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INTRODUCTION 1

Introduction

The purpose of this thesis is to give some new results concerning existence
and continuous dependence of the solutions of the Cauchy problem for a
nonlinear strictly hyperbolic n x n system of conservation laws in one space
dimension

ut + [f(’u.)]ac =0, (0.1)
U(O, ) =1, (02)

where f : 2 C R* — R" is assumed to be sufficiently smooth. Since the
fundamental result of Glimm [25], who proved the existence of solutions to
(0.1)-(0.2) when the initial data @ has small total variation, many efforts
have been spent in trying to prove uniqueness and continuous dependence
of the solutions.

In these last years a new technique, which appears to be useful, has
been developed by Bressan, Colombo, Crasta and Piccoli [12, 15, 8, 11].
The idea consists in constructing a so-called Standard Riemann Semigroup
for (0.1), that is a Lipschitz continuous semigroup of solutions of (0.1).
More precisely a Standard Riemann Semigroup associated to (0.1) is a map
S : D x [0,40c0[~ D such that

i) the domain D C L' contains all the functions with sufficiently small
total variation;

i) Sot =4, SpSs0 = Syt for all @ € D and all ¢, s > 0;

iif) || Sew — S5t < L(Jt = s| + ||lu — 7| for all 4,5 € D, all t,5 > 0

and for a suitable constant L;

1)

iv) if & € D is a piecewise constant function, then, for ¢ small, S;u co-
incides with the function obtained by piecing together the Lax [32]
solutions of the Riemann problems determined by the jumps of .

In addition if such a semigroup exists then it follows that (see [8])
a) it is unique, as a semigroup, up to the domain D;
b) the trajectories are indeed weak entropic solutions of system (0.1);

c) every limit function of wave-front tracking or Glimm scheme approxi-
mations, coincides with Syi(z);

d) the trajectories can be characterized as “viscosity solutions” in terms
of local integral estimates.
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In a recent paper [15] it was proved that in the general case of a n x n
system of conservation laws with all characteristic families either genuinely
nonlinear or linearly degenerate in the sense of Lax [32], such a semigroup
exists and is obtained as limit of a sequence of approximate semigroups
constructed by wave front tracking techniques.

The idea of wave-front tracking is to construct approximate solutions
to (0.1)-(0.2) in the class of piecewise constant functions. First one ap-
proximates the initial data by a piecewise constant initial function u, (0, )
and approximately solve the Riemann problems at each discontinuity point.
The local solutions are patched together to define an approximate solution
uy (t, ) defined up to the first time when two wave fronts interact. At this
point, one solves again the Riemann problem, etc. This construction can be
carried on for all time ¢ > 0, as long as the function wu, (¢, -) remains piecewise
constant. Indeed any interaction of two fronts, may produce many waves
which can again interact with each other, etc. Hence the number of waves
could well become infinite in finite time, breaking down the algorithm. The
three main steps are to prove that

o the total variation of the functions u,(t,-) remains uniformly bounded
int>0 and v;

e the total number of wave-fronts is finite;

e the total number of interaction points is finite.

The first point is needed to prove convergence in Llloc by a compactness

argument coming from Helly’s theorem, and it is in general proved using the
classical Glimm’s functionals. If every characteristic field is either genuinely
nonlinear or linearly degenerate, then two waves can interact only once and
third point is a consequence of the second one. We point out that this is not
clear when we drop the assumptions on the characteristic fields, as we shall
see in Chapter 3. The same problem appears in a recent paper [1], where
front tracking techniques were used to prove the existence of non-classical
solutions to the Cauchy problem for a non-convex scalar conservation law.
In this paper, due to the presence of non-classical shocks, it is shown that an
interaction can produce two distinct waves of the same family, which might
well interact again in the future.

Wave-front tracking techniques were first applied by Dafermos [20] for
the scalar case, and subsequently by DiPerna [23] for the 2 x 2 case. The
proof of the convergence of a front-tracking algorithm in the general n X n
case was first given by Bressan [6] and Risebro [35].

In Chapter 1 we present a variant of the wave-front tracking algorithm
proposed in [6], which is indeed a simplification. In order to control the total
number of fronts generated by the algorithm in [6], the author introduces
the concept of generation order of a wave, which takes into account how
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many interactions were necessary to produce the wave. Interactions between
waves of high order are then solved in a very simple way. The algorithm
proposed in this thesis avoids the previous definition: the Riemann problem
produced by the interaction of two waves is solved accurately or in a simple
way depending only on whether the product of the strength of the waves is
greater or less than a fixed threshold parameter £. This leads to a simpler
algorithm which also appears to be easier to implement.

In [6] as well as in [15] the hypothesis on the smallness of the total
variation is essential. Indeed, by the Glimm’s estimates, the strength of the
newly born waves after an interaction is of order equal to the product of
the strengths of the incoming ones. Hence, it is clear that if the size of the
wave-strengths is not sufficiently small, some resonance phenomena could
well happen, producing a blow up of the total variation of the solution in
finite time. Therefore in general the domain of the semigroup can not be too
large. The question on how much we can enlarge it is still an open problem.

Recently, Bressan and Shen [18] have proposed a counterexample of a
3 x 3 strictly hyperbolic system which has not unique entropy admissible
solutions when the data are taken only bounded. Hence the domain of
the semigroup cannot be extended to all the space L. However, in this
counterexample, the data are in L° but with unbounded variation. Whether
an initial data with large but bounded total variation might, or not, produce
a blow up in the total variation of the corresponding solution in finite time,
it is an open problem, too.

In the following two chapters we prove that the domain of the semigroup
can be enlarged, provided some additional hypotheses are satisfied by the
system. More precisely, in Chapter 2 we consider Temple class systems,
Le. systems for which rarefaction and shock curves coincide [38, 39]. Our
stress is on Lipschitz continuous dependence of the solutions. We prove that,
provided a system of Riemann coordinates exists, the system (0.1) admits a
‘Standard Riemann Semigroup whose domain Dy contains all the functions
with total variation less than M, the latter being an arbitrarily large fixed
constant. The key point is that for these systems, working in Riemann
coordinates, an interaction between two waves of families iy, 18, say, does
not produce any new wave belonging to family different from 7, or 1g. This
peculiarity avoids the formation of resonance patterns and consequently the
total variation remains uniformly bounded for all positive times.

In particular, in Chapter 3 we consider the class of 2 x 2 systems of
conservation laws of the form

ug + f(uav)m =0
Ut = 0.

(0.3)

These systems arise in models for porous media, traffic or gas flows [28, 33,
34]. They also appear naturally when considering the single scalar equation

u + f(u, 'U(a:))I =0, (0.4)
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v(z) being a fixed function, possibly discontinuous. We point out that, in
this framework the classical Kruzkov approach for the scalar equations does
not work.
We notice that (0.3) is a Temple class system, hence all the results in Chap-
ter 2 can be applied. However, taking advantage of the particular form of
(0.3) we can go further: we prove, even without the assumption of genuine
nonlinearity or linear degeneracy of the second characteristic field, that sys-
tem (0.3) generates a continuous semigroup on a bigger domain containing
L'NL* functions. Moreover the semigroup trajectories can be characterized
in terms of a Kruzkov-type entropy condition.
We also notice that this is the first time that semigroup techniques are
used to prove the bare continuity and not the Lipschitz continuity of the
semigroup. But, we could enlarge the domain of definition.

The construction of the semigroup for the general n x n system (0.1) is
obtained by introducing a suitable weighted distance d, on the domain D
such that

— it is equivalent to the L!-distance;
— It is contractive w.r.t. the semigroup trajectories.

For u,v € D, this weighted distance is defined as

d. = inf {|l7ll.; ~(a) = u, v(b) = v}, (0.5)

where 7 are suitably regular paths joining v and v, and 7|« is a suitable
weighted length of ~.

In Chapter 4 we study some properties of the distance d,. More precisely
we prove that the weighted path length is lower semicontinuous w.r.t. to the
uniform convergence of paths in L1, j.e.

71+ < liminf [}, ||« (0.6)
V—00

for every sequence of paths v, converging uniformly to . In addition, as
an intermediate step towards (0.6), we prove also the lower semicontinuity
of the Glimm interaction functionals. These results have been useful in
studying qualitative properties of the solutions of (0.1)-(0.2) (see [14, 16]).
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A front tracking algorithm
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1.1 Introduction to Chapter 1

In this Chapter we deal with the construction of a global weak solution to
the Cauchy problem for a strictly hyperbolic n x n system of conservation
laws

+ [f(u

U(O, ')

The basic idea of front-tracking for systems of conservation laws is to con-
struct approximate solutions within a class of piecewise constant functions.
One approximates the initial data by a piecewise constant function and
solves the resulting Riemann problems. Rarefactions are replaced by many
small discontinuities. One tracks the outgoing fronts until the first time
two waves interact. This defines a new Riemann problem, etc. One of the
main problems in this construction is to keep the number of wave-fronts
finite for all times ¢ > 0. For this purpose there are presently three types of
front-tracking algorithms available [23, 6, 10, 35].

In [6, 10] one defines the notion of generation order which tells how
many interactions were needed to produce a wave-front. In order to keep
the number of waves finite, one solves in an accurate way the Riemann
problems arising from interactions between waves of low order, and in a
less accurate way those arising from interactions between high order waves.
This simplified solution is constructed by letting the incoming waves pass
through each other, slightly changing their speeds, and by collecting all
the remaining waves into a so-called “non-physical” front. All non-physical
waves propagate with a constant speed greater than all characteristic speeds.

In [35] one does not use the concept of generation order. Instead, for
each time where two waves interact one considers a functional depending on
the future interactions. If this functional is small enough, some of the small
waves are removed and the algorithm is restarted. This guarantees that the
approximate solution can be prolonged for a positive time. One then shows
that it is only necessary to apply this restarting procedure a finite number
of times. In the special case of 2 x 2 systems [23], the number of fronts
remains automatically finite, and no restarting procedure is needed.

By the algorithms defined in these papers piecewise constant approxi-
mate solutions u, (¢, z) are defined for all ¢ > 0. By a compactness argument
one then shows that a subsequence converges to a global weak entropic so-
lution of (1.1). Indeed, by the results in [8, 15] the entire sequence will
converge to the unique semigroup solution.

From a theoretical point of view these methods yield the same existence
result. However from a numerical point of view they are not efficient. The
method presented in [35] demands knowledge of the future history of the
approximate solution, whereas in [6, 10] one has to keep track of the past
history by counting the generation order of each wave.

.= (11)

“)
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In this chapter we present a new algorithm which avoids these problems.
More precisely, we introduce a threshold parameter € which dictates how to
solve the Riemann problems. If the product of the strengths of the collid-
ing waves is greater than ¢ then we use an accurate approximation to the
Riemann problem, whereas if the product is smaller than ¢ we use a crude
approximation. We prove that if € tends to zero sufficiently fast, compared
with other approximation parameters (the number of initial jumps and the
maximal size of rarefaction fronts), then our sequence of approximations u,
converges to an entropy weak solution of the Cauchy problem (1.1).

1.2 Preliminaries

We consider a strictly hyperbolic n x n system of conservation laws (1.1)
in which each characteristic family is either genuinely nonlinear or linearly
degenerate, and where the flux f is C? on a set § C R”. The function @ is
assumed to be of sufficiently small total variation. We recall that, given two
states u™, u™ sufficiently close, the corresponding Riemann problem admits
a self-similar solution given by at most n + 1 constant states separated
by shocks or rarefaction waves [32]. More precisely, there exist C? curves
o Yi(c)(u”), i =1,...,n, parametrized by arclength, such that

ut =Yn(on) 0+ 01hi(o1)(u7), (1.2)

for some o1, ...,0,. We define ug = v~ and u; = i(o3) o -+ o p1(o1) (uo).
When o; is positive (negative) and the i-th characteristic family is genuinely
nonlinear, the states u;—1 and u; are separated by an i-rarefaction (i-shock)
wave. If the i-th characteristic family is linearly degenerate the states Uj—1
and u; are separated by a contact discontinuity. The strength of the i-wave
is defined as |oy].

In order to estimate the change in the strength of waves under interac-
tions we need some well-known results, basically due to Glimm [25] (see also
[10, 37)).

Lemma 1.2.1 For any compact set K C Q, there ezist constants C1, 1
such that

() If v~ € K, |o}l,|0] < p1, and wb = ;(0%) o 9s(0l)(u™) with i > j,
then the coefficients o; defined in (1.2) satisfy

loi — ol + loj — ol + > |ow| < Cilojol. (1.3)
k4,5

Moreover,
[u™ —i(0}) o (0f) (u™)] < Cy|oid)]. (1.4)
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(ir) If u= € K, |oi],|o]| < p1, and ut = ;(07) o ;(c})(u™), then the
coefficients o; defined in (1.2) satisfy

loi =i — ol + ) lo| < Cilojo?]. (1.5)
k#i
Moreover,
[ut — 4 (o + 0¥ (u™ )| < Ci|oio]]. (1.6)

(1) Ifu™ € K, |o],|u™ —v™| < 1 and ut = (o) (u™), v = Py(0)(v7),
then
[ =t = vT —uT| < CuloflvT —uT. (1.7)

1.3 The Algorithm

For a given initial data @ let %, be a sequence of piecewise constant functions
approximating % in the Ll-norm. Let N, be the number of discontinuities
in the function %,, and choose a parameter §, > 0 controlling the maximum
strength of rarefaction fronts.

In order to construct a piecewise constant approximation for all positive
times, we introduce various ways of solving the Riemann problems gener-
ated by wave-front interactions. More precisely, we will use an accurate
solver when the product of the strengths of the incoming fronts is “large”,
a simplified solver yielding non-physical waves when the product is “small”,
or when one of the incoming waves is non-physical.

1.3.1 The Riemann Solvers

In the definition of the Riemann solvers we will introduce non-physical
waves. These are waves connecting two states u™ and u™, say, and traveling
with a fixed speed A > 0 strictly greater than all characterlstlc speeds in .
Such a wave is assigned strength |o| = |u~ — u*| and is said to belong to
the (n+ 1)-th family. We notice that since all the non-physical fronts travel
with the same speed A, they cannot interact with each other.

Assume for a positive time £ we have an interaction at 7 between two
waves of families i, i and strengths o/,, aﬁ, respectively, 1 < iq,ig < n+1.
Here of, denotes the left incoming wave. Let (u™,u™) be the Riemann
problem generated by the interaction and let o1,...,0, and uo,...,u, be
defined as in (1.2). We define the following approximate Riemann solvers.

(A) Accurate Solver: if the i-th wave belongs to a genuinely nonlinear
family and o; > 0 then we let

pi = [0i/8,], (1.8)
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where [s] denotes the smallest integer number greater than s. For
I=1,...,p; we define

uiy = Yilloi/pi)(ui-1), () =2+ (¢ — 1) Ni(uiy), (1.9)

where A;(-) denotes the i-th characteristic speed. Otherwise, if the i-th
characteristic family is linearly degenerate, or it is genuinely nonlinear
and o; <0, we define p; =1 and

uig =ui  zi(t) = E 4 (8- ) Ai(ui-1, w). (1.10)

Here A;(ui—1,u;) is the speed given by the Rankine-Hugoniot condi-
tions of the i-shock connecting the states u;_1,u;. In this case the
approximate solution of the Riemann problem is defined in the follow-
ing way

u- if z <$1,1(t),

ut if >z, (1),

u; if Ti p; (t) <z < .’Ei+1’1(t),

Ui ] if IEi,[(t) <z < "I:i,l-i-l(t)’ (l =1,...,p; — 1)
(1.11)

In other words, the approximate solution of the Riemann problem

is obtained by the exact one substituting every rarefaction wave by

several small jumps of size less than .

ve(t,z) =

(B) Simplified Solver: for every i = 1,...,n let o be the sum of the
strengths of all incoming i-th waves. Define

u = (o) 0 - 0 (o) (u). (112)

Let v,(t,z) be the approximate solution of the Riemann problem
(u™,u') given by (1.11). Observe that in general v’ # u* hence we
introduce a non-physical front between these states. We thus define
the simplified solution in the following way

velt,z) if z-F< ;\(t——tj,

ut if $~—:E>;\(t—-f). (1.13)

vs(t,z) = {

This definition is valid also in the case when the left incoming wave
oy, is non-physical. Notice that by construction v, contains at most

two physical wave-fronts and a non-physical one.

1.3.2 Construction of the Approximate Solutions

Given v we construct the approximate solution u,(t,z) as follows. At time
t = 0 all Riemann problems in @, are solved accurately as in (A). By slightly
perturbating the speed of a wave, we can assume that at any positive time
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we have at most one collision involving only two incoming fronts. Suppose
that at some time ¢ > 0 there is a collision between two waves belonging
to the io-th and ig-th families. Let o, and og be the strengths of the two
waves. The Riemann problem generated by this interaction is solved as
follows. Let €, be a fixed small parameter that will be specified later.

o If |o,08| > €, and the two waves are physical, then we use the accurate
solver (A);

o if |0,08] < €, and the two waves are physical, or one wave is non-
physical, then we use the simplified solver (B).

We claim that this algorithm yields a converging sequence of approximate
solutions defined for all times ¢t > 0, for any ¢,.

Lemma 1.3.1 The number of wave-fronts in u,(t,z) is finite. Hence the
approzimate solutions u, are defined for all t > 0.

PROOF OF LEMMA 1.3.1. Towards the proof we introduce the standard
functionals V and @) measuring the total variation and interaction potential,
respectively. For a fixed v and time ¢ > 0 at which no interaction occurs in
uy(t,+), let 1(t) < --- < T, (t) be the discontinuities in u, (¢, ), and denote
by o1,...,0m and 41,..., %y their strengths and families, respectively. Two
waves 04,08 With £, < zg are said to be approaching if either i, = ig < n+l
and one of them is a shock, or if 7, > ig.

The total strength V and the interaction potential Q) are defined as

V(e) =D loals Q)= > loaogl, (1.14)

o (a,8)€A

where A denotes the set of all approaching waves at time t. The following
lemma is standard.

Lemma 1.3.2 Given a compact set K C ) there exist constants Co, po >0
such that the following holds. Let u be any piecewise constant approzimate
solution of (1.1) constructed as above defined in the strip [0, T[xR and with
T.V.(u(0,") < po, Igmoou((),z) € K. Then

T.V.(u(t,")) < Co-T.V.(u(0,-)),  Vt>0. (1.15)
Moreover, if at time t two waves of strengths oo and op interact, then

_|0a‘7ﬁl
2 7

AQ(t) < AV () +2C,AQ(F) < 0. (1.16)
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The proof of the above lemma, relies on the classical estimates by Glimm,
(25, 6, 35]; for the changes needed due to the presence of non-physical waves
we use Lemma 1.2.1, see [6, 10].

Now, for each v consider the set of collisions for which the interaction
potential between the incoming waves is greater than e,. By the first bound
in (1.16), Q decreases by at least ¢,/2 in these interactions. Since new
physical waves can only be generated by this kind of interactions, it follows
that their number is finite. Furthermore, since non-physical waves are intro-
duced only when physical waves interact, the number of non-physical waves
is also finite. Finally, since two waves can interact only once, the number of
interactions is finite, too. This implies that the approximate solutions are
defined for all positive times, i.e. T = oo for each v.

We can now state the main result of this chapter.

Theorem 1.3.3 Let @ be of small total variation, and let G, converge to
@ in the L'-norm. Let N, be the number of jumps in Gy, 6, the parameter
controlling the mazimum strengths of rarefaction fronts, and €, the threshold
parameter. If

k
1
lim §, =0, lim €, (N,, + ———) =0, (1.17)
V—ro0 V=00 61/

for every positive integer k, then the sequence of piecewise constant approzi-
mations w, constructed by the above algorithm converges to an entropy weak
solution of the Cauchy problem (1.1).

1.4 Proof of Theorem 1.3.3

We recall here that a weak solution u of (1.1) is a distributional solution, i.e.
for any fixed smooth function ¢ with compact support in R x R it satisfies

/+wﬂ(w)¢(0, z) dm+/0+oo/_:o(u(t, )1 (¢, )+ f (u(t, 7)) pa (2, :c))dxdt = 0.

- (1.18)

Take T.V. (ﬁ) < p where p < min{p1, po}. We can choose the approxi-
mate initial data @, so that T.V.(4,) < p. By Lemma 1.3.2 it follows that
T.V. (u (¢, 1)) < Cp for all t > 0 and all positive integers v, for some con-
stant C. Hence by Helly’s Theorem there exists a subsequence, call it again
uy, which converges in LllOC to some function u(t,z). Since f is uniformly
continuous on bounded sets, to prove that u is a weak solution of (1.1) it

suffices to show that

Tim [ / " (2)$(0,7) da + / "~ / :o (e + F)) dxdt] ~0,
(1.19)

-0
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for any smooth function ¢ with compact support.
Fix ¢ with support in | — 00,7] x R By the divergence theorem the
expression in brackets in (1.19) is computed as

/+oo (ﬂ,,(a:) — ﬂ(x)) #(0,z) dz +

“ +/0T 2 ("""A“"(t’ za) = Af (w(t, ﬂra))) $(t,z0) dt,  (1.20)

where the z, = z4(t) denote the lines of discontinuity of u, in the strip
[0,T] x R, and A(-) denotes the jump across these discontinuities. By as-
sumption the first term tends to zero as v — co.

To estimate the second term, let R(¢) and NV (t) be the sets of indices «
corresponding to rarefactions and non-physical fronts at time ¢, respectively,
and let o4 be the strength of the wave at z,. Proceeding as in [10], since
the total variation of u,(¢,-) is uniformly bounded in ¢ and v, we obtain

T .
/0 }; (a:aAuu(t, Tq) — Af (u,,(t, :ca))> @(t, 7o) dt
T 2
SC(max!¢|)/o ( Z loalt)]” + Z lo‘a(t)l> dt

a€R(t) aeN (1)

< CT(max|¢]) | V(¢) sup |oa(t (t)] + sup Z loa( t)|
ZEE[%?;) t€0.T] yenr(r)
where C' denotes constants independent of v.

Since V/(t) is uniformly bounded, in order to have convergence to a weak
solution of (1.1), we need to prove that both the maximal size of rarefaction
waves and the total amount of non-physical waves present in u, tends to
Z€To as v — 0o.

By (1.8) it is clear that the strength of any rarefaction wave in wu, is
bounded by ¢, which, by hypothesis, converges to zero. To estimate the
second term in the right hand side of (1.21) we prove the following lemma.

Lemma 1.4.1 The total strength of non-physical waves in u, at time t tends
to zero uniformly in t as v — co.

PROOF OF LEMMA 1.4.1. The above algorithm does not involve the notion
of generation order of wave-fronts. However, the proof of the theorem will
make use of this concept. Fix a v. First we assign order 1 to all the waves at
time ¢ = 07. For waves generated at times ¢ > 0 we assign orders inductively
depending on the kind of interaction giving rise to the waves (see [6, 10]).
Let the incoming waves be of strengths o, og, of families 1,18, and orders
ko, kg, respectively. Three cases are considered.
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(i) |oqog| > €, and both waves are physical.

To each outgoing j-wave we assign order

max{ke, kg} +1 if j #iq,ig,

min{k,, kg } i j =iq =g,
ke i =ig #ig, (122)
kg i § =g # iq.

(ii) |oaog| < €, and both waves are physical.

The outgoing physical fronts are assigned orders according to (1.22),
while the non-physical wave is assigned order max{kq, kg} + 1.

(iii) One of the incoming fronts is non-physical.

In this case the colliding waves maintain their order.

Notice that this definition can be summarized by saying that the order of
an outgoing wave is the minimum order of the incoming waves of the same
family, if any, and is one more than the maximum order of all incoming
waves otherwise. Observe that, since the number of waves is finite, there is
a maximal generation order for the waves in u,, call it s,.

In order to estimate the total amount of non-physical waves we introduce
the following functionals. Let Vi(¢) be the sum at time ¢ of the strengths
of all waves in w,(t,-) of order > k. Also let Qx(t) be the interaction
potential between all couples of approaching waves of orders ko, kg with
max{kq, kg} > k. Let I, be the set of times when two waves of orders ko, kg
with max{kq,ks} = k interact. By using Lemma 1.2.1 we now have the
following estimates.

AVk(f)ZO tehU---Uli_o,
AVi(t) +2018Qk-1(t) <0 telzy_1U-- UL,
AQk(t) + QOlAQ(f)Vk(t—) <0 tehU---Ulx_o, (123)
AQk(t) +2C1AQk-1(H)V(t-) <0 t€ I,
AQi(t) <0  telU---UIL,.

As in [6, 10], it follows (if necessary by taking uy smaller) that for all k > 2
Vi(t) <4C127%  ve>o0, (1.24)

uniformly in v. This bound will be used to estimate the total strength of
higher order non-physical fronts.

For lower order non-physical waves we need another estimate. Let M;,
S; denote the total number of fronts, and the number of non-physical fronts
of order 1, respectively, in the approximate solution u,. Since a k-th order
wave can be generated only from an interaction between one of order k — 1



1.4. PROOF OF THEOREM 1.3.3 15

and one of order j < k — 1 and since only one non-physical wave can be
generated from each interaction, we have the two relations (see also [6, 10])

M <né (My+ -+ + My_1) My 1, (1.25)

Sp < (My+ -+ + My_1) M. (1.26)

Now define P, = M; and Py = né;1(P, + - + P,_1)Pi_q. It is easily
established that My < Py < Pyy1 < né; ' (k +1)PZ for every k, and that Py
satisfies the bounds

P, < (kno;1P)* " < (kn2672N,)% (1.27)
In turn, using (1.26), this implies that
5 ok—1 1 p(k)
Sk <kPZ_, <k(kn%5;2N,)" < C(k) (N,, + 5—) , (1.28)
v

where C(k) = (kn)2" and p(k) = 2¥+1. We note that the estimate (1.26)
is useful only for each fixed k; since the constants C(s,) and p(s,) grow
too fast as v — oo, we cannot use this to estimate the total amount of
non-physical waves of all orders.

From (1.4) and (1.6) the strength of a non-physical wave generated by
an interaction between two physical waves is bounded by Cje,. As a non-
physical front interacts with physical ones, its strength can increase. How-
ever as in [10, Lemma 2 pp. 115-116] there exists a constant Cj such that
for all times the strength of the wave remains bounded by C1Cse,.

Now we can estimate the total strength of the non-physical waves at
time ¢ in the following way. By (1.24) and (1.26) it follows that

1 P(k)
Z ,Ual < Z C(k) (Ny + '(‘5—) - C1Cse, + Z 4012_k, (1.29)
Q€N (t) k<ko Y k>ko

for some integer number k.
Given p > 0, choose kg such that > k>ko 4C127% < p/2. Next, by the
second condition in (1.17), take v so large that

1 p(k) P
S Ck) (N,, + 5—) - C1Cae, < £, (1.30)
k<ko v

By (1.29) and (1.30) it follows

> loal <p, (1.31)

aEN(t)

for large v, uniformly in ¢. This completes the proof of the lemma. a
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Since both the maximal size of rarefaction waves and the total amount
of non-physical waves present in u, tend to zero, then also the right hand
side of (1.21) tends to zero, and this show that u is a weak solution of (1.1).

It remains to show that u is also an entropic solution for u sufficiently
small, i.e. given a flux, entropy-flux pair (n, ), we have

[n(w)], + [g(w)], <0 (1.32)

in the distributional sense. Also in this case, by doing the same splitting as
in (1.21) we find that for v large (see [10])

T
/0 ? (:i:aAn(uu(t,LEa)) - Aq(uu(t,l‘a))) $(t, za) dt (1.33)
> 20T max|g{ (5, + ).

Letting v — oo in (1.33), we prove (1.32). This completes the proof of
Theorem 1.3.3.

Remark 1.4.2 The approximation error in the above scheme consists of
two different parts, due to the approximation of rarefaction waves and the
introduction of non-physical waves. The error from approximation of rar-
efaction waves is O(d,), whereas the error from the non-physical waves is
split in two parts. By (1.28), the non-physical waves of generation > k con-
tribute by an amount O(27F). From (1.26) the error due to non-physical
waves of generation < k is bounded by

O <(kn)2k 5;2k+15,,) , (1.34)

if we assume that N, is O(6;!). By asking the three errors to be of the same
order of magnitude, it follows that k¥ = O(|logd,|) and that an appropriate
choice for ¢, is given by

s1+2/d
A — (1.35)
(|1og 6, |n) /%

Remark 1.4.3 The second condition in (1.17) is also necessary. Assume
that both , and the strength of any wave at time ¢ = 0 are O(N;"1), which is
the case for smooth initial data approximated by its values at equally-spaced
intervals. By the interaction estimates one gets that the strength of a wave
of generation k is O((C1 N, 1)¥). If (1.17) fails, i.e. €, has only polynomial
growth w.r.t N1, then for v large enough the approximate solution u, can
contain waves of only a finite number of orders, independent of v. Hence,
in general this cannot yield a weak solution as v — 0.
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Remark 1.4.4 The algorithm presented in this thesis is numerically more
efficient than the previous theoretical algorithms since one does not consider
the generation order and keeps track only of the “big waves”. It is this last
feature of keeping only the waves which have a large potential for influencing
the solution, that is the main advantage with respect to computational effort.
This reflects what is actually done in practice when one implements front-
tracking for systems of conservation laws (see [31] and references therein).
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2.1 Introduction to Chapter 2

We consider the Cauchy problem for the n x n system of conservation laws
in one space dimension

Ut + [f(u)]q; =0, (2.1)

u(0,z) = u(z), (2.2)
where f: Q2 C R* — R" is sufficiently smooth. Our basic assumptions are

(H1) the system is strictly hyperbolic, with each characteristic field either
linearly degenerate or genuinely nonlinear;

(H2) shock and rarefaction curves coincide;

(H3) as u ranges in Q, there exists a system of coordinates consisting of
Riemann invariants v = (vy, ..., v,)(u).

Consider a set E C 2 having the form
E= {u € wi(u) €lag, b)), 1=1,... ,n}, (2.3)

and assume that, as u varies in E, the characteristic speeds A;(u), i =
1,...,n range over disjoint intervals, say [/\gni”, Af”a“].

Systems which satisfy the hypotheses (H1)-(H3) were studied in [38,
39]. With these assumptions it is well known that, for any initial data
% € BV taking values in E, the Cauchy problem (2.1)-(2.2) has a weak
entropic solution defined for all ¢ > 0, still taking values inside E [36]. For
some related uniqueness results, see [21, 26]. In this chapter our purpose
is to prove the existence of solutions which depend on the initial data in
a Lipschitz continuous way, w.r.t. the L'-norm. The Lipschitz constant
depends only on the bound on the total variation.

More precisely, fix any point % € E. By a translation in the Riemann
coordinates, it is not restrictive to assume that (vy,...,v,)(@) = (0,...,0).
For M > 0, define the family of functions

Dy = {u ‘R E; w(u) e L, ZTV(vl(u)) < M} (2.4)

Our main result is the following.

Theorem 2.1.1 For each M > 0 there exists a Lipschitz constant Cps and
a continuous semigroup S : Dy x [0, +o00[+— Dys such that

Z) Soﬂ =, StSsﬁ = St-}-sﬂ;

i) [|Sea — Sol| , < Car(t = sl + a2l ,);
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wi) each trajectory ¢t — Syi(-) is a weak solution of the Cauchy problem

(2.1)-(2.2);

w) if 4 € Dy is a piecewise constant function, then, for t small, S;a
coincides with the function obtained by piecing together the solutions
of the Riemann problems determined by the jumps of 4.

From the results in [8] it follows that the above semigroup is unique
and that its trajectories can be characterized as “Viscosity solutions” in
terms of a family of local integral estimates. Moreover, every solution of the
Cauchy problem (2.1)-(2.2) obtained by the Glimm scheme [25] or by wave-
front tracking [6, 23, 35] actually coincides with the semigroup trajectory
’U,(t, . ) = Stﬂ.

The existence of a semigroup for 2 x 2 systems with coinciding shock and
rarefaction curves was first proved in [7], but only for a class of functions
with small total variation.

Our approach is similar to that in [7]: we construct a sequence of uni-
formly Lipschitz approximate semigroups defined on certain domains of
piecewise constant functions and obtain S in the limit. More precisely
we prove that these semigroups are contractive w.r.t. a suitable weighted
distance, uniformly equivalent to the standard L! metric.

As in [7, 12], this weighted distance is defined as

d(u,u’) = inf {nyHW : 7 is a pseudopolygonal joining u with u’} , (2.5)

for a particular choice of the weighted length I|7[|W By a pseudopolygonal

we mean here a finite concatenation of elementary paths, of the form

N
6 — v’ —Zwax L) z? =z, + £,0, 0 € [a,b], (2.6)
a=1 a ’
where X, is the characteristic function of the set I, wy,...,wy € R are

constant states and fa is the shift rate of the jump at z,. In (2.6) it is
assumed that 7§ < --. < zf a fora < 6 <b. If v is an elementary path of
the form (2.6), its L1 -length is computed by

I, = / Z |Au(z)|

where Au(zq) = waq1 — wa. We will construct an equivalent metric of the

form:
I, = / ZlAu (z2)|

d = Z |Au(za)| ¢l (0 —a),  (2.7)

a=1

W (u) do (2.8)
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for suitable choices of the weights W,. We recall that, in all previous works
in this direction, the weights W, always had the form

Wo=1+0Cy- [strength of all waves approaching the wave-front at a:a] +
+Cy - [global wave interaction potential],

for some constants C7,Ca. This choice, however, is successful only in the

case of small total variation and cannot be used here. The main novelty
of the present chapter lies in the construction of the weights W, which is
performed by backward induction, relative to the wave-front configuration
of each approximate solution. The key step in the proof is the analysis in
Section 2.4, which establishes an a-priori bound on these weights, depending
only on the total variation. As a consequence, our weighted distances remain
uniformly equivalent to the usual L! distance. This yields the continuity of
the semigroup S : Dys x [0, co[++ Dy, with a Lipschitz constant depending
only on the total variation of functions in Djy.

2.2 Construction of approximate solutions

By strict hyperbolicity, for every u the Jacobian matrix A(u) = Df(u) has
n real and distinct eigenvalues A (u) < --- < A, (u). For u,u’ € E, consider
the averaged matrix

1
Au,u') = /0 A(su' + (1~ s)u) ds (2.9)

and call Ay (u,u’) < --- < Ap(u, ') the corresponding eigenvalues. Through-
out the following we shall use a fixed system of Riemann coordinates v =
(v1,...,v5), and simply write A;(v,') in place of ); (u(v), u(v)).

For each integer v > 1 we shall construct a semigroup S¥ of approximate
solutions, defined on a set DY, C Dy of piecewise constant functions. As
v — oo, the Lipschitz constant of .5” remains uniformly bounded, while
the domains D}, become dense in Dys. In the limit, a semigroup S will be
obtained, satisfying all required properties.

Recalling (2.3), consider the box E' = [a1,b1] X -+ X [an, by]. Fix v > 1
and define the finite grid

G¥ =27VZ"N E.

As domain of the approximating semigroup S” we choose

n

DY, = {v R G ) TV.(0) < M} . (2.10)
=1

Clearly, any function v € DY, is piecewise constant with < 2¥M jumps. In

order to describe the flow of S, it suffices to specify how each Riemann

problem is solved.
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Let v~,v" € G” be the initial data for a standard Riemann problem. An
approximate solution, within the class of functions taking values inside G,
is constructed as follows. Consider the intermediate states

wo=v", ..., wi=(vf,...,v{",v;‘_l,...,v,:), sy wp =0T (2.11)

Set
oi = v —v €27VZ. (2.12)

We call o; the size of the i-th wave generated by the Riemann problem
(v™, ).

A shock (or a contact discontinuity) will be propagated as single wave-
front, while a centered rarefaction wave will be partitioned along the nodes
of the grid G and propagated as a rarefaction fan. In the following, p;
denotes the number of pieces in which the i-th wave is partitioned.

More precisely, if the i-th characteristic field is linearly degenerate, or
if it is genuinely nonlinear and o; < 0, we then set p; = 1 and define the
shock speed A; 1 = Aj(wi—1,w;). On the other hand, if the i-th characteristic
field is genuinely nonlinear and o; > 0, we then set p; = 2Y0; and define the
intermediate states w? = w;_1, w},..., wP* = w; to be precisely the points
on the segment connecting w;_; with w; which also lie on the grid G¥. In
this case, we define the speeds of the corresponding rarefaction fronts as
Aip = /\i(w?“l,wzh), forh=1,...,p;.

The v-approximate solution of the Riemann problem with data (v™,v™)
can now be defined as

vT i T <tA,

w; if t/\i—l,pi_l <z <thji, 1=0,...,n—1,
if t)\i,h——l <z < t/\i,ha h=0,...,p; — 1,
if thnp, <z

v(t,z) = (2.13)

g
N.:.. -

+

v

For every initial data @ € DY, a v-approximate solution v = v(t,z) can now
be constructed by a wave-front tracking method, as follows. At time t = 0
we solve the Riemann problems determined by the jumps in ¥ according to
(2.13). Patching together these local solutions, we obtain a piecewise con-
stant function v defined up to the first time ¢, where two or more wave-fronts
interact. At each point of interaction, the corresponding Riemann problems
are again solved according to (2.13). The solution is then prolonged up to a
time ¢, where the second set of interactions takes place, etc. This solution
will be denoted as
v(t,-) = SyD.

Observe that the total variation of v(t,-) (always measured w.r.t. the Rie-
mann coordinates) coincides with the total strength of waves, and is non-
increasing in time. Hence, v(t,-) € DY, for all t > 0. Moreover, the number
of wave-fronts in v(t,-) is also non-increasing, at each interaction.
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Thanks to the assumption that shock and rarefaction curves coincide, our
choices of the wave speeds imply that all jumps in v satisfy the Rankine-
Hugoniot conditions. Hence, every v-approximate solution v is in fact a
weak solution of (2.1). However, in the presence of genuinely nonlinear
fields, the corresponding rarefaction fronts do not satisfy the usual entropy-
admissibility conditions. Since these fronts have strength 277, as v — co we
shall obtain a semigroup of entropy-admissible solutions S : Dys x [0, co[ —
Dys, in the limit.

The main issue here is the Lipschitz continuity of the semigroup S =
lim 5. This will be proved by providing a Lipschitz constant uniformly valid
for all S¥. For this purpose, given any two initial conditions 7,7’ € Dir,
consider a pseudopolygonal g : 6 — %%, with 40(0) = 7, (1) = 7. If 5,7
both have support inside some interval [a,b], a simple example of such a
path is

7 =5. X+ - Xy i A=0b+(1—-06)a. (2.14)

Let v%(¢,-) = S¥%’ be the corresponding solutions. Since the number of
wave-fronts in these solutions is a-priori bounded and the locations of the
interaction points in the ¢-z plane are determined by a linear system of
equations, it is clear that, at any time 7 > 0, the corresponding path ~, :
0~ v%(r,-) is still a pseudopolygonal. Moreover, there exist finitely many
parameter values 0 = 6y < 6; < --- < 6, = 1 such that the wave-front
configuration of v? remains the same as 6 ranges on each of the open intervals
I; =10;_1,0;[. In this case, the lengths of the paths -y and ~y, are measured
by an expression of the form

= (% 6,6
Iy, =3 [N

i-1

7
%%ﬁ da. (2.15)

By carefully studying how the integrand in (2.15) varies in time, we will
prove that nyTIIL1 < L”’YO”Lla for some constant L depending only on the

total variation. In turn, this will provide a uniform Lipschitz constant for
the semigroups S¥.

2.3 Interaction estimates

In this section we collect some basic estimates relating the speeds and shifts
of wave-fronts before and after an interaction. In the following, we always
consider wave-fronts of some v-approximate solution constructed as in Sec-
tion 2.2. Wave strengths will be measured as in (2.12), referring to the
system of Riemann coordinates v = (vy,...,v,).

Lemma 2.3.1 Assume that N wave-fronts belonging to different families
i1 > - >y, of sizes 01,...,0n, interact together at a single point. Call



26 CHAPTER 2

Ay, A the speeds of the a-th wave respectively before and after the interac-
tion. Then for alla =1,..., N these speeds satisfy:

AT =31 <C1 Y logl, (2.16)
B#a

for a suitable constant C;.

Lemma 2.3.2 Assume that two interacting wave-fronts, both of the i-th
genuinely nonlinear family, have sizes o', 0", respectively. Then, for some
constant Cy, their speeds N, N satisfy:

N =M > Co(lo’| + |0"). (2.17)

PROOF OF LEMMA 2.3.2. Indeed, the two incoming waves may be both
shocks, or else one is a shock (say, of size ¢’) and the other is a rarefaction
(of size ¢”"). In this second case we must have o” = 2=, while lo’| > 21>,
Indeed, if also |o'| = 27%, the wave-fronts would have exactly the same
speed, and could not interact. The estimate (2.17) is now a straightforward
consequence of the genuine nonlinearity of the i-th family. ]

Lemma 2.3.3 Assume that two waves of the (genuinely nonlinear) i-th
Jamily, of sizes o', 0", interact and produce an outgoing i-wave of size o =
o'+0". Call X', N, X the speeds of the waves o',0”, 0", respectively. Then,
for some constant C3, one has the estimate

)\IO', + A//O'”
o'+ o

At < Csla’d”|. (2.18)

PROOF OF LEMMA 2.3.3. Define ¢;(v,0) = v + or;, where we set r; = €;
the ¢-th vector of the canonical basis, and ;(v,0) = \; (v, ¢i(v,0)). Call
vt o™, " respectively the left, middle and right state before the interaction.
Then X = X;(v!,0'), A = X (v™,0") and A\t = \;(v!,0F). Moreover we
observe that ot < 0. Writing r; e \; for the directional derivative of A; in
the direction of r;, one has

Ai(v,0) = \i(v) + g—(ri e )\;)(v) + 0O(1) o2,

9

oo

Observe that either

N(v,0) = —;—(ri e \)(v) + O(1) - 0. (2.19)

(i) the incoming waves are both shocks; or

(ii) the incoming waves are a shock and a rarefaction.
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If (i) holds, then o’,0” < 0 and |0’ + ¢”| = |0’] + |¢”|. If (ii) holds, assume
that ¢’ < 0, 0" > 0, the other case being entirely similar. We then have
o' = —h27¥ for some integer h > 2, while 0" = 27¥. Therefore

o' + "] > 1(10'1 +10"). (2.20)

Now consider two cases
CASE 1: |0| > |¢"|. Then by (2.19) we have

o' i o) + "N (0™, o
ol + g
a'+a’ 5 o' Mt o) + o X(v™, ")

= /\i(vl,o')—F/ E—Ai(vl,or)da-

) o o + o

il o' +0") -

1"

ote 9 l o" Lo m I
= 2= Ai(v,0) do + ——— (N0, 0') = M(v™, 0"))

) oo o + o'

= |7 (e W) +0(1) - (00" +0") + 2 (Mle!,0") = M(v™, "))
= |5 i e )0 + = (' o) = M(™,0") | +0(1) - Jo'o"]. (2.21)
Moreover

Xi(0™,0") = Ai(¢i(v', 07),0")

n

Ai
/\ (gb ('U g )) -+ %(Tz L] /\z) (qbi(vl,a')) -+ 0(1) 4 IO’HIQ

= 00) + o' 0 2)0) + Tl 0 AN +
+0(1) - (I + |o'a”| + 0"]?)

20.’ + O,.II
2

(ri o Xi)(vh) +
+0(1) - (o')* + 10")?). (2.22)

= /\i(’l)l) +

Estimates (2.19)-(2.22) yield
U')\i(’ul,cr') + O.I/)\i(,um, U//)
O', + gll
o o + o'
m\ 2

(vl o' +6") —

(ri o i) (v') +

o' ]
= —2—(’1‘z 0/\i)(’l) ) + o to

o(1) - (lo'* + w?))’
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a_l 2 4 0" 2 B
e = 0)-1e") (+ 1)

=0(1) - |o'o"|, (2.23)

hence (2.18) holds.
CASE 2: |o]' < |o”|. In this case

=0(1)-|o"|

a’)\i(vl,a’) + 0" Ni(v™, o)

[
/\i('U,O‘I—f—U”)— o ol

!

Ai(w™, ") — / [iAi (qbi(vl,s), o +o" — s)] ds +
0 dS

o' (vt o') + g’ Xi(v™, 0")
O-I +O-II

= ' - /OU [%/\i(qﬁi(vl,s),a' +o" - .S‘):] ds +

0"

O-I + o-ll

(™, 0") = M(h,o))|. (2.24)

Now, as in [12], we have

d
Eg/\i(qﬁi(vl,s), o +o" — 3) =

[ —

N

(r;e )\i)(vl) +0(1) - (]a'] + ]U"D. (2.25)

ND

b

Moreover,

Ai(v™, ") — )\i(vl,a')
"

= N™) + T (i 0 M) W™) +O(1) - o 2 +

) [W) + 20 20 +0()- Io"lz]

20" + o

= \.(1}
’*Al(v)-i_ 2

(ri e X)) (') +0(1) - (|0 + |o"?) +
— [Ai(v!) + —UZ—I(n— o \i)(v) +0(1) - 10";2]
= T e )0+ 0(1) - (' + o). (226)
Estimates (2.24), (2.25) and (2.26) yield

o' X0t o) + "X (v™, ")
0-/ +O-II

== [ [Bs w20 + 00y -] ds +
-G |

Xi(vh o + o) —
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a,/ O;/+0_I/
2 (T2 e 00 + 00 o7

=0(1) - |o’o", (2.27)

hence (2.18) again holds. This completes the proof of Lemma 2.3.3. m]

At any given interaction, we now study the relations between the shifts
of the incoming and of the outgoing wave-fronts. Consider a one-parameter
family of piecewise constant solutions v?. Assume that each v? contains N
incoming wave-fronts, say located along the lines

z = 2%+ A;(t — %) + &0, i=1,...,N, (2.28)

with A; > --- > Ay, interacting all together at a single point P?. Introduc-
ing the vector

v =(vy,vy) = —88398, (2.29)
one easily checks that the shifts &; satisfy the relations
& = vo — Ajvy, 1=1,...,N. (2.30)
An outgoing wave with speed AT will have a shift £+ computed by
+ _ANE — + _ AL
(F=vo—Afvy = o AZ()E — Eé) Aj)é’, (2.31)
for every distinct indices 4,7 € {1,..., N}. The next two lemmas provide a

bound on the shifts of the outgoing waves, in the case where the incoming
fronts belong all to different families, or all to the same characteristic family,
respectively.

Lemma 2.3.4 Assume that N wave-fronts of different famailies iy > -+ >
iy interact at a single point. Let the incoming fronts have sizes o1,...,0n,
speeds AT, ..., Ay and shifts & ,...,&y, respectively. Then, N outgoing
wave-fronts will emerge from the interaction, of the same sizes as the in-
coming ones, but with different speeds Xf, ... ,X}\} and shifts ffr, - ,{j\}. For
a suitable constant Cy, the shifts of the outgoing fronts satisfy

&7 < (1 + C4Z|ak|> €71 + (@Zlakllégl). (2.32)
k#i k#i

Proor oF LEMMA 2.3.4. Since all the incoming waves are of different
families, for some constant C' we have

;= AT >C. (2.33)
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From (2.31), (2.16), (2.30) and (2.33) it follows

A ] e M @(Zlakl) Tk
! - - i 7o (2.34)
=Cs ) (lakl fr_:%}) < Coy okl (e ]+ 1671)-
ki kTN s
This clearly implies (2.32). O

Lemma 2.3.5 Assume that N wave-fronts of the i-th (genuinely nonlinear)
Jamily interact all together at a single point. Let these incoming fronts have
sizes 01,...,0n and shifts £1,..., &N, respectively. From the interaction, a
single wave-front of the i-th family will then emerge, with size o+ = D0k <
0 and shift £*, satisfying

N
otef <> (|0k§kl I + Cslajl)), (2.35)
£= P

for some constant Cs.
PROOF OF LEMMA 2.3.5. Assume first N = 2. Call A1 and Ag the speeds of

the interacting waves o1, o9; call A* the speed of the outgoing wave. From
(2.31) it follows that

AT — A — (AT =2
0] = |01 + 0| ( 1)62 — ( 2)&1
Ao — A
(AT = A)& (AT — Ag)&
< . 2.36
___IO'1+O'2|< = -+ o = M ( )
Using (2.17) and (2.18) we obtain
-
lo1+ o2 | Y [9]
A1+ o9 O1A1 + 099 o1 + 09
< [t -2 —
- ( o1+ o9 o1 + 09 1 Ay — Aq l€2I
09 o1 + 09
< Ao —
< <C410102|+ prap. A2 /\1!> . |€2]
< (1+ Gsloi])|o2tal, (2.37)
and similarly
AT — )
lo1 + 09| S 1] < (14 Csloa|)|orén]. (2.38)
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Figure 1

Inserting (2.37) and (2.38) in (2.36) we deduce
|0TET] < (1 + Cslon]) ozl + (1 + Csloa])loréal- (2.39)

Hence (2.35) holds when N = 2. Next, assume that (2.35) is true for every
set of (N — 1) interacting waves. We will show that the same holds in the
case of N wave-fronts. Consider a slightly perturbed configuration, where
the first (N — 1) wave-fronts interact together at a point P?, and then
the outgoing front interacts with the last one at Q? (Fig. 1). Denote by
o',¢ and o, ¢" the sizes and shifts of the waves emerging from P? and Q°,
respectively. We now have

N—
" / +
U—E Ok, o =0 +0oN=0".

Moreover one easily checks that OP?/00 = 0Q%/06, hence ¢" = ¢*. The
inductive hypothesis now implies

N-1
o'l <> (Idk§k| II @+ 05[0j|)>,
k=1 j=1,., N=1

7k
hence from (2.39) we get

o EF| = [o"€"] < (1 + Cslo’|)|onén| + (1 + Cslon])|0'¢]

) N-1
< (1 +Cs| > ox )JUN€N| +
k=1
N-1
1+C"]UN[ (|Uk§k| H (1+C5’O'JD)
k=1 j=1,..,N—1
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N-1
< |lonén] H (1+ Csloj|) + Z (ldkékl H (1+Cslffjl)>

J=1,..,N k=1 j=1,..,N
J#N j#k
N
=5 <|Gk§kl I a+ C'slajl))-
k=1 7j=1,...N
J#k
By induction on N, the lemma is proved. O

Remark 2.3.6 The most general case of N; fronts of the first family, Ny
of the second family, ... and N, fronts of the n-th family, interacting all
together at a single point P can be reduced to the two previous cases, as
shown in Fig. 2. We first let all wave-fronts of the same i-th family interact
at a point F;, generating a single outgoing i-wave. We then let the wave-
fronts emerging from the points P; interact together at a single point Q.
This second interaction satisfies the assumptions of Lemma 2.3.4.

Figure 2

It is clear that the sizes and shifts of the wave-fronts emerging from @ in this
perturbed configuration are exactly the same as those of the fronts emerging
from P in the original configuration. Throughout the following, it is thus
not restrictive to assume that each wave-front interaction is either of the
type described in Lemma 2.3.4 (all waves of distinct families), or of the type
described in Lemma 2.3.5 (all waves of the same family).

2.4 Weighted path lengths

Let v = v(t,z) be a v-approximate solution, defined as in Section 2.2. By
construction, v is thus piecewise constant in the ¢-z plane, with finitely many
wave-fronts, say of size o4, located on the segments

Jo = {(t,w); t € [ta; tol, = =Xat+ ca}. (2.40)
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Since the total number of interaction points is finite, we can choose a time
T so large that no interaction occurs for ¢ € [T, 00[. To each wave-front oy
we now assign a weight W, so that the following two properties hold.

(i) At time t =T, all fronts have weight W, = 1.

(ii) Let P be a point of interaction. Call a4, A, Wa, (@ =1,...,N) re-
spectively the sizes, speeds and weights of the incoming fronts, and Ub,
Ap, W5 (6 =1,...,N') the sizes, speeds and weights of the outgoing
fronts. Then, for any vector v = (vy, vy), the shifts

o = Va — Agvy, g = vo — Ajvy (2.41)
satisfy
N’ N
Z Iglﬁglﬁlwé < Z lo'afaIWw (2.42)
B=1 a=1

In order to satisfy (i)-(ii), we define the weights W, by backward induction.
To all wave-fronts of v at time ¢ = T we assign weight 1. Next, let P be an
interaction point, and assume that weights W[’; have already been assigned
to all of the outgoing fronts. Suitable weights W, will be assigned to the
incoming fronts as follows.

Choose a constant C' larger than the constants Cy, Cs in Lemmas 2.3.4 and
2.3.5.

CASE 1: All incoming wave-fronts belong to the same family. A possible
situation is that of a shock of size 2!~ surrounded by two rarefaction fronts
both of size 27”. In this case there is complete cancellation and no outgoing
front. We then set W, =1 for all three incoming fronts.

In all other situations, the interaction produces a single outgoing front,
so that N/ = 1. We then define

Wo =W, J] (1+ Clogl). (2.43)
Ba

CASE 2: The incoming fronts all belong to different families. Then N = N'.
Denoting by W,, W/, the weights of the i,-waves respectively before and
after the interaction, we define

W = (1+CZ |aﬁ|> W +C > logl Wp. (2.44)
B#a f#a

The general case, of N; incoming fronts of the first family, Ny of the second
family, etc., can always be reduced to a superposition of the above two
cases, as in Remark 2.3.6. Recalling (2.32) and (2.35), it is now easy to
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check that the properties (i), (ii) hold. In turn, (2.42) implies that, for
every pseudopolygonal vy : 8 — 3¢ and every t > 0, the pseudopolygonal
Ve : 0= SY(70(0)) satisfies

el < ol - (2.45)

Lemma 2.4.1 For any v-approzimate solution v, let the weights W, be as-
signed as in (2.43), (2.44). Then all these weights are bounded by a constant
Ly, depending only on the bound M on the total variation, and neither on
v nor on v.

PROOF OF LEMMA 2.4.1. Consider a wave-front &, say of the i-th character-
istic family, defined on some time interval [/, 7[. Some additional notation
must be introduced. Let the polygonal line z = z;(t) be the continuation of
the front & for all t > 7 (Fig. 3). Call Z(5) the set of all waves which impinge
on z; after time 7. Let J(&) be the subset of Z(3) consisting of waves of
families j # i. If o, is (the size of) a wave-front located on a segment J,
such as (2.40), we denote by W (o, ) its weight. Moreover, we write Wt(ca)
for the weight of the front o/, of the same family as 0w, Originating at the
terminal point of the J,. Observe that we always have W (o,) < W(oa).

A

Figure 3

Using (2.43) and (2.44), by backward induction along the line zi(-) we
deduce

W(a) < exp{C Z [a!} . (l—i—C’ Z W+(a)la|)

o€Z() oeJ(7)
< M (1+c > W) 1a|>, (2.46)
og€J(F)

because the total amount of waves is < M. Assume now that W (5) > e3CM,
and that & is the last front with this property, i.e. W (o) < e3°M for all wave-
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fronts at times ¢ > 7. Using the bound (2.46) itself, in order to estimate
each term W™ (o) on the right hand side of (2.46), we obtain

S Wre)lel < Y Wio)lo]

ceJ(5) oeJ(a) ,
< M Z o] + Ce“M Z Z W (') |oo’|
o7 (5) ceJ () o' €T ()
< MePM 4 CettM Z Z loo’|
g€J(5) oc'eT (o)
< MM+ Ce*M2(Q(7-) — Q(T)), (2.47)

where Q(7—) is the interaction potential of v(t, ) immediately before 7.
By assumption, in (2.46) we have W (3) > &3°M, W(o) < ¢3¢M,

Therefore
2CM __ 1

> W)l 2 —5— (2.48)
geJ(5)
Combining (2.47) and (2.48) we deduce

e2CM _ CMeCM — |

Q=) - Q(T) 2 Ky = SGACH > 0. (2.49)

In other words, if our inductive procedure assigns a weight W > e3CM to
some wave-front at time 7—, then over the interval [r,T] the interaction
potential ) must decrease at least Ky, a constant depending only on M.

An entirely similar computation shows that, if all the weights at a fixed
time #;, are < e3*CM and if there exists a wave with weight > e3(k+1)CM ¢
some time tx.; < %3, then the wave interaction potential Q must decrease
by an amount > Kjs over the time interval [tx. 1, tg).

We now partition the interval [0,7] into a finite number of subintervals
I = [tgsa, ], (B =1,...,p), with 0 = t,41 < --- < t; = T, such that the
following holds. Denoting AxQ = Q(tg+1) — Q(¢), one has

- either I} contains only one interaction time and ApQ > Kjs (this is
the case for example when two big shocks interact, or several small
shocks interact at a single point),

- or AxQ < K)pr and i is maximal with this property. In other words,
if J = [7,%x] is any interval containing I; and containing also one
additional interaction time not included in Iy, then Q(r) — Qtr) >
Ky

This choice of the intervals implies that, for every k, AQ + Ag11Q > Ky
Since Q(¢) is non-increasing and Q(0) — Q(T) < Q(0) < M2, this implies
that the total number of these intervals is p < 2M2 /K. Observe that this
upper bound for p is independent of v € D} and of v.
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By the previous analysis, if I is an interval satisfying Ar@ < K and
if Bg—; is a bound for all the weights in the interval I _q, then W(o) <
By._16%°M for all the waves o for ¢ € Ii.

If, instead, ArQ > Ky, then Ij, contains only an interaction time, say
Tk € Jtk41,t5[. Clearly at time 74 more than one interaction can occur. If
o is an incoming wave and W (o) is its weight, then (2.43) and (2.44) both
imply that

W(O’) < QBk_1€CM < Bk_le\'&(}’]\/f‘

So also in this case W (o) < Byp_1e*“M for all the waves and ¢ € I, A
simple inductive argument now yields
1 < W(0) < Lyr = [exp(3C0)] M /K0), (2.50)

This completes the proof of the lemma. a

Using Lemma 2.4.1, we can now prove that the semigroups S” are glob-
ally Lipschitz with a uniform Lipschitz constant. For 9,9’ € DY define the
distance

Mie 1\ - - 7 is a pseudopolygonal with values
= : . .01
4 (©,7) mf{lh”W in D¥,, joining ¥ with ¥/ (2:51)

By (2.45), this distance is contractive w.r.t. the semigroup S”. From (2.7),
(2.8), and (2.50) it follows

Il < il < Zadlivl,, (2.52)

for every pseudopolygonal y taking values inside Dy Let now 4,9' € DY,
and consider the path o : § — 9% defined as in (2.14). Since #% € Dy, for
all 8, from (2.52) it follows

o= vll,, < di¥(5,9) < 191, < Lanl®”ll, = Lonello — ')l ,. (2.53)

Hence, for v > 1, the metrics d?* restricted to Dy, are all uniformly equiv-
alent to the usual L! distance. Finally, the contractivity of the semigroup
SY w.r.t. the metric d2M implies

I8¢5 = 8¢9l < Louello - 7| (2.54)

L’

2.5 Proof of Theorem 2.1.1

In the previous sections we constructed a sequence of uniformly Lipschitz
semigroups S” : Dj, x [0,c0[— D¥,. Letting v — oo, we now show that
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the semigroups S” converge to a limit semigroup S, satisfying all required
properties.
Recalling (2.4), define

D, = {v R E; vell, S TV.(u)< M} - {v(u); ue :DM}.

Take any © € Dj,. Since the union |J,, D%, is dense in D}, there exists
a sequence of functions v” € D%, such that v — ¥ in L' as v — co. We
claim that the assignment

S =LY lim S¥v”, (2.55)

V—C0

uniquely defines a uniformly Lipschitz continuous semigroup on Dj,. First,
we show that the sequence SYv” is a Cauchy sequence in L!. Let us recall
Lemma 4 in [8]:

Lemma 2.5.1 Let S : D x [0,c0[~ D be a globally Lipschitz semigroup
with Lipschitz constant L. Let v : [0,T] = D be a continuous map whose
values are piecewise constant in the (t,)-plane, with jumps occurring along
finitely many polygonal lines, say {zq(t)}o=1,. n. Then

[v(t+h) - Shv(t)”Ll

T
|v(T) - S )”Ll SL/() li}ﬁsolip - dt. ; (2.56)

For any 1 > v, we now apply the estimate (2.56) with S = S*, v(t,-) = S¥v”
and obtain

IS¢ = st

< [[Stv” = Sfok||, + ||SEv - (2.57)

‘I
¢
< LgMHv” —’U”HLI +L2M/ limsupl ”S,‘;Sf Y= 87 v HL1 dr.

At any time 7 where no interaction occurs, call ¥ = S”vY. We now estimate
the difference ”S;:’U SthL Let z; < -+ < x4 be the points where 7 is

discontinuous. Observe that, if the Riemann problem at z, is solved by a
shock wave or by a contact discontinuity, then by construction Sio(z) =
Sp9(z) for z near z, and h small enough.

Next, consider the case where the Riemann problem at z, is solved by
a rarefaction wave, say of the j-th family. Call vi = (7, 7o (1) £ ). Then

- the v-approximate solution of the Riemann problem is given by a
unique j-wave connecting the states vy,v} and moving with speed

A% = Xj(vy,vg). Our previous construction also implies |v — v
27,

il =
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- the p-approximate solution of the Riemann problem is given by a cen-
tered rarefaction fan, containing 2“~* wave-fronts of the j-th family.
More precisely, the jump (v3,v]) is decomposed into 2¢~” smaller
jumps each of size 27#, with the insertion of the intermediate states
v =7 +427¢e;, £=0,1,...,2%7 Here {ey,...,e,} is the standard
basis in R™. Call A = \;(v&1,v%) the speeds of these wave-fronts.

Indicating by R the set of points z, corresponding to the rarefaction waves,
for p and h sufficiently small we now have

Tat+p
s - il = X [ [stota) - sto(e)] da
a€R Y Ta=P
WY1 ppLHl
Z Z / |v£—S}{1§($)[dm
a€R {=1
u-v
B0 mae {lo — vz o, — o} R~ X
a€R (=1
< hZ Clvt — v |?
a€ER
< hC-27VM, (2.58)

IA

IA

for some constant C. Together, (2.57) and (2.58) yield

”Sty’uu - vaun L < Loar|lv” — v?| 1t Lops MC2774. (2.59)
L L

As v, u — oo, the right hand side of (2.59) clearly tends to zero. Hence the
limit in (2.55) exists and does not depend on the choice of sequence v”. In
particular, the map S : D}, x [0, +co[— D}, is well-defined.

Returning to the original coordinates u, it is now clear that the prop-
erties i), ii) and iv) hold, possibly with a different Lipschitz constant Cjy.
Since each trajectory u(t,-) = S;@ is the limit of wave-front tracking approx-
Imations, a standard argument [6, 23, 35] shows that v is a weak solution of
the Cauchy problem (2.1)-(2.2).
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3.1 Introduction to Chapter 3

For scalar conservation laws of the form

ug + f(u,v(:v))m =0, (3.1)

the existence of solutions and their dependence on initial data and on the
flux f can be conveniently studied by looking at the 2 x 2 system

ut + f(u,v)e =0

vs = 0. (3.2)
We shall consider the Cauchy problem for (3.2) with initial data
u(0,) =4, wv(0,:) =7. (3.3)

We assume that f € C2(R%,R), that the system is strictly hyperbolic, and
that the data are in L' N L.

Systems of the form (3.2) also arise in models for porous media, traffic
and gas flows, and have been studied by several authors [28, 33, 34]. In
particular, a model for polymer flooding of an oil-recovery flow in a porous
medium is given by

3t+f(sac)a: =0

(cs)e + (cf(s,¢)), =0,

where s is the water saturation and c the polymer concentration. This
system can be written in the form (3.2) by a Lagrangian transformation of
the independent variables; more precisely it can be reduced to

(1/8)e = g(s,¢)z =0
Ct = 0,

(3.4)

(3.5)

where g = f/s, see [28]. Notice that the system (3.5) is not strictly hy-
perbolic when fs = f/s. In [41] it was proved, in the case when ¢(0,z) is
Lipschitz, that system (3.4) admits solutions which depend continuously on
the initial data in a suitable topology, stronger than the L! topology. In-
deed, in [27] they show that, in the general case of a non-strictly hyperbolic
system, one can not have L! continuous dependence on the initial data for
the solutions of the Cauchy problem for (3.4).

In [33, 34] existence results for (3.2) are obtained by means of Godunov
schemes, also in the case where the system is not strictly hyperbolic. In [29]
wave-front tracking techniques are used to study existence and uniqueness
for a special class of non-strictly hyperbolic systems of this type in the case
where v is possibly discontinuous.

In this chapter we are mainly concerned with the existence and L! con-
tinuous dependence for the Cauchy problem for (3.2) with large data. In the
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general case of an n x n system of strictly hyperbolic conservation laws with
each characteristic field either genuinely nonlinear or linearly degenerate,
the existence of a global, weak, entropic solution when the data have small
total variation is well known (see [6, 25, 35] and Chapter 1). However, in
our case we assume neither genuine nonlinearity nor linear degeneracy of the
second characteristic family, i.e. f is not supposed to be convex or linear.
Note that (3.2) is a Temple class system, i.e. the shock and rarefaction curves
coincide [38]. For these systems, existence is known even for data in L% and
uniqueness for large BV data [26, 36]. In Chapter 2 we have proved that a
Lipschitz continuous Standard Riemann Semigroup is constructed for data
with large total variation. However, both in these works and in Chapter 2
the genuine nonlinearity or linear degeneracy of each characteristic field is
assumed.
When 9 is fixed, the system (3.2) is equivalent to the scalar conservation
law

ur + f('u,'(")(a:)):c =0, (3.6)

with the flux dependent on z. For © in C! the classical results in [19, 30] show
that (3.6) generates a contractive semigroup. We consider the more general
case where ¥ may be discontinuous, and we use semigroup techniques based
on wave-front tracking to prove the existence and continuous dependence of
solutions of (3.2) for L' N L™ data. More precisely, the main result of this
chapter is the following.

Theorem 3.1.1 Assume that f € C? with f, > 0. Given compact intervals
K1, K3 C R, define the domain D by

D= {(a,@) eL'NL®; f(u(z),5(z)) € Ky, 5(z) € Ky, V1 € R}. (3.7)
Then there ezists a semigroup
S:D x[0,00) = D,
satisfying the following conditions

(a) for each t > 0, the map S;: D — D is continuous with respect to the
L'-norm;

(b) the function (t,z) — Sy(a,)(z) is a weak solution of (3.2) with initial
data (G, 0).

Moreover, each trajectory of the semigroup coincides with the unique so-
lution of the corresponding Cauchy problem satisfying a suitable entropy
admissibility criterion. The entropy condition that we consider here extends
the classical Kruzkov condition [30], and yields uniqueness for (3.2)-(3.3).
We point out that one may expect the semigroup S to be L!-contractive as
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a function of @, but by the analysis in Chapter 2 one may not expect it to
be even Lipschitz continuous in (@, 7).

The chapter is organized as follows. After some preliminary definitions
and notations, we define a front-tracking algorithm and show that it yields
global approximate solutions of (3.2) for piecewise constant data. Next we
define a semigroup for initial data (@,7) with & € BV and ¥ piecewise
constant. By continuity, it is extended to a semigroup whose trajectories
are weak solutions of (3.2) with initial data (4, %) in L' NL*>. The solutions
obtained in this way are showed to depend continuously on the initial data
with respect to both @ and 4, in the L'-norm.

Finally we introduce the entropy condition and prove that the semigroup
trajectories are the unique solutions that satisfy this condition.

3.2 Preliminaries

The characteristic speeds of (3.2) are p(u,v) = 0 and A(u,v) = fy(u,v).
Thus the system is linearly degenerate in the first characteristic field. The
integral curves for the first and second characteristic fields are given by
f(u,v) = const and v = const, respectively. It is easy to see that the
shock and rarefaction curves coincide in each family. We assume strict
hyperbolicity, i.e. fy(u,v) > 0, for all u,v. Note that we do not assume
genuine nonlinearity in the second characteristic field, i.e. fy, can change
sign. We refer to waves corresponding to the first and second field as v-waves
and u-waves, respectively. Every v-wave has zero speed, while a u-shock
travels with speed given by the Rankine-Hugoniot condition

AMu™,ut;v) = flut,v) = f(u=,v)

ut —u~ ’
where v = v~ = vt.
A weak solution of (3.2)-(3.3) is a function U = (u,v) satisfying
v(t,z) = 9(z), (3.8)

for (¢,z) € R x R, and
+oo
/ u(z) $(0,z) dz +

_ 4 /0+°° /:’ (u(t, )y (t, ) + f(u(t,m),ﬁ(m))qbz(t,x)) dzdt = 0,

(3.9)
for every smooth function ¢ with compact support in R x R.

Once v is fixed, we shall call a solution of (3.2) either U(t,z) or u(t, ).
Throughout this chapter we denote the L'-norm by ||-||. All the initial data
(@, %) will belong to the domain D defined in (3.7). Finally we denote by C
constants depending only on fy, fu, fuy and fuy.
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3.2.1 Front tracking

We construct approximate solutions to (3.2) using a front tracking algo-
rithm. First we define the Riemann solver. Since f, is strictly positive,
for every vy € R the map f(-,vo) gives a one-to-one correspondence be-
tween values of u and values of f. By this correspondence we will use either
(u,v) or (f(u,v), v) to identify a state in the (u,v)-space, whatever is more
convenient.

Given ¢ > 0 consider an equally-spaced d-grid F(6) = {ié |4 € Z} along the
f-axis, and define a non equally-spaced grid U(vg, 6) along the u-axis by

Uy € U(vo,d) iff f(uo,vo) S 5’-‘(5)

Given the Riemann data P, = (f,v), Pr = (fr,v,), with fi, fr € F(6), we
consider the equation
us + fO(u,vr)g =0, (3.10)

where fO(-,v,) is the function which interpolates the curve u — f(u,v,)
linearly between the points with f-values in F (). The Riemann problem
(P}, Pr) is solved approximately in the (u, f)-plane as follows. Starting at
Py, follow the horizontal line f = f; until it meets the curve u — fu,v,) at
Prm = (fi,v-). Then use the weak entropic solution of (3.10) with Riemann-
initial data (f, fr) as an approximate solution to the Riemann problem
(Pm, Pr) for equation (3.2). This entropic solution of (3.10) is constructed
by taking convex envelopes of f(-,v,) as in scalar front-tracking [20, 10].
Since we interpolate linearly, the approximate solutions constructed in this
way contain only shocks satisfying the Rankine-Hugoniot condition.

Let PC(d) denote the family of pairs of piecewise constant functions
(u(z),v(z)) for which f(u(z),v(z)) € F(8) for all z € R. The Cauchy
problem for (3.2) with (@, 7) € PC(6) is approximately solved in the following
way. At ¢ = 0 each Riemann problem is solved as indicated above. The
fronts are prolonged until the first collision occurs, and the new Riemann
problem is solved. The resulting fronts are tracked until the next collision
takes place, etc.

Since we do not assume genuine nonlinearity, an interaction may produce
a number of outgoing fronts larger than the number of incoming fronts. It
1s therefore not a priori clear that this algorithm yields globally defined ap-
proximate solutions. Also, notice that the total variation of u(t,-) could
increase in time; more precisely it is non-increasing across interactions be-
tween u-waves, but it can increase across an interaction involving a v-front.
However, the total variation of the function f(t) = f (u(t,-),(-)) does not
increase in time due to the fact that f is constant across a v-discontinuity.
This implies that the number of fronts at each fixed time is a-priori bounded.
It remains to prove that also the total number of interactions is finite. For
this purpose, we introduce a function which decreases by a fixed amount for
each collision that produces more than one outgoing u-wave.
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Given a time ¢ > 0 for which the approximate solution u(t,z) is defined, let
{za(?)} denote the set of discontinuity points of u(t,-), and let {ys} denote
the points where v(t,-) = () is discontinuous. We define the following
functions (which depend on u and v)

R(z4(t)) = #{jumps in v to the right of To(t)} +1

=#{ys; yp > za(t)} + 1, (311

and

W) = 3|7 (UL0) - F(UL0)] R(za), (3.12)
where UL (2) = (u,v)(t, 7o (t)=) and UL(¢) = (u,v)(t, To(t)+).

Lemma 3.2.1 The function W (t) is non-increasing (as long as u(t,-) is
defined). Moreover, across every interaction with more than one outgoing
u-wave it decreases by at least 4.

Proor oF LEMMA 3.2.1. It is clear that W is constant in time intervals
where no interactions occur. Assume there is a collision at time 7. Let U,
t =0,...,N, be the states separating the incoming u-waves, and let Uf,
J=0,..., M, be the states separating the outgoing u-waves. There are two
possible cases depending on whether a v-wave is involved or not. In both
cases we have

v

N
YU = FUL)] = £ (UR) — £U)| = £ (UF) - F(U)]
=1

(3.13)

M
SO = Uiy
j=1

Here we use that all the outgoing u-jumps have the same sign. In the
case where a v-wave is involved we also use that f is constant across the
v-discontinuity. Since R decreases by one across v-waves and is constant
elsewhere, this shows that W is non-increasing.

Now assume that there are more than one outgoing u-wave. In the first
case where only u-waves are involved there are cancellations, and a similar
estimate yields

N M
DO = U] 2 Y507 — £ (U)| + 26, (3.14)

Thus W (r+)—W (7—) < —26. In the second case where a v-wave is present,
R decreases by one, and (3.13) shows that W(r+) — W(r—) < —4. This
concludes the proof of the lemma. O
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Since W(0+) is finite, Lemma 3.2.1 shows that we can have at most
W (0+)/4 interactions where the number of outgoing u-waves is larger than
one. This together with hyperbolicity imply that the total number of inter-
actions is finite. It follows that the approximate solution is defined for all
positive times.

Notice also that these approximate solutions of (3.2) are indeed exact
weak solutions of

ut + £ (u, 5(z)) = 0. (3.15)

3.3 The Semigroup for Piecewise Constant v-data

Using the above construction we now introduce a corresponding approxi-
mate semigroup. Throughout this section & denotes a fixed piecewise con-
stant function. Given § > 0, let U(5) denote the set of piecewise constant
functions @(z) for which f(a(z),%(z)) € F(6) for all z. For @ € U(5) let
.5'6 P4 denote the approzimate solution given by the above algorithm. It is
clear that St is a semigroup mapping U(4) into itself. We use this semi-
group to define a semigroup of ezact weak solutions of (3.2) in the case of
u-data in L' N L. We first treat the case where the u-data has bounded
variation. We will need the following lemmas.

Lemma 3.3.1 The semigroup @ — Sf’ﬁa satisfies
187°a1 — S| < @y — dal), (3.16)
for any Gy, € U(S) and t > 0.

PROOF OF LEMMA 3.3.1. Let Wi(z) < Ws(z) be two functions in U(9).
Slnce St Wi, 1 = 1,2, are weak solutions of (3.15), it follows that St "W (z) <
S "W (z) for all z € R and t > 0. Moreover

o0
/ M—' z)dz = / w;(z) dz, 1=1,2, t>0. (3.17)

—

Now, if we take @W; = min{%,, %} and Wy = max{@1, Uz}, by monotonicity
and (3.17) we get

15751 — 877, || < || S5, — SP7ws|| = |y — Wall = |11 — wafl, (3.18)
and this concludes the proof of the lemma. a

Lemma 3.3.2 For T > 0 suppose that u : [0,T] — U(8) is continuous with
respect to the Ll-norm. Then

[ w(T) — $3%u(0)| < / lim sup -—“u (t+h)— @) de.  (3.19)
0 h—
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PrOOF OF LEMMA 3.3.2. The proof of this lemma is similar to the one
given in (8], and we refer to it. O

In order to define the semigroup S = lims_ S°, we fix a sequence of
grids along the f-axis. Let d, = 27" and define F, = F(¢,), such that
Fn C Fnq1 for each n. Also let U, = U(6,). We will later show that the
resulting semigroup is unique, and therefore independent of this particular
sequence of grids.

Now, given 4 € BV, choose a sequence {i,} with @, € U, for each
n > 1, such that %, — @ in L' and with T.V.(@,) < My for every n, for a
suitable constant M.

We prove that for all T > 0 the sequence S V4, is a Cauchy sequence in
L1 Take m < n. Since U, C U, we can apply the approximate semigroup
S, 5ni? any function u € Uy,. In particular, by applying Lemma 3.3.1 and
Lemma 3.3.2 with u(t) = 5™ 74,,, it follows that

1570 — Sg " |

< |87 = ST | + || S "t — S5 7| (3.20)

T
< |lan ~amn+/ Jim sup || S5 Tu(t) — S5 u(t)|| dt.
0 hs0 B

We want to estimate HSJ’”’U (t) — S,i“’ﬁu(t)H at any time ¢ where no in-
teractions occur in u(t). Let {zo} and {yg} be the sets of positions where

u(t) has a discontinuity across a u-wave or a v-wave, respectively. Call
uf = u(t,zo(t) £) and uﬁ = u(t,yg(t) £ ). For the Riemann problems
(ugy,ul) we have that

- the dpn-approximate solution of the Riemann problem is given by a sin-
gle u-wave front connecting the states u,ul and moving with speed

Ao = /\( a,v(ma))

- the d,-approximate solution of the Riemann problem is given by pos-
Slbly several u-waves connecting the states uy =u,...,uf ... ul =
uf, where uf are points in U (9(z4), d n) between us and ul. The
wave-front connecting the states u~! and u® travels with shock-speed

pLAE= )\(u’;_l,u’;;ﬁ(ma)), fork=1,...,N.

On the other hand, since F,,, C F,, the §,- and §,,-approximate solutions
of a Riemann problem (ug, ug) across a v-discontinuity coincide. Hence, for
p, h > 0 sufficiently small we have

1S3 u(t) - Sp*u |]~Z/ " |8 Pu(t, z) SIPu(t, z)| dw. (3.21)

In the following computations we simplify the notation by writing f(-) for
f(-,%(za)). Consider the a-th term in this sum. Note also that since m <n
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f(ufy)
f(u")
kg A T %
fluy) o 2\
f(u")
A
Ay
fug) -1
ug u’ u’:f u” uﬁ
Figure 4

we have Ao € [Xe=, XE=+1] for some kq. We assume that u® < u (the case

ud > ul being similar), such that the a-th term in the above sum is given
by

ka N
h[z(xa—xﬁ)(u’;—uz*w S (A§~Aa>(u§—u’;‘1)]

k=1 k=kqo+1
= h[Aa(ul —ud) = (F(ule) - 1)) +
FR[((F () = () = dalull —ubo)]. (3.22)

The last two terms are both equal to h(Ay — Ag)(ufe — u), where A, =
/\(ug,uﬁa;ﬁ(xa)).
By assumption we have that f(u ) f(wh) € Fm while f(uke) € F, \ Frm-
Since n > m We can find points u',u" € [ud, ul] NU(v(z ) 6m) such that
u < u’ccx < and f(u") — f(u') = 27™. Let M = A, ufe;9(z,)) and
N = /\( ka 4/t ;0(zq)). Notice that the points (u’,f(u')) and (u",f(u”))
lie above the straight line through the points (ul, f(ud)) and (u, f(@d))
(see Fig. 4). Hence N < Mg < Mg < )", such that

da—da SN =N <CW'—u)<C 27, (3.23)
By (3.21)-(3.23) it follows that

[Spmu(t) — Siu(t)|
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= 2h - Ao — Ao Jube — | < RC2™™ . S uf — U |
(3 (a7 « [0

< hC27™ . T.V. (u(t)). (3.24)
As noticed above, the total variation of u(t) = Sf’”’ﬁﬂm could increase in
time. However, the total variation of the function f(t) = f(u(t,-),9(-)) does
not increase in time. This implies that

T.V.(u(t)) < C[T.V.(f(2)) + T.V.(0)]
< C[T.V.(£(0)) + T.V.(8)],

which, by assumption, is bounded by some constant C’. We thus have
[SpmPu(t) — Siru(t)|| < hCC'2™™. (3.25)
Using this estimate in (3.20) gives

1S3 "t — S i || < [[iin — @] + CC'T2™™. (3.26)
Since the sequence {@,} converges to i, we see that {Sgl“ﬁﬂn} is a Cauchy
sequence in L'. The limit is denoted by SY%4 and we note that the map
z +— (S7a(z),9(z)) is still in D. Note that this definition does not depend
on the choice of the sequence @, € U,. Also, the semigroup is contractive,
as follows by passing to the limit in (3.16).
This shows the continuity of SP% with respect to %@ € BV. We can thus
extend the definition of 574 to the case @ € L! N L by letting
SPa = L'—lim SPa,, (3.27)
n—oo
where {#,} is any sequence of functions with bounded variation, converging
to 4. By the L!-contractivity of the semigroup S on BV, this limit is well-
defined, and the resulting semigroup is also contractive.

3.4 The Semigroup for general v-data

In this section we extend the semigroup to the case where also the v-
component of the initial data lies in L' N L, and we establish part (a)
of Theorem 3.1.1. First, we notice that the approximate semigroups are
jointly continuous with respect to (u,v). More precisely we have the follow-
ing result.

Lemma 3.4.1 Let § > 0 be fized. Let {(ﬁn,ﬁn)} be a sequence of PC(6)-
Junctions of bounded variation converging in L' to (4,%) € PC(5) asn — co.
Then for every t > 0 one has

SP i, — S2%, in L' as n— 0. (3.28)
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PROOF OF LEMMA 3.4. 1. Referring to Section 3.5, for any (@, %) € PC(6),
the function (¢,z) — St 4(z) is an entropy admissible solution of (3.15).
Moreover it is clear that Ll -limits of sequences of entropy admissible solu-
tions are entropy adm1581ble solutions. By Helly s Theorem, passing to sub-
sequences if necessary, we can assume that S "y converges in L1 (R+
R;R) to a function w(¢, z), which is again an entropy admissible solutxon of
(3.15). Since w(0, z) = @(z), by the umqueness result stated in Section 3.5,
it follows that w(¢, z) coincides with S @. This completes the proof of the
lemma. O

The proof of Theorem 3.1.1 is based on the following fundamental esti-
mate.

Proposition 3.4.2 Let f be a piecewise constant function with values in
Fno, and let U = (u,v), U* = (u*,v*) be two pairs of piecewise constant
initial data satisfying the relation

fU@) =f(U(2)) = f(z), VzeR (3.29)
Then for each T > 0 and n > ngy one has
(1S9 — Sg " w*|| < Gy - (1 + TV.(F) lo — v, (3.30)

where Cy is a constant independent of n. In particular, by passing to the
limit n — oo in (3.30), we obtain

[Spu— S¥w*|| < Cr- (1+T.V. () o — v*]. (3.31)

PROOF OF PROPOSITION 3.4.2. Fixn > ng and let § = dn. To estimate the
distance between two solutions, we follow the approach in [12], estimating
the length of a path joining u with u*. We recall some definitions. A
pseudopolygonal is a continuous curve I‘ : [a,8] = L' for which there is a
finite partition {(Qi, 9,-+1)} such that I' on each interval is given by

0 =3 okt agy 5=t Ead)
«

where x4 denotes the characteristic function of the set A. Here the states
wq are fixed and the positions of the jumps xg shift at constant rates £, as
¢ varies (see [12]).

Consider the continuous curve I': § — U? = (ug, v? ) in L! given by

U= U™ X(coog) + U - X(8,00)- (3.32)

The curve T is a pseudopolygonal connecting U and U* and which takes
values in PC(J). For each fixed 6 we consider the corresponding solution ob-

8
tained by performing wave-front tracking on U? and define ~,(6) = S’f e
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[/

t=T

— waves = - shifted waves

Figure 5: wave-front configuration

By the way the front-tracking algorithm is defined we have that for ev-
ery t > 0 the map 6 +— ~(6) is a pseudopolygonal connecting Sf “u and
S5 u*, such that (7:(6)(z),v%(z)) € F(5). Indeed, the continuity of the
map ¢ +— () was proved in Lemma 3.4.1.

Note that as ¢ increases, at time ¢ = 0 there is always one v-discontinuity
located at z = @ shifting with speed ¢ = 1. As ¢ increases, the u-waves from
the left of z = 6 will interact with this discontinuity and will be shifted.
Thus at times ¢ > 0 there can be more than one wave shifting: the moving
v-discontinuity and also some u-fronts located to the right of z = 6 (see
Fig. 5).

Let 7' > 0 be given. We have that

- +o0
|53 u — 52" w*|| < L'-length of T = / 2(0,T) df, (3.33)

—0Q

where

26,7) = 3" 1Aat?] - [al.

Here the sum is over all the discontinuities of y7(0) located at z, with
corresponding u-jumps [A,u’| and shifts |¢,]. Note that Z(6,T) does not
contain any terms corresponding to discontinuities to the left of the line
z = 8 since none of these are shifted.

For almost every 6 the wave-front configuration in () remains the
same for ¢ € [0, 7] and f-values close to 6. Fix @ to be one of these values.
We can also assume that no interactions occur in u?(T,.).

It is clear that, for 6 fixed, Z(6, ) remains constant in any time interval
where no collisions occur. However, Z(6, -) may change across interactions.
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Now, if the interaction occurs in the region z > 6, then only u-waves and
possibly a non-shifted v-wave are involved. By Ll-contractivity of the map
u = Sf’”u it follows that Z(6,-) decreases across these collisions as time
increases.

If the collision occurs on the line z = 6 an additional analysis is needed.
Denote the times of interaction along the line z = 6 by 0 <ty < < tp,
and consider one of these where a single u-wave interacts with the shifting
v-wave from the left. Note that since only the v-wave is shifting we may
assume that all the collisions along z = @ involve a single u-wave only.

Fix a tg and let (u!,v7),(u",v™) be the left and right states of the
incoming u-wave, and let (u;,v%), i = 0,..., M, be the states separating
the outgoing u-waves. Note that v~ = v*(f) and v+ = v(f). Let the
incoming wave have speed A~ while the outgoing waves have speeds A} and
shifts &, i=1,..., M.

Since the v-discontinuity shifts with speed & =1 we have

foy oM (3.34)
& =1-3L. .

Put Ajut = v —uf | and fif = f(uf,v*). Assume that AF < A for
1=1,...,k, and )\j‘ > A" fori=k+1,...,M. The u-jumps across the
shifted v-wave before and after the interactions are denoted by 0~ and o™,
respectively. Since all the jumps A;ut have the same sign, we can assume
also that A;u™ > 0 for all 4, a similar analysis holding if A;u™ < 0 for all 3.
It follows that the sign of Aju™ -& is positive for i = 1, ... , k, and negative

fori=k+1,..., M. If the interaction occurs at time tg we thus have
E(ea t5+) - 5(97 tﬁh)

M
=lot|—lo7[+ >

i=1

AT
1-—- —/i}:' IAiu+|

< |(ug —ul) = (ufy = )] +
k \F M \F
ot i) . _ M
+ ;Azu (1 - F) ._.ICZH Aju <1 A“)

= |(uj[4-—u6") - (ur—ul)l-}—

+_ o+ +
(=) - B < (-t - I

Now consider the point u™ defined through the relation f(u™,v~) = f,j ,
and define \* = A(u!,u™;v~) and A*™* = A(w™, u";v7). Then A* > A~ > A**
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such that

E(0,ts+) — E(6,15-)

< ufy —ud) — (" —ul)| +
+_
+((u:—u3)“fk/\*fo>"<( up) - L1 = f’“)
[(u};[—uo) (u — l+
+ ((uf —uf) = @™ —uh)) = ((ufy —uf) — (@ —u™).

(3.36)
To estimate the terms in this expression we recall that the change of coordi-

nates (u,v) < (f,v) implies that u = G(f,v) with G of class C2. For every
f1, f2 € K7 and v € K5, we can thus write

G(fa,0) - G(f1,v) / G (sfo+ (1= ) f1,0)(fo— fi)ds.  (337)

By (3.37) it follows that
(uf —ug) — (™ =)
= (G v") = G o) = (G, v7) = G5, v7)
=(fe —fo)- ‘
1
: / (816 (s + (1= )5 v%) = G (s + (1 - $)fgv7)) ds
0
= (fg = [t —v7).
1ol
: / / ROG (sff + (L —s)ff,mvr + (1 - T)v™) dsdr
o Jo

< le+ - U_l (f}-: - f(i")a
(3.38)
for some constant C' depending on the max of 829, G. Similar computations
show that

(Ui —uf) — (W —u™) < Clt — 7| (ff; - £, (3.39)
and that
|(uiy —ug) = (" = u)| < Clot —v7| (7 = F). (3.40)
By (3.36)-(3.40) we get
E(0,ts+) — E(0,t5—)

< Ot —v7| (I = &+ |55 = £ |+ 1 - 2
=2C|v* —v7||ff; = ff| = 2C T —v7||Af ()], (3.41)
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where Af(tg) = f;,} - fO+ - This estimate holds across each interaction along
the line z = @ corresponding to a time tg > 0. At t = 0+ only the v-wave
is shifted with corresponding u-jump lu(:z: =0)—u*(z = 9)‘ which by strict
hyperbolicity is bounded by Clv* —v~|. For T > 0 we thus obtain the
following estimate

E(6,T) = 2(9,04) + Z (2(9,t5+) — 2(6,t5—))

0<tg<T
< Clv*(6) —v(8)| (1 + Z |Af(tﬁ)]>
0<tg<T
p
< Clo*(8) - v(8)| (1 +3 |Af(t,3)]>. (3.42)
B=1

Notice that for ¢ > ¢, only v-waves are present to the left of z = 0.

We finally relate the sum in (3.42) to the variation of f along the half
linez < 0. Fort > 0let u*(¢,z) = Sf ’v*u*(w) and consider the variation A(%)
of f(u*(t, ),v*(-)) on the interval (—oo,8]. It is clear that A(t) is constant
in every time interval where no interactions occur in u*(¢, z) in the region
t > 0, z < 6. Suppose there is an interaction at time t > 0 for z < 6. If
the interaction involves more than one u-wave a cancellation may take place
and since f is constant across v-waves, we have that

A(t+) < A(t-).

Thus A(t) is non-increasing across these interactions. As time increases the
u-waves in the region z < § will eventually cross the shifting v-discontinuity
at z = 0. Again fix one of these interaction times tg. We see that the term
in A(ts—) corresponding to the incoming u-wave is exactly equal to the term
IAf(tﬁ)[ in the above sum. We thus have

Alts+) — Alts—) = —|Af(tg)], (3.43)

and

p P
Do1AFEs)| = =D (Altg+) — Altg—)) < A(0) — A(t,+) = A(0)
=1

f=1
=T.V. (f|(_w’e]) < TV.(F).

(3.44)
This and (3.42) imply that

2(6,T) < Clo*(8) —vw(0)] (1 + T.V.(f)), (3.45)

which together with (3.33) yields the conclusion of the proposition. a
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Using this proposition we can now prove part (a) of Theorem 3.1.1, while
part (b) is postponed to the next section. As a preliminary, we state the
following lemma.

Lemma 3.4.3 Let (4,0) € D be given. Then for every e > 0 there exists an
integer ng = ng(e) and a piecewise constant function f with values in Fro
such that for every pair of piecewise constant functions v,v* the following
holds

|Sta — S7"al| A
< Cle+ o =a) + [lo* — ol + (1 + T.V.(f)) o — v*|}.

(3.46)

PROOF OF LEMMA 3.4.3. Let f(z) = f(i(z),9(z)). Fix e > 0 and choose

ng such that there exists a piecewise constant function f with values in Fp,
and with

If =7 <e. (3.47)

Take two piecewise constant functions v,v* and define u,u* through the
relation

f(u(z),v(2)) = f(u*(2),v*(2)) = f(z), VzeR
By hyperbolicity, one has
lu=all < C(IF = 7| + ko —oll) < C(e + v — I, (3.48)
and similarly
lu* — @l < C’(e + |lv* = 17”). (3.49)

By Proposition 3.4.2, (3.48), (3.49) and the L!-contractivity of S?, it follows
that

(B
< ||S¥a — Stul| + || SFu— S ur|| + || SV ut — S|
<@ —ull + || Sfu— S u*|| + [lu* — 4l
< Cle+llv =l +[lv* = o) + 1+ T.V.(f) v = v*||}, (3.50)

which completes the proof. g

In particular, take a sequence of piecewise constant functions {vn} con-
verging to ¥ in L!. Given ¢ > 0, by Lemma 3.4.3 there exists f such that
for every n and m one has

st~ o

< Cfe +llvn = o)l + lom — 3l + (1 + T-V.(F)) o — vml[}- (3.51)
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Since v, — ¥ this shows that the sequence {S’;’"ﬂ} is Cauchy. Hence we can
extend the semigroup to the case when (%, ) € L' N L™ by letting

SPa =L'~ lim S/a. (3.52)

n—c0
By the previous analysis this limit is well-defined. Moreover, the map %
SP4 is again a contraction. Finally we define

S«(@,7) = (S7a,). (3.53)

We claim that the semigroup S is jointly continuous in (u,v). Indeed,
given another point (#,7) € D, choose sequences {v,}, {9} of piecewise
constant functions such that v, — ¥ and %, — ¥ in L! as n — oo. By
Lemma 3.4.3 we obtain

ISia — Pl

< |5t — P + [|SPra - 5P
< Cle+llon =l + 180 — 3l + (1 + TV.(f)) llon — 5all} +
+ ||z —a. (3.54)
By passing to the limit n — oo in this last estimate, we finally get

|sta - stall < la—all + Cle+ @+ TV.(H) o -al}.  (355)

This shows that for every (4,7) € D with

€

le—al<e,  [5-9] < TV

one has i
|S7a — SPal| < Ce. (3.56)

This completes the proof of part (a) of Theorem 3.1.1.

3.5 Entropy Conditions and Uniqueness

In this section we formulate an entropy condition for the system (3.2) which
yields uniqueness of entropy admissible solutions in the same way as the
Kruzkov condition for scalar equations [30]. Since the second equation is
solved uniquely by the function v(¢,z) = %(z), this amounts to give a con-
dition for the scalar conservation law

ut 4+ F(u, z)y = 0, (3.57)

where the flux function F(u,z) = f(u,d (z)) depends explicitly on z.
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Kruzkov’s original formulation is not meaningful if this dependence is dis-
continuous. In the case where F' does not depend on z we have that the
constants are stationary solutions of (3.57). In our situation we see that the
stationary solutions are those functions u(z) satisfying F (u(z), ) = const.
These solutions play the role of the constants in the Kruzkov formulation.
This motivates the following construction.

For any fixed z € R the function u — F(u,z) is one to one, hence for
every constant { € R we can define the function u¢(z) through the relation

F(uf(z),2) =¢, VzekR (3.58)

We introduce the following entropy-entropy flux pair (n¢(u,z),q%(x, z))
(which depends also on the variable z) given by

n‘(u,2) = |u — v (z)|

3.59
¢*(u,2) = |F(u, ) - ¢|. 1559

Fix (%,9). We say that a continuous function ¢ ~ wu(t,-) from [0, +c0) to
L}, is an entropy admissible solution of system (3.2)-(3.3) if for every ¢ € R

loc

the following holds

[nc (ult, 2), x)L ¥ [qC (ult, z), a:)] <0, (3.60)

T

in distributional sense. That is, for any nonnegative C' function ¢ with
compact support in (0, +00) x R we have

/000/: {Jut,2) - u(@)|gu(t,2) +

(3.61)
+ lF(u(t, zT),T) — ([qﬁx(t,a:)} dzdt > 0.
Notice that since F(-, ) is increasing, sign(F(u,z) — () = sign(u — ué(z)),
and we have
¢ (u,z) = sign(u — uc(z)) [F(u,z) - ¢].

In particular, when f does not depend on v we recover the well-known
Kruzkov entropy condition [30].
Moreover by taking ¢ = & sup(; g ’f(u(t,a:),ﬁ(m))l we see that also in our
case a bounded entropy admissible solution is a weak solution.

The following lemma yields an alternative characterization of entropy
admissibility in the case of a piecewise C! solution.

Lemma 8.5.1 Assume that (u(t,z),9(z)) is a piecewise C weak solution of
(3.2) having discontinuities only along a finite number of piecewise Lipschitz
continuous curves, say To = To(t). Denote by uf = u(t,zo(t) £ ) and
vE = 9(zalt) £).

Then u(t, z) is an entropy admissible solution if and only if at each discon-
tinuity point (t,zq(t))
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- either £4(t) =0 and
flug,va) = £(ud,v3); (3.62)

- or Zo(t) > 0. In this case v} = v = v, and for any s € [0,1], #f
uy <ul one has

flsuf +(1 - 5)ug, V) > sf (uz,va) +(1- s)f(u;,va), (3.63)

whereas if uy > ul one has
flsuf +(1 - $)uq V) < sf(ud,ve) + (1 — 5)f(ug,va). (3.64)

PrROOF OF LEMMA 3.5.1. Fix ¢ € R and take a nonnegative C! function ¢
with compact support in [0, 7] x [a,b]. By the divergence theorem we obtain
that

0< /Ooo /_O; {17C (u(t, z),z) e (t, ) + ¢ (u(t,x),z)%(t,m)} dzdt
:/0 /_Oo {nf(u(t, z),z), + ¢ (u(t, m),z)z}(b(t,w) dzdt + (3.65)
+ Z [)T {j"a(t)Anc (ma(t)) - ch ($a(t))}¢(t’ ma(t)) dt,

where An¢ (za(t)) =1t (uf, za(t) + ) = n(uz, zalt) — ) and similarly for
Ag¢(z4(t)). Since (u, ) is piecewise C! the first integrand on the right-hand
side of (3.65) is zero a.e., thus the last inequality holds if and only if

0t A (2a (1)) — A (zalt)) > 0, (3.66)
for allt > 0, @ and ¢. Now, if £4(t) = 0 then (3.66) is equivalent to
OZ lf(u&,—?UZ)'_Cl“lf(uc:7’uz;)—gl' (367)

Since (u,7) has a v-discontinuity located at T4, by the Rankine-Hugoniot
conditions it follows that (3.67) is equivalent to (3.62).

If, instead, Z,(t) > O then the solution has a u-discontinuity at z,(¢),
hence v} = v, = v,. In this case u¢ (za(t) + ) = uS(zalt) — ) = h, so that
¢ = f(h,vq). Recalling that To(uf — uy) = fluf,vg) — fuz,va), from
(3.66) one gets

(f (ud,va) = Fluz,va)) (ud +ug — 28)
> (ug —uz) (£ (ud,va) + flug,ve) — 2f (h,va)).

If we choose h = suf + (1 - s)u, we recover conditions (3.63) and (3.64).0

(3.68)

In particular, the approximate solutions constructed by the wave-front
tracking algorithm are entropy admissible solutions of (3.15).
Now we state the main theorem of this section.



3.5. ENTROPY CONDITIONS AND UNIQUENESS 59

Theorem 3.5.2 Let 5 € L' N L™ be fized and define F(u,z) = f(u,5(z)).
Let u(t,z) and w(t,z) be two bounded entropy admissible weak solutions of

ut + F(u, 1) = 0.
Let M,L > 0 be constants such that
]u(t,m)l <M, fw(t,x)l < M, Vi, z,

|F(w,z) = F(u",z)| < Llu' — u"|, vu',u' € [-M,M], VzER
Then for every R >0 and 7" > 7 > 0, one has
/ !u(’r, z) —w(r,z)| dz > / lu(r’, ) — w(r, z)[ dz. (3.69)
|lz|<R |z|<R—L(r'—T)

PROOF OF THEOREM 3.5.2. The proof is similar to the one in [30, 10].
For any £,¢ € R and for any nonnegative C! function ¢ = ¢(s, z,t,y) with
compact support in s > 0, £ > 0, we have

/oo /OO {IU(t, z) — u*(z)|¢s + | F (u(t, ),z) — §[¢$} dzdt >0,  (3.70)
0 -0

e lw(s,y) = uS(y)|ds + | F(w(s,y),y) — |¢y t dyds > 0. (3.71)
| }

Define the functions w(s,y;z) and (¢, z;y) through the relations

F(w(s,y;7),7) = F(w(s,y),y), F(a(t, z;y),y) = F(u(t,z), 7).
(3.72)
Put ¢ = F(w(s,y),y) in (3.70) and ¢ = F(u(t,z),z) in (3.71). Integrating
the first equation w.r.t. s,y, the second w.r.t. ¢,z and adding the results one
gets

////{W(t,x) — (s, y; 3)| ¢t + [w(s,y) — Glt, ;) |ps +

+ |F(ult,z),z) — F(uw(s,y), y)| (¢z + ¢y)} dzdydtds > 0.
(3.73)
Now, take a sequence of C* functions {6, },>1 approximating the Dirac delta
at the origin. More precisely take d, : R ~ [0, +00) such that

/—oo 0y(2)dz =1, supp(dy) C [-1/v,1/v],

and define .
%@i/ 5,(2) dz.
-0
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Fix R> 0, 7/ > 7 > 0 and define Y, a nonnega.tlve smooth approxunatlon
of the characteristic function of the set Q = {(T,x); r<T <7, |X] <
R~ L(T — 1)}, as follows

YT, X) = [ (T —7) —a,(T-7)] [1- o, (|1 X| —R+L(T-71))]. (3.74)
For any h,k € N choose

¢(t,x,s,y)i¢(tgs,$;y) o (t;S) A (‘”;y> (3.75)

It is easy to see that

(6= + ) (2, 2, 5,) =, (t;3’$;y> On (t;3> Ok <I;y)

Notice that w(s,y;y) = w(s,y) and (¢, z;2) = u
tion ¢ in (3.73) and using the coordinates (¢, X = (
taking the limit ¥ — co one has

///{IMX e+ )+ (3.76)

+ | F (u ,X),X)—F( (5, %), X)| ¢, } dtdsdX >0,

¢(t,s,X)£¢(t;S,X> 5 (t;3>. (3.77)

In a similar way, by using coordinates (T=(t+s)/2,8=(t— 5)/2, X) and
letting h — oo it follows that

//{[u(T,X ) = w(T, X)| y,_ + 79

+|F(u(T, X), X) = F(w(T, X), X) | p, } dTdX > 0.

(t,z). Inserting this func-
$+y)/27 8, Y = (m_y)/z))

where now

With our particular choice of v, for v large enough we obtain

//lum- b2)]

t—7‘)~6(t—7‘)] [1-ay(|z] - R+ L(t—1))]| dzdt

//{ fo |7 (ut:2), 2) = F (u(? wm)l-*-f:lu(t,x)—w(t,x)!}'

Jot—1)—at—7 N]6,(lz| = R+ L(t — 7)) dzdt.
(3.79)
The right-hand side of (3.79) is easily seen to be positive, hence it follows
that

//Iu(t,:v)~w(t,:v)[ [0, (t=7) =6, (t—")] [1—a (|z|—R+L(t—7))] dzdt > 0.
(3.80)
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Since the maps ¢ — u(t,-) and ¢ — w(t, ) are continuous, by letting v — oo
we obtain (3.69) in the case 7' > 7 > 0. Finally by continuity, the assertion
is also true for 7/ = 7 or 7 = 0. O

As an immediate consequence of Theorem 3.5.2 we have L!-contractivity
for entropy admissible solutions of (3.2) when v is fixed.

Corollary 3.5.3 If u, w and U are as in the above theorem, then for every
t > 0 we have

f_oo ]u(t, z) —w(t, z)| dz < /~oo |u(0,2) — w(0,z)| dz. (3.81)

In particular, bounded entropy admissible solutions to the Cauchy problem
for system (3.2) are unique.

Finally we prove part (b) of Theorem 3.1.1, i.e. that the semigroup tra-
jectories are weak solutions. Let us prove it first for (4,7) € BV. Take
piecewise constant functions (un,vn) converging to (@,7), and such that
un(t,z) = SJ”’v”un converges to u(t,z) = S74 in the L-norm. As noticed
above un(t,z) is actually the entropy admissible solution for (3.15) with
initial data (un,vy), hence

+oo p+oo
/0 ﬁw {‘un(t:c) —~u$z(:c)|q5t (t,z) + (3.82)

+ 1% (un(t, ), vn(2)) — (] (t, 2) }da;dt>0

for every ¢ € R and every smooth function ¢ with compact support, where
u$(z) is defined through the relation

£ (ul (z), vn(2)) = ¢, VzeR
We have also
|u(z) = u(z)] < CO|F% (uf, (), vn () = 1% (4 (2), va(2)) ]
< o{|F (@), 0(2)) - £ (ué(g,-) v(m)){ +
+ |77 (u (), 0(2)) — 17 (u (), vn(2))] }(3.83)

Since f% converges to f uniformly on K as n — oo, one has that ud,

converges to u$ in L!. Thus for every nonnegative smooth function ¢ with
compact support it follows that

// {ju(t,x) - u4($)|¢t + |/ (u(t, z),v(z)) - Cld)x} dzdt

= nli’r{.lo //{Iun(t,a:) —uf(z)|¢: + [f‘s" (un(t, z), v, (7)) — (Iq&x}dmdt > 0.
(3.84)
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This shows that u(t,z) = 5?1 is an entropy admissible solution of (3.2). The
corresponding result for (4,7) € L' N L% now follows by an approximation
argument. This concludes the proof of Theorem 3.1.1.

Notice that this implies also the uniqueness of the semigroup S.
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4.1 Introduction to Chapter 4

For a scalar conservation law, it is well known [19, 30] that the entropy-
admissible solutions determine a semigroup which is contractive w.r.t. the
L! distance. This fundamental property plays a key role in the study of
uniqueness, stability and perturbations of weak solutions.

On the other hand, for a nonlinear n x n hyperbolic system

w+ W], =0, (41)

the contractivity of the flow is no longer true [40]. For this reason, when
u € R*, to establish the uniqueness and continuous dependence of solutions
of (4.1) is a considerably more difficult problem than in the scalar case.

In a recent series of papers [9, 11, 12, 15], it was shown that, restricted
to a suitable domain D of functions with small total variation, the system
(4.1) does generate a continuous flow. More precisely, this flow is contractive
w.r.t. a suitable Riemann-type metric, uniformly equivalent to the standard
L! distance. The construction of this weighted distance involves:

e A closed set D C L!(R;R") consisting of functions with small total
variation, positively invariant for the flow of (4.1).

e A dense subset Dpy C D of piecewise Lipschitz functions.

e For each u € Dpy, a space T, of first order generalized tangent vectors
(v,€), with weighted norm ”(’u,f)”u If, say, u is piecewise Lipschitz
with N jumps, then T, ~ L! x RY.

Given a suitably regular path v : [a,b] — Dpy, its weighted length is
then defined as the integral of the weighted norm of its tangent vector D,
ie.

b
Il = [ 1D2(6)] ) . (4.2

In turn, the weighted distance between two functions u,v € D is defined as
the infimum of the lengths of (suitably regular) paths joining u with v, i.e.

du(u,v) = inf {|7ll; v(a) = u, 7(b) = v}. (4.3)

We remark that this weighted distance does not fit within the standard
framework of Riemann or Finsler manifolds [22, p.362], because our tangent
spaces T, are defined not for all u in some open set &/ C L', but only for u
in a dense subset with empty interior.

Aim of this paper is to establish some basic properties of the distance d,.
We first study the behavior of the Glimm interaction functional under L!
convergence, and prove the semicontinuity of the coefficients in the weighted
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norms. Then we establish the lower semicontinuity of the weighted length
(4.2) w.r.t. uniform convergence of paths in L!. More precisely,

lvll« < 1L%£§£”7V“* (4.4)

for every sequence of paths v, converging uniformly to «. This result natu-
rally complements and clarifies the constructions in (12, 15].

We remark that, for any Lipschitz continuous path v : [a,b] — LI, the
usual L' length is defined as

N
i=1

(4.5)
In this case, given the uniform convergence 7y, — 7, the relation

follows from standard convexity arguments. On the other hand, (4.4) cannot
be obtained by general weak convergence methods. Indeed, the numerical
value of the constants defining the weighted norms H(v, §)Hu and the small-
ness of the total variation of functions u € D both play a key role for the
validity of (4.4).

Allthe basic definitions, including generalized tangent vectors and weigh-
ted path lengths, are collected in Section 4.2. Our main lower semicontinuity
result is stated in Section 4.4. The proofrelies on the construction of a family

of nonlinear functionals, which approximate the weighted distance function
in BV.

4.2 Preliminaries

Let Q be an open and convex subset of R® containing the origin, and let
f:Q— R" be three times continuously differentiable. For every u, consider
the n x n Jacobian matrix A(u) = Df(u). We assume that the system
(4.1) is strictly hyperbolic, so that each A(u) has real distinct eigenvalues
Ar(u) < < Ap(u). Given u,u’ € Q, define

1
A, o) = / A(6u+ (1 — 0)) db. (4.6)
0
Of course, A(u,u) = A(u). Call \;(u,v) the i-th eigenvalue of the matrix
A(u‘, u'). By possibly shrinking the size of 2, there exist n disjoint intervals
[A\7#™, A% such that

Ai(u,u’) € [}\?‘i”,)\?w‘”] uw,u €, i=1,...,n.
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We assume that each characteristic field is either genuinely nonlinear or
linearly degenerate in the sense of Lax [32]. So we can choose C? families of
right and left eigenvectors r;(u, v'), I;(u, ') of A(u,u'), normalized according
to ;
. N — . / . AN 1 if i=4,

]Tz(uau)l—lﬁl_'l(u7u) Tl(u)u)“{ 0 if ;. (47)
We write also r;(u) and [;(u) respectively for r;(u, u) and I;(u, u), and choose
the orientation of the r; so that

Mifwteri() =N o (4.8)

ri e Ai(u) = lim .

We briefly recall the solution of the Riemann problem [32] and the interac-
tion estimates [25, 37]. Given u € Q, call 0 — S;(0)(u) and o — R;(0)(u)
respectively the i-shock and i-rarefaction curve through u, parameterized by
arc-length. As customary, the orientation is chosen so that the i-th charac-
teristic speed is non-decreasing along the curves S;, R;. Define the composite

curves
wow ={ §06 i 220 (9)

Given two states ™, u™ sufficiently close to the origin, by the implicit func-
tion theorem there exist unique wave sizes o1,. .., o, such that

ut =Ty (oy) 00 Uyor)(u). (4.10)

The solution of the Riemann problem with data (u~,u™) thus consists of
n+ 1 constant states wy = u™,wy,...,w, = u™, where each couple of states
w;—1,w; is connected by an i-wave of size o; (a shock or a rarefaction, de-
pending on the sign of ;). We write

Ei(u—7u+) = oy, (4'11)

for the size of the i-wave determined by the Riemann data (u~,u*). This
quantity satisfies the well known estimate

Ei(uv™,ut) =Lu)  (wh —u”) + O(lu* - u_|2). (4.12)

We define also
Ji(u™,ut) = lEi(u",u“L)I. (4.13)

Let us now recall the basic interaction estimates [25, 37]. Given a left, a
middle and a right state u!, u™ u" € Q,

,u') — Ei(ul, u™) — E;(u™,u")

I'M
=

< GA(E(u!,u™), Bw™ 7)),

(4.14)
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where

Ale, B) =) lowfy] + > otk B (4.15)

k>3 kEGNL, min{ak,ﬁk}<0

and GNL is the set of indices corresponding to genuinely nonlinear families.
As in [13], the Glimm functional can be defined also for a general BV
function. Let u : R — Q have bounded variation. By possibly changing
the values of u at countably many points, we can assume that u is right
continuous. Its distributional derivative # = Dgu is then a vector measure,
which can be decomposed into a continuous and an atomic part: p = pC+p.
For ¢ = 1,...,n define the signed measure p; = pi + p? as follows. The
continuous part of u; is the Radon measure such that

[ odus= [ 6 ane (4.16)

for every scalar continuous function ¢ with compact support. The atomic
part of p; is the measure concentrated on the countable set {Zo; @ =
1,2,...} where u has a jump, such that

1 ({za}) = Bi(u(za=), u(ze+)) (4.17)

is the size of the i-th wave in the solution of the corresponding Riemann
problem at z4. Call uf, p; the positive and negative parts of the signed
measure L;, so that

pi =i —pg, il = pf + ;.

The total strength of waves in u is then defined as
n
V(u) =D Vi(w), Vi(u) = |wil(R), (4.18)
=1

while the interaction potential of waves in u is

Q) = 3 (sl xlesil) ({3 = <)+ 3 (7 xsl) ({25 = £ 0}).

1<J
(4.19)
When v is piecewise constant, one easily checks that the definitions (4.18)-
(4.19) reduce to the usual ones. On the other hand, if u is Lipschitz contin-
uous, then its derivative u;(z) exists at almost every point z € R. In this
case, setting
ul(z) = L (u(z)) - ug(z), (4.20)
one has o
—0oQ
The quantities V, Q satisfy two basic properties. The first is a straightfor-
ward consequence of the definitions:
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(P1) Let ¢ : R — R be a continuous, increasing one-to-one mapping. Then,
for every u € BV, the composed function v(z) = u(p(z)) satisfies

Q) =Q), Vilw)=Vi(u), i=1...,n (4.21)

The second property follows from the Glimm interaction estimates. It can
be proved first for piecewise constant functions, then extended to all BV
functions by an approximation argument.

(P2) There exist constants g, dg > 0 such that the following holds. Assume
u € L, with T.V.(u) < 8. Then, for any a < b and % € [a,b], the

function
[ ule) if z¢ab]
w(z) = { u(z) if z€a,b], (4.22)
satisfies
Q(w) < Q(u), V(w) + koQ(w) <V (u) +roQ(u), (4.23)
Vi(w) + koQ(w) < Vi(u) + koQ(u), i=1,...,n. (4.24)

Observe that the function w in (4.22) is obtained from u by collapsing all
wave-fronts in [a, Z] onto the point a, and all wave-fronts in ]z, b] onto the
point b.

With the same constants kg, dp as in (P2), we now define the domains

D={uel’R R"), V(u)+roQu)<d}, (4.25)

Dpr, = {u € D, wu is Piecewise Lipschitz continuous} (4.26)

We recall below the definition of generalized differential of a path + : [a, b] —
L', introduced in [17]. For any u € L!, on the family %, of all continuous
paths 7 : [0,6¢] = L! such that y(0) = u, consider the equivalence relation

1
~ iff lim =||v(8) =+ (8 = "ex,). (4.2
v~y i dim Sflv(6) = '(0)], =0 (77" € ). (4.27)
Now assume that u is piecewise Lipschitz, say with jumps at the points
Ty < --+ < zy. The space of generalized tangent vectors at u is then
defined as 7o, = L' x RY. To each (v,€) € Ty, with € = (£1,...,¢&n), we
associate the path v(, ¢,y € Ly defined by

7(”:55")(9) = u + fv + Z [u(mi) - U(SL‘;)} X[xa+0€a ZTa] +
£a<0 ’
=3 [u(z?) - u(z3)] Xigs zotttn] (4.28)
£a>0

More generally, we say that a path v € 3, generates the generalized tangent
vector (v,&) € Ty, if 7y is equivalent to Y(v,£:u)» under the relation (4.27).
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In other words, for small values of 6, the function u® = v(6) can be
obtained from u by adding v and by shifting the positions of the jumps from
Tq t0 Lo +60&,. As @ — 0+, this procedure yields a first order approximation
to u?, with an error o(6) in the L' norm, with 0(0)/0 — 0 as § — 0.
In connection with the above differential structure, one can define a kind
of continuous differentiability property for maps v : 8 — v € L!, with
piecewise Lipschitz values. Following [17], we say that a map v :]a, b[— L!
is a regular path if there exists an integer N such that:

(i) Every function u? = (8) is piecewise Lipschitz continuous with jumps
at points z¢ < -+ < a;?\, continuously depending on . Qutside the
jumps, each u¢ is continuous with a Lipschitz constant L independent
of . All functions u? coincide outside some interval [—M, M].

(ii) The map 6 — uY is continuous with values in L.

(iii) There exists a continuous map 6 (v%,£%) € L' x RY such that for
every 6

1
lim —

=0. 4.
e—0+ € 0 ( 29)

”7(9 + 6) — Vb £85uf) (E) Ll
More generally, we say that a continuous map - : [a,b] — L is a piecewise
regular path if there exist points ¢ = 0y < 61 < --- < 8, = b such that the
restriction of v to each open subinterval }6;_;, g;[ is a regular path.

Now consider any u € Dpy, say with jumps at z; < --- < zy. For
every a=1,...,N,i=1,...,n, define the strength of the i-th wave in the
Riemann problem at z, as

Ji = lEi (w(@a—), u(za+)) ’

Given a generalized tangent vector (v,¢) € T, = L! x RY , recalling (4.20)
we define its weighted norm as

N n n 0
IOl = 33 T el Wi (ea) + 3 / |vi(2)|W¥(z) dz.  (4.30)
=1 Y —®

a=1i=1
Here v;(z) = I;(u(z)) - v(z) is the i-th component of v, @ is the interaction
potential (4.19) and the weights W}* are defined by

Wi(z) =1+ k1 RE(z) + K162Q(u), (4.31)

B = |5 [T+3

i<i’T g

/m W) dy+ | > + DT IE +

- k<i k>t
Ta>T Ta<ZT

. {Jxﬁ if o =5y and Eifu(ag-)ulegt)) >0, o

0 otherwise,
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for suitably large constants ki, 9. Intuitively, R¥(z) can be regarded as
the total strength of all waves in u which approach an infinitesimal ¢-shock
located at z. Finally, let v : 6 — u? be a piecewise regular path defined on
[a,b], and let (v?, %) be its generalized tangent vector at u?. The weighted
length of «y is then defined as

b
. i‘/ |7, €%)]] o 6. (4.33)

By the standard interaction estimates (4.14), one can choose constants 0o >
0 small and kg, 1,42 large enough in (4.25), (4.31) so that the following
property holds.

(P3) Let u € Dpy. For any a < b and Z € [a,b], the function w in (4.22)
satisfies

WP (z) < Wi (z) z ¢ [a,b], i=1,...,n. (4.34)

From the definition of regular path, the following continuity properties can
be easily derived.

Lemma 4.2.1 Let v :]a, b+ Dpr, be a regular path. Let ul = ~(8) have
Jumps at the points :z:({ < L m?\,. Then the following holds.

a) The map (0,z) — u®(z) is continuous outside the jump set J =
{(Q,mg), a=1,...,N, 0¢&la,b[}. For every 9, at each jump poini

2% one has

u? (zi :t) —uf (mg i) as 0 — 0. (4.35)

8
b) The map (0,z) — Wiu (z) is continuous outside the jump set J. For
every 0, at each jump point mz one has

6

W (20) — Wi”é(:ci) as 60— 0. (4.36)

¢) The map 0 — H(vg?fe)Hua is continuous.

We conclude this section with a useful approximation lemma. By an ele-
mentary path we mean a path of the form
0w’ =w; - x

-+-'u_72-X 0E[a,b],

]—c0, ab+p] Jad+p,+ool’

where the functions wy,wy are piecewise constant. A piecewise elementary
path is a finite concatenation of elementary paths.
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Lemma 4.2.2 Let v : [a,b] = BV be a piecewise reqular path. Then there
exists a sequence of piecewise elementary paths Yv such that, as v — oo,
sup ||7,(8) — ¥(0)]|.. = 0, vl = Il (4.37)
0¢a,b]
The construction of the paths 7, goes as follows. For simplicity, assume
that v is a regular path, with each u? = 7(0) having the same number

of jumps, say at $(19 < e < :cff\,-. Let all functions u? coincide when z ¢
[~M, M]. Fix v > 1 and define

Hmia—i-ﬂ(b—a) m=1...,v
124

For v sufficiently ldrge, for each m we can choose points p; such that
—M<p0<:c(19<p1<---<z§¢<pN<M, 6 € [Om—1, Om).

We now approximate each u®™ with a piecewise constant function ™. The
restriction of the original path -y to the subinterval [0m—1, 0] is then replaced
by a new path +/ defined as follows. If 9 € (=M, po] U [pn, M] we set

v (9) = u™ . X oog T u™ oy (4.38)

18,400l
The same definition (4.38) is valid if 9 € Jp;_1, p;] and mf’”‘l <z, On the
other hand, if ¥ €]p;_;,p;] but xf’”"l > :rf"‘, we set

! - M, m~1, 4.
7 () =u X]~00,Pi—1]U]Pi—1+pi—l9, Pi]+u X]Pi—hPi—1+Pi—19]U]Pi7+OO[ (4.39)

Clearly, 7' is piecewise elementary, with v/(—M ) =um"h A (M) = u™. We
now perform a suitable parameter rescaling 6 ~ ©¥(6) mapping [Om—1,6m]
onto [~M, M] and define the path -, (f) = +' (9(0)). Applying the same
procedure to each subinterval [0,,_1, 0,,] we obtain the piecewise elementary
path v, : [a,b] — BV. If the approximations v™ of u®™ are chosen in a
suitably accurate way, the properties (4.37) follow.

4.3 Lower semicontinuity of Glimm functionals

In this section we establish the lower semicontinuity of the functionals Q
and V' + ko@Q on the domain D defined at (4.25).

Theorem 4.3.1 Consider a sequence of functions u, € D, with u, — u in
L, as v — co. Then

Q) < liminfQ(u,), (4.40)
V(u) + koQ(u) < h,fﬁgif {V(u)+ KoQ(uy) }. (4.41)

In particular, the functional V + koQ is lower semicontinuous on D and D
is closed in L1.



4.3. LOWER SEMICONTINUITY OF GLIMM FUNCTIONALS 73

Toward the proof, we shall need

Lemma 4.3.2 For some constant Cy and every € > 0 the following holds.
If u € D satisfies !u(z) - '&l < € for some constant state 4 and all T in an
open interval I, then

/li(ﬁ)“PDu_/‘Pdﬂi
I I

for every ¢ € C.(;R), i=1,...,n.

< Coe /I 0| |Dul, (4.42)

PROOF OF LEMMA 4.3.2. By (4.12), at each point z where u has a jump
there exists a vector [;(z) such that

li(z) — I; (u(m—))l < C-lu(z+) - ulz—)|, (4.43)

Ei(u(z-), u(e)) = k(e) - (ula+) - u(z-), (4.44)

for some constant C' depending only on the system (4.1). We can now write

/wdm =/fi - Du, (4.45)

where [;(z) = l; (u(z)) at points where u is continuous, while ;(z) is some
vector which satisfies (4.43)-(4.44) at points of jump. In all cases, the as-
sumptions of the lemma imply an estimate of the form

|1:(a) — Ii(x)] < Coe.

'/li(ﬂ)'SODU—/SDdM S/

< Cos/lgof | Du.

Hence,

4(@) ~ 1) - ()] | Du(z)]

O

We can now prove Theorem 4.3.1. Let p; be as in (4.16)-(4.17) and
let p,,; be analogously defined, with u replaced by u,. By passing to
a subsequence we can assume that li)m {V(uy) + roQ(u,)} exists, that

V=00

uy(z) — u(z) for all z € R and that IDu,,] — [ weakly in the sense of
measures as v — 00, where /i is a non negative Radon measure. Now fix
€ > 0. Since the total mass of /i is finite, one can select finitely many points
Y1,...,yn such that

E({z}) <&, Vo & {y1,...yn} (4.46)
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We now choose disjoint intervals Iy = (yx — p, vk + p) such that

N

D AT\ {ye}) <+ (4.47)

k=1

Moreover, there exists R > 0 such that
U Ik - [—Ri R]: ﬂ’(R\ ['_R7 R]) <e. (448)

Because of (4.46), we can now choose points py < —R < n<--<R<p,
which are continuity points for » and for every u,, and such that either

Ph-1 < Y& < D, [Ph—1,p8) C I, (4.49)

for some k, or else
i(lph-1,p1]) <e. (4.50)

Call Jy, = [pp—1,ps]. By weak convergence, for some 1, sufficiently large one
has

IDuU'(Jh) <eg whenever Jy N{y1,...,yn} =0, v>vp. (4.51)

Moreover, if (4.49) holds, from (4.47) it follows

1Dl (n\ {ui}) < A0\ () < - (4.52)

On the other hand, if (4.51) holds, then the oscillation of u, on the interval
Jy is very small. Indeed, for every z,y € J, and v sufficiently large,

uu(z) = uy(y)| < C|Duy|(Jn) < 26(Jy) < 2e. (4.53)

The same is also true for u. Set 4y = u(py). By pointwise convergence and
(4.53) it follows that

{u,,(a:) - ’ﬁhl < CE, Iu(:z:) - ﬂhl < Ck, z € Jy, (4.54)

for all v sufficiently large. Hence, by (4.42) we get

/sodui—/ Py,
Jn Jp

< Coe /J 0/(1Du] + |Du,|) +

/J l; (ﬁh) . go(Du — Duu) , (4.55)

for all p € C(Jy; R). By weak convergence and by taking the supremum
over all [p| < 1, we obtain

i (Jn) < lim inf |10, (Jn) + 2Coefi(Jn). (4.56)
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On the other hand, inserting ¢ = 1 in (4.55) we obtain

1s() = ()| < oz [ (1Dl +1Du,]) +

Jh

/Jh 1:(8) - (Du — Dw,)|.

(4.57)
Letting v — oo and using (4.56) this yields
_ 1
i () = 5 [Ial(n) = pi(n)
< lim inf tyi(Jn) +2C0efi(Jn). (4.58)

We now take care of the intervals J; containing a point y;, of large oscillation.
For each k =1,...,N, let h = h(k) € {1,...,7} be the index such that

Yk € Jp = [Ph—1, Dh]-

For each v > 1 consider the function

uy () if & Uy,
ﬁ'u(x) = ul/(ph(k)—l) if z€ [ph(k‘)—la yk‘]a (459)
u, (pp) if = €y, pr)-
Observe that each 4, is continuous at all points py,...,p,. Call P, @ =
I,...,n, the corresponding measures, defined as in (4.16)-(4.17) with u re-

placed by 4,. Clearly fi,; = p,; outside the intervals Ju(k)- By property
(P2) it follows

Qi) < Q(uwy), V(dy) + 60Q() < V(uwy) + roQ(uy).  (4.60)

Since v, — u pointwise, by (4.52) for each k one has

i ({yk}) — ﬂu,i({yk})l
Ei(u(ye—), ulyk+)) — E; (Uu(ph(k)—l):uu(ph(k))).
<C- {|U(yk~) — w(Pnge)-1)| + |w(Prr)=1) — i (Prgry-1)]

Fulyit) = uleaw)| + [u(pa) = wloage)| |
<C-— (4.61)
for each k = 1,..., N and all v sufficiently large. By construction we also
have

|l (They \ {wr}) =0, il (Tngey \ {we}) < ;\7 (4.62)
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Recalling the definition (4.19) and using (4.56), (4.58), (4.61), (4.62) and
(4.48), we obtain an estimate of the form

Quy) > Q(a,)
> > 0D (gl X Val) (n % J0) + 325 (87, % i) (i x Jo)
i<j h<t i htt
> 30> (gl % Jsal) (Jn x o) + DO (w7 % |psl) (T x Jo) — Ce
1<j h<{ ey,
2 Q(u) — C'e, (4.63)

for suitable constants C,C’ and all v sufficiently large. Since € > 0 was
arbitrary, this establishes (4.40).

By the second inequality in (4.60) together with (4.56), an entirely sim-

ilar argument yields (4.41). a

By the property (P3), the above arguments imply also the lower semi-
continuity of the weight functions W in (4.31).

Lemma 4.3.3 Consider a sequence u, € Dpr, converging to some function

u € Dpr, in the L' norm. Then foreveryz € R andi=1,...,n one has
u Uy
W; (z) < liminf W, " (z). (4.64)
. V=00

The limit in (4.64) is uniform for z bounded away from the jumps of u.
More precisely let J be an open set containing all points z; < -+ < zy
where u has a jump. Then, for each € > 0, there exists p > 0 such that
every w € Dpy, with |jw — ullL1 < p satisfies

Wi(z) < WP(z) +¢ zgJ, 1=1,...,n. (4.65)

4.4 Weighted path lengths

In the following we consider the domain D of functions with small variation,
introduced at (4.25), and the weighted norms on generalized tangent vectors,
introduced at (4.30). We assume that the constants &y, «; in (4.25) and (4.31)
are chosen so that the properties (P2)-(P3) hold.

Theorem 4.4.1 Let vy, : [a,b] —= D, v > 1, be a sequence of piecewise
regular paths, uniformly converging to a piecewise reqular path . Then the
corresponding weighted lengths satisfy

”’Y“* < liylgigf “')’V“* (4-66)
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To prove the theorem, it is not restrictive to assume that v is a regular
path on Ja,b[. Let the functions u® = () have jumps at the points z¢ <
e < :17‘]9\,, and uniform Lipschitz constant L outside the jumps, so that

[ul(z) —uP(y)| < Llz —y|  whenever [z,y]n{z?,... 2%} =0. (4.67)

Moreover, by the approximation Lemma 4.2.2, we can assume that each 7,
is a finite concatenation of elementary paths.

Let € > 0 be given. The proof will be achieved by constructing a fam-
ily of continuous functionals ®p : Dpy, — R, 6 €]a,d[, satisfying the two
conditions:

(C1) For some constant C, independent of ¢, the following holds. For every
8 there exists p; = p1(0) €]0,¢] such that

_ _ f+¢
By () — o5(uf) > /9 1@, d0 - CreC, ¢ € 0,pu).
(4.68)

(C2) For some constant Cy, independent of €, the following holds. For every
0, there exist constants ¢, p2 €]0, €] such that

] ] e,
(@) — o4 (af) < (1+025)/§ H(ﬁ",g") L, 0, (469)

for every ¢ € [0, po] and every piecewise elementary path 7 : 6 a?
with generalized tangent vector (f),é), satisfying Hue — 116'||L1 < 6 for
all 6.

Let us show that the existence of these functionals implies (4.66). The family
of intervals

{[é, G+¢]; 0€lai, 0<C<min{p1(§),p2(§)}} (4.70)

is a fine covering of ]a, b[. Hence by Vitali’s Theorem [24] there exist finitely
many pairwise disjoint intervals [6;,6; + ¢;], for j = 1,..., M, with ¢; €
]0,,0(93')], such that

M 64 b
7€) o 4 2,€%)]|,0 0 €. 4.
>, 16t Eed > [ Ol -e

Let now v, : 8 — u% be a sequence of piecewise elementary paths with
tangent vector (vﬁ, 53), uniformly converging to . By the continuity of the
functionals @4, and the uniform convergence u? — uf, for all v sufficiently
large we have

20, () = 4, (%) c

<3z
(4.72)

<o e W) - o ()
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”ug —u ” < min {4(6;),. ,0(0u) }, 0 € [a,b). (4.73)

Using (4.69), (4.72), (4.68) and (4.71) we now obtain
M 04
el > > /o I
=/

M
u0 +§ 9;
> TG 2 [0 007) ~ a0, (62
1 A 2¢
g o [9(479) — o0 () - 2]

1 M
>
T 1+ Che Z [
J=1
1
1+ Che

v, &), 6

=

v

05+
[ 16 6l - crc; - 2]

J

2

[(II’YH* —¢) —Cie(b—a) — 25}. (4.74)

Since € > 0 was arbitrary and the constants C1,C; do not depend on &, the
relation (4.66) is proved.

4.5 Completion of the proof

To complete the proof of Theorem 4.4.1, we need to construct suitable func-
tionals ®4 satisfying the conditions (Cl) (C2). Roughly speaking, ®g(w)
should measure the weighted distance between w and uf. Since we do not
have an explicit formula for this distance, we resort to a suitable approxi-
mation.

Let € > 0 be given. For any  €la,b[, let Z; < --- < Zy be the jumps
in u® and define u¥ = ul (24 +). Choose

n=n(0) €]0,¢] (4.75)

so that the intervals I, = [, — 71, T + n] are mutually disjoint and

x)' dr <e. (4.76)
i=1 a=1

Define the functional ®5: Dpr, — R by setting

B5(w) = / o(z, w(2)) de, (4.77)
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Sr JE (W (z),w

9@ W) =\ T IF (0, @)W, (5a) 3 €IF = e, Tatr],
_ ul
Z?:l Ji (ue(g:),w) W, (z) if z¢&Ualy,
(4.78)
where J;(u,v) = ]Ei(u,v)] and
— if ]E,(u;,uj)l < e, we let J¥(wi,ws) = 0;
— if ]E,(u;,uj;)[ > g, we define
J'a(wl ’LU2) - { 0 if Sgn(Ei(wlaw2)) # Sgn(Ei(U;,Ug)),
¢ ’ [Ji(wy,w2) — €]+ if sgn(Ei(wi,ws)) = sgn(F;(ug,ul)).
(4.79)

Here [t]+ denotes the positive part of ¢. Observe that @g(ug) = 0.

PROOF OF PROPERTY (C1). First of all take p; (0) small so that z,(6+¢) €
Iy for all ¢ € [0, p1]. Outside the intervals I, from part a) of Lemma 4.2.1,
if py is small enough, we have

n B o B ~ 9
> CZ/ vf(az)le (z)dz - C 'ueﬂ(a;) —u¥(z)| dz +

=7 JR\Uala R\Ua Ia

-C ’ug"L((a:) - ué(x) - (vé(w) dz

R\Ua Ia

n . uf _ _
20y [ e @0 s 1) (e x

= JR\Uala 2€R\Ualo

X /R\uala [lué-i-C(g;) — ug(a:) - C’Ué(g;)l -{—C; vf(w)l} dz — CeC

vf(x) ]Wf(m) dz — CeC. (4.80)

Denote with G, ﬁhe set of indices ¢ such thait IE'i(u;, u;r)| > €.
Assume that &, = &, (9_) > 0, the case £, < 0 being similar. We can

choose p1 (@) small enough such that J; (u§+4 (z), ug(x)> > ¢ for all i € Gy,

T € [Za,Zq +&al] and ¢ < py. By (4.76), and by making (if necessary) p;
smaller, it follows

> / e (47 (2), 2 (@)) W (@) do

1€G, Y Ta
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Ta+Eal u? Tatbal |
> Z [ Ji(ug, ul)W, (Z4)dz — CC Z _ vf(m)ld:z:+
1€Gq Ta 1€Gq Ta
Zatbal /) -
- c/ (]u9+<(z) —ug]+ |u"(a;) —uf ) dz — Ce(
Zo

Z Cécx zn: Ji (UE,UX)W:‘;(%) - CCi/I vf(a:)' dr — CEC (4.81)
=] Ve

=1

By (4.80)-(4.81) it follows

25(u”) 2 ¢|0, %)) - C¢ Zn: i/z

i=1 a=1

vf(x)l dz — Ce(, (4.82)

hence by (4.76) and part c¢) of Lemma 4.2.1, (4.68) follows. 0

PROOF OF PROPERTY (C2). Tt is sufficient to prove that, for some po(0)
small enough and all 4 [9, 0+ po (0) ], one has

d@é(ﬁg) < “ (ﬂeygo)

70 1+ Ce), (4.83)

ﬂ"(

provided that the distance [|@® — u%|| remains sufficiently small. For a.e.
point @ the map 8 — @ is an elementary path in a neighborhood of §. So
fix one of these points 6. Assume that 59 = (0, e ,0,55,0, e ,O), with §~,3
being the shift corresponding to a discontinuity of @f located at point zg.
There are three cases.

Case 1: z3 € I for some a = 1,...,N. Assume Eg > 0. Hence we can see
that on a right neighborhood of § we have

@2(0) = @ (z) + (@~ — a™) (4.84)

Xlagag+Ea0) (=),
for suitable states ~, 4. Notice that we can also assume that the Riemann
problem (%™, %) is solved only by one wave belonging to some characteristic
family, say the j-th one. Moreover,
dog(w) . & g g W
d(H ) =¢g Z (Jza (2 ,ug(a:g)) - J3 (u+,u‘9(:c5)))Wi (Za).  (4.85)

i=1

it

Observe that ”(59,50)”&9 = g"ﬂ J; ('&‘,'&"‘)Wj (zg), so we will show that

n =

> (2 (5wl (2p)) - Jf(ﬁ*,ué(xﬁ)))Wiuo(ia)
1=1

< (1+Ce) J; (@™, aN)W, (zg).  (4.86)
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Call B, the set of indices ¢ which belong to G, and satisfy J& (@7, u%(zg)) —
JE(aT,u(z5)) > 0. Notice that the terms corresponding to indices 1 & B,
do not give any positive contribution to the sum in (4.86). So take i € B,.
Moreover, given €; €]0,¢], it is easy to see that in any fixed small interval
there exists a point 7? such that

!ﬂe(yg) - ué(ya)l <er,  0e[0,0+ pa, (4.87)

if ”ﬂg — uHH i < 0, with pg and ¢ sufficiently small. So we can find yg' close
to the right of x5 and y5 close to the left of Z, such that they are continuity

points for %%, such that ‘ﬁe(y;) - ug(x,@)’ < ey, !ﬁe(yg) —ug | <ep, and
B (57,67 (29)) - Be(am, @) | < e/, (4.89)
B (@, % (20)) - Be(a*, )] < /4, (4.89)

forallk=1,...,n. Call iy =@’ (y3).

Assume now that E;(ug,u}) < 0. SinceJZ (%, ué(mﬂ)) —Jg(at, ué(mg))
> 0, it follows that Ej(@~,u?(zg)) < —e. There are two subcases.
Subcase a): E;(at,uf(z5)) < —¢/4. Hence E; (@*,4°(y5)) < 0 and one can
prove that

T (v (zp)) = I (aF, w0 (25)) < i (@, 00 (25)) = s (@, ul (z)). (4.90)

In connection with @, define the following functions

u*(z) = uz (v5) if vz <2< Za, (4.91)

@ () if 2<y; or 2> yg,
uw*(z) = { @l(zp—) if Y <z <uzpg, (4.92)
@ (zg+) if zp<z< y;.

By the semicontinuity of the weights and properties (P1)-(P3), if we choose
¢ and po sufficiently small, we can see that for every i =1, ... s

9- u*
W, (Ta) SW; (Za) +e, (4.93)

7

W, (@) W, (2g) < W (25). (4.94)

1 1 1
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Then from (4.85) and (4.93)

(Ji (ﬂ_,ug(zg)) —J; (ﬂ+, ug(:cg))
=§~5(Ji (fb—, ué(mg)) — Ji(ﬂ—‘h, U

65 (Ji(@7, v (2p)) = Ji (5, 47(ep)) (Wi (Za) - Wi”'(m)
=B + By, (4.95)

N—
ﬂ.g
W
e

)
—
8
»
N
e
N
SO
*
~
81
)
N
+

and
By < Cégla —it|e < C“(fﬂ,é")

&,
uf

B = éﬁ (.fi (ﬂ_,ﬂ;> —J; (ﬂ’*—,ﬁ;)) Wiu* (Za) +§ﬁ l:(.]i (ﬂ“,u%mg)) +
—Ji (ﬂ‘,ﬂ})) 1 (Ji (aﬂa;) —J; (ﬁ"‘,ué(ﬂ?ﬁ)))} W (Za)
=B|+B]. (4.97)

We want to estimate BY. First we notice that for uy, Uz, u3 € Q and
1=1,...,n, we have

Ji(ur,ug) — Ji(uz,us)

ld
= /0 o [Ji(ul,sug +(1—3s) U3)] ds
1
= (ug — U3)/ 0o J; (ul, sug + (1 — s) ’1.1,3) ds. (4.98)
0
This implies

L 1 _
B < & (a) ~ 45| W (20| [ [0t (57, ou%(os) +

+(1—s)a (yg)) — Oy J; (u* sul(zg) + (1 — ) @ (y}'))} ds
= &olu (o) ~ ()| [~ - aF | W, () x

1 p1 _
X / / 0102J; (cnl_ +(1—o)at, SUH(CCﬁ) +(1-s)a’ (yg)) dsdo
0 Jo

< Cégla~ —at| |u9(mﬁ) _ g (y;)l < 0” (59,59) e (4.99)
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Finally we want to estimate Bj. Call E; = E;(a~,4}), B, = E;(a~,a%),
E! = E; (u+ uﬁ) and the same for the J’s. Define also W; = W*"(z,) and

W/ = W (z5). Recall now that E;, Ef <0, J; — Ji’ >0 and that E! = O
for all 4 75 J- Hence if ¢ = j from Glimm estimates we get 0 < .J; — J i
—E;+C3A(E', E"). If & is sufficiently small, this implies that B <0 hence
J; = —E. If, instead, i # j we get J; — J < C3A(E', B").

Subcase b): E;(a+,u’(z5)) > —e/4. Hence E; (@%,@%(yf)) > —e/2. I it is
positive then

JE(aT,u (a:g)) - J(aT, ué(zg))
= J;(i",u (a:ﬂ)) —e < Ji(a,u (zﬁ)) (4.100)

With the notations introduced before if 7 = j we have J; < E’ B +
C3A(E', E") < —~Ej + C3A(E', E") hence B} <0, while J < C’3A(E’ E”)
ifg # 7.

If, instead, 0 > E; (ﬂ"',ﬂg(yg)) > —€/2, we get

JE (a7, u (zﬁ)) J?’(ﬂ+,u9(:c5)) < Ji(87,u (:rﬂ)) Ji (4%, u ( ),
(4.101)
so we recover (4.90) and we can conclude as in Subcase a).
The case E;(uy,ul) > 0 is treated in a similar way.

In both cases, one can prove that J' (W W) < —k1A(EWE"), if
Ko > (3. By the previous analysis it follovvs

> (J = IOWi — W]
1€ By
<Y C3A(EE"YWi + (J; = Jj — J)W; + J4 (W — W)
1#]
< A(E, E")(Cy + Csk180 — k1) < 0, (4.102)

if kK1 > 204 and 6 < (2Cs)~!. Finally, this together with (4.94) implies
(4.69).

Assume now that ég < 0, hence in a neighborhood of

a8 (z) = @¥(z) + (@t — @~ (4.103)

X[:Eﬁ +<§g AQ,.’L‘ﬁ] (.’E) ?
and

]

15512( (2)) = I (a7, u(20)) ) W, (7). (4.104)
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Proceeding as before, we will show that

> (J2 (@ (ep) — (i (w0) )W (2
=1

< (14 Ce) Jj(a',a+)Wj (zg).  (4.105)

We can make an analysis entirely similar to that before and show again
that (4.83) holds.

Case 2: z3 € I;. Then, if for example éﬁ > 0, it is easy to show that
dd;(a? . . . 5 . u
1) _ &y (e a) - I (P ) )W ). (4100

=1

We can treat this case as Case 1.

Case 3: z3 € F = R\ Uyl,. We want to show that also in this case (4.83)

o 9
holds. Since u? and Wiu (z) are continuous on F, by assuming for example
that £ > 0, we get

dos(@®) 1 restésh ™
do S}SL%E/% 2
=1

5 i

= &) >_

=1

and the same is true if instead £5 < 0.
As in (4.87) we can prove there exist points Y5 < zgand y; > zg, close
to zg such that

J; (ué(x),a—) S (ug(x),fﬁ)

6

W, (zg), (4.107)

2

J; (ug(xg),ﬁ') —J; (ug(:vﬁ),fﬁ)

@ (y5) = v (wg)| < ex. (4.108)

Define u* and v* as in (4.91)-(4.92) with Z, replaced by zg. By (P2)-(P3)
and part a) of Lemma 4.2.1, if we choose § and p2 sufficiently small, we can
see that

g

u u* u u* ,,19
Wi (zg) SW; (zp) +e, W, (zg) <W; (z5) <W, (z5). (4.109)

1 1

We observe that since u’ is continuous at zg, if €; is small enough, the
Riemann problem (&9 (yg),ﬂg (yg)) 1s solved by waves with small strength,

say less than e. Call now ﬁ§ = % (y¥).
By proceeding as in (4.95)-(4.99) one gets

L < ol 3= o (55.7) - a(55.)

E.
af

W, (z) + C’H(ﬁ",é")
(4.110)
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Define E; = E! (ﬁg,ffr), E! = Et (ﬂg,'&“), E! = E*(47,4%) and the same
for the J's. Also call W; = W (z5) and W/ = W}* (z5). Recall that we
can assume J;' = 0 for 1 # j. Now we want to show that, for a suitable

choice of x; and &y, the following holds

SO = Bi|Wi < WL+ Ce). (4.111)
1=1
By (4.14) one gets ]JZ’ - Ji] < J!'"+ C3A(E',E") for alli = 1,...,n, and

since the waves in the Riemann problem (ﬂe (yﬁ ),ﬂe (y})) are very small,

it follows
Ji (W; = W]) < CeJ} — ki A(E', E"). (4.112)
By (4.111)-(4.112) we get
n
SO = |- Jw)
=1

< 3ot Wt (195 = | = 71 ) W 3 (W = )
i3
< Cé’;‘J;II/VJ” -+ A(E,, E”)(C4 + CsK100 — K1)
< CeJ/Wy, (4.113)

if k1 > 2Cy and &y < (2C5) 1. This together with (4.109) implies (4.83). O
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