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Chapter 1

Introduction

The aim of the subject is to construct the concepts out of which a comprehensive workable
system of theoretical physics can be formulated. The system must be as simple as possible,
and yet must lead by deductive reasoning to conclusions that correspond with empirical
ezperience.

A. Einstein

1.1 Fundamental Forces

Since created by God, human being has been always puzzled by the tremendous mystery
and the complexity of nature. A great deal of the outstanding thinkers in different countries
and different times spent their talents and lifes in observing the environment and pursuing
the scientific truth. However, they often face difficult choices. On the one hand, from time
to time, there are always new domains of the knowledge and new ways of thinking arising.
On the other hand, a formidable faith pushes scientists to simplify all of this knowledge,
i.e. to search for some most fundamental assumptions which are as simple as possible,
and from which we can deduce all known results. This leads thinkers to ask the eternal
questions

What are the fundamental constituents of matter?
What are their fundamental laws?

The first answer to the questions could date back to the ancient Greek. The starting point
of the Greeks in fact was gravity, they proposed a naive model which said that: Everything




is made up of the idealized point particles. If body falls down to the earth, the more the
body weighs, the faster it 1is.

This intuitive concept was deeply rooted in human’s brain for a quite long time till the
17th century. Galilieo introduced the scientific method and together with Newton gave
birth to Physics. Due to their contributions, as well as to their followers like, Laplace and
Faraday, Maxwell and Boltzmann, etc. it was understood that

1. Matter is immersed in an absolute space and absolute time;
9. Matter has two distinct fundamental ingredients: massive point particles and waves;

3. There are 3 different forces in nature: gravitational force, electronic force and mag-
netic force;

4. The electric and magnetic forces travel at the speed of light, but travelling of the
gravitational interactions takes place at infinite speed.

The first unified theory was due to Maxwell, his beatiful equation unifies the electronic
and magnetic forces into a single interaction, that is, “electromagnetic force”. Apart from
some exceptions(like black body radiation), in the end of the last century, physicists could

roundly claim that “give me the initial conditions, I can tell you all the story of the world
p y g y
in the future.”

However such exciting time quickly ended with the birth of two fundamental theories
of the physics, “quantum theory” and “general relativity”. These are so profoundly rev-
olutionary that in the history of physical science the twentieth century stands out as a
tremendously particular period. The exploration of nature made the greatest progress cov-
ering from the widest expanses of cosmos to innermost recesses of matter. And physicists
had to overthrow almost all our utterly unquestionable notions: the basic attitudes toward
time and space, as well as the concepts about point particle and wave. Space and time are
no longer “empty boz”, they united together as space-time, and could be identified with
matter. Point particle and wave are not completely distinct any more, since

any matter is made up of the elementary particles which possess wave-particle duality.

However, not long later, physicists faced perplexity once again. The family of the discovered
elementary particles acquired more and more members. Their interactions can be classified
into four different types: strong, weak and electromagnetic as well as gravitational forces.
It is unbelievable that all of these “elementary particles” are really elementary. A solution
of this problem was with the help of the gauge symmetry. The local symmetry in Yang-
Mills theories together with renormalization scheme enables us to banish the infinities of
the quantum field theory and to unify the laws of the elementary particle physics into
an elegant and comprehensive framework. In the late 1960s, electromagnetic force and
weak forces united together as electroweak force in the Wenberg-Salam model. Later on,
it was found that all the particle physics in fact is compatible with the minimal theory
of SU(3)®SU(2)®U(1). In the past decades, the theoretical physicists proposed many

candidate models for the grand unified theories(GUTs), which are supposed to unify strong
and electroweak interactions.




1.2 Why Strings?

The next step is to unify all the known forces. Our dream is to look for a “final unified
theory”. This theory must include gravity, give a unified description of all physics and
predict a multitude of new fascinating phenomena. Since GUTs seem to be the unified
theories for the strong and the electroweak interactions in the framework of quantum

Yang-Mills theories, our task now is to combine quantum field theory and the general
relativity together

Quantum field theory } -
~ » Unified field theory

General relativity

This is one of the greatest scientific challenges of the present century. Although much
efforts have been made in the past six decades, such a final theory has not shown up yet.
It seems that the quantum field theory and general relativity are totally incompatible
because of the non-renormalizability of quantum gravity. Physicists are at a crossroad: we
may accept that God has two minds, each working independently of the other in its own
particular domain, otherwise we should abandon one or more of our cherished assumptions
about our universe. Out of question, physicists prefer the latter way. Over the years,
several proposals have been made. Among them, Superstring theories[1] are undoubtedly
the most promising candidates, which only abandon the concept of the idealized point
particles. With this limited amount of damage, supersting theories unify the various forces
and particles in the same way as a violin string provides a unifying description of the
musical tones. The string is the fundamental ‘constituent, while the particles of nature are
“musical tones”. Exciting aspects of the superstring theory are

1. The theory is anomaly free, i.e. it is consistent.
2. There are no infinities in string theory. t
3. There are very few parameters, i.e. it is very “simple”.

" 4. The theory includes GUTs, super—Yang—Mi]ls, supergravity, and Kaluza-Klein the-
ories as “reductions”.

1.3 Why 2-Dimensional Quantum Gravity?

Although superstring theory seems to be quite successful, as it provides a consistent renor-
malizable theory of quantum gravity and cancellations of anomalies and divergences, there
are still some shortcomings in the model

1. There is as yet no experimental program for finding even indirect manifestations of
the underlying string degrees of freedom in nature.




2. There is hardly a contact with conventional particle physics phenomenology. There
are apparantly thousands of ways to break down the theory to low energies. This

means that there are too many vacua, the string theory could not answer which one
1s correct.

3. The superstring theory describes the story in a 10-dimensional world, no one really
knows how to break it down to 4~dimensions.

Among various objections to the model, the ones listed above are the most important. On
the one hand, in order to choose the correct vacuum we must know the nonperturbative
properties of the string theories. On the other hand, the last objection above simply states
the inability to calculate dimensional breaking, since to every order in the perturbation
theory, the dimension of space-time is stable. Thus, in order to have the theory sponta-
neously curl up into 4~ and 6-dimensional universes, we must appeal to nonperturbative
effects(or dynamical effects) too. There may be another way to solve this problem. We
may consider the lower dimensional string theories from the beginning, this is called non-
critical string theories. If we do so, we must leave off the critical dimensions. For the
critical string theories, matter and gravity completely decouple. This is a very important
property, since it means that we can deal with matter and gravity separately. However, this
is no longer true for the non-critical string theories. Once we leave the critical dimensions,
things are dramatically changed. Due to the anomaly cancellation, gravity and matter
couple together. Therefore dealing with gravity is an inevitable step in non—critical string.
These are the motivations for investigating 2-dimesional quantum gravity

- Nonperturbative properties AR -
: - : 2 — Dimensional quantum gravity
Non — critical string theories

1.4 Why Matrix Models?

There are three different approaches to attack 2-dimesional quantum gravity . They are
Topological Field Theory (TFT), Liouwille Field Theory Formalism and Matric Model.
The main idea of TFT is to use the general invariance to calculate some topological invari-
ants. We will briefly review this point in chapter 7. The Liouville field theory formalism
in fact goes back to Polyakov’s original paper[2], which said that a first quantized string
propagating in R?-spacetime can be most elegantly discribed as a theory of d—free bosons
coupled to 2d-quantum gravity. The bosonic matter system has conformal invariance,
therefore, the theory can be considered as a certain Conformal Field Theory (CFT) cou-
pled to 2d-quantum gravity. We may use the perturbed CFT to calculate the string
Susceptibility and the other critical exponents. But before the blossoming of the matrix
model, we could not go further, for example, to calculate the correlation functions, due to

the technique difficulty in continuous approach. In chapter 2, we will give a short review
on this subject.




For pure 2-dimesional quantum gravity ,A the partition function can be defined

F= Y [Dges, (1.21.1)

topologies

where the action is the area of the Riemann surface. (If there is matter living in 2-
dimensional Riemann surfaces, we should include the matter action see next chapter)- In
continuous approach, it is really difficult to perform the integration over the metric space.
However, if we go to discrete case, i.e. discretizing Riemann surfaces, then the calculation

is dramatically simplified. For example, if we replace a Riemann surface by a cerfain
triangulation,

Riemann surface ¥ = Triangulations

then counting different triangulations of Riemann surface becomes an approximatior to
computing the integration over the metric space,

Z/‘Ds'-+ )

topologies _random
triangulations

in other words, the summation over all such random triangulations is thus the disc rete
analog to the integral over all possible geometries. Fortunately enough, this triangulation
of Riemann surface is dual to Feymann graph of the matrix field theory ’

Z=el = / dM e~ NGTM +gTrA), ' (1-4.2)

where M is N x IV hermitian matrix. Therefore the int:egral over geometries in contintious
approach becomes the graphic enumeration of the matrix model. Of course, it is much rmore
convenient to deal with matrix models than to investigate the continuous path integral

(1.4.1).

1.5 Why Double Scaling Limit?

In matrix model (1.4.2), there are two distinct parameters, one is the size N of the matrix
M, the other is the coupling constant g of matrix interaction®. Therefore the free en ergy
of the matrix path integral can be expanded in two different ways"

Topological expansion
Free energy

Perturbation expansion
The first expansion is the expansion in powers of IV,

F(N,g)= Y N* 2" Fy(g) = N?Fy(g) + Zi(g) + N2 Fy(g) + - - (L.5.3)

* Generally, there could be infinite many coupling constants.




where h is the genus. This expansion in fact is a topological ezpansion, i.e. different powers
of N correspond to contributions of graphs with different topologies. From eq.(1.5.3), we
easily see that the free energy of fixed genus is suppressed by the powers of N2-2h for
example, if we take the large N limit, we are only left with Fy(g). Therefore, the large N
limit causes loss of the contributions from the higher genus graphs. Another expansion is
the perturbation expansion in powers of the coupling constant g,

Fi(g) ~ 3 nler= 201 (/g )" ~ (g, — g) 7 0H) (1.5.4)

where v is some constant. This expansion shows that; when the coupling constant g
approaches the value g., Fi(g) has a critical behavior. Now we have two different limiting
procedures, the large N limit and going to the critical point of the coupling constant. If
we properly unify these two limits, we probably could enhance the contributions from the
graphs of the higher genus, so we were able to obtain nonperturbative properties. This
procedure is known as double scaling kimat[3]-[5].

Large N limit
Double Scaling Limit
Approaching critical coupling

In fact, by means of this significant procedure, one is able to find that the partition function
satisfies certain differential equations. If we denote -

where ¢ is the scaling variable, then the specific heat

uw=0F(t)
satisfies Painleve I equation
-i-u’” + guu' =1 ” - | . (1.5.5)

This is of great importance. On the one haﬁd, we can avoid calculating the partition
function from the path-integral, which is an extremely difficult problem. On the other

hand, if we can solve the equation, we can extract the non-perturbative properties of the
string theory.

1.6 The Integrable Hierarchies

Till now, we only considered l1-matrix model with cubic polynomial interaction, which
is known as the second criticality’. As we already pointed out, in matrix models there
could appear infinite many polynomial interactions. How about the general polynomial

tThe first critical point is trivial, the matrix potential only contzﬁns a Gaussian term.

6



interactions? In fact, we can perform the same “double scaling limit” analysis as we
did before. If we restrict ourselves to the even potential case, we can properly cho-ose
polynomial interactions like

Va(M,g) = =N > guTr(M**), n=12,--, (1.6.6)
k=1
with
B ey ik —1) _ _
92k = (—1) '(‘?W’ k=1,2,---,m; (167)

which are called critical potentials[6]. In the double scaling limit, for each critical poten-
tial, the corresponding partition function of matrix path integral satisfies ONE differen tial
equation. In this way we can obtain infinite many differential equations.

Now let us consider what will happen if the model leaves off critical point a little bit.

Obviously it corresponds to a perturbation. The general perturbed potential can be written
as

Vgen = D taVa, (1.6.8)

with a series of infinite many perturbation parameters . Then the specific heat satifies
KdV hierarchical equations ‘ '

aat w=[(8 +u)tE, 67 4 . : (1.6.9)

where the subindex “+” means keeping only the differential part of the pseudo-differential
operator. Interesting enough, the partition function of 1-matrix model (with even poten-
tial) can be identified with the restricted 7—function of KdV hierarchy . The restrictions
simply mean that the perturbations should obey the famous Virasoro constraints[7][8].
Furthermore, the correlation functions can be very easily calculated. They are nothing but
the derivatives of the r—function with respect to coupling constants(or flow parameters).
These are quite essential properties of 1-matrix model , since they establish the intimate
relations of matrix models with integrable hierarchy. As a consequence, the matrix model
definition of 2-dimesional quantum gravity is completely manageable and solvable.

1.7 The Alternative Approach to Integrable Hierar-
chies in Matrix Models

Up to now, we have got good understanding on 1-matrix model with even potentials, but
we still ignore at least two important points. On the one hand, the potentials considered
above are not the most general ones, since they do not contain the odd powers of the
polynomial interactions. As we discussed before, pure gravity corresponds to matrix model



with cubic potential, so it is hard to be convinced that we can crudely exclude the odd power
interactions. On the other hand, 1-matrix model is the simplest case of matrix models.
How about multi-matrix models ? Do they correspond to certain integrable hierarchies
too? In fact, it is quite difficult to derive their full hierarchical structures. Many people
have conjectured that they should be the higher KdV hierarchy [9]-[14], but a systematic
analysis is still lacking. Thus our present situation is

1 — matrix model with even potential — KdV hierarchy
1 — matrix model with general potential — 7.

multi — matrix models — ?

Before running into the detailed explanations, it may be useful to get some intuitive

expressions on the main differences between 1-matrix model and multi-matrix models (for
more detail, see chapter 6).

1—matrix model :

In the double scaling limit, one matrix model (with even potentials) is governed by
the KdV hierarchy . From the eqs.(1.6.9), it is obvious that, when we do perturbations,
the Schrédinger operator (8% + u) is still a second order differential operator, while the
higher flow equations get into the game. This property also shows up in the discrete level.
The discrete version of the Schrddinger operator is a “Jacob: matriz”, which has only

three pseudo-diagonal lines(see eq.(3.3.8)), and this form is the same for any polynomial
potential.

multi-matrix models :

However, in multi-matrix models , at discrete level, there are several Jacobi matrices(for
g-matrix model, there are g Jacobi matrices, see eqs.(6.1.4)). Their forms depend on the
choice of the potentials (see the egs(6.1.7a-6.1.7c)). Thus, in double scaling limit, for
different potentials, the corresponding differential operators of the Jacobi matrices probably
have different orders. This intutive observation will tell us the following points. Firstly,
it is very difficult to exhaust all the criticalities by taking double scaling limit, so nobody
really knows how to get the full integrable structures in multi-matrix models . Secondly, it
is hard to believe that we will only have a “single” higher KdV hierarchy , in other words,
it seems possibly to get all higher KdV hierarchies. Futhermore, the double scaling limit
in multi-matrix models is not as successful as in 1-matrix model .

In order to shed some light on these points, shall we appeal to some other approaches?
In fact, we will try to analyse the models from another point of view. We simply avoid the
double scaling limit. Instead, we propose the following procedure:

(i) At first we represent matrix models as certain discrete linear system(s), and extract
their compatibility conditions(or consistency conditions). For 1-matrix model , these con-
ditions are Toda chain lattice hierarchy and the discrete string equation. While they are
2-dimensional Toda lattice hierarchy(with certain additional flows) together with string
equations in multi-matrix models .



(ii) Then we treat the first flow parameter(s) as the space coordinate(s). If so, surprisin gly,
the lattice hierarchies can be completely reexpressed as purely differential hierarchies. In
the I—matrix model case, this is very easy to be done. The resulting continuous integrable
hierarchy is the non-linear Schrddinger hierarchy , the partition function of 1-ma trix
model is nothing but the 7—function of non-linear Schrédinger hierarchy (subjected to
Witoo—constraints)[15]. When we make the even potential reduction, we will indeed ob&ain
KdV hierarchy (see chapter 5 for more detail). In multi-matrix models , we found that
the corresponding differential hierarchies are even much larger than KP hierarchy . We
will call them the generalized KP hierarchy [16].

Apart from getting the continuous integrable hierarchies, our approach can tell us
something more. It is wellknown that W, algebras appear in many different subjects (see
chapter 4). Whether or not all of them are the same, till now, this is open question.
Fortunately, at least in the dispersionless limit, our approach provides a way to clas sify
W, algebras. The essential point is a new coordinization of KP hierarchy (4.5.1), the
classical wy, algebras can be reduced to much smaller ones, which are formed by our mew
coodinates. To be fair, we should confess that we are not able to reduce these integrable
hierarchies to the more familiar ones. We will explain this point in chapters 4,6.

1.8 Topological Meaning

The appearance of integrable hierarchies is extremely significant. Since these hierarchical
structures enable us to do some calculations quite easily (even some non—perturbative
quantities), without knowing the detailed information of 2-dimesional quantum gravity . So
we may view integrable hierarchies (together with constraints) as the effective theories of 2-
dimesional quantum gravity . This property probably reflects some underlying topological
features of 2-dimesional quantum gravity . Roughly three years ago, Witten conjectured
that the partition function of matrix path integral could be 1dent1ﬁed with the partition
function of the topological gravity, and the correlation functions can be interpreted as
the intersection numbers on Moduli space of Riemann surfaces [17][18]. This conjecture
was proved by a young Russian mathematian—Kontsevich. He found a quite clever way
to write down the generating function of the intersection numbers. His basic idea is to
discretize the Moduli space in stead of triangulating Riemann surface in matrix models.
Similar to matrix models, the lattice version of the path integral can also be represented
in the form of matrix path integral, this is the famous Kontsevich model[19].

However, the equivalence of the matrix models and topological models is only valid
for pure topological gravity, whose integrable structure is KdV hierarchy . Whether or
not the non-linear Schrédinger hierarchy and the generalized KP hierarchies have some
corresponding topological models, or they have counterparts in Kontsevich formulation
are open questions. In the last chapter, we will discuss the topological model related to
non-linear Schrodinger hierarchy [20]. It seems not to be coincided with all the known

topological models. We still do not know what kind of generalized Kontsevich model it is
equivalent to.



1.9 The organization

The thesis is organized as follows. At first, in the second chapter we will give a brief review
on the Liouville continuous formalism of 9-dimesional quantum gravity . We will show
how we can calculate the string Susceptibility and the other critical exponents.

Chapter 3 is devoted to the explanation of the discretization of 2—-dimesional quantum
gravity , and how we can represent it as matrix model path integral. The usual tricks in
matrix model will be reviewed, i.e. the double scaling limit, KdV hierarchy and the Virasoro
constraints. One of the most important properties of matrix models is their integrability,
which opens a way to extract out the nonperturbative properties of 2-dimesional quantum
gravity . This point is also discussed at discrete level in this chapter.

Since integrable systems play a very essential role in the study of the matrix models,
we will discuss them in detail in chapter 4. Qur attention will only focus on the continuous
integrable systems(We discuss the discrete integrable systems in Appendix A). At first
we review some materials on the ordinary KP hierarchy like integrability, bi-hamiltonian
structure, and the 7—function , etc. Then we propose one possible generalization of the
ordinary KP hierarchy , that is the generalized KP hierarchy . Unlike the usual one, it
contains several KP operators, each of them has a KP type of hierarchy, but all of them
together should obey certain constraints[21]. This new hierarchy may exihibit the full
properties of multi-matrix models .

After a systematic analysis of integrable systems, we come back to 1-matrix model in
chapter 5. We at first explain the procedure we claimed before— passing from lattice to
differential formalism, then we show that the resulting differential hierarchy is nothing but
the KP hierarchy . The important thing is that this KP hierarchy admits two bosonic
field representation, and can be :dentified with the non-linear Schrédinger hierarchy . This
non-linear Schrodinger hierarchy can even reduce to KdV hierarchy , which corresponds
to even potential reduction in matrix model. Furthermore, we prove that the partition
function of 1-matrix model is exactly the 7—function of non-linear Schrédinger hierarchy .
In fact our procedure can tell us more. For cach of the lattice integrable systems discussed
in[22], if we treat their first time parameter as the space coordinate, then 1t possesses
another differential integrable structure. '

In chapter 6, we try to perform the same procedure for multi-matrix models . We begin
with representing the multi-matrix models as coupled discrete linear systems, and explain
why multi-matrix models are quite distinct with 1-matrix model . This is in fact due to
the coupling conditions among different discrete linear systems, which simply show that the
forms of the Jacobi matrices in multi-matrix models depend on the choices of the matrix
potentials, while the Jacobi matrix in 1-matrix model is always of three pseudo—diagonal
lines for any potentials. This dependence is the origin of a great complexity. However, if
we go to the differential language from lattice case, we will immediately get the generalized
KP hierarchies, which are easier to be handled. Some of the coupling conditions can be
rewritten as W) oo—constraints.

In chapter 7 we give a brief review on topological field theory, and its coupling to

10



gravity.

In chapter 8, we discuss the hidden topological models in 1-matrix model which see ms
different from all the known topological models. The essential point is to treat the latt ice
size 7V as a flow parameter. So we will introduce a new operator coupled to it. The mo del
is very similar to CP? topological Sigma model, but with a different hierarchical structwre.

Finally we give some detailed calculations in Appendices. Appendix A is devoted to
the constructions of the integrable structure of the general lattice models. In Appendix
B, we give the detailed derivations of the discrete Virasoro constraints in 1-matrix mo del
. The discrete Wy4oo—constraints in two matrix model are derived in Appendix C. In our
analysis, we often meet various W-infinity algebras. In order to avoid confusions about
them , we give their definitions in Appendix D. Our notations will be given in Appendix E.
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Chapter 2

Liouville Formalism of Gravity

Coupled to CFT

In 1981, Polyakov pointed out in a famous paper[2], that a first quantized string propagat-
ing in R?-spacetime can be most elegantly discribed as a theory of d—free bosons coupled
to 2d-quantum gravity. The bosonic matter system has the conformal invariance, there-
fore, the theory can be considered as a certain CFT coupled to 2d-quantum gravity. This
coupling is believed to be realized through anomaly cancellation, so, in critical dimension
d = 26(or in superstring case, d = 10),the matter and the gravity essentially decouple, we
can consider them separately. However, if the target space has non-critical dimension, the
no—zero anomaly of matter sector should be compensated by the anomaly of gravity, so
dealing 2d-quantum gravity is an unavoidable step.

Any theory including gravity must face the renormalization problem. In particular case
of two dimesional quantum gravity, we may make use of some large symmetries to avoid
the renormalization procedure. Based on this idea, considerable progress was also made
by Polyakov[23], and later by KPZ[24]. They quantized the theory in light-cone gauge,
in which they discovered a rich symmetry structure that is sl(2,R) Virasoro-Kac-Moody

algebra. This symmetry survives the quantization of the theory and gives the exact solution
of 2d-quantum gravity. '

After the success in light-cone gauge formalism, Distler and Kawai and David[25] pro-
posed a conformal gauge method. This is based on the fact that 2d-gravity can be repre-
sented as the Liouville action, whose free part is a conformal theory. 2d-gravity is certainly
a certain CFT. Therefore we can treat the Liouville interaction term as a marginal deforma-
tion of the free action. In this way, we can derive the gravitational anomalous dimensions
in a much easier manner. These two methods both are based on path integral formalism.
Now, for the sake of the simplicity, we briefly review the second procedure [26]. We will
use the conformal invariance to determine the form of the renormalization counter—terms,
and use the translational invariance to calculate the critical exponents.

12



2.1 Path Integral Formalism in Conformal Gauge

Let >2be a smooth two dimentional surface of genus & (no complex structure given), and let
g be a metric on 2. The space of metrics is an infinite dimensional Riemannian manifold,

which will be denoted by M ET,. The inner product on its tangent vector space can be
defined as

169112 = [ d*¢\/5(Ag™ g™ + B™g™)8gus8es (2.1.1)

where A and B are non-negative constants. This determines a metric on M ET}), and
thus frmally, a Riemannian measure denoted as Dg, which is g-dependent. On the other

hand.,if there is matter fields living on %, in the same fashion, one can define the functional
measure Dy X as

/ D, X6X exp(—|| 6X |) = 1, (2.1.2a)
|6 | /d2 JG6X - 6X. (2.1.2b)
Consider a general action ( which describes matter fields X* couple to 2d-gravity)
Dg'D X
—Sa(X;g) = S.), 2.1.3

where Sy is the matter action, and S. is its counter-term due to the renormalization
schemme. Although we do not know how to perform the renormalization scheme, i.e. we
do not know what are the counter—terms, but we are dealing an anomaly free theory,
so cowrformal invariance will be preserved after renormalization. We will see that this
confommal invariance restricts the form of the counter—term. The factor divided out is the -
volumme of the symmetry group which are the diffeomorphisms of the Riemann surface.
Once we make gauge fixing, as we usually do in quantum field theory, we should mtroduce
Faddeev-Popov ghosts, then the partition function (2.1. 3) becomes

B [dr]
z= / Minimal Vol.
where Sgn(b,c : g) is the ghost action.

’DgX’Dg@ngDgcexp(-—-SM(X;g) — Sgn(byc:g) —S:), (2.1.4)

Both the matter action and the ghost action are invariant under reparametrization and
Weyl scaling (or more precisely the conformal transformation),

g — 6‘797
Su(X;9) — SM(X e”g) = Sn(X;9), : (2.1.5)

Sgh(b: ‘339) — gh(ba c; € g) = Sgh(ba 659)-

Furthermore, the measures are also totally reparametrization invariant. However, they are

not invariant under the Weyl scaling (2.1.5). This is the crucial point of the theory which
we should carefully analyze.

- 13



2.1.1 The translational invariant measures

Since all the measures are defined through the metric-dependent norms, and the metric
is a dynamic variable in quantum gravity, the path integral is quite difficult to perform.
In other words, quantizing the theory directly would require metric-dependent regulators,
which is not known[27]. It is convenient to work with a translational invariant measure.
This can be done by parametrizing g with a reference metric § and the Liouville field .
Due to the metric-dependence in the norms (2.1.1) and (2.1.2b), it turns out that the
measures of matter and ghost fields will pick up an anomalous variations

Dyer X = Dy X exp(—lig——SL(g; ®)), (2.1.6a)
T ,
2
DyrbDyesc = ’ngDgcexp(——Z—gisL(g; 3)), (2.1.6b)
™
where
~ . 2 ~ —]:*ab T R
Sp(g;®) = [ d°¢y/g 59 3.20,® + R® + poe” ), (2.1.7)

S; is known as Liouville action, po 1s the bare cosmological constant, and R is the scalar
curvature of the reference metric g

1 - 1
— [ d&*&\/gR=1—h=-x(¥) 2.1.8
| o [ Feah=1-h=5x() o (218)
The norm of the Liouville field & is induced by (2.1.1)
|63 |2 = / d2¢:/5e%(58)%. O (2.1.9)

So, it determines a functional measure for & (denoted by D,?) , which is obviously ®-
dependent. Now what we want is the following translational invariant measure

| 62 113 = fdzé\/g(«ié)'z- | - (2.1.10)

In [25], it is simply assumed that, when we switch on this measure, the total measure picks

up an overall Jacobian, which takes the form of an exponential of a Local Liouville-like
action

oy

5= / 026,/3(25% 0,88, + bRS + pe™), (2.1.11)

where @,b and & are constants that will be determined by requiring the overall conformal
invariance. Several authors tried to justify this assumption, and to show that it can be
obtained from (2.1.9) by the Weyl rescaling transformation (2.1.5) [27].

Under this assumption, partition function (2.1.4) becomes
Z = /[dT]’DgX'Dg@DQngc exp(—Sar(X; ) — Sen(byc:9) — St), (2.1.12)
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This pdh integral was defined to be reparametrization invariant, and should depend only
on e®g= g (up tp diffeomorphism), not on the specific choice of §. Due to diffeomorphism
invariaice, (2.1.12) should thus be invariant under the infinitesimal transformation

sg=c(0)g, 58 =—<(f), (2.1.13)

which ixes the constants @, b

25 —d - 25—4d
a= b= . 2.1.14
“= To6r 487 (2:1.14)
Substititing them into (2.1.11) gives )
1 25 —d 25 —d »
— [ &¢\/3 §°°0,20,® + ——R®). 2.1.15
8«/ év/a( 12 7 2+ ——he) (2:1.13)
After nscaling & — 1/5—51%3@, we obtain the conventional Liouville action,
1 2 ~ [ ~ab ”
| So =2 /d £1/4(5°0.26,% + QR2). (2.1.16)
with
25 —d |
o iy (2.1.17)
3
The ernergy momentum tensor derived from (2.1.16) is
1 TEIT ’ B
Te = —56@6@ + %52@.” (2.1.18)
The central charge can be read off immediately
e =143Q* (2.1.19)

It exacly cancels the anomalies of matter and ghost sectors.

2.1.2 The screeningy'chrarge "

In fact,the constant ¢is related to the gravitational screening charge. In order to determine

it, remembering that the rescaling of ® changes ¢ — E,/Egl%(—i = @, since the last term in
(2.1.11) represents the area of the surface, so e*? should have conformal dimension (1,1),
ie.

1

—5e(e-Q)=1. o (2.1.20)
Together with eq.(2.1.17), we have
. o -
= —(v25 —d —-+1—-4d). 2.1.21
0= =(VE-I-VI=d (2.1.21)
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Finally, we can get the totally renormalized action and the stress tensor

Stotat = Sar + Sgn + Se + 65y, (2.1.22a)
Tiotat = Tiar + Ton + To + 6717, (2.1.22b)
2(8) = [ DX DsbDyeDyde e, (2.1.22¢)

The last term in (2.1.22a) is a finite counter-term. In order to determine it, we recall
that the total action Sioue is conformally invariant, meanwhile Sy; and Sy as well as Sg
are all conformal invariant, so the counter-terms must be_conformal invariant too. This
suggests to us that it can be constructed from the primary fields (since they are conformal
covariant) in the three sectors. We denote the matter primary field by ¥ (¢) , the ghost

one by ¥¢"(¢) and the Liouville screening factor by exp(a;®), which is called gravitational
dressing. Then

65; =3 F; / 2¢\[gUM (£) T8 (£) exp(aid). (2.1.23)

Since the dressed operator should have total conformal weight (1,1), in order to perform
the integration, so

AN+ AT L AT =1, (2.1.24)

The conformal weight of the sceening factor is

1 1
A? = "‘2-0ti2 — 5oqQ, (2.1.25)
In particular, for Fadeev—Popov ghost independent operators, we have
Th¢) =1, AP = 0.

Therefore, from the eq.(2.1.24) and eq.(2.1.25), we obtain the screening charge as follows

1 [d—25— /(25— d)(1 — d + 24A})] |
T e . (2.1.26)

A special case is when the matter primary field is the identity operator. It is also called

* puncture operator, denoted by P. We see that this is nothing but the area term we discussed
above. :

oy =

For a unitary model, all the conformal weights are non-negative, therefore, among
the primary fields, the identity operator has the minimal screening charge, which is .
However, in a non-unitary model, the conformal weight can be negative, so, the minimal

screening charge corresponds to the primary field of the most negative conformal weight
rather than the identity operator.
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2.2 The String Susceptibility
Now, choose the following finite counterterm
85y = y/ dzf\/gexp(o@).
where, p is the renormalized cosmological constant. The partition function"

) DQXngpgCpg@e-(su-ksgh-w@+yfd’f gexp(a®))

Z(IL) f DgXDgngcﬂg@e_(SK1+sgh+S?)"

for small p behaves like
Z(p) =~ p~H
Since the partition function (2.2.27) is invariant under the following translation
ot
{ Se —> S — Q [ d®2/3R2 = S — Q(1 — h)2
we have |

2() = 2(pe)expl(1 — B) op).

If we set e = p™!, then ‘ =

2(s) = 6% 200).

Now, we introduce the critical exponent in the following way

(2-T) = (2= 7u)(1 — b).

Therefore, from eq.(2.2.28) and eq.(2.2.31), one can easily obtain

Totr = 115 (d — 25 — /(25 - d)(1 - d)) +2.

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

- (2.2.31)

(2.2.32)

(2.2.33)

This is the so—called string susceptibility, which accounts for the contribution of the identity
operator to the free energy, and indicates the singularity of the free energy in the infrared

lmit(p — 0).

Now, suppose we choose another kind of finite counterterm

85, = B [ e/l (el

then, making use of the translational invariance of the partition function, we get

z(8) ~ BV,

17
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therefore, from the eq.(2.2.28), one obtain

Q 1
LA . S—
o TP T - AN

Yotr = (d—25—¢65de1—d+2MQQ)+2 (2.2.36)

Generally, the finite counterterm can contains all of the possible gravitational dressed
physical primary fields. So, the string susceptibility is determined by the most sigular term,
: e. the term of the minimal screening charge, such term is also called the most relavent
term.

For the unitary model, the most relevant operator is the identity operator(which mini-
mizes Ysir. ). S0, for unitarity minimal BPZ series

6
d=1————=7 m=3,4,... (2.2.37)
m(m+ 1)
one gets the string susceptibility
1
Yotr = = m=3,4,... (2.2.38)
m

For non—unitary BPZ series,

. 2
g1 50 q)‘

(p,q) are relative prime (2.2.39)
rq

as we mentioned before, the most relevant operator is the primary field with the most
negative conformal weight, which is

(p—q)? , 1
A = — .
(p,9) Ine +~4pq

This leads to

9
p+qg—1

P=2, .
g=2m—1

We get the sigularity of Yang-Lee model

Ystr — (224:0)

Suppose

1

Ystr — T -
m

We see that it has the same value as the unitary minimal model. This fact tells us that
different theories can have the same critical exponents.
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2.3 The gravitational Dressed Operators

Now we wish to determine the effective dimensions of fields after coupling to gravity. We
only consider the sector of ghost number zero. As we already know from the first section,
the physical operators have conformal weight (1,1), so we could make integration over the
Riemann surface. This integrated form has the symmetry as the original total action, thus
can be added to the total action as a new kind of the finite counterterm(through a new
coupling B, which plays the same role as p.)

8S; = ﬁfdzf\/E‘I’?’(E)e&T“’, o (2.3.41)

then, the one point function takes the form

— Al — 1 —Siotal 2 ~ M a;®
Fyg =< ¥} >= 70 /[measure]e /d 5\/5\111 (€)e>®. (2.3.42)

Now we may associate a critical exponent to the large area behavior of this one point
function, like

Fy ~ pl™. (2.3.43)

This definition coincides with the standard convention that v < 1 corresponds to a relevant
operator, v = 1 to a marginal operator, and » > 1 to an irrelevant operator, in particular
the relevant operators tend to dominate the infrared limit.

In order to determine v, we employ the same scaling argument as the one used in the
previous section. After making the translation, and set e™? = p,

3 a4+l
a
we get

plx/2e-ai/e

Fy(p) = Fy(1) = /> Fy(1).

ILQX/za

where the additional factor of e#*/* = p=%i/* comes from the e*® gravitational dressing
of M. The gravitational scaling dimension v defined in (2.3.43) thus satisfies

v=1-a;/a - (2.3.44)

Substituting the value of o; in eq.(2.1.26) into the above equation,

V1—d+24AY — T4
V= .

2.3.45
V25 —d—+/1-4d ( )
If AM =0,i.e. we consider the puncture operator,

<P>=A~p L (2.3.46)
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We see that the cosmological constant p is conjugate to the area of the surface A. This
suggests us to transfor the formulation given above to the one expressed in terms of large
area. The small cosmological behavior of partition function corresponds therefore to its

large area behavior. We may do the path integral in two steps, by introducing the fixed
area partition function

Z(A)= /[mea.sure]e—s‘°‘“‘5</ dgf\/ge“‘b - A), (2.3.47)

and the total partition function is

Z(p) ~ / dAZ(A). (2.3.48)
then, for large A,
Z(A) ~ ASTEAL (2.3.49)

We will see in next chapter that the matrix model approach really recovers this large area
behavior. ‘
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Chapter 3

One Matrix Models

The matrix model was originally proposed to deal with nuclear spectra problem by Wigner,
Dyson long time ago[28], later on it was applied on the lattice QCD by t’Hooft[29]. There
were also some other applications, for examples, statistic mechanics[30], polymers[31], etc.
However, only roughly three years ago, it became an amazing subject in theoretical physics.
This is due to the discovery of the famous double scaling limit. By means of this significant
procedure, three different groups of people[3]-[5]) were able to find that the partition
function satisfies certain differential equations. This is of great importance. On the one
hand, we can avoid calculating the partition function from the path-integral, which is an
extremely difficult problem. On the other hand, if we can solve the equations, we can
extract the non-perturbative properties of the string theory. In this chapter we will give
a short review on this subject. The main references are listed in[32]. In the first section,
we will explain why matrix models can be considered as the discrete analog of the 2~
dimensional quantum gravity . In particular we will show that there exist two different
types of expansion of the partition function of l-matrix model , one is the topslogical
ezpansion, the other is the perturbation in the coupling constants. The partition function
of fixed genus has critical behavior when the coupling constants approach certain values.
Correspondingly, there are two limiting procedures, the large N limit and going to the
critical point. Therefore, if we properly unify these two limits, we would be able to obtain
nonperturbative properties. In section 2, we will give a particular example, 1-matrix model
with quartic potential, to show how the proceeding idea works. One of the most important
properties of matrix models is their integrability, which establishes the connection of the
9-dimensional quantum gravity with some well-known integrable systems, therefore we can
completely solve the models. This point will be considered in section 3, by means of the
discrete linear system. The general 1-matrix model is defined on a parameter space of the
infinite dimensions, all of these parameters can be regarded as perturbation parameters,
which should be subjected to the Virasoro constraints even at discrete level, this will be
derived in section 4. In order to get some hints about the full hierarchical structure in
1—-matrix model , we proceed to the spheric limit in section 5. Then we turn our attentions
to the double scaling limit procedure for general even potential matrix models, and its KdV
hierarchical structure in section 6. Section 7 is devoted to the discussion of the continuum
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Virasoro constraints. Finally we give some remarks in section 8.

3.1 Motivations and Basic Idea

The basic idea of [3]-[5] relied on a discretization of the string worldsheet to provide a
method of taking the continuum limit which incorporated simultaneously the contribution
of 2d surfaces with any number of handles. Thus it was possible not only to integrate over
all possible deformation of a given genus surface (the analog of the integral over Feynman
parameters for a given loop diagram), but also to sum over all genus. This would in
principle free us from the mathematically fascinating but physically irrelevant problems
of calculating conformal field theory correlation functions on surfaces of fixed genus with
fixed moduli. Now let us see how to go to discrete language.

3.1.1 Discretized surfaces

We begin by considering 2 “D =0 dimensional string theory”, i.e. a pure theory of surfaces
with no coupling to additional “matter” degrees of freedom on the string worldsheet. This

is equivalent to the propagation of strings in a non-existent embedding space. For partition
function we take

F=% / Dg e BAHmx | (3.1.1)
h e

where the sum over topologies is represented by the summation over h, the number of
handles of the surface, and the action consists of couplings to the area A= [,/g,2nd to
the Euler character x = -4—-17_ JgR=2-2h

The integral f Dg over the metric on the surface in (3.1.1) is difficult to calculate in
general. Let us denote by MET, the metric space of genus h surface, and by MET s
the subspace of metrics corresponding to a fixed total area A of ¥ surface. Then we can
perform the integration in three steps, that is, at first integrating out the subspace MET 4 p,
secondly integrating over the area A, finally summing over the topologies[17]

F =Y F(h), F(h) = / dAF(h, A)
h

and

F(h, A) = /

DgelP4+1XE) = Vol(h A)el-Fatrx(E) (3.1.2)
MET 4,5 ,

Obviously we see that the partition function with fixed genus and fixed area is only pro-
portional to the volume Vol(h, A) of subspace M ET., 1, therefore we are lead to calculate
this volume Vol(h, A), which is also a hard work. However, if we discretize the surface
¥, this turns out to be much easier, so as to calculate (3.1.1), even before removing the
finite cutoff. We consider in particular a “random triangulation” of the surface with fixed
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area[33], in which the surface is constructed from triangles with the same area e. The
triangles are designated to be equilateral. Passing from continuum surface to its discrete
analog, we see that ’

(1).The geometric degrees of freedom is encoded entirely into the coordination numbers
N; of the vertices, so that there is positive (negative) curvature at vertices ¢ where the
number N; of incident triangles is more (less) than six, and zero curvature when N; = 6.

(#2).Every triangulation determines a metric on 1. Imagining triangulation embedded
into some auxiliary Euclidian space of sufficiently high dimension, we say two triangulation
are different if they have different configurations in -the auxiliary space. Two different
triangulation with the same topology can be related by a sequence of certain flips of links
(edges of triangles). Denote the number of triangles by N, then the total area of the
triangulation is A = Ne. For any triangulation, fixing the area A and increasing the
number of triangles, we can obviously approximate a given Riemann surface with any
given accuracy. Thus, counting different triangulation of ¥ becomes an approximation to
computing the integration over the space M ETj, in other words, the summation over all
such random triangulation is thus the discrete analog to the integral [ Dg over all possible
geometries,

> [pg - %

genus h .random
triangulation

(413). The discrete counterparts of continuum quantities. .

the infinitesimal volume element

d¢* /g — oi = eN;/[3
The total area

/\/§—+A=}:ai=N§

The factor of 1/3 in the definition of o; is because each triangle has three vertices and is
counted three times. ’

Ricci scalar curvature

R(z) — R; = n(6 — N:)/N;

so that

/\/§R—+Z2W(1—Ni/6)=27r(V—~%F)=27r(V—E}F):27rX.

Here we have used the simplicial definition which gives the Euler character x in terms of
the total number of vertices, edges, and faces V, E, and F of the triangulation (and we
have used the relation 3F = 2F obeyed by triangulation of surfaces, since each face has
three edges each of which is shared by two faces).
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In the above, triangles do not play an essential role and may be replaced by any set
of polygons. General random polygonifications of surfaces with appropriate fine tuning of
couplings may, as we shall see, have more general critical behavior , but can in particular
always reproduce the pure gravity behavior of triangulations in the continuum limit.

3.1.2 The Graphic Enumeration and Matrix Models

We have seen that the integral over geometries in (3.1.1) may be performed in its discretized
form as a sum over random triangulations. In fact .

the triangulations of Riemann surfaces coicide with the daul diagrams of certain Feyman
graphs of the matriz field theory with cubic interaction.

Therefore performing the integral over geometry in (3.1.1) becomes the graphic enumeration
of a certain matrix field theory. This essential idea goes back to work [29] on the large N
limit of QCD, followed by work on the saddle point approximation [34].

Without loss of generality, let us take the following 1-matrix model [35]
7 = F = /dMe—gtrAI?Jr%ch*

where M*; is an N x N hermitian matrix, and the Lebesgue measure

N
dM=T[dMz JI d (ReM;;)d (ImMij)

i=1 1<i<j<N

is invariant under SU(N) transformation. In order to calculate correlation functions like
(tr M) = / dM e~ irM 2R (e (3.1.3)

We should at first work out the Feyman rules. Following the usual procedure in quantum
field theory , we easily get

propagator(fig. 1a) : (M'; M%) = 5; &% (3.1.4)

N
vertex (ﬂg 1b) : (tT]VI4> = Z JV[,'ijk]VIklﬂ'I[,' (315)

ivjvkylzl

The presence of upper and lower matrix indices is represented in fig. 1 by the double lines
and it is understood that the sense of the arrows is to be preserved when linking together
vertices. The resulting diagrams are similar to those of the scalar theory, except that
cach external line has an associated index i, and each internal closed line corresponds to
a summation over an index j = 1,...,N. The “thickened” structure is now sufficient to

associate a Riemann surface to each diagram, because the closed internal loops uniquely
specify locations and orientations of faces.
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Fig.1: (a) the hermitian matrix propagator. (b) the hermitian matrix four-point vertex.

To make contact with the random triangulations discussed earlier, we consider the
diagrammatic expansion of the matrix integral

Z=ef = /dMe““f"“”‘}ﬁ‘””“ ' (3.1.6)

(with M an N X N hermitian matrix, and the integral again understood to be defined
by analytic continuation in the coupling g.) Similarly we can write its Feyman rules and
calculate the connected correlation functions

(trM°)) = /‘ ) LN (7 T L | (3.1.7)

which counts the number of diagrams constructed with n vertices and is identically dual
(i.e. in which each face, edge, and vertex is associated respectively to a dual vertex, edge,
and face) to a random triangulation inscribed on some orientatible Riemann surface. We
see that S o '

o The matrix integral (3.1.6) automatically generates all such random triangulations.”

o The free energy of the matrix model is actually the partition function F' of the 2d

gravity (3.1.1). Since the matrix integral generates both connected and disconnected
surfaces. - - -

o The coupling constant g in matrix model is related to the cosmological constant in

2-dimensional quantum gravity . . '
g=e"

Since in the g—expansion of Z defined in (3.1.6), the term corresponding to n vertices

diagram contains a factor g", comparing with (3.1.2), we can immediately justify the
above identification.

*Had we used real symmetric matrices rather than the hermitian matrices M, the two indices would be
indistinguishable and there would be no arrows in the propagators and vertices of fig. 1. Such orientationless
vertices and propagators generate an ensemble of both orientatible and non-orientatible surfaces.
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o Topological ezpansion: If we change variables M — M+/N in (3.1.6), the matrix
action becomes N tr(—3trM? + gtr M), with an overall factor of N.! This normal-
ization makes it easy to count the power of NV associated to any diagram. Each
vertex contributes a factor of N, each propagator (edge) contributes a factor of N7!
(because the propagator is the inverse of the quadratic term), and each closed loop
(face) contributes a factor of N due to the associated index summation. Thus each
diagram has an overall factor

NY-E+F = NX = N*7% (3.1.8)

where vy is the Euler character of the surface associated to the diagram. Comparing
with (3.1.2), we set N = e7 and we see that the large N-expansion of matrix model
is in fact a topological expansion '

F(g) = N*Fo(g) + Z:(9) + N72Fy(g)+ ... : > N> Fu(9) (3.1.9)

Therefore, if we take g = e8¢ and N = ¢, we can identify the continuum limit of the free
energy In Z in (3.1.6) with the Z defined in (3.1.1). Furthermore, the matrix model with
cubic action corresponds the “triangulation” of Riemann surfaces, the higher polynomial
potential would result in more general “random polygonizations” of surfaces.

- 3.1.3 The spheric limit and critical property

In the conventional large N limit, we take N — oo and only Fp in eq.(3.1.9) survives,
which is the contribution of the planar surface. On the other hand, we can also expand Fp

in a perturbation series in the coupling g, and for large order n behaves like (see [35] for a
review) ’

Fo(g) ~ 'Z (g /ge)" ~ (g: — 9)" T - (3.1.10)

which diverges as g approaches some critical coupling g.. Conversely, we may also think
that(although no “direct” proof exists) the divergence of the matrix integral when g — g.,
is dominated by diagrams with infinite numbers of vertices. Since for a fixed area A = me,
n — oo is equivalent to taking continuum limit € — 0. Therefore We can extract the
continuum limit of these discrete surfaces (or triangulations) by properly tuning g — ge-

Substituting n = 2 into eq.(3.1.9), we see that for large fixed area
Fy ~ ATstr—3
In general

F(h, A) ~ Alrr=2x/2-1 e (3.1.11)

So in this Way we can calculate the string susceptibility Ystr-

tNote that N remains distinguished from the coupling g in the model, since it enters as well into the
traces via the N x N size of the matrix.
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3.1.4 The double scaling limit

Since ~sir is universal, i.e. independent of the genus, so we may expect that the successive
coefficient functions Fi(g) in (3.1.9) as well diverge at the same critical value of the coupling
g = g. and takes the form (which can be proved in matrix model)

Zn(g) ~ S nr X2 g g )" ~ (go — g) BT (3.1.12)

This shows that the contributions from higher genus are enhanced as g — ge- Therefore,
if we simultaneously take the limits N — oo and g-— g., we may obtain a coherent
contribution from all genus surfaces [3]-[5]. This is the so called Double Scaling Limat.

To see how this works explicitly, we write the leading singular piece of the Z,(g) as
Zn(g) ~ falg — go) 72
Then in terms of
k1= N(g—go) /2, (3.1.13)

the expansion (3.1.9) can be rewritten *

7=kt fiHEfat =, PR T (3.1.14)
h

The desired result is thus obtained by taking the limits N — oo,b g — g. while holding

fixed the “renormalized” string coupling & of (3.1.13). This is known as the “double scaling
limit”.

3.2 One—Matrix Model with Quartic Potential

In this section we will consider a particular example of 1-matrix model , which is of
quartic potential, to show how the above idea works. We will perform the double scaling
limit explicitly and derive the siring equation, as well as determine the string susceptibility.

Let us begin with the following quartic interacted matrix model[5]
Z = f dMePrvOn), V(M) = M+ gM* (3.2.1)

We can at first integrate out the angular variables and keep an integral over the N-—
eigenvalues {1, As, ..., Ay} of the matrix M(35]

too N
Zn(B,9) = (—%ﬁ _/— 11 cl)},-A}"\,(/\) exp (——ﬁzV(/\,—)) (3.2.2)

® 1<i<N

tStrictly speaking the first two terms here have additional non-universal pieces that need to be sub-
tracted off.
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where
V(A) = A2 4 gXt
and

Av() = T[T (=) =det | 357

1<i<N

which is the Vandermonde determinant. The quantity {y is related to the volume of the
unitary group. Disregarding the irrelevant constant, we define -

dp()) = PN

)NV oo
Z5(8,e) = Zu(re) e = [ TT_ dn()A30).

® 1<i<N

There are several ways to deal with this integral, for examples, Dyson gas gquanium
mechanics]5, 36], Schwinger-Dyson equation [7], Discrete linear system[37]. Among them,
we explain the last one, which directly makes use of the powerful mathematical tool—the

orthogonal polynomial technique[38], and directly leads to the integrability of the 1-matrix
model .

3.2.1 The Orthogonal Polynomials
The set of orthogonal polynomials Pn()) are defined as
P.()) = A" + lower powers of A
They satisfy the orthogonal relations | |
i :" 4 5N Pa(3)P(A) = Finbm (3.2.3)
and the recursion relations ~ |

APA(A) = Posi(A) + RuPaca(X) (3.2.4)

*Suppose

AP, = n+1+zani-pi

i=0
Then, from eq.(3.2.3), we should have
6n+1,mhm + tnmbhm = 6m+1,nhn + amnha

if m < m, the possible non-zero elements of (anm) are Gun-1= Rn and @y, for even potential an, = 0(see
footnote after eq.(3.3.7).
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where we have introduced a new set of coeﬁicienfs h, = Rph,_i. After expanding the
Vandermonde determinant in terms of the orthogonal polynomials ,

An(A) = det || A7 [|=det || Pia(A) ||

we can carry out the integration (3.2.2), and obtain

ZN(ﬁ,g) = N'hoh] sae hN—-—l . (325)
. N-1
Fn(B) = regular + Z (N — k)In R, (3.2.6)

=1

We see that the free energy is only a function of the coefficients R,’s. If we can calculate
these coefficients, we completely solve the model. In order to do this, we at first show that
these coefficients satisfy a certain set of equations.

Noting that
V' =2X 4 4g)°
Using the recursion relation (3.2.4) repeatedly, we get

V' Py = 4gPois + 2P, +4g(Rn-1 + R+ Ruy1)Pa + 2Ry 1 Pro
+4Q(Ran—1 + R%,,_l + Rn—an—Z)P -2 + 4g}Zﬂ—-l-Rn—Z‘Rn—I?»-P —4 (327)

immediately the non-zero elements of the matrix V' are

‘/I:-{-B,n = 4ghﬂ+3

‘Vr:—s,n = 4.9Ran—1 Rn—2hn—3

Viiin = 24 49(Rn + Rup1 + Rog2)lhas
Vr:——l,n = Rﬂ[2 + 49(Rn + Rn—l + Rn+1)]hn
On the other hand,

+o0 , +o0 , .
nho = [ dpOAPLP) = [ dpOVELA)(Pass + BaPa)

+occ ; +c0 ’
= B[ dpPiNPar=RaB [ duPV'Pan
= Rnﬁhn{Q + 4g(Rn——1 + Rn + Rn-{—l )]
The last equality shows that R,’s satisfy

B

This is the basic point of our further discussions. We will see that the string susceptibility
and the string equation are both encoded in this relation.

R.[2+49(Rn-1+ Rn+ Rnpa)) (3.2.8)

29




3.2.2 The Spheric Limit

Now, let us introduce the continuum parameters

mz%, ez—;\—[—, R(z) = R,, Xz—g—
then, eq.(3.2.8) can be written as
zX = 2R(z) + 16gR(z)[R(z — €) + R(z) + R(z + ¢€)] = W(R) (3.2.9)
the spheric limit means that T
{ ][\3[ __: :: keeping X = fixed (3.2.10)
In this limit, eq.(3.2.9) can be simplified
) 2Ry(z) + 12gRi(z) = =X (3.2.11)

where .V can be viewed as an effective coupling constant. The reason is as following.
Generally we say a function is regular at some point, if it is continuous and infinitely
differentiable, otherwise, it is called singular at that point. In our case now, we want
to tune the coupling constants such that R is singular, so that also F is. According to
our argument in the first section, which corresponds to the continuum limit of discrete
Riemann surface. Since there are two coupling parameters in quartic potential (V(M) =
g2 M? + g M*, g, = B,95 = gB), in order to have singular R at X =1, we should set

W(R:,) =1, W'(R.) = 0.
‘This fixes one of the coupling constants g = — L (we have chosen R, = 1), and results in
zX = 2Ro(z) — Ri(z) = 1 — [1 — Ry(z)]? (3.2.12)
In other words
Ro(z) =1— (1 —2X)? (3.2.13)

Therefore, the free energy behaves like

N~2F(N,B)=N7? IS(N —k)In Ry ~ /1 dz(1 — z)ln R(z)

k=0 0
~ /01 do(l - 2)(1— zX)} ~ (1= 2)(1 — aX)3] + f: do(1 — 2 X)}
~(l=X)E NS nTEXT (3.2.14)

n

Comparing with the eq.(3.1.10), we can immediately read off the string anomalous dimen-
sion

1
Ystr. = ’_§ (3215)
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Denoting the scaling variable 7 = 1 — X, we have
f(T) = ’T% = F(;,(T) (32168“)
F(r)= [ dslr —0)(r) = ot (3.2.16b)
0
Comparing with the eq.(3.1.13), we see that the relation between the scaling variable ¢
and the renormalized string coupling constant is

k:=T"

. N

(3.2.17)

3.2.3 The Double Scaling Limit and the String Equation

In the previous subsection, we only considered the spheric limit, i.e. in order to get
eq.(3.2.12) from eq.(3.2.9), we have ignored all the € terms in the Taylor expansion of
R(z +¢). In fact, a careful calculation will pick up €2 terms due to the singularity of R(z).
Let us change the notation a little bitf

n 1
= -, €= —, R(z) = R, 3.2.18
=5 g (8:2:18)
and introduce the scaling variables
t=(1-2)8f, r=(@-X)p,  f(t)=(1-R(=))E, (3.2.19)
so eq.(3.2.12) is replaced by )
z=2R- R*-— %Rmﬁ‘z ‘ | (3.2.20)
or equivalently
l—z=(1-R’+ %Rmﬁ“2 (3.2.21)

where the subscripts mean the derivatives with respect to z, hereafter we will also use

a similar notation for Ry, R... Using the scaling variables (3.2.19), and performing the
double scaling limit, i.e.

{ Jg : ::j keeping T fixed (3.2.22)
we find
R.r = R‘T’Tﬂ%7 f"(T) = —R"'TIB§ (3223)

tWe can do this because in the double scaling limit, X = % — 1.
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and (3.2.21) results in the Painléve-I equation

F2 - _f =T (3.2.24)

This is the so called string equation. In the limit 7 — oo, f(7) recovers the spheric
approximation (3.2.16a). The solution to eq.(3.2.24) cha.ractenzes the behavior of the
partition function of pure gravity to all orders in the genus expansion. If we know it,
we would extract all the perturbative and non-perturbative information of pure gravity.

However, mathematically thls equatlon only can be solved perturbatively. The perturbative
solution in the powers of 7~ 7 = k? takes the form

o
fr)=1H1 =Y fir™7) (3.2.25)
k=1
where fi’s are all positive constants, and for large k it goes asymptotically as

k — co = fir ~ (2K)! (3.2.26)

so the perturbative solution is not Borel summable.

- 3.2.4 The Higher Critical Points

In fact, what we have analysed is the second non-trivial critical point of 1-matrix model ,
for the general even potential, we have n parameters

V(M,ga) = }: g Tr(M?*) (3.2.27)
k=1

In order to have a singularity, we should set

:c% = V'(R) = W(R), (3.2.28)
W(R)=---=Wr(R)=0 (3.2.29)
which fix (n — 1) parameters,
_, nl(k—-1)!
gok = (=1)F 1———~——~———(n SySTCTAY (3.2.30)

the potential (3.2.27) with these parameters is called critical potentiall6]. The overall
constant X is an effective coupling constant(see §3.2.2). The matrix path-integral will

diverge for large NV, so as to define a continuum surface. The singularity of the function
R(z) at the point z =1 is

R(z)=1—(1—a)* (3.2.31)
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which suggests us to introduce the scaling variable for large n ~ IV as follows,
' 2k
t=(1—-—=)N%+1, : 3.2.32
(1-%) (3.2.32)

Since the first two relations of eq.(3.2.14) are universal, we can directly obtain

Ft)= (k+ 1)k(2k - 1)t(2ﬁ) | | (8.2.33)

and the specific heat is
f(t) =t* (3.2.34)

the string anomalous dimension is

Vstr. = — 7 R (3.2.35)

In the double scaling Limit, the string equation will be a higher order differential equation.

3.3 The integrability

In the previous section we have discussed a particular example of 1-matrix model with
quartic potential, which is in the double scaling limit described by Painleve-I equation.
The question is what will happen if we include all the polynomial interactions consisting
of both even and odd powers. In fact we will see that it is described by the Toda chain
lattice hierarchy. This is remarkable, since it is a completely solvable system, and enables

us to extract all the information of 2—-dimensional quantum gravity . Now let us explain
this point in detail. ‘ - -

3.3.1 The Discrete Linear Systefn

We begin with the most general case of 1-matrix model , which includes both even and
odd potentials[37]

Zn(t) = / dMe TV (N = const. / ﬁ d\AZ(N) exp(—%V()\;)) (3.3.1)
=1 =1
where
V(M) =3t M"
=]
Doing the same thing as in last section, we introduce the orthogonal polynomials ,
Pa(A) = A"+ ...
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which satisfy the orthogonal and recursion relations

/ e O P (A)Pn(R) = Snmbn(t) (3.3.2)

AP,(A) = Pop1(A) + SuPa(X) + RaPasi(N) ~ (3.3.3)
It is convenient to introduce another set of the polynomials |

1

60 = — e NP (). o (3.34)
Then eqs.(3.3.2) and (3.3.3) become
/ AN (t, M) Em(t,A) = B (3.3.52)

An = v/ Bnprng1 + Snén + \/R—nfn—l (3.3.5b)

now the function R, (t)’s and S,(t)’s as well as hn(t)’s are defined on the whole parameter
space of {t;,ts,+--}. Unlike the even potential case, here S,(t) # 0 for general potentials,
and one can show that : : )

S, = _-?t—hlhn(t), a0 o (3.3.6)

or more generally*, T PR op S

oL, In hn‘f(t)‘:“(\Q‘)nn & n 20 EEEHN. (3.3.7)

*Let us see what happen if we make the reduction tzx4+) = 0,Yk > 0. Obviously
< Tr(M*+! >= / dMTr(M*+1)e~TrV (M) = (_1)%+1 < Tr(M*H) >=0

For the second equality, we have done M — — M, which is always possible for dummy variables, and used
the fact that V(—M) = V(M) for even potentials. On the other hand(see below (3.3.10b),

< Tr(M* ! >= - In Zy(t)
Tokt+1
for any positive integer N, therefore
; i}
0 1 Zxlt) _ Inhy =0

n fmannd
Otakyr  Zn-1(t)  Otarsr

In particular, for k = 0, from eq.(3.3.6), we get
S, =0

That is to say, the even potentials correspond to S, = 0’s.
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where @ is the Jacobi matrix -~
Qun = [ A, VAR5, )
= Rot16nm1 + Sabum + \/Rabamit (3.3.8)
In the same Way, we mtroduce the matnx P

nm_./d)\fm(A mg,,(A) Zkth’“ - = (3.3.9)

Using the orthogonal polynomials, we can perform the integrations in (3.3.1), and
obtain :

ZN(t) = COTLSt.N!hUhth ces hN-—l (3.3.10&)
p] N-1 ‘
T - ZO Qr,.=-TrQ", r>1 ~ (3.3.10b)

Let us denote by ¢ the column vector with compdnents o, €1, €2, -+, use the recursion
relations (3.3.5b) and differentiate the orthogonality relations (3.3. 5a) with respect to i,:
fWC armve at the followmg dzscrete lznear system (DLS) of equatlons :

..Qé % e

B 53)\6 Pé .

~ where the dependence on t and A has been understood. Here and throughout this section
we adopt the notation

{ %(Qr)nma m<n
(Q;)nm = 0, m=mn (3.3.12)
'_'lz'(Qr)nma m>mn

The product in the above equations is of course the matrix product.

The consistency conditions for this linear system give rise to the discrete KAV hierarchy[17]

0
L) | (3313)
and to the so-called string equation®
[@,P]=1 ‘ - (3.3.15)

tSometimes the string equation (3.3.15) can be represented in another form. Noting that the polyno-
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All the integrability and criticality properties of the matrix model are encoded in the
DLS*. :

3.3.2 Gauge Symmetry and Integrability

We have seen that the l-matrix model is characterized by the discrete lLinear system
(3.3.11). Now we show that this system possesses a large gauge symmetry, which ensure

mials P, = A™ + ---, we have

. 8
/dxej‘ NP5y Pa = nhat.
From the definition of the polynomials £, we see that

(p+ %V’(Q)) =,

n,n—1

or equivalently

oo
S kQR =0 (3.3.14)
k=2 . : .

we will use this expression in the section 5. o , .
1t is interesting to answer the question: to what extent is the correspondence between discrete linear
systems and one-matrix models one to one? There certainly are linear systems that do not correspond to
matrix models, however if we impose the matrix Q to have the Jacobi form (3.3.8) and choose the form
of the polynomials ¢ like (3.3.4), the correspondence is one to one. Indeed let us start from the infinite
column vector § with orthonormalized components &, €1, €2, - as in eq.(3.3.5a), and write the system

P
Q=X  F¢=Qut (3.3.16)
Then we can reconstruct the partition function from
8
—InZy@)=-TrQ", 72>1.
t,

If we define now

a
‘6—):6 - Pﬁ’
we have the consistency condition
apP
=[Q7, P].
atr [Qﬂ’ ]

This admit the only solution

oC
P=>) k@i,
k=2

using simply egs.(3.3.16) beside the orthonormality conditions. However, if choose other kind of polyno-
mials, we will obtain different P matrix. -
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integrability.

Let us consider the following transformation (at fixed #;’s)
¢ — =G, Q — Q=0G6"1QC (3.3.17)

where G is a unitary matrix. If the transformed Jacobi matrix Q has the same structure
as @, i.e. only the diagonal line and the first two off-diagonal lines are non-zero, and,
moreover, if 7

e 8 ;: s

QE=X =08~ - (3.3.18)

then, we say that our linear system is gauge invariant.

Let us examine these transformations more closely by considering the infinitesimal
transformation

G=1+¢g.

Then, the invariance requires the matrix g to satisfy the equations

Q = Q+¢[Q,g] - - (3.3.192)
0 PN . .
atrgk— [ a:g] - [Q 7g]a- | | (3319b)
A non-trivial solution is v : -—
g=>uQ5 | (3.3.20)

where b,’s are time-independent constants. By abuse of language we will call this a “tzme-
independent gauge transformation”.

Let us consider the case when only b is nonzero. Then

§0=0—Q =¢eb]Q,Q% = -—ebk-éat—kQ. (3.3.21)

This corresponds to the transformation t; — tx — €by, which can be rephrased by saying
that the tuning of the time parameters is realized by means of the gauge transformation

(3.3.20).

This transformation has remarkable properties. On the one hand it can be considered
as the discrete version of the conformal transformations, on the other hand it leads to the
integrability of the linear system (and consequently to that of the one-matrix model).

Let us consider in detail the latter claim. We can think of §Q given by eq.(3.3.21) as
originating from a Poisson bracket in the following sense:

§Q = e{A,,Q} (3.3.22)
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That 1s

{4,,Q} =15, Ql. (3.3.23)

where A, represents a Hamiltonian, which has been proven to be (see Appendix.A)
1 & ,
H=-Y Q. r=1,2,... (3.3.24)
T n=0

and corresponding to the choice A, = H,, H,_1, H,_3, ..., we would obtain different Poisson
brackets. More explicitly we write

{Hr—k+17Q}1;:‘= [Q(r)a Q]7 (3325)

While explicitly working out the Poisson brackets one realizes that there are two distinct
regimes according to whether S; = 0 or S; # 0.

(i) First regime-Velterra Lattice,i.e. S; = 0. We find two meaningful Poisson brackets:

{R:;,R;}1 = R:Rj(6;i41 — bij+1) (3.3.26)
and
{Ri,R;}s = RiR;j(Ri+ R;)(8ji41 — 6iji1)
+ R;R;_1R;26;:r2 — RiRio1Rizsb:juo (3.3.27)
while o
{R:;,R;}.=0"

| (12) Second regime-Toda Lattice, i.e. S,;é 0. We have two Poisson brackets:

{R,‘,Rj}l = R,‘Rj(aj‘,'_*_l - 5,',]'_{..1) (33.283.)
{R,', Sj}l = R,'Sj(&',j - 6;,_1'_,_1) . (3.3.28b)
{S,‘, Sj}1 - R,‘(Sj,,‘_*.l b Rjé-i,j-i-l- (3328(:)
and 7
{R;,Rj}z = QR,'Rj(S,'(S,‘,j_l - Sjé-;,j.;.]), (33296.)
{Ri, Si}2 = RiRj(6ij-1 + 8i5) — RiRjpa(6ije1 + bijio) (3.3.29b)
+R; S (6i5 — 8ij41)s : (3.3.29¢)
{Si, Sj}g = (S, -+ Sj)(Rj5;,j_1 - Ri5i,j+1). (3.3.29d)

For k = 3 eq.(3.3.25) does not define a consistent bracket®. In any case, there exist at

least two compatible Poisson brackets, which guarantee the integrability of DLS, and of
the 1-matrix model .

8In fact, there exists the simplest Poisson bracket, that corresponds to k = 0,

{Ri, Sito = Ri(6ij — bij+1),
all the others are vanished[39].
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3.4 Virasoro constraints from DLS

An important piece of information for the matrix model is contained in the so-called Vi-
rasoro constraints{40][66]

L. Zxn(t) =0, n>—1 (3.4.1)
where N
s 5? ,
kt — 2N N%6, (3.4.2
Z *Btrs o Z Bl (3:4.22)
MMLM—%n—nﬂLﬁW ' (3.4.2b)

They completely determine the possible perturbations.

In this section we show that the Virasoro constraints result from the consistency con-

ditions of the linear system (3.3.11), eqs.(3.3.13) and (3.3.15).
~ To this end we rewrite the string equation (3.3.15) in the following form

Zktk Btk Q=1 o (3.4.3)

where we have used the KdV equations (3.3.13). Eq. (3.4.3) imph'es that

N -

IS, = -1, n>0  I= Z tr L

Oty

(3.4.4)

which, by (3.3.6), can be re—expressed as

i b, = Vn >0
ot ,

since the operator [ commutes with 3%. After integrating over t;, and using the formula
(3.3.7), we get '

o

Z te(Q@  pn+a=0, Vn>0. - (3.4.5)

At first glance it seems that the integration constant o depends on ts,t3, ..., but using the
discrete KP hierarchy and the string equation one can prove that a is actually a constant.
Let us consider this point in detail. For convenience we introduce some more notations:
for Jacobi matrix Q, Q_ means its pure lower triangular part, and Q) denotes the main
diagonal line, while @, = Q@ — Q_. It is easy to see that

Qu= (@~ Qo ~ Q).
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Therefore
1
Q% @an = 51Q% — Qo) — @~ Q'lmn
= (195 @1l + (04 Q71nn) = (@4, Q')

Using this result, we can immediately see that

0 ! r l { r 0 r

atr nn [ a’Q ]nn - [QG7Q ] - —6—{1 ‘nn"

Now let us take the derivative of the eq.(3.4.5) with respect to some time parameter
t.(r > 2), obviously

a _ = a k-1 r—1
at,-a - ;ktkatr(Q )""+T nn
ad 0
= S b (@ 410
k=1 tk'—l
= [P,Q 7w +1Q%" = 0. (3.4.6)

This means that a does not depend on any time parameter. Let us choose in particular
the values tor = 0,(r > 1), i.e. the even potential case. As we remarked before, this results
in S, = 0,Vn > 0. So, from the eq.(3.4.5), we can immediately read off

a=0.

Therefore we finally derived
S k(@ an =0,  Vn2>0. (3.4.7)
k=1

After taking the summation over n, and keeping the €q.(3.3.10b) in mind, we obtain
(I — Nt,)Zn(t) = 0,
or in another form

kad 0
(> Kty T Nt)Zn(t) =0 (3.4.8)
k=2 - )

which is nothing but the L_; constraint.

We remark that choosing even potentials would imply S, = 0; therefore eq.(3.3) would
be meaningless and would forbid us to recover the L_; Virasoro condition. We will see
later on that in the continuum limit this obstruction is removed.

For later convenience, we shift the matrix P like
1
P— M=P+ EVI(Q)'
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Due to the eq.(3.4.7), we see obviously this new matrix M is a purely lower triangular
matrix. On the other hand, we know that Q is symmetric, while the original P is anti-
symmetric. So we immediately have the following identity

M+M=V'(Q)= i kt, Q" 1. (3.4.9)

where M means the transposition of the matrix.

In order to derive the other Virasoro constraints, we introduce the quantities

B" = \/R.Rusy ... RopiMynss -7 20 - (3.4.10)
Due to the string equation (3.3.15), one finds for the above symbols the recursion relations
BUAD _ BU+) = (S,_, — S.)BY) 4 Ry BU™ — Ry BU) + 6,0 (34.11)

The first few ones are as follows

B =0, BWY =, (3.4.12a)
.B,(IZ) = SU + Sl + et Sn—Z — (TL - 1)Sn—1, (3412b)
n—3 n-3
B,(ld) == Z S? + (n — 2)5,1_15,;’_2 - Z Si(Sn—l + 511—2)
=0 1=0
n—2 B i : .
+2> Ry —(n—2)R, (3.4.12¢)
i=0 .

......

: On the other hand, from the KdV equationé—z3.3.13), it is easy to see that

Bl b N-1 .
A,
T —Tr =30 }__‘6 S; = (3.4.13)

With this proviso, we start to calculate the following objects. We multiply the eq.(3.4.9)
by (Q™*!), and take trace

Tr (Q"“(M —-V(Q)+ M)) = o,A n > 1. (3.4.14)

Since the matrix M is purely lower triangular, so for each fixed integer n, we only need
to calculate the finite terms of the traces I'r (On+1M(OIM)) Meanwhile the second term

in (3.4.14) can be represented as the derivatives of In Zx(¢) with respect to ¢, due to the
€q.(3.3.10b). Therefore, making use of (3.3.10b), (3.4.12a-3.4.12c) and (3.4.13), we get the

Virasoro constraints (or W .—constraints,see Appendix.B),

L.Zn(t) =0, n=0,1,2 (3.4.15)
= t 260 A4.16
L, Zkk ,,+Z<9tk6t_k+N5’U (3 )

which is a subset of the constraints (3.4.1). The Virasoro algebraic structure (3.4.2b)
ensures that the higher order constraints are also true.

6 k-l—n
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3.5 The Spheric Limit of One-Matrix Model with
General Potential

Now let us come to consider the spheric limit of 1-matrix model defined by (3.3.1). We
want to deduce the classical limit of the discrete KP hierarchy , and derive the spheric
limit of the Virasoro constraints.

In order to analyse the spheric limit, we at first rescale time parameters as we did in
§3.2, like

t, = Bt,, Vr > 1.

Then the discrete KP equations (3.3.13) become

2 — pl:.0), (351)
and the M—-matrix is rescaled by |
M =83 ket | (3.5.2)
k=2
which still satisfies the eq.(3.4.9). Meanwhile the partition function satisfies
:tr In Zyn(t) = —BtrQ", r2>1, ' (3.5.3)

o

but the string equation (3.3.15) remains unchanged, however the other version (3.3.14)
takes the following form ‘

> n
> kQu = o (3.5.4)
k=2

g

Now we introduce the continuum parameters

n 1 ' N
113:']'\[—, E:-ﬁ, R(ﬂl)__—_Rn, S(:c):Sn, X:'B'
The spheric limit means that
N — o .
{ ; o keeping X  fixed : (3.5.5)

From the definition of polynomials ¢, in the spheric limit, we may set

én(t) = exp (——ﬂn(m, t))

Then, for any integer j,
ny; ~ exp (—PBn(z + je, t)) ~ exp (—=Bn(z,t))exp (—X"ln'(m,t)).
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Throughout this section, the prime means the derivative with respect to z. Now we
define[42]

n’(mat)

z=-exp(—

(3.5.6)
In terms of this quantity, we see that

= \[Roirbuss + Snbn + 1/ Bn snwan(z\/ (z) + S(z) + /R(z)z7").

that is to say, in the spheric limit,
Q => L = z\/R(z) + S(z) + \/R(z)z"". (3.5.7)
Similarly

an = ’C’(U)) e Qn ntl 4 ‘C(l)7 vi. (358)

where the subscripts indicate the corresponding powers of z. Using these identification
rules, we immediately see that the spheric limit of the eq.(3.5.4) is

3 kL = o X | | (3.5.9)
' : k=2 i ’ V
Thé free energy behaves like ~~ v
N-1 :
N7?F(N,8)=N~? Z (N — k)ln Ry ~ / dz(1 — z)ln R(z). (3.5.10)

Therefore, we ﬁnd that in the spheric limit B
In Zy(t) ~ N*1n Zy(z,t).

noting eq.(3.5.3), we get

0 TR L
5 In Zo(s, 1) = —X 1/0 (L) ™21, (3.5.11)
or equivalently
o* 1
a0, In Zy(z,t) = ~X (£7) 0 (3.5.12)
In particular,
5 S(z)y 0 2R + S?
. = — t) = — . 0.
5201, In Zy(z,1t) X5 T In Zq(:c, ) e (3.5.13)
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3.5.1 The classical limit of the discrete KP hierarchy

Now let us see what happen to the discrete KP equations (3.5.1). We start with the first
two flows

%Sn = B(Rn_1 — R~ _%, (3.5.14a)
B%Rn = BRA(Su1 — Sa)~ —R)f'- (3.5.14b)
and -
5%5" = N(Rn(sn + Sp-1) = Rny1(Sn + Sn+1))~ —2(1;5)/1 (3.5.15a)
-5‘2—212" = NRu(Roo1 + 82 = Ruy1 — S5)~ —35(—}?%—552. (3.5.15b)

The remarkable effect is that we may rewrite these equations as Lax pair form, if we treat
z as time independent parameter

9 oLoL, oL QL_:)

E:X'l(z r=1,2.

z

Ot, 0z Oz 8z Oz
where the subindex “+” means keeping the non-negative powers of z. We will simply set
X =1, since it only means the rescaling of time parameters. These expressions remind us

that z could be interpreted as the momentum conjugate to z, so we can define the basic
Poisson bracket™

{z,2} = z.. : ' (3.5.16)

Due to the appearance of z on the right hand side, we would refer z as “twisted” momentum
conjugating to the space coordinate z. In fact this relation can be easily understood from
another point of view. As usual we denote by E;; the semi-infinite matrix (Ei;)u = 6ikdji,

and define

I. = Y Ei, p= Z 3By

i=—00 i=—00

Obviously, we have

[L+,0] = I

In the continuum limit, the diagonal matrix p approaches to space coordinate z, and the
commutator becomes the Poisson bracket. If we denote the classical version of I, by z, then

*We may refer z to be twisted momentum, in order to its difference with the canonical one. The
canonical momentum p can be introduced as following

p=Inz, {p,z}=1.
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we obtain the basiciPois‘sidrkf'b:facl{eti(’é."'5.%1:6?). “Since the Jacobi matrix can be fepreseﬁted
in terms of matrix I in the way ; _

Q= I+\/— R+ 5 ++RI_.
where R and S mean the diagonal matrices R;; = R;0;; and S;; = S;6;; respectively,
which become functions of z. Therefore, the classical limit of the Jacobi matrix is Q like
eq.(3.5.7), this shows that the momentum variable z introduced in (3.5.6) is nothing but

the classical limit of I,. Now from the eq.(3.5.16), we can write down the spheric limit of
the discrete KP equations (3.5.1) as follows

0

> 1. RiR
BL. Vr>1 (3.5.17)
In terms of the coordinates R and S, we have
0 —-(/: o) (3.5.18a)
Bt, -1/ | | e
6 r ! r . 7 P *
BFR = —[(Liy)+L1y S | (3.5.18b)
The Toda chain equation corresponds to the zero~th flow
" 8
e { £)1,2)-

Till now the Poisson structure is defined on the auxilliary space (z, z). We may transfer

it to the functional space of fields R and S. On the coordinates R and S, the Hamiltonians
J;ake the following form - ‘ ,

H, = /(z: )(o), Ve300 | (3.5.19)
The general Poisson structures read - s
{R(z),R(y)}» = 0, {S(=a), S} = 0 (3.5.20a)
{R(z),S(y)}» = ROS(z—y), . (3:5:20D)
and
{R(z),R(y)}. = 2(R’0+ RR)é(z—y), (3.5.21a)
{R(z),S(y)}> = RSOs(z —y), (3.5.21b)
{S(z),S(¥)}. = (RO+ R)&(z—y); ' (3.5.21c)
as well as |
{R(z),R(y)}s = (4R’SO+4RR'S+2R*S")(z — ), (3.5.22a)
{R(z),S(»)}s = (4R*0+ RS’8+2RR' +2RS55")8(z —y), (3.5.22b)
{5(z),5(v)}s = 2(2RSA + (RS))8(= —y). (3.5.22¢)

Based on these Poisson brackets we could find the W, algebras.
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3.5.2 The Virasoro constraints in the spheric limit

Let us start with L_;-constraint. From eq.(3.5.9), using the eq.(3.5.18a) and eq.(3.5.12),
we obtain ,

Zktkalak 1ln Zo(:c t) = :n, o

k=2
Where we denote by (9 Now 1ntegrat1ng over t1 once, We get(dlsca.rd.mg the integration
constant) .
(Z ktkak_l - :Etl) Zo = 0. (3523)
k=2 :

Essentially starting from this equation and the spheric limit version of the discrete KP
hierarchy (3.5.17), we can derive all the other constraints.

In fact we can perform the same game as in the previous section. At first we notice
that, in the spheric limit the quantities defined by (3.4.10) tend to

BV =z, - | (3.5.24a)
BY® — —zS(z)+ 6715, (3.5.24b)
B = 2(5* - R) —2567'§ + 07 (2R + 5%). (3.5.24c)

------------

’From eq. (3410) agam, weﬁnd ot i AT SR R S ST
| M= M~R" zB(’) - S (3.5.25)
On the other hand, the spheric limit of eq.(3.4.14) becomes

(cr+(m - V'([Z) +M)) 0=0 mZ -1 -~ (3.5.26)

where ‘bar ” means changing z to z7!. Using these results we are able to derive the other
constraints. Let us see some examples '

(7). Ly—constraint:

(E(M + M)) = 2(£M)(U)= 2:13 = — Z ktkkaka—l In Zo(ﬂ:,t),
(0) k=1

integrating once over =, we get
O )

(i ktkde + 27) Zo(a,t) = 0. (3.5.27)

k=1

(¢¢). Ly—constraint:
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k=1

S ktxB4r07 In Zo(z, t), = —2(L°M) o= ~2@5+ 87'S),

Using eq.(3.5.12), we can write the above formula in another form (we simply discard the
integration constant) ' Cra R

(> kteBiss - 220, ) Zo(z, ) = 0. (3.5.28)
k=1 - =T , .

(i11). Ly-constraint: =~ -

(0)
which leads to

(L5(M+ K1) = (2R +5°)+567'S + 51 (2R + §%)= 0 [%(51 In Zo)?—28,1n Z0),

> ktiBese — 220:)In Zo(2,t) = (Biln Zo)'. . (3.5.29)

k=1

Unfortunately, it can not be rewritten in a compact form. However, if we compare these
formulas with the constraints (3.4.1), we find that here we lost the higher derivative terms
like (%TrQ"‘f), but we keep the terms like (TrQ"TrQ™""), which could be considered
as contact terms. Therefore, we see that the“multi—point\corréla,tbré are suppressed. This
suggests a very simple way to derive the classical version of the Virasoro constraints (3.4.1).
The trick is as follows: We start with egs.(3.4.1), writing it as - -

S btyBein In Zy(t) — 2N, In Zy(t) + 3 (8 ln Zv(t)0n-k In Zn(t) — OOk 1n Zy(t))=0.
k k=1 : " ‘ ; '
then, rescale t — [t as before

In Zn(t) = B2ln Zn(t).

Now substituting Lattice size N by z, comparing the powers of B, we can get

n—1
Z ktk8k+n 111 Zo(t) - 2:23(9,, 111 Zo(t) + Z 8k 1I1 Zo(t)an_k 111 Zu(t) = 0. (3530)
k k=1 ‘

Now we may summarize the spheric limit procedure as follows

1. Rescaling the time parameters by “N”;

2. Introducing the continuum variables;
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3. Mapping all the lattice quantities to their classical versions:
( I+ = Zy

diagonal matrices = functions of x,

commutators = Poisson braket,

| trace operation = integration over x.

3.6 The Double Scaling Limit of One—Matrix Model
with the General Even Potentials

In the proceeding sections we have shown that the gauge symmetry results in integrability.
In fact there exists another kind of symmetry, which is time-dependent, and relates to the
double scaling limit. This section is devoted to this problem.

3.6.1 Reparameterization and Time- Dependent Gauge Trans-
formations

The DLS (3 3. 11) is form mvanant under repara,metenza,tlon of the 172 couphngs That is

Tiga

(mn—Mmf;a~ﬁ0—@xmm

where t = (t,,1,,...) and tk is a smooth functions of the t’s.

This invariance is a formal one. However, by combining gauge and reparameterization

transformations, we can obtain significant symmetries of the system. Let us consider the
transformations

te = tr + e(k — n)ty—n, Vk>n, n> -1
iy = —2Ns, n>1

£ = G e, | (3.6.1)
Q(f) = G(HR(HG(E)

In this kind of setup it is possible to find G = 1 + g so that
() = o) (362

and the linear system becomes

O &) = Q). (3.6.3)

JOHORPHON

We refer to these as time-dependent gauge transformations.
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In order to see the meaning of this kind of transformation, let us examine two particular
examples

(i). n = —1 case, the transformation on parameter space is
Ek =t + E(k + 1)tk;l-1, Vk > 1. (364)
The invariance of eq.(3.6.2) requires the matrix g should be

g=P. ' (3.6.5)

One can check that ¢ is also invariant under this combined transformation, and can be
viewed as —e shift of the spectral parameter A. Therefore, we see that the symmetry only
states that the transformation (3.6.4) can be compensated by

A—A—e (3.6.6)

Usually this is called nonisospectral symmetry[43].
(43). n = 0 case in (3.6.1) is nothing but the scaling transformation, which, as required

by eq.(3.6.2), is compensated by

P, S R , (367)

the corresponding variation of ¢ is exactly the same as that generated by
i ebas o _ /\———>,\_“—if-"¢>‘,‘w;_ . : _, (3.68)
(bt =8n) | | | |
From these two éxamples; we can leArn the following thirjgs,

(x). This suggests us to view the time-dependent gauge transformation as an invari-
ance of linear system under the transformation on both time parameter space and spectral
parameter space. In fact we repeat a similar analysis for other values of n, however due to
mathematical difficulty, it is not easy to write down compact form for the matrix g, so the
corresponding A transformation is complicated.

(#x). This invariance also leads to the L_; and Lo Virasoro constraints. Similarly, we
could as well obtain the other Virasoro constraints.

(+ % x). If we consider a finite version of the transformation (3.6.1) above when n = 0:
t, — Yt Vr (3.6.9)

where 4 is a finite constant, properly choosing matrix G, the Jacobi matrix Q would
approach the continuous Schrodinger operator. In other words, the double scaling limit is
connected with a singular case of a symmetry operation on our DLS. We will show this

point in detail in next subsection.
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3.6.2 The Double Scaling Limit

Let us consider a k—th order critical point and define, as usual, the continuum variables

n
z=—, R(z)=R., {(z)=¢.
¢
Moreover we set
1,1 - T, _2k 0
= (=) =T to = (1— =)B%+1, 0= —, 3.6.10
= (g7 b= g™, 0= (3.6.10)
The double scaling limit corresponds to
B — oo, N — o0, to fixed.
For large n ~ N one has
z =1-— iy, R(z) = 1 + €u(ty) (3.6.11)

where u(fp) is the specific heat.

 The latter ansatz requires a comment. Let us consider the string equation (3.3.15),
suitably rescaled

(20}
QP=1,  P=YriQ,  t=f (5.6.12)
lB ) o r'=2.‘ )

‘where £, are renormalized coupling constants (see below). This equation establishes strong
restrictions between the limiting expressions of Q and P. With the simplifying assumption
tyry1 = 0 Vr, the above ansatz is correct, as is well known; if we switch on the odd
interactions the analysis is more complicated, the above ansatz is still correct but we have
not been able to exclude other solutions. In the following we will stick to the case of even
potentials and to (3.6.11).

Let us now write down a few expansions which will be useful in the following. It is easy
to see that :

1 -
R.z1 = R(z F E) =1+ u(ty + €)

1 -
bz =E(z F B) = e*%¢(to). |

Then, using Taylor expansion, we have the following formulas

1 b n b3 "t
Royp = 14 €u—beélu + —é—e‘*u - —6-65u , (3.6.13a)
g9
1 :
[ Ropori = 1+(g+1)"n = (g +1)(2b + g)e™n

1=0

50



64(§:Mu;'_*:_(_q_—l-_llgu2) o
i 2

2
=0 )
= k! b )3 m 2b 1 !
- e°<z( ';’) W +Q)2(‘J+ )quu>+=--, (3.6.13b)
’ =0
a 1 1)(2b :
IV Barer: = 1+ 2t loy (g+1)(2b+q) eu
=0 2 4
kil )2 n 1 -
i e4(z(b+l) ” +(‘1+ )(q 1)u2>
1=0 4 Lo 8“ - -
k) ) " V Zb : - I
_ 65(1;)(6 ;._21’) w4 ( +Q)(q: 1)(q 1)’!L’ll, ) e, (3.6.13C)
Using these formulas one can derive
Q0 = 24 +u)+0(S), | - | (3.6.14a)
1 3. 1 ) "
Qo = e@+ge3(33+3u3+ —2—u)+ §e4(2u5+u )
1 - . 1 1 K ] nt
b3 (H0rgudt B w0 - w4 g ) (36.145)
QF = 20+ 2SO+ Sud 4w+ (2w +u")
SRa TR 2 4 2 VT =
e 2 4 . 4 o, 3w b w\ ST
S =8+ —ud? 24— - o 6.14
s (156'+.,3“a+2“6 pr ot v ) T o (B6049)
e S0009 1“'9.‘4‘1 T n 5 41 . oo
Q@ = 60+ (00 + 00+ ) H oot )+ S0
s : 4 ' 37w 9 9 11 ;r: : -
+ 15u8® + —25-u o® + i 0+ §u23 + Fub +5u ) +eer,(3.6.14d)
’. : - 3 3 V ] 7 24 .
QY = 1260 +166°(8° + §ua + v )+ 6e'(2ud+u ) +2¢° (?6°
4+ 16ud® 4 240’8 + 19u"8 + 6u?0 + buu’ + }%u> o, (3.6.14e)
= 7 1 ! " 5 =
QF = 30D+ S(456° + T5ud + —25-u )+ 5l (2u'8 ') + (2907
1 90ud® + 1350 6% + 111u" 8 + 45u?8 + 45uu’ +33u” ) + -+, (3.6.14f)

etc.

Let us see now some consequences of the above expansions. First of all let us notice
" that in the continuum limit the reduction to even potentials does not contradict the string
equation as in the discrete case. We should remember that the contradiction is exposed in
eq.(3.4.4). From the above expansions it is not difficult to see that in the continuum limit
it does not make sense to single out an equation like (3.4.4), while the LHS of the string
equation is replaced by a differential operator even if t,41 = 0 Vr. Soin the continuum
limit on can safely choose an even potential.
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Next we consider the continuum limit of (3.3.11). From eq.(3.6.14a) we see that in

a neighbourhood of the critical point A ~ 2. Therefore we introduce the renormalized
quantities

X=X -2), Q=0"4u, (3.6.15a)
0 —¢ = P¢, P=¢P=¢e"%*P. (3.6.15D)
AN
Then, the discrete Schrodinger equation goes over to its continuum version
(0% +uw)é(to) = M(ko)- (3.6.16)

Similarly the string equation becomes
[Q,P] =1. (3.6.17)

We are now in a condition to explicitly determine critical points. From eq.(3.3.11) and
(3.6.15b) (recall that we are working with the simplifying assumption of even potential)

we have
P = €(2t,Q. +4t4Q3 +6t6Q5 +-- )
= 72%(25,Q, + 45,Q% + 65sQ5 +--+) (3.6.18)
We remarked above that the string equation (3.6.17) puts severe restrictions not only in
the discrete case but also in the double scaling limit. From egs.(3.6.14a~) and (3.6.15a-),
we see in particular that all the operators Q7’s are vanishing in the limit € — 0, so that if
one wants the string equation to be satisfied, one must let a certain subset of bare coupling

constants in P go to infinity (DSL). The practical recipe is to look for combinations of 5,’s *

such that all the singular terms in the second expression of (3.6.18) vanish. Let us see a
few significant examples.

(3)k = 2. In this case only £, and £, are nonzero, and 8 = €~°. Then, from (3.6.14b,3.6.14d)
we see that only if we set

5
t2 = “é_stg = 6_5t2, t4 = ———€ stz - 6_5t4,

8 32

are we able to eliminate the €18 term in P, and we get the known operator

5- 2
P= §t2(62 + )1 + O(e)
The string equation becomes
2
where we have introduced the Gelfand-Dickii polynomials
, ) -1
Ry Ju] = [(6% +u)i 2, 8% + . (3.6.19)
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As is well-known at the critical point £5 = =, the above string equation is the Painlevé
equation of first kind

- 1 "
ty = —-u —+ u?.

3

(ii)k = 3. Only i,,t, and 5 are non-vanishing, B = €~ 7. According to the above recipe

we kill all the negative powers of € in P if we put

105 _,- -
2 = ———32 € 7t3 =€ jtg,
35 ;- _
ty= G Tty =€ iy,
7 - _
6 = -—-'——192 €~lt3 = E-Tts

It is straightforward to show that
- 7- 5
P = ‘2"t3(82 + ’LL)?}_ + O(E)

and the string equation becomes

T
—=t3R5[u] =1
, 2
The third ci‘itical point is at 5 = é‘f and the dn‘ferenhal equatmn is
. B o ) - P 1 I . -
ty = —(u® — §u 2, —wu + 1——11,(4))

One can proceed in this way and determine higher order critical points. As is well-
known, on a very general ground the form of the operator P must be as follows

P= 2(n+ 1,07 + 0(e). (3.6.20)

We conjecture that this form is induced by the following coupling redefinitions:

= }:(n+ )tnC oM (ntl) = ZI‘" B (3.6.21)

n=r

where

al™ = (= 1 i(r =10
© = C0T T e

We checked eq.(6.13) for the first few cases and found

3 5 35
0121, ng‘*‘— 03='§, 04:_—62,"'
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In general one has
( )n+1 ( )”
on-1pl °
These factors are determined in such a way as to reproducé the standard KdV hierarchy.

Tt is worth noticing that (i) in eq.(3.6.20) and (3.6.21) we are considering all the critical
points at a time, and (ii) the time transformation (3.6.21) is made of a reparameterization
plus a scale transformation of the type (3.6.9).

What is left for us to do is to analyze the continuum limit of the KdV hierarchy. On
the basis of eq. (3.6.21) one naively has

= 1 0
= =S (n+ 2)Cpe Crtlgm — 3.6.22
g 5) T ( )

So, in particular, on the basis of (3.3.11) and (3.6.14a~) we must have

.8715 = <§5-26 4 (0% +u)l + 0(6))6,

15
—6725 = ( - ——8—6_4(9 + (8% + u)+ + O(e))

srt= (ero+ @ +witoE)e

etc. These are however naive formulae since {fn, n > 1} is not a complete set of parameters
after ‘we take the continuum limit. To correct this-we have to allow also for a J-dependent
term in the RHS of (3.6.22). This additional term takes care exactly of the divergent terms
(in the € — 0 limit) in the RHS of the above equations.

Finally the evolution equations become

a n . .
F= (8 +u)lHiE, n>0 (3.6.23)
which result in the standard KdV flow

0
ot,

w= [ +u)TE 0 1], n>0 (3.6.24)

In eq.(3.6.23) ¢ is the limit of ¢ possibly multiplied by an e-dependent factor which
may be necessary in order to obtain a finite result.

3.7 The Virasoro Constraints in the Continuum Limit

In the previous section starting from the DLS we have obtained, near criticality, a contin-
uous linear system

(8° +u)é = X¢, (3.7.1a)
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(W+)”* T aw)
P = Z(n + = )t n+"’, (3.7.1¢)
whose consistency conditions are
[@,P] =1, | (3.7.22)
=10+ )“*2 &l (3.7:20)
2 b LS (3.7.2¢)

We want now to recover the Virasoro constraints in this continuous system [8}[7]. The
strategy is the same as for the discrete case. We use essentially the string equation (3.7.2a).
First of all, as is well known, in the continuum limit the partition function behaves like

, N-1 ' '
InZ = Z (N — k) In Rk —I— constant terms
k=1 a
— / “dig(to — iy )u(ly) + O(e) + regular  terms
0 STl
= 0’InZ =u(l,) L (3.7.3)

mae

where, in taking the continuum limit, we péssé&ito‘.t‘rlrlci normalized ‘kpérfition function
7=2(/2T), . -

the parameter T being a reference point connected with the extremum of integration , = 0.

Now, using eq.(3.7.1c), eq.(3.7.2a) can bé written ;‘ 8
Z k+ )tmk ] e (3.7.4)
Integrating once with respect to ty, we obtain
& 1. ; : o
okt (Rifu] — R[0]) + 20 =0 (3.7.5)

where R[0] is Ri[u] computed at t, = 0*. In order to simplify the next formulas let us
introduce the recursion operator

-~62+u+ u@"

*If one directly considers the continuum limit of the discrete Virasoro constraints, it is not difficult to
verify, at least for the first few critical points, that this is actually the case.
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and define the recursion relation for the Gelfa.nd—Dickii polynomials
71;+1 = ¢R, = ¢"du. (3.7.6)
Remembering that, on the basis of our conventions, we have
87 R[] = Rlv] — Ril0]

eq.(3.7.5) can be rewritten
_ oC 1 _ ' n - - " -
F=to+ Y (k+ 5)t,:a-lq.s"-l@u =0. (3.7.7)
k=1 ’
On the same basis we can write

o7 1¢"t1oF = 0, n>—1 (3.7.8)

To obtain these equations we have used only the string equation. We can as well en-
visage eqs.(3.7.7) and (3.7.8) as a consequence of a symmetry of the system, precisely
as a consequence of the fact that u(f;) and the KdV hierarchy are invariant under the
transformations,which is called non-isospectral symmetry[43]

b — & :ik+e(k_n+%)£k-—n ,
{ u(f) — ¢ L+u(l) (3.7.9)
The generators associated with (3.7.9) are -
Loy =Y (k+3)kgr—+ 3t
1 ;Z‘l( 2055 T "
L= 30 Vg 1o (3.7.10)
27 ek 167 B |
o 1 _ a p n 82 7
Lyn=) (k+S)har— T 7 2. 57 51" > 1.
I;}( + 2) katk-}-n + 4 kgl atk_iatn_k n >

Here, for later purposes, we have introduced a constant p (for example, by rescaling all the
t’s). A

Even though we will not use it in the following, it is worth mentioning that thereis a
larger symmetry of the system: the latter is also invariant under the transformations

£, — it t+e, (3.7.11)

whose generators are given by
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The generators Vi’s and L,’s characterize the master symmetry of the KdV hierarchy[44][45].

The corresponding algebra is

[Vi, Vi] =0, k120, (3.7.13a)
Ve, Ln] = (k + )V;c+n,~ - k20,k+n20, ~(3.7.13b)
L :
L_1] = -, 3.7.13
[Lp, Lm] = (n — m)Lnym, n,m > —1. (3.7.13d)

But let us return to the derivation of the Virasoro constraint. Representing now (3.7.8)
in terms of the partition function, we get for n = —1,0

8 - 1.
n+ 111Z+-——-t2>=(]’
o > 7R
(Z(n+ [ an)—_—(]_
or, in general,
.VZ ‘i
a(n ; >=0, | nz -l 3.7.14
where, by definition, B
b=To——, lo=La £ 0
0= 0 167 n - mny n .

The most general solution of (3.7.14) has the form

NN (3.7.15)

where the b,,’s are ty—-independent but arbitrary functions of the other para,meters. In order
to determine them we remark that they must be compatible with the algebra (3.7.13a-).
In particular they must satisfy

1
) [lrn bm] - [lm, bn] = (n — m)bn.,_m + —TL(Sn.{.m,(). ‘ o (3716)

8

Moreover we remark that (3.7.13a-) is a giaded élgebra, provided we define the degree as
follows

deg[ty] = —2k — 1, deg[aa
bt

Therefore, deg[L,] = 2n and, from (3.7.15),

|=20+1, deglp] = 0.

deg[b,] = 2n, n> -1 (3.7.17)
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The general form of b, will be a sum of monomials of the following type
M, (p,q1, -+, a) = comst p” £ .40

where p is a real number and ¢, gs, ... are nonnegative real numbers (we exclude negative
exponents as it is natural to require a smooth limit of b, as any one of the couplings
vanishes). Next we remember that the parameter p appeared on the scene because of a
rescaling &, — ﬁfn. Therefore if we perform the opposite rescaling the dependence of b,
on p must disappear. This implies the condition p = 3(qu + .-+ ga). So the degree of the
above monomial would be S

a

1
deg[Mn(p, g1y 9a)] = Z('ﬁ — n;)gi (3.7.18)
i=1
Comparing eq.(3.7.17) with eq.(3.7.18), we see all the by,’s are zero except perhaps for by
which must be a constant, and b_;, which could depend on t, and p. We now use the
consistency condition (3.7.16). Forn =1 and m = —1 it tells us that

5. 0b_, 1
—t —_— = 2b - .
2% 61, 0t 3
This allows us to conclude that
1
by = ——.
0 16

and b_; does not depend on t;. Next we use again (3.7.16)’ for n = O‘and’ m = —1 and
conclude that '

b_;=0.
Collecting the above results we obtain the Virasoro constraints
Li=0,  n>-1 (3.7.19)
with L, given by (3.7.10).

Finally we recall that due to (3.7.2b) and (3.7.3), vVZ is a 7-function of the KdV
hierarchy.

3.8 Summary and Remarks

In the previous sections, we have considered the main objects in one hermitian matrix
models. Till now what we can obtain is as follows

1. The partition function of 1-matrix model satisfies the differential equation, which

opens a way to investigate the whole properties of gravity(possibly coupled to some
matter system).
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2. The even potential matrix models are described by KdV hierarchy, which could be a
{ypic feature of 2-dimensional quantum gravity .

3. We can easily calculate the correlation functions , which is simply

< 0o >=

8
517 (3.8.1)

(at discrete level, o, = T7(M")). The critical exponents can be obtained very easily.

4. For pure gravity case, we recover the usual perturbative expansions (see eq.(3.2.25)
and (3.2.26)).

5. The perturbations are governed by the Virasoro constraints.

6. Finally, this approach stimulates the calculations in continuum formalism.

Although the matrix models are very successful, there is still a long way to go to
understand gravity completely.

(3). Although the matrix model provided a way to extract the non-perturbative proper-
ties of gravity, we still can not get so much knowledge about this. The solution to Painléve
I equation should be clarified further, in fact the real solutions to (3.2.24) do not satisfy
the Schwinger-Dyson equations[46]. This suggests some people to investigate other kind
of definition of pure gravity[47]. ' :

(i1). The matrix model corresponding to pure gravity is the cubic potential, which is not
bounded below. Fortunately, this potential gives the same critical exponents as the quartic
potential, we may use the quartic potential as the definition of pure gravity. However,
eq.(3.2.27) shows quartic potential is not bounded below too. In order to get well-defined
9-dimensional quantum gravity , we way use KdV flows, i.e. move from the well-defined
E = 3 critical point to k = 2 case(pure gravity). But due to the KdV structure, we can also
move from the pure gravity back to k = 3 critical point, this indicates the non-perturbative
instability of pure gravity. There are many works dealing with this problem([48].

(27). In matrix model approach, there are infinite many operators, which seems to
be much more than that of Liouville description. This identification of the operators is
discussed in[49].

(#v). The double scaling limit of the general potentials (including odd powers) is anal-

ysed in[50]. However the gravity theory corresponding to non-Linear Schrédinger hierarchy
is still unknown.
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Chapter 4

KP Hierarchy, its Reductions and
Generalizations

In the previous chapter we have seen that the 1-matrix model is intimately related to
an integrable system, in particular the double scaling limit of 1-matrix model with even
potential is described by the KdV hierarchy. In order to get a better understanding of
matrix models, it is time to analyze the integrable system in more detail. This is our main
task in this chapter. We will briefly review a large class of continuum integrable systems—
KP hierarchy, the lattice integrable system is presented in Appendex A (see also [22]). Then
we will consider two typical reductions of KP hierarchy , in one way it is reduced to the
general KAV hierarchies, in the other case it is'teduced to non-linear Schrodinger hierarchy,
etc. Meanwhile we also present one possible kind of generalizations of KP hierarchy , whose

roles in multi-matrix models will be explained in chapter 6.

4.1 KP hierarchy

In this section, we will consider the usual trick in KP system, that is, the pseudo—differential
analysis, coadjoint orbit approach, as well as the associated linear systems. We refer the
reader to nice books and notes[51][52] [53],etc. for more detailed explanation.

4.1.1 The pseudo-differential analysis
Let us begin with ordinary differential operators. Consider the following general form
A= Zug(a:)an_i,
1=0

where u;(z)’s are functions on a certain field, and we denote 55’; by 8, which acts on the
functions according to the Leibnitz rule,

Ou(z) = u(z)d + v'(z), [8,z] = 1. (4.1.1)
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This naturally defines an algebraic structure on the whole space of the ordinary differential
operators. We could call it pure differential algebra p. .

The essential point in the pseudo-differential anlysis is to include the integration oper-
ation, which as usual we denote by 671, i.e.
0 tu(z) = / dz'u(z').
o
In the above definition, the subtle point is to choose the reference point zo. The basic

requirement for it is that we can always through away the boundary terms which appear
when integrating by parts. This is equivalent to demanding the integrand to decrease

rapidly(for zo = —oo). Under this assumption, we could derive the important relations
07'9=080""=1, (4.1.2)
07w = (1) (] N v) wg=i-v-1,
v=0 v

where u(*) denotes g:‘,f. The above formula can be considered as the generalized Leibnitz

rules. Therefore we can extend p, to a larger algebra g, which contains the following
pseudo—differential operator, denoted by PDO

A= i u,-(é:)a,-. ‘ | i ” 4(‘4.1..3)

Obviously g, is the subalgebra of p, the integration operations form another subalgebra

s
p- = {A=> u(z)d}
. - - o
The algebra g has a direct sum decomposition as a vector space,

P =+ Op-. :
For any given pseudo-differential operator A of type (4.1.3), we call u_;(z) its residue,
denoted by*

respA = u_1(z) or A_;.

The following functional integral will be very important in our discussion

<A>=Ti(4) = /u_l(m)d:c. (4.1.4)

This functional integral naturally defines an inner scalar product on the algebra g, which
is nondegenerated, symmetric and invariant ', therefore, it establishes a one-to-one corre-
spondence between g, and p_. This feature enables us to define a bi-hamiltonian structure
on gy (or, more generally on p). We will explain this point in the next subsection.

*The subindex 8 means that the series are expanded in the powers of 8. We will also consider the other
expansions.

IThe product is symmetric, i.e. < AB >=< BA >, the product also denoted as < AB >= A(B) =
Tr(AB). The invariance means < A[B,C]| >=< [4, B]C >.
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4.1.2 Hamiltonlan structures

In this subsection we will show that the inner product (4.1.4) automatically leads to a
bi-Hamiltonian structure. We start with a particular PDO of the following form

L=+ ulz)d (4.1.5)

1=0

Apart from the first term, L belongs to p_. We call it KP operator. Similarly u;(z)’s are
refered to be KP coordinates. Any functional of KP coordinates can be expressed as

f.\'(L) = L(X)7

where X is an element of g
X = Z 5iXi(m),
=0
with the testing functions x;(z)’s. We denote this functional space by Flp- )
The coadjoint action of g, on F(gp_) takes the following form
Ad; fx(L) = L(Ad_y X) = L([X, Y1), (4.1.6)
which naturally defines a Poisson bracket on F(p-)
{fx, frh(L) = L([X, YY) (4.1.7)

This is the so—called Kirillov-Konstant Poisson bracket, first given by Watanabe[55].
Hamiltonians are

H, = lTr(l'f), Vr2>1; (4.1.8)
T

which generate the infinite many flows, which are called the KP hierarchical equations, or

KP hierarchy

0
Ot,

L =L, L] (4.1.9)

Where the subindex “+” means choosing the non-negative powers of 0. These equations
can be considered as the equations of motion of the coordinates u,’s, or flow equations.
(t1,%2,t3,7--) are time parameters. In particular, ¢; = = Is called space coordinate. A

system has a bi-hamiltonian structure, if there exist two compatible Poisson brackets such
that

{H,-+1,F}-'}1 B {Hr,F)’}z. (4110)

tFor any given L, when running of X in py, fx (L) covers all of the functional space F(p-).
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This criterion enables us to derive the second Poisson bracket of the KP hierarchy (4.1.9)
{fv,fr}(L) = <(XLD)YL>-<(IX) LY >
+ /{L,Y]-l (6‘1[L,X]_1), (4.1.11)

which is called Gelfand-Dickey bracket[56]. The derivation is quite similar to what we did
in lattice case (see Appendix A), so we do not repeat it here. With respect to these two
Poisson brackets, the KP coordinate u;’s form two different W, algebras.

4.1.3 KP hierarchy and its integrability

We may understand the KP hierarchy from another point of view, for any given KP operator
L of the form (4.1.5), it is obviously to see

[L,L7] € p-.
Due to the trivial relation
[L",L°] =0, Vr, s

we have
[LLL] = [La-[,{,-:-] € p-,

so we can always introduce the infinite number of the perturbations by eq.(4.1.9), and all
these flows preserve the form of “L”. But the essential point is that all these flows must
commute among themselves, this is in fact easy to check. Furthermore, the commutativity
of the flows implies “zero curvature representation”

0 n 0 i m ogn ‘
atmL+ - -at_nL+ = [L+,L+], VTL,’TTL (4112)
or equivalently
6 mn 6 m m n
5;&—"—1_[1_ - EZ;L_ = [L___,L_], Vn,m (4113)

Roughly speaking, two systems of equations (4.1.9) and (4.1.12) are equivalent to each
other. However, rigorously they have some differences. At first eq.(4.1.9) contains infinite
many quantities (or,coordinates) u;’s over the infinite dimensional parameter space. But,
in the zero curvature representation (4.1.12), suppose n > m, it only forms a system of
(n — 1) equations involving (n — 1) unknown quantities u,,. .. ,Un_1°. For example, in the
case n = 3,m = 2, let

tl =T, tz =1, t3 = t, "U,(:I},y,t) = 21L1(t1,t2,t3)

§t is easy to see that uo is constant, could be set equal to zero.
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eq.(4.1.12) are two equations of u and wu,, after eliminating u,, we get

Buy, = (41“ —u" - 6uu')l (4.1.14)

which is Kadomtsev—Petviashvili(KP) equation. Usually we use the terminology KP hier-
archy for eq.(4.1.9) or eq.(4.1.12) with all positive integers n,m.

A system of finite degrees of freedom n is integrable if and only if there exist n in-
dependent quantities, which are in involution(commutative with respect to the Poisson
brackets)[51]. As to the system of infinite many degrees of freedom, for example, the KP
hierarchy , we may find various definitions for it. The essential point is that there must

exist infinite many conserved quantities in involution. Therefore we can list some of the
definitions below

1. There exist two compatible Poisson brackets (or bi-hamiltonian structure).
Suppose that we have a set of equations of motion
0 ,
—u; = fi(u,v,u ), (4.1.15)
oty

Since there exist bi-hamiltonian structure, so we must be able to represent them in
Hamiltonian form, i.e.

0
'aT’LLi = {Hl,'u,,'}g - {Hg,’u,‘}l. (4116)
1
. Where H,, H, are two different Hamiltonians. Evidently, { H»,u;}, will generate new
flows like :
0
i = {Ha,ui}a, (4.1.17)
Ot,

where t, is a new flow parameter. Due to the existence of the bi-hamiltonian struc-
ture, there must be another Hamiltonian, say Hj, such that

{Hzyui}e = {Ha uit (4.1.18)

Now we can further use Hj to generate other new flows. In this way, out of question,
we can obtain an infinite series of Hamiltonians and flows 9. The problem is to show
their commutativity. We remember that in original system, we have

{H,, Hy}, = {H:, Hy}» = 0, (4.1.19)

since they are Hamiltonians. Furthermore, the compatibility of two Poisson brackets
enables us to write down (see eq.(4.1.10))

{HnaHm}l - {Hn—11 Hm}2 = {Hn—laHm-i—l}l =, (4120)

Let n = m = 2, we get {H,,H;}, = 0. Let n = 2,m = 3, we have {H,, H,}; =
{Hy, Hs}; = 0. Doing this procedure repeatedly, we are able to prove that all the
Hamiltonians commute with one another.

TFor a system of finite degrees of freedom, all of these Hamiltonians are not totally independent.
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2. The flows are all commutative.

Suppose that we have some Poisson bracket. Since we have the infinite many flows,
so we must have the infinite many ‘Hamiltonians’(we can make this assumption even
f we don’t know what the Hamiltonians are), such that the equations of motion can
be written as

5 :
Ei:f: {Hn,f}, vi.

Then the commutativity says -

8 , 8 8,8
ggg(atangg(@tmf)’

or in other words
{Hoy {Huny F}} + {{Hm, Ha}, £} = {Hem, {Has 3} + {{Hn, Hu}> 1
using the Jacobi identity, we immediately get
{{Hm, H:.},f} =0, Vior any given function -{f. (4.1.21)
which shows that the infinite many ﬁa.miltonia,ns are in involution, i.e.

{Hm, Ha}. | (4.1.22)

3. There exists the zero curvature represéntafibn(4.1.12).

This is obviously equivalent to the second definition, since from the commutativity
of the flows we immediately obtain the zero curvature representation, and vice versa.

We may find other definitions. But the above ones are the most important, since the
bi~hamiltonian structure directly leads to the W algebraic symmetry, and using commu-
tativity is the easiest way to prove the integrability I,

4.1.4 The Baker—Akhiezer function and the associated linear
systems :

The KP operator L can be expressed in terms of “dressing” operator

L=Kok™, EK=1+>wd", K=1+) wd™

i=1 i=1

I The commutativity of the flows reflects the bi-hamiltonian structure only in single Lax operator case.
We will see later that in multi-Lax operator case, there are multi-series of hamiltonians which are not
completely commutative but the flows do commute.

65




The KP hierarchy can be written as
0

K=-I"K. 4.1.23
Ot, i ( )
Define
E(t,A) =Dt (4.1.24)
r=1

then Baker-Akhiezer function and its adjoint take the following form
(¢, A) = KeftY, w7 (¢,A) = K=letN (4.1.25)

where the superscripts “*’ means complex conjugation. In terms of these Baker—Akhiezer
function, we may associate a linear system to KP hierarchy (4.1.9)

LY = A0,
5 (4.1.26)
and its dual form is
L0~ = \U~,
, (4.1.27)
oY = —(LL)e.

The consistency conditions give back the KP hierarchy. Since the flows preserve the forms

of “L” and the Baker—Akhiezer function, they are nothing but the orbits of the symmetries
generated by Hamiltonians.

- Now we denote the residue of the usual Laurent expansion as

Ies ) Z a;\N =a_q.

~ Let P=Yp;0,Q =¥ q;0" are PDQO’s, then it is straightforward to see that

res ,\[(pef(t,x)) . (Qe—e(t,x)n = res yPQ". (4.1.28)
Choosing P = K,Q = K1, we immediately obtain

res ,\(‘I’(t,)\) . ‘If*(t,)\)> =ressg(KK™') =0,
similarly
res A(a,xp(t,A) - xp*(t,)\)) = reso(IT kK1) = 0,
where we denote 5 by 9., and we used the equations of motion of ¥. Generally, we have
Tes ) (3:‘\1’(75, A) - (¢, /\)) =0,
These identities enable us to get the famous bilinear identities
res,\(llf(t,)\) : \If*(t’,,\)) — 0. (4.1.29)

This is a very useful formula both for calculating the residue of the operators and for
deriving other identities.
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4.2 The 7—function

The 7-function plays a central role in KP analysis. There are several ways to introduce
the 7—function . In each of the definitions, the basic requirement on the 7-function is the
Hirota’s bilinear relation (4.1.29).

4.2.1 7—function and Baker—Akhiezer function

Knowing Baker—Akhiezer function, we can use the following involved relation to extract
7—function, and vice versa

t— 1t — ks, ...
U(t, ) = ud *’th) B ) el (4.2.1)

Inverting this formula, we get

8ilnt = —res,\<)\i [>aa - ﬁ]m K). (4.2.2)
= E3) |

For convenience, we introduce the vertex operators

V(t,A) = eb(t)=¢(D:3) V(t,A) = e~ E(LN) et (D) (4.2.3)

i

where R ‘ =

918 108

D = ('3?1‘75‘(9?;,5'&;,-'- -)f :

Then the eqs.(4.1.29) transforms into the Hirota’s bilinear relation of the T—function[57)
res,\[(V(t, A)T(t))-(v(t,,\)f(t))] -0 (4.2.4)
If we further introduce the Hirota’s bilinear operator [57],

P(z)f(z) - g(z) = P(D)f(z — y)g(= + y)ly=0

for any functions f(z),g(z) and any polynomial P(z). Then the above relation becomes

isx—zy)sm(m)exp(iyimi)r(m)-r(m):o, O (a2s)

=1

where (y = y1,¥2,- -+, ) are arbitary parameters, and S;(t) are the elementary Schur poly-
nomials

$ 5,(0) = exp(3 :X). (4.2.6)

j=0 1=1
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The elementary Schur polynomials are related to the complete symmetric functions hyg,
which is the sum of all monomials of total degree k in the variables z1,z2,-++,2zny. The
generating function for hg is

[\r

S Rk = T(1 - zA)7, (4.2.7)

k>0 i=1
for large N. Using the Miwa transformation[58]
z{-}-zg—{—----}-z{\r .

¢ = :
! J

(4.2.8)
we see that

Sk(t) = hk(ZI,ZQ,"',ZN). (42.9)

For a non-increasing finite sequence of positive integers v = {v; 2 v > -+ 2 v; > 0}, we
can associate the Schur polynomial defined by the k X k determinant

Sul Su1+1 Sul+2
Sl/‘g—l Suz SL"2+1

S, = det(Sypji(t)) = | Sw-2  Sw-1 Su el (4.2.10)
Suk—-k-i—l Suk—k-l-z Sllk—k-{—-s

EIT

The Hirota’s bilinear relation (4.2.5) is quite éssential. It can be considered as the
definition of KP hierarchy: if a 7 function satisfies this bilinear equation, then it is a
r—function of KP hierarchy. This opens a way to find a lot of other expressions of the
r—function , and construct solutions of the KP hierarchy .

4.2.2 r—function and conservation laws

One of the important properties of 7-function is its relation to the conservation laws. In
order to see this point, we at first note that the eqs.(4.1.13) lead to

0 s 0 .
oL, (respl’) = ey (resoL"). | (4.2.11)

This implies the existence of the potential, which we call 7—function, which generates the
conservation laws

0
5L InT =0 'resgL’, (4.2.12)
or in another form
52
ETVCT InT =ressL’. (4.2.13)
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The integrals of motion, or conservation laws have the form

0
—J = Vi, l. 4.2.14
6t,-Jl 0, 3 ( )
Now let us define
J. = /resaL'dm, (4.2.15)

since for any two PDO, the residue of their commutator is a total derivative, i.e.
res o[ X, Y] = Oh, VX,Y € p, (4.2.16)

we can immediately check that the integrals defined in the eqgs.(4.2.15) are the integrals of
motion[52]. Comparing the definition (4.2.15) and eqs.(4.2.13), we see that

6‘2

I = | Biae

InT. (4.2.17)

which is a constant only dependent on the boundary terms.

4.2.3 r—function and Vertex operator: Bosonic Fock space I

Since {'g%,ts} form Heisenberg algebras an@ can be considered as the oscillators of free
bosonic field. The vacuum usually defined as™ :

6 .
= ; >
atTIO >=0, Vr>1
and
V(t, ) = etV 8DR) = #1) ; (4.2.18)
V(t, ) = e SENEDR) = =40 ; (4.2.19)
with the bosonic field
oc . oe 1 a B
) =D AT =Y AT, - (4.2.20)
r=1 r=1 r 6tr

in terms of this field, we may introduce a current like
J(A,p) =: M=ol ;| (4.2.21)

Generally a 7—function is a polynomial of the parameters (t1,t2,...). For example, the
elementary Schur polynomials are solutions to (4.2.5). Thus we may identify 7—functions
as a bosonic state. The most important point is that, under the action of the current
J(A 1), the transformed 7-function still satisfy the Hirota’s relation (4.2.5). This means
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that the space of 7—function possesses the symmetry generated by the current J(A ), we
will see, which is GL(o0).

In terms of this current (or vertex), we can construct the N-soliton solution

T(t§ Qp, ALy 150 QN AN, F'N)
— eGLJL (/\Lvl»ll)ea'zJZ(AhIi?) . ea,\.—J‘v(«\j\-,uN) .1 (4222)

Obviously J(),z) mappes N-soliton solution to (N + 1)-soliton solution. Furthermore,
one can show that

JZ(AHU‘)T(t) =0.
Thus the eq.(4.2.22) can be written as
(8 o, Ay a5 N, AN )
= (1 =+ al.]l()\l,pll)) (1 -+ azJQ(AZ, [Lz)) . (1 -+ C(NJN()\N”[LN)) -1. (4223)

The proof that this 7—function really satifies the Hirota’s bilinear equations can be found
in [54][59]. Since the constant polynomial “1” is obviously a T—function, the above formula
(4.2.23) simply means that the space of 7—function is nothing but the orbit of vacuum
under the action of GL(o0) group.

4.2.4 r1—function as VEV: Bosonic Fock space II

In the previous subsection we have given a construction of the 7—function . This 7-
function is parametrized by the time parameters and the element specified by (o, A, 1) of
GL(o0) group. Obviously each point on the flow orbit belongs to the space of the 7—
function . So setting ¢ = 0, we get a particular parametrization of the r—function , which
only depends on the element A of GL(co) group. This procedure is in fact equivalent to
take the Vacuum Expectation Value (VEV), since the “creation oscillators” ¢,’s acting on
the vacuum < 0| equal to zero. Therefore we may identify r—function with VEV

r(A) =< 0|RB(A4)|0 > . (4.2.24)

where R?(A) means the bosonic representation of the GL(co) element A.

4.2.5 7—function as a fermionic state: Fermionic Fock space 1

From the wellknown boson—fermion correspodence, we see that two vertex operators are
nothing but fermion fields. Now we change our notations, denote them as

\I'()\) = ed’(/\) = ZIIJJ)\J ‘P*(A) s e—d’(/\) = Z \I];)“‘J, (4225)
b J
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the anticommutators of the oscillators are
{0,,0;} = {¥;,¥;} =0, {9,937} = b (4.2.26)
These anti—commutators imply the inner product, which can be denoted as
¥,(93) = Ui(Y) = b

This inner product can be written in more transparant way, if we define the standard
vacuum as

0>= T AT L AT A==,
or more generally the N — th vacuum
IN>= Uy A¥N 1 AUNa Ay
its dual form is

<N|=- AUy Ay AV

Due to the boson—fermion correspondence, any state (for ezample, T—function), corre-
sponds to a fermionic state reference to a certain vacuum(say |0 >), in particular

Sio,i_1+1,i-2+2,~--(t) = |W >= U AT A T, Ao (4.2.27)
In terms of fermionic language, the current takes the form B |
« « 1 P
J(A, p) =TT (p) := T %III(A)\I’ (p) = —1—:7,%2)‘ pr v (4.2.28)
i,

This current is a bilinear operator, which has a natural representation on Fermionic Fock
space (either the space formed by (), or the one of ¥*())), the representation is char-

acterized by the infinite matrices, in particular ¥;¥; can be identified with E;;. Therefore
the current J(), ) forms gl(oo) algebra.

Making use of the GL(co) transformation, we may relate any state like (4.2.27) to the
vacuum ‘ ) '

RF(A)|0 >=|W >=expy A;%;¥7|0> . | (4.2.29)
t,J
After mapping back to the bosonic Fock space, the element of GL(0) is represented by
the current operator, so the above formula just says that the Schur polynomial lies in the
orbit of vacuum under the GL(oo) action, therefore it is r—function . More generally, if
we have two states |W; > and |W2 >, corresponding to S, and 5., respectively, they are
related by a GL(oco) transformation R(A),ie.

Wy >— S, [Wa>— 5,  [Wa>= R(A)|W: > .
then we can show that
S, = R(A)S, =Y det(AL022170)S, -~ (42.30)
{r}

If we set v = 0, we see that S, is a determinant of certain matrix A. So this confirms

that the fermionic state, so as to r—function , is completely characterized by the GL(o0)
transformation.
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4.2.6 T—function and VEV: Fermionic Fock space II

As we saw in §4.2.4, we may consider the 7—function as VEV. In fermionic Fock space,
this means that we may identify 7—function with

7(A) =< 0|W >= det(A). (4.2.31)

In order to derive the Hirota’s bilinear relation in fermionic language, we should take care
of the normalization problem. Since the bosonic vertex operator acting on 7-function is
equivalent to one fermion field insertion, i.e.

< O|W >, insertion one fermion =< HTA)|W >.
Suppose |W >= |0 >, we have
<TI0 >=A<0[0>+---.

The first term represents the standard vacuum to vacuum amplitude, but with a A factor,
so we may associate a A dependent factor to non-standard vacua, i.e.

TA) :|0>= A7 1> +---.
Similarly, for anti—fermions
< —=1]T*(A)|0 >=< 0[]0 > +---

which shows

| T*(A): 10 >=¢ |—1>+---. (4.2.32)

Remembering these identifications, ‘we can reexpress the eq.(4.2.4) as follows

-1 —_ *

res,\[)‘ <IQ)r > < -1{¥A)ir >] — 0, (4.2.33)
r T

‘or in another form
J

This is the fermionic version of the Hirota’s bilinear identity[54]. It is invariant under the

GL(co) transformation generated by current J(A, ), so all the orbit of vacuum under this
transformation will correspond to 7—function.

4.2.7 The 7—function and determinant: Fermionic Fock Space

I1I
Comparing the eq.(4.2.33) and the eq.(4.2.4), we see that A™'¥(]) insertion into the vac-
uum expectation value < 0|WW > correponds to a vertex operator V(t,A) acting on 7-

function . Therefore we may even view < 0|W > as the definition of 7—function .
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Now let us consider the N—fermions insertion
< —N‘\P!(Al)g’:(kg) e W*(AN)H/V >=< 0“1’0 cee lI’_N.*.]W*(Al) s \I’*(/\N)IVV >,

after pairing the fermions and the anti-fermions, which is just a particular combination of
the elements of GL(oo) group. Therefore it indeed gives a T—function. The normalization
is choosen such that the vacuum to vacuum amplitude is constant “1”, so

r(w) = —A%Xj < VT )T () - T O >, (4.2.35)

where the normalization factor is
1 1 |
) ) ) , VU
A(A) =< '—qu, (Al)lll (Az)"“l’ (A[\r)lo >= .
e e e
Substituting the eq.(4.2.29) into (4.2.35), and introducing a set of new polynomials
wi(A) =X+ Y AA, (4.2.36)
= . _ .

we can derive the following determinant formula for 7—-function

(Aw) = AX\(’;;), (4.2.37)
where we denote the ‘generalized Vandermonde determinant’ by
wo(Ar)  wo(A) o wo(Aw)
A(Nw) = det(w;-1(2;)) wi(X) TUl(AZ) o TUl(AN)

() wa(h) - wra(w)

Right now the 7-function is parametrized by the fermionic state |W > and the N-

parameters (A1, Az, -+, An), which is related to the time parameter by the Miwa transfor-
mation (4.2.8)[58].

4.2.8 The 7—function and Grassmanian

The free fermions ¥()\) and ¥*(}) are 9-dimensional chiral fields, any transformation of
the space coordinates (A) will result in the the transformation of the basis of the creation
and annihillation oscillators, for example, on the Hilbert space H of the fermions ¥,’s, any
G L(o0) element R(A) will send this basis to a new one

W >= exp (30 AT %;)10 >= (To+ 3 Ao TANTor + STALEIN
ij i=1

=1
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we may consider
‘i’_; =W_;+ Z A_.,',j‘l'/j, Vi >0,
j=1
as new basis™, then
II’V >= ‘i’o/\‘i’_l/\‘i’_g/\"',

is a new vacuum. When A runs over GL(oo) group, all the different vacua form a Grassma-
nian manifold. As we see in the last subsection, this new vacuum can be identified with a
r—function, thus each point of the Grassmanian manifold gives a solution to KP hierarchy

[53][60][61].

4.3 The conjugate operator and new flows

Now we come back to the KP hierarchy (4.1.9). Our purpose is to show that we may
introduce other series of flows. In order to do so, we define a new operator[62],

M=K rt,0 K" =Y v (4.3.1)
=1 1=—00
which is conjugate to KP operator L in the sense
[L,M] = K[, rt, 0K = 1, (4.3.2)

=1

Obviously, we can derive the equations of motion for M,

2 M=[L,M], :
N +

aa‘ T (4.3.3)
=Y =MV

So we see that L and M are nothing but the operatorial expressions of A, % (acting on

¥ (t,A). With respect to KP operator L, we have a series of flows, we will see that with
respect to the operator M, we may also introduce another series of flows.

4.3.1 Another series of flows

Our starting point is as follows, the t-series of perturbations is due to the fact [L,L"] €
P_,Vr > 1. Now we also have [L, M’] € P_,Vr > 1, so we could introduce a new series of
deformation parameters y1,9y2,¥3,- ., such that

=L =[L,M], (034
2y = M. -
yY‘

*We should properly choose ‘il;(i > 1) such that the new basis do satisfy the basic anticommutators
(4.2.26).
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All of these eduatiohs together result in the following'enlarged KP system
a—%L = [L%, L],

2 M = [L7, M], .
] (4.3.5)

2L =[L, M),

| M = (M, M].

Now we should prove that these new series of perturbations will not distroy comnsistency,
that is to say, we should check the commutativity of all these flows. In the following we
only consider an example, i.e. ‘

6,60 g 0
D ()= 5
Ot, " 0y, Oy, Ot,
Using the eqgs.(4.3.5), we see that the left hand side is

o, 0 0 s
—éz(—aEL): BZ[L,M’_]
= [[L;’L]JVI_’;] + (L, (L, M°]-]
= (12, T, 2] + (5,2, M) — [, (2, 2],
= [L%, [L, MZ]) + [[L7, M2 )4, L]

=r.h.s.

L). (4.3.6)

e

The other case can be checked in the similgf way. So the perturbations we introduced
before indeed give a enlarged KP hierarchy . Its associated linear system is

(LT = )T,

| 2o=_mro, o

Ayr

8
| MY = 2.

One of the most important new features of this enlarged hierarchy (4.3.5) is the following
point, the form of KP operator L (or M) does depend on the perturbations of y,’s (or t.’s).

The usual KP hierarchy (4.1.9) is a particular case of egs.(4.3.5) by fixing the y—series of
the perturbations. We will show this point in more detail in the next subsection.

4.3.2 The new bi-hamiltonian structure

As we remarked a moment ago, when we disgard the y—series of flows, we recover the usual
KP hierarchy discussed in §4.1, whose hamiltonians are

1
H,- Ly = —T’I‘Lr,
() =7
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here we use the subindex (L) to indicate that the Hamiltonians are constructed from the
KP operator L. We may also use the same symbol to denote the Poisson brackets, {, }(z)-

Now if we fix all the t-series of parameters, then we get another subset of the enlarged
hierarchy (4.3.5), that is

=M = [M], M].

The second equation is in fact a KP hierarchy with KP operator M of the the form (4.3.1).
Since all these flow do commute, so it is an integrable system, and there should exist
two compatible Poisson brackets written in terms of coordinates v;’s. However, these bi-
hamiltonian structure is unknown since the positive powers of § in M go to infinity. But
we may guess that

{H(ary, M}y = [M, MZ]. (4.3.9)
where the Hamiltonians are
. ‘
H,. A &= -—TI‘Mr, Vr _>_ 1. (4310)
() =2

Obviously we have

9 i | |
- = (L, M) = {Higary, watany # 0.
” / i AR

(since u, is y—dependent). Using this fact, we get

o,
{Hiany, Hyny}on) = /d:c-é———ul.
Ui

which is usually nonzero. Therefore we find that the two series of hamiltonians are not
commuting.

4.3.3 The new basic derivatives

Till now what we have done is treating ¢, as the space coordinate. For later convenience,
we denote 6%1 by 8. From the y,~flows of ¥, we may extract an operator identity

b=—-M_=>T0" (4.3.11)

=1
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Since any positive powers of 0 belongs to P_(d), so {5";}' > 1} forms a basis of P_(8), this
enable us to express O in terms of the new derivative” 0

0= i r;67% (4.3.12)
Using this fact, we get ]
M=—(8+ i 7:67") = —KOK . (4.3.13)
=1
Obviously | i
M7 (8) = Mi(8), Vr>1, (4.3.14)

where LHS is expanded in the powers of 8, while RHS is expanded in the powers of d.
Using eq.(4.3.12), we can reexpress all the formulas (4.3.5) in terms of this new derivative

0, i.e.

P

2 (= M(B)) = (—1) (- M);(8), (~M)(B)];
2 1,(8) = (~1)*[(=M);(8), L(9)];

2 (—M)(8) = —[(—M)(8), L-(8)],
| 21(8) = [L7.(8), L(B)].

apart from some additional signs, these equations are isomorphic to (4.3.5). This reminds
us that we can even consider (—M) as a KP operator, and alternatively interpret y; as
coordinate, all the other parameters as time parameters. Therefore we can define two
compatible Poisson brackets for KP operator (—M) by simply replacing L in (4.1.7) and
(4.1.11) by (—M), which shows that on the space y, the fields v;’s form W, algebra too.

(4.3.15)

4.4 Further perturbations and the full generalized
KP hierarchy B |

In the previous section we have shown that the KP hierarchy can be perturbed by the con-
jugate operator M of the KP operator L. In fact, KP system allows further deformations.
This is what we want to discuss in this section[16].

*Rigorously speaking, this is only true when it acts on the function ¥. But we may think of it in the
following way, starting from

oo
6y =y Ti87'0.
i=1

properly choosing the combinations of § such that we can reexpress the 8!V in terms of new derivatives

8, we replace all the derivatives & in the linear system (4.3.7) by 8. So we may interpret y; as another
space coordinate.
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4.4.1 The new series of the flows

In order to explain the further perturbations just mentioned, we change a little bit our
notation. Denote ¢,’s and y,’s by t;, and £, respectively. Furthermore we define

L) = I, Vi) =S rt, I7(1)
L(2) = —~;—M V'(2) = irtQ,L’“l(Z)

Now let us introduce new operators in the following way

L(a) = —

- (camzmmr L@ —2) + V(e ~ 1)) (4.4.1a)

Via) = rta, L"), a=34,...,n (4.4.1b)

r=1

where ¢qq41’s are arbitary constants, which amount to rescaling the space coordinates,

and 7 is arbitrary positive integer number. Then, in the same way, we can perturb the
system further as follows

af I(a) = [L3(B): L(a)l, 1<fB<a (4.4.2a)
Br ,
af I(a) = [I(a),IL(B)], a<P<mn ~  (442D)

‘Now in order to justify the consiStency of these perturbations, we once again should prove
that all the flows commute among themselves. Let us check one example,

o 8 8 , 8
.é;‘;(atﬁmL(m“ Otgm atazL(7))’ a<f<7.

Using the above hieré.rchy and Jacobi identities, we see that

0

Lhs. =2 [Z7(8), L(v)] = [[E4 (), L™(8)], L(v)] + [T (8), [ (@), L(n)]l-

and

rhs. = Bﬁ;[LL(a),L(v)l — ([E4@), (), ()] + [T (), [7(8), T
The first term of “1.h.s” can be written as

the 1st term =

(124 (), LF(B)], L] + [[E4 (), L7 (B)]+, L(7)]
(2 (@), LT (B, L)) + [[£'(e), LZ(B)]+» L(1)],
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therefore

Lhs. = [[Z{a), L™(8)+, ()] + [E4 (), LT (B)), L)) + [E5(B), (L4 () ()]

[T (e), L™(8))+ L(7)] + (L4 (), [EF(8), L)
r.h.s.

I

All the other cases can be done in the same way. Therefore (4.4.2a) and (4.4.2b) really
define an integrable system. The associated linear system is

(L(1)T = AT,

(4.4.3)

_ 2

MY = 5V9.

In fact we can rewrite this linear system in a better way by choosing a new function
T(A, 1) = £(A,t) = ezp(— Dt A ¥(A ),

r=1

then all the flows can be summarized by a single equation

0
Btar

{= —’{I(a)é - : (4.4.4)

The consistency conditions of the above linear system exactly give the hierarchy (4.4.2a)
and (4.4.2b). We would like to remark that the hierarchy (4.4.22) and (4.4.2b) have several

important sub-hierarchies.
(). @ = B =1, the eqs.(4.4.2b) are nothing but the usual KP hierarchy (4.1.9).

(x%). 2 < a=f <n, the eqs.(4.4.2b) give (n — 1) KP hierarchies whose KP operator
possess the form (4.4.1a). ‘

(% % ). Although all the flows commute, generally these n—series of hamiltonians are
not commutative.

We may conclude that the hierarchy (4.4.22) and (4.4.2b) possess n bi-hamiltonian
structures, each of them generates a KP hierarchy , all of these hierarchies couple together.

Although the hamiltonians in different series are not commutative, the commutativity of
the flows really guarantees integrability.

4.4.2 New bi—hamﬂtonian structures

In the above analysis, all the operators are expanded in terms of 8. However, if we use the
same trick as the one in §4.3.3, it is not difficult to reexpress them in terms of any one of

~ g




a.:a ’s. Let us define
a,l

Oa = BZJ (4.4.5)
and expand L_(a) in powers of §
L_(a)= —irﬁ")a(“i) (4.4.6)
i=1
then the hierarchy and the linear system suggest -
5, — i r(e) 5= (4.4.7)

=1

similar to the argument in the previous subsection, we can invert these relations, such that

5=> g (4.4.8)
=1
Substituting them into the formulas (4.4.1a), we get the expansions of L(a) in é—%; (for
any o, ). In particular L(c) expanded in 5—3—; is also a KP operator,
CL(a) = —(8a+ 3. v®05Y (4.4.9)
' i=1 :
and its a — th series of flows is nothing but ormdi‘;féry KP hierarchy
a | r+lryr
5 L) = (=17 (L (e), L(e)] - (4.4.10)

where the operators are expanded in powers of 0y, and the additional sign indicates rescal-
ing of the parameters. Of course, for this subsystem, we can construct its integrable
structure, by replacing L in (4.1.7) and (4.1.11) by L(a). Therefore, we have shown that
KP system possesses multi bi-hamiltonian structures, and it contains n ordinary KP hi-
erarchies, which, now, couple together. The coupling comes from the dynamical equations

(4.4.2a) and (4.4.2b) with a # 8.

4.4.3 The 7—function of the generalized KP hierarchy

Using eqs.(4.4.2a) and eqs.(4.4.2b), we get

0
Otg,s

resagL’(a) =

0
5 resaL°(B), Va,B; r,s. (4.4.11)
These equalities implies the existence of 7-function

0? . ;
m InT = ressgL™(a), Ya,r. (4.4.12)
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Using this 7-function, we can introduce a series of the Baker—Akhiezer functions,

- L S
'@a(t’ Aa) _ T(ta,l Aa 7ta,2 2AZ0° " ') ef(f'}va) (4413)

7(¢)
where @ = 1,2,...,n. For each of ¥,, we can associate one linear system. Among them,
the o = 1 case was discribed above. The other cases can be analysed in the similar way.

4.4.4 The dispersionless version of the generalized KP hierar-
chy ' S

In this subsection we examine the dispersionless version of the generalized KP hierarchy
discussed in the above. By dispersionless we simply means killing all the higher derivatives
in the equations of motion. From the field theory point of view, this is equivalent to
passing from quantum level to the classical level, i.e. taking the classical limit. Therefore
the derivative 0 will become to be the classical momentum p,

0 = p,
and the algebraic structure will be replaced by the Poisson bracket, 1.e.
[8,2] =1 = {p,z} = 1. (4.4.14)

This is our starting point. After doing this ‘transformation’, we find that the KP operator
(4.1.5) and its conjugate (4.3.1) become : :

=

L= P+ Zu;(m)p"i, , (4415)
. i=1
and
M=) vi(z)p'. 2T (4.4.16)

The other operators (4.4.1a) take the following form

£ = L, £(2) = ——5 M (4.4.172)
1
L(a)=— ! (Ca_gva_]i(a —2)+ V(e — 1)), 2<a<mn; (4.4.17D)
Ca—1,c - .
Vi) =D, e L7 (a), a=1,2,...,n. (4.4.17¢)
r=1

In terms of the Poisson bracket (4.4.14), we can write down the dispersionless version of
the hierarchy (4.4.2a-4.4.2b) as the following

o - o

Bip (%) = {£(8), L(a)}, 1=f=a (4.4.182)

Bta L(a) ={L(a), LE(B)}, a<PB=<qg (4.4.18b)
8.k
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Now let us consider a particular example n = 2 case. Our main purpose is to justify the
definitions of the new derivatives introduced before. At first we observe that in this case,
we only have two Lax operators L and M, we may use them instead of L£(1,2), then we
obtain the following set of equations of motion(the dispersionless version of eqs(4.3.5))

0

51:—[' ={L,L}, (4.4.192)
;i M={L M}, - (4.4.19b)
8 i
5yr£ ={L,M_}, (4.4.19¢)
63 M = {M7, M}. (4.4.19d)
The Poisson relation should be understood in the following way
0f g _ 0906f
_ 0199 _999] 4.2

The new derivative § defined by eq.(4.3.11) tends to a new canonical momemtum P conju-
gate to y1,

== vp (4.4.21)
i=1 :
The new basic Poisson bracket is
{pnr=1 ‘ (4.4.22)

Solving eq.(4.4.21), we can express p in terms of p,

p=> 0.9 ", (4.4.23)
i=1

therefore, we can rewrite the hierarchy (4.4.19a-4.4.19d) based on the Poisson bracket
(4.4.22). With respect to either (4.4.14) or (4.4.22), relation (4.3.2) becomes

{L,M} =1 : (4.4.24)

Eq.(4.4.19a) and eq.(4.4.19d) are two dispersionless KP hierarchies. In order to see this
point, we may take another point of view. Consider two KP dispersionless hierarchies

8 - OL,8L OLILY
55" Bp o Op 0z (44.25)
and
0 - OM” M M OM”
M ="t - +, 4.4.26
Oy, 0p Oy 0p Oy ( )
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where

L=p+Y ap, (4.4.27a)
=1
M=p+> b5t (4.4.27b)

=1

Now if we impose the restriction (4.4.24), use the Jacobi identities, we can immediately
rederive the hierarchies (4.4.19a-4.4.19d). This confirms that § given by (4.4.21) is indeed
a new momentum. . oL

4.5 Reductions of the ordinary KP hierarchy

It is wellknown that the KP hierarchy can be reduced to the generalized KdV hierarchies.
This is obtained by imposing the following restriction on the KP opertor L.

0
6tmN
This reduced system is still integrable, and usuallu it is refered to be the N-th generalized

KdV hierarchy[52]. In this section we will not spend time on this subject, but focus our
attention on anther kind of reduction. Which was first discovered in the study of matrix

models[15].

LV =0,

T=0, VYm > 1.

4.5.1 The new coordinization of the KP hiérarchy

The crucial point of the reduction we pronﬁsed above is the new coordinization of the KP
operator I, which could be parametrized in the following way

1 ' 1

oo 1
L_B’*Z“‘(”)a—s,va—s,-_l"'a—sl‘

1=1

(4.5.1)

The full functional space F(gp-) is spanned by all the fields a;’s and fields S;. Now the
reductions come out if we set, for example,

a;(z) =0, Vi> N,
the KP operator (4.5.1) becomes

N 1 1 .
L=0+2 0 : 452
ga(iﬁ)a_sia—&_l 6'—51 ( )

In next chapter we will show that, passing from lattice to differential language, we indeed
got such kind of the coordinization(see (5.3.26), or [15]), and this KP operator do satisfy

the KP hierarchical equations (4.1.9). So after this reduction, we still have a KP-type of
system.
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4.5.2 The dispersionless hierarchies

In order to have better understanding of the new reductions of the KP hierarchy , it is
instructive to consider their dispersionless versions. As From the argument in §4.4.4, we
knew that going from the full hierarchy to its dispersionless version is simply completed by

0= p,
[6,z] =1 = {p,z} = 1.

and the differences among fields S;’s can be ignored. Keeping this in mind, we find the
dispersionless version of Lax operator (or KP operator) (4.5.2) has the following form

a;

N S
L=p+S ———=p+> up . (4.5.3)
,Z_-‘: (p—S) ;
with the ordinary KP coordinates

i 1—1 )
u=y ( ) ST, Vix 1l (4.5.4)

=1 l —1
It is wellknown that they should satisfy we, algebra.
fule), w50} = [(6 45— Dieja()e 4 (G = Do) Sz —0) (459

However, in terms of our new coordinates a;’s and S, the first Poisson bracket takes the
following form

ar(2), S@)} = 06(s — 9), | (s
{a1(z),ai(y)} =0, - i > N; (4.5.6b)
{S(m)va’i(y)} =0, 1 > N; (4.5.60)
@), as(w)} = (45 = 2o 2(2)e + (= D a(2) )82~ ),

2 <i,j < N. (4.5.6d)

We see that this algebra is the direct sum of two subalgebras. Surprisingly, in case of
N — oo, the subalgebra formed by a;(i > 2) is also a we, algebra, which is isomorphic to
(4.5.5). Since we can construct we, algebra (4.5.5) from the above smaller algebra, we may
think that the new coordinization gives a classification of we, algebra. This result may
remind us that the ordinary KP coordinates u;’s are not good one, which can not exihibit
the rich structure of the KP hierarchy .

4.5.3 The non-linear Schrédinger Hierarchy

Now let us come back to the new reductions of KP hierarchy . We would like to examine
the simplest example, N = 2 case. The KP operator is
1

L=0+ a_:—SR' (4.5.7)
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We have
R=(6-S)(L—-0)= (60— S)Zuia'i,
i=1
which shows

ul———R, U,‘.!.l:(a‘-‘S)"'lLi.

Therefore we find that all the KP coordinates can be represented as functions of two basic

fields R and S -~
u=(0-8)""R,  Vi>1 (4.5.8)
On the coordinates R and S the Poisson brackets (4.1.7) and (4.1.11) are as follows

{R(2), R(y)h =0  {5(2),5(x)h =0,
{E(=), S(y)h = —0:5(z - y),

and
{R(z),R(y)}> = (2R(z)8: + R (z))é(z — ), (4.5.92)
{5(z),S(y)}2 = 20:6(z — v), (4.5.9b)

{R(z),S(y)}2 = (S(z)0: — 8%)8(z — y)- ‘ (4.5.9¢)

Such algebra also shows up in SL(Z)/U(;l‘)V WZW<J}no&el[63] and the conforrﬁéﬂy afline
Liouville theory[64]. Sometimes the KP hierarchy (4.1.9) with this R,S coordinates is
referred to as two bosonic representation of KP hierarchy .

The flow equations can be expressed in compact form using the two polynomials

§H §H,
r = — r = Vr >
Re)-g G =g 2
In particular, Fy = 0 and G; = 1. They satisfy the recursion relations
Fl,, = SF.—F. +2RG,+RG, (4.5.10)
G, = 2F +G +(SG.) | (4.5.11)
and in terms of them A
6 1 ’ 6 i
8tr5 =G, 8trR =F,,, (4.5.12)
We see immediately that this is the NLS hiérarchy. In fact the t, low equations are:
OR '
95 _ S"+28'S + 2R, OR _ —R" + 2(RS) (4.5.13)
5t2 61;2
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If we change variables as follows
S = (Inv), R=—9y9
and denote by a dot the derivative with respect to 2, eqs.(4.5.13) become
d=9" -2, Y=+ 2%

which form the NLS equation. For this reason we will henceforth refer to this hierarchy as

- the NLS one.

4.5.4 The dispersionless non-linear Schrédinger hierarchy

In this subsection we will consider the dispersionless version of the non-linear Schrodinger

hierarchy . In this case, Lax operator(or KP operator) (4.5.7) has a particular simple
dispersionless form

1
[: =P -+ ;:—“R (4514)
and the KP coordinates are
uw; = RS™Y,  Vi>1l. (4.5.15)

Based on the basic Poisson bracket (4.4.14), we €an define the general Poisson bracket on
the functional space over the KP coordinates, which is

. . _070g 8g0f
S et A A 45.1
{£:9 Opdz OpOz (4:5.16)
In tefms of this Poisson bracket, the dispersionless hierarchy takes the form
o0 - =
5 L={L],L}, ) (4.5.17)

where the subindex “+” means keeping the non-negative powers of p. On the coordinates
S and R, we find

{R(z),R(y)h =0, {S(=),5(x)h =0, (4.5.182)

{S(z), B(y)}1 = 06(z — y)- | (4.5.18Db)
and ,
{R(z), R(y)}2 = (2RO + R')é(z — y), (4.5.192)
{R(z),S(y)}> = S06(z — y), (4.5.19b)
{5(z),S(y)}2 = 206(z — v). (4.5.19¢)
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as well as

{R(z), B(y)}s = (4RS8 +2(RS) )8(= —y), (4.5.202)
{R(z), S(y)}s = (4RO + S?0 + 2R)8(z — y), (4.5.20b)
(5(2), S(¥)}s = (450 + 25")8(z — y). (4.5.20c)

We see that the first Poisson algebra of R and S is nothing but one of the subalgebra in

(4.5.6a~4.5.6d). Furthermore, the KP coordinate fields v = RS'-'(1 > 1)’s form reducible
We algebras like

{ui(2),u(y)h = [(i + 7 = 2)uipj-2(2)0z + (5 — 1)1L§+J-_2(:c)] 6z —y), (4.5.21)

{wi(2),ui(y)}e = [(i + 3)uiri1(2) 0z + Juiyj (@) + 200 - 1)(7 — 1)

(-1 (@)ujr(2)0s + u,-_l(:z;)u'j_l(:c))](S(a; —y),  (45.22)

fu(@) i)l = [+ Duersd+ (G + Dy
4203+ 1) — Dei()Bu-1(2) + 26— i + Duica(2)0;
+2(7 — i)u'lu;+j-2] §(z —y). (4.5.23)

TE—

With respect to these three Poisson brackets, the Hamiltonians are as follows

1,4 |
Hr = ‘?: /(;C)(__l)VT 2 1.

Since

r—1

(£54] SR
R Nr 2 T 20+ 1\ pi1 gr-20-1
Liy=(-9+5+-=5) )= 2 (214—1)( [ R

we get

5] (r—1)!
H, = )
E) N+ D) (r—20-1)!

/ Rittgr-a=to (4.5.24)

Define two series of the polynomials like (4.5.10) and (4.5.11),

- & (r—1)! 141 or—20-2
Fo(z) = Z Sy T R*'S , (4.5.252)

§H, [?] (r — 1)!
§R(z) ZOZP(T——?.Z—I)!

Gr(z) = RIST-L (4.5.25b)
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The flow equations take the follwing simple forms

os / T\ ( 2k k ar—2k)’

=Gl zkj <2k)(k)(3-5 ) (4.5.26)
0<2k<r

OR o T 2k —1 k ar—2k+1Y’

o = Fiai = %‘ (%__1)( P ) (s (4.5.27)
2<2k<r+1

In particular the second flow equations are

as OR
e T ! / — = 2 ! . 4. -28
s =255 12, o (RS) (4.5.28)

Now we remark that we can introduce another parameter, say, to, which gets into the
game in the following way

0 0 0 0
— S = — R=R—S. 4.5.2
81&15 BtoR’ Bth RBtOS (4.5.29)

With an abuse of notation, we denote %R(%S) by R(S), then the eqs(4.5.28) can be
recast into the form

0

5ES — 2ES +2RS, a—%R — 2RR + 2Rss'. | (4.5.30)
Let us introduce a new Lax éperator’
L =z+ S(t)) + R(to)z"", (4.5.31)
and new Poisson bracket
{z,t} = 2. | (4.5.32)

Then the eq.(4.5.30) can be written in Lax pair form
0

Bty

L={L£%,L}, : (4.5.33)

where the subindex means keeping the non-negative powers of z. In fact, in terms of this

new Lax operator (4.5.31) and the new basic Poisson bracket (4.5.32), we can express all
the flows (4.5.26) and (4.5.27) into a universal form

0

— £ ={(nL),L}, (4.5.34a)
Bty
a‘z =4}, Vr>1. (4.5.34b)
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On the coordinates R and S, the hamiltonians are

H, = %/(U)(O), Vr > 0. (4.5.35)

We recognize that this hierarchy is just the spheric limit of Toda Chain lattice hierarchy
discussed in the previous chapter, and the general Poisson brackets can be found there.

Now let us start with the hierarchy (4.5.34b). When we set S = 0, from the eq.(4.5.35),
we see that the odd Hamiltonians are vanishing, i.e.

H2r+l = 07 Vr 2 b\

this means that the to,4,-flows dummy (i.e. the field R does not depend on the odd time
parameters), so we are only left with the even flows, which takes the form

O L | (4.5.36)
atZr
where
L. =z+ R(z)z™! (4.5.37)

the equations of motion for R are
0 2(r — 1)
R = RTHYY ~ 4.5.38
0t3, 1) ( ra1 ) ( ) , ( :

4.5.5 Further reduction to KdV hierarchy

Now we come back to the full NLS hierarchy. we want to show that it admits further
reduction to the well-known KdV hierarchy. This is achieved in the following way. Let

us set S = 0 in (4.5.12) and discard the ¢, flows( for example set ¢, = 0). Then from
eqs.(4.5.10,4.5.11) we get

Ggr - 0, } (4539)
Gy = 2F, (45.40)
Fl.,, =—FL, (4.5.41)
and
Ok _ = (8° 4+ 4RO + 2R)F:
= Lorg2 = ) Far, (4.5.42)
Otart1

where the initial condition F; = R has been used. Eq.(4.5.42) is the recursion relation for
the KdV hierarchy. In particular we have

6 nr !
—-R=R"+6RR. (4.5.43)
Bts
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This KdV hierarchy can be written in Lax pair formulation

0

R=2"[(8*+ R),%,6° + R). (4.5.44)
Otartt

Since we already discard the even time parameters, so we are only left with the odd time
perturbations. Now let us remark that this reduction is really meaningful. Since eq.(4.5.39)
simply says
0
Oty

S = G’2r+2 = 0)

The constraints S = 0 is preserved by the odd time perturbations. However the non-
vanishing Gory1 # 0,Fy.41 # 0 means even time flows have no stable point, any small
perturbation will move S to non-zero point. But we may simply think that the even time
perturbations are completely fixed, therefore, the reduction condition S = 0 is locked.

4.5.6 The dispersionless KdV hierarchy

In this subsection we want to perform the same game as the one in the second subsection,
i.e. consider the dispersionless version of the KdV hierarchy . What we do is to replace 0
by p, and [8,t,] = 1 by {p,t:} = 1, respectively. Then the KdV hierarchy (4.5.44) becomes

0

S E=27{("+ R)"?,p? + R} (4.5.45)
Explicitly ; | ; ‘
o rer+nl_
sR= TR E. (4.5.46)

Of course, this hierarchy is isomorphic to the eqs.(4.5.38), since their difference is only the
rescaling of time parameters. Therefore we found the dispersionless KdV hierarchy has
two different representations, one is the equations (4.5.36) discussed in §4.5.3, the other is
eqs.(4.5.45) given above. This may remind us that we could arrive to the KdV hierarchy
in two different ways, one is doing the S = 0 reduction from the non-linear Schrodinger

hierarchy , the other is to do the suitable continuum limit(i.e. double scaling limit) in the
Volterra lattice system.

4.6 Discussion

We have shown that KP hierarchy can be extended to a much larger hierarchy by introduc-
ing additional KP operators. For each of the KP operators, we have one bi-hamiltonian
structure. The commutativity of the flows generated by all these bi-hamiltonian structures

gives strong evidence that these bi~hamiltonian structures should be compatible with each
other.
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As we know in the ordinary KP hierarchy case, the series of flows reflect the large
symmetry of the system generated by its Hamiltonians, now in our case, the multi-series
of flows imply that this new hierarchy (4.4.2a) and (4.4.2b) should possess much larger
symmetry, among them, the largest one is in the case n — oo, which may be related to
the diffeomorphism of the following kind of vector space V = {3, ;>0 ers LT M}

It is not clear if this new hierarchy relates to the multi-component KP hierarchy.
Another interesting problem is to reduce this hierarchy to the more familiar cases. This is
under investigation.
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Chapter 5

The KP hierarchy in One—Matrix
Model

In chapter 3, we have shown that one-matrix models are characterized by a linear sys-
tem whose integrability conditions form a discrete hierarchy (3.3.13) (i-e. a hierarchy of
differential-difference equations). This discrete hierarchy is so—called Toda~chain lattice
hierarchy. For even potential case, it reduces to Volterra lattice. Both of them turn out to
be the reduced cases of the so—called Toda lattice hierarchy[65]. In the double scaling limit,
the Volterra lattice hierarchy becomes the KdV hierarchy: it is formed by a hierarchy of
purely differential equations, among which we find the celebrated KdV equation.

To avoid misunderstandings let us insist on the difference between the two above-
mentioned types of hierarchies. They are typically represented by the two hierarchies
(3.3.13) and (4.1.9)(see also (5.1.9) and (5.2.20) below). They have the same form, but in
the first case Q is an (infinite) matrix and the equations can be interpreted as differential-
difference equations; for this reason we call this hierarchy discrete. In the second case
L(Qn) is a pseudo—differential operator and the equations involved are purely differential;

for this reason we call this hierarchy differential. Of the latter type is the KdV hierarchy
met in the literature.

In this chapter we want to point out that taking a continuum limit is not necessary
"in order to get a differential hierarchy. There exists an alternative procedure by which
we can extract a differential hierarchy from the discrete linear system associated to one-
matrix models without reference to any limiting procedure. Said differently, the discrete
linear system contains already a differential hierarchy, which can be reduced to the KdV
hierarchy, without us being obliged to resort to a limiting procedure — which presumably

causes some loss of information. In this hierarchy the first flow parameter ¢, plays the role
of space coordinate.

From another point of view we may understand this alternative approach in the fol-
lowing way. As we know in the previous chapter, in order to solve the KP hierarchy , the
best way is to construct its T-function . There are many different representations of the
r—function , each of them has its own advantages. Using our proposal—passing from lat-
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tice to differential formulation, we can see that the path-integral of 1-matrix model gives
a new expression of the 7-function . This means that even at the discrete level, matrix
model gives solutions of the KP hierarchy . Since matrix model is the discretized version
of 2-dimensional quantum gravity coupled to certain conformal field theory, or the non-
critical string theory, this result may indicate some deep connections of the non-critical
string with the integrable systems. Remarkably, for 1-matrix model , this KP hierarchy is
nothing but non-linear Schrédinger hierarchy (NLS); with a further reduction, as we have
shown in the preceeding chapter, it reduces to KdV hierarchy . So we may get differential
hierarchies in a very simple way, without taking any continuum Limit.

This chapter is organized as follows. We first introduce the Toda lattice in general
(section 1), which involves co X oo matrices, and we show in this general case how to pass
from the matrix formulation to the (differential) operator formulation (section 2). Then we
consider reductions of the above system to semi-infinite matrices (section 3). In section 4
we will consider the reduction to the linear system appropriate for one-matrix models (the
Toda chain), and, in particular, by a further reduction we recover the KdV hierarchy. The
section 5 is devoted to justify the identification of T—function with the partition function
of 1-matrix model . Finally (section 6) we discuss the Wi e—constraints and Virasoro
constraints. The main reference in this chapter is [15].

5.1 The Toda lattice hierarchy

In this section we introduce the so-called Toda lattice hierarchy. The main reference in this
context is the paper of Ueno and Takasaki [65]. However we will present it in a form which
is more suitable for our purposes, i.e. mainly by means of the associated linear system[22].

Let us first introduce some notations. Given a matrix M, we will denote by M_ the
strictly lower triangular part and by M, the upper triangular part including the main
diagonal. Unless otherwise specified, we will be dealing with co X co matrices. As usual
E;; will denote the matrix (E;;)u = 6ixdji. We will also use

oc

L= > Eiix1, p= > iE;

1=—00 t=—o00

Throughout this chapter A denotes the spectral parameter, and A represents an infinite
dimensional column vector whose components A,,, n € Z are given by

A, ="

The vector A is our elementary starting point. From it, by means of matrix transformations,
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we can obtain other vectors. A useful one is 7

\

-1

A
1 > r 1 - ryyn
A= \ , 7 =exp(D_t:A") \ , = ezp(D_ tAT)A™ (5.1.1)
r=1 r=1

A? ) AQ
. \ :

Where t.’s are time or flow parameters. On 7 one can?lai;uiall& define a (elementary)
linear system

(M = 0n =L,
X =& =07n=1In,

T (5.1.2)

AT =0""n =17,

| -;—AT] = Py, Py=pl_ +372, rtrI_rlfl.

The same as in the former chapters, 8 denotes the derivative 5%— and 0! denotes formal
integration over t;. Since for (co X o) matrices,

[I'hpI—] =1,

we see that the spectral and flow equations in egs.(5.1.2) are automatically compatible.

A crucial ingredient in the following construction is the (invertible) “wave matrix” W:

o0 o 400
w = 1+ Z’w,’If_ =1+ Z Z w;(n)En,n_;
i=1 i=1 n=-—00
1 0 0

) ) 1 (5.1.3)

wa(3) w2(3) wi(3)

- o o ©

' So w; = {w;i(n)|n € Z} are infinite diagonal matrices, and w;(n) are functions of the time
parameters, we will call them as the w-coordinates of the system (5.1.2). Now let us
impose them to be determined by the equations of motion

0
Ot,

W=Q.W-WIj, (5.1.4)
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where @ is the infinite matrix
Q=WI,Ww (5.1.5)
Another important object is the vector T
T =Wn. (5.1.6)

In terms of all these objects the dynamical system we have defined can be written as

QU = AT,
=¥ =QL7, (5.1.7)
29 = PU.
where
P=WPW. (5.1.8)

The compatibility conditions of this linear system form the so—called discrete KP-
hierarchy™

atrQ:[Q:pQ]a o R - (519)

together with the trivial relation

[‘é?’,P]=1-‘ - o (5.1.10)

We should perhaps recall that what we have done so far is at a purely formal level and
does not bear yet any relation to matrix models. In particular we insist that eq.(5.1.10)
does not imply any constraint on the dynamical system.

To end this section let us make the above formulas more explicit and extract a few

relations that will be useful in the following. From the equation of motion (5.1.4) we
consider in particular

E%w;(n) = wipi(n + 1) — wiyi(n) — w,(n)(wl(n +1)— wl(n)) (5.1.11)

Let us introduce a piece of terminology by sa,ying that for any matrix its elements in the
n—th row belong to the “n —th sector”. Therefore, in regard to eq.(5.1.11) we can say that

the flow in the n — th sector depends only on the coordinates of the n —th and (n+1) —th
sectors. :

*Formally this discrete KP hierarchy (5.1.9) is the same as the one (3.3.13) derived from l-matrix
model , but rigorously they have some difference, since here we deal with (co ® c0) matrix, rather than
the semi-infinite one, which is the case of 1-matrix model .
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From (5.1.5) we see that
Q=1I;+> all. (5.1.12)
s

The a;’s are new coordinates of the system, which can be uniquely expressed in terms of
the w;’s. For example

ao(n) = wi(n) —wi(n+1),

ay(n) wi(n)(wi(n + 1) — wi(n))+w2(n) — wa(n+ 1),

ay(n) = wy(n)(wi(n +1) —wi(n))twi(n — 1)(wa(n + 1) — wa(n)),
+wi(n)wy(n — 1)(wi(n + 1) — wi(n))+ws(n) — ws(n + 1).

Another useful representation is obtained by inverting eq.(5.1.5)
od .
L=W1'QW=Q+> ¢Q7,
) 1=0
the ¢;’s are another set of diagonal matrices, which can be expressed in terms of a;’s or

w;’s. It is worth noting that

I_=(I+)“1=Q‘1+...,

‘which results in the following equality

i=1

Qr+ = Qr _ Qi — Qr + Zq;,iQ—i Vo 2 1. ' ‘ (5113)

~ Finally, from (5.1.8), we have

P=SrtQ 4 Y wQ (5114
r=1 1=0

Once again, v;’s are diagonal matrices, and vy = p.}

We will see later on that the string equation of matrix models can be obtained by
imposing a constraint on the coordinates v;.

!These equations show that the two sets of the variables a;’s and w;’s can be obtained from each other.
However, strickly speaking, this one-to—one correspondence is only due to the fact that we have choosen
a special form of W-matrix (5.1.3). Generally, for a given matrix Q, W is not uniquely determined.

1Since Wpl_ W1t = pQ~1 +[W, p]I_W !, the commutator is a strictly lower triangular matrix, so the
second part at most contributes to the term Q~2, which ensures that v, = p.
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5.2 TFrom the discrete hierarchy to the differential
hierarchy -

In the previous section we introduced the usual Toda lattice. The discrete KP hierarchy we
obtained is known as the Toda lattice hierarchy. It consists of an infinite set of differential-
difference equations. In this section we show that passing from the matrix formalism of
the previous section to a related (pseudo—differential) operator formalism, we can obtain a
new hierarchy which consists merely of differential equations.

The operator formalism alluded to before is int:.r;duéed as follows. We recall that
equation (5.1.1) implies

T = 0" " Nm, Vn,m : integers.
This leads to
T, = (Wn). = Z Wi = Z Woi0 "0 = Walln, (5.2.15)
where we have defined
Wo=14+> Wn,»af“"* =1+ iwi(n)a*i, - (5.2.16)
i<n , i=1 i

This tells us that the “wave” matrix W can“be considered as an infinite diagonal matrix,
whose components are differential operators. The operator W, can be inverted

o = VV; gy,
In this formalism the spectral equatioﬁ in (5.1.7) becomes
AT, = AW = Wabr = W = Qu¥ae
Here we have introduced an inﬁnitgbvsvet;of KP-type differential operators

O, =W.0W =0+ Zu,-(h)a'i Vn integer. (5.2.17)
o i=1 : o

The variables u;’s are KP coordinates. Ti]l now we have introduced several sets of the
coordinates, they are w;(n)’s in eq.(5.1.3), ai(n)’s in eq.(5.1.12), and the others. All of
them in fact are related together. The different choices may be suitable for different

purposes. One should not make confusion about it. Now if we Invert the relation (5.2.17),
we would obtain '

8 =W 1Q.Wn = Qn’ +3 qi(n)Q;i, VYn: integer. (5.2.18)

i=0
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It is easy to see that this mapping from matrices to operators maps the upper triangular
part of a given matrix into the differential part of the operator, and the lower triangular
part of the matrix to the formal integration part of the operator. In particular we have

For an operator, the subscript “+” selects, as usual, the non-negative powers of the deriva-
tive 8. Going on with the transcription of the Toda lattice linear system in the operator
formalism, we can now rewrite the flow equations in eqs.(5.1.7)

0 0 - ~ 0.
_5;,:‘1'” = (-é-i:VVn)nn =+ W"_GT,T]"
0

— r T 3r—1
_ <,\ + (G W )m
= (Q;)_,_‘I% Vn integer.

Finally we can rewrite the linear system (5.1.7) as follows

C:?n\llrz = A‘pna
-B,%‘Iin = (Q;)+\Iln, Vn integer, _ (5.2.19)

¥, = (T, rt, Q7+ TR vi(n)Q7 ) T

Their compatibility conditions are

0 4 A pEea
9= (@n)},@nl- (5.2.20)
or in other coordinates
0 .- P s ar
bTrW" = (Q,,)JFW'n - W"a . (5.2.21)

The last two equations, like the previous ones, hold for any integer n. Eq.(5.2.20) or
(5.2.21) specifies the differential hierarchy we promised in the introduction. It consists of
an infinite set of differential equations: in the LHS we have the first order derivatives with
respect to the flow parameters, in the RHS we have polynomials in the coordinates and
derivatives of coordinates with respect to ¢;.

It is a bit inappropriate to speak of one hierarchy: we have in fact an infinite number of
hierarchies, one for each integer n. However these hierarchies are not independent as they

are related by the ¢; flow; we will see later on that in the particular case of one-matrix
model all these hierarchies are isomorphic.

5.3 Reduction: Semi—infinite matrices

Let us study now the problem of reducing the general system (5.2.19) defined in the two
previous sections to a simpler one. In the next section we will consider a further reduction,
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i.e. to the Toda chain which is relevant for one-matrix models. We notice, first of all, that
for the linear systems involved in matrix models ¥ does not contain negative powers of A.
Therefore the Jacobi matrix  must be semi-infinite,

w;i(n) =0, n < 1.
This may be called as “Generalized Toda-Chain lattice system”, which is of course integrable[22].
This is the reduction we will study in this section.

In this reduced system for any positive integer n we have an invertible operator with a
finite number of terms - - -

Wa=1+> wi(n)d™.
i=1

The KP-type operator is
Qn = WHGW;R
which still contains infinite many terms.

We remark here that we are still formally using co X co matrices in order to be able to

fully exploit the formalism introduced in the previous sections. However three quadrants
of these matrices become irrelevant.

So far we have been using mostly w; coordinates, but henceforth it will be more con-
venient to shift to a; coordinates. We recall that they are defined in the following way
through the spectral equation

AU, =T + Y ai(n)¥, . (5.3.22)
i=0

Next we want to express the RHS of this equation in terms of ¥,, only (this is an example
of the procedure outlined in the last section). To this end we use the first flow equation

0%, = (Q+¥),= Yny1 + ao(n)¥n,

or equivalently

U,p1 = (8 — ag(n))¥,,. ’ (5.3.23)
Inverting this relation, we get
U, =BV, B.=08"13 (as(n)d7). (5.3.24)
=0

Using this relation repeatedly we can express any ¥;(z < n) in terms of ¥, i.e.

A A

\Dn—r = Bn—an—-r+1 oo Bn-—l\yn'
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Therefore the spectr;'—.\l equation (5.3.22) can be rewritten as
0.0, = (a 4+ E a;(n)Bn-iBrois1 - - Bn_l) T, (5.3.25)
i=1
2nd the n—th KP—type operator becomes
Qn = 0+ zn: @i(n)Bn—iBn-—Hl ...Bn

=1

n 1 1 1
= 0 ; —— L .
+;a(n)5—ao(]—z)@-—ao(]-—z+1) (G- 1)

Expanding in the powers of 8, we would have

O,=0+Y, uz(n)a“l,
=1

(5.3.26)

where the KP coordinates w(n)’s only depend on the coordinates ai(n)(1 < i < n)in the
1-th sector and n additional fields ap(j)(0Lj<n— 1).

Comparing the above formula with the eq.(5.3.22), we immediately see that the terms
of the negative powers of 0 are represented the lower triangular part of Jacobi matrix Q.
So we could formulate the rules passing from lattice to the purely differential language as
follows: ‘ '

(1). The Jacobi matrix goes to be KP operator, i.e.

(@ ¥)n =>(Qn) ¥n,
(i1). The lower triangular part of Jacobi matrix (or its powers) maps to the pure
"integration part of the KP operator (or its powers);

ii1). The upper triangular part together with the main diagonal line of the Jacobi
P g

matrix (or its powers) correspond to the purely differential part of the KP operator (or its
powers).

(v). Comparing the eq.(5.3.25) with the eq.(5.3.22), we find the residue of the KP
operator (5.3.26) has a particular simple form,

res o(Qn) = a1(n) = Qnn-1- - (5.3.27)

On the right hand side, @Qn,n—1 MeANs the element of the Jacobi matrix at n-th row and
(n — 1)-th column. More generally, we can obtain

res 5(Q7)= @nn-1- (5.3.28)

Keeping these arguments in mind, we can also rewrite the flow equations in terms of
this KP operator. Therefore we finally obtain the linear system

Qn\:‘[}n = A‘Ilna
29, =(Q;), ¥  Vninteger, (5.3.29)
Eai‘pn = (zzl "'trQ:x—l + X0 'Ui(n)@;i_l)‘l’n-
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Which is of the same form as (5.2.19), but here the KP operator is (5.3.26). Their com-
patibility conditions are

o A |
70 = (a7 Q. (5:3.30)

Furthermore, from the associated linear system (5.3.29), we can easily get the “zero cur-
vature representation”

0 o Doy GO
(@) = (@ = (@ (@3 (5:3:31)

Of course, which has the same form as eq.(4.1.12). This confirms the integrability of the
system (5.3.29).

We may conclude that for any “Qeneralized Toda Chain lattice system”, viewing the
parameter t; as the space coordinate, we get a new hierarchy, which is purely differential

hierarchy, and corresponds to the new reduction of KP hierarchy discussed in the end of
the last chapter.

5.4 Toda chain and one-matrix models’

The case relevant to one-matrix models is specified by the conditions
(i) =5 wml)=Rn  a@=0, Viz2
The first (i.e. ¢1) flow equation is
0

55 = S; = Rjs1 — Rj, (5.4.32)
8 i ’ :
-&:RJ‘ = RJ- = Rj(Sj — SJ'_1). e ’ (5.4.33) |

From the second equality we have

I

R.
Si1=8i-g- S
Therefore the “j — th KP-type operator” is
A . 1 .
L; = Q; = 0+ R;jBj_1 = 6+ ——Rj, (5.4.34)
0—35;

which is the same as the one given in the previous chapter (see (4.5.7)) as the KP operator
of non-linear Schrédinger hierarchy . Thus we find that the Toda Chain Lattice hierarchy
indeed contains a differential hierarchy—NLS.
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If we expand the KP operator (5.4.34) in the powers of 0, i.e.

=04+ > w(i)o. (5.4.35)

Then from the eq.(5.4.34), we have
w=(0-S5;)""-R; VI>1l (5.4.36)
In particular the first few u;(7)’s are as follows

ui(f) = Bj, us(f) = —B; + B;5;
us(j) = R; — 2R;S; — R;S; + R;S?
uy(j) = —R; +3R;S; + 3R;S; — 3R;S? — 3R;S;S; + R;S; + R;S}
us(j) = R; —4R; S; — 6R;S; + 6R;S; —4R;S; — 4R.S}
+12R;S;S; + 4R;S;S; + 3R;S,
~6R;S2S; — R;S; + R;S}
We find that all the KP coordinates u;(j)’s are only the functions of R;, S;, in other words,
they only depend on the coordinates in j — —th sector. The consequence of this property
is that the infinite many KP-hierarchies (indexed by “;”) are all isomorphic. We may
conclude that the Toda chain ‘and one-matrix models are characterized by NLS.

Since the following analysis is universal, i.e. is the same for all sectors, we will simply
omit the subscript “j”, and denote R;(t1), S;(t1) by R(¢:) and S(t;), respectively.

As we have shown in the previous chapter, the equations of motion of NLS are

8 , 8 ,
55 = Cri, s R =Fl (5.4.37)

Where the two sets of the polynomials F,’s and G,’s satisfy the recursion relations

1

F.., = SF.—F.+2RG, +RG, (5.4.38)
G.,, = 2F +G. +(5G,) (5.4.39)

with F; = 0 and G; = 1. Since we have discussed all the properties of NLS in the chapter
4, we won’t repeat it now.

5.5 The partition function of One—Matrix Model as
the 7—function

In the first chapter we claimed that the partition function of 1-matrix model is the 7-
function of non-linear Schrodinger hierarchy . Now let us give a proof.
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For KP hierarchy , we already know that r—function is related to the KP operator in
the way

5

0t,0t,

In particular, for the KP hierarchy (5.3.30) whose N —th KP operator has the form (5.4.34),
its T—function satisfy the following relations

InT =1eso(L"). (5.5.40)

9

F4

0t 0t,

2

InT =u, = Ry,

Now let us turn our attention on the partition function of 1-matrix model . From the
eq.(3.3.10b), the data of a one-matrix model can be encoded in a corresponding discrete
linear system. Consider the partition function of 1-matrix model with the potential §

Zn(t) = / AMETYOD V(M) =3t M"
. o=l

which satisfies

5 N-1
50 InZy(t) =TiQ" = Y Q% (5.5.41)
r g i=0 )

Taking its derivative with respect to t;, we get

_5_?—an (t) = —Q—TIQT
6t.0t, N T ot
using the first discrete flow equation
9 ;
'a‘t—l'Q - [Q-HQ ]7
we get
52
atlatr ln ZN(t) = QN,N-‘I' » | (5-5.42)
In particular,
_1In Zn(t) = R (5.5.43)
oti

Comparing eqs.(5.5.40) and (5.5.42), and keeping the eq.(5.3.28) in mind, we find the

partition function of l-matrix model is exactly 7-function of non-linear Schrodinger
hierarchy .

§We should remind you that we have changed a little bit our convention in this chapter, that is, we
have replaced all the time parameters ¢;’s by (—t:)’s.
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5.6 The Virasoro constraints

At first let us quote some known results in the previous chapter. That is when we set
S = 01in (5.4.37) and discard the ¢,, flows( for example set ¢;, = 0), from eqs.(5.4.38) and

(5.4.39) we get

G2r = 01

U . !
G2r+1 - 2F2r’

7 . "
F2r+1 - _F2r7 - -

and the recursion relation for the KdV hierarchy is
F; .o =(8°+4R0 + 2R)Fy,.
The KdV hierarchy takes the form

OR

—_— = F’
2r42°
Otars1 "

In particular we have

6 mn r
515_3R_ R +6RR.

5.6.1 The discrete Virasoro Vconsr‘rc:;aints

(5.6.44)
(5.6.45)
(5.6.46)

(5.6.47)

(5.6.48)

(5.6.49)

Now let us come back to 1-matrix model . As we already discussed in the chapter 3, Toda
chain lattice describes 1-matrix model if and only if we imposing certain constraints on

the model, this is represented by restricting the form of P

P_ =0, ie. P= Zrtrer.
r=1

When we pass from the lattice to the differential case, this becomes

Py = > Ttr(QN):Cl .
r=1

and the string equation (5.1.10) also goes to be differential equation

[QNrpN] =1.

By string equation we mean (5.6.52) together with the condition (5.6.51).

From the KP equations (5.2.20) and string equation, we can derive

d_lR-:O, d_15+1:0
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where

> 0

d_y =) rtp—
; i 6tr—1

Eqs.(5.6.53) can be written in the form

irt,Fr' =0, Y t:G +1=0.

If we integrate once the second equation, and dlscard the constant of integration, then we
obtain R

e

> .Gy 4+t = 0. | (5.6.54)
r=2
Using the equations of motion and the eq.(3.3.6), we get

oc

Z’T‘trati“hl hN -+ tl =0. VN Z 1. (5655)
r=2 r—1

Now using the definition (5.5.41), and taking the summation over N in the eq.(5.6.55), we
can recast the eq.(5.6.55) into the familiar form

o

(3t 63_1 +Nt))Zy = 0.

r=2

Using the recursion relations (5.4.38,5.4. 39) we can obtain other sumlar ‘equations, for
example

rt +2R =0, rtG +S=0.
vl r41 T F

which can be written as“

(Zr aat )Z —-AO.

Playing the same game, we can obtain all the other constraints. Finally we recover the
. discrete Virasoro constraints as discussed in §3.4 -

L2y =0, n>-1 (5.6.56)

where

8 :
L_l ——Zrt at —l—Ntl B

LU = Z'rt + N o (5.8.57)
o 8 o a C n-1 '82

L,1 = tr— + 2N 0
Z:lr atr-*-n + 5 + Z at atn r e o

TWe did not care about the integration constant.
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5.6.2 The Virasoro constraints for reduced model

Now we want to show that through the reduction procedure we can derive the Virasoro
constraints on the partition function , i.e.

LnZ =0, n>—1 (5.6.58)

where

=Sk D+ 8
-1 = s 2 2k+1 atzk—l 8 .-

> 1 1
Lo= kE+ Vtopp1=—— + 7= 5.6.59
° Zg( T g T T (5.6:59)
oc 1 6 1 n-1 82
L,= E+ =)t —_—t n>0
,fz)( N 2) P Btorions1 2 fo Otaks10tan-2k—1’

Let us start with the first Virasoro constraint. We consider the eq.(5.6.54) as our
starting relation and proceed to the reduction illustrated at the beginning of this section.
Using the egs.(5.6.44) and (5.6.45), we obtain

— 0lnZ
2(2[9 + 1)t2k+1a—1 Btzk ] -+ tl =0 (5660)
k=1 . -

We now integrate this equation with respect to t; and obtain -

L1Z=b1Z (5.6.61)

which is almost the first Virasoro condition excepf for the integration constant b_;, where
b-—l = b_l(tg,ts, - ) ”

Next we apply the operator
D = 8° + 4R8 + 2R

to eq.(5.6.60). Using (5.6.48) and integkrating‘t\‘»vice, we :6b-tain .

,C()Z = (a()tl + bu)Z (5662)
where ap and by are integration constants depending on ts,ts,---. Notice that we have
included a part of the integration constant = = in the definition of Lo. We could continue

in this way by integrating once (5.6.61) and applying D and so on. We would obtain a
series of integration constants an and b,, n > 0 similar to thé above ones. In order to
understand how to calculate them we have to clarify preliminarily a few points.

When considering R and polynomials of R and its derivatives with respect to t; we are
entitled to use the identities 55’1 — 1 and 810 = 1. In this sense we speak of the symbol

lOne might be tempted to integrate eq.(5.6.54) once more, but this does not make sense in the lattice.
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6-! as a formal integration. The reason is that R and polynomials of R and its derivatives
are supposed to belong to a family of objects to which pseudodifferential calculus applies
(for example, to the family of functions rapidly decreasing at infinity in the variable i;
). However this is in general not guaranteed for an infinite sum such as, for example,
3%, ktiGy. If we insist on applying 8~1! to such objects as a formal integration, we are
bound to run into inconsistencies. Therefore when applying 8~ to the infinite sums that
appear in the string equations we have to interpret it as a true integration and take care
of the corresponding integration constants.

On the other hand the KdV hierarchy and its solutions are characterized by homogeneity
in t, with degree assignement

deg(tn) =n

We have consequently

deg(L,) = —2n = deg(ant: + b,) (5.6.63)

This is the first ingredient we will use. The second is the form of the constant a, and b,.
A rather general form we can imagine for them is a sum of expressions like

~ Htg;c;-i-l | (5.6.64)
i=1 N

where a; are real numbers. We can strongly restrict the enormous number of possibilities
implied by equation (5.6.64) by using the path integral form of the model we are studying.
We remember that in the path integral the terms involving ¢,, n 23 can be considered
as perturbations. Therefore we do not expect anything dramatic to happen when only one
of these couplings is set to zero. Thus we can conclude that in (5.6.64) all the exponents
a; are non-negative =, If we now make a degree analysis of the various possible constants,
we conclude that only b_; and by can bé non-vanishing, and the latter is a true constant,
i.e. it does not depend on tg,ts,.... What remains for us to do is to calculate these two
constants. To this end we can repeat the analysis of the Appendix of [37].

Let us summarize the situation. So far we have found the relations
L,7Z =b,Z (5.6.65)
where only b_; and by are non—vanishing. Since -
(L, Ln]=(n~— m)£n+m
the consistency conditions

[ﬁmbm] - [['m)bn] = (TL - m)bn+m (5'6'66)

**This is certainly what happens in the lattice, see (5.6.56).
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must be satisfied. Take these equations for m = 1 and m = 0. Studying the ¢ dependence
we find

0b-1 =0, Ob =0, k>0
Otok+1

Otort1

So b_; and by are true constants (for by this was already known independently to us). If we
use (5.6.66) for n = 0 and m = —1 and for n = 1 and m = —1 we immediately conclude
that

by =0, by =0

respectively. So finally we proved our claim (5.6.58) in the beginning of this subsection.

5.7 Discussion

Starting from the Toda lattice in the traditional form, we have extracted a continuous
linear system (without taking a continuum limit). By reducing it we have been able to
show that the discrete system corresponding to one-matrix models gives rise naturally to
a differential hierarchy and in particular to the KdV hierarchy.

A few differences with the more common limiting treatment in one-matrix models
should be stressed: - - '
— the space para.metér in our approach is t; .("ﬁ*ot tu,bw’hich does not show up here);

— the Virasoro constraints we found in the previous section are the same as the Virasoro

" constraints of the discrete system [37], and can be reduced to the one obtained in the
continuum limit; ‘

— the complete differential hierarchy corresponding to one-matrix models does not
seem to coincide exactly with any of the continuous hierarchies proposed so far [50]; its
corresponding topological models will be considered in chapter 8. A
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Chapter 6

The Generalized KP Hierarchy in
Multi—-Matrix Models

Among the various matrix models, the 1-matrix model discussed till now is the simplest
one, since at discrete level it is completely described by the associated linear system. The
important ingredient—Jacobi matrix € is formed by three pseudo-diagonal lines, and re-
mains unchanged whatever the polynomial perturbations are. In other words, the form
of the Jacobi matrix of the 1-matrix model is independent on the potential(or perturba-
tions). However, once we turn our attention to the multi-matrix models , the situation
dramatically changed. We have several Jacobi matrices, all of them completely determined
by the potentials(or perturbations), i.e. différent potentials will result in different J acobi
matrices. Therefore it is quite difficult to obtain the full KP hierarchy through the contin-
wum limits, even for two-matrix models. Although it is believeed that the multi-matrix
models should be characterized by generlized KdV-hierarchies( their partition functions
satisfy W-type of constraints[10]), and related to the generalized Kontsevich models[9][53],
however till now, it is still at the conjectural level, since we are not able to proceed the
exact analysis except in some particular cases[12](13][14]. So the double scaling limit in
multi-matrix models cases seems to be not as successful as in 1-matrix model . In or-
der to get better understanding of 9-dimensional quantum gravity coupled to mimimal
CFT, we are forced to investigate the deep relations between multi-matrix models and KP
hierarchies systematically.

In the previous chapter we proposed a new approach to derive the KP hierarchy in 1-
matrix model without taking any continuum limit. Its basic idea is passing from lattice to
differential language by interpreting the first flow parameter ¢, as the space coordinate(15].
In this chapter we will follow the same line to deal with the multi-matrix models , try
to shed some light on the inter-relations of the multi-matrix models and the generalized
KP hierarchy discussed in chapter 4. In section 1,we will at first represent arbitary multi-
matrix models as coupled discrete linear systems, and emphasize the importance of the
coupling conditions, meanwhile we will show the existence of the hidden 2-dimensional
Toda Lattice hierarchy. In order to get some knowledge about the full integrable structure
in multi-matrix models , we proceed the spheric limit in the section 2. With this at hand,
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we explain the full KP hierarchy by passing from lattice to differential formalism in the
section 3, and prove that the multi-matrix model partition function in fact is 7-function
of the generalized KP hierarchy discussed in the chapter 4. We end this chapter by making
some remarks in section 4.

6.1 The Multi-Matrix Models
The partition function of the g-matrix model is given by _
Zn(t,c) = / dMdM, ... dM,e™rV

where M), ..., M, are Hermitian N x N matrices, c’s are coupling constants among adjacent
matrices. And

q g-1
U= Z Va + Z Ca,a+1-zv-[aﬁf[a+l
a=1 a=1

with the potentials
Pa
V,,‘=Z:1to"r.71/1:x a=1,2...,q.
r=1

Right now we consider the potentials of finite terms, i.e. p,’s are finite positive integers,

since in this way, we can see the meaning of the constraints more clearly.
The ordinary procedure could be formulated in the following three steps:

(i). Integrating out the angular parts such that only the integrations over the eigenvalues
are left,

g N -
Zn(t,c) = const./ H H d/\a,iA()q)eUA()\q),

a=11=1
where
_ g N g-1 N
U= Z Z ‘/(Aa,i) + Z Z Ca,a-!—l’\a,i)\a-(—l,i,
a=1i1=1 a=11=1

and A(};) and A(},) are Vandermonde determinants

1 1 —

Aa,l Aa

D
A(Aa) = ? o

N-1 N-1 N-1
A AQ'Q oen ,\a’N

o,l

Here the first subindex indicates a~th matrix, the second indices means the different eigen-
values of the matrix.
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(#2). Introducing the orthogonal polynomials™

én(X1) = AT + lower powers, *nn(kq) = A7 + lower powers
which satisfy the orthogonal relation
f A . ddgEn(A)e TR0 () = b, €)Enm (6.1.1)
where
g-1 oo ‘ g—-1 V - X .
1 = Z Z ta,rAra + Z Ca,a-{-lAaAa-{—l'
a=2r=1 =1

(ii7). Finally, expanding the Vandermonde determinants in terms of these orthogonal poly-

nomials and using the orthogonality relation (6.1.1), we can easily calculate the partition
function

N-1
Zn(t,c) = const.N! [] ki (6.1.2)

=0
As in 1-matrix model , we see that the properties of the partition function are completely
charcterized by those of the coefficients h,(¢,c)’s. The main purpose of this section is to

show that the information about these coefficients can be obtained from certain discrete
linear systems.

6.1.1 The Coupled Discrete Linear Systems in g—Matrix Model
For the later convenience, we introduce some more definitions. For any matrix M, we
define

h; _
(M),.= Ml—j#, M;; =M,  Mi(5) = M.

LY
1

Later on we will call the element M;(j) is belonging to the j —th sector. As usual we also
introduce a natural gradation

deg|E;;] = j — 1.

For a given matrix M, if its all non-zero elements are at the pse;lldo'—‘&ia.gonal lines with
degrees in the interval [a,b], then we will simply denote by M € [a,b]. We will see later

that this notation is useful for discussing the dependences of Jacobi matrices on the per-
turbations.

Now we redefine the orthogonal polynomials in the following way
T(h) = 00600, @a(A) = €', ().

*The choice of the polynomials is not unique, in fact for different purposes we may choose different ones
such that the calculation is simpler. '
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As usual we denote the semi-infinite column vectors o, ¥, ¥y, ..., and $o, 1, ®s,..., by
U and & respectively. With these polynomials, the orthogonal relation (6.1.1) becomes

/ fI dAg¥n(M)e" @m(Ag) = bnmhn(t, ). (6.1.3)
B=1

This orthogonality relation plays a particularly crucial role in our analysis. In fact we will
see that all our results come from this relation. In order to do so, we need to introduce the
following ¢ matrices

/ ﬁ AAa¥n(A1)ePAa®m(Ag) = Qum(a)hm = Qmn(@)hn, a=1,...,q. (6.1.4)

a=1

Among them, Q(1), O(g) are Jacobi matrices, whose pure upper triangular parts are I,.
Besides, there are two more useful matrices worth mentioning, which are defined as

/ Hd,\ ( n(/\l))e“@m(/\)z Pambom (6.1.5)
/ dAr - g Ta(A)e (53 0 m()\q))——_-_— Pon(q)hn (6.1.6)

Now all the materials are at hand, let us see what we can derive from the orthogonality

eq.(6.1.3).

(i).The Coupling Conditions

At first we want to show that the matrices (6.1.4) we introduced above are not com-
pletely independent. Taking the derivatives of the integrand in eq.(6.1.3) with respect to
Aoy 1 < a < g, we can easily derive the constraints or coupling conditions

P + C12Q(2) = 0, ) (6178.)
Ca1,a@Q(a—1)+ V. + cau1@Q(a+1) =0, 2<a<g-1, (6.1.7b)
ce-14Q(g— 1)+ P(q) = 0. (6.1.7¢)

where we denote

Pa
= Zrta,,Q""l(a), a=1,2,...,q
r=1
Although these conditions seem to be trivial, however they play extremely important roles

in the study of multi-matrix models .

e Firstly, it is just these coupling conditions that lead to the famous Wi —constraints
on the partition function at the discrete level [66](see also Appendex.C).
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e Secondly, these conditions explicitly show that the Jacobi matrices depend on the
choices of the potentials. We can immediately see that these coupling conditions
completely determine the degrees of matrices Q(a). Since (P —V/) and (P(q) — f{}')
are purely lower triangular matrices, a simple calculation shows that

Q(a) € [-ma,nal, a=1,2,...,q (6.1.8)
where
my=(pg—1)...(ps = )(p2—1),- - - m=
ma:(pq“l)(pq—ly—l)---(l)a-!-l”‘1)7 2<a<g-1
Ng = (Pae1 — 1) ... (p2 — 1)(p1 — 1), 2<a<qg-1
mg = 1; ng = (pg-1—1).. A(p2 = 1)(p1 — 1)

These directly show that, in order to preserve the forms of the Jacobi matrices, only
a finite number of perturbations are allowed. Conversely, if we want to have the
completely hierarchical structure—we should let p, — oo, then all these matrices
will have infinite many non—zero diagonal lines. So generally speaking, these coupling

conditions reveal the major difference of the multi-matrix models with one-matrix
model. '

o Furthermore, these conditions may give some hint that the matrix models are really
topological models. In order to see this point, we take a particular case—two matrix
models. In this situation, the eqs.(6.1.7a—6.1.7c) reduce to

P+ ¢12Q(2) =0, c12Q(1) +P(2) =0,

or egivalently

204(1) = —VL(Q(2)),  e12Q+(2) = ~V(Q(L)- (6.1.9)

we have (p; + p2 + 1)-series of the coordinates(i.e. the elements of Q(1,2) and R;’s)
but we have (p+ g)-series of the constraints. Finally, we are only left with one-series
of independent coordinates, i.e. one can express all the elements of Q(1,2) in terms
of R;’s and some coupling constants. At first glance it seems to be strange, but that
is the real story for multi-matrix models if we notice that all the information of the
matrix model is included in the partition function which only involves R;’s. On the
other hand, the string equation will provide one more series of the constraints, so

there is no local degree of freedom left. This means matrix models are likely to be
topological.

(i1). The coupled Discrete Linear Systems

Now it is time to derive the coupled linear systems we promised before. The calculation
is very simple, that is, taking the derivatives of the eqs.(6.1.3) with respect to the time
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parameters t, ,, and using the eqs.(6.1.4), we can get the time evolutions of ¥ and &, which
can be represented as two discrete linear systems

(*) Discrete Linear System I:

[ Q(L)T(A) = AT (h),

s (M) =Q1(M¥(NM), 1<k<p, _

) - (6.1.10)
2 ¥(M) = —QH(«)¥(\), 1<k<pa; 2Za<y,

\ 563‘11(}‘1) = P¥(X).

its consistent conditions are as follows

[Q(1), P]=1 | (6.1.11a)

S0 =100), @) (6.0.11b)
8 -

ata'kp = [PJ Qi(a)] (6.1.11C)

Among them, the first equation is nothing but the string equation, the others can be
considered as discrete KP—Hierachies. =

(x*)  Discrete Linear System II:

A2)2(Aq) = A.2(A,),
s 2(Ag) = Q4 ()8 (Xy),

7 7 8(Ag) = — Q5 ()2(N;), 1<k < paj '1 <a<q-1 (6.1.12)
| 2, 2() = P(2)2(%).
with consistent conditions
(©(a), Pla)]=1, (6.1.13a)
ai,kQ(Q) =[Qg), Q%(a)] (6.1.13b)
S Pla) = P(a), O (a) 61159
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The equations of motion of the matrices Q(a)’s can be extracted from the egs.(6.1.11a~
6.1.11c)(or (6.1.13a~6.1.13c)) and egs.(6.1.7a~6.1.7c), so finally we have the following equa-
tions of motion

0

Ftpr 2 = [@4(8), Qe)], 1<f<a (6.1.14a)
'67?“@(0‘) =[Q(a), QL(B)], a=<P=Zg (6.1.14b)
Bk

where k runs from 1 to pg. It is tedious, but straightforward to prove that all the flows
commute with one another.

A few remarks are in order:

(%). The set of the egs.(6.1.14a-6.1.14b) contain several subsystems, which are of
particular interests. For examples, if we allow all the p,’s go to infinite, then

The case @ = 8 = 1: Which exihibits the full discrete hierarchical structure of the inte-
grable lattice system discussed in [22],

az -Q(1) = [@}(1), QM) | (6.1.15)

One can obtain its two compatible Poisson brackets from the coadjoint orbit analysis.
Meanwhile we also can simply write down its hamiltonians like

H,) = %’fr(gfu)')’,’ Vr > 1. (6.1.16)

We will show in §6.3 that this system can be reformulated as KP hierarchy .

The case 2 < a@ = 8 < g — 1: these subsystems can also be considered as discrete KP hi-
erarchies, but the ‘Jacobi matrices’ have degrees (—o0,00), although their bi-hamiltonian

structures are not clear, but the commutativity of the flows imply the integrability. The
hamiltonians seem to bef

Hyo) = :];'1.‘]: (@ (@), vr>1. (6.1.17)

The case o = B = ¢: this case is in fact quite similar to the first case. This is not surprising,
since the first matrix and the last matrix in the matrix chain should play the same roles.
The discrete hieraechy is

8
Bt

9(q) =197(a), Q@) (6.1.18)

tSince we may define the Poisson bracket in the following way

{H"(O‘)’ Q° (a)} = [Q;(a)’ Q° (a)]r Vr, s.

when take trace operation, we would get vanishing Poisson bracket, this suggests the Hamiltonians to be
the form (6.1.17).
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Its hamiltonians are simply

1.
Hyy = ;Tr(Q’(q)), vr > 1. (6.1.19)

This system can also be reformulated as KP hierarchy .

The non-commutativity of the hamiltonians: We see that there are g-series of the hamil-
tonians, i.e. the system (6.1.14a-6.1.14b) possesses multi-hamiltonian structures. Each of
which generate a series of commuting flows described by the corresponding time parame-

ters t, ,’s. It seems that hamiltonians in the different series do not commute, however we
are not able to prove it.

(*#x). The second point we would like to mention is the following. For multi-matrix
models , we have two Jacobi matrices, so we can introduce two discrete linear systems. In
fact we can go further, we may even introduce the other (2¢ — 2) discrete linear systems.

In order to do so, we start from the orthogonal relation (6.1.3) once again, and define two
series of the functions like

a—-1
£@(¢,0,) = / TT dAsTa(Ay)e. (6.1.20)
B=1
and
q
©)(¢,Ag) = / I dAse”™&n(2,). (6.1.21)
B=a+1 T 7
where we denote
a-1 oc a-1 .
Ba =)0 ta X5+ Y capi1dsdpi.
B=2r=1 S B=1
9-1 o g-1
Vo = Z ztg’,./\g + z Cﬁ'ﬁ+1}\gAg+1.
B=a+1r=1 = )
Obviously we have
ED(E, M) = Ta(Ay), 70t Ag) = Bm(y).

Furthermore, we can recast the orthogonal relation (6.1.3) into the foﬂowing form
/ At (8, 00)e =M@ 2) = Sumhn(t,c), V<o <q. (6.1.22)

We may understand these relations in the following way. The g-series of the functions
£®)(t,A,) form g-Hilbert spaces H,. The other g-series of the functions {®)(¢,),) also
form ¢ Hilbert spaces H’s, which are dual to H,. Then the orthogonal relations (6.1.22)
Just define the inner products between the Hilbert space H,, and its dual ‘H_,. This structure
bears some similarity with topological field theory [53].
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Now what we should do is to extract the spectral equations and the time evolutions of
these new functions. From the egs.(6.1.4), we immediately see that

[ 2@t 0)e 0N 0an (b X) = Qum(@)hm(tic),  1Sas<q  (6.123)
This reminds us that the spectral equations should be

}\aér(la)(t: )‘a) = Qnm(a)fx(s)(t”\a),
Aa'l]r(la)(t, )\a) = an(a)ny(:)(ta ’\a)a

- (6.1.24)
or in matrix form
Xaf®) = Q(a)e®, 1<a<g. - (6.1.25)
Aon® = O(a)y®,  1<a<gq (6.1.26)

On the other hand, from the definitions (6.1.20) and (6.1.21), and making use of egs.(6.1.10)
and (6.1.12), we can derive the evolution equations of the functions ¢() and 7(*) which
take the following form

0

5{...5(&) - Q;(g)g(a), 1<f<a-1, (6.1.27)
B,r
0 £ = Q" (B)E™), a<pB<g. (6.1.28)
Otg.,
and =
0 (@) _ 57 (81 |
’ '5—{-'77 = Q+(,5)7] ’ a+1<p<q, (6129)
B,r
4 7@ = -0 (B)n'*, 1<fB<a. (6.1.30)
Otg.,

Now combining the equations (6.1.25-6.1.30) together, we get 2g discrete linear systems,
two of which are already presented (6.1.10) and (6.1.12), the other (2g—2) are the additional

discrete linear systems on the corresponding Hilbert space. All of them can be written in
a unified form : A

Q(e)é(Aa) = Aa(Aa),
s-t(da) = QL(B)(), 1£P<e, (6.1.31)
g 6(da) = —QL(a){(Ae), @< f =g
and |
O(e)(Xa) = Aan(Aa);
s-n(Xa) = QL(B)1(Xa), a+1<B<q, (6.1.32)

sn(a) = —0L(a)g(e)y 1S B S e
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From these additional (2gq — 2) discrete linear systems, we can derive their consistency
conditions, which are in fact nothing but the the string equations and the equations of
motion (6.1.14a~6.1.14b) of the Jacobi matrices. This result suggests some fascinating
interpretations. The introduction of the functions ¢®(t, A)’s and 7{®)(¢,As) can be con-
sidered as formal reductions of the multi-matrix models to 1-matrix model , since we are
left with the orthogonal relations (6.1.22), which are quite similar to the one in 1-matrix
model . The major difference comes from the spectral (or recursion) relations (6.1.25),
due to the fact that new Jacobi matrices Q()’s have the degrees (—oo, 00), £)(t,A.)’s
and n,(la)(t,Aa) are very complicated functions rather than the Polynomials. This proba-
bly means that the multi-matrix models can be realized -as l-matrix models if we choose
suitable non-polynomial interactions. This is worth studying further.

(#77). The Partition Function

One of the byproducts in the above procedure is the equations of motion of the partition
function.

In Zn () = Tr(Q"(a)), (6.1.33)
1 <7< pa; I<a<gq

Otor

Using the consistency conditions, we can rewrite these equations in the following form

0? | i
mln Zn(t,c) = (Q (a))N,N__I, (6.1.34)
1<7<pa;j . 1<a<yg
or equivalently
b? o
P At = (0'(), (6.1.35)

1 <7< py; 1<a<yg

We end this subsection with one more remark. All the information of the multi-matrix
models is completely encoded in the discrete hierarchy (6.1.148.——6.1.1413). Once we solve
these equations, we can reconstruct the partition function of the matrix models such that

which satisfies (6.1.33).

6.1.2 The hidden 2-dimensional Toda lattice

In the previous subsection we have shown that the multi-matrix models are equivalent to
certain discrete linear systems subjected to some constraints. Without reference to the
coupling conditions, the discrete linear systems lead to discrete KP hierarchies. In fact we
will show that these discrete hierarchies (or lattice hierarchies), in ¢ = 2 case, are nothing
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but the 2-dimensional Toda lattice[65], and in arbitrary g cases, they are 2-dimensional
Toda lattice with additional flows.

At first, we give a coordinization of Jacobi matrices
Q) =L +4, O(q)= I, + B (6.1.36)
Explicitly
m) Mmgq
A=3 > a(i)Eii,  B=333 bi(i)Eii
i =0 =0

and for the supplementary matrices

Q)= > T{)Eiju, 2<a<qg—1. (6.1.37)

l=—ng

We can see immediately that

(Q+(1)). = Gion +a(D)fiy  (Q-(9) = Ribjia

so we can write down the t; ;~ and ¢,-flows explicitly

o . g : N .
Bt la!(J) = ai1(J + 1) — ar1(d) + a(i)(ao(s) —ao(s - 1))~ (6.1.38a)
a N » ,,,,, . | .
T a(j) = Rj—iprai-1(j) — Rjal—l(.'] —-1) © (6.1.38b)
o | -1 (
0 (a o a
51 70) = TG +1) = TR + L) e0ld) — aoli = 1) (6:1:58¢)
O 1) = By_isa TG) — BTG — 1 | (6.1.38d
5Lt ()= Bisn T15(9) 26— 1) , - (6.1.38d)
g,1
In particular
0
atq 1(10(]) J+1 —_ RJ » (61.39)

on the other hand, from(6.1.33), one can show that

é—%RJ‘ = Rj(ao(5) — ao(j — 1)) | (6.1.40)

Combining these two equations together we obtain the following 2-dimensional Toda lattice
equation

62
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In terms of the coordinates ¢; = In h;’s, the above equation becomes

a’.’

= @it1m%) _ gBi—dj-1 6.1.42
Btl,lﬁtq,l ij ¢ ( )

These equations (6.1.41) and (6.1.42) show that the parameters ¢, and ¢, seem to be the
space coordinates, and the other parameters are really time flow parameters. In fact, in
g = 2 case (i.e. 2-matrix model), the other time flows generate the complete 2-dimensional
Toda lattice hierarchy[65]. From the analysis in the previous subsection, we know that the
system is restricted by the coupling conditions, therefore we can say that 2-matrix models
are nothing but constrained 2-dimensional Toda lattice. When we consider the other
multi-matrix models, we see that they contain not only this Toda lattice hierarchy, but
also the additional series of flows.

6.2 The Spheric Limit of the Multi-Matrix Models

In the previous section we have already shown that the multi-matrix models is quite dif-
ferent from the l1-matrix model . The typical property is the dependence of its Jacobi
matrices on the potentials. This causes a great difficulty in analysing the full hierarchi- -
cal structure of the multi~matrix models by taking the double scaling limit. The usual
- conjecture is that the g-matrix model would described by (g 4+ 1)-th KdV hierarchy ~ in
the double scaling limit, and the multi-criticality will represent the (g, p)-minimal model
coupled to 2-dimensional quantum gravity . However, if we look the particular example—
_the two matrix model, we see that the 6-th even potentials could give us (4,5) and (3,8)
models[12]. The second one is encoded in Bousinesque hierarchy, but the first one seems to
belong to 4-th KdV hierarchy . As we already know from the l-matrix model , criticality
does not depend on the particular continuum limit, i.e. the l-matrix model is charac-
terized by mnon-linear Schrodinger hierarchy , its spheric limit version described by the
dispersionless NLS. This suggests to us that we may perform the spheric limit as a useful
exercise to obtain a certain dispersionless integrable hierarchy, whose non-dispersionless

version would correspond to the full hierarchy in the multi-matrix models . This is what
we want to do in this section.

Learning from the 1-matrix model in chapter 3, going from lattice to the spheric limit

is simply by rescaling the lattice “n” to the space coordinate z, and I, to the twisted
momentum “z”, such that

{z,z} = z. (6.2.1)

The spheric version of the Jacobi matrices is

Q) = L) = 24 3 a(e)s~, (6.2.2)

=0

"For g =1 case, it is usual KdV hierarchy , in the ¢ = 2 case, it corresponcis to Bousinesque hierarchy,
etc.
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Qe) = L(e) = 5 T, 2<a<g-1,  (623)

Qlg) = L(1) = % - ib;(m)sz—f, | (6.2.4)

We should remind you that due to our different choices of the polynomials here the oper-
ation “bar” means the mapping from z to %.

In order to get the spheric limit of the discrete KP hierarchy (6.1.14a-6.1.14b), we only
need to replace the matrix commutators by Poisson brackets (6.2.1),

3 k )
5@;’6(0‘) ={£3(8), L(2)}, 1<f<ea (6.2.5a)
S0 r(e) = {L(a), LA}, a<P<g (6.2.5b)
8.k

without misunderstanding, these Poisson brackets in fact are rooted in the basic relation
(6.2.1), and take the following form

6fdg 0Ogdf

Besides the flows (6.2.5a-), there is an additional flow
5 ;
5oL(e) = {(ln£(1)),, £(a)}- | (6.2.7)
In particular, for g = 2 case, we will have ’ . |
0 rwy=1), £y (6.282)
Otip .
-—Q—L(l) ={L£(1), £F(2)}, (6.2.8b)
Otak
9 2(9) = c£(1), Z@) (6.25¢)
Otk
9 2oy ={242), L)), (6.2:80)
Ota k

Now let us compare this hierarchy with the dispersionless generalized KP hierarchy in-
troduced in chapter 4. At first we note that the Lax pairs are different, (4.4.15) is expressed
in terms of the canonical mometum ‘p’(due to the canonical Poisson bracket (4.4.14)), but
L(a) defined in the above are expanded in the powers of the twisted momentum ‘2(we
will see that they are related by a shifting mapping). Due to this difference, the flows
are written in terms of different Poisson brackets, i.e. eq.(6.2.6) and eq.(4.4.20). In the
eq.(6.2.6), z = to plays the role of the space coordinate and the ¢, is really a time param-
eter. However, in the eq.(4.4.20), the ¢y has been dummied, instead, ¢; plays the role of
the space coordinate. Apart from these differences, these two hierarchies are almost the

same as each other. This gives us some hint to extract the full KP hierarchy . We will be
exploited this point in the next section.
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6.3 The KP hierarchy in g—matrix model

Till now we have shown that multi-matrix models can be represented as coupled discrete
linear systems, whose consistency conditions give discrete KP hierarchies and the string
equations. The classical limit of the discrete hierarchy (6.1.14a—6.1.14b) is almost the same
as the dispersionless version of the generalized KP hierarchy . In this section, we will use
the appoach proposed in[15] to reexpress the lattice formulation as a purely differential
hierarchy, that is exactly the generalized KP hierarchy .

6.3.1 The generalized KP hierarchy in g—matrix model

In our analysis, the first flows, i.e. ¢, ;—flows play an essential role. On the one hand, using
these flows, we can express all the quantities involved in the theory as the functions of
the coordinates in j — th sector. On the other hand, it is just the first flows of ¥ and @
that enable us to recast the discrete linear systems into pure differential systems. Now we
analyze these points in detail.

(I). The first linear system associated to the generalized KP hierarchy:

In order to extract out the generalized KP hierarchy, our strategy is as follows. We
first try to find the associated linear system, then consider its consistency conditions which
should directly give us the géneralized KP hierarchy. However, learning from the lattice
formulation, there are 2q discrete linear systems&ncoded in the q-matrix model , so when
we pass to the differential language, we would expect that there are also 2¢ linear systems
associated to the generalized KP hierarchy. In the following we will begin with the DLS
(6.1.10). By using the egs.(6.1.40) and (6.1.39), we have A

ao(j — 1) = ao(j) — (In R;

) ) , .. 8%1n R; 7\’
oali = 2) = aals) = (in By) = (1a[B; = auls) + 55,2 ])
k) qY
where for any function f(t), we denote
= = 3.1
F= g f= g5 (6:3.1)
generally we define
Rj+r = Ifr(])? ao(j + T) = Cf"(])
R, =F(), a(i-r)=G:(0)
then they satisfy the recursion relation
Frn(7) = F:(7) + G:(3) (6:3.2a)
Gria(4) = G.(3) + (W[F:(5) + G- () (6.3.2b)
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) : . o ) . i -.. N 62 ln ﬁ’r
Fra(3) = F:(7) = G:(7) + Ot110tg,

Gra(j) = G(G) — (n F) (6.3.2d)

(6.3.2¢)

These results guarantee that all the ao(z)’s and R;’s (i # j) can be expressed in terms
of ao(j) and R; as well as their ¢;,; and ¢, —derivatives. Furthermore, substituting these

results into eqs.(6.1.38a~6.1.38d), we can recursively express all a;(z)’s and T( Yi)s(i  5)
as the functions of the coordinates in the j — th sector.

Now let us consider the t11-,and g 1—flows of ‘I’ "From the eqgs.(6.1.10), we can write
down their explicit forms . :

0

‘Ifj = ‘I’j+1 + ao(j)‘l’j (633)
6t1,1
9 —U,=—-R;¥; (6.3.4)
atq 1 J 1 - .
which lead to the following equalities
Vi = Ajll’j, ¥, = Bj_lllfj o (6.3.5)
where |
Aj=0- GU(J) =-0- RJ+1
1
B;=6" 12(0.0 _7)6 1)-—»
) J+1
we denote 5[— and £ by 8,0, respectlvely It is easy to see

4@:&&;1“w21

Using the eq.(6.3.5) we can rewrite the spectral equa’uon in eq. (6 1. 10) as a purely differ-
entlal equation

L;(1)¥; =M"; ; (6.3.6)
where

A

j
L;(1)=0+ z a(7)B;- lB “t41.--Bjo1
l::l .

1 a 1 1
=0+ alj o : .
V;m(])a_ao(]fl) 3~a0(3fl+l) 8 —ag(7-1) -
=8+ w(y)d - (6.3.7)
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where all the functions w(j) are only functions of the coordinates in j — th sector.
u1(7) = a1(4);
0s(3) = a2(3) + a2(3) (a0(d) — (1 ByY)

uald) = es(d) + GZ(j)[an(j) — 2(n Bj) (1“ |R; - aold) + 79%21_11%%])1](6.3_8)
+s(7) ([ald) — (1n R = i) + 5571—5?—)

More generally, we could formulate the rules passing from lattice to the purely differential
language, which is the same as the ones given in the previous chapter:

(). The Jacobi matrices are mapped to KP operators, i.e.

(@@)¥) = L@, a=12.y0

(6.3.9)
(Pw)j==> M;¥;.

where

L(a); = Z T£7)(j)Aj+l—1Aj+l—‘2 e Aj + To(a)(j)
=1

j . S ,
+ Z Tl(a)(j)Bj—liji_?:l»ﬁl,‘ - Bj_1 : (6.3.10a)
=1 ! e .
M; =3 Pa(§)Ajp1Ajica - A+ Po3)
=1
j ~ A A
+> Pi(i)Bj-tBj-t41- -+ Bj- (6.3.10b)

=1 :

(7). The lower triangular part of Jacobi matrix (or its powers) maps to the pure
integration part of the KP operator (or its powers);

(433). The upper triangular part together with the main diagonal line of the Jacobi

matrix (or its powers) correspond to the purely differential part of the KP operator (or its
powers).

(iv). The residue of the KP operators have a particular simple form,

TEs a(Lj(l)) = al(j) = Qj,j._l(l). (6.3.11)

On the right hand side, Qj‘j_l(l)‘means the element of the Jacobi matrix at n—th row and
(j — 1)-th column. More generally, we can obtain

resp(L3(1)= Qi (1). (6.3.12)
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and

res o(Lj(@)) = T{(5) = Qjj-1(a)-
as well as

T

reso(Z5(e) = (Q7(2)) . (). (6.3.13)

jvj'_l

Expanding all the above operatdrs in powers of 8, the coefficients can be expressed as
functions of the coordinates in j — th sector. Collecting all the results together we get a
linear system

Li(1)¥; = MY
205 = (15(1)) ¥,

(6.3.14)
ati,,.q]j = —(L;(C!))_\I’j, a:273:°'°7q

| MY = 595

Since all the quatities are expressed in terms of the coordinates in j — th sector, we
can ommit the sub—index “j”, we recoganize that this linear system is exactly the same

as eqs.(4.4.3), whose consistency conditions give the generalized hierarchy (4.4.2a) and
(4.4.2b).

i) = (15O, 1<pZa (6:3:152)

or |

2 Le)= (B, 1(B),  «spEn (6.3.15b)
Br

We would like to remark here that if we impose the condition
ai(j) =0, Vi > 2.

then the second expression of the eq.(6.3.7) gives the so—called two bosonic representation
of the KP hierarchy . Therefore we may refer the full second expression in the eq.(6.3.7)

to the multi bosonic field represention of KP hierarchy. We hope to explain this point in
more detail somewhere else.

(II). The linear system related the polynomial &:

In the above analysis, we consider ;1 as the space coordinate, and 8 as the basic deriva-
tive. In fact, if we replace them by ¢, and O respectively, we get another linear system,

in which & plays the role of Baker—Akhiezer function. Similar to the above discussion, we
have

B, = A;®;, &= B;_1¥; (6.3.16)
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where

AJ =0 bo(]) = -0~ RJ+1
.. 1
B; =0~ E(bo(y)a N= —0
=0 J+1
the linear system is
Li(q)®; = A, ®; | (6.3.17a)
0 =, T
T 3, = (Lj(q))+¢>j (6.3.17b)
0 Fr
G %= ~(I5(e)) @, a=1,2...,q-1 (6.3.17c)
- 0
M;®; = —55;@1- (6.3.17d)
in which the KP operator takes the following form
~ - j - = 2
Li(g) =0+ ) bu(j)BjtBj-t41... Bj
I=1
= 3 1 1 1
=0+ ) b .= -
Z DG 0o aG - +1) Tk - D)
=¥ Z v (5)87 | (6.3.18)

all the functions v;(j) are only functions of the coordinates in j — th sector.

u(5) = bi(d),
n(j) = ba§) + 4a(3) (8al) - 81n By))

va(5) = ba(j§) + bz(j)[%o(j) —28(In R;) — 5<1n[Rj — Oby(7) + E'aa:]l—lnafi%'?"lg)

6%In RJ‘ )

#0) (Il0) — B R = o) + 5

etc. Using the rules going from lattice to differential laguange, we see

(Q@)2) = Li(@)®;,  a=12....9 (6.3.20a)
(P(9)2) = M;2;. (6.3.20b)

with the new operators like

L(e); = ZTi?)(j)AjH—lAj-!-l—? A+ TG

=1
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a

J - -~ .
+ZT1(a)(j)Bj—lBj—l+1 -+ Bj (6.3.21a)

a

M j= Zp_l(q,j)xa.j_}.l_]x&j-{—l—? .t "A.g + PO(Q).?)

+2J:Pl(q7j)‘§j*l§j—l+l - Bjy (6.3.21b)
Therefore we could write down another linear system
[ Li(2)®; = A&,
32,@ = (‘Z’;(Q))+@J
ai’r@j:_‘(-;(a)>_@j, a=1,2,...,q—1

M;3; = 2-8;

(6.3.22)

\

Whose consistency conditions also give the hierarchy (6.3.15a—6.3.15b).

(II1I). The coupling conditions:

Now our task is to reexpress the coupling conditions (6.1.7a~6.1.7b) in the differential
laguange. This can be done very easily by replacing the matrices by their operatorial
version, the only problem we should care about is the matrix P(q), since its differential

version is not M. We may simply denote its differential version by M(q), then the coupling
conditions are

M + ¢, 2L(2) = 0, (6.3.23a)
Cac1al(@—1)+ V(@) + capr1L(@+1) =0, 2<a<g-1; (6.3.23b)
co-10l(@—1) + M(g)=0. © (6.3.23¢)

where

Vi(e) =Y rte,L7"Y(a), a=1,2,...,n.
r=1
We see that the eqs.(6.3.23b) are nothing but the egs.(4.4.1a), which means that in
the multi-matrix models, there indeed exist the generalized KP hierarchy. However the
eq.(6.3.23a) and eq.(6.3.23c) impose some restrictions on the hierarchy, which, as we al-
ready knew before, are nothing but the Wj —constraints. Thus we may conclude that the
multi-matrix models correspond to the generalized KP hierarchy subjected to certain con-
straints. On the other hand, we would like to point out that all the flows in (6.3.15a) and
(6.3.15b) commute among themselves, since their lattice verions commute. This is very re-
markable property. As we know that the usual additional KP flows are not compatible[67].
So we may say that the multi-matrix models give a natural realization of the commutative

KP flows.
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(IV). The other linear systems:

Quite similar to the analysis in the above, we could also start from the general form
of the discrete linear systems (6.1.31) and (6.1.32), transfer them into the differential
formalism by using the rules we listed before, the results are as follows

L(a)¢(Aa) = Aaé(Xa),
5?2: (Aa) = L7(B)(As), 1ZP<a, (6.3.24)

52-b(ha) = —Li(a)é(Xe), a<B<q.
and
L(a)n(Xa) = Aan(Aa),
s2-1(da) = Li(B)n(de),  a+1<B<q, (6.3.25)
7= 1(e) = —L7(a)n(X), 1<B< e

Once again they lead to the hierarchy (6.3.15a-6.3.15b). All the flows in (6.3.15a) and
(6.3.15b) commute among themselves, since their lattice verions commute. This is very
remarkable property. As we know that the usual additional KP flows do not compatible[67].
So we may say that the multi-matrix models give a natural realization of the commutative

KP flows.

T

6.3.2 The partition function as —function

In order to justify the identification of the partition function and the r—function of the
generalized KP hierarchy, we only need prove that the egs.(6.1.34) can be casted into the
operatorial formalism, which has the same form as eqs.(4.4.12). This can be very easily
to be done, if we note that the eq.(6.3.13) is valid for any 1 < « < g, and any positive
integers 7,7. So choosing j = NN, we have

(Qr(a)) Nyg = TEso (LN(a))r (6.3.26)
This equality together with eq.(6.1.34) give
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m In Zn(t, C) = resy (LN(C!)) ’ (6.3.27)

This is nothing but the relation (4.4.12), which 7-function should satisfy. Therefore we
may conclude that the partition function of multi-matrix models are exactly the 7—function
of the generalized KP hierarchy. More precisely, the multi-matrix models are nothing but
the generalized KP hierarchy subjected to Wi eo—constraints.
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6.3.3 The dispersionless generalized KP hierarchy

Although we already discussed the dispersionless generalized KP hierarchy in chapter 4,
but we prefer to say something more, since the differential hierarchy we derived before
really gives a new representation of the KP hierarchy . This is quite transparant from the
expression (6.3.7), in the dispersionless limit, which becomes

_p+2

_DP““LU

(6.3.28)

In particular case
a; = 0, A4 2 2.

we recover the two bosonic representation of the dispersionless KP hierarchy .

For simplicity, we at first only consider the subsystem (a = 8 = 1) casein the hierarchy
(6.3.152), which takes the following form

a () {£1.(1), L(1)}, (6.3.29)
where

0f 69 8g<9f

{9y = Op 0z~ 6p6:c

(6.3.30)

Now let us consider how we can go from this formalism to the one given in the second
section. Starting with the dispersionless formalism. In the hierarchy (6.3.29), all the co-
ordinate field u,’s are functions on the parameter space (¢;,%2,...), among which ¢; can
be interpreted as the space coodinate, and the others can be considered as time parame-
ters. Now let us enlarge this parameter space by adding one more dimension, say, to and

require that the coordinate fields u;’s in this bigger space satisfy the constraints which are
equivalent to

CL; = &’H'l — l(.loa»[ (6331)

where a = bi?—a, Substituting these formulas into the eqs.(6.3.29), we can express all
the flows in terms the derivatives with respect to ty = =z, fortunately enough, these new

equations can also be written in the Lax formalism,

¥ oL aLoLy
5" = "5; 6s (8 0a (6:3.32)
where
L=z+Y a;z™ (6.3.33)
=0
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which is the continuum limit of the first Jacobi matrix Q(1). Comparing the two formulas

(6.3.28) and (6.3.33), we find that if we set

z 4+ ay = p, (6.3.34)

then the two formalisms coincide with each other. This means that from the spheric limit of
the lattice hierarchy to the dispersionless hierarchy is simply redefinition of the momentum.
Similarly we can do the same thing with the other Jacobi matrices, finally we will recover
the spheric limit discussed in section 2.

6.4 Conclusion and Discussions

We have shown that any multi-matrix model can be reformulated as 2-dimensional Toda
lattice hierarchy. Passing from lattice to purely differential hierarchy, it gives a natural
realization of the generalized KP hierarchy. The coupling conditions together with the
hierarchical structure lead to Wi .—constraints. However, it is still far away from the
complete understanding of the multi-matrix models.

1. At first, the topological phase of the general KP hierarchy is not clear. This is
probably related to the reduction of the generalized KP hierarchy. For example,
in 2-matrix model, the corresponding generlaized KP hierarchy is extremely large,
‘such that it is hopefully to get any higher, KdV hierarchies through some singular
reductions. But this should be clarified further. ‘

2. The second problem is to calculate the critical exponents baed on this scheme, once we
do this, we could compare the results with ones obtained in the continuum approach,
i.e. to see what is the matter content in multi-matrix models.

3. Finally, General speaking, we can do the same thing for infinite matrix chain, how-
ever, in that case, it is not easy to consider the coupling conditions.

Probably we could conclude that multi-matriz models are nothing but KP hierarchies
projected by W1 o —constraints, here we should keep in mind that the different matriz
models correspond to the different additional symmetries, and the infinite matric
chain corresponds to the full KP hierarchy with the full additional symmetries.
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Chapter 7

The Introduction to Topological
Field Theory

The topological field theories were originally studied by A.Schwarz[68] and E.Witten [17],
and now they are called Schwarz type or Witten type topological field theory respectively.
Their basic difference is due to their semi-classical limits. In such a limit, the Witten type
topological field theory is still a topological theory, but the Schwarz type is not. In this
chapter we will focus our attention on the Witten type of topological field theory . We will
briefly discuss the topological matter theory, and its coupling to the topological gravity.
The main references are[17, 18][53] [69]-[72]

7.1 The Definitions |

Let us start with a quantum field theory defined on a compact manifold M of dimension
D with some set of fundamental fields ¢(z), its vacuum amplitude or partition function is
given by the path-integral over all field configurations on M weighted with some action S

201 = [lag) B (7.1.1)

In general the partition function Z(M) will depend on many geometrical data. For in-
stance, in almost all quantum field theories we need a Riemannian structure on M, z.e.,
a metric g,,(z). This metric enters both in the definition of the action S and in the def-
inition of the measure [d@]. Other possible ingredients might be an orientation and, if
fermions are involved, a choice of spin structure, or in the case of gauge fields a choice of
fiber bundle. However the symmetries of the theory will dramatically simplify the anal-
ysis. The symmetry of quantum field theory simply indicates the independence of the
partition function on some of goemetrical data. For example, string theory has world sheet
reparametrization invariance which leads to the conservation law of the energy momentum
tensor, a gauge theory possesses gauge invariance which shows the physical states should
be BRST-invariant, and the conformal invariance of the theory garantees the traceless of
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the stress—energy tensor. Along this line, if we require the theory to be invariant under
arbitrary smooth deformation of the metric:

8Gu = €pu-

then it is called topological field theory . In this case, the partition function Z(M) and any
physical correlation functions of local operators will be topological invariants(i.e. they will
depend only on the topology of the manifold M). If we further consider the metric g,, as
a dynamic variable, we get topological gravity.

The above definition of topological field theory through general covariance is very in-
tuitive, but it is not tractable in practice. In fact, there are many other definitions, each
of them has its own advantages. We now list a few below.

Definition 1: If the partition function and all the correlation functions of a quantum
field theory are all metric independent, then the theory is topological.

Definition 2: If a quantum field theory satisfies the following two conditions

1. There exists a nipotent  operator, the physical states |¢; > are represented by
@-cohomology classes,

Qlgi>=10,  [¢i>~[¢:i>+Q[A>
2. The energy—momentum tensor is Q-exact, i.e.

Tuu = {Q) Guu} ‘ (712)
for some functional G, of the fields and the metric, then the theory is topological.
Definition 8: If the stress—energy tensor satisfies the Virasoro algebra with the central
charge ¢ = 0, it is also topological.

Definition 4: If the partition function and all correlation functions of a quantum field
theory can be completely determined from a finite set of correlation functions , theh the
theory is topological.

All of these definitions indeed are equivalent(although the regorous proof is unknown
yet), they in fact describe a topological theory from different point of view. In the next
section we will see what kind of general properties we can obtain only from these definitions.

7.2 The General Properties

7.2.1 Factorization

The most important property of the topological matter, is factorization. Roughly speaking,
factorization means that we can reduce the multi-point correlation functions to a finite
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number of basic correlation functions . In order to understand it in detail, we need one more
concept. Consider a quantum field theory on a general space-time M with a connected
boundary B, its partition function depends on the configuration on the boundary,

Z(M,B) = /¢ ‘Bzé'[dqs]e—sic”l | (7.2.3)

if we regard B as a base manifold, and ¢(z) as the fundamental field variables, then
quantum mechanically the above partition function can be considered as the wave function.
So we could associate a Hilbert space Hp to it ™.

The definition of Hp in general will depend on the orientation of B. If —B denotes the
manifold with reversed orientation, we have

H_p = H

If the boundaries of M have two connected pieces B; with the same orientation as M and
B, with the reverse orientation, then -

Z(M; By, B,) = /qs e=519] (7.2.4)

I3, =#"i6] 5, =5"

defines an element in Hp, ® Hjp,, or equivalently a transition amplitude

Z(]Vf; Bl, Bg) : HB; e HBL , ' (7.2.5)
Now suppose we cut the base manifold M into two parts M; and M, along a codimension
one subspace B, then we can perform the path integral in two steps. At first we fix the

configuration of the fields ¢(z) on B and do the seperate integrals on M, and M, with
these boundary conditions,

Ta(d) = / [dg]e=51 (7.2.6)

éla=¢'
then the total pa.th—integral over M is clearly given by

2(M) = [ 1481901, (¢)¥ara(9) (7:2.7)
From the Hilbert space point of view, this is equivalent to say that we could insert Hz ®Hp

into the path-integral such that the original one reduces to two smaller ones. Repeating
the procedure we are finally led to some basic path-integrals.

*At first glance it seems surpring, the Hilbert space is only related to the boundary not to the total
manifold, however we should keep in mind that the wave function is dependent on the total manifold which
means the dynamics is determined by total manifold.
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7.2.2 Frobenius algebra

Let us take 2-dimensioanl topological field theory as a example. In this case, our manifold

is a surface of genus g. The only connected compact submanifold is the circle S 1 so we
only have one Hilbert space

HEHSI

By factorization we can cut M as a collection of spheres with one, two, and three holes.
Each of them represents a particular element of H. -~

(i) The disk gives rise to a particular state
1eH,
that we will denote as the identity.
(i) The cylinder gives a bilinear map
7:H®H — C,
which we notate as

| n(a,b) =< a,b>.

(i) Finally the pair of pants,—or the sphere with three holes—corresponds, again with
the appropriate choice of orientations, to a bilinear map

CHOH—H, ' o (7.2.8)
- If we introduce the notation
¢(a,b) =axb, V (7.2.9)

this makes  into an algebra, the operator product algebra of the topological field theory.
The other properties of this operator algebra follow from duality, which simply states that
the inequivalent factorizations of a surface should give the same result. These additional
structures are

(*)normalization

i = i, Vi

which leads to - V
cijo =:%ﬁj | (7.2.10)

(%x) the compatibility of the metric 1 with the algebra 'H
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<axbec>=<a,bxc>.

This is 2 simple consequence of the symmetry of the 3-punctured sphere.

(% = x)the associativity

(axb)xc=ax(bxc). (7.2.11)

LHS and RHS represent the two inequivalent ways of factorization of the sphere with four
holes.

Therefore we finally get a commutative associative algebra of finite dimension N, which
is called Frobenius algebra[73]. Choosing its basis as {¢o,...,¢n-1}, With ¢ = 1, the
component notation is

Mij =< @i, ¢ > (7.2.12)
Cijk =< ¢iPjdr > (7.2.13)
In this languange, it is easy to describe the factorization and duality.
factorization : < ¢ipjrpr >= Z ¢i;’ ol (7.2.14)
. ‘ . p :
Duality or associativity : 'c,-pjcbkl = c,-kpcj"l N (7.2.15)
commutativity : oGk =Cikj = : (7.2.16)

For higher genus partition and correlation functions, we can introduce the handle op-
erator H in the following way[18] ' '

< i @i HI >o=< i) o iy >g - (1.2aT)

In order to get the explicit form of H, we only need consider one point function on the

torus case (g = 1). By factorization, we can cut this torus such that we obtain a cylinder.
This is equivalent to inserting - . :

1=Y"|¢: > 17 < ¢5 (7.2.18)
iJ
so we have
< i >1= Y 17 < pigidr >o= SnYer = o' (7.2.19)
ij , ij i

From the definition we immediately get
H=Y c’¢; o (7.2.20)
ij

So by factorization we can calculate partition function and correlation functions in any
genus only from the genus zero two— and three-point functions.
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7.2.3 @Q—cohomolgy

Suppose the full Hilbert space of topological field theory is H'(‘big’ space), the physical
sector (or ‘small’ space), from the second definition of topological field theory , is the
cohomology ring of Q. Since Q is nipotent, it can be regarded as BRST charge. On the
other hand, due to the fact that T, is Q—exact, it can also be treated as supersymmetry
charge. Let us see this in detail.

(2) The supersymmetry:

The conserved charges related to 7, and G, are -~

P,,:/Tuo, G“.—_/Gug,

where the integrals are taken over a D — 1 dimensional spacelike surface. These charges
form an anti-commuting extension of the translation group

P, ={Q,G}, {G.G}=0, (7.2.21)

that can be viewed as a supersymmetry algebra with charges of spin zero and one, instead
of the usual spin one-half.

(i2) The descent equation:

Since P, and G, form a supersymmetry algebra, we can go to a ‘superspace’ descrip-
tion by introducing D Grassmannian coordinates §*. For any local operator (), the
superfield ®(z,f) is given by =

®(z,0) = expb Gy- ()
= g0+ gD 4 ()6

HLBiD

Here the fields ¢(*) are generated from ¢(°) by repeated application of G,
: ‘/)Eﬁ)inm(m) = {Gm y {Guz yere {G#m 45(0)(33)} .. }} (7'2'22)

Since ¢Lkl)pk is antisymmetric in all its indices, it represents a k-form, and we can write
(7.2.22) symbolically as

(G, g0} = e+, (7.2.23)

Since by (7.2.21) we have {Q, G} = d, these differential forms satisfy the important descent
equation

d¢®) = {Q, ¢}, (7.2.24)

We can draw two conclusions from this equation. First, it suggests a new class of non-local

physical observables. If C is a k-dimensional closed submanifold, the descent equation
shows that

¢(C) = fc ¢M(2) (7.2.25)
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is a physical observable, since

{Q,4(0)} = /C dg(k=1) = /; et =, (7.2.26)

Secondly, the physical observable depends only on the homology class of C. That is, for
each class in Hy(M) and each element in H we can construct a non-local operator and the
correlators of the local physical operators do not depend on the positions.

122 ) The perturbations
P

- One very important non-local operator is the top-form .
S(M) = /‘ 0 (a). (7.2.27)

Since ¢(2) is a volume form, which is integrated over the space-time, it possesses the same
symmetry as the action. So we can modify the action of the topological quantum field
theory by adding (7.2.27) with some coupling coefficient ¢

S St /M $0), (7.2.28)

Therefore, the top-dimensional partner of any local observable defines a perturbation of the
topological field theory. We can in this way define a multi-parameter family of topological
field theories whose partition functions are given by

Z(M, 1) <exp2tk f #0) > (7.2.29)

—

7.3 Topological Conformal Field Theory

A partticular class of topological field theories is topological conformal field theory(TCFT),
which means that we impose the conformal invariance on the general topological field
theory . It is wellknown that any TCFT can be obtained by twisting suitable IV =
superconformal field theory. So let us begin with the later object.

7.3.1 N = 2 Superconformal Field Theory

The N = 2 superconformal algebra contains the following four generators: a stress—energy

tensor T(z), two spin 3/2 supercurrents Q% (z),Q7(z) and a U(1) current J(z). Their
mode expansions satisfy the algebra[74]

[Ln, Lm] = (TL - m)Ln+m + — 12 (TL — 1)5n+m0
[LmJ ] = —mJuim, [ in] = (_ _T)Qn-(-r
[Jn) J, ] = §m5n+m 05 [JTH mia] iQn—{»m:{:a

_ c 1
{@7,QF) = 2Lesa (s = ")t 507 = Db
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where in N S-sector, 7,5 € Z + %; in R-sector, 7,5 € Z.

Unitarity gives the following restrictions on the conformal weight and U(1) charge of
the chiral or anti—chiral states

h > |ql/2, h<c/6 (7.3.30)

the first equality only holds for primary states. This result immediately leads to a remark-
able effect, that is, all the OPE of the primary fields are non-singular and still primary!.
The second inequality shows the conformal weight is bounded above, so a non—degenerated

theory only has a finite number of the primary fields, and_they possess the Ring structure
which is called chiral primary ring.

7.3.2 Twisting Procedure

The twisting procedure is first suggested by Witten[18], then proved by Eguchi and Yang|[75].
Its basic idea is to improve the stress tensor such that the Virasoro algebra is centerless.
Concretely

7%@-aj%z)=ixzy+%aJ@) (7.3.31)

which gives in particular Ly — Lo + 1Jo and accordingly adds the charge to the conformal
dimensions

h—h=h-1q. (7.3.32)
So Q* becomes spin one current Q(z), @~ now is a spih two fermionic tensor G(z). The
algebra generated by the modes L,,G,, Qn, Jn of the four currents is

[Lm) Ln] = (m - n)Lm+n7 [Jma Jn] =d-m 5ﬁ+m,0)

[Lm, Gn] = (m - '"')Gm+m ‘ [']rmGn] = —Gmin,

[Lm,Qn] = —nQmyn, [']man] = Qmin,

{Gm, Qn} = Lm-l—n -+ TLJm+n -+ ';‘d . m(m+1)5n+m,0,

(7.3.33)
[Lm,Jn] - “TLJm+n — %d . m(m+l)5,n+n,g.

where

C
d= =
3

the above algebra explicitly shows that the Virasoro subalgebra has vanishing central
charge. So we arrive at a topological field theory , in which Qg is BRST charge.

Since the physical states should be @—closed, so they are ground states or chiral primary

fields.

PThis can be checked very easily, once we noting the fact that U(1) charge is additive.
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7.3.3 The Selection Rules

From the algebra (7.3.33), we see that the U(1) current has a central charge d. This indi-
cates that J(z) does not transform as a proper current under coordinate transformations,
and results in the background charge d - (g — 1) on Reimann surface of genus g. Since
the theory is general covariant, so this background charge has to be compensated. This
requirement leads to the selection rule for the correlation functions .

< if .- i, >g (7.3.34)
is non-vanishing, only if
> g =d(1-g). (7.3.35)
=1

7.3.4 Generalized SL(2,C) invariance and integrability
In the superspace, any local operator is associated with a superfield
(2,7 6,0) = ¢ + ¢(196 + ¢(>1)g + ¢{)68. (7.3.36)

Consider an arbitary correlation function on the sphere

(I f & &0 2i(2,7,6,0)).. o (7.3.37)

i=1 -
due to the generalized SL(2,C) symmetry, generated by operators Lo, L,, L_; and Gy,
G, G_1, this correlator is ill-defined. In order to obtain a finite answer, we have to
factorize out the infinite volume of this group, in other words, we should fix three of the
z-coordinates, say zj,2s,23, at 0, 1, and oo, and put three of the #-coordinates to zero.
Then we are left with a well-defined correlation function

(606080 [6... [ 62),. (7:3.38)

Since we started from an expression that was explicitly symmetric in all indices i1,...,%s,
this correlator also has this permutational symmetry. That is, it does not matter which
three operators we represent as zero-forms—the generalized SL(2,C) invariance tells us
thatwe can interchange a zero and a two-form [76, 7T].

In terms of the coefficients c;;x(t) the permutation symmetry of (7.3.38) gives the im-
portant integrability condition ‘ ‘

56,’_,';; i 8c,<ﬂ

ot; Oty

(7.3.39)

which is followed from the conformal invariance, and immediately implies
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1. All the structure constants can be derived from the 7—function of the hidden inte-
grable hierarchy? '

& log

the free—energy F' = log 7 can be symbolically defined as
F(t) = <exp2t,~/<§i>, (7.3.41)
2. The metric 7;;(t) on the Hilbert space of states is independent on the couplings t.
: () _ 8
Since ¢y’ = 03.

3. Finally, the anomalous U(1) symmetry will imply the following scaling relation for
the free energy of the form(see, for example[76])

> (g — 1)@%1?@) = (d = 3)F(t). - (7.3.42)

J

Remarkably enough, these three ingredients will be sufficient to solve the theory in many
special cases, in particular for all models with d < 1 [77].

7.4 Topological Léndau-Girfiburg models

In the previous section we only gave a formal description of the TCFT. Now let us consider
some of the examples, among them the Topological Landau-Ginzberg Model is of partic-
ular importance, since it maps the operator ring to a polynomial ring, so establishes the

connection between the topological conformal matters and the Krichever’s dispersionless
KdV type of integrable hierarchies.

A general LG-theory is described by the following action
§= [ ddi- K(X, X+ [ &=d0 - w(xi) +ce. (7.4.43)
where X; and X; are a set of chiral N = 2 superfields. vK(X;,X;) is the kinetic term,
K(X;, X7) = X X;

for the free field realization of N = 2 superconformal algébra. W(X;) is the superpotential,
which completely determines the dynamics of theory. After the integration over (6, ) and

In fact we can linearize egs.(7.3.39) to get a linear integrable sysyem, see [73].

¥This is typic property of the topological conformal matter, if it coupled to gravity, the gravitational
screening allows non-vanishing 2-form of the puncture operator, which is area.
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eliminating the auxiliary fields[78],

S = / &% (8.2°0:5 + XL0:9} + X0 ¥k
t e 5 T VYR G g T szfamfam7)°

(7.4.44)

right now the superpotential W (z;) is only function of the bosonic fields, which should be
quasi-homogeneous{79, 80]

W%z = AW (). | © (7.4.45)

such that Landau-Ginzburg models become conformal invariant at the renormalization

group fixed point. The most important properties of Landau-Ginzburg models are the
following

(3) Each chiral primary field ¢ corresponds to a polynomial ¢(z;) with weight g; equal

to its U(1) charge[53]. So the chiral primary operator ring is isomorphic to a polynomial
g 0
ring .

., Clz] |
"= g (7.4.46)

which is equipped with the ordinary algebraic multiplication

$iz) ¢i(=) = Xk:cijk(lsk(m) / / (mod W'(z)). o - (7.4.47)

(#1) The inner product should be compatible with this multiplication, and is thereby
uniquely determined to be

< ¢igj >=res; (%m—)dw) : (7.4.48)

This enables us to calculate all the perturbed correlation functions .

(ii1) The perturbed algebra is still of the form (7.4.46), but with a more general super- -

potential, and the dynamics is given by an integrable hierarchy.

Now let us take the A,_, ring as an example to show what kind of integrable hierar-

chy we can get, and how the superpotential W completely determines all the correlation
functions (before or after twisting).

1Once we write down explicitly the BRST transformation, we find that in particular

: : ow ; ; ow
t pemd b= e LS = = -
{Q¥i}=6¥ = 5=, {Q,¥k}=8%= -5

so any function of the form f = ¢'8'W is Q-exact. Therefore we should mode out the ideal generated by
-g‘—n’:"; =0, in order to get the physical Hilbert space.
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In this case, the non-perturbed superpotentlal is W(z) = z", and the physical states
corresponds to qS = ' with the charge ¢; = £. The metric is

Mij = Oitjn-2 (7.4.49)

After perturbation, it is expected to become
W =z"+ Z ui(t)z'. (7.4.50)

where u;(t)’s are to be determined functions of (n — 1) coupling parameters tost1y " ytnoa.

Learning from the operatorial formulation, ¢; is the coupling constant corresponding to

the perturbation generated by the 2—form of ¢;, so ¢; can be considered as the response of
W with respect to the change of ¢;, i.e.

$i(z,1) = @/— = }; (7.4.51)

z+l

On the other hand, the constant metric indicates that all ¢;’s should be ‘orthogonal’,
therefore their explicit form is

) » (z+l)/n
OB +1dW | (7.4.52)

Here d = §/0z, and the + indicates a truncation to positive powers of z. Combmmg the
equatlons (7 4. 51) and (7.4.52), we obtain the 1mportant result

ow 1 8 __ in

Krichever has proved that thisis a solutmn of trucated KdV hierarchy subjected to Virasoro
constraints[81].

Now let us consider the free energy of the model. Using the inner product (7.4.48), we

get

ciji(t) = res I((ﬁ‘fﬁ" z) (7.4.54)
After integrating twice we have

0 res (W)

ot G+Dm+itl) (7'4'55)

‘substituting it into eq.(7.3.42), we obtain the explicit expression of the free energy in genus

ZE€TO

n-2 n)t resx(W )
F= Z (z—l—l n(n +1+1)(d — 3)

(7.4.56)
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7.5 T_ihé V"’co"uplirig of topological matter to gravity

Let us consider the coupling of topological matter system to gravity. In the presence of
gravity, the metric of the base manifold becomes a dynamical variable, its effect is that all
the primary fields will be gravitational dressed and take the form

O, = (’)
where 0 s are primary fields of topologlcal matter, and o’s are grawtatlonal dressing
operators with non-negative integer 7. In partlcular

00,0 = (’)0 0y = 0pg = 77

- is so—called puncture operater. For each O, ;, we have one corresponding 2——form (9&2,
which can be added to the original action, therefore the general perturbed action is

S SO‘*‘Ztaz/O((f,z" ‘
For each primary field we have one infinite series of perturbation parameters. The param-

eter space of all ¢, ; is called phase space, while ¢4 ¢’s form the small space. Our task now
is to calculate the correlation functions

< Oahz}Oaz,iz ;,;..Oamzn>g R DS S AL v SRR

As we ah:eady konw that in the small space TCFT is cha.ractenzed by the first series -
of flows of the truncated mtegrable hierarchy together with the scaling laws. When we ;
couple TCFT to gravity, due to the gravitational dressing procedure, we should replace
the truncated hierarchy by the full integrable hierarchy, and the scaling law is replaced by
‘the puncture equation. So the theory in the full phase space is descrlbed by the complete
integrable hierarchy, and puncture equation, Whlch reads .- - :

0 i o ' :
s F =z Z toatosn™ + > (6 + Dtiyram—F. ~ (7.5.57)
ato,g 2 B i atz.'a . o 7

From this equation and the integrable hierarchy, we can easily derive that the 'partition
function satisfies the Wy—constraints. S T e :

7.6 Summary

In the previous sections we have discussed topological field theories, and their coupling to
gravity as well as their relations to integrable hierarchies. Now let us simply list the most
important properties of the various theories.

Topological Field Theory :
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1. The general covariance( or metric independence ), which can be considered as both

a BRST-symmetry and a supersymmetry, while the stress tensor is BRST—exact.

- 2. Factorization: all the partition function and correlation functions of a topological
" field theory are completely determined by a small (possibly finite) set of geometrical
data. : T T TN v '

3. Perturbation: the top—form operators preserve the general covariance, so as to gener-
ate the perturbed theories, whose algebraic structures are isomorphic to the original
one,: . g . Tt s st B : . . .

9—dimensional Topological Field Theory :

Besides the above ones, they still have

4Any 2-dimensional topological field theory are completely determined by two- and
three-point correlation functions , so as to be characterized by a Frobenius algebra.

Topological Conformal Field Theory : =

They are 2-dimensional topological field theory with the following additional properties
" 1. The metric 7;; is independen{ én fhg: perf”uyi'batik'oﬁﬂ-"pé;famyeters}.

2. The structure constants are three times dcfi'i}itivéé‘ of kthe logarithm of the r—function
. of the hidden integrable hier;;rcbyf ) R

S el T

3 There ex»istﬂs_‘_anry_ia.no‘mo‘us,U(l) S_Ymméﬁf}’,',which leads to the sele(vstioVn‘ rule at the
. conformal point and the scaling law for perturbed theory. L

Twopélogi(':al Landau—,—G‘inz’b‘eArg‘ Model

' Thisisa ;spzei:'i‘al.lxclassr of T CFT,‘WhQiéJé»hidtdgn' integrable hierarchy is the truncated gen-
eralized dispersionless KdV type. This hierarchy together with the scaling law completely
~ solve the model.

: CoUpling to Gravity:

~ Two ingradients are 4 - ‘
(%) The full integrable hierarchies.

(x*) The puncture equation.
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Chapter 8

The HiddenyTopologi(’falt Models in
Matrix Models

In chapter 3, we have shown that one-matrix models give rise to a lattice hierarchy of
(differential-difference) equations, as well as to a discrete string equation. After taking
the continuum limit, we obtain (in the even potential case) the KdV hierarchy and the
continuum string equation. In chapter 5, we pointed out that both the KdV hierarchy
and the corresponding string equation are intrinsic to the matrix model lattice — they
are no mere result of the continuum limit, as oral tradition seems sometimes to imply.
" “We do it by extracting the KdV hierarchy and string equations directly from the lattice
counterparts without passing through a limiting procedure. In the last chapter we saw that
both the KdV hierarchy and the string equation can be interpreted in terms of a topological
" field theory [17][18][53][69]. This may suggest to us that all the lattice quantities could
have topological meaning. This at first seems to be surprising, however we may get self-
confidence from the following wellknown fact: the Euler number of a Riemann surface %
~of genus h can be calculated with a continuum procedure by means of

Lo _op L T 0.1
2 — 2h 47r/g‘/§R o (8.0.1)

where R is the scalar curvature w.r.t. the metric g; but it can also be calculated by means

of
9-2h=V-L+F . (8.0.2)

with reference to a simplicial approximation of ¥, in which V,L,F are the number of
vertices, links and faces, respectively.

The KdV hierarchy and string equation obtained via a continuum limit are akin to the
RHS of €q.(8.0.1). The KdV hierarchy and string equation we discuss here are parallel
to the RHS of eq.(8.0.2). Since KdV hierarchy and corresponding string equation have a
topological significance, the analogy just presented is more than a simple suggestion.

Actually in this chapter we will at first discuss the topological field theory coupled to
gravity associated to the NLS hierarchy together with its perturbations. Our strategy is as

145




follows: using the non-linear Schrédinger hierarchy and the string equation, we will try
to show that the partition function and all the correlation functions can be derived from
only two correlation functions . One a is one-point function, the other is a proper combi-
nation of the multi-point correlation functions . They may interpreted as the fundamental
topological data of the model. This topological field theory looks different from the ones
considered so far in the literature[20].

8.1 The KdV hierarchy and the corresponding TFT.

The KdV hierarchy in the context of matrix models has been repeatedly analyzed, and our
results agree with the literature. However it is interesting to reconsider the problem from
our point of view, both in itself and as a preparation for the next section.

The KdV hierarchy and the correspondmg string equation are obtained by reducing
non-linear Schrodinger hierarchy

OR = Fiia = (33+4R6+2R’)F2, (8.1.3)
at21'+1 .

~where the mltla.l condltlon F,=R has been used Eq (8 1. 3) is the recursion rela.tlon for
g the KdV hlerarchy In pa.rtlcula.r we have - - : : .

“'——R R +6RR ST (8.1.4)
The connectlon Wlth the partltlon functlon is the same as in §5 5 eq. (5 5. 43), ie.
o )

azanN(t)_RN - . (8.15)

This means in particular tha.t the reduced partltlon functlon Z,is a T—function of the KdV
hierarchy. As we already knew in §5.5, the 7—function of KdV hierarchy should satisfy
Virasoro constraints -

L.7 =0, n> -1 (8.1.6)

where
b 1 0 2
L_y= Z(k + —)t2k+1'6—£—“— + —81'
b5l .
Lo = Z(k + = )tml + R , (8.1.7)
k=0 : |

T

Otokiant1 2 {5 Otokr1Otan ok’

Z(k +z )t2k+1

n>0

Now all the tools we need are at hand. -
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It has been shown by Witten [17] and Kontsevﬁ:ch [19] that the emergence of the KdV
hierarchy and the string equation havea definite topological meaning. In particular, consid-
ered in the framework of a topological field theory coupled to 2D gravity they constitute a
very efficient method to calculate correlation functmns Fo]lowmg [17] we deﬁne the action
corresponding to the KdV system as

S = So Z tZle / 02k+1 (818)
= k=0 . Y
The corresponding free energy is o L
t""t"2! tert : ‘
}“ = < O > 8.1.9
| {4?} n1, s nk‘ o1’ 03 | O2k+1 ~0 . ( )

where the sum extends over all the n-tuples of integers {n;} ={ni,n2,...,n%}, and < - >,
stands for a correlation function calculated When all the couplings vanish.  Let us also
introduce the notation ‘

6711 ann 5"):
oty otz? 8t2k+1

F= <<0'1 0'2 ..."0;1,’;_1_1>>

If we identify this free energy with the one mtroduced above, F = In Z, then we have
‘R = F" =< PP >, where P = ¢y, we can use the KdV hierarchy and string equation
to calculate the correlation functions for'any genus. The calculation is particularly easy
- in genus 0 and we will limit ourselves to this case. Then the full KdV hierarchy can be
~ replaced by the d1sper51onless Kdav. hlerarchy :
' ' 0 2k 1
Otort1 c(B4+ 1)

This can be easily obtziined by rescaling & and R by suitable powers of N and keeping the
- dominant contribution in N’ which simply amounts to discarding all the higher denvatlves
‘in t; in the flow equations. A straaghtforward result is then the followmg

L 8% B 9K (2 1)l Rhthrecthot

< Oa1 T Ok 1 = 07 Bty D; Tkl kiAot th,+1

R’“R’ o (8110)

(8.1.11)

where, in the RHS, 8! denotes here true integration with respect to ¢; (true integration as
opposed to formal integration, since here we cannot exclude a priori non trivial integration
constants). The expressions of the above correlation functions in terms of the coupling
constants can be found by solving the Landau-Ginzburg type equation which is obtained
by differentiating the £_, Virasoro condition

OF & 80F 8

9 9 )t 5 1.12
oty ,;(2k+1 Ay 2k—1 +2 (8.1.12)

where we have shifted 3 — t3 — g. For example the ﬁrst critical point is met at top4; =0
for k > 0 (small phase space). In this case we have

41

< P>= 20 <PP>=R=t1, < PPP >=1
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< . > denotes a correlation function in the small phase space. Therefore if we replace R
with ¢, in (8.1.11) we get immediately the correlation functions < ok, +102ky+1 - - - T2kn+1 >
in the small phase space, up to arbitrary constants coming from double integration with
respect to t;. These integration constants are determined by the string equation. For
example, from the £, Virasoro condition (8.1.7), after extracting the part relevant to
genus 0 and shifting ¢3 as above, we get the recursive relation ‘
< Opy3 >= 2ty < O9n41 > + Z“< Ook+1 > < O2n-2k-1 >
k=0

Similar recursive relations for multiple correlation functions can be obtained by first dif-
ferentiating the £, constraints with respect to the couplings and then repeating the above ’
derivation. One can verify that all these recursive relations are satisfied by

an—Z n 2’6, (2k1 + 1)!! tllcl +kottkn+1
< ... >= A
T 4102katl e T2t T st A Rl Rtk et ket

(8.1.13)

In the case n = 1 the first symbol in the RHS has to be understood as formal integration
w.r.t. t; (i.e. integration with vanishing integration constant — we will see in the next sec-
tion that this is not always the case). The normalization we used for the o941 is completely
natural in the context we presented, but leads to results which differ in normalization from
the ones in the literature. However it is enough to define new couplings t,

R O i | , | o
i, = 2'-(—-7:—;‘_—‘——2—t2,+1'5":~-£_r = 0,1,2,,.. P o (8114)

to recover the results of Gross and Miédalw [5],

‘ Two comments are in order to end this section. What we have done so far tells us
‘that the correlation functions of the fields ox can be calculated by using the path integral

of one-matrix models as correlation functions of ‘TT(M 2“'1). In other words we have the
correspondence ‘ : '

H TT(M2k+1) H d2k+1

The second remark is connected with the first. One should not confuse the fact that in
one—-matrix models the conditions S, = 0 and fz41 = 0 are related with the fact that
we put S = 0 at the beginning of this section. What we did is the following: the most
general one-matrix model allowed us to write down an integrable system (with S # 0);
next we defined a consistent reduction of the system specified by the condition S = 0;
the reduced theory depends on the odd coupling constants. One should bear in mind that
the constraint S = 0 is meant to be applied to the integrable system, not to the original
one-matrix model path integral. Finally, we would like to point out that our analysis
here is essentially based on the matrix model formalism, by the reduction procedure we
obtained the same result as we derived from topological approach in the previous chapter.
This confirms the eqgivalence of the topological gravity and the 1-matrix model with even
potential. '
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8.2 The NLS hierarchy an'dv"the corresponding TFT.

In this section we want to do for the larger NLS hierarchy what we have done in the
previous section for the KdV hierarchy; i.e. we try to define a topological field theory
coupled to gravity that corresponds to it. ' '

One quickly realizes that it is not possible to represent this theory simply by means of
the puncture operator P and its descendants as in the KdV case. There must be another
field, which we call @, coupled through some parameter in the theory. Since the only
parameterin the theory not already associated to some field isthe size IV of the lattice, we
assume that @ is coupled to the theory with coupling N. Of course we have to define the
differentiation with respect to N. We do it as follows: for any function fy on the lattice
we define the derivative 8, by means of

(e% —1) Iy = fyen = I (8.2.15)
Setting Dy = €% — 1 we have, conversely,
8y = In(Dy + 1) | -~ (8.2.16)

One can easily verify that 0, can be icientiﬁed_with the derivative with respect to N *.~
In particular, using the first flow equations, (5.4.32, 5.4.33), we obtain

(e® = 1) Ry = Rwy1 — By = =Sy - (8.2.17)

L ( 304__1) SN—SN+1 —SN—(hl(RN-l—SN)) (8 2. 18)

Next, RN is connected to the pa,rtltmn function through the folowing equatlon (see (5.5.43))
5? . o

ET —1In ZN(t) = Rn. (8.2.19)

The relation of Sy to the partition functlon is found by applymg Dy to both sides of the
equation (see eq.(3.3.10b))

a N-1 )
—InZy(t)= > S (8.2.20)
8t1 =0
and we obtain
0 .
8o
(e% - )aTlan\ = Sy (8.2.21)

Applying Dy and 3~ to eqs.(8.2.19, 8.2.21), we obtain identities, except when we apply D,
to (8.2.21). In that case we obtain the following compatibility condition

(e® - 1)2 In Zy = In(Ry + Si) + F(N) (8.2.22)

*It is obvious that when differentiating with respect to N we understand a continous extension of the
integer parameter V.
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where we have integrated once with respect to ¢; and f(NV ) is the corresponding arbitrary
(model dependent) integration constant. '

Eqs.(8.2.17-8.2.21) and the compatibility condition (8.2.22), together with the NLS
flows (5.4.37) and the Virasoro constraints (5.6.56), are the basis of our subsequent dis-
cussion. Henceforth, for the sake of uniformity, we relabel the new coupling N as {o.

Therefore

_9
| Oty |
Moreover we drop the label N from R, S and In Z and understand that it is included as

£, in the collective label ¢ which represent the coupling constants. In particular the first
Virasoro constraint can be rewritten '

©  §F OF

D T T (8:2.23)

o= N, 0o

etc.

where F(t) = In Z(t) and, for later purposes, we have shifted t; by —3 (which sets the first
critical point at t, = 0).

The result of adding the new coupling t, can be regarded as an enlargement of the
hierarchy (5.4.37). Beside the & flows with k > 2 we have now the to flow as well. This is
obtained by inverting eqs.(8.2.17) and (8.2.18) - , SRR

GoR =S — % (In(R + §"))" + (8.2.24)

805 = (In(R +5))’— -;- {ln <1+S’(1§ZE,SI)),) } + - (8:2.25)

eee
T

where dots denote higher order derivatives in £;.

8.3 The hidden TFT in 1;miatrix model“

Let us now pass to the field theory language. We want the free energy F to be generated
by an action

S=58,—Y t / o2 ' (8.3.26)
k=0

The problem is now to express the (perturbed) correlation functions

om o™ o ng _n n
oo B S e

in terms of R and S. Here

O’o-:Q, 7“0'1:P
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So, in particular,

R =< PP >, S =< (e? —1)P >= Z < PQ™ > ~(8.3.27)

-n=1

and the compahblhty condltlon (8.2. 22) means

<(?-1)" »=h (<< PPe? ) + f(to) (8.3.28)

The tools to calculate the correlation functions are the NLS flows and the string equa-
tion, or, equivalently, the Virasoro constraints (5.6. 56) Whlch contain both. Let us draw
first some conclusions concerning the small phase space, i.e. the space of couplings when
all the ¢ are set equal to zero except {o and ¢;. The first Virasoro constraint (8.2.23)
becomes o SR '

< P >=tot;
Therefore
<PQ>=t;,  <PP>=t, (8.3.29)
and, as a"éoynsequence, ) ’ Ry
: < PPQ > 1

- while all the other correla.tlon functions contalnmg at least one P msertlon vanish. The

correlation functmns Wlth only @ msertlons depend on the arbitrary function f(to0) through
(8.3.28).

'So far the correlatlon functlons look smnla.r to those of the CP1 model studied by

Witten, [17],(69]. But the hierarchy is different. Using the flows (5 4.37) we can write
down equatmns for .

<<0'n1- UnkQ>> or | <Un1"‘gﬂkp >
in terms of R,S and their derivatives. In order to obtain
K On) - Ony > |

we have simply to integrate either the first expression above with respect to ¢, or the second
with respect to ¢;. The integration constants have to be determined in such a way as to
satisfy the string equation.

Let us consider, as an example, the one point correlation functions. The n-th Virasoro
constraint can be rewritten, in the small phase space, as

n-1

< Opyg D=1t < Opyy > +2t0 <on>+ D (< 0p0ug >+ < 0p >< opg >) (8.3.30)
. B k_

The two—point functions can be obtained by differentiating the Virasoro constraints with

respect to iz, and so on. In this way we obtain a full set of recursive relations that allow
us to calculate all the correlation functions.
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8.4 The zero genus correlation functions

‘The calculation is particularly easy in genus 0 and from now on we limit ourselves to this

case. In order to obtain the equations relevant to genus 0 we rescale all the quantities by
suitable powers of N.

te — N5, R— NR, S—Ni§

and keep the leading terms in +. For example

S = <<PQ>>+§:Z,§W <<PQ’>>
In conclusmn in genus 0 we have | |
R =< PP >, . S=< P> (8.4.31)
while the compatibility condition (8.3.28) beéomes

< QQ >=1n < PP > +fo(to) (8.4.32)

where fy(to) is the appropriate genus zero term, derived from f(to) (it is model dependent).
The hierarchy (5.4.37) becomes the dlspersmnless }uerarchy, ie.

85 _ T
6R ‘ : T 2k — r e
EESESIN-TY ;T’,;r’+1 T Z (Zk 2 1) ( A ) (Rks 2k+1 (8'4'34)
SRS S '2<2kk<r+1 st e Terim

Notice that setting S =0 and keepmg only the odd ﬂows and usmg the redeﬁmtlons of the
previous section, we obtain (8.1.3)." ‘ S

From (8.4.33) we obtain

r!

) _ < k or—2k
<5Q>= % AT (REST=2) ) | (8.4.35)
, o<zk<r ' '
while from (8.4.34) we get
_ N r! k qr—2k+2
<o P>»= Y, (r~2k‘+2)!(k~—1)!k!R ST (8.4.36)
2<2k<r41

What we said so far for genus 0 is vahd in the large phase space. Now Iet us come to
the the small phase space. To begin with we have

< QQ >=1Into + fo(to)
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and
R =y, S=1t

If we insert this into (8.4.35) and integrate over fo (with a vanishing integration constant),
we obtain, in the small phase space

<L oy >=

T! k r—2k+2 o B )
% =2k 2)(k— D (8:4.37)

2<2k<r+2

We can obtain the same result by integrating (8.4.36) with respect to 1, but in this case
we have to add a suitable tg—dependent integration constant. oo

Notice that, both here and in (8.4.35,8.4.36), we have made a choice for the intégiation

constants. This choice can be justified on the basis of the string equation. For genus 0
eq.(8.3.30) takes the form

< Ongp >=1 < Ong1 > +200 <ou >+ Yo<op><onp> - (8:4.38)
: k=1 : . .

One can verify that eq.(8.4.37) does satisfy (8.4.38). In a similar way we can derive multi-
point correlation functions. - o

A few final comments. First, it is not possible to carry out the reduction from the
NLS TFT to the KdV TFT by simply killing-particular degrees of freedom. For example,
in the first case we have < PPP >= 0, in the second < PPP >= 1. Secondly, we do
not address here the problem of interpreting the NLS TFT presented above in terms of
algebraic geometry. The NLS TFT is rather different from the ones found in the literature.
We intend t“o" tackle this problem elsewhere. Thirdly, recently E. Brézin and J. Zinn-Justin
““also suggested to treat the size IV of the matrix as a flow parameter. Their method seems
to be similar to ours[82]. Finally we would like to add that a few subjects treated in this
chapter may bear some relation with ref.[50].
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- where as we used before, for any matrix M,

App endlx A

The Integrablllty of the Generahzed
Lattlce Systems

We generalize the Toda chain lattice system to the non-symmetric cases (see below eq.(A.1.2)),
~and show that these systems possess a bi-Hamiltonian structure[22].

At first we introduce some more notations.

My, = —1-]1/[(0)' +M_, - M,=M, —-M_Q_JV,)I(U)'. T

VM_: the pure lower trlangular part

M(o) the dJagonal hne,
"M.;.: ’ the dla.gonal hne ‘and "pure upper tnangular part

:,~;We denote by glo(oo) the infinite dlmensmnal algebra formed by the semx—-mﬁmte matnces
- under matrix commutation, which has the following decomposition ¥

glo(c0) =N, @ He N,

the subalgebra A, (N_) contains all the upper(lower) triangular matrices, while H repre-
sents the Abelian subalgebra formed by diagonal matrices. Furthermore, we introduce two
subalgebras of gly(co)

P_EH@N_, P+EH®N+.

A.1 The symmetries of the discrete linear systems

Let us begin with the following discrete linear system
{ Q¢ = AL,

(A.1.1)
26 =(Q et
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where the Jacobi matrix takes the following explicit form

= VR BiBoinbiimn + 3 LOE 1850, 4§50 (AL2)

>0

Evidently @ € [—n,1] with arbitrary positive integer n, while R;’s and L( ) ’s are coordinate
variables of the system, whose equations of motion are

8
Bt

They are just the consistency conditions of the system (A 1 1), and we Wﬂl call them
discrete KP equations.

= 1(Q"s, Q] vr > 1. \ (A.13)

The discrete linear system (A.1.1) possesses two different kinds of the symmetries: a
gauge symmetry and a Weyl symmetry. The gauge symmetry preserves completely the
dynamics of the system, while the Weyl scaling can be used to reduce the system (A.1.1)
to the standard form(see below (A.1.8)).

A.1.1 The gauge symmetry

By gauge symmetry we mean the invariance of the system under the following transforma-
tions

Q——>Q GIQG
¢ —i= Glé

 where G is some mvertlble matnx such that the form of the system (A 1.1) remains un-
changed, i.e. , : , i /

(A.L4)

Qg = AE) ‘
Bt,- = (Q )96

‘That is to say, the dynarmcs of the system does not change In order to see what this
symmetry is, we consider its infinitesimal form G = 1 + eg. The invariance requires that
the matrix g should satisfy the equations

Q=0Q+Q,g),
aig = [Q5,9] — [Q, glo-

(A.1.5)

Two solutions are
g =2.0Q%  @=)aQf, VE>1 | (A.1.6)
k k

where by’s and c’s are time-independent constants. The effect of the transformations
generated by g;’s is only to rescale the basis by a A-dependent factor, while the transfor-
mations generated by the g»’s is in fact equivalent to tune the time parameters ¢,’s. They
form an infinite dimensional gauge group. We will see that, it is just this symmetry that
leads to the integrability of the discrete linear system.
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A.1.2 Weyl Scaling Symmetry

Another kind of symmetry of the system (A.1.1) is Weyl scaling invariance. Suppose

that we choose a diagonal matrix G. After the transformation (A.1.4), the time evolution

equations of § will transform to another form, but the equations of motion of the coordinates

R;’s and L ’s keep unchanged. The only effect of this transformation is to rescale the basis

of the vector £ by a A-independent factor. This symmetry has only one degree of freedom.

Now let us choose the following special gauge Gi; = .\/ngij( where we have introduced the
J

quantities h;/hj_; = R;, ho is an undetermined constant which is not important in our
analysis), then the Jacobi matrix becomes

Q=1+ Z A(l), A0 = Z AEI)E,',,'..[, (A.l.’ia)

=0 =l

A =10 AW = LOJRR Ry, VI21. (ALTD)

In this gauge, it can be easily checked that the linear system (A.1.1) takes the following
form

Q¢ = AL,
(A.1.8)
&t =(Q)-¢
The equations of motion (or consistency conditions of the system (A.1.8)) read
9 o o P
5 2=l )- Q o ¥l | (A.L9)

- We see that the equations of motion of the coordmates R s dlsappear in fact it is implicitly

involved in the equations of motion of the coordinates A;’s. Both system (A.1.1) and system
(A.1.8) appear in multi-matrix models (see chapter 6).

A.2 The integrability of the discrete linear system
(A.1.8)

As we know a dynamical system with n degrees of freedom is integrable if and only if there
are n-independent conserved quantities in involution[51][83]. For a system with infinite
many degrees of freedom, there should be infinite many independent conserved quantities
in involution*. One of the main approaches to show the integrability is the so-called bi-
Hamitonian method, i.e. one should prove that there exist at least two compatible Poisson
brackets. Compatibility of two Poisson brackets means

{Hes2, ir h(Q) = {He1, fr}2(Q) (A.2.10)

for any Hamiltonian Hy. Hereafter we will follow this line to construct two compatible
Poisson brackets, which gives the discrete KP equations (A.1.9).

*Here we only consider a system with one Jacobi matrix.
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A.2.1 The First Poisson Bracket’;

Our strategy is as follows. We try to define such a Poisson structure that gives the desired
equations of motion, i.e. the discrete KP—equatmns (A 1.9). In order to do this, let us
define the trace operation on the matrix space’

Te(M) = Z M;;.
. p=0

which gives a natural inner scalar product on glo(co). It is easy to see that the product is
symmetric and invariant under the action of glp(co)

Tr(AB) = Tr(BA) = A(B) = B(4),
Tr(A[B, C]) = Tr([4, B]C).

with respect to this product, Py and P- are dual algebras, their elements being in one-one
correspondence. On the other hand, the functions of A( )’s which span a functional space

F, can be defined as
@=T(QX),  dx(@=XcP,.

This is a function on the algebra P_. Consequently the algebraic structure of P_ determines
the P01sson structure on .7—— through the Konstant—-Kmllov bracket

{f\,fx}(Q)_Q([XY]),, XYE’P+ o (A21))

-Of course it is antl—symmetnc and sat1sﬁes the Jacobi 1dent1ty Furthermore one can show
that with respect to this Poisson bracket, the conserved functions are

= ——TT(Q ) de =Qly  VEx1. (A.2.12)
They are in mvolutlon ie. . |

{Hiy1, Hi h(Q) = 0.

So they can be chosen as Hamiltonians, and give the desired equations of motion, i.e. the
discrete KP-Hierarchies. On the other hand, these Hamiltonians generate the symmetry
transformations on the functional space F. In order to see its relation to the gauge trans-
formations (A.1.6), we recall that the co~adjoint action of P, on the functional space F is
defined through its adjoint action on the coordinates space P, i.e.

ady £5(Q) = fx(adr(Q)) = X(IY,Q)) XY € Ps.

Obviously the symmetry on F generated by the Hamiltonians is nothing but the gauge
symmetry on the coordinate space. Therefore, for a system with infinite degrees of freedom,

there must exist an infinite dimensional gauge symmetry, such that we could find infinite
many independent involutive conserved quantities.

tWe suppose that this summation is well-defined.
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A.2.2 The Second Poisson Bracket -

In order to get the second Poisson bracket, our starting point is compatibility of the two
Poisson brackets. If we can represent the right hand side of eq. (A.2.10) in terms of dH41,
then we can extract the second Poisson bra.cket 1mmed1ately Con51der the fo]lowmg matrix

F = [Q,Q%"] |
= (Q(Q5Q)s — (QR%):+ Q)+H(QQfnI+ — 1+ Q[LyQ)

From the equality

(Q,Q%] =10%,Q],
we obtain o

: J .
Q[ 1] — Z Q]+1,J J+1.9 l;+1.j = Z[deH, Qlu-

7=0 b =0

Therefore we get

{H+2, fY}L(Q) = Q([de+2:YD =Y(F) ,
= < (dHp1Q)+YQ > < (QdHi41)+QY >
B + Z Qz](QJ] '1 ; z+1 :)Y31 .;

’ ,i'/‘substltutmg dHp by X and 1ntroduce a X dependent matnx

b= ZDE D= ZM

o _1"0

we finally obtain the second P01sson bracket

{Fx, fr }2(Q) < (XQ)+YQ >_ < (QX)+QY >
+ < QDI+Y >—< QYI+TD > .

Writing explicitly in terms of the coordinates A( )’s we have

1,7-b-1

{Aga),A_(ib)}g - A(a+b+1)6 ivatl

+ Z(ASI)A§a+b—l)6i,j—b+l — AL ADS, )

=0

(a) () !
+ A;arAj 2(5“—51‘_0’1).

l=3-b -

(A.2.13)

(A.2.14)

(A.2.15)

here we understand A( ) = 0, if r > n. It is tiresome but straightforward to prove that the
above Poisson bracket is antlsymmetnc and satisfies the Jacobi identity. The following is

a simple example forn =2 and
Q:; = i1 + S;6ij + Li6ji-1 + Ajbjia.
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Eq. (A 2.15) gives us the following Poisson brackets -

(S, S:}s = Libijo1 — Libijer, ‘ (A.2.16a)
{85, L;}s = SiLi(6:-1 — 6i5) + Ajbij—a — Aibiju1, (A.2.16D)
{S;, A;}2 = SiAj(6ij—2 — 8:5), : (A.2.16¢)
{L;, Sj}z = L;Sj(5,~_,- — 5i,j+1) + Ajtgi,j_l — A,‘(S,"_H_g, (A.2.16d)
{L;, Lj}g = L,'Lj(&',j_l - §i’j+1) + S;A;6; -1 — AiS;bi 4, (A.Z.lﬁe)
(L AYs = LiAj(8ijc + Bigr — 65— b:ga)y (A.2.16f)
{Ai, Si}e = AiSi(6i; — bijsa)s (A.2.16g)
{A;,LJ‘}Q = A;LJ’(&',J‘_] -+ 5,']' — 5,',j+1 — 5,"]'_*_2), (A.2.16h)
{A,’, Aj}z = A;Aj(ﬁ,"j._g -+ 5,',]'_1/ - 5;,_,'.1.'1 — 5,',]'_.2). (A.2.1ﬁi)

From our construction of the Poisson brackets, at the first glance it seems to be possible
to deduce higher order Poisson brackets. However it is very difficult to work it out, and,
furthermore, the deduced higher order Poisson brackets probably do not satisfy Jacobi
identity. The only exception is the ansatz n = 1, 7 = 2, in this case, we denote

Q= L+S+R

Then playing the same game as before, we can get the thlrd Pmsson bracket of the Toda~
like lattice :

{Fx, irha(@) = —(< (XQ2)+YQ > - < (Q2X)+QY >

4 < (QXQ)YQ>-—< (OXQ)+QY > (A217)
'+"<YQC’1>—<QY02>) '
where | S
B = ZB,-EJ-;Q,J-,» V B Z[J& Q 105
j:O o =0
) J
D = Y DjEjnj D; =) [X,Qlu
j:O =0
and

il

o BI? +I,BI; + DQ% + 21, DI, + I,DS + SDI,
C, = I{B+I.BI,+QiD+2,DI, +I,DS + SDI,.

The Poisson brackets of the coordinates are as follows -

{Ri, Rj}1 = 0, {5,‘, Sj}1 = 0, ‘ ' (A.2.18a)
{Ri, S} = Ri(6i; — bij4+1)- (A.2.18Db)
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and

{R,‘,Rj}g = R,-R_,-(Sj,,-.,_l - 5,"_7‘_*.1), (A219&)

{R,’, Sj}z = R,’SJ’(&,J‘ - 5,',j+1), (A.2.19b)
{S,‘,Sj}z = R;bjiy1 — R:6; j1- (A.2.19C)
as well as
{R;, R;}s = 2RiR;(Si6:,j—1 — Sjbijs1) | (A.2.20a)
{Ri,S;}s = RiRj(6i5-1 + 6i5) — RiRia(8ijan + Gijea) ‘
+R;SJ2-(5,',J' - 5,',_7:}.1), (A.2.20b)
{S,‘, Sj}g = (S, + Sj)(Rj(gi‘j_l —_ Ri5;‘j+1). (A.2.20C)

These Poisson brackets have been derived in[37] by a straightforward calculation, while
now they have been obtained from the sytematic analysis. In the continuum limit, if we
set the infinitesimal parameter € = —}\7, and suppose that

{ Ry — 1+ 12(u(z) + v(2)),

(A.2.21)
S; — 2+ 18 (u(z) — v(z))-
after introducing a néw Poisson bracket |
Ly=30k -4
We get‘ twé copies of Vira.s‘dro algebras | o
{u(z),u(y)} = %(83 + 4u(z)0 + 2u'(2))8(z — v), (A.2.22a)
fo(2),o(w)} = —3(8° + (=)0 + 20/(2))6(= — 1), (A.2.22b)
{u(z),v(y)} = 0., . (A.2.22¢)

A.3 The Integrabilify of The System (A.1.1)

In the previous analysis, we have gauged away the Weyl symmetry killing in this way one
degree of freedom. So the coordinates R;’s do not appear in the Poisson brackets, nor in

the discrete KP equations. Now let us see what is the suitable Poisson brackets including
them explicitly.

If we do not fix the Weyl symmetry, then we have the discrete linear system (A.1.1),
whose integrability can be analysed in almost the same way as before. The only difference
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is that in this case Q € [-n,1] but the tangent ‘vector belongs to [—1,n], so we should
make use of R—matrix of glg(co), which acts in the following way

R(Ei;) = Bij, i< g,
R(E;) = 0, S (A.3.23)
R(E;) = —Eij, i> ]

which defines the following Lie—algebraic sfrﬁcture on the coordinate space
[X, Y]z = [R(X), Y] + [X, R(Y)]

Now let us consider the induced symmetry transformation on the functional space by gauge
symmetry (A.1.6), which is in the coordinate space.

fx(Q) — G fx(Q)G = f_\'(G—lQG) € F.

In particular, set g = Q*, and introduce the quantities

1
Hy=Tr(@), k>0,

then

§£x(Q) = X(1Q,9]) = 5 QdHien, XIx),

which can be considered as the transformation generated by function Hgiq through some
Poisson bracket, which is the first Poisson bracket

{5, frh(@) = 5Q(X, Yx) (A.3.24)

With respect to this Poisson bracket, Hy’s are the conserved quantities. Chbosing one of
them as Hamiltonian we recover the KP-Hierarchies. Obviously, this Poisson bracket is
antisymmetric and satisfies the Jacobi identity.

In order to construct the second Poisson bracket, once again we use compatibility
condition (A.2.10)(since it is valid for any integrable system). Finally the straightforward
computation shows that the second Poisson bracket is

{fe, frh(Q) = § < QXR(QY) - R(YQ)XQ > (A.3.25)

In particular, for the case n = 2, we have

Qi = /i1 + 53655 + LiSjim1 + @652,

where

\/R;lj = Lj, ” \/RjRj_laj = Aj,
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the Poisson bracket (A.3.25) gives the Poisson algebra which contains (A.2. 16a—A 2. 161) as

a sub—algebra, besides, it also consists of the following omes

{S”R }2 S R; (5 ,J -1 zj)) (A.3.26a)

{LuRJ}2 —_ L R; (51,1 1= i,j+1)7 (A.326b)
{Ai, Rj}z = A,‘Rj(é-i,j..]w-— 5,',_7'.*;2), (A.3.26C)
{Ri,Rj}2=0. | (A.3.26d)
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App endix B

The Derivation of ylfhe'ﬁViI:ast’)ro
Constraints

In this appendix we will derive the first few Virasoro constraints (3.4.15) explicitly.

Our starting point is eq.(3.4.14). Since we will use it repeatedly, so we simply quote it
from chapter 3 L Fer L, T, O

TT(Q”;“(M—V'(Q)%rM)) S0 nz-l o (Bod)

" The important point is that matrix;M above is purely lower triangular, so its transposition
M is purely upper triangular. This property enables us to do very straightforward calcu-
lation, so as to prove that the egs.(B.0.1) are true for n = —1,0,1,2. Then, the algebraic
structure (3.4.2b) guarantees the validity of the egs.(B.0.1) for any n > —1. Concretely
speaking, for any finite integer n, we at first express the “trace” in eq.(B.0.1) in terms
of the quantities B(") introduced in eq.(3.4.10); then use eq.(3.3.10b) to rewrite it as the
derivatives of the partition function with respect to time parameters. Now let us see some
simple examples.

(7). L_—constraint:

In this case n = —1, from eq.(B.0.1) we 1immedia.tely ha,vga
Te(M) = Te(M) = 0,= Tx(V'(Q))=0,
noting that
Trl = N,

we get

Nt — Zrt,a—a-—anN(t) =0,
r=2 tr1 :
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or equivalently

L_1Zn(t) =0, L= Z’rt — Nt,. (B.0.2)

-1

which is the string equation represented in terms of the partition function .

(it). Lo—constraint:

Now we consider the next case n =0, obviously we have

S N-1

TI(QA’I): Z (Qn n-l-lﬁ/-[n"rl n) Z Bn+1 ‘ ‘—'N(N + 1),
n=0 n—O :
N—

TI(QEI)’—- Zl(Qn,n_l(]W)n—l,n) Z Bf,” =3 - 1)

therefore eq.(B.0.1) shows that

TI(QV'(Q)) Zrt Tr(Q") = N?,

r=1

which leads to the Lo—constraint =

(zzz) Ll;cdn5£féinf: ‘
ThlS Vc‘aéé éoffesp&ndé ton =1 in eq(BOl), a.t first we see that 0
= | o | y(l)
To(Q'M) = 3 (@2 nsa Mtz + Qs Matin) = B + BN (Sa+ Snan)
n=0
N-1 n
= Z (Z Si - (n + 1)Sn+l + (n + 1)(Sn + Sn+1))
=0 1=0 .
-1 n - .
-y S+ +1)8.). (B.0.4)
n=0 =0
Similarly
_ N-1 N
TI(QZ‘A/I) = Z ( nn—2(A‘[)" 2,n + Qn n-1 ( [)"‘1-"): Br(12) + Br(tl)(Sn + Sn‘l)
n=0
N-1 n-2 N-1 n
=3 (X 8= (n=1)Sur +Su+ Suct))= 3. (X Si+ (= 1)S,).  (B.05)
n=0 =0 - n=0 =0
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Summing them together, and noting that

N-1 n -1N-1 N-1
Si=Y > Si=> (N-1)S,
n=0 =0 ) i=0 n=i i=
we get
_ ‘ N-1 n A
Tr(Q*M) + Tr(Q*M) =2 ) (Z Si + nSn) V
: n=0 =0 )
N-1 N-1 "~

=23 ((N —1)S; —!—z'S,-‘)Az 2N > 5; =_§NT:Q, ,

1=0 1=0

Now using eq.(B.0.1) and (3.3.10b), we can get the L;—constraint

i rt, Tr(Q"*!) = 2NT:Q,

r=1

or

= 9 b3}
LiZn(t) = L= t,(—— —2N—.
() =0, L Z_’ET Oty 41 Oty

| (B.0.6)

(B.0.7)

One remark should be mentioned. One can check that these three constraints L_y,Lo,L;

form a closed algebra, which is sI(2).

(iv). L,—constraint:

The most interesting case is the constraint L., which corresponds to set n = 2 in

eq.(B.0.1). We also follow the same procedure as before

e (Q*M)

N-1 : _‘ : ’ ‘ S
= (@ pisMusan + Qs Mugzn + Qs Mot 1n)

n=0

=> (B,(fgg + (Sn + Sna + 5n+2)Br(1222

n=0

+(S;); + SnSn-l-l + Sﬁ_}.} + Rn + Rn-l-l + er+2)Br(11-31)

substituting the eqs.(3.4.12a-3.4.12c) into the above formula, we get a simpler expression

N-1 n+1

Te(Q*M)= > (23 Bi + (n + 1)(Ra + Rota)

n=0 1=0

+3 82+ (n+1)S2 + D 5:Sn).
1=0 =0
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£,
[

On the other hand, we also have

Tr (QB(]VI))

= z ( nn-— 3 ]VI)""3 nt Qn n—Z(M)" 2n + Qn n-—l(NI)n"laﬂ)
n=0
N-1

= 3 (B®) 4+ (Sa+ Sa-1 + Sp-2)BY
n=0

+(S2 + SuSno1 + iy + Bn + Rn+1 + Rn_l)B(”)
N-1 n+l

= Z (2 Z R + (TL - 2)(Rn + Rn+1)
n=0 1=0

+3° 52+ (n—2)S; £38:8). (B.0.9)
1=0 1=0

Summing them together, we get

. N-1 n-1
Te(Q*(M + i)=Y (43 R+ (2n+ 8)(Ru + Rns1)
n=0 =0
+zz 52+(2n+1)52 +2255) ~ (B.0.10)
i=0
~ Since -
N-1n  N-1N-1* N-1
SRi=Y Y Ri=) (N-ik,
n=0 1=0 i=0 n=1 =0
N-1 n N-1N-1 N-1
> Si= St =Y (N -1)S,
n=0 =0 i=0 n=t . 1=0
and
N-1N-1 N-1n-1
(TIQ) 35 Sl _}js +235° Y SiSn.
n=0 1=0 : i=0 n=0 1=0
We could write down the pure R-terms like
N-1 n-1
S (43 Ri+ 20+ 3)(Ro + Boi))
n=0 1=0
N-1
= 3 (4N —§)Ri+ (2 — DR, + (2 + 3)Ris1)
1=0
N-1
=4N > Ri+ (2N +1)Ry
i=0
N-1
=2N Z (R, +'Ri+1) 4+ Ry. (BOll)
1=0
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Similarly, we can also rewrite the pure S—terms in (B.0.10) as

N-1 n n—1 N-1
S (284 (@n+1)S2 423 SiS.)=2N 3 52+ (TxQ)”. (B.0.12)
n=0 1=0 1=0 =0

Combining the eqs.(B.0.11) and (B.0.12), we get finally
2
Tr (Q°V(Q))= 2NTx(Q*) + (TrQ)

or in another form _ I o

o 2
LZn(t) =0, L =Zrt,—9——2N_6__+ 0

2. 3.0.1
Btrea 56, ot (B.0.13)

r=1

Now using the commutation relations (3.4.2b), we can derive all the other constraints.
Thus the operator L, plays the role of “creation” operator.

jicimmay
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Appéndix C

Wi +oo——C0nstraints in two—Matrix
Model

In this appendix, starting from the string equations and the discrete KP-Heirachies, we try
to prove that the partition function of the two—matrix model satisfies the W;4o—constraints
by using the algebraic structures.

'C.1 The improved coupling conditions

In order to derive the Wi o —constraints, we at first introduce the more general interaction
terms into the partition function - ' '

Zn(tr) = [dMdne, L | (C.L.1)

U(M;tie) = S tixTe(ME)+ > 60, Te(M]) + Y. CapTr(M;M;).  (C.1.2)

k=1 r=1 . ab>1

Then performing the same procedure as we did in the chapter 6, i.e. integrating out the
angular part and introducing the orthogonal polynomials™ like

En(A,t) = AT+ ma(An, ) = AT+
which satisfy the improved orthogonal relation
/dAldAgén(Al,t)e“nm(/\z,t) = b ) (C.1.3)
where .
p=Vi(A) + V(X)) + %1 CapX2X5, (C.1.4)
Vi(A) = kiltl,k/\’f, Va(Ag) = itQ,,A;. (C.1.5)

*For convenience, we choose polynomials different from those we used in the former chapters.
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Furthermore, define the Jacobi matrices like (6.1.4)

/ Ay Dot (Ms ) Aatlm(A2s ) = Qum(@)hm = Comnbin. (C.1.6)
and their conjugations
PO)E= 2t  P@n= o (C.L17)
TN =T -

Then we can get the spectral equations

ME= Q¢ A =02, (C.1.8)

together with the equations of motion of the polynomials, which give two coupled linear
systems(which have almost the same form as (6.1.10,6.1.12 with ¢ = 2). The differences
come from the coupling conditions and the equations of motion of the partition function .
Noting the spectral equations, one can easily see that the coupling conditions become!

P(1)+ V(1) + X aCa@ 1 (1)Q%(2) =0, (C.1.92)
a,b>1

P)+V,(2) + 3 6CQ"1(2)Q%(1) = 0. ~ (C.1.9b)
ab>1 '

The time evolution of the partition function are given by eqs.(6.1.33), while the coupling
dependences of the partition function are as follows e

T In Zy(t,¢) = Tr (Qa‘(l)Qb(z)), yg,b > 1. (C.1.10)

These are all we need for the derivation of the constraints.

C.2 Virasoro constraints

The W14oo—algebraic constraints possess a subset, which is Virasoro algebraic constraints.
Now let us begin with this simpler case. At this moment the discussion is valid for both of
the linear systems, so we temperially omit the system indices and consider general Jacobi
matrix @ and its conjugation P

Q,‘j = 0ji4+1 T Sj&"j -+ Lj5j,;_1 + ..., [Q, P] =1. (C.Q.ll)

tHereafter we will use the notations

Vi) =D Ktk QFH(D),
k=1

v, (1) = ik(k — 1)t QF3(2),

k=2

etc.
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which completely determines the quantities B{")’s defined by (3.4.10), which are given by
eqs.(3.4.12a-3.4.12¢c). That is to say, the string ‘equation does completely determine the
matrix P. So we can get P(1,2) in this way. Using these formulas and (3.4.13), doing the
same thing as we did in the appendix B, one can easily re—express the following identities
as the constraints on the partition function

; To(QU (1) (PO) + V(1)) + 3 aCu@H(1)QY2)) =0, n2 -1 (C212)
’ a,b>1
which is equivalent to " -
(LB + T Zy(t;¢) = 0, n > —1. (C.2.13)
where |
£[_1]1(1) = Zktl,k r1 +Nt1,1,
) 1
) = Z kty, "at +ZN(N+1), (C.2.14)
- 1,k
S o 0 n+1l, 0 1 et
W) = Ykt + (N > 1.
» (1) :4::1 R e T Z atlkatln g
and
Wy = »
T5(1) = aC’a +YC C.2.15a
e ' : i) uZ2X,l;21 baca -1.b bz>; lbatz ' ( )
TH(1) = 3 aCu o n>0, (C.2.15h)
E a,b>1 aoa-l-n b .
These operators satisfy the Virasoro algebras
(W), £B(1)] = (n —m)LhlL (1),  mym>-1,  (C2.16a)
[clH(1), (1) = o, n,m > —1, (C.2.16b)
[T, TR = (n = m)Tada(1),  mom > -1, (C-2.16¢)
From these algebraic structures, we can learn the following thing: in order to prove the
Virasoro constraints (C.2.13), we only need to check the first few cases,i.e. n = —1,0,1,2,

the other higher constraints can be otained by these Virasoro algebraic structures. Using
the same trick used in Appendix B, we can easily prove that egs.(C.2.13) are true for
= —1,0,1,2, so they are correct for all n > —1.

C.3 The higher rank constraints

In the previous section we only obtained the Virasoro constraints, which may be referred
to as rank 2 tensorial constraints. In order to get the spin-3 operators, we introduce the
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following notations

vo= Y CaQ(1)Q%2),
ab>1
v o= fv= ), aCaan 1(1)Q (2),
a,b>1"
T Z Cabca b Qa+a (1)Qb+b (2)
: : aba b >1

TFrom the trivial relation

/ ddh = 55/\2 (5,1(,\1,t)e 77m(/\2;t))

we get the folldwing identity
_PAL) 4+ V() + V) 2V () + v =0, S (C.3.17)

then multiplying it by Q"*2(1) from the left and taking the trace operation, we obtain the
rank-3 constraints ; '

(CB(1) + TE(1) Z(t;¢) =0, -~ n>-2.  (C3.18)
with the definitions IR N R L
£B() .—_i hiaty it +th Z LA
BEA A 1 ih=3 1°2 111 “281; 11.;_12_2 =3 “ Btl katll k-2
R e a L )
;::+2N(Z ltl ! + Nt1 2 + t 1) (0,3.193,)
i [ 3 atl,l :
1ﬂ2](1) = j{: gt ‘t 4—j£:lt j{: &
! N W= 1? bl “25 1ll+lz—1 1=3 M 3t1k5t11 k-1
+2NZzt1,6t +£[11(1)+N b (C.3.19b)
1,-1
'CE)Q](l) = i Lty by +Zrlt‘u§: o
I,la=1 6 LI+l 1=2 atl katll k
0 1
+2(N +1)) Iy, '8_{_ + 3N(N +1)(N +2), (C.3.19¢)
=1 .
2] oo {+n-1 62
LE(1) = Liloty b1y, + > It —_—
(1) 11,122;1 I T f; 1l Z v eOtrins
1 n—-2n-l-1 63
+ n— l+2 A
2(7’1, + 3) 12; 1; ( )6t1 latl katl n—l—k

LN 4 (DN 4 S Dt 2))
6 . ;,atl,n )
+ (2N +n+2)cl(1) o>l (C.3.19d)
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and

80) = Y adCuCuygs—
e ata' 236621 ata’ 2,6+’
5
+ a(a 1)Cab
a>3,b>1 acu 2,b
‘ 0 0
+ Z Clbclb ot '|’ 2y Ca Bt (C.3.20a)
bb'>1 Lo b’ b>1 26
‘ 8 - -
T,[lz](l) = Z aa CabC 1yt =
a,b,a',b’Zl = ’ v aC'a-l-cx +n b+b
0
+ a(a —1)Cap , n> 1. (C.3.20b)
0%1 8Ca+n.,b -
They satisfies the following algebra
[£3(1), L8] = (n - 2m)£n+m(1) +m(m+1)Lala(1), ¢ (C3:21a)
[£B(1), £8(1)] = 2(n = m)LEn (1) + (n — m)(n + m + 3)L7L,.(1),(C.3.21b)

[T2(1), TH(1)] = (n — 2m) T, (1) + m(m + 1T (1), (C.3.21c)
[T(1), TE(1)] = 2(n — m)Tidn (1) + (n — m)(n + m + 8)LEL(1),(C.3.21d)

where we have mtroduced the spm—4 operator

(1) = Z o a’la'20'30a151 Gazbgcaaba (90
oay ,b1.as ,bg,asu,ba >1 i oo = i i, ‘ay+az+az+n,b; +b2+b3
o 3 ,,,;):»:‘,’, . a .
+ —ajaqz(a; +ay — 2 C’a b, Casb C.3.22
o ahbx%mlz ,l' 2'("‘1 o ) T 0Cabarinbtt ( )
ol + a(a — 1)(a - 2)C'azJ n 2 -3.
. Cole a,bz>1 80a+nb s
= Now let us prove our claim—the cqnstrainfcrs_(C..?;.lS).v At first, noting that
Tr(P(1)) =0,
we can easily rewrite eq.(C.3.17) as follows -
(£B(1) + TB(1)) Zn (t; ) = 0, | (C.3.23)

which is the particular case of eqs.(C.3.18) with n = —2. Then, the algebraic structures
(C.3.21a) and (C.3.21b) guarantee that all the other constraints in eqs.(C.3.18) must be
true. We see that the algebraic structures help us simplifying the calculations dramatically.

In fact, the algebra (C.3.21a~C.3.21d) can tell us more. From the eqs.(C.3.21b) and
(C.3.21d), it is quite obviously to see that the algebra generated by {(£I(1) + T1(1)),n >
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—1; (£(1) + TH(1)),n > —2} does not close. In order to get a closed algebra, we should
include all the other higher rank operators, which are generated by the commuators of
two or more rank-3 operators. For example, from eqs.(C.3.21b) and (C.3.21d), we obtain

the rank—4 operators (ﬁgl(l) + T,Esl(l)). Furthermore, these operators commute with

(E,[f](l) + T,[,z](l)), generate the rank-5 operators. In this way, we can obtain any higher

rank operators, all of them together form a closed We,—algebra with the generators

0
)= L et O
a1 b >1 - autectartnb . tbe

+ lower orders

and the corrsponding LI(1). The algebra is

Tl(1), TE(1)] = (sn — rm T,[,r'*'ni_l] H+..., (C.3.24a
n m +

£E1(1), £8(1)] = (sn — rm)LE57 (1) + o (C.3.24b)
[Ty, £B(1)] = o, | | (C.3.24¢)

forr,s > 1; n > —r,m 2> —s.

This is very essential feature in our analysis. Since we have already shown that the
rank-2 and rank-3 operators in the W,—algebra mentioned above annihilate the partition
function , that is eqs.(C.2.13) and (C.3.18), due to the construction, all the other generators
of the Wo,—algebra will vanish the partition function , that is to say )

(£51(1) + TH(L) 2w (ki) = 0o, 2L nx-r (C.3.25)

For example, from egs.(C.3.21b) and (C.3.21d), we obtain the rank-4 operatorial con-
straints, - . . . . V

: ([:El(l)-}»T,[f](l)) Zn(t;c) = 0,"‘ ) 'n '2 -3. (C.3.26)

Comparing with the analysis in the preﬁous Appendix, we see that right now rank-3

constraints play the role of the “creation” operator, from which all the Witco—constraints
are followed. ’

In fact, there is another way to get the higher rank operatdrs, which is as follows: once
again we start from the coupling condition (C.1.3), consider the trivial relation

ar
/ d/\ldx\zéig" (5n(/\1,t)6“"7m()‘2’t)): 0,
since

8
1
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we get

B : ,4 e r~ si o .
[ (=57 (oot m) (,f/\,-,s
ar—l

_/d,\ d)\gne“z [(BM +V(A1)+u(/\1)) - ]ax 3

using the spectral relations (C.1.8) and the orthogonal relations (C.1.3), as well as the
coupling conditions (C.1.9a-C.1.9b), we obtain

(-1 P+ (6-V (1) +v)i=0, = (C.3.27)

multiplying it by @"*"(1) from the left and taking the trace, we can get the r—th constraints
(C.3.25).

For the same reason, we can derive another piece of W ,—algebra, which is related to
the second matrix.

(@) + TN ZN(te) =0,  r>1. (C.3.28)

where L{1(2) can be obtained from L](1) once we replace ¢, z’s parameters by t2,’s pa-
rameters. However,

0

TH2) = 3 Cwzz—, n>-1
: :’ | ab>1 aCab+n Nk
TH(2) = ‘Z b5 CasC.y e
aba b’>1 60 ata’ b+b'+"
+ S b(b— 1)Cab R O (C.3.20a)
ab>1 acﬂ b+n ) S
‘ , g
T£3](2) = Z blb2b3cﬂxbl 0026200353 o
ay,by,ag,ba,as, b;,>1 C90&1-{—az+u:x.ln+l>::+b.~,+n
, 5
+ Z "‘ble(bl + b2 2)00161 ‘azb2 5
ay,by 02,b2>1 ay+az,by+ba+n
+ > b(b —~1)(b 2)005 9 n > —3, (C.3.29b)
a,b>1 aC’a b+n
o) = __ 4
Tn (2) = Z blbg ...b,Calbl ...Carbr
al,bl,...,a,-,erl aCﬂl+---+arybl+n-+br+n
+ less c—terms, (C.3.29¢)
with the following algebra which is isomorphic to (C.3.24a-C.3.24c)
[T31(2), TH(2)] = (sn — rm)TEH70(2) + .. (C-3.30a)
[£8(2), £B1(2)] = (sm — rm)LEFN(2) + .., (C.3.30b)
[Tl(2), £E(2)] = 0, (C.3.30¢)
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for r,s > 1; n > —r,m > —s. We see that there are two isomorphic W,—algebraic
constraints in case of the presence of general interactions. The closed algebra formed by
these two pieces of W, algebras gives the complete constraints(one should keep in mind
that they are not direct product).

C.4 Wi —constraints

From eq.(C.3.27), it is easy to see that if we set all Cup,a,b > 1 equal to zero, but only
keep C1; = ¢ # 0, we have :

T (1) Zn(t;c) = ¢ Tr (Qr'l'"(l)Qr(Q)) (C.4.31a)
TI(2) Zn(t5¢) = < Tr(QT(2)Q7(1))- (C.4.31b)

substituting these into egs.(C.3.25) and (C.3.28), we get one piece of Wiieo—algebraic
constraints

wWirzZy(t,r,c) =0, r2>20; n2>-n, (C.4.32a)
Wil = (1) — £V (2). - (C.4.32p)
One can explicitly check that this result coincides with the one in ref[66]. A further

reduction would be possible. Suppose we set 2% = 0,k > g, then from the above equation,
we have = o

(1) + e THQ(2)=0 (C.4.33)
substituting it into the other constraints, we can get another We—algebraic constraints,

which is only expressed in terms of t—parameters and f,1 < k < g, and is a subalgebra

of the Wit in eq.(C.4.32a-C.4.32b).
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&

W—infinity Algebras

Appendix D

In integrable systems, there appear several different W-infinity algebras. For those unfa-

miliar with this subject, it probably causes some confusion. We devote this Appendix to
discuss them.

D.1 Wi, algebra

As we discussed in chapter 4, the KP hierarchy (4.1.9) possesses a bi~hamiltonian structure.

The two compatible P01sson brackets are glven by (4.1.7) and (4.1.11). Now let us begin
with the first Poisson bracket

{fmﬁ}dL)=LﬂXJ1} (D.1.1)

where
L=06+Y ulz)o. - (D.1.2)
=1
and
X = iﬁ‘xi(w) € P+,

with the testing functions x(z)’s(they are not functions of KP coordinates). Now set
X =0""%x(z), Y =06"Y();

Using the definition of the inner product on p (4.1.4), it is straightforward to calculte that

fx(D)= [ dexeluda),  £(L)= [ dede)us(a),
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and

<LXY > = < (0+Y w(z)s™)o xd"1Y >
=1

Jj—1 1
= Z(—l)l(Jl )/ dzugyj-i-1xY

=0
i-1 /2
_ 17-1 o 0 v
- B(0)) o) 03
Similarly
<IYX >=3(-1)("] / dzxuipi1g YV (D.1.4)
=0

Substituting them into eq.(D.1.1), we get
[ [ dedyx(@)iude), wim)hdw)
=1 i1 |
=/ dmx[z (J : )a'u,u,j_,_l _ (-1 (’ z )ui+jf,_1a']y(m) (D.1.5)
=0 =0 )

Thus we can immediately extract out the Poisson algebra

=0

g — .;1 o
{ui(z),ui(y)h = {Z (] z )a’u.-+j_,_1 ~> (-1 (‘ z )u,-ﬂ-_,_la’] §(z —y).(D.1.6)
- : : Coe =0 X . .
In particular, we have | |

{wle)uly)h = (Pwd +u;)8-v), (D.1.7)

and

{ui(z),v2(y)h = (iu,-a + u:) 8(z — y) + the higher derivative terms (D.1.8)
These relations simply tell us that u, forms a (classical) Virasoro algebra. And if we
ignore the higher derivative terms, u; behaves like conformal tensor with conformal weight

i(or spin—7 tensor, 7 > 1). Since the algebra (D.1.6) includes spin-1 conformal tensor, we
usually call it Wi, algebra.

D.2 W, algebra

In the previous section we only considered the algebra based on the first Poisson bracket.
In fact we can do the same thing for the second Poisson bracket. Then we are led to the
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following Poisson algebra

oo =[5 ()= S (o

=0 =0
-1 1-[-1 . 1—1—1 : . i-1 i-m-1
-2 > (=1 L Uipjt-k-10"w + >
=1 k=0 m=0 [=1
i+ j—-l-m-2 . . -
1\ (i+j—l—-m—2
Z (_1)"7 (1 m ) (Z 7 n m )ulam-l-n Uitj—m—n—I-1
n=0
et 1(i—1\ (11 k=1 |ern .
S 9D 9{E=V) Al | K P uj_k] 5(z — ). (D.2.9)
=1 k=1
Particularly
{ur(e),u(®)}e = (2120 + u})6(2 — v) (D.2.10)

It means that u, forms a (classical) Virasoro algebra. Generally, u; is a conformal tensor
with weight (i + 1)(spin—(i + 1) tensor ¢ > 1). We see that there is no spin-1 tensor in the
above Poisson algebra. This algebra (D.2.9) is referred to as Wy, algebra. One can check
that when we take the particular reduction (4.5.8), we recover the algebra (4.5.9a-4.5.9¢).

D.3 we Algebra

\

Now let us turn our attention to the dispersionless version of KP hierarchy . There is a
very easy way to get the dispersionless versions of the Poisson algebras (D.1.6) and (D.2.9).
The trick is the following: we simply disregard all the higher derivative terms. Then the

~ algebra (D.2.9) becomes

(), ws (W)} = [fws4j-10 + GBuirion

1—-2
+Z (('L -1 - 1)u,-+j_l_26u1 -+ (j -1 — 1)u,6u.-+,~_,_2)

=1
+i(7 — 1)11.;-1315_7-_1] §(z —y). ‘ (D.3.11)
This algebra is called wy, algebra. Setting
u; = RS, 12> 1.
We rederive the algebra (4.5.22).

D.4 wi e Algebra

The dispersionless version of the algebra (D.1.6) is

{ui(2),u;(y) 1" = [(J' — 1)0uipj-2 + (i — 1)u,-+,-_‘28] 5(z — y). (D.4.12)
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This algebra is called w; 4o algebra. Both w4 and w,, algebras describe area preserving
diffeomorphisms of Riemann surfaces[84].

D.5 The Quantized W—infinity Algebras

If we replace the Poisson brackets by operator product expansion (OPE), then Wi, and
W will receive quantum corrections. The corrected algebras are referred to as Wi .
algebra and W, respectively. . -
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YR,

Appendix E

Notations

E.lﬁ Semi—infinite matrix

In our analysis, we always meet the semi-infinite matrices. Now let us list below our
notations for any matrix M.

The decompositions

(M_ : the purely lower triangular part

=

Mgy : the diagonzﬂ line,

M, : the diagonal line and purely upper triangular part,

| M;;: the element at i —th row and j — th column

The truncations

1 1
Mg = '2—M(0) + M—) Ma = M+ - 51‘/[(0)
The operations
( Transposition : M;; = M;;
Truncated trace : Tr(M) = SNSY M

1 Non — truncated trace : T‘r(ﬁf) =32, Mij;

L (M),;= M3

1% ] Th;
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The sector

M((]) = Mj'j_l.,
We call the element M;(j) a coordinate belonging to the 7 — th sector.

Some particular semi-infinite matrices

(Eij) = 6irbjt, I.=Y Fiu,-- p=> iEa

i=0 . i

Gradation

deg[Eij] - ] - ’L
Using this notation, we intoduce one more definition

My = Z M; i1 Biin

the subindex means selecting the particular part with the given degree. For a given matrix
M, if its all non—zero elements are at the pseudo-diagonal lines with degrees in the interval
[a,b], then we will simply denote by M € [a,b].

E.2 Pseudo——diﬁ'erential"Jpefator :

The integration operator

ot o) = [ delu(e).

The truncations and operations

For any pseudo—differential operator

A= iu,(m)@, |

(( Ay =35 ui(z)0;: the pure differential part;
A =31 ui(z)d; - the pure infegfation part;
{ Agy = uji(z) = selecting typic term;
Tes aA =u_y(z): T iesidue; '
\ < A>=Ti(A)= [u_1(z)dz: inner scalar product.
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