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INTRODUCTION

This thesis contains part of the author’s researches undertaken during the last few
years in collaboration with S. Terracini and V. Coti Zelati, under the supervision of Prof.
A. Ambrosetti. It is devoted to the application of variational techniques to problems of
existence of periodic solutions to singular Hamiltonian systems.

These are systems of ordinary differential equations which can be written in the form
(1) —&(t) = Vo F(t,2(t)),

where F': R x Q2 — R is a regular function and Q@ C RY, with N > 2, is an open set.
The potential F' is said to be singular because we suppose that

2 - — oo
(2) [Lim F(t,z) = —oo;

most of the times we shall assume that @ = R\ {0}, so that the potential becomes infinite
at the origin.

The fixed period problem associated to (1) consists in showing that for every positive
number T (usually the period of the function F in the first variable) there exists a classical
C? solution z of (1) such that (¢t + T) = z(t) for all ¢.

In the fixed energy problem one looks, given a time-independent potential F and a
number h, for a periodic (the period is unknown) solution of (1) satisfying the energy

conservation

() + F(a(1)) = h.

From the point of view of classical mechanics, system (1) describes the motion of a
particle located in z(¢) € RY at time t and moving in RY under the force field given by
V3 F(t,z); condition (2) expresses the fact that the potential presents a singularity at zero
of attractive type. |



CHAPTER O

MOTIVATIONS AND OUTLINE OF CLASSICAL RESULTS

In the last few years there has been quite a large increase of interest towards the fixed
period and the fixed energy problems associated to singular potentials, mainly due to the
new approach derived from their variational structure. Indeed, as it is easy to see, classical

T-periodic solutions of (1) are critical points of the action functional

T T
(4) I() = 5 /0 () dt — /ﬂ F(t, o (t))dt

in the set

A={z e H(SY;RYN)/z(t) #0 Vte S'}.

Here we denote by H*(S';RY) the space of T-periodic functions such that fUTli:(t)lzdt +
ST |2(t)2dt < +o0.

In order to understand what kind of difficulties one has to face in the study of critical
points of the functional (4), it is enough to consider the model problem where F(z) =

—ﬁ, a > 0; in this case the associated functional is I : A — R defined as

T T
(5) I(z) = -;—/0 |a':(zt)|2dt+/0 [z(i)|adt'

One realizes at once that inf e I(z) = 0 (as can be seen by taking a divergent sequence of
constant functions) but the infimum is never attained, since the term fOTﬁlT;dt is always
strictly positive. It is therefore hopeless to look for minima of I,: critical points must come
from other variational principles. The search of these principles has characterized the first
papers concerning these problems; we recall here the pioneering work of Ambrosetti and
Coti Zelati, [2], from which there followed an abstract result of Fadell and Husseini ([25])
on the category of the free loop space. Since then research in this field has received a

powerful push and a deeper understanding of the variational properties of the solutions of
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Probably the most familiar example of singular potential of attractive type is given by
the Newtonian potential F (z) = -ﬁ, a > 0, which rules the classical theory of gravitation
and is therefore present in all of the most important problems in celestial mechanics.

In this case the fixed period problem becomes

(5 o

2(t+7T)=z(t) Vi
This problem was solved by Newton himself by the introduction of the main concepts
of calculus. He determined all the solutions of (3) and gave thereby a proof of the three
Kepler’s Laws. As is well-known all the T' -periodic solutions of (3) form a family of ellipses
having the origin as one of the foci. This family includes the circular solutions and the

degenerate collision solutions, that is, segments emanating from zero and travelled back

and forth.

In this thesis we are concerned with the existence of periodic solutions to (1) when

the potential F' behaves in some sense like —# near the origin, for some o > 0.

The results gathered in this thesis are mainly taken from the papers [22], [23], [39],

[40], to which we also refer for further references,
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(1) has given rise to very interesting results. Probably the most successful tool providing
critical poinfs of the functional I is the minimax method, in which critical levels appear
as inf gep sup, ¢ 4 I(z), for some suitable classes I' of subsets of A. The application of
variational methods has begun with the works of Bahri and Rabinowitz, [10], and of Greco,
[29], who constructed natural, though not trivial generalizations to higher dimension of

some earlier results by Gordon, [27], [28], valid only in the planar case.

The first difficulty encountered when working with a minimax method is the fact that
functionals like (4) do not satisfy the Palais—Smale compactness condition at some levels
(e.g. the level zero for the functional I,), so that particular care must be taken in order
to avoid the bad levels. The lack of compactness in the study of critical points of the
functional I would justify by itself a technical interest in this kind of problems. However
there is another main structural difficulty in the variational approach, and precisely the
fact that one must work in the set A, which is open (and dense) in H!(S!;RY). Since
variational methods provide sequences of approximate solutions (zn)nen (Which converge
to a solution if the Palais—Smale condition is satisfied), it may happen that z, — = €
OA = {z € H*(S;RN) / z(t) = 0 for some ¢t € S*}. In other words, the limit orbit may
cross the singularity of the potential. We speak in this case of a collision solution, since,
thinking of Newton’s Law of Gravitation, this orbit represents the moving body falling on
the fixed one located in the origin and generating the field V F(¢,z). Collision periodic
solutions are physically meaningless, since one does not expect planets that intersecate
each other or bounce. These solutions have nevertheless a relevant mathematical meaning
and it is for this reason that Bahri and Rabinowitz have introduced in [10] the notion of

generalized (collision) solution.

A consistent part of the papers appeared in the last few years are dedicated to the task
of finding methods to avoid the collisions. Roughly speaking, the only general procedure
applicable to some classes of problems consists in showing that no collisions are possible
at certain levels, and therefore any minimax argument which can be shown to produce a
safe level is liable to yield a classical noncollision solution. Various types of conditions on
the potential have been introduced in order to obtain these estimates on the dangerous

levels. The most popular and successful of these conditions is the so—called Strong Force
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assumption, appeared for the first time in the paper [28] of Gordon. A potential F'is said

to be a strong force if

Je > 03U e CYRYN \ {0};R) such that
(SF)
—F(t,z) > |[VU(2)]? in S*x{0<|z| <e}.

The main consequence of the (SF) condition (as is shown in [28]) is that if F' is a strong
force then inf,epa I(z) = +o0; therefore any minimax procedure for which some compact-
ness can be checked provides a noncollision solution. Gordon’s condition has been used
repeatedly in the literature by many authors. In [2] for example, Ambrosetti and Coti

Zelati obtained the following result.

Theorem 0.1. Suppose F' € C*(R x Q;R) is T—periodic in the first variable and satisfies
(SF) and

(F1) 3R > 0 such that F(¢,z) <0 V|z| >R,
(F2) F(t,z) and VF(t,z) tend to zero as |z| — oo, uniformly in ?.
Then (1) has infinitely many T—periodic solutions.

We also recall the existence and multiplicity results both for the fixed period and
for the fixed energy problems with strong forces contained in [2], [10], [14], [20], [29],
[33]. The major drawback in the use of (SF) is the fact that if F behaves like — 1z near
the origin, then necessarily « > 2: the strong force condition does not cover the case of
the Newtonian potential (a = 1) and its perturbations. This is the reason which has led
some authors to seek alternative assumptions which guarantee the existence of noncollision
solutions. The first step in this direction was moved by Degiovanni and Giannoni in [23];
they introduced a pinching condition on the potential, which consists in assuming that the
inequality T;I_‘T < —F(t,z) < I-:cél—‘; is verified for all ¢ and z # 0, with a and b sufficiently
close, depending on . This condition allowed them to treat the case o €]1,2[. More

precisely they proved
Theorem 0.2. Let F € C}(RN \ {0};R) satisfy

VF(z) — 0 as |z| — oo.
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Then there exists a nondecreasing lower semicontinuous function % : [1,2[— R which

verifies (1) = 1 and lim,—.2 ¥(a) = +oo such that if

with -3 < (), then (1) has at least one T—periodic classical solution.

Variants of the pinching condition were successively used by Terracini (see [44]-[47])
in the study of existence and multiplicity of noncollision solutions for the fixed period
and the fixed energy problems. The use of the pinching inequality has produced many
interesting results but, as one immediately sees, it is a global hypothesis on the potential:
F must be close to a radial potential also at infinity, while problems should depend on
the behavior of F'in the neighborhood of the singularity. To complete this brief outline of
techniques we also recall the paper [4], where mutiplicity of noncollision solutions without
strong force or pinching assumptions was proved by Ambrosetti and Coti Zelati using a

perturbation technique.

This was, very roughly speaking, the state of the art at the time when the author’s
researches began. We have recalled so far the principal approaches to problems with
singular potentials in order to explain the motivations which have led us to the results
contained in this thesis. We shall be rather sketchy here, referring the reader to the
introductions of the single chapters for a more detailed exposition.

First of all, of the two main difficulties mentioned above, namely the lack of compact-
ness and the problem of avoiding the collisions, we have directed our efforts towards the
latter. The core of our results is an attempt to find new conditions leading to noncollision
solutions. These conditions should cover the case of the Newtonian potential (actually the
whole interval a €]0,2[) and should be weaker than the pinching inequality. The majority
of the results contained in this thesis are intended to show that since the collision is a
local phenomenon, there must be local hypotheses on the potential in the neighborhood
of the singularity which yield classical solutions. This is actually the sense of Chapter 1,
where these hypotheses are formulated, and corresponding existence results are proved.

The analysis of the local behavior of the orbits near a collision, carried out in the first
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chapter, has allowed us to to increase the range of applicability of our assumptions to
broader classes of problems, all of them discussed in the subsequent chapters. In order
to succeed in our task, we had to bypass at first the problem of the lack of compac£ness
mentioned above. In Chapter 1 this was done by assuming that the potential satisfies
some symmetry conditions, so that working in a suitable subspace of symmetric functions
the associated functional (4) turned out to be coercive. Solutions are then found as limits
of minimizers of perturbed problems which satisfy the strong force condition. The main
result of the local analysis of the collision orbits is the general principle that, in presence of
rather weak local hypotheses, the property of minimizing the action functional can never
be enjoyed by a collision function. This principle has been repeatedly applied in Chapters
3 and 4. In particular in the former it is used to prove the existence of a multiplicity
of noncollision brake orbits derived from a minimization procedure, while in the latter it
provides existence of a noncollision solution to the three~body problem in the tridimen-
sional space. We point out that the symmetry condition imposed on the potential is of
a purely technical nature in chapter 1 (where it could be replaced by an assumption on
the existence of minimizers) while it is essential in the analysis of the geometry of the
triple collisions carried out in Chapter 4. Lastly the local behaviour of collision orbits is
studied in Chapter 2, where some conjectures formulated by Bahri and Rabinowitz in [10]
are proved, and it is shown (with some ideas taken from [19]) that a generalized solution

found in [10] is actually a noncollision solution.

Remark. In this Thesis theorems, propositions, remarks, etc. are labeled with two
numbers, the first of which refers to the current chapter. Formulas are also labeled with
two numbers, but the first one refers to the section in which the formula appears; in this

way numeration of formulas restarts at each chapter.



CHAPTER 1

NONCOLLISION SOLUTIONS TO SINGULAR MINIMIZATION PROBLEMS

1.1. Statement of the results

In this first chapter we are going to prove the existence of noncollision periodic so-
lutions for some classes of second order Hamiltonian systems with singular potentials.

Precisely we shall study the existence of T-periodic solutions for the equation
(1.1) —& =VF(t,z)

where F € C3(R x Q;R) and T > 0 is fixed. Here Q = RV \ {0}, N > 2, F is T-periodic
in t, and VF(¢,z) denotes differentiation with respect to z.
The potential F' is singular in the sense that

(1.2) im F(t,z) = —oo.

z—0

The existence of solutions to this kind of problems can be derived from the minimiza-
tion of a suitable functional, the main difficulty being to avoid the “collisions”, that is, the
orbits which pass through the singularity of the potential.

In the last few years much attention has been devoted to these topics, especially in
connection to the variational nature of the problems. The variational approach has been
shown to be particularly successful in proving existence of one or multiple solutions both
for the fixed period problem (1.1) and for the fixed energy problem. As a matter of
fact, existence results have been given by Ambrosetti and Coti Zelati using a perturbation
argument in [4] , where they were able to locate multiple periodic solutions near the circular
orbits of a convenient unperturbed radially symmetric problem (we mention here only the

results concerning the “weak force” case). On the other hand, Degiovanni, Giannoni and
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Marino have introduced in [23] , [24] some global assumptions on the potential which
allow them to rule out the collision solutions by means of some estimates on the critical
level of the associated functional. Indeed the assumptions considered in their work are
suitable in order to guarantee that the infimum of the functional on the set of collisions is
larger or equal to the value of the functional evaluated on a particular noncollision orbit.
However in that paper only the case a > 1 was treated. The same kind of argument was
successively used, when a # 1, by Terracini (see e.g. [44] for a review of her results) to
obtain multiple solutions for the fixed period and the fixed energy problem.

The main purpose of this chapter is to show that in a symmetric setting one can
make use of local hypotheses on the potential (in some neighborhood of its singularity)
in order to obtain the existence of at least one noncollision solution, for every a €]0,2].
The arguments used here will provide orbits which remain only for a short time in the
neighborhood of zero where the assumptions are made, so that the method is not a plain
perturbation technique.

We remark that concerning the existence of periodic solutions of (1.1) in a non symmet-
ric setting there has recently been quite a large amount of papers. We address the reader
to [1]-[5], [7], [10], [17], [23], [24], [29], [33], [35], [43]-[46] and references therein.

We now begin by fixing some notation and by stating the main results of this chapter.

For a fixed F € C*(R x Q;R), with @ = RN \ {0}, we write
*

||

(1.3) F(t,z) = ——— + U(t,)

for some a > 0 and « €]0,2].

Concerning U we shall consider the following assumptions:

(H1) lim sup %—[-t]—(t,m) |z|¥ < 400 uniformly in ;
z—0

3C > 0 do > 0 such that

H2
(#72) lim sup |V2F(t,z)||z|*T?~7 < C uniformly in t;
z—0
t
(H3) dp > 0 such that l llim W—Uli—"m—)l <u uniformly in ¢.

11



Remark 1.1. It is easy to see that (H2) implies the following growth conditions at zero
(provided C is chosen large enough):

(1.4) limsup |VU(%,z)||z|*T'7° < C  uniformly in t;
z—0
(1.5) limsup [U(t,z)||z|*"° < C  uniformly in t.
z—0

Suitable conditions on the constant p appearing in (H3) will be imposed in the statement

of the results.

The main results are summarized in the following theorems. Although these are
formulated for N > 3, we shall show in the next section that the case N = 2 can be
treated as well, with similar but more restrictive hypotheses (see Theorem 2.1). As far as
N = 2, we recall that other results of this type have been obtained by Coti Zelati in [20]
in the casel < a < 2, and by Bessi and Coti Zelati in [16] for the N-body problem.

Theorem 1.2. Let F' be defined as above, for some N > 3, a > 0 and « €]0,2[. Suppose

that F'is T-periodic in ¢ and satisfies the symmetry condition
T
(S) F(t—}——z—-,—m):F(t,m) Vie R Vz #0.

Assume moreover that (H1), (H2), (H3) hold with x < (%)?. Then the problem
—% = VF(t,z) VieR

(1.6) z(t+L)=—2(t) VteR
z(t) #0 vVteR

has at least one solution.

Corollary 1.3. Under the hypotheses of Theorem 1.2, assume in addition that F' does
not depend on ¢. Then for every T > 0 problem (1.6) has at least one solution having T'

as minimal period.

Theorem 1.4. Let F' be defined as above, for some N > 3, a > 0 and a €]0,2[. Let
T > 0 and zg,z; € RY \ {0} be fixed and let A(zo,z;1) be the best Sobolev constant of

12



the injection of {z € H*([0,1];RY) / z(0) = z¢, z(1) = =1} into L?([0,1]). Assume (H1),
(H2), (H3) hold with p < A(z"’z‘) . Then the problem

_ = VF(t,z) vt € 0,7
(1.7) { z(0) = zo, =(T)=m
z(t) # 0 vt € [0,T]

has at least one solution.

Remark 1.5. Hypotheses (H1) and (H2) are obviously fulfilled when U is regular (of class
C?) in the whole of RY (and (H1) is trivially verified if U does not depend on t). Therefore
problem (1.6) has at least one solution whenever F(t,z) = T U(t,z) is such that U
is C? and verifies (S) and (U3) with p < (F)?.

In particular if we call U a regular perturbation when U € C%(R x RY;R) and
lim|z|—eo |[VU(t,2)| = 0, then the following result holds.

Corollary 1.6. Let N > 3, a > 0 and a €]0,2[. Let U be a regular perturbation
T-periodic in ¢ and such that (S) holds. Then the problem

— = — i~ VU(t,z) ViR
{z(t—}—T)——() VteR
z(t) # 0 Vie R

has at least one solution.

Solving problems (1.6) and (1.7) is equivalent to finding critical points of the functional

T T T
(1.8) I(z) = %/0 }:i:(t)izdt—{—/u ];(-%th-/o Ut o(t))dt

respectively on the sets
1 N T
={z € H (R;R )/z(t+§~)=~m(t), z(t) # 0Vt € R},

Ay = {z € H*([0,T);RY) / 2(0) = zo, 2(T) = z1, z(t) # 0Vt € [0,T]}.

In the settings of Theorems (1.2) and (1.4) the functional I is weakly lower semicontinuous

and coercive (due to the symmetry constraint and to (H3)) so that its infimum is always
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attained in A; and A, respectively. The main difficulty is thus to avoid the collisions, that
is, to show that the infimum is attained in A; and A,.

To this aim the main argument is the following: first we perturb I with a suitable
“strong force” term in a neighborhood of zero, thereby obtaining a noncollision minimum
for the corresponding functional; next we prove that any such minimum cannot interact
with the perturbation, and therefore is a critical point of I in A;,7 = 1,2. The principal
estimate consists in showing that if the minimum approaches too much the singularity,
then a small variation making the functional decrease can be found.

As a by-product of this approach we shall show in Section 1.4 that in each case one
actually has

infI < inf I, 1=1,2.
A; OA;

Remark 1.7. The two theorems can be proved with nearly the same arguments and the
same technical lemmas. An additional difficulty arises in the proof of Theorem 1.2 because
the variation mentioned above has to be symmetric. This is the reason why we shall prove

in detail only Theorem 1.2.
Remark 1.8. The sets A;, ¢ = 1,2 defined above are open and dense in
1 N T
Hy ={z e H(R;R )/m(t—l—-z—):——a:(t)VtEH}

and

Hy = {z € H*([0,T);R") / 2(0) = =0, 2(T) = 21}

respectively. Therefore A; and 9A; are to be understood in H;, 1 = 1,2.
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1.2. Locally radial potentials

In this section we prove Theorem 1.2 under the additional assumption that the poten-
tial is radially symmetric in a neighborhood of the singularity. This result will be used in
the proof of the general case in Section 1.3. However, in presence of local radial symmetries
the hypotheses of Theorem 1.2 can be weakened (and the theorem holds for N = 2 too),
so that next result is not just a particular case of Theorem 1.2.

According to the notations of Section 1.1 we suppose that F € C*(R x ;R), with
Q = RN\ {0} and we write it as

(2.1) F(tya) = ———+U(t,z) Vi€ER Yz #£0.

||
We consider the following assumptions on U:

Je > 03¢ :]0,¢] — R of class C* such that
(U1)
U(t,z) = ¢(|z|) VieR Vo< |z|<e

(U2) lim |4'(s)]s*T! = 0.

s—0

Remark that by (U2) ¢ also verifies im,—o |¢(s)]s® = 0.

Theorem 2.1. Let F be as in (2.1) with N > 2, a > 0 and « €]0,2[. Suppose U is
T-periodic in ¢ and satisfies the symmetry condition (S). Assume that (U1), (U2) and
(H3) hold with p < (F)?. Then problem (1.6) has al least one solution which minimizes I

n Al.

Proof. As we remarked in the previous section, we are going to find a solution of (1.6) as

minimizer of the functional

T T T
(2.2) I(a:):%/o |j;(t)|2dt+/u Iw(j)l"‘dt—/o Ul(t,z(t))dt.
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Because of the symmetry properties of F' and A; critical points of I in A; are solutions of
(1.6). Indeed if z is such a critical point then VI(z) -y = 0 for all y € Hy, so that VI(z)
is orthogonal to H;; however by symmetry, VI(z) € Hi, so that VI(z) = 0.

Assumption (H3) with p < (%F)? implies that the functional I is coercive in Hi;
indeed notice that by (H3) for every R > 0, there exists a constant Cr > 0 such that
|U(t,z)| < Cr+ £|z|* for all |z| > R and all ¢. This, together with (U2) implies that for
every z # 0 and every %, !—;117; —U(t,z) > —Co — £|z|?, for some constant Cy > 0; therefore
I(z) > %fOT[a'zlzdt— %folelz —TCy. Since by hypothesis the constant y is strictly less than
—,_71227, the best Sobolev constant of the injection of H; into L2, there exist positive constants

B1 and B2 such that
(23) I(z) > Bulle]l; — B2y, Yz € As.

We begin by perturbing I with a strong force term: for every § > 0 we take a function

fs € C*(]0, +co[; R) such that

. 0 fs>6
('L) f6(3)={_s—2 1f0<35525_
(i) fs(s) >0 Vs €]0,6].

It is immediate to check that such a function exists for every § > 0. Now we define
Fs € C2(RN \ {0};R) as F5(z) = f5(|z|) and we consider the functional
T

(2.4) Js(2) = I(z) /0 Fi(z)dt.

Since Fy verifies the strong force assumption ([29]) we have that infga, Js = +oo, and
therefore no critical point of Js can cross the singularity. Moreover (2.3) holds for Js as

well and hence we can conclude that there exists z5s € A; such that
(2.5) Js(zs) = zlé’lfl Js(z).

We shall now show that if § is small enough, then min,po 77|2s(2)| > 6 so that zs is

actually a solution of problem (1.5).
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To this aim we suppose that for every § > 0 the minimum zs found above satisfies

(2.6) tEIEI[lol,I:lr] lzs(t)| < &

and we show that this leads to a contradiction. In what follows we shall denote by C;, 7 =
1,2, ... positive constants independent of é.

Since zs is an absolute minimum for Js, in Ai, there exists C7 such that
(2.7) I(zs) < Js(zs) < Cy;

then from (2.3) it follows that there exist C3, (3 such that

(2.8) [|1Zs]]2 < C2
and
T a
(2.9) / dt < Cs.
o lzsl®

This shows in particular that there exists ¢’ < ¢ (independent of §) such that if 4. =
{t € [0,T] / |zs(t)| < €'}, then meas(4.) < Z. At this point we can take an interval
[to,%1] C [0,T] such that

i) |zs(to)| = |zs(t)] = €',
i) |zs(t)] <€ Vit €lto,ta],

iV) ltl — t0| < —21:,

we also remark that by (2.8)

ts
o= 81 < los(te) — aa(te)] < [ lialdt < Calts — o]

to

so that |¢1 — to] > Chs.

Repeating the above argument for 52—’ we can find another interval [sg, s1] Clto,?1[ such
that |zs(s0)| = |zs(s1)| = %', lzs(t)] < 52—' Vt €]so,s1[ and ts €]so,s1[. Exactly as above,
then, there exist Cs,Cs and C7 such that |s; — sg| > C5 [to — so] > Ce [t1 — s1| > C7.

17



Step 1: N > 3. Since the potential is radial in B, \ {0}, zs is planar in the same set, and
precisely it lies in the plane spanned by z5(%y) and #5(¢9). Assuming N > 3, there exists
a vector vs € SV~ orthogonal to zs in [to,t1]. We are going to use vs to show that there
exists at least one direction along which the second derivative of Js is negative definite.
To this end let &5 : [0,T] — [0,1] be a continuous, piecewise linear function which

satisfies

_ 1 if s € [s0,s1]
(2.10) & = {o if s ¢ [to,%1].

We extend &5 by periodicity to R and we set ws(t) = (fg(t) —&s(t+ %:))’U[;; then we have
Ts -+ ws € Aq.

We want to show that V2Js(zs)(ws,ws) < 0, (for § small) contradicting the fact
that z5 is a minimum point. To carry over this estimate we need to analyze the form of

V2Js(zs)(ws,ws). An easy computation shows that

T T . 2 T 2
V2J5(ma)(w5,w5) :/ l'zbé-lzdt + aa(a -+ 2) Mdﬁ _ aa/ J:Il:wlil-*—‘) di
0 0 0 ) el

|m5}a—r4

(2.11) T
—/ [VzU(t, xg)(wg,w,s) + Vng(mg)(w,s,’wg)]dt

Notice that whenever ws(t) # 0 we have |z5(¢)| < €', so that we can substitute U with ¢.
Now, it is easy to see that in B, \ {0},

(2.12) V2(1a])(¢,¢) = K(z)(z - () + & I('T')mz

for some suitable K € C°(B. \ {0};R), and for all ¢ € RY; moreover a similar expression
holds for V?Fjs. Thus, since by definition we have f;(|z|) > 0 for all z # 0 and z5(t) - ws(2)

for every ¢, we obtain, also taking into account the symmetry of z5 and ws,

2 ¢’ (]:val)
V2 J5(zs)(ws,ws) < —6— + o aa/ [m51a+2 / lws
<212 9 /tl Jwsl’ gy tl -—"5 (l“”{wﬁdt

G ||t t 25

(2.13)

Without loss of generality we can suppose ¢’ so small that by (U2)
ax (lwl) S

et o] T Jafet®
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for some S > 0 and for every z € B, \ {0}, so that
2. 2 < i
(2.14) VJs(zs)(ws, ws) < -te 25/ lmﬁl 4

This completes the proof since, due to the strong force condition, if f:ol |z5|2dt is bounded

and mine[y,,s,) |25(¢)| — 0, then

81 1 d
o |Ts|oT? t — 4o0.

This means that for § small enough, V2Js(z5)(ws,ws) < 0, and z5 is not a minimum point

for Js in A;.

Step 2: N = 2. The case N = 2 can be proved in the following way. By the estimates
until Step 1, one has that

/1[%|$5l2 2] Fs(|zs))]dt
(2.15) tot1
= /t 5 W+| — é(lyl) — Fs(ly)ldt
where

B = {y € H'([to,t1]; R?) / y(to) = zs(to), y(t1) = zs(t1), ly(t)] < &' VE € [to, 1]}

Now, since the potential appearing in (2.15) is radial, we can immerge the minimization
problem (2.15) in a higher dimension, that is, we consider a minimizer Z of the integral in

(2.15) in the set
Sy ={y € H'([to, :1;RY) / y(to) = zs(t0), y(t1) = zs(tr), |y(t)| < &' Ve € [to, 2]}

for some N > 3. Again, because of the radial symmetry of the potential and the constraint,
we can assume that Z is planar, and precisely that it lies in the same plane of zs, so that
Z minimizes the integral on the right-hand-side of (2.15) on Xy as well as zs. Therefore
we have zs = Z in [to,%1]. At this point we know from Step 1 that (for § small) Z cannot

interact with the perturbation. §
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We remark that the argument used in the above proof can be repeated with some

straightforward modifications (actually simplifications) to obtain the following result.

Theorem 2.2. Let F' be as in (2.1), with N > 2, @ > 0 and a €]0,2[. Let T > 0 and
zg,z; € RV \ {0} be fixed and let A zo,z1) be the best Sobolev constant of the injection
of {z € H*([0,1};RY) / 2(0) = zy, 2(1) = z1} into L2. Assume (U1), (U2), (H3) hold

with p < i(f,l—o,-;—gﬂl Then problem (1.7) has at lest one solution which minimizes I in A,.
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1.3. The general case

This section is devoted to the proof of Theorem 1.2. To this end we shall make use
of the results of Section 1.2, since we shall first work with a truncated potential which
is radially symmetric in a neighborhood of zero. Then we shall obtain a more precise
estimate of the behavior of the minimum found with the application of Theorem 2.1. With
the aid of these estimates we shall show that any such minimum cannot interact with the
truncation by the construction of a suitable variation along which the functonal decreases.

Throughout this section § is the radius of the neighborhood where the truncation is
located, and therefore § can always be considered smaller than one.

We now introduce the family of truncations that we are going to use in the first part

of the proof.
Let ¢ : [0, -}—oo[——+ [0,1] be a fixed cut-off function of class C* such that

0 fs<i
3.1 = — 2
(5.) o) = {9 255
and define, for every § > 0,
s
(3:2) ps(s) = o(3)-

With the aid of the function (s we construct the truncated potential: we set

a
|z[*

Us(t,z) = os(|z))U(¢, ), Fs(t,z) = — + Us(t,z)

and finally
1 T T
(3.3) Ii(#) = 5 / I3 [2dt — / Fs(t,a)dt, Ve € As.
0 0

Proposition 3.1. Let U satisfy (H1) and (H2). Then Us satisfies (H1) and (H2) too,

uniformly in 6.
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Proof. It is clear that (H1) is fulfilled. Concerning (H2), remark that since ¢ is of class
C? and its derivatives have compact support in [0,1], then there exists a constant d > 0

such that |Vos(|z|)] < £ and [V2ps(|z|)| < &. To complete the proof just consider that
[V2Us(t,2)] < Ut 2)|[V2ps(l2])] + 2IVU(t,2)[Ves(l2))] + [V2U (¢, 2)lles(|2])]. B

From now on the letter C' will denote different positive constants independent of §.
By the application of Theorem 2.1 (recall that Fs(t,z) = —’—afi—,; ifo< |z < g—) and

by Proposition 3.1 we can find an zs € A; such that

(3.4) zs is a local minimum for Iy,
and
(3.5) dC such that Is(zs) < C V6> 0.

Of course if lim supy_,o minyepo, 77 [z5(¢)| > 0, then at least one zs solves (1.6), and there

is nothing to prove. Thus we assume that

3.6 i i t)) =0
) i

and we show that this leads to a contradiction. To this aim we begin by showing that each
zs is “almost planar” in a neighborhood of zero independent of §.
Keeping in mind the dependence on §, we denote zs simply by z. Then z verifies the

motion equation

(3.7) —& = VFs(t,z), Vi e [0,T]

and the energy equality

(3.8) %I:&(t)]z + Fs(t,z(t)) = Es5 + [ Qa%i(s,m)ds vt € [0,7]
for some constant Fs € R. We remark that there exists C such that

(3.9) |Es|]<C  V§>0.
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Indeed, because of the growth assumptions on Us at the origin and at infinity and Propo-
sition 3.1, the boundedness of Is(z) implies that each of the terms fOT%|9':(t)|2dt, fOTl—fl-;dt,
f Us(t,z)dt and fo BU" (s,z)ds is bounded independently of §. Then (3.9) follows from
(3.8).

We now write ¢ = pf, with p = |z| and 0 = T%l Then

2 —
2" T 94,

so that by (3.7) and (3.8) we can write

1- 142 d ) .
o = Z(e-8) = o +o-3

(3.10) %—p =2Es+ (2 — a)— — 2Us(t,z) — 2VUs(t,z) - @ + 2/ %dt

Remark that by (H1), (H2) and Proposition 3.1, for every r > 0 there exists §, (independent
of §) such that

(3.11) |z|* |/ Qgidt — Us(t,z) — VUs(t,z) 2| <7 VO < |z| < .

Therefore there exist two constants 0 < a; < a < az independent of § such that, from
(3.10),

bz
0
for every instant ¢ such that p(t) < §.

(3.12) <spr< 2

RN
©

We now consider an interval [to,?1] such that
i) p(te) = p(t1) = bo,
i) p(t) < 6o Vit €]to, t1],
i) minsgpo, 7 p(t) = mingeps, ¢, p(2) = p(27).

and we prove some technical lemmas. These hold whenever &, is small enough (though

fixed) independently of 6.

Proposition 3.2. Assume that (H1), (H2) and (H3) hold. Then there exists a constant
S > 0 such that for every § > 0 and for exery z satisfying (3.4) and (3.5), there exists a

vector v € SN-1 such that

(3.13) v - I—z—l| < S|el”  VEE [to,t],
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where o is the exponent appearing in (H2).

Remark 3.3. If F5(t, ) were radially symmetricin Bj, \ {0} like it was the case in Section
1.2, then z5 would be planar in the same set, and (since N > 3) (3.13) would trivially hold
with S = 0.

Proof. The proof will be carried out for ¢ > ¢* (¢* is defined in iii) above). It will be clear
that by reversing the time the same arguments work for ¢ < t* as well.

We now write the motion equation (3.7) in the polar system of coordinates (p,6)
introduced above. To this aim we observe that # = 8 + 258 + pf and we recall that by
definition we have || =1, 8-8 = 0 and 6 - § = —|§|2. Multiplying (3.7) by 8 we have

a

(3.14) —p+pl6)* = O‘Pa+1

+ VUs(t,z) -6
and subtracting (3.14) multiplied by 8 from (3.7) we obtain
(3.15) ~260 — p(5 + |8]28) = VUs(t,z) — (VUs(t, z) - 0)6.

If we denote by V,Us(t,z) = VUs(¢,z)-0 and by VeUs(¢,2) = VUs(¢,z) — (VUs(t,z)-6)4,
the radial and tangential parts of VU;s respectively, then we see that (3.7) is equivalent to
the system

(3.16) {—ﬁ £ pIO]* =V, Us(t, 2)
—250 — p(3 + 86) = VoUs(t,).

Notice that the second equation in (3.16) can be written
d, 5 2142
(3.17) 5 (p76) = =p°16]°0 — pVoUs(t,2);

setting B = p%§ and B = | B| we have from (3.17) that

d B d - é
18 —B==.=B=—pVeU(t,z)~,
so that by (H2),
(3.19) [ii-B[< pIVoU§(t,z)| <
di 1= PN = et
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and finally,

(3.20) |B(t) — B(t*)| < /; pia dt.

We now want to estimate this integral. To this aim we multiply (3.12) by 2p” and we
integrate, obtaining
t

1 9 t . . .
/ = dt </ p°p2dt = “(t)pz(t)—p"(t*)pz(t*)—0/ p° Tt p2dt
t* e

k1
= PR TN ~ 20 [ g7t
t*

(3.21)

Now the function p? is always positive and has a global minimum at ¢ = t*; therefore
p2(t*) = 2p(t*)p(¢*) = 0, and the second term in the right-hand-side of (3.21) vanishes.
Moreover from (3.12) it follows p? > 0Vt €]t*,1,], so that p? is increasing in |¢*,;]. Since
,o'z(t*) = 0, we have 2p(t)p(t) = p.z(t) > 0 for all ¢ €]¢*,#;]. This proves that p(¢) > 0 in

Jt*,t1]. If we carry this information in (3.21) we obtain

(3.22) / t 20?10 dt < p”t()p(t) Vi Elt tl
i
Finally multiplying (3.8) by |z|?, we obtain, (using (H2)),

(3.23) z||2| < Clz| == = Cp 2> Vie|t*, ]
and therefore

d —a
(3.24) Zlel? =z -6 < olld] < Cap™F VEE U]

[NCR R

pp =

[NCRE

Using (3.22) and (3.24) we deduce the estimate

a—o

t
(3.25) / 201 dt < p°TL(E)p(t) < Cp 7 to(t)  VEelt ]
t*

Recalling the definition of B, we see that (3.8) becomes

1., 1B? oUs
PP = — — + Us(t E —;
5P +2p2 p+a( ,T) = 5+/0
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and therefore, by (H2),
(3.26) B? < Cp*>™™  Vte€ [t,t],

if &y is small enough.
We derive therefore from (3.20), (3.25) and (3.26) that
(3.27)
|B*(t) = B*(t")| < |BE)|IB(t) - B(t*)| + |B@)I|B(t) — B(t")| < Cp*~°*7 Vi e€lt™,ta].

We now take a vector v € SV =1 such that v - 8(¢*) = 0 and v - §(t*) = 0 and we set
#(t) = v - 6(t). If we multiply (3.17) by v we see that ¢ satisfies the Cauchy problem

PP 5P’ =—B¢+p°VoUs - v
$(t*) = (t*) = 0.

Let us denote h(t) = p*VUs - v; as usual, by (H2), we have

(3.28) {

(3.29) Ih(t)] < O,
Moreover from (3.29) and (3.25) we deduce that

t 3 t $ t
(3.30) / ——15/ l—}—b-(-:-.—)—{deSSC/ iz/ 1_ deSSC/
= P7Jee P = P° S P77 t*

and likewise,

t 3 2 2% -
(3.31) / -1-2- / 15°() f Ne? 4 as < ¢ p2e.
= P S p

t

o+1 .
p 9pdsscpa
P

With the aid of these two inequalities, we obtain the estimates on ¢ which we shall use in
the proof of the following proposition, given in the appendix. We denote by B2 = B(t*)?
and by B(t) = B2 — B(t)?; then the equation in (3.28) can be written

(3.32) p"’%p% = —Bié+ B(t)$ + h(t)

Proposition 3.4. Let ¢ be the solution of

PP p*¢ = —Bi$ + B(1)$ + h(t)
(3:33) { $(i%) = §(t7) = 0
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and assume that there exists a function f(¢) > 0 such that

(3.34) /ttpl—2 /t L"g—)’drdss]f(t) Vi € [t 1]
and

(3.35) /t /ts Iﬁ(T)If WATURY drds < %f(t) Vi € [t*, 1]
Then

(3.36) g <2f(t)  Vie[thh]

We can now easily complete the proof of Proposition 3.2, just by applying Proposition
3.4 with f(t) = Cp(t)° and by choosing § = 2C: we obtain

w i~
EE Tm_|| = |¢| < 2f(t) =2Cp°. 1
Next proposition provides an estimate of the time that a solution z takes in going
from |z(to)| = 8o to |z(s0)| = &2, when & is small.
Proposition 3.5. Let [sg,s1] Clto,t1[ be an interval such that

pls0) = plar) = 2

p(t) < 52—0 Vt € [s0,51]-
Then there exist constants C',C" such that
0,502%_61 > max{t; — s1,80 — to} > min{t; — 81,80 — to} > C’"(S:i"—a,
provided §; is small enough, independently of 6.

Proof. Let us set w = sg — to; then by (3.23),

2-a
[mHm[ S 050 2 5 Vt € [to,So].
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Integrating (3.12) we obtain

w fo 1 2-=a
3.37 — < —dt < pl < 052 -
(337) 5 < | < Cleliél < 08
24a
therefore w < C'6, % .
Since integrating the energy equation one finds by (3.37)

So S0 —a
/ |z|2dt < 0/ 2 a< 08,7,
to ||

to

then

fs22 = |z(s0)| — |z(t0)| < /t |2|dt < “’%(/ 6?) ¥ dt < Cwls,

ta

2ta
that is, w > C"6,? , the required estimate. Of course the same argument holds for

w=1; —s1 too. §

End of the proof of Theorem 1.2. In order to complete the proof of Theorem 1.2 we
begin by making a truncation of the potential as in (3.1)-(3.3). By means of Theorem
2.1 the corresponding truncated functional I; possesses, for every § > 0, a local minimum-
zs satifying moreover (3.5). Therefore zs is a noncollision solution for the associated
differential problem. As above, the problem is to show that z5 does not interact with the
truncation, or, in other words, that min,eo,77 |25(2)| > 6 when § is small. To do this we
are going to apply the results of the previous.analysis in order to show that, whenever
(3.6) holds, one can find a small variation of zs making the functional decrease.

Let us fix §p so small that all the results of the above propositions hold and consider
a cut-off function v € C*([0,T];R) such that

P(t) =0 - Vi [ty 1]

(3.38) zb(t).: 1 Vi € [so, 51]
P < 254 + 75).

Assuming (as is always possible) that #; — 1o < %, let us set

(3.39) ws(t) = {W)va Vit € [to, t1]

—p(t)vs VEE [to+ Z,t 4+ T,

28



and extend ws by periodicity to the whole of R; we recall that v € SN~ is the vector
associated to zs by the application of Proposition 3.2. Remark that by Propositions 3.2
and 3.5 it follows that

(3.40) |w5-ﬁgﬁ]§,ﬂwd” Vi € [0, T]
and

i
(3.41) /t ls|*dt < 05_55

0 0 2

We are going to show that V2Is(zs)(ws,ws) < 0 when min, |z5(¢)] — 0 as § — 0. This fact
will end the proof since at every local minimum I; has a positive definite second derivative.

From assumption (H2) we can estimate V2Is(zs)(ws,ws) as

(zs - ws)® T Jws/?
v? Ig(z:g)(wg,’wg / ]w5]2dt+0/ l pw) dt—CZA {$5|a+2dt:

2 i1 2
2 bs|2dt + 2 wdt—ﬂ)’/ wsl®
/;0 ls| + 01/ |25t 2 " |z5]|o+2

to

provided §g is small enough.

From (3.40), (3.41) and the last inequality, we deduce that

1 11 1 s1 1
. < - dt— / —_—dt
AV I6(z5)(w5,w5) < C““‘““‘(S%g -+ 03 lo I$5|a+2——20‘ 04 o !;z;gla-i-z
0

s1 C 131 03 81 04
—_—dt ——————dt ——dt — ——dt
i /0 |z5la+2 20 +/ l:l:gl a+2—-20 + /31 !x61a+2—ga la !336|a+2

Now from Proposition 3.5 we derive the estimate

so 1 t 1 1
——————-———dt—{—/ ————dt < O ——
[g |m5]a+2—20' o [335|a+2—20 50% H

S1 03 81 CI
—————dt ——/ 7t 4t — —co
/;0 Ixéla+2—2cr |m61a+2

as ming |z5(¢)| — 0 (like in the Proof of Theorem 2.1). Since &y is fixed independently of §,

while

we can conclude that (3.6) implies V2Is(zs)(ws,ws) < 0 for § small, in contradiction with
the fact that zs is a local minimum for I;. Hence (3.6) cannot hold true, and the proof of

Theorem 1.2 is complete. |
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1.4. Further results

As it should be clear by now, the main idea used in the proof of Theorems 1.2 and

1.4 can be summarized in the following proposition.

Proposition 4.1. (A priori estimate). Assume that the hypotheses of Theorem 1.2 (or
1.4) are satisfied. Then for every C € R there exists § > 0 such that if z € A; (resp. in
A») is a local minimum of I with I(z) < C, then minyepo 7 [2(2)| > 6o

The same results holds (with the same §y) for the perturbed functional I5, where

1 T 1o T a T T
Ig(w)=§/0 B dt+/0 —clt-—/o Ug(t,:c)dt——-/o Fy(|z])dt,

||

Fjs is the strong force term as in (2.4) and Us is as in (3.2).
A consequence of Proposition 4.1 is the following estimate.
Theorem 4.2. Under the hypotheses of Theorem 1.2 and 1.4 respectively,

. : 19
zlélj{i I(z) < zclglgx; I(z) i=1,

Proof. Assume by contradiction that

W= B

and denote by K., the (compact) set of all the minima of I in A; U 8A;. Then it follows
from Proposition 4.1 that

d’ist(Kci N Ai,BAi) =d; >0, 1 =1,2.

We take an € > 0 and we introduce a functional I* such that

I"(z) = I(z) if dist(z, K¢, N A;) >
v I(z) + ¢ if dist(z, K., NA;) <

| o | B
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and I*(z) > I(z) if dist(z,CK., N A;) < %. Then we have

¢ = 213};'.1 (z) = :clergx,-I (z);

with a slight modification of the arguments used in the proof of Theorem 1.2 (resp. 1.4)
one can easily prove that I* admits a minimum z* € A;, at level ¢;. Therefore dist(z, K., N

A;) > %, so that =* minimizes I as well, and this is, by construction, a contradiction. §
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1.5. Appendix

We prove Proposition 3.4. Remark that by the change of independent variable given
by s(t) = f; ;lgdt, the Cauchy problem (3.33) can be written

$"(s) = —BE + B(s)b + h(s
(5.1) {WS)): i (s) + R(s)

Here (-)" denotes differentiation with respect to s and ¥(s) = ¢(¢(s)). The assumptions of

Proposition 3.4 become

(5.2) /0 ’ /0 " \h(0)dodr < F(i(s)) Vs € [0, 5]

(53) | [ @steynar < iets))  vselos)

where § = ftil ;%dt.

Let us consider the solution of the Cauchy problem

(5.4) {:'(’(5)8):1%532(33 + h(s)

then v(s) = [ [T cos(Bo(s — 7))h(c)dodr, and therefore, from (5.2),
(5.5) 1< [ [ holdodr < fa(s).

Now, setting &(s) = 9(s) — v(s), we have that ¢ solves

(5.6 {€169 = B0+ K0 + (00

If we denote g(s) = B(s)é(s) + B(s)v(s) we see that the Cauchy problem (5.6) is exactly
of the type (5.4). Hence, if

(5.7) / 5 / "lo(o)ldodr < f(i(s)) Vs € [0,5]
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then it follows (as above for v) that |¢{(s)] < f(i(s)) and we are done since in this case
[U(s)| = |€(s) +v(s)] < [€(s)| + [v(s)] < 2f(¢(s)). Therefore we only have to show that
(5.7) holds true. To this aim let

s* = sup{r € [0,5] / |&(s)| < f(t(s)) Vs €[0,7]};
we claim that s* = §. Indeed if by contradiction s* < §, then by (5.3)
[ [steaear< [* ] " 1B@) @) Iv(@)])dodr
<2 | " 1B(0)If(0)dodr < f(t(s")).
Therefore, like in (5.5)
i< [ " lo(@)ldodr < £(5(s%)),

contradicting the definition of s*. The proof is complete. |
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CHAPTER 2

REGULARITY RESULTS FOR GENERALIZED SOLUTIONS

2.1. Motivations

In this chapter we continue the study of the existence of periodic solutions for second

order Hamiltonian systems of the form
(1.1) —¢"(t) = VV(t,q(t))

where ¢(t) € RY and V € C*(R x RV \ {0};R) is T-periodic in ¢ and V(¢,z) — —oco as
|z| — 0.

As we have seen in Chapter 1, in order to find classical solutions of (1.1) (i.e. solutions
q(t) € C*([0,T]; RN \ {0})), an important role is played by the behavior of V(¢,z) near the
singularity z = 0.

More precisely, defining as usual the functional f : A — R, where
A={uwe  H(SHRY) |u(t)#0 Vt}
by
1 T T
(1.2) flu) = 5/ [u'(2)|? dt —/ V(t,u(2))dt
0 0

we recall that one has f(u) — 4+co as u — 9A weakly in H! if V is a “Strong Force”, i.e.
if
(1.3) V(t,z) > —

. ,Z) > WE

for some ¢ > 0 when |z| is close to 0, while, in case (1.3) is violated, one can have situations
in which

f,(un) — 0, f(un) - ¢ < +00, Uy — OA.
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As a consequence, one can use standard variational arguments to study (1.1) if (1.3) holds,
while they generally fail if (1.3) is not satisfied.
To prove existence for (1.1) when (1.3) does not hold one possible approach, used the
first time by A. Bahri and P.H. Rabinowitz in [10], is the following:
a) Perturb V by a strong force, for example setting V.(¢,z) = V(¢,z) — TfF;

b) Prove existence of a solution g. for

(L.1).. —q"(t) = VVi(t,q(t))

This is possible using variational techniques since V. now satisfies the strong force
condition (1.3).
¢) Try to pass to the limit as € — 0 to find a solution g of (1.1).

This approach indeed works, but one cannot prove in general that such a solution ¢
is a classical solution of (1.1). In Chapter 1 we were able to prove that the limit orbit
was a classical (noncollision) solution because the approximating functions were found as
minima of the action functional (actually this is the only role played by the symmetry
constraint). Since for the nonsymmetric problem one deals with critical points which are
not necessarily minima, Bahri and Rabinowitz have introduced the concept of generalized

solution ¢ of (1.1).

Definition 1.1. We say that ¢ € C(S*;R) is a generalized T-periodic solution of (1.1) if,
setting
Cle)={te S |q(t)=0}

(the “collision set”) one has

a) ¢ € H'(SY;RY) and f(g) < +oo;

b) meas C(q) = 0;

c) g€ C*(S*\C(g);RY)

d) ¢ solves (1.1) pointwise in S* \ C(q).
In the case in which V(t,z) does not depend on ¢ one also asks that

e) 3E € R such that 1|¢'(t)|* + V(¢,¢(t)) = E Vt € §* \ C(g) (Energy conservation).

In the paper [10] existence of at least one generalized solution is proved. In particular,

in such a paper it is asked if such a generalized solutions has additional regularity.
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The main object of this paper it is to show that generalized solutions indeed have
additional regularity under mild assumptions on the behaviour of V near the singularity.
In particular we show, in Section 2.2, that every generalized solution of an autonomous
system has only finitely many collisions; and we also show that the number of collisions can
be bounded in terms of the value of the action functional (see Theorem 2.1 and Proposition
2.2).

In Section 2.3 such results are generalized to nonautonomous systems: we start by
showing that for the generalized solutions which are obtained via the approximation scheme
which we have described above, the mechanical energy (which is not conserved for nonau-
tonomous systems) is continuous even through collisions. This fact permits us to prove
results similar to those of Section 2.2.

In Section 2.4 we give a bound for the number of collisions of generalized solutions
based on the Morse index. Actually, since collision solutions are not regular, one cannot
speak of the Morse index of such solutions; and in fact we work with the Morse index of

the sequence of approximated solutions.

While the first 3 sections are devoted to prove additional regularity of generalized
solutions, in particular the finiteness of the collision set, in the last section we prove
existence of a noncollision (i.e., of a classical) solution for a class of singular systems in the
case V behaves near the singularity as —5—:];, 1 < @ < 2. Such a problem has been studied
by many authors; we recall here [4], [23], [44]. In all these paper global assumptions are
made on the potential V' which imply that it is not too far from a radial one; here we only
make assumptions on the behaviour of V for z close to 0. Such a result is similar to that
of [18], valid only for planar system, and to that of [38], valid only for even potentials.

As far as the case @ = 1 is concerned, we cannot prove the existence of a non-collision
solution, but we prove, always in Section 2.5, that the solution found in [10] if it does
collide, it is reflected back by the singularity.

During the writing of this thesis, we have received the paper [43], which contains
results closely related to ours. In particular, in such a paper, a result very similar to our
Theorem 5.1 is obtained using estimates on the Morse index which improves our results of

Section 2.4.
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2.2. Properties of generalized solutions: the autonomous case

In the previous section we have recalled the definition of generalized solution of (1.1).

Here we shall establish some further properties of these solutions by making some
assumptions on the potential V near its singularity. In the next section we shall show how
to extend these results to the nonautonomous case.

We take V € C*(RN \ {0};R) and we suppose that there exists 0 < a < 2 such that
(V1) V(2) = — e + U(a)
(V2) |[VU(z)||z|*T* — 0 as |z| — 0.

We remark that (V1), (V2) just say that V behaves like —l_le‘_ near the origin. Notice

that U may be singular at zero.

We start by proving

Theorem 2.1. Suppose V € C*(RV\{0}; R) satisfies (V1),(V2) and let q be a generalized
solution of (1.1). Then ¢ has only finitely many collisions. Moreover, there exists 6§ > 0
such that a‘%]q(tﬂz > 0 for every t ¢ C(q) for which |g(¢)]| < 6.

Proof. Let |¢1,2] be a connected component of S* \ C(g). Then

lg(t1)l = lq(t2)l =0,  [q(})| #0 Vi€t bl

Now Vt €]t1,t2] we have

1 d?

5 la®)P = 140 = (at), YV (D).

From the conservation of the energy and the equation we obtain

1 d2 - 2 __“
5 g 101 =28+ v = 20() - (e

e 2 @)+ a1 (2 ~ 20(a(0) ~ (a(2), VU (ae)))]:

—(g(2), VU(q(?))) =
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By (V2) we se that if |g(¢)| is small enough, say |¢(t)| < §, then

1 al2 2—a 1
z2> — >0
so that |¢(t)| cannot have any (local) maximum if |g(¢)] < é. This implies that between
two collisions £ and £ there is a point 5 such that |¢(5)| > 8. If C(q) is not finite there exists
t accumulation point of C(g). Let ¢ € C(q) be a sequence we which converges to . Then
for each k there exists sp such that ¢ < s < tg+1 and |g¢(sk)| > 8. Then s — ¢ and from

the continuity of ¢ we deduce
= lg(®)l = lim lq(s)] 2 6,

a contradiction which proves the Theroem. [
More information can be given on the collision set under additional assumptions.

Proposition 2.2. Suppose V € C*(RY \ {0};R) satisfies

(2.1) V(z) + %(m,VV(:L')) <- Ve € RV \ {0}

a
|z]°
for some a > 0 and 0 < o < 2. Then, if M(q) is the cardinality of the set {¢ € [0,7[ such

that ¢(¢) = 0}, we have
o« g
2+ o) T

N(q). < -

PlNI =

for every generalized solution gq.

Proof. Let Jtg,t1] be a connected component of [0,7]\ C(q). As in Theorem 2.1 we have

that
%%_z.m(t)[? =2 [E —(V(g) + %(Q,VV(Q))}

> 2 [E+ Iq(:)l"‘] Vi Elto, ta].

Since ¢(to) = ¢(t1) = 0, 3t €]to, 1] such that

lg(D)] = max |q(2)]

tE€]to, b1
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Since % is a local maximum, we have

1 d2 a
>-—|q P >2|E ,
02§ @ 22| +Iq(¥)|°‘]

from which we deduce that E < 0 (we will set h = —E > 0) and

1

(2:2) @z ()"

Suppose now that C(q) = {t1,...,tam} so that A(g) = M. Then we have

T M-1 t£+1 5 T4+t )
(2.3) / g2 =3 / 142 + / 14
0 i=1 i t

M

From (2.2) we deduce that
tit1 a\ = 1
12> (big1 —t)d |~ ) ——————
—/t,- 19]° > (ti+1 ) <h) (fi41 — 1:)2
a\ & 1
=4 (E) (ti—}—l — t.,;)
and (2.3) becomes (setting A; = ti41 — t;)
T M 2
a\= 1
ar=> 4(7)"
fur=2e() 5
M
where > ;" A; =T, so that
T 2 2
.2 a\a M
>4 () =
(2.4) Jarza(3)" %

On the other hand, from
1.
Sl +V(e(t) = E

2
we deduce LT LT
= . _ - . 2
fo) =3 [ WP -TE+3 [ 1)
T T
= [ur-rE= [ 1 +Th
so that
T
] 112 = —Th.
(2.5) / 4 = £(a)
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(2.4) and (2.5) give

hence

}ﬂ
~
~
]
~—
NS
+
ey
[\]
R
]

and the proposition follows. [

Remark 2.3. Proposition 2.2 can be used to estimate the number of collisions. For

example, assuming

b
—Vig) < —
@)= 1R

it is possible to give an estimate of the critical level f(q) corresponding to the generalized

solution found in [4]. In such a case one finds

T (22 Tb
< (= 2=
o) < 2(T) Bt e

2
where (35)" R = E%%’_-l; hence

1 1Y 4n? [abT?\ =+
#a) = (5*2{)?@7@ )
= et s
22-}-(1
which gives
b.2a?(2+a) 2w
N(q) S (Z) 26a—24—a2
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2.3. Properties of generalized solutions: the nonautonomous case

In Section 2 we have seen that generalized solutions of (1.1) enjoy some regularity
properties under mild assumptions on the potential.

Here we shall extend some of the previous results in the case when the potential
depends on time and the generalized solutions are obtained as limit of classical solutions
of perturbed problems.

To this aim, let G = {G € C*(RY \ {0};R) / G(z) < — 7z + b for some a,b > 0};

then we give the following definition

Definition 3.1. We say that a generalized solution ¢ of (1.1) is a variational solution of
(1.1) if 3G € G such that Ve > 0 3qg. € A satisfying

(i)  g. is a classical solution of
(3-1)5 —§e = VU(t,QS) + EVG(QE);

() Fla) =3 Jy 4:* = 3 V(tig) —efy Gla) < C,

where C does not depend on ¢;

(i)  g. — gin HY(SY;RY).

Remark 3.2. (i) The generalized solution whose existence is proved in [10] is actually
variational.

(ii) Since g. — ¢ in H', g. is a classical solution in [0,7] and ¢ is a classical solution in

[0,T]\ C(q), we easily deduce that g. — g in C*(B) VB compact subset of [0,T]\ C(g).

We now make some assumptions on V near the singularity and show that these imply
additional regularity for a variational solution.
Consider V € C*(R x RN \ {0};R) and assume that 30 < @ < 2 such that
(V3) V is T-periodic in t;
(V4) V(t,z) = —im_ll"- + U(t,z);
(V5) |[VU(t,z)||z|*T! — 0 as || — 0, uniformly in ¢;
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(V6) 3o’ < a such that |2 (t,z)| |z|*" — 0 as |&| — 0, uniformly in .
We point out that the only relevant difference between (V1-V2) and (V3-V6) is rep-
f 8U
8

resented by (V6), which gives a control on the oscillation o — near zero. We start by

proving that for a variational solutions the energy varies as for classical ones.

Lemma 3.3. Suppose V € C}(R x R \ {0};R) satisfies (V3-V6). Let ¢ be a variational
solution of (1.1) with collision set C(q). Then JE € R such that

(32) SHOP + Vi) = B+ [ Toloa(e)) s
vie 0,71\ C(o)

Proof. First of all, from (V5) one deduces that VR > 0, Va > 0 3C, g such that

U(tz)| < —5+Car V[z|<R

II“

Hence, VR > 0, Va > 0 3C, g such that

(3.3) Vit2) =~ 4 Uhe) < -2 1 0,0 Vel <R

BE Bk

One also has, from (V6), that VR, Va > 0 3C] p such that

(3.4) W i2) <

}a +Clg  Ve|<R

= Jalo |°‘
Since f(q) < +o0, we have that
1 T T
(3.5) 3 i - [ veo <o
0 0

using (3.3) we find, taking R = ||¢|lcc and @ < 1,

T T
(3.6) o> —/O Vit,q) > (1 — a)/o E}I;- —TC,x

which shows that Fﬁ; € L'(0,T). Using this fact and (3.4), we immediately have, Vt €
[0,77,

(3.7) /0

T
1
BU(S,Q(S))I S < a/ ———[q[al + G;’RT < +OO
0
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so that
W (sale) € '(0,) Ve[0T

and (3.2) makes sense Vt ¢ C(q) (recall that ¢ € C*([0,T]\ C(q)))-

‘We now consider

0.0 = Z=(t,0:0) = S0 ac (),

We want to show that the g, are uniformly equi-integrable in [0,%] V¢ € [0,T].
Since ¢. — ¢ in H', 3R > 0 such that |¢.(t)] < R Vt and Ve. Take any 4 C [0,T]

measurable, of measure m(A4) < §. Then
1 '
ge(t)dt<a [ —=+C,gd
A A lge|® ’

< a(§ % f1T o
_a() : o |ge|™ T e

which proves that the g. are uniformly equi-integrable since we claim that
T
[eee
o lgel*

The claim follows from (ii) of definition 3.1 since

-~

with C independent from e.

1
lqe]a

T T
> f(a) > flg) > - / V(t,g.) > (1— a) / — TCap.

Since g.(t) = %(t,qs(t)) - %(t,q(t)) almost everywhere and since %—(t,q(t)) €
L'(0,t) the uniform equi-integrability implies

ta*v'e

G ds = [ G

Suppose now 0 ¢ C(gq), t ¢ C(q). Since g. is a classical solution of (3.1)., we have
1. " ove
(33) i +Valt ge(0) = B+ [ G(0e()ds
0

where E, = %196(0)]2 + VE(O:‘]E(O))'
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Since 0, ¢ C(q), we have from Remark 3.2 (ii) that

SO + V(b ae(6)) — 2O + 7 (t,(2)

B. = E = Si(0) + V(0,4(0))

Passing to the limit in (3.8) we then find (3.2). §
We can now prove a result similar to that of Theorem 1.1.

Theorem 2.4. Suppose V satisfies (V3-V6). Let g be a variational solution of (1.1). Then
q has only finitely many collisions. Moreover 3§ > 0 such that El‘%[g(t)[2 > 0 V¢ such that

lg()] < 6.

Proof. The proof works almost exactly like that of Theorem 2.1. We suppose 0 ¢ C(q)
and we take a connected component ]¢1,%2[ of S\ C(q). Then V¢ €]¢;1,%5[ we have

2 Sl = 14O — (a0), YV (5,(0)

and, using Lemma 3.3 we obtain

;Z; lg@®)* =2 [E+/ - (s,q(s))ds — <V(t,q) + (q, VV(t,q)))}

= 2 la=sia (24 [ g ds - 0t 0) + 2o VU 0)
[‘Zl 2 0 Os

Since

ds < +oo

S (5a(9))

[ atnas|< [ 2

U0,0) + 50 VU(,0)| < o+ Cn

we have that, Va > 0

142 ) 2 o

2 g P 2 o[- ) = e+ o(1)
Which implies that 36 > 0 such that

1 2
lg| <6 = 53;[9@)! >0

We then conclude like in the proof of Theorem 2.1 J§
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2.4. Morse index and collisions

In this section we will show that there is a relationship between the Morse index and
the number of collisions of a generalized solution.

Actually, one cannot give a meaning to the Morse index m of a generalized solution
(the functional is not C'? in such a point), so we will take ¢ to be a variational solution and
bound the number of its collisions by the Morse index of the sequence of classical solutions
of (1.1). which converge to g. We recall that the Morse index m(z) of a critical point z of
a functional J € C?(H;R) is the dimension of the maximum subspace of H where d*J(z)

is negative definite.

Theorem 4.1. Suppose V € C*(RxRY;R), N > 3, satisfies (V3-V6). Assume there exist
o > 0 and C > 0 such that

(V) |[VEU(t,y)||ly|*T27° < C as |y| — 0 uniformly in ¢

(V8) {—v—gﬁ(/——]ﬁ’gﬂ — 0 as |y| — oo uniformly in ¢.

Let ¢ be a variational solution of (1.1). Then
N(g)(NV - 2) <liminf m(g.)

where ¢. are classical solutions of (1.1). such that ¢. — q.

Proof. The proof relies on the results obtained in Chapter 1, to which we refer for the

details. We recall that there it was shown how to construct functions ¢. such that

(f”(QS)¢57 4”5) <0

whenever ¢. tends to a collision solution gq.
Moreover the functions ¢. € H}([0,T];R) enjoy the following properties: suppose
ge — q and let #. be a point of absolute minimum for |g.|; then for every ¢ small enough

we can take ¢, such that

(i) ¢ is piecewise linear
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(ii) |¢e(t)] =1 in a neighbourhood of 7, independent from &;
(ili) ¢ =01if ¢t ¢ [t. — §,tc + §], for some § independent of e.

Then, taking any w € SV~ such that
(w; ge(te)) = (w,4e(2e)) = 0
and setting
b (1) = ge(t)w
one finds

(f"(QE)"x[’g)ﬂb;D) <0.

Therefore ¢. has index at least N — 2. Since this argument can be repeated for every
t, converging to a point of C(g), it follows that N(g)(N — 2) < m(q.), which proves the

theorem. J

Remark 4.2. It is not difficult, using results contained in [9], [41], [43] and [48] to show
that, in the setting of [10] (and also in the setting of Section 5), m(g.) < N — 2. This

implies that the generalized solution found in [10] has at most one collision.
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2.5. Existence of noncollision solutions in the case 1 < a < 2

In this section we will prove existence of a noncollision solution in the case V has the

form

V(e) = ——— + U(t, )

|z
with 1 < a <2.
Actually, we will show how the generalized solution found in [4] is actually a noncol-
lision one in our situation.
Let us assume V € C}(R x RY \ {0}; R) satisfies (V1), (V2) and
(VT) U(t,z) < 0V(t,z) € R x RN\ {0}
(V8) lim|g|moo U(t,2) = lim|g| oo [VU(t,2)| = 0
(V9) 3r >0, ¢ € C*(]0,7];R) such that U(t,z) = ¢(|z]) VO < |z| <7, V2
(V10) lim,—o ¢'(s)s*Tt =0

Our main result is the following

Theorem 5.1. Let V € C}(R x RN \ {0};RY) satisfy (V1), (V2), and (V7)-(V10), with

a>1and N > 3. Then there exists at least one noncollision solution of (1.1).

Proof. Since the case o > 2 is well known (see for example [2]) we will restrict ourselves
to the case 1 < @ < 2.

The proof is divided in various steps.

Step 1. Existence of a variational solution (0 < a < 2). Such a proof follows the one of
[10], to which we refer for details.
Let A = {u € H*(S*;RY) | u(t) # 0}, and, for u € A,

fu) = %/DTMZ dt — /TV(t,u)dt

0
1 T T T 1
fe(u) = —/ || dt—/ V(t,u)dt+s/ T dt
2 0 0 0 Iul
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We define
I'={y:5""% 5 A|yis continuous}

To every v € T' we associate a continuous map 7 : SV 72 x §* — SNV-1 defined by

(5.1) ot = 2O

and we set

I* = {y €T | deg7 # 0}

we then define a mini-max level by

(5.2) ce = inf max fe(v(z))

As in [10] one finds, Ve > 0, a critical point ¢. € A of f. which converges to a variational

solution ¢ of (1.1).

Step 2. Properties of ¢ and ¢. (1 < @ < 2).

Now we suppose that ¢ has a col]js'ion and we will show that g. has a self-intersection
for € small. Tho proof is similar to that of [18].

By Theorem 3.4, we know that 36§ > 0 such that

dz

(5.3) =

lg®)> >0 Vit ¢ C(q) such that |g(t)] <.
Take any &g < min(é,7). Then, by (5.3), we have that Jtg,%;,¢, € [0,7T] such that
1o < t1 < t3 and

alto)] = la(e2)] = 2,

IQ(tl)! = 07

)

g <5 Vi€, b,
d

—lq(t Vi €]ty,t
Zla@)] >0 Vielt, b,
d

— t €lto,1].
Zla®l <0 Veelt,ul
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This implies that, Ve small enough,

5_0
4
lg=(2)| < 60 Vi€ [to,12]

5o

; < lau{ta)] < &,

< |ge(t0)] < o,

and there exists t. € [tg,?2] such that

|9 (te)] = min lg=(t)],

Elto,t2]

d
En s:t ’
Ll >0 Vet
d
L@l <o Viel,ul
Since in Bjs,(0) \ {0} V. is radially symmetric and g, is a classical solution of (1.1).,

ge is planar in [to,%2] and lies in the plane spanned by g.(to) and ¢.(%o). Passing to polar
coordinates in this plane, we find that g. = (p cos 8, psin 6) satisfies

1 1 .. 1 €
4 52 ot - — — — = E. Vi € [to,t
(5.5) p20=1J.

where E. is the energy of ¢. and J, its angular momentum (which we can take > 0 without

loss of generality: remark that J. # 0 since g, is a non-collision solution).

t 2 dt
AH:/ 9(t)dt=J€/ 2
te t. P

Since £p(t) > 0 Vt €lt.,t,], we can invert p(t) to obtain ¢ = t(p), so that dt = {j—:dp.

From (5.5) we have

From energy conservation, we have

d 2 2
(:5) zz(Ee—- (%—e) ;15+;1;—¢(p)) V2 € [to, 2]

so that, setting p. = p(te),

$o

2, K3 dp
Ab, = / 6(t)dt > J. / — :
. b P 2B— (F — )+ = 0)
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Let K, = (J2 — 2¢). We find, with the change of variable y = ke,

2 =
VI BT Ry

From K. = J? — 2¢ we find

Je

Je
= >1
VKe  JJ2—2¢

so that
1
ne > [
ég'fj vV ge(y)
with

2u2E, 2ut—e 2p2 .
pe 2 2H p (#)

g:(y) = % Y % Y ~ X,

From energy conservation we deduce

2ulE. 2p37% | 24
x. Tk +K€¢(“e)

so that

gs(y)=(1‘2§:a)(1“ya)+y S <¢( )= (yD

Always from energy conservation we deduce

1 K. o o
5 Tia = Depe +1— Bpe ) e
He

and since E, — E, p. — 0, we have, using (V10),

1 K.
5 22—« 1
2 12

262 Le

£ . _ & 0
o (qs(u) ¢(y)) -
so that
g:(y) — y* — yz almost everywhere
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and from Fatou’s lemma

dy
fe(v)

1
Aby = hill_}(l)lf Ab, > hIsn_glf/O X[i’-'—"-,l]

%0

™

_/1 dy
o Vyr—y? 2-«

This implies that

Ad, = / " bt dt = / “b(tydt + /t " 6(t) at

to to

2w

>
T 22—«

In particular, if & > 1, we have Afy > 27, so that Af, > 27 for e small, which implies
that Jsg,s1 € [f0,%2], s0 < t. < s, such that

ge(s0) = ge(s1)

So we have deduced that V&, < min(§,r) there exists an ¢ such that ¢. has a self
intersection V0 < € < &5.

We now use the fact that ¢. has a self-intersection to find a contradiction.

Step 3. The solutions ¢. cannot have self- intersections for ¢ small (0 < a < 2).
More precisely, we will show that 34 € I'* such that

 max f(3(2)) = c

Vi(3(z) #0 Vze SN2

contradicting the fact that ¢, is a mini-max value.
Indeed, let g. be our solution at level ¢, with self- intersection.
Let g-(s0) = ge(s1) be the point of self-intersection of smallest norm, say 7 = |gc(s0)]-
We know that, for ¢ small, we can assume 7 as small as we please. Suppose 7 < g and

let

we(t) = { qe(t) if t & [so,s1]

qs(Sg + 81 — t) lft € [50,81]
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which is nothing else but our solution ¢. with the loop §(t) = ge(t)[s0,s,] travelled back-
wards.
Remark that, from _
d
gt—lqe(t)[ #0 for ¢ = sg,s1

and
=2 40
we have that
g:(s0) # ¢c(s1)

so that u. is not of class C'?, which implies that u. cannot be a critical point of f.

We now introduce a new system of coordinates in RYV as follows. Take the first versor
e; equal to ngg—zgl’ the second ey, such that {e;,e2} span the plane which contains ¢ and
let (es,...,en) be such that (e, ez,...,en) is a basis in RV.

We can write, Vit € [sq,$1],
G(t) = a(t)er + b(t)ea
= (a(t) — 7)es + b(t)es + Te;

for some a,b € C%([so,51];R), a(so) = a(s1) = 7, b(s0) = b(s1) = 0.
Let
SN=2 = gN-1 ﬂ{eg’"}

and, Yy € SV=2 define

[ u(t) if ¢ ¢ [s0,s1]
P(y,t) = { (a(t) — 7)y + b(t)es + Fey if t € [sg,51]

It is easy to check that [¢(y,?)| # 0 Y(y,t) € SN~2 x [0,T], so we can define v € I" as

YW)(:) = ¥(v,)-

From the fact that that V is rotationally symmetric in the ball of radius § one also easily

deduces that
Ce = fs(Qe) = fs(7(61)) _<_. mg.lg%}iz f5(7(m)) S fe(‘]e) = Ce-
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To prove that 4 € I'* we have to prove that

_ P(y,t)
0 = 5,0

has a nonzero degree.
First of all, since u.(t) for ¢ € S\ [so, $1] is a closed loop in in Q, which is simply
connected, one can easily see that 4 is homotopic to

— . zZ(y,t)
YWD = 1500

where
- S uc(so) VtE0,T)\ [s0,51] Vye SN2
P(y,t) = {¢(y,‘)t) Vt € [s0, 51

This easily implies that 4 € I'* since all the point z in SV~! such that ze; ~ —1 have a
unique counterimage under 4, since from

(a(t) — 7)y + b(t)ez + Tex _,
|(a(t) — 7)y + b(t)ez + Teu|

we deduce (taking the scalar product with e;)

(a(t) — 7)yer + 7 =~ —|(a(t) — F)y + b(t)ez + Te1|
which implies
b(t) ~ 0.

We know that b5(t) = 0 for ¢ = so, 1,52 (here s, denotes the only intersection of § with
the e; axis apart from sg,s1. But if £ & sq,$; we immediately reach a contradiction, while
for t &~ s; one gets that z =~ —ey.

This proves step 3 and the theorem. K

In the case o = 1 Theorem 5.1 cannot hold. However the method used to prove
Theorem 5.1 shows that the solution found as a limit of solutions of approximated problems

has still some additional properties. We can prove the following

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 hold with o = 1. Then
there exists a generalized solution ¢ of (1.1) such that for every ¢ € C(q) one has

af+1) = o - 1).
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Moreover, such a solution has at most one collision.

Proof. In the case o = 1 step 2 of the proof of Theorem 5.1 does not hold any more and
we cannot say that ¢. has a self-intersection for ¢ small. However, notice that, if ¢.(¢) has

no self-intersection for ¢ small, then

Ab, < 27
Since liminf._.q A§, > 27, we have
lin% Ab, = 2r

Taking, Vr small, ¢’ and ¢" such that

lg()] = la(t")| =,
we have
g(t') = lim g.(t')
= lim (p.(¥') i 0.(¢), . (') cos 0.(¢)
= lim (p. (") sin[6.(t") — 2n], pa(t") cos[6. (¢") — 2n1])
= lim ¢.(¢") = ¢(¢")
so that ¢(¢) has a self-intersection.

This, togethexl with the fact that ¢ is a classical solution outside the collision set
implies that,
q(t+1) =q(t—1)

for all ¢ in C(g).

To prove that ¢ has at most one collision is enough to use Remark 4.2. §
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CHAPTER 3

MULTIPLE BRAKE ORBITS AND SINGULAR POTENTIALS

3.1. Basic definitions

In this Chapter we study the existence of periodic solutions for the dynamical system

(11) i(0) + V'(a(®)) =0
such that
(12) SHEP +V(a() = b,

where h is a given constant and V € C?(E;RY), E open in RV.

More precisely, we shall look for brake orbits, i.e. solutions of

q)+V'(g®) =0  Vte[0,T]
(1.3) q(0)=4¢(T) =0
P +V(gt) =h  Vte[0,T]

from which one can easily construct a periodic solution of period 2T by reflecting ¢ around
t=0,T.

Our main purpose is to relate the number of solutions of (1.3) to some aspects of the
topology of the sublevel set {z € E / V(z) < h}.

If {z € E / V(z) < h} is homeomorphic to a ball then the existence of one brake orbit
is a classical result of Seifert [37]. Generalizations of that result, as well as alternative
proofs were given in [12], [26], [30], [31].

Here we are concerned with the case in which the topology of @ = {z € E / V(z) < h}
is more complicated and we shall use this fact to prove the existence of multiple solutions.
In particular we shall assume that  has a certain number k of “holes”, in a sense that we

shall make precise, and we shall show that (1.3) has at least k solutions.
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we shall make precise, and we shall show that (1.3) has at least k& solutions. This result
has already been obtained by Bolotin and Kozlov in [17] in the case when the potential is
assumed to be everywhere regular. Actually in Theorerﬁ 2.1 we prove the same result as
in [17] with a slightly different argument.

The results obtained in Section 3.2 are then used in Sections 3.3 and 3.4, where we
investigate the case in which V is singular in the sense that there exists zo such that
V(z) = —o0 as ¢ — zo. In such a case zg € 80 and the topology of  is richer; this fact
has been indeed used in [1], [2], [5], papers which deal with existence of fixed period and
fixed energy solutions of (1.1).

To deal with singular potentials, a notion of generalized solution has been introduced
in [10] (see Definition 1.1 of Chapter 2). In the setting of brake orbits such a notion

becomes

Definition 1.1. We say that a function ¢ € H*([0,7);R") is a generalized brake orbit
with collision set C(q) = {t € [0,7] / q(¢) = 0} if

i) measC(q) =0

i) [T[h— V(u)ldt < +oo;
ii) 0,T ¢ C(g);
iv) (1.3) is verified Vt ¢ C(q);

We remark that there are situations where for every brake orbit ¢ one has C(q) # 0.
Indeed

Remark 1.2. If V(z) = —# for some a > 0, so that Q is the ball of radius (——%)E
centered at zero, then the only “brake orbits” are the rays up (V8 € SV1) of the ball

travelled back and forth with appropriate speed.

The solutions of (1.3) will be found as critical points of a suitable functional. Precisely,

let
A={ue Hl([O,l];HN) /u(t) € EVte[0,1]}
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and define f : A — R as

(1.4) f(u):/o %]ﬁ[zdt-/o [h — V(u)]dt.

Suppose now that u € A is a critical point of f such that f(u) > 0. Then (as is shown for
example in [12]) setting

(1.5) T = 1f01% e
Sy =V (u)]dt

one easily verifies that the function ¢ : [0,7] — E defined by ¢(t) = u(#%) verifies

(1) + V'(a(8)) = Vi € [0,7)
(1.6) Hy)P + Vg =h Ve [o,T]
i(0) = §(1) = 0

namely, it is a (noncollision) brake orbit of energy h.

Remark 1.3. In this way to every critical point of f at a positive level there corresponds a
brake orbit of energy A. From now on we shall implicitly make use of this fact by confining

our attention to critical points of f.

In Section 3.2 we deal with regular potentials and we describe the main argument
which will be used throughout this chapter. In Sections 3.3 and 3.4 we consider the
problem of singular potentials, under different kinds of local hypotheses on V near z = 0.

Existence results are given in each section.
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3.2. Multiple brake orbits

In this section we are going to state sufficient conditions for the existence of multiple
brake orbits in the case when the potential is assumed to be everywhere regular. We will
assume that a function V € C?(R™;R) and a real number A are given and we denote by Q
the set {z € RY / V(z) < h}, so that 8Q = {z € RY / V(z) = h}. The main condition
we shall need states that the topology of ) is in some way “complicated”. Precisely, we
make the following assumptions. We suppose that Q;, ¢ = 0, ...,k are open bounded sets

in RY such that

(V1) @={z € RN / V(z) < h} = Qo \ (UL,0;), with
i) Q;CcQ Vi=1,..,k,
i) &;NQ;=0 VI<i#j<k.

(V2) V'(z) #0 Vz € of.

The main result of this section is the following

Theorem 2.1. Suppose V € C*(R™;R) and h satisfy (V1) and (V2). Then there exist at

least k distinct brake orbits of energy h.

The proof is divided in several steps and it is based on the minimization of the func-
tional f defined in (1.4) over a set of functions connecting different components of the

boundary of . Since z € 61 implies h — V(z) = 0, the functional f cannot be coercive on
(2.1) A={ue H' /u(0) € 8, u(l) € 90\ 8Q0, u(t) € O Vt€]0,1]},

so that we shall start by studying an approximate problem.
Step 1. The approximate problem.

Let § > 0 and

(2.2) Qo5 ={z € Q/ dist(z,000) > 6},
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(2.3) Q5 ={z € Q/ dist(z,00;) < 6} Vi=1,...,k.

Next set Q5 = Qo5 \ Ui?:lﬂi,b-; finally let By = U?=IQ,~ and By s = Uf’zlﬂi,g. We also

introduce
(2.4) As={u € H? / u(0) € 9y s, u(1l) € 0B1,s, u(t) € B1s Vit €]0,1[ }

and we remark that the functional f is defined both in A and in As.

Proposition 2.1. Let (V1)-(V2) hold. Then there exists us € As such that

(2.5) flus) = vienfs f(v) >0,

e , 11, B
(2.6) "5/0 [h— V(us)dt + V (ug)/u Sisl?dt=0  Vee o1
and

1 1 11
(2.7) §1u5|2/ [h — V(us)]dt + (V(us) — h)/ SlisPdt=0  Vie 0,1
] 0 .
Proof. We start by showing that

inf 0.
Jnf fv) >

Indeed, notice that there exists o5 > 0 such that for every z € Qs, h — V(z) > 05; next,

take any v € As and remark that
1 1
d = dist(80.5,0B1.5) < [u(1) — u(0)| g(/ i dt)?
0

Therefore Yu € Asg, .
1
f(u) > —1-0‘5/ I’félzdt > —osd® > 0.
27, 2

Consider now a minimizing sequence uy, in Ag; for k large enough one has
: S
2inf f > f(ug) > o5 [ [ur]"dt,
As 2 " Jo
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and hence uy is bounded in H!. We can therefore assume that, up to a subsequence,

(2.8) up — u  weakly in H!
and
(2.9) ur — u uniformly;

notice that by (2.9), u(0) € 8Q¢,5, u(l) € 8B;15 and u(t) € Qs V¢ € [0,1]. Moreover since

tr — u weakly in L% and uj — u uniformly, then

1 2 !
f(u) < = (liminf |Jigll,) m [ [b— V(ug)]dt <
(2.10) 20k ¢ /0

1 ' ' :
< :?'-]imkinf(‘/0 I'L'Lk]Z/(; (A — V(ur)]dt) = 1116;5 f-

Since As is dense in Ag, equality holds in (2.10).

Next we prove that we can assume u € As without loss of generality. Indeed, since u
is continuous, [0,1] \ v71(8Qs) is open. Necessarily it must contain an interval |3, %[ such
that

u(3) € 00,5, u(t) € 0B1s, wu(t) € Qs Vie€]s, 1.

Setting w(t) = u(s + t({ — 3)), it is easy to see that
f(w) < f(u) :‘ifffa
5

which proves (2.5), since w € As.
From now on we denote, for each §, by us the minimizer w € As found above. Now,
the fact that us is a minimizer implies in a standard way that (2.6) and (2.7) hold, and

the proof is complete.
Step 2. The limiting procedure.

We now construct a suitable test function that we are going to use to pass to the limit

for § — 0.
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To this aim we choose an 17 > 0 so small that dist(z,0Q) < 27 implies |V'(z)] > py > 0
(this is possible by (V2)). Next we take a cut-off function % : R — [0, 1] of class C! defined
by

0 if dist(z,0Q) <7
¥(=) = { 1 if distg ﬁg > 2
and we define ¢ : RY — RY as
(211) (@) = B(a)e + (1= $)

Lemma 2.2. Assume (V1) and (V2) hold. Then, VL > 0,38 > 0,3C > 0 such that
Vo e Q,
1
LV (@)p(e) 2 B(V(z) - ) + C.

Proof. Assume by contradiction that there exist L > 0 and three sequences £, —

+oco0, Cnp—0, z,¢€Q suchthat
1
(2.12) 577 (@n)e(zn) < Ba(V(zn) = h) + Cn.

Since  is bounded, z,, — « € , up to a subsequence.
Ifz, — z € Q, then the left-hand-side of (2.12) is bounded, while the right- hand-side
tends to —oo0, and we reach a contradiction.

On the other hand, if z € 99Q; then, for n large, p(z,) = ]—g,—(fl‘%-]- and from (2.12)
L V@)= tm [V'(en)|< lim Cn=0
L v T noteo 2L "= S v

contradicting (V2). H

We shall use the function ¢ defined above to show that us is bounded in H! indepen-
dently of 6.
Let us define a function vs € H! by

vs(t) = p(us(t));

where ¢ is defined in (2.11); differentiating vs yields 95(¢) = Jo(us(t))tus(t), where Jy is
the Jacobian of ¢. Since ¢ is of class C?, there exists a constant L > 0 such that ||J¢|| < L.
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In what follows we denote by C;,j = 1,2,... positive constants independent of §. We now

multiply (2.6) by vs and integrate: we obtain

(0s(1)ia(1) = s (0)ia(0)) | 15— V s~
(2.13) 0

1

- /0 (Top(us)iis, is)dt - /0 = V()i 4 /0 V' (g ) (s )dt - /0 %wzdt:o.

From (2.7) we have

1 (D)2 = (B — Vi(u Jy it
(2.14) las(t)]? = (b — V(us(t))) Tl — 7 (ug)) vt €[0,1]
so that )
. s (fyluslPat)?
vs(t)||us(t)| = |lvs(E)|[(h — V(us(t)))? -
O] = )= Vi) e
and

Ivs(t)’ds(t)/ol[h = V(us)ldt| < Iv:s(t)H'L'Lzs(t)I/0 [h = V(us)ldt

(U isl?t)
(g Ih = V(us)lar)
< V2Ps(8)I(h = V(us(1))) £(u5)*.
Now ift =0 or t =1 then h — V(us(t)) — 0 as § — 0. As a consequence we can deduce

from (2.13) that

< [os(t)|(h — V(us(t)))?

/Ol[h — V(us)]dt

1

~0r < [ Getus)is o)t [ - Violdt- [ Viuslotue)ds [ Fliaat

(2.15) < L/01]ﬁ5|2dt/01[h — V(us)]dt — [%]m[zdt : /OIV'(us)so(us)dt
~ /0 g P dt /0 T V(g -Qliv'(uﬁ)go(ug)]dt.
By Lemma (2.2) we have
57V (wa)e(us) > B(V(us) ) +
or, setting v = 8 + 1,
b= V(us) = 5=V (we)p(us) < 7(h— V(ue)) — C
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which, carried into (2.15) yields

1
—Cy < 2L f(us) — LC/ i | dt.
: 0

Therefore @5 must be bounded in L? independently of §. At this point one easily proves
like in Step 1 that us converges, up to a subsequence, to a function u; that can be assumed

to belong to A and such that f(u;) =infs f > 0 and

(2.16) ﬁl/l[h —V(u)ldt+ V’(ul)/lélﬂllzdt 0 Wte[0,]]

(2.17) %[«11[2/0 [h— V(u1)]dt + (V(u1) — h)/0 %Ml[zdt =0 Vtelo,1].

From wu; it is straigtforward to construct a brake orbit g1, as we pointed out in the Section
3.1. Remark that we can assume u1(0) € 8 and u1(1) € 0.

This proves the existence of a first brake orbit.
‘Step 3. Multiple solutions.

In the above proofs we have never used (nor even assumed) the fact that Qg is
connected. This allows us to repeat the above procedure simply by replacing Qo by Qo \ 24
and B; by B; = Uf’zzﬂi. Exactly the same argument proves then the existence of a second
solution us such that u,(0) € (BQO U 091), uy(1) € 8B, and uq(t) € Q V¢ €]0,1], which
implies in particular that u, is different from w;. Iterating this procedure the theorem

follows.
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3.3. Singular potentials: Strong Forces

In Section 3.2 we have seen that richness in the topology of the sublevel set {z / V(z) <
h} provides multiple brake orbits. In that case the potential was assumed to be everywhere
regular, and in particular on the boundaries 9Q;. We now want to investigate what happens
when the assumption of regularity is dropped, in the sense that there is a point zy where
lim; 4, V(z) = —oco. The potential presents therefore a singularity of attractive type in
zg.

In this section we assume that V satisfies the Strong Force condition of Gordon ([28)):

(SF) 3U € CY(RN \ {0};R) with lim,_,o U(z) = co such that —V(z) > |VU(z)|? for every
z # 0 in a neighborhood of zero.

We recall that if V' satisfies (SF) and v € H?! is such that u(ty) = 0 for some ¢, then
f(u) = +oo.
Our goal is to show what kind of influence does the singularity have from the point

of view of existence of brake orbits.

Remark 3.1. As we have seen in Remark 1.2 if V(z) = —|—£ng for some a > 0, so that
) is the ball of radius (— -}1;) g centered at zero, then the only “brake orbits” are the rays
ug (V8 € SN"I).

If « > 2, however, then (SF) is satisfied and f(ug) = +oco V8, due to the strong
force condition and therefore such solutions do not fit into the variational framework. The
presence of the singularity alone is thus not sufficient to ensure the existence of one (even

generalized) solution. Compare this situation with the results of Section 3.4.

This is a very different situation from that of finding periodic solutions (not necessarily
coming from brake orbits) of (1.1); indeed for such a problem it is the singularity that gives

rise to multiple noncollision solutions.
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On the other hand one can easily show that Theorem 2.1 holds true also in this case.

Theorem 3.2. Suppose V € C*(RN \ {0};R) satisfies (V1),(V2) and (SF) with &£ > 1.

Then there exist at least k£ distinct noncollision brake orbit of energy h.

Proof. This proof follows step by step that of Theorem 2.1. The presence of the singularity
does not interfere since, as is well-known, if V satisfies (SF) and f(u) < C for some
C < +o0, then

mt1n|u(t)| >Ac >0.

This means that all the results used in proving Theorem 2.1 remain valid. §
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3.4. Singular potentials: Weak Forces

In this section we shall deal with the same problem treated in Theorem 3.2 when the
Strong Force condition is violated. Our goal will be twofold.

First we shall show that the presence of the singularity gives rise to a solution, in
contrast with the strong force case. Of course we are concerned here with the existence of
a generalized brake orbit.

Secondly we shall prove, under additional hypotheses in the neighborhood of the sin-
gularity, that one can still find multiple brake orbits which turn out to be noncollision
solutions. This problem is particularly interesting since in the presence of weak forces not
much is known concerning the existence of noncollision solutions (for the periodic problem
see i.e. [21], [23], [39], [44]}&) The main point will be to show that the property of mini-
mizing the functional f (on a suitable set) cannot be enjoyed by orbits which pass through
the singularity of the potential, provided that in some arbitrarily small neighborhood of
zero V differs from —l—mll_“ by a “small” radially symmetric function. This approach was
used for the fixed period problem in [39] in the case of even potentials, and in [21] in the
case a €]1,2[.

We begin by showing that in the case of weak forces a (generalized) brake orbit always
exists.

Taken V € C*(RN \ {0};R) and & € R we shall make the following assumptions:

(W1) the set @ = {z € RN / V(z) < h} is bounded and not empty;
(W2) V'(z) #0 Vz € 8%

(W3) 3 €]0,2[,34, B > 0 such that —V(z) < 4 + ,—B,— Ve # 0;

(W4) 3X > 0 such that V'(z)z > AV(z), Vz in a neighborhood of zero.
(W5) limgy—o V(z) = —oc0.

Remark that 8Q = 6Q U {0}.

Then we can prove
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Theorem 4.1. Assume V and h satisfy (W1)-(W5). Then there exists at least one

generalized brake orbit of energy h.

We follow closely the proof of Theorem 2.1. In particular we are going to minimize
a suitable functional over a set of orbits whose endpoints are constrained on two different
components of 9Q, namely 9Q and {0}.

We begin by taking a small § > 0 and we set

Qs = {z € Q / dist(z,80) > §},
and
(4.1)  As ={ue H*0,1;RY) / u(0) = 0, u(1) € 8Qs, u(t) € Qs Vt €]0,1[}.
We define a functional f : As — R by

(42)  f(u) = { +{o () Pdt - fy[h = V(u@))dt i fiTh— V(u(2)]dt < +oo

otherwise

Proposition 4.2. Let (W1)-(W5) hold. Then there exists us € As such that

(4-3) 0 < inf f(v) = f(us) <+oo,

(4.4) aé/ul[h — V(us)]dt + V'(ug)Alélﬁglzdt —0  weeo,1],

and

@s) gl [ [ Vi(us)ldt + (V(us) — B) / Ligpar=0  viep,1)

Proof. Since we are testing f on collision functions we recall first of all that infs, f < 400
due to the weak force condition (take v = ftz-zﬁ, with £ € 8Qs: then f(v) < +00). The

proof can then be performed exactly like that of Proposition 2.1. §
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With the same notation as in Section 3.2 (¢(z) = ¥(z)z + (1 — 1/)(;1:))!—3-:%) we now

prove that the sequence us of minimizers found by Proposition 4.2 is bounded in H!.

Lemma 4.3 Assume (W1)-(W5) hold. Then, VL > 0,38 > 0,3C > 0 such that Vz €

a2\ {0},
V' (=)e(x) = A(V(2) ~ )+ .

Proof. Assume by contradiction that there exist L > 0 and three sequences 3, —

400, Cn—0, z,€0)\{0}such that
| 1,
(46) SV (@n)p(e) < BulV(2n) — )+ O

Since ) is bounded, z, — z € {1, up to a subsequence.
If z € O\ {0} we reach a contradiction arguing like in Lemma 2.1.
On the other hand, if z, — 0, then for n large ¢(z,) = z, and by (W4),

A 1

. < V!

5T V(zn) < 2LV (zn)Zn,
so that

bo— 2
0< ,Bn (_lB—ZLV(wn) - h) + Cn —> —0O0,

k3

and again we reach a contradiction. [

Proof of Theorem 4.1. We set v5(t) = ¢(us(t)) and we multiply (4.4) by vs in L?(a,0),

with a > 0; we obtain

(o (ws(1))is(1) — p(us(a))iis () / (b — V(us))dt

(4.7) 1 1 1 1
- [ Getusyis eyt [ - Veualier [ Viwslptuei- [ Slifa o

Now by (4.5),

(4.8) lis(@)? = (h — V(ug(a))) 2o ol

N V(ug)]dt;
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therefore, if a is so small that ¢(us(a)) = us(a), then by (W3) and (4.8) we have

o (us(a))is(a)l < [p(us(a))llis(a)l

< p(us(@)|(h - V(us(a)))} — o Bl
(fo [h — V(U5)]dt) 2

1. 12 9\ 3
2—a ug dt
S Ol'“&(a)l > l(fo l ] ) _1_;
(fo [h— V(u,s)]clt) :
since a < 2, the right-hand-side tends to 0 for @ — 0. Then we can pass to the limit in

(4.7), and obtain

olus(W)is(1) [ b= Vuslldt = [ (Fo(ue)is,is)ds [ b= V(us)lds
(4.9) ) A ‘A 6 jUsyUS A

1 1
1,.
n / V' (g o (5)dt - / Liaslat.
0 0 2

At this point we can conclude exactly like in the first part of Theorem 2.1 to find a u
such that u(0) = 0, u(1) € 8Q, u(t) € Q V¢ €]0,1[ and f(u) = infs f. Such a function
is a generalized solution of (1.1) which is not a generalized brake orbit; however we can

construct a periodic generalized (brake) orbit just by reflecting v around ¢ =0. &

We now turn to the second result, namely the existence of k noncollision brake orbits
when the topology of () satisfies (V1) and V is not too different from —Tz—lF near zero. The

precise assumption we shall use is the following

(W6) Ja €]0,2] Ir >0, 3I¢ e C*(]0,+oo[;R) such that

(4.10) V() =—pz + (), VO<fel <
(4.11) lim $'(s)s*t = 0.

Then we can prove

Theorem 4.4. Assume (V1), (W2), and (W6) hold. Then there exist at least k£ + 1

distinct brake orbits of energy h, and k of which are noncollision orbits.
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Proof. We find a first solution connecting {0} and 8Q via Theorem 4.1. Then we show
that each of the k orbits found with Theorem 2.1 is free of collisions. To this aim let K,

and K; be two different connected components of 9Q and set

(4.12) A={ue H" /u(0) € Ky, u(l) € K1, u(t) € QVt€]0,1[}.
It is enough to show that if u satisfies

(4.13) f(u) = inf f(v)

then u € A, namely, it is free of collisions. In other words we shall prove that if

(4.14) Ao ={ue H' /u(0) € Ko, u(1) € Ky, 3% €]0,1[ suchthat u(f) = 0}
then
(4.15) 11’I€1£ flv) < viélfo f(v).

Now the fact that infs f is achieved by some function in A follows as in the proof of by
Theorem 4.1, because (W6) implies both (W3) and (W4). We shall therefore consider a
minimizer u € Ay and we show that this leads to a contradiction.

Without loss of generality we assume that (after a rescaling) u verifies
vw:[-1,1] - Q, u(-1)€ Ko, u(l)€ K, wu(0)=0.

By (W6) there exists § > 0 such that |u(t)] <r Vte€ [~§,6]. This implies that in [—6,6] u
is planar (actually I_Z%—I is constant both in [—§,0[ and in |0, §]).

Two cases may present:
i) After the collision u emeges from zero along a different direction (but always following
a straight line). Then fix two instants ¢y < #; such that |u(te)| = |u(¢1)| =" < r and let
v : [tg,t1] — © be the projection of u(t) on the segment through u(¢y), u(¢1). Defining

v(t ift e to,tl]
w(t) = {u%t% if ¢ ¢ %tg,tl]
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It is immediate to check that w € H! and f(w) < f(u), contradicting the minimizing

property of u.

i) the direction u(t) is the same before and after the collision. In this case there exists
v € SV~! such that v -u(t) =0 Vt € [—§,6]. We now define a piecewise linear function
:[-1,1] = RN a

where ;2 will be conveniently chosen later. It is clear that w(t)-u(t) = w(t)-u(t) =0 V¢ €
[-1,1].
We are going to prove that if u is small enough, then f(u 4+ w) < f(u), contradicting

the fact that u is a minimum point. To this aim we evaluate

2f(“+“’)‘2f(“)=/1 |ﬁ+wl2dt-/_11[h—V(u+w)]dt—/_lllulzdt-/_ll[h—v(u)]dt:
_11112|2clt- /_ b=V (utw)]dt+ / |7 dt- / 11[h—V(u+w)]dt-— /_11|ﬂ12dt- /_1 eV ()]t <
/ fi*dt - /1[ V(u+w)+V(u)]dt+/5

/ laf2dt - / “V(u+w) + V(u)]dt—i—/_i [u')[zdt-/_ll[h——V(u)]dt.

|| dt - /_l[h — V(u)]dt =

We now estimate separatly tliese two terms; in what follows the C;,7 = 1,2,... will denote
positive constants independent of p.

To begin with, notice that |w(t)] = 2£ Vt € [—6,—2]U[£,6] and w(t) =0 Vit ¢
[—§, 6], so that

) 1
/ |2 dt / [h — V(u)|dt < Cip?.
- -1
Next we consider
') ) 1 d
/ [~V(u+w)+ V(u)ldt = / / —(=V (v + Aw))dAdt =
—§ ~5Jo dA

(4.16) P
= /5./ (—V'(u + Aw) - w)dAdt.
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Now, if § and p are small enough, then |u(t) + Aw(t)| < r, so that by (W6) and the
fact that u(¢) and w(¢) are orthogonal,

, _ v+ Aw u—f—)\w _
V'(u + Aw) w_alu+)\w|a+2 w+¢(|u+)\w])l ol =
’\!wlz ' a+1 o Alw|2
A el S >—__ 47
lu + Aw|o+2 (a-{— ¢ (v + Awl)|u + Aw| = 2 |u+ Awl|et?

Inserting this inequality in (4.16) we find
] é 1 2
a Alw|
/ [—V(u + w) -+ V(u)]dt < ——/ / WdAdt <

d\dt
i <
2“/ /lu+Awla+2d/\dt #/ / [u + Mot

Since u(0) = 0, we have
[u(®)] = [u(t) - u(0)] < / [aldt < £} [ils = Cat?,

so that |u(t)] < p whenever [¢| < o, = g; Restricting the interval of integration to
2

[—0u,0,], and noticing that there |u + Aw| < 2u, we obtain

d\dt
/ [-V(u+w) +V(u)ld t<——— f / Sate,eTT < —Cap?e.

Therefore
1
Flu+w) = f(u) < 5 (Cia® =~ Cap®™®) <0

if p is small enough, and a contradiction is reached. §
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CHAPTER 4

THE THREE-BODY PROBLEM

4.1. Symmetric three—-body problems

In this last chapter we present some results of existence of periodic solutions to the
restricted three-body problem and to the full three-body problem in the tridimensional
space.

Both these problems share such a long history that it is impossible to give here an
extensive bibliography. The interested reader may consult upon this subject any classical
text in Celestial Mechanics.

The results that we present here are derived from the application of the local analysis
of the behavior of the orbits in a neighborhood of the collisions which was carried out in
Chapter 1 and in Chapter 2. We shall concentrate here on symmetric problems, in the
sense that the given force field verifies some symmetry condition like in Chapter 1.

From our point of view the three-body problem (and he restricted three-body prob-

lem) belong thus to the larger class of Hamiltonian systems with singular potentials of the

type
(1.1) —i = VF(z)

where z € R and F presents a set of singularities of attractive type. For example, in the

—ajj

full three-body problem F is of the form F(X) = F(z1,z2,z3) = Dit ErErnk Here we

have written X = (z1,z2,z3) € (R*)%.
In the last few years quite a large amount of papers concerning periodic solutions to
a

problems like (1.1) has appeared, concerning most of all the case in which F(z) = —;i=
(see ie. [1]-[7], [10], [11], [17], [23], [24], [29], [33], [35], [43]-[46]). In the papers
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treating the fixed period problem, periodic solutions are found as critical points of the

associated action integral

I(z) = —;—/OTIa':lzdt - /OTF(x)dt

over a suitable function space. The application of these techniques to many-body problems
is even newer; we recall the papers [6], [11], [16], [19], [20].

Also in the three-body problem the variational approach presents two main difficulties.
First the lack of compactness characteristic of the two—body problem assumes here a more
complicated form. Secondly, the problem of avoiding the collisions (which, talking about
periodic solutions, are physically meaningless) becomes much more complicated since the
geometry of the multiple collisions cannot be handled in a simple way. This is the reason
why the results of this chapter cannot be generalized to more than three bodies, or even
to R, if N > 3.

Our approach follows the one introduced in [20]. A symmketry constraint on the
function space will allow us to overcome the lack of compactness, so that existence of
periodic solutions can be derived from the minimization of a suitable functional. Next
we shall show, and this will be the technical part of the chapter, that solutions found in
this way do not collide, that is, they are classical, C? solutions of the problem. The main
argument consists in proving that the property of minimizing the action integral cannot
be enjoyed by a collision orbit, provided the potential satisfies some local assumptions in
the neighborhood of the singularities.

We focus our attention on the existence of at least one noncollision solution. Mul-
tiplicity results have been given in [16], though in the larger class of (possibly) colliding
functions; see also [16] for the N-body problem. Lastly we recall the paper [6] for the sym-
metric fixed energy problem for N bodies is treated. Existence results for the three-body

problem in the strong force case without symmetries were provided in [11].
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4.2. A restricted symmetric three-body problem

We begin with the application of the methods discussed in Chapter 1 to the restricted
three-body problem in presence of symmetries. This means that we shall look for a periodic
solution of the equations of motion which describe the behavior of one body moving in the
force field generated by the other two. We suppose that the presence of the first body does
not influence the motion of the others. This is the situation which occurs, for example,
when the mass of the primary body can be neglected when compared to the total mass
of the system. The classical model problem is the description of the motion of the Moon
moving in the gravitational field generated by the Sun and the Earth: the effect of the
Moon on the motion of the Sun and the Earth can be, in a first approximation, neglected.

We shall deal with a symmetric three-body problem in the sense that the two bodies
creating the field are assumed to be moving on symmetric orbits, and we shall look for a

symmetric solution as well.
We denote by q;(2), ¢2(t) € R® the coordinates of the “fixed” bodies at time ¢, and we

assume that
(2.1) q1,q € HE(R;R*) = {z € H. (R;R®) / (¢t + T) = =(t) Vt € [0,T]}.
The symmetry condition on the orbits is expressed by the relations

(2:2) G(t+3)=—a) VeDT, i=12

For any two orbits z,y € H:(R;R®) we denote by C(z,y) their collision set, namely the

(possibly empty) set
(23) Cz,y) ={t €[0,T]/ =(t) = y()}-

Since qi, g satisfy the equations of motion of the two—body problem, it is natural to require

that

(2.4) q1,¢2 € C*([0,T]\ Cq1,q2);R®).
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From now on we shall say that ¢q;,q> are standard orbits if the above hypotheses hold
true, namely if (2.1)-(2.4) are satisfied.

The restricted symmetric three-body problem consists in determining, given two stan-
dard orbits and two functions Fy, Fy € C2(R*® \ {0};R), a ¢ € C2([0,T] \ C(q1, ¢2); R®) such
that

{ —§(t) = VFi(q(t) — q1(t)) + VF2(q(t) — g2(¢))  Vt€[0,T]\C(a1,q2)
(2.5) gt + L) = —q(¥) vt e [0,T]
q(t) # a1(t), q(t) #qa(t)  VE€[0,T]\C(g1,92)

This problem can be tackled with the methods described in Chapter 1 because it has a

variational structure. Indeed, let
1. s T
H={qe Hr(R;R%) / q(t + 5) = —q(t) ¥t € [0, TT},

A={qe H [ q(t)# a(t), q(t) # a2(t) V¢ € [0,T]\ C(q1, ¢2)}

and assume that the potentials F; € C%(R® \ {0};R) are even:
(5) Fi(—z) = Fi(z) vz e R*\ {0} i=1,2.

Then it is well-known that solutions of (2.5) are critical points of the action functional

I € C?(A;R) defined as

T T T
26) o =3[ l@li- [ B - @ - [ R0 - e

We suppose that each F; is of the form

a;

|z|*

(2.7) Fi(z) = — + ¢i(lz]) + Ui(=), 1=1,2

for some a; > 0 and « €]0,2[. We remark that in the classical restricted three-body
problem one has ¢; = U; = 0, % = 1,2. Therefore the terms ¢; and U; can be consisered
perturbations of the classical potential.

Concerning the functions ¢; and U;, we assume that ¢; € C?(]0,+oco[;R) and that
U; € C3(R*\ {0};R), : = 1,2, and we make the following hypotheses:

(H1) h'n% lpi(s)]s®Tt =0 i=1,2
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3C > 0 o > 0 such that

H2
(#2) lim sup |V2U;(2)||z|*T?7 < C i=1,2;
z—0
(H3) o A2 21C))
|z|—o0 i(BI
(H4) Fi(z) <0 Vo0, i=1,2.

We now state and prove the main result of this section.

Theorem 2.1. Let g1, g be standard orbits and suppose F; verifies (S), (H1)~(H4). Then
for every T' > 0 there exists at least one solution ¢ € A of (2.5) having T as minimal period.

Moreover

(2.8) 1(q) = inf I(2).

Proof. We first remark that under our hypotheses the functional I admits a natural
extension (which we still denote by I) to the whole of H, defined by
(2.9) I(q) = {I(q) if fOTFi‘(q —g;)dt < o0, 1=1,2
+o0o otherwise.

It is straightforward to verify that such extension is weakly lower semicontinuous and
coercive on H, due to the symmetry constraint and (H3). Therefore there exists ¢ € H
such that I(q) = inf,em I(z). All we have to show is that actually g € A.

To this aim we assume on the contrary that there exists a minimum ¢ in H \ A and we
show that this leads to a contradiction; the arguments will follow closely those of Chapter
1 and will make use of the results obtained there.

By the definition of A, saying that ¢ € H \ A is equivalent to saying
3t* € [0,T)\ C(q1,q2), Fi € {1,2} such that ¢(¢*) = ¢:(t").

Of course we can assume without loss of generality that ¢ = 1, so that at time %, ¢
collides with ¢;. Since g1 and g, are continuous functions, [0, 7]\ C(g1,¢g2) is open in [0, T};

moreover, since the set C(g,q;) is closed, we can find an interval [a,b] C [0,T] such that
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1) aab ¢ C(Q; QI)a

11) a'7b ¢ c(% 92)7
iii) t* €la, b,
iv) [a(t) =) 2C >0 Vi€ (q,l

Let us denote by J : H — R the functional
1 b b b

1) @)= [0l [FeO - a@d- [ B - eo
then the fact that ¢ minimizes I implies that ¢ also solves the minimization problem

(2.11) inf{J(y) / y € H'([a,b};R*), y(a) = q(a), y(b) = q(b)}.

Remark that because of (H4), we have

b
(2.12) / 474t < 27(a);

moreover, just by taking a smaller interval (if necessary), we can always assume that

(2.13) (v27(q) + ll1ll2) (b — @)% < g—

where C' is the constant appearing in iv) above.

Now since

4 - a0l <1 [ 160 - sl < [ laiae+ [ asla
< VAUl + 111 < V5= a(v/3(@) + lls o),

we have that by (2.13) and iv),

T vielad)

(2.14) l9(t) — q2(t)] = [a1(t) — 2 ()] — la(t) — @ (¥)| 2

and the same estimate holds for every minimizer of (2.11).

By the change of variable z = y — ¢1, we see that the minimization problem (2.11) is

equivalent to

(2.15) inf (% / e — / Py ()dt / bG(t,z)dt),
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where K = {z € H([a,b];R?), z(a) = q(a) — q1(a), z(b) = q(b) — q1(b)} and
6t,2) = Tl () =2+ 2() = Bo= + 01(2) — 22(8) + 26) - 3(8) — 2(a) - 2 (a).

We now apply Theorems 1.4 and 2.2 of Chapter 1 to the minimization problem (2.15);
remark that the functional to be minimized has the right form, since Fy(z) = —-I-Zl—’;. Notice
also that the only hypothesis which may fail to be satisfied is the regularity of F;. However,
thanks to (2.14), we can treat F; as regular, since every minimizer (or minimizing sequence)
cannot interact with the set of singularities of Fz(z + g1 — g2). Thus, from (H1)~(H3), the
problem fits into Theorems 1.4 and 2.2 of Chapter 1. Now those results actually say that
the infimum in (2.15) is attained in K N{z / 2(t) # 0 Vt € [a,b]}. Therefore, if z minimizes
in (2.15), then y = z + ¢; minimizes in (2.11). Since ¢ minimizes (2.11), we must conclude
that g — q1 € KN {z / z(t) # 0 Vt € [a,b]}, that is to say, q(t) # a1(t) Vt € [a,}],
contradicting the fact that ¢(¢*) = ¢1(¢*). Of course the same argument applies for every

other collision between ¢ and ¢;, or ¢ and g2, and the proof is complete. §
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4.3. The symmetric three—body problem

The three-body problem is probably the most famous problem in Celestial Mechan-
ics. It consists in describing the complete behavior of three particles attracting each other
according to Newton’s law of gravitation. Despite the efforts of generations of mathemati-
cians and physicists, this problem is still unsolved, and it is generally believed that it will
be so for a long time to come.

Our purpose here is to analize what can be done by means of the variational approach,
which has been proved to be so useful in treating the easier two-body problem. The
variational techniques have motivated in the very latest years a great rise of interest in
this kind of problems, and especially concerning the search of periodic solutions (see i.e.
(6], [11], [19], [20]). The analysis of the motion in the neighborhood of the singularity
which was carried out in Chapter 1 and 2 has inspired the results contained in the present
section. In particular, our main purpose is to investigate wether the arguments used in
the first part of this work to avoid the collisions can be suitably modified and generalized
in order to achieve the same kind of result for the double and triple collisions in the three—
body problem. It turns out that this is indeed the case, at least if the hypotheses used in
the first chapter are suitably strengthened. Unfortunately, the core of the arguments lies
in the fact that we deal with three bodies in the tridimensional space, so that we do not
think that any generalization of our techniques to higher dimensions, or, worst of all, to
more than three bodies, is possible.

During this exposition we shall make use of known classical results, such as Sundman’s
Theorem; most of the time we shall need some slight generalizations of these results, which
were originally proved only in the case of the Newtonian potentials. For the reader’s
convenience, we shall report here the original proofs (or their generalizations), in order to
make the exposition self-contained.

We begin by stating the problem and the main results. The main theorem will be

proved in Section 4.4.
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We consider six functions F;; € C2(R®*\ {0};R), 1 <17 # j < 3, three positive numbers
m; (the masses of the bodies), and a period T > 0 and we look for a classical solution of
the problem
“miﬁi(t) = 23;;} VFij(Qi(t) - QJ'(t)) i=1,2,3 Vtel0,T]
(3.1) a(t+T) = —q(?) i=1,2,3 Vte[0,T)
a:(t) # ¢; (1) 1<i#;<3 Vtel0,T]

The potentials F;; € C2(R® \ {0};R) have a singularity at zero of actractive type.

In the classical three-body problem for instance the three particles located at g;
are subjcet to the mutual effect of the universal law of gravitation and must satisfy the
equations \

—mig; = Z; G%(Qi —g¢) i=1,2,3.
i

Problem (3.1) has a variational structure provided that
(S1) Fij(z) = Fji(—z), VezeR*\{0},1<4,j<3;

as for the restricted three-body problem we shall deal with an even potential, that is we

shall assume that
(S2) Fy(z) = Fij(—z) VYeeR*\{0},1<4,j<3.

Remark that (S1) and (S2) actually reduce the number of the functions Fj; to three, since
F;; = Fj;. This identity permits to work in a space of symmetric orbits, such as in [20];
the conditions (S1) and (S2) are thus more restrictive than F;; = Fj;, but yield a sharper
result than that of [20].

If we denote by @ the vector (q1,92,¢3) € (R*)® and by

(32) H = {Q € HL(R,(R')) / Qt + 2) = —Q(1), Vi € R},

then the natural action functional associated to (3.1) is

3 T 3 T
(3'3) I(Q) = I(Q17927Q3) = %Zmz_/n lq‘i(t)‘z — % Z /0 Fij(qi(t) — qj(t))dt.

I
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It is immediate to check that critical points of I in
(3'4) A= {Q €H / qi(t) ?é Qj(t) ,V1<1,7 <3, Vte [07T]}

are classical solutions of (3.1) Our main result is concerned with locally radially symmetric

potentials. In order to state it we assume that each F}; can be written in the form

(H1) Fij(z) = -2 1 Uy(z) VY1<4,5<3,

e

for some a €]0,2] and a;; > 0. Concerning the functions U;;, we consider the following

assumptions:

Je > 0, 3¢;; € C*(]0,¢];R) such that
(H2)

Usj(z) = ¢ij(lz])  V1<4,7<3, VO<|z|<e
(H3) lim [¢3;(s)|s* T =0 V1<4,j <3
(H4) Jim ]WT#ZO V1<ij<3;

T|{— 00 Zz

(H5) Fij(z) <0 V1<4,7<3, Vz#0.

Remark 3.1. Hypothesis (H1) says that F;; is a perturbation of the potential —I%% (we
obtain Newton’s potential and the classical three-body problem when a =1 and U;; = 0).
Condition (H2) expresses the fact that the potential is locally radial at zero; this means-
that close to a collision the potential only depends on the distances between the bodies.
Finally (H4) is a nonresonance condition at infinity which implies that the functional I is

coercive on A.

We can now state the main result.

Theorem 3.2. Assume Fj; € C*(R® \ {0};R) satisfy (S1), (S2) and (H1)-(H5). Then for
every period 7', problem (3.1) has at least one solution @ = (q1,¢2,¢3) € A of minimal

period T'. Moreover
(3.5) I(Q) = }1(1'5&1()() < X}ggAI(X)
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Remark 3.3. We notice that when U;; = 0, so that Fjj(z) = —%, then Theorem 3.2
applies, and in particular, (3.5) holds. This allows us to introduce pinching conditions, in
the spirit of [23], in order to treat potentials without radial symmetry assumptions. The

corresponding results are given in the following propositions.

Theorem 3.4. Let F;; € C*(R? \ {0};R) satisfy (S1), (S2) and

da > 0, Ja;; >0, 3C > 1, such that

(3.6) %ij _Fy(e) < C

|z~ 2|

az‘j

V1<4,5<3 VzeR®\ {0}

Then there exists a function ¥(ea, Z%, gii—) such that, when
i’ Ak

my

(3.7) C<U(a, =, 20y Vi jk=1,2,3
m; Qik

then for every period T' > 0, (3.1) has at least one solution having T' as minimal period.
Moreover ¥ enjoys the following properties:

m, Qiq
U(e,—,—L)>1 Va>0,
m; ik
_ e s
lim ¥(a, —, —%) = +o00,
a—2 m; Qi
e
lim ¥(a, —, —L) = 1.
a—0 mj Qi

Remark 3.5. Thinking of Newton’s law of gravitation, a remarkable application of the

above theorem holds when Fj;(z) ~ er:'zz" . In that case, the pinching condition reduces

to C < ¥(e, T—n'%)

Remark 3.6. Here like in other results, the minimality of the period just follows from
the well-known fact that each minimizer of a functional of the type of (3.3) over a space

of T-periodic functions either is constant or has minimal period T'.

As direct consequences of Theorem 3.4 we obtain the following Corollaries.
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Corollary 3.7.Assume that m; = m; = m3 = m, and let F}; € C?(R® \ {0};R) satisfy
(1), (S2) and

Ja > 0 Ja,b > 0 such that

=l—§;S—Fu(w)s#, 1<4,7<3 Vo0,

then there exists a function ¥(a) such that

4
a

(3.8) < ¥(a)

implies that for every period T' > 0, (3.1) has at least one solution having T' as minimal

period. Moreover ¥ enjoys the following properties:
Y(a)>1 YVa>0
il_I{]é ¥(a) = +o0
ii_rﬁ) Y(a) = 1.

The following result is just an immediate consequence of Corollary 3.7:

Corollary 3.8. Let F;;,U;; € C2(R® \ {0};R) satisfy (S1), (52) and

da >0, Jda;; > 0, such that
_ %
|z|*

lim [Uy(2)lle]* =0 1<i,j <.

Fij(z) =

+ Uij(z) 1<4,7<3 Vz#0

Then, for every T' > 0, (3.1) has infinitely many solutions.

As we have anticipated above, the proof of Theorem 3.1 will be given in next section.

Assuming that this result holds true we now turn to the proofs of the other propositions.

Proof of Theorem 3.4. Since the functional I is weakly lower semicontinuous and

coercive in A, infy I is attained by some function @ in A. However, if we show that
. inf I(X) < inf I(X
(39) RETE) = e, 1
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then it follows that @ € A, and therefore it is a classical noncollision solution of (3.1).

We introduce the following notations:

3 T
(3.10) J(X;T,aij,mk):%Zmi/é |&:(8)]* — Z/ Iwz(t)—zj(t)la
and

(3.11) J1(X; aij,my) Zmz/ |2:(2)]2 — = Z / t) ﬁm] t)ladt"

Obviously Jy is defined on sets of 1-periodic functions; we denote by A; the corresponding
set of symmetric noncollision 1-periodic orbits. If we make the change of variable X (t) =
(Tz%)%ﬂY(—;—,), where p,q,r € {1,2,3}, an easy computation shows that

ai]'

J(X;T, aijyme) = (T~ %a2,m2) =57 J1 (Y

mg
7;1_7");

pq

therefore
(3.12) J(X;T,Caij,my) = C’E%(Tz_a)ﬁle(Y;aij,mk) = Ca_i?](X;T, @ij, M)

This also means that

(3.13) JI{ngJ(X T,Caij,mp) = lok= ]}Iéf J(X;T,aij,mk)
and
(3.14) Xuelzg J(X;T,Casj,my) =C eEs) Xlgf J(X;T, a5, mp).

‘We now define ¥ as

. my @4
mi aij infyeon, N1(Y5 75, G0

(3.15) ¥ (e, —,—) = max| - T
m;’ i 7, \ infyep, J1(Y e ? Gpq

and we remark that by Theorem 3.2 we have ¥(a, m" , a" ) > 1. The fact that ¥ enjoys
the properties in the statement of the theorem is an easy consequence of the definition of

T; we refer the reader to [23], where the proof is carried out in detail for the two-body

problem.
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Suppose now that the constant C' is chosen in such a way that

mg a.,;j

(3.16) ot < U,

, .
m; agx .

Then we have

}lfréaf(x)S)chéaJ(X;T,Caij,mk) < C=+z )}IéfAJ(X;T,aij,mk)

3 . . . < -
< 12£A J(X;T,a:5,mp) 12£AI(X)
and the proof is complete. J§

Proof of Corollary 3.8. From the above discussion one easily sees that, under the
assumptions of Theorem 3.4, there exists a constant C; (depending only on the masses
and the values of the a;;’s) such that the minimizer X found by the application of Theorem
3.4 satisfies || X ||, < C1T7%=. One then concludes just by taking a small T', since condition
(3.7) holds with a constant C as close to the value one as we wish, provided the motion is
constrained in a sufficiently small neighborhood of the origin. In order to obtain an infinity

of solutions, just apply the above reasoning to the sequence %, for each k large enough.
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4.4. Proof of the main result

This section is entirely devoted to the proof of Theorem 3.2. We are going to show
that a minimizer of the functional I is free of both double and triple collisions, thereby
proving that infa I < infgp I.

We are going to accomplish our goal by means of a main estimate based on a series of
preliminary lemmas. Some of these lemmas are almost immediate extensions of classical
results, such as Sundman’s Theorem. For the sake of completeness we shall carry out all
the proofs, including those which can easily be deduced from known classical results.

The section is structured as follows: first we show, with the aid of the results estab-
lished in Section 2, that minimizers are free of double collisions. Next we obtain a geometric
description of the triple collisions through a local analysis of the equations of motion; this
description will enable us to rule out the triple collisions arguing by contradiction.

We start by remarking that the functional I admits a natural extension to the whole
of H defined as usual by

I(X) = {I(X) if [T Fj(e; —a;)dt <400 V1<i#j<3

+o0o. otherwise

Similarly to the functional associated to the two-body problem, this extension is lower
semicontinuous and coercive on H, due to the symmetry costraint and (H4). Therefore

there exist @@ € H such that

4.1 =i X).

(4.1) I(Q) = inf I(X)

We want to show that actually @ € A. To this aim we suppose by contradiction that

(4.2) I(Q) = jnf I(X) = jnf I(X)= jaf I(X)

so that the point of minimum Q verifies Q € §A. By definition, @ € OA just means that

(4.3) Jte(0,T],3,5 €{1,2,3}, i # 5 ,a%(?) = ¢;(?)
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We say that t is a time of double collision if gx(%) # ¢:(¥) = ¢;(%), for k # 1, k # J,
while £ is a time of triple collision if ¢1(%) = ¢2(%) = gz (%).
We first prove the following result.

Proposition 4.1. Assume that (H1), (H2) and (H3) hold, and let @ be such that I(Q) =
inf xepg I(X). Then @ can not have any double collisions.

Proof. We assume by contradiction that there exists a time # of double collision, say

22(t) = g¢s (Z) and ¢1(%) # ¢2(%).

We observe that ¢; is a minimizer of the functional

1 T T
Ipigo(gs) =5 | l@sl’dt — | [Fis(qs — gs) — Fas(qz — gs)]dt
(4.4) 2/0 /0

1T e T
+§ (Ig:)* +1¢21?) dt — | Fia(q1 — g2)dt
0 0

over

~ T
H = {233 - Hlloc(R; H3) / $3(t -+ -i-) = —Z3(t),vt c R}

We can then apply the results of Theorem 2.1 to prove that ming I, »,(z3) is attained
by a function g3 which does not cross neither ¢; nor g, for all ¢ such that ¢;(¢) # g2(?).
Since this argument works for every instant of double collision, we can conclude that the

minimizer ) can at most have triple collisions. §

The argument to be used in proving that @ is free of triple collisions will take the
remaining part of this section. We begin by introducing some notations.

For a generic orbit X = (z1,z2,23) € H, we set
13 3
— ‘4 . ]2 — — A2
T=T(X)= ;mz[aﬂ , G=0X)= ;mzym

and

3
F(X)= > Fij(z: — ;).
§,j=1
i#j

The following Proposition makes precise the kind of orbits we are dealing with.
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Proposition 4.2. Suppose Q € H is such that I(Q) = inf xeg I(X); then
i) @ is free of double collisions.
i) @ has at most two triple collisions, both at zero.
iii) 3 E € R such that T(Q) + F(Q) = E in every instant which is not of triple collision
(conservation of energy).
iv) Zfﬂ m;q; = 0 for every ¢t € [0,T] and Zf=1 m;g¢; = 0, vVt € [0,T] not of triple
collision (conservation of center of mass and momentum).

v) Suppose that there are no collisions for all ¢ in some interval |a,b[ and that
lgi(t) —q;(t)| <e  Vi€le,b] V1<i#j<3,

where ¢ is the constant introduced in (H2). Then there exists By € R® such that

3
B(t) = > migi(t) x ¢i(t) = Bo Vi €la,b.
(Conservation of angular momentum for small distances).

Proof. We set I(Q) = J7 L(Q,Q)dt, and I, 5(Q) = [, L(Q,Q)dt. We recall that Q

satisfies the equations of motion associated to I:

3
—miGi = Y _ VFij(g — g5)
i
in every instant which is not of double or triple collision.

Proof of i). See Proposition 4.1.

Proof of ii). Suppose that @ has more than two triple collisions and that ¢ =0 and t =T

are instants of triple collision; it is not restrictive to assume moreover that

Tozy(@) < Z2I(Q).

Setting
Zf—l migi(t)

V() = Q) - ==

b
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we see that V has only triple collisions at zero and I(V) < I(Q) (strictly if the center of
mass of @) is not zero). Let U(t) = V(%lt) for ¢t € [0, %] (and symmetrically in [Z,1));
then U € H and, because of (H5),

I0) = 5r-Toay(V) + -2—Ti-——>2m [ b < St i) < 1@),

and the strict inequality holds when @ has more than two triple collisions. This is a

contradiction since () minimizes I.

Proof of iii). Since F is a function of the ¢;’s only, it follows immediately that if Q is
a solution of the equations of motion, then there T' + F is constant of each connected
component of [0,7]\ C(q1,4q2,g3). By ii) this set has only two components and therefore,

by the symmetry of @ the constants are the same:

(4.5) T+F=E.

Proof of iv). By summing the three equations of motion one obtains

3 3
=Y mudi= Y VF;(g - g5);
i=1

3,7=1
1]

but since, by (S1),
VFij(g — ¢5) = —VFiig; — a5),

we have EZ_I m;§; = 0, which implies ZZ . ™mig; = ct + d, for some constants ¢,d € R®.
By periodicity, ¢ = 0, and by the symmetry condition, d = 0, which means that both
the center of mass Zle m;q; and the linear momentum Z:::l m;q; are identically zero

throughout the motion.

Proof of v). Indeed, by virtue of (H2), we have

3
X g; X q;
—m;Gi X g; = Z amzm]% + Qbig(lq% - le)—l;__l,“ Vi €la, b.

i1 lg: — g5

J#E
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Summing over ¢ one sees that the j—th term of the i-th equation cancels the i—th term of

the j—th equation. Therefore
PRk 3
=EZmiqixgi=Zmi§ini=O Vt €]a, b,
i=1 i=

and B is constant in |a,b[. &

Now we prove some preliminary lemmas; here and below we denote by BF the gradient

of F' with respect to the vector g;.

Lemma 4.3. For every v > 0, there exists ., > 0 such that, if |¢;| < ¢y, 1 = 1,2, 3, then

(4.6) Q-VF(@Q) =3 a- §F<

Proof. We remark that equality holds in (4.6), with 4 = 0, if F' is homogeneous of degree
—c; this is the case, for example, of the classical three body problem (a = 1).

In our case it is enough to compute

3 3
mMim;
> g (Q) > —a—— + ¢\(l — g;])la — g5
=1 i,j=1 IQE—QJ]
%]

and to see that, for o., small one has, by (H3),

Zqi—g—é—:-(@) L (a+1)F(Q) =

3

—-———-1 o
Z ‘% —- qj ta {7m mj + qszg(lq% qJD"]z - q_yl +1

1,7=1
i#%]

+ (e +7)éii(la — giD)las — 51} <

Remark 4.4. The following result is crucial for the understanding of the geometrical
behavior of the solution near a point of triple collision. The result, in the case of the plain
Newton potential, was already known to Weierstrass, and it was first proved by Sundman

in 1913. The argument of the proof here is derived from [40].
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Lemma 4.5. (Sundman). Let ¢ = 0 be an isolated triple collision instant for Q. Then
there exists £ > 0 such that

(4.7) B(t)=0  Vte]-1i\{0}.

Proof. By the conservation of center of mass, the triple collision can occur only at zero.
Moreover we can assume that @ is regular of class C? in (—§,6) \ {0}, for some & > 0.

We start by the algebraic estimate

lZakka Zlakxbk]2+22(azx6) (a,xb)<32|akxbk

<]
< 32 e | |bi[? < 3(2 jas ?) (Z B [2),
i=1 i=1 i=1

which holds for every ag,br € R®, &k =1,2,3. Setting ar, = \/mrqr and by = /mrqx, the
above inequality shows that

(4.8) |B|* = IZ Mgk X g |* < 3(kal%| kaIlez) =3G(Q) - 2T(Q).

|B|?

Let 7 = 5-; then from (4.8) we have

(4.9) G(Q) - 2T(Q) > 1.

We want to show that n = 0 in | — #,#[\{0}, if  is small enough. Therefore we suppose
from now on that # has been chosen so small that all the previous local results hold.

Differentiating twice G yields

3

3 2 3 : oF
= Zmi!éii“ + ZmiQi - =2T(Q) — Z qz'é;;
i=1 i=1 = i

hence, by Lemma (4.3) and by the conservation of the energy,

(4.10) 56" 2 27(Q) + (o + V)F(Q) = (2~ & —)T(Q) + (o + 7).
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Multiplying this inequality by G and using (4.9) we obtain

a—7q

1 —
(411) 160" > (2« = 9)TG+ (o +7)BG 2 Z— oLy + (a+ 7)EG.

Let usset a* = a+v < 2.

We claim that for ¢ < 0 small enough we have G' < 0, and the opposite inequality
if ¢ > 0. Assuming for the moment that this is true, we work from now on in £,0[. It
will be clear that the same argument also works in |0,#[. Then we can multiply (4.11) by
—4%’ > 0 to obtain

1

—-2G'G" > —2(2 — a*)n% —4a*EG,
that is,
(4.12) —~i|G'12 > —2(2 — a¥) ii—lo G —4*EQG
' di = Friat '

We now integrate this relation over an interval [s,t], with s <t < 0:

(4.13) —G'(t)? + G'(s)* > —2(2 — a™)nlog g((g — 40 E(G(2) — G(s)),
and we finally obtain
(4.14) G'(s)* > 2(2 — a*)nlog g(('z; — 4™ |E|G(s).

Now, if we let ¢ tend to zero with s fixed, we see that the first term in the right-hand-side
of (4.14) tends to +oo. Clearly this is possible only if n = 0.
We only have to show that the claim holds true: G'(t) < 0 if £ < 0 is small. To this

aim let us consider again (4.10): using the conservation of the energy we can write it as
1 n
(4.15) §G >2E — (2 —a—7)F;

recalling that in ¢ = 0 a triple collision occurs, we see from (4.15) that G"(t) — +oo as
t — 0. Therefore G" is strictly positive around ¢ = 0 and hence G' can change sign at
most once in any neighborhood of zero. Remark also that by the equations of motion it

follows G" € L', and therefore G € C*. Since G has a local minimum at ¢ = 0 we conclude
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that G'(0) = 0, which together with the above remarks yields G'(¢) < 0 if t < 0 is small

enough. The claim is thus proved and the proof is complete. §

In the next proposition the crucial hypothesis is that we are working with three bodies

in RS,

Lemma 4.6. Suppose that no collisions take place in ]a,b[, and also that B(¢) =0 Vte
la,b[. Then the components of Q,(g1,92,93) lie on the same fixed plane of R®* V¢ €]a, b|.

Proof. ([40]). Let (z,y,z) be an orthonormal reference frame in R® and denote by
(zr, Y&, 2k), k= 1,2,3, the coordinates of the k-th body ¢z. Since |B|?> and the equations
of motions are invariant under rotations and since the center of mass is assumed to be
at zero, we may also assume that at some time ¢ = 7, the three particles lie in the plane

z = 0. By hypothesis we have that at time ¢ = 7,

3 3
(4.16) kaykék =0, kawkék =0,
k=1 k=1

and since the center of mass is at rest, we also have

3
(4.17) kaik = 0.
k=1

If we look at (4.16), (4.17) as a linear homogeneous systems in the three unknowns myz;
at t = 7, we see that either 2z, =0, £ =1,2,3, or

L1 T2 T3

det | v1 w2 s, | =0.

1 1 1
In the first case, the initial directions of motion for the three bodies lie in the plane z = 0,
and by uniqueness, the bodies remain in this plane for all ¢ €]a,d[. In the second case the
three bodies lie initially on a line, and the coordinate axes can still be rotated so that z;

vanishes at t = 7. If we then exclude the case already treated, the above equations give

T1 = T2 Yy =y ati=r,
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implying that two of the bodies (¢; and ¢) collide ad ¢ = 7, contrary to our assumption.

From the previous Lemma it follows thus that before and after a triple collision the
motion takes place on fixed planes. One can ask if these planes coincide, that is if the
motion is planar in a neighborhood of a collision. The answer is in general negative.
However we show in next proposition that when one deals with minimizers of the action,
then it can be assumed without loss of generality that the planes do coincide. This is one

of the cases in which the variational approach is determinant.

Proposition 4.7. Suppose the hypotheses of Theorem 3.2 hold and let Q € H! be such
that I(Q) = inf xea I(X). Assume that an isolated triple collision takes place at zero at
time ¢ = 0. Then there exists Q € H? such that I(Q) = I(Q) and &1, g2, g3 lie on the same
fixed plane of R® for all |¢| < §, with § > 0 small enough.

Proof. By Lemma 4.5 we can assume B(t) = 0 in | — §,0{U]0, §[ for some § > 0. By
Lemma 4.6 @ is planar both in | — §,0[ and in ]0, §[, but the two planes need not coincide.
Set I(Q) = fOTL(Q, Q)dt; it is not restrictive to assume that

/ 10, Q) < /. " 10,00,

so that by the symmetry of @ it follows

3T

T . T :
[ @< [ o

Now consider the orbit defined by

A _ Q(t) if te [07 %:'} U [%? %]
Q) = {—Q(—t) otherwise in [0, 7]

it is immediate to check that Q@ € H',I(Q) < I(Q), and Q(—s) = —Q(s) for all s small
enough, which means that Q minimizes I and enters and leaves the collision on the same

plane. §

Having gathered the estimates we need, we can now prove the main result of this

section. We recall that if ¢ minimizes I, then it is free of double collisions. We now are
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in a position to show that @ can not have any triple collision either, thereby completing

the proof of Theorem 3.2.

Proposition 4.8. Assume the hypotheses of Theorem 3.2 hold and let Q be such that
I(X) =infxep I(X). Then Q can not have any triple collision.

Proof. Let us suppose by contradiction that ¢ has an isolated triple collision at time
t = 0. By Lemma 4.8 we can replace ) by another minimizer (still denoted by Q) with
the further property that Q is planar in [—é, 6], for some § > 0. Therefore, there exists
w € S? such that

gi(t) -w=g;(t)-w=0 Vj=1,2,3 Vie[=6,4].

Let w be the piecewise linear function defined by

w0 = {0 itre( £
where p € R will be conveniently chosen later; extend w to the whole of R by periodicity
and define |
T(t) = B(t) — Bt + %).

Finally let V € H be the function
V(t) = (v1(t),v2(t),vs(2)) = (@(2),0, —w(t));

it is clear that v;(¢)4+¢;(¢) # ve(t)+qx(t), V7 # k, Vt € R and moreover that v (¢)-¢;(¢) = 0,
Vi, k, Vt € R.

We are going to show that I(Q + V) < I(Q), for 1 small enough, contradicting the
fact that I(Q) is the infimum of I over A.

We start by remarking that by symmetry and by the choice of V,

3.8
IQ+V)~1@) =2{3 3 [ s+ = fisldt—

3 §
—% > /S[Fij(qu,-—qj —v;) = Fij(gi — g5)]dt}.

i,j=1 -
J#d
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The estimate of the kinetic part leads to

3 § 3 5
(4.18) Soms [ i+ o~ aPldt = Soms [ sl < Cut,
i=1 =6 i=1 =6

where C; > 0 is independent of p.

Therefore
IQ+V)-I(Q) <
(4.19) e ,
<= [F(as 40— g5 = v5) = Fis(ai — gj)lde + Cup”.
z:ig;—';_l -

We want to show that if p is taken sufficiently small, then this quantity is strictly negative.
To do this, we can certainly assume that § and g are so small that the potential takes the
form given by (H2) throughout the interval [—§, 6]. In other words, if we set

é mim;
b :/5[!q- + v — q.J_ oe Sl o — g5 —vil)-
=6 T Vi—d; Y
M,
“ T T eulls - ala
then (4.19) becomes
3
(4.20) IQ+V)-I(Q) < Y Ty +Crp.
i,7=1
J#l

Now we estimate the generic term Tj; of (4.20):

) 1
d T
Tij = E3y S — ¢ii(lgs — ¢; + Avi — Avj|))dAdt

’ [—6/0 d/\(lqz'——qj+/\vi—>\vj[a bis(lgi — i + I i)

_/6 /1[ Av; — v;]?
—sJo @i — q; + Avg — dvj|et?

(amim; + ¢;(1g: — g5 + Mvi = Avj])lgi — g + Ao = dv;[*TH)]dAdt.
Now for g and é small enough, the quantity in the round brackets is larger or equal than

fam;m;, because of (H3). Hence

1_;:.<_amimj /6 /1 Alvi_vjlz d)\dt
T 2 JosJo lg—gj+ Avy — Avylat?
< _omim; / : / ' Au drdt
B 2 =2 Jo g — g + dvi — Avj[et?

am;m;

$ 1
< = 2/ / d\dt.
- g * =t 1 la = g5 + dvi — dwy[et?
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Now since

1MM5A@@W5@&

for some constant C; independent of p, we have that |¢; — ¢;| < p, for all ¢ such that
20,t3 < p.
2 2
Restricting the interval of integration to [—, 0] 1= [— (2—5—2—) , (2—5,;) |, we obtain

1
am;m; o [° 1 2—a
Tiif“““?{“’“/ /g:ﬁ;md/\dtﬁ"osﬂ )
)

1
2

where (3 is a positive constant independent of .

Summing the Tj;’s and recalling (4.18) we obtain
I(Q+V)—I(Q) < Cip® — Cap®™™

and therefore I(Q + V) — I(Q) < 0, when g is small enough, contradicting the fact that
I(Q) =infxea I(X). Theorem 3.2 is proved. §
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