channel given by such complex cou-
plings from the interference of the tree level and one loop decay amplitudes. So if
the decay also violates B, a net baryon number is generated in the process. In case
of thermal equilibrium, such number is immediately washed out by other B-violating
processes, maintaining the chemical potential of the baryons at zero; otherwise, if
thermal equilibrium is broken, a non-zero baryon number can survive to the present
epoch!.

The condition of departure from thermal equilibrium is fulfilled thanks to
the expansion of the universe, as we have seen. All the processes involving a massive
species X, except the decay, fall quite naturally out of equilibrium when the tempera-
ture is of the order of the mass, since the kinetic energy of the lighter particles in the
thermal bath is no more sufficient to create new X particles; then if the decayv rate
happens to be smaller than the Hubble parameter, their number density drifts away
from the equilibrium distribution and the particles decay out of equilibrium and can

generate a net barvon number.

1.5.1 One loop CP violation

Let us now describe the basic ingredients necessary to have C'P violation at

the one loop level. We can define as the CP asymmetry of any decay process X — f,

'Neglecting obviously the sphaleronic processes!
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as the ratio:

TX=fH-TX =)
ccp = I'X = f)+T(X = f) (1.18)

Due to the hermiticity of the lagrangian, it is not possible to have C'P violation at

tree level; consider in fact the generic example of the Yukawa interactions of a family

of bosonic particles X,:

Ey’ = haijaw‘_j’(pk + h.c. (119)

At tree level we have that the amplitudes for the process X, — wji//—'k and the conjugate
one are proportional respectively to hgjr and hjj;, but, since the phase space is the
same for particle and anti-particles?, the transition rate is equal and proportional to
[hajklz-

So to have any CP violation we must go beyond the tree approximation

and consider loop effects. This descends directly from the unitarity relation for the

S matrix; considering S = 1 — i7", we have
1=81S=1+4T'-T)+T'T (1.20)

that yields
T =T —iT'T. (1.21)

Taking the matrix element between the initial state 7 and the final state f and com-

puting the modulus squared on both sides, we obtain:
I T5l” = |T517 + 2Im [(T1T) iTf] + |(TT) . (1.22)
But |T}|? = |Ti;|* and from CPT Ti; = Tf; so that we have

I T5l* = |Tal* = 21m [(T'T) 5Ty ] + [(T1T) 1l (1.23)

2CPT imposes that particles and anti-particles have the same mass.
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At lowest order in the coupling constant only the first term on the r.h.s. is important.
We see therefore that the C P asymmetry is given by considering all intermediate real
physical states n in the sum Y, 1T, 1.e. the absorptive part of all the possible
loop diagrams connecting initial and final state. Moreover, since in eq. (1.23) the
contribution comes from the imaginary part of the transition amplitudes products,
fundamental to have C P violation are complex coupling constants.

Let us exemplify this in the case of the lagrangian (1.19) and the decay
Xy — L/)jiﬁk; the intermediate state can be any pair of particles 1,9, so that T ;is the
amplitude for the elastic scattering process V¥, — z,bjzzk. If the leading contributions
to the 2-particle scattering is again given by the same Yukawa interaction (1.19), the
process takes place with the exchange of a virtual X particle in the s- or t-channel.
as shown in Fig. 1.1.

Notice that in this case the virtual intermediate particle X, must be different
from the initial one to have a net C' P asymmetry; otherwise, apart from the real phase

space factors, we would have 7%, oc h*, h,:x and so:
3 nf alm'*aj

Im [(TTT)fiTif] o« Im [Z halmh;z,nhajkh:jk] ; (1.24)

Im

then the total CP asymmetry would be zero even for complex Yukawa couplings:

ecp o< Im [Z |halm|2]hajk|2} =0. (1.23)
Im

The t-channel contribution is the one that is traditionally considered and
will be denoted in the following as vertex contribution. The s-channel part is instead
connected to the mixing between the heavy states due to the 1-loop off-diagonal
contributions to the mass matrix; the renormalization procedure permits to absorb
the real divergent parts into the mass and wave function renormalization constants,

but, as we will see, it is not possible to re-absorb the finite imaginary part of the mixing
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X
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t - channel

Figure 1.1: Contributions in the s-channel and t-channel for T,’ffT nis the initial and

final states are fixed, X, — wjzﬁk, while any intermediate on shell state n, in this case

Y1hm, must be considered.



diagram without spoiling the orthonormality of the particle states. The analysis of the
s-channel or wave function contribution will be in particular the subject of chapter 3.

Notice that to have also B-violation in the decay process, two decay channels
with different baryon number must be open for the heavy particle; otherwise it would
be possible to assign a specific B value to X, itself and no violation of the baryon
number would be present.

We will consider in the next subsection a specific example of GUT baryo-
genesis and compute the C and CP asymmetry for the decay of the heavy triplet in

SU(5), even if this model is not viable for explaining baryogenesis since it conserves

B—-L.

1.5.2 An SU(5) example of B and CP violation

Let us begin to consider as a basic example of GUT baryogenesis the out of
equilibrium decay of the heavy Higgs boson triplet in SU(5). In such model there exist
also the possibility to generate a baryon number through the decay of exotic gauge
bosons, but in this case, since the gauge coupling is quite large, as = g2/(4m) ~ 1/50

at unification scale, the out of equilibrium condition [18]
Tp o asMy < H(T = My) =~ g/ M2 [ Mp, (1.26)

where Mp, = 1.22 x 10! GeV is the Planck mass, is less likely to be satisfied for
gauge than for Higgs bosons. Moreover the constraint for the Higgs mass coming
from the proton lifetime are less severe so that the Higgs bosons are usually thought
to be lighter than the exotic gauge bosons; then B violating processes involving the
Higgses would still be active after the gauge bosons decay and diminish the baryon

asymmetry produced.
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The Higgs scalar particle content in SU(5) is larger than in the Standard
Model; in the minimal case we have one Higgs field in the 5 dimensional irreducible
representation of the group and another Higgs in the adjoint (24 dimensional) rep-
resentation. This last field is responsible for the breaking to the SM group at high
energies ( of the order of 10'> GeV ). The fiveplet Higgs field ® decomposes under
the SM group SU(3). x SU(2)r x U(1)y as a colored triplet 7' and an EW doublet
H, to be identified with the SM Higgs doublet. Since the colored triplet Higgs can
mediate proton decay, a strong bound on its mass is given by the experiments. A fine
tuning of the scalar potential parameter is then needed for providing doublet-triplet
mass splitting. Consistency with the proton lifetime of about 103! years is ensured
for a triplet mass greater than 10'® GeV [25].

Notice that in order to have C'P violation at one loop in the SU(3) GUT
it is necessary to have more than one heavy state, so we have to add to the minimal
SU(5) GUT at least one Higgs fiveplet. In the minimal picture C'P violation would
appear only at three loops level and therefore would be very suppressed [26].

For simplicity we will consider the case in which the masses of the heavy
triplet states T; are significantly split, since the study of the C P violation in the near
degenerate situation present additional complications [27, 14]. We will see such case
in detail later on.

One generally expects that only the decay of the lightest of the heavy states,
Ty, will be the one leading to a net B, since any asymmetry produced at earlier times
through the decay of heavier states would be erased by B violating processes which
could still be in equilibrium. Hence, one has to compute the asymmetry resulting
from the 77 decay, and in the case we will consider in which there is a hierarchy
among the masses of the heavy states (My > M, with k£ > 1), it will be natural to

assume that the heavier states T} have already decayed when the lighter one is falling
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out of equilibrium.
Let us consider the SU(5) lagrangian involving several scalar five-plets ®; =
(j_’h Hz) :
L= fidi (39 x5) + Lds (2075 TS W5) + hec (1.27)
1¥i B 3 i By = de Gy =)

where the gauge indices are denoted by greek letters. The matter fields are in the
decuplet and the fiveplet representations as usual, ¥ = (g, u® €°) and x = (d, I¢). Since
they are vectors in flavor space, the Yukawa couplings f; and g; should be thought as
3 X 3 matrices, but for simplicity the flavor indices are not displayed.

The CP violating B asymmetry arising from the decay of a T} and T; pair

is

_ Xy ByN(Ty = Fy) - F_(Tl —>_Ff)]
AN = Fr) + (T = Fy)]
with B; the baryon number of the final states Fy = g¢¢, te®, ud, §°q. From the

(1.28)

interactions in eq. (1.27) we have

A% [~ {Tr(glg1 fiefl) } Im{L(ze)} + I { T (£ f]) Te (gl0n ) } Im{Z,}]
[4Te (71 A1) + 3Tx (9l 1) |

€

)

(1.29)
where z; is the heavy-to-light ratio of squared masses:
M
= _k 1.30

Notice that, as we already pointed out, the asymmetry is null if there is a single
triplet field. In this case, the result (1.29) depends on the hermitian matrices glg,
and f; ff ; therefore their trace has no imaginary part, and the trace of the product is
equal to half the trace of the anticommutator, again an hermitian matrix.

The terms in the denominator correspond to the tree level decay rate; those

in the numerator to the interference between the tree level and the absorptive part



of the loop amplitudes®. In particular, I; arises from the loop integral in the ‘vertex’
contribution, in which the T} is exchanged in the t—channel (see Fig. 1.1), and I
comes from the loop integral in the ‘wave’ contribution, in which the T} is exchanged

in the s—channel, i.e.

u(pr)v(p2)Li(zr) = @(p1) / —(—;—l;l)qS(p ~¢,0)S(—¢,0)D(q — p2, Mi)v(p2), (1.31)

with S(p,m) (D(p,m)) being the propagator of a fermion (scalar) with mass m and

ML, = -%/

momentum p.

From these expressions one gets the following absorptive parts:

1 1
_ L : 1.33
Im{I;(z)} o [1 z In (1 + 3:) , (1.33)
and
1
Im{[;} = —. 1.34
m{L} = o= (134
In the limit of very large mass hierarchy, £ — oo, the first expression reduces to
1 =
Im{I;(z)} = - (1.35)
We have therefore that the B asymmetry defined in eq. (1.29) is:
L Tem [1m {Tr (glg: fifl)} + 21m { T (fuf]) Tr (gle1)}] (1.36)

87 [4Tr (flff) +3Tr (gIgl)}
The way out of equilibrium condition I'p < H(T) for T = Af; is in the
Higgs triplet case:

[4Tr (Af]) +37Tr (olg1)] < 8mgl/? My /My, (1.37)

3The apparent difference with respect to refs. [28, 29] in the denominator is just due to a
different normalization of the field ¥, and hence of the Yukawa couplings f;. However, our result
for the numerator differs from ref. [30] in the sign of the first term (in agreement with [31, 32}) and
a factor 2 in the second one.



or equivalently for g, ~ 100
4Tr (fiff) +3Tr (glg1) < 2.5 x 1027y /Mpy. (1.38)

If this inequality is satisfied, as can well happen for reasonable values of the Yukawa
couplings and of the M; mass, it is simple to estimate the baryon number generated
in the decay process. Neglecting inverse decay and all the other scattering processes,
we can consider that everv couple of T} and T produces € baryon number. Since

before decoupling the Higgs triplets are as common as the photons, we have, using

egs. (1.7) and (1.8),

] 135
, = €
52 T, g,

~ 0le (1.39)

where g is the number of degrees of freedom of the decaying particle ( 6 in the case
of the complex colored triplet 77). Since the baryon number per entropy density is
constant in the expansion of the universe, we can compute (1.39) at the production
temperature T ~ A; in order to obtain the present value. Obviously we are still
neglecting the effect of sphaleronic or other processes that could modify the baryon
number at later times.

We would like to stress that also in the case I'p > H(T) baryogenesis takes
place, but the final B number is smaller than given by eq. (1.39) and to compute it

the Boltzmann equations for the species involved must be solved [2, 18, 7].



Chapter 2

C P violating decays in leptogenesis

scenarios

We have considered in the previous chapter the consequences of the baryon
number violating anomalous processes on any preexisting asymmetry, and have seen
that a sufficient B—L number is necessary to explain the present day overabundance of
matter, if it has been generated at high energy scales. Therefore the possibility arises
of generating the present day baryon asymmetry not through B violating processes
like in the case of the SU(5) GUT discussed previously, but through lepton number
(L) violating interactions. Any L built up at high energies, contributes to the B — L
number and is transformed by sphaleronic processes in equilibrium into a final baryon
number. In such a picture baryogenesis and neutrino masses and mixings are tightly

related to each other.

26
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2.1 The Fukugita-Yanagida model

In this section we will concern ourselves with the first model for leptogenesis,
proposed by Fukugita and Yanagida in 1986 [4] as a minimal extension of the Standard
Model.

Apart for the usual SM pieces, the new terms of the Lagrangian are given

by

1, _
L= Lsy — g MN;Nj = NijeasN;PLEEH? + hec. (2.1)

where £] = (v;[;') and HT = (H* H°) are the lepton and Higgs doublets (e,5 = —€za,
with €5 = +1), and, without loss of generality, we are taking the Nj to be the
Majorana mass eigenstate fields, of mass M. The scale of this singlet neutrinos mass
should be quite large, of the order > 10® GeV in order to be able to explain the small

light neutrino’s masses through the see-saw mechanism. We will see this later on.

Since M; are so much larger than the electroweak scale, it is reasonable to
work directly in the symmetric phase where all particles except the heavy Majorana
neutrinos V; are massless, and all components of the neutral and charged complex

Higgs fields are physical.

The heavy neutrinos are Majorana particles so that they can decay either
in a lepton and a Higgs or in an anti-lepton and anti-Higgs breaking lepton number.

The basic quantity we are interested in is the L-violating C P asymmetry,

N PNE_FNE :
e (

€ )
I'nve+Tne

b
N
~—

where I'ny = 3, s T(NV — £2H?) and Ty; = ¥, 4 T(N — 72HP) are the N decay

rates (in the NV rest frame), summed over the neutral and charged leptons (and Higgs
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(a) (b)

Figure 2.1: Diagrams contributing to the vertex (Fig. 2.1a) and wave function

(Fig. 2.1b) CP violation in the heavy singlet neutrino decay.

fields) which appear as final states in the IV decays'. Note that at tree level

(A
€7 16r

FNiE == FN ]\/[l (23)

As we have remarked no asymmetry is present at this level.

The asymmetry €} arises from the interference of the one-loop diagrams
depicted in Fig. 2.1 with the tree level coupling. The vertex correction in Fig. 2.1a is
the one that is usually considered, but it has however been pointed out [33, 30, 32]
that the wave function piece in Fig. 2.1b also contributes to the asymmetry, in an

amount which is typically comparable to the vertex contribution. We have computed

these C P violating asymmetries and we obtain for the vertex contribution to €

el (vertex) = 23 Tm {J, (z)} Zes 2.4
k
where = = MZ/M? and we have defined

Im [(Xf/\) Z] |

I i =
¢ (),

'For the Majorana light neutrinos, one should think of £ and Z as being the left and right-handed
helicities of v.



Im {J;} is the absorptive part of the loop integral in Fig. 2.1a, defined as

d4
u(p — k) Pru(p)Ji(zi) = u(p — k) P / @-;%;S(q =k, M)S(q,0)D(p — ¢,0) Pru(p),

(2.6)

where p is the singlet neutrino momentum and k the final Higgs boson momentum.

This quantity results to be, as computed in appendix A.1,

Im{Jt(:E)}:Ié—W\/E<1—(1+:E)In {1+$D. (2.

i

]
~1
—

For the wave function piece we find instead

M, Im{{M (A0 40 (A0)) Tas)

eé\f (wave) = 4> Im{J,} YIS, R : . (2.8)

- k#e

In this case the loop integral is shown in Fig. 2.1b and is defined by

u(p — k) Pru(p) M1 J, = —iu(p — k)PR/(é%qS(q, 0)D(p — ¢,0)u(p), (2.9)

so that the absorptive part is, as shown in appendix A.1,

1
327

Im{J;} = —
This result satisfies the unitarity relation we have found in chapter 1, (1.23),
|Tsil* — 1Ty ~ =2 Im {Z TniT:fTif] :

where we are retaining only the leading order terms; i and f are the initial and
final states, and n are the possible intermediate states connecting them. Ty, are the
transition amplitudes between the intermediate and final states, which in the present
case arise from both the s and ¢-channel N, exchanges, which correspond to wave

and vertex contributions respectively.
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The result in eq. (2.4) coincides with the one recently obtained in ref. [9],
differing by factors of 2, 4 and 8 from those in ref. [34], [7] and [8] respectively?. The
wave function piece, which in this scenario was considered previously by Liu and Segre
[32], is a factor of two larger than their result due to the fact that their computation
applies to the case in which the scalar field is real and only the neutral lepton runs
in the loop. Adding the charged lepton loop contribution the result is doubled. In
eq. (2.8) we do not include in the sum over the flavor of the intermediate neutrinos the
case k = 1, since in general states degenerate with the initial one do not contribute
to the CP violating asymmetry [27]. We also assumed that |My — M;| > I'y, in
the computation. Notice that the contribution from k£ = 7 in the vertex piece, being
proportional to Im[(ATA)?i] = 0, also vanishes. Hence, both sums in eqs. (2.4) and
(2.8) may be restricted to & # 7. In eq. (2.8) we have not summed over the final

lepton flavor, but after summing over it and substituting Im {.J;}, one gets
- 1 M; M,

)i (wave) = & g Egl“—;[? Ty, (2.11)
so that the piece proportional to AJ; in the square brackets in eq. (2.8) actually gives
a null contribution to the total lepton number asymmetry (although it may generate
an asymmetry in the individual leptonic numbers L;). This same quantity has been
computed employing a different formalism in ref. [35] and their results, initially in
disagreement with ours, have been corrected and they now agree with eq.(2.11) in
the limit of strong hierarchy.

In ref. [32] it was pointed out that there should also be in the vertex con-
tribution, in addition to the result in eq. (2.4), a term like the one just discussed
appearing in eq. (2.8). This term appears however only when a single real scalar

Higgs field is allowed to run in the loop, but it can be shown that the new contri-

2The normalization of the € parameters are sometimes different (and not always explicit).
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butions arising from the two real scalars in the decomposition of the standard model
Higgs fields H* = (H + iH)/+/2 actually cancel each other, leaving only the term
proportional to Zy; present in eq. (2.4).

In the particular case in which a hierarchy among the right—-handed neutrino
masses is considered, i.e. for zy > 1, we have that the wave function contribution
becomes twice as large as the vertex one, and hence the total asymmetry produced

in the decay of the lightest heavy neutrino®, N;, becomes

3 1
S =T
167 k#1 A/ Tk

The inclusion of the wave function piece then increases by a factor of three the C'P

N

)" = €] (vertex) + e (wave) ~ (2.12)
e ¢ e

violating asymmetry in the case of large mass hierarchies.

2.1.1 Baryon number generation

Let us try now to estimate the lepton number generated in the decay of the
lightest singlet neutrino and the subsequent baryon number.

If the departure from equilibrium in N; decay is large, i.e.
Ty, = (AN /(8m)My, < H(T = My) =~ g}?M2/Mp, (2.13)

the lepton number asymmetry produced, per unit entropy, is

6971 gNTB
2

n
s s 7

where gy = 2 are the spin degrees of freedom of the Majorana neutrino Ny, so that

their number density (assuming Maxwell-Boltzmann statistics) before they decay is

3In the case of large hierarchies, the asymmetries produced by the heavier neutrino decays are
usually erased before the lightest one decays. -



gyT?/7? if we assume that they were in chemical equilibrium before becoming non-
relativistic (see below). Using eq.(1.8), where g., defined in eq.(1.9), is the effective
number of relativistic degrees of freedom contributing to the entropy, (g. = 106.75 in
the standard non—supersymmetric version of the model), we get

DL~ 4 x 1073, (2.15)
S

This lepton asymmetry will then be reprocessed by anomalous electroweak processes,

leading to a baryon asymmetry given by eq.(1.16):

94 + 4Ny 98 |
Y icar: S ORI . 9.16
B (66+13NH) MB-L = TaghL (2.16)

Here Ny is the number of Higgs doublets (Ny = 1 in the standard scenario considered
now, while Ny = 2 in the supersymmetric version to be discussed below if the scalar
Higgs bosons are assumed to be lighter than the electroweak symmetry breaking
scale). Combining eqs.(2.15) and (2.16) and assuming that the Universe expansion is

adiabatic, the present barvon asymmetry which results is
n
2B 215 x 1073 (2.17)
s

Values of € ~ —5 x 107% are then required to account for the value np/s ~ 0.6-
1 x 107! inferred from the successful theory of primordial nucleosynthesis [17]. In
the case in which there is a hierarchy in the heavy neutrino masses, the Yukawa

parameters need then to satisfy

M
S T~ 0.9 x 1075, (2.18)
& M,

Let us also briefly mention that the lepton asymmetry produced by N decays
is smaller than the value in eq. (2.14) if the departure from equilibrium is not large

during the decay epoch, as is the case if the decay rate I'y = I'y,,+I 'y, 7 is comparable
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or larger than the expansion rate of the Universe when IV, becomes non relativistic,

ie. I't > H(T = M) (see references [7, 9]).

We also want to emphasize that a problem of these scenarios is that the
Yukawa interactions are not effective in establishing an equilibrium population of
heavy neutrinos. To see this, note that before N; becomes non-relativistic, i.e. forz =
M, /T < 1, the thermally averaged rate scales as T, since (I'y) = K; (2)/K3(z)T; ~
(z/2)['1 o< M}/T, where Ki, are Bessel functions [7]. Taking into account that
H o T?/Mp, and supposing that T'; < H(T = M) (so that the departure from
equilibrium during the decay is significant), one concludes that (I'}) <« H holds
true also for all temperatures larger than Af;. Hence, the inverse decays are unable
to establish chemical equilibrium for N, at any temperature T > M,. The pair
production of N from Higgs boson or light lepton scattering may do somewhat better
than inverse decays at high temperatures, since the relevant rate scales as (ov) < T,
but it is anyhow insufficient to achieve chemical equilibrium for N; because the rates
need to be quite suppressed at T ~ M, in order not to erase any lepton asymmetry
generated during the decay, and consequently are also suppressed with respect to the
expansion rate at higher temperatures. Hence, additional interactions of the heavy
neutrinos are required for them to have a thermal distribution prior to the decay, so
that the leptogenesis scenario can be successful. This point was recently remarked
in ref. [9], where it was shown that gauge interactions which are naturally present in
GUT scenarios (new Z' or SU(2)p gauge bosons) can easily do the job of producing

a thermal population of heavy neutrinos at T > M;.



2.2 Supersymmetric extension of the model

Turning now to the supersymmetric version of the Fukugita—Yanagida model,

the interactions of the heavy (s)neutrino field can be derived from the superpotential
1
W= §A/[1N1Nz + )\ijﬁagL?H'BNj. (219)

Supersymmetry breaking terms are of no relevance for the mechanism of lepton num-
ber generation; even the mass difference between the particles and their superpartners,
in the range of 10® — 10* GeV, is negligible at the high temperatures of the order of
the singlet neutrino mass, so in the following we will consider also the superparticles
as massless.

From eq. (2.19) we are then left with the following trilinear couplings in the

Lagrangian, in terms of four component spinors,

L= —)ijeap {Mjﬁ;z;?Hﬁ + NPt HP + (hB)ePLL N, + (EB)CPLNJ-E?} + hec. .

(2.20)
From these couplings we obtain the tree level relations
AT A)ii
Tye+Tng=Cpi+ FNJ;‘ =T'j,=Txi= ( 8") M. (2.21)

There are now new diagrams, like the ones in Figure 2.2, contributing to the
generation of a leptonic asymmetry. We will denote the corresponding asymmetry
parameters in the supersymmetric case with a tilde, so that for instance & (vertex)
will receive contributions from the ‘standard’ diagram in Figure 2.1a as well as from
the one in Figure 2.2a which involves superpartners in the loop*. We also define the

slepton asymmetry associated to N decays as

i

€5

L FNE+FNE'

4For later convenience, we define € as in (2.2), rather than normalizing it to the total N decay
rate which also includes the slepton final states.
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(a) (b)

Figure 2.2: Supersymmetric contribution to the diagrams leading to C'P violation in

the N — £H decay.

which arises from diagrams similar to those in Figures 2.1 and 2.2 but with Lh in the
final state. We similarly define the asymmetry parameters associated to sneutrino
decays as

o _ Dig =Ty ¥ Use=Tgeie (2.23)

¢ €; = .
FN'£+FNE L Fj\;-i-i—FN.fJ,
After a direct computation of these quantities we obtain

)

&)i (vertex) = 2 S Im {J; ()} T (2.24)
k

where the loop integral has in this case contributions coming not only from the di-
agrams in Fig. 2.1a, but also from the one in Fig. 2.2a, with superpartners in the

intermediate state. The diagram absorptive part is

Im {Jy(z)} = —~—1-é—7r\/5 In[(1+z)/z]. (2.25)

For the wave function piece in the supersymmetric model, there is also an additional

contribution with superpartners intermediate states, so that we have

&) (wave) = 2¢} (wave). (2.26)
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For the remaining channels we get similar results

&Y (vertex) = Eév' (vertex) = Eg(vertex) = & (vertex), (2.27)
and also the wave function contributions are equal
&Y (wave) = Ef_y " (wave) = €§ (wave) = & (wave). (2.28)

The vertex pieces were computed previously in ref. [11] and our results are
proportional. The sneutrino decay asymmetry was also considered in ref. [12] in the
limit in which all heavy (s)neutrinos are degenerate and, specialized to that case, our
results are in agreement (except for the overall sign). The wave function contributions
were not considered previously-and, as in the non-supersymmetric case, they are non—
negligible. Let us also note that there are additional one loop diagrams involving the
four-scalar couplings appearing in the F-terms of the scalar potential. Although
helpful to cure the divergences in the loops, they do not contribute to the asymmetry
generation.

For the study of the decays of thermal populations of heavy neutrinos and

sneutrinos, it is convenient to introduce the total asymmetry defined as

=~ — =N; ~N; N7 ~N; =
E=& +E +E tE = 4V, (2.29)

resulting in

1 1
Ei = 5= Z\/.’Ek [h’l (1 -+ "‘) -+
27 k2 Tk

In particular, in the case of hierarchical masses (zx > 1), we find that again

Thi- 2.30
T — 1] k ( )

the wave contribution becomes twice as large as the vertex one, giving

- —— T (2.31)
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With the definition in eq. (2.29), the resulting lepton asymmetry is®

ny, € T3 —3~ <
— = ;13 ~ 1 x 107%, (2.32)

where we have used that the effective number of degrees of freedom in the supersym-

SM

* .

metric scenario is approximately doubled, i.e. g5V ~2 ¢

Assuming the sleptons to be heavier than 300 GeV and the lepton number to
be conserved in their decay process, so that they can all decay into leptons before the
EW phase transition, we can still use eq. (1.16) for computing the baryon number.

Hence, to account for the baryon asymmetry of the Universe we need now

M
S L T ~ 0.7 x 107, (2.33)
&M,

Comparing this with eq. (2.18), we see that the required parameters are similar in

the supersymmetric and standard scenarios.

2.3 The see-saw mechanism

Let us consider now the consequences of the lagrangian (2.1) on the mass
spectrum of the neutrino’s. At the electroweak transition one neutral component
of the Higgs field takes a non-vanishing vacuum expectation value v/v/2, so that the
Yukawa interaction gives rise to a Dirac mass term involving the LH and RH neutrinos
similarly to what happens to the other standard model particles. We have therefore

the mass terms:

1.
Lm = —5M;NGN; - N;PLv; + h.c. (2.34)

1.]\/—
| R—
= —5M;NiN; = Mg N;Pryi + h.c,; (2.35)

SHad we normalized e ; to the total N decay rate, their contribution to nj would have to be
multiplied by gy = 2 as in eq. (2.14).
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due to the fact that MP is of the order of the EW scale and therefore <« M/j, this
lagrangian displays the so called see-saw mechanism [36, 37] that ensures a very small,
but non zero mass for the light neutrinos.

Let us for the moment neglect the family structure of the theory and consider
the simpler case of only one family. Defining the field n7 = (v, N®) we can rewrite
the mass terms as

1.
where now M 1s a mass matrix:

0 MP _
MP M
Then the physical states corresponding to the mass matrix eigenvectors are

Majorana fermions with different C'P parities and the mass eigenvalues are

M1
My = ok ;2—\/M2 + 4(MD)2, (2.38)

We see that in case MP < M the two eigenvalues are very split:

(A[P)?
M

my~M my =~

The first eigenvector is constituted mainly by the N component, while the second by
the v component.
In the case of more than one family, the structure is more involved and the

light states present an effective Majorana mass
m o~ (MPYT Mt AMP (2.40)

given by the diagrams with intermediate heavy states. Such a mass matrix would be

in general non-diagonal and give rise to light neutrino mixing [38].
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The picture described above is typical of the SO(10) unification group [36];
in this model all the 15 fermions belonging to one generation can be accommodated
into the 16-dimensional spinor representation of that group. The additional 16th
particle, behaves exactly as a RH SM singlet neutrino. Its Majorana mass term could
be then the remnant of the spontaneous breaking of SO(10) and therefore be quite

large.

2.4 Neutrino’s masses and mixings

We have seen in the previous section, that the same terms in the lagrangian
can give rise to the BAU and the light masses and mixings for the neutrinos. The
same Yukawa couplings are involved in both cases, so that it seems an interesting
question whether it is possible to account at one time for all the experimental evidence
on neutrinos and baryogenesis. Unfortunately it seems that this would not be an
easy task since the baryon number is related to the phases of the mass matrix and
no informations are nowadays available regarding the phases in the neutrino mass
matrix, since every effect of such phases is suppressed by the small mass itself and
it is therefore well below the experimental bounds [34]. Anyway it is still possible
to use the BAU and other cosmological constraints to get an insight into the mass

structure of neutrinos (7, 39, 9].

Let us illustrate this in a toy model. Consider the Dirac mass matrix M to
be equal to the one of the up-type quarks, as it would be in the case of S 0O(10) and

suppose that its hierarchical structure would be maintained also in the basis where
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M is diagonal. So we would have

7’}2A 7]2B ,’720
V2m, :
A~ 772B’ nD nE - (2.41)
n*C' nE' 1

where 7 is a small parameter n ~ m./m; ~ m,/m, ~ 102 with my, m¢, my, equal to
the top, charm, up quark mass respectively and A, B, B’ etc.. are complex numbers of
modulus of order 1. We are considering here the case where both the heavy Majorana
mass matrix and the leptonic EW charged interactions are flavor diagonal; therefore

no freedom is left for diagonalizing the A matrix or absorbing its phases.

For this Yukawa matrix, the mass of the v, would be, in the case that the

hierarchy between the RH neutrino is smaller than that between the quarks families,

i.e. Aﬁ[l/.[\[-z, l\:’[g/]\/fg, < 7,
2

mu:T—t—<<mt; (2.42
T .Z\Ig

[§W)
e
(3]
—

requiring this to be around 10 eV, so that tau neutrinos would be good candidates
for the hot dark matter [10], imposes the constraint Mz ~ 102 GeV.

Regarding the baryon asymmetry, under the same assumption on the hier-
archies, the dominant part of €; in eq.(2.12) would be given by the exchange of an

N3 in the loop:

3 M
~ - —T31; 2.4
€1 167 M, 313 ( 3)
keeping only the leading terms in 77 we get
———— 2 2.44
VT ey v Sn) (2:44)

where ¢ is the phase of the relevant Yukawa coupling (C').
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Comparing this number to the observed asymmetry and using om? /v ~ 1
gives the bound
M,

Esin(%) ~ 0.9 x 107° (2.45)

We can see then that also a small phase could generate the BAU if the
hierarchy M; /M, < 1072,

What we have considered here is the maximal baryon asymmetry generated
in the way out of equilibrium conditions. Let us check now the bound (2.13) on the

Yukawa matrix,

(AN 11/ (8m) < gX/* M /Mpy, (2.46)
this yields in our toy model:
M /Mp; >4 x 1073 =4 x 10711 (2.47)
corresponding to a mass scale
M; > 5 x 108GeV. (2.48)

We have seen therefore in a simple toy model that it is possible, in the case
of mass hierarchy, to generate the BAU at a scale T < M; ~ 108 — 10° GeV: such a
scale is lower than the scale of GUT baryogenesis and could possibly be reached also

in the inflationary models after re-heating.



Chapter 3

The case of quasi-degenerate

singlet sneutrinos

We will consider in this chapter the wave function contribution to the CP
violating asymmetries produced in the decay of heavy particles, studying the effects

of heavy particle mixing for arbitrary mass splittings in the case of bosonic particles.

In the previous chapter we have seen that apart from the one loop contri-
bution which is usually taken into account, i.e. the vertex one, in which two light
particles produced in the decay of a heavy one exchange another heavy particle in
the t-channel, a second possibility is present, i.e. the wave function contribution
[33, 30, 32, 35, 13]. In this case the intermediate heavy particle is exchanged in the
s-channel so that the diagram contains a loop of light particles that just mixes the
initial state ®, with another different heavy state ®;, and this later decays to the final
state as shown in Fig. 3.1c. This wave contribution turns out to be comparable to
the vertex one when the heavy states have large mass splittings, as we have seen, and

may be significantly enhanced for nearly degenerate states due to the resonance effect

42
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(c)

Figure 3.1: Diagrams which interfere to produce the C'P violation in the heavy particle
decay. Fig. 3.1b gives the so called vertex contribution while Fig. 3.1c gives the wave

function one.

in the s-channel. To define appropriately the CP asymmetry for any mass splitting

we will use the formalism describing unstable particle oscillations [27].

3.1 General formalism

The asymmetry in a global quantum number N (for instance B or L) pro-

duced in the decay of a pair made of particle ®, and its antiparticle ®, is given
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€a = Zefaa (31)

f

where the quantity of interest to us is the partial rate asymmetry per decay into final

state f (of global charge Ny), given by
¢ta = Ny [BR(®, — f) — BR(®a — f)], (3.2)

where BR(®, — f) is just the branching ratio for the decay of particle ®, into the
final state f. This definition is the most general; it coincides with twice eq. (1.28) in
chapter 1 and is equal to eq. (2.2) in chapter 2 in the case of negligible mixing. In
fact, if the state @, is nearly an eigenstate of the one loop self energy matrix, we have

(@, — f)

BR(®, = f) = (3, — anything)’

(3.3)

Otherwise, for a state which is strongly mixed, it is not possible to define its decay
rate and eq. (3.2) defines the asymmetry.

The wave function contribution to this quantity behaves, in the limit of
large mass splittings, as €f,(wave) oc (M2 — M), due to the propagator of the
intermediate state ®,, and hence is expected to be enhanced in the limit M, — M,. A
general phenomenological approach to study this quantity for arbitrary mass splittings
has been considered in ref. [27]. It is based on the work of Weisskopf and Wigner
[40] and describes the behavior of mixed unstable particles introducing an effective
hamiltonian and solving the corresponding Schrédinger equation.

It is our purpose here to extend the formalism developed in ref. [27] and
apply the results to the study of leptogenesis scenarios, for which a computation of

the C'P violation for large mass splittings has been discussed in the previous chapter

[13].



To Be specific, we will consider the case in which the heavy decaying par-
ticles are scalars, and ignore the vertex C'P violation effects, which can be studied
separately. The wave function mixing will have the effect of inducing an absorptive
part in the heavy particle propagators, which will be responsible for the generation of
the asymmetry. The effect of the one-loop self-energy diagrams in the propagators

will be to modify the squared scalar mass matrix as follows
MO8, — HZ = M2 —il2,, (3.4)

where the renormalized mass matrix M? includes the (divergent) dispersive part of
the loops while the matrix I'? arises from the (finite) absorptive part alone. The
matrices M? and I'? are hermitian, but H? is not, it is a general complex matrix. Let
us consider in the following such matrix to be diagonalizable; otherwise it would not
be possible to decouple the Schrédinger equations for the system. Hence, H? will be

diagonalized by a non—unitary transformation matrix V [27], i.e
(VH*V ™ = w26y (3.5)

This matrix V" will then transform the initial ‘lavor’ states |®,) into the ‘propagation’
eigenstates' |®'), i.e

1) = V'[8,). (3.6)

Similarly, for the antiparticle states |®,), one will have
|B%) = Vial @a)- (3.7)
These propagation eigenstates are the ones that will evolve as

|2¢(2)) = ™| @,(0)). (3-8)

1The appearance of V! in eq. (3.5) ensures that the kinetic term remains canonical, but the
fact that V=1 3 V1 implies that the propagation eigenstates are not orthonormal.
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Considering then the transition amplitude from the state |®,) to a final state |f), we
have

Tra = (f|Hint|®a), (3.9)

where H;,; describes the interactions of ®, with the final state particles. From the

superposition principle and using eqs. (3.4),(3.5), one has

Tfa (t) pruned Zb,c be‘/ézlx/cae_lw‘:t
Tia(t) = The T;bv;bx«/;;le—iwct. (3.10)

If one starts with a state made of pairs of ¢, and ¢, flavor eigenstates, the differential
partial decay rate asymmetry arising from particle mixing will be proportional to the
quantity?

Ago(t) = [Tra(®)? — [Tra(B)]. (3.11)

It is interesting to notice that in the limit of degenerate propagation eigenstates, i.e.
we = w, this asymmetry vanishes, as can be seen from egs. (3.10),(3.11) ®.

To continue we will concentrate in the case of mixing between just two
particles, for which the matrix V' can be parameterized in terms of two complex
mixing angles, 6 and ¢, as follows

cosf  —sinfe*
V= _ . (3.12)
sin fe ¢ cos

In this case the trigonometric functions of a complex argument are defined through

their expansion series; the trigonometric relations like

sin” @ + cos’ 6 =1 (3.13)

2If instead of starting with ‘pure states’, the initial state consisted of mixed states (as would be
the case for a thermal population), the computation of the asymmetry would actually require to
follow the evolution of the density matrix describing the initial state.

3As we will see, this is true only for a diagonalizable hamiltonian.



are still valid, but we have that |sin |, | cos#| are not bounded.
Replacing V in eq. (3.5) it is easy to obtain

2

. HIZ
- 2
Hy

A I
(H2 - B3

2i5 C (tg26)? = (3.14)
g

9

where we recall that H3 = M7y — i['%. Notice that the matrix (3.12) becomes the
identity if the hamiltonian is already diagonal as it should be.

The eigenvalues of H? are then

H

1 -
Wiy = §{H§1+H§2i\/(H121 ”H222)2+4H122H221}- (3.15)
\We see that for
(H?, — H3,)? + 4HpH3) = 0, (3.16)

the two eigenvalues are equal and the transformation (3.12) is no more well-defined:
in fact we have (tg26)® = —1, i.e. sin? 20 = — cos? 26, that cannot be satisfied by anv
6. Two possibilities are then present in this case: either the hamiltonian is already
diagonal, i.e. Hyp = Hy =0, or it is non-diagonalizable. In this last case we cannot
apply our formalism, since there are no eigenvectors evolving independently according

to (3.8). We will see later than the degeneracy occurs anyway only in a very particular

situation.

3.1.1 The CP asymmetry

Let us go back to the diagonalizable case. After an explicit computation we

then get for the asymmetry the expression:

Afa(t) = 2Re {Th T}, [UrUs, - UnsUg )} + | T2 (U] - U} (3.17)
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where we have defined

Ua.b = V:z;lVVc‘/cb; (318)

with
W, = e iwet, (3.19)

In the case in which the initial state under consideration is an eigenstate of
the (renormalized) mass matrix, i.e. for M2 = MZ264, all these expressions simplify
considerably and we have in fact

2ip _ (F%‘z)? . (tg29)2 — _4|F%212 :
’ (M2 — ME —i(T% — %))

(3.20)

we can see that in this case ¢ is real and corresponds to the phase of I'},.

Also eq. (3.17) is simpler since the second term on the r.h.s. vanishes; we
have then
Im {THT},T%, }

7 = 3P

Ap(t) =4

Re { (w? — w}) (W5 — W) (cos®0W1 + sin?011,)} . (3.21)

and a similar result holds for A, with the substitution Wy ¢ W7.
We will then compute in detail the integrated rate asymmetry in this case.

The branching ratios entering in eq. (3.2) are just
BR(®, — f) = / 49, /0 it [T (3.22)
with dQ), the phase space element of particle ®,. We have then
€ra(wave) = N, /Ooo dtA g, (1), (3.23)

where 0, = M, /167 in our case of two body scalar decay.

Integrating over time we find

esa(wave) = 2NpQ, Im {TpT}I%} Fo, (3.24)
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with
1 1 1 9 1 1 71+ 72
Fy = —————{Refw? — 2 [————}— M? — M2 [——+~—-——————~
' [w%——w%lQ{ { ' 2} Y2 0N ( ' 2) 71T Te |wf——w2I2
+ 2 Im{w? ——w2}( m) (3.25)
. |w} — wal?

where we defined w, = m, —7,/2. The result for F is similar with the replacements
7 > 72 and my ¢ my in the expression for F.

In the case M2 > M3} > [I'2,|, i.e. for negligible mixing, one has

2

Fooy ——
~ e(ME — M)

(3.26)

where in this limit v, ~ I'2 /M, becomes just the total width of particle ®,. Hence,
the results obtained in the previous chapter in the limit of large mass splittings can
be recovered.

For decreasing mass splittings, the function F) reaches a maximum, which

for |I'%,| < |T'3, — I'?, | takes place for
M7 — M? ~T2 +T1%, (3.27)

The value of F} at the maximum is F} ~ M, /[['3,(['?, 4+ T%,)].
On the other hand, for |T'}; — '] > |M2 — M2|,|T%,|, i.e. in the limit of

small mass splittings and small mixing, we get

Flﬁ

(M2 — M2) 2M, { - AT2.T2, 1 (325)

ITH —T%2 T I+ F.?zz)Q} CM(T% +T%,)
This result coincides with the one in ref. [27] only in the limit T?, < T3, (or 2, > I'Z)
and if we neglect the last term, which although small is non-vanishing and survives

in the limit M7 — M7 (in which the propagation eigenstates are not degenerate due
to TT; # I'3,).
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Another interesting example is for the case ['}; = I',, for which we have

w? —w? = /(M3 — M2)? — 4|T%,|? (3.29)

We see that here for |M2 — M2| = 2|I'%,| the two propagation eigenstates become
degenerate, and the matrix V singular. Notice that for '}, # I'2, the eigenvalues are
never degenerate and the effective hamiltonian can always be diagonalized. In the
specific singular case I'?, = I'2, and |M2 — AM3| = 2|T'%|, the hamiltonian can be put
only in the Jordan form and the Schrédinger equations for the two eigenstates are not
decoupled, as observed in ref. [41]. Away from this very particular values, anyway,
the formalism described here is well defined and consent to evaluate correctly the C'P
violating asymmetry rising from particle mixing.

In particular we can compute the limit M2 — M? since for |M2 — M?| <
2|T'%,| the formalism is valid and we have F; ~ —1/(2M;T%)). The ‘degenerate’
situation T3, = I'Z, and M7 = M2 actually is present in well known cases such as
KOK?® or B°B® mixing, where those constraints are imposed by CPT relations, and
for which the integrated C' P violating asymmetries are non—vanishing [42].

Let us also emphasize that a crucial ingredient in all this computation is
the proper specification of the initial state. The asymmetry of course depends on the
starting basis for @, considered, and hence on the process which produces the initial
state, so that ignoring the mixing at production would lead to incorrect results. For
instance, in the case in which M2 o 1 (or more generally whenever the matrices M?
and T'? commute), it is possible to change basis with a unitary transformation to
make M? and I'? both diagonal. In fact it is apparent that for M, = M, the second
equation in (3.20) becomes

45|

tg20)? = ——2___
) = -3

(3.30)
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so that € is real and the matrix V' unitary and diagonalizes both M? and I'2. Hence,
the asymmetry computed in the new basis will vanish, since I'?, = 0 now. However,
these new states may not be the quantum states generated in the production process,
and therefore the new basis may not be the appropriate one to compute the resulting

asymmetry.

3.2 The leptogenesis scenario

Let us now consider the particular example of lepton number generation
in the out of equilibrium decay of heavy scalar neutrinos, i.e. the supersymmetric
version of the Fukugita and Yanagida scenario [4]. The study of the C'P violation
in these models, considering both the vertex part as well as the wave contribution in
the limit of large mass splittings, was carried out in the previous chapter. We now
consider the effects of mixing for arbitrary masses using the formalism introduced
above?.

The Lagrangian for the scalar neutrinos is, in a basis in which the mass

matrix is diagonal,
J S {MaN;Z?Hﬂ + (Bﬂ)cPLegNa} +he. (3.31)

where £ = (v; [;") and HT = (H* H®) are the lepton and Higgs doublets (t=e,pn,T,
and €45 = —€gq, With €10 = +1).
Since we are interested in the possible implications of small mass splittings,

we will assume that the right handed neutrino masses consist of two almost degenerate

4There has been a recent attempt to study the asymmetry in heavy Majorana neutrino decays
in the limit of small mass splittings [43], but those results are however at variance with ours. For
instance, we find a dependence on Hy, through HysHo;, and not through (Hiz + Ho1)? as in ref. [43],
although we expect similar results for neutrino and sneutrino decays in the supersymmetric model
considered here.



states, with the third one being ﬁmch heavier and hence effectively decoupled from
the mixing mechanism. In this case, the effects of the third scalar neutrino can be
included independently, and the mixing effects can be studied with the two flavor
formalism discussed before. It is particularly interesting that scenarios with this type
of spectrum have been widely considered in the literature [44], and can naturally arise
in SO(10) models.

We will assume that sneutrinos are produced out of equilibrium by a certain
unspecified mechanism (e.g. if sneutrinos are inflaton decay products [11] or the
inflaton itself [12]), and for simplicity consider that the states produced initially
correspond to one of the eigenstates®, say NV;, of the mass matrix (so that M}, =
0) and its charge conjugated state, ]\71* . Hence, the asymmetry will be given by
eqgs. (3.24),(3.25), where in this model a direct computation of the absorptive part of

the sneutrino propagator leads to

T2 = 8% [ N)sa MMy + (AN ] (3.32)

1

where the square of the four momentum will just be s = p?> = M2 by the on-shell
condition. The first contribution to the r.h.s. of eq. (3.32) is given by the slepton and
Higgs loop, while the second by the lepton and Higgsino one.

As final states, we need to consider two possibilities, i.e. f = I-,?H 8 as well as
f = 2h®. For the final state with sleptons, we have Tto = —i€agAi; Mo //5, so that
only the second term in the r.h.s. of eq. (3.32) contributes to the total asymmetry,

and we have

S Lyt {TaTjTh} = 202 { (A0, } =

i,0.8 T

_ ./\/fll\/.[g

47

Im {(ATN)3,},  (3.33)

5If both N; and N, are simultaneously, but incoherently, produced, one needs just to add the
asymmetries from both decays. The case of an initial thermal population of sneutrinos is different
and must be treated instead using the density matrix formalism; in this case, due to the mixing
between the flavors, the thermal density matrix is non-diagonal in the N; / N, basis.
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where Ly = +1 is the lepton number of the final state. On the other hand, for the
decay N, — Z;-"ffﬁ, one has Tj, = —ieasA,, and only the first term in the r.h.s. of
eq. (3.32) contributes to the total asymmetry. Since now Ly = -1, we end up with
the same contribution as the one coming from the slepton channel. (Notice that the
asymmetry in a given final state channel results from the mixing generated by a loop
involving the particles of the other final state channel.)

So, summing the contributions from both final states we get

oy M2 M,
&Y (wave) = — 1é7r2

m {(ATN3} £, (3.34)

where F} is given in eq. (3.25). If we use that '3, = (A1A);; M2/47, and the asymptotic

expressions discussed previously for M2 > M? >> |T'%,], one can see that in this limit

L \2
J\-/( ) = 1 MM, Im {(/\')\)21}
i iwave) = —o— M3 —ME (AN,

(3.35)

which coincides with the expression (2.11) obtained before (see also (2.28)), apart

from a factor 4: one factor 2 comes from the different normalization as discussed
after eq. (3.2), while the other from considering the total asymmetry given by both
final states.

In Fig. 3.2 we plot the total asymmetry Ef? (wave) for arbitrary mass split-
tings, normalized to the vertex contribution E{V (vertex) arising from the exchange of

the second state Ny, (2.24) and (2.27),

2
1My [MHMQQJ Im {(/\”\)21} (3.36)

_iv
rert - 7z
€ (VEI‘ eX) 4dr .A.[l ]\/[é_g (AT)\)ll

Notice that &V (vertex) contains actually the same combination of Yukawas
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Figure 3.2: Wave function contribution to the CP asymmetry, normalized to the
vertex one, as a function of M,/M;, assuming M%, = 0 and taking I'3, = M7/10,

F%l = IF%Q‘ = I\%‘2/10-

appearing in the wave function contribution e (wave) (i.e. the factor Im {(ATA)3,}),
so that the C P violating phase cancels in the ratio.

In Fig. 3.2 we adopted for definiteness '3, = M?/10, I'?, = |T],| = ['3,/10,
plotting the result as a function of z = M,/M;. In the limit of large mass splittings,
the wave contribution approaches twice the value of the vertex one, as expected. For
decreasing mass splittings (z — 1), the enhancement in the wave contribution due to
the mixing of the states is apparent, and reaches a maximum value ~ M7 /(I'},In2)
for M2 — M? ~ T'2, (corresponding to z ~ 1.05 in this case) as discussed in eq. (3.27).

The dotted line corresponds to the asymptotic expression for the wave

contribution in eq. (3.35), and gives a reasonable approximation to the result for
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M3 — M7 > 4T'3,. For smaller values of I'2,/M2, the enhancement in the wave con-
tribution is larger (and can be in principle of many orders of magnitude), and the
asymptotic expression is valid down to smaller values of z. On the other hand, for
M3 — M} < T%,, & (wave) decreases significantly, and for M, — M, one has

&Y (wave) R r?
&N (vertex) (7%, +T'%) In2’

(3.37)

which is tiny. The results are quite insensitive to the actual values of I'2; and |T'2,], as
long as this last stays much smaller than I'2,, so that the mixing angle 8 is small. If
IT3,] ~ T'%,, the maximum enhancement is somewhat smaller but the general behavior
remains similar.

It is important to keep in mind that the vertex and wave contribution arising
from the exchange of the heavier third scalar neutrino N, may however be larger than
the one coming from the exchange of the second one N, even taking into account the
possible enhancements for small mass splittings, due to the probably larger Yukawa
couplings involved and the unknown size of the CP violating phases appearing in

both channels (for three families, there are actually three independent C'P violating

phases entering in the asymmetry [45]).



Chapter 4

Finite temperature effects

In this chapter we will compute the finite temperature correction to the CP
violating decay asymmetries relevant for baryogenesis scenarios involving the out of
equilibrium decays of heavy particles, including the effects arising from the back-
ground of light thermal particles which are present during the decay epoch. Thermal
effects can modify the size of C'P violation by a sizeable fraction in the decay of scalar
particles, but we find interesting cancellations in the finite temperature corrections
affecting the asymmetries in the decays of fermions, as well as in the decay of scalars
in supersymmetric theories. We also estimate the effects which arise from the motion
of the decaying particles with respect to the background plasma and from considering

the thermal masses of the light particles.

4.1 Introduction

The scenarios for the generation of the baryon asymmetry of the Universe,

that we have been considering, are based on the fact that very massive particles fall
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out of equilibrium as the temperature of the Universe drops below their mass and
their equilibrium density becomes Boltzmann suppressed. As we have shown, the CP
violation in the decay results from a one-loop diagram, whose interference with the
tree level process allows the phases of the complex coupling constants to show up in
the decay asymmetries.

In addition to the complex couplings, to have a non-zero partial decay rate
asymmetry requires the loop integral to develop an absorptive part, i.e. the inter-
mediate particles must be produced on-shell and are therefore real particles. In the
proposed baryogenesis scenarios of this kind, the light particles in the loop are just
standard quarks, leptons or Higgs bosons, so that the appearance of a non-vanishing
absorptive part is guaranteed.

At the high temperatures at which the heavy particles decay, the light stan-
dard particles are in equilibrium with the hot plasma present, and hence a question
arises on whether the existence of the background particles has any effect in the evalu-
ation of the C'P violating asymmetries. Indeed, some time ago Takahashi [29] showed
that the thermal effects could modify the predictions for baryogenesis in SU (5) mod-
els by up to ~ 40% with respect to the T' = 0 results, and hence these effects may
need to be taken into account in the proper computation of the resulting baryon
asymmetry in specific models.

The main effect of the background can be taken into account by employing
finite temperature propagators in the computation of the loop. In this way it is
possible to consider simultaneously both the ‘direct’ propagation of a particle between
two vertices in the loop and the absorption by the medium of a particle from the first
vertex combined with the emission of another one towards the second. These two
alternatives are actually indistinguishable in a thermal bath.

Another implication of the finite density background is the modification of



the final state phase space density distributions, which take into account the stimu-
lation of the decays into bosons and the Pauli blocking of the decays into fermions,

and this may eventually also affect the rates.

4.2 Real Time Formalism (RTF)

We will review in this section the basic elements of the RTF that we will
need in our computations. In thermal field theory [46], two formalisms are given
to perform perturbative computation at finite temperature. Historically the first
was the Imaginary Time Formalism (ITF), introduced by Matsubara in 1955, which
links thermal field theory with an Euclidean field theory periodic in time [47]. In
this formalism the Green functions in momentum space are defined only for discrete
frequencies (the Matsubara frequencies).

The RTF instead consent to work with real momenta, at the price of doubling
the degrees of freedom so to cancel ill-defined expressions (i.e. products of delta
functions).

We choose to work in RTF mainly for two reasons. First the RTFEF consent
to separate directly the T = 0 result and the T dependent part. Moreover the
Green’s functions computed in RTF are directly the time ordered ones, unlike in the
ITF where different analytical extensions to real momenta lead to different Green’s
functions (retarded, advanced, etc.) [48].

The RTF involves the introduction of a ghost field dual to each physical field,
and leads to a doubling of the degrees of freedom. We have then physical vertices,
defined as in the zero temperature case, and ghost vertices, differing from the first in
the sign. The thermal propagator has moreover a 2 X 2 matrix structure: the (11)

component refers to the physical field, the (22) component to the corresponding ghost
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field and the off-diagonal (12) and (21) components mix them.

But, since we are working only at one loop and the external legs are physical,
i.e. type-1 fields, we will need only the (11) component of the propagators. For what
concerns the vertex diagram this is clear since no internal vertices are present and
therefore only physical propagator will appear. Regarding instead the wave function
piece, the internal vertex can in principle be also of type 2 giving rise to an additional
part involving off diagonal propagators; but it can be shown that such contribution
disappears in the case of strong hierarchy between the families of decaying heavy
particles. Then in fact the CP asymmetry will arise only from the decay of the
lighter heavy state, when all the others have already disappeared from the thermal
bath. For such particles, with zero number density, physical and ghost degrees of
freedom are completely decoupled because the off-diagonal term of the propagator is
proportional to the number density. Therefore for the heavy intermediate particles it
will be sufficient to use the T = 0 propagator, while for the lighter particles we will
need the physical component of the thermal propagator, which is, for fermions and

bosons respectively,

Su(pym) = (o0 m) |~ 2l )30 - )
Du(p, m) = [m + 2’/777,3(11) . ’U,)(S(pz _ mQ):! , (42)

with u the 4—velocity of the medium (u = (1, 0,0, 0) in the medium rest frame), and

1

) = s (R /T 21 (43)

We will drop the (11) subindex in the propagators from now on.
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4.3 SU(5) triplet decays

In order to discuss these issues, let us start by reanalyzing the scalar decays
into two fermions, which is relevant in the case of heavy Higgs boson triplet decays
in SU(5) that we discussed in chapter 1. We have there generalized the computation
for T = 0 given in ref. [29] by including also the C'P violating diagrams arising from
mixing among different heavy states [33, 30, 32, 13]. In this chapter we will consider
also the finite temperature corrections for both vertex and wave contributions.

Let us consider the SU(5) lagrangian (1.27) involving several scalar five-plets
®; = (T3, H;), containing, together with Higgs doublets H;, the heavy color triplets
T :

L= fi®ia (T xp) + L i (™ U5, Vs) + hc, (4.4)
where the gauge indices are denoted by greek letters. The matter fields are in the
decuplet and the fiveplet representations as usual, ¥ = (¢, u% e°) and x = (d,(°). The
flavor indices of the Yukawa couplings are not displayed for simplicity.

As in chapter 1, we will consider the case of strong hierarchy and consider
therefore the C P asymmetry generated in the decay of the lightest colored Higgses.

The CP violating B asymmetry arising from the decay of a T} and T, pair is defined

in eq. (1.28) as
_ Iy BT = Fy) — (T = Fy)]
S 0(Ty = F) + T(T — Fp)]

(4.5)

with By the baryon number of the final states Fy = g€, ue®, 4°d, ¢°q.
We consider now the finite temperature effects on the CP violating asym-

metry e. The main effect comes from using instead of the usual 7' = 0 propagators,

the finite T ones.

As discussed previously, we neglect the background density of the heavy
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triplets ' T (assuming M > M), and as a first approximation we assume that the
decaying particle T} is at rest (particle motion effects will be considered in section 4).

Using the well known property,

E:_i—%(—): =P (é) F iwé(z) (4.6)

we get for the absorptive part of the vertex loop integral 2

T _ _ 9 T [ du Miu /
{17 (z)} = In{L(z)} [1 - 27 + 23] - -é:/ -2 1nF( ; ) @)
where
M
'ﬁF,B =NfrB (-—éi) . (48)

This is similar to the result in ref. [29], except for the relative sign between the T' =0
part and the finite temperature corrections, implying that the temperature effects
tend to reduce (instead of enhancing) the C'P violation. The integral term in the
r.h.s. of eq. (4.7) arises from the absorption of particles from the background which
are energetic enough so as to put the intermediate state T} on—shell and hence make
it contribute to the absorptive part. This term becomes then extremely small in
the case in which the heavy masses have a significant hierarchy, i.e. for M} > M,
since the amount of background particles which are energetic enough is Boltzmann
suppressed.

For the finite temperature wave contribution we obtain

Im{I]} = Im{Z} 1 - 27p + 203, (4.9)

INotice that the exchange of T in the one-loop diagrams does not contribute to €, so that only
k > 1 are relevant.

2We have checked that the same result can be obtained by applying the Cutkosky cutting rules
at finite temperature in the real time formalism [49].



so that the temperature dependence is similar to the one in the leading term of the
vertex part. To give a quantitative idea of the effect, we notice that if the temperature
is taken to be 1, 1/3 or 1/10 of the lightest triplet mass, Af;. the overall factor in
(4.9) including the temperature effects is 0.53, 0.70 or 0.99 respectively. The physical
interpretation of this effect is simple: due to the thermal background, the two light
fermions exchanged in the loop are subject to a Pauli blocking, and this leads to a
reduction of the amount of C'P violation.

In this scenario there is no effect on ¢ resulting from the final state blocking,
since this just leads to overall factors (1 — fir)® multiplying the rates, and hence
these factors cancel in the ratio in eq. (1.28). Other thermal effects, such as thermal
masses or wave function renormalization, are higher order in the coupling constants

and hence we neglect them.

4.4 Leptogenesis scenarios

The SU(5) model discussed in the previous section, in spite of being the
prototype for the ‘out of equilibrium decay’ scenarios of baryogenesis, has the draw-
back that it generates no net B — L asymmetry (a characteristic of SU(5)), and hence
the B generation is vulnerable to the anomalous B violating processes of the Stan-
dard Model [5, 6] (which only leave B — L unaffected), with the consequence that all
asymmetries generated within this model will be eventually erased.

A very interesting way out to this problem was introduced in chapter 2 and
is based on the generation of a lepton (L) asymmetry at early times, by the out of
equilibrium decay of heavy isosinglet neutrinos (the usual ones appearing in see—saw
models for neutrino masses and naturally present in GUT models such as SO(10)).

In this section we discuss temperature effects in this kind of models, first un-
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der the minimal assumption that the standard model spectrum is enlarged to include
heavy right-handed neutrinos, and then, considering the supersymmetric extension of

the model.

4.4.1 Non-supersymmetric case

The interactions of the heavy neutrinos NV;, in the basis in which their mass

matrix is diagonal, are given by the following Lagrangian
L= —XgieasN;PLLOHP + hoc. (4.10)

where £, = (vq, I7) and H = (H*, HO) are the lepton and Higgs Standard Model
doublets (a =e, i, 7, 1 =1,2,3, and €,5 = —€ga, With €0 = +1).
The complete T = 0 CP violating L asymmetry was computed for this

model in chapter 2 resulting in

€e=2> T}y [Im{Jt(a:k)} +2 VT Im{Js}} : (4.11)
k>1 Zp — 1
where zj, is defined analogously to eq. (1.30) and
Im{ (/\T/\)Zl}
Iy = ———c—". 4.12
k1 O, (4.12)

Notice that, in full analogy with the SU(5) case, a single right handed neutrino would
be unable to generate any asymmetry.

The loop integrals J;(z;) and J, at zero temperature are given in equations
(2.7) and (2.10).

The computation of the finite temperature contribution to these quantities
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is similar to the one in the previous section, and leads to

Im{JtT(a;k)} = Im{Jy(zx)}[1 — Aip + ip — 20FpNp]

+\/53; < _du [np <1Ulu> (u—z) +np <1\[71u) (zr + 1)] ;

167 Jz, u+1 2 y
Im{JT} = Im{J,} 1 - ip + 7ip — 27rfig],

(4.13)
where for instance in this last expression the different contributions in the r.h.s.
clearly separate into the pieces coming from the T = 0 propagators, the one from the
thermal correction to the fermion (£) propagator, the one from the thermal piece of
the boson (H) propagator and the product of these two corrections. However, it is

easy to check that the Bose and Fermi distributions satisfy
ng(E) — np(E) = 2ng(E)np(E), (4.14)

so that the main temperature correction cancels out (only the small integral term in
Im{.J;} survives). This is due to the opposite effects resulting from the Pauli blocking
of the loop fermion line and the stimulation of the bosonic loop line. On the other
hand, here again the final state statistical factors (1 — 7ip)(1 + 7ip) cancel in the

expression for ¢, and as a result no significant temperature dependent effect is found.

4.4.2 Supersymmetric case

This scenario has also received considerable attention within a supersym-
metric framework [11, 12, 13], in particular because the scalar partner of the heavy
neutrino N is a good candidate for being the inflaton field, in which case the L asym-
metry could be produced during the process of reheating of the Universe as Ny decays
[12]. In this case, as we will now show, another interesting cancellation is found in

the asymmetry produced by N; decay.



The scalar neutrino can decay either into two scalars (LH) or into two
fermions (£h), and the contribution to C'P violation in one channel is obtained from
the loop involving the particles of the other channel [13]. The thermal effects will
modify the asymmetries corresponding to each channel, in a way similar as they did
in the case of SU(5). For instance, in the LH channel, if we ignore the small integral
piece coming from the vertex (equivalent to the last term in the r.h.s. of eq. (4.7)),

the asymmetry will be

and similarly

€T (N — Lh) =~ €T=0(N — ¢h) [1 + 275(1 + 7ig)] - (4.16)

However, due to the effects of the final state phase space factors (1 F fig g)
entering into the partial decay rates, the branching ratios of the two different channels

will no longer be equal (as is the case at 7' = 0). One has instead that

- s (1—np)? - = .
BR(N — th) = =1—BR(N — LH). 4.17
(V=) = s o T ( ) (417)
The total asymmetry produced in the N decay is
¢k = BR(N — (h)e" (N — th) + BR(N — LH)T(N — LH), (4.18)

with the surprising result that the main corrections arising from thermal effects ac-

tually cancel out, leading to

€ el (4.19)

=l

Notice that there are also new supersymmetric diagrams contributing to the
CP violating asymmetry in the heavy neutrino decays. However, since the particles

in the loop as well as the external ones are always one fermion and one boson, both
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massless, the cancellation found in the previous subsection will also occur in the
new channels, and therefore there are no significant thermal corrections to the zero

temperature result.

4.5 Effects of particle motion

In the discussion so far we have always considered the decay rate of a particle
at rest in the thermal bath. However, the decaying particle will in general be moving
through the background with non zero velocity 5 = ¥/c. Since now the Lorentz
symmetry is explicitly broken by the plasma, this motion can in principle affect the
thermal corrections to the decay asymmetry. When the leading thermal corrections
cancel, as in the leptogenesis scenarios discussed in Section 4.4, the effects of the
motion of the decayving particle will provide one of the main thermal corrections. and
hence it is worth to quantify them. To estimate the size of these effects, we will
consider here the case of the heavy neutrino decay in the non-supersymmetric model.
The other cases can be analyzed similarly.

It is convenient to compute the decay rate asymmetries in the rest frame
of the decaying particle, where the medium will be characterized by a non trivial 4-
velocity u = (v, —+J3), with v = 1/y/T — B2 as usual. In this system, the effect of the
motion will reflect in a modification of the equilibrium distributions appearing in the
thermal propagators, egs. (4.1-4.2). The decay rate will also depend on 3 through

the final state phase space factors, which for the case of fermion decays is

[1 - TLF(k‘g . u)] [1 -+ ’I’LB(kH . u)] = 1_ exp(—2—1\f[1’y/T) Pﬁ(COS 9), (420)

where 6 is the angle between 5 and the momentum of the final state lepton, and we
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have introduced

-1
Py(z) = -;— {1 _ sinh (25271{‘/[1> /sinh (?ﬁ)} . (4.21)
We see that now there is a privileged direction selected by the plasma spatial velocity
and therefore the decay process is no more isotropic: the rate depends on the angle
of the decay product trajectories with respect to this direction. Due to statistics the
fermions (bosons) are preferentially emitted in the direction anti-parallel (parallel) to
the plasma velocity (—*,'5’), which corresponds to the less (more) occupied region of
the thermal distribution. Anyway, since we are interested in the total decay rate, the
angular dependence is integrated out and we are left only with a 5% dependence?®.
Let us define €35 as the integrated asymmetry generated in the decay of a
heavy neutrino moving with velocity §. The decaying particles will actually have
a distribution of velocities with occupation numbers n(E), where E = Ajv. To
estimate the overall effect of the particle motion we may just approximate this distri-
bution with the Fermi Dirac distribution, n(£) = ng(E), and compute the average

asymmetry

1 d*p Nl
M) / 4.22
@ =5 [ o M) = 3 [ a8 (4.22)
where V7 is the particle’s volume density and
dN, M
_EEI. = 5;_%2@75 n(yM;). (4.23)

It is clear that (e), computed for a given temperature T, is just the asymmetry that
would result if the initial thermal population of heavy neutrinos went out of equilib-
rium and decayed all simultaneously at temperature 7. We will use the asvmmetry

(€) as an indicator of the possible effects of the particle motion, although clearly to

3The integrated decay rate can depend only on the Lorentz invariants p* = M2 and p-u = My
[50].
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obtain the exact impact of this into the final lepton asymmetry would require to
integrate the whole Boltzmann equations, a task beyond our scopes.

To obtain the decay asymmetry at a fixed velocity €g, it is convenient to sep-
arate the angular dependence arising from the final state phase space factor Pz(cos6)
and the one arising from the one loop integrals (via the anisotropic background den-
sity in the particle rest frame). This last will be included in the factor Lj3(cos 8, zx)

defined through

c 2 ! c
€5 = m ;Ikl /_1 dzLg(z, k) Pp(2). (4.24)

Here the supra-index ¢ labels the two different contributions to the CP asvmmetry
in the decay, i.e. the wave (¢°) and the vertex (') pieces. Clearly at zero velocity we

have, according to eq. (4.11),

Li(z,z) = —E;L/—_iv_f—lm{Js}, (4.25)
Li(z,zr) = Im{Ji(z()}, (4.26)

which are actually independent of z as expected.

At 8 # 0 we find after direct computation of the interference terms
Ly(z,24) = Ly(z, 2o [fS) — z£3)), (4.27)
where the loop functions fé”)
n) 1
= [ dy v Poly) (4.28)

arise after integrating over the angle of the momenta in the loop. Notice that the phase
space factor Py appears also in these integrals, arising from the statistical factors in

the thermal loops. In the limit of zero velocity, we have féo) =1 and fél) = 0.
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Now we can write in a simple form the final expression for €3; namely, putting

together egs. (4.22), (4.24) and (4.27) we get:

1 1 dN M\ *

It is not possible to integrate analytically this expression, but expanding the

loop functions to first order in 82 we obtain

2
(0) 1 9 ﬁ([l/QT ‘
~ 14> — 4.30
Js T3 b <sinh(Ml/2T) ’ (4:30)
W o Lg_ M//2T 4.31
fo = Bﬁsinh(Ml/QT)' (4:31)

Substituting in eq. (4.29), we get

() ~ €] [1 + g([?) (—A{IBT—S) : (4.32)

9 sinh (M, /2T

For M;/T = 1,3,10 we have (¢°)/e5 ~ 1.168,1.057,1.000; we see therefore
that the effect is small compared to the § = 0 piece. In the previous evaluation we
have used for the average velocity just a simple approximation, which is accurate to
the 10% level, writing (8%) =~ (8)%,;., with the average velocity for a Boltzmann
distribution of massive relativistic particles being (with z = M/T)

2(1 + z)exp(—z)
2 Ks(z)

(ﬁ)Boltz =

(4.33)

Computing numerically eq. (4.29) we find, for the same reference values of M;/T
as before, that (e)/ej = 1.231,1.054 and 1.000, so that the approximate result is
acceptable.

Let us now consider the “vertex” contribution. In this case the loop inte-

gration is more involved and we get the following expression (neglecting the small



integral piece which is Boltzmann suppressed):

Ly(z,20) = Yo [£57 = gs(an, 2)] (4.34)
where
2(1 -+ .’L'k) o
CII/“ d. P 4.3
/ g ﬁ y+2(1 )} +4Ik($k+l)(1——22) ( D)

For # = 0 the function g actually does not depend on z and is

90(zx) = (1 + zx) In (1 + ;1:) : (4.36)

so that we recover exactly eq. (4.26).

Subst1tut1ng the result of the loop integration in eq. (4.24) we finally obtain

_y 1, 7o 21 dz gg(zx, 2) By(2)
75

Again we can evaluate this function analytically only for small 8, by using the ex-

(4.37)

pansion

M /2T AL /2T
98(xk, 2) =~ go(zx) + Bz 1/ (zk) 2 < 1/

m) (o) = 2U)]

(4.38)
where
h(z) = 2(1+z)— (1+2z)g0(z), (4.39)
i) = (1+z)(1+2z) —2z(1 + z)ge(2), (4.40)
(z) = 3(1+z)(1+2z)— (1+ 673+ 622)ge(z). (4.41)

So, the average CP violation is given by

10 (i) ()

(e ~ 2 ; Ty Im{J;(z4)}




We then see that the effect due to the particle motion is again to increase the
vertex CP asymmetry, as in the case of the wave part. However, the effect depends
also on zy, i.e. on the hierarchy between the particle masses. In the limit of large zy

we can use the expansion (go(z;) — 1)7! ~ 2z +2/3, to obtain

2 M, /2T )
1+ 5 ><W>

(€) ~ e

, (4.43)

so that the overall factor coincides with the one in eq. (4.32) for (e°).

To estimate the goodness of the approximate result in eq. (4.42) we evaluated
the term in square brackets there, taking z, = 5 for definiteness, and we obtained
1.163, 1.055 and 1.000 for M;/T =1, 3 and 10 respectively. A numerical evaluation
of the exact correction due to the velocity, using eq. (4.37), leads for the same factor
the values 1.222, 1.052, 1.000 respectively, so that again the accuracy is reasonable,

and we see that for 7' < M the velocity dependent correction to € is not large.

4.6 FEffects of the thermal masses

In this last section we will proceed to estimate the effects of the presence of
thermal masses for the light particles considered massless so far in the non supersym-
metric scenario.

Regarding the singlet neutrinos, such corrections are obviously negligible,
because at temperatures T ~ M; they are much smaller than the mass itself since
they arise from loop effects and are suppressed by the Yukawa couplings. In fact the
singlet particles do not feel any gauge interactions and are unaffected by the presence
in the thermal bath of SU(3). x SU(2). x U(1)y gauge bosons.

Different is the case of the leptons, which acquire a thermal mass squared

proportional to g2T?/8 in the thermal bath [46], where g is their gauge coupling with
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(8]

the SU(2), x U(1)y group, ¢> = 3g; + g%. Yukawa interactions for the leptons are
negligible due to the smallness of the couplings. We see that the mass corrections for
the leptons is small compared to the energy of the decay process, but probably not
negligible: ¢T/(2v/2) < gM:/(2v/2) < M, during the out of equilibrium decay.
Considering instead the Higgs bosons, the computation of the thermal mass
is more involving and we will have to consider not only the gauge interactions, but
also the self-interactions of the fields and the Yukawa interaction with the top quark.
We are assuming here that the temperature we are considering is such that the gauge
symmetry is restored and that the tree level (negative) mass of the Higgs particle is
negligible with respect to the thermal mass. It is easy to see that such limit is realized
for temperatures T >> T,. We can compute then the effective masses for every real

component of the Higgs doublet and obtain (see also [51] for the computation):

m% (T) ~ -Téi (¢ + 140 + 4?) (4.44)
where a is the Higgs boson self-coupling and y; the Yukawa coupling of the Higgs with
the top quarks. Since the leading contributions to the thermal masses are C'P invari-
ant (the only C'P violating piece can possibly come from the Yukawa interactions),
the effect of such masses on the decay process and the C'P violating asymmetry is
mainly to lower the decay rate reducing the phase space available and to spoil the
symmetric distribution of the energy in the final particles state.

Therefore, on one hand the way out of equilibrium condition for the heavy
singlet states may be somewhat easier to be achieved in the thermal bath, while on
the other hand the cancellation found in section 4.4 is not complete.

In the case the most important piece is due to the gauge bosons, it is evident
that the leptons and Higgs masses are very close to each other and this effect is small.

It is easy to quantify the effect in the expression (4.14). We will then have the different



73

final states energies in the center of mass frame:

y 2 2
]\/.[1 mH"‘ml

= — o A5
Er = 5+ (44)
M, m% —m?

= 4.4

Ee 2 2M, (4.46)
so that
TLB(EH) - ’n,F(Eg) - QHB(EH)TLF(EE) fnd (447)
m2 — m?2

>~ ng(Ex)nr(Ee) eXP(Ee/T)‘iT]V—[l“g‘ = (4.48)
M /2T m}—m% (4.49)

~ sinh(M;/2T) M2
The effect of the mass difference is then similar to the effect of the decaving particle
motion, and will be in general small due to the suppression factor given by the mass
difference.
Using the expressions above to estimate the mass difference, we have that
the thermal contribution to € is

M/2T Ta+y? T*].
sinh(M,/2T) 4 M?]’

exe |1 — (4.50)

the effect of the thermal mass seems therefore opposite to that of the decaying particle
motion, but is much more sensitive on the temperature. Assuming that the most
important contribution is due to the top quark and that y, is of order 1, for M, /T =
1,3,10 we have €/¢y =~ 0.760, 0.980, 1.

We have then that for temperatures T = M, the two next order effects tend
to cancel each other, while for decreasing temperature, the decaying particle motion
is the main contribution, but tends to vanish.

Another thermal correction that could in principle change the T = 0 value

of the CP asymmetry and that affects in general the tree level rates is the finite



temperature renormalization of the wave functions [50, 52] for the light leptons. At
zero temperature, the wave function renormalization constant is obtained from the
on-shell self-energy and is independent of the momentum, while at finite tempera-
ture Lorentz invariance is broken and the renormalization “constant” is momentum
dependent. Two different proposals have been put forward for taking into account
this effect [53, 54] (for a comparison see [55]): with both methods the modification of
the decay rates we are considering amounts only on a common constant factor, which
cancels out in the computation of the CP asymmetry.

We have considered the next order thermal corrections to the CP asymme-
try; the effects of the decaying particle motion and of the thermal masses for the light
particles change only slightly the value of ¢, since their contributions are opposite to
each other. The finite temperature renormalization of the spinors changes the rates,
but does not affect the ratio of rates. The zero temperature result can therefore be

safely used for the computation of the CP asymmetry in the thermal background.



Conclusions

The baryon asymmetry of the Universe is probably the most important man-
ifestation of the existence of C'P violation. In the classic scenarios for baryogenesis
through the out of equilibrium decay of heavy particles in the early stages of rapid
expansion of the Universe, the asymmetries in the B (or L) violating decay rates to
conjugate final states arise at the one loop level, involving the virtual exchange of

light particles, such as quarks, leptons or Higgs bosons.

We have studied in this thesis the CP violating asymmetries necessary for

baryon number generation, specifying in the case of leptogenesis.

After a basic review on the subject and an explicit example of SU(5) baryo-
genesis in chapter 1, we have considered in chapter 2 the Fukugita—Yanagida scenario
and computed all the contributions to the C'P violating asymmetries arising at one-
loop in the decays of heavy (s)neutrinos, both in the standard non—supersymmetric
and in the supersymmetric versions. In these type of models [7, 8, 11, 12, 9], the
decay of the electroweak singlet (s)neutrinos, with masses M > TeV, produces a
lepton asymmetry. This is then partially converted into a baryon asymmetry [23] by
the effects of the anomalous B + L violation in the SM [5, 6], which is in equilibrium

at temperatures larger than the electroweak phase transition one (~ 10% GeV).

We have discussed the different results present in the literature and showed



that the contribution from wave function mixing is relevant in the computation of the
C P violating asymmetries. In the case of strong hierarchy among the heavy masses it
increases by a factor three the amount of asymmetry. The baryon number generated
in both non-supersymmetric and supersymmetric scenarios was also obtained for the
case of way out of equilibrium decay. We have also showed with a toy example that
the right amount of baryon number could be generated even with a small C' P violating
phase and at scales around 10% — 10° GeV or lower. In this case, leptogenesis could

have easily taken place after inflation during reheating.

In chapter 3, we have considered in detail the integrated C P violating asym-
metries arising from heavy particle mixing, and studied the effects that appear when
the mass splittings are of the order of the particle widths. The large enhancements
which can be achieved can be helpful to explain the observed baryon asymmetry of
the Universe, as we have exemplified with the study of a scenario for leptogenesis. For
quasi-degenerate masses the wave function contribution to the C P asymmetry would
dominate and consent a L number production greater by several orders of magnitude

than the usual vertex part.

We have studied then in chapter 4 the effects of the thermal background
of standard particles present during the decay epoch in the evaluation of the CP
violating asymmetries. We first reconsidered the triplet scalar decay in SU(5), finding
that the asymmetry is reduced (contrary to an earlier result), as could be expected
on the basis of the Pauli exclusion principle applied to the virtual fermionic lines in
the loop. We also included the C P violation produced by the mixing among different
heavy states. Confronting with the T = 0 results, the modification produced by the
thermal effects could be as large as 50% for T ~ M, but diminishes with decreasing

temperature, becoming negligible for T' < M; /10.
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For the leptogenesis scenario, we showed that the leading thermal corrections
cancel among themselves, due to the opposing effects produced by the bosons and
fermions involved in the loop. Also in the supersymmetric version of leptogenesis
the thermal corrections to the heavy scalar neutrino decay were shown to vanish,
once the thermal modification of the branching ratios to the different final states are
included. In view of this, we studied the correction due to the fact that in general the
decaying particle is not at rest in the thermal bath and the effect of the thermal masses
acquired by the light particles. We showed that the CP asymmetry depends on the
particle motion, since the background density distribution, and hence the thermal
corrections, are now modified in the rest frame of the decaying particle. This effect
can however increase the decay asymmetries only by at most ~ 20% with respect to
the usual 7' = 0 results. These last are also modified by the fact that thermal masses
are different for leptons and Higgs bosons; such effect is comparable, but opposite to
the previous so that they tend to cancel out. Hence the zero temperature results can

be safely emploved.

As a summary, the realization that standard model anomalous B and L vio-
lating processes are in equilibrium at temperatures above the electroweak phase tran-
sition one, has made the SU(5) scenario just of academic interest, since no net B — L
asymmetry (the only one unaffected by sphaleronic processes) is generated within
it. However, the same anomalous processes have allowed some new very attractive
possibilities, including the baryogenesis at the electroweak scale itself (although its
practical implementation faces several difficulties). The most simple and promising
scenario seems to be the leptogenesis, in which heavy right handed neutrinos generate
a lepton asymmetry in their decay, which is then reprocessed into a baryon asym-

metry by the Standard Model anomalous processes. We have shown in this context



that many new interesting physical processes need to be considered in the proper
computation of the CP asymmetry, which is the crucial quantity determining the

final outcome of the barvon number generation.
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Appendix A

C P asymmetry for the
Fukugita- Yanagida model

We reproduce here as an example the computations of the CP asymmetry in
the minimal extension of the Standard Model with heavy singlet neutrinos discussed
in chapter 2. The Feynman rules for the lagrangian (2.1) are standard, apart from
the fact than the heavy neutrinos are Majorana particles. For the Feynman rules for
Majorana spinors see [7]. We will compute the CP asymmetry in the center of mass
frame of the decaying particle, whose 4-momentum is p = (M, 5) using Cutkosky
rules at T = 0 [56].

A.1 The vertex contribution

Let us compute explicitly the CP asvmmetry due to the vertex contribution
in the minimal extension of the SM.

The one-loop amplitude for the diagram in Fig. 2.1a, where N; — £$H 5
with an intermediate Ny, is given by

. o d*
.At = Z)\Zj(/\TA)kiﬁaﬁuj(p“k)PR/( g

= i’\}ch()‘T)‘)kifaﬂJt(xk)ﬂ?(p — k) Prui(p), (A.1)

where z, = M2/ M?.
It can be shown that J;(zy) is related to the loop integral by the equation:

S(q — k, My)S(g,0)D(p — q,0) PLu;(p) =

n@) = 537 [ 2)4 [(B-F)Sla— k. M)S@,0D(p -, 0] (A2)
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We compute the imaginary part of this function using the Cutkosky rules

[56] for the lepton and boson propagators, i.e. substituting
1 . 2 2
and we have
M, dq q-(p—k) 2 2
8(q0)0(q")0(po — ¢0)d((p—¢q)°). (A.4

Notice that the heavy particle in the loop can never be on shell and so no contribution
arises from the imaginary part of its propagator.

After integrating the delta functions we arrive at the result

2Im {Jiy(zk)} =2

NG 2(1 -+ l‘k)
I = Y 14 i | = A.
2Im {Jy(ze)} 6r ) dz |1+ o v (A.5)
Ve (1 (14 [ ”""D , (A.6)
8w Tk
ie. eq. (2.7).
The tree level amplitude is instead
Ay = —ideapts (p — k) Prus(p) (A.7)

so that the interference term between the tree and the one loop vertex correction
amplitudes, averaging over the initial spin state and summing over the final spin and
flavor state, is

2Re {AjA} = — > 2Re {(A N ()} 5 (A.8)
k

the interference term for the decay into antiparticles is identical, apart from containing
the conjugated couplings.
Factorizing out the common phase space factor 2, the tree level total decay

rate is \
T = 2(ATA)uf) = (,\f,\),-if8 " (A.9)
T
so that the CP asymmetry results to be
Re {Ji(zx) [ANE - (0NE) ]
N 1 1
€ (vertex) = - = (A.10
£ ) zk: (/\T/\)ii | )
Im { (ATA)2,
= ——————-{( )m} Im {Ji(z¢)} = (A.11)

22 T .
k



where we have recovered eq. (2.4).

A.2 The wave function contribution

The one-loop amplitude for the wave function diagram in Fig. 2.1b relevant
for the L violating CP asymmetry!, is given by

o . d*
As = 2L (AN peastif(p — k)PR/“—“(,)qu S(p, M) PrS(q,0)D(p — ¢,0)Prus(p) =
. MM
ot kg - ;
= QZAkj(/\T)\)kifaﬂsz ](p A)PRUI( ) (.‘Xl?))
where J; is given by
i d*q
= , —¢,0). Al4
T= =15 | Gy T BS(@ 0] Dl - 0,0) (A14)

The imaginary part of this function is easy computed with the Cutkosky
rules; we have

1 dq 5 9 _
21 {5} = = [ 55 a0(@)3(6)9(r0 — a)é(p - o)) (A.15)
Integrating the delta functions in the center of mass frame, we get
1
21 sf = —— A.16
m{J} = (4.16)

as in eq. (2.7).
The computation of ¢, (wave) is analogous to the one in the vertex case; we

have
M M;
) * - _ TR t1)2. =
2 Re {A7A,)} Zk Mg-M?-"R {27 (A.17)

so that
MM, Im {02}

Ni(w = - 3 X
™ (wave) ; T ). Im {Jy(zx)} (A.18)
1 MM,
= T Al
zk: 8/( Mk A/.[Q ( 9)

!The other part arises considering on shell particles instead of antiparticles propagating in the
loop and can be computed similarly.
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