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INTRODUCTION

This thesis deals with the asymptotic analysis of sequences of nonlinear boundary value
problems of elliptic type.
To fix the ideas, let us consider as a model case a sequence of Dirichlet problems of the
-form
~=div(ay(x,Duy)) = f . on Q ,
(0.1) | »
ue Ho(Q)
where Q is a bounded subset of R™ and fe LZ(Q) . The functions a; : QxR® — R are
- measurable and satisfy regularity and monotonicity conditions of the type

(02) lah(x’él) - ah(x9E.u2)I <A lél - éZI )
(0.3) (ap(x,&1) - ah(xaéz)?él -&) 2 AIE; - &l

for a.e. xe Q, for every &;,&,e R", and for two given constants 0 <A < A < +oo
independent of h . In this case problem (0.1) has a unique solution uy,€ H(l)(Q) , and the
sequence (u;) is bounded in the H'-norm. Hence, by Rellich's theorem, it has a subsequence,
still denoted by (uy,), that converges to some function ue H(I)(Q) , weakly in H'(Q) and
strongly in LZ(Q) ,as h tends to +oo,

At this point it is natural to ask whether u solves a boundary value problem of the type
(0.1), i.e.

—div(a(x,Du)) = f on Q ,

0.4
O ue Hé(Q)

In that case, it is interesting to know which are the properties of the function a defining the
limit equation in (0.4), and how it can be computed from the given sequence (ap) .

In this thesis we try to answer to these and other related questions for a more general class
~of problems including the model case (0.1). The approach we follow uses the theory of G-
~ convergence. 7

A first notion of G—convergehcc was introduced by S. Spagnolo in [67] as the
convergence, in a suitable topology, of the Green's operators associated to the Dirichlet
boundary value problems, in the case where a;(x,£) = ay(x)€ is linear in & , and ay(x) isa
poéitive definite symmetric matrix (see also [66], [68]). He proves that the class of such
matrices is sequentially compact with respect to G-convergence, i.e., given an arbitrary



sequence of matrices (a;) there exist a positive definite symmetric matrix a (called the G-
limit), and an increasing sequence of integers (o(h)), such that for every fe LZ(Q) the
sequence (Ug)) Of the solutions to (0.1) corresponding to asg,y converges weakly in HI(Q)
and strongly in LZ(Q) to the solution u to (0.4), with a(x,§) = a(x)§ . A localization
property also holds, in the following sense: if two sequences (a;) and (by) coincide a.e. in an
open subset of €2, then the corresponding G-limits do the same.

For what concerns the dependence of a on the sequence (a;), E. De Giorgi and
S. Spagnolo prove in [36] that it can be expressed through the associated energy functionals,
whose convergence follows from the G-convergence. A simpler formula for the G-limit is
obtained when (a;) is a sequence of periodic matrices with decreasing periods, of the type
ap(x) = ou(hx) , and o is a given matrix of periodic functions.

This case, that was previously studied by E. Sanchez-Palencia ([62], [63], [64]) and
others, is an example of a homogenization problem, and has a relevant physical meaning, that
justifies the terminology and emphasizes some interesting applicative aspects of this theory. If
we suppose that the function u;, represents a quantity of physical interest, like the temperature,
or the electric potential, or, in the vector valued case, the elastic displacement, then problem
(0.1) provides a good model for the study of the physical behaviour of a heterogeneous body
with a fine periodic structure. In this connection, the coefficients a;(x) describe the properties
of the different materials constituting the body, and stand for the thermic or electrostatic
conductivity, or the elastic coefficients. When the period of the structure is very small, i.e. for
large h, a direct numerical computation of the solution to (0.1) may be very heavy, or even
impossible. Then homogenization (or G-convergence) provides an alternative way of
approximating such solution by means of the solution u to (0.4). In this case the G-limit, that
is usually called the homogerﬁzed operator, turns out to be a constant matrix b, that may be
interpreted as the physical parameters of a homogeneous body, whose behaviour is equivalent,
from a macroscopic point of view, to the behaviour of the material with the given periodic
microstructure.

These kinds of problems were subsequently studied in a number of different situations,
like more general assumptions on the functions a;, , different boundary conditions, higher
order operators, different kind of equations (parabolic, hyperbolic, stochastic...), variational
inequalities, optimization problems, and so on, giving rise to a very rich literature. Here we
confine ourselves to the study of 27 order elliptic equations in divergence form.

In this connection the notion of G-convergence was first extended to linear problems of
the type (0.1) defined by non symmetric matrices by F. Murat and L. Tartar, under the name
of H-convergence (see [70], [71], [53]). For the related problem of homogenization we refer to
the books [10], [61], [6], that contain also an extensive bibliography on these topics.



The properties of the G-convergence for quasi-linear elliptic operators were studied by
L. Boccardo, Th. Gallouet, and F. Murat in [13], [14], and [11].

The first results in the nonlinear case are due to L. Tartar, who studied (in [73]) the
properties of the G-convergence for monotone problems of the type (0.1), assuming that the
maps a; are uniformly Lipschitz-continuous, and uniformly strictly monotone on R”, i.e.
satisfy (0.2), (0.3). The corresponding homogenization results can be found in [4], while the
vector valued case is considered in [69]. More general classes of uniformly equicontinuous
strictly monotone operators defined on the Sobolev space Hl’p(Q) ,for p22, are
considered by Raitum in [59], while the corresponding homogenization case is studied by
N. Fusco and G. Moscariello in [38], [39] for p> 1.

One of the main purposes of our work is to weaken the strict monotonicity and the
equicontinuity of the functions ay, , which are constant assumptions in the quoted literature,

assuming just the monotonicity condition

(05) (ah(xaél) - ah(x7§2)9§1 - aZ) 20

for a.e. xe Q, for every &;, £,eR", and the estimates

(0.6) lag (x,E)! < ¢, (1 + IE%)
0.7) B < ep(1 + (ay(x.8).8))

for a.e. xe Q, for every Ee R", where ¢, >0, c, >0 are fixed. This permits to include in
the framework of G-convergence the Euler equations of minimum problems of the form

(0.8) min ([ yy(,Dudx — [fudx )
ueHé(Q) Q Q

where Yy, =y (x,8) : QxR® — R is a non negative function that is measurable in x,

convex in &, and satisfies inequalities of the type

(0.9) IEP < W(x,E) < c (1 +IEP)

for a.e. xe Q , for every £eRn, and for two given constants 0 < c3 < ¢4, independent of
h . The limit behaviour of minimum problems like (0.8) has been studied, for instance, in [49],
[21], [16], using the techniques of I'-convergence introduced by E. De Giorgi and T. Franzoni
(see [34], [35]).

We remark that the lack of strict monotonicity and equicontinuity of a; produces a deep
change in the limit behaviour of the sequence (0.1): the limit map a may be multivalued, and
the limit problem (0.4) becomes a differential inclusion




—div(a(x,Du)) > f on Q ,

(0.10) )
ue Hy(Q)

An example of this situation is shown in Chapter 2 (see Example 4.7). This fact suggests to
study G-convergence in a multivalued setting from the beginning, i.e. to make an asymptotic
analysis of sequences boundary value problems of the form (0.10). This approach includes also
the case of minimum problems (0.8) whose differential counterpart is no longer an Euler
equation, but consists in a differential inclusion of the type (0.10), where a(x,8) = dgyp(x,8)
is the subdifferential of v with respect to & .

To study these problems, in the first two chapters of this thesis we determine an
appropriate class of maximal monotone multivalued functions ay , including as a model case
the subdifferential of convex functions v, satisfying (0.9), and we give a corresponding
notion of G-convergence. The main purpose is to prove a compactness result for this general
class of multifunctions, and to obtain a localization property for the G-convergence. Moreover,
we characterize subclasses which are closed with respect to G-convergence, recovering, in
particular, the compactness results in the existing literature, and we determine a precise formula
for the G-limit in the case of homogenization.

This multivalued setting we deal with requires appropriate tools. Some measure theory for
multifunctions and properties of maximal monotone operators between Banach spaces are
needed for the existence of solutions to the differential inclusions we consider. Moreover the
notion of Kuratowski set convergence is required to express the G-convergence of the maps a,
in terms of the convergence of their graphs. A deep change occurs in the proof of the main
compactness result (see Chapter 1, Theorem 4.1). In fact, while the proofs in the existing
literature are based essentially on a density argument, which is made possible by the continuity
of the resolvent operators associated to the boundary value problems (0.1), our proof relies on a
theorem by F. Hiai and H. Umegaki concerning the representation of all measurable selections
of a suitable multivalued map (see [40]).

The subsequent part of the thesis concerns single valued operators. Here we use more
standard techniques of G-convergence theory to study problems that present some difficulties
due to their particular structure. Chapter 3 contains a compactness result for the G-convergence
of a sequence of boundary value problems with mixed boundary conditions on perforated
domains, while Chapter 4 is devoted to the homogenization of elliptic differential equations
containing nonlinear lower order terms.

The perforated domains Q; we consider in Chapter 3 are obtained by removing a
sequence (By) of compact sets from a given bounded open set QcRn. Given fe LZ(Q) ,



and a sequence of strictly monotone, continuous functions ay, : QxR" — R" , we study the
limit behaviour of the solutions upe Hl(Qh) to

[ —div(ap(x,Duy)) =f on Qj,

(0.11) < up = 0 on BQ ’

(ap(x,Duy),vy) =0 on 0B, ,

S

where vy, denotes the outer unit normal to the boundary of the holes By, . The assumptions we
make on the sets £, guarantee that the holes do not concentrate in any part of Q and that the
solutions u,e Hl(Qh) can be extended to the whole of Q , with suitable uniform estimates of
their H'-norms. We prove that the extensions of uy, converge to the solution u of a Dirichlet
problem of the form

—div(a(x,Du)) =bf on Q ,

(0.12) )
ue HO(Q) s

where the function be L™(Q) is the weak limit of the characteristic functions of the sets £ ,
and the map a has the same qualitative properties of aj . The interesting feature is that the
limit problem is independent of the particular way one extends the uy's. A similar problem for
the case of variational integrals is studied in [23], [24].

The results presented in Chapter 4 concern the homogenization of a quasi-linear equation
containing a nonlinear lower order term with natural growth. Let us consider, as a model case,
the problem

(0.13)

~div(ay(x,Duy)) + yuy, = Duyl® + f(x) on Q ,
upe Hy( QAL (Q) |

where € is a bounded open subset of RT™,y is a positive constant, fe L™(Q),
ap(x,8) = a(hx,§) , and the map a : R"xR" — R® is periodic in x, strictly monotone and
contintous in & . While the limit behaviour of the left hand side of (0.13) follows from the
known homogenization theory, the asymptotic analysis of the quadratic term presents some
difficulties. We prove that the limit problem has the form

(0.14)

—div(b(Du)) + yu = H(Du) + f(x) on Q,
ue H(@nL™(Q) ,




where the monotone map b:Rm — R® is the usual homogenized operator, while
H:R"— R" is a function with quadratic growth, depending on a . The proof of this result
follows the method introduced by A. Bensoussan, L. Boccardo, and F. Murat in [9] for the
case where a(x,§) is linearin &, and is based on a comparison argument. Moreover it
requires the knowledge of a corrector result for the homogenization of quasi-linear equations
defined by monotone maps, for which we refer to [33].

The content of this thesis, which is published in the papers [25], [26], [27], [28], is the
result of a research activity carried on by the Author during her graduate studies at the
International School for Advanced Studies in Triest, under the guide of
Prof. Gianni Dal Maso, and in collaboration with Dr. Anneliese Defranceschi.



CHAPTER 1

G-CONVERGENCE OF MONOTONE OPERATORS

In this chapter we introduce a general notion of G-convergence for sequences of maximal
monotone operators of the form A,u = -div(a,(x,Du)), in terms of the asymptotic
behaviour, as h — +ee, of the solutions u;, to the equations A,uy =f;, and of their
momenta ap(x,Duy) . The main results we prove are the local character of the G-convergence
and the G-compactness of some classes of nonlinear monotone operators. The content of this
chapter is published in [25].

INTRODUCTION

The aim of this chapter is to study a general notion of G-convergence for nonlinear
monotone operators 4 : I—{)l'p(Q) — H-1.9(Q) of the form

(0.1) Au = —div(a(x,Du)),

where €2 is a bounded open subset of R?, 1 <p<+e,and 1/p + 1/g = 1. We assume
that the (possibly multivalued) map a : QxR? — R® which occurs in (0.1) is measurable on
QxR®, is maximal monotone on R™ for almost every xe Q, and satisfies suitable coercive-
ness and boundedness conditions (see Section 2). The class of all these maps will be denoted
by Mg(Rm) .

The main examples of maps of the class Mq(R") have the form

(0.2) a(E) = Yk E),

where dg denotes the subdifferential with respect to & and y : QxR? — [0,+o[ is measur-
ablein (x,§), convex in &, and satisfies the inequalities

¢EP < wixE) < co(l +IEP)



for suitable constants 0 < ¢, <c, . In this case the operator (0.1) is the subdifferential of the
functional

(0.3) ¥@ = [y(x,Duydx
Q

and the notion of G-convergence of the opefators (0.1) can be studied in connection with the
notion of I'-convergence of the corresponding functionals (0.3) (see [2], [50], [S]).

Let us return to the general case of maps of the class Mq(R®) for which the representa-
tion (0.2) is not always possible. Let (ap) be a sequence in Mg(R™) and let ae Mg(R™) . To
introduce the notion of G-convergence in Mg(R") we begin with the simpler case where ap
and a are single-valued and strictly monotone on R™ . We then say that (a;) G-converges to
a 1if, for every fe H-1.9(Q) and for every sequence (fy) converging to f strongly in
H-149(Q) , the solutions u,, of the equations

—div(a,(x,Duy)) = f; on Q ,
O ue HIP(Q) |
satisfy the following conditions:
u, > u weakly in H1.p(Q),
ap(x,Duy) — a(x,Du) weaklyin (LYQ))m,

where u is the solution of the equation

—div(a(x,Du)) = f on Q ,

0.5
© ue HyP(Q) .

If we drop the hypothesis that a, and a are single-valued and strictly monotone, then
the definition of G-convergence is more delicate, due to the non-uniqueness of the solutions of
the equations (0.4) and (0.5).

In the general case we say that (ay) G-converges to a if for every increasing sequence
of integers 1(h), for every fe H-1.49(Q) , for every sequence (f,) converging to f strongly in
H-19(Q) , for every sequence (uy) of solutions of the equations



—-div(at(h)(x,Duh)) 3 fh on s

(0.6) .
uhE Ho‘p(Q) ]

and for every sequence (g) in (LYQ)" with
gn(X)€ arp)(x,Dup(x)) a.e.in Q and -divg,=1f, in Q,
there exists an increasing sequence of integers o(h) such that
Ugm) — U weakly in HL.P(Q)

and
Eom) — & weakly in LYQ)",

where u is a solution of the equation

~div(a(x,Du)) 5 f on Q ,

0.7)
ue HyP(Q) ,

and
g(x)ea(x,Du(x)) ae.in Q.

Let us emphasize that the notion of G-convergence in Mq(R") is independent of the par-
ticular boundary condition chosen in the definition, in the sense that, given @e HLP(Q) , we
can replace Hé’p(Q) by ¢ + Hé,’p(Q) in (0.4), (0.5), (0.6), (0.7) without changing the
G-convergent sequences and their limits. '

The main result of this chapter is the compactness of the class Mqg(R™) with respect to
G-convergence. Moreover we prove the following localization property: if (a;) G-converges to
a, (b,) G-convergesto b, and ap(x,) = by(x,") for almost every x in an open subset Q'
of Q,then a(x,) = b(x,) for almost every xeQ'.

Finally we determine some subsets of Mq(R®) which are closed under G-convergence.
This allows us to prove in a unified way the compactness, with respect to G-convergence, of -
all general classes of linear or nonlinear operators of the form (0.1) which have been considered
in the literature. ‘

“The notion of G-convergence for second order linear elliptic operators was studied by
E. De Giorgi and S. Spagnolo in the symmetric case (see [66], [67], [68], [36]), and then ex-
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tended to the non-symmetric case by F. Murat and L. Tartar under the name of H-convergence
(see [70], [71], and [53]). We refer to [10] and [61] for the related problem of the ho-
mogenization of elliptic equations and to [76] for the extension of the notion of G-convergence
to higher order linear elliptic operators.

The properties of the G-convergence for quasilinear elliptic operators were studied by
L. Boccardo, Th. Gallouet , and F. Murat in [13], [14], and [11].

The first results in the nonlinear case (0.1), with p = 2, are due to L. Tartar, who
studied (in [73]) the properties of the G-convergence in a suitable class of monotone operators
of the form (0.1), assuming that the maps a are uniformly Lipschitz continuous and uniformly
strictly monotone on R". The corresponding homogenization results are contained in [4].

A similar theory of G-convergence for more general classes of uniformly equi-
continuous strictly monotone operators was developed by U. E. Raitum in the case
2 <p < +eo (see [59]). For the corresponding homogenization results we refer to [38] and
[39].

We remark that, in order to include the case (0.2), we do not assume the maps of our
class Mo(R™) to be continuous or strictly monotone on R?, and this requires a deep change in
the proof of the compactness of Mq(R™) under G-convergence. While all proofs in the quoted
papers are based essentially on a density argument, which is made possible by the continuity of
the operators 4 or of the inverse operators A1, our proof relies on a theorem by F. Hiai
and H. Umegaki concerning the representation of every closed decomposable subset of LP as
the set of all measurable selections of a suitable multivalued map (see [40]).

1. MULTIVALUED FUNCTIONS

In this section we fix the notation and recall some results concerning multivalued func-
tions and their measurability. Furthermore, we summarize the main theorems for multivalued
monotone operators on Banach spaces which will be applied in this chapter.

If x,y are elements of a set X, by [x,y] we denote the ordered pair formed by x and
Yy » whereas (x,y) denotes the scalar product of x and y, provided X is a Hilbert space.

Multivalued functions. Let X and Y be two sets. A multivalued function F from
XtoYisa map that associates with any xe X a subset Fx of Y . The subsets Fx are
called the images or values of F . The sets

DE)={xeX:Fx#@} and G(F) = {[x,yleXXY :yeFx)



~11—

are called the domain of F and the graph of F,respectively. The range of F is, by defini-
tion, the set

RF)= U Fx.
xeX

If for every xeX the set Fx contains exactly one element of Y , we say that F is
single-valued.

In general, we shall identify every multivalued function F with its graph in XXY . The
inverse F-1 of the multivalued map F from X to Y is the multivalued function from Y to
X defined by xeF-ly if and only if yeFx ; in other words, F-! is the multivalued function,
whose graph is symmetric to the graph of F.

Measurable multivalued functions. Let (X,7) be a measurable space, and let
F:X — R be a multivalued function from the space X to the family of non-empty subsets
of the space R". For every B < R™ the inverse image of B under F is denoted by

F-1(B) = {(xeX : BnFx # O} .
We shall consider the following measurability conditions:

(1.1)  foreach Borelset B — R», F-1(B)e T;

(1.2)  foreachclosedset C c R, F1(C)eT;

(1.3) foreachopenset U cRn,F-1(U)eT; ,

(1.4)  there exists a sequence (o},) of measurable selections such that Fx = cl{ on(x) : he N}
for each x (a selection of F isamap ¢ :X — R" such that o(x)eFx forevery x);

(1.5)  GEFE)e ®BR" , where B(R") is the o-field of all Borel subsets of Rn .

We say that a multivalued function F:X — R® is measurable (with respect to T and
BR™) if (1.2) is verified. Let us state a theorem which links this definition of measurability of
a multivalued function F to the other conditions on F listed above.

Theorem 1.1. Let (X,7) be a measurable space. Let F: X — R® be a multivalued
Junction with non-empty closed values. Then the following conditions hold:
(i) (L) =>02)e (13)e (1.4 =(1.5);
(ii) If there exists a complete G-finite measure | defined on T, then all conditions
(1.1)~(1.5) are equivalent.

The proof of the above theorem can be found in [22], Chapter III, Section 2. A useful tool for
problems of this type is given by the projection theorem below (see [22], Theorem IT1.23).
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Theorem 1.2. Let (X,T,u) be a measurable space, where |\ is a complete G—finite
measure defined on T.If G belongs to TRB(R™) , then the projection priG belongs to T.

The next theorem states the equivalence between conditions (1.2) and (1.5) for certain
multivalued functions even if the measure space is not complete.

Theorem 1.3. Let (X,TR) be a measurable space, where |\ is a complete G—finite
measure defined on T.Let F:X — RaxR™ be a multivalued function with non-empty
closed values. Let H : XxR" — R™ be the multivalued function defined by

(1.6) H(x,8) = {(neRm: [ n]eFx} .

Then the following conditions are equivalent:

(i) F is measurable with respect to T and BRMNQBRm) ;
(i)  GF)e BBRHSBR™) ;

(ii) H is measurable with respect to TBR") and BR™) ;
(iv) G(H)e WBRM)OBR™) .

Proof. By Theorem 1.1(ii) we have that (i) < (ii). Moreover, Theorem 1.1(i) guar-
antees that (iii) = (iv). Since G(F) = G(H), we obtain easily that (ii) & (iv). To con-
clude the proof of the theorem we shall show that (ii) = (iii). To this aim it is enough to
prove that (ii) yields H-1(C)e T®B(R") for every compact subset C of R™, Letus fix a
compact set C < R™. By taking (1.6) into account we have that

1.7 H1(C) = {[x,£]le XxRn: IneRm : [E.nle Fxn(R™xO)} .

Let B denote the set of all xe X such that Fx(R™xC) is non-empty. By (ii) and the projec-
tion Theorem 1.2 it follows that Be T.If @ is the multivalued function from X to RAxRm
defined by ®@x = Fxn(R»xC), then D(®) =B and (1.7) becomes

(1.8) HY(C) = {[x,£]le XxRn: IneRm™ : [En]e Dx} .

Since G(®) = GF)N(XxR"xC)e TBRM@B(R™), by Theorem 1.1 there exists a sequence
[®n,gr] of measurable functions from B to RaxR™ such that

(1.9) @x = cl{[py(x),gn(x)] : he N}

for every xe B . By taking (1.9) into account let us define the set



(1.10) M = {[x,Ele XxR" : xe B, e cl{@y(x) : he N}} .

We shall prove that M =H-1(C). The inclusion H-1(C) c M follows easily from (1.8),
(1.9), and (1.10). To prove that M c H-1(C), let us fix [x,£]e M . By definition there ex-
ists a subsequence (QPgmy) of (@y) such that (Psm)(x)) converges to & . Moreover, the
corresponding sequence (8om)(x)) belongs to the compact set C . Hence, by passing, if nec-
essary, to a subsequence we may assume that (8m)(x)) converges to some 1eR™. By (1.9)

we have [§,n]e ®x, hence [x,E]e H-1(C), which concludes the proof of the equality
M = H-1(C). Since M = {[x,E]e XxRn; xe B, hian E-@n(x)| = 0}, we have that
. €

Me B(R™) and the proof of the theorem is accomplished. ¢

Finally, let us give a more general theorem for the existence of a measurable selection of a
multivalued function due to Aumann and von Neumann (see [22] , Theorem II1.22).

Theorem 1.4. Let (X,%) be a measurable space and let F be a multivalued function
from X to Rmwith non-empty values. If the graph G(F) belongs to T®B(R™) and there
exisis a complete G—finite measure defined on T, then F has a measurable selection .

Maximal monotone operators. Our present aim is to remind the definition and some
basic properties of multivalued maximal monotone operators in Banach spaces.

Let X be a Banach space and let X* be its topological dual. By <, > we denote the
duality pairing between X* and X.

Definition 1.5. A subset A ¢ XxX* is called monotone (tesp. strictly monotone)if
<Y1—-Y¥2,X1 —%>20 (resp. > 0)

for any [x),y;1€ A, [xp,y,]€A .

Definition 1.6. A monotone subset A < XxX* is called maximal monotone if it is
not properly contained in any other monotone subset of XxX* , i.e. for every [x,yle XxX*
such that
<y-m,x-E>20 V[EnleA

it follows that [x,y]eA .
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We say that a multivalued operator F : X — X* is monotone (resp. maximal monotone)
if its graph is a monotone (resp. maximal monotone) subset of XxX* .

Remark 1.7. Since the monotonicity is invariant under transposition of the domain and
the range of a map, F is (maximal) monotone if and only if F-1 has this property.

Let us note that if F is a (multivalued) maximal monotone operator on X , then for any
xe D(F) the image Fx is a closed cohvex subset of X* (see, for example, [58], Chapter
I11.2).

Before giving the statement of the next theorem, which will be heavily applied in Sections
2 and 5, we recall the definition of the concept of upper-semicontinuous multivalued operator.

Definition 1.8. Let S; and S, be two topological spaces, and let F be a multival-
ued function of S; into S,.Then F is said to be upper-semicontinuous if for every SgE Sy
and for every open neighborhood V of Fs; in S, there exists a neighborhood U of S in
S; such that Fs ¢ V for every seU.

The following result provides a useful criterion for maximal monotonicity (see [20],
Theorem (3.18)).

Theorem 1.9. Let X be a Banach space and let X* be its dual. Let ¥ be a multival-
ued monotone operator of X into X* .Suppose that for each x in X ,Fx is a non empty
weak* closed convex subset of X* and that for each line segment in X, F is an upper-
semicontinuous multivalued operator from the line segment to X* , with X* given its weak*
topology. Then F is maximal monotone.

Finally, we state a surjectivity result for a class of multivalued monotone operators which
is of crucial importance in the proof of our theorems in Sections 2 and 4.

Theorem 1.10. Ler X be a reflexive Banach space and ler X* be its dual. Let F be a
multivalued maximal monotone operator from X to X* .If F is coercive, then R(F) =X* .

We remind that the (multivalued) operator F : X — X* is called coercive if

. <Fx,x>
m === oo

Ixll—eo

The proof of Theorem 1.10 can be found in [58], Chapter III, Theorem 2.10.
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2. MULTIVALUED MONOTONE OPERATORS IN SOBOLEV SPACES

In this section we study a class of multivalued monotone operators on Sobolev spaces of
the type —div(a(x,Du)).

Throughout this chapter we denote by p a fixed real number, 1 <p <+, and by q
its dual exponent, 1/p + 1/q = 1 . Moreover we fix a bounded open subset Q of Rn, two
non-negative functions m;, mye LI(Q), and two constants ¢; >0, ¢c;>0. By L(Q) we
denote the o-field of all Lebesgue measurable subsets of Q, and by B(R?) the o-field of all
Borel subsets of R". The Euclidean norm and the scalar product in R® are denoted by Il

and (-,-), respectively.

Definition 2.1. By Mg(R®) we denote the class of all multivalued functions
a: QXR" — R" with closed values which satisfy the following conditions:
(i) fora.e. xeQ the multivalued function a(x,’) : R — R® is maximal monotone;
(i) a is measurable with respect to L(Q)®BR") and B(RD), i.e.

a~1(C) = {[x,£]e QxR" : a(x,E)NC = T} e L(Q)®BR™)

for every closed set Cc Rn;
(iii) the estimates
2.1) M < myx) +c;(n.8),
(2.2) EP < my(x) +c,(M,E)

hold for a.e. xeQ, for every EeR", and nea(x,t).

Remark 2.2. Conditions (2.1) and (2.2) imply that there exist two functions
m3e LYQ), mye LYQ) and two constants c3>0, ¢4 >0 such that

(2.3) Ml € ma(x) +c3lEF
(2.4) (M.€) = my(x) +c4 EP

for a.e. xeQ, for every £eRn, and mea(x,t). Conversely, if a satisfies (2.3) and (2.4),
then (2.1) and (2.2) hold for suitable m;, m,,c;,c,.

Remark 2.3. Fora.e.xeQ and for every £EeR™ the set a(x,E) is closed and con-
vex in R™ by (i) (see, for instance, [58], Section IT1.2.3). Moreover, (i) and Theorem 1.1(3)
imply that the graph of a belongs to £(Q)®B(RM)®B(R"). By (2.3), for a.e. xe Q the

maximal monotone operator a(x,-) is locally bounded, hence a-1(x,) is surjective (see [58],
I1.4.2). This implies that a(x,§) # & for a.e. xe Q and for every EeRn.
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Given ae Mq(R"), fe H-1.9(Q) , and ee H1P(Q) we consider the Dirichlet boundary
value problem

—div(a(x,Du)) 5> f on Q,

(2.5)
ue H:p’p(Q) ,

where H;"’(Q) = {ueH!»(Q) : u - pe HI'P(Q)} .
To study the solutions of (2.5), and in particular their dependence on f and a, we shall
give some equivalent formulations of this problem which are used in the sequel.

Definition 2.4. Let ¢e HI.P(Q) . By M(Il;’p) (resp. M(H!'P)) we denote the class
.of all multivalued operators A : H;‘p(Q) - (LYQ)" (resp. A : HLP(Q) — (LYQ)™)
satisfying the following conditions:
@ if ue H;’p(Q) (resp. HIP(Q)) and geAu;,i=1,2, then

(Du; —Duy, g, -g)20 ae.on Q;

(ii) the estimates
(2.6) gt < my +c,(Du,g) ae.on Q,
(2.7) DufP <m, +c,(Du,g) ae.on Q,

hold for every ue H(;'p(Q) (resp. ueHLP(Q)) and ge Au.
By M(H;’P) (resp. M(H!P)) we denote the class of all multivalued operators
4 : pr"’(ﬂ) — H-19(Q) (resp. 4 : HLP(Q) — H-1.9(Q) ) of the form

(2.8) Au = {—divg : ge Au},

with Ae M(H(;'p) (resp. Ae M(HLP)) .

Remark 2.5. In the case ¢ =0 the operators of the class M(Hép) are monotone
according to Definition 1.5 in consequence of ). If e M(Holp) is maximal monotone, then
D(A) = H(l)’p(Q) - Indeed A is locally bounded by (2.6), hence Z! is surjective (see [58],
I11.4.2).

Definition 2.6. Let pe HLP(Q) . To every ae M(R™) we associate the operators
AeM(H!P) and Ae M(H!P) defined by

Au = {ge (LYQ)": g(x)e a(x,Du(x)) forae. xeQ},
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Au = {-divg : ge Au} .

Their restrictions to H(p P belong to M(H p) and M(H Py and will be denoted by A®
and 4°, respectively.

By taking these definitions into account, problem (2.5) becomes then equivalent to the
following one: given fe H-1.9(Q), find ue H‘;’p(ﬂ) such that

fe 4%

(2.9)
ue H}p P(Q),

or equivalently, find ue H;"’(Q) and ge (LYQ) such that
ge A%u
(2.10) —divg = f,

Lp
ue H(p (Q) .

Let us denote by I the (single-valued) monotone operator from LP(Q) to LYQ) de-
fined by Iu = P2y . The next theorem is more than needed for solving problem (2.9) in the
case @ =0, but it is used in its generality in Section 6.

Theorem 2.7. Ler A° be the operator in M(H(l)’p) associated to a function
a€ Mo(R™) in the case ¢ =0 (Definition 2.6). Then
(i) A is maximal monotone ; ‘
(i) R(A° +AD) = H-L.9(Q) for every A20.

Proof. Let us start with the proof of (i). To this aim we show that the operator 40 satisfies
the assumptions of Theorem 1.9.

(a) For every ue HOLP(Q) , we have 2% = & . To prove this assertion let us fix ue HO1 Q).
By Remark 2.3 the set a(x,Du(x)) is non-empty, closed, and convex in R for a.e.
xe Q . Therefore, by taking Theorem 1.1 into account we conclude that there exists a
measurable function g:Q — R? such that g(x)e a(x,Du(x)) for a.e. xe Q. Finally,
the estimate (2.3) yields ge (LY))", which concludes the proof of (a).
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(b) For every ue Hol’p(Q) , A% 1is a convex subset of H-1.4(Q) . This follows easily from
the fact that a(x,Du(x)) is a convex subset of R fora.e. xe Q (Remark 2.3).

(c) For every ue Hé’p(ﬂ) , A% is a weakly closed subset of H-1:9(Q) and the multivalued
operator A9 is upper-semicontinuous from the strong topology of }{}’p(Q) to the weak
topology of H-119(Q) . By the boundedness condition (2.3), to prove this assertion it is
enough to show that, if (u;) convergesto u strongly in H)l’p(ﬂ) , (fp) converges to
f weakly in H-1.9(Q), and fie A%; forevery heN, then fe 4% . Under these as-
sumptions on fy, f, uy, u, the boundedness condition (2.3) guarantees the existence of a
sequence of functions gpe (LYQ))" and of a function ge (LYQ))" such that (up to a
subsequence) (g,) converges to g weakly in (L¥Q))», gn(x)e a(x,Duy(x)) for ae.
xe Q, -divgy = fy, , and —divg = f . Therefore, it remains to verify that
g(x)ea(x,Du(x)) for a.e. xeQ . If we show that the set

M= {xeQ:3&R",Inea(x,k) : (g(x) —M,Dux) — &) <0}

has Lebesgue measure zero, then the maximal monotonicity of a yields g(x)e a(x,Du(x))
a.e. on €2, which concludes the proof of (c). To prove that M| = 0, let us write M =
{xeQ :Gx # T} , where

Gx = {[En]eR*xR™ : nea(x,f) , (gx)-n,Du(x) - &) <0} .

By Remark 2.3 the graph of G belongs to L(Q)®B(RMQB(R") , thus Me L(Q) by
the projection Theorem 1.2. By the Aumann-von Neumann Theorem 1.4 there exists a
- measurable selection [Em] of G defined on M. Therefore 1(x)e a(x,E(x)) and

(2.11) (g(x) —n(x),Du(x) - §(x)) < 0
for every xeM . On the other hand, the monotonicity assumption on a implies that
(2.12) (gn(x) — N(x),Duy(x) — £(x)) 2 0 ae.on M

for every he N. If IMI> 0, there exists a measurable subset M' of M with IM'l>0
such that [E(x),n(x)] is bounded on M'. By integrating (2.12) on M' and by passing
to the limit as h — 4o, we obtain

M{(g(X) —=n(x),Du(x) - E(x))dx > 0,
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which contradicts (2.11) being IM'l > 0 . Therefore we have to conclude that IMI=0.

This proves (c) and completes the proof of (i) .

Proof of (ii). By (i) we have that A9 is maximal monotone. Since D(A% =D() =
Hé'p(Q) ,and I is maximal monotone on Hé'p(Q), the operator .40 + AI is maximal
monotone for every A 20 (see [58], I11.3.6). By (2.2) it is also coercive and therefore
R(A% + AI) = H-1.9(Q) by Theorem 1.10. ¢

Remark 2.8. Problem (2.9) has a solution for every @eHLP(Q) . Indeed, let us de-
fine the muluvalued function ag(x,€) = a(x,§+D@(x)) which still belongs to the class
MR | If /’l denotes the operator in 9%’(H0 p) associated to the function a, by
Definition 2.6, 1t follows easily that ﬂq’(uﬂp) = }’l u for every ue H0 P(Q). Since by
Theorem 2.7(ii) we have that R(ﬁl0 ) =H"14(Q) , our asscrnon follows immediately.

Finally, the following result is a useful tool to check the maximality of certain monotone
operators on Hol'p(ﬂ) .

Lemma 2.9. Ler A4 be a (multivalued) monotone operator from Hé'p(ﬂ) into
H-14(Q), ler >0, and let 1 be the (single-valued) function from LP(Q) 1o LYQ) defined
by Tu= P2y If R(A+ Al = HL9(Q), then A is maximal monotone.

Proof. Let B: H;’p(Q) — H-1.9(Q) be a (multivalued) monotone operator such that
A < ‘B. The proof will be accomplished if we show that B< 4. Let fe Bu . It is clear that

(2.13) f+Aue Bu+Alu.

On the other hand, since R(A4 + AI) = H-1.9(Q) there exiSts ve H;'p(Q) such that f+ Alu
€ Av + Alv . Then the assumption 4 < ‘B implies

(2.14) f+Alue Bv+Alv.

By taking (2.13) and (2.14) into account, the strict monotonicity of the operator B+ Al yields
v=u ae.on Q. Thus, f+Alue Fu+ Alu, or equivalently, fe Au , which concludes the
proof of the lemma. ¢
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3. G-CONVERGENCE OF MONOTONE OPERATORS

In this section we introduce a notion of convergence in the class of multivalued functions
Mq(R™) which permits a satisfactory analysis of the perturbations of Dirichlet problems of the
form (2.5).

The convergence considered here is defined in terms of a general concept of set-conver-
gence named Kuratowski convergence (see [45], Section 29) which can be formulated in ab-
stract terms in an arbitrary topological space (X,t) as follows.

Definition 3.1. Let (E;) be a sequence of subsets of X . We define the sequential
lower limit and the sequential upper limit of (Ep) by

(3.1)  Kyq(-liminfE, = {(ueX:Ju, >u,IkeN,Vh2k:ueE,},

h—eo

and

(32)  Kq(oHlimsup By = (ueX:T o) -+, I uy> u, ¥V he N : uye Egqy)} -
h—oe

Then, we say that the sequence (Ep) Keeq(t)-convergestoaset E in X if

(3.3) Kseq(0)-liminf B}, = Koo(1)-limsup Ey, = E
h— h

—>o0

and in this case we write Keeq(t)-lim E = E.

h—eo

Remark 3.2. From the definitions above it follows immediately that

(O)-liminf E, < (t)-limsup E,, .
Kseq Hsee h | Kseq . h
Therefore (E,) Kseq(‘c)—converges to E if and only if

E C Kq(0)-liminf E;,  and Kseq(D)-limsup Ey, € E.
h—eo h—eo

Remark 3.3. It is easy to prove that

Kseq(D)-limsup Ey; < E

h—ee
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if and only if every subsequence (Egmy of (E) has a further subsequence (Eg(zny)) such
that
h—300

This notion of set-convergence has been particularized to obtain the graph-convergence of
sequences of maximal monotone operators on reflexive Banach spaces (see [5], Definition
3.58), which is useful for handling convergence problems for the stationary and evolution
equations associated to such operators.

To study perturbations of Dirichlet problems of the form (2.5) we introduce here a
stronger notion of convergence.

We denote by w the weak topology on HLP(Q).If G; denotes the weak topology of
(LYQ))" and o, the topology on (LYQ))" induced by the pseudo-metric d(g;,g,) =
lldivg, — divgleH_Lq , we denote by ¢ the weakest topology on (LY(Q))? which is stronger
than ©; and ©,.In other words, (g,) convergesto g in ¢ if and only if (g,) converges to
g weakly in (L%Q)) and (—divg,) converges to —divg strongly in H-14(Q) .

The connection between w and o is explained by the following lemma, which will be
frequently used in the sequel.

Lemma 3.4. Ler (u,) be a sequence converging to u weakly in HLP(Q), ana' let
(gn) be a sequence in (LY Q)" converging to g in the topology G .Then

JghDuh@dx - | JgDucpdx

for every e Cy(Q).

Proof. The lemma is a simple case of compensated compactness (see [54], [72]). It can
be proved by observing that

d[ghDUh(PdX = <—divg,,u,0> - Jgh“hD@dx

for every @eCj(Q). ¢

Having in mind the usual identification of a multivalued map with its graph we give the
following definition.
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Definition 3.5. We say that a sequence (ap) in Mq(R") G-converges to ae Mq(R™)
if
Km(wxo)-limsupA}? c AO,
h—oo

where A,? and A° are the operators in M(H)1 ) associated to a, and a by Definition 2.6 in
the case ¢=0. |

Remark 3.6. The condition Ksm(wxc)-limsup Ag C AY in the above definition de-
termines uniquely the G-limit a , as we shall provehi?torollary 5.9.

Remark 3.7. Using Remarks 3.2 and 3.3 it is easy to prove that the G-convergence
satisfies the following axioms:
()  axiom of the constant sequences: if a, =a for every heN, then (ay) G-converges to a;
(i) axiom of the subsequences: if (ay) G-convergesto a, and (agen)) 1s a subsequence of
(ay) , then (ac(h)) G-convergesto a;
(iii) Urysohn axiom: (a;) G-convergesto a if every subsequence of (a;) contains a further
subsequence which G-converges to a.

In the sequel we enunciate some results regarding the G-convergence on the class
Mq(R") and make some comments connecting these results to our investigation on conver-
gence of solutions to sequences of Dirichlet problems of type (2.5). We shall prove the follow-
ing Theorem in Section 6.

Theorem 3.8. Ler e HLr(Q) , let (ay) be a sequence in Mq(R™) and let
a€ M(RD). Then the following conditions are equivalent:
(i)  (ay) G-convergestoa,
(it) K eq(Wx0)-limsup A c A,
h—co
(1) Kyeg(wxo)-limsup A® < A%,
h—3c0
where Ay, A are the operators in M(HLP) associated to ay, and a by Definition 2.6 and

A;P , A® are the corresponding operators in M(Iﬂ{; P

Remark 3.9. It follows immediately from the boundedness hypothesis (2.6) that the
inclusion
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(3.4) Koeq(Wxo)-limsup A < A
h—300

is equivalent to the following condition: if o(h) is a sequence of integers, (f;) is a sequence in
H-1.9(Q), and (uy) is a sequence of local solutions in HLP(Q) of the equations

—div(agp)(x,Dup)) 3 f; on Q

with
G(h) — +oo |
u, o u weakly in HLP(Q) ,
f, = f strongly in H-1.4(Q) ,

then u is a solution to the equation
—diva(x,Du) 3f on Q,
and for every sequence (g) in LYQ))", with
gn(X)€ a5q)(x,Duy(x)) ae. in Q and -divgy=f;, in Q,
there exists a subsequence (8tm)) such that

gtm) — 8 weakly in (LY(Q))

and
gx)ea(x,Du(x)) a.e. in Q .
Remark 3.10. The inclusion
(3.5) Keq(W0)-limsup A? A?
h—ee

is equivalent to the following condition: for every increasing sequence of integers t(h) ,for
every fe H-1.9(Q), for every sequence (f;) converging to f strongly in H-1.9(Q) , for every
sequence (uy) of solutions of the equations

—div(aypmy(x,Duy)) 3 fy on Q ,

ULE H;,'p(Q) ,
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and for every sequence (g) in (LYQ)" with
gn(X)€ arpy(x,Duy(x)) ae.in Q and —divg, = f;, in Q,
there exists an increasing sequence of integers o(h) — +eo such that

uo(h) —u weaklym Hl.p(Q)
and
&om — 8 weakly in (LY(Q))n,

where u is a solution of the equation

~div(a(x,Du)) > f on Q,
GO ue HR(Q)
and
3.7) g)ea(xDu) ac.in Q.

In fact, assume (3.5) and suppose that th), f, f,, w,, g, satisfy the above
assumptions. By the coerciveness condition (2.7) the sequence (uy,) is bounded in HLP(Q)
and therefore (g;) is bounded in LY by the growth condition (2.6). Thus, there exists a
subsequence [Ushy8omy] Of [up,gy] which converges to [u,g] weakly in HLP(Q)x(LI(Q))n
. This implies that (—divg,) converges to —divg weakly in H-1.9(Q) , hence f =—divg .
Therefore [Ushy&om)] converges to [u,g] in the topology wxo and the assumption (3.5)
implies ge A%, hence (3.7). This yields that u is a solution of (3.6), being f=-divg .

The converse implication is trivial,

The following result, which will be proved in Section 6, shows the relationship between
our definition of G-convergence and that one considered by Ambrosetti and Sbordone in [2].
Let us denote by p the strong topology in H-1.9(Q) .

Theorem 3.11. Let e HLP(Q). Let (ay) be a sequence in Mqg(R™) which
G-converges to ae Mqo@R"). Then
(i) Kseq(wxp)-lim 4=4 ,

h—oo

(i) Kieq(wip)-lim A°= 79,

h—oo
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where 7 , A are the operators in M(HP) associated to a, and a by Definition 2.6, and
ﬁls ., A% are the corresponding operators in fM’(H(;’p) .

Remark 3.12. The condition

(3.8) K eq(WXp)- im =%
seq(Wxp)- . N
can be expressed in terms of convergence of solutions of differential equations. More precisely,
(3.8) holds if and only if both the following conditions (a) and (b) are satisfied:
(@) if (fy) convergesto f strongly in H-1.9(Q), (u;) converges to u weakly in HLP(Q),
and uy, satisfies the equation

—div(ay(x,Duy)) > f on Q ,

(3.9 ’
ue HP(Q)

for infinitely many heN, then u is a solution to

—div(a(x,Du)) > f on Q ,

(3.10) 1p
ue HQ' Q) ;

(b) if feH 19(Q) and u is a solution to (3.10), then there exist (fy) convergingto f
strongly in  H-19(Q) and (uy,) converging to u weakly in HL.P(Q) such that uy, sat-
isfies the equation (3.9) for every heN .

Remark 3.13. Conditions (i) and (ii) in Theorem 3.11 do not imply that (a;)
G-converges to a . The reason lies in the fact that a is not uniquely determined by the associ-
ated operator 4 as the following example shows.

Assume n =3, and let @eCy(Q) . Let us define

a(x,g) = &

and

b(x,8) = £ +Do()x¢ ,

where X denotes the external product in R3 . It is easy to see that a and b belongs to
the class Mq(R3) with p=2, m=my=0,c =(+ maxchpIz) ,and cp=1.
. n .
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Since
j(Dq;xDu)Dvdx =0 for every u, ve HL2(Q) ,
Q
it follows that

(3.11) J a(x,Du)Dvdx = Jb(x,Du)Dvdx for every u, ve HI2(Q) .

This implies that the operators in M(H2) associated to a and b according to Definition 2.6
coincide. ¢

4. A COMPACTNESS THEOREM

The main purpose of this section is to prove the following compactness result for the G-
convergence on the class of multivalued functions MqoR®) .

Theorem 4.1. Ler (a;) be a sequence in Mq(R™) . Then there exists a subsequence
(agmy) of (ay) which G-converges to a function a of the class Mq(R®).

Without any difficulty Theorem 4.1 comes out from the next two theorems and from the
definition of G-convergence. '

Theorem 4.2, Ler (a;) be a sequence in Mq(R"™) , and let (Ag) be the sequence of
operators in M(HOI’p) associated to (ay) by Definition 2.6 . Then there exist a subsequence
(Ao(h)) of (Ag) and an operator Be M(Hbl’p) such that

O

)=B.

0
K eo(wxo)-lim- A
> h—oo ok

Moreover D(B)=H1?(Q) .

Theorem 4.3. Letr Be M(Hé’p) with D(B) 2 Cy(Q) . Then there exists a unique func-
tion ae Mo(R") such that B < AO, where A° denotes the operator in M(H()1 P) associated to
a by Definition 2.6.

The proofs of these theorems are quite technical and will be divided in several steps. We
devote this section to the proof of Theorem 4.2, whereas Theorem 4.3 will be proved in the
next section.
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The following proposition is the first step of the proof of Theorem 4.2.

Proposition 4.4. Ler (By,) be a sequence of operators of the class M(Hé '’y . Then
there exists a subsequence (Bon)) which Keq(WX0)-converges to an operator Be M(H)1 Py

Proof. On every separable reflexive Banach space X there exists a metric d such that
for every sequence (x;) in X the following conditions are equivalent:

(4.1) X, — x weaklyin X;
(4.2) (xp) is norm-bounded in X and d(xp,x) = 0.

By 1; we denote the topology induced by a metric on Hé’p(Q) which satisfies (4.1) and
(4.2). By 1, we denote the topology on (LYQ))" induced by the metric

da(g1-82) = d(g1.82) + lldive, - diveylly1,q.cy)

where d is a metric on (LYQ))» which satisfies (4.1) and 4.2).

Since T{xt, has a countable base, by the Kuratowski compactness theorem (see [45],
Section 29, Theorem VIII) there exists a subsequence of (By) , still denoted by (By) , which
Keq(T1XTy)-converges toa set B H(}’P(Q)X(Lq(ﬂ))n )

By Remark 3.2, to prove that (B;) Keq(wXxo)-converges to B, it is enough to show
that

4.3) Kseq(wxo)—limsup B, € B,
h—yee
and
4.4) B C Kio(wxo)liminf By .
h—ee

Let us verify (4.3). Let [u,gle Keq(Wx0)-limsup By, . Then, there exist o(h) = +eo

h—3o0
and [up,gp] converging to [u,g] in the topology wxo such that [uy,g;le By for every
he N'. By (4.1) and (4.2) we get immediately that [uy,g,] converges to [u,g] in T,xT, and
we conclude that [u,gleB.

Let us prove (4.4). Let [u,gle B . Then there exists a sequence [u;,g;] which con-
verges to [u,g] in T;XT, such that [uy,g,]Je B, for h large enough. Since (divg,) is
bounded in H-14(Q2) , condition (2.7) implies that (u;) is bounded in H&’p(ﬂ) , hence (g;)
is bounded in (L¥Q))n by (2.6). Then the equivalence between (4.1) and (4.2) yields that (u;)
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converges to u weakly in Hi®() and (g,) convergesto g weakly in (LYQ))". Since
(—divg,) converges to —divg strongly in H-19(Q) , we conclude that [uy.gn] converges to
[u,g] in the topology wxa, which implies (4.4). ‘

Finally, let us prove that the operator B belongs to the class M(H(} P) . We verify here
only condition (i) of Definition 2.4. The boundedness and coerciveness conditions (2.6) and
(2.7) can be proved in the same way. Let us fix uie H)l’p(Q) and gieBul,i=1,2.By (4.4)
there exists a sequence [u}il,g}il] converging to [ul,gi] in the topology wxo such that
[u}il, g}il]e By for h large enough. Since Bye M(H)1 P) , we have

f(Duﬁ - Du}zl,g]rll - gi)(pdx 2 0
Q

for every ge C5(Q), 920 on Q.ByLemma 3.4 it follows that

J(Dul—-Duz,gl— gz)cpdx 2 0
Q

for every 9e Cj(Q), =0 on Q. This implies that
(Dul -Du?,gl —¢g2) 20 ae.on Q,

hence B satisfies condition (i) of Definition 2.4. ¢
The second step to achieve the proof of Theorem 4.2 is based on the next pfoposition.

Proposition 4.5. Let (B,) be a sequence of operators in M(H&'p) and (‘By) be the
corresponding sequence in .‘M(H)1 ®) according to (2.8). Assume that
B = Kyoo(wx0)-lim By .

h—ee

Then
B = Kseq(wxp)-lim By,

h—ee
where ‘B is the operator of the class M(HUI Py associated to Be M(H(}’p) according to (2.8)
and p denotes the strong topology of H-1.4(Q) .

Proof. The inclusion B ¢ Kseq(wxp)-liminf B, is trivial. To prove the inclusion
h—o

Kseq(wxp)-li;nsup B, < B,letusfix [uf]e Kyeq(Wxp)-limsup By, . By (3.2) there exist
—>00

h—eo
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o(h) = +eo, and a sequence [up,f,] converging to [u,f] in wxp such that [uy,file Bsn)
for every he N. By Definition 2.6 this implies that there exists 8h€ Bgmyun such that
—divg;, =f}, . By (2.6) we have

[igniax < cf1+ r2[|Duh#’dx]
Q

for a suitable constant ¢, which implies that the sequence (gy) is bounded in (LYQ))". Thus
there exists a subsequence (8«n)) converging weakly in (L%Q))" to a function g, which
yields that (—divgt(h)) converges to —divg weakly in H-1.9(Q) . Since, by assumption, (f;)
converges to f strongly in H-1.9(Q) , we conclude that f = —divg . Therefore,
[u,c(h),gt(h)] converges to [u,g] in the topology wxo and [Weh),BrnylE Bo(r(nyy - Thus
[u,g]leB and [ufle B . _ ¢

We are now able to prove Theorem 4.2.

Proof of Theorem 4.2. By Proposition 4.4 there exist a subsequence (Ag(h)) of
(AS) and an operator B belonging to M(H)lp) such that

(4.5) K, (wxo)-lm A’ = B.
seq B soo o(h)

Let us prove that D(B) = H)l'P(Q) . Since the K-convergence is stable with respect to continu-
ous perturbations, Proposition 4.5 together with (4.5) implies that for every A >0, we have

(h)+?d) = B+Al,

(4.6) K oq(wxp)-lim (2"

h—e
where B is the operator in %[(H(}p) associated to B according to (2.8). Let us prove that
R(B +AD) = H-19(Q) . Let fe H-1.9(Q) . By Theorem 2.7(ii), for every he N there exists
upe HyP(Q) such that

ﬂ0

G(h)uh+Muh 3> f.

By (2.7) the sequence (u,) is bounded in Hé’p(Q) , thus it contains a subsequehce which
converges to a function u weakly in I—},l'p(Q) . By (4.6) we have

Bu+Alu 3 f,

which gives R(B + Al) = H-1.9(Q) .
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By Lemma 2.9 the operator B, hence B-!, is maximal monotone. By (2.6) the opera-
tor B! is coercive on H-1.9(Q) . Therefore Theorem 1.10 implies that R(B-1) = H&’p(Q) ,
which is equivalent to D(‘B) = H)l’p(ﬂ) . This yields D(B) = Hg'p(Q) -and concludes the proof
of the theorem. . ¢

5. A REPRESENTATION THEOREM

The main goal of this section is the proof of the following theorem, which contains
Theorem 4.3 of Section 4.

Theorem 5.1. Ler Be M(H!'P) with D(B) 2 C,(Q) . Then there exists a unique
multivalued function ae Mq(R®) such that B C A , where A denotes the operator in
M(H'P) associated to a by Definition 2.6.

The following representation theorem for maximal monotone operators in the class
.‘M(Hép) is an easy consequence of Theorem 5.1 and Remark 2.5.

Theorem 5.2. Any maximal monotone operator in M(H(}'p) is associated to a function
a€ MoR") according to Definition 2.6.

Before starting with the proof of Theorem 5.1 we shall introduce some notions and re-
sults related to measurable multivalued functions. '

By F we denote the family of all measurable multivalued functions F : Q — RaxRn
with non-empty closed values, and for every Fe ¥ we indicate by 5%(1 the set of all
L)LY Q))-selections of F, i.e.

SEY = {fe LPQ)=LYQ)" : f(x)eFx ae.on Q).

Then the following results hold (sec,‘ for instance, [40], Lemma 1.1 and Corol.lary 1.2).

Lemma 5.3 (Castaign representation). Let Fe F. If .s‘é“‘ is non-empty, then there
exists a sequence of functions (£,) belonging to §'q such that Fx = cl{fy(x) : he N} for all
xe .

Lemma 5.4. Ler Fy, F,e F.If 5§f =5§;_q¢ D ,then Fix=Fx a.e.on Q.
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Let M be a set of single-valued measurable functions f: Q — RoxRn. We call M
decomposable (with respect to L(Q)), if f;, e M and Ue L(Q) imply 1yf; + loyfheM,
where 1y and 1gy indicate the characteristic functions of U and of Q\U , respectively. The
following theorem gives a characterization of the closed decomposable subsets of
LP(Q)<LYQ))" (for the proof see [40], Theorem 3.1).

Theorem 5.5. Ler M be a non-empty closed subset of (LP(Q))nx(LYQ))" . Then M
is decomposable if and only if there exists Fe F such that M = .§'q .

Proof of Theorem 5.1. Let E be the subset of (LP(Q))"x(LYQ))" defined by
(5.1) E = {[Du,gle (L(Q)"<LYQ)" : ue HL(Q) , ge Bu} .
Then, E is non-empty and satisfies the following monotonicity condition:

(5.2). if [01,g1], [92,87]€E , then (9; — ¢p,8; —,)20 ae.on Q.
Moreover for every [9,g]eE we have

(5.3) lgl? < m; +c¢;(p,g) ae.on Q,
(5.4) lplP < m, +cy(,g) ae. on Q.

Let decE be the smallest decomposable set containing E. It is easy to prove that
[@,g]e decE if and only if there exists a finite Borel partition (€2);e1 of Q and a finite family
([958Dier of elements of E such that [,g] = [0;,g;] a.e.on ;. Therefore, decE is non-
empty and (5.2), (5.3), (5.4) hold with E replaced by decE .

Besides decE , let us consider also the set

(5.5) E =cl o, (decE)

defined as the closure of decE in (LP(Q))nx(L¥Q))n , with (LP(Q)) endowed with its
strong topology and (L¥Q))" endowed with its weak topology. The next proposition, whose
proof will be given later, summarizes the main properties of E .

Proposition 5.6. Ler E be defined by (5.5). Then the following properties hold:

(a) forevery [@,gleE there exists a sequence [Qy,gnle decE such that (@) converges to
¢ strongly in (LP(Q)" and (g,) converges to g weakly in (LY(Q))n;

(b) E is decomposable and (5.2), (5.3), (5.4) hold with E replaced by E ;

(c) E is maximal monotone.




32—

Proof of Theorem 5.1 (Continuation). Since E isa non-empty, closed, and de-
composable subset of (LP(Q))nx(LYQ))", by Theorem 5.5 there exists a measurable
multivalued function F:Q — RaxR® with non-empty closed values such that

(5.6) E = {[p,gle (LPQ)mLYQ)" : [o(x).g(x)]e Fx for ae. xcQ) .
Let us define the multivalued function a : QxRn — Rn by
(5.7) a(x,§) = {neRn: [En]eFx} .

We shall prove in Lemma 5.7 that a belongs to the class Mq(R") . By (5.1), (5.6), and (5.7)
we have B C A, where A denotes the operator in M(H1P) associated to a by Definition
2.6. The uniqueness of a will be proved in Proposition 5.8. ¢

Proof of Proposition 5.6. Let us start with (a). Let [00.g0l€ E , and let U, be the
ballin (LP(Q))n with center ¢o and radius 1. Since (5.3) holds for decE , there exists a
constant R =R(cy,my,9p) such that, if [¢,gledecE and ¢e U, , then ge By, where Br
denotes the ball in (LY(Q))» with center 0 and radius R . We may also assume that gge By .
Therefore,

(5.8) decEN(UX(VNBg) = decEN(UXY) # D

for every neighborhood ¥ of go in the weak topology of (L¥Q))n and for every neighbor-
hood U of @y in the strong topology of (LP(Q))" such that U < U, .

Since the weak topology is metrizable on By » there exists a countable base (4) for the
neighborhood system of 8o in By endowed with the weak topology of (LYQ))n. We may
also assume that 1}, < ¥, for every heN. Let us denote by 7, the ball in (LP(Q))" with
center @q and radius 1/h . By (5.8) the sets decE( UyxV,) are non-empty, thus for every
heN we may pick up [¢n.8nle decE such that ¢pe Uy and gpe Y, . This yields that (Pr)
converges to @ strongly in (LP(Q))n and (g,) converges to g, weakly in [LY(Q)n,
concluding the proof of (a).

By applying (a), we obtain easily property (b) of E from the analogous property of
decE .

Finally, let us prove (c). To this aim we apply Theorem 1.9 to E . We prove first that for
every e (LP(Q))n, the set E(p) is non-empty. In the case 9e (LP(Q)m, ¢ piecewise con-
stant and with compact support on Q , the proof follows easily from the assumption
D(B) 2 Cj(Q) and the definition of decE . The general case can be obtained by approxima-
tiqn of ¢e (LP(Q))" in the strong topology of (LP(Q))® with functions (¢y) of the previous
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type. In fact, from above it follows that there exists gne LYQ)" such that ghe E((ph) . Then,
the estimate (5.3) for E (proved in (b)) implies that (g;,) is bounded in (LYQ))". By passing,
if necessary, to a subsequence , (g,) converges to a function g in the weak topology of
LYQ)" and g lies in E(9) ; the first assumption of Theorem 1.9 is so guaranteed. It is clear
that for every @e(LP(Q))n the set E(g) is decomposable and weakly closed in (LY(Q))".
Let us prove that E(q)) is convex. Fix g, g€ E((p) and te (0,1) . There exists a sequence
(Uyp) of subsets of Q such that IIUh —t and llQ\Uh — (1-t) in the weak* topology of
L™(Q). Since E(¢) is decomposable we have lthgl + llgw, 826 E(). Since E(g) is
weakly closed in (LY(Q))n, taking the limit as h — +eo, we obtain tg; + (1-t)g,e E((p) ,
which proves that E(p) is convex. Finally, let us prove that E is upper semi-continuous from
(LP(Q))n, with the strong topology, into (LY(Q))", with the weak topology. Fix
¢e (LP(Q)", and let ¥ be an open neighborhood of ﬁ((p) in the weak topology of
(LYQ))". We claim that for every sequence (¢y) converging to ¢ strongly in (LP(Q))" there
exists ke N such that E(p,) = V for every h2k. Assume the contrary. Then there exists
a subsequence (Qq)) of (9,) and a sequence (gp) such that gye f:‘(cpo(h)) and gpe V for
every heN. By the estimate (5.3) for E (proved in (b)) the sequence (g,) is bounded in
(LI(Q))" , thus there exists a subsequence, (gm)) of (g,) which converges weakly in
(LYQ)" to a function g . Since [PocmyEem)le E forevery heN we have geE(g), hence
ge V. But the last fact requires that gne V for h large enough, which contradicts our as-
sumption. This implies that E is upper-semicontinuous and concludes the proof of (c). ¢

Lemma 5.7. The function a defined by (5.7) belongs to Mg(R™) .

Proof of Lemma 5.7. The measurability of a follows immediately from the measur-
ability of F and from Theorem 1.3. Moreover, the property (5.2) for E and the Castaign rep-
resentation of F (Lemma 5.3) imply that Fx is monotone for a.e. xe (). We come now to the
maximal monotonicity of a.By (5.7) itis enough to show that the set M defined by

={xeQ:3[En]eR™R": [En]eFx and E-E'n-n")20 V [E'n']eFx}
has Lebesgue measure zero. To this aim let us write M = {xe Q : ®x # &}, where
@x = {[En]eR™xR": [En]eFx and (E-E'n-n) 20 V [E'M]eFx} .

Since Fe ¥ and E=5I;:'q¢ &, by Lemma 5.3 there exists a sequence
[Pn.8nle LP(Q)PXLYQ))™ such that
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®x = {[En]eR™R": [EnleFx and (- ¢p(x),N—gy(x) 20 V he N} =

= N {[En]leRnxRr: [En]eFx and (€ — @p(x),N — g,(x)) 20} .
heN

Since ¢y, g, are measurable and F is measurable, it follows easily that the graph of @ be-
longs to L(Q)®B(RMQB(R") , thus Me L(Q) by the projection Theorem 1.2. By the
Aumann-von Neumann Theorem 1.4 there exists a measurable selection [@g,g,] of @ defined
on M. Therefore, for every xeM we have

(5.9) [Po(x),g0(x)]e Fx ,
and
(5.10) (@p(x) - &, go(x)-M) 20 for every [En]eFx.

If IMI> 0, there exists a measurable subset M' of M with IM'l >0 such that [Po(x),20(x)]
is bounded on M'. Given [@s,g+]J€ E we define the functions

Qo(x) if xeM' ,
P(x) =

0. (x) if xe Q\M' ,

and

go(x) if xeM' ,
gx) =

g.(x) if xe Q\M" .

Then [@,g]e (LP(Q))nx@LYQ))" . By (5.10) and by property (5.2) of E we have that

J@—¢’§—g)dx = f,(%-w,go—g)dx + f(fp*—w,g*——g)dxzo
Q M QM

for every [(p,g]eﬁ . Since E is maximal monotone (Proposition 5.6(c)), the above inequality
yields [,g]eE , or equivalently, [@(x),g(x)]e Fx a.e. on Q . But this implies that
[9o(x),g9(x)]e Fx for a.e. xe M, which contradicts (5.9) being IM'l > 0. Therefore, we
have to conclude that the set M has Lebesgue measure zero, which guarantees that a(x,:) is
maximal monotone for a.e. xeQ . To conclude that ae Mq(RD) it remains to verify that a
satisfies (2.1) and (2.2), but this is an easy consequence of Lemma 5.3 and of properties (5.3)
and (5.4) for E (Proposition 5.6(b)). ¢
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The following proposition will be crucial in the proof of the localization property consid-
ered in the next section.

Proposition 5.8. Ler Ce M(HP) with D(C) o vy + C‘B’(Q)for a given
yeHLP(Q) . Let a and b be two functions of the class Mq(R") and let A and B be the
corresponding operators of the class M(HLP) . If CC A and Cc B, then ax,8) =
b(x,8) for a.e. xeQ and for every EcRn

Proof. It is enough to prove the proposition when V¥ =0, since the general case can be
obtained easily by translation (Remark 2.8).

Let E be the subset of (LP(Q))nx(LYQ))" defined as in (5.1) with B replaced by C
and let

E, = ([p.gle P (Q))“X(LCVI(Q))rl : g(x)e a(x,0(x)) a.e.on Q}.

It is clear that Cc A implies E C E, . Since E, is decomposable we have decE C E, .
Since E, is maximal monotone (see [19], Example 2.3.3), it is sequentially closed in
LAY Q)" with (LP(Q)" endowed with its strong topology and (LYQ)" endowed
with its weak topology. Therefore, E ¢ E, , hence E = E, by the maximal monotonicity of
E (Proposition 5.6(c)).
Analogously, we obtain E = Ey, , therefore Lemma 5.4 implies that a(x,£) = b(x,E) for
a.e. xe€Q and for every EcRn. ¢

The following corollary proves the uniqueness of the G-limit.

Corollary 5.9. Ler e HL.p(Q), let (ay) be a sequence of functions of the class
Mqo@R"), and let

C= (wxo)-limsup A? ,
Kseq msup A

where A:“’ are the operators in M(I-ﬁp) associated to a;, by Definition 2.6 . Let a and b be
two functions of the class MqR") and ler A® and B® be the corresponding operators of the
class M(H(;’p) Af Cc A® and Cc B, then a(x,§) = b(x,8) for a.e. xe Q and for ev-
ery EeRn,

Proof. It is enough to prove the corollary when ¢ =0, since the general case can be
obtained easily by translation (Remark 2.8).
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Assume that C g A% and C c BY. Since A% M(Hé'p) we have immediately
Ce M(Hé’p) , and by Theorem 4.2 we get D(C) = Hé’p(Q) . The conclusion follows now
from Proposition 5.8. ¢

6. LOCALIZATION AND BOUNDARY CONDITIONS

In the first part of this section we prove the local character of the G-convergence in the
class Mq(R®). In the second part we study the convergence of solutions to non-homogeneous
Dirichlet problems of the form (2.5). ,

Let Q' be an open subset of Q . Besides the topologies w and ¢ on HLP(Q) and
(L)) introduced in Section 3, we consider the topologies w' and ¢' defined analogously
on HLP(Q") and (LYQ"))". For every ae Mqg(R™) we denote by a' the function of

Mg (R®) defined by
(6.1) a = Al gn -

Then the following localization property holds.

Theorem 6.1. Ler (a,) be a sequence in Mq(R™) which G-converges to a in
Mq(R") . Then (a,) G-converges to a' in Mq(RD).

This theorem is an easy consequence of the next result.

Theorem 6.2. Let (a,) be a sequence in Mqg(R™) which G-converges to
ae Mq(R"M) . Then

(6.2) K,oq(Wx0))-limsup A}, € A’

h—ee

where A'y and A’ are the operators in M(HP(Q")) associated to a', and a' by Definition
2.6.

Proof. By Remark 3.3 it is enough to show that for every subsequence (agq,) of (a;)
there exists a further subsequence (ag(emy) such that

(63) Kseq(w'xcs')—lime A'G(T(h)) c A'.
h—eo ’
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By the definition of G-convergence and by Theorem 4.2 for every subsequence (agm))
of (a;) there exists a further subsequence (ag(rnyy) such that

. 0 0
(6.4) C =Kseq(w><o)-hh_r:; Ay & A

where Ag( M) and A are the operators of M(Hol'p (Q2)) associated to ag(ny and a by Defi-

nition 2.6. This implies that

(6.5) DK soq(W')-Himinf A'ggegy) 2 C5(R) -
300

Indeed, let u'e Cj(Q') and let ue Cy(Q) such that ujg. = u'. Since D(C) = H&'p(ﬂ)

(Theorem 4.2), there exists ge (LY¥(Q))" such that [u,gle C. Thus, there exists a sequence
[up.gn] converging to [u,g] in the topology wxo such that [un.grle Ao(t(h)) for every heN.

(o]
It is clear that [Unl,.8hlg] converges to (4,8l ] in the topology w'xc'; therefore

[u',g| 1€ Kseq(W'x0")-liminf A'g .y , which proves (6.5).
h—300
Proceeding as in proof of Proposition 4.4 we can also show that
(Kseq(W'x0")-liminf A';(rpy)€ M(HLP(Q")) . Therefore, by Theorem 5.1 there exists
h-—300

b'e Mq(R®) such that
(6.6) Kseq(w'xc')-liminf Alo(’t(h)) (- B' s
h—e
where B' denotes the operator of M(H!P(Q')) associated to b' by Definition 2.6. We define

C = {[u.gl,] : [u,gle C) . It is clear that C'e M(HL.P(Q") and D(C) 2 Co(Q"), be-
ing D(C) = Hy®(Q) . By (6.4) we have

(6.7) - Cc A
Moreover, without any difficulty it can be shown that

(6.8) C c Keq(W'x0")-liminf A'semy < B'.
300

By taking (6.7) and (6.8) into account, Proposition 5.8 guarantees that a' = b' . Therefore
A'=B' and (6.6) implies (6.3). ¢

The following corollary is an easy consequence of Theorem 6.2.
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Corollary 6.3. Let (a,) and (b,) be sequences in Mqg(R™) which G-converge to a
and b, respectively. If ay, =b'}, then a'=b'.

Let (Qi)iel be a family of open subsets of Q such that IQ\ikEJIQiI =(. For every

a€ Mq(R") we denote by a' the restriction of a to Q%Rn. The next corollary follows im-
mediately from the compactness Theorem 4.1 and Corollary 6.3.

Corollary 6.4. A sequence (a,) in Mq(R™) G-converges to ac Mg(R") if and only
if (ah) G-converges to a' in M l(R“) Jor every iel.

We now prove the results stated in Section 3 regarding the convergence of solutions to
non-homogeneous Dirichlet problems.

Proof of Theorem 3.8.
(i) = (ii). It follows from Theorem 6.2 with Q' =Q .
(ii) = (iii). Let [u,gle Keq(wxo)-limsup Ag’ . By (3.2) there exist a sequence of
h—o0
integers o(h) — +oo , and a sequence [up.g,] converging to [u,g] in the topology wxo such

that [Uh,gh]EA y S Agm) for every heN , hence [u,gle A by (ii). Since clearly
u—pe Hy®(Q) , we have [u,gle A®, which gives (i).

(iii) = (i). The compactness Theorem 4.1 implies that for every subsequence (aggy) of (ay)
there exist a further subsequence (ag(emy)) Of (agm)) and a function be Mg(R™) such that
(ag¢zmy)) G-converges to b . Since (i) implies (iii), we get

(6.9) (Wx0)- hmsup A c B? ,
S"‘q heeo  O(F my) =

where B? is the operator of M(H p) assoc1ated to b.

On the other hand, by assumption we have

(6.10) seq(WXC)- hmsup A c A% .

o(t (h))

By Corollary 5.9 we deduce that a(x,£) = b(x,£) for a.e. xe Q and for every £e Rn. The
proof can now be completed by using the Urysohn axiom (Remark 3.7). ¢

We conclude this section by giving the proof of Theorem 3.11.
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Proof of Theorem 3.11. Let us prove (ii). To this aim we show first that the
G-convergence of the sequence (ay,) to the function a in M(R") implies that

(6.11) Kyeq(wxp)-m % = 2°
h—eo
By the definition of G-convergence and by Theorem 4.2 for every subsequence (ac(h))
of (ay) there exists a further subsequence (ag(eny such that

0
B = Kyeg(wx0)- im A Agaay € A

By Proposition 4.5 this implies that

(6.12) B = Koug(wxp)- lim A (t(h» ca

Since R(ﬁl oy AD) = H-1.9(Q) for every A 20 (Theorem 2.7(ii)), it follows that

R(B + AI) = H-1.9(Q) (see the proof of Theorem 4.2), hence B is maximal monotone
(Lemma 2.9). Therefore, by the monotonicity of 2 , the inclusion (6.12) implies that

0
(wxp) hm ﬁl ) =4

and (6.11) follows from the Urysohn property of the K-convergence.
To prove (1i) in the gcneral case peHLP(Q), for every Ae M(H1P) we consider the
operator A of the class M(Hﬂ ) defined by

Aq)v = A®(v+p) forevery ve Hol’p(Q) ,

and the operator ,’Zlg of M(H(l)’p) associated to Az by (2.8). By Theorem 3.8 the
G-convergence of the sequence (a;) to the function a in Mq(R™) can be expressed by

Kseq(Wxo)-limsup A? < A?
h—o0
which implies that

(6.13) Koeq(WxO)-limsup (A)0 < A
. h—e0

Since (Ah)g , Ag are operators of M(HD1 Py, the inclusion (6.13) implies, as already seen, that




: . g%
Kaeg(wip)-lin ()} = 47,

which gives immediately (ii).
Proof of (i). By Theorem 3.8 the G-convergence of (ap) to a in M(R®) implies that

Kseq(wxc)—limsup AcA.
h—00

Arguing as in the proof of Proposition 4.5 we obtain

Kseq(Wxo)-limsup 4, < A .
h—yc0

By (ii) it follows that

A% =K, (wxp)- lim c (wxp)-liminf < K, (wxp)-limsup ca
qu( P h—-:-wﬁl;iJ Kseq P h—00 ﬂh seq h—00 ﬂh

for every @eHL.P(Q), which yields (i). ¢

7. SOME G-CLOSED CLASSES OF OPERATORS

In this section we consider some subsets of Mq(R™) , which are closed under
G-convergence. These classes are obtained by imposing to the operator a some additional
conditions of uniform equicontinuity or strict monotonicity.

Definition 7.1. Given a non-negative function me LI(Q) and two constants o and
¢, with 0 <o < (p/2)A(p—1) and ¢ >0, we denote by U=U(a,c,m) the class of all op-
erators a€ Mg(R") such that

(7.1) m(x) + (N1,§;) + (My,8,) 20
and
(7.2) My —nyl < c@P1-VP(n, — n, 8 — £/

for ae. xeQ, for every &, &, R? and 1,e a(x,§;) ,n,e a(x,&,) , where @ =
@(x,8;,8,,M1,M,) denotes the left hand side of (7.1).
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Definition 7.2. Given a non-negative function me LI(Q) and two constants B and
c, with pv2 < B <+ and c¢>0, we denote by S =S(B,c,m) the class of all operators
ae Mg(R") such that

m(x) + (nl:&l) + (n27§2) 20

and

(73) (M1~ Nay— &) 2 cOPPIRIE — &)
for ae. xeQ, for every &, &, R® and M€ a(x,Eq) , M€ a(x,§) , where D =

D(x,E1,E2M 15N denotes the left hand side of (7.1).

Remark 7.3. Conditions (2.1) and (2.2) imply that there exists a non-negative function
me Ll(Q) such that (7.1) holds for every a€ Mqo@R?).
Moreover, by (7.2) every function a of the class U is single-valued.

Remark 7.4. By using the estimates (2.1) and (2.2) it is easy to see that, if
0<a <a<(p/2)A(p-1) , then U(a,c,m) < U(a',c',m’) for suitable ¢' and m'.In
the same way it can be proved that, if pv2 < B < B' < +oo, then S(B,c,m) < S(B',c’,m’)

for suitable ¢' and m'.

The model example of operator of the classes U and S is given by
a(x,£) = bOIEFE .
Indeed, if 0 <b; € b(x) by <+ee for every x& Q, then

ae UG AQ-1),¢,m)NS(pv2.c”,m”
for suitable c¢', c", m’,and m".

Before proving that the classes U and S are closed under G-convergence we compare
them with some other classes of monotone operators which are not closed, but are defined in 2

simpler way.

Definition 7.5. Given a non-negative function me LP(Q) and two constants C and
c, with 0<a < 1a(p—1) and c¢>0, we denote by U* =U*(a,c,m) the class of all
single-valued operators ae Mg(R™) such that



42 -

(7.4) la(x.81) —a(x,&) < c(m(x) + I&;] + 1€, NP 1%, — 1

for ae. xeQ and for every €, EeRn,

Definition 7.6. Given a non-negative function meLP(Q) and two constants B and
¢, with pv2 < B <+e and c¢>0, we denote by S* =8*(B,c,m) the class of all opera-
tors ae Mq(R™) such that

(7.5) M= M= &) 2 c(m(x) + 1§+ PPl &) — &lP
for a.e. xeQ, for every &, E,eRn and meaxg;) , nealx,gy).
Remark 7.7. From (2.3) we obtain that

a 1 ]
(7.6) U(a,c,m) ¢ U*(;_j; ,c',m')

for suitable ¢' and m'. Conversely, given ¢, c", m', and m", from (2.4) it follows that

1.7) U*(a,¢',m’)"S*(B,c",m") = U(";—p ,C,m)

for suitable ¢ and m . Moreover, given ¢ and m, we have
(7.8) S(B,c,m) ¢ S*(B,c',m")
(7.9) S*(B,c,m) < S(B,c",m")

for suitable ¢', ¢, m', and m".
In particular, if 2<p <+, (7.6) and (7.7) imply

(7.10) U(% ,c;m) ¢ U*(1,c',m")

(7.11) U*(1,¢',m")NS*(p,c",m") < U(l,c,m) .
Finally, if 1<p<2, (7.6) and (7.7) yield

(7.12) U(p—1,c,m) ¢ U*(p-1,c',m")

(7.13) U*(p-1,0,m)NS*(2,c"m") ¢ U@L cm) .
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The following lemma is crucial in the proof of the closedness of the classes U and S.

Lemma 7.8. Let y and 8 be two non-negative constants with Y+38<1. Ler y,
C, 0 be functions in LI(Q) and let (), (Gy) » (By) be sequences in Ll(Q) converging to
v, ,0 in the weak sense of distributions. Suppose that {;20,6,20, and

(7.14) hyyl < (6)70)° ae. in Q.
Then
(1.15) 1 <0%0° age. in Q.

Proof. Let €= 1-y-8 . By (7.14), for every ¢eC{(Q),¢=0 we have

016 J,thpdx < ( njchcpdx]y{njehcpdx (JWT

Since (y,@) convergesto W@ in the weak sense of distributions we obtain
[hvipdx < timinf [hyylpdx .
Q h—toe

Therefore, by taking the limit in (7.16) as h—+ec we get

a1 Jwiga < ( Qjcfpde[ Joosx ( Qjcpdx]c

for every e Cy(€2), ¢ 20 . By standard approximation argument we obtain (7.17) for ev-
ery forevery ¢eL™(Q), ¢ =0. In particular, we have

oo <[ Jo] |, Joo [, Jo

for every xeQ and p >0 small enough and this implies (7.15) by the Lebesgue derivation
theorem. ¢



Theorem 7.9. The classes U and S are closed under G-convergence.

Proof. Letus fix a,c, and m as in Definition 7.1. Let (a;) be a sequence in
U(a,c,m) which G-converges to a function ae Mq(R™) . We have to prove that
ae U(a,,c,m) . By hypothesis we have

. 0 0
(wxo)-limsu c A,
Kseq h—)oep Ah
where A,? and A° are the operators of M(HO1 P) associated to ap, a by Definition 2.6. By
Theorem 4.2 there exists a subsequence of (ay) , still denoted by (ay) , such that
(7.18) B =K oo(wxo)-lim A ¢ A°.
h—yeo
As in the proof of Theorem 5.1 we introduce the set E defined by
E = {[Du,gle @P(Q))<LYQ))" : ge Bu}

and we denote by decE the smallest decomposable subset of (LP(S'l))nx(I_‘q(Q))n containing
E . Moreover, we consider the set

E=cl,,(decE) ,

defined as the closure of decE in LPQ)m(LY Q) , with LP(Q))" endowed with its
strong topology and (LYQ))" endowed with its weak topology. As in the proof of Proposition
5.8 it follows that

(7.19) E = ([p.gle LAQILYQ)® : gx)ea(,p(x)) ac.in Q) .
We are now in a position to prove (7.1) and (7.2). This will be done in three steps.

Step 1. If [u',g'], [u%,¢*]e B, then
(7.20) g - g% < (TRl g2 Dyl -y

a.e.on Q, where
{=m+ (g Du') + (g%Du?) > 0.

Step 2. If [(pl,gl], [(pz,gz]eﬁ , then

(7.21) lg'— g% < co®l-ap(gl _ gl ghy
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a.e.on £, where ) o
w=m+(gLo)+ g9 20.

Step 3. The inequalities (7.1) and (7.2) holds for a.e. xe €2, for every &1, &26 Rn
and n'eaxtl) ,n’cax,E).

Proof of Step 1. Let [ui,gi]e B, i=1,2. By (7.18) there exists a sequence [ulix,g]il]
converging to [u',g’] in the topology wxa , such that [uy,gle Ag for every he N . Since
ape U(a,c,m) we have

lgh— gl < L@ D(gl— g7 Duj - Dup)™?

where
Ly =m +(g,Du) + (g2 Du) 2 0.
Let us define
1 2 1 2
Yh=8,"8, - y=g-—-g ,
2 1
Oy = (gl-ll— gﬁ,Dui—Duﬁ) , 0= (gl— g Du— Du7’) .

By Lemma 3.4 ({;) convergesto { and (B,) convergesto 6 weakly in the sense of distri-
butions. Therefore {20 a.e.in Q and Lemma 7.8 yields

hyl < (P1-0Pge/P  ae in Q,

proving (7.20). e

Proof of Step 2. The result of Step 1 can be reformulated by saying that (7.21) holds
for [cpi,gi]eE . The characterization of decE mentioned in the proof of Thegrem 5.1 implies
(7.21) for [(pi,gi]e decE . Let us prove the same property for E. Let [(pi,gl]e E, i= 1,2:
By Proposition 5.6(a) there exists a sequence [(p;, g;]e decE such that (cp;) converges to (p1
strongly in (LP(Q))* and (g,i)) converges to gi weakly in (LY(Q))" . Since (7.21) holds on
decE , we have

2 1 2 1_ 20/
iz gl < e e~ gy @)

where
op=m + (2,00 + (g0p) 2 0.



By applying Lemma 7.8 to
1 2 1 2
Yh = 8}1,— gﬁ ’ and O = (g, - 8o Ph— )

we obtain (7.21) for [(pl,gl] and [q)z,gZ] - Moreover @20 a.e.in Q,being @, 20 ae.
in Q for heN. °

Proof of Step 3. Let us denote by M the set of all xe Q such that (7.2) is not satis-
fied for some &, &2 !, n? with nleax,gl , n’e a(x,E%) . We have to prove that
IMI'=0. To this aim we write M = {xe Q: Gx #0}, where G:Q — (RM)4 is the mul-
tivalued function defined by

Gx= {16, & 0", 0’1t my=myl > c@® 1 e _p el nicaeesl) iel2) |

where @ =m + (n'E) + m%e?). By Remark 2.3 the graph of G belongs to
L@ BR, thus Me L(Q) by the projection Theorem 1.2. By the Aumann-von Neumann
Theorem 1.4 there exists a measurable selection [(pé,(pg,g(l), g(z)] of G defined on M.
Therefeore, for every xeM we have

(7.22) g~ gl > clm + (g),p) + (2,021 P P(gl — g2 o1 o) ™P
and
(7.23) geaxpix) , i=12 .

If IMi>O0, there exists a measurable subset M' of M with positive measure such that
[(pé,(pg,gé,gg] is bounded on M'. By Step (a) in the proof of Theorem 2.7 there exists
g+€ LY Q)™ such that

(7.24) g«(x)ea(x,0) ae. in Q.
For i=1,2, we define
. Pp(x) if xe M'
(7.25) o) = f
0 if xe Q\M' ,
g(i)(x) if xeM',
g4 (x) if xe Q\M' .

(7.26) gix) = {
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Then [o', g'le AP(Q)PXLYQ)" and gl(x)ea(x,9'(x)) ae.in Q by (7.23) and (7.24).
Therefore [(pi, gi]eﬁ by (7.19), hence

gl - g2l < clm+ (ghot) + @200 gy - g0y — 0¥ ae. in M

by Step 2. This contradicts (7.22) being IM'l >0 . Therefore, we have to conclude that M
has Lebesgue measure 0, which proves that (7.2) holds for a.e. x€ Q.
The proof of (7.1) is analogous, therefore the class U(o,c,m) is closed with respect to

G-convergence. ¢

To prove that the class S(B,c,m), pv2 <P <+eo, is closed, we note that (7.3) is

equivalent to

18, — E,l < cOBPYBRm, —m, B — EMP

and the proof can be concluded as in the case U(a,c,m) . ¢

Theorem 7.9 and Remark 7.7 allows us to obtain some compactness Tesults concerning
the classes U* and S*.

Corollary 7.10. Assume p=2. Given two non-negative functions m',
m"e LZ(Q) and two constants ¢ >0, c" >0, there exist two non-negative functions m ,
m"e LZ(Q) and two constants €' >0, €" >0 with the following property: if

a;e U*(1,¢',m")NS*(2,c",m"

for every he N , then there exists a subsequence (agy) of (ap) which G-converges to a

function
ae U*(1,¢',Mm)NS*(2,c".m") .

The same result was obtained by different methods by L. Tartar in [73].

Corollary 7.11. Assume 1<p<2. Given two non-negative functions m',
m"eLP(Q) and two constants ¢ >0,c" >0, there exist two non-negative functions [,
m"eLP(Q) and two constants €' >0, €" >0 with the following property: if

ape U*(p-1,¢',m")NS*(2,c",m")
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for every heN | then there exists a subsequence (agmy) of (ay) which G-converges to a
Junction

ae U*(% LLAINS*(2,8"/m") .

A similar result was obtained by N. Fusco and G. Moscariello in the case of the homo-
geneization (see [38], [39]). ’

Corollary 7.12. Assume 2 Sp<+e and 0<a<1. Given two non-negative
Junctions m', m"e LP(Q) and two constants ¢'>0,c" >0, there exist two non-negative

o) §

Sunctions ', m"elP (€2) and two constants &' > () » €">0 with the Jollowing property:
if

aye U*(a,¢',m)NS*(p,c",m")

for every heN | then there exists a subsequence (ag(ny) of (ay) which G-converges to a
Junction

ae U*(—— &', @)NS*(p,c" &") .
p—Q

Compare this result with those obtained by U. E. Raitum in [59]. We refer also to [38],
[39] for the case o =1 .

Definition 7.13. By L(c,c;) we denote the class of all operators a: QxRn — Rn
of the form

a(x,£) =a(x)¢ forae. xeQ , forevery EeRn |
where a(x) = (aij(x)) is a nxn-matrix of bounded measurable functions such that
(7.27) a(x)EP < ¢ (aR)EE) |
(7.28) € < cy(a)E L)

for a.e. xe Q and for every EeRn,

By Lsym(cl,cz) we denote the class of all operators of L(c,c,) corresponding to a
Symmetric matrix (a5(x)) .
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Remark 7.14. It is easy to see that L(c;,c;) is the set of all operators ae Mqo(R™) ,
with p=2, such that for a.e. xe Q the multivalued function a(x,:) is linear, i.e. its graph
is a linear subspace of R™xR".

Theorem 7.15.The classes L(c;,c;) and Lgyn(cy,cy) are closed under

G-convergence.

Proof. We give a sketch of the proof only for L(c;,c,) , the case of Lgy(c1,co) being
analogous. By arguing as in the proof of Theorem 7.9, for which we refer for the notation, the
result will be achieved in three steps.

Step 1. B is a linear subspace of }{}J(Q)x(Lz(ﬂ))" .

Step 2. E is a linear subspace of (L2(Q))™x(L3(Q))".

Step 3. Fora.e.xeQ, the multivalued function a(x,:) is linear.

The proof of each step is completely analogous to the proof of the corresponding step in Theo-
rem 7.9, and is therefore omitted. ¢

The compactness under G-convergence of the class L(c;,c,) was proved by different
methods by F. Murat and L. Tartar in [53] and [70]. The symmetric case was studied earlier
by S. Spagnolo and E. De Giorgi (see [66], [67], [68], [36]).
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CHAPTER 2

HOMOGENIZATION OF MONOTONE OPERATORS

In this chapter we deal with the homogenization of a sequence of nonlinear monotone
operators 4, : Hé’p(Q) — H‘l’q(Q) of the form Au = -—div(a(g; ,Du)) . We prove a
representation formula for the homogenized operator under the assumptions that a = a(y,£) is
periodic in y, maximal monotone in § for almost every yeR™", and satisfies suitable
coerciveness and boundedness conditions . The results of this chapter are published in [26].

INTRODUCTION

In this chapter we deal with the homogenization of a sequence of nonlinear monotone

operators 4, : H;’p(Q) — H%Q) of the form

(0.1) A = ‘di"(a(:_h Du)) ,

where Q is a bounded open subset of Rn »1<p<+4ee, Ip+1/g=1,and (g,) isa
sequence of positive numbers converging to 0 . The (possibly multivalued) map a, which
appears in (0.1), is defined on R™xR™ and takes its values a(y,£) in Rn. We assume that a
is periodic in y , measurable in [y,£] , maximal monotone in € for almost every ye Rn |
and satisfies suitable coerciveness and boundedness conditions (see Section 1).

To present our main results, we begin with the simpler case where a is single-valued and
strictly monotone, i.e.

(a(ygl) - a(y’§2)’§1 - 52) >0

for ae. yeRn, for every EeRn, &1 # &, . By using the general notion of G-convergence
for sequences of maximal monotone operators of type (0.1), which has been introduced in
Chapter 1, we prove the convergence, as g, tends to 0, of the solutions u;, and of the
momenta a(él- ;Duy) of the Dirichlet boundary value problem
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—div(a(slh-,Duh)) =f on Q,

(0.2)
upe HyP(Q)

to the solution u and to the momentum b(Du) of the homogenized problem

—div(b(Du)) = f on L,

(0.3)
‘ ue Hé'p(ﬂ) .

The operator b : R® — R» in (0.3) turns out to be defined by

b(E) = Y[a(yDv(yH@)dy :

where v is the solution to the following local problem on the unit cube Y of R?:

—diva(y,Dv(y)+€) = 0 on Y,
(0.4) 1p
ve Hy (Y) .
By H,:’p(Y) we denote the subset of HIP(Y) of all the functions u with mean value zero
which have the same trace on the opposite faces of Y .

The same results have been obtained in [70], [69] for p=2 under the addltlonal
assumptions of uniform Lipschitz-continuity and uniform strict monotonicity for a, i.e.

(0.5) la(y.&1) —a(y,&)l < Al§; -8l
(0.6) (a(y,&p) — a(y,E) 8 — &) 2 ME; - &yl

for ae. yeR", forevery &;,&,eR2,and O<A <A < +oo,

The case 1 <p <+ has been studied under analogous hypotheses of equicontinuity
and uniform strict monotonicity for a by N.Fusco and G. Moscarielloin [38] and [39].

In the present chapter, besides the generalization of the results just mentioned, which per-
mits to weaken the assumptions (0.5)-(0.6), we analyse the general case where a is
multivalued. More precisely, we study the asymptotic behaviour, as (g,) tends to 0, of the
solutions uy, and the momenta g, to the Dirichlet boundary value problem
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( gn(x)e a(;x; ,Du;(x)) for a.e.xeQ,

0.7) q —divgy, = f,

Lp
\uhEHO (Q) .

We prove that, up to a subsequence, (u,) and (g;) converge to a solution u and to a mo-
mentum g of the homogenized problem

g(x)e b(Du(x)) fora.e.xeQ,
0.8) -divg = f,

ue H,P(Q) .

The operator b : R® — R® is now multivalued and for every £eRn™ the set b(§) is de-
fined by means of the solutions to the following local problem on the unit cube Y of R?:

[ ve HYP(Y) , ke (LY(Y))n ,

0.9) p k(y)e a(y,Dv(y)+&) fora.e.ye Y,

é(k(y),Dw(y))dy =0 for every we H;'p(Y) )
.

More precisely,
b(€) = {veR":v = [k(y)dy ,v and k satisfying (0.9)}.
Y

This "multivalued approach” finds its motivation in the fact that, under our general as-
sumptions, the additional hypothesis on a to be single-valued is not enough to ensure the same
property for b. An example of this phenomenon is illustrated in Section 4 together with some
special cases in which b turns out to be strictly monotone and single-valued.

The homogenization problems have been investigated in recent years by several authors.
For a wide bibliography on this topic we address the reader to the books [10], [61], and [6],
where one can find also the physical motivation to this research.

For the homogenization of linear elliptic operators of the form —div(a(f}-l-)Du) we refer to
[36] . The case where a is just almost-periodic has been treated in [44]. Analogous results for
the quasi-linear case have been stated in [11], [13], and [14].

On the other hand, the homogenization of a class of variational integrals of the form
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(0.10) ¥, (u) = J‘ Y& Dudx
Q

which is related to the homogenization of the operators —div(ag\ll(f;,t";)) , has been studied in
[49] and in [21] using the techniques of I'-convergence introduced by E. De Giorgi. Homoge-
nization results for functionals of type (0.10) under almost periodicity assumptions have been
proven in [17] and in [18].

1. NOTATION AND PRELIMINARY RESULTS

Let p be areal constant, 1 <p <+, and let q be its dual exponent, 1/p + 1/g=1.
For every open subset U of R® we denote by L(U) the o-field of all Lebesgue measurable
subsets of U, and by B(Rm) the o-field of all Borel subsets of R™. The Euclidean norm
and the scalar product in R® are denoted by || and (-,-), respectively. If x,y are elements
of aset X, by [x,y] we indicate the ordered pair formed by x and y . Finally, let us fix
two constants m; >0, my;2>0, and two constants ¢; >0, ¢, >0.

In order to study the homogenization of a class of nonlinear multivalued monotone oper-
ators of the type —div(a(x,Du)) we recall the definition of the class My(R®) introduced in
Chapter 1, together with some related results which will be used in the sequel.

Definition 1.1. By M(R") we denote the class of all multivalued functions
a:Rm — Rn which satisfy the following conditions:
() a is maximal monotone;
(i) the estimates
(1.1) m? < m; +c;m.§),
(1.2) EP < my +cy(,E)

hold for every EeRn, and nea(t).
For every open subset U of R», by My(R") we denote the class of all multivalued
functions a:UxR® — Rn with closed values which satisfy the following conditions:
(iii) for a.e. yeU, a(y,")e M(Rn);
(iv) a is measurable with respect to L(U)®@B(R") and B(RD), i.e.
a1(C) = {[y,£]le UxRn : a(y,E)NC = D} e LU)oB(R")
for every closed set Cc Rn,
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Remark 1.2. Let us note that the conditions above ensure that for a.e. ye U and for
every EeR" the set a(y,£) is non-empty, closed and convex in R= (see Chapter 1, Section
2). Note also that , if be M(R®) and a(y,£)=b(§) for every ye U and EeRn, then
ae My(R?) . In fact, the measurability condition (iv) is satisfied since, by the maximal mono-
tonicity of b, the graph of b is closed. Therefore, for every closed subset C of R", we
have

b-1(C) = pr(graph b N(R™xC))e BR") ,

where pr:R™R" — R" is the projection defined by pr([x,y]) =x.

Moreover, for every ac M(R") the inverse (possibly multivalued) operator a-! still be-
longs to M(R™) (see, for instance, [58], Section II1.2.3). Finally , if aec My(R®) the inverse
operator a-!, defined by Eea-!(y,n) if and only if nea(y,£) , also belongs to My(R®) . In
fact, the measurability property for a-! can be obtained by using Theorem 1.3 in Chapter 1.

Let us fix from now on a bounded open subset Q of R". To every ae Mo(R") we as-
sociate the multivalued operator A : Hol’p(Q) — LYQ))" given by

(1.3) Au = {ge LUQ)" : g(x)ea(x,Du(x)) for a.e. xeQ} .

It can be shown that for every fe H-1.9(Q) there exist ue Hg’p(Q) and ge (LY(Q))"
solving the following Dirichlet boundary value problem

ge Au,
(14) —dng = f,

ue H,%(Q) .

For a proof we refer to Chapter 1, Section 2.

In order to study the behaviour of problem (1.4) under perturbations of the operator a
the notion of G-convergence in M(R™) has been introduced in Chapter 1. In this chapter such
convergence, which is based on the set convergence in the sense of Kuratowski (see [45],
Section 29), will be applied to the case of homogenization. ‘

Let us first recall the Kuratowski convergence defined in abstract terms in an arbitrary
topological space (X,t) as follows.

Definition 1.3. Let (E,) be a sequence of subsets of X . We define the sequential
lower limit and the sequential upper limit of (Ep) by
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(1.5)  Kyq(@-liminfBy = (ueX:3u, »u,3keN,Vh2k:ueE),

h—yeo

and

(1.6) Kieq(0)-limsup B, = {ue X :3 o) = +o0, 3 uh—g u,VheN:uyeEspml.
h—soo

Then, we say that the sequence (Ep) Kgeq(T)-converges to a set E in X if
1.7) Keq(0)-liminf By = Kq(7)-limsup Ey = E ,
h—oo h—e0

and in this case we write Keeq(D- &1:1:0 E, =E.

By w we denote the weak topology on H1.P(Q) . Moreover, if o, denotes the weak
topology of (LYQ)) and o, the topology on (LY(Q))" induced by the pseudo-metric
d(g1,82) = ldivg; — divg,ll,_; 4 , we denote by o the weakest topology on (LYQ))" which
is stronger than ©; and ©,. In other words, (g;) convergesto g in ¢ if and only if (gp)
converges to g weakly in (LYQ))" and (—divg,) converges to —divg strongly in H-14(Q).

Having in mind the usual identification of a multivalued map with its graph we recall the
definition of G-convergence.

Definition 1.4. We say that a sequence (a,) in Mg(R") G-converges to ae Mg(R™)
if
Keq(Wxo)-limsup Ay, € A,
h—eo
where A, and A are the operators from H(}'p(ﬂ) into (LYQ))" associated to a; and a by
(1.3).

Although the above definition requires only an inclusion, it determines the G-limit
uniquely, as stated in the following theorem.

Theorem 1.5. Let (a,) be a sequence of functions of the class Mq(R") , and let

C = Kseq(wxc)—limsup Ay,
h—3o0
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where Ay are the operators associated to a;, by (1.3). Let a and b be two functions of the
class MoRm™) and let A and B be the corresponding operators. If CC A and CcC B,

then a(x,8) = b(x,£) for a.e. xeQ and for every EcR™ .

For the proof of this theorem we refer to Chapter 1, Corollary 5.9. Finally, we recall a
lemma of compensated compactness type (see [54], [72]) which will be used in the sequel. For
its proof see Lemma 3.4 in Chapter 1.

Lemma 1.6. Let (u,) be a sequence converging to u weakly in H.P(Q), and let
(8n) be asequence in (LYQ)) converging to g in the topology & . Then

[EnDuedx - [(gDwgdx
Q Q

for every ¢e Cj(Q) .

2. A BOUNDARY VALUE PROBLEM ON THE UNIT CUBE

Let Y =]0,1[" be the unit cube in Rn. We say that a function u:R» - R is
Y-periodic if  u(x+e;) =u(x) for every xeRn, and for every i=1,..,n, where (g) is
the canonical base of Rn. By H#l’p(Y) we denote the subset of HLP(Y) of all the functions
u with mean value zero which have the same trace on the opposite faces of Y . Every function
u of H#1 P(Y) can be extended by periodicity to a function of I—{t‘f(R ny ,

Let a be a function in My(R?), and let us fix EeRn. The goal of this section is the
study of the existence of functions ve H}’p(Y) and ke (LY(Y))" satisfying the following local
problem:

4 1,
ve Hy'P(Y)

k(y)e a(y,Dv(y)+§&) for a.e.yeY,

A\

(2.1)

ﬁj{'(k(y),Dw(y))dy =0 forevery we Hy®(Y)
\.
If we still denote by k its Y-periodic extension to Rn, the last equation in (2.1) is
equivalentto —divk=0 in D'(Rn).
In order to give an equivalent formulation of problem (2.1), which plays a crucial role in the

next section, let us set
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V = (ke LYY))": ’){'(k(y),Dw(y))dy =0 for every we H,”(Y))

endowed with the strong topology of (LI(Y))~.
Then, problem (2.1) is equivalent to the following one: find ke V and ¢e @LP(Y))" such that

fkeV,

(2.2) { o(y)+§ ea-l(y.k(y)) forae.yeY,

J((P(y),h(y))dy =0 forevery heV,
L

where a~l(y,’) is the inverse of the maximal monotone map a(y,),ie. &ea~l(y,n)if and
only if nea(y,§), and ale My(Rn) by Remark 1.2.In fact, it can be proved that
[v.k]e H,:‘p(Y)x(Lq(Y )y is a solution to problem (2.1) if and only if [k,@]e VXLP(Y))", with
¢ =Dv, is a solution to problem (2.2). This result follows easily by the definition of the
space V and by noticing that @e (LP(Y))" satisfies

J(‘P(y),h(y))dy =0  forevery heV

if and only if there exists ve H;P(Y) such that ¢ =Dv .

In order to prove the existence of solutions to problem (2.2) (and equivalently to (2.1)),
we introduce the multivalued operator B:V — V' defined for every ke V as follows:
®e Bk if and only if there exists ge (LP(Y))" with @(y)+Eea-1(yk(y)) for a.e. ye Y such
that

2.3) <@h> = J((p(y),h(y))dy for every heV |

where <-,-> denotes here the duality pairing between V and its dual space V'.

Remark 2.1. With this notation problem (2.2) , and equivalently problem (2.1), has a
solution if and only if 0 belongs to the range of B, i.e. 0cR(B).

In the remaining part of this section we shall prove more than needed for solving problem
(2.2) since we shall obtain the following result.

Theorem 2.2. Let B be the operator from V into V' defined by (2.3). Then B is
maximal monotone and R(B)=V'.
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In the proof of this theorem we make use of the following definition and results.

Definition 2.3. Let S; and S, be two topological spaces, and let F be a multivalued
function of S; into S,.Then F is said to be upper-semicontinuous if for every sgeS; and
for every open neighbourhood V of Fsg in S, there exists a neighbourhood U of s; in S,
such that Fs ¢ V for every seU.

Theorem 2.4. Let X be a reflexive Banach space and let X' be its dual. Let F be a
multivalued monotone operator of X into X'. Suppose that for each x in X ,Fx isanon
empty weakly closed convex subset of X' and that for each line segment in X ,F is an upper-
semicontinuous multivalued operator from the line segment to X', with X' given its weak
topology. Then F is maximal monotone.

Theorem 2.5. Let X be a reflexive Banach space and let X' be its dual. Let F be a
multivalued maximal monotone operator from X to X' . If F is coercive, then the range of F
is X'

The proof of Theorem 2.4 can be found in [20], Theorem 3.18, while that of Theorem
2.5 is contained in [58], Chapter III, Theorem 2.10.

Proof of Theorem 2.2. By using Theorem 2.4 we prove first the maximal mono-
tonicity of B.
(a) B is monotone. To prove this assertion let us fix ke V and ®;e Bk;,i=1,2.By
definition of B there exist @;e (LP(Y))",i=1, 2, with ¢;(y)+e a~l(yki(y)) forae.
y€Y such that

<®;—-D, k;—k,> = J((pl——(pz,krkz)dy. |
By the monotonicity of a-l(y,)) we have

J(<¢1+&>—<¢2+&>,kl—kz>dy >0,

that proves the monotonicity of B.

(b) For every ke V we have Bk #J . To prove this fact let us fix ke V. By Remark 1.2
the set a~1(y,k(y)) is non-empty, closed, and convex in R® for a.e. ye Y . Therefore,
by taking the measurability of a~! into account, we conclude that there exists a measur-
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able function ¢:Y — R® such that @(y+&ea l(yk(y)) for a.e. yeY . Finally, the
estimate (1.2) yields @e (LP(Y))", which concludes the proof of (b).

(c) For every ke V , Bk is a convex subset of V'. This follows easily from the fact that

a~1(yk(y)) is a convex subset of Rn" fora.e.yeY.

(d) Forevery keV , Bk is weakly closed in V' and the operator B is upper-semicontinu-

(2.4)

ous from V , with the strong topology , into V', with the weak topology. Let us fix
keV and let W be an open neighbourhood of Bk in the weak topology on V'. We
claim that for every sequence (k;) in V converging to k strongly in @i(Y))n, there
exists je N such that Bk, ¢ W for every h2j. Assume the contrary. Then there
exist a subsequence (kgp)) of (ky) and a sequence (®,) such that ®@pe Bkypy and
@, W for every heN . Since @& Bkyp there exists @n€ (LP(Y))" such that

on(YHEea (v komyy)) forae. yeY and

<@p,w> = J((ph(y),w(y))dy for every we'V.

By the estimates in My(R™) , and the strong convergence of (kg to k in oy,
the sequence (@) is bounded in (LP(Y))n; thus there exists a subsequence k((p,(h)) of
(¢y) which converges weakly in (LP(Y)) to a function @ . If @(y)+&ea(yk(y)) for
a.e. ye Y, then ®e Bk, hence ®eW . But the last fact requires that @pe W for h
large enough, which contradicts our assumption. Therefore, to get a contradiction, it re-
mains to show that @(y)}+Eea~1(y,k(y)) for a.e. ye Y . To this aim let us introduce the
measurable multivalued map F:Y—-> R®"xR™® defined by
Fy = {[n,{]e RaxRn : {ea~l(y,n)} . By the Castaign representation for F (see [22],
Chapter III) there exists a sequence ([N,{,]) of measurable selections of F such that
for every ye Y the sequence ([N,(y),{m(y)]) is dense in Fy . The monotonicity of a~!
implies then

Koz M PrayHe—Lm(y)) 20 forae. yeY.

By passing to the limit as h tends to +eo we get

kN3, 0YHE-Ln(y)) 20

fora.e. ye Y and for every me N , which implies easily

k(y)-n,0(y+E-C) 20



forae. yeY, forevery neRnand {eal(yn). By the maximal monotonicity of a~!
we get Q(yHEe a~1(y,k(y)) for a.e. yeY , which concludes the proof of (d). e
We now prove that B is coercive, i.e.

<® k>
(2.5) im —-m]-—’ = +oo
lkll—00
for each ®e Bk, where Il denotes the norm on V. Given ®e Bk, there exists

9 (LP(Y)m with @(yy+Ee al(y,k(y)) forae.yeY such that
<@k> = J((p(y),k(y))dy :
By the boundedness condition (1.1) it follows easily that

. <D k> . g-1
Hm T 2 ¢ lim Ikl

llkll—3oe Hkdl—e0

for some suitable constant ¢ > 0 , which proves (2.5). °
Finally, since ‘B is maximal monotone and coercive, by applying Theorem 2.5 we con-
clude that R(B) =V'. 4

3. HOMOGENIZATION

By Mg(R") we denote the set of all operators a€ Mgn(R™) such that a(,&) is
Y-periodic for every &eRn. Given ae My(R™), we consider the following Dirichlet
boundary value problem on the bounded open subset 2 of Rn:

( gy(x)e a(e—’;-,Duh(x)) for a.e. xe Q ,

3.1 4 ~divg, = f,

1,
[ Un€ H0 p(Q) R

where fe H-1.9(Q) and (gy) is a sequence of positive real numbers convergingto 0.

In this section we shall prove the convergence, as (gp,) tends to O, of the solutions uy
and the momenta g, of (3.1) to the solutions u and the momenta g of the following
homogenized problem
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g(x)e b(Du(x)) for a.e. xe Q ,
(3.2) -divg = f,

ue HyR(Q)

where, for every EeRn, the set b(E) is defined by
(3.3)  bE) = {veRm Ive H#l'p(Y), Jke (LYY))n satisfying (2.1), and v = Jk(y)dy} .

Remark 3.1. Let us note that the equivalence between problem (2.1) and problem (2.2)
implies that b(€) = {veRn: ke V, Jpe (LP(Y))" satisfying (2.2), and v = 3!'k(y)dy} .

By taking Theorem 3.11 and Remark 3.12 in Chapter 1 into account one obtains the
results mentioned above directly from the next theorem.

Theorem 3.2. Let ac My(R") and let (g,) be a sequence of positive real numbers
converging to 0 . Let us define ay(x,E) = a(é,&) for every xeQ , EeR™ . Then (ap)
G-converges to the operator b defined by (3.3).

To prove this theorem we need the following result.

Proposition 3.3. The operator b:R" — R defined by (3.3) belongs to the class
M(R") .

Proof. First of all we show that b satisfies the estimates (1.1) and (1.2). Given &eR®
and veb(£), by the definition of b there exist ve HyP(Y) and ke (LUY)" satisfying
problem (2.1) with ‘

V= ‘}k(y)dy .

By the boundedness condition (1.1) for a we have

h)’q < my + Clé(k(Y),DV(y))dy + C]J(k(y)sg)dy .

By taking the Y-periodicity of v into account we immediately obtain (1.1) for b. Analo-
gously, by the coerciveness assumption (1.2) for a and the Y-periodicity of v we get
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EP < my+ ch(k<y>,Dv<y>+§>dy = my+ 8,

which concludes the proof of (1.2) for b. ®
Now, to prove the maximal monotonicity of b we use Theorem 2.4.

(a) bis monotone. Let us fix §eRn®, v;eb(;),i=1,2. By the definition of b there exist
vie Hy'(Y) , kie LY(Y)m,i=1, 2, satisfying problem (2.1) with & replaced by &,
and

v, = Jki(y)dy i=1,2.

‘We have

(=088 = J(kl(y)—kz(y),irﬁy)dy =

i

Y[(kl(y)—k2<y),a>v1w&1)—<Dv2<y>J~§2»dy ,

where the last equality is justified by the Y-periodicity of the function v;~v, . The
monotonicity of b follows now easily from that of a.

(b) For every EeR", we have b(E) # & . This fact follows easily from Remark 2.1 and
Theorem 2.2.

(c) Forevery &eRn, b(E) is convex. Since Remark 3.1 and Remark 2.1 yield

bE) = {veRn:v = _Jk(y)dy, ke B0} ,

our assertion is proved if we ensure that B0 is convex. This follows easily from the
maximal monotonicity of B obtained in Theorem 2.2.

(d) For every £eRn™, the set b(E) is closed in R and the operator b is upper-
semicontinuous. Since b satisfies the boundedness condition (1.1), to prove this asser-
tion it is enough to show that, if (§,) convergesto & in R®, vye b(§;), and (vy)
converges to v in R7™, then ve b(§). By the definition of b there exist
vie HyP(Y), kye WAY))n satisfying problem (2.1) with E replaced by &, such that

vy = th(y)dy :

Since (§,) convergesto £, the estimate (1.1) for a implies that the sequence (k;) is
bounded in (LY(Y))", and therefore (v;) is bounded in H;'*’(Y) by the coerciveness
condition (1.2) for a. Hence, up to a subsequence, we have that [vy,k,] converges to
[v.k] weakly in H;'P(Y)x LYY))n. Since it is clear that
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é(k(y),Dw(y))dy =0 for every we H,}‘p(Y)

and

v= [k(y)dy ,
Y

it remains to prove that k(y)ea(y,Dv(y)+£) fora.e. ye Y. To this aim let us introduce
the measurable multivalued map F:Y—> Ra»xRn defined by
Fy = {[{,nle R=xR" : ne a(y,{)} . By the Castaign representation for F (see [22],
Chapter III) there exists a sequence ([{,,,n,]) of measurable selections of F such that
forevery yeY the sequence ([{,(y),Nm(¥)]) is densein Fy. The monotonicity of a
implies then

(3.4) (kp(y) = Nen@).Dvi) + £ = L (y) 20 forae. yeY.

Since [vp,k,] converges to [v,k] in the topology wxo , by taking Lemma 1.6 into ac-
count and by passing to the limitin D(Q) as h tends to +eo we get

k(y) = Mu).DV(E) + & = {(y)) 20

fora.e. ye Y and for every me N, which implies easily

k(y) -n.Dv(y) +§-0) 20

fora.e. yeY, forevery (eRn and mea(y,() . By the maximal monotonicity of a we

get k(y)ea(y,Dv(yH€) fora.e. ye Y, which concludes the proof of (d).

Hence, b satisfies all the assumptions of Theorem 2.4, which ensures that b is maximal
monotone. ¢

Proof of Theorem 3.2. We have to -prove that
Kseq(wxc)—limsup A, € B,
h~3eo
where Ay and B are the operators associated to a, and b by (1.3), respectively. To this
aim, let us take [u,gle Kseq(wxc)-li{‘njgp A,;, . By definition there exist a sequence T(h) of
integers, with t(h) — +oo, and a sequence [u;,g;le Aqpy such that [u,,g,] converges to
[u,g] in the topology wxo on HLP(Q)x(LYQ))" . In order to prove that [u,g]le B we define -
suitable functions v,e HLP(Q), ke (LYQ))", both &, Y-periodic, in the following way.



Given EeRn, let us consider a solution ve H#l’p(Y) , ke (LYY))" to problem (2.1). Let us
still denote by v and k their Y-periodic extensions to R™ . It can be proved that
ve HiP(R™), ke (L (RmM)n with

loc

(3.5) [(k(y),Dw(y))dy = 0
Rn
for every we C‘J(Rn) (for a proof see, for instance, [69]). Now we are in a position to define

vix) = (¢,x) + ehv(f;l-) for ae.xeQ,

kp(x) = k(f;) for ae.xeQ.

The periodicity properties of these functions yield easily that

(3.6) vy = (&, weakly in HLP(Q) ,
3.7 Dv, —» & weakly in (LP(Q))m ,
(3.8) ky, = v= gk(y)dy weakly in (LY(Q))",
(3.9) ky(x)e a(;:;,Dvh(x)) for ae.xeQ .

Note that (3.5)—(3.8) guarantee that [vy,k;] converges to [(§,),0] in the topology
wxa on HMPQ)X(LYQ))" . By the monotonicity of a we have

[0k (%), DUy ()-Dvy (x))@(x)dx 2 0
Q

forevery ¢eCg(Q), ¢ 20. By passing to the limit as h tends to +oo, Lemma 1.6 im-
plies that

(3.10) JievDu-Eprdx = 0

Q
for every ¢eC(Q), ¢ 20 ; therefore, for every EeR" and every veb(€) we have
(3.11) (g(x) —v,Du(x) - &) = 0 for a.e. xe Q..

In particular, if we denote by {[§m V] : me N} a dense subset of the graph of b, (3.11)
yields that

(3.12) (8(x) = v, Dux)-E_) = 0 for a.e. xe Q , for every meN .
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This implies easily that
(g(x) —v,Du(x)-¢&) 2 0

for a.e. xe Q , for every £eR™ and veb(§) . By taking the maximal monotonicity of b into
account this guarantees that g(x)e b(Du(x)) for a.e. xeQ, ie. [ugleB, which was our
goal. ¢

4. PROPERTIES OF THE HOMOGENIZED OPERATOR

In this section we illustrate some different situations in which the homogenized operator
b defined in Section 3 turns out to be strictly monotone or single-valued.
To this aim let us recall that, given ae M(R"), the function a is said to be strictly

monotone if

4.1) My—M2€1—8&) > 0

for any EeRn,nea€),i=1,2,and &, #8&,.

Proposition 4.1. Let ac My(R") . Assume that a(y,) is strictly monotone fora.e.
ye R . Then the operator b defined by (3.3) is strictly monotone.

Proof. Let &eRn,veb(g), i=1, 2, with &; #&,. By the definition of b
there exist [vikjle HyP(Y)XLY(Y))", i= 1,2, such that

(4.2) k(y)ea(y,Dvy(y)+§) forae.yeY ,

It

(4.3) J(ki(y),Dw(y))dy 0 forevery we HyP(Y) ,

and
v; = \jlq(y)dy :

By taking the strict monotonicity of a and (4.2) into account we have

(4.4) (k1 (y)>ko(y), DV (1)+E)—Dva(y)+52)) > 0



on the set M = {ye Y: Dv,(y)+§;#Dv,(y)+E,} . If M has positive Lebesgue measure, by
integrating (4.4) on Y and taking (4.3) into account, we get

(01=02,§,-€;) > 0 .

Therefore, the proof of the strict monotonicity of b is accomplished if we show that M has
positive Lebesgue measure. Assume the contrary, i.e.

4.5) Dvl(y)+§1 = sz(y)+§2
for a.e. ye Y. Since v;e H;’p(Y) , the integration of (4.5) on Y yields &, = &,, that
clearly contradicts our assumption. ®

Proposition 4.2. Ler ae My(R"). Assu}ne that a~1(y,") is strictly monotone for
a.e. ye R . Then the operator b defined by (3.3) is single-valued.

Proof. Let us argue by contradiction. Let £e Rn, and assume that there exist Vy,
V€ b(§) with v, # v, . By the definition of b there exist [vpk;]e H,i’p(Y)x(Lq(Y))n ,
i=1,2 such that

(4.6) ki(y)e a(y,Dvi(y)+£) forae. yeY ,
(4.7) J(ki(y),Dw(y))dy = 0 forevery weH,”(Y)
and

v = \jk«y)dy :

By (4.6) we have Dvy(y)+§ € a-1(y,k;(y)) for a.e. ye Y, which by the strict monotonicity of
a1 gives

(4.8) (k1 (9)~ky(y).DVy (y-Dvy(y)) > 0

on the set M= {ye Y: k;(y)#ky(y)} . Since v; #v, , the set M has positive Lebesgue
measure. Then, by integrating (4.8) on Y we obtain

J (ky (Y)~ky(y).Dv;(y)-Dv,(y)dy > 0 ,

which contradicts (4.7). Therefore, we have to conclude that Vi =7V,,ie bis
single-valued. ¢
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Corollary 4.3. Ler ac My(R") . Assume that a is single-valued and a(y,) is
strictly monotone for a.e. ye R™ . Then the operator b defined by (3.3) is single-valued and
strictly monotone.

Proof. By Proposition 4.1 we get immediately that b is strictly monotone. Further-
more, by Proposition 4.2 the proof of the corollary is accomplished if we show that a1 is
strictly monotone. Since a belongs to My(R") and a is strictly monotone, a~! is every-
where defined on R°xR" and single-valued. Then, noticing that

M1 —M2a l(y,ny) —al(y,ny) = @& - ay.E).81—- &)

for & =a"1(y,n;), the strict monotonicity of a-! comes out from the strict monotonicity of
a and from the fact that 1, #n, implies & =&, . ' ¢

Let us consider f: R®xR" — R satisfying the following conditions:
(4.9)  f(y,6) is Lebesgue measurable and Y-periodic in y, convex in & ;
(4.10) c;lEP-cy < f(y,E) < cs(1 +EP) for every [y,£]le RoxRn,
where c¢3, ¢4, andcse R, with 0<c3<cg< +oo, 0<cy < oo,

Remark 4.4. It can be proved without any difficulty that for every f satisfying (4.9)
and (4.10) the subdifferential of f with respect to & , denoted by agf , belongs to the class
My(R™) for some suitable positive constants m; , m,, ¢, , and ¢, . In fact, the condition
(iii) of Definition 1.1 follows easily from the maximal monotonicity of def and conditions
(4.9) and (4.10) , respectively, whereas the measurability condition (iv) comes out from
Theorem 2.3 in [3] and the measurability condition for f in (4.9).

Proposition 4.5. Ler f:RnxR™ — R be a function satisfying (4.9) and (4.10).
Assume that £(y,) is differentiable in R® for a.e. yeR" and let a= aéf . Then the operator
b defined by (3.3) is single-valued.

Proof. By Proposition 4.2 it is enough to prove that a~(y,") is strictly monotone for
a.c. yeR". Since f is differentiable, its conjugate function with respect to & , denoted by
f*, turns out to be strictly convex (this follows by Theorem 26.3 in [60] taking into account
that, under our assumptions on f, we have f** = f). Directly from the definition of the subd-
ifferential it follows that df* is strictly monotone. Now, the proof of the proposition is com-
plete by noticing that def* = (8§f)_1 by Corollary 23.5.1 in [60]. ¢
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Remark 4.6. Let n=1.Let a be a single-valued operator in My(R). Then a

satisfies automatically the assumptions of Proposition 4.5. In fact, since n = 1 we can take
&
f(y,8) = J a(y,tdt

which fulfills the conditions (4.9) and (4.10) for some suitable constants ¢4, ¢4 and cs.

In the last part of this section we give an example of a single-valued operator ac My(R®)
whose associated homogenized operator b defined by (3.3) turns out to be multivalued.

Example 4.7. Let n=2. Let us consider the Y-periodic function r: R2xR2 — R2
‘defined on YxR? as

(E2-8)) if y;€10,1/2[
(y,5) =
(=€2,81) if y,e[1/2,1] ,

for every y=[y.,y,leY , & =[E;,E,]e R2, and let us introduce the function
f:R2— R such that

f(€) = S(E-1)v0P2
forevery £eR2. We set

(4.11) ay8) = Q) + 9 = [E-DVOI g + 13,8 .

Itis an easy matter to prove that the single-valued map a belongs to My(R2) . In fact, the op-
erator a is clearly rhonotonc and continuous in & . Therefore, a(y,”) is maximal monotone on
R?2 (see, for instance, Proposition 2.4 in [19], Chapter I1.3). However, a is not a subdiffer-
ential, since a(x,") is not cyclically monotone (see, for instance, [19], Example 2.8.1).

We are now in a position to prove that the homogenized operator b, associated to a in
Section 3, is actually multivalued; more precisely, we shall show that b(0) has at least two el-
ements. Since by our construction 0 b(0) it is enough to prove that there exists ve b(0), with
V#0 . To this aim let us consider any function w:[0,1] - R, we Hé’p(]O,l[) )
Iw'l<1, with mean value zero and w(l/2)#0. We set v:Y—> R,
v(y1,¥2) = w(yy) and k(y) = 1(y,Dv(y)) for every yeY . Now, it turns out that [vk] is a
solution to the local problem (2.1) corresponding to the operator a defined by (4.11) and
£E=0. Furthermore, an easy calculation gives

v=Jkydy = [0-2w@)] R

and proves our assertion that b is multivalued. - ®
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CHAPTER 3

ASYMPTOTIC BEHAVIOUR OF QUASI-LINEAR PROBLEMS
WITH NEUMANN BOUNDARY CONDITIONS ON
PERFORATED DOMAINS

In this chapter we deal with the limit behaviour of the solutions u;, of quasi-linear
equations —div(ap(x,Duy)) = f on perforated domains Qp ¢ Q with homogeneous
Neumann boundary conditions on the holes. Under suitable assumptions on a, and Q; we
prove that certain extensions of u, converge weakly in Hl'p(Q) to the solution u of a
quasi-linear equation of the form —div(a(x,Du)) = bf , where the function be L™(Q) is the
weak limit of the characteristic functions of the sets €, and the map a has the same
qualitative properties of aj, . The results of this chapter are published in [27].

INTRODUCTION

In this chapter we deal with the asymptotic behaviour of the solutions of quasi-linear
equations associated to monotone operators of the form

0.1 —div(ap(x,Duy))

on perforated domains of R" with homogeneous Neumann boundary conditions on the holes.
In (0.1) we indicate by aj, = ap(x,E) the functions aj: QxR" — R" which are monotone
and continuous in &, and satisfy suitable coerciveness and growth conditions (see Section 1).
Let Q be a bounded open subset of R",let (B;) be a sequence of compact subsets of
 with regular boundary, and let Q, = Q\B,, . The main hypothesis we set on the perforated
domains is that (€2;) has the uniform local extension property (see Definition 1.1). Moreover,
we assume that the sequence of the characteristic functions (lg,) converges in L7(Q)-weak”
to a limit function be L™(Q) such that

0 <B < bx) fora.e. xeQ,

where B is a fixed real constant.
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Under these assumptions, we study the limit behaviour, as h — +eo, of the sequence
of solutions uye Hl'p(Qh) to the problem

( —div(ay(x,Duy)) = f on 2,
0.2)  uy =0 on 9 Q ,
(ap(x,Duy),vy) =0 on dBy,
.

where p is a real constant with 1 <p <+eo, fe LYQ) (1/p+l/q=1), vy is the unit
outer normal to 9By, , and (-,-) denotes the scalar productin R".

We shall prove the following compactness result: there exist a subsequence o(h) — +eo
and a suitable function a: QxR"™ — R" such that for every feLY(Q) we have

Uom — u  weakly in HYPQ),

gom) — a(x,Du) weakly in I(9))

where Uy is a suitable extension to £ of the solution ugq,€ Hl’p(Qo(h)) to problem (0.2),

ao(h)(x,Duc(h)) on Qc(h) ’
Bo) =

on Q\Q ;) »
and ue H&‘p(Q) is the-unique solution to the Dirichlet boundary value problem
—div(a(x,Du)) =bf on Q,
ue HyP(Q)

The proofs follow the method introduced in [73]. For simplicity, they are given in detail
only for the case p =2, while in the last section we just point out the modifications needed
for the case p=2.

When a, is linear, this problem has been treated in [42]. The limit behaviour of the
solutions to the equations —Auy, =f (or, of more general elliptic equations) on perforated
domains with a periodic distribution of the holes and homogeneous Neumann boundary
conditions has been studied extensively in [30], [31] by the energy method and in [48] by the
method of multi-scales. The corresponding non-homogeneous case has been analyzed in [29],
[32]. Analogous problems for a system of elliptic equations has been investigated by [55],
[56], [57]. Furthermore, some probiems related to the homogenization of eigenvalue problems
in perforated domains has been studied in [65], [41], [74], [75].
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In the periodic case a homogenization result for a class of nonlinear elliptic problems on
perforated domains with non-homogeneous Neumann boundary conditions on the holes has
been obtained in [37].

Finally, in the particular case in which

an(x,6) = Ogyn(x.8)

where 0 denotes the subdifferential with respect to § and yy, : QxR" = [0,0o] are
measurable in (x,E) , convex in & and satisfy suitable coerciveness and growth conditions,
problem (0.2) has been studied by using I'-convergence techniques applied to the
non-equicoercive integral functionals associated to yy, extended to O outside £, . We refer
to [52] for the linear case and to [23] for the nonlinear one. Homogenization results for
non-coercive functionals when u 1is a vector valued function can be found in [1].

1. NOTATION AND STATEMENT OF THE PROBLEM

Let ©Q be a bounded open subset of R" . The Euclidean norm and the scalar product in
R" are denoted by || and (-,-), respectively. For every he N let B, be a compact subset
of Q that lies locally on one side of its boundary and has Lipschitz-continuous boundary
0By, . The complement of B, in Q will be denoted by €y, . Moreover, we assume that the
sequence of the characteristic functions (1 Qh) converges in L™(Q)-weak”® to a limit function
be L™(Q) such that

(1.1) 0 <B < bx fora.e. xeQ,

where B is a fixed real constant. Finally, we suppose that the sequence (£2;) has the uniform
local extension property in the sense of the following definition (see [23]).

Definition 1.1. The sequence of sets (L) satisfies the uniform local extension
property with constant ¢ > 0, if for every pair U', U of open subsets of R" such that
U'cc U and for every he N there exists a linear and continuous extension operator
E,: H'(UNQ,) —» H{U'NQ) such that

(1.2)  Epu=u ae.in UNQy,

(13)  [DEwlx < ¢, [Duldx,
UnQ , UnQy,
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for every ue Hl(UﬁQh) , with li;nsup Ch <S¢
00
Remark 1.2. Let B R" bea given closed set with non-empty interior and regular
boundary (say, Lipschitz continuous). Moreover, assume 0eB, diamB <1 and B c— D ,
where D is a fixed open subset of R". Let By, be the union of a finite family {B}ix riely} of
closed sets of the form B}‘\ = x; + r;B , where we assume that x,ile R", r}il >0 and
x}il + rLD < Q. Then, the sequence of sets defined by €y = Q\By, satisfies the uniform

local extension property as shown in [31], Lemma 3.

It is clear that the uniform local extension property for the sequence (;) implies the
weaker extension assumption known as the strong connectivity condition (see [42]) which is
given by the following definition.

Definition 1.3. The sequence of sets (L) satisfies the strong connectivity condition
with constant ¢y >0 if for every heN there exists a linear and continuous extension operator
Ey : H'(Qy) - H'(Q) such that

(1.4)  Epu=u ae.in Q,

(1.5)  [DEwlx < ¢y [Dulfdx,
Q Qn

for every ue Hl(Qh) .

Let us note that most of the results of this chapter are obtained by using only the strong
connectivity condition for (£2y) . However, the proof of the main theorem in Section 2 requires
for () to satisfy the uniform local extension property.

Throughout this chapter, ¢; and C are two real constants such that 0 <c; <c, . Let us
fix a sequence of functions a; : Q,xR™ — R™ satisfying the following conditions:
(1.6)  ay(~) is measurable for every EcR™,
(17) ay(x,0) is bounded in (L*(€2,))", uniformly with respect to h.
Moreover, we make the following monotonicity and continuity assumptions:
(1.8)  (ap(x§y) - (8), &1 - &) 2 cilg; — &,
(1.9)  lay(x€) — ap(xEDI < cylE; — &yl
forae. xeQy, forevery &;,£,eR".
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Given fe LZ(Q) , we consider the following Neumann boundary value problem: find
u,e HY(Q,) such that

[ —div(ap(x,Duy)) =f on Qy,
(1_10) < up = 0 on 0 Q .
(ah(x,Duh),vh) =0 on th ’
.

where v, is the unit outer normal to 9B, . Problem (1.10) is intended in the usual weak sense,
i.e. vy is a solution of (1.10) if and only if

ue H(Q}) , up=0 on 3Q

(1.11) I(ah(x,Duh),Dw)dx = ffwdx vV weH'(Qy) , w=00n0Q .

Op Qp

Remark 1.4. It is well known that the Neumann boundary value problem (1.10) has a
unique solution u,e HI(Qh) . Moreover, the uniform strict monotonicity assumption (1.8) and
the boundedness condition (1.7) imply the following a priori estimate

(1.12) [Duyfax < ¢
On

for the solution uy to problem (1.11), where ceR is independent of h . From (1.12), 1.7
and the equicontinuity assumption (1.9) it follows also that

(1.13) [layx,Dup)iPax < ¢,
Qp

where c'eR is still independent of h.

The purpose of this chapter is to study the asymptotic behaviour, as h tends to +ee, of
the solutions uye Hl(Qh) and the momenta ay(x,Duy)e (Lz(Qh))n corresponding to problem
(1.10). To this aim for every he N we consider the extension operator E; given by Definition
1.3 and we set

U, = Epuy ,

ap(x,Duy) on Q4,
Enh =

0 on Bh s
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so e Hé(Q) and g€ (Lz(Q)) By (1.12) and (1.5) the sequence (fi,) turns out to be
uniformly bounded in HO(Q) Moreover, by (1.13) the sequence (gn) is also uniformly
bounded in (L ()" . We shall prove in the remaining sections that there exist a sequence
o(h) = +e and a suitable function a(x,£) : QxR™ — R" such that for every feL3(Q) we
have
Uom — u weaklyin HY(Q) ,
Esy — a(x,Du) weakly in (L2(Q))"

where u is the unique solution to the following Dirichlet boundary value problem

~div(a(x,Du)) =bf on Q,

(1.14) )
ue Hy(Q),

and b is the L™(Q)-weak* limit of (1g) .

Remark 1.5. Let us note that the limit function u and the map a which appear in
(1.14) do not depend on the particular extension operator E; we have considered. This is an
casy consequence of the following lemma.

Lemma 1.6. Let U be an open subset of R™ and let (uy) and (vy) be two sequences
in H! (U) converging weakly in H! (U) to u and v, respectively. Assume that U, = vy
a.e.on UMK , where (19) converges in L™(Q)-weak* to a function beL™ () satisfying
(1.1). Then u=v a.e. on U.

Proof. For every open set U'cc U » U with a smooth boundary, by the Rellich
theorem the sequences (uy) and (vy) converge in the strong topology of LZ(U') to u and
v, respectively. Since

J(uh-—vh)lghdx = 0 )
by passing to the limit as h tends to +oo , we get
Uku ~v)bdx = 0.

Hence, by the strict positivity of b assumed in (1.1) we may conclude that u=v a.e. on
U . ¢
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2. THE MAIN RESULT

In this section we prove the main theorem of this chapter by using some results whose

proofs are given in the next section.

Theorem 2.1. Let (a,) be the sequence of functions given in Section 1. Then there
exist o(h) = +e and a Carathéodory function a:QxR"™ — R" such that for every
fe LZ(Q) we have '

(2.1) Gom — u weaklyin H'(Q),
(2.2) g5y — a(Du)  weakly in LHQ)",

where Tggy=EqmUom With Eog given by Definition 1.3, ugqeH (Qogy) is the solution
to problem (1.10) in the sense of (1.11),

ao(h)(x,DuG(h)) on Qc(h) s
o) T

0 on Q\Q o(h)

and ue H(l)(Q) is the unique solution to problem (1.14). Moreover, the function a satisfies the
following monotonicity and continuity conditions

(23)  GxE)-akxE . &-&) 2 & &P

(24)  la(xk) —axEy)l < %c% &y — &yl

for ae. xeQ and for every &; ,E,eR".

For the proof of this theorem we introduce several operators whose properties are only
stated therein, while their proofs are given in Section 3.

Proof of Theorem 2.1. Let V be a countable dense subset of L2(Q) . Since for
every fe V the solution u, and the momentum ap(x,Duy) of problem (1.10) corresponding
to f satisfy the a priori bounds (1.12), (1.13), by means of a diagonalization argument we can
find a sequence o(h) — +o- such that for every fe V

(2.5) Ugm — u weaklyin HY(Q),

(2.6) fom — £ weaklyin LA@Q)",
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where Uy, and ggq,) are defined as in the statement of the theorem.
Now, in the following lemmas, whose proofs are given in Section 3, we introduce some

suitable operators satisfying nice properties which allow us to complete the proof of Theorem
2.1.

Lemma 2.2, Let B:V — Hé(Q) be the operator defined by Bf =u with u given
by (2.5). Then, B has a unique extension to LZ(Q) , still denoted by ‘B, such that

(27) B - Bl -2—‘1’ubf1 ~bfall 10

for every £, £,eL¥(Q) .

Lemma 2.3. Ler 7: L2 Q) - 1.2 () be the zsomorphzsm of 12 (82) given by
JE=bf for every fe L2 (Q).Let T:L (Q) C;H'I(Q) - HO(Q) be the operator defined
by

(2.8) Tf = (BI
for every fe LZ(Q) , where B: Lz(Q) — Hé(Q) is the operator given by Lemma 2.2.
Then, T has a unique extension to H™\(Q) , still denoted by T, that satisfies

¢ 1

(2.9) <ty —f, T — Tfy> > 5 - lelH_l(m,
G

(210)  NTH - Thj g < % Iy~ 5l 1 g
Jor every f,, ,e H(Q) .

Lemma 2.4. Let T:H '(Q) — HXQ) be the operator given by Lemma 2.3. Then,
T isinvertible and the operator A: BYQ) — HX(Q) defined by

(2.11) Au = Ty
for every ue Hé(Q) satisfies

2
C1,3
(2.12)  <Au; - Auy, vy —uy> > (gi‘) lhay —wgllyl g

1
5
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S 2
(2.13) 17, -ﬂuzllH_l(Q) < 5 % lhuy _“2%(9)
Jor every uy, use Hé(Q) .

Lemma 2.5. Let B:V — (LZ(Q))n be the operator defined by Bf =g with g
given by (2.6). Then, it has a unique extension to LZ(Q) , Still denoted by B , such that

(2.14)  IBf, - Bgl % lif, — £,

<
oy = L2Q)

Jor every f,, fe L2(Q) .

Lemma 2.6. Ler T and J be the operators given in Lemma 2.3. Let Y be the
countable dense subset of HOI(Q) givenby Y=(TIHV) andlet A:Y — LAQ)" be

the operator defined by
(2.15) Au = (BJ ' 2)u

for every uweY , where B:L*(Q) = (LAQ)" and 4 :HLYQ) — HNQ) are the
operators given in Lemmas 2.5 and 2 4, respectively. Then, A has a unique extenszon to
HO(Q) still denoted by A, satisfying

2
(2.16)  NAw - Aull 50 < (CO) czllul——uzlhﬂ(m

Jor every uy, use Hé(Q). Moreover,

(2.17) (Au 1(x) - Auz(x),Dul(x) - Duz(x)) > g—(l) IDul(x) - Duz(z\:)l2 ,

(218)  lAu() - Au) < z—(l)czzﬂ)ul(x)—Duz(x)l

Jor a.e. xe Q , for every u,ue H(l)(Q) .

Proof of Theorem 2.1. Continuation. Since V is dense in L2(Q) by the
continuity of the operators B and B and by the properties (1.8) and (1.9) of a; we easily
get that for every fe 12 (€2) the convergences (2.5) and (2.6) hold when & Ugm) is the extended
solution to problem (1.10) for f and 8oy is the corresponding extended momentum.

Now, let us define the function a: QxR" — R" as follows: given &€ R™, an open set
® ccQ and a function ye Cj(Q) with w=1 on ©, we set
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(2.19) a(x,£) = (Av)(x) forae . xe® ,
where A : Hé(Q) - (Lz(Q))n is the operator given in Lemma 2.6 and

(2.20) v(x) = y(x)(x) forevery xef.

In order to show that the function a given in (2.19) does not depend on ® and v, let
us consider £eR", two different open sets ®; cc Q, w, cc Q and the corresponding
functions y; and v, . By (2.18) it follows ’

Av(x) = Av;(x)l < %c% Dv;(x)=Dvyx)l = 0 forae. xemNO, ,

where v;(x) = y;(x)(§,x) for i= 1, 2. Thus, using an invading sequence of sets
®, Cc Q, we obtain that the function a(x,£) is well defined for a.e. xe Q and for every
EeR" . Moreover, the estimates (2.3) and (2.4) are an easy consequence of the definition of a
and the inequalities (2.17) and (2.18).

Now, in order to prove (2.2) let us fix fe L2(£2) and let us show that

2.21) g(x) = a(x,Du(x)) forae. x€Q,

where u=Bf and g=Bf are given by (2.5) and (2.6), respectively. Let us note first that
(2.15) holds for every ue ‘1‘(L2(Q)) which is the set of all functions ue Hé(ﬂ) with
Aue L2(Q) . This is due to the density of Y in Q(Lz(Q)) and the continuity of the operators
B, 97! and 4 which define A. Now, since u in (2.21) can be expressed as
u = (T 9)f, we have ue rl“(Lz(Q )] which by (2.15) implies that
Au = (BJ '4)Bf =Bf=g. Therefore, (2.21) will be proved if we show that
(Au)(x) = a(x,Du(x)) for a.e. xe Q. To this aim it is enough to prove that

(2.22) ((Au)(x) — a(x,5),Du(x) - &) 2 0

holds for a.e. xeQ and for every £eR". In fact, by taking & = Du(x) + tn with neR",
te R, t>0, it follows that

((Au)(x) — ax,Du(x) + m),tn) 2 0 .
Dividing by t and passing to the limit as t goesto 0, the continuity property (2.4) yields

((Au)(x) — a(x,Du(x)),n) 2 0
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for a.e. xe Q and for every ne R". Therefore, (Au)(x) = a(x,Du(x)) for a.e. xeQ which
proves (2.21).

To prove (2.22) let us fix E€R" and let us consider the function ve H(l)(Q) given by
(2.20). By Proposition 2.6 there exists a sequence v,eY such that (v,) convergesto v
strongly in HI(Q) and Av,e Lz(Q) for every ne N . We may assume that (Dv,)
converges to Dv a.e.in Q, and therefore (Dv,) converges to & a.e.in ®. Let us fix now
neN and denote by ¥,; the extended solution to problem (1.10) corresponding to
fo = A)v,, and by g.n the corresponding extended momentum. By the definition of
B and B we get, by passing to the limit as h — +oo , that

Vaomy — BUJ ’1ﬂl)vn =v, weaklyin H{Q) ,
faom — BUAv,=Av, weakly in LHQ)" .
By the monotonicity assumption on agqny(x,") it follows that

j(go(h) = En,0(h)PUgm) — DVnom)Pdx 2 0
a

forevery peCj(Q), 920 on Q. Since

~div(ggm) = En.om) = (f — o) ]n_o(h)

and ((f-f,) ]Qc(h)) converges to (f—f,)b weakly in Lz(Q) (hence, strongly in H_I(Q)), by a
compensated compactness result (see, for instance, Lemma 3.4 in Chapter 1) the last inequality
implies, as h tends to +oo, that

[(Au - Av,,Du- Dvpdx 2 0
Q ’

for every ¢eCj(Q), 920 on Q. Now, by taking the limit as n tends to +oo, by the
continuity of A (see (2.16)) we get

[(Au - Av,Du-Dv)gdx 2 0
Q

for every ¢eCy(Q), 920 on Q. Since ¢ is arbitrary, we may conclude that
((Au)(x) — a(x,§),Du(x)-&) 2 0

for a.e. xew. Thus, using an increasing sequence of sets ®, cc Q, and taking the
continuity of a(x,’) into account, we obtain (2.22) and therefore (2.21).
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Finally, in order to prove that ue H(I)(Q) is the unique solution to problem (1.14) it is
enough to pass to the limit in

J(gomDwdx = [lq, fwdx
Q Q

for every we Hé(Q) , by means of (2.2) and the convergence of the sequence (1Qh) to the
function b. ¢

3. PROOFS OF THE TECHNICAL LEMMAS

This section is completely devoted to the proofs of the lemmas stated in the previous
section.

Proof of Lemma 2.2. Let us prove (2.7). Let f;, f,eV, and let uy gy » U2,6(h)
be the solutions to

1 .
ui,o’(h)E H (Qc(h)) s ui,o(h)""O on o ,

A\

[(aoqm(x Do DWdx = [frwdx
et )

\V we Hl(Qc(h)) , w=0 ondf2.

By using W =1u; g)~Upq) @S test function in the above equations and by taking their
difference we get

j(aﬁ(h)(x’DuI.G(h))“ac(h)(x’DuZ.c(h))’Dul,c(h)_DuLo(h))dx = J(fl—fZ’ul.c(h)"u2.c(h))dx -
Qqh) Ls(h)

Then, the strict monotonicity assumption (1.8) and the extension estimate (1.5) imply

C ~ ~ 2 _
Ef)' J{Dul,o(h)_Duz,c(h)ldx < jlnc(h)(fl_fz’ul,c(h) Uy g(h))dx

Since, by the definition of B the sequences (T; ) converge to Bf; weakly in H'(Q) , by
passing to the limit in the last inequality, the weak lower semicontinuity of the L%-norm ensures
that
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¢y
3.1 E(; 1Bf, — @lehé(ﬂ) < libf; - blelH_l @

which proves (2.7) on V. Now, it is clear that B can be extended by continuity in a unique
way to Lz(Q) , still preserving (3.1). ¢

Proof of Lemma 2.3. The proof of (2.10) on LZ(Q) follows directly from the
definition of ‘7 and (2.7). Since LZ(Q) is dense in H_I(Q) , T has a unique extension to an
operator on H~ 1(Q) , still denoted by 7, satisfying (2.10) on H"I(Q) .

Let us show (2.9). Let f;, foe L%Q) and u; = Tf; , uy= 71, . By the definition of
T, the sequences (U6 of the extended solutions to problems

( 1
Uiom€ H (Qgn)) » Uj,6m)=0 onoQ ,

A\

[(@g ) (x.Du; g ). Dw)dx = f (97 wdx
Qo) Qo)

\V we HI(QG(h)) , w=0 on dQ

converge to 7f; weakly in HI(Q) , for i=1,2. Now, by the continuity assumption (1.9)
and the monotonicity condition (1.8), for every we Hé(Q) with llwq{ém) <1 we get

-1 -1 .
KlgyU ) = 1o U ) wel = l%j(ag(h)(x,nul,c@))—-ac(h)(x,Dch@),Dw)dxl
)

< ¢ HDul'c(h) - Duz,c(h)'le(nc(h)))n

12

IA

_ |
N E%Cz( J oy, D 1) = (% D2, 01):D01 01y ~ Dty o))
Qo(h)

CO -1 -1 ~ ~ 172
A\ ’ E{'Cz (<19‘0(h)(j fl) - IQG(h)(] fz),ul’o(h) - 112‘6(]1)>) .

Since ( IQG (h)(] ”lfi)) converges to f; strongly in H™ 1(Q) ,1=1, 2, by passing to the limit
in the above inequalities, as h tends to +o , we have

I<f; — fpw>l < g‘llcz (<f; - £, T, - Tf,>)'?
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for every weHé(Q) , Ilwlhé(n) <1, which proves (2.9) on L7(Q) . By the continuity of 7
given by (2.10) we may conclude immediately that (2.9) holds on H™ 1(Q) . ¢

Proof of Lemma 2.4. Since 7T is strictly monotone, coercive, and continuous, it is a
one to one operator from H"I(Q) into H(I)(Q) . Moreover, it follows immediately by the
definition of 4 and the estimates (2.9) and (2.10) that (2.12) and (2.13) hold. ¢

Proof of Lemma 2.5. Let us prove (2.14). Let f;, f,e V and let U o(h) > U2,0(h)
be the solutions to
1
( Ui om)€ H (Qg) Uj 5n)=0 on oQ ,

J(ao(h)(stui,o(h)),DW)dX= ffiwdx
o® Qh)

A

\V we Hl(Qc(h)) , w=0 on aQ .

By the definition of B the extended momenta (8i,omy converge to Bf; weakly in (L:’(Q))]rl ,
i=1,2. Now, by using w= Uj,6(h)~U2,6(h) as test function in the above equations, by
taking their difference, and by applying the monotonicity assumption (1.8) we get

Cq J-IDul,O'(h) - Duz'c(h)izdx < J‘(fl - f2’u1,6(h) - uz-c(h))dx ’
) o)

which implies easily

ClllDul’c(h) - Dulo(h)’hdz(nc(h)»n < ”fl - f2,L2(Q) .

Then, by the Lipschitz-continuity (1.9) it follows that

)
”ac(h)(x’Dul,O'(h)) - ac(h)(X,DuZ’c(h))QLZ(QG(h)))n < -é-l- lif; — f2|£2 @ °

Finally, the definition of 8i.om) and the weak lower semicontinuity of the L2 norm imply
(2.14)on V.

Now, it is clear that B can be extended by continuity in a unique way to LZ(Q) , still
preserving (2.14). ¢
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Let us state the following well-known Poincaré inequality which will be useful in the
proof of Lemma 2.6.

Proposition 3.1. Ler 1 <p <+, and let Q be a bounded open connected subset
of R™ with Lipschitz continuous boundary 0Q . Then, for every >0 there exists a
constant ¢ = c(g,p,L2) > 0 such that

[wPax < ¢ [DuPax
Q Q

for every ue Hl’p(Q) with |{xeQ : u(x) = 0}I 2 ¢, where |-l denotes the n-dimensional
Lebesgue measure.

Proof of Lemma 2.6. Let us start by proving (2.16) on Y . Let u ueY and let

1)
Uy o(hy » U2,6(n) D€ the solutions to

1
( ui,G(h)E H (Qo(h)) s ui,c(h)=0 on Q2 ,

[(aoy(x.Du; g 1y).DW)dx = j (7 7' Auy) wdx
Qo)
)

.V we Hl(Qo(h)) ,w=0 ondQ .

(3.2) <

Now, by taking w = Uy oy ~U2,0(n) @S test function in the difference of the two equations, the
monotonicity assumption (1.8) and the extension estimate (1.5) guarantee that

L ime ~ -1 _(q-1
a!ﬂ)ul'c(h)— Dulc(h)”(Lz(Q))n S IHQG(}])[(] ﬂ)ul (.7 ﬂ)uz]"H‘l(ﬂ) .
This inequality together with the continuity condition (1.9) gives
c -1 -1
”gl,c(h) - gz,c(h)"(LZ(Q))n = E%CZ Iuﬂc(h)[(j ./q)ul - (.7 ﬂ)UZ]"H—l(Q) .

Since (g;5q)) converges to Au; weakly in (LXQ))", i=1,2, by the weak lower
semicontinuity of the L’-norm we get

%o
!IAul - Au?—"(LZ(Q))n < ECZ “2]11 - ﬂuan_l(n) »
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which by (2.13) yields (2.16) on Y . Therefore, the operator A has a unique continuous
extension to Hé(Q) , still denoted by A, which satisfies (2.16).

By the continuity of A it is enough to prove (2.17) and (2.18) for every u,uE Y.
Let us start by proving (2.17) on Y . To this aim, given u
U" € Q, we show that

P LE Y and an open connected set

(3.3) [(Au; - Auy,Du; - Duy)dx 2 %‘1)- [iDu; - DuyPax
u" u"

from which (2.17) follows by the arbitrariness of U" and the Lebesgue derivation theorem.
Let ;4 be the solution to problem (3.2). Given two open connected sets U' and U such

that U'ccUccU", U' connected with a regular boundary, and ¢e C3(U") with

¢=1on U and 09 <1 on U", by the local extension property (1.3) we have

2 2
JDﬁl’c(h) - Dﬁ2,o’(h)l (de < Co(h) " QﬁDul,U(}l)— DuZG(h)l dx s
‘ Mg (h)

where ﬁi,c(h)e HI(U') denotes the extension of U; 5(n)€ Hl(Uch(h)) given by Definition
1.1. By the monotonicity assumption (1.8) it follows that

(3.4) J[Dﬁmm ~ Dy gy dx <

C (h)
< 21 [ 2oy x.D11 ) = 2y (XDt )Py o1y~ Dtz )@

IA

C ~ —~
—E‘l—hl Uf' (81,000 ~ 82,0 DU 1,00~ DUy omPpdx

where T; o) = Eg(nyli,o(n)€ H(l)(Q) and g 5n)€ (L2(Q))n are the extended solution and
momentum corresponding to problem (3.2), with i=1, 2, and Egy, is the global extension
~operator given by Definition 1.3. Since the sequences (¥; 5y converges to u; weakly in
HY(Q), the sequences (g; 5y converges to Ay; weakly in @HQ)", and

~div(g; omy=B2,0m) = ]Qc(h)((]—lzq)ul“‘(j—lﬂ)uz) - (Au; - Auy)

weakly in Lz(Q) (hence, strongly in H_I(Q)), by a compensated compactness result (see, for
example, Lemma 3.4 in Chapter 1) the last inequality implies
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- A 2 C
(3.5) Iililfgp ‘[Dﬁl.d(h) - DuZ,G(h)’ dx < Ei! UJSAUI - AU2,DUI - DU2)dX

By the uniform boundedness of U1,6m — Uz,0m)) in H'(U') and the estimate (3.5) it
follows that the derivatives of the functions vy = M o(h)—uz osmy) ~ (Uy,omy—U2,6m)) are
bounded in L2 (U") , uniformly with respect to h . By the Poincaré inequality (Proposition
3.1) this implies that the sequence (vy) is bounded in H! (U") uniformly with respectto h.
Thcrefore up to a subsequence, (fi, omy—la, o(n)) converges to a function w weakly in
H (U) Since  (¥),g ) — Up,6(n)) converges to u; — u, weakly in H'(U") and
@ Lo(h) — U:z,o(h)) = (Uy,0m) — Upom) ON U'NQgqy » by Lemma (1.6) we may conclude that
W= u;—uzae. on U'. Hence, by the weak lower semicontinuity of the L% -norm the
inequality (3.5) implies

[IDu; - DuyPax < z—‘l’ [cAu; - Auy,Du; - Duy)dx .
U’ U

By taking the supremum over U' cc U" we achieve (3.3) and conclude the proof of (2.17).

Let us prove (2.18) on Y. Let u;, ueY and let U; sy De the solution to problem
(3.2) for i=1,2. Moreover let U', U, U", and ¢ be as in the proof of (2.17). By the
continuity assumption (1.9) we have

2 : 2
Ilaom)(x Dul G(h)) ac(h)(x DUZ O’(h))l dx < CZ JDﬁl,G(h) - Dﬁ2,6(h)l dx
U’ “Qo(h) '

where ﬁi,c(h)e HI(U') denotes the local extension of U 5(h)E Hl(UnQO(h)) given by
Definition 1.1. This implies by (3.4) that

IN

2
(3.6) (Ef'lgl'c(h) ~ 82,0l dx

C

IA

o) Cz j(gl o) ~ 82,6y PU1,6m) = DUy gm)edx

where U 5y = Egm)i,om)€ H(l)(Q) and g 5(n)€ (Lz(Q))n are the extended solution and
momentum corresponding to problem (3.2), with i = 1, 2, and Egsm) is the global extension
operator given by Definition 1.3. Since (U om)) converges to u; weakly in Hl(Q) and
(8i,6(m)) converge to Au; weakly in (L2(Q))n ,i=1, 2, by applying the weak lower
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semicontinuity of the L2 norm to the left hand side and a compensated compactmess result to
the right hand side of (3.6) we get

fiau; - Auylax < gg-cg f(Au; AugDu; - Dup)x
U "

By taking the supremum over U'ccU" and by noticing that U" is an arbitrary open subset
of , we obtain finally (2.18) on Y as an application of the Lebesgue derivation theorem. ¢

4. THE CASE p =2

The aim of this section is to state the analogue of Theorem 2.1 in the case HP(Q),
1 <p <+ . We assume that the sequence of sets () considered in Section 1 satisfies
the extension properties (1.3) and (1.5) with the exponent 2 replaced by p and that the
sequence of functions (ay,) is as follows.

Given two constants o and B, with 0<a < 1A(p-1) and pv2 SPB <+ee, let
ay : QxR"— R" be satisfying the following conditions:
(4.1)  ay(-£) is measurable for every &eR",
(4.2)  ap(-,0) is bounded in (Lq(Qh))n by aconstant c3>0, and 1/p+1l/qg =1.
Moreover, the following monotonicity and continuity assumptions hold:
43) (&) — apxEE1— &) 2l +16 1+ E2P P €, — o
4.4 lap(x,E) - ap(x.8)l < cp(1+16 1 + I DPE = &l
for a.e. xe Qy , for every &, &eR".

It is well known that for every fe LYQ) the Neumann boundary value problem (1.10)
corresponding to a; has a unique solution uy€ Hl'P(Qh) ,ie. there exists uy such that

uy€ H'"P(Q;) , u,=0 on 3Q ,
4.
() J(ah(x,Duh),Dw)dx= J‘fwdx vV we H'P(Q,) , w=0 ondQ .
Qp Q

We are now in a position to state the result announced at the beginning of this section.
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Theorem 4.1. Let (a,) be the sequence of functions satisfying (4.1)-(4.4). Then there
exist o(h) = +eo and a Carathéodory function a:QxR™ — R™ such that for every
fe LYQ) we have

Uom — u weaklyin H"(Q),
Zom — a(x,.Du) weakly in (LYQ))",

where uc(h) Esmom with Eggy the global extension operator given by Definition 1.3,
uo(h)eH (Qc(h)) is the solution to problem (1.10) in the sense of (4.5),

{ a5m)(X,Dugm))  on Qg ,
Eo(h)
0 on Q\Q gy »
and ue Hol‘p(Q) s the unique solution to the Dirichlet boundary value problem
—div(a(x,Du)) =bf on Q,
ue Hy?(Q) .
Moreover, the function a satisfies the following monotonicity and continuity conditions
(@& ~a(e8y) & = &) 2 o(l + Iyl + P PIE, — E,lF
la(x,81) — a(x,E)l < (1 + 1§41+ EP1YE, — £,

for a.e. xeQ and for every €, ,EeR"™, where §= o/(B-a) and ¢ >0 depends only on
n, p, o, B, Co, €1, Cy, and cs .

Since the proof of Theorem 4.1 can be obtained by following the same scheme of the
proof of Theorem 2.1, we state here only the modifications of the lemmas, given in Section 2,
needed for the case p# 2. The main tool in the proof of these lemmas is the following
estimate which is an easy consequence of the Hélder inequality: for every ?1, Pre (L))"

4.6 llp;—, i
( ) P10, (Lp(ﬂ))n

“(P2" n)(B‘P)/B

< 91—, P (1 +, I+, NP Pdx ) B P40, I
C(J(Pl <P2( ¢+, )H( +HiQ, aP)” aP@)
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with ¢>0 depending only on 1 and p. The proofs of the following lemmas can be
obtained proceeding as in the corresponding lemmas for the case p=2 and are based
essentially on the Holder and Young inequalites and on (4.6), and are therefore omitted.

The letter ¢ will denote various positive constants, whose value depends only on 1, P,

a, B, Cg, C1» C2» and C3 .

Lemma 4.2. Let B:V — H(l)’p(Q) be the operator defined by Bf=u with u
given by (2.5) corresponding 10 p # 2 . Then, ‘B has a unique extension to LYQ) , still
denoted by ‘B, such that

1-1/(B-1) vE-1
WBE — BE L1, < c(1+Ibfyl~1,q, oDl -1, Y VEDyibf) — byl -1,
17 7728, @) 1§ ({0} Y R(9))

for every fy, f,6 LYQ) .

Lemma 4.3. Let J:1L%(Q) — L¥(Q) be the isomorphism of L}(Q) given by
g€ = bf for every feLYQ). Let T:LUQ) < H19Q) — HyP(Q) be the operator
defined by

T = (BI

for every fe LY Q) , where B: LYQ) —» Hé’p(Q) is the operator given by Lemma 42.
Then, T has a unique extension to H"X(Q) , still denoted by T, that satisfies

Blo
by~ ThH — Thy> 2 o(1+lifyl1aig, +HfallLag Q))‘*“B"“nfl — fllLag,

SRVCS) Ve
1Tt~ Thlplog < c(+Mfil-lag, HIEl 1, iy — £l L

for every f,, feH "Y(Q).

Lemma 4.4. Let T: H’l’q(Q) - H(l)‘p(Q) be the operator given by Lemma 4.3.
Then, T is invertible and the operator A: H)I'P(Q) — H%Q) defined by

Au = T4y

for every ue H&"’(Q) satisfies

B(p-1)ya
<Au; — Auy, u; —Up> 2 (1l 1p g +|iuzlhé,pm))rﬁ(&l)/aﬂul - ‘JQMH(l),p @
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p-1-0/(B—x) /(B0
lAu, - ﬂn;—’”}{‘l-q(n) < c(l+llu1|{_‘é.p(n) +liu2|l_]é.p(n)) lhay — uzllﬁol.p(n)

Jor every u,, uye HOI‘I’(Q) .

Lemma 4.5. Let B:V — @LYQ)" be the operator defined by Bf =g with g
given by (2.6) corresponding to p # 2. Then, it has a unique extension to LYQ) , sill
denoted by B, such that

oU(B-1)
YEDIE —£ll g

IBf; — Bl < c(i+Ell o +IIEl

(L)
for every f;, £,e LYQ) .

LYQ) LYQ)

Lemma 4.6. Ler T and J be the operators given in Lemma 4.3.Let Y be the
countable dense subset of H)l’p(Q) givenby Y=(TH(V) andlet A:Y — (LYQ)" be
the operator defined by

Au=@BI " 2u

for every ueY , where B:LYQ) - (LYQ)" and 4 : Hé'p(ﬂ) - H Q) are the
operators given in Lemmas 4.5 and 44, respectively. Then, A has a unique extension to
Hy®(Q) , still denoted by A, satisfying

lAu; — Au,ll < c(1+hy i 1p, ., +lhu,ll 1,p )p_l_yllu ! Ilylp
17 gy = lho' @) 2'110' @) 17 "2 P@)

for every uy, use Hé(Q), where y=a/(B-0) . Moreover,

(Au, () = Au,().Du, (x) = Du,(x)) 2 c(1+Du, ()l + Du X)) PDu, (x) - Du, )P ,
lAu, (x) = Au,X)l < ¢(1+IDu, (x)] + IDu, (X)) Du, (x) — Du ()

Lp
for a.e . xeQ, for every u,, u26}10 Q).




CHAPTER 4

HOMOGENIZATION OF QUASI-LINEAR EQUATIONS WITH
NATURAL GROWTH TERMS

In this chapter we deal with the limit behaviour of the bounded solutions ug of
quasi-linear equations of the form —div(a(z—,Dug)) + yiu,zlp‘zug = H(’é—,ug,Dus) + h(x) on &
with Dirichlet boundary conditions on 9 .- The map a=a(x,) 1is periodic in x , monotone
in &, and satisfies suitable coerciveness and growth conditions. The function H=H(x,8.8)
is assumed to be periodic in x, continuous in [s,] and to grow at most like P . Under these
assumptions on a and H we prove that there exists a function H0= Ho(s,i) with the same
behaviour of H, such that, up to a subsequence, (ug) converges to a solution u of the
homogenized problem —div(b(Du)) + ylulp'zu = Ho(u,Du) +h(x) on Q, where b depends
only on a and has analogous qualitative properties. The results of this chapter are contained in
[28].

INTRODUCTION

This chapter is concerned with a homogenization result for quasi-linear boundary value
problems of the type

~div(aG;Dug)) + fugP2ug = HEug, Dug) + h(x) on Q ,

0.1) e
uee HyP@AL™(Q)

where Q is a bounded open subset of R™, y is a positive constant, p satisfies
1 <p<+e, and he L(Q) . We assume that the map a: R’R" - R", a=a(x8),
is periodic in x , monotone and continuous in &, and satisfies suitable coerciveness and
growth conditions. The main feature of the function H: R™RxR"— R, H=H(x,s.8)
which is also periodic in x, and continuous with respect to s and &, is its growth of order
pin&.
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Under these assumptions an existence result for problems of the type (0.1) has been
proved by Boccardo, Murat and Puel in [15].

In the present chapter we construct a function H®: RxR® — R , H= Ho(s,é) , with
the same qualitative behaviour of H , and prove that every sequence (ug) of solutions to
problems (0.1) converges, up to a subsequence, in the weak topology of H;'p (£2), to a
solution u of the homogenized boundary value problem

~div(b(Du)) + yulP~2u = H%u,Du) + h(x) on Q ,

©2) ue Hy(@QAL™(Q) .

The monotone map b : R™ — R™ in (0.2) depends only on the map a which appears in the
principal part —div(a(g-,Dug)) and can be expressed by a homogenization formula, whose proof
is given in Chapter 2. On the contrary, H° depends both on a and H, and is independent of
h .

As a main tool for our proof we first obtain a corrector result for the solutions (ug) to
problems (0.1). More precisely, we show that the family of correctors Pe(x,8) , introduced in
[33] and depending only on the function a , allows us to prove that

Dug = p.(-"MDu) + 1, ,

where the rest 1., depending on u and u,, converges to 0 strongly in (LP(Q))". The
sequence (M) is a family of approximations of the identity map on (LP(Q))" such that M,
is a step function for every e (LP(Q2))". The family (p,) has the form

Pe(x,é) = p( &)

for a suitable periodic function p(-,£) which is obtained by-solving the same auxiliary problem
used in the construction of the homogenized operator b.

The corrector result permits us to pass to the limit on the right hand side of (0.1),
overcoming the difficulties due to the "natural” growth of H(x,s,£) in & .

The proofs follow the method introduced in [9] for the case where a(x,-) is linear.

The homogenization problems have been investigated in recent years by several authors.
For the general framework of homogenization theory, the methods, several examples, and
references we address the reader to the books (101, [61], [6].

The homogenization of linear elliptic operators of the form —dlv(a(— Du)) has been
treated, among others, in [36], [67]. Results for the quasi-linear case and further references on
this topic are given in Chapter 2. The asymptotic behaviour of problems of the form (0.1)
where a(x,) = a(x)t and H(x,s,6) has quadratic growth with respect to £ have been
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investigated in [14], while the homogenization of elliptic equations with principal part not in
divergence form has been studied in [8].

1. NOTATION AND PRELIMINARY RESULTS

Given A >0, we say that a function u: R"™ 5 R is A-periodic if u(x+ie;) = u(x)
for every xeR" and for every i=1,..,n, where (e;) is the canonical base of R". Let
Y =10,1[" be the unit cube in R".Let p be areal constant, 1 <p <+, and let q be
its dual exponent, 1/p+1/q=1. By H}"p(Y) we denote the set of all functions
ue Hl’p(Y) with mean value zero which have the same trace on the opposite faces of Y .
Every function u of H;P(Y) can be extended by periodicity to a function of HLP(R™) .

The Euclidean norm and the scalar product in R" are denoted by Il and (),
respectively.

Given two constants c¢;, ¢ >0, and two constants o« and B, with
0 <a<1a(p-1) and pv2 <P <+, let us fix a function a:R"xR"™ — R" which
fulfills the following conditions:
(1.1) forevery &eR", a(-t) is 1-periodic and Lebesgue measurable,
(1.2) ax,00=0 for ae. xeR".
Moreover, we make the following continuity and monotonicity assumptions:
(13)  la(x&)—a(E)l < cq(1 + Iggl + lgghP1—%g =,
(14)  (axE)— a(xE) & — &) 2 cylgl +IEgPPIE—ElP
for a.e. xeR", for every &, &,eR".

Let us fix from now on a bounded open subset of R" with boundary 0Q regular
enough to guarantee the Meyers estimate in Theorem 1.3. For every €>0 we define
ag(x,E) = a(;i,é) for every xe R" and for every &eR". By a classical result in existence
theory for boundary value problems defined by monotone operators (see, for instance, [47],
Chapter 2, Theorem 2.1, or [43], Chapter 3, Corollary 1.8) it follows that for every
feH 1"‘(Q) and for every ¢ >0 there exists a unique solution uge Hol'p(Q) to the following
Dirichlet boundary value problem

—div(ag(x,Dup)) + Yu,P2u, = f on Q ,

(15) e Hcl’,p(g)
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with y> 0. )
Now, we state a homogenization theorem which is a particular case of a more general
result proved in Theorem 3.2 of Chapter 2.

Theorem 1.1. Let fe H YQ) and let ug be the solution to problem (1.5). Then, as
e — 0, we have

u = u weaklyin H'P(Q) ,
a:(x,Duy) — bDu) weaklyin LYQ)",

where u is the solution to the homogenized problem

~div(b(@Du)) +yulP2u = f on Q ,

(1.6) ue Hé’P(Q) .

The function b:R" — R" is independent of f and is defined, for every EcR™, by
bE) = ‘j a(x&+Dv ())dx

where Ve is the solution to the following local problem on Y :

J(a(x,§+Dv€),Dw)dx = 0 forevery WEH;'D(Y) ,
(1.7)

v,e HyP(Y) .

&

Remark 1.2. By Remark 7.7 and by Theorem 7.9 in Chapter 1 it follows that the
function b:R" 5 R" satisfies the inequalities
(1.8)  Ib(e) = bl < E1(1 + leyl + legh)P1Hie —E
(19) (b)) = bE) k1 —Ey) 2 Ty(1 +leyl + IephPPi e ¢,
for every &;,&,eR", where = o/(p-a), and Cy, C, are strictly positive constants
depending on n, p, a, B,cp,Co.

A useful tool for our purposes will be the following regularity result known as the
Meyers estimate (for a proof, see for instance, [51]).
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Theorem 1.3. Ler fe H"l’o(Q) ,0>q. Let we H(l,'p(Q) be a weak solution to the
equation

~div(a(x,Dw)) +ywlP2w = f on Q ,

weH P(Q) |

where y is a non-negative constant. Then there exists m >0 such that we have
we Hé’p(Q)nHl'pm(Q) and

(1.10) Ilwlhl,pﬂl(n) < cllwlhl-P(n)

The constant n depends only on n, p, o, €1, € while ¢ >0 depends in addition on S and
on ”fi'}_‘{g) , when f is represented by f =i§1(—Difi) +1;.

If nothing else is specified, in this chapter the letter ¢ will denote various positive
constants, whose value can change from one line to the other.

Now, in order to state a corrector result for problem (1.5) we begin by defining the family
(Mp) of approximations of the identity map on (LP(Q))". To this aim let us consider for ie Z"
and €>0 the cube Yie =i+eY, i.e. the translated image of Y.=¢€Y by the integer
vector i€Z". Given ¢e (LP(Q))" let us define the function M@ : R"— R™ by

(1.11) MO0 = 3 196~ fowrxy
€ 1

sYa

where I = {ie Z“:Yi <€ Q}, 1, is the characteristic function of a set A < R", and IAl
denotes its Lebesgue measure. For some properties satisfied by M. we refer to [33],
Section 2. :

Finally, let us define the function p : R’™R" — R" by

(1.12) p(x,§) = §+Dv§(x) ,

where Ve is the unique solution to the local problem (1.7). Let us remark that v can be
extended by periodicity to a function of Hllo'g(R") and that problem (1.7) is equivalent to
—div(a(x,§+Dv§)) = 0 in DR . It follows that p(-,£) is 1-periodic and that the function
Pe : R’R" = R" defined by

(1.13) Pe(x8) = P@GE) = §+Dv, ()
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is e-periodic in x . Among the properties of Pe » that can be found in [33], Section 2, we
recall here just the ones we need in the sequel.

Lemma 1.4. For every &, &, &, R™ we have
P
(1.14) ||p£(-,§)||(Lp(YE))n < my(1+ EP)IY, ,

(1.15)  lipg(-£,) — pg(-,gz)u?Lp(Y S my(l+ P+ g P) P By e piE-oyy
where m; >0 depends only on n, P, B, €1, 3, while m, depends in addition on «.
Lemma 1.5. Ler ¢e (L(Q))" and let y be a simple function of the form
3
¥ = Snil,
with n;e R™\(0}, Q;ccQ,Ql=0, QNQ, =D for j#k.Then

(1.16) limsup lipe(-, M®) = peC- Wi}y pgym <

o) BBy B
< C(|Q|+”(p|h’p(g))n+”\]I'b_p(n))) =Wl ey

where the constant ¢ depends only on n, P, o, B,CiyCq.

Finally, we conclude this section by stating the following corrector result which can be
obtained modifying slightly the proof of Theorem 2.1 in [33].

Theorem 1.6. Let feH "Y(Q), let u, be the solutions to problem (1.5) and let u be
the solution to problem (1.6). Then

(1.17) Du; = pe(~MDu) + r, ,

where pe is defined by (1.13) and (ry) converges to O strongly in (LP(Q)" as e tends
to 0.
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2. HOMOGENIZATION OF QUASI-LINEAR EQUATIONS WITH
BOUNDED SOLUTIONS

In this section we study the asymptotic behaviour, as ¢ tends to 0, of solutions ug to
the Dirichlet boundary value problems

—div(ag(x,Duy)) + yugP2u, = He(x,u.,Dug) + he(x) on Q ,
2.1 -
@1 e HyP(@nL™(Q)
where a; are the functions introduced in Section 1 and ¥ is a positive constant. The functions
He and hg satisfy suitable assumptions that are given below. Let us recall that a solution u; to
problem (2.1) is a function in Hol’p(Q)nL”(Q) such that

J’(as(x,Due),Dv)dx + v j luelp"zugvdx = jHe(x,ug,Dus)vdx + J'hg(x)vdx
Q Q Q Q

for every test function ve Hol’p(Q)nL"(Q) .
-The corresponding linear case, where ag(x,8) = az(x)§ , has been considered by [9].

Given the constants k;, ky, >0 and the continuous and increasing functions oy, o,
03, 0: R" = RY with o(0) =0, let us fix a function H:R™RxR™— R satisfying the
following conditions:
(2.2) forevery seR,forevery &eR™, H(,,s,t) is 1-periodic and Lebesgue measurable,
(2.3)  H(x,58)< ky +0(Is) &P for a.e. xeR", and for every seR , te R™.
Moreover, we require the following continuity properties:
(2.4)  TH(x,51,8) — H(x,50,8)l < o(Is;—saDoo(Is; 1+Is,)IEFP for a.e. xe R™, and for every
s;, 526 R, Ee R™
(2.5)  H(x,581) = H(x,8,8)l < o3(Is(1 + Iyl + )P, ~£,I* for a.e. xe R™, and for
every seR, for every &;,&eR".
Furthermore, assume that hee L™(Q) satisfies
(2.6)  (hy) convergesto h in L™(Q)-weak* and llhel] =) < Ky .

For every e€>0 we define Hg(x,s,8) = H(%,s,é) for every xeR", se R, and for
every teR". Our assumptions on the functions a,H and h, are more then needed for the
existence of at least one solution u to problem (2.1). For a proof see [15]. In order to study
the limit behaviour of a sequence (ug) of solutions to problem (2.1) we begin by stating some a
priori estimates on u, which come out from the existence theory established in [15].
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Lemma 2.1. Let (u,) be a sequence of solutions to problems (2.1). Then
llugll; - @ =6 lluellH(l).p(Q) Sc3
where c3 is a positive constant depending only on p, ¥, ky, kg, Cy, and is independent of ¢ .

In order to state the main result of this chapter we need to introduce a function
H’: R<R" > R related to the function H as follows

2.7) H'(s8)= [HYsp(0)dy
forevery seR and for every &eR™. Its properties are summarized by Proposition 2.3.

Theorem 2.2. Let (ug) be a sequence of solutions to problems (2.1), where a, H
and hg satisfy (1.1)-(1.4) and (2.2)-(2.6 ). Let b be the homogenized operator given by
Theorem 1.1. Then, up to a subsequence, we have

(28)  ug = u weaklyin HYQ) ,

(2.9) U = u L(Q)-weaks

(2.10)  Dug—pe(-MgDu) — 0 strongly in (LP(Q))",

where M, and Pe(;\MDu) are given by (1.11) and (1.13). We have also

(2.11)  ag(xDu) — bDu) weaklyin L))",
(2.12) —div(a.(x,Du,)) — —div(b(Du)) strongly in HYY(Q) ,

where u is a solution to the problem

—div(b(Du)) + yulP?u = H'@w,Du) +h on Q ,

(2.13) ue Hy?(@nL Q) .
Finally,
(2.14)  Hg(xu,Du) — HuDu) weaklyin LYQ) ,

(2.15)  [Hxu.Dududx — [HuDujudx .
I'e) Q
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The equation (2.13) is intended to be satisfied in the weak sense with test functions in
H,P(@Q)AL™(Q) , as for problem (2.1).

We first prove the qualitative properties of the limit function H introduced by (2.7).
Sequently, in Lemma 2.5 we construct suitable approximations v, of the given functions u;
by means of which we shall prove Theorem 2.2 at the end of this section.

Proposition 2.3. Let H’:RxR™— R be the function defined in (2.7). Then
(2.16) Hs.8)I < &) +,(sl)(1 + &8 for every seR, and E<R™,

(2.17) 1H(s1,8) = H(sp.8)l < B(s;=s,D5(Is+Is,)(1 + B for every s1, € R, and
teR",

(2.18) IHO(s,él)—-HO(s,é’;z)l < Ga(Ish(L + g1 + 1E,HPY1 &=, for every seR , and for
every &;,&,eR",

T, ) ~ ~ ~ ~ + + . . .
where ki is a positive constant, &, ,8,,83and® :R*— R* are continuous increasing
Sunctions with %(0) =0, and v = o/(B-a) . Moreover, we have

(2.19) He(.@ePe(.Mey) — HAy)  weakly in LX(Q)

for every ye (LXQ)" and for every sequence (9g) which is bounded in L(Q) and
converges pointwise to @ .

Proof. Since H(-,s,p,(",£)) is e-periodic it follows immediately that
(2.20) He(,5,p¢(8)) = H'(s,£) weakly in LYQ)
for every seR and for every &eR" . By the definition of H° and the condition (2.3) we get

Hs,8) < Ky +0y(lsh J In(y.£)Pdy .

By applying the estimate (1.14), condition (2.16) follows immediatély. Let us prove (2.17). By
the definition of H® and (2.4) we obtain

H(51,8) ~ H(s0,8)l < aa(ls;—sql)op(Is +Is,l) le(y,g)lpdy .

The estimate (1.14) provides then (2.17). Moreover, by (2.5) and Holder's inequality it follows
that



H(s,8.) — H(s,,)l <

o

P%in (- E1) — (-
‘s co(Isly(1+ up(-,gl)n(Lp(Y))n+ up(-,gz)lhp(mn) lip( ’,&1) p( ,éz)ll(Lp(Y))n .

By applying both (1.14) and (1.15) the estimate (2.18) follows immediately.
Finally, let us prove (2.19). This will be done in four steps.
Step 1. By (2.20) it easily follows that

@.21) He(.@.p:(.¥)) — H(9,y) weakly in LYQ)

for every step function ¢peL™(Q) and for every step function e LYQ))" . e
Step 2. We have

222)  H0.pe(Mey) — HAQ,y) weakly in LIQ)

for every step function peL™(Q) and for every function ye [LQ)" .
In fact, given ¢ and y as above, for every §> 0 there exists a step function

) = j;*":lnjlgj(ro
with 1€ R\0}, Q;cc Q,BQ)l=0, QNnQ, =@ for j=k, such that
(2.23) =l 2 gy < 8-
Since
224) Hy(,0.0.(.Moy)) — Hp,y) =
= [HCOPL M) = Helo@peCa] + [l 0.056m) ~ O] +
+ Ho.m) - Ho,w)]
and by (2.21)
(2.25) He(,@.pe(-~m) — H(¢,n) weakly in LYQ) ,

to get (2.22) it is enough to evaluate the first and the third bracket on the right hand side of
(2.24). By (2.5) and Holder's inequality we have

JH(x,0.0:( M) — Hy(x,0,po(x,m))idx <
Q
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< co3(lgly = g W)(1+ IpCMAIY p g+ PG p )™

o

(- N
”p( ’MEW) P( ,Tl) (LP(Q))

Arguing as in (4.2) of [33] we can show that Pe(-sMgy) and pg(-,n) are bounded in
i)™ uniformly with respect to ¢ . Hence,

limsup [IH(x,9,p5(,Mc¥)) ~ He(x,0,peCxm)idx
Q

a

afe)"

< . M - p(, Il ,
¢ limsup lip(,My) — p(-;n)
where ¢ is a positive constant independent of ¢ . By Lemma 1.5 and by the preceeding
inequality it turns out that

(2.26) lixnggp lee(x,(p,pE(x,Me\y))-—Hs(x,(p,ps(x,n))ldx <
Q

v

a-v
< (11 + Iyl p o + Il p gy ) =l ey

a-v v
< C(|Q| + ”\wh‘p(n))n + lh‘\lb‘p(n))n) 8

with v = o/(B-a), where in the last inequality we have used (2.23).
Finally, by (2.18) and Hélder's inequality we conclude that

@27)  [H%gn) - Hp.w)idx <
Q
l\'

~ ’ p—v
< B3Il =L + Iyl pyn + lnll gy oa) Iyl p

pv v
< c(IQl + i|W|hp(Q))n + ”T]lz.Lp(Q»n) s .

still taking (2.23) into account. Now, by (2.24)-(2.27) and the arbitrariness of & we obtain
(2.22). o

Step 3. Let ¢eL(Q) and e (LAQ))". By approximating ¢ uniformly with a
sequence of step functions in L(Q) and by taking (2.22), (2.4) and (2.17) into account we

get

(2.28) He(,0.p(-Maw)) — H%gy)  weaklyin LY(Q). .
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Step 4. Finally, (2.19) follows from (2.28) by using (2.4) and (2.17). ¢

Lemma 2.4. Let u; and u be the solutions to problem (1.5) and (1.6), respectively,
with fe H'I'G(Q) »6 > q . Then, for every bounded sequence (9g) in L7(Q) such that
(¢g) convergesto ¢ a.e.on Q we have

(2.29) J(ae(xDug),Dugdx —  [(bDu)Dupdx .
Q Q

Proof. By Theorem 1.1 the sequence (ug) is uniformly bounded in H&‘P(Q) , and
hence by Meyers estimate (1.10) also in H'*™(Q) , 1 > 0. By means of (1.2) and (1.3) this
implies that the functions a(-,Du,) are uniformly bounded in (L°(Q))" for some s >q.
Therefore, there exists t> 1 such that

li(ag(-, Dus),Dug)le(n) <c,

uniformly with respect to ¢ . Hence, up to a subsequence, (ag(, Dug),Duy) converges weakly
to a function geL"(Q) as ¢ tends to 0. Since ue solves (1.5), a compensated compactness
result (see, for example, Lemma 3.4 in Chapter 1) implies that (ag(, Dug),Du,) converges to
(b(Du),Du) weakly in D'(Q) as ¢ tends to O . Therefore, we may conclude that g =
(b(Du),Du) . Now, since by assumption the sequence () converges to @ strongly in
LYQ), lh+ 14 = 1, (2.29) follows immediately. ¢

Lemma 2.5. Let (uy) be a sequence of solutions to problem (2.1), where a,H and
he satisfy (1.1)-(1.4) and (2.3), (2.6). Let b be the homogenized operator given by Theorem
1.1 and assume thar (ug) converges to ue H&’p(ﬂ)nL‘”(ﬂ) weakly in Hl'p(Q) and a.e. on
Q. Let v be the solution to problem

—div(ag(x,Dve)) + v v, = —div(b(Du)) + vulP2u on Q,
(2.30) . :
vee HyP(Q) .
Then,
(2.31) u—ve — 0 stronglyin H'P(Q).
Remark 2.6. Let us note that Theorem 1.1 guarantees that (v;) converges to u

weakly in H" p(Q) Hence, by the assumption of Lemma 2.5 the sequence (ug vE) CONVETZES
to. 0 weakly in H P(Q) . Actually, we shall prove the strong convergence.
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Proof. Since ue Hé'p(Q)mL”(Q) there exists a sequence of smooth functions (a)
such that

(2.32) u; - u strongly in H'P(Q).

Let vgy be the solution to the problem

—div(ag(x,Dve ) + 1ive aP vy = —div(b(Duy)) + viupP2u; on Q

(2.33) Lp
VS,XE HO, (Q) .

By the regularity theory for quasi-linear elliptic equations (see, for instance, [46], Chapter 4,
Theorem 7.1, or [12]) the smoothness of u, implies that ve2€LT(Q) . Moreover, by (2.30)
and (2.33) it follows immediately that

[(2e(x.Dv¢ -2, Dv,).Dv, ,-Dvp)ax + v | Ve AP 2vea4veP 2V ) (Ve a—ve)dx =
Q Q

= [®®u)-bDw,Dy, x-Dvedx +7 [y P2y tuP2u)(v, —vp)dx .
Q Q

By using (1.4), an casy consequence of Holder's inequality (see, for example, Lemma 3.1 in
[33]) and the strict monotonicity of the function I:LP(Q) — LYQ) defined by Iw = IwP 2w,
we get

B

1/p (o 5)]
clle&l—DvE!!@p(Q))n(IQl + ”DVE’;‘_I&Lp @t |le€l£Lp ( Q))n) <

< [(b(Dup-b(Du),Dv, ;-Dvy)dx + [@uTu)(ve y-vodx
Q Q

By estimating the right hand side of the last inequality using (1.8) and Holder's inequality we
obtain '

cHDvE,X—DVEIIfLP(Q»n(IQIUp + IDVelf P gy + DVl p Q))n)(""f” <
< ¢(1+ Dy, IDul ¥ o iDu-Dul . Dv.,Dv.| +
=¢ Unp iy * DUl p gy eyt gy PVeaDVell pgyn

+ Y"IUA—IUIL‘!(Q)”Vax—VleP(Q) .
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Finally, taking into account that Vea» Ve and uy are bounded in H"P(Q) uniformly with
respect to € and A, and using properly Young's inequality one gets

wp 18
(2.34) ”Vs,).'”ve'ké'p(g) < C(“Du;\_-'Du”(Lp(Q))n + IIIul—IuIILq(Q))
Setting
(2.35) g = —div(b(Duy) + yuy P 2u,

from (2.33) and (2.1) it follows that

(2.36) —div(ag(x,Dug) — ag(x,Dv, 1)) + ¥(lugP2ug — Ve 3 P2ve 2) = He(x,u,,Dup) + b — g5, .
As in [15] and [9], we shall define the function

(2.37) 9u(s) = s€*

with 9 a positive parameter. Since ug—Vvgj belongs to Hé’p(Q)nL”(Q) , We can use

Ps(ug—ve3) as a test function in (2.36) to obtain by means of (2.3) and Lemma 2.1

(2.38) f (2(x,Dug}-25(,DVe 1),Du DV 3 )P, (ug—ve 1)dx +
Q

2
1 J(ugPPug = v AP 2y )0a(ug—ve )dx <
Q

< f(kl + 01(03)IDuEIp)kpﬁ(us—-v&x)ldx + J'hsq)f,(ua—-ve‘z)dx = <8 Po(ug—ve)>
Q Q

IA

j (ky + 2p~10'1(c3)|Dus—Dvs’llp + ZP—IO'I(C:;)lDVE.xlp )l(pﬁ(ue—-vg,;‘)ldx +
Q
+ J‘hs@ﬁ(us‘ve,l)dx — <8n Pa(ug—ve)> .
Q

Noticing that (p;3 >0, by (1.4) and the strict monotonicity of the function I:LP(Q)— LYQ)
defined by Iw = IwlP 2w , the inequality (2.38) becomes
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¢ f Dug-Dve 3°(1 + Dugl + Dvg )PP (uve )dx <
Q

< j(kl + 2p_10'1(c3)lDus——Dv€’;~lp + Zp"lcl(c3)IDv&xlp)l(p,,(us—va‘x)ldx +
Q
+ J. hs‘Pﬁ(us_Vs,l)dx - <€ (P'O(ue_vs,k)> .
Q

Since by Young's inequality we have
p B )p—ﬁ 1+ Dv, ,/P)
Dug-Dve " < c4lDug — DveyP(1 + Dugl + IDvg ;)P + c(1+ vealf),

then

(2.39) J.IDuE—DvE‘XIB(l +IDugl + DV )PP e,y (0e—ve2) — 2% 01 (c3)Cal@a (v, D)dx <
Q

< ¢ 4DV PYigg(ueveidx + [he@olueve)dx — <gp, Poltgve1)> -
Q Q
Now, for 9 2 [2P %5, (c3)c4/c,)? , it follows that
23
2

C2 94(5) = 27y (C)cylpa(s)l 2

for every seR. By making such a choice for ¢, we deduce from (2.39) that
(2.40) 2 J IDug-Dv, 3 /P(1 + Dugl + Dy, )PP dx <
Q
< ¢ j (14 (ag(x,DV¢, 1), Dvg 1))@ (up—ve ldx +
Q
+ j he@y(ug—ve Ddx — <gy, Po(ug—ve)> .
Q

By an easy consequence of Holder's inequality (see, for example, Lemma 3.1 in [33]) the left
hand side of (2.40) can be estimated as follows
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)P-B

B 14
Du—Dv, P
cliDug &lll(Lp(Q»n(lQI + IlDuelE n+ lIDve‘;‘I!

LP@)) LP)”

< % f Du,— E‘;Llﬁ(l +lDu€I+IDvE,xl)p_ﬂdx .
Q

Then, by taking into account that u, and v, are bounded in H'P(Q) uniformly with respect
to € and A, we obtain

IDug-Dv I ,

oy = © f (1 + ¢3! (ag(x,Dvg 2).DVe )19 (ue—ve ldx +
Q

+C ,[ he@a(ug—ve ) )dx — € <gy, Pp(ug—ve)>.
Q

Let us note now that (@g(u.—ve3)); converges to @s(u—uy) strongly in LY(Q) for every
1 £ < +e and weakly in Hé’p (€2) , which together with Lemma 2.4 ensures that

. B -1

241 1 = -

(241) imsup IDu, DVF"}‘”(LP(Q))H <c f(l + ¢ (6(Duy),Duy)lpy(u-uy)ldx +
Q

+ ¢ [hogluudx — ¢ <gy, alu-uy)> .
Q

Since
Ilue—veli{ol,p(n) < g —vs’xlhol.p(ﬂ)+ ”Vs.X"Vs'hé'P(Q) ,

by (2.41) and (2.34) we get

limsup lg—vell Lp g, < ¢ f (1 + ¢! (b(Duy).Duy)lpg(u—1y)idx +
Q
wB 1/
+ cd"h(pﬁ(u—u;‘)dx - © <& Qo(u-w)>+ c(IDuDulf o + MayTullq ).

By means of (2.32), the condition (2.31) follows now immediately. ¢
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Proof of Theorem 2.2. Let (ug) be a sequence of solutions to problems (2.1). By
Lemma 2.1 we can assume that

u; > u  weakly in Hl’p(Q) and a.e.in Q,
U, 2> u L7(Q)-weak* .

By applying the corrector Theorem 1.6 to the solution v to problem (2.30) we have that
Dve —pe(--M;Du) — 0 stronglyin (LP(Q))".

Then, by (2.31) we get

(2.42) Du, — pe(-,MDu) — 0 strongly in 1(*))n

which proves the corrector result (2.10) for ug.Let H?:RxR" S R be the function defined
by (2.7). By (2.19) we have

(2.43) He(-,ug,pe(-MDu)) — H’(u,Du) weaklyin LY(Q).
Moreover, by using Holder's inequality we obtain by means of (2.42) and (2.5) that
(2.44) He(,ug,Dug) — He(-,ug,pe(-MDu)) — 0 strongly in L(Q).
Then, (2.43) and (2.44) guarantee
(2.45) He(u,Du) — H'uDu) weaklyin LY(Q)
proving (2.14). By using (1.3) and (2.31) it follows that

ag(x,Dug) — a.(x,Dvy) — 0 strongly in (LYQ)".

On the other hand, by the weak convergence of the momenta in Theorem 1.1 applied to
problem (2.30) we have

ag(x,Dve) — b(Du) weaklyin LYQ)".

Hence, (2.11) and (2.12) follow easily. Moreover, (2.13) is satisfied. Finally, let us show
(2.15). First of all

(2.46) | [Hy(xu,Du)(uu)dxl <
Q
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< J‘ IHe(x,ug, Dug)—H(x,ug,pe (x,M¢Du))llu~uldx + | ng(x,uE,pe(X,MgDu))(Ue—u)de .
Q Q

By (2.44) and the fact that (ug~u) is uniformly bounded in L™(Q) the first term on the right
hand side of (2.46) vanishes as ¢ tendsto 0. By taking (2.43) into account and by noticing
that the sequence (u;—u) converges a.e. to 0 and is uniformly bounded in L™(Q) we hgwe

[Hx,00pex M Du)) (u—u)dx — 0.
Q
Finally, from (2.45) we get
J.He(x,us,Dug)udx - fHo(uDu)udx ,
Q Q

which together with (2.46) yields (2.15). ¢
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