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Introduction.

In the last few years, a remarkable attention has grown around geometrical and
topological methods in quantum field theory. This was due to the great interest of
string and superstring theory as the ultimate unifying theory of matter and forces
[GSW], and because of some break-through in the study of two dimensional critical
phenomena that was achieved by means of field—theoretical methods [BPZ].

The mathematical backgrounds for such improvements can be readily identified
in complex geometry and in the theory of infinite dimensional Lie algebras and super—
algebras.

In this thesis we will apply algebro—geometrical tools to the a,nalysié of some
open problems in this field. In particular, we will be mainly interested in the study of
moduli spaces of algebraic objects that are naturally attached to 2-dimensional field
theories. This follows in some sense the modular geometry programme [F'S] which,
roughly speaking, proposes to get all the relevant informations about 2-dimensional
conformal field theory (i.e. central charges for the energy-momentum tensor and
anomalous dimensions for primary fields) from suitable vector bundles over the mod-
uli space of curves of generic genus.

Such a programme has been fully motivated at the physical level. Still, its math-
ematical foundations need further efforts. Our main goal is indeed to work out as
far as possible the mathematical methods which may be relevant in two—dimensional
conformal and superconformal quantum field theory. Although the examples we will
dwell on might seem quite unrelated, they have a common root, namely the inves-
tigation of the properties of non-abelian sheaves on algebraic curves. In fact, the
real aim of this thesis is to extend to the non-abelian realm results which are well
known for classical domains such as curves and line bundles. Non-abelian structures

are plugged into the game in two different aspects. The first is to consider sheaves of
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Z>-graded algebras, i.e. to make contact with the geometry of superconformal field
theories. The second is to study ordinary locally free sheaves of rank greater than 1
on curves and their variations. Ours is to be considered quite an attempt in view of
the non-linearities involved. N evertheless, some nice results can be quickly obtained.

To make the thesis as self-consistent as possible, we devoted the first two chap- -
ters to a collection of results from the theory of algebraic curves and their moduli
and from the theory of graded-commutative varieties and their deformations.

In Chapter 3 we investigate some questions about the global structure of N=1
supermoduli space. The main string-theoretical motivation for such a study is the
fact that it is the ultimate domain of integration for the computation of string corre-
lation functions in the Polyakov approach. The analysis of its geometrical properties,
besides being interested on its own is prompted by the following problem which arises
in string theory. While the bosonic piece of the Polyakov path integral is well un-
derstood as an integral over moduli spaces of algebraic curves, the fermionic part is
more delicate as one has to Berezin-integrate along odd directions, and this may give
rise to ambiguities in the resulting ordinary integral (see [DP] and references quoted
therein.)

We analyze the graded-holomorphic structure of supermoduli spaces in the
framework of stack theory by constructing explicit “coordinate charts” and studiyng
their transition functions. Such an analysis boils down to the result that the sim-
plest choices one can make in defining universal deformations of N=1susy—curves are
actually plagued by the ambiguities we mentioned above, except for the genus 2 case.

The last section of chapter 3 deals with the moduli space of N=2 superconformal
supersymmetry in two dimensions. The nicest mathematical aspect of such a theory
is that when dealing with N > 1-supersymmetry, one is lead to consider locally free
sheaves of rank greater than one on algebraic curves. From the physical point of
view, N = 2 d = 2 field theoretical models are interesting because the richness of
their symmetry algebra allows a thorough study of some of their global aspects. On
the other hand N=2 superconformal models have also a string—theoretical interest.

In fact, the most popular compactification scheme of superstring theory consists
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in compactifying the six extra dimensions in a Calabi—Yau space, i.e. a complex
threefold with SU(3) holonomy, which leaves an unbroken supersymmetry generator
in the four dimensional Minkowski space. As discovered in [Ge], the propagation of
a string in such a vacuum is consistently achieved by considering representations of
N=2 supersymmetry algebra, or, in other words, N=1 space—time supersymmetry

requires N=2 world-sheet supersymmetry.

We approach the problem from a deformation theory standpoint, getting a de-
scription of the reduced space of N=2 supermoduli space as a suitable quotient of the
Picard variety over the moduli of curves and of its first infinitesimal neighbourhood
as the first direct image of some natural sheaf on it. The properties of the system
one expects on physical grounds (such as the existence of modular parameters for the

U(1) current mixing supersymmetries) emerge very neatly.

In the last chapter we give a geometric description of some representations of
the semidirect sum of the Virasoro and Kac-Moody algebras in terms of line bundles
on the moduli stacks of stable vector bundles over smooth Riemann surfaces. In
particular, we dwell on a problem originating from works by Arbarello, De Concini
Kac and Procesi, who managed to settle up a bridge between the representation
theory of some infinite dimensional Lie algebras and the Picard groups of the moduli
spaces of curves. More specifically, they considered the (classical) Virasoro algebra
dif f€ S* and its semidirect product with the (classical) Heisenberg algebra Lu(1)
and proved that their central extensions can be put in a bijective correspondence
with the Picard group respectively of the moduli variety M, s parameterizing curves,
points and a non-zero tangent vector at that point and the moduli variety F} which
is fibered over M with fiber Picy(C) parameterizing the data of M} plus the datum
of a degree d line bundle oﬁ C. In particular, they were able to deduce in a algebraic
setting the central charges for spin j b — c—systems on a Riemann surface of arbitrary
genus. We want to extend to the non-abelian case the link between the topology
of moduli spaces of bundles on curves and the cohomology of the relevant algebras
of infinitesimal symmetries of rank » > 1 bundles. Namely, we want to deal with

higher rank vector bundles so that the algebra F = diff* S x Lu(1) is replaced by

3




D =dif f€ S* x Lgl(n, C). The analysis will show that the abovementioned methods
can be applied with minor modifications also to our case. Also (even though we can
give proofs in a weaker form) there is an isomorphism between the second cohomology
of D and the Picard group of the relevant moduli space. The main physical motivation
for such an investigation is that the moduli space of stable bundles is the classical
phase space for 2-d Yang-Mills and 3-d Chern-Simons theories (at least in suitable
topologies of the three—manifold on which the Chern—Simons action is originally
defined). These latter are, in turn, connected to rational conformal field theories
since it has been shown that every model of the discrete series (i.e. with central
charge less that one) can be obtained by a Chern—Simons theory via an appropriate
choice of the gauge group. Then, the moduli space of vector bundles over variable
curves appears as the natural arena in which the modular geometry of such theories
can be investigated.

In the spirit of classifying quantum field theories by classifying the representa-
tions of their symmetry groups, this setting seems to suggest that there should be
a way of getting Sugawara formula for the stress energy tensor of Wess—Zumino—
Novikov—Witten [GO] o—models from purely geometrical data, as some results con-
tained in [Hit] confirm. Actually, we can get the correct relation between the Kac—
Moody central extension and the central charge of the Virasoro generators whenever
the WZNW model can be fermionized, but, unfortunately, we do not have yet a
complete control of the generic case. Achieving such a control, and more generically,
achieving a systematic way to construct out of our geometrical data sheaves of mod-
ules for the Virasoro algebra along the lines of [BS] is still not completely clear to us
and deserves further investigation.

This thesis is essentially based on the papers [FR1], [FR2], [FR3], [FR4].



Chapter 1.

Curves and their Moduli.

This chapter is devoted to a collection of some properties of algebraic curves, in
order to outline the set up in which we will work and recall some results to be used
in the sequel. After listing some primary facts about the analytic geometry of curves
and their Picard groups, we will introduce in some details the moduli problem. We
will recall some details of the Kodaira-Spencer theory of deformations since we will
use it extensively in the subsequent chapters.

Section 1.3 deals with a presentation of Mumford’s theorem on divisor theory on
moduli space of curves, while Section 1.4 is devoted to a collection of perhaps less
known results about the theory of moduli for vector bundles of rank greater than
one. k

Throughout this chapter, we will be mainly interested in the case of genus g > 2

curves and will pay a special attention to -characteristics .

1.1 Algebraic curves and their Picard group

Definition. A (smooth) Riemann surface (or a smooth algebraic curve) is a com-
plex 1-dimensional manifold, or equivalently, a 2-dimensional real oriented manifold

together with a conformal class of metrics.




From the differentiable point of view, any compact Riemann surface C is isomorphic
to a sphere with a number of handles. This number is called the (topological) genus
of the curve. The first homotopy group of C is the free group on 2g generators

{ai,b;}i=1,.. 4 subjected to the relation

g

[Tlas b =1

i=1
and its first homology group H;(C,Z) is freely generated by {ai,b;}i=1,. -
A canonical choice of such generators is the one in which their intersection matrix
is the 2gx2g symplectic matrix (i) (I)

classes of line bundles on C can be read off the exact sequence

) The Picard group Pic(C') of isomorphism

0— Z——)OCQXP—iﬁOz — 1
where OF is the sheaf of nowhere vanishing holomorphic functions and Z is the sheaf
of Z-valued continuous functions. The associated long exact cohomology sequence

reads
— B0, 2) - BY(C,00) — HY(C,03) — H2(C, Z) — H*(C,00) —

which can be shrunk to

0 — HYC,00)/Hi(C,I) — HYC,0%) -5 HyC,ZI) —0

I

z
as the Cech cohomology groups of constant sheaves are isomorphic to the singular
homology groups of the topological space and H?(C, O¢) vanishes as O¢ is coherent
analytic on a 1-dimensional space. Then Pic(C) = H!(C,0}%) is the semidirect
product Z X Picg(C') and Picg(C) is a complex g-dimensional torus isomorphic to the

variety built in the following way.

Pick a basis wy,...,w, of the space Hg)’l)(C, K¢) of abelian differentials normalized

f wj =
b

6
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is a symmetric matrix with positive definite imaginary part, called the period matrix
of the Riemann surface C. If A denotes the lattice in CY generated by the columns
of the gx2g matrix (6;;|Q;;), then Pico(C) ~ C9/A. The latter is usually called the
Jacobian variety of C' and denoted J(C). As for the other connected components of
the Picard group notice that Pice(C) acts freely and transitively on Picy(C) turning

it into a principal homogeneous space. .

Definition. A (Cartier) divisor on a smooth curve C is the datum of an open cover
{Ua}aer and, Vo € I a holomorphic function f, such that, if Us N Ug # 0, % is
holomorphic and nowhere vanishing.

By the compactness of C, the collection of f, defines a finite set of points counted
with multiplicities, and so one gets the notion of a (Weyl) divisor as an element
of the free abelian group generated by the points of C, i.e. a finite formal sum
Yoi i kipi n; € Z. 1t is straightforward to check that a divisor defines a line bundle.
Also the converse is true, i.e. k
Proposition. On a smooth algebraic curve every line bundle is the line bundle
associated to a divisor.

In particular every line bundle admits a meromorphic section and hence its first

Chern class can be computed as

cﬁL):/é@élog |s|?

where s is any meromorphic section of L and |- |? is any hermitean metric along the
fibres.

Two divisors D and D' are called linearly equivalent whenever D — D’ is the
divisor of a global meromorphic function. The set DivC/ ~ of divisors on C' modulo
linear equivalence is actually isomorphic to the Picard group of C, and, furthermore,
if L = [D] is a line bundle in the equivalence class of D = 3 n;p; its first Chern class
is given by

ci(L)=deg L=deg D = Zni
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The cornerstones of the theory of algebraic curves are the Riemann—-Roch theo-
rem and the Serre duality theorem. The Riemann-Roch theorem computes the Euler

characteristics of any coherent analytic sheaf on a (smooth) algebraic genus g curve

C.If E is a locally free sheaf of rank r then
x(E) = dimH"(C,E) — dimH'(C,E) = deg E +r(1 — g)
where degFE is the degree of the invertible sheaf det E.

Serre duality assumes, in one complex dimension, the following simple form. Let

K denote the sheaf of Abelian differentials on C; then
H°(C,E*® Ko) ~ HY(C,E)"

where 'V' means the dual vector space and the duality is given (in Dolbeault coho-
mology), by integrating the evaluation of a holomorphic (1,0)-form with values in E*
on a non-0 exact(0,1)— form with values in E.

In the case of invertible sheaves, Riemann—Roch and Serre duality give a com-
plete solution to the Riemann—Roch problem, i.e. to the computation of the dimen-
sion h%(C,L) of H*(C, L) for deg L > 2g — 2 and deg L < 0. In fact the following
results hold:

deg L< 0= Rh°(C,L)=0

degL:():>h°(C,L)::{1 and L =0Oc

0 otherwise;
_ B 0 _ g and L= KO
deg L =29 —-2=h°(C,L) = {g -1 otherwise;

deg L >29—2= h%(C,L)=deg L —g+1

In the range 0 < deg L < 2¢g—2 Riemann-Roch gives only the lower bound h°(C, L) >
deg L — g+ 1. An upper bound is given by Clifford’s theorem, stating that

R°(C,L) < = (deg L +1)

| o=

(@s]



with equality reached only if L = O¢, L = K¢ or C is hyperelliptic, i.e. a double
covering of the rational curve P!. Nonetheless, if L is a generic line bundle with

0 < deg L <2g — 2 then A*(C,L) = min(0,deg L — g + 1).

By means of line bundles, one can define maps of C into projective spaces. Given
a divisor D, a the projective space associated to a vector subspace of the set |D| of
effective divisors linearly equivalent to D is called a linear series. A base point for
|D| is a point common to all divisors in |D| Consider now L = O(D) and suppose
that the linear series associated to the whole H°(C, L) is base point free. Then we

can define

¢r:C — P(H*(C,L))Y =PH'(C,KL™)

by means of
¢r(p) = {s € H°(C,L)|s(p) = 0}

In homogeneous coordinates, picking up a basis sg,...,ss of H%(C, L) one has the

explicit representation

¢1(p) = [s0(p),---,5n(P)]

A very simple fact we will use in the sequel is the following

Proposition. The canonical bundle K is base point free.

Proof. Suppose ¢ € C is a base point for K. Then h%(C,K(—gq)) = g and so
R%(C,O(q)) = 2, which is impossible if C is not P'. L

The last topic we will cover is the notion of #-characteristics .

Definition. A #-characteristics on a smooth curve C is a line bundle £ s.t. LQ L =~
K.

The defining equation makes sense as degKc = 2g — 2 is always even. In particular
the degree of a f-characteristics is ¢ — 1. In terms of divisors the defining relation
becomes 2[D] = [K¢], so that the quickest way of computing the number of §-

characteristics is the following. Let us fix a #-characteristics £o. Then for any
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-characteristics £ it holds
(CoLy’) =)@ (L) =~ Ko® K5* = Oc

so that -characteristics are in a bijective (non canonical) correspondence with points
of order two in the Jacobian J(C). Then, as J(C) is a g-dimensional torus, the number
of such points, i.e. the number of different §-characteristics is 229. As degl = g—1, L
lies in the unstable range, so that one should not expect h°(C, L) to be independent
of L. In fact the best one can do is to classify 9-charact‘eristics according to their
parity, i.e. to h’(L)mod 2. Actually there is some merit in doing so, because the
parity of a f-characteristics is invariant under deformations of the curve, and the
number of even (resp. odd)f-characteristics is known to be [Mul] 2971(29 +1) (resp.
2071(29 —1)).

Being £ a ”square root” of the canonical bundle, one naturally thinks of its
sections as of spinor fields on the curve C. In a more classical setting, recall that,
on an m-dimensional real riemannian manifold M a spin structure is defined to be
a principal fiber bundle -+ M with structure group Spin(n) such that, if P-"»M
is the bundle of orthonormal frames on M, and « is the non trivial double covering

Spin(n)—-S0(n) there exists a commutative diagram

— P

LAY
~/

Spin(n) x

e

SO(n) x P — P

M

— 5

It is known that such a commutative diagram exists iff the obstruction class
(the 2™? Stiefel-Whitney class) wy € H?*(M,Z,) vanishes, and the number of non-
equivalent diagrams is the order of H'(M,Z,). Actually, due to the evenness of the
first Chern class of the tangent bundle, every Riemann surface is a spin manifold,
and the following theorem holds, relating 6-characteristics to spin-structures [A].
Theorem. The spin structures on a compact complex spin manifold correspond
bijectively to the isomorphism classes of holomorphic line bundles £ with £? ~ K,

where K is the canonical bundle, i.e. the top exterior power of the cotangent bundle.
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1.2 The moduli problem |

The moduli problem is a central one in algebraic geometry, as it consists in the
non-topological part of the classification problem for algebraic varieties. In fact,
roughly speaking, algebraic varieties are classified by some discrete invariant (such as
the genus for curves) and some “continuous” invariants which, for historical reasons
are called moduli. For the sake of concreteness, in this section we will stick to the
case of moduli of algebraic curves.

Definition. A family of smooth algebraic curves is a proper surjective holomorphic
map 7 : X — S5 between two complex analytic manifolds such that Vs € S the fiber
7~ 1(s) is a smooth algebraic curve.

Theorem. [K] A family of algebraic curves is differentiably locally trivial, i.e. locally
isomorphic, in the C'* category, to the product C, x S, C, being any of the fibers of
.

For a family of Riemann surfaces over a connected base S, the genus of the fibers
is constant and, more generally, all discrete topological invariants of the fibers will
not vary over S.

Given a family 7 : X—.5 and a map f : S'—S one can define the pull back
family as the fibered product f*(X) = X x; S'. It is a family over S’ and comes

equipped with a commutative diagram

<__
l\n l'&
Uy

This notion leads to define in a natural way a contravariant functor (the Rie-
mann functor) from the category of complex manifolds and holomorphic maps to the

category of sets and maps by sending:

St M,y(S)
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where M,(S) is the set of isomorphism classes of genus g curves parameterized by

S, and
f € Hom(S,S" Y ~r~>My(f) = [¢] € Hom(My(S"), My(S))

where ¢ is the map defined in the diagram above up to isomorphisms.

If My were a representable functor, i.e. there would exist a complex manifold
M, such that My(S) is isomorphic to the functor S~~~>Hom(S, M, ), then My would
be called a fine moduli space for M.
Actually it is known [see, e.g. Hu] that a fine moduli space for algebraic curves does
not exist. A way to envisage the failure of representability of the Riemann functor
is the following. If the Riemann functor were representable, its moduli space would
come equipped with a "universal” family CQ—LMg from which any other family

X-L.B could be obtained by means of a unique diagram like

x 5 ¢
s [
B — M,

Now, suppose C'—p is a curve with a non trivial automorphism - over a point
p. Then one can get a different diagram from the one above simply by twisting F' by
-, thus loosing uniqueness.

The non existence of a fine moduli space for curves of genus g can be circum-
vented in at least two ways. The first is to relax the assumption of representability
of the functor M, thus getting the notion of coarse moduli space as follows
Definition. M, is called a coarse moduli space for genus g curves if there is a

morphism of functors
®: Mg— Hom(-, My)
satisfying
i) if B is a point, ®(B) is an isomorphism
ii) for any other morphism of functors ¢ : My~ Hom(-, X,) there is a unique map

@ : My—X, for which the corresponding morphism of functors [g] : M;— X,
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satisfies
¢ = [o]o®.

In practice, when considering a coarse moduli space one gives up uniqueness
of the classifying map and simply requires its non—uniqueness to be under control.
This leads to the theory of moduli stacks, a very brief sketch of which is contained in
Appendix A.2. A coarse moduli space does exist for genus g curves. The other way to
face the non—existence of fine moduli spaces is to consider the moduli space of curves
together with some additional structures, so that non- -trivial automorphisms are
ruled out. The best known example of such a way out is Teichmiiller theory, which
can be described as originating from the following analysis of the automorphisms
group of a smooth algebraic curve [ACGH].

The cases of genus 0 and 1 are easily dealt with. For the Riemann sphere P?,
Aut(P') is PGL(2,C). For g = 1, Aut(C) is the extension by C itself of a group F
of order 2,4,0r 6 and, actually, there are unique tori for which ord F' = 4 or 6. In
the case g > 2 things are much sharpened as the following proposition holds
Proposition Let C' be a smooth genus g curve. Then Aut(C) is a finite group of
order at most 84(g — 1).

Furthermore Hurwitz’s theorem holds: V
Theorem. In the above hypothesis, if ¢ € Aut(C) and ¢ is homotopic to the
identity, then ¢ is the identity. '

The above considerations lead naturally to the following
Definition. Let X be a closed oriented 2-dimensional manifold of genus g. A marked
Riemann surface is a pair (C,[f]) where C is a Riemann surface , f : C—Z is a
homeomorphism and [f] denotes the homotopy class of f.

Two marked Riemann surface (C,[f])and (C',[f']) are equivalent iff there is a con-
formal map C—+C" such that [f'oh] = [f].

The family version of this construction can be defined as follows [Hu]. Let
7™ : X—5 be a family of curves. A Teichmiller structure of type X over X is the
datum of an equivalence class of diffeomorphisms [¥] : § X T— X commuting with 7

where two diffeomorphisms are said to be equivalent if they are homotopic via a fiber
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map over S. Then, by a fibrewise argument, if ¥ : § x ¥— X is a representative
of a Teichmiiller structure, then any automorphism of X over S preserving [¥] is
the identity. In simpler words two curves related by a conformal automorphism not
homotopic to the identity are to be considered as different in Teichmiiller theory.
Let Dif f*(2)/Dif fi () = I'y the mapping class group of the manifold ¥, i.e. the
group of connected components of the orientation preserving diffeomorphism group
Diff*(X). Given any family of curves m : X —S one can consider the following

principal fiber bundle

's — TIx

Definition. The Teichmiiller functor of type £, 7, associates to an analytic space
S the set of isomorphism classes of family of curves 7 : X—5 equipped with a
section of I'x

By the previous discussion one expects good properties for the Teichmiiller func-
tor. In fact it holds [Hu]
Theorem. The Teichmiiller functor 7, is representable by means of a Stein va-
riety of dimension 3g — 3 isomorphic to an open ball in C39~3, which is called the

Teichmiller space Tj.

A real coordinatization of T; can be given by means of the Fenchel-Nielsen
coordinates, defined as follows. Consider an hexagon in the hyperbolic plane, which is
determined, up to isometries, by the lengths Iy, 15,3 of alternating sizes. Considering
its double across the remaining sizes we get a pair of pants, which are building blocks
for a Riemann surface in the sense that a genus ¢ Riemann surface can be obtained
by glueing 2g — 2 pair of pants. This works as follows: fix a collection {71 ...734-3}
of disjoint simple closed curves such that ¥\ {v;} is the disjoint union of pair of pants
. Then 3 can be completely reconstructed by attaching these pair of pants along the

{7i}’s. The Fenchel Nielsen coordinates are the free parameters in this construction:
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they are the geodesic lengths I; of the v; and the hyperbolic distances 7; between the
feet of perpendiculars to +; dropped from fixed boundary points [Ha).

The study of the geometry of the Teichmiiller space is a major step forward in
understanding the geometry of the (coarse) moduli space of curves. In fact, T, can be
realized as the quotient Conf(X)/Diffo(Z) of the conformal group by the group of
diffeomorphisms homotopic to the identity, while My is given by Con f(X)/Dif f+(X)
this latter being the full orientation preserving diffeomorphisms. Thus, one can use
the topological triviality of Ty to get some insight into the topology of M, since
M, =T,/Ty, where I'y is the mapping class group of the Riemann surface . In fact
one has the following results [Ha]

Proposition. If g > 3 the action of I'y over T, is properly discontinuous but not
free. Its fixed points correspond to algebraic curves with non trivial automorphisms
group. Correspondingly, the moduli space M, has the structure of a complex space
and a complex V-manifold (or orbifold ). The lower cohomology groups of M, are

computed as follows

HY(M,,7) =1
HY(M,,7) =0
HZ(MQ,Z) =17

A deeper understanding of moduli space and of its complex structure is achieved by
means of deformation theory [K]. Let X be a smooth algebraic curve.

Definition. A deformation of X, parameterized by a pointed analytic space (¥, )
is a proper holomorphic map

p: X—Y

plus a given isomorphism 1 : X — ¢~!(yo) between X and the central fiber o ™1(yp).
The notion of deformation thus differs from the one of family by the prescribed
identification of the central fiber with the object to be deformed. A it first order de-

formation of X is a deformation of X parameterized by S = Spec Cle], the spectrum
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of the dual numbers. In the sequel we will pursue the Kodaira-Spencer approach to
deformation theory, in which on thinks of the curve C as being qualified by patching
data {Uq, za, fop}, and thinks of deforming it by deforming the patching data. Here
{Uos}acr is a finite covering of C
Z4 1s a holomorphic coordinate in U,

zZa = fap(zg) in Us N Us

In any triple intersection U, N Ug N U, the cocycle rule holds

fap(fp4(24)) = far(24)

A first order deformation, can then be thought of as being given by glueing products
Uy X S by means of

2o = fcxﬁ(zﬂae) = faﬁ(zﬂ) +e- baﬁ(zﬂ)

For any fixed € the faﬁ’s must be transition functions for a curve, so that they must
satisfy the cocycle rule. This latter translates into the cocycle condition for the foz’s

and the following condition for the bog’s

afa,B .
bap + 92 ~bap = by

But, by the chain rule %Fz% = % so that, putting X,5 := baﬁg—g: yields

Kap+ Xpy— Xay =0
i.e. Xop defines a class
[Xap] € H(C,To)

which is called the Kodaira-Spencer class of the first order deformation ¢.
The sheaf-theoretical version of this construction is given as follows. For any first

order deformation ¢ : X — S one gets the following exact sequence of O y-modules

0 — To—Tx—5¢*Ts — 0
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which induces the exact cohomology sequence
v (O, Ta) TS HO(C, ™ (Ts) > HY (G, To) = -+

Then X,p is just §* ([90*5—9;]) . Given two isomorphic deformations ¢ : X— S and

@'+ X'— 8 the commutative diagram

HY(C,Tx) 25 HC,o*(Ts)) 25 HYC,To) — --

I )
H°(C,Ty) = HY(C,¢"™(Ts)) 5 HYC,To) — -

insures that [Xqpland [X'qg] are the same class in H*(C, To).
Conversely, taking two cocycles in the same class, the difference between the two
infinitesimal deformations they induce is simply a holomorphic coordinate change, so

that the two are really indistinguishable.

Given an arbitrary deformation ¢ : X—(Y,y)) and a map (S, .so)—f——»(Y, yo) the
pull-back f*(X') is the first order approximation of ¢ : X —(Y, ;) in the direction
of the tangent vector corresponding to f. Notice that the spectrum of dual numbers
embodies the notion of tangent vector to an algebraic space, in the sense that 7T vo Y o

Hom ((S,s0),(Y,v0)). Thus we get a homomorphism
pe : Ty (Y)—H'(C, Te)

called the Kodaira-Spencer homomorphism associated to ¢ : X — (¥, Yo )-
Definition. Let 7 : X—(Y,y0) be a deformation of C. X is said to be complete at

Yo (or versal) at y, if for any other deformation of C ,
' Y—(Y',yp)

there exists a neighbourhood V' 3 y) and a holomorphic map g : V'—Y sending
Yo to yo such that the restricted family Y|V’ is isomorphic to FX(X) over (V',yp).
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Definition. Let 7 : X—(Y,yo) be a versal deformation of C. We say it is universal

at yo if the germ of the classifying map above is unique.

Remark (Uni)versality is a local property, in the sense that if # : X —(Y,yo) is

(uni)versal at yg, then it is (uni)versal in a whole neighbourhood of yq.

The réle of the Kodaira-Spencer map is clarified by the following
Theorem. Let 7 : X—(Y,y0) be a deformation of C such that the Kodaira-
Spencer map pr is an isomorphism. Then 7 : X — (Y, yo) is universal.

A universal deformation will also be called a Kuranisht deformation.
The theorem above allows one to compute the dimension of moduli space of genus g
curves. In fact, if g > 2 the tangent sheaf Tc has negative degree, so the dimension

of H'(C,T¢) is read off the Riemann-Roch theorem as
dimH'(C,Tc) = dimM, = 3g — 3.

A satisfactory deformation theory can be settled up for algebraic curves by using
a particular class of Kuranishi families, namely the so—called Schiffer variations. Let

p be a generic point of C. and consider the following exact sequence
0— To———éTc(p)—>Sf — 0

The coboundary map 6, sends HO(C’,S;;:) = C—H'(C,To). In terms of Cech co-
cycles, considering the acyclic cover {U,V}, where V = C \ p and U is a small disk
centered at p and parameterized by z then a representative of §,(1) is

10
Xvuv =—5-

z 0z
By Serre duality the map

cC — PHI(C, Tec)
p ~~b [65]

is the bicanonical map, so that Schiffer variations generate H'(C,T¢). Schiffer vari-

ations have the advantage of being easily integrated. Namely one can find a defor-

mation

U:D—A.={teC|t| < e}
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whose Kodaira-Spencer map is §,. In fact, such a D can be obtained, if A’ is another

small disk of radius €', by glueing
C~ {p e Cs.i.lz(p)| < g} X A with A" x A,

via the glueing map
t=1
w =z -+ f
In general, by choosing 3g — 3 distinct general points p; and removing 3g — 3

small disks around them one gets a family parameterized by a 3g — 3-dimensional

polydisk, defined by the glueing law
{ t; = Z,'
t;
W=zt —
zi
The Kodaira-Spencer map of this 3g—3-dimensional Schiffer variation is the cobound-

ary map ¢ in the exact sequence

D;res
HO(O,TC( ig 31’:)) " 3g 3SC d

H'(C,To)—H"(C,To(X3* " pi)) — -+

Now, denoting as usual h*(C, L) := dimH*(C, L), one has
R(C,To (3 7 pi) = hH(C, To(X3 % pi) = R*(C, K& (=303 i)

where the second equality is just Serre duality, while the first comes from Riemann-
Roch noticing that deg(T¢( 39 ~%p;)) = g—1. Then § is an isomorphism, and hence
the Schiffer variation above is a Kuranishi family if and only if A°(C, K*( ;’g p)) =
0. This can be achieved by choosing the points p; according to the following strategy.
Let s; be a non-zero holomorphic section of K2 and let p; be such that s;(p;) # 0 so
that h°(C, K*(—p1)) = R°(C, K?) — 1. Then let 55 be a non-zero section of K?(—py)

and choose p, where s; is not vanishing. Again

RY(C, K*(—p, —p2)) = R (C,K?) —2
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Inductively, one can find py,...,p; such that
‘(C,K?(- Zpl =h"(C,K?) —;

Obviously this process ends after 3g — 3 steps as h?(C, K?) = 3g — 3. Notice that
there is no flaw in this argument, as, at each step we are dealing with line bundles
of degree > g and again Riemann-Roch insures that they have at least one non-zero

holomorphic section.

To complete the discussion, let us sketch how a natural complex structure can
be given to the set M,. Natural here means that it must be induced by the notion
of family, in a sense that we are going to describe.

First of all, notice that every genus g curve C can be holomorphically embedded
in P?9=% by the means of the tricanonical map. Every automorphisms ~ of C will
induce an automorphisms of H°(C, K*) but, as C is embedded in PH?(C, K?®), v
is the restriction of an automorphisms of PH®(C, K*) so that Aut(C) is a discrete
algebraic subgroup of PGL(5g9 — 6,C) and hence is finite.

Now let C' be a genus g smooth curve and suppose

c X ¢

™
(S, s0)

is its universal deformation; as was noticed when dealing with deformation theory,

one can assume that it is a universal deformation for every s € S. Taking v € Aut(C)

and replacing ¥ with ¥oy one gets another universal deformation of C, say C'.

But, thanks to the defining property of universal deformations, there exist unique

automorphisms a., and b, respectively of S and C such that

a

(Sys0) —= (8,50)

commutes, a,(so) = so and¥oy = b0 ¥
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If some other element ' € Aut(C) carries s to ', then m72(s) =~ 771(s) so that

the map from S to M, factors through S/Aut(C), i.e.

S
N\
lx M,
v/
S/G

Then, by means of geometric invariant theory, one can show that [Mu2,DM] S/G has
a natural complex structure under which x is holomorphic that can be transported
via 77 to an open subset of M,. Namely, a local continuous function on M, will be
called holomorphic iff its composition with § is holomorphic , or, in other words,
we can give M, the unique complex structure obtained by glueing together bases of
universal families of isomorphic curves.
We end this section recalling the main features of Mumford’s compactification M,
of M. This issue is of great relevance as, for instance, most of the known algebi’o-
geometrical techniques one could hope to use in studying M, work only in the case
of complete varieties. Mumford’s compactification scheme solves this troubldby
choosing a specific set of singular curves to be plugged into M, as its boundary, the
so called stable ones. |

A node curve is a curve whose only singularities are described locally by the
equation zy = 0. By compactness, the number of nodes is finite; the normalization
Nc of a node curve C is the smooth curve obtained by C by pulling apart meeting

branches.

Definition. A stable curve (resp. a semistable one) is a connected node curve of
genus g > 1 such that any of its rational components meets the rest of the curve in
at least three (resp. two) points.

Stable curves can be deformed in a way much alike to the one we described before
[ACGH] and the number of moduli of a genus g stable curve is the same as that of a

genus g smooth curve. In fact a stable curve C' can be thought of as being qualified
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by its normalization Nc and the identification of the preimages of the nodes p; as
P1~ q1y-+-,Pr ~ gr. Then we start from a universal deformation of N¢ thus getting
> i—, m(N;)-parameters, where the N;’s are the connected components of No and

0 ifN; ~P?

m(N;)=< 1 ifg(N;)=1

3g9(N;) — 3 otherwise.
Taking into account that P! has PGL(2,C) and an elliptic curve a complex torus as
automorphisms groups, we see that the total contribution of any component V; is
3g(N;)—3. Then we can deform by identifying a point near p; to a point near g; getting
2r more parameters, and r additional parameters occur as a result of smoothing the
nodes (these are the transversal parameters to the boundary). Summing up we have

that the dimension of the base space T' of a universal deformation of C is

dimT:i:(3g(Ni)—3)+37‘=3(ig(Ni) —V+T+1) —3=239(C)-3

Final step is to show that the procedure of adjoining to M, stable curves is
"exhaustive” and gives rise to a compact space. This is achieved by means of the
stable reduction theorem which, roughly speaking, asserts that every family of alge-
braic curves admits a stable limit. Without entering the details — the hard part of
the proof is covered by a semi-stable reduction theorem and uniqueness of the limit
requires stability — we can state it in the following form.

Theorem. Let X be a complex space and X ——A a proper map such that =~ (t)
is a smooth algebraic curve V¢ # 0.

Then there are an integer n, a family E——A of stable curves and a commutative

diagram
E o l(0) 25 X \7(0)
AN{0} = AN{0}
where a(t) = t" andB[,-1(;) is an isomorphism V¢ # 0. In other words, when a

family of curves degenerates to a generic singular one, one can safely construct a
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family which is isomorphic to the previous one, except for the fact that the central

fiber is replaced with a stable curve.

1.3 Mumford’s theorem

Let us now describe divisor theory on My, following works by Mumford, Harris,
Arbarello, Cornalba and others. What one wants to end up with is not only a formal
description of Pic(My) but a classification of line bundles on M, built by means of
geometrically significant objects. Let X be a smooth projective variety, and let Kx
its canonical sheaf, i.e. the maximum wedge product of the cotangent sheaf. Kx is
an object that ”allows” to do duality in the sense that
i) HMX,Kx) ~ Hg’n(X) ~ H**(X,7)@ C~C
and the isomorphisms above are all natural

ii) Given any vector bundle E—X a canonical isomorphism is given
Hy(X,E)-"5H; ™ (X,Kx @ E*)Y

Then, given a possibly singular projective variety X one is naturally lead to the
following

Definition . A dualizing sheaf wx for X is a coherent sheaf together with an explicit
homomorphism H"*(X,wx) — C, called the trace homomorphism, such that for all

coherent sheaves F on X the pairing
Hom(F,wx) x H*(X,wx)—H"(X,wx)—C
is non-degenerate.

The following facts are known
i) such an wy, if existing, is unique.

ii) wx exists and is locally free if X is a projective variety, subjected to the technical
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condition of being locally a complete intersection.

iii) if F is locally free and coherent

H (X, F)" (B (X,wx ® F*))"

iv) if X is smooth, then wx coincides with the canonical sheaf.

Now consider a proper smooth morphism of algebraic varieties 7 : X — B and

the associated sheaf exact sequence
0— W*Q%———»QIA_»——»QEY/B —0

where 0}, /B Q% /7*Qp is the sheaf of one-forms along the fibers. Taking the

maximum wedge product in the exact sequence above one gets

QT.)L(/B =wy ® (r*wp)”

so that
Definition. The relative dualizing sheaf of the family = : X — B is the invertible
sheaf

wy/p =wx ® (T"wp)”

The ultimate reason for doing so relies in the following

Proposition . The restriction of wx 5 to any fiber F' of 7 is the dualizing sheaf wp.

We are now in a position to discuss Mumford’s theorem and the Picard group of
the moduli space of algebraic curves. Let us restrict our discussion to the subvariety
M g of automorphisms —free curves, because when dealing with M, the nonexistence
of the universal curve

™

C—M,

generates subtleties to be treated with more sophisticated techniques. Also, for genus

g 2> 4, the set of curves with automorphisms is of codimension d = g — 2 in M, so
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that removing it does not affect divisor theory. Let us consider the universal curve
C—-——~>Mg0 the relative dualizing sheaf we /Mo and its powers wg/Mo . The Grothendieck-
g

Riemann-Roch theorem for n-canonical relative forms gives
Oh(mwngg) = o (Chwe/ug - T - (T dV}p) ™)
which can be simplified, by means of the following exact sequence
0— Q}:,Mg._énél&.»n&;, —0

yielding
TClQé . (W*Tdﬂ}wg)_l = TdQé/Mg

to

Ch(mwe jarg) = o [ChofpsTd% s

Now one has that m“’?/Mg = W*wg/Mg o Rlﬂ'*wg/Mg as ""g/Mg is invertible and so
its higher direct image sheaves vanish. Also, we/me™ restricts to each fiber C of the
family to wg, so that, forn > 1 degrelwg/Mg < 0 and hence le*wg/Mg =0 and
forn=1 RlW*WC/Mg ~ OM;) and hence does not affect m so that one can rewrite

the formula above as

Ch(?r*wc:/Mg) = T [Oh“’g/MSTdQé/Mg}

Expanding both sides one gets

c1(wZpp0)?
<1+cl(wg/M3) + ——% +oee ]

Cl(Qé/Mu) Cl(Qé/MO)Z + C2(Qc1:/M°)
1 g + g g + ...

Ch(m.wg pgo) = .

2 12

By extracting the right codimension piece one has

Cl(ﬂé/Mg)z + C2(Qé/M3) N

cl(w*wg/Mg) = ¢;1( det w*wg/Mg) =, 12
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Cl(wg/Mg)Cl(Q%:/Mg) Cl(“”cl/zvrg)2
2 2

On M, the dualizing sheaf and the sheaf of Kahler differentials coincide, so that,
denoting A, := m,( det “’g/Mg) one has

1
c1(An) = 1—2—(671,2 — 6n + 1), [cl(wg/Mg)z]

and, in particular,

c1(A) = —1%#* [Cl(wC/Mg)z]

yielding Mumford’s formula

c1(An) = (6n® — 6n + 1)c1(A)

1.4 Moduli space of ¢-characteristics .

In this section we want to describe the moduli space of #-characteristics because
of their relevance in the supersymmetric case.
Given a family of curves C 5s , a (relative) f-characteristics is an invertible sheaf £
over C which is a "square root” of the relative canonical sheaf w¢/s i.e. such that,
Vs e § L? [e-1(s) = Wr-1(s)- A f-characteristics is called even or odd according
to the parity of dim H°(C,L). There are 2971(29 + 1) even and 2971(29 — 1) odd
§-characteristics , adding up to a total of 229.

Mimicking deformation theory of stable curves, one can define a deformation
of a (smooth) f-characteristics (C, L) to be a relative §-characteristics [H2], i.e. a

diagram

- L Lo
N N
c - X
l I
p — S



such that the isomorphism i : C — 77%(s) induces an isomorphism of L and i*£,.
More generally, one can deform all §-characteristics (C,Li,...Ly,), (m = 2%9) on
C, by giving 2?9 sheaves Lyr,,...,Lr on X satisfying the above property. In this
way we get a 229-fold covering of the base space § of X. A remark is due at this
point. When considering families of line bundles over moving curves L, — X — §,
the requirement that the line bundle £, restricts to each fiber to a prescribed line
bundle, does not fix it completely, since it can be tensored with a line bundle coming
from the base S of the deformation without affecting such a requirement. The case
of §-characteristics is special for the fact that its square is fixed to be the relative
dualizing sheaf of the family , which is uniquely defined. Hence the only ambiguity
in defining the relative §-characteristics will be a square root of the structure sheaf,

an ambiguity that can be easily dealt with.

Since #-characteristics on an algebraic smooth curve are in a (non-natural) one-
to-one correspondence to points of order 2 on the Jacobian J(C'), a more concrt‘ité
way of describing such a covering is to consider the family 7: J — S of J acobigns
associated to the deformation 7 : X — S of C, whose fibre 771(s) is precisely the
Jacobian of 771 (s). The choice of (C, L;) gives us its deformation Ly, over X and 229
sections o1, ...,0.,, of J over S gotten by setting o; = L, ® ﬁ;ll. Their image is the
desired covering of S. When dealing with smooth curves , this local covering exte;\;ﬁds
by isomorphisms to the whole My, thus realizing the moduli space of §-characteristics
over smooth curves S; as a 229-fold of M,. The problem is that, when considering
singular curves besides the smooth ones, trouble can arise, as the following example
shows.

Let us consider a family of elliptic curves parameterized by a small disk A € C
as follows. Set 7 = In(b)/27i, b € A, and consider the lattice A, C C generated by
1 and 7. This acts holomorphycally on A x C by translations on the second factor.
The quotient X = A x4, C is a family of tori degenerating to a single-node curve for
b= 0. At genus one all §-characteristics have degree 0 and one of them is isomorphic
to the structure sheaf O, . So the other three naturally corresponds to points of order

two on the Jacobian, which in turn coincides with the torus itself. So, on A\ {0} we
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get the following sections of J = X — A
o1 =0; oy =1/2

o3 =T1/2; oy =7/2+1/2 (mod A;)

where 7 = 7(b) as above.

We can now clearly see three phenomena. First of all, we have monodromy in
the covering, because a rotation around b = 0 exchanges the two sections o3 and
os. Second, these two sections are ’asymptotic’ for b — 0 (|7| — o), meaning that
there is branching in the covering (recall that the Jacobian of a torus with one node
can be compactified getting again the same torus; being asymptotic here means that
the two section above go to the node in the limit.) Finally, this limit point cannot
be interpreted any more as an invertible sheaf, but corresponds to a more general

coherent sheaf.

If we abstract from the peculiarities of genus 1, the picture we get from this example
is general. In particular, the three phenomena mentioned above, i.e. monodromy,
branching and the appearance of more general sheaves than sheaves of sections of
line bundles enter the game at all genera. For instance, such sheaves occur in the
compactification of the moduli of §—characteristics recently constructed by Deligne
[D]. A different way for getting a compactified moduli space of #-characteristics has
been given by Cornalba [C]. This involves the addition to the moduli space of smooth
curves of a wider class of singular curves, (namely a certain subclass of semistable
ones), but have the desirable feature of yielding invertible sheaves as ”limits of 6-

characteristics ”.

Without entering too much the details of this compactification scheme, we simply
quote the following results [C];
1) S, has a natural structure of a normal projective variety, 0S, = §4\ 5, is a closed
proper analytic subvariety of S,, and therefore S, is an open subvariety.
2) The natural map x : S, — M, given by forgetting spin structures and reverting

to stable models is finite.
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3) Since the parity of a -characteristics is invariant under deformations, S, is the

disjoint union

of the two closed irreducible subvarieties of even and odd spin curves of genus g.

1.5 Stable bundles on Riemann surfaces

A holomorphic rank r vector bundle E over a Riemann surface C' is determined by the
datum of a local trivializing system, i.e. a covering {U,}aer and for each non-void
intersection the transition function

9ap : Ua NUg — GL(r,C)
&

Two bundles E and E' are equivalent when there is a collection of GL(r, C)-valued

holomorphic functions A, defined on the whole U, such that
[ -1

Since on triple intersections U, NUgNU, the transition functions must satisfy the co-
cycle condition gaﬁgﬁvg;’i =1, equivalence classes of holomorphic rank r vector bun-
dles on a Riemann surface C are parameterized by the cohomology set H(C,GL(r)).
Only in the case r = 1 this space has simple geometrical properties (actually its con-
nected components Picg(C) are principally polarized abelian varieties). When r > 1
H'(C,GL(r)) is a non-Hausdorff space, so that one has to restrict the allowable bun-
dle in order to get sensible moduli spaces. This problem was solved by Mumford
[Mu4] by introducing the notion of stable (and semi-stable) bundle. This was done
in the framework of geometric invariant theory, but just like in the case of the cor-
responding notion for singular curves, the condition of stability of a vector bundle
translates into a simple geometric requirement.

Let E — C be a rank r vector bundle over C; define its slope to be the rational
number p(E) := deg(E)/rank(E).
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Definition. E — C is called a stable bundle if for every subbundle 0 - L — E —
E/L — 0, p(L) < p(E), or equivalently, u(E/L) > p(E). E is called semistable if
inequalities hold in weak sense.

Notice that this condition strenghtens of the fundamental principle that curva-
ture decreases in holomorphic subbundles and increases in quotients. The stability
condition can be rephrased stating that F is stable if for every proper subbundle
W CE deg(E*®@ W) < 0.

In the following we will collect some of the most relevant features of stability,
. referring to [AB] and [FSCA] for proofs and a more complete account of the subject.

A stable bundle is simple, i.e., every holomorphic automorphism

is a constant multiple of the identity automorphisms . This can be proven as follows
[NS]. If E and F are vector bundles on C,a homomorphism E-L.F is said to be of
maximal rank if the induced map det F 4] et F is a non—zero homomorphism. Notice
that, if f is of maximal rank, then degFE < degF and; if equality holds, then f is
an isomorphism. Moreover, any non-zero homomorphism E-L5F has the following

canonical factorization
0 — EE — E S E, — 0
s ls
0 — F — F <& F «— 0

where ¢ is of maximal rank.

Proposition. If E and F' are of the same rank and degree, and at least one of them
is stable, any non-zero homomorphism E J.Fis an isomorphism.

Proof. If f is of maximal rank there is nothing to prove. So let us suppose that f is
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not of maximal rank, and let us factorize it as f = 10gom, where now g is of maximal

rank. We have 0 < rk(E;) = rk(F}) < rk(F'). Obviously
0=deg(E* ® E) = deg(E* ® E1) + deg(E* ® E»)

0 =deg(F* @ F) =deg(F* @ Fy) + deg(F* ® F2)

Let us suppose that F' is stable and E semistable. Then deg(E* ® E;) < 0 =
deg(E* ® E,) > 0. Since g is of maximal rank, degF; > degFE, so that

deg(F* ® F1) = degFitkF — degFrkF) = degFitkE — degErkF; >
> degEyrkE — degErkE, = deg(E* ® E;) > 0

which contradicts the assumption of stability of F.
On the other hand, if we suppose F stable, we have deg(F* ® F1) < 0 = deg(F* ®
Fy) > 0 so that

deg(E* ® E;) = degE tkE — degEtkE; = degE rkF — degFrkE; >
> degForkF — degF'rkFy = deg(F* ® F2) > 0

and we have another contradiction. =
Then considering the case E = F, the C-algebra H°(C, EndE) satisfies the hypq{he-
ses of the Gel’fand-Mazur theorem and hence is C. |

Furthermore, for semi-stable bundles a Kodaira vanishing theorem holds, i.e. if E is
semi-stable and degE < 0 then E does not have any holomorphic section. Tensoring
with line bundles does not alter (semi)-stability. This is a very useful property, be-
cause, as tensoring with a degree d line bundle L changes the Chern class of E by the
quantity d -rank F, and its determinant is changed into det E . L****F  equivalence
classes of rank 7 vector bundles are classified according to the residue mod r of the
degree. Also, the dual E* of a (semi)-stable bundle is (semi)-stable, and, given two
semistable bundles E and F, their tensor product F ® F is still semistable. Notice
that this is not true for stable bundles, since, for instance, E*® E = EndE, is strictly

semi-stable.
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Vector bundles can also be analyzed from the point of view of extension theory.
Actually [Gu] every vector bundle admits a meromorphic section and so it admits a

rank 1 sub-line bundle £. Then the exact sheaf sequence
0—-L—-EE/L=F—0

exhibits E as an extension of F' by L. As it is well known, such extension are param-
eterized by their extension class, i.e. the image class of the identity map F 4 Fin
the first cohomology group H*(C, £ ® F*) under the coboundary map.
Proposition. Stable bundles are indecomposable, i.e. the extension class is never
trivial.

Proof. A splitting of an exact sequence
0 W—E-5V =0

is given by a homomorphism V-5 E such that aomr = idy which exhibits V as a
subbundle of E. But this contradicts the stability of E since u(V) > u(E) |
A complementary way of looking at vector bundles over a curve is the following.

Recall that the first homotopy group of a genus g(> 2) algebraic curve C is the free

g

group on 2g symbols {a;;b;} modulo the relation [[7_,[ai,b;] = 1. Introducing one

more generator J and writing the above relation as

g

H[aiabi] = J7

=1

one gets the universal central extension
0—-2Z—-T—-m(C)—1.

Then, E is associated to a representation of I i.e. to a projective representation of
71(C). A fundamental result of Narasihman and Seshadri states that stable bundles
are those arising from irreducible unitary representations (and the semistable ones are
those ones where irreducibility fails to hold). In other words one has the following

Theorem. An indecomposable holomorphic vector bundle E——C is stable iff it
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admits a unitary connection having constant central curvature xQ = —2mip(E).
Such a connection is unique.

We will sketch a gauge-theoretical proof of this theorem following Donaldson [Do].
The link between gauge theory (i.e. the differential geometrical approach to vector
bundles) and the algebraic geometry of their sheaves of local holomorphic sections
relies on the following remarkable fact. Given a C'* hermitean vector bundle E over

a complex manifold M with a connection A4, the covariant derivative d4 : QO(E) —
Q' (E) splits into

d, :Q°(E) — QV(E)

dy :Q°(E) — Q"(E)
Thus, by promoting the local sections in the kernel of d'} to be the holomorphic ones,
one gets a holomorphic structure on E. Conversely, if E is a holomorphic vector
bundle , there is a unique unitary connection A such that d = 0.
Now the group § of unitary automorphisms of E acts on the space of unitary
connections A as A — A* = A — dau-u"! and the action extends to its com-
plexification G, which is the group of linear automorphisms of £ as 4 — Agy =
A—04g-g7 + (Dag 'gﬁl)*
Obviously, A and A' define isomorphic holomorphic structures whenever theyﬁlie
in the same G%-orbit, and hence A/ G® parameterizes all non-equivalent holo;éor—
phic bundles of the same degree and rank. Given the bundle E, in the folloﬁing
[E] will denote the GC~orbit of connections on the underlying C* bundle. The
theorem above is true for r = 1, since the curvature of a connection can be al-
ways expressed as = 09log|s|? for s any section of the line bundle L. Then
Q € H*(C,R) = 0 € H°(C,R) and so is a constant by Hodge theory. In higher
rank, one considers the functional (defined on the space of self adjoint sections of
End(E)) N(s) = ([ +Tr(s* - 3))% and define

J: A C

4 o N(Epen)

This functional vanishes iff A satisfies the theorem; it is not smooth, but has the

following semicontinuity property. Given a sequence {A;} weakly convergent to A
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in the Sobolev space L} (so that Q4, weakly converges to Q4 in L?, then J(4) <
liminf J(4;). Then consider a weakly convergent minimizing sequence of connections
{A;} for J(-) with {4;} € [E]. By Uhlenbeck’s weak compactness theorem this se-
quence will admit a limit A. Then, it can be proven [Do] that either A is in [E], and
J(A) =0 or E is not stable.

According to this, one can compute the dimension of the “moduli space” of rank r
and degree d stable bundles, hereinafter denoted by U(r, d), computing the cohomol-
ogy of the complex of Lie algebra associated to the representation of m;(C) which
defines the vector bundle E, but we prefer to do such a computation by means of a
Kodaira-Spencer like approach.

Definition. A deformation of the vector bundle E — C parameterized by the
pointed analytic space (T, 1) is a vector bundle W — C x T such that, for any ¢t € T
the restriction to the fibre over ¢ of the projection onto the second factor W; is a
vector bundle over C, plus a fixed isomorphism between W;, and E.

In terms of transition functions, consider a local trivializing system {Uq,gas}, and
assume, for the sake of simplicity, that the open sets U, are also coordinate patches,
so that, actually, one can think of the transition functions as holomorphic maps
from domains of C to GL(n,C).Then a deformation will be given by introducing ex-
tra parameters t1,...,t, and considering G L(n,C)-valued functions gog(2s;t) which
satisfy

a) JaB(f8+(2+);1)38~y(2+;t) = Jay(2z4;t) for every fixed t € T', fop being the clutching
functions on M;

b)gap(zs;to) = gap(zp)-

To get the dimension of the b‘ase space of a universal deformation, one has to con-
sider infinitesimal deformations, i.e., deformations parameterized by the ring of the
dual numbers. This amounts to considering T" a ball in C, taking ¢y = 0 and writing
Gop(285t) = gap(2s) + tbap(zp). A simple computation (which we will describe in
more details when considering vector bundles over variable curves) shows that the

Maurer-Cartan local forms ggg -bap give rise to a one—cocycle in C'(C, EndE). Then
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by the Riemann—Roch theorem one has that if W — C x T is a universal deformation,
dimT = dimH"'(C,End(E)) =r*(g — 1) + 1

Of course, the same result could have been gotten by noticing that the sheaf of in-
finitesimal automorphisms of E is actually the sheaf of sections of End(E).

Given a family of vector bundles W — C x T, the set of points ¢ € T such that W, is
stable is open in T and so the set A, of connections such that the associated holomor-
phic vector bundle E4 is stable is open in the affine Banach space A and is invariant
under the action of G€. Also, thanks to the fact that H°(C, End(E)) = C if E is sta-
ble, the quotient G = G€/C* acts properly and freely on A,. Hence U(r,d) = A,/G
inherits the structure of a r*(g — 1) + 1-dimensional smooth complex manifold. This
is also a (coarse) moduli space for stable rank r and degree d vector bundles over
C. It has sound geometrical properties: it is a quasi-projective algebraic variety and
admits (for ¢ > 2) a natural compactification of codimension greater than 2 whose
points are (isomorphism classes) of semistable bundles. When r and d are coprime the
situation is greatly simplified (essentially because the notion of stability and semi-
stability coincide) and the following results hold:

a) U(r,d) is projective

b) U(r,d) represent the functor T—U(r,d)(T)/Pic(T) where :‘ﬁwo vector bundles
W, and W; over T x C are identified whenever there is a line bundle I — T such
that Wy >~ W, ® pri(L).

Taking determinants gives rise to a map det : U(r,d) — Picy whose fibre over L
is clearly the moduli space of stable bundles with fixed determinant L € Picg, Picg
being the degree d component of the Picard group of C. This space will be denoted
Uo(r, L). Its dimension is readily computed as dimUy(r, L) = (r*> —1)(g—1), since the
sheaf of infinitesimal automorphisms of a bundle with fixed determinant is the sheaf
of trace—free endomorphisms of E, Endy(E). The fact that the dimensions of U(r, d)
and Uy(r, L) differ by the genus of the algebraic curve is apparent from the following
observation. The Jacobian J(C) ~ Picy acts both on U(r, d) and on Picy by tensor
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product; if we let J(C) act on Picy by the rth power map, then the diagram

det

U(r,d) — Picy
lor o
U(r,d) 25 Picy
commutes and shows that [AB]
U(r,d) = (Us(r, L) x Picqg) /H(C,Z,)

As proven by Harder and Narasihman [HS], the action of H*(C,Z,) on the rational
cohomology of Ug(r, L) is trivial, so that

H*(U(r,d),Q) = H*(Uo(r,L),Q) ® H*(Jc, Q)

An analogous result holds for the first homotopy group: Uy (r, L) is simply connected

and

m(U(r,d)) = H'(C,I).

Some results about the analytic cohomology of Uy(r, L), still in the coprime case, are
the following.

a) The Picard group Pic(Uq(r, L)) is free cyclic and it is generated by the inverse of
the square root of the canonical bundle;

b) H*(Uo(r,L), Tus(r,ry) = 0if i # 1

and H*(Uo(r, L), Tue(mry) ~ HY(C, Tc)

c) the structure sheaf Oy, 1) has no cohomology except for the zeroth group which
is obviously C.

We end this section discussing about the Poincaré vector bundle over U(r, d). Let us
consider a family vector bundles parameterized by the moduli space U(r,d). A vector

bundle V' — U(r,d) x C is called a Poincaré vector bundle if

Vr[E]xC =FEVEe€ U('I",d)
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The Poincaré vector bundle has the following universal property; given any other

family of vector bundles over C' parameterized by an analytic space S,
V-o8xC
there is a unique map S—U(r, d) such that
(ide x f)*V =V @ pi(L)

where p; : § x C — § is the projection onto the first factor and I is a line bundle
over S.

It is apparent from the definition that a Poincaré vector bundle is defined up to
tensorization with a line bundle on U(r,d). Hence one has a normalization problem,
which can be solved in the following way [AB]. Let V be any Poincaré vector bundle,
and consider the line bundles F = det p;;V and F = det VIu(rdyxipy- Since the
Poincaré vector bundle is defined only up to tensorization with pull-backs of line
bundles on the base, it is important to control the behaviour of ¢;(E) and ¢; (F)

under such tensorizations. By the Grothendieck-Riemann-Roch theorem,
c1(p1r(V @ pi(L))) = p1«(CRV ® pi(L) - Tdr))
so that
ai(pi(V @ pi(L))) = cr(V) + [r(1 — g) + dles(L) = er(V) + x(V)er (L)
On the other hand,

e1(det Vraye iy ® PL(L)) = e1(det VIU(r,d) x {p}) + rex (L)

If we define V = v @pi(ELFL)then VW=V ®’E(L) if and only if the diophan-
tine equation

1+x(V)p+rg=0

admits a solution. Taking into account the expression of the Euler characteristics

x(V'), one arrives at

p=q(9—1)~(—q£i2

T
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which can be solved thanks to the fact that (r,d) = 1. Then if gq is the unique integer
—r < g < 0 satisfying ¢¢p = —1lmodr, V is uniquely defined up to isomorphism.
This procedure gives us a relation between c;(Ey ) and ¢y (Fy) since if (po,qo) are

determined by the request above,
V ~V®pi(ELP ® FY)

and hence

poci(Ey) + qer(Fy) =0

Restricting V to a fiber of U(r, d)ﬁPicd(C’) gives rise to line bundles E% and Ffo/
which satisfy the same relation. Notice that, in the general case, neither Eg-, nor F‘-O,
can be taken as the free generator of Pic(Up(r,L)).

A representative for the generator can be obtained by means of the fact that [NR2] the
tangent bundle to Ug(r, L) is the first dirept image sheaf Rll,uEndof/ and the already
recalled fact that its first Chern class is minus the square of the ample generator of
Pic(Uy(r,L)). In fact the Grothendieck-Riemann-Roch theorem, when applied to the
sheaf Endy(V') gives

c1(p11(Endo(V)) = —ci(R),, EndoV) = —p1+(ChEndy(V)Tdr))

Now, Ch(EndoV) = Ch(EndV) —1 = Ch(V* @ V) —1 = —(1 — Ch(V) - Ch(V*).

Then one has
c1(RL,, EndoV) = pr.{l — {(n + Chy(V) + Cha(V) + - --)-
(n+ Chy(V*) + Chy(V*) +---)- (1 = —;-cl(w/))}}

where w/ is the relative dualizing sheaf. Considering only the appropriate pieces,

(r = Ola(7) + Cha(T)H)(1 = ses(eo)) 1)} = =2 1. (Chal(7))

which exhibits py.(Chz(V)) as the generator for Pic(Up(r, L)).
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Chapter 2.

Super—Algebraic Geometry.

Supersymmetry, first invented in the early days of string theory, has received in
the last two decades a growing attention in theoretical quantum field theory especially
in view of the hope of getting finite theories of elementary interactions. Apart from
that, in two—dimensions it acquires a remarkable significance, since some well known
statistical models such as the Ising model with vacancies exhibit such a symmetry at
their critical points.

Its main mathematical interest lies in the fact that it is the first example of (mildly)
non—commutative geometry, and its study is an ideal training in testing new di-
mension in geometry in the spirit as advocated by Manin [M1]. There are several
geometric structures which are generically called supermanifolds both in the physi-
cal and in the mathematical literature. In this thesis work we will mainly stick to
the Berezin-Kostant-Leites approach to “supergeometry”[Be] [L], and this chapter is
devoted to a collection of some basic definitions and results concerning this theory in
the holomorphic framework. The main motivations for this choice are the following.
First, in this picture the “anticommuting coordinates” will emerge as local generators
of the “minimal” extension of the structure sheaf of an ordinary manifold. This keeps
us as close as possible to the framework suggested by works on supersymmetry in
physics. Second, from a mathematical standpoint, as will be apparent in the sequel,
this category is very close to the one of ordinary complex spaces, thus éllowing the
use of powerful techniques of sheaf theory and complex geometry without the need

of considering sheaves with infinitely many generators. In any case, the spirit of the
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most correct (i.e. closest to physics) approach to supergeometry is [S2] to regard a
supermanifold as a functor from the category of Grassmann algebras to the category
of sets. This will be respected throughout our analysis.

Section 2.1 deals with some structure theory of supervarieties, (which, in the complex
case happens to be far richer than in the C™ case), with special emphasis on the
so—called splitting problem. Section 2.2 will be devoted to an outline of the set up of

their deformation theory.

2.1. Complex Superanalytic Spaces.

Whatever mathematical environment for a supersymmetrical field theory one
has in mind, complex superspaces are topological spaces X together with a structure
sheaf which is a Z,-graded extension of the ordinary structure sheaf QOx. Let us recall
their definition, deferring to appendix A.3 for a listing of some of the main properties
of Z,-graded rings and algebras.

Definition . (i) A ringed space (X, Ax) is a topological space X together with a
sheaf of rings Ax over it. X is commonly called the underlying space and Ax the
structure sheaf.

(ii) a map between two ringed spaces (X,.Ax) and (Y, Ay) is a continuous map
f+ X — Y and a sheaf homomorphism fy : Ay — f.Ax (or equivalently f* :
frAy — Ax)

Definition. (i) Let F be a field. An F-ringed space is a ringed space (X, Ax) such
that the restriction Ax;, of the structure sheaf to any open set U C X has the
structure of an F-algebra with unity. One also assumes that for all stalks A, of
Ax a morphism of F-algebras c, : A, — F is given. Its kernel is then a maximal

two-sided ideal L.

(ii) a map of F-ringed spaces is a map of ringed spaces such that fy is a morphism
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of sheaves of F-algebras making the diagram

F
f(p) / ‘P\
fu
AYJ’(?) - fa AXP

commutative.

Definition. A complex supervariety is a C-ringed space (X, Ax) such that
- (i) X is Hausdorff with countable basis.

(i) Ax = A% @ AL is a sheaf of graded commutative C-algebras.

(iii) (X,.4%) is an analytic space.

(iv) A% is a coherent A% - module.

(v) if N — Ax is the ideal of nilpotents and Aeq = Ax/N, then (X, Areq) is
an ordinary complex space.

(vi) the Areq-module € = N /AN? is locally free and Ay is locally isomorphic to
its Grassmann algebra A*(&). "
Moreover, (X, Ax) is said to have dimension m|n if m = dim(X, Areq) and n =

rka_ ., E.

red
Remark. What actually characterizes the category of Berezin — Kostant — Leites
supermanifolds among all possible geometric realizations of supersymmetry is condi-
tion (v).

The underlying complex space (X, A .q) is often denoted X,.q for the sake of brevity.
As in the case of ordinary manifolds, one can define a supermanifold as a space
locally isomorphic to a prototypical one, a "model space”. Such models are called
superdomains. As in this thesis we are primarily interested in holomorphic graded
manifolds from now on we will stick to that case. Quite obviously, all what we are
recalling now is true also for C'™ real manifolds, provided one substitutes C with R

and "’holomorphic” with ”infinitely differentiable”.

Definition . A superdomain U of dimension m/|n is a ringed space of the form

T = (U, 0y ® A*(C™))
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where U is a domain in C™, Oy is the ring of holomorphic functions on U and
A*(C™) is the Grassmann algebra of C™. Notice that the ring A 1= Oy ® A*(C™), has
a natural Z - grading, and hence inherits a rougher Z, grading. This apparently trivial
observation will be of primary interest in the discussion of splitness and projectedness
of supermanifolds.

Remark. An ordinary domain (U, Oy ) is thus naturally a superdomain of dimension
m|0. Moreover, considering the subalgebra A/ generated by nilpotent elements in A

and taking the quotient .A/A one gets the natural map
A/N — Oy
i.e., (recalling the definition of maps between ringed spaces) an embedding
(U,0u) — (U,0u ® A*(C™))

Morphisms of superdomains can be characterized in the following way. Let
U = (U,0p @ A*(C™)) and V = (V,O0v ® A*(CP)) and let =%, ¢7 be coordinates
in U (this means that the z’s are coordinates in U and the £’s are a free set of
odd generators for A*(C™)). Then, given m (m = dimV) even sections y' and p
odd sections n* of the sheaf Oy ® A*(C™) such that y'(z,0) lies in V, one defines a

morphism of superdomains by means of

AV > b(y,n) ~~p b(y(ﬂi,f),ﬂ(w,f)) € A_ﬁ

Conversely, any morphism of superdomains has this form.

One can give the constructive definition of a supermanifold as an object built
up by glueing superdomains.
Definition . A complex supermanifold of dimension m/|n is a C-ringed space (X, Ax)
satisfying the following conditions. |

(i) Every point p € X has a neighbourhood U, s.t. there exists an isomorphism

of C-ringed spaces

(fs f1) : (U, Aly) — (W, 0w @ A*(C™))
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where (W, Ow ® A*(C™)) is an (m|n) dimensional superdomain. Such an f = (f, fy)
will be called a chart.
@) ifUNV # 0 and (g9,95) : (V, Aly) — (Y,0r ® A*(C™)) is another chart,

! i{s an isomorphism of superdomains wherever

then the composite map (f, fy)o(g,94)”
defined. Such maps will be called transition functions.

Proposition .[Be] Suppose we are given a collection of superdomains
ﬁa = (UOHOUa ® /\*(Cn))

and, V ordered pair «,3 of indices an open subspace Uyg of U, together with mor-
phisms

?aﬁ: -ﬁaﬁ - U—ﬁa

such that they satisfy the cocycle condition

aaﬁ 0 -SB,B'Y o ‘9-5')«:2 = Id—[_f

afy

Then there exists a unique (up to isomorphisms) complex supermanifold (X, A x)
having the p,4’s as transition functions.

Via the identification of analytic locally free sheaves of constant rank on X and
(sheaves of local sections of) vector bundles on X, roughly speaking a supermanifold
is a ringed space whose structure sheaf is locally isomorphic to the sheaf of sections
of a Grassmann algebra of a vector bundle. This interpretation raises a natural
question, i.e. how far this local isomorphism can be ”globalized”. To be concrete,
from the very definition of a supermanifold, one gets the following two sheaf exact
sequences [R1]

0= N—A—->AN=0-0 (a)

0N A AN>=00E —0 (b)

If there is a splitting 0 — OCLA of (a) the supermanifold is said to be projected
and if (b) splits as 0 — O @ £5 A it is said to be split. Notice that p must satisfy

w(5€) = u(f)-u(€) Vi€eOandéecOBE.

43



The terminology deserves a bit of explanation. For what projectedness is concerned,
notice that, having an injective map O A gives a map (zd,7) between the ringed
spaces

(id,7) : (X, Ax) — (X, 0x)

so that the supermanifold ”projects” down to the underlying manifold.
As for the splitness, suppose (b) splits. Then we can consistently extend x :
OB &— Atop:A*(E) — A by means of

A(f &Aoo N&a) = p(f) - p(€a) A A p(én)

which is clearly a Z,-ring isomorphism. Then splitness of a supermanifold means that
the structure sheaf A is globally isomorphic to the sheaf of section of a Grassmann
algebra of a vector bundle £ - X.

Remark. Every m|l-dimensional supermanifold is trivially split. In fact in this case,

N? =0 and hence the sequence (b) collapses to
0—=A—-08&= A" (€)) —0.

We next want to enter in more details the issues of splitness and projectedness
of supermanifolds. A keen starting point, due to Rothstein [R1], is to try to to
characterize how far a given supermanifold is different from its ”split counterpart”.
Namely, given (X, A) and (X,A*(£)) with £ ~ A/N we have two supermanifolds
which agree, by construction, up the so-called first infinitesimal neighbourhood, and
one wants to set up a machinery telling how far this isomorphism can be pushed on.

Let Aut A* (£) denote the sheaf of parity preserving C-linear automorphisms of
A*(E) and Agy(€) := Dok N(E). If g : A*(E) — A*(E) is an automorphism, then
it induces naturally an automorphism § of £. Let then Aut™ A*(£) denote the subsheaf
of AutA*(€)s.t. § =1ide. Aut™ A*(€) can be identified with a more tractable object.
In fact, let k be an even integer and let Derjy A* (€) be the sheaf of derivations in
A*(€) which increase the degree by k. As above, let Der(¥) ;= > i<zk<n Derae A*(E).
The following holds [R1]
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Proposition

exp : Der(® A% (£) — Aut™ A* (€)

is a bijection.
Now, let us consider an open cover {Uqs}aca such that the sheaf Al is isomorphic

to Oy, @ A*(C™) and also U, trivializes the vector bundle E. Let us denote
Gr(A) = A/NON/N* @ - ND/N™
and suppose that the supercoordinatization

ol : Aly, — AN (E)lu,

is the identity when thought as being defined on Gr(A)[y, . Then the cocycle ¢l o
tpg ~! defines A up to isomorphisms and hence one gets the following

Proposition [R1,Gr] The isomorphism classes of supermanifolds (X, Ax) with un-
derlying O-module £ are in a natural 1 — 1 correspondence with the cohomology

set

HY (X, Autt A* (£)) ~ HY(X, Der™® A* (€)).

Then a (smooth) supermanifold is characterized by the datum of
(i) a complex manifold X
(ii) a holomorphic vector bundle E 5 X
(iii) a cohomology class 7 € H(X, Aut™ A* (€)) or log T € H*(X, Der® A% (£)).

Notice that, being Autt A* (£) non-abelian, H(X, Aut™ A* (£)) is a pointed set
rather than a group, and its distinguished point labels the isomorphism class of the
split supermanifold.

To sharpen the analysis above, one can express the obstruction to splitness and
projectedness by means of ”a chain of obstructions” [Gr].
Proposition . For any holomorphic vector bundle E = X, Aut™ A* (£) admits a
decreasing filtration Aut] A* () satisfying

(1) Autf A* (€) = Aut] A* (E)
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(ii) if k is even Auty A* (€)/Aut{ , A* (€) =~ Dero, (Ox,A*(€)) =~ TX ® A*(E)

(iii) if & is odd Aut} A* (5)/Aut}:+1 A*(E) =~ Homoy (A (E), N¥(E)) =~ EX*@NA*(E)
Then it is clear that the obstruction to splitness is given by cohomology classes 75 €
H(X, Autf A* (5)/Aut;:+1 A*(&)) and, in particular, the obstruction to projectedness
is given by the even classes 5.
The proposition above gives immediately a nice proof of Batchelor’s theorem which
states that, in the category of C'® supermanifold, every object is the wedge product
of a vector bundle. This follows at once by noticing that in this case Der(?) A* (&)
is a sheaf of C°°(X)-modules and hence, being C°°(X) fine, its first cohomology
vanishes.

The above analysis can be easily in terms of transition functions. Let {U,} be a
1

(locally finite) open covering of X and suppose we can express the cocycle ¢! o (pluB -

by means of

{ Lo = fa,@(mﬁagﬁ)
o = gap(zp,¢p)

Expanding in power series in the odd generators £E’s one has

335 = :ﬁ(wﬁ) +.f£ﬁi:j(m,3)§z3£é +e
£ = 9up;(26)E5 + gfxﬁjkl%fg% T

Whenever the supermanifold is (isomorphic to) (X, A*(£)), one can find a refinement
{Va} of {Us} such that the transition functions for the generators are those for a

holomorphic vector bundle, i.e.
zh = fos(zp) '
€& = gfxaj(wﬁ)%

which means that the "higher order terms” appearing in the above most general

transformation law are, roughly speaking, cohomologous to zero.

To give a more concrete meaning to the preceeding discussion we show here that
the set of non-split supermanifolds is non-void by constructing a (very elementary)

example.
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Let us consider two copies of (C*,O¢c+ ® A(C?)) parameterized by (z,£1,&2) and
(w,m1,m2) and glue them by means of the following cocycle:

Thus the underlying manifold is the Riemann sphere P! and £ = K @ K is the direct
sum of two copies of the canonical bundle K. The obstruction class reduces to ™
represented by the cocycle

1 .
s g @1 Ang in HY(PY, K™ @ A2(K @ K))
wd 9z

Now, under the identification H*(P!, K~! @ A2(K @ K)) ~ H*(P!, K) the obstruc-
tion cocycle becomes dw/w which is the generator of H*(P!,K) = C.

Finally, as it should be expected, most of the constructions of ordinary differ-
ential geometry carries over the graded-commutative case. For instance, one has a
sound notion of what are to be considered the correct generalizations of the notion of
vector bundle. Obviously, as Berezin—Kostant-Leites supermanifolds are introduced
as ringed spaces, vector bundles are to be generically defined in sheaf-theoretical
terms as follows.

Definition . Let (X, .4x) be a supermanifold. We define a rank r|s super vector
bundle over to be an Ax - locally free sheaf F over X of rank r|s. In particular, a

line bundle £ is a rank 1]0 vector bundle over (X, Ax).

Definition . The tangent sheaf 7X to (X, Ax) is the sheaf defined by the
presheaf

U—Der(Ax)ly

where Der(Ax)ly is the sheaf of graded derivations of the ring Ax)[.
To be definite, we will choose left derivations, and consequently 7 X [y admits

a natural structure of free left Ax-module, of rank equal (by definition!) to the

dimension of (X, Ax).
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2.2. Deformation theory of complex superspaces.

The aim of this section is to give some definitions of the deformation theory of complex
superspaces, and to show that, the usual technology of the ordinary case (discussed,
for the case of curves, in chapter 1) can be carried over to the graded commutative

category.

By a complex analytic superspace we mean, in analogy with ordinary reduced
complex spaces, a ringed space (X, Ax), where Ax is a sheaf of graded commutative
C-algebras, which is locally isomorf)hic to a complex analytic superspace patch, where
the latter is defined as follows.

Let us consider a superdomain U := (U, Ay) = (U, Ou ® A*(C?)), a set {f1, -+, fx}
of sections of Ay and the ideal J they define in Ay. The reduction modulo nilpotents
defines a complex analytic space patch V so that one defines the complex analytic

superspace patch (defined by the f;’s) as the ringed space
V =(V,Au/J)

Let V and W two complex analytic space patches, both subsuperspaces of CPl¢.
They are called equivalent at ¢ € CP iff there is a neighbourhood U of z such that
Avluav—Aw lynw are isomorphic.

Definition . A germ of complex superspace at z is an equivalence class of
complex superspaces.

Morphisms between such objects are defined by taking representatives and mor-

phisms between them and requiring the correspondent equivalence condition.

Definition . Let ($,s) be a germ of complex superspace at s. A deformation (x,9)

of a complex superspace (X, Ax) over (5, s) is a commutative diagram

! I
{s} — S
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where 7 : X — S is a flat complex superspace morphism and i is a fixed isomorphism
between X and the central fiber 7).
A morphism
("?a S')_'J’(j}a T')
is a pair of complex superspace and germ morphisms X 2,y and § LT such that

the following diagram

1s commutative.

Given a deformation of a complex superspace (X, (5, s)) and a germ morphism
(T,8)=(S,9)

one defines the pullback deformation f*(X') over (T,t) as the fibered product X x5,

meaning that, as topological spaces,
F*(X) = {(z,t) € X x T|f(t) = m(z)}
and, as for the structure sheaf,
Apsx = Ar®Ax/ ((idr x 7)*T)

where J is the ideal defining the graph of f.
We denote by Def(X,S) the set of isomorphism classes of deformations of X

over S.
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The pull-back deformation comes equipped with two morphisms p; and p,, map-

ping onto the first and second component of each pair (z,t), which make the diagram

frx 2 x
s
T L, s

commutative.

Recall that the pull-back deformation has the following property: for any de-
formation 7' : X' — B' and any morphisms of deformations (T, f) : X' — X there

exists a unique morphism (¥,k) : X' — f*X such that the diagram

&' — fr(X)

cominutes.

Given a complex superspace (X, Ax), the pull-back makes Def(X,-) : CS —
Ens into a contravariant functor from the category CS of (germs of pointed) complex
superspaces to the category Ens of sets, which assigns to each B € CS the set
Def(X, B) of isomorphism classes of deformations of X over B.

As usual in deformation theory, we say that a deformation X € Def(X,B) is
i) complete, if for any other deformation X' € Def(X, B') there exists a morphism

f:B'"— B
such that X' is isomorphic to the pull-back deformation f*X,
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ii) universal if such an f is unique or versal if all the morphisms f satisfying condition
i) have the same differential.

The same definitions can be repeated when B is a purely even superspace. In
this case one speaks of even completeness, even versality etc.. Notice that a purely

even superspace is the same thing as a (non reduced) complex space.

Having introduced the moduli functor for complex superspaces, one can argue
about moduli (super)spaces, defined as (see §1.2) spaces M realizing an isomorphism
of functors Defx(-,M) ~ Hom(-,M). The search for a fine moduli space in this
category is almost hopeless. Namely, Z5-graded commutative algebras always admit

the canonical involution

a(z) =(-1)%=z

which play the réle of non trivial automorphisms in the case of moduli spaces of
Riemann surfaces . Nonetheless, what one is really interested in is the existence of
a coarse moduli space for superspaces of a certain ”topological” class. Solving this
pi‘oblem is tantamount to solving the problem of existence of versal deformations for
(X, Ax). That they exist has been recently proven by Vaintrob [V] considering first
evenversal deformations and then considering their extensions to "odd” directions.

What is outstandingly relevant is the extension to the supersymmetric case of the
Kodaira-Spencer formalism, and, namely the definition of the super Kodaira-Spencer
map, KXS. Mimicking what happens in standard deformation theory, one first studies
infinitesimal deformations. To this purpose, one introduces the super—commutative
ring of super-dual numbers Os = C[t,¢]/(¢%,t(), where (¢,¢) € C*1, C[t,(] is the
polynomial ring and (t?,%¢) is the ideal generated by t*> and (. Associated to this
ring there is a superspace S = ({*}, Os), which embodies the idea of a super-tangent
vector.
Definition . Let (X, Ax) be a complex superspace. A deformation of (X, Ax) over
S will be called an infinitesimal deformation.

Given a complex superspace (B, by), the tangent space Ty, B at by is isomorphic to

the linear superspace Mor(S,B) = {f : § — B| f(*) = by} of superspace morphisms.
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Now, given a deformation X — B of X, we can think of a tangent vector in T3 B
as a map f € Mor(S,B) and the pull-back deformation f*X — S is a first order
deformation of C. The Kodaira-Spencer class of is obtained by considering the exact

sheaf sequence

0— f*TX;—f*TX— f*(DerB) — 0
where 7 X is the relative tangent sheaf. Taking the coboundary map one has
KS;: H'(f*(DerB)) = A € Ty,B — H(f*TX,)=TX
and then, letting f vary one gets the XS homomorphism |
KS:T,,B— H'(X,TX)

The fundamental theorems of the Kodaira-Spencer theory extend to the graded com-
mutative case [V]. In particular, when X is of dimension 1|p it holds:
Theorem . A deformation of (X, Ax) such that KSis surjective (an isomorphism)

is complete (resp. versal).
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Chapter 3.

Super—Algebraic Curves

The issue of checking the consistency of superstring theory as the “theory of ev-
erything” is plagued with difficulties both of technical and substantial nature. Among
the problems which are not yet completely solved, stems the question of the global
structure of supermoduli space, which plays in superstring theory the réle of moduli
space of algebraic curves in the bosonic model. For instance, when computing am-
plitudes in superstring theory via a path integral approach, one faces the problem of
dealing with odd variables. While the bosonic piece of the Polyakov path integral is
well understood as an integral over moduli spaces of algebraic curves, the fermionic
part is more embarrassing as the discovery of ambiguities in performing the integra-
tion over odd variables has pointed out (for a review see e.g. [DP]). To cut a long
story short, the basic trouble comes from the fact that in a given supersymmetric
gauge the measure for superstrings reduces to a Berezin form, which unluckily is
gauge dependent. This is because a supersymmetry transformation induces a small
variation of one’s gauge choice in a way which mixes up even and odd variables. In
other words, the modular parameters change by a nilpotent contribution inducing a
change of the string measure by a “total derivative” which deprives any computation
of sensible physical meaning.

Although the local problem may be handled within the correct treatment of
Berezin forms under non-split coordinate transformations [R2], this approach is not
completely satisfactory for the following reasons. First, due to the non-naturality of

the splitting of the Berezinian sequence even in the smooth case, possible divergences
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in the amplitudes (before GSO-projection) may give rise to boundary terms. Second,
one would like to set up a formalism which manifestly keeps into account super—
holomorphic structures step by step.

In this chapter we consider such problems from the mathematical point of view,
by studying the global structure of supermoduli “spaces”. Our strategy is to describe
the supersymmetric analogue of the moduli stacks [Mu5], but we do not attempt to
formalize such a structure here. We choose instead a direct coordinate approach,
giving explicit representatives for the odd moduli which, as we shall see, can be
identified with gravitino zero—modes.

Our analysis boils down to give results which are essentially of a negative type
(except for genus g = 2) and namely that the simplest choices one can make in
defining universal deformations of susy—curves give non-projected “atlases” on su-
permoduli spaces, a fact that has been suspected for a long time in the physical
literature.

This does not mean, of course, that there are no subtler choices of gravitino
zero—modes which may eventually lead to projected atlases. The nontrivial part is
however to study whether the obstruction cocycle can be made trivial, and, in any
case, this may possibly remove only the first obstruction to projectedness leaving
open the question of higher order obstructions.

Needless to say, a full study of the problem requires a more careful handling of
sheaves on the moduli stack of spin curves and their cohomology, including families
with singular curves. Anyhow, the fact that the most natural choices one can make
do not work has severe consequences for physical applications, where one needs a
detailed computational control of the matter. Accordingly, we feel more promising
than looking for abstruse fine tunings of choices, the strategy of setting up a formalism
which is insensitive to splitness obstructions. For instance, a satisfactory measure for
supermoduli can be indeed obtained in the operator formalism [AGMNV]. On the
other hand, when relying on the Polyakov’s path-integral method, one may try to
work on the split model of supermoduli, and extract from it the relevant informations.

The results on super-Mumford forms of Manin and others [BMFS,M2,Vo] seem to
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support this possible way—out.

Finally, although studying ”"two supersymmetries” may seem the most obvious
step beyond N=1, it is already a non trivial matter as noticed in some works [Co,Me]
recently appeared in the literature. In fact, for V > 1 one is lead to consider locally
free sheaves of rank greater than one on algebraic curves. Actually, for N=2 the
superconformal structure to be imposed on such objects will bypass most of the
subtleties related with moduli of vector bundles over variable curves, leaving us with
a supervariety whose reduced space is a suitable quotient of the Picard variety over
the moduli space of genus g curves.

From the physical point of view, there is some string—theoretical interest in the
study of N=2 superconformal models, as it has been pointed out [Ge| that in the
Calabi-Yau compactification scheme of the extra dimensions, space-time N=1 super-
symmetry requires N=2 world-sheet supersymmetry. It is also widely believed that
viewing N=1 supermoduli spaces as embedded in N=2 supermoduli spaces could be a
keen standpoint for investigating the peculiarities of the first (provided one has a go!c.)d
control of the second). Furthermore, as it will be proven later on, the moduli space
of susys-curves is locally isomorphic to the moduli space of 1|1-dimensional super-
manifolds. This is quite interesting, since it is by now clear that the supersymmetric
generalization of the Krichever construction, in the field theoretic interpretation, m-
volves this moduli space as a building block [Ra].

In the last section of this chapter we describe the reduced space of N=2 super-
moduli space and its first infinitesimal neighbourhood. The properties of the system
one expects on physical grounds (such as the existence of modular parameters for the

U(1) current mixing supersymmetries) emerge most neatly.

3.1 N=1 susy—curves and their deformations.

The analysis of two-dimensional superconformal supergravity [Ho| lead to the remark-

able observation that real 2-dimensional supermanifolds are locally superconformally
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flat, i.e. one can always find supersymmetry gauges in which the superderivative D

looks locally like
0 0

=~ 4=
00 + 0z
By analogy with ordinary complex manifolds theory, one then is naturally lead to the

D

definition of a Super Riemann surface (alias a susy—curve) as a supermanifold locally
built with coordinate patches that preserve in some sense such a structure.
Namely, considering a generic 1|1-dimensional complex manifold, we see that,

considering holomorphic transition functions

{; (2,6)

z
8(z,0)
the superderivative transforms as [Fr]

D= [pa] D + [Dz - éDé] D?

A holomorphic map of the above form will be called a superconformal transformation

iff the transformation law for the superderivative D is homogeneous, i.e. if
D=[Di|D « [pz-§Db]D* =0

Notice that D* = %FDJ)J = ‘382 and (D, %) span the tangent space T¢ 3.

Accordingly, one is lead to the following
Definition. A super—curve is the datum of
a) an algebraic curve C,.q, with structure sheaf O,

b) a sheaf A over Creq of super-commutative C-algebras (with nilpotent ideal A
such that

i) A/IN =0,
ii) the O—module N is locally free of rank 1.

Definition. A susy—curve € is a supercurve, together with

c) a locally free rank 0|1 subsheaf D of the tangent sheaf TC

0D —TC—TC/D—0
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such that

ili) the commutator (mod D)
[,]p:D®D— TC/D
is an isomorphism, so that D and [D,D|p generate T'C.

To make contact with the coordinate approach to superconformal field theory
one can argue in the following way. Considering obviously the smooth case, one can
identify a local generator for the distribution D[ with the coordinate expression
0/00, + 04 ® 0/0zy. The equivalence between the two definitions will be given
below; anyhow as a consequence on each intersection Uy N Ug we have that both
0/084 + 0o ® 0/0zo and 0/06s + 05 ® 8/0z generate D and therefore should be

proportional. An easy computation yields the following clutching functions

zo = fop(2p)
0o = gap(28) Op

with g2 = wpr (fop = dfap/dzg), showing that the gog are transition functions for
a §- characteristics £ on C,.q4. Conversely, given a pair (Chreq, L) We can construct
a susy-curve C just setting A = O @ IIL, where II is the parity changing functor,
whose effect is to make sections of £ anticommute. Summing up we have the

Proposition. There are as many susy-curves C on a fixed smooth algebraic curve

Cred as reduced space as - characteristics on Cpeg.

The notion of a (N = 1) susy—curve depending on a parameter space (B,Op) is
given as follows.
Definition. A family of susy-curves X parameterized by a complex superspace B, or,
for the sake of brevity, a susy-curve X over B, is a proper surjective map m: X — B of
complex superspaces having 1|1-dimensional fibres, together with a 0|1-dimensional
distribution D, in the relative tangent sheaf 7, X such that the supercommutator

mod Dy, [, |p :D®° —T X /D, is an isomorphism.
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When B reduces to a point {*}, one will speak of ‘isolated’ or ‘single’ susy-curves,
thus recovering the definition we have just given. A relative coordinate system on
the susy-curve X —— B given by coordinate charts {(Ux, Za,8a,b)} in which the local
generator for D, is expressed as Dy = 5-3; + GQE—% is called canonical. Then D®? is
locally generated by 8—8——

Proposition. Any Super Riemann surface admits a canonical atlas [LR].
Proof. Let (w,¢) be a coordinate system. Then, as D is locally free of rank 0|1, it
has a generator of the form 5% + hi, with A odd. Then [D D|p looks locally like

8

qu - 5= so that for the commutator to be an isomorphism, 2 T A must be invertible. Let

us introduce coordinates (z,7) with n = ¢. Now the local generator for D looks like

_Q__l__hi—_(?__}_(haz_*_g{ 9
0¢ = ow  On 8¢’ 0z

so that one has to solve the equation hg= 8" + 8¢> = 7n. Expanding both z and A in

powers of ¢ as

z =120+ ¢z h = hooh;
and equating terms of the same degree in ¢ one obtains the equations

zl"’hlaz
h05‘°+h ba =1

As hy = g—% is invertible this system has solutions.

Besides being mathematically natural, the need for families of susy-curves in phys-
ical applications follows from the fact that world-sheet supersymmetry requires the
presence of a gravitino field on a given single susy-curve C. One can fix local su-
perconformal gauges, which amount to choosing local complex coordinates, a local
holomorphic trivialization of £ and to identifying a chiral piece of the gravitino field
with a section x of A%(Creq, L7 1), i.e. with a smooth antiholomorphic one form
with values in £7! or, passing to Cech cohomology, with a Cech 1-cocycle €ap With
values in £~. Notice that the action of supersymmetry has no effect on the e,5’s,
while we have a local symmetry generated by holomorphic sections 7, of £L™! acting

via Cech coboundaries, i.e. as a3 — €48 + 7o — 1. In other words, we can benefit
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of the isomorphism H%’l(Cred,E“l) = H(Crea,L71) to represent chiral gravitino
fields x (up to supersymmetries) via Cech cocycles €op (up to coboundaries).

The datum of [¢] can be encoded in an extension of the structure sheaf of C as
follows. Forgetting about parity, consider H!(Cpred, L") as a constant sheaf with
group C?972 on Cl.q. If €45 is a representative of [¢] and eiﬁ represent a basis [¢’]
for H(Crea, L71), we set €ap((i) = fig(h (sum over 7 = 1,...,2¢g — 2) and construct
an extension F of £ by C?9~% by stating that F is the sheaf of sections of a rank

2g — 1 vector bundle locally generated by 8, (; with transition functions *

<9a>: +1/fep fiﬁ :<9ﬁ>
G 0 1 G

Notice that F is independent (up to isomorphisms) both of the basis [¢!] and of its
representatives. The supermanifold (Cr.q, AF) is not yet a susy-curve, but we can
cook out of the same data a deformation A of AF making (Creq,.A) a susy-curve. It
is enough to find a superconformal coordinate patching zo = z4(28,85,¢(:), 6o =
(28,88, (;) which reproduces the transition functions above for F and zo = fop(2s)
mod NZ. (here N is the nilpotent ideal locally generated by 4,¢;). The "minimal”

Za = faﬁ(zﬁ) + 9,31/ f(’ylﬂ(zﬁ)eaﬁ(zﬁ’c’l:)

b = \/Fap(z8) + cap(z)elp(26) - b5 + €ap(25, )

By minimal here we mean that it depends only on the data already encoded in F at

answer is

the lowest order compatible with superconformal structures. Unfortunately, we see
that, in spite the local model AF was independent of choices, 4 is not. In particular
it is not independent of the choice of the representatives eiﬂ because of the non-
linear therm e¢’ entering the transition functions. In any case, (Cred, A) gives us an
example of a non trivial susy-curve encoding informations about gravitino fields.

A first step in the construction of supermoduli spaces is to study some deforma-
tion theory of susy-curves. As the notion of susy—curves encodes more data than a

generic 1|1-dimensional supermanifold, their deformations must be defined as follows;

* Hereinafter f; means 0f,3/0z5 The sign ambiguity refers to the choice of a

§-characteristics on C' and will be left implicit in the following.
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Definition . A deformation of a susy-curve C over (the germ of a pointed) complex
superspace (B,by) at by € B is a family m: X— B of susy-curves over B together
with a fixed isomorphism i : C — 7~1(by) between C and the special fibre over b;.

This makes sense because each fibre 771(b),b € B, is itself a single susy curve
with the subsheaf D induced by D,. Notice that an isomorphism of single susy-curves
may be thought of as induced by an isomorphism of the underlying #-characteristics.
We remark also that fixing the isomorphism i : C — 7~ 1(bg) is vital as in the ordinary
case, since it allows the study of the action of the automorphism group of C on the
base space B of its deformations.

Let us recall that, given a deformation 7 : X — B of a susy-curve, we have
two natural subsheaves of the tangent sheaf 7X. Along with the relative tangent
sheaf 7,X = ker m, there is the sheaf 7P X of derivations which commute with
sections of D,. A basic role is played by the sheaf .2 =: 7, X N7 P X of infinitesimal
automorphisms of X.

Lemma. [LR] There is an isomorphism 7.2 ~ D®2,
Proof. Let (z,8) be relative canonical coordinates. Then, any element V € 7.? can

be written as

3}

Then supposing V homogeneous of degree [
D, V] = (Da)2 — (--1)’172 + (Db)D
T Oz 0z
so that

0
V = o + (~1)!(Da)D

and the isomorphism is proven. L

Clearly enough, the sequence
0—-T7TP°X -TP°X - «*TB — 0

1s exact.
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Let us first examine infinitesimal deformations. If S is the ring of the super dual
numbers, and f : § — B represents a tangent vector to B, its Kodaira-Spencer class

is obtained by considering the exact sheaf sequence
0— f*TPX—f*T°X—f*TB -0
Taking the coboundary map one has
K3;: H'(f*TB) = {[f] € Tv,B} — H'(f"TPX) = H'(C,D*).
Letting f vary we get the Kodaira-Spencer homomorphism
KS: Ty, B — HY(C,D®).

Exactly as in the case of deformations of bare supermanifolds, a family of susy-curves
for which KS is an isomorphism is ‘modular’[LR]. On the other hand there is merit in
considering deformations, because as in the ordinary case, one can prove the following
Theorem. A deformation of a susy-curve C‘—i+X——7—r—+A for which X S is an isomor-
phism is universal. -

Proof. Promoting a modular family to be a deformation by adding the datum of
the isomorphism i: ¢ — w~*(0), helps in killing the possible Z, ambiguities. In fact
a deformation of (Creq, AL) over a reduced base is the same as a deformation of a
b-characteristics . So if C-LY LA is any deformation of (C,AL) there exists a

unique freq: Al ; —— A,.q such that the diagram

f# .
Vi, —— X]a

red

| ™S |

f‘red

— Ay

\L/

commutes. Notice that f# is uniquely fixed by ¢ and j. Hence the proposition above

'
red

tells us that there is a unique extension f: A'——A of fr.q and an isomorphism

such that the diagram
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commutes as well. The only possible ambiguity concerns now the uniqueness of the
isomorphism . If %, 1, were two such isomorphisms, then 1;01; " is either the
identity or the canonical automorphism of ¥ [LR]. But the commutativity of the
latter diagram fixes it as 1, o¢2_1 =idy.

To classify infinitesimal deformations of susy-curves in the spirit of the ”original”
Kodaira-Spencer approach one can proceed as follows, regarding a susy-curve as
built by patching together 1|1-dimensional superdomains by means of superconformal
transformations, and singling out ‘infinitesimal’ moduli as non-trivial parameters in
the transition functions. Namely, consider a canonical atlas {Uq, 2, 8a, } for C with

clutching functions

za = fup(2p)
6o = +/F.505
They obviously satisfy the cocycle condition fog(fgy(2y)) = fay(24) on UaNUsNT,,.

We can cover a first order deformation 7 : X — S of C glueing the U, x S via

the identification

Za = fap(28) + tbap(2p) + 05(9ap(2p) Fap(2p)

9a = aﬂgﬁ + Cgaﬂ

where Fog = ,/ ;ﬁ + tb;ﬁ, so that the clutching functions are superconformal for

any ¢,(. The cocycle condition for these transformation rules reduce to the cocycle

condition for the f,g’s as before, plus
bap + f;ﬁ bgy = bay

Japla + fc"xﬁ 9898 = 9oy
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Taking the tensor product by 8/9z4, one sees that the one cochains
Vag = 1bapd/0za}

Vap = {9apbe ® 0/0z4}

are actually cocycles. They define a class in
HY(Creayw™ ) @ MH(Creq, L71) = HY(C,D®*) Cc H'(C,TC)

called the Kodaira-Spencer class of the first order deformation* X —S5.
A similar computation, considering local superconformal reparametrizations with
local odd parameters Ay, shows that they leave the cocycle vy invariant and send
vy into '5243 = vclxﬁ + (Aa — \/}Z; Ag)ba ® 5—3—; which leads to the
Theorem. The set of equivalence classes of first order deformations of a susy-curve
C is a linear complex superspace with dimension 3g — 3|2¢ — 2.
Proof. The dimensions of H)(Creq,w™) and H?(Chreq, L) are computed to be
39 — 3 and 2g — 2 by means of Riemann-Roch theorem. e |
Since C'is split, D®? ~ T C,.a®I L™, and H*(C, D®?) naturally splits into even
and odd subspaces and we can speak about even and odd Kodaira-Spencer homo-
morphisms K .Sy and K5, by composing K S with the projections of H!(C,D®?).=
HY(Creqyw™) @ HH(Crea, £L71) onto the first and second summand. It follows
that, if B is a purely even sﬁperspace (i.e. an ordinary complex space), KS; = 0
and K So; TpoB — H'(Creq,w™!) is the ordinary Kodaira-Spencer map. Using the
natural map 7 : Breqg — B, we get that a deformation X — B is versal on a purely
even B, if and only if the induced deformation :*X — B4 is. As we need the datum
of a 6-characteristics on Chreq, the deformation X — B,.q has to be be considered as
a deformation of a #-characteristics. We have therefore the following
Proposition. Even-versal deformations of a susy-curve exist and are in 1-1 cor-
respondence with pull-backs under maps f : B — Breq of versal deformations over

B.eq of the underlying #-characteristic.

* Here we obviously assume that C is smooth. Deformation theory of SUSY-curves

with nodes requires the handling of  -characteristics in the singular case.
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This proposition tells us that the reduced space of moduli of susy-curves can
be given in terms of isomorphism classes of pairs (Creq,£). This space S, comes
equipped with the "universal curve” 7 : C — S, together with the "universal (dual)
§-characteristics” £;! — C on C. From the construction above it is then clear that
the first infinitesimal neighbourhood of supermoduli space is the sheaf R'm,(£!) on
Sg- Accordingly the local model for supermoduli spaces is given by the supermanifold
(Sg; AR'7, L;1). We will discuss in the next section how much actual supermoduli

spaces may differ from being split.

3.2 Supermoduli space building.

From the discussion outlined in the previous sections, it should be clear that, when
dealing with N = 1 supermoduli space, one has a good control of two of the three
ingredients needed to define a supermanifold. This section is devoted to the study of
what happens when we try to glue together local patches of supermoduli space. It is
clear that restricting oneself to work with purely even objects (a procedure which, in
the physical literature is sometimes referred to as “considering split super Riemann
surface ”) is not correct since a deformation depending trivially on odd parameters
has identically vanishing odd super Kodaira-Spencer map, and thus its basis cannot
be taken as building block for supermoduli space.

In the following we will restrict ourselves to describe quite informally some of the
ingredients entering the construction of the graded analogue of the moduli stack. In
practice, we will forget about the existence of automorphism, and pretend that uni-
versal deformations X — A of susy-curves give ”coordinate charts” on ”supermoduli
spaces”. Our strategy to get some insight to the geometry of these "spaces” is first to
select some very special classes of versal deformations, and then trying to glue their
bases requiring that a superconformal isomorphism exists between the families.

First we give concrete examples of versal deformations of a susy-curve. To this

purpose we need the following two lemmas.
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Lemma . Let p € Creq be a generic point and L a 6-characteristics on C; then for
n > 1 the connecting homomorphism \p;‘ . Cnt1)(g-1) HY(Cred, L™™) associated

to the exact sequence
0= L7 = L7T((n+1)(g = 1)p) = LT ((n +1)(g —1)p)/L7" =0

is an isomorphism.

Proof. A segment of the long cohomology sequence reads
— H°(Crea, LT*(Np)) = CV — H'(Crea, L") — H'(Crea, L7"(Np)) —

(N =(n+1)(g —1)) and since the first and the last space have the same dimension,
we need only to prove that one of them vanishes. By Serre duality, this is the same
thing as showing that H%(Ceq, L*T2(—Np)) = 0, that is that there are no sections of
L™? vanishing of order > N at p. Let o be alocal trivializing section of £ around p,
and o; = f;(z)oo (i = 1,...,N) be the local expression for a basis of H(Cred, L*?).

The matrix

Ak fi(z) ... ANV
inz) falz) .. Y

has vanishing determinant whenever one of the f;’s vanishes of order > N at p. Tﬁis
cannot be the case for almost all p € C,.q because in this case a line of the matrix
above would be linear combination of the others, i.e. we would get a differential
equation of order N — 1 with N linearly independent solutions.

Lemma. For a generic point p € Cr.gy and n > 1, the connecting homomorphism

6y C— HY(Creq, L7™) associated to the exact sequence
0= L7 — L7(p) = L(p)/ L™ — 0

is injective. The map 6™ : Creqg — H'(Chred, L™™) given by p — 5;‘(1) is full, i.e. there
are (n+1)(g—1) points p; such that the classes §7;(1) form a basis of H*(Creq, £77).

Proof. The relevant cohomology sequence reads

o = H(Cred, L7™(p)) = C — HY(CreaL™™) — ...
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Since degL™™(p) = n + 1 — ng is negative for g > 1 + 1/n, injectivity follows at any
pforg>2andn > 1.

The same is true in the case n = 1 at ¢ = 2 because, if £ is even its divisor is
not effective and £7!(p) cannot be trivial. In the odd sector £ has as divisor one
of the six Weierstrass points and again H%(Cred, L7}(p)) = 0, provided p is not a
Weierstrass point. To show that §™ is full, it is enough to notice that if Imé" was
contained in a hyperplane in H!(Creq, L"), then there would be an element ¢ of
the dual space H'(Creq, L)Y = H®(Crea, L7F?) such that < (}5,5;(1) >= 0 for all
P € Creq. Here < .,. > is Serre duality i.e. < ¢, 6;”(1) >= respd.0 where o is a
representative of §;(1) i.e. a section of £L™™ with a first order pole at p. Then this
would imply that ¢ itself vanishes, an absurdity. L]
Example. A very simple example of a versal deformation of a susy-curve C =
(Cred, L) can be constructed by concentrating the deformation at a generic point
P € Crea. Let {Ua,2a,04} be an atlas for C' and assume p € Uy with zo(p) = 0. We
glue a superdisk with coordinates zq, ¢ with Creq — {p} by means of the map

3g—3 ¢ 3g -3 it 29—2 ¢
170—204-2 ’+90\/1~ im1 —IT.CT k=1 ZE

. 3g 3 it 2g 2 € 29—2 ke 29— 2 €k
‘750 - \/1 - ‘Ti‘f k=1 ;. k=1 z§+1 90 + Z g

with (%;,€x) in a small superpolydisk A. Now

KSo(a—i);) — (=22 e

zt Oz

0 1 0

Ksl(aek) [;;90 ® a_zo] = P;la(ek)
0

where {e;} and {er} are standard basis in C39~% and C29~2 respectively. The first
lemma above then tells us that KS is an isomorphism and our family is versal.

Example. Another class of versal deformations of C' can be associated to 59 — 5
generic points p;. This is closer to what is done in the physical literature (see, e.g.
[B]), as it corresponds to considering gravitino zero modes as §-functions on 2g — 2

distinct points. We glue superdisks with coordinates z;, ¢; with C — {p:} by means
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of the maps
T =z + f‘;

¢ = /1 — 56,

fori=1,...,39 — 3 and by
z; = z; + ;=22
¢ = O + S=gasz

fori =39 —2,...,59g — 5. Then

o, 148, o
KSO(EZ)—[Zazz]—ap,(l)’ z—la"°a3g—3
8 1 o, -
ES(ge)=Eheg =60) i=3g-2..5-5

Again, by the second lemma above, this family is modular.
By analogy with the ordinary case, we will call such deformations Schiffer deforma-
tions.

Both these examples yield ”local coordinates” (up to automorphisms of the cen-

tral fibre) on supermoduli ”space” by

A 28,
where ¥(2, ¢) =[isomorphism class of 7~1(t,¢)] and we consider on U(A) the sheaf
¥.0a. Whenever two such ”charts” overlap, i.e. Xz — A (k =1,2) are deforma-
tions of C such that ¥;(A;)N Y(Az) =V # 0, then the restrictions X, of Xy to
‘II;I(V) are isomorphic as families of susy-curves, that is there are maps g, h making

the diagram

g
! 1
Xl ————) X2

! 1
h
) — s wiw)
commute. The map % is then the ”clutching” function for these two charts on super-

moduli space.

Obviously enough, the global structure of supermoduli spaces is quite subtle because

of the presence of automorphisms of susy—curves , and in particular of the canonical
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Z, automorphism. Here we will limit ourselves to considering a somewhat simplyfied
problem in the framework of the theory of moduli stacks. To make things intuitive,
a ‘covering’ on the moduli stack is a collection of versal families {X i~ Bi }ier of
genus g susy—curves such that

1) the reduced families {XjredﬂjlidBjred}jg give a covering of the stack X, of genus
g spin curves [C];

2) whenever X7,.q4 and X i .4 contain isomorphic spin curves, the isomorphism of

reduced families

j i i
-X red chd‘
] i
l red hji J‘/Wrcd
7 RCAN 2
red Bred

over suitably restricted base spaces, comes together with maps L;’: : Lj—i1 Ax,— Ax;
and hjf’i- : h;-'il Ap,— Ap; which make the two families superconformally isomorphic.
We shall say for short that, in this latter case, X; and X; partially overlap. Notice

that being the two families modular, A;; and hﬁ- are essentially unique.

An obvious way to construct an ‘atlas’ on the stack is to choose the B;’s to be
superpolydisks and the X;’s to be universal deformations of susy—curves Cj. So each
family X; comes with the open covering {Us;} with coordinates {Za;, 00 ti, M5}

We can as well give the coordinate description of the maps ija‘ as

Ta; = fa;p;(Tp;3t5,m5) — \/f’ajﬁj(“’ﬁj;ti’ni)“a:’ﬁj(mﬁﬁti’nf)¢ﬁi

bo; = /Fla;8; (T35 M5) + ta 31 e 8; (285385, M5) + a5 (26,5 85575) (%)

t; =1;
\ T3 = 7j

As a morphism of complex supermanifolds is completely specified by expressing its

effect on the ‘coordinate functions’ , when X; and X} overlap one can locally describe
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hfj and ij in terms of the following maps

(26, = gp.5,(2p,;t5,m;) — V' 9'8.8; (2653 85,15)08.8; (2535, 15 ) b,

b6 = /'35, (26,385,05) + 0pup; 0 pop, (25,385, 75) + Tpup, (zp;3t5,7m5) (v
< *ok
te = hij(t5,m5)

(7 = Ej(2m;)
Notice that the last two lines give the coordinate description of hﬁu These give rise

to a superconformal isomorphism provided that
L#ajﬂj OL#ﬂjﬂk = L#a,’ak °L#ak,3k (% %)

More explicitly, considering a common open covering U, for the reduced families X;
. # _
and h*(X;), redefining L#ajﬁj = LJaﬁ’ L#ﬁjﬁk = Lg, ti=t,n =0, tk=s, npg =&,

these equations take the form

Ll 5(Lg(zp, $p3 t,m); 2,m) = La(Lis(zs, 53 (2, 1), E(t,7)); t,7) (3)

An easy but tedious computation shows that this is equivalent to imposing the fol-

lowing patching conditions on the building blocks of the superconformal maps (*)

and (**)

Faiio98; = 1/ o;8;°98:8 - (Hoy8;98,8,) - 08;8 =
- gajakofakﬁk 4/ g,ajozk °fakﬁk : (Uaj ay °fozkﬁk) * oy By,

where the meaning of « is as given in eq. (***) and

\/f’ajﬁj °gB;Br T Ho;p; /-"ajﬁj °9BiBr " TB; B T Ha;p;°98;8; =

— ' '
= Oajay °fak,5k + \/g ajay °fakﬁk + Oajarl aja °fak,5ky'ozkﬁk

Notice that, as in the ordinary case (see e.g. [K]), when dealing with universal defor-

mations these relations actually determine the maps tr = hg;(t;,n5) 7k = Zx;(¢in;)-
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It is convenient to expand these equations in powers of odd generators. One possibil-
ity is to quotient the patching conditions by 71'“1./\/51, (n=1,2,...), N, being the
ideal of nilpotents in the base (Bj, Ap;), which leads to the notion of susy—curves
over a thickened basis as in [LR]. For our purposes, however, it is sufficient to quo-
tient the equations above by the full 374 power N’_i’(j of the nilpotent ideal in Ax;. In
fact, as one easily checks, up to N/ %}, the maps hﬁ are the same in both procedures.
On the other hand, we gain a nice intuitive description of what is going on in terms
of the sheaf cohomology on the moduli stack, entering the details of which is outside
the aims of this thesis.

Eq.s (3) modulo N, give us the reduced structure of the moduli stack of spin
curves. Up to NV 1231. we get

0 1
Ula,'ak°f axfr T \/Q'Oa,'ak°f0akﬂk ‘K akﬁk) =

1 1 0
= \/f"’a,-ﬁj 0g%6,8x * T BiBx T I ;i B;°9 BiBx

(here superscripts denote the order of the n—expansion) which, upon tensorization
with 3 5 tells us that po,8; 55— 845 and L”p%ﬁ] 54, 2TC cohomologous in H*(Cy, L71)
via the coboundary oo 5o ¢ . Then we get the already remarked fact that, up to
order 1, we can safely take cohomology classes getting the first infinitesimal neigh-
bourhood of &, as R'm, L1,

The first obstruction to projectedness of the supermoduli stack can be seen at
the next order. One gets that hf-j must satisfy the condition
ag;t]ja] h2 = f aifi f2ajﬁj t OaiajbaiBi — He;B; TB:iB;

In spite this description deserves a detailed formalization, we will use it in its
present rough form as an intuitive clue to construct an explicit representative of the

first obstruction to projectedness of supermoduli stack.
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3.3. Schiffer variations and obstructions to projectedness.

This section is devoted to study what happens when we try to glue two universal
deformations of susy—curves of the special kind we described above (Schiffer defor-
mations).

An atlas for X — A™™ can be constructed along the lines discussed in §3.2 as follows.
We can cover Cy with an atlas (Ua; 2oy 0o ) such that for 1 < o, 8 < n+m, UsNUg = 0,
and with transition functions z, = fap(25); 00 = 4 /fes(28). Then an atlas for X

is given by Uy = Uy X Apeg™™ with coordinates (o), Pa;ti,n:) and with transition

functiqns
To = Fap(zp) + @a\/FLﬁ(mﬁ)#aﬁ
o =4/ Fop(@p)pp + p,,(zp)
where:

forl<a<nandanyB8>m+n

to
{Faﬂ(fvﬁ) = fap(28) + 75,5
pep(zg) =0

forn+1_<__a§n+mandany,32n+m

{Faﬁ(wﬁ) = fap(zp)
Na—n

/iaﬁ(wé) = Fun(zs)

for o, > n + m
{Faﬁ(l‘ﬁ) = fap(zp)
pap(zp) =0

The crucial property of such a deformation we want to capture can be summarized
in the following

Proposition. There exist universal deformations X — A™M™ (nlm = 3g — 3|29 —2)
of a susy—curve C' whose transition functions

i) depend linearly on the odd deformations parameters;

ii) are split but for a finite number of intersections

ili)the relative one-cocycle with values in L7 pap has m = 2g — 2 simple poles on

each fibre of X.
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More generally, we have complete deformations with the same properties when
nlm > 3g — 3|29 — 2. Needles to say, given any other universal deformation X' —
A'™™ of C (e.g. one given by a generic choice of non-trivial pap’s) there is a unique
base change h : A™™ — A’ ™™ such that h*X' is isomorphic to X (possibly after
a suitable shrinking of the bases). This makes us free to choose Schiffer ‘atlases’
on the supermoduli stack of the form {Cj;; X; — A?lm}, the X; — A?Im being
universal Schiffer deformations of C;. To handle such deformations, and in particular
the choices of the pqp, We need some more technicalities. Given two different choices
of m = 2g—2 points {p;}, {Pm+i}i=1,...,29—2 on each fibre* C; of a deformation
X, we have a Stein covering of Cr.q made of the disjoint union of Uy = Cred ™
{pr}r=1,.. 49—4, and small disks {Ug}r=1,..49-4 around each pj such that the only
non—empty intersections are punctured disks given by Usx = Us N Uk. Now two
choices of one—cocycles pap can be represented on this covering by a collection of
meromorphic sections of L'l with simple poles at p;, 1 < 1 < 29 — 2 and at
Pj, 29 —1<3<4g—4,1e.

0
Oz;

- ; T]i
pio =355, 6l i ®
1

n

4 4 '67:_ 3

JU— 9= J .

Vio = E:j:Zg—l 6 z: P ® Bz
(3 2

We shall need the following

Lemma. There exists a unique (up to a sign) linear map €* = AF;n' such that po;
and vg; are cohomologous.

Proof. The difference A\jg = po; — vo; has simple poles at 4g — 4 points. From the

exact sequence

0— L7 — L7 (D p)— LT (S p)/ L7 = 0
we have

0 — HU(LT(TEp)) — CWTH S HY(LTY) - 0

|

C2g—2

* These actually can be made to define a divisor on X, but we prefer to work

fibrewise.
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so there A € kerd iff there are 2g — 2 sections s} € H°(L7Y (32 7*p;)) such that *

Xio =) m(sg — k)
P

k
where s¥ denotes the holomorphic tail of s on Ui, ie. sfly = == + s¥, with
i
B =(1,A). -

We can now prove the following
Proposition. For g > 3 Schiffer atlases are not projected.
Proof. Let X; and X be two universal Schiffer deformations which partially
overlap, and let pq g,, fa.p, the corresponding £~ !-valued one—cocycles. Then
there exists an £™!'-valued coboundary which make them cohomologous. Then the

obstruction to projectedness mod A'® now reads

7_2 — agaeaj h(z)

de
o, Yi T TaiajHoifi T HeiBi 08B T
j

de f
= Galap — Vass

We can take pqp (vop) with support on the punctured disks Up,, for o = 1,. 2g 2
and for a = 2g —1,...,4g — 4 respectively. Then, after the suitable 1dent1ﬁcat10n of
the odd parameters, we have HBaB — Vap = an (3[3 — .sa) and oq =>. nksk

Hap — Vag = Had — Vao rUﬂ - ank(s(l)c - ’SZ)

2

Now 72 reads

Srtsa(S sk —sE)ty,  1<a<29-2
St (St (sh =) ty,  20-1<a<4g—4
i.e.

Z“T]n(s sk — sl sk 1<a<2g-2
f)—slsl 2—-1<a<4g—-4

* We take advantage here from the fact that for a generic choice of the points

pi, HY(L Y (p; + > *Pm+i)) is one~dimensional for j = 1,...,2g — 2.
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As the last Tow can be written as 3, n'n*(sksl, — sksf), then 72 = foa — &0 + o

where
{00‘:27][7]%’5351 1<a<4g—4
kl

EOZannksffsé 1<a<4g—-4
kl

e, =]~ Tunntsase  1<a<29-2
“ 0 2g—1<a<4g-4

This shows that 72 is a one—cocycle with values in £™% cohomologous to £pa, Which,
in turn can be identified with a family of local meromorphic sections of L~% with
simple poles at the points p,. This is cohomologous to zero if and only if the -;—(Qg -
2)(2g — 3) = (g — 1)(2g — 3) sections sks’, — s s& are cohomologous to zero. Now the

exact sequence
0— L2 L7 (Y pa)—L 7T pa)/LTF =0
gives us on each fibre
0 — B (L7, pa)—CH ™t HH(L )

Now for any choice of pa’s, dimH*(L72(3_pa)) < g and so for g > 3, 72 cannot

0
be cohomologous to 0. Since the representative for the splitting cocycle is hgf)a—— =
j
(KSgv)~1(7?), we see that hg-) cannot vanish. B
For ¢ = 2 this dimensional argument clearly breaks down. In fact, special

choices can be made (see e.g. [GIS]) which allow us a constructive proof of Deligne’s
result about the splitness of genus 2 supermoduli space. Deligne’s proof is contained
in an unpublished letter to D. Kazhdan, whose content is actually unknown to us.
The splitness of genus 2 supermoduli spaces can be understood also in terms of the
holomorphic geometry of moduli of spin curves as follows. It is known that the
moduli space M, of genus g = 2 smooth curves is an affine variety [Mu3] and hence
it is Stein. But the moduli space of §-characteristics is a finite covering of M, and
hence it is a Stein variety as well, so that the higher cohomology of coherent analytic

sheaves vanishes.
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The constructive proof makes use of the properties of double coverings of P! as
follows.
Proposition. There exist split Schiffer ‘atlases’ on the even supermoduli stack at
g =2.
Proof. Let p+ be two conjugate points under the hyperelliptic involution A. The

exact sequence
0= L7 — L7 (p +p1))— L (- +p4))/L7 = 0
yields
= 0= HY (LT (p 4 p1))—CP - BN (L) — HY (L (po + py)) —

Now deg L7 (p— + p4) =1 =g — 1, and therefore HY{(L Y (p_ +p4))(2 =0,1) have
the same dimension. So to prove that § is an isomorphism we notice that p_ + p,.
is a canonical divisor, so that H(£™1(p_ + p+)) = HY(LPQK) ~ H(L) = {0}
because genus two even 6-characteristics are non-singular.

Accordingly we can choose the Lo, B; deﬁningA the Schiffer deformations with
simple poles at p%. * Now glueing two such families X; and X we see that the
obstruction cocycle 72, = sls2 — s3sl to sphtness (which is the same thmg as
projectedness at g = 2) is an £~ 2-valued one-cocycle with simple poles at Pi and
pfi__ depending linearly on two parameters.

Now 72

is cohomologous to a global section in HO(L™2(p" + pi +p + pk))
if and only if the family w, = Zo T2 oo 1S cohomologous to a global section of X
(indeed £72 (p{_ + pi +pk + p%) = K). Since abelian differentials are anti-invariant
under the hyperelliptic involution A we need only to show that the leading terms
of wy satisfy w; = —h*w, and w3 = —h*ws. This turns out to be true for the

following reason. The section sy (resp. s2) is the unique (up to multiplication by

* We stress that genus g = 2 is the only case for which this choice is significant. In

fact, for g > 3 the variety of curves admitting singular #-characteristics is a divisor

in 9
in 2.
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a constant) meromorphic section in L7 having simple poles at pj_ , P~ ,p{"*_ (resp. at
pi,pf,pﬁ_.) Since h*(sj) has the same behaviour as s2 and conversely, there must
hold h*(s}) = As? and h*(s?) = psy with Ap = 1. Now a glance at the expression

of 72, shows that h*(7¢,) = —Mptd, and this concludes the proof. =

3.4 N=2 Susy—Curves.

Recall that N=1 susy-curves are 1|1 dimensional supercurves equipped with a dis-
tinguished distribution D in the tangent sheaf, spanned by the supersymmetry gen-
erator. In the same way the structure sheaf Ac of a N=2 susy—curve (hereinafter
susyz;—curves) is somehow special as it should embody the notion of the supercon-
formal structure. In the physical literature this is realized in terms of coordinate
transformations [Co][Me]. Here we give a definition which naturally extends that of
N=1 susy—curves.

Definition. A family of susys-curves (C,.A¢c) parameterized by the complex super-
space (S, As) i.e. a susys-curve over S is the datum of

i) a sheaf homomorphism 7# : 771 As — Ac of relative dimension 1|2 over a proper
surjective flat map C——5

ii) a 0|2-dimensional locally free distribution Dr in the relative tangent sheaf 7 such

that the commutator modD,

{ ’ }'D:’D‘Ir@'DTF-')Y;F/DW

is a symmetric non degenerate bilinear map of sheaves of Ag-modules.

As usual, a susys-curve over the trivial superspace {x} will be called a single susysz-
curve . The connection between the above definition and the usual coordinate ap-

proach, as given e.g. in [Fr], is a simple generalization of the N =1 case. Indeed,
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one can easily prove that there exist generators D* for D, and -5‘9; for 7. /Dy such

that
{D},D}p = 51 2
’ 0z
A simple computation shows then that D = —5%; + Oi%, Besides matching with
physical applications, our definition allows an immediate characterization of single

SUSy2-CUrves .

Proposition. Let (C,.A¢) be single susyy-curve with reduced canonical sheaf w.
Then there exists a rank 2 locally free sheaf £ such that

i) Ac ~ A€, i.e. Ac is split

i) £ ~ &* Qu,i.e. £ is Serre self-dual.

Proof. Let (Ug, z4,8'4) be a canonical atlas with transition functions
Za = fap(z) + gap€ij 067
8" = [magplifp’
The existence of the distribution D, is then equivalent to the superconformal condi-

tion

Digzo = 6*,D'gb",

(sum over repeated latin indices) which gives

€ijgap + 6ij fap = ['Mapmaplij,

Bfap

!
where fl 5 = P2y

. Looking at the symmetric and the antisymmetric part of this

equation we have:

1) gap = 0, so Ao splits to AE, where £ is locally generated by the 6%, ’s,

i) 'megmaeg =1 - féop» Where mqp are the transition functions of £.

So mep =* m;gf;ﬁ le. £ ~E*Qu. E
We want to remark at this point the power of superconformal structures. Indeed,

a generic supercurve of dimension 1|2 is by no means split, as opposite to the trivial

1]1 case, and as the example given in §2.1 shows. Nevertheless (single) susyz-curves

are split.
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According to the physical literature, a susys-curve is called twisted, whenever the
O(2) symmetry of the (anti)commutation relations for the local supersymmetry gen-
erators Df, cannot be reduced to an SO(2) symmetry [Co]. This is related to the
vanishing of a class in H?(C,Z;) gotten by taking the determinant of the transition
functions for the locally free sheaf £. Namely, as any rank two locally free sheaf can
be represented as the extension of a invertible sheaf £1 by another £, fitting the exact
sequence 0 — L3 — & — L; — 0, we have det £ = £; ® L. But Serre self-duality
implies det £ = w ® N2, N> being a point of order 2 on the Jacobian of C. Then a

susyz-curve is untwisted whenever A, is trivial.

From the holomorphic point of view, Serre self-dual rank 2 locally free sheaves
are quite simple objects.
Proposition The characteristic sheaf £ of untwisted susy,-curves decomposes as
the direct sum £ = £; @ Lo, with £1 @ L3 ~ w.

Proof. In a superconformal gauge the transition functions /ua,g(zﬁ)ij of £ satisfy

aag  bap )
—bag  Gap

with azaﬁ + biﬁ = fap- A simple computation shows that there is a one—cochain Ao

‘Mag  Mag = fip - 1 and hence they can be given the form mqp = (

with values in the sheaf of GL(2, C)-valued holomorphic functions which diagonalizes
map showing that, actually, £ = £; @ L. Imposing the Serre self-duality condition

in this gauge gives

L10L LT 'QuwaLly  Qu

This ends the proof since L1 ® L ~= L} @ LY if and only if either £; ~ L] or
Ly ~ L, |

Proposition. Any twisted Serre self-dual locally free sheaf £ of rank 2 on C is
holomorphically isomorphic to the direct sum of two different -characteristics, i.e.
E =L &Ly, with £2 =w.

Proof. The first thing we prove is that a twisted semistable Serre self-dual locally
free sheaf is strictly semistable, i.e. it admits only degree g — 1 invertible subsheaves.

Notice that if £ is untwisted it is not stable. If £ is twisted, there is a point M
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of order 4 on the Jacobian of C such that £ ® M is untwisted in the sense that
det (E®@ M) = w. As £ ® M is stable if and only if £ is stable, we are again in the
above situation.
Next, we prove that an unstable Serre self dual locally free sheaf is strictly semistable
as well. To this purpose, we have to use a lemma about uniqueness of maximal sub-
line bundles of an unstable rank 2 vector bundle [Gu]. Given a vector bundle £ — C,
its divisor is defined as

divé = Iglggccl(L)
Then, if p(€) is the slope of £, it holds that if div€ > pu(€) there is a unique line
bundle L «— & with ¢(L) = divf; such uniqueness holds also if divE = u(£) and
Eis indecomposable. Now suppose that £ is given as 0 — £, — & — L, — 0 with
c1(£1) > g — 1. Serre~dualizing we get 0 — Ly — & — LY — 0. Then, supposing
c1(£1) > g—1,then £; ~ L) and hence as det £ = £, ®L; = w we get a contradiction
with the assumption of twisting of €.
We have only to discuss the case 0 — £; — & — Ly — 0, with ¢1(£;) =g -1,
L1 ® Ly # w. If £ were indecomposable, the lemma we recalled above tells us that
there would be a unique invertible subsheaf £ C £ of degree g — 1 contradicting the
assumption that £; % LY. Finally, given £ ~ £; & £, the Serre—self duality condition
implies that £ ~ w. B
Summing up we have that superconformal structures force the characteristic sheaf £
to be, in the twisted case, the direct sum of two non—isomorphic square roots of the
canonical bundle. The untwisted case has a richer structure, since here £ decomposes
as LOw® LY, L € PicC. Notice that the reduced moduli space of untwisted susy,-
curves is then infinitely connected, with zeroth homotopy group parameterized by
degL. For the sake of concreteness, we will restrict the general discussion to the case
degl = g — 1, which is the only case that gives rise to a semi-stable £, pointing out

the necessary modifications in the general case.

We next want to deform (at least at the infinitesimal level) the structure of a susys-

curve .
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Definition. A deformation of a susy,-curve C over a pointed superspace (B, {*})
is a family C—- B of susy;-curves together with an isomorphism % of C' with the

‘central fibre’ 771 ({*}) fitting the commutative diagram

c &

C
{*} — B

As usual, the starting point to set up deformation theory is to identify the sheaf of
infinitesimal automorphisms of the object to be deformed. In our case this is the

subsheaf T2 of the relative tangent sheaf, whose elements are germs of vector fields

along the fibres which preserve D,
TP.={X e T, | [D,X] € DVD € D}

In perfect analogy with the case of N = 1 Susy—curves we find

Proposition. There is an isomorphism T2 ~ (T )reda ® Ac as sheaves of 771 (Ag)-

modules.
Proof. The condition for X to belong to T2 reads [D*, X] € D, where D* are
. . 3} .0

generators of D. Introducing canonical coordinates (z,6*), so that D* = 3 -+ 9’5—2
and setting X = a - —6(?—- +b; - D*., one has

z

(D}, X] = pial (—1)1X'b,ca’“'i + Dby, - D*

’ 0z 0z

Therefore X € TP if and only if b; = (—1)*/ D*a and the isomorphism is given by
0 . .

oo wa—cr?—z—{—(—l)lalD’a-D’ L]

Thanks to this lemma we have, for £ semistable, the following

Proposition. Versal deformations of susys-curves exist. The dimension of the base
of such deformations is 3g — 3 4+ g — al|4g — 4, with a = 0,1 in the untwisted and
twisted case respectively.

Proof. From the Kodaira-Spencer deformation theory, we know that possible
obstructions lie in the second cohomology group of the sheaf of infinitesimal auto-

morphisms T'P. By the analysis of the structure sheaf Ag of a susy,-curve one gets
TP =w ' oNw ') det EQu™?
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the above sum being direct sum of sheaves of Og-modules*. Then H%(TP) = {0},
showing the existence of versal deformations. The second part of the proposition
follows from Serre self-duality of £ and from proposition 1.4. Indeed dimH!(w™! @
det E@w™') = dimH (w ! ®N), where N = det EQ w™* = O for untwisted susy,-
curves , while it is a point of order two in the Jacobian of C in the twisted case.
As for the odd dimension, notice that dimH*(w™! @ (£1 @ £2)) = dimH* (L) +
dimH (L) B
Remark. As for the computation of the odd dimension ¢ of the “would be” moduli
space of susys-curves in the general untwisted case, one can argue as follows. As
E~LOw® L, HY(C,E) is invariant under the Kummer map £ ~ w @ L1
Hence one can restrict himself to discuss the case degl = d > g — 1 only. By the
Riemann—Roch theorem one has |

a)if g—1<d<2g—2then q=4g — 4;

b)if 29 —2 < d <3¢ — 3 and L is generic then q = 49 — 4;

c)if 39 —3 < d<4g—4 and L is generic then g =d + g — 1;
d)if4g—4<dtheng=d+g—1.

Notice that, in the cases b) and c), the odd dimension of “moduli space” jumps
on analytic submanifolds of the reduced space, a fact that renders quite subtle its

structure in the framework of Kostant-Leites supermanifold theory.

From a more computative point of view, one can consider infinitesimal deforma-
tions, as being given by deforming the clutching functions of the central fibre. As we
proved above, these are of the form

{zq = fap(zp) o
05 = [map(2p)]305

the matrix /-Laﬁ(Zﬁ)ij being of the form ,uaﬁ(zﬁ)ij = (gld'ﬂ 920 ) with either gfaﬂ =
ap

fap OF G1ap " 9205 = fip

The most general deformation of such clutching functions, i.e. one generated by a

* The parity change operator II has, strictly speaking, no effective meaning in this

context. We just use it as a parity bookkeeper.
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vector field in the whole 75, over S is given by

Za = fap(2p) + t(bap(28) + Lgap(28)€ii056%) + Cni.p(28)05
B = maa(za)l;0) + tllas(z0)30) + O plsa) + ipese8108)

Imposing the superconformal condition shows that * gog(z3) = 0, and that the only

independent data are bog(zs), 'z/:flﬁ(zg) and [laﬂ(zlg)]j-. The cocycle condition leads

8

easily to the identification of {bag(2s) - 3.-

} as a one—cocycle with values in the
relative tangent sheaf w; !, and {¢?, s(28)} as a one—cocycle with values in £*.

As for the réle of the matrix [laﬁ(z/g)]j-, one can argue as follows. Since the even
and odd infinitesimal deformations give decoupled equations, one can limit himself

to discussing a deformation of the form
Za = fap(2p) + thap(2s)
65 = [map(zp)l} - {61 + t([m™" - lap(2p)1}} - 6

The superconformal condition translates into the equation

1 0b
Oaﬁ‘*“toaﬂ:"—"" a'@'l
af azﬂ
for the matrix Oqp = m;é lop. Hence, Oqp = ( Tah aaﬁ) and its only free part
—Qup Tap
is the off diagonal Oag = 2 agﬁ . This decomposition is obviously due to
—Qag

the fact that when deforming the underlying curve C' according to bag, line bundles

on C are deformed as well. The cocycle condition for Oup gives
magOapmpy + MapmpyOpy = MayOay — baﬁm;ﬁmﬁw
Looking once again at the off-diagonal part one has (multiplying on the left by m_2)

mEi éaﬁmﬁ'y + éﬁ‘y = Oa”r

* this fact can be also grasped by writing explicitly the superconformal vector

fields that generate the deformations
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A simple algebra shows that (.j(;,ﬁmﬁ7 = a;—{%;— - mgOup yielding
Y

oo A A
PG5+ Opy = Oy

det mg,
Then, considering local generators {po} of w™! ® det £ one readily identifies the
collection {aqgs - ¢} as a one—cocycle with values in w™! @ det £.

Summing up, a complete infinitesimal deformation of a susy;-curves consists
of a deformation of the underlying algebraic curve and the couple of line bundles
which define the ‘single’ object plus the deformation specified by l,g. Since this
latter is completely qualified by an element in H!(C,w™! @ det £) we find a complete
agreement with the results of the more formal analysis we discussed before. As a final
remark we notice that H'(C,w™! @ det £), which can also be thought of as the space
of superconformally non-equivalent susy,—structures on a fixed curve, coincides with
the space of holomorphically non—-equivalent extensions of a #-characteristics £; by

another one £,.

As a last topic, we can give now an alternative description of the reduced mod-
uli spaces of susys-curves in a group—theoretical setting. Holomorphic isomorphism
classes of twisted susys-curves are in one-to-one correspondence with isomorphisms
classes of couples (C,L;2), where L5 is an unordered couple of non—equivalent 6-
characteristics. This sits inside the second symmetric power £(2) of the spin covering
2 — M of the moduli space (at some fixed genus). Also, the reduced moduli space of
untwisted susys-curves with semistable characteristic sheaf £ can be identified with
the universal degree g — 1 Picard variety Picy,_; — M, over the moduli variety of
genus g algebraic curves, modulo the Kummer map £ ~ w ® £L71.

From the group-theoretical point of view, the sheaf £ should be regarded not
merely as a holomorphic sheaf, because the presence of the superconformal structure
amounts to saying that it is the sheaf of sections of a vector bundle E with structure

group the conformal group

G={meGL2,C)|'m-m=XM}=GoUn-Gy
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1 0

where G| is the identity component and n = )) The map p: G — C* given

0 -1
by ¢(m) = *m - m gives rise to the exact diagram of complex groups
1 1 1
! ! |

1 - 8012 — Gy, % C — 1

| !

1 - 02 — ¢ XL c - 1

| |

1 — Z, —_ Iy, — 1
l
1

!
1

Notice that the first row is an exact sequence of central subgroups of the groups in
the second row. This is vital at the level of exact sequences of sheaves of germs of
group-valued functions given by sheafifying the above diagram. Indeed, pushing the

induced cohomology sequences as far as possible, we get an exact diagram

1

!
1 - HYC,80;) — HY{

Qe =
Q)
o

— HYC,0%*) — 1

Qe
NS

1 - HYC,0,) — HY —s  HYC,0%) (*)

He— Qe— Qe

1 - HI(C,Zg) - Hl(

y
1

= Oy e—
N
>
j —

Here we used some results of non—abelian sheaf cohomology, and the following
Lemma. The cohomology groups H*(C,0*) and H*(C,S0;) coincide.

Proof. The exact sheaf sequence

0—7—0"580, —1

where the map m is defined by m(f) = (lesr(l?;:r{}) zloll((gjri];))) VfeI(U,O)

fits together with the standard exponential sequence into the commutative diagram

of sheaves (of abelian groups)

— 1

O*
Jid Lia [ m

0 - Z — 0 I S0, — 1



where

iy (B2 -y *
w) = (G Be) wermon

This gives rise to a long commutative sequence of cohomology groups proving the
lemma. E

Remark. Notice that the sequence above shows that the cohomology group

H'(C,80,) is isomorphic to the group Pic C of invertible sheaves on C.

The basic fact for our concern is the following

Lemma. The action of H!(C,S50,) is free and transitive on the fibre of
HY(C,Go) — H'(C,0*) over each class € H'(C,0*). The same is true for the
action of H'(C,Gy) on the fibre of H(C,G) — H'(C,Z;) over 7' € H*(C,Z,).
Proof. Since both §0; — Go and Gy < G are central and abelian, we can apply
a (simplyfied) argument of non-abelian sheaf cohomology (see, e.g. lemma 2.4 of
[LR]) to get the proof. This runs as follows. Given an exact sequence of sheaves of
groups 0 — P — @ — R — 0 in which P is central and abelian and R is abelian,
one has the following results:

i) there is a connecting map H 1(7?,)—E3~>H 2(‘P) so that the sequence
HY(Q)— HY(R)-ZHH2(P)

is exact.

ii) whenever 7 € Ker 6;, H*(P) acts transitively on the fiber of H(Q) over 7, with
kernel given by the image of HO(R)E—»HI(Q). In our case the lemma follows from
the fact that H?(C,50,) ~ H?(C,0*) = {0} and the observation that elements in
H®(C,Z:) (H°(C,0")) are mapped into locally constant matrices by the connecting

homomorphisms & and so are trivial cocycles. B

Using the above lemma, we can give the following description of the (reduced)
moduli space of untwisted susy,—structures over a fixed curve C.

Proposition. Non-equivalent untwisted susy,—structures on a fixed (smooth)
algebraic curve C' are parameterized by the fibre of HY(C,80,) in HY(C,G,) over
w] € HY(C,0").
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Proof. This follows at once by noticing that the map H*(C,Go) — H'(C,0*) in
the diagram (x) is surjective and the map H'(C,S0;) — H'(C,Go) is injective. The

last assertion follows from the Serre self-duality condition. |
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Chapter 4.

Vector bundles and Grassmannians.

In the last few years, great attention have been paid to works by Mumford, Sato
and others which relate solutions of certain non-linear partial differential equations
(the so—called Kodomchev—Petviashvilii hierarchy of equations) to line bundles over
algebraic curves. One of the most striking results of such a theory is that it leads to
a solution of the long-standing Schottky problem for algebraic curves, which can be
formulated as follows.
Given a (smooth) algebraic genus g curve C, a normalized basis for the space of
abelian differentials {wy,.....,w,}, one gets a natural structure of principally polarized
abelian variety over the Jacobian variety J(C). Conversely, given J(C) together with
its ©-divisor, Torelli’s theorem enables one to reconstruct the curve C. Actualli a
principally polarized abelian variety is characterized by the assignment of a symmetric
g X g matrix with nondegenerate imaginary part, so that a rough count of parameters
gives the dimension of the moduli space of dimension g principally polarized abelian
varieties as (—Q—tzll‘l.

Since the dimension of the moduli space of curves is strictly less than this for g > 3, it
is clear that not all deformations of principally polarized abelian varieties come from
deformations of curves, i.e., there is plenty of principally polarized abelian varieties
which are not Jacobians of a curve C. Then the natural problem of characterizing
Jacobians among principally polarized abelian varieties , commonly referred to as the

Schottky problem, arises.

It was given recently a solution by considering maps of a suitably enlarged (“dressed”)
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moduli space of curves into the so called infinite or universal grassmann manifold.
Such a space has been the subject of a wide investigation in the last years both
in the physical and in the mathematical literature (see, e.g. [PS] and [AGR], and,
for its supersymmetrical extension, [S]). Using such techniques, as a very interesting
byproduct, Arbarello, De Concini Kac and Procesi [ADKP] managed to settle up a
bridge between the representation theory of some infinite dimensional Lie algebras
and the Picard groups of the moduli spaces of “dressed” curves. More specifically,
they considered the (classical) Virasoro algebra dif f© S* and its semidirect product
with the (classical) Heisenberg algebra {u(1) and proved that their central extensions
can be put in a bijective correspondence with the Picard group respectively of the
moduli variety M parameterizing curves, points and a non-zero tangent vector at
that point and the moduli variety F)) which is fibered over M, with fiber Picy(C)
and parameterizes the data of M, plus the datum of a degree d line bundle on C.
In particular, they were able to give a “geometrical” explanation of the following
numerical coincidence. The algebra dif f € §' acts naturally via Lie derivative on the
space of weight j differential on the punctured plane C \ 0 i.e. the vector space of
expressions of the form f(z)dz? with f(z) possibly singular at the origin. In this way
one gets a representation p; of dif f© S* in a (suitably defined) algebra of infinite size
matrices ago. The pull-backs of the standard non-trivial two—cocycle ¥ € H?*(aoo,C)
satisfy

pr(¥) = (6 — 6n + 1)p1 ().

On the other hand, Mumford’s formula for the Chern classes of n—t‘h powers of the

relative canonical sheaf w, over a family of curves C M, gives (see §1.3)

ci(m(wy)) = (6n® — 6n + 1)cr(m(w))).

The issue of generalizing the abovementioned constructions has been already
tackled by various authors; for instance, the extension of Mumford’s work to vector
bundles has been analyzed in [Mul] [PW], while the remarkable paper [BS] was mainly

concentrated on the representation theory of the Virasoro algebra in terms of D-
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modules on moduli spaces. In this last chapter, we want to extend to the non—abelian
case the link between the topology of moduli spaces of bundles on curves and the
cohomology of the algebras of infinitesimal symmetries of higher rank vector bundles.
Namely, we want to deal with rank r vector bundles so that the semidirect product
of dif f€ S times the Heisenberg algebra is replaced by D = dif f© S* x Lgi(n, C).
The analysis will show that the work of [ADKP] can be repeated almost verbatim in
such a case, and also that (even though we can prove it in a weaker form) there is
an isomorphism between the second cohomology of D and the Picard group of the
relevant moduli space.

This setting seems to suggest that there should be a way of getting Sugawara
forfnula. for the stress energy tensor of Wess—Zumino—Novikov—Witten [GO] models
from purely geometrical data, as some results contained in [Hit] confirm, but at the

moment, we are not able to achieve such a result.

4.1 The infinite Grassmannian.

Let V be a complex locally convex topological vector space. A polarization in V
is an explicit isomorphism V—<p—+V+ ® V_, Vi being two closed subspaces in V. A
continuous operator T': V — V is Fredholm if both its kernel and cokernel are finite
dimensional. The index indr is the difference dim ker 7' — dim coker 7.

Definition. The Grassmannian manifold of V, Gr(V') is the set of closed subspaces
0 — W — V such that the projection py on V_ is Fredholm.

Gr(V) can be given the structure of a complex manifold modelled on the vector space

Hom(V_,V,). It is infinitely connected, and its connected components are labelled
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by the index of pw.

Let us specialize the construction to the case in which the vector space V is the space
H" of germs at 0 of C"valued holomorphic functions possibly singular at 0. For the
sake of simplycity, let us stick to the case r = 1. Here one can take H_ to be the
space of holomorphic functions on P\ {cc} which vanish at co and H to be space of
germs of holomorphic functions at 0. H_ can be given a Fréchet topology considering
the family of norms || f ||n= max,|=n |f(2)| and H is the direct limit of the Banach
spaces H, of holomorphic functions in the disk D of radius e. One can prove the
following

Theorem. The map Hy x H_ — C given by
Res.=o < f(2),9(z) >

is a perfect pairing. Moreover, the space of polynomials in z (respectively, in z71) is
dense in Hy (H-).

A standard result on the infinite Grassmannian is the following [PS]: let S4, S-
be a Dirac partition of the integers Z, i.e. a pair of disjoint infinite ordered sets of
integers such that st = —ifori> 0 and sfi_ =1 for 2 > 0. Then if Hs is the closure
of the linear span of the monomials 2~ for s € S_, then Hg is in Gr(H) and
GrS(H) = {W € Gr(H)|ps : W — H_ is an isomorphism } is a coordinate chart.
The determinant line bundle Det — Gr(H) is defined by

U A™®Ker plw A™* (Coker prw )
WeGr(H)

Det — Gr(H) is canonically trivialized on the open sets Gr®(H). Given a polarized
topological vector space H, any continuous endomorphism A : H — H admits a

canonical “matrix” decomposition

([ Ayy ALl
A= (A_+ A__
GL.es(H) is the group of invertible operators such that both A__ and Ay, are

Fredholm of index zero. It acts transitively on Gr(H) which acquires the structure of
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a homogeneous space. It does not act on the determinant line bundle, which is acted
upon by its universal central extension @Lres(H ) which is defined as the quotient of

the group
€={(4,9) € GLies(H) x GL(H_)|A__ — q s trace class},

modulo those with unit determinant.

We remark that the notion of infinite Grassmannian depends on which kind
of topological vector space one starts from. Actually, one could choose the Hilbert
space V = L*(5?,C) and define Gr(V) to be the set of all closed subspaces W whose
projection to V_ is Fredholm and whose projection to V4 is in his favourite Schatten
ideal of the space of bounded operators in L?(S§',C). For instance, if one assumes Pl
to be in the Hilbert-Schmidt class, then Gr(V) acquires the structure of a infinite
dimensional Hilbert manifold. We will rest on the choice done in [ADKP] since it is

best suited for algebraic and algebro-geometrical applications.

4.2 Vector bundles on variable curves.

In §1.5 we have given some results about deformation theory of a vector bundle over
a fixed curve C. Now we want to allow the curve to vary, and deform the whole
structure. Let E be a stable rank r vector bundle of degree d over a curve C.

The first step for settling up infinitesimal deformations is to identify the sheaf
of the infinitesimal automorphisms of the structure to be deformed. An automor-
phism of a vector bundle £ — (' is a fibrewise linear biholomorphic map f and a
biholomorphic map p such that the diagram
E 4 E
l !
c 5 C
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is commutative. An automorphism of the form (f,:d) is called vertical. The sheaf
Aut, E of germs of vertical automorphisms of E is a subsheaf of AutE, i.e. we have

an exact sequence
1 — Aut,E — AutE — AutE/Aut,E — 1

where the last sheaf is isomorphic to the sheaf of germs of biholomorphic maps

p: C — C. The infinitesimal version of the sequence above reads
0— EndE— % — K ' =0

where g is the sheaf of germs of differential operators of order less or equal to one
on E of the form a(z)Z + 7(z), with a(z) £ is a local holomorphic vector field and
7(z) is a local endomorphism of E. Being an extension of the tangent sheaf K ! by
EndE, the sheaf S corresponds to a class in H(C, K ® EndE) ~ H*(C,(EndE)").
Now stability implies that H°(C,(EndE)*) ~ H°(C,E* @ E) ~ C, i. e. global
homomorphisms are of the form ¢ idg, with ( € C. We shall be also interested in

the case of traceless endomorphisms Endo E fitting in the sequence
0 — EndyE — EndES0 — 0

for which the extension
0——>End0E~—+EOE—»K"1—+O

is trivial for E stable because H°(C,EndyE) = 0. This corresponds to deforming
infinitesimally the projective bundle P(E) associated to E.

A simple coordinate computation sheds light on the discussion above. Let E be arank
r vector bundle over C. It will be qualified by the assignment of a local trivializing
system {Uq, gap} for E and patching functions {Us, fap} for the curve C. With no
loss of generality we have assumed that the open sets Uy are also coordinate patches.
A deformation of E — C will be given by introducing extra parameters t1,...,1n

and considering G L(r, C)-valued functions Jog(zg;t) which satisty
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a) Gap(fa+(24)it)Gs+ (243 t) = Gury(z+; 1) for every fixed t € T, fap being the clutching
functions on C;
b)gap(283t0) = gap(2p),

together with a variation of the clutching functions;

¢) fap = Fap(2p,t)

Infinitesimally one can

9ap(26;t) = gap(28) + thap(2zs)

fop = fap(28) + tcap(zp)

Imposing the cocycle condition shows that caﬁ'bg—ﬂ defines a class [cqp] € H*(C, K1)
while g;; -bo give rise to a one—cochain in C}(C, EndE) whose coboundary is (minus)
the cup product of g;;dgaﬂ times [cqp].

Quite obviously, the failure of the cochain to be closed is remnant of the fact that a
deformation of the underlying curve is reflected in a deformation of the vector bundle.
Whenever the deformation of the curve is trivial, we recover the results of §1.5. Also,
in such a case, one can also give concrete meaning to deformations of vector bundles
with a fixed determinant. As long as infinitesimal deformations are concerned,’ one
can mimick the construction above, with the difference that g;ﬁl; - bop are now 1-
cochains with values in the sheaf Endy(E) of traceless automorphisms of E. At the
finite level, the best trick off the hook to the fact that the notion of fixed determinant
is meaningless when deforming the underlying curve is to consider deformations of the
projective bundle P(E) associated to E. It is clear that the projectivization P(E) of
a vector bundle determines E up to its determinant and an r-th root of the structure
sheaf Oc. We are not going to dwell on these subtleties any longer, because in the
setting we will work in, we will also have at our disposal a different way to “fix the

determinant”, as it will be apparent from the sequel.

Definition. A family of pointed curves

a
afls
Wn



parameterized by S is a family of curves together with a section o of «.

It is clear that the moduli space of pointed curves is represented (in the weak sense
as discussed in §1.2) by the universal curve M_gl) over the moduli space of genus g
curves. A way to get rid of automorphisms and to obtain a fine moduli space is
considering the moduli space M]' of pointed curves and non-zero tangent vector at
that point. This is a fine moduli space since there is no non-trivial automorphisms of
an algebraic curve fixing a point and a non—zero tangent vector at that point [ADKP].

We obviously have projections

MY — M) — M,

We will denote respectively with Picj — Pic&l) — Picg the relative Picard varieties

of degree d line bundles, and with U(r,d)" — U(r, d)(l) — U(r,d) the relative varieties
of moduli of vector bundles of rank n and degree d. Let us concentrate for one moment
on the relative Picard variety. It is known [ACGH)] that a Poincaré line bundle L4
exists on Picyg(C) x C and such a line bundle can be normalized by the request that,
given a point ¢ € C,

Lal{q} x Picag = Opic,

Let us consider a family of pointed curves; it comes equipped with the following

diagram

Ly

Q
afla @
)

Then, the section & will be used to normalize £4 by means of the request

5*(Lq) = Opicy(s)

Furthermore, in the diagram above also the projection Picy(S)-2+S admits a canon-
ical section ¢, namely £(s) = (s, Oc,(d - o(s))).

Dealing with vector bundles, recall that in §1.5 we described how (on a fixed curve),
a distinguished Poincaré vector bundle was defined by the request that it was inde-

pendent of the operation of tensoring it with line bundles coming from the base of
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the deformation. To give meaning to such construction, however, we needed to fix a

point on the curve. In the family version, let us consider a Poincaré vector bundle

£
N\

¢ 2 U(rd)s)

Then the vector bundle
£ =E@7*((det MmE)" - (det 5°E)?) — C

is independent of tensoring with bundles coming from the base, and hence well defined
on overlapping of modular families when p and ¢ satisfy 1+ (d+r(1 —g))p+rg=0
and ¢ is the unique integer —r < ¢ < 0 satisfying ¢d = —1 mod r,

Also, we have a canonical commutative diagram of the form
U(r,d)(S) det, Picy(S)
N vy
S

and, as discussed above, Picd(S)ﬁﬁS admits the canonical section £. Hence, we will
define the moduli space of rank n with fixed determinant Ur(r,d) to be the fiber of
det over the image of {. The rationale for this is obviously the fact that this space
maps to some moduli space of “dressed” curves, and the fiber of this map over a
point (C,--:) is clearly the moduli space of vector bundles with fixed determinant

over C.

4.3 Atiyah algebras and their cohomology.

This section is devoted to the study of some aspects of the infinite dimensional Lie
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algebra which naturally appears when dealing with infinitesimal deformations of vec-
tor bundles over variable curves. In a general setting, given a vector bundle W over
a manifold M, one defines the Atiyah algebra Awof W to be the algebra of infinites-
imal automorphisms of W. When M is a smooth algebraic curve, this algebra can
be quite easily handled. In fact, an affine curve ¥ is a Stein variety so that every
vector bundle E — ¥ is analytically trivial. Given p € C and the preimage Ug of a
small coordinate disk D the covering {C \ p,Us} is a local trivializing system for E
Then the algebra of its vertical automorphisms can be identified with the algebra of
1-cochains relative to the covering {D, C \ p} with values in the Lie algebra endE.

The infinitesimal sequence of automorphisms of a vector bundle E induces the se-

quence

0 — CYC,EndvE) — CYC, Ag) — C*(C,Tc) — 0

Hence, given a local trivialization of F and a local parameter z on D, the fact that
polynomials are a dense set in all the algebras listed below yields identifications*
between dif f© S and C*(C, T¢) and between Lu(n)® and C*(C,Endv E). and hence
between Ag and the semidirect product diff& S* x Lu(n)C.

Even if we are essentially interested in the loop algebras of su(n) or u(n) it takes no
extra effort to describe the low cohomology of slightly more general Lie algebras, i.e.
the semidirect product D = diff© S* x Lg® where gis a Lie algebra with at most a
one-dimensional centre and L g& denotes the loop algebra of its complexification.
We have a “natural” basis in D, namely the one given by the three sets of elements
{l.},{dn},{T%} where

I, = z”+1§‘9; is a basis for dif f& §!

T¢ = T* @ z™ is a basis for L g°© (here T is a basis for g = g/Zg)

* We are obviously disregarding all subtleties of functional analytic nature involved

in the definition of loop spaces as manifolds

96



dn = H ® 2" is a basis for L Zg. The following commutation relations hold;
llny L] = (2 = 7l
[lnydm] = mdmin
(ln, TRl =mTy

[dmdm] = {dn’ng] =0
[T, To] = 1.

o Tl = F T

where f2b are the structure constants of the simple lie algebra g/Zg. Obviously, when
, f.i. g = su(n), all the d,’s vanish.

Proposition. H!(D,C) = {0}; H?*(D,C) = C*

Proof.The first part is a consequence of the fact that finite combinations of the basis
elements (i.e. polynomials “loops”) are dense in D and hence any continuous n-
cocycle is determined by its values on the (tensor product of) the basis vectors, and
of the fact that, as it is apparent from the structure of the commutation relations,
[D,D] > D.

As for the computation of the second cohomology one can argue as follows. Consider

the basis set {l,,d,,T2}. Any 2—cocycle w on D with values in C will be completely
specified by the datum of

W(lnylm) = Anm, @(ln,dm) = Bnm, w(dn,dm):=Cn m,

w(ln,T%) := a® w(Te, T = b2°

ay .__ .a
ny-m n,m? nyTm n,m? w(dn')Tm) T cn,m

The Jacobi identity, applied to the specified sets of basis vector gives
(L1, (n=h)Aprtnm +(m —n)Ansmpr+ (A —m)Antmn =0

(1,1,d) (n = h)Bhin,m + m(Brntm — Bnhtm) =0
(1,d,d) N Chinm — M+ Chimn =0
(L,1,T) m - ai,n+m —h- a:n,n+h —(m —n) 'afn+h,n =0
(LT\T)  fabe Qfpmyn —h b2y +h-B22 =0
(T,T,T)  focabiurm + feadb®% i + fababSmin =0
(1,d,T) mech in TR Co =0
(d,T,T)  fabeCrpnin =0
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Being the fq5. the structure constants of a simple Lie algebra, the last equation gives
Crnmtn = 0. Furthermore equation (7,7, T) is the classical cocycle condition for the
loop algebra of a simple Lie algebra, which has, as a unique solution, the Kac-Moody
cocycle
bt = A6,

so that, substituting this into equation (I,7,T') yields af, , = 0, a solution which
is consistent with equation ([,!,T'). One ends up, then, with the following set of
equations

) (n—h)Aptnm+(Mm—n)Animpr+(h—m)Apimn =0

(4,1,d) (n — h)Bhtn,m + m(Bhn+m — Bnhtm) =0

(1,d,d) 1 COhtnm — M- Choman =0

(T,T,T)  focabinim + feadbom nin + fababiimin =0
which have a 4-dimensional space of solutions, as the first three equations describe
the central extensions of the semidirect product of diff¢ S? times an Heisenberg
algebra, whose second cohomology is C* [ADKP] and the last one contributes with
one more independent element. L
Remark. It is apparent from the computation above that, if gis a simple Lie algebra,
H*(D,C) = C2,
For reasons that will become apparent later on, we want now collect some results
about the algebra of infinite size matrices and its cohomology. Let ao, denote the
algebra of infinite size matrices (a;;) 7,7 € Z such that a;; = 0 |t — 7| > 0 i.e. the
algebra of matrices that are “concentrated” along a strip of arbitrary width along
the diagonal.
Its second cohomology is generated by the 2- -cocycle ¥ [KP] given by
Y(Ei;,Ej) = —¢(Eji, Eij) =1 ifi<0,7>0
{ Y(Eij, Exi) =0 otherwise.

the E;; being the standard generators for aeo.

More generally, if we represent an element A € a., as

a4+ [2 -
a—_4 a_
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the general form for the cocycle is
$(4,B) =Tr(ay-b_y —a_yby_)

Let us digress for a moment on the algebra F of regular differential operators of order

less or equal than one on C* = C\ {0}. A standard set of generators is then given by

n+l 8

50 dn =2z".. It is represented on the space T; of regular j—differentials

l,==z
on C* as 5
Wnf(de) = (7 2= + j(n + 1)2")£)(dz)!
dnf(dz)’ = (2" f)(dz)?

Let us call p( ) such a representation. A basis for H?(F,C) is given by [ADKP]
0 0
( @1(g15; + h1, 925~ + ha) = Res.=o g1dg"

6 o)
a ( 8 + hl)gza + h2) Resz:ﬂ gldhlz - gZdha

9 + hy) = Res,=g hidh;

+h1)928

\a(

'8z

Considering the basis cpj = zF(dz)? of T} gives rise to a matrix representatioﬁ of

Funder which one can pull back the standard generator of a.. In partlcular, for

J = 01t holds |
(PS)*(—9) = —a1 /6 + a2 /2 +

A different representation pgr) can be obtained considering F as acting on the space

T;r) of C"—valued j-differentials. The relations between the two representations is

easily gotten as

rn, 0 5,
S )(952— +h)=(p{(g 95, th)e1,

so that, as long as central extensions are concerned,
™ ® 1 *
(057) (=) =7+ (o) ()

The relevance of such representations is apparent in our context; in fact, the space
T}r) is acted upon by the Atiyah algebra D, and when viewing F < D the appro-
priate representation is exactly pgr). We have proven that H?(D,C) = C*. A set
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of generators can be obtained by adjoining to any set of generators for H 2(F,C)
the generator ag which is defined as follows. Any element of D can be represented
uniquely as X = 95‘9; ®1,+h®1,+ A with A an element of the loop group of the
simple algebra g/Zg Then

as(X,Y) = Res,—o < Ax,dAy >

where < -,- > is the Killing form on g/Zg. Then it holds that, if ﬁgr) is the natural
representation of D in Tér) that

(ﬁgr))*("@b) =7 (—a1/6+ /24 a1)+

This means, in particular, that given a set {w;}i=1,.,3 of generators of the second
cohomology of F, the sets {{w;}i=1,.,3, 24} and {{wi}izl,_",g,ﬁgl)*(~¢)} are a set

of generators for H2(D, C)

(r)

As a final remark, we notice that the relations between the representations p;

and pgl) is easily visualized in the grassmannian set—up as follows. There is a natural
isomorphism between the spaces H and H" as introduced in §4.1 given by the so—
called lexicographic transcription [PS]. In terms of standard bases e;z" of H™ where
e; is the standard basis of C™ and (7 of H, this correspondence sends ;2% to (MR
Under the inverse map, a simple computation shows that the standard generator of
the Virasoro algebra [; can be represented as lx ® 1, while d,, becomes d,, whose

matrix representation is the same as that of d, ® 1.

4.4 The geometry of the Krichever map

We will now describe the construction of some infinite dimensional complex varieties
which will be embedded by the so—called generalized Krichever map into a suitable

infinite Grassmannian. Consider a pointed curve



parameterized by S; and choose a small neighbourhood V of s € § over which the
family is C'*° trivial. A tubular neighbourhood V of o(V) C C|V if a family of
disks parameterized by V and so it is holomorphically trivial. This gives the pointed
curve a local coordinate centered at o(v),v € V. Given another open set V' in S,
the new local parameter will be related to the old one by a holomorphic map with
non-vanishing derivative at z = 0. In this way one can construct a natural infinite
dimensional variety S, whose points can be considered as pairs (s, z5), where s € .S
and z; is a local coordinate on C, near o(s). This comes equipped with a universal

curve C obtained by pulling back the curve

C S

afla

under the natural projection. Obviously, S can be considered as a deformations of
the data (C,p, z).

Pasting together Kuranishi families of such objects one can construct the smooth
infinite dimensional manifold M, ¢ modelled on Hy x C3973 whose points parameterize
triples made of (curve C, points p € C, local parameters z near p). Observe that, if
M.rlzl parameterizes pointed curves and a non—zero tangent vector at that point, we
have a natural projection

- "
M, 2= M,

sending (C, p, z) into (C, p, EQE) with fibres isomorphic to the vector space H, so that

p" induces an isomorphism in cohomology

H*(M,, 1) = H*(M!'7)

Let us now plug vector bundles into the game. Let (C,p) be a pointed curve, let
& be a rank r stable vector bundle over C. A local trivialization ¢ of £ at p is an
isomorphism of £, with ®i=1,..rOp. Two locally trivialized vector bundles (£}, ¢;)

and (&2, ¢2) will be called equivalent if there is an isomorphism &; ng such that

$2T¢ ;"
@i:l,...rop 2__3} @i:l,...r Op-
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’ is a the identity. It is clear that the set of equivalence classes of such pairs maps
onto the moduli space of stable rank r vector bundles on C. The fiber of this map
over (C,€) is the group GL(E), (i.e. the stalk at p of the sheaf of automorphisms
of £) modulo the group of global invertible elements in H°(C, End(E)). Hence, after
choosing a local parameter z at p, this in turn can be identified with the space of
elements of the form g,-(1,+2-4(z)), with A(z) a matrix valued holomorphic function
of z and g, is in Gi(r,C)/H®(C, End(E))*. Thanks to stability H°(C,End(E))*
is reduced to constant multiples of the identity, and so the fiber is PGL(r,C) X
End(E)4, this latter being the space of local holomorphic matrix valued functions.
Again, by pasting together Kuranishi deformations of quintuples (C,p, z,[£, ¢]) one
defines the infinite dimensional moduli space of such objects, U (r,d).

For later use we observe that Z;{(r, d) maps onto L?(r, d)" which is the pull-back
of U(r,d) = M, to Mj and this map induces an isomorphism up to second rational

cohomology as the fibers have the same homotopy type as SU(r)/Z.

Let us consider =z = (C, p, z,[£,¢]) € U(n,d) and the space of sections of £ over
C\p.
Proposition. There exists a natural map of /(r, d) into the infinite Grassmannian
Gr(HT).
Proof. Consider the open covering of C made of C \ p and the preimage D of a
small coordinate disk of radius e. Since every affine curve is a Stein manifold, this
covering computes the cohomology of every coherent analytic sheaf on C. Namely,

the Mayer—Vietoris sequence associated to such a covering reads:

0— H(C,) = T(D,E)dT(C\p,E) = T(D',E) — H(C,E) = 0
Factoring out I'(D, &) one gets the exact sequence

0— H°C,&) - I(C \p,&) — (D', E)/T(D,E) — H(C,E) = 0

Now, the local trivialization ¢ and the local parameter z enables one to identify

I'(D',&) = H" and I'(D, &) = HY so that the sequence can be rewritten as
0— HYC,E) - T(C~p,&)— H'/H, = HT — H(C,€) = 0
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which, by the completeness of the curve C exhibits I'(C'\p, £) as a Fredholm subspace
of H". As a side remark, we notice that the image of Z{(r,d) is contained in the

component of index x(&) of Gr(HT), x(€) being the Euler characteristics of £. &

The map

Ur,d) 5 ar(H)
T — I(C~pé&)

is called “generalized” or “non—abelian” Krichever map [Mul][PW].
Remark. Notice that the moduli space Mg of dressed curves and the moduli space
of dressed degree d line bundles My are naturally embedded into Gr(H) [ADKP].
However we can get a commutative diagrams of embedding into Gr(HT), where =
= rank £ sending Gr(H) — Gr(H") by means of the lexicographic transcription
described in §4.3.

We are now going to study the Krichever map (r, d) — Gr(H") and the diagram

Ur,d) — Gr(HT)

\ v

~

M,
Consider a local universal family of curves C — M and the relative variety of moduli
of vector bundles U(r,d)~——~M. As we already discussed, the tangent space exact

sequence reads
0 — H'(C,End(E)) — H*(C,Zg) — H(C,K™*) — 0

where ¥ is the sheaf of differential operators of order less or equal to 1 with scalar
symbol acting on sections of E. This exact sequence describes, as pointed out in
§4.2, the infinitesimal deformation of a vector bundle over a curve. Turning to the
infinite dimensional moduli space, the sequence above will be “enlarged”, since some
coboundaries will act in a non- trivial way on the data we want to parameterize.

Given points

= (C,p,z,[E,¢]) € L?(Ta d)
y=17(z)=(C,p,z) € Mg
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we have natural identifications of

Splp=H" @H_-8CD
K 'tp=H_-8Cdiff®s?

and Lie algebras inclusions

D, =I(C\p,Bp) =D, diffcSs", =T(C\p,K)— diff* 5"

In analogy with the abelian case one has the following

Proposition. For every ¢ € U(r,d) one has the following commutative diagram
0 — D, — D — T.U(r,d) — 0
o174 o 11 Les 0
0 — diff€8', — diff€8" — T,(M,) — 0

where o is the symbol map and the horizontal sequences are exact.

Proof . The tangent space T (U(r,d)) is the space of isomorphism classes of defor-

mations of the quintuple (C,p, z, E, [#]) parameterized by the ring of dual numbers

S = Cle]/e?. Take A(z) + b(z)% € D and consider, once more, a Stein covering of

C made of a small disk D around p and C \ p. By the very definition of the Lie

algebra D, one can shrink D so that, for z € D, A(z) is a holomorphic matrix—valued

function, and b(z) is a holomorphic function. Then one can define a family of pointed

™
curves with local parameter and a vector bundle £ — C & S considering
g

C=DxS][[(C pxS$)~

(5,6) ~ (= + eb(2), )
and

£=(Elpx )| [(Bloy, x 8)/ ~

(¢r€) ~ (8- (1+€A(2))¢)
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The map which associates to A(z) + b(z) 2 the pair (C,£) defines a surjective ho-
momorphism D — Ty (U(r,d)). What is left to prove is that the kernel of this homo-
morphism is D,. If A(z) +b(z) 2 is in the kernel, then (C,£) is a trivial deformation
of (C, E) and so, by Kodaira-Spencer theory, must lie in the image of the difference
map |

D, ® O,(Sp)-5D

where O,(Zg) is the stalk at p of the sheaf Xp. Looking at the local parameter
and trivialization, it is clear that the isomorphism between (C,&) and the trivial
deformation E x S induces the identity on D x E and hence is in D,. E

Let us now consider the Krichever map
K :U(r,d) — Gr(HT)
and let ¢ = (C,p, 2, E,[¢]) € U(r,d). The tangent map
T,(U(r,d)) = D/ Dz "> Tx(ay(Gr(H")) = End(K(z), H" /K (=))

can be represented, if O(z) = A(z) + b(z)a%— is a matrix valued differential operafor

which maps to v € T,(U(r,d)) and f(z) € K(z) as
dK(v)(f) = O - f modK(z)

Let us consider the algebra of infinite size matrices as, and the natural representation
pgr) of D in ae. The analysis above can be summarized in the following commutative

diagram; A o) K

DxU(r,d) *— ae xGr(H")

l l

T@W(r,d) L T(GrHET))

Now we can show how central extensions of the Lie algebra D are related to the
Picard group of Z(r,d).

Lemma. Let X be a complex manifold, and let g be an algebra acting on X such
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that
i) Vo € X the evaluation map gi‘aTz(X) is surjective;
ii) g, = ker ¢, is such that [g,,g,] = g,

Then for any Lie algebra continuous extension
0—-C—g— g—0
which is trivial on g, there is associated a continuous extension
0 X XC—F—Ty(X)—0
This defines a homomorphism
Nsexkerr, — Ezt'(Tx,Ox)

where 7, : H*(g,C) — H?(g,,C) is defined by restriction.
Proof. See [ADKP].

We can apply this lemma to our situation thanks to the following two propositions.
Proposition. Let C be an affine curve, and let £ be a holomorphic vector bundle
on C. If D is the algebra of global differential operators of order < 1 with scalar
symbol acting on sections of &, then [D.,D,] = D,.

Proof.  Every vector bundle over an affine curve is analytically trivial, so that
we we can suppose that £ ~ C' x C", and D, is the algebra of global differential
operators of order < 1 and scalar symbol acting on vector-valued functions. Then, if
0 is a nowhere vanishing vector field on C, and T is a basis for the algebra of n x n

matrices Mat,(C) any element of D, can be uniquely written as
fo+ Z g°T*e
with f and ¢ € O¢. One notices that D, is an Oc—module as

s[ad + 4,59 + B] = [sa0, %ba + B+ [500 + 4,560 + (4, B]
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Hence one is left to prove that the elements 0, and T'® are in the commutator

subalgebra. If C is a Zariski open set in C this is immediate since
8=1[08,20] T*=[08,z1°)

In the other cases, one can consider projections of C on the affine line C with disjoint

ramification divisors and pull-back the standard generators. B

To prove the second proposition we need to recall the following facts. The
algebra D is embedded via pgr) into the algebra ao of infinite size matrices. The

second cohomology of the latter is generated by the 2—cocycle 4 given by

{IZJ(Eij,Eji) = —-—’g/)(Eji,Eij) =1 if:1<0,7>0
Y(Eij, Er) =0 otherwise.

the E;; being the standard generators for ae. A basis for the second cohomology of
D is given by the four generators listed in section 4.3, and all these are puH-béCks
under suitable representations of the cocycle ¥ € H?(aco,C).

Proposition. Let us consider the tangent to the Krichever map
0— Dy — D — To(U(r,d)) — 0

Then every Lie algebra extension of D is trivial on Ds.

Proof. In view of what we have discussed above, we can work on the image of
U(r,d) in the Grassmannian Gr(H"). The image of D, is contained in the Lie al-
gebra ag ;) of the stabilizer of the image of z € L?(r, d) in Gr(HT). But, thanks to
the fact that the group A of invertible infinite size matrices acts transitively on
Gr(H™) and Aclg(aH:L) = agp: it suffices to show that any extension of ao is trivial
when restricted to agr. But this is true in view of the facts that in the canonical

decomposition of operators induced by the polarization of H", the stabilizer of H

appears as the group of “diagonal matrices” i.e.

AECLH_TI_'—‘>A+_=A_+=0

107



and the form of the standard cocycle is given as

$(4,B) =tr(A4-B_ ~Bi_A_4)

Summing up, by using the lemma above, we have proven the

Theorem. There exists a homomorphism

H*(D, C)——)E’mt (Tu( ,d)? u(rd)) = H'(Q; (rd))

The same argument yields a homomorphism

Hz(aoo) - El!tl(TGr(Hr), OGT‘(H"'))

This latter is spelled out by the following
Proposition. [ADKP] The extension ¥ induced by the standard extension of aw,
is the sheaf Xg4.; of differential operators of order < 1 acting on sections of the

determinant bundle.

We next want to show that the extensions induced by the action of D on Ta(r’ 4

actually come from line bundles. There is a canonical homomorphism

¢: HI(O:(( d))""Hl( L((r,d))

which associates to a line bundle L the isomorphism class of extensions represented
by the sheaf of differential operators of order < 1 acting on sections of L.
Proposition. The image of the homomorphism
p
H? (D)-—-—)E(Btl (Ta(r,d)’ Oi((r,d))
is contained in the image of the homomorphism
B0}, ) - HH (0

U(r,d) Ur d))

Proof. We noticed in §4.3 that H?(D,C) is generated by a basis of the second
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cohomology of F = diff& S x Lu(1) plus the pull-back oy = (p‘ff’)*(—;b) of the
generator of H?(aeo,C)under the standard representation of D in ac.. We know,
still from [ADKP], that the first three cocycles actually define line bundles over the
moduli space Picy parameterizing curves, points, local parameters, and equivalence

classes of line bundles and trivializations. Since we have an obvious projection
~ det 2.
U(r,d) =5 Picg

under which we can pull- back such line bundles, what we have to prove is that there
is a further line-bundle associated to «y. As we have discussed in §4.2, we can define
a normalized universal vector bundle £ over the universal curve C——/ (r,d) which
we can pull back to the universal curve over I{ (r,d) For the sake of simplicity, let us

call this bundle still £, and Q the line bundle det m& — U(r,d).

Let us consider the diagram

DxU(r,d) — ac x Gr(HT)

l l

TU(r,d)) — T(Gr(H"))

s

By construction, if K is the non-abelian Krichever map, K*(det™!) = Q so that,
by the proposition above and the functoriality of the Krichever construction, the

pull-back of ¥;.-1 is exactly Zq B

The paper of Arbarello, De Concini, Kac and Procesi ended with the remarkable
proof of the existence of an isomorphism between the group of line-bundles on the
moduli space of pointed curves with a non zero cotangent vector and a degree g — 1
line bundle and the second cohomology of the semidirect product of the Virasoro and
Heisenberg algebra. What we can prove is a somewhat weaker result, and namely
that there is an isomorphism between H?(D,C) and the second rational cohomology
of U(r,d)" for the case of rank 2 and 3 bundles. Actually, the considerations based on
the non—abelian Krichever construction show that there is a homomorphism between

central extensions of the Lie algebra D and line bundles over U(r,d). To prove the

109



isomorphism (although in the weaker form concerning rational cohomology) in low
rank, we can proceed as follows.
Recall that Z{(r,d) maps onto U(r,d)' and the map induces an isomorphism in

second rational cohomology. Let

C S

afla

be a pointed curve parameterized by S and consider the diagram :

Uu(2,d)(s) det, Pica(S)

Proposition. The bundles (2,d)(w)£%S and Pict(r)2%S come equipped with
canonical sections {; and ¢; which make the associated diagram commutative.
Proof. The case of the relative Picard variety can be dealt with as in [ADKP] by

&: S — Pict(m)

s ~ (5,0¢,(do))

For the case of vector bundles, the construction is a bit more complicated, but can
be achieved by means of the following considerations. As discussed in §1.5, we can
restrict the discussion to the cases d = 0 and d = 1. Let us consider first d = 0.
Given p € C, isomorphism classes of non-trivial extensions 0 — O(—p) — £ —
O(p) — 0 are parameterized by the projective space PH*(C, O(—2p)). Let us choose
the distinguished class [no] which is dual to the class wq in H°(C, K¢ (2p)) represented
by the unique abelian differential which has a true singularity in p. We want to prove
then that bundle &[no) 1s stable, i.e. it does not admit any subline bundle of non-
negative degree.
Suppose we have 0 — LLS[,,O]; Then, composing with the projection = one would
get a non-zero homomorphism s : L — O(p). It is clearly impossible if degLl > 1.
Moreover, if degL = 1, and s # 0 then L = O(p) and s is nowhere zero, which is

impossible since &[no] 1s @ non~—trivial extension. This shows that &lno] 18 semi-stable.
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As for stability, let us consider a degree 0 line bundle I and a map 0 — L—(’i»é'[,m];
One then would have an element in H°(C, L™*(p)), which implies that L = O¢. In

such a case, then, one ends up with the following diagram

0 — O(~p) — & — Op) — 0

Te
O

and the existence of the homomorphism O——‘ﬁ»é'[no] is equivalent to the possibility
of lifting the map p in the diagram above. This, in turn, happens if and only if
the characteristic class of the extension, [n] lies in the kernel of the natural map
§ : HY(C,0(-2p)) — H'(C,O(p)) induced by p [NS]. The dual statement is that
wo is in the image of the map of C into the projective space induced by the linear

system |Kc(2p)|. But it cannot be so, because the canonical system is base—point free.

Then, given any family of pointed curves,
c = S
one can define the section
& S — U(2,2k)(r)

s (8, moa(e)) @ Ok - (€1(5)))

Notice that det&l,,(o(s)] = O(2ka(s)).

For the coprime case, let us consider the case d = 1 We borrow from Ramanan
[R] the following argument.
Given two coprime numbers r and d, let | be the unique number 0 < [ < r such that
ld =1 mod r. Then there is a unique number 0 < k < r such that Id — kr = 1. If
V and W are stable vector bundles respectively of rank [ and degree k and of rank

7 —l and degree d — k, any non-trivial extension

0-V-SE—-W=0
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is stable.

Forr =2 and d =1, we have l =1 and k£ = 0 so that we will consider an extension
0-0—-E—-0(p)—0

The problem is to choose canonically a non-trivial extension. Such extensions are
qualified as usual by H!(C,O(—p)) which is isomorphic to H*(C, ). This latter
has a very nice description, which is also natural in our setting. In fact, given the
Stein covering {D,C \ p} elements in H!(C, Q) are identified by the Weierstrass gap
sequence of the curve C in the following sense. If z is a local coordinate at p, a
one—cochain relative to the covering {D,C \ p} with values in O is a holomorphic
function defined in D\ p. Since there are no triple intersections, every one—cochain is a
cocycle, and this will be non-trivial as long as it cannot be written as the difference of
a holomorphic function on D and a holomorphic function in C~\p. If f € O(C,D\p),
and f denotes its Laurent tail, then [f] is a non-trivial element in H*(O) iff there is
no global meromorphic function on C having f as its only polar part. If we consider
the functions fr = 1/2¥ k =1,...,2g — 2 we see that [f¢] € H'(C, ) is non-trivial
precisely whenever k is not a Weierstrass gap. Since k = 1 is never a Weierstrass gap

(as long as C is not P!) the extension
0—=0— &1 — O(p) =0

is stable. We remark that the class [1/z] is only optically dependent on the local
parameter z at p. The definition of the section £ : S — U(2,2k + 1) follows in

complete analogy with the coprime case |

Remark. The difference between the choices in the coprime and in the non—coprime

case are due to the fact that by the residue theorem, there is no generator in
H°(C,K(p))/H®(C, K). Actually, the Serre dual picture of the choice we do in the
coprime case is to choose the dual to the generator of H°(C,K)/H®(C, K(—p))-

Summing up we have shown that, once the datum of a smooth algebraic curve C

and a point p € C, is given we can choose in a canonical way a stable vector bundle
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of rank 2 over C' and arbitrary degree d by tensoring &}, or, according to the parity
of d, &1/ by O(j - p) getting E[jno] and E[jl/z] which are of degree respectively 25 and

2j + 1. Notice that (€], ))* = £/ 17" and the same relation holds for (£} ;)" and

' [n0]
J
YEE

We are now in the position to prove the isomorphism between the second cohomology
of (2, d) and the second cohomology of D. For the sake of simplicity, let us deal with
the coprime case. Consider, for d = 2k + 1 the universal vector bundle £ over the
universal curve é"il—)L((r, d)". In the notations of §4.2, o*(det&) and detn|'€ generate

(with a relation) the second cohomology of the fibre to the fibration
U2, d)" =5 Pic

This means that dimH?(/(2,d)", Q)/det*(H?(Picli,Q)) > 1. But the commutativity

of the diagram det
=

M(2,4d) Picg

and the existence of the section £ give a section of
U(?2,d)" 2% pic!

so that
det™

H?*(Picy, Q)=—H*(U(2,d)", Q)

is an injection. Since [ADKP] H?*(Picl,Q) has dimension 3, we have then that
the dimension of H?(U(2,d)",Q) is at least four. But by the Kunneth formula
dim H?(Picl],Q) < 4 so that actually we have proven

Proposition. dim H?*(Picl],C) = dimH?(D,C) = 4 H
The same constructions can be done with the Atiyah algebra Dy = diff& S* x
Lsl(2,C) which is associated to the algebra of 1-cocycles with values in EndoE. It
obviously is associated to the moduli space of vector bundles with fixed determinant

U(2,d)} in the sense as explained in §4.2. This space fibers directly over the “dressed”
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moduli space M. This fibration admits a section too, since we have chosen sections

of
U(r,d) — Picg

whose determinants is precisely O(d - p), and since [AC] dimH?*(M/,Z) = 1, one has
the analogous
Corollary. dim H?*(U(2,d)},C) = dim H?(D,,C) = 2 B

For the case of rank r = 3 one can argue as follows. A sufficient condition for
the existence of the isomorphism between the second cohomology of the Lie algebra
D and second cohomology of Z:{(r, d), is the existence of a section ¢ to the fibration
U(r,d)" - M ¢+ We can still use Ramanan’s argument, using as building blocks the
rank 2 bundles 5{1/4 and E[J;m]. Sticking to the coprime case, we have to discuss the
cases d =1 mod r and d = 2 mod r; actually, solving the problem for one of the two
cases is enough since if Eis such that degF = 1 mod r then degE* = 2 mod r. Some
arithmetics shows that we have to seek for a non-trivial extension

0—>O—>F3——>5[j1/z]—>0

Such extensions are classified by PH 1(C,(E,'[jl /Z])*). The cohomology sequence for
(Efi/z])* reads

0— H°(C,0)-H'(C,0(~p)) — H(C,(&],

) = HY(C,0) 0

Then, to keep things as simple as possible, we can try to assign an element in
Hl(C,(E[jl/z])*) giving an element in H'(C,O(—p) as long as it is not in the im-
age of H%(C, ) under the connecting homomorphism §. Here our favourite cocycle
[1/z] unfortunately does not make the job, since a simple computation based on the

fact that an explicit representative for the transition function of E[Jl /2] is (still using

the covering {D,C ~\ p})
1 o1/22
G= [0 1/z ]
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shows that §(1) = [1/z]. The minimal choice we can then do is to consider the class
[1/2%]. This means that actually we are defining a section of /(3,1)%" — M] where
M g is the moduli space of automorphism—free curves (actually we need only to delete
the hyperelliptic locus in My). Since for g > 5 the set of curves with automorphisms
is of sufficiently high codimension, we can safely apply the argument above to prove

the isomorphism

H?*(D,C) ~ H*(U(3,d)",C) d=1,2
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Appendix 1.

The Grothendieck-Riemann-Roch Theorem

The Grothendieck-Riemann-Roch theorem computes the Chern character of for-
mal sums of direct image of sheaves under analytic maps between complex varieties.
Before stating it, let us collect some terminology (see, e.g. [Hart]). Let X be a
complex manifold of dimension n with structure sheaf O.

Definition. A sheaf of abelian groups on X is called analytic if
i) the stalks S; are O -modules

if) the map |J,cx Sz X Oz — e defined by the module operation is continuous.

Definition. An analytic sheaf S is called coherent if Vo € X thereisa neighbourhood

U, of z and a short right exact sheaf sequence
OPty, = Oy, — Sy, =0

Here O? =0 @ ---® O p-times
What matters for us is the following
Fact. if E is a complex analytic vector bundle on X, then the sheaf € of local
holomorphic sections of E is coherent analytic [Hirz].

Direct image sheaves are defined as follows.
Let X—5Y be a holomorphic map and S an analytic sheaf over X. One defines
the gth — direct image sheaf R?f.(S) by means of a suitable presheaf in the fol-
lowing way. Let V be open in Y. Then the cohomology space Hi(f~1(V),S) is
an Ox| j-1(yy-module. By composition of maps it is also an Oy ly-module. The
map Va~~bHI(f~1(V),S) defines a presheaf on Y whose associated sheaf is, by
definition, R?f.(S). Naively, the stalk at y € ¥ of R?f.(S) can be identified with
HS (£ (1), ).
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Coherent analytic sheaves have ‘simple’ cohomological properties. Namely
Proposition 1. if S is a coherent analytic sheaf over an n-dimensional manifold X ,
then

HY(X,8)=0 forg>n

Proposition 2. If XxLYisa proper holomorphic map,
Rif.(S§)=0 forg>dim X

and R?f,.(S) is coherent for ¢ > 0.

Let C'oh(X) denote the set of isomorphism classes of coherent analytic sheaves
over a complex manifold X, and let F(X) denote the free abelian group generated by
Coh(X). If R(X) is the subgroup generated by all elements of the form & — &' — S”
where

0—-S"—-S8S =8 =90

is short exact, one defines the Grothendieck group of coherent analytic sheaves over
X as
Ku(X) = F(X)/R(X)

Given a proper holomorphic map X .Y one gets an homomorphism

S e F(S) = TLo(—)TRIf(S)
As f; maps R(X)to R(Y) it iﬁduces an homomorphism
fit Ku(X) — Ko (Y)

The Grothendieck-Riemann-Roch theorem for analytic sheaves is an equality between
Chern characters of coherent analytic sheaves.

Lemma. Let S be a coherent analytic sheaf aver an n-dimensional algebraic manifold
X. Then there are complex vector bundles Wy --- W, over X and an exact sequence

(called resolution by vector bundles)
0—-Wy — - =W, =S -0
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of analytic sheaves over X.(where W; denotes the sheaf of local holomorphic sections
of W3).
Then the Chern character Ch(S) is defined as

Ch(Sy=Y (-)' Ch(W))
=0
The Chern character is a homomorghism

Ch: EfX)—H*(X,Q)

Theorem (Grothendieck-Riemann-Roch ). Let b € K,(X) and f: X — Y a proper

holomorphic map between algebraic varieties. Then

Ch(fi(8)) = f. (CB(®) - Td(X) - (F(TdX)) ™)

Here T'd(-) is the total Todd class of the tangent sheaf to - and f. is the so—called
Gysin homomorphism (represented, in the smooth case, by integration along the
fibers in De Rham cohomology).

The formula above is clarified to a great extent when working with smooth

objects by means of the Chern-Wad construction, which gives explicit expressions
for characteristic classes in terms of polynomial invariants built out of the curvature
of the relevant bundles. Recall that [K] given a holomorphic vector bundle E——X
with a hermitean structure < -,- >g, there is a unique unitary connection Vg which
is compatible with the holomorphicstructure, in the sense that the (0,1)-component
of Vg coincides with 0g.
The Chern-Weil construction associates to (E ,<-->g,Vg)aset of distinguished
differential forms which represent iz De Rham cohomology the Chern classes of E
(and hence any characteristic class} and are built out of the curvature Rg of VE.
In particular, the relevant polynomials entering the Og-complex are the Todd genus
of the tangent bundle TX and the Chern character of E, given by

CHE) = tr e+ 1B
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RTX/47[ _L‘R
t t ks
1 d(X) - \/de msi R / rez TX

By the splitting principle one can deduce the following formulas:

rk E

COM(E) = Y & =1k B+ a(B) + 5 (er(E) — 202(E)) +
dimX ]
Tdx)= [] i—_—y;’-:;— =1+ —cl(TX )+ 25 (cl(TX +e(TX)) + -

Let us specialize this construction to the case in which X is a holomorphic family of
and £ is the sheaf of sections of a holomorphic vector bundle on X. In this case fi(&)
is the formal difference H® (f~(s »HE) © H (f~(s), £) so that

e1 (Fi(E)) = e (det fi(€)) = /

fibers

(ch(E) - Ta(x) - (5 (@)™
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Appendix 2.

Moduli stacks.

If the moduli spaces M, of genus g curves existed as manifolds, one would have
been able to use the bases B of universal deformations C 4 X — B to give local
coordinates on M, by setting [isomorphism class of #71(b)] ~» b € B. Unfortunately
this is not the case because of the presence of automorphism. Indeed, for any auto-
morphisms o € Aut(C), we get another deformation C ©S X — B of C and by the
universal property there is a base change ¢(a) : B — B making the two deformations
isomorphic. So, Aut(C) acts on Bj; in other words, B overparameterizes the curves
"near” C, while the correct local model turns out to be B/Aut(C). This way of
thinking leads to the construction of the ”coarse moduli spaces”. Incidentally, these
turn out to be complex spaces but generically not smooth manifolds.

Another possibility of dealing with the moduli problem is to enlarge the very
concept of "manifolds” by first enlarging that of the underlying topological space.
This generalization is actually a stack an we want to describe here its basic features,
referring to the literature for the complete set up [Mu5][DM][Po].

Let us first work at the topological level. The basic idea of Grothendieck is to
forget about points (i.e. isomorphism classes of curves in our case) and to construct
a generalized topology by allowing more open sets and ’inclusions’ than usual. Recall
that a topology on a space can be considered as a category, whose objects are open
sets and morphisms are inclusions. Intersections and unions correspond to products
and sums in the category and of course one finite products and any sum exist in
the category itself. The basic property one is going to generalize is that, in ordinary
topologies, the morphisms between two objects U, V are either empty or consist of
a single morphism; namely the inclusion of U in V. One gets in this way a category

My, which in our case (for g > 2) can be described as follows;
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1) objects ("open sets’) are versal families of smooth curves of genus g 7; : X; — B;
over smooth bases Bj, with final object X,

2) morphisms ("inclusions’) are morphisms of families of curves and projections on
the final object X,

3) the category is closed under finite product (intersections’) and generic sums
(*unions’)

4) a collection of morphisms

x, % x
1 l
S. & g

is a covering of § if § = Uaga(S4). A collection of projections of families onto the

final object X is a covering if every curve occurs in at least one of the families.
Loosely speaking, one forgets about automorphisms by using versal families (in-

stead of their bases up to automorphisms ) as open sets. Notice that this is by no

means an ordinary topology, that is ¥ is not an ordinary topological space, because

morphisms of two ob jects are not required to be unique when they are defined.
This topology for moduli problems comes together other properties, which are

the distinctive features of stalks. Among these, we want to recall that;

5) for any morphism ¢ : B' — B” and any family X” — B”, there is a unique

pull-back family ¢*X” — B’ over B'.

6) for any covering ¢; : B; — B’ of B', denote by

Bij = Bi xp' Bj =t {(b;,b;) € B; x Bj|i(bi) = ¢;(b;)}

Bijk = Bi X B B]‘ X B! Bk.

Then, there exist some family X' — B’ and isomorphisms ®;; : 7f X' — qb;fX' over
B;;, satisfying an obvious cocycle condition over Bijk.

The notion of a sheaf on the moduli stack is given as follows. For every family
of algebraic curves C—~B one gives a sheaf Sp over the base §, plus isomorphisms

®;; between Sp, and f* (S, satisfying the cocycle condition whenever a cartesian
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diagram

is given.

N

-

-
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Appendix 3.

Superalgebra.

Definition. Let 4 = Ay + A4; be a Zy-graded ring . We will denote by &
the degree of any of its homogeneous elements. Given a pair (a,b) of homogeneous

elements of 4, their supercommutator is defined to be
[a,b] =a-b—(-1)%%b.q

The definition of supercommutator is then extended to arbitrary elements z,y € 4 by
linearity. A 7;-graded ring A is called supercommutative (or graded commutative)
iff

Va,be A [a,b] = 0.

In a complete analogy one can introduce the notion of Z,-graded algebra and of
supercommutative Z;-graded algebra . Notice that in both cases the supercommuta-

tor satisfies the following fundamental identities:
(Dfa, b] = _(“1)“ b, al

[a, [, e} + (=1)**+ 5, Te,a] | + (=1)%&*D [, [a,5] | = 0

Given a Z,-graded ring A, one can define right and left A-modules, which, con-
sistently, will be Z,-graded abelian groups. What actually happens is that every
(say right) A-module is a bimodule, whenever left multiplication by a € A is defined
taking into account a “sign rule”, i.e. if M is a right A-module we will define the left

action as



Tensor products and the usual operations of linear algebra carry over to the graded
case with the only precaution of taking correctly into account the sign rule.

Definition. An additive map f : § — T between two A-modules is called a
homomorphism whenever it is A-linear and preserves grading.

Definition. Let S be an A-module. We define the A-module ILS by means of
the following prescriptions:

i) IISy = 54 IISy = So

ii) IS ~ S gqua abelian groups

iii) right multiplication differs by a sign factor:

a-Is = (—1)*I(a - s)

Example . The prototypical Z,-graded rings A we will deal with are the following:
(1) The Grassmann algebra A*V of a n-dimensional vector space V
(2) The ring of "regular” functions on a domain in C™ with values in A*V. This
second ring can be thought of as generated by considering it as the quotient of the

polynomial ring in m 4 n indeterminates z1,+++,Zm; &1, -, &n by the ideal generated

:cixj = (l!j.’B,;
{ zi&a = éawi
§a€ﬁ = "gﬂfa

by the following relations:

An A-module S is said to be free of rank p|q iff it is isomorphic to the A-module
APle ;= AP @ (ITA)?. Notice that Aﬁ‘q = A? @ (IIA;)? and conversely. The rank of a
free A-module shares (thanks to graded-commutativity) with the dimension of vector
spaces the property of being uniquely defined, in the sense that, two free A-modules
S and S’ will be isomorphic iff they have the same rank. This property enables
one to discuss of matrices as representative of (even) homomorphisms between free
A-modules. An (m|n x plg) matrix with entries in A will be said to be in standard

form if it is in block form

A B
¢ D
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with a;r,dog € Ay and cia,bﬁr‘e Ai1. The set of matrices in standard form with

entries in A is commonly denoted by
M(m(n, plg; A)

It is a Z3-graded algebra naturally isomorphic to Hom(AP12, A™™), via the usual
isomorphism given by considering the natural bases in A?1¢ and A™™. Given an

element X € M(m|n,m|n; A) one defines its Supertrace to be

StrM =TrApy — TrDjuy.

Definition. A derivation in 4 is an additive map X : A— A4 satisfying the
graded Leibnitz rule:
X(ab) = (Xa)b + (-1)*Fa(Xb)

where X is the parity of X qua additive map.

If A is an algebra over a field F', we will say that X is a derivation over F if
Xf=0 V fePF
The set of F-derivations in A are made into a Lie Z5-graded algebra by defining
[X,Y] = XoY — (-1)%¥yo X,
which naturally has the structure of A-module.

The last definition we want to recall here is the one of Berezinian or Superdeter-
minant. Let B € GL(p|g; A) an even automorphisms of 4?19, Writing B in standard

form
B, B,
_B::
B; B,

one defines

BerB = det (By — BzBZIBs)/det By
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The meaning of this definition and the reason why it is the right generalization of
the notion of determinant is clarified by the following
Proposition . Ber : GL(p|g; A)—GI(1]0; Ao) is the unique group homomor-
phism satisfying
Ber(exp M) = exp(StrM)

Berezin-Kostant-Leites supermanifolds are substantially complex spaces together
with a sheaf of Z,-graded rings , i.e. they are built by pasting together collections of

the objects we have described above.
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