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Introduction

The WDVYV equations of associativity were introduced by Witten [54], Dijkgraaf, Verlinde E., Verlinde
H. [13]. They are differential equations satisfied by the primary free energy F'(t) in two-dimensional
topological field theory. F(t) is a function of the coupling constants ¢ := (t!,t2,...,t") t* € C. Let 04 :=
(—9‘?—&. Given a non-degenerate symmetric matrix nqg, o, f = 1,...,n, and numbers ¢; =0, g2, ..., ¢, d, the
WDVYV equations are

DaOpO0F n™ 8,0,0sF = the same with a, § exchanged, (1)

010005 F = nag,  FOIT2¢, L A7) = X374R(¢, L4™), A e C\{0}

The theory of Frobenius manifolds was introduced by B. Dubrovin [14] to formulate in geometrical
terms the WDVV equations. It has links to many branches of mathematics like singularity theory
and reflection groups [48] [49] [19] [16], algebraic and enumerative geometry [33] [36], isomonodromic
deformations theory, boundary value problems and Painlevé equations [17].

If we define capy () := 8a0p0,F (1), cl5(t) = n""capu(t) (sum omitted), and we consider a vector
space A=span(ey,...,en), then we obtain a family of algebras A; with the multiplication ey - eg :=
el 5(t)ey. Equation (1) is equivalent to associativity.

A Frobenius manifold is a smooth/analytic manifold M over C whose tangent space T;M at any
t € M is an associative, commutative algebra. Moreover, there exists a non-degenerate bilinear form
<, > defining a flat metric. The variables t!,..,t" are the flat coordinates for a point t € M and
Nag =< Oa,08 >, &, = 1,2,...,n. The structure constants in T3 M with respect to the basis 01,...,0,
are Cogy (t) = 0o 004 F(t).

The manifold is characterized by a family of flat connections V(z), parametrized by a complex number
z, such that for z = 0 the connection is associated to < , >. To find a flat coordinate #(t,z) we
impose 6(z)df = 0, which becomes the linear system

dug=sCale,  0:6= U+

where fi := diag(p1, ..., fin), fla = ga— %, ¢ is a column vector of components £* = n**9t/0t*, a = 1,...,n
and Co(t) == (B, (1)), U := ((1—qu)t*c5, (t)) are n x n matrices (sum over repeated indices is omitted).

We restrict to semisimple Frobenius manifolds, namely analytic Frobenius manifolds such that the
matrix U can be diagonalized with distinct eigenvalues on an open dense subset M C M. Then, there
exists an invertible matrix ¥(¢) such that P/ ¥ ~! = diag(uy,...,un) =: U, u; # u; for 1 # j on M. The
second equation of the above system becomes:

%: [U+K§‘l} Y, wi=(u,.nun), weC, V=030 )

As it is proved in [16] [17], u1,...,un are local coordinates on M. Locally we obtain a change of
coordinates, t* = t*(u), then ¥ = U(u), V = V(u). A local chart of M is reconstructed by parametric
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formulae:
o =1%), F=Flu) (3)

where t*(u), F(u) are certain meromorphic functions of (u1,...,un), u; # u;, which can be obtained
from the coefficients of the system (2).

The dependence of the system on u is isomonodromic [29]. This means that the monodromy data
of the system, to be introduced below, do not change for a small deformation of u. Therefore, the
coefficients of the system in every local chart of M are naturally labeled by the monodromy data. To
calculate the functions (3) in every local chart one has to reconstruct the system (2) from its monodromy
data. This is the inverse problem.

The inverse problem can be formulated as a Riemann-Hilbert boundary value problem. It can be
proved [40] [35] [17] that if the boundary value problem has solution at u = u® (such that uf # u2) for
given monodromy data, then the solution is unique and it defines V' (u), ¥(u) and 3 as analytic functions
in a neighborhood of u°.

Moreover, V (u), ¥(u) and (3) can be continued analytically as meromorphic functions on the uni-
versal covering of C™\diagonals, where “diagonals” stands for the union of all the sets {u € C™ | u; =
uj, 7 j}. Since (ug,...,un) are local coordinates on M they are defined up to permutation. Thus, the
analytic continuation of the local structure of M is described by the braid group, namely the fundamen-
tal group of (C™\diagonals)/S,, (S, is the symmetric group of n elements). Since every local chart of
the atlas covering the manifold is labelled by monodromy data, then there exists an action of the braid
group itself on the monodromy data corresponding to the change of coordinate chart. This action is
described in {17] and chapter 1.

In order to understand the global structure of the manifold M we have to study the solution of the
inverse problem and (3) when two or more distinct coordinates u;, uj, etc, merge. ¥(u), V(u) and
(3) are multi-valued meromorphic functions of u = (u1,...,un) and the branching occurs when u goes
around a loop around the set of diagonals |J;;{u € C" | u; = u;, i # j}. ¥(u), V(u) and (3) have
singular behaviour if u; — u; (1 # j). We call such behavior critical behaviour. Although it is impossible
to solve the boundary value problem exactly, except for special cases occurring for 2 x 2 systems, we
may hopefully compute the asymptotic/critical behaviour of the solution, using the isomonodromic
deformation method [29] [26]. We will face the problem in the first non-trivial case, namely for three
dimensional Frobenius manifolds.

Instead of analyzing the boundary value problem directly, we exploit the isomonodromic dependence
of the system (2) on u, which implies that the solution of the inverse problem must satisfy the nonlinear

equations
ov

Fun Vi, V] 4)
ov
— = =1,..
aUk, Vk\Pa k sy 10 (5)
Opi—0

where V4 is a n x 7 matrix whose entries are (Vi)i; = %=* Vij. The WDVV equations are equivalent

to (4) (5). For 3-dimensional Frobenius manifolds, (4) (5) are reduced to a special case of the Painlevé
6 equation [17]:

2 1 1 dy\? 1 1 1 1d
o3t (@) -l

dz? y y—1 y—z]|\dz x z—-1 y-—zjdz

lyly— 1)y —=2) 2, z(z—1) Uz — Uy

A A A I T A it — 8-
+35 P P (2p )+(y_x)2 , unecC, = p— (6)

The parameter p appears in the matrix 4 =diag(p,0, —u) of (2). In chapter 1 and 6 we show that the
entries of V' (u) and ¥(u) are rational functions of z, y(z), %. The critical behaviour of V(u), ¥(u)
and (3) is a consequence of the critical behaviour of the transcendent y(z) close to the critical points
z=0,1,00.

Let Fy(t) == £ [(t*)%t? + t'(£%)?]. We prove in chapter 6 that for generic 4 the parametric represen-
tation (3) becomes

£ (u) = ma(z, p) (u2 — uy ), ts(u) = 13(z, 1) (ug —ug)' 2 (M)



il

Uz — U

F(u) = Fo(t) + F(z, 1) (uz —ua)**?, (8)

where 75(z, 1), 73(z, 1), F(z, 1) are certain rational functions of z, y(z), & ¥ and p, which we computed
explicitly. More details will be given below.

Uy — Uy

The two integration constants in y(z) — and thus in the corresponding solution of (4) (5) — and the
parameter 1 are contained in the three entries (zo, Z1,Z00) Of the Stokes’s matriz

1 2z To
S=10 1 =z ], such that o2 + z? + 22, — T0T1 %o = 4sin’(7p)
0 0 1

of the system (2). The Stokes matrix is part of the monodromy data of the system (2). They will be
discussed in chapter 1. Here we briefly introduce the Stokes matrix. At z = co there is a formal solution
of (2) YVp = [I+Z£ =+ + L& +.] e# U where Fj’s are n x n matrices. It is a well known result that
fundamental matnx solutlons exist which have Yp as asymptotic expansion for z — oo [2] . Let [ be a
generic oriented line passing through the origin. Let I be the positive half-line and I_ the negative one.
Let S;, and Sg be two sectors in the complex plane to the left and to the right of [ respectively. There
exist unique fundamental matrix solutions Yz, and Yy having the asymptotic expansion Yr for z — oo
in 87, and Sgp respectively [2]. They are related by a connection matrix S, called Stokes matriz, such
that Yr.(z) = Yr(2)S for z € 1.

A further step is to invert (3) in order to obtain a closed form F = F(¢!,...,t"). The final purpose
of the inversion is to understand the analytic properties of the solution F'(¢) of the WDVV equations.

The entire procedure described above is an application of the isomonodromic deformation theory to
the WDVYV equations and is the object of the thesis.

The first step is to properly choose the monodromy data in order to arrive at physically or geomet-
rically interesting Frobenius manifolds. We consider the quantum cohomology of projective spaces as
an important example of semisimple Frobenius manifold. For this example we compute the monodromy
data.

The quantum cohomology of CP?, denoted by QH*(CP?), is a (d+ 1)-dimensional semisimple Frobe-
nius manifold ([33] [37] and chapter 2 below). It has relations to enumerative geometry. A well known
example is the quantum cohomology of CP?. It corresponds to the solution of the WDVV equations for
n = 3 which generates the numbers N of rational curves CP* —s CP? of degree k passing through
3k — 1 generic points. Namely

oo
N
F(eh, 2,8 = - [ + ()] + ) € B (13)%k=1eh®  for (13)%ef” 0 9)
k:l

E—1)!

[

The global analytic properties of this function are unknown, except for (t3)3et2 — 0, and the inverse
reconstruction of the corresponding Frobenius manifold starting from its monodromy data may shed
some light on these properties.

e Results of the Thesis

i) The monodromy data of QH*(CP?). In chapter 4 we prove the following

Theorem [chapter 4]: There exists a chart of QH*(CP?) where the Stokes’s matriz S = (si;),
t,j =1,2,...,d +1, has the canonical form:

d+1 .
]t’b)’ 5]'2':07 1<)

si=1, sy=(-1)7" (
For any other local chart of QH*(CP?) the Stokes matriz is obtained from the canonical form by the
action of the braid group.

The canonical form is very simple, but it was never computed before, except for d = 2 [17].
general, the computation of the Stokes’ matrices of a linear system of differential equations is hard,
and we can rarely obtain an explicit form. In our case, we need to reduce the system (2) to a linear
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differential equation of order n and study the Stokes phenomenon for such equation, which is a special
case of a generalized confluent hypergeometric equation whose Stokes factors (which will be introduced
in chapter 4) were studied in [20].

The main difficulty concerns the reduction of the Stokes matrix to the above canonical form. We
start from a system (2) corresponding to a special point to € QH *(CP?) such that the matrix U has
both distinct eigenvalues and a very simple form which makes the computation of S feasible. But the
matrix S turns out to be very complicated (see section 4.10). It corresponds to the local chart containing
to. Hence, we have to move to other charts by the action of the braid group, which is non linear and
requires a hard analysis. We could devise the right braid and we obtained the canonical form.

Tt is to be remarked that the above computation proves, for projective spaces, a long-lasting conjecture
about the connections between quantum cohomology and the theory of derived categories of coherent
sheaves.

It was conjectured [18] that the Stokes matrix for the quantum cohomology of a good Fano variety
X is equal to the Gram matrix of the bilinear form x(E, F) := > (=1)% dim Ezt*(E, F) computed on
a full collection of exceptional objects in the derived category Der®(Coh(X)) of coherent sheaves on X.
More precisely, let Der?(Coh(X)) be the derived category of coherent sheaves on a smooth projective
variety X of dimension d. An object E of Der®(Coh(X)) is called exceptional if Ezt'(E,E) = 0 for
0 <i<d, Est°(E,E) = C and Ext®(E, E) is of the smallest dimension (if X is a projective space,
then Ezt?(E, E) = 0). A collection {E1, ..., s} of exceptional objects is an ezceptional collection if for
any 1 <m < n < s we have Ezt'(E,, En) = 0 for any 7 > 0, Ext!(Ep, E,) = 0 for any i > 0 except
possibly for one value of i. A full exceptional collection is an exceptional collection which generates
Der?(Coh(X)) as a triangulated category. This theory is developed in [46] [47] [8). We say that a Fano
variety is good if it has a full exceptional collection.

Tt is known that X = CP? is good, the collection of sheaves on CP* {O(n)}nez is exceptional,
and {Ey,Fs,..., Eqp1} == {0,0(1), .., 0(d)} is a full exceptional collection [4], [24]. In this case,
gij = x (0 —1),0(j — 1)), 4,5 = 1,2,...,d+ 1 has the form:

YA
gz)"‘( J—Z ) ?’<.7

gi=1, g5=0 i>]
The inverse to this matrix has entries a;;
i (d+1 ..
ai; = (1) (j—i) 1 <]
a;; = 1, aij=0 ’i>j

This matrix is equivalent to the one above with respect to the action of the braid group.

The mentioned conjecture claims that the Stokes matrix of the quantum cohomology of CP? is equal
to the above Gram matrix (modulo the action of the braid group: remarkably, this action on the Stokes
matrix for the Frobenius manifold coincides with the natural action of the braid group on the collections
of exceptional objects [55] [46]). The conjecture is proved in chapter 4 by our theorem above.

This conjecture has its origin in the paper by Cecotti and Vafa [9], where another Stokes matrix
introduced in [15] for the #t* equations was found in the case of the CP? topological o model. It was

1 z vy
suggested, on physical arguments, that the entries of the Stokes’ matrix S= | 0 1 =z | are integers.
0 01

They must satisfy a Diophantine equation 22 4+ y% + 22 — zyz = 0 whose integer solutions (z,y, z) are all
equivalent to (3,3,3) modulo the action of the braid group. The authors of [9] also suggested that their
matrix must coincide with the Stokes matrix defined in the theory of WDVV equations. We remark
that it has not yet been proved that the Stokes’ matrix for #£* equations and the Stokes’ matrix for the
corresponding Frobenius manifold coincide. This point deserves further investigation.

Later, in [55], the links between N = 2 super-symmetric field theories and the theory of derived
categories were further investigated and the coincidence of x(E;, E;) with the Stokes matrix of ##* for
CP? was conjectured.



The conjecture may probably be derived from more general conjectures by Kontsevich in the frame-
work of categorical mirror symmetry. To my knowledge, the subject was discussed in [32] (I thank B.
Dubrovin for this reference).

In chapter 4 we also study the structure of the monodromy group of QH *(CPd) and we prove that it
is related to the hyperbolic triangular groups (the case d = 2 was already studied in [17]). The concept
of monodromy group of a Frobenius manifold is explained in chapter 1.

ii) Once the monodromy data, in particular the Stokes’ matrix, are known, we have to solve the
inverse problem for the system (2) in order to obtain V'(u), ¥(u) and the parametric representation (3).
We face the problem for the first non-trivial case n = 3, which is reduced to the Painlevé 6 equation.
Therefore, we devote chapter 5 to the investigation of the behaviour of y(z) close to the critical points
z =0, 1,00 and to the connection problem between the parameter governing that behaviour at different
critical points. Moreover we give the explicit dependence of the parameters on the entries (zg, 1, Too)
of the Stokes’ matrix.

The classical Painlevé equation was discovered by Painlevé [43] and Gambier [23], who classified all
the second order ordinary differential equations of the type

d?y dy
de? R (:c,y, %)

where R is rational in %» meromorphic in z and y. The Painlevé 6 equation satisfies the Painlevé

property of absence of movable critical singularities. The general solution can be analytically continued to
a meromorphic function on the universal covering of CPl\{O, 1,00}. For generic values of the integration
constants and of the parameters in the equation, the solution can not be expressed via elementary or
classical transcendental functions. For this reason, the solution is called a Painlevé transcendent.

The connection problem for a class of solutions to the Painlevé 6 equation was solved by Jimbo [28]
for the general Painlevé equation with generic values of its coefficients a, 5, v § (in standard notation
of [26]), using the isomonodromic deformation theory developed in [29] [30]. Later, Dubrovin-Mazzocco
[21] applied Jimbo’s procedure to (6), with the restriction 2p ¢ Z. The connection problem was solved
by the authors above for the class of transcendents having the following local behaviour at the critical
points z = 0,1, cc:

y(z) = a2 (1 + 0(|z))), z -0, (10)
y(z) =1-a®W Q-1 +0(1-2%), -1, (11)
y(z) = oz~ (1+0(2|7%), z - oo, (12)

where 6 is a small positive number, a(¥ and o(? are complex numbers such that a(? # 0 and
0< R < 1.

This behaviour is true if z converges to the critical points inside a sector with vertex on the corresponding
critical point, along a radial direction in the z-plane. The connection problem, i.e. the problem of finding
the relation among the three pairs (a(i),a(i)), 1 = 0,1,00, was solved thanks to the link between the
Painleve’ equation and a Fuchsian system of differential equations

ay _ [Ao(x) . Ay (z) + A (

x) v
dz

z zZ—T z—1

where the 2 x 2 matrices 4;(z) (i = 0,z,1 are labels) have isomonodromic dependence on z and satisfy
Schlesinger equations. The local behaviours (10), (11), (12) were proved using a result on the asymptotic
behaviour of a class of solutions of Schlesinger equations proved by Sato, Miwa, Jimbo in [50]. The
connection problem was solved because the parameters o(®, al) were expressed as functions of the
monodromy data of the fuchsian system associated to (6). For studies on the asymptotic behaviour of
the coefficients of Fuchsian systems and Schlesinger equations see also [7].

The monodromy data of the Fuchsian system turn out to be expressed in terms of the triple
(z0,T1,Teo) Of entries of the Stokes matrix [21]. There exists a one-to-one correspondence between
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triples and branches of the Painlevé transcendents.! In other words, any branch y(z) is parametrized
by a triple, namely y(z) = y(z; o, 1, Too). As it is proved in [21], the transcendents (10), (11), (12) are
parametrized by a triple according to the formulae

z? = 4sin? (ga@) . i=0,1,00, 0< R < 1.

A more complicated expression gives a = a() (g, 21, Tco).

Due to the restriction 0 < Ro(? < 1, the formulae of Dubrovin-Mazzocco do not work if at least one
z; (i =0,1,00) is real and |z;| > 2. This is the case of QH*(CP?), because (z0,71,Ze0) = (3,3,3). To
overcome this limitation, in chapter 5 we find the critical behaviour and we solve the connection problem
for all the triples satisfying
T £+2 = oW #£1, i=0,1,00

The method used is an extension of Jimbo and Dubrovin-Mazzocco’s method and relies on the isomon-
odromy deformation theory. We prove that

Theorem 1 [chapter 5]: Let p # 0. For any 0(® ¢ (—00,0) U [1,+00), for any a'® € C, a # 0, for
any 01,02 € R and for any 0 < & < 1, there exists a sufficiently small positive € such that the equation
(6) has a solution y(z; o, al®)) with the behaviour

y(z; 0@, a®@) = g g1 (1+0(z]%) ,0<é<1,
as ¢ — 0 in the domain D(c(®)) = D(e(o);a(o); 61,02,5) defined by
Iz < €@,  Ro@ log|z| + 6230 < S0 arg(z) < Ro(® — 5)log|z| + 6,50

For 0(© =0 the domain is simply |z| < ¢©.

We note that €© depends on the choice of 8; and a. The critical behaviour in theorem 1 coincides
with (10) for 0 < R6©@ < 1, but for Ro® < 0 and Ro(® >'1 it holds true if z — 0 along a spiral,
according to the shape of D(e(®);5{®);0;,6,,5). Instead, the behaviour when z — 0 along a radial path
may be more complicated and no indication is given by the theorem.

By symmetries of (6), we also prove the existence of solutions with local behaviour at z = 1

y(z,0®,a®) =1-a®1—2) " @+ 0(1-2)®)) z—1

a®#0, o &(~00,0)U[L, +00)
and
y(z; 00, al>®)) = a(®) 77> (1 + O(Tmlﬁ)) Z— o0

a(oo) # 07 U(OO) Q (*-O0,0) U [17 +OO)
in suitable domains D (o), D(g(>)) which will be described in chapter (5).

We also prove that the analytic continuation of a branch y(z;zo, 1, ) to the domains of theorem
1 is governed by parameters o(?, a(¥ given by the following

Theorem 2 [chapter 5]: For any set of monodromy data (zo, T1, Too) such that z3 + zi + 22, —
ToT1Teo = 4sin®(wp) and z; # +2 there exist a unigue solution y(z; @ ,a®) in D(c®) with parameters
o' and o' obtained as follows:

:E? = 4Sin2 (gﬂ(z)) 3 0'(7:) € C\{(—O0,0) U [17 +OO)}

(0) _ iG(U(O)yﬂ)z
~ 2sin(ro(®)

!There are only some exceptions to the one-to-one correspondence above, which are already treated in [37]. In order
to rule them out we require that at most one of the entries z; of the triple may be zero and that (zo,%1,%) € {(2,2,2)
(-2,—2,2), (2,~2,-2), (2,2, -2)}. See [37].

20+ 77") = flao, 1, 300) (52 + e " ad)] (20,31, 200)
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where A ) , 4"(0)F(”(0)+1)2
—%0 G(o©@,p) = = :

2 - @ — 2cos(2mp)’ 20(1 - p+ Z2)T(p + 22)

f(a:07 Zy, ﬂ?co) =

The parameters oV, al®) are obtained like a(o), provided that we do the substitutions (g, Z1,%eo) —
(T1,T0,ToT1 — Too) and (Zo,T1,Teo) — (Too, —T1,T0 — T1Too) Tespectively (and ¢ — o) and o —
o(®) respectively ) in the above formulae.

‘We remark that the theorem is actually a bit more complicated, we need to distinguish some sub-
cases and to be careful about the definition of the branch cuts for y(z; zo, 1, 2o ); we refer to chapter
5 for details.

The connection problem for the transcendents y(z; ¢, a(?) is now solved, because we are able to
compute (), al®) for i = 0,1, 00 in terms of a fixed trlple (o, %1, Too)-

We also discuss the problern of the analytic continuation of the branch y(z;zo, %1,z ), namely we
discuss how (zg, 1, Zs) change when z describes loops around z = 0, 1, co.

The above theorem implies that we can always restrict to the case 0 < Ro(® < 1, o) £ 1, s0 the
critical behaviours y(z; (¥, a®) coincide with (10), (11), (12), except for the case (¥ = 1, where the
critical behaviour holds true only if z converges to a critical point along a spiral.

‘We use the elliptic representation of the transcendents in order to investigate this last case and its
critical behaviour along radial paths. We can restrict here to z = 0 because the symmetries of (6) yield
the behaviour close to the other critical points. The elliptic representation was introduced by R.Fuchs
in [22]:

u(z)
) = o (U 1(0),n(0))
Here u(z) solves a non-linear second order differential equation and wq (z), wa(x) are two elliptic integrals,
expanded for |z] < 1 in terms of hypergeometric functions:

1 2
5

w]:]

wi(z) =

wz(m):—%{z [((Z)';“z] +Z 5 [ +%)-—1,b(n+1)] m“}

n=0

where §(2) ;== £ InT(2).
We study the critical behaviour implied by this representation. We show that the representation also
provides the critical behaviour along radial paths for ®o(® = 1. More precisely we prove the following

Theorem 3 [chapter 5]: For any complex v, vo such that
vy & (—=00,0]U [2, +00)
there exists a sufficiently small r such that
y(z) = p(riwi (z) + vawa(z) +v(2); w1 (), wa ()
in the domain D(r;vi,vs) defined as
|z < r, Ruplnjr|+Ci —Inr <Srpargr < (R —2)In|z| + Cy +In7,

C = —[41112%1/2 + W%lh], Cy:=Ci +8n2.

The function v(z) is holomorphic in D(r;v1,vs) and has convergent expansion

e~ m et m
Pt Z CLn.’En + Z bnm.'l,‘n <T€2_——;‘;$“ u2> + Z Cnm.'l,‘n ( 1672 iL'V2>

n>1 n>0, m>1 n>0, m>1

where an, bnm, Cnm are certain rational functions of va. Moreover, there exists a constant M (vs)
depending on va such that v(z) < M (v2) ( e ) in D(r;vy,va) .

~z7ru1

16—-"2 :L.Q—I/g

T¥?

16v2
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We note that for y = § the function v(x) vanishes, and we obtain Piccard solutions {44] whose critical
behaviour is studied in [37].

The transcendent of theorem 3 coincides with y(z; (@, a(®) of theorem 1 on the domain D(e®, o(®)N
D(r;v1,v) with critical behaviour specified by o® =1—y, and a(® = —% [Tc—f:%] The identification
of a® and ¢(® makes it possible to connect v; and v5 to the monodromy data (zo,21,%e) according
to theorem 2.

On the other hand, we will prove that the behaviour implied by the elliptic representation is oscil-
latory along paths contained in D(r;vi,vs) which are parallel to the boundaries of the domain in the
(In |z, arg(z)) plane, namely Svy argz = (Rve —2)In|z|+Co+1Inr and Svp argz = Ruz In |z +Cy —Inr.
This follows from the Fourier expansion of the Weierstrass elliptic function which will be discussed in
section 5.4.

In particular the case Ry = 0 (v2 # 0) coincides with Ro® =1 (60 £ 1) and the paths parallel
to the boundary Swsargz = C; — Inr are radial paths. As a consequence of theorem 3, the critical
behaviour along a radial path (equivalently, inside a sector) is

1+ O(z)
sin? ($lnz = vIn 16+ 1 + 270, com(¥) [(2) mi,,]m) )

y(z) = O(z) + z = 0. (13)

ety

ity . m
The number v is real, v # 0 and o(® = 1 — iv. The series Y ov_; Com (V) [(i——i) :1:“’] converges and

defines a holomorphic and bounded function in the domain D(r;vy,iv)
|z| <r, Ci—-Inr<vargz < —2In|z| + Cy +1nr

Note that not all the values of argz are allowed, namely C1 — Inr < varg(z). Our belief is that if we
extend the range of argz, then y(z) may have (movable) poles. We are not able to prove it in general,
but we will produce an example in section 5.4.

We finally remark that the critical behaviour of Painlevé transcendents can also be investigated using
a representation due to S.Shimomura [52] [27]

1
y(z) = m

where u,(z) solves a non linear differential equation of the second order. We will discuss it in chapter
5. However, the connection problem in this representation was not solved.

In the thesis we give an extended and unified picture of both elliptic and Shimomura’s representations
and Dubrovin-Mazzocco’s works, and we solve the connection problem for elliptic and Shimomura’s
representations.

iii) In Chapter 6 we apply the results on the critical behaviour of Painlevé transcendents to obtain
the behaviour of the parametric representation (3) for n = 3.
Let Fy(t) := & [(t1)%® + ¢!(t%)?]. We prove that for generic y the parametric representation is

Ve 3 (u) = T3(w, p) (ug — ug) T (14)

t*(u) = 72(z, 1) (uz — 1)
U3z — Uy

F(u) = Fy(t) + Flz,p) (us —u1)®™?#, z=—"—— (15)
Ug ~— Uy

where 75 (z, i), 73(z, 1), F(z, p) will be computed explicitly as rational functions of z, y(z), g—% and p.
The ratio ————tzl—_j—a—g is independent of (ug — ). This is actually the crucial point, because now the closed
(t3) TF2m
form F' = F(t) must be:
t2
F(t) = Fo(t) + (#) Fo —
(1)
where the function ¢ has to be determined by the inversion of (14) (15).
In the case of QH*(CP?) we prove that we just need to take the limit of the above t3 and F for
u — —1, but such a limit does not exist for t2 and the correct form is
1

tZ(u) =3In(us —u1) + 3/m de (16)



ix

where f(z) is again computed explicitly as a rational functions of z, y(z), %. This time et’ (¢3)? is
independent of (us — u1) and so

F(t) = Fy(t) + 515 0 (et2 (t3)3)

To our knowledge, this is the first time the ezplicit parameterization (14) (15) (16) is given; although
its proof is mainly a computational problem (the theoretical problem being already solved by the re-
duction to the Painlevé 6 eq. [16]), it is very hard. Moreover, the knowledge of this explicit form is
necessary to proceed to the inversion of the parametric formulae close to the diagonals.

When the transcendent behaves like (10), or (11), or (12) with rational exponents, then ¢ and F in
(14) (15) are expanded in Puiseux series in z, 1 — = of 2 . The expansion can be inverted, in order to
obtain F' = F(¢) in closed form as an expansion in t. We apply the procedure staring from the algebraic
solutions [21] of (6) and we obtain the polynomial solutions of the WDVV equations.

We also apply the procedure for QH*(CP?). This time, Ro(? = 1, the transcendent has oscillatory
behaviour and therefore the reduction of (16) (14) (15) to closed form is hard. Hence, we expand the
transcendent in Taylor series close to a regular point zreg, we plug it into (16) (14) (15) and we obtain
t and F as a Taylor series in (z — zreg). We invert the series and we get a closed form F' = F(t). We
prove that it is precisely the solution (9). Thus, our procedure is an alternative way to compute the
numbers Ny as an application of the isomonodromic deformations theory.

We have just started to investigate the possibilities offered by the formulae (14) (15) (16). We believe
they will be a good tool to understand some analyticity properties of F'(t) in future investigations.
Particularly, we hope to better understand the connection between the monodromy data of the quantum
cohomology and the number of rational curves. This problem will be the object of further investigations.

The entire procedure at points i), ii), iii) is a significant application of the theory of isomonodromic
deformations to a problem of mathematical physics: solve the WDV'V equations or, at least, investigate
~ the analytic properties of F'(%).

The thesis is organized as follows. Chapter 1 is a review on Frobenius manifolds where we discuss in
detail the parameterization of the manifold through monodromy data and the reduction to a Painlevé 6
equation. This chapter is mainly a synthesis of [16] [17].

In chapter 2 we introduce the quantum cohomology of projective spaces and its connections to
enumerative geometry. We also propose a numerical computation which we did in order to investigate
the nature of the singular point which determines the radius of convergence of the solution (9).

Chapter 3 is a didactic exposition of the reconstruction of a 2-dimensional Frobenius manifold starting
from the isomonodromic deformation of the associated linear system. The 2-dim case is exactly solvable,
but it is a good model for the general procedure in any dimension.

Chapters 4, 5, 6 contain the main results i), ii), iii) of the thesis.

We would like to spend a word to explain the nature of this thesis. Although many objects studied
here come from enumerative and algebraic geometry, we never make use of tools from those fields. We
only require some knowledge of differential geometry and elementary topology. All the work is mainly
analytical. We use concepts and tools and we face problems of complex analysis, asymptotic expansions,
theory of linear systems of differential equations, isomonodromic deformations theory, Riemann-Hilbert
boundary value problems, Painlevé equations.

Acknowledgements. 1 am grateful to B.Dubrovin for suggesting me the problem of this thesis and
for many discussions, guidance and advice. I would like to thank M. Bertola, S.Bianchini, P.Bleher,
A.Bolibruch, A.Its, M. Jimbo, M.Mazzocco, S.Shimomura, for fruitful discussions.
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Chapter 1

Introduction to Frobenius Manifolds

This chapter is a review on the theory of Frobenius manifolds. The connection between Frobenius
manifolds and the theory of isomonodromic deformations will be studied, in view of the inverse recon-
struction of a Frobenius structure starting from a set of monodromy data of a system of linear differential
equations.

1.1 The WDVYV Equations of Associativity

The theory of Frobenius manifolds was introduced by B. Dubrovin in [14] for the Witten-Dijkgraaf-
Verlinde-Verlinde equations of associativity (WDVV) [54] [13]. The WDVV equations are differential
equations satisfied by the primary free energy F(t) of a family of two-dimensional topological field
theories. F(t) is a function of the coupling constants ¢ := (t1,#%,...,t") t* € C. Given a non-degenerate
symmetric matrix n°?, o, 8 = 1,...,n, F(t) satisfies:

Oa0sONF n™ 8,0,0;F = the same with o, § exchanged, (1.1)

2

52 . Sum over repeated indices is omitted. The relation between n*? and F(t) is given by

where 9, =
010208 F = Nag, (1.2)

where the matrix (n,s) is the inverse of the matrix (n*#). Finally, F(t) must satisfy the quasi-
homogeneity condition: given numbers ¢1,qa, ..., dn,d, 71, .., Tn (Ta = 0 if g4 # 1) we require:

E(F(t)) = (3—d)F(t) + (at most) quadratic terms, (1.3)

where E(F'(t)) means a differential operator £ applied to F(¢) and defined as follows:

n
E=) E%, E*=(1-q)t*+ra, a=1,.,n,

=1

It is called Euler vector field. The equation (1.3) is the differential form of F(A'~@1¢!, . A=&¢n) =
A34R(¢,....t"), where X # 0 is any complex number. If ¢, = 1 we must read 7, In X + t* instead of
Al=9=¢% in the argument of F.

The equations (1.1), (1.2), (1.3) are the WDVV equations.

If we define capy(t) = 0200 F (1), cl5(t) := n™capu(t) (sum omitted), and we consider a vector
space A=span(ey,...,en), then we obtain a family of algebras A; with the multiplication e, - eg :=
cl s(t)ey. The algebra is commutative by definition of czﬂ. Equation (1.1) is equivalent to associativity.
The vector e; is the unit element because (1.2) implies c}’ﬁ = 5/}. The bilinear form < .,. > defined by

< €q,e3 >=Tap
is symmetric, non degenerate and invaeriant, namely < eq - eg,e, >=< ey, €3 - €4 >.

1
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The equation (1.2) is integrated and yields:

1 1 1
F(t) = = (1) + —[§ mat®](t)? + <[ } Nest®t?] t + F(£2, ..., ")
6 2 2
a#l a#1,8#1

The function f(¢2, ...,t") is so far arbitrary and it is defined up to quadratic and linear terms which do
not affect the third derivatives of F(t).

By a linear change of coordinates t'* = Agtﬁ which does not modify (1.1), (1.2) and (1.3) we can
reduce 7 := (14p) to the form:

mi1 0 O 0 O
0 1
0 1
n= . L 3 1f77115£0
0 1
0 1
1
1
n= - ifn, =0
1
1

All the other entries are zero. If n > 2, we are going to deal with Frobemius manifolds such that

1

g =0, o FGn—ar1 =d, M=
1

The condition ¢; = 0 is not very restrictive, because if ¢, # 1 we can always reduce to g1 = 0 by rescaling
all the go’s and d in the quasi-homogeneity condition. The free energy in this case is

_.11272 lln_lan—a—f-l 2 n
F(t) = 2(t )"+ 2t a§=2t t + f(#*, ..., t")
1.1.1 Examples

en =1 1
F(t) = on WP +A@®)*+Bt+C

o= 27 m1 = 0
P, 8) = L) + ()

(1.1) is automatically satisfied. (1.3) is:

-Ifd#1
(-ard=@-af = 1) =0
where C is a constant.
-Ifd=1
df _ 2y _ t?‘%
r2 =2 = f()=C [e¥]

-Ifd=1,r =0, then f =0.
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- For d = —1, there is also the solution

F(#%) = C(*)* In(#?)

- For d = 3,there is also the solution

F(#?) = Cln(t?)
en= 37 1= 0
F(4, 82,15 = Fo(t',62,3) + f(t3,1%), where Fp(t',%,1%) = -;— [ +t1(¢7)?]

(1.1) becomes
Fazafazs + fazs = (faos)? (1.4)

where the subscripts mean derivatives w.r.t. t> and 3. The charges are:
d
QIZO: (12:‘2'7 C]3=d

and (1.3) is translated into the following quasi-homogeneity conditions:

-fd#1,2
f(/\l—%t2’ /\1——dt3) - /\s—df(tz,tg)
thus
_1-d/2

FE,8) = ()T ()), q= ——%

where ¢ is an function of #(¢3)? such that (1.4) is satisfied .
-Ifd=2 .

ft2 +roln ), th}) = Af(#%,1%)
which implies

£, 8) = (@)
For r = 3 this is the case of the Quantum Cohomology of the projective space CP? (see chapter 2).
~Ifd=1
FOEE2 83 +r5In \) = A2 f(¢%,6%)

thus .

F@E,1%) = () ()7 2e")

In all the above cases, the equation (1.4) becomes an O.D.E. for ¢. In particular, there are four
polynomial solutions. Let a € C\{0}:

F(t)=F@t) +a (t*)*(t%)* + iaz 5, d= l, (1.5)

15 2
F(t) = Fo(t) +a ()% + 60 (2(°)° + 32 (), d=12, (1.6)
F() = Rolt) + a (PP () + 3a* (PP + 20t (O, d=1, )

Ft) = Fy(t) +a ()%, d=1.

Note that we can fix a (it is an integration constant). This means that each of the above solutions is
considered as omne solution and not as a one-parameter family.
For any positive integer m there are analytic solutions at ¢ = 0 consisting in a one-parameter family

if d = 22, one solution if d = 2242, one solution if d = 2242 Note that d # 1,2.
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For d = 1 there are three analytic solutions at t = 0 (plus the polynomial solution above). We give
them for a fixed value of the integration constant a:

_ i 2v4 4218 _§
F(E) = Fo(t) — () + £, rs =3
F(t) = Fo(t) + () + (e = ¢, ra=1,

1 2
F(t) = Folt) - —,?-,E(tQ)‘l + g(#)%ta + g(t?)zezﬁ AN -

For r3 = 0 we also have

where y(() satisfies
A" = 6yy" —9(7")?, (herey' := dv({)/d().
This is the Chazy equation and it has a solution analytic at ¢ = i00:
7(() - Z ane27rinc

n>0

The Chazy equation determines the ay’s.
For d = 2, ro = 3 there is a solution analytic at t* = —oo, t3 = 0, discovered by Kontsevich [33]:

Ft) = Fo(t) + tlg T A ()%

k20
The Ay are uniquely determined (once the integration constant A; is chosen) and the series converges
around (£3)%t” = 0.

We will return later to some of the above solutions.

1.2 Frobenius Manifolds

Let's consider a smooth/analytic manifold M of dimension n over C, whose tangent space TiM at any
t € M is an associative, commutative algebra with unit element e, equipped with a non-degenerate
bilinear form < .,. >. Let denote by - the product of two vectors; the bilinear form is invariant w.r.t.
the product, namely < u-v,w >=< u,v-w > for any u,v,w € TyM. Ty M is called a Frobenius algebra
(the name comes from a similar structure studied by Frobenius in group theory).

We further suppose that
1) <.,.> is flat. Therefore, there exist flat coordinates t1,...t" such that

< 04,08 >=17mqp constant

where 0, = Bf_a is a basis. We denote by V the Levi-Civita connection. In particular V4, = Ou-
2) Ve = 0. So we can choose e = 0.

3) the tensors c(u,v,w) :=< u-v,w > and Vyc(u,v,w), u,v,w,y € TyM, are symmetric.

We define cqp- (t) :=< O - 95,0, >; the symmetry becomes the complete symmetry of d5capy(t) in
the indices. This implies the existence of a function F(t) such that 8,850, F(t) = capy(t). F' satisfies
the equation (1.1) because of the associativity of the algebra T3 M.

The equation (1.2) follows from the axiom Ve = 0 and the choice e = 0;.

4) There exist an Euler vector field E such that
i) VVE=0

i) Liegc=c
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ili) Liege=—e
iv) Lieg <..>=02-d)<..>
i) implies that B = 5 agtﬁ + rg in flat coordinates. Assuming diagonalizability of VE we reduce to

n

E = Z (1= qa)t* +74)0a

a=1

iif) implies ¢; = 0; iv) implies (ga + gs — d)7ap = 0 and ii) implies E(clz) = (92 + g5 + ¢y — d)els (no
sums), and then E(F) = (3 — d)F+ quadratic terms. The condition (¢s + gg — d)nap = 0 can be put in
the form g4 + gn—a41 = d if 11 = 0.

Definition: The manifold M equipped with such a structure is called a Frobenius manifold.

In this way, the WDVV equations are reformulated as geometrical conditions on M. Frobenius
manifolds arise as geometric structures in many branches of mathematics, like enumerative geometry
and quantun cohomology [33] [36]. Moreover there is a FM structure on the space of orbits of a Coxeter
group (the solutions (1.5), (1.6), (1.7) correspond to the groups As, Bz, Hj respectively) and on the
universal unfolding of simple singularities [48] [49] [19] [16] (see also [5]). We will return later to the
examples.

1.3 Deformed flat connection

The connection V can be deformed by a complex parameter z. We introduce a deformed connection V
on M x C: for any u,v € Ty M, depending also on z, we define

Vuv = Vv + zu - v,

@ﬁv ZB%U-FE v — —fiv,
- d - d
V%@——O, Vuzl;—O

where FE is the Euler vector field and

is an operator acting on v. In coordinates ¢:

/1 = diag(,uh "'7#’71)7 Ha = Qo — _2‘7
provided that VE is diagonalizable. From iv) of section 1.2 it follows that
ni+ 7 =0

Theorem [16]: V is flat.

To find a flat coordinate £(t, z) we impose Vdt = 0, which becomes the linear system

Da = 2Ca(t)E, | (18)

0. = [uw+ e (1.9)

where ¢ is a column vector of components €% = n**9t/0t*, a = 1,...,n (sum omitted), and Cu(t) =
(B,@)), U := (Erc (t)). From the definition we have Ty = nl/. The compatibility of the system is
equivalent to the fact that the curvature for V is zero.

We stress that the deformed connection is a natural structure on a Frobenius manifold. Roughly
speaking, a manifold with a flat connection is a Frobenius manifold if the deformed connection is flat.
More precisely, suppose that M is a (smooth/analytic) manifold such that T: M is a commutative algebra
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with unit element and a bilinear form < .,. > invariant w.r.t. the product. Take an arbitrary vector
field E and define the deformation V as above. Then the following is true:

V is flat if and only if Oscap is completely symmetric, VVE = 0, the product is associative and
Lieg c=c.

This statement simply translates the conditions of compatibility of (1.8) (1.9).

Therefore if M is Frobenius, then V is flat. Conversely, if V is flat, then M is a Frobenius manifold
(with ¢; = 0) provided that we also require iii), iv) of section 1.2 and V(e) = 0.

1.4 Semisimple Frobenius manifolds
Definition: A commutative, associative algebra A with unit element is semisimple if there is no element
a € A such that a® = 0 for some k € N.

Any semisimple Frobenius algebra of dimension n over C is isomorphic to C® C & ...C n times.
The direct sum is orthogonal w.r.t. <.,.>.

Therefore, A has a basis n1,...,m, such that
T Tj :51‘]'7(,' no sum
< my, w5 >= 04
T1,...,Tn are called idempotents, determined up to permutation.

Definition: A Frobenius manifold is semisimple if T;M is semisimple at generic ¢. Such ¢ is called a
semisimple point.

If A is semisimple, the vector £ := Y, uim;, u; € C, u; # u; for i # 7, has n distinct eigenvalues u;
with eigenvectors ;. Conversely, consider an algebra admitting a vector £ having distinct eigenvalues
Ui,....un, and eigenvectors ej,...,en; from associativity and commutativity it follows that (£ - e;) - e; =
ei - (€ - e;), namely (u; —uj)e; -e; =0 =>e; - e; = 0 for i # j. Thus the algebra is semisimple. We have
proved that:

A is semisimple if and only if there exists a vector € such that the multiplication - has n distinct
eigenvalues.

If follows that semisimplicity is an “open property” in a Frobenius manifold M: if {5 € M is
semisimple, T3 M is still semisimple for any ¢ is a neighbourhood of .

Theorem [16]: Lett € M be a semisimple point and 7 (t),...,mn(t) a basis of idempotents in Ty M. The
commutator [m;,m;] = 0 and there exist local coordinates u, ..., un around t such that

0

= Bu,-

U

The local coordinates u; are determined up to shift and permutation. Let S, be the symmetric
group of n elements. Let C™\ diagonals := {(u1,...,un) € C" such that u; # u; for i # j}. Finally, let

[(u1(t),...,un(t))] be an equivalence class in M — A d.fi onals)
Theorem: Let Z/{(t) be the matriz of multiplication by the Euler vector field. Let

M := {t € M such that det(U(t) — A) = 0 has n distinct eigenvalues uy(t), ..., un(t)}

The map
(C™\ diagonals)
Sn
defined by t = [(u1(t), ..., un(t))] is a local diffeomorphism, i.e. ui(t),...,un(t) are local coordinates.
Moreover

M =

5 8 8 n 5
Gl e e FOT ‘Z:‘; ) g
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A point in M is semisimple, but in principle there may be semisimple points ¢ such that u;(t) = u;(z).
U1,..., Uy are called canonical coordinates. They are defined up to permutation.

We introduce the orthonormal basis f; := —5\/771—‘#—3 and we define the matrix ¥ = (;4) b

3
0=y, Viafi
i=1
From definitions and simple computations it follows that

V<, m > = Ya, < 0;,0; >= 67'.7¢117
n n
= Z %—T@i, 0 =i Z $ian™’ 83,
iaVip Vi
Capy = Z"ﬁ :fo T
where 0; 1= aiu," Furthermore, the relation
7w = q,
holds true (we will prove it later). Finally we define,
U := diag(u(t), ..., un(t)) = QUR)TL,  V(u):= Taw!
V(u) is skew-symmetric, because 7 + fn = 0.

In the following we restrict to analytic semisimple Frobenius manifolds. The matrix I/ can be di-
agonalized with distinct eigenvalues on the open dense subset M of M. Later it will be convenient to
introduce an alternative notation for ¥, namely we will often denote ¥ with the name ¢o. The systems
(1.8) and (1.9) become:

W _LE T

Tur = [zE; +Vi] v (1.10)
oy v

5 {U + J Y, (1.11)

where the row-vector y is y := ¢o & and E; is a diagonal matrix such that (E;);; = 1 and all the other
entries are 0; we have also defined
6450

Vii=— ¢0

The compatibility of the two systems is equivalent to

Opi — O
U Vil =B, V] = W)y = H Vij

1 J
ov
6’!1,1‘ - [‘/“ V]
At z = 0 we have a fundamental matriz solution
Yo(z,u) {Z Bolu ] 2R, golu) = T(w) (1.12)
where Rog = 0 if py — pg # k > 0, k € N. We will return later to this point. The compatibility of the
systems implies -gu% = 0 (we discuss this point in section 1.7) and then, by plugging ¥, into (1.10) we
get
0%y,
%1 — Bigper + Vit (1.13)

57_1,1
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Finally, let ®(z,u) := 3.2, ¢p(u) 2P. The condition ®(~2z,u)T®(~z,u) = n holds (we prove it is section
1.7) and it implies

¢5 o =1, Z ¢Ldm-p =0  forany m >0 (1.14)
p=0

o Conversely, if we start from a (local) solution V' (u), ¥(u) of

oV
T Vi, V1, (1.15)
oy
— =V,T 1.
7, V; (1.16)

such that
det®(u) #0, Ml vu(u)#0.

for u in a neighbourhood of some g, we can reconstruct a Frobenius manifold locally from the formualae

n=9"y,

0a=3 Y20, 8,=yu Y vian®ds,
= Ya a=1
< 8,',8]- >= 51'3"1/)?1, CaBy = Z %—z—pﬁb—zl

=1

8 < 0
E:}?m@, e:aﬁ=2;am

The structure of V (u) is as follows: we fix V(ug) = Vo at up. Then we take an invertible solution ¥ of
(1.16) and we define

V(u) = ¥(uw) Vo T(u)™.

This solves the equation for V, as it is verified by direct substitution. It is the unique solution such that
the initial value is Vp. Let i be its Jordan form and let py be the first eigenvalue (i.e. the first column
of i is (u1,0,0,...,0)%.

Vo=CapC™t

where C is an invertible matrix independent of v = (uy,..,un). Now we observe that we can re-scale
U(u) ~+ ¥(u) C and therefore a solution of (1.15) is

V(u) = ¥(u) o Tu)™

The dimension of the manifold is
d:= —2/11

This corresponds to the choice of the first column (411, ooy 1) T of T(u).

1.5 Inverse Reconstruction of a Semisimple FM (I)

In this section we show that it is possible to construct a local parametric solution of the WDVV equations
in terms of the coefficients of (1.12). The result is discussed in [17] and it is the main formula which allows
to reduce the problem of solving the WDVV equations to problems of isomonodromic deformations of
linear systems of differential equations. In chapter 6 we will present a more explicit (and computable!)
parametric solution of the WDVV egs. for n = 3 as a consequence of the results of this section.

As a first step we note that the condition Vdi = 0 is satisfied both by a flat coordinate t* and by
T = Napt?. Thus, we choose a fundamental matrix solution of (1.8), (1.9) of the form:

= = (8%) = (n“”’%%) = [Zﬂp(t)zp] 2%, Ho=1,
p=0
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close to z = 0. If we restrict to the system (1.8) only, we can choose as a fundamental solution

H(z,t) := }:Hp(t)zp

p=0

and so the flat coordinates of V on M (not on M x C) are

o0
to = Z Ba,p(t)2P

p=0
where
Bao = to = 1apt? (1.17)
0v0phapt1 = c5g0chap, Pp=0,1,2,.. (1.18)

We stress that the normalization Hy = I is precisely what is necessary to have t,(z = 0) = t, and it
corresponds exactly to ¥ = ¢Z in (1.12).
Observe that hao = to = 74517 implies

98ha,0 = Nga = CBal (1.19)
Denote by Vf := (n*#9gf) O, the gradient of the function f. The following are a choice for the flat
coordinates and for the solution of the WDVV equations

ta =< Vha,o,Vhl,l >= n“”auha,oa,,hl,l (1.20)

1
F(t) =5 [< Vha,1, VR > n°? < Vhgo, Vhy g >

- < Vh1’1,Vh1,2 > =< Vh1,3,Vh1)0 >] (121)

To prove it, it is enough to check by direct differentiation that Ot = Mo and 0,080, F(t) = cap~(t),
using (1.17), (1.18), (1.19) and... some patience.
In the following, we denote the entry (4,7) of a matrix Ay by Ajjx. We recall that ¥ = ¢¢ and we

observe that n

&L = Z ¢iﬂ,0 0; Yio = ! aifa

~ b0 v ®i1,0

where 0; = %. From this it follows that

1
maiha,p = ¢ia,p
and thus: .
ta(u) = Z Picr,0Pi1,1 (1.22)
i=1
1 n n ™ k(2
F(t(u)) = 3 n*P Z Pio,1 i1 Z ¢ip,0P51,1 — Z $i1,1051,2 — Z $i1,3%01.0
=1 j=1 =1 i=1
Equivalently
1 n i
F(t(u) = 5 i:to‘tﬁ Z¢ia,0¢iﬂ,l - Z (Pi11i1,2 + ¢il,3¢z’l,0)} _ (1.23)
i=1 i=1

It is now clear that we can locally reconstruct a Frobenius manifold from ¢q(u), é1(u), ¢2(u), ¢s(u)
of (1.12). It is enough to know the local solutions ¢o(u) = ¥(u) and V' (u) of (1.15) and (1.16) in order
to construct the system (1.11) and is fundamental matrix (1.12).

The equations (1.15) and (1.16) express the fact that the dependence on w = (us,...,u,) of the
coefficients system (1.11) is isomonodromic. We are going to describe this property and to show how it
is possible to characterize locally the matrix coefficient V' (u) and the matrix ¢o(u) of such a system from
its monodromy data. We will also explain that the problem of solving (1.15) and (1.16) is equivalent to
solving a boundary value problem.

As a consequence, any analytic semisimple Frobenius manifold can be locally parametrized by a set
of monodromy data.
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1.6  Monodromy and Isomonodromic deformation of a linear
system

We briefly review some basic notions about the monodromy of a solution of a linear system of differential
equations and about isomonodromic deformations. We make use of the results of [2] and [29].

1.6.1 Monodromy

Consider a system of differential equations whose coefficients are N x N matrices, meromorphic on C
with a finite number of poles a1, ..., an,co. By Liouville theorem, the most general form of such a system
is

dYy
T A(2) Y,
Az) = Zr=t [A(() i SIS zr: +
n 1 ) T
+Z {mﬁ [Aé)k) +A§ )(Z — ak) + ... +A$‘t)(z - ak) k"rl] }

k=1
A( ) dla- OIlal T > l) imtegers V= ! ey T, OO
0 g H v g I 3 i

In the case r, > 1 we suppose that Ag’) has distinct eigenvalues. For z sufficiently big we can find G(z)
holomorphic at co such that

A(OO) Agoo) o
G (2)A(2)G(z) = 2"="1 [A(()OO) + -1;~— + 4o+ zT: +..| diagonal, Agoo) = A(() )

For z — ay, sufficiently small we can find Gj(z) holomorphic at aj, such that

_ 1
T G at

G 1(2)A(2)Gr(2) [Ag’” + AP G —a) + o+ AB (2 — g+ ] , diagonal

The matrices Al("), v =1,..,n,00 are uniquely determined by A(z).

e Representation of the solutions

It is a standard result that if zo is none of the singular points as, ..., an, 00, there exists an invertible
matrix Y (z) holomorphic in a neighbourhood of zy which solve the system. It is called a fundamental
solution. Any other fundamental solution in the neighbourhood of zo is Y'(z) M, where M is an invertible
matrix independent of z.

As it is well known, Y'(z) has analytic continuation along any path ¢ not containing the singular
points. The analytic continuation depends on the homotopy class of the path in CP"\{ay, ..., an, 00}
We fix a base point z in CP*\{a,...,an, 00} and a base of loops 71, ...,» in the fundamental group
7(CP"\{ay, ..., an,0}; z0), starting at zo and encircling ay,...,an. Consider a loop 7: the solution
Y (z) obtained by analytic continuation along a path ¢ and the solution Y’(z) obtained by analytic
continuation along - o are connected by a constant matrix M,. Namely Y'(z) = Y (z) M,. M, is called
monodromy matriz for the loop . Observe that v — M, is an anti-homomorphism. The map

n(CP"\{a1, ..., an,00}; 20) = GL(N, C)

is called monodromy representation. All the monodromy matrices are obtained as products of the
matrices M, ..., M, corresponding to 1, ..., Yo (note that y172...7n = Yoo =& M = My,...M>My).

Remark: i) If 7(CP*\{ay,...,an,0}; z0) is fixed but we change normalization from Y (z) to Y (z) C,
det C' # 0, the monodromy matrices change by conjugation M; C—1M,C.

ii) The monodromy matrices change by conjugation also if we change the base point and the basis
of loops.

Therefore A(z) determines the monodromy representation up to conjugation.
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In the following, a fundamental solution Y (z) will be a a branch, namely the analytic continuation
of a fundamental solution defined in a neighbourhood of z along a path from zg to z.

We can choose fundamental solutions Yl(‘x’) (z) such they have a specific asymptotic behaviour on the
sectors x -

Sl(oo) = {]z| > R such that — (I —1)—d <arg(z) < —I}, 1=1,..,2r,
Too Too
defined for R sufficiently big and for ¢ sufficiently small. The behaviour is
Yl(oo) (2) = Fl(OO)(Z) T(2)

™)

(c0) F> i (o)
F, (z)~I+——;——+ 7 +... z—o00in &7,
(00) (00)
7o) _ %Q._ - ;131_7 o A A In(2)
[es] oo T

In the following we denote ¥,°* with the name Y'(2):
Y(z) = ) (2).
For € small we consider the sectors
Sl(k) = {|z — ax| < € such that %(l —1)—-é <arg(z—ax) < 7‘_7;-[}’ I=1,..2r
where we can choose fundamental solutions

v = 5B () TV

FP ) ~ B 4 B - o) + FP @) + .y 2 axin S
AR A® A
T () = - . ! Dl Y AW (s — g
(Z) (rk(z -—a,k)rk + (Tk — 1)(2—-6%)”‘1 + .t (z—ak) + . n(z ak)

In the case r, = 0, we suppose that the Agk) are diagonalizable, with eigenvalues /\gk),...,/\%’f).
Therefore exp{T® (2)} = (z — ax)*®" (z — ax)®", where the entry Rg-“) # 0 only if A{®) — /\g.k) is an
integer greater than zero. In the same way, if roo = 0, exp{T(®)(2)} = A5 2R where R§§’°) #0
only if /\goo) - )\EOO) is an integer greater than zero. The general case of non diagonalizability may be

treated with more technicalities, which are not necessary here. If r, = 0, the asymptotic series above
are convergent in a neighbourhood of the points a,, ¥ = 1,...,n,00 (ae := 00).

The matrices Fl(") ,1=0,1,2,...and v = 1, ...,n, 00, are uniquely constructed from the coefficients of
A(z) by direct substitution of the formal series into the system (note that A(z) must be expanded close
to a, [where ao := co] before substituting).

e Stokes’ rays

Let roo > 1 and Al™ ... A!®) be the distinct eigenvalues of AL We define the Stokes rays to be
the the half lines where the real part of (\{° — )\g-oo))zrw is zero. Therefore, if

X 29 = 3] expfia),
the Stokes’ rays are

. 1
Rij,h = {z = pew""'h such that Gij,h = — (E - Oéij) + h L} , h=0,1,..,2r — 1
Too \2 Too

The following properties are easily proved from the very definition of Stokes rays:

i) If a fundamental solution has the asymptotic behaviour we gave above as z —+ co in some sector
a < arg(z) < 3, then the the solution has the same behaviour on the extension of the sector up to the
nearest stokes rays (not included).
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ii) If a solution has the asymptotic behaviour above, for z — oo, in a sector of angular amplitude

greater than -7, then such solution is unique.

As a consequence, we can extend the sectors Sl(°°) up to the nearest Stokes rays. Suppose we count
the distinct rays in clockwise (or counter-clockwise) order, so that we can label the distinct rays as Ry,

Ry,... etc (if some rays coincide, they have the same label). This means that the maximal extension of
Sl(oo) goes from one ray R, to the ray Rp,q1 plus an angle = (rays are not included in the sector!). In

the following, by Sl(oo) we mean the already extended sector.
Since two fundamental matrices are connected by the multiplication of an invertible matrix to the
right, we have

Y (2) =7 (z) 5, ze8nSY =120 -1

Yi(2) = Yar (2) S5,z € S22 NS>
The matrices S%oo),...,SgTw are called Stokes’ matrices.

The same holds true at any ay, with obvious modification of the above definitions; therefore we have

a set of Stokes’ matrices Sf'),..., ézz, v =1,..,n,00. It’s not our purpose to give a full description of

the structure of these matrices. We will construct explicitly some Stokes matrices later. Here we just
remark that

a) The element on the diagonals are all equal to 1, except for

diag(Sé;")/) = exp{-2miA)}, v =1,2,..,n,00

b) If the entry (Sl(y))ij #0, the (Sl(y))ji =0.

The connection between Y (2) := Y1(°°) (z) and the other solutions Yl(k) () is again given by invertible
matrices C(%):
Y*)(2)
Y(z2) =
Y ®(z) c®, k=1,..,n

The above formula is to be intended as the analytic continuation of ¥ = Yl(oo) along a path from a
neighbourhood of oo to z in a neighbourhood of a; (imagine the path passing through the base-point
ZQ')

e Monodromy

From the above definitions it follows that for the counter-clockwise loop e defined by z ~+ ze?™ for
|2| as big as to encloses all the singularities ai,...,an, the monodromy Me of Y(2) is

Y(2) = Y(2) Moo, Moo = (85,5520~
Note: Moo = exp{2miAL™} if roo = 0

For a counter-clockwise loop v; defined by (z — ax) = (z — az)e®™ in a neighbourhood of a not
containing other singularities

Y(2) o Y(2) My, My =W (8P gFy-10t
Note: My = C® " exp{2mia{?} C®) if ry = 0.

1.6.2 Isomonodromic deformations

Here we quote the results of the famous paper by Jimbo, Miwa and Ueno [29]. Suppose that A(z)
depends on some additional parameters ¢ = (t1,...,t;). This means that

ar = ax(), AP =aP@), AP =A@
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Again we assume Ag ) to be diagonal. We expect that the Al(lc> 's and Fl(”)’s depend on t. The funda-
mental matrix Y (z) now depends on ¢, namely it is Y (z,t) = ;o) (z,1)

Let ¢ vary in a (small) open set V . We say that the deformation is isomonodromic if
Aleo) S§°°),

Teo 3

v, S gl = 1

AV s SQ, o
AL, s i

are independent of t € V. In the case r, = 0 we also require that R® is independent of t. This implies
that the monodromy matrices are also independent of ¢ and the differential

O(z,t) == dY (2,t) Y(z,t) "' = Z Q—%&—EY( )71 dty,
i=1 t

is single-valued and meromorphic in z. We have not enough space here to describe the details. It is
enough to say that

no (T @)y
Q(z,t) ZQ<°°)(t)z+Z{Z( }

z — ag)t
The forms Q) (1) v = 1,

n,co are uniquely and explicitly determined by Y'(z,t) and therefore by
A(z,t). More precisely,

F (2, 1)dT ) (2, ) F®(z,8) 7 = > Q) 2+ 0 G)

=0

Tr+1

RURION
(k) (k) ’v)
FY) (2,6)dT (z,t) F\%) (2,1)” E . G—a o)
Theorem [29]: The deformationt € V o dY = A(z,t)Y is isomonodromic if and only if Y satisfies

dY = Q(z,t)Y
where Q(z,t) is uniquely determined by A(z,t)

+0(1)

If we expand both sides of Q(z,t) = dY(z,t) Y(z,t)~! at az, we take into account that Y (z,t) =
FEP @)+ 0(z —ap)| @8 C®) in the right hand-side and we equate the zero-order terms (z —az)°
we find the following equation:

dFF) = ¢W (1) BV,

where 0(®) is a form determined by A(z) and F".
In the above discussion, the asymptotic expansions and the Stokes’ phenomenon are supposed to be

uniform in ¢ € V. This makes it possible to exchange asymptotic expansions and differentiation “d”
The systems

oYy
52— = A(Z,t) Y,
dy =Q(z,1) Y,

are compatible if and only if

dA = %9 +[0,A4] (it is dO, = B.d),

(the second compatibility condition d A d = 0, namely d2 = Q A , follows from the above (see [29]))

Finally, we construct a non linear system of differential equations for the (entries of) A§”)(t), for
ax(t) and for Fok (t) which ensures that the deformation is isomonodromic
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If we consider the entries of the A%”) and the singular points a; as parameters, it is proved [51] [29]
that the fundamental matrices are holomorphic and the asymptotic expansions are uniform in a small
open set of the parameters.

Theorem [29]: The deformation (for t in a small open set V') is isomonodromic if and only if A(z,1)
(k) (17 .
and the Fy ' (t)’s are solutions of

a0
dA =5~ +[0,4],

dF® = o®) (1) B (1.24)
for t € V. Here the forms Q and 8%%) are given above as functions of Fék) and Ag”).

Finally, we recall that in [29] it is proved that the maximum number of independent parameters ¢
can be chosen to be

AP, L, Al
a AP, L, Al
an A, L, Al

where by Agk) we mean its eigenvalues.

1.7 Monodromy data of a Semisimple Frobenius Manifold

We apply the results of the previous section to a Frobenius manifold M. In the point ¢ = (*,...,t*) € M
we consider the system (1.9). For simplicity, we suppose that  is diagonalizable with eigenvalues pq,
a=1,2,..,n. Namely i = diag(1, ..., #n). Let ¢t be fixed. Since z = 0 is a fuchsian singularity (1.9)
has a fundamental matrix solution

E(z,t) = H(z,t) 2* 2%, H(z,t) = [i Hl(t)zp:| , Ho=1,

=0
R=Ri+Ro+ .., (Rk)aﬁ # 0 only if pg - ug =k,

where the series {Z:io H; (t)zp] is convergent in a neighbourhood of z = 0. R is not uniquely deter-
mined. The ambiguity is [17],
R—GRG,

where
G=14+A01+824+ ..,

(1-A1+A2——A3+...)77(1+A1+A2+A3+...), (A)QB#OOIﬂyif,U.a—ug:k

Let’s call [R] such an orbit.

In [17] it is proved that R € [R] is independent of t € M. In the semisimple case this property of
isomonodromicity follows from our general considerations about isomonodromic deformations. Actually,
R is independent of any t € M, not only for ¢ in a small neighbourhhod of a given t, € M. Since R and
i are independent of ¢t € M, the following definition makes sense:

Definition: /i and [R] are called monodromy data of the Frobenoius manifold at z = 0.

We turn to the semisimple case through the gauge y = ¥¢. The system (1.9) becomes (1.11). A
fundamental matrix solution is

YO (z,u) = ®(z,u) 2* 28,  @(z,u) = Z dp(w)2?,  do(u) = ¥(u),

p=0

(the ¢p’s are the matrices Féo) of section 1.6). In m(CP*\{0, 00}, z9) we consider the basic loop 2o
zpe>™. The monodromy of V(0) ig g?7ike2miH,
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Remark: The “symmetries” nj +
z for any two solutions &;(z,1), &
U(u)H (z,t(u)), therefore

iTn =0, UTn = nU imply that & (~z,t)Tné(2,t) is independent of
(z,1) of (1.9). In particular H(~z,t)TnH(z,t) = n. Now, ®(z,u) =

&(—z,u)T ®(z,u) =1n.

(1.11) has a formal solution

n o F .
Yr = I—i——l—l—;%—{— 6"U, zZ —» 0
P 22

where Fj’s are n x n matrices (the FJ-(OO) in our general discussion). We explained that fundamental
matrix solutions exist which have Y as asymptotic expansion for z — co. We choose the Stokes’ rays

Rrs = {Z = ”ZP('IIr - ru’_s)7 p> O}’ T 7£ 8.

Note that ® ((u, — us)z) = 0 on R,s, therefore the definition of Stokes’ rays is satisfied. Let [ be an
oriented line not containing Stokes’ rays and passing through the origin, with a positive half-line [ and
a negative [_. It is characterize also by the angle ¢ between Iy and the positive real axis. We call IIg
and IIy, the half planes to the right and left of [ w.r.t its orientation. II;, can be extended in IIg and IIg
in II; respectively, up to the first Stokes rays we encounter performing that extension. The resulting
extended overlapping sectors will be called S, and Sg. There exist unique fundamental matrix solutions
Y;, and Yy having the asymptotic expansion in S and Sg respectively [2]. They are related by the
Stokes’ matriz matrix S, such that
YL(Z,’U,) - YR(Z, U)S

in the overlapping of Sy and Sg containing [;. In the opposite overlapping region containing [ one can
prove (as a consequence of the skew-symmetry of V', see [16]) that the corresponding Stokes matrix is
ST: namely, Yz(z,u) = Yr(z,u)ST. The Stokes’ matrix S has entries

sy = 1, SijZO if Rij Cc g
This follows from the fact that on the overlapping region 0 < argz < I there are no Stokes’ rays and
eV S e U ~ I, Z — 00, then e*(%i—us) Sij = 6Z~j

Moreover,  (z(u; — u;)) > 0 to the left of the ray R;;, while  (2(u; — u;)) < 0 to the right (the natural
orientation on R;;, from z = 0 to oo is understood). This implies

[e*% ]| > |e*¥| and e*(%~%) 5 00 as z — o0
on the left, while on the right

leFi ] < |e*"i| and e*(“ %) 0 asz— o0

We call central connection matriz the connection matrix C such that
YO (z,u) = Ya(z,u)C z€g,

(here C is the inverse of the connection matrix C©® we introduced in the general discussion).

The monodromy of
Y(z,u) := Yr(z,u)

at z = 0 is therefore
MO — STs—l =C eZwi[LeZmlR C—l

The “symmetries” ®(—z,u)T®(z,u) = 1, Ya(z,u)TY(z,u) = I (in the overlapping region containing
1+), Yr(ze2™ uw)TY7(2,u) = I (in the overlapping region containing [_) imply

S=C e—in e-—iﬂ'/:l. ,’7——1 CT,

T _ inR _inp ~1 AT
St =C "™ ™ T CF,
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We note that if " is such that 2228 C'2=Rz=F = Cy+ Ciz+Caz? + ... is a convergent series at z = 0,
then Y(®C’ has again the form [3_, ¢,(u)] 2#2%. In particular, Coft = ACp and therefore ¢y = ¢oCp is
again a matrix such that ¢, V@) = ji. Also, C'" " e2mihe?miR OF = 2mihe2m R Guch matrices form a
normal subgroup Cy(fi, R) in the group of matrices commuting with e>"#e?mH,

Theorem [17]: If two systems

dy™® (8
LA [U + Y
dz

jl y(i)’ V(i)T = _V(i)7 1= 1721
z

have the same [i (diagonal from of V(i))’ R, S (w.r.t. the same line) and the same C (up to C +— CC’,
C' € Co(i,R)), then V) = V()

The theorem is important to our purpose of classification of Frobenius manifolds. It states that f,
R, S (wr.t. aline) and C determine uniquely the system (1.11) at a fixed u = (u1, ..., un).

In the discussion above u = (uy, ..., un) was fixed. Now we let if vary.

Definition: Let e be the unit vector. We call e, fi, R, S, C the monodromy data of the FM in a
neighbourhood of the semisimple point (us, ..., un) Where they are computed.

The definition makes sense because the dependence on u in the coeflicients of (1.11) is isomonodromic,
as we are going to show. We included e in the definition because the eigenvector of V' with eigenvalue
p1 = —d/2 must be marked and it corresponds to th unity in M. In canonical coordinates it is the first
column of ¥ = ¢y.

We explain why the dependence on u is isomonodromic. We know that /i and R are independent of
t € M. Therefore, for the local change of coordinates ¢ = t(u) they are locally independent of u. Namely,
they are constant if u varies in a small open set. The system (1.11) is a particular example of the general
systems of section 1.6, Let

Y(z,u) := Yr(z,u).

a) Suppose that the deformation u is isomonodromic. From

Y(z,u) = [I+€l+o (%)] eV, z— o (1.25)
=" [pp(u)2?] 2R 07, 20
p=0

we construct Q(z,u):

Q(z,u) = _6_3:(_2_1_@_ Yizu)™t =

Uj

2B+ [Fi,E]+0 (%), z—
B0 45t +0(2), z—0
Therefore, Q(z,u) — (2E; + [Fy, E;]) — 0 as z — oo and it is holomorphic at z = 0. By Liouville theorem:
Q(z,u) = zE; + [F1(u), E;]

We expand the two sides of Qo(z,u) = %‘3—9— Y{(z,u)"! near z = 0:

0 _
zFE; + [Fl,Eri] = ai(: QZSO ! + O(Z)
At z=0: 96
au(: = [F1,Eq] ¢o

This is precisely the equation (1.24). Finally, Fi is computed from the coefficients of (1.11) by substi-

tuting (1.25):
2 vV F 2
(—Fi + ) eVt <I+ oy ) Ue?V = [UJF —} <I+ LS > UesV
L z z &
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From the term ;1- we have

Vij
(B =
and from the term ;15 we have
: Vz?
(Fl)u = Z 2
s T
If we put
_ Vi := [F1, Ey]
we obtain ; 5
o Oki ki 17
(Vk)w Ui — U VZJ

which is precisely equivalent to [U, Vi] = [Eg, V]

b) From the general theory of section 1.6 we conclude that the deformation u of the system (1.11) is

isomonodromic if and only if
Y

(911,7;

= [ZEi -+ Vz] Y
where V; is uniquely determined by
(U, Vi] = [Ex, V]

In particular, the matrix ¢g(u) satisfies
do
Bui

Here we recognize precisely the properties of a semisimple Frobenius manifold!

=V; ¢o.

In section 1.6 we learnt that the deformation is isomonodromic if and only if dA = 8,0 + [, 2],
dF®) = g M In our case, the two conditions become respectively the condition of compatibility:
0 0

oV
aui - [‘/‘Hv]a [U7 ‘/'L] — [EHV]
and 86
0 — .

We conclude that for a semisimple Frobenius manifold, v is an isomonodromic deformation, then i,
R, S (for a fixed line), C' are independent of u, if u varies in a sufficiently small open set.

1.8 Inverse Reconstruction of a Semisimple FM (II)

Let’s fix u = u(® = (u&o), Lull )) such that u§°> # ugo) for i # j. Suppose we give i, R, an admissible
line I, S and C such that
si; # 0 only if the Stokes’ ray Ry € Il

STs——l =C e27ri[1.e21'riR C—l

S=C e—i’er e—inﬂ n—l CT

ST =C e'i'/rR eiﬂ'ﬁ. n—-l CT.
Let D be a disk specified by |z| < p for some small p. Let P, and Pg be the intersection of the external
part of the disk with IIz and Il respectively. We denote by Dg and 8D, the lines on the boundary of
D on the side of Pgr and Pr, respectively; we denote by l+ and I_ the portion of I+ and I_ respectively,

on the common boundary of Pr and Pr. Let’s consider the following (discontinuous) boundary value
problem (b.v.p.): “construct a piecewise holomorphic matrix function

{@R(z), z € Pr
@(z) = @L(Z), z€ P,
@0(2), zeD
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continuous on the boundary of Pgr, Pr, D respectively, such that
51 (Q) = Br(C) €USe™Y,  (ely
®.(0) = @r(Q) eVSsTe™ Y, (el
Bo(¢) = ®r(¢) VO ¢, (€ dDg
Bo(¢) = @ (¢) USTICCRCTR, (€dDy
®r/r(z) > Iifz = oc0in Pr/gp" .

The reader may observe that ?L/R(z) = (DL/R(Z)BZU, Y (0 (2) := ®o(z,u)z* 2T have precisely the mon-
odromy properties of the solutions of (1.11).

Theorem [40][35][17]: If the above boundary value problem has solution for a given u(® = (ugo), o ui)
such that ugo) # ugo) fori# 3, then:

1) it is unique.

i1) The solution ezists and it is analytic for u in a neighbourhood of u(9),

iii) The solution has analytic continuation as ¢ meromorphic function on the universal covering of

C™\{diagonals} := {(u1,...,un) | us # u; fori# j}.

Consider the solutions Y7 /g, ¥ of the b.v.p.. We have ®g(z) = I+ £+ 0 () as z = oo in Pr.
We also have ®q(z) = Yoo, #pz? as z —+ 0. Therefore

p=0
Ve -~ 1
%Y;: U+[F1;U]+O(Z§)}’ 2= 00,
oYy (©®

L (PO = o +0()], 20,

Since C' is independent of u the right hand-side of the two equalities above are equal. Also S is inde-
pendent of u, therefore the matrices ¥ above satisfy

5= [U T K} b V(W) = [ (),U] = goidi™.

In the same way

VR & 1 _ (1

Bus Yi' =zE + [, E]+ (—Z—) , Z=—o0

av©®  _ o1 Odo

Y7 -1 9% 1 _
o V) B, 0 +0(z), z—0

The right hand-sides are equal, therefore the ¥’s satisfy

dy
6 Uj

)
Bui

=[Ei+Vi]y, Vi(w):=[Fu),E]= 45— ¢"

We conclude that from the solution of the b.v.p. we obtain solutions to (1.11), (1.10). This means
that we can locally reconstruct a Frobenius structure from the local solution of the b.v.p. and we can
do the analytic continuation of such a structure by analytically continuing the solution of the b.v.p
to the universal covering of C™\diagonals. In order to do this, it is enough to use the solution of
the bv.p. ®(2) = 372, ¢p2” as z — 0 and the formulae (1.22), (1.23), provided that at the given
initial point u(® (u§°) # ug_o) for i # j) the condition IT2_; ¢ o(u(®) # 0. is satisfied. If it is not,
there is a singularity in the change of coordinates; actually capy = > oy ﬂ—%&’iq&# may diverge and
dt* =n®8 5% | ¢igo(u)diio(u)du; are not independent.
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1.8.1 Analytic continuation

The analytic continuation of the solution of the b.v.p. to the universal covering of C™\diagonals gives
the analytic continuation of a Frobenius structure. Since (u1,...,un) are local coordinates, they are
defined up to permutation. Therefore, the analytic continuation is described by the fundamental group
7((C™\diagonals) /S,,u(®)), where S, is the symmetric group of n elements. This group is called Braid
group By, [6].

The local solution of the b.v.p. is obtained from the monodromy data. Whereas 2 and R are constant
on the manifold, S and C are constant only for small deformations. We fix the line [ once and for all
and let u vary, so that also the Stokes’ rays move. From the definition of S, it follows that whenever a
Stokes’ ray crosses | some entries of S which where zero may become non zero, and other entries must
vanish. This is a discrete jump, described by an action of the braid group.

In order to describe this action we first note what is the effect of permutations on (1.11), S and
C. Let U = diag(ui, u2, -, un). Let o: (1,2,..,n) = (0(1),0(2),...,0(n)) be a permutation. It is
represented by an invertible matrix P which acts as the gauge y — Py. The new system has matrix

PU P_l = diag(ug(l),ua(z),--‘,Uo(n))-

S and C are then transformed in PSP~! and PC. For a suitable P, PSP~! is upper triangular. As a
general result [2], the good permutation is the one which puts 4, (1), ..., Us(n) in lexicographical order
w.r.t. the oriented line I. P corresponds to a change of coordinates in the given chart, consisting in the
permutation o of the coordinates.

We recall that the braid group is generated by n—1 elementary braids B12, f23, ..., Bn—1,n, With relations:
Biji+1Bi 541 = By j+1Biirr fori+1# 74, j+1#1

Bi,i+1Bi+1,i4205041 = Bix1,i+28i,i+1Pi41,i42

Let’s start from u = u(®. If we move sufficiently far away from u(?), some Stokes’ rays cross the
fized admissible line I. Then, we must change Y7 and Yg, S and C. The motions of the points uy,
..., Up, Tepresent transformations of the braid group. Actually, a braid j; .41 can be represented as an
“elementary” deformation consisting of a permutation of u;, u;+1 moving counter-clockwise (clockwise
or counter-clockwise is a matter of convention).

Suppose u1, ..., u, are already in lexicographical order w.r.t. [, so that S is upper triangular (recall
that this configuration can be reached by a suitable permutation P). The effect on S of the deformation
of u;, usp1 Tepresenting B ;41 is the following [17]:

S SBiitt .= Aﬂi,i+1(5) S Aﬁi,i-}-l(s’)
where
(APritr(S)),, =1  k=1,.,n n# i i+l
(APei () i1, = ~Siint

(Aﬁi,i-m (S)) — (ABi,i+1 (S)) =1

Bitl i+1,4
and all the other entries are zero. For the inverse braid Bi“’ ¢1+1 (u; and u;y; move clockwise) the repre-

sentation is
1,.,n n# i, i+1

(), -1 b
(i),
( APl (5))

1,4
and all the other entries are zero. We remark that S# is still upper triangular.
The effect on C is

= —84,i+1

3,3+1

C —y APiitiC

Not all the braids are actually to be considered. Suppose we do the following gauge y — Jy,
J =diag(+1,...,41), on the system (1.11). Therefore JUJ™! = U but S is transformed to JSJ ™!,
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where some entries change sign. The formulae which define a local chart of the manifold in terms of
monodromy data (i.e. in terms of ¢,, p = 0, 1,2, 3) are not affected by this transformation. The analytic
continuation of the local structure on the universal covering of (C™\diagonals)/Sy, is therefore described
by the elements of the quotient group

Bn/{B8 € B |S?=J7SJ} (1.26)

Therefore (also recall that the analytic continuation is meromorphic) we conclude [17]:

For the given monodromy data (e, ji, R, S, C) the local Frobenius structure obtained from the solution
of the b.v.p. eztends to a dense open subset of the manifold given by the covering of (C™\ diagonals) /Sy,
w.r.t. the covering transformations in the quotient (1.26).

Let’s start from a Frobenius manifold M. Let M be the open sub-manifold of points ¢ such that
U(t) has distinct eigenvalues. If we compute its monodromy data (e, i, R, S, C) at a point u® e M
and we construct the Frobenius structure from the analytic continuation of the corresponding b.v.p. on
the covering of (C™\diagonals)/S, w.r.t. the quotient (1.26), then there is an equivalence of Frobenius
structures between this last manifold and M.

1.9 Intersection Form and Monodromy Group of a Frobenius
Manifold

The deformed flat connection was introduced as a natural structure on a Frobenius manifold and allows
to transform the problem of solving the WDVV equations to a problem of isomonodromic deformations.
There is a further natural structure on a Frobenius manifold which makes it possible to do the same. It
is the intersection form.

There is a natural isomorphism ¢ : TyM — T;M induced by < .,. >. Namely, let v € T;M and
define p(v) :=< v,. >. This allow us to define the product in T M as follows: for v, w € TyM we define
©(v) - p(w) =< v -w,. >. In flat coordinates ¢, ...,t" the product is

dt* - dtf = c2P(t) dt7,  2P(t) ="', (1),

(sums over repeated indices are omitted).

Definition: The intersection form at t € M is a bilinear form on T3' M defined by
(w1, w2) = (w1 - wa)(E(T))
where E(t) is the Euler vector field. In coordinates
g0 (t) == (dt®, dt?) = EV(t)c2”.
Recall that ¢2? is independent of ¢!. Let ¢ := (t?,...,¢"). Also note that ®® = 1P then
g°° () = t'n*" + 3 ()
where §*#(f) depends only on . Therefore
det((g*8 (1)) = det(n™!) ()" + cp1 B(E)™ ™ + cnma )™ + .. + (D)

This proves that in an analytic Frobenius manifold the intersection form is non-degenerate on an open
dense subset M\ X, where '
$e={te M| det((9°°(t))) = 0}

is called the discriminant locus. On M\X we define ( go;,g () ) := ( g*A(t) )~!. It is a result of [16] [17]
that

The metric gopdt®dt® is flat on M\E and its Christoffel coefficients in flat coordinates for < .,. >

d+1
S (R

are

2
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Let’s denote by < .,. >* the bilinear form on T} M defined by n~* = (n*#). Let (.,,.) —A < .,. >* be
a family of bilinear forms on 7" M, parametrized by A € C. In flat coordinates for #:

g% (t) = M =Pt — A) + 3 ((2)

Therefore .
det(g® () — An®#) = det(n™") (t* = N)™ + cacs O =)™ + .+ co(f)

and (,,.) — A < .,.>* is not degenerate on the open dense subset M\X,, where

| Th = {t | det(9™ () — An?) = 0}.
The n 1oots of the determinant, considered as a polynomial in (¢! — )), are:
A= fi(®), ..., t' = A= fu(D), (1.27)
where f1, ..., fn are functions of £ = (¢2,...,t").

Theorem [16]: (.,.)—X\ < .,. >* is a flat pencil of metrics, namely it is flat and its Christoffel coefficients
are the sum of the Christoffel coefficients of g and n:

af af d+1
(Cy-rcn>s), =(T,), +0= <T - Qﬁ) 5P

In order to find a flat coordinate z for the pencil we impose Vdz = 0, where V is the connection for
the metric induced by the pencil. We skip details (see [16] [17]) and we give the final result:

) -» 2 = (% i ﬂ) ¢ (1.28)

U(E) - N) 3¢ + Cs (% + u) £=0 (1.29)

where the column vector & = (€1, ...,&")7 is defined by ¢* = n*# 2% I and Cjs have already been
defined.

In the semisimple case, let uq, ..., u, be local canonical coordinates, equal to the distinct eigenvalues

of U(¢). From the definitions we have

1

1 . U;
du; - duy = chsijdui, g% (u) = (duy, duj) = #5@‘, Mii = P
17

Then g¥ — M/ = %=26;; and

det((g — M) = 55?((157)7 (ur = A) (i = A)oor(tm — A).

Namely, the roots A of the above polynomial are the canonical coordinates. Now we recall that M C M
was defined as the sub-manifold of semisimple points such that u; # u; for ¢ # j. If A is fixed, then the
discriminant X, is:

. n

SanM = J{t € M| ui(t) =2}
1=1

Of course, on the component u;(t) = A we must have u;(¢) # A for any j # . As a consequence of (1.27)
we have a representation for the canonical coordinates:

u(t) = t* ~ fi(f)

Now we perform the gauge ¢(A, u) := U(u())£(A, t), where t = t(u) locally. The system (1.28), (1.29)
becomes

w-n3=(3+vw)s
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(

The matrix V; is defined by

- [(U — \Vi(u) — E; (% + V(u))] é.

v
Vi E v
Equivalently:

0 ~~ B (1

e BmoE (Y, o
J) B;
2L v- . 1.
Ou; (V A- ui> ¢ (1:31)

e Isomonodromy and Inverse Reconstruction

The compatibility of the two systems (it is enough to take %5% = —a‘i—i% which implies 5—%5% =
5%; 62{> is
B;, B;
0.8, = Vi, B}l + DBz (152)
Us — Uj
> (8B +[B;, Vi) =0 (1.33)

j=1
The first is equivalent to
[Uv V;] = [Ei? V]

and the second to
&V =[V;, V]

The compatibility conditions and 33’_ = V; U are the conditions of isomonodromicity of section 1.6.
Therefore, the problem of the WDVV equations is transformed into an isomonodromy deformation
problem for (1.30) which is equivalent to the same problem for (1.11). Incidentally, we anticipate that
the systems (1.30) and (1.11) are connected by a Laplace transform (see section 4.8). The boundary
value problem for the fuchsian system (1.30) is the classical Riemann Hilbert Problem which we are going
to partly solve in section 5 for n = 3 in terms of Painlevé transcendents.

e Monodromy Group

Let z1(t,A) = 21 (82 — A, 1), ..., 2o (£, A) = T, (t1 — A, £) be flat coordinates obtained from a fundamental
matrix solution of the system (1.30) (1.31). They are multi-valued functions of A and of ¢; for A = 0
they represent the flat coordinates for the intersection form. For a loop -y around the discriminant ¥ the
monodromy of the coordinates is linear, namely:

(@1(t), -,z (1) = (@2(2), -, 20 (1)) My, My € GL(n, C)

The image of the representation
m(M\X, o) =+ GL(n,C)

is called the Monodromy group of the Frobenius manifold. To show this we restrict to the semisimple
case. We choose a particular loop around ¥ starting and ending at uo = u(ty), defined by the conditions
that %o is fixed and only #! varies according to the rule t* = ¢ — A. The discriminant locus ¥ is reached
when one of the u;(t!, %) becomes zero:

wi(t) =t — fi) = (85 = A) + fifo) =0

This means that the discriminant is reached if A equals one of the canonical coordinates u;(tg) =

— f1(}), -, un(to) = t5 — fnu(fo). On the other hand, the coordinates zo(t) = z4(t5 — A, 15, -, 15),
a =1, ...,n, come from the solution of (1.30) when the poles are u; = u1(to), ..., un = un(to). Hence the
monodromy group of the system (1.30), which is independent of ug = u(to) for small deformations of u
in a neighbourhood of ug, precisely describes the monodromy group of the Frobenius manifold. Actually,
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ifd = [qb(l), ..., #'™] is a fundamental matrix of (1.30), where #®, a =1,...,n are independent columns,
then

Byt = i\,
This follows from the gauge ¢ = ¥¢, the definition of £ and the formula % = Ya . 0. If A
describes a loop around u;(to), ® is changed by a monodromy matrix B;:

® = & :=dR;
Therefore

31‘%;)(?.1:0) = 8iflfa(uo) (Ri)ab

which can be integrated because R; is independent of u:

(z31(u0), -, T (u0)) = (T1(t0), -, Bnluo)) Bi + (c1, s Cn)

where the ¢;’s are constants. We can put them equal to zero. Actually, one can verify [17] that

za(u, N) Z — N () B (u, A)

If u is subject to a “big” deformation, one can find an action of the braid group on the R;’s, and the
new monodromy matrices generate the same group. We will return to this point and to the concrete
description of the R;’s (which are orthogonal transformations w.r.t g%%) in section 4.8.

Finally, we give another formula for g°? by differentiating twice the expression
1
E'8,F = (2—-d)F + §Aagt°‘tﬁ + Byt* +C

which is the quasi-homogeneity of F up to quadratic terms. By recalling that E7 = (1 — ¢,)t” +r, and
that 0,080, F = cap, we obtain

g°B(t) = (1 +d — qo — qp)0°OPF (t) + AP (1.34)

where 0% = n®Pdg, A%F = nInPoAs.

1.10 Reduction of the Equations of Isomonodromic Deforma-
tion to a Painlevé 6 Equation

The compatibility conditions (1.32),(1.33) are equivalent to the differential equations for V', V;, ¥ whose
solution allows us to do the inverse local reconstruction of the manifold. Solving such equations is
equivalent to solving the boundary value problem (b.v.p.), provided that we find a mean to parameterize
the integration constants in terms of the monodromy data defining the b.v.p..

For n = 3 such equations were reduced [16] to a particular form of the VI Painlevé equation. This
is the first step towards the solution of the b.v.p. and the inverse reconstruction. In chapter 5 we’ll see
how to parameterize the solutions of the Painlevé equation in terms of monodromy data. Finally, in
chapter 6 we’ll apply the results to the explicit inverse reconstructions of some 3-dimensional Frobenius
manifolds.

Let
ﬁ' = dlag(l% 01 —*,Ll,)

We consider the auxiliary system

0 <~ B;
5—/\——2 A—ui ®

where
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The compatibility conditions expressed in terms of B; are (1.32), (1.32) where B; is substituted by
B;. They are again equivalent to [U,V;i] = [e;, V] and 8;V = [Vi, V], plus the condition 8;¢0 = Vigo.
Therefore, we can study the isomonodromy dependence on u of the auxiliary system instead of (1.31)
(1.31).

Let n = 3. We observe that

3 B G- Y = 0= ) s

i=1

We put X(\) := ¢5* ®()\) and rewrite:

%)i(“ = —p v\ u) diag(1,0,~1) X
where 3
-1 -1 Ai
v(\u) =¢5 (A=U) ¢0=—”Z/\__u.’
i=1 t

Ai = ¢y Eigo
Let X be the column vector

X1 -Xl
X=X, = dag1,0,-1)X=| 0
X3 "‘XS

Therefore 3
7] X3 _ V11 —Vi13 X1 _ A; X,
oA (X2) K (7’31 V33 X ) B ; N—w \ X, (1.35)
where st p .
( Pho D100 L 0 -1 (1.36)

To write the A;’s, we have taken into account the relations ¢% do = n and the choice

(6120, P22,0, P32,0) = Fi(ha1,0033,0 — P23,0031,0, P13,0031,0 — $11,0933,0, $11,0023,0 — P13,0921,0)

We also obtain: 5 /x A x
_— 1) = : 1 1.
du, (Xz) Y= <X2> (1.37)

The second component of X is obtained by quadratures:

15}
5XX2 = p (vo1 X1 —vo3 X3)

0
. Xo = 5\—_lj'—u;[¢i1,0¢i2,0 X1 — piz,00i3,0 X3]

The reduced 2 x 2 system (1.35) (1.37) is solved (see [30] [16]) by introducing the following coordinates
q(u), p(u) in the space of matrices A; modulo diagonal conjugation: g is the root of

A
(),
=1 12

3 Ai
p = (Zq—ui>ll

i=1

and

The entries of the A4;’s are re-expressed as follows:

3

q Uq 2 Z/J‘ 2
i i —_—— P -+ et P —+ +2 P Ui
®i1,0 Piz0 2P (us) { (@)p 7 ; (@)p+ p (¢ U 551 4§
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q— U
¢13 0~ kP (Uz)

2
3
2 g Ui 2 2p 2
= e e T P d 2 i~ .
¢zl,0 4/JPI(Ui) k {P(Q> q— ui (Q)p—l_/'t (q+ u ; u’.?}
Here k is a parameter, P(z) = (z — u1)(z — u2)(z — ug). The compatibility of (1.35) (1.37) is
8¢ _ P(g) 1 ]
= 2 1.
Bui P’(ui) p+ q — U ( 38)
op _ PU@p’ + (2q+ui— T upp + p(l— ) (139
Ou; - Pl(“i) )
Olnk g = U
bl s) SRS R S
gu = Dy
In the variables
I ) I S
- U9 — U3 ’ Uz — Uy

the system (1.38), (1.39) becomes a special case of the VI Painlevé equation, with the following choice
of the parameters (in the standard notation of [26]):

_(2#—1)2 o 1
= B=7v=0, 5—5
Namely:
2y 1 1 dy\*> 1, 1 1 1dy
mz-—é{ y—l }(&E) [z+w-1+y—$]2l;
lyly -1y — )[ 12 Z(ﬂf—l)]
5 - 1 (2u —1) +(y-a:)2 , pecC (1.40)

In the following, this equation will be referred to as PV I,. From a solution of (PV I,) one can reconstruct

—-u
q=(ug—-u1)y<u3———1-) +uy

Uy — Up

_ 1 P'(u3) ,(U3-u1> 1 1

__2— P(q) Uz — Uy 2q—u3
From the very definition of ¢ we have:
zR (A1)12 <¢13 0)2
=  R:= = .
v(z) z(l1+R) -1 (A2)12 $23,0

1.11 Conclusion

A semisimple Frobenius manifold can be locally parametrized by a set of monodromy data. The local
parameterization is given by the formulae of section 1.4 and by (1.23) (1.22). The matrices ¢, are
obtamed solvmg a boundary value problem or, equivalently, the equations of isomonodromic deformation

3u = [Vi, V] = V;¢p. When n = 3 the problem is reduced to a Painlevé 6 equation.
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Chapter 2

Quantum Cohomology of Projective
spaces

In this chapter we introduce the FM called quantum cohomology of the projective space CP? and we
describe its connections to enumerative geometry. In the last section we will prove that the radius of
convergence of the famous Kontsevich’s solution of WDVV equations for C P? corresponds to a singularity
in the change from flat to canonical coordinates.

We start by introducing a structure of Frobenius algebra on the cohomology H*(X, C) of a closed
oriented manifold X of dimension d such that

HY(X,C)=0 foriodd
then
H*(X,C) = @4, H*(X,C).

For brevity we omit C in H. We realize H*(X) by classes of closed differential forms. The unit element
is a O-form e; € H°(X). Let denote by w, a form in H?%=(X), where g1 =0, g2 = 1, ..., gay1 = d. The
product of two forms we, wg is defined by the wedge product w, Awg € H 2(9a+45) (X)) and the bilinear
form is

< Wa, W3 >::/ waAwg #0 & qu+qg=4d
X
It is not degenerate by Poincaré duality and of course only ¢4 + ¢i—a+1 = d.

Let X = CP? Lete; =1 € HY(CP?), ex € H?(CP?), ..., ear1 € H?*3(CP?) be a basis in H*(CP9).
For a suitable normalization we have

(naf) == (< easep >) =

The multiplication is
ex Neg = eqtp—1-

We observe that it can also be written as
ea Nep = Clgey, sumsony
where

b8 o R
N3y *= Brapeb oy

1 1 n—1
Fo(t) = _2_(t1)2tn + §tl Z pogn—otl

a=2

27
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Fpy is the trivial solution of WDVV equations. We can construct a trivial Frobenius manifold whose
points are ¢ := Zd'H t%es. It has tangent space H*(CP?%) at any t. By quantum cohomology of CP?

a=1

(denoted by QH*(CP?) we mean a Frobenius manifold whose structure is specified by
F(t) = Fy(t) + analytic perturbation
This manifold has therefore tangent spaces TyQH*(CP?) = H*(CP?), with the same < .,. > as above,

but the multiplication is a deformation, depending on t, of the wedge product (this is the origin of the
adjective “quantum”).

2.1 The case of CP?

We restrict to CP2. In this case

Fo(t) = 5 [(#1)° + ()7

[

which generates the product for the basis e; = 1 € H?, ey € H 2 es € H*. The deformation was
introduced by Kontsevich [33].

2.1.1 Kontsevich’s solution

The WDVYV equations for n = 3 variables have solutions
F(ty,t,t3) = Fo(ta,t2,t3) + f(t2,13)

where
fa2fa3s + fazz = (f23)° (2.1)

with the notation f;; := E‘%' As for notations, the variables t; are flat coordinates in the Frobenius
100; 3
manifold associate to F'. They should be written with upper indices, but we use the lower for convenience
now.
Let N; be the number of rational curves CP* — CP? of degree k through 3k — 1 generic points.
Kontsevich [33] found the solution

1 > .
flta, t3) = ;;so(f), o(r) =Y Aprh, =1 e (2.2)
k=1

where
N,

A= T

We note that this solution has precisely the form of the general solution of the WDVV eqs. for n = 3,

d =2 and 72 = 3. If we put 7 = e¥ we rewrite (2.1) as follows
(e o]
B(X) = p(e¥) =) Ap e,
k=1
—6® + 333" — 540" — (8")% + &' (27 +28' - 3%") =0 (2.3)

The prime stands for the derivative w.r.t X. If we fix A;, the above (2.3) determines the A uniquely.
Since N1 = 1, we fix

1
A= 5

Then (2.3) yields the recurrence relation

KT Ay Ay ik — 6) (36 — 2)(3k — 3i — 2)(k +2) + 8k — 8)
A=3 603k ~1)(3k =2 (3% = 3)

i=1
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2.1.2 Convergence of Kontsevich solution

The convergence of (2.2) was studied by Di Francesco and Itzykson [12]. They proved that
k—1L !
Ap=ba" k™2 {1+0 % s kE— o0

a=0.138, b=6.1

and numerically computed

The result implies that ¢(7) converges in a neighbourhood of 7 = 0 with radius of convergence I We
will return later on the numerical evaluation of these numbers.
The proof of [12] is divided in two steps. The first is based on the relation (2.4), to prove that

1 1 2
k — —_
Ak——>afork——+oo, 108<a.<3

a is real positive because the A’s are such. It follows that we can rewrite

Ap = ba®* k¥ <1+0<%>>, weR

The above estimate implies that ¢(7) has the radius of convergence L. The second step is the determi-
nation of w making use of the differential equation (2.3). Let’s write

Ak = Ck ak

[ee] [ee]
1
D(X) =) Ac ¥ =37 0 TV, Xoi=Ino
k=1 C k=1

a

The inequality ;i < a < % implies that Xo > 0. The series converges at least for RX < Xo. To
determine w we divide ®(X) into a regular part at Xy and a singular one. Namely

oo [ee]
O(X) =Y di(X - Xo)* + (X = Xo)" D ex(X —Xo)¥, 7>0, 7¢N,
k=0 k=0

dy and ey, are coefficients. By substituting into (2.3) we see that the equation is satisfied only if v = 2.
Namely:
B(X) = do + dy (X — Xo) + da(X — Xo)? + eo(X — X0)% + ..

This implies that ®(X), & (X) and $"(X) exist at Xo but &' (X) diverges like

1
VX —Xo
On the other hand ®"'(X) behaves like the series

3" (X) < X = Xo (2.5)

D bk XX R(X ~ Xo) <0
k=1

Suppose X € R, X < Xp. Then A := X — Xy < 0 and the above series is

b = 3tw ,—|Alk b oo 34w, —z
WZ(IAV‘?) e~ 1Al ~ AP /O dz 237
k=1

It follows from (2.5) that this must diverge like A~%, and thus w = —1 (the integral remains finite).

As a consequence of (2.3) and of the divergence of ®"'(X)

927 + 28/ (Xo) — 38" (Xp) = 0
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2.1.3 Small Cohomology

We realize QH*(CP?) as the set of points t = tle; + t?e; + t3eg € H*(CP?) (we restore the upper
indices only in this formula) such that the tangent space at ¢ is again H*(C'P?) with the product
ea - eg = clg(t)ey, where

Cafy = 7]0[56?37 = 5038557F(t)

F(t) being Kontsevich solution. We also observe that F(t1,ts + 27i,t3) differs from F'(t1,t2,t3) by
quadratic terms:

F(ty,ta + 27, t3) = F(tl,tz,t3) + 2mityty — 27T2t1.
Thus QH*(CP?) is a sub-manifold of the quotient H*(CP?)/2riH?(CP?,Z) because e, € H?(CP?,Z).

Suppose t3 — 0 and t3 — —co. From Kontsevich solution we get

1
ey ey = (tg&tz +..) e+ <§t§€t2 + ) es + es,

es-e3 = (2 4+ ..) e; + (tze” +..) e2,
€3 - €3 = (%e%2 + ) er + (ef2 +..) es.
It follows that for t; = —oo we recover the “classical” wedge product. On the other hand, for ¢3 = 0:
e2-ex=e€3, e e3=qge, e3-e=gey, gi=e

The limit t3 = 0 is called small cohomology. By the identification e; ++ 1, es ++ z, e3 ++ 72, the algebra
T(t, t,0)@H*(CP?) is isomorphic to C[z]/(z* = q).

2.2 The case of CP?

For d = 1 the deformation is given by

1
F(t)at%tg + et

For any d > 2, the deformation is given by the following solution of the WDV'V equations [33] [36]:

i) = i e “« Ni(og,...,an) kia
G=re+Y |y 3 Moo, ol

k=1 Ln=2 01,...,Qn

where

S

01,0000 a1+...+an=2n+d(k+1)+k—3

Here Ng(ay,..., ) is the number of rational curves CP* — CP? of degree k through n projective
subspaces of codimensions a; — 1,...,a, — 1 > 2 in general position. In particular, there is one line
through two points, then
Ni(d+1,d+1)=1
Note that in Kontsevich solution Ny, = Ng(d + 1,d+ 1).
In flat coordinates the Euler vector field is

a8
Ezoé:z (1—-qa)t —ét—a+ kb—t—z

q]-:07 Q2—_—1, Q3:2, . qk:k—]_
and

o . d d-2 d-2d o d
b= dlag(/‘&h ) ;U'k) - dlag("'2'7 *_Q—a ety Tv 5): Mo = Qo — 5
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2.3  Nature of the singular point Xj

We ask the question whether the singularity X in Kontsevich solution for CP? corresponds to the fact
that two canonical coordinates u1, ug, uz merge. Actually, we know that the structure of the semisimple
manifold may become singular in such points because the solutions of the boundary value problem (or,
equivalently, of the the equations of isomonodromic deformation) are meromorphic on the universal
covering of C™\diagonals and are multivalued if u; — u; (i # j) describes a loop around zero. In this
section we restore the upper indices for the flat coordinates ¢%.

The canonical coordinates can be computed from the intersection form. We recall that the flat metric

001
n=m*):=[0 1 0
100

The intersection form is given by the formula (1.34):

is

gaﬂ =(d+1-¢gs—gg) 17‘1“77/3"8#3,,}7’ + AP a,8=1,2,3,

where d = 2 and the charges are g1 = 0, g2 = 1, g3 = 2. The matrix A®B appears in the action of the
Euler vector field

FE .= t181 + 309 — t383
on F(t!, 2, t%):

EF), 2,83 = B - d)F(t,1%,t%) + At = F(t,¢%,13) + 3¢'?

000
(A°P) = (*#nP Ap) = | 0 0 3
0 3 0

Thus

After the above preliminaries, we are able to compute the intersection form:
R%;[Q(I) - 99' +99"] E%—g[?@” -] ¢
(gf) = 15?[34’" ~ &' tt+ 5@ 3
tt 3 —3
The canonical coordinates are roots of
det((g°® — u) =

This is the polynomial

1
ud — (3t1 + t%@") u? — <—3[t1]2 - 2%@" + (92" + 159" — 6@)) u+ P(t, ®)

EE

where )
P(t,®) = —— (=913 ®" + 2433" — 2433’ + 633’
[°]°

—9(3")% + 6£183® + [P [t°]2®" — 38'®" + [t'P[¢°]® — 4(@")* + 54% — 15t'3®)
It follows that .
wit!, 1%, X) = ¢ + ZVi(X)

V;(X) depends on X through ®(X) and derivatives. We also observe that

1
uy +us +uz = 3t + FQH(X)
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We verify numerically that u; # u; for i # j at X = Xo. In order to do this we need to compute
®(Xo), ®'(Xyp) , 9"(Xo) in the following approximation

N
d(Xy) = Z Ayg E,E’ ‘f‘ Z k Ag ak, " XO EAZ A Elk"

In our computation we fixed N = 1000 and we computed the Ay, & = 1,2,...,1000 exactly using the
relation (2.4). Then we computed a and b by the least squares method. For large k, say for k > No, we
assumed that

Ay, = baFk™ 3% (2.6)

which implies ,
In(Ax k¥2) = (Ina) k+1nbd

The corrections to this law are O (3). This is the line to fit the data k% Ag. Let

N
1 - 1
g = —-——-E: In(4e k), k=S k
VTN N1 & n(4e k), N=No+14

By the least squares method

YN v, (k—E)(n(Ax k¥) —3) 1
Ing = =k=N Zk - TEE , Wwith error (?)

Inb=4g— (Ina) k with error (;\
\k/
For N = 1000, A;00o is of the order 107840, In our computation we set the accuracy to 890 digits. Here is
the results, for three choices of Ny. The result should improve as IV increases, since the approximation
(2.6) becomes better.
No =500, a=0.138009444..., b=6.02651...

N =700, a=0.138009418..., b=6.03047...
No =900, a=0.138009415..., b=6.03062...
It follows that (for Ny = 900)
®(X,) = 4.268008..., &'(Xo) =5.408..., &"(Xo)=12.25...

With these values we find
27 4+ 28'(X,) — 39" (X,) = 1.07...,

But the above should vanish! The reason why this does not happen is that ®"(X,) = Z,{,V:l k2 Ay ;11;
converges slowly. To obtain a better approximation we compute it numerically as

" (Xo) = (27+ 23/ (Xo)) = -(27+ 22 k Ay k) = 12.60...
k=1
Substituting into g®® and setting t! = ¢3 = 1 we find
up ~22.25..., us~ —(3.5...) —(2.29..)i, us=as
Here the bar means conjugation. Thus, with a sufficient accuracy, we have proved that u; # u; for i # j.
Finally, we prove that the singularity is a singularity for the change of coordinates

(u1,uz,us) ~ (¢4, 12,t%)

Recall that

?El_ _ ¢ia
ot Py
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This may become infinite if ¥;; = 0 for some . In our case

1
=3t + —B(X)!, = =0, —==1, ==
Uyl + U2 + us 3t -+ '[JS ( ) ’ 8t1 I 8t2 9 atg

and we compute

o)
é‘ﬁ(ul +ug +us) = 3,

0 1
é—t—i(ul +ug +uz) = Zg@(X)m,
1o, 1 3
ﬁ(’l“ + us + U3) = —WQ(X)“ -+ [tS]E @(X)l".

8x _ 8X . 98X _

33

Thus, we see that the change of coordinates is singular because both 5‘%5 (ug +ug+us) and 5% (ur+ustus)

behave like ®(X)" < \/X—l—XE for X — Xo.

I thank P. Bleher for suggesting me to try the computations of this section.
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Chapter 3

Inverse Reconstruction of
2-dimensional FM

This chapter explains in a didactic way the process of inverse reconstruction of a semisimple FM for
n = 2 through the formulae (1.22), (1.23).

3.1 Exact Solution and Monodromy data

The coefficients of the system dY/dz = [U + V/z]Y are necessarily:

Ve = (e ). U= doglunm)

¥
2
Here u = (u1,us), and V is independent of . It has the diagonal form

TV = diag (-‘25 -%) = j,

‘I’(u):(;_j(_uz— fzj;((?;)))’ VY == (2 é)

where

The description of the Stokes’ phenomenon for
ay’™ |{fu; 0 0 i
w05 w)+ (3 D 5

Ry = —ip(us —uz), p>0; Rox=—Rio

requires the stokes rays

Let [ be an oriented line through the origin, not containing the Stokes’ rays and having Rys to the left.
= l+ +{_. Then
Y1 (z,u) = Yg(z,u) S from the side of I

Yi(z,u) = Yr(ze™2™,u) ST from the side of I_

1 s
S-(O 1), seC

Let ITg be the half plane to the right of I. At the origin
Y(z,u) = 8(z,u)2" 2, B(z,u) =) ¢r(uw)z, =T, (3:2)
k=0

Yo(z,u) = Ygr(z,u) C inllp

35
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C is the central connection matrix. Then

271 % Oo.
STs-—l = Ce 0 -3 eZﬂiRO-—l

From the trace
5% = 2(1 — cos(mo))

The above monodromy data R, i, S define the boundary value problem of section 1.8. The standard
technique to solve a 2-dimensional boundary value problem is to reduce it to a system of differential
equations, which is (3.1) in our case, and then to reduce the system to a second order differential
equation. It turns out that the equation is (after a change of dependent and independent variables) a
Whittaker equation. Therefore, the solution of the b.v.p. is given in terms of Whittaker functions. We
skip the details. Let H := u; — up; the fundamental solutions are

(S5

1
5

% (1 o) BT
Yr(z,u) =

.o G —Ll uitus
1Ze's (H z) 2" 2 W

(H 2)

(w"Hz)  —ig (H o) Fe ™5 Wy o (1 2)
1 ujtug

(e7"H z) (Hz) Ze*~ 2 W

1z 1z
202 273

arg(Ri2) < arg(z) < arg(Ry) + 27
where

m
arg(ng) = '—E — arg(u1 - ’11,2)

~1
o)

[

{(YR(;,«,U))11 i (H 2)7% 52 W

(e H 2) \

\ Ta(zu))y, = (H 2) 352w, o (e27H 2) |

1l g
23

YL (Z, ’U.) -

arg(Ris) + 7 < arg(z) < arg(Riz) + 37.

Wi, are the Whittaker functions.
For the choice of Yg and Y7, above, also the sign of s can be determined. According to our compu-

tations it is
s =2sin (E)
2
It is computed from the expansion of Yz and Yz at z = 0.

We stress that the only monodromy data are o and the non-zero entry of R. The purpose of this
didactic chapter is to show that the inverse reconstruction of the manifold through (1.22) and (1.23)
brings solutions F'(t) of the WDVV egs. ezplicitly parametrized by o and R.

3.2 Preliminary Computations

The functions ¢,(u) to be plugged into (1.22), (1.23) may be derived from the above representations in
terms of Whittaker functions. We prefer to proceed in a different way, namely by imposing the conditions
of isomonodromicity (1.13) to the solution (3.2).

The function f(u) in ¥(u) = ¢o(u) is arbitrary, but subject to the condition of isomonodromicity
(1.13) for p = 0, namely

0;¢0 = Vigo
where
i=—Y— V=-W,
Uy — U2
Let
U:=T-U0, = 52’- ,u2=——g, d=—0

We will use h(u) to denote an arbitrary functions of u. Let’s also denote the entry (4,7) of a matrix
Ay by Ajjr or by (Ag)i; according to the convenience. Let R = Ry + Ra + Rs + ..., Ryj 5 # 0 only if
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pi — p; = k > 0 integer. In order to compute ¢p(u) of (3.2) we decompose it (and define Hp(u)) as

follows:
¢p(u) =¥ Hy(u), p=0,1,2,...

Plugging the above into (3.1) we obtain

1%
o =T
ok
1 Uij
4i H,=—2  R=0
py # 5 if,1 T+ g5 — e
1
p=g, Hiz1 =hi(u), Rizy=1Up
1
b=z Hyiqp =hi(u), Raig=Un
gk
(UH: — HiR,),,
+1 Hija = ”, Ry =0
/“J';é 3 7,2 2+ﬂj ~ 2
p=1, Hizs=nhe(u), Rizs=UHi)12, R1=0
p=-1, Hos=ho(u), Rmo=UHi)n, R1=0
Ax*

(UH; — HiRy — HaRy),;
34 py — p

3
#?éi§, Hi;3 = , R3=0

3
k=g Hias = hs(u), Rizsz=UHz)12, Ri1=R;=0

3
o= —-2-, Hgl,g = hg(u), R21,3 = (Z/{HQ)Q]_, R1 - Rz = 0.

We compute ¢t = ¢(u), F = F(t(u)) from the formulae

2 2
th = Z¢i2,o¢i1,1, = Z bi1,000,1
i=1 i=1

2 9
1
F= 3 1P E Gia,00iB,1 — E (hi1,1Pi1,2 + di1,30i1,0)
=1

i=1

F' is defined up to quadratic terms.

(3.3)

(3.4)

In the following we will compute F' = F(t) (¢ = (t},¢%)) in closed form, obtaining a solution of the
WDVV equations. The only needed ingredients are (3.3), (3.4), the conditions of isomonodromicity

(1.13) and the symmetries (1.14) for p=10,1,2,3.

For any value of o the isomonodromicity condition 0;¢9 = V;¢g reads

of(w) _ o ()

Ouy 2 u; —us
0f(w) _ o f(w
6“2 2 U — U2

In other words le%l = ——Qg%—) and thus f(u) = f(u; — u2). Let

H::’ul——UQ

Therefore

:—% = f(H)=C H™%, C aconstant
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3.3 The generic case

We start from the generic case: ¢ not integer. The result of the application of formulae (3.3), (3.4) is

U1+ U2
tt = —5
tz _ 1 Uy — U
41 +0) f(u)?
and ) 201 2
' _ L 2, 2Ud+0d)" 4
Ftw) = 570 + 7= 7y @) @)
But now observe that _
[ = oy
4(1 +o0)t?

Uy — Uz = H
f(w)? = f(H)? = CPH™°
The above three expressions imply

1

H=C ()%, C =[41+0)C% =

Therefore
Fw)t = Co(¢?)7r

and

w

=
e

;
F(t) = é(tl)?’t2 + C3(t?) o+

as we wanted. Here C3 (or C, or Cj, or C3) is an arbitrary constant.

3.4 The cases y; = %, =1, pp=-—1

1) Case py = 2,0=3

Formula (3.3) gives the same result of the generic case (with o = 3) because h3(u) appears only in

¢3(u) and does not affect t:
_ug + U

2
2 1 Up — U2
T 4(1+0) f(u)?

Although hg(u) appears in ¢3(u) it is not in F:

tl

o=3

2(1+0)3
(1-0)(c+3)

We may proceed as in the generic case. Actually, now the computation of f(u) is straightforward because

1 _ 3 2
Rs = <8 16(”1 OU'2> f(u) ) = (8 g) , r = constant

Fls(u)) = 56 + GRION

Namely

g ) f () = 7

On the other hand, from t* we have
ug — ug = 16¢% f(u)?

and thus




3.5. THE CASE py = —2% 39

and finally

3

FE) = 58 — (=)} ) = 26 + O

where C' is an arbitrary constant.
2) Case puy = 1,0 =2.
Again, the arbitrary function hy(u) does not appear in t(u) and F(t(u)):

! -+ Uz

H
2

2 1w —us

YT o) fwr

20+0)° oz, 4
(1-0)(oc+3) ) f ) lazz'

Now we proceed like in the generic case and we find the generic result with o = 2.

)
o=2

Ft(w) = %(tl)?ﬁ +

3) Case pyy = —1, 0 = =2
Now the formulae (3.3), (3.4) yield

Uy + Usg
=272
2
tz_l'ue"ul
4 fu)?

Fli(w) = S8 = 2@ F @) - tha(w)

The condition s s
Uu —'LL2
0= ¢f p2 — 6] ¢1 + 3 do = (2h2(“> (J)F Iy 0)
implies
2
_ 1“2"“? ——

T8 flw? T

hz (u)

Therefore 1 5
Fli(w) = 58 - S0 fw)’

Now we proceed as in the generic case, using f(H) = CH~% = CH and we find the generic result with
o=-2.

3.5 The case ) = ~—%

We analyze the case 3 = —%, 0 = —1. The formula (3.3) gives
= h tuy
2
t2 = hl (U)
By putting h;(u) = t* we get from (3.4)
3
1 1o(u —t% 1. 1 (m5%)
— 2122 4 — S22 A3
FE) =30+ 5 @r - =20 T e

From the condition 8,, ¥ = V;¥ we computed the differential equation for f(u; — u2) = f(H) and we
got f(H) = CH-% = CH?. But it is straightforward to obtain f(u) from

=ty 9= )
PR 0 T \r o
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from which

g _U1—up 1

flu)” = 4r 4
The last thing we need is to determine H as a function of t!,¢*. We can’t use the condition ®(—z)" ®(z) =
7, because direct computation shows that the following are identically satisfied: &g ¢1 — ¢Tdo = 0,
Ty — Ty + ¢ o = 0, ¢F 3 — ¢ b + ¢3 1 — ¢ do = 0. We make use of the isomonodromicity

conditions 96 96

5&—1 = Ei¢o + Vid, 5—5— = Exdo + Vot
which become

Ohi(u) 1 Ohi(u) _ Ohi(u)
(9’[1,1 - 4f(u)2’ aUQ N 8U1
Thus
hl(u) = h](ul — ’U,z),

and dha (D)

1 =T 2 — -

0 - F = t*'=h(H)=r(H)+D

D a constant. 72
4 _ 2
f(u) - 16T2 - Ce

C a constant (C = exp(—2D)) We get the final result

2
=
™

F(t) = %(tl)th +Cets

3.6 The case y; = -é-

Let 1 = §, o = 1. ¢ is like in the generic case

Uy + Us

th= —=
2

t2 _ Uy — U

8f(u)?

while F' contains hj(u)

FlEw) = 38 + 5 (w) — 3()° F(w)*

We determine f(u) as in the generic case, or better we observe that

Ry = <g (1 -uoz)f(U)2> _ (8 6)

r

Thus
Fw)?=

Uy — U2

We determine hy(u). The condition ®(—2)T®(z) = 1 does not help, because it is automatically satisfied.
We use the isomonodromicity conditions

o) 0
S = Ebo+ Vi, S8~ Fago + Vaty
which become
3h1 (U) — f(u)z 6}7,1 (u) _ _ 8/11 (u)
duy ’ dusg duq

Therefore
hl (U) = h1 (u1 - U,z)
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We keep into account that f(u)? =r/H:

dhy(H)
= — h =
I i = h(H)=rn(H)+D

D a constant. Finally, recall that

hence

which contributes a linear term to F'(¢), and
ha(u) = gln(tg) +B

B = £In(8r) 4+ C is an arbitrary constant. Finally

Ft) = %(t1)2t2 + 30 (@)

as we wanted.

3.7 The case u; = ——%

Finally, let’s take iy = —2, 0 = —3. From (3.3), (3.4) we have

A= U1 + Uz
2

tz — Ug — Uy

8f(u)?

F(t()) = S8 + () @) — 3h(w)

f(u) is obtainable as in the generic case, but it is more straightforward to use

0 0 0 0 5 (ug—1ug)?
= ug—ug)° = = e
Ro= (g 0)=(7 5) = o=
To obtain hs(u) we can’t rely on ®(—2z)T®(z) = n, which turns out to be identically satisfied. We use
again the conditions

93

Bu; E;¢s + Vigs (3.5)

It is convenient to introduce 1 1
Gu) = 24—(151)2252 - —z-hg(u)

The above (3.5) becomes
oG T oG oG

Su; 2(ug —u1)’ Bus  Ouy

which implies G(u) = G(u1 — uz) and

dG T T
C a constant. Finally, recall that
. _ H’

2 = GH@)) = %ln(t?‘) +Cy

T8
Thus 1
F(t) = 5 + %m(ﬁ)

having dropped the constant terms.
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3.8 Conclusions

The solution of the boundary value problem for the monodromy data ¢ and the non zero entry 7 of the
matrix R (Stokes matrices and other monodromy data depend on o) was obtained solving the equations
(1.13) with the constraints (1.14).

We have obtained the solutions of the WDVV eqgs. which we already derived from elementary
considerations in chapter 1. They are parametrized explicitly by the monodromy data:

340

1 2,2
For o #+1,-3 F(t) = §(t1)‘t“ + C(t?)1+e

where C is a constant.

¥}

3

c=-1, F@)= %(tl)ztz + Ce*+
c=1, F(t)= %(tl)w + O ()

c=-3, F()= %(tl)ztz + C'n(t?)



Chapter 4

Stokes Matrices and Monodromy of
QH*(CPY)

4.1 Introduction

In this chapter we compute Stokes’ matrices and monodromy group for the Frobenius manifold given by
the quantum cohomology of the projective space CP?. The first motivation is to know the monodromy
data of QH*(CP?), in view of the solution of the inverse problem. Actually, the global analytic properties
of the solution of the WDV'V eqgs. obtained by Kontsevich-Manin (see section 2.2) are unknown and the
boundary value problem may shed light on them.

The second motivation is to study the links between quantum cohomology and the theory of coherent
sheaves, in order to prove a long-lasting conjecture explained in the introduction of the thesis.

The main result of this chapter is the proof (theorems 2, 2') that the conjecture about coincidence of
the Stokes matrix for quantum cohomology of CP? and the Gram matrix x(E;, E;) of a full exceptional
collection in Der?(Coh(CP?)) is true. We prove that the Stokes’matrix can be reduced to the canonical

form S = (s;;) where
si =1, s'ij=<(‘7i't§.)7 Sjizoa i<j7

by the action of the braid group. This form is equal to the Gram matrix x(O( — 1),0(j — 1)) (modulo
the action of the braid group ). See the introduction to the thesis for further details.
In this way, we generalize to any d the result obtained in [17] for d = 2.

We also study the structure of the monodromy group of the quantum cohomology of CP%. We
prove (theorem 3 of this chapter) that for d = 3 the group is isomorphic to the subgroup of orientation
preserving transformations in the hyperbolic triangular group [2,4,c0]. In [17] it was proved that for
d = 2 the monodromy group is isomorphic to the direct product of the subgroup of orientation preserving
transformations in [2, 3, c0] and the cyclic group of order 2, C; = {£}. Our numerical calculations also
suggest that for any d even the monodromy group may be isomorphic to the orientation preserving
transformations in [2,d + 1, c0], and for any d odd to the direct product of the orientation preserving
transformations in [2,d + 1, 00} by Cs.

4.2 The system corresponding to CP*~!

We introduce here the linear system of differential equations whose Stokes matrices are the Stokes
matrices for the quantum cohomology of CP*~!. We use the more convenient choice k = d + 1. First of
all we recall that

. . . k-1 k-3 k-3 k-1
= dl&g(ﬂl, Hu‘k) = dla'g(— 9 » N ) )7 Ba = Ga —

no| Q.
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Consider the system of differential equations determining deformed flat coordinates:
1
0.6 = (U(t) + ¢ (41)

Oak = 2Ca(t)€

Let us compute Co(t) and U(t) at the semi-simple point (0,#2,0,...,0). In order to do this the reader
should look back at section 2.2

E- 0 =E"cg 0o = E2c§ﬁ O =k cgﬁaa = uaﬁaa
Moreover caq5(0,t2,0,...,0) = 850,05 F(0,¢%, ...,0). This immediately yields

0 et 0 ket”
1 0 kE 0
C5(0,2,0,...,0) = 10 ,  U(0,£%,0,...,0) = k0

10 k 0
We warn the reader that for convenience we use slightly different notations and normalizations than in
chapter 1. Let yq := Nap&® = Out. It satisfies

. 1.
Oy = (W?) - ’z"") Y (4.2)
Oy = 2Ca(E)y (4.3)
where
0 1
01
> : 0 1
C2(t2) =1 02(0’152, ’0) n—l — .
0 1
2 0
0 k
0 k
0 k
u(tQ) =7 u(o’to ’0) 77-—-1 — - '
s 0 k
ket 0

Lemma 1: Let y(t2, z) = (y1(2, 2), ..., yk (2, 2))T be a column vector solution of the above system (4.2)
(4.8). With the following substitution

1 kol -
balt2) = ooy 2T (20.)7 (%, 2) (44)
= ot gelp(2,2), a=1,2,..,k (4.5)
the above system is equivalent to the equations
(20:)F¢ = (kz)*e™ o (4.6)
Ok = 2Fet2 o (4.7)

The proof is a simple calculation we leave to the reader. The substitution of the lemma implies o =
128,0. Th

5 20:p. Then

2 9

it
3

2 — 6 2
e Fo(t*,z) = za—zw(t . Z)

1
de®
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which implies (with abuse of notation)

Namely, ¢ (at (0,¢2,...,0)) depends on one argument w = ze* and satisfies the generalized hypergeo-
metric equation

d\* ,
(w2 ) plw) = ()" (w) (4.9
The equation is equivalent to the system
dYy )
&= [+ E] Y (4.9)
where 1
Yalw) = g w T (08,) Y p(w) n=1,2,..k (4.10)
0k -
0 k
R ) 0 %
U:=U)= .
Lk 0
- _h— di k—1 k-3 k=5 k=3 k-1
pi=—p= diag 9 ’ 2 ? 9 PR 9 3 9

The system (4.9) may also be interpreted as the system (4.2) with ¢> = 0. We will return later on the
connection between its monodromy data and the monodromy data of the system (4.2).

Let us study system (4.9). We change notation and choose the more familiar letter z instead of w.
So, the system (4.9} is re-written as

I fis]x w
and (4.10) (4.8) become
Yo(z) = knl_l PRz (20.)" V) o(z) n=1,2,..k (4.12)
k
(+5) o) = 62" o2 (413)

The point z = 0 is e fuchsian singularity, and z = oo is a singularity of the second kind. (4.11) has a
fundamental matrix solution Y;(z) whose behaviour at z = 0 is

.- ]
0 k
A 0 k&
Yo(2) = (I +0(2))2*2" R= :
k
0

and the monodromy for a counter-clockwise loop around the origin is 2™ 2™~
The characteristic polynomial of the matrix & is 0 = det(U — u) = (—u)* + (=1)*Tk*. It has k&

e . 2ri(n—1) . . .
distinct eigenvalues u, = k e ,n=1,...,k. The equations for the eigenvector x, corresponding

t0 Uy, namely Ux,, = un X, written for the components z!,, ...,.z*, of the column vector x,, are

2mi(n—1) 2mwi(n—1)
1 % 2, 1=1,2...k=-1 zl,=e = zf,

T ,=e
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im(n—1

With the choice z*, = e_k_) we get Xp = (ei"(';e_l) , eiaﬂ(z_l) 7@{5"(:_1) , ...,e”i’r(rlle-l) )T. The matrix
X = - afxalfxe] = —= (a0n)  @in =@ VT a1k
VE ) VE
puts U in diagonal form:
147 R 2mi(n—1)
U=X"UX = diag(u1,u2, ..., Un, .., Ux) Upn=Kke F

We stress that u; # uj for i # j. The system (4.11) is transformed by the gauge X in an equivalent form

dy V-
= = [U + -z—] Y (4.14)

V=x"1y, U=X"UX, V=X'uX

Observe that nu + pnp = 0, X XT = n~!, and therefore V + VT = 0. Anyway, V here is not exactly the
matrix V in chapter 1, but its complete permutation.

4.3 Asymptotic Behaviour and Stokes’ Phenomenon

Our aim is to explicitly compute a Stokes’ matrix for the above system (4.14), or for the system (4.11).
The system (4.14) has formal solution

. F, F
YF_—_-[I+~1+—§+... e U
z z

where Fj’s are k x k matrices. A possible choice for the labelling of the rays is the following: we call
R,s the Stokes’ ray ;
Ry ={z=—ip(ty, — ), p>0} r#s

Lemma 2: For r < s the Stokes’ rays of the system (4.14) are

Rm:{z:p exp(i {2%—%(1"4-5)]), p>0}

RST = ‘Rrs
Proof: Just compute
—i(dy —10y) = —i(e Tt E D) — Tt -1y =
= 2sin (%(s — 7')) (i[E—Fr+9))

Then we note that sin (% (s —r)) is positive because 0 < s —7 <k~ 1.

O
Remark 1: R,; = R, forr+s=p+q. Ripis at argz = —F, Rz is at argz = —%f—, and so on. For
r+s = k+ 2 the corresponding R,’s are at argz = —m and the R,,’s are at argz = 0. Rj_1 is at the

angle —2m + 3T or, equivalently, at 37. See figure 1.
We choose two admissible overlapping sectors in a canonical way. Let [ be an admissible oriented
line through the origin, namely a line not containing Stokes’ rays. For our purposes we take

l={z]|z=pe*, peR, O<e<%}

[ has the orientation inherited from R. We call Il and II;, the half planes to the right/left of [ w.r.t its
orientation.
lp={-n+e<argz<e} IIp={e<argz<7+e}
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R2=R3k =.... Ru
R - Rz
) fom/k
Rix=R2x
= R
\‘\,‘ R
" Rius=R2
k even k odd

Figure 4.1: Stokes’ rays

We then define two different “admissible” sectors Sy, Sg which contain [

SL:{zGC[O<argz<7r+%}DHL

Sr={z€C| —7r<argz<%}DHR
We call che corresponding solutions ¥z (z) and Yr(z). The Stokes’ matriz of the system (4.14) with
respect to the admissible line [ is the connection matrix S such that
T
k

On the opposite overlapping region one can prove (as a consequence of the skew-symmetry of V') that

Yi(z) = Yr(2)S 0<argz <

T
k

We call central connection matriz the connection matrix C such that Yo(z) = ?R(Z)C’, z € llg.

It is clear that the system (4.11) has solutions Yo(z) = XY(z), and Yi.(2) = XVi(2), Yr(z) =
XYr(z) asymptotic to XYr(z) as z — co in S and Sg respectively, which are connected by the same
S and C.

Vi(z) = Ye(z e ?™)ST  rn<agz<m+

In order to compute the entries of S explicitly, we use the reduction of (4.11) to the generalized
hypergeometric equation (4.13). If o) (2), ..., p{F)(2) is a basis of k linearly independent solutions of
(4.13), then the matrix Y (z) of entries (n, j) defined by

1

= o 2T (28,)0 0 () (4.15)

Y9 (z) :

is a fundamental matrix for (4.11).

Lemma 3: The generalized hypergeometric equation (4.13) has two bases of linearly independent solu-

tions (p(Ll/) r(2), .0y gog“/)R(z) having asymptotic behaviours

1% (n—1) . 1
m _1e* e % (n=1) 2
goL/R_\/.k_ = exp[ke ; z} 1+0 - zZ — 00

in S;, and Sg respectively. Let ®(z) denote the row vector [ (2), ..., 0¥ (2)]. The fundamental matrices
Y(2), Yr(2) of (4.11) are expressed through formula (4.15) in terms of ®(2z) and ®gr(z) and
™

Y1.(2) =Yr(2) S O<argz < %
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if and only if
®r(z) = ®r(2)S O<argz<zkr-

Proof: Simply observe that for a fundamental solution in Sy, or Sg (we omit subscripts L, R)

k—1 k—1
z72 202 ~
Y(z)= [ '90 .<p = XY
which is asymptotic, for z — co, to
exp(kz) ,
1 eF ¥ &% . ei%:—l”} exp(keF z)
exp(ke O )

Now , the first row of Y'(2) is 25 3(z)

We recall that the Stokes’ matrix S has entries s;; =1, s;; =0 if Ry; C Ilg.

Lemma 4 : S has o column whose entries are all zero but one. More precisely:
For k even

.k
Sikp1 =0 Vz#§+1, Skygkyy =1
For k odd k41
Si’k_jO;I_ZO Vi;ﬁ—-z—-, Sl_c_-;;lykz_1=1

Proof: Let us determine n such that Sin = 0 for any 7 # n and sp, = 1. We need to find all rays in
. We start with R,; with 7 < s. We know that for r + s = k + 2 the ray is the negative real half-line
(at angle —7). Then R.s C IIg for 7 + s < k+ 1 (r < s). Then, in IIg we have

Riz Riz ... R
Rog Ros ... Rapgp—
Rss Ras ... Rzp-—2
Rab

where Ry, = R%,%H for k even, and R&;,# for k odd. In Iz we have also R,s with7+s > k+2
and r > s. For fixed n we require R;, C Ilg for any i. Namely,

Vi<n i+n<k+1, Vi>n i+n>k+2

This yields n = £ + 1 for k even, n = &2 for k odd.
O

Let n(k) be £ + 1, or £, Lemma 4 implies that the n(k)** columns of Yz, and Yx coincide. In
particular, their asymptotic representation holds for —7 < argz < w + %. Actually, this domain can be
further enlarged, up to

s T
——I;~7r<argz<7r+z k even

2
k
< |e*“i| on the right of R;;, and conversely on the left. Then it is easy to

—rT<argz < T+ k odd

To see this recall that |e**

see that for k even |exp(z u 5 +1)| dominates all exponentials in the sector ~f—7m<argz < L —m, while

for k& odd 'exp(z Ukt )I dominates all exponentials in the sector 7 < argz < m + 2%.
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The first entry of the n(k)** column is gosln(k))(z) = wg(k))(z) times z°7. Then ¢™®) has the
established asymptotic behaviour on the enlarged domains above.

We now introduce an integral representation for a solution ¢(z) of the generalized hypergeometric
equation which will allow us to compute the entries of S.

Lemma 5: The function

1 ~—c+100

g(n)(z)‘z - ds Fk(_s) g—imks gi2(n—1)ms ks

(2’/T) 2 ei“(%””‘l) —c—100
defined for T —2(n—1)F < argz < %1 —2(n—1)%, z # 0 and for any positive number ¢ > 0, is a solution
of the generalized hypergeometric equation (4.13) ( the path of integration is a vertical line through —c).
It has asymptotic behaviour

1 ei%(n—-l) om
(M (2) ~ == ———— ex (kel_k’(”‘l)z) z = 00
g ( ) \/E Z¥ p
In particular, for n(k) = % +1 (k even), or n(k) = %ﬂ- (k odd), the analytic continuation of g™(*))(z)
has the above asymptotic behaviour in the domains '

7T< z<7r+7T k even
T A arg W e
27
—7r<a,rgz<7r+7 k odd

(n(k)) = %(k)) appearing in the first rows of the fundamental matrices

and coincides with the solution ¢y, =
Yy, and Yr of the system (4.11).
The following identity holds

k

(~)mk ( i

) g™z ™) = 4.16
m) 9T = (4.16)

m=0
The proof is omitted. The reader is referred to the paper [25] by the author of this thesis, especially
to the preprint.

Remark 2: Observe that for basic solutions of the hypergeometric equation ®1,/p = [c,og/) R go(Lk/)R],

iZ(n—1) om
o™ (2) ~ 7?_1_5“ exp(keiE (1))
2

—

N

on some sector, and

y i (Int1)-1)
Y~ (=1) _}_E_ﬁ_k_..__l____exp(ke’T([n"‘l]_l)z)
k z7T

o™ (ze

like —(™*D on the sector rotated by =2Z. Note however that ¢(¥) (ze’F") ~ (VEz"T5)"1 eb* | like
oM (2). _

Also, note that g(™ (zeg‘ku) = —g(”+1)(z) (we mean analytic continuations), with asymptotic be-
haviour on rotated domain.

4.4 Monodromy Data of the Quantum Cohomology of CP*~!

Let us return to the system (4.2).
- 1
By = (U(t2) + ;u) y (4.17)

2
In this section we use the original notation w = ze¥. The system has a fundamental matrix

vo(t?,2) = (I + Hi(B)z + Ha ()22 + ..) 2# 2B, 250
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where R is the same of system (4.11). The series appearing in the solutions converges near z = 0. The
matrix U(t?) has eigenvalues and eigenvectors

(20 (i 12 12
un(t?) =t * (N eF = e n=1,.,k
2j—1—k 2 . 2j—1—k .2
T =gl et

xn(t2) of entries 27, (82) = 2T D-1T T

Let X (t%) = (27,(t?)). With the gauge y = X (t*) §(¢?, z) we obtain the equivalent system

2
0,7 = [U(ﬁ) + —V—g——)] 0 (4.18)

U@#?) = X1 U(#?) X (1?) = diag(u1 (), ..., ux(t?))
V) =X p X#), VEOT+V(EE) =0

Let us fix an initial point to = (0,£2,0,...,0). The system (4.18) has fundamental matrices yz(t3, z),
v (3, 2), which are asymptotic to the formal solution

gr(ty,2) = {I A (t ) qu(t o | } e* Ulid)
in the sectors
t3 T
Sp(to) ={z€ C|0<arg |zexp % <7r+;}

2
Sr(ty) ={z€C| —m<arg [zexp (f)] < %}
and
G1(t2,2) = yr(td,2) S 0 < arg [z exp <E)
" with respect to the admissible line

Cx t2¢
lto = {zlz:pexp (ié— JT]Z‘ 0>, p>0}

The Stokes’ matrix is precisely the matrix S of system (4.11) with respect to the admissible line I;,.
Also the central connection matrix defined by

13

2
WA =@, C - <ag s <

is the the same of the system (4.11).

Definition: C and S, together with j, R, and e = B‘% are the monodromy daota of the quantum
cohomology of CP*¥~! in a local chart containing to.

Recall that we fixed a point tg = (0,3, ...,0). When we consider a point ¢ away from to, the system
(4.17) acquires the general form

B,y = [z)(t) + ﬁ] y (4.19)
where Z(¢!, .., t%) = n U(t) n~* and y D@, t*; 2) = B, (¢, 2).
The admissible line l;, must be considered ﬁzed once and for all. Instead, the Stokes’ rays change.
This is because they are functions of the eigenvalues us(t), ..., ug(t) of the matrix H(t',..,t*). For
example, if just ¢? varies, while t! = > = ... = t* =0, the system (4.17) has Stokes’ rays

Cx, .L.2
Rs(t*)={z] =p exp<i%—i%(r+3)—idﬂz ) p >0}

The dependence of the coefficients of the system (4.19) on ¢ is isomonodromic. Then p and R are the
same for any t. S and C do not change if we move in a sufficiently small neighbourhood of ¢y. Problems
arise when some Stokes’ rays cross lt,. S and C must be modified by an action of the braid group. We
will return to this point later.
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/
/
v . i /
Dgmain/of Yy, / ; ! P
;

U
/ ’ I I !
’

Rk_k-l -----

Figure 4.2: Sector where Y} has the asymptotic behaviour X e*V for z = o0

4.5 Computation of S

To compute S, we factorize it in “Stokes’ factors”. Our fundamental matrix Y7 has the required asymp-
totic form on the sector between Rys (argz = 0) and Ry (argz = m+ %). Yg has the same behaviour
between Rop (argz = —m) and Ry (argz = §).

Of course, we can consider fundamental matrices with the same asymptotic behaviour on other sectors
of angular width less then 7+ § and bounded by two Stokes’ rays. We introduce the following notation:
consider a fundamental matrix of (4.11) having the required asymptotic behaviour on such a sector. If
we go all over the sector clockwise we meet Stokes rays belonging to the sector at each displacement of
Z. Let R;; be the last ray we meet before reaching the boundary (the boundary is still a Stokes ray not
belonging to the sector). Then we will call the fundamental matrix Y;;. For example, Y1 = Y1 and
Yr = Y. See figure 2.

Sometimes, a different labelling is used in the literature. The rays must be enumerated as in figure
3. The numeration refers to the line I: the rays are labelled in counter-clockwise order starting from
the first one in Iz (which will be Rg; then Ry, Ry, ..., Rg—1 are in Ilg, and Ry, ..., Roy—1 are in Ig).
For our particular choice of [ , Ry = Riy (at argz = —m + %); R1 = Ry 51 follows counter-clockwise...
Then we proceed until we reach Ry_1 = Ry2 before crossing I, and so on. The fundamental matrices are
labelled as we prescribed above, namely Y; if its sector contains R; as the last ray met going all over
the sector clockwise before the boundary. The sector itself is denoted by S;. See figure 3.

We define Stokes’ factors to be the connection matrices K; such that

Yia(2) = Y (2)K;

on the overlapping region of width 7. We warn the reader that also the Stokes’ factors will be labelled
with both conventions above, according to our convenience (for example Ko = Kix).
As a consequence of the above definitions, we can factorize S as follows

VL =Y = Yo Ko = Vis Ky K2 = ...

Then ,
S = Klel,k—lKk,k—lKk,k-—’)~--I{k3Kk2 (420)

We observe that, being the first row of Y (2) equal to zk‘g“l@(z), the following holds:

®;11(2) = 0, K;
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Figure 4.3: Sector S, and labelling of Stokes’ rays

Remark 3: The Stokes’ factors of the system (4.11) and of the gauge-equivalent system (4.14) are

the same. From the skew-symmetry of V' it follows that Kj; = (K;')T.

Before computing the Stokes factors explicitly, we show that just two of them are enough to compute
all the others. Let

% ]_ek(k 1)

F(z):= (lez exp(kz), —\;.—/;z = exp(ke%z), Y =
= (FO(2), FO(2), .., FO(2)

be the row vector whose entries are the first terms of the asymptotic expansions of an actual solution
®(z) of the generalized hypergeometric equation. By a straightforward computation we see that

exp(keF (b= 1)z)>

0 w1

-1 0
We use now the convention of enumeration of Stokes’ rays Rg, Ri, ... starting from ! (see above). Let
®,,.(z) be an actual solution of the hypergeometric equation having asymptotic behaviour F'(2) on Sy,.

m(z) ~F(z) z— 00 z€S5n

Then

2mi 2mi )

Bio(ze® )~ F(ze™® ) =F(2)Tr, 2z€S8m

Namely, }
Qm-l-z(zeg—%i)T};l ~ F<z) ’ z¢€ Sm

then, since the solution having asymptotic behaviour F(z) in a sector wider then = is unique, we have

(Pm+2(zez_;:{-) = @m(z)TF s P Sm

Lemma 6: For anype€ Z
Kmiyop =Tp KpnTh

Proof: For z € §;, NSy

Bpp1(2) = On(2) K = Prnga(2eF ) Tp K =
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= ¢m+3(262—;‘:i—) K;LLQTEIKm, = @m—i-l(z) TF K;L}I-‘Z TEI ‘K’m

Then K42 = Tp' K, Tr. By induction we prove the lemma.
]

jFrom the lemma it follows that just two Stokes’ factors are enough to compute all the others. We
are ready to give a concise formula for S:

Theorem 1: Let | be an admissible line (i.e. not containing Stokes’ rays), and let us enumerate the
rays in counter-clockwise order starting from the first one in Ilg (which will be Ry, then Ry, Ry, ...,
Ry_1 are in Xlg, and Ry, ..., Rog—1 are in I ). Then the Stokes’ matriz for (4.11), (4.14), (4.18) and
k>31is

o
tafz

(Ko K, T51)® TF (T5" Koy Kxo1)®, & even
S = (4.21)

Il
,q‘ﬂ

k-1

Kio1 (Tf' Ky-2 Kg-1) * , k odd

k=1
2

k=1 k-1
(Ko I(l TEI) 2 Kg TF2 = TF

Proof: S = KO Kl Kg Kk——l, Kgp - Tl:p I<0 TII; and K2p+1 = T];P K1 TIZ;" Then
S = KoKy (T KoTr) (T5 ' KiTr) K4Ks ... Kk

= (KoK1T7") KoKi Tr KuyKs ... Kp—1
= (KoK T;7') KoK1 Tr (T’KoT3) (Tr K1T#) Ko ... K1
= (KoKa TR V) (Ko K1 TR KoK T3 Ko ... Kg—1

k_...

k-1 k—1
Now observe that Ky_1 = Ty * 9 Ky T ™" for k even, while Kj_1 = Tp' * ) Ko Tp® for k odd.
Then, for k even :

3 E__
S = (KoK Tp")3~2 KoK\ T ™2 Ky—2Kj—1

k
l2c__2 1 K

—(E E_ —(k_ E_
= (Ko T2 KoK T 2 TV RorE ™ 17 VR T
For k odd:

E
= (Ko K0 77 7

k=3
3z

o — 3
S = (KoK TpY) T KoKiTp? Kpy

1y k=2 R —(5h) bt 1\ 55 £t
= (KOKlTF ) 2 KOKlTF2 TF - K()TF2 = (KO Kl TF ) 2 Ko TF2

If instead we write the Stokes’ factors in term of Ki—» and Ki_; we obtain the other two formulas in

the same way.
O

Remark 4: For our particular choice of I, Ko = Ky, K1 = K1 -1, Kg—2 = Kpz and K1 = Kpa.
For k=3
S = TrKss (Tr' K12K3) = K13K12 K39

It is now worth deriving some properties of the monodromy of ¥ (z) (for (4.11)) and &(z) (for (4.13)),
which will be useful later. Consider ®,,(z) with asymptotic behaviour F(z) on S,,. Then

27i
k

B (2) = Brm_2(2) K-z Km-1 = 8n(ze* ) Tp' Kpes Km—1

On the other hand
2rmi

B (2) = Brnaa(2) Kky Kt = pn(ze” F ) Tr Ky Kt

This proves the following
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Lemma 7: The basic solution ®,,(2) of the generalized hypergeometric equation (4.13) with asymptotic
behaviour F(z) on Sy, satisfies the identity

where
Tm= Ki'y KoLy Tr = Tr Koy K

Corollary 1:  The monodromy (at z = 0) of ®n(2) is

‘I)m(ZG%i) = ®m(z) (Tm)k

Now, for our particular choice of the line I and for m = k, ®,,(2) = ®1(2). For the solution Y7 (2) of
(4.11), the relations Yg(z) = Yz.(z) S7! (0 < argz < L), Y (2) = Yr(ze™>™) ST (r <argz <m+E)
immediately imply '

Yy (22™) = Yi(2) S71 ST

Recall that the (n,j)-th entry of Y (z) is Yy, ;(2) = Y9 (z) = s 25T (29,)(D ) (2), and
observe that (ze2™)%5 = (—1)F-1 27" Then, from Corollary 1 we get the following:

Corollary 2:  Let T be the k-monodromy matriz of ®; (namely, T = T}, for our choice of 1). Then

Tk — (__1)16——1 S—l ST

Our formula (4.21) allows us to easily compute S. The recipe is simply to take K3, Kg2 (which we
are going to compute explicitly) and substitute them into

E o1 E E__ ok
SZTF2 (TF Kys Kk2)2 =TF2 T2 (4,22)

for k even, or into
k—1
2

—1 k=1 1“;—1 _k—1
S = TF KkQ (TF Kkg Kkg) 2 = TF Kkz T = (423)

for k£ odd.

Computation of Stokes’ factors: We need to distinguish between k odd and even. In the
following g(z) will mean g(*(®)(z) (n(k) = £ + 1 or &§* for k even or odd respectively).
k odd: ,

By = B
9(z)=9p? (2)=¢R” '(2)
with asymptotic behaviour on
2
—mr<argz <7+ —];

If we iterate the map z — zeF form=1,2,..., kizl times, the domain of g(zé ™) for each m covers

Skr. When we reach m = &£l 3 new iteration (i.e. a new rotation of the domain of —27) will live the
P) k

sector —% < argz < ¥ of Sg uncovered. The same, if we do z > ze~ % the sector — < argz < —7r+277T
of Sg remains uncovered. Then, by remark 2:

2wi
k

O15(2) = Pr(z) = ((—1)%29(261:%(%&)), k—;—s unknown terms ...,

9(2), — g(ze®E), gze'®), ., (-1)'Tg(ze E ()

In the same way we see that

B (2) = B1(2) = ((-1) T gee™ 5, —(-1)"= g(ze  F T, L, —g(ze™ ),
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g(z), ... 251 unknown terms . )

and similar expressions for @1 k-1, ®x,k-1, Pr,k—2, ---» P23,Pr2. The unknown terms are computed using

the identity (4.16) and simple considerations on the dominant exponentials |e**| on the sectors which
. . . . ;2m

remain uncovered in the iterations of z - ze®*%

Example: A simple example will clarify this procedure. Let k = 7; then g = @,

2mi 4mi [o1:d 1

7): g(zeT), —g(zeT))

Bir =g = (—g(zeT), 7, 7, g(z), —glze

We look for ch3). If we take (—1)g(ze:%ﬁ) we miss to cover -7 < argz < —m + 2% in Sg. On
- < argz < —m + L (between two nearby Stokes’ rays) we have the relations |e*“4] > |e*¥3| > |e*“2|.

On —7m+ ¥ <argz < —m + 2, |e*¥4| > |e*¥3| (later on we will simply write 4 > 3). Then

-2
B (2) = (~1)g(2e™ ™) + ca) (2) + 508 (2)

To find ¢4, c5 we need another representation for (pg’). We consider ( 1) g(ze_") which has the correct

asymptotic behaviour, but on a domain which leaves uncovered —<£ < argz < %. The relatlons are: on
0<argz< 771>7>2>6>3 on —% < argz <0, 1>2>7>3 on—~<argz< ,2>1>3;
on —%F <argz < —3%, 2 > 3. Then

o) (2) = (~1)g(2e™ ) + dioR) (2) + doo2) (2) + dsoy) (2) + dr o'y (2)

In the same way one finds

50(2)(2):{ glee™ HQW()(.)“‘V’ (2) + a5 (2) + as ) (2)
R g(ze £ )+ble )(Z)+b2(p )(z)

©(@’s are known for i = 1,4, 5,6, 7. Using the identity (4.16) we compute a, b, ¢, d. We get

o2 = oo ) = (1) o)+ () o) = () atee™)+ (] ) o)

o) = =g+ (1) a0 - (] ) o)

A similar computation gives @71 = ®.

— 6ri -

and

37, = —g(ze™)
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Notice that in each of the last three entries of ®75 there is a term missing w.r.t the corresponding entries
of ®;1. This immediately implies

=]
=
o
(=]
=}

—
o w=o
~—

0

0

7

00010 O ( )

Koy = . 4
000 1 (6) 0 0
000 0 1 0 0
o000 0 1 0
0000 0 0 1

The next step is the computation of ®73 and K73, through ®75 = ®73K73. It is done in the same way...

The above procedure is extended to the general case. In Appendix 2 we give, for example, the general
expressions of ®x and ®;. The factors of interest are:

k odd:

(i) 112 = (o
Zero.

k

- 1)) for j =2,.., kzil (Kka)j; = 1for j =1,...,k. All the other entries are

k k : )
(Kkg)gyl = - (1>; (f('k3)j1 k—j+3 = <ZJ _ 3> for ] = 3,...,1Cj2_—1. (Kks)j,j =1 for ] = 1, ...,k‘. All the

other entries are zero. Namely:

Ko =

Krz =

k even:
(Kk2)j, k—jt2 = (2(jk_ 1)) for j =2, ..., % (Kk2)j,; =1for j =1,..., k. All the other entries are zero.
k

(I(kS)Z,l = — H (Kkg)j, k—j+3 = k s for _7 = 3, ceny 126' +1. (Kkg)j'j =1 fOI‘j = ].,...,k. All the
1 27 -3
other entries are zero. Namely
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Kyo = ‘.10(’“)

K3 =

1

Our equation is a particular case of general confluent hypergeometric equations, whose Stokes’ factors
were computed by A. Duval and C. Mitschi in [20]

4.6 Reduction of S to “Canonical” Form

Some examples of computations of S are at the end of this chapter. The reader may observe that S
is not in a nice upper triangular form (see also Lemma 4) and quite strange numbers (complicated
combinations of sum and products of binomial coefficients) appear.

We recall that some natural operations are allowed on the Stokes matrices of a Frobenius manifold:

a) Permutations. Let us consider the system

@ _ [U + 1V] Y

dz z
where U = diag(ui, ugz, ..., ug). Let o: (1,2,..,k) = (0(1),0(2),...,0(k)) be a permutation. It is
represented by an invertible matrix P such that

PUP™ = diag(u(), U2, - Yo(k)

S and C are then transformed in PSP~! and PC. For a suitable P, PSP~! is upper triangular. The
good permutation is the one which puts u,(1), .-, Us(k) in lexicographical ordering w.r.t. the oriented
line I. P corresponds to a change of coordinates in the given chart, consisting in the permutation o of
the coordinates. ’

b) Sign changes of the entries. The construction at point a) is repeated, but now a diagonal matrix
J with 1’s or —1’s on the diagonal takes the place of P. In JSJ~! some entries change sign. Note that
JUJ-! = U. Moreover, the formulae of chapter 1 which define a local chart of the manifold in terms of
monodromy data are not affected by S — JSJ, C — JC.

c) Action of the braid group.
In section 4.4 we proved that the Stokes’ rays of the system (4.18), and more generally the rays of the
system (4.19), depend on the point ¢ of the manifold. This is equivalent to the fact that the eigenvalues
w1 (2), ..., ug(t) of U(t) depend on ¢t. Let us start from the point o = (0,3, ...,0). If we move sufficiently
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far away from ¢, (we move to another chart), some Stokes’ rays cross the fized admissible line lt,. Then,
we must change “Left” and “Right” solutions of (4.19). Then S and C change. The motions of the
points uy (t), ..., ug(t) as t changes represent transformations of the braid group. We already described
the action of the braid group on S in chapter 1. We recall that S must be set in upper triangular form
by a permutation before acting with a braid.

In figure 4 we have drawn some lines L; = {\ = u; + pei(379, p > 0} (0 < e < T is the angle of
1), which help us to visualize the topological effect of the braids action ( they are the branch cuts for
the fuchsian system which will be introduced in section 8). We are going to prove that the braid whose
effect is to set the deformed points in cyclic order and the cuts in the configuration of figure 4 (namely,
the last two cuts remain unchanged, the others are alternatively “inverted”), brings S in a canonical
form:
k

sy = 1, Sij:(j_i

To be precise, we find that the last column is negative. The “canonical form” is reached after the
conjugation S — ZST, where 7 := diag(1,1,...,—1).

), SjiZO, Z<]

Lemma 8: Let the points u; (j = 1,.., k) be in lexicographical order w.r.t the admissible line I. Then
the braid

B = (Br—s5 k-1 Br—6,k—5 - B12) (Br—6,k—5 Br—7,k—6 - B23) (Br—7,k—6 - B3a) ...
w By_g k1 (Br-s k-2 Br-ak-3 - f12)

for k even, or
B = (Br_sr—a Br-6i—5 - B12) (Be—6,k—5 Bi—7,k—6 - P23) (Br—7.k—6 - Pas) -

(555_3’,5_;_1 ﬂ&gé,é_;_a) (Br—3,k—2 Br—4,k—3 - P12)

for k odd, brings the points in cyclic counter-clockwise order, ui being the first point in Iy (figure 4,
right side, or figure 5).

Note that we have collected the braids in % — 1 (k even), or "—;3 (k odd) sequences (...).

Proof: Let k be even. The first braid 85 x—4 interchanges ug_4 and ug_s. The second braid inter-
changes u;_s and uj_g. One easily sees that the effect of the first sequence of braids (8x—s k-4 Br—6,k—5 --- B12)
is to bring u; in the (old) position of ug_4, Ug—4 in the position of ug_s, ux—s in the position of ux_s,
..., U4 in the position of uz and us in the position of u; (figure 5). ug, ug—1, Ur—2, ur—3 are not moved.
The second sequence of braids (8x—6 k5 Bk—7,k—6 --- B23) acts in a similar way, bringing us in ug-s,
Up—5 iDL Uk—g, ..., U3 0 Ug. Uk, Up_1, Uk—2, Uk—3, Ug—a are not moved.
We go on in this way. After the action of

(Br—5,k—4 Br—6k—5 - B12) (Br—6k—5 Br—7k—6 - B23) (Br—7,k—6 - B34) - Br_s x4

the points are as in figure 5: uy, is on the positive real axis, ux_s is the first point met in counter-clockwise
order, u; is the second, us is the third; the points are in cyclic order up to ug—s; finally, uy_; is the last
point before reaching again the positive real axis from below.
Then, (Br—3,k—2 Br—ak—3 ... f12) brings u; in ug_o, Ug—2 in ug—3, Ug—3 in ug-4, and so on. The
cyclic order is reached.
For k odd the proof is similar.
O

A careful consideration of the effect of the braid § on the lines L; (which we leave as an exercise
for the reader) shows that they are alternatively inverted as in figure 4. To reconstruct uniquely this
configuration we just need to know the oriented line [, namely, its angle € w.r.t the positive real axis.
The points ug_1, ur and the lines Ly_; and Ly, are unchanged (angle 5 —¢). The line at u; starts in the
opposite direction, it goes around us, ..., up—2 without intersecting other cuts, and then goes to co with
the original asymptotic direction 5 —e. Moving in the direction opposite to that of I we meet ug_s. Its
line has the original direction § — €. Then we meet u2, and the corresponding line starts with opposite

direction, goes around us, ..., ux—3 and then goes to co with asymptotic direction 7 —e. And so on.
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keven
(example k=8)

3 ) 7

(examnple k=7)

Figure 4.4: Effect of the braid which brings S to the canonical form on the lines L;.

—

First sequence
of braids

second sequence

Ssituntion before the
last sequence

Last sequence of braids

Figure 4.5: Effect of the sequence of braids which brings S to the canonical form (the figure refers to k
even).
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Now we find the matrix representation for the braid 5.

Proposition 1: The braid 8 of Lemma 8 has the following matriz representation:

0 o} 0 0 [} 0 4] [} o 1 0 0
o Q 1 0 (};) 0 0
k k
1 o (1) 0 (2) 0 0
k k k
(1) o (5) o (5) oo
* * *
* * *
0 Q9 [¢) 1 o] * * =
k
0 1 0 (1) 0 * * *
k k
1 o} 0 * * *
g (1) » (5)
AP(S) = 2
o 4} 1 ( ) 0 * * *
3
0 0 0 0 1 * . * . * .
# . * . * .
* . * . * .
k k k
(L2) o (x2e) © (x25) o0
k k
o 1 (k__5) 0 (k_4) oo
k
0 0 0 1 (k_3) o o
0 0 0 ¢} 0 1 0
o 0 0 0 0 0 1] [} 0 0 0o 1
for k even.
0 0 [0} o 0 aQ 0 o] [¢] 1 o 0
0 0 1 0 (‘;) 0o 0
k k
1 0 (1) 0 (2) 0 o
k k k
(1) o (5) o (§) oo
o * . *
* * *
* * o
* * *
0o 0 [} [ 1 0 * * *
0 o 1 0 (’f) 0 * * «
1 0 (k) 0 (k) o * * *
AB(S) 1 2
= k k
0 1 (2) 0 (3) o . P .
k
0o 0 [} 1 (4) 0 * * *
0o 0 o 0 0 1 * . * . *
. . . * . * - *
* . * . *
k ke k
(22) @ (uZe) o (uZ5) o0
k k
0 1 (k_s) 0 (k_d) 0 0
k
0 0 0 1 (k—3) o 0
0 o] o] 0 1 0
o 0 0 0 o 0 o 0 0 o 0 1
for k odd.

k .
The “¥” means (]. , and 7 increases by one when we move downwards row by row.

Proof: Tt is quite long and technical. We refer to the paper of the author of this thesis [25].

We are ready to prove the main result:

k-1
Theorem 2: Consider the Stokes matriz S = TB% T-% (k even) or S = TFTK;QQT“L}I‘ (k odd) and
set it in the upper triangular form Sypper = P S P! by the permutation P. Then, there ezists a braid
B (Lemma 8), represented by a matriz AP (Proposition), which sets Supper in the canonical form ( after
conjugation by diag(1,1,...,-1) ):
845 = ( k ) i<]
ij ,] —i ) J

Another conjugation by diag(—1,1,-1,1,—1,...) brings the matriz in the equivalent canonical form

sij:(-l)j-i<.k.>7 i<

]
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Finally, by the action of the braid group, the last matriz can be put in the form

Ek—14+7—1 .
Sij:< ]'—"L? )7 1<)

In all the above matrices

si; = 1, 5;;=0 1>]

Proof: First, we want to explain which is the braid which brings the upper triangular matrix with entries
si5 = (—1)77¢ (j {C_ 2) in the matrix s;; = (k AE

i—i ) . We make use of the following known result
[55]:

Consider the upper triangular Stokes’ matriz S, the braid 8 = 13 (B23P12) (B34B23612) - (Brn—1,nBn-2,n-1
... Baafi2) and the permutation P of entries P, p_iy1 = 1 fori=1,...,k, and zero otherwise. Then, the
relation

[51)° = PSTP (4.24)
holds.
. . . k—14+j—1
Observe that for the matrix S, whose upper triangular part has entries s;; = i—i , we
k

have PSTP = S. Moreover, ™! is upper triangular with entries s = (—1)371 (j - ) This proves

that S and S~ are equivalent w.r.t the action of the braid group.

k
Let us now prove the theorem staring from k even. We have to prove that A% P T2 T—% P~1[Af|T
is in “canonical form”. The proof “reduces” to the computation of products of matrices explicitly given.
We do the products in an shrewd way. First we rewrite

E
2

k
SP=AP (PTp P71)® (PT' P7Y)% (4T
and we quite easily compute (P Tr P71) % (here P is the permutation introduced at the end of the proof
k

of proposition 1). The result is (P Tr P~')7, ., = +1, with + for i even and — for ¢ odd. The other
entries are zero. Then, using the expression of AP from the proposition:

T () e s
(5) o (%)
(5) o (3) on
F .= Af (PTFP"l)%= i i : Egg Z (’1’) -1
- - - (’;) -1 o0
() © (%s)
. (e25) =+ o

the -1 on the last column is on the £-th row). Using the explicit expressions for K3 and Kjs of section
2
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5 we compute 771 = T_;:l K3 K2 and then

0o 0 -1
k
1o = (k)
o o 0 0 -1
k k
0o -1 - sz) 0 ‘(k—s) 0
0 0 0 0

pr-tpt.

After this we computed F [P T-! P=1], F [PT-* P~Y] [PT-'P'], F [PT PI°,

k
F [PT' P~]*. We omit the intermediate computations and we give the final result:

(S

Fi:=F (PT™' P)

-
(=}
—_
B
1=
-
~—
(=}
NN NS

> o
[ BT T O

kol

[M) o »
e N N N’

-

<
N TN TN N

ko ko E B o
R B I

ko

o @

1

0

[}

Now, multiplying F} [AB]T, we obtain precisely the “canonical form”.

For k odd, we did a similar computation. We omit the detail, but we indicate the order of multi-

plications which yielded the most simple expressions to multiply step by step. Our aim is to compute
k-1 _ _

AP P T.7 Ky (Ti' Kis KkQ)Zcz_l P~ [AP)T. First, we computed PTrP~", then (PTFP“l)ETl‘,

then F := AP (PTFP‘l)kEI. After this, we computed PKyP~1, and Fy := F PKP™'. Finally, we

calculated m := P Tp' K3 Kpp PP and Fy m, Fi mm, .., I := F} m*7 . The matrix Fy [4#]T
proved to be in “canonical form”.

a

4.7 Canonical form of S~!

The matrix S~ such that Yz(z) = Yz(z) S~ can be put in the same canonical form of S, as a
consequence of the relation (4.24). The only remarks we want to add concern the braid which brings
S~1 to the canonical form, because it arranges the lines L; in a “beautiful” shape.

Lemma &': Let the points u; be in lezicographical order w.r.t the admissible line I. Let us denote
aiiv1 = [, i1+1. Then, the following braid arranges the points in cyclic clockwise order, u; being the first
point in I, for k even, or the last in g for k odd (w.r.t the clockwise order) (see figure 6):

B

= [ (0‘34056078 Uk—3,k~20k-1,1c) (045067089 Uk—4,k—30'k—2,k—1)

.. o O
(0§,§+1 §+2,§-+3) %+1,§+2]

{ (O’%+2'%+3O’%+3’%+4 O'k—2,k—-10'k—l,k) (U%+2)%+30%+3,%+4 Uk«—?,k—l)
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L‘k»l Lk
LyL, Ly
b, bag,

1
TE

k+3)12

keven kodd

Figure 4.6: Lines L; after the braid which brings S™* to canonical form.

for k even, and

B' = P12 [ (045067089 .. Ok—3,k-20k—1k) (056078 .- Okt k—30k—2,k—1) -

l:((fk-;-s k+7 O E+7 k+9 ... Uk—’z,k—lo'k—l,k) (O'k 5 k+7 O k+7 k48 ... O'Ic—2,k-1)

—m— M D e R e P

2 1 2 2 2 2 0 2

]

for k odd.

A careful consideration of the topological effect of the braid on the lines L; shows that they are
arranged as in figure 6. To reconstruct the configuration it is enough to know the admissible line [
(at angle € w.r.t. the positive real axis). In fact, u; is the first point in II; (in clockwise order) for
k even, or the last in IIz for k odd. The lines come out of the points in centrifugal directions. They
go to infinity, without intersections (so preserving their lexicographical order w.r.t ) with the original
asymptotic direction 5 —e.

AP’ can be computed as in proposition 1, and the analogous of theorem 2 can be proved using the
braid g'.

4.8 Relation between Irregular and Fuchsian systems

Let us consider the fuchsian system (1.30)

(U =) g{i - <%+V> p (4.25)

which can also be written

k
do B; 1
- = Bi=-E; | =4V
ax ;A—uj ¢ Bi=-E (2+ )
Its dependence on v is isomonodromic. Around the point u; a fundamental matrix has the form

[Qo+ O (A —uy)] (A—u)™
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where M =diag(—3,0,...,0) and the columns of Qo are the eigenvectors of Bj; in particular, the first
column is (0,..,0,1,0,...,0)T, and 1 occurs at the j** position. Then, the system has k independent
vector solutions, of which k — 1 are regular near u; and the last is

0

where 1 occurs at the j* row. For any u; we can construct such a basis of solutions. The branch of
/A —u; is chosen as follows: let us consider an angle  with a range of 27, for example —5 <7 < %,
such that 7 # arg(u; — u;), Vi # j. Then consider the cuts L; = {A = u; + pe”, p > 0}. Actually, the
cuts have two sides, LT = {A =u; + pe”, p>0}and Ly ={A=1u; + pen=2m) 5> 0}. The branch
is determined by the choice log(A —u;) = log |A —u;|-+1in on L;’ and log(A —uj) = log |\ —u;| +i(n—2m)
on L7. On C\U, Lj, VA =1, ..., VA — uy are single valued.

For any two (column) vector solutions ¢(}), ¢'(A) we define the symmetric bilinear form:

((6,¢")) = oN)T(A=T)P' (V)

which is independent of A and w1, ...,us. Let G be the matrix whose entries are Gy; = (( ¢, ¢ )). In
particular, we normalize in such a way that Gy = 1. Then, it can be proved (see [3] and also [17] ) that
near u;

99 () = Gig¢? () + i ()
where 7;;(\) is regular near u;. For a counter-clockwise loop around u; the monodromy of o™ is

(¢(i) , ¢(j) )

AR Rj¢(i) = (M) — QW

Then, the monodromy group of (4.25) acts on &1, ..., ¢® as a reflection group whose Gram matrix
is 2G. In particular, ¢, ..., ¢(*) are linearly independent (and then a basis) if and only if det G # 0.
In general, given two linearly independent (column) vector solutions oM, p? we have

G12 = (( ¢(1)(ua /\)’ ¢(2) (U, )‘) )) = (dwl (U'a A)a dﬂ?g(’u, A)) - A < d"L‘l (U, /\)7 diBQ(’LL, A) >*

= (dzy (u,0),dz2(u,0))

where (.,.) is the intersection form g. This means that in the case det G # 0 the monodromy group of
the manifold is O(n, g).

Now consider an oriented line | of argument ¢ = 5 — 7, and for any j define the following vector
v = V2 / X 6D (2) M 4.26
| B0 (4.26)

which is a Laplace transform of () . The path -y; comes from infinity near L;', encircles u; and returns
to infinity along L;. We can define Il = {p < argz < p+7}and Iz = {p — 7 < argz < p}.
A = oo is a regular singularity for (4.25), then the integrals exist for z € Iz, and the non-singular
matrix Y (z) := [Y()|..]Y(®)] has the asymptotic behaviour

Y(z)~<I+O(—i—)> eV 2z 00, zellg

and satisfies the system

ay _ [U+K}Y.
dz z

Then it is the fundamental matrix Y. Note that [ is admissible, since it does not contain Stokes‘ rays.
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It is a fundamental result [17] that the Stokes’ matrix of (4.14) satisfies

S+ ST =2G

Finally, we recall [17] that if u is subject to a “big” deformation, the monodromy group does not
change: actually, the action of the elementary braid f; ;41 is given by

(Rl, veey Ri,R¢+1, ,Rn) - (Rl, ey Ri+1,Ri+1RiRi+1, veny Rn)

and the group remains the same.

4.9 Monodromy Group of the Quantum Cohomology of CPF!

The monodromy group is generated by the monodromy of the solutions of (4.25) when A describes loops
around w1 (), ..., ur(t).
From (4.26)

7 vz / j A
J =~ dA Oy’ (t, z .
Oat’ (t, 2) N 2/ (t,\) e (4.27)
and therefore we must add the effect of the displacement t*> ++ t*> + 27i in order to obtain the full
monodromy. In fact, in this case

2

[c,a(l)(ze%eg),...,Lp(’“)(ze%)] — [(p(l)(zei:“), ...,go(k) (zetTe')] T

and the same holds for #(z, (0,2, ...,0)).

Then, the monodromy group of the quantum cohomology of CP*~! is generated by the transforma-
tions Ry, Rs, ..., Ry, T introduced in the preceding sections.

We are going to study the structure of the monodromy group of CP*~! for any k > 3. Recall that
the matrix S for (4.14) is not upper triangular, because in U the order of uy, ..., u is not lexicographical
w.r.t. the line I. Then, Coxeter identity is —S~1S” = product of the R;’s in the order referred to {. For
example, for k = 3, S™1ST = —RyR3R;, since the lexicographical ordering would be uz, us, u;. From
the identity S~1ST = (—~1)*~1T* it follows a first general relation in the group

T* = (=1)* product of R;’s in suitable order

Two cases must now be distinguished.

k odd: As a general result [3], det G = 0 if and only if V + £ has an integer eigenvalue. The eigenvalues

of V are k51, k=8 k=l Then, for k odd, det G # 0, and ¢1), ..., ¢{¥) are a basis. The matrices
R; are
1
Ri=| 26, -2G5 .. -1 .. —2G;
1

where ST + S = 2G.
In concrete examples, we have “empirically” found other relations like

Ry =p (T? Rl)

Ry = pa(T, Ry)

Ry, = px(T, Ry)
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where p; (T, R;) means a product of the elements T and R;. We have also found the relation

(TRy)* = -1
We investigated the following cases:
CP? (k=3)
Ry =TR:T™', Rs=T (RiReR:) T}
(TR))® = —-TI
T® = —R2RsRa
CP* (k=35)
Ry =TRiT™', Rs=TRT !
R4 =T (R2R3R>) T7' Rs= Tt (R2R1R3) T
(TR))® = ~I
T® = ~R3R4R2Rs Ry
CP® (k=1)

Rs =T (RsR4R3)T™', Re=T(TR:)® Ry [T(TR:1)*|™!
Rr =T *(RsR2R3)T?

(TR:)" = ~I
T = ~R4RsRsRsRaR7R1

Note that one relation, for example that for Ry, can be derived from the others, and that just Ry, T', —1
are enough to generate the monodromy group in each of the examples. They satisfy (in the ezamples)
the relations:

{ Ro=TRiT™Y, R3=TRyT™}, Ry=TRsT"

R=(-ITR)=(-1?=1I
Ri(=I) (-DR) ' =1, T(-D) (-ND)" =1
The last two relations mean simply the commutativity of —I with Ry and T'. The relations are not only
satisfied, but also “fulfilled” (namely, (—I T R1)™ # I for n < k). Now call
X=Ry, Y:i=-ITRy, Z=-I
These elements generate the monodromy group of CP*~! with at least the relations
X?=YF=2=1
(ZX)(X2)"t=1, (ZY)(YZ)"'=1

Note that Z generates the cyclic group Cs of order 2.

If there were no other relations (which we did not find “empirically”), we would conclude that the
monodromy group of the quantum cohomology of CP* (in the ezamples) is isomorphic to the direct
product

<X, Y| X2=YF=1>xC

where < X,Y | X2 = Y* = 1 > means the group generated by X, ¥ with relations X? = Y* = 1.
k even: Now detG = 0, since V + % has integer eigenvalues. G has rank k£ — 1 and the eigenspace

of its eigenvalue 0 has dimension 1. Let (z%,...,2F)T be an eigenvector of eigenvalue 1. The vector
V= Z;.“:l 27 ¢9) is zero, because

k
(u,qs(ﬂ) =S #Gi=0 Vi
j=1
then
z1¢(1) 4 z(2)¢(2) 4+ + quf,(k) =0
and k — 1 of the ¢()’s are linearly independent. The fuchsian system (4.25) has a regular (vector)
solution @g(N) = Zizo én A", where ¢, are constant (column) vectors, and ¢g is the eigenvector of
V + 1 relative to the largest integer eigenvalue less or equal to zero; this eigenvalue is precisely —d (see



4.9. MONODROMY GROUP OF THE QUANTUM COHOMOLOGY OF CPX~! 67

[3]). In our case, d = 0 and ¢o()\) = o, a constant vector. ¢(1), #(2), ... #(¥=1) ¢, is then a possible
choice for a basis of solutions.

Observe that in the gauge equivalent form v = X ¢, 9o is the eigenvector of % + [ with eigenvalue
zero. Then

0 Oz

. 621‘
o=|1] = :

0 Oz

where all the entries are zero but the one at position % + 1. z is the flat coordinate for (, ) - A< , >
corresponding to ¥y. Then, we can chose the following flat coordinates:

(0 1), 22(\1), .., 2L\ 1), ¢35t

The monodromy group then acts on a k — 1 dimensional space.
Let us determine the reduction of Ry, Rg, ..., Rg, T to the &k — 1 dimensional space. The entries of
T on the vectors ¢\7) are: T¢(¥) = Z?zl Ty, i = 1,...,k. On the new basis ¢(1), ..., ¢~ @ the
matrices are rewritten
Rj¢W = ¢ —2G;;09) i=1,.,k—-1 j#k

Rigo = ¢o JFk

k—1
Rpo® = ¢ — 2@, <_z17 Z Zj¢(j)> ik

j=1

k-1 k-1
) . 1 R
T = E Tji¢(7) + Ty (_EE E ’ z]¢(])>
i=1

j=1 .

x x 0
Then the matrices assume a reduced form | * = 0
0 0 1
We studied two examples; besides Coxeter identity 7% =product of R;’s, we found relations similar
to the case k odd:

Ry = pi(T, Ry)
Ry = po(T, Ry)
Ry = pp(T, Ry)
and
(TR)* =T
Namely:
CP? (E=4)
R: = TRlT—l, R3 =TR,T!
Ri=T7"1(R:RiR:) T
(TR =1
T* = RsRyR4R:
CP? (k=6)

Ry = TRgT—l, Rs =T (RaR3RsR3R2) T1
Re=T"" (RoR1R2) T

(TR\)® =1
T% = RyRsRsRoRe Ry

{ Ry =TRiT™}, Rs=TR,T™}
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The same remarks of k& odd hold here. Call
X =Ry, Y :=RT

then, if there were no other hidden relations, the monodromy group of the quantum cohomology of CP*F
(in the ezamples) would be isomorphic to

<X,)Y,| X =YF=1>
Note that < X, Y, | X2 = Y*¥ = 1 > is (isomorphic to) the subgroup of orientation preserving
transformations of the hyperbolic triangular group [2, k, 0o].

Lemma 10: The subgroup of the orientation preserving transformations of the hyperbolic triangular
group [2,k, 0] is isomorphic to the subgroup of PSL(2,R) generated by

1
T ——

-

1

™
2cos;—'r

TeH:={ze€C|Sz>0}

Proof: Consider three integers m;, ma, mg such that

ms mMa ms3

In the Bolyai-Lobatchewsky plane H, the triangular group [m,,ms, m3] of hyperpolic reflections in the
sides of hyperbolic triangles of angles %, —7}{;, o= s generated by three reflections ry, ra, 3 satisfying
the relations

r2 =712 =713 = (rarg)™ = (rar1)™ = (rar)™ =1

and the subgroup of orientation preserving transformation is generated by X = rors, ¥ =r3r1, Then
X™M=Y™ = (XY)™ =1

For my = 2, mg = k, m3 = 00, a fundamental triangular region is {0 < Rz < cos £} N {|z| > 1}. Then

ri(r) = -7, 7ro(T) = -71_:, r3(t) = ZCOS% -7
The bar means complex conjugation. Then
X(r) = —%, Y(r) = m}%_?;
O
Remark : The orientation preserving transformations of [2, 3, c0] are the modular group PSL(2,Z).
Theorem 3: The monodromy group of the quantum cohomology of CP? is isomorphic to
<X,)Y, | X?=Y%=1>xC, 2 PSL(2,Z) x Co (4.28)
The monodromy Vgroup of the quantum cohomology of CP? is isomorphic to
<X,Y, | X?=Y*=1>2 orient. preserv. transf. of [2,4,00] (4.29)

The theorem for the case of CP? is already proved in [17].

Proof : a) CP%:
-1 3 3 0 0 1
Ri=y 0 10 T=(-1 3 3
0 0 1) 0 -1 o)
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and X = Ry, Y = —ITR; and Z = —I satisfy the relations of (4.28). They act on the column vector

T
X = (y) The quadratic form g(z,y,2) = x? Gx is Ry and T - invariant. Then T, R; act on two
z

dimensional invariant subspaces ¢(z,y,z) = constant. On each of these subspaces we introduce new
coordinates x € R and ¢ € [0,27). Let 7 = X €' and

3 .
zz%(”r?~§(7’+?)+1) Z_

T—7
a, 1 _ )
y-—g(TT—i(T'l‘T)—l)T_’?
a, _ 1 _ i
z--§(~7'7‘——2—(T—1-7')+1)7_'_’F

a € R, a #0. Note that g(z,y,2) = a® > 0. Then, it is easily verified that
x(-——l-) = —X x(7)
T
x(—) = ¥ x(r)
1—71
x(r, —a) = Z x(7,a)

. This implies the 1 to 1 correspondence between the generators of the modular group and X and Y.
b) Case of CP?.

-1 4 =10 0 0 0 1 0
o 1 0 o0 -1 0 30
R1“0010’T‘0—130
0 0 0 1 0 0 0 1

The matrices are already written on ¢, ¢(®), ¢(® ¢;. Recall that the monodromy acts only on
z1, 22,23, because the last flat coordinate is t3. This action is given by the following three dimensional
T
matrices, acting on a three dimensional space of vectors x = | y
z

-1 4 1 0 0 1
m=| 0 1 0}, t:={-1 0 3
0 0 1 0 -1 3

We redefine X =r; and Y = try, which satisfy the relations (4.29). We proceed as above, defining

z =a(rT — %(7‘4—7“)—!—%)

i

T—=T

2 2v/2

2 )
y:a(—ng—T(T'f“’l_')‘f‘g)

T—T

z= a(-—%T'F - %_2_(7'+1") + %)

a # 0. Note that xTgx = (8/9)a?, where g is the 3 x 3 reduction of G. It is easily verified that

x(~1) = =X x(r)

X(5—) ==Y x(7)

T—7F

which proves the theorem.
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4.10 Some numerical examples

First we give & and $5. k odd:

r k—1 _2mi k=1 _2ni k=3 . 2w
(-7 [g(:e (g ))_(’;)g(u T (T2 )>+~~~+(kf1)9(z= T (25 5}1

2p()7 =
R() 9lz)
2mi
—g(ze k)
4mi
alze k)
k—1 2mi (ko1
L (1) Z glze & 7Ty i
- k—1 ick=1
(_1)‘2"‘9(:5"&%‘(”2_)) W
k=l _zmi k=3,
—(=1)"ZF g(ze & z )
L 2ni
—g(ze” E)
5.()7 2 7
z = i3 .
E —aze F+ (5 ) et
4mi 2mi _ani
st E = (5 ) s T (5 ) o - (L2 y) ot R
k—1 2mi k=1 27i k=3 _2mi k-3
| (= ) [g(ze—ﬁ_(_f-))n— (kfl)g(zeT( P ))-{—-,..—(;)g(zz & (T3 ))]
k even:
r k T —im4id i 2z
(—1)2 [g(ze_”r) - (I]c) a(= m+ f)-}- + (k - 1) g(zel(" 13 ))]
_4mi _ani i
otze™ E )= (§) atzem F 0+ (5) o2 - () otze )
_2mi g
()T = ~o(ze” R4 (§) 0o
9(z)
2mi
—g(ze k)
4ms
g(ze k)
L (—1)%_lg(zezﬂk_i(§—1)) i
i —0% g(zeimy T
~i4n
g(ze" k)
27
—g(ze” k)
o i g(=) N
i _iam
2L(2)" = _g(:e‘f“)+(kfl)g(z)_(kiz)g(u E )

e () e () - () e B4 (42 s

k_ in—i2T P —i 4T i 2L
(-1)2 l[gue" T (W B ) s T R - (B) et TR )]

We give all the matrices of interest for k¥ = 2,3,7. Many more examples are in the preprint version
of [25]. Supper is PSP~L. A stands for A%, A’ for AP, SP = ASyppe, AT, SF = A'S. (AT

o n—1
Oiit1 = B0
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4.10. SOME NUMERICAL EXAMPLES

Ccp?

|

1
3

0

3
-1 0

0
-1
0

| — 1
—_—— 0 O -
oo <t~
! ! - oMo
o
Q_u_l oo O
i
omoo 22 |2
M- O
- O O 1A__*00 O.I__OO
1 1 3
Il
~—i :. :.
! o) —
Ry = B~
0 B
A
—
1 OO
[ o 0o
o M —
com-o @ W
o - o
o-oo —
133 00_0
[ -0 oo
L 1 L
—
o oo
] I _
A 1) \ )
“ 3 I
B~

Ccp?

-20

-4 1

10

10

—4

—4
1

-4 =20
6
1
0

1
0
0
0

= P2

where 8

0
0
35
0
0
0

0
0
0
0
1

0 01 0 21

0000
0100
00 01
0000

1
-7 1 0 0 0

0
0
0
0

0
21
0
0
0
0

0

001 0 0 35
1
0
0

OO

~ - o

10000 O

01000

Ccp®

1

0000 O

00 O0O0O

o oo °0
— = 0 m N
SN~
| = |
S &
cCoBNk-O
[
COoOOoOM~-HOO
OO O OO
—
0017_.400
o~ D
014%130
|
« 0
~ oo 0~ o~
— © N
L 1
1
%}

0
21
35

0

0

0

0 0 01 0 0 07
0 00O0T1O0TO
001 00 0O
000 O0O0CTI1O
0 1000 0O
60 00 0O0O0T1

L1 0 0 0 0 0 O

P :=
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A

[om Raw]

10 7 0 21 0 0
0 1 21 0 35 0 0

1 3 00

0

0
0
0

0
0
0

1]

0 0 0

0

7
—21
—35
-35
—21

—21
—35
-35
-21
-7
1
0

1 7 21 35 35
01 7 21 35
00 1 7 21
00 0 1 7
00 0 0 1
00 0 0 O
00 0 0 0

-

-7
-21
—-35
—35
—21
-7
1
B12[(casoe7)o56)067-

1 7 21 35 35 21
1 7 21 35 35
0 1 7 21 35
0 0 1 7 21
06 0 0 1 7
0 0 0 0 1
0 0 0 0 ¢

0
0
0
0
0
0

5P = \
(B23B12)(BasBaaBasBrz), B

where 8



Chapter 5

Connection problem and Critical
Behaviour for PV,

In this chapter we study the critical behaviour and the connection problem for the solutions of PV,
(1.10). The purpose is to fix some results which will be used in the next chapters when we solve the
inverse problem for the associated Frobenius manifold in terms of Painlevé transcendents.

We refer to the Introduction of the thesis for a general discussion of the results of this chapter.

5.1 Branches of PVI, and monodromy data - known results

The equation PV I, is equivalent to the equations of isomonodromy deformation of the fuchsian system
obtained in section 1.10

day [ Ai(u) + Ag(u) + As(u)

dz Z—Uy Z—Us Z—U3

] Yi=A(zuw) Y (5.1)

3
u = (u1,us,us), tr(4;)=detd; =0, Z ; = —diag(p, —p)
i=1
If v is deformed, the monodromy matrices of a solution of the system (5.1) do not change, provided that
the deformation is “small” (see below). The connection to PV I, is given by

Uz — U g(u) —up
:U:—————————3 1, y(q;):-——-————(

Uz — U1 Ug — Uj
where g(uy,us, u3) is the root of
[A((L u17u27u3)]12 =0 lfli 9’50

The case ¢ = 0 is disregarded, because PV I,—g = PVI,_;.

The system (5.1) has fuchsian singularities at u1, us, us. Let us fix a branch Y (z,u) of a fundamental
matrix solution by choosing branch cuts in the z plane and a basis of loops in 7(C\{u1, u2,us}; z0), where
zp is a base-point. Let ~y; be a basis of loops encircling counter-clockwise the point u;, 1 = 1,2,3. See
figure 5.1. Then

Y(z,u) = Y(z,u)M;, i=1,2,3, detM; #0,

if z describes a loop ;. Along the loop Yoo := 71 - 2 - 73 we have ¥ — Y M. M; are the monodromy
matrices, and they give a representation of the fundamental group. Of course My, = M3MyM,. The
transformations Y'(z,u) = Y (z,u)B det(B) # 0 yields all the possible fundamental matrices, hence
the monodromy matrices of (5.1) are defined up to conjugation

M; = M! = B~'M;B.

73
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From the standard theory of fuchsian systems it follows that we can choose a fundamental solution
behaving as follows

(I+0(1) z7#2R Coo, 22— 0
Y(z;u) =
GiI+0(z—w)) (z—w)’ C;, z—wu;, i=1,2,3
0 1\ . .. i .
where J = (O O)’ p =diag(p, —p), GiJG; = A; (i =0,z,1) and
0o , fo2uégZ
0 b

0 0 o if2ueZ
b 0/’ H

b € C being determined by the matrices 4;. Then M; = C; 1> C;, My, = Cle 2mikemRC .
The dependence of the fuchsian system on u is isomonodromic. This means that for small deforma-
tions of u the monodromy matrices do not change [30] [26] and then

6¢R = &-Cl = 51‘02 = 6,'03 = 61'000 =0

“Small” deformation means that z = (us — u1)/(us — u1) can vary in the z-plane provided it does not
describe complete loops around 0, 1,00 (in other words, we fix branch cuts, like a < arg(z) < o + 27
and B8 < arg(l — z) < B+ 2x for o, 8 € R). For “big” deformations, the monodromy matrices change
according to an action of the pure braid group. This point will be discussed later.

Suppose we have a branch y(z). We associate to it the fuchsian system (we stress that we actually
have a branch defined by the cuts, thus the fuchsian system has monodromy matrices independent of z).
Therefore, to any branch of a Painlevé transcendent there corresponds a monodromy representation.

Conversely, the problem of finding the branches of the Painlevé transcendents of PV I, for given
monodromy matrices (up to conjugation) is the problem of finding a fuchsian system (5.1) havmg the
given monodromy matrices. This problem is called Riemann-Hilbert problem, or 21%* Hilbert problem.
For a given PVI, (ie. for a fixed u) there is a one-to-one correspondence between a monodromy
representation and a branch of a transcendent if and only if the Riemann-Hilbert problem has a unique
solution.

e Riemann-Hilbert problem (R. H) find the coeflicients A;(u), ¢ = 1,2,3 from the following
monodromy data:
a) the matrices

= diag(p, —p),  p € C\{0}

0, if2u ¢z
0 @

00
(b O)’ w<0
beC.

b) three poles uy, us, us, a base-point and a base of loops in 7(C\{u1, u2,us}; 20). See figure 5.1.
c) three monodromy matrices My, Mz, Ms relative to the loops (counter-clockwise) and a matrix
Mo similar to e~ 27278 and satisfying

if 2u € Z

tr(M;) =2, det(M;)=1, i=1,2,3

Mz Ma My = Mo
My = O} e7#mihe?™l O (5.2)



5.1. BRANCHES OF PVI, AND MONODROMY DATA - KNOWN RESULTS 75

Figure 5.1: Choice of a basis in mo(C\{u1,u2,us})

where C realizes the similitude. We also choose the indices of the problem, namely we fix 21? log M;

as follows: let
(0 1
Ji= ( ’ O)

We require there exist three connection matrices C1, Cz, C3 such that
Cile™VCy = M;, i=1,2,3 (5.3)
and we look for a matrix valued meromorphic function ¥ (z;u) such that

Goo(I+0(1)) 2728 Co, 2= 00
Y(z;u) = (5.4)
GiI+0(z—w)) (z—w)’ Ciy, z—u;, =123

G and G; are invertible matrices depending on u. The coefficient of the fuchsian system are then given
by A(z;u1,uz, ug) = FELY (zu) 7.

Recall that a 2 x 2 R.H. is always solvable [1]. The monodromy matrices are considered up to the
conjugation
M; = M} = B™*M;B, detB#0, i=1,2,3c0 (5.5)

and the coefficients of the fuchsian system itself are considered up to conjugation A; F1AF
(i = 1,2,3), by an invertible matrix F. Actually, two conjugated fuchsian systems admit fundamental
matrix solutions with the same monodromy, and a given fuchsian system defines the monodromy up to
conjugation (depending on the choice of the fundamental solution).

On the other hand, a triple of monodromy matrices My, M,, M3 may be realized by two fuchsian
systems which are not conjugated. This corresponds to the fact that the solutions Coo, C; of (5.2),
(5.3) are not unique, and the choice of different particular solutions may give rise to fuchsian systems
which are not conjugated. If this is the case, there is no one-to-one correspondence between monodromy
matrices (up to conjugation) and solutions of PVI,. It is easy to prove that:

The R.H. has a unique solution, up to conjugation, for 2 € Z or for 2u € Z and R # 0. !

IThe proof is done in the following way: consider two solutions C and C of the equations (5.2), (5.3). Then
(Cié,;_l)—le27TiJ(Cié.i—-l) — ezmiJ

(Cooé;l)—le—2wiﬁ62wiR(Cooéo—ol) —_ e—zwiﬁegﬂ-iR
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\

Once the R.H. is solved, the sum of the matrix coefficients A;(u) of the solution A(z;u;,us,u3) =
Yo Al (;‘) must be diagonalized (to give — diag(y, —p)). 2 After that, a branch y(x) of PV I, can be
‘computed” from [A(q;u1,us,u3)]12 = 0. The fact that the R.H. has a unique solution for the given
monodromy data (if 2u € Z or 2u € Z and R # 0) means that there is a one-to-one correspondence

between the triple M;, Ms, M3 and the branch y(z).
We review some known results [21] [37].

1) One M; = I if and only if the Schlesinger equations yield g(u) = u;. This does not correspond to
a solution of PV I,.

2) If the M;’s, i = 1,2,3, commute, then p is integer (as it follows from the fact that the 2 x 2
matrices with 1’s on the diagonals commute if and only if they can be simultaneously put in upper or
lower triangular form). There are solutions of PV I, only for

(1 ima (1 dm (1 iw(l—a)
Ml"“(o 1)7 M2“"(0 1)7 M3"'(0 1 )7 (I#O,l

In this case R = 0 and My, = I. For p = 1 the solution is

y(z) =

az
1-(1-a)z

and for other integers x the solution is obtained from g = 1 by a birational transformation [21] [37]. In
particular, these solutions are rational.

3) Non commuting M;’s.
The parameters in the space of the monodromy representation, independent of conjugation of the
M;, are
2—2? = tr(M1 M), 2-23:= tr(MaM3), 2-—z3:= tr(MyMs)

‘We find

ciéi"l:(g Z) abeC, a#0

Note that this matrix commutes with J, then

(z—ui)JCi=(z~ui)J<g b)éiz(g Z)(z»—ui)JC’,

a

We also find
i) diag(a,8), of#0; if2u¢Z
CooCzt =< i) (3‘ g) (> 0), (g 2) (L<0), a#0, f2ucZR#0
i14) Any invertible matrix if2pueZ,R=0
Then A X B o
i) 27FCo = 2z~ Pdiag(a, B)Coo = diag(a, 8)2"Co
i) 27 P RCo = .. = [al+ o] Q] 2R R
(0 B (0 0
where Q = (0 0),orQ_ (5 0).
e NP . 261] -~
1i1) i) 27 HCo0 = ... 2] + Qo+ Q-12 2 PG

where Qo = diag(a, B) Q.1 are respectively upper and lower triangular (or lower and upper triangular, depending on the

sign of 1), and CooCiog’ = Q1 + Qo + Q-1
This implies that. the two solutions Y'(zju), V(z;u) of the form (5.4) with C and C respectively, are such that
Y (z;u) ¥(zu)~! is holomorphic at each u;, while at z = co it is

i) Goodiag(a, B)Goo'
Y(z;u) Y(zu)" ! — 1) al

i17) divergent

Thus the two fuchsian systems are conjugated only in the cases i) and i), because in those cases YY1 is holomorphic
everywhere on P!, and then it is a constant. In other words the R.H. has a unique solution, up to conjugation, for 2u ¢ Z
or for2u € Z and R # 0.

2Note however that if Goo = Coo = I, then 23 A; is already diagonal. Moreover, for 2u € Z, My, M2, M3 and the
choice of normalization Y (z;u)z? — I if z = oo determme uniquely A, Az, Az. Actually, for any diagonal invertible
matrix D, the matrices M’ = D-1M1 D, M’ = D-1M,D, N[é = D~1M3D determine the coefficients D~! A; D, whose
sum is still diagonal (the norma,lization of ¥ is the same).
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The triple (zp,%1,7s) in the introduction and in the remaining part of this paper corresponds to
(ZL‘]_ 7 3)2 b mg)‘

3.1) If at least two of the z;’s are zero, then one of the M;’s is I, or the matrices commute. We
return to the case 1 or 2. Note that in case 2 (z1,z2,z3) = (0,0,0).

3.2) At most one of the z;’s is zero. Namely, the triple (1,22, 23) is admissible. In this case it is
possible to fully parameterize the monodromy using the triple (z1, z2,z3) : namely, there exists a basis

such that:
2
/ _ 1 ToT __To
=YY = (1Y), =T o,
0 1 T 1 T3 1_$2£Bg
T1

T

if ;7 #0. If z; = 0 we just choose a similar parameterization starting from z3 or z3. The relation
M3 Mz M similar to e~ 2" g2k

implies

.2
z? + z% + zg — T1Tox3 = 4sin®(mp)

The signs of the z;’s must be chosen in such a way that the above relation is satisfied. The conjugation
(5.5) changes the triple by two signs. Thus the true parameters for the monodromy data are classes of
equivalence of triples (z1,z2,z3) defined by the change of two signs.

We distinguish three cases:

i) 2u ¢ Z. Then there is a one to one correspondence between monodromy data (zo,Z1, %) and
the branches of transcendents of PV I,. The solutions of [21] are included in this case: the connection
problem was solved for the class of transcendents having the following local behaviour at the critical
points z =0, 1, co:

y(z) = a0z 1+ O(lal")), =0, (5.6)
y(@)=1-a®A -1 +0(1-2%), z-1, (5.7)
y(z) = a2 (1 + 0(jz|™%), =z - oo, (5.8)

where a(® and ¢(® are complex numbers such that a(¥ # 0 and 0 < Re(® < 1. § is a small positive
number. This behaviour is true if £ converges to the critical points inside a sector in the z-plane with
vertex on the corresponding critical point and finite angular width. The connection problem was solved
finding the relation among the three couples (¢(?,a(?), i = 0,1, c0 and the triple (zo, 1, Tc0). In [21]
all the algebraic solutions are classified and related to the finite reflection groups As, Bs, Hs.

i) For any p half integer there is an infinite set of Picard type solutions (see [37]), in one to one
correspondence to triples of monodromy data (R # 0) not in the equivalence class of (2,2,2). These
solutions form a two parameter family, behave asymptotically as the solutions of the case ¢), and comprise
a denumerable subclass of algebraic solutions. For any half integer p # % there is also a one parameter
family of Chazy solutions. For them the one to one correspondence with monodromy data is lost. In
fact, they form an infinite family but any element of the family corresponds to a triple (z,z2,x3) in
the orbit (of the braid group) of the triple (2,2,2) (this orbit is simply obtained by changing two signs
in all possible ways). They appear in the case R = 0 (no other solutions of PV I, correspond to R =0
and p half integer). The result of our paper applies to the Picard’s solutions with z; # +2.

iil) p integer. In this case R # 0 ( R = 0 only in the case 2) of commuting monodromy matrices and y
integer). There is a one to one correspondence between monodromy data (zo, Z1,Zeo) and the branches.
To our knowledge, this case has not yet been studied. There are relevant examples of Frobenius manifolds
where these solutions must appear, like the case of Quantum Cohomology of CP2. In this case u = —1,
the triple (z1,z2,23) = (3, 3,3) (the monodromy data coincide with the elements of the Stokes’matrix
of the corresponding Frobenius manifold [17] [25]) and the real part of o is equal to 1.

In this chapter we find the critical behaviour and we solve the connection problem for almost all the
triples and for any u $# 0, the only restriction required being

i £+2 = oD #£1, i=0,10
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5.2 Local Behaviour — Theorem 1

A solution y(z) of PVI, is a meromorphic function of the point = belonging to the universal covering
of P1\{0,1,c0}. Let o and a denote two complex numbers, with the restrictions

g€ :=C\{(-00,0)U[l,400)} a#0

Our first aim is to show the existence of solutions of PVI, which behave like a 77, as z — 0 along
a suitable path. Thus, we concentrate on a small punctured neighbourhood of z = 0, and the point z
can be read as a point in the universal covering of Cy := C\{0} with 0 < |z] < € (¢ < 1). Namely,
z = |z]e!®8(®)  where —co < arg(z) < +o0.

In order to specify the way & may tend to zero, we introduce a domain contained in the universal
covering of Cy (we denote the universal covering by Co). If o = 0 we define the domain

D(e;o =0) = {z € Cq s.t. |z| < €}
If o # O we observe that

So arg(z)

[27] = Ja|”' ), where o'(2) i= R0 — — =2

We try to define a domain where the exponent ¢'(z) satisfies the restriction 0 < ¢'(z) < 1 for z — 0.
Let 61, 82 € R, 0 < & < 1. The desired domain is:

D(e;0;61,04,0) :={z € Co s.t. lz| <€, e 99 z|? < |27 < ez, 0<a<1}, O<e<l.
The domain can be written as
|z} <€, Rolog|z|+ 080 < Soarg(z) < (Ro — ) log|z| + 6:S0

Figure 5.2 shows the domains. Note that if 0 < R < 1 the domain contains, for |z| sufficiently
small, any sector a < arg(z) < a + 27 (« a real number); but for Ro < 0 and o > 1 it is not possible
to include a sector in it when o — 0.

Theorem 1: Let p # 0. For any o € Q, for anya € C, a # 0, for any 01,02 € R and for any
0 < & < 1, there exists a sufficiently small positive € such that the equation PV I, has a transcendent
y(z;0,a) with behaviour

y(z;0,0) = az* ™7 (1+0(z|°)) ,0<d<1, (5.9)

as z — 0 in D(e;0;61,02,5).

The above local behaviour is valid with an ezception which occurs if So # 0 and ¢ — 0 along
the special paths So arg(z) = Rolog|z| + d, where d is a constant such that the path is contained in
D(e;0;61,02): the local behaviour becomes:

y(z;0,0) = a(z) =77 (1 + O(z[*)), oc#0,
alz)=a [1+ L Ce@) 4 1 C?e?@) ) = 0(1), forz — 0
_ 2a 1642 :

where .
7 =Ce™®  C:=e?  a(z) = Roarg(z) + Soln |z

So arg(z)=Ro log {z|+d

The small number € depends on &, #; and a. In the following we may sometimes omit €, &, 6; and
write simply D(o).

In figure 5.2 we draw the possible paths along which z — 0. Any path is allowed if So = 0. If
So # 0, an example of allowed paths is the following:

x| < e, So arg(z) = (Ro — Z)In|z| + b, (5.10)



5.2. LOCAL BEHAVIOUR - THEOREM 1

Imo arg(x)

: 0<o <1
1 ;
- : loglx| —9
ioglel
|
.\»7 ! Imo arg(x)
1
" doglel tog
A O<Reo <l
Imo arg(x)
oy
o, logkl —
Rec>1
~ Img arg(x)

Loa &
’

™ |7

7
!
i

1

i

loglx|

X - plane

Imo arg(x)

8,

common line
on the boundary

D-o)

Figure 5.2:

log|x|

We represent the domains D(e;0;8;,602) in the (ln|z|, So arg(z))-plane.
D(e;0;601,62) = D(e;0 = 0) for real 0 < 0 < 1. We also represent some lines along which z con-

verges to 0. These lines are also represented in the z-plane: they are radial paths or spirals.

Note that
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Line Imo arg(x)

1
'

Imo arg(x) = (Res - &) 1r1|XI+(6')— Dln€+Inc \\;\

| \
slopeReo-1D el

0,Imo
Inc

B(c, 40,9

In x|

R 6,Im
slope (Rec:G)-.

| "Dieieo, 8y "

Figure 5.3: Construction of the domain B(o, a;0s,5) for Ro = 1.

for a suitable choice of the additive constant b and for 0 < X < 4. In general, these paths are spirals,
represented in figure 5.2. They include radial paths if 0 < ¢ < 1 and ¥ = Ro, because in this case
arg(z) = constant. But there are only spiral paths whenever o < 0 and Ro > 1. The special paths
So arg(z) = Ro log |z| + b, are parallel to one of the boundary lines of D(c) in the plane (In |z, arg(z)).
The boundary line is Ro In |z| + S0, and it is shared by D(¢) and D(—0) (with the same 65).

o Restrictions on the domain D(e;0;61,02): In theorem 1 we can choose 6, arbitrarily. Apparently,
if we increase 0;So the domain D(e;0;8;,62) becomes larger. But e itself depends on ¢;. In the proof
of theorem 1 (section 5.7) we have to impose

61——¢7 S ¢ 6—918‘0

where ¢ is a constant (depending on a). Equivalently, ;3¢ < (5 — 1)Ine + Inc. This means that if we
increase Sof; we have to decrease e. Therefore, for € D(e; 0361, 62) we have:

Soarg(z) < (Ro — &) Injz| + 6:80 < (Ro — &) Injz|+ (6 —1)Ine+Inc

We advise the reader to visualize a point z in the plane (In|z|, Yo arg(z)). With this visualization in
mind, let z, be the point {(Ro — &) In|z| + (6 — 1)Ine +Inc} N {|z| = €} (see figure 5.3). Namely,

argz, = (Ro —1)Ine+Inc
This means that the union of the domains D(e(61);0;01,62) on all values of 8 for given o,a,5,0; is

| D(e(81); 0361,02,6) C B(o,a;65,5)
01

where
B(c,a;64,5) := {|z| <1 such that Roln|z|+ 6:S0 < Soarg(z) < (Ro —1)Injz| +1nc}  (5.11)

The dependence on a of the domain B defined above is motivated by the fact that ¢ depends on a (but
not on 61, 63).

If 0 < Ro < 1, the above result is not a limitation on the values of arg(z) of the points z that
we want to include in a given D(c;€) provided that |z| is sufficiently small. Also in the case ®o < 0
there is no limitation, because we can always decrease Sof, without affecting € in order to include in
D(e;0;61,6,) a point z such that |z| < e. But this is not the case if o > 1. Actually, if z (in the
(In |z|, So arg(z))-plane) lies above the set B(c,a;02,5) it never can be included in any D(¢;0;61,02).
See figure 5.4
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Imo arg(x)

O<Res <1 Reo 1 Reo<0
Any branch can be The branches with arg( x”) The branches with arg( x”)
represented in B | cannot be represented in B (68) , can be represented in B( 0,6; )
for any value of 0, because Inc for G;Imc sufficently small.
is fixed. The branches with arg( x), for x

above B, can always be represented
inB, forany 6,.

Figure 5.4: For Ro > 1 we can not include all values of arg(z) in B

5.3 Parameterization of a branch through Monodromy Data —
Theorem 2

We are going to consider the fuchsian system (5.1) for the special choice

up =0, us=1, uz==zx
The labels i = 1,2, 3 will be substituted by the labels i = 0,1, z, and the system becomes
ay _ [Aom L Aal@) | A1<m>] y

dz z z2—z z—1

Also, the triple (z), 3, z3) will be denoted by (2o, 1, %), as in [21].
We consider only admissible triples and z; # £2, 1 = 0,1,00. We recall that two admissible triples
are equivalent if their elements differ just by the change of two signs and that

22 + 2% + 22— Toz1T00 = 4sin’ (mp) (5.12)

We denote by y(z;To,Z1, %) a branch in one to one correspondence with (20,71, Too). Since we
operate close to z = 0, the branch is specified by a < arg(z) < a + 27, a € R.

Theorem 2: Let u be any non zero comples number.
For any o € Q and for any a # 0 there exists a triple of monodromy data (To, 21, Too) uniquely
determined (up to equivalence) by the following formulae:

i) o #0,+£2u + 2m for any m € Z.
ro = 2sin(50)
o =i (s Va- Gl %)
1 Flo.mGow) v

-1 . e
T fomGlomeF Va+Glo,p)e™™ =

where
2cos*(%o) 1 49T (212

GOl = = DI D

floypu) =

cos(ma) — cos(2mp)’

Any sign of v/a is good (changing the sign of \/a is equivalent to changing the sign of both z1, Too)-
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i) o=0
.'1?020

z} = 2sin(mp) vV1—a

z2, = 2sin(mp) va
We can take any sign of the square roots
W) o = £2u + 2m.
iiil) o =2u+2m, m=0,1,2,...
xo = 2sin(wp)

i 16# T D(u+m+3)®

TS 3 T DG Va
Too =14 T e TH
i1i2) 0 = 2u + 2m, m = —-1,-2, -3, ...
xo = 2sin(mp)

i a? 1
T = chosz(mt) 16#F+mT (pt+m+35)2T(—2p—m~+1)T'(~m) \/a

Too = —iT14H
118) o= -2u+2m, m=1,2,3, ...
xo = —2sin(mp)
3 1674 "D (—ptmt ) 1
T1 = T3 T T(m—2uF)T(m)  va
Too = ix1e™H

ii4) o = —2u +2m, m=0,-1,-2,-3, ...
zo = —2sin(mpu)

o ? 1
T =2 cos?(mp) 16— F+mT(—p+m+3)2T (2p—m)T(1—m) Va

Too = —iz1€IH

In all the above formulae the relation 9:% + :c% + mgo — TQT1Too = 4sin2(7r,u) is automatically satisfied.

Note that o # 1 implies zo # £2. Equivalent triples (by the change of two signs) are also allowed.
Let € D(e;0). The branch at z of y(z;0,a) coincides with y(z; o, T1,Teo)- 8

Conversely, for any set of monodromy data (To, %1, Teo) Such that g2 + 2} + 72 — TT1Te =
4sin®(rp), ; # +2, there exist parameters o and a obtained as follows:

I) Generic case
4
2

3Note that we have picked up a point € D(o), therefore a < arg(z) < a 4 27 for a suitable c. In other words, the
branch is specified by a < arg(z) < a + 2. If we pick up a new point z’ = e>™z € D(o) (provided this is possible), then
y(x'; 0, a) is again equal to the branch y(z’; 2o, T1,Teo) at z', the branch being specified by a4 27 < arg(z) < a+4m . In
section 5.5 we will describe in detail the problem of analytic continuation. We anticipate that for the loop z’ = ze?™ we
have the continuation y(z'; 0, a) = y(z'; Zo, T1, Teo) = y(T; Y, 7, Tho ).

y(:r;:cg,a:’l,z’oo) is a new branch of y(z;zo, %1, %) corresponding to the continuation above at the same point z. In
other words, we put branch cuts in the z-plane, then arg(z) can not increase by 27 and the analytic continuation of a
branch yields a new branch with the same arg(z) and new monodromy data (g, z},z5,).

y(z'; 0,21, Too) is the continuation of the branch y(z; o, ®1,Ze0) in the universal covering of Co N {|z| < €}. It has
new arg(x), i.e arg(z) — arg(z') = arg(z) + 27 and the same monodromy data. If z’ still lies in D(c) we can represent
the continuation as y(z';0,a) = y(z';%0,%1,Tco), Where the branch y(z';zo,Z1,%c) has the branch cut specified by
a+ 27 < arg(z') < a + 4w, while y(z; 0,1, Too) has branch cut a < arg(z) < a + 27.

cos(mo) =1~
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_ iG(o,p)?

- 2sin(7ra) [2(1 + e_i"U) - f(-'I:D; z1, "1:00)(1720 + euiﬂUI%):l f(:c()) fEl,IEoo)
where ) .
4 —z5 4 — zj

f("EOi"L‘l)xOO) = f(a(‘ro))l'l’) = 2 — mg — 2COS(27T[,L) = x% + mgo _ -’Eo-'EliUoo

Any solution o of the first equation must satisfy the restriction o # £2u+2m for any m € Z, otherwise
we encounter the singularities in G(o, p) and in f(o,p). If z3 =4 the system has solutions ¢ = 1+ 2n,
n € Z, which do not belong to Q1.

o =0,
_ T
i+ 22

provided that T, # 0 and To, # 0, namely p ¢ Z.

III) «3 = 4sin®(mp). Then (5.12) implies z2, = —z7 exp(£2mip) . Four cases which yield the values of
o non included in I) and II) must be considered

II1) 22, = —ale 2™k
c=2u+2m, m=0,1,2,..
1 18P (p+m+3)*
4% T4 T(m + 1T (2 + m)?
I12) 2% = —z3e™iv
oc=2u+2m, m=-1-2,-3,..
COS4(7T,U') 2u+2mr 1 41‘\ 2 2I1 2 .2
I113) z%, = —zie?™
o=-2u+2m, m=12,3,..
1 16T m b
452 T'(m —2p+ 1)2T(m)?
) =2, = —w%e‘zm“
c=-2p+2m, m=0,-1,-2,-3,..
_ _SOSUTH) ygomD s g+ )T - m)PT(L - m)? 02
- 47t b 2 a !

Ifat #4 (0 #142n, n € Z) we can always choose (from I), 1), III) ) o € .
Let © € D(e;0) (then there exists @ € R such that a < arg(z) < a+2w). The branch y(z; Zo, Z1, Teo)
coincides at x with the transcendent y(z; o, a) of theorem 1.

We stress that the proof of the theorem is valid also for the resonant case 2u € Z\{0}. To read
the formulae, it is enough to just substitute an integer for 2 in the above formulae i) or I). Actually,
we note that ii), iii); IT), ITI) cannot occur. Note that for u integer the case ii), II) degenerates to
(20,21, Too) = (0,0,0) and a arbitrary. This is the case in which the triple is not a good parameterization
for the monodromy (not admissible triple). Anyway, we know that in this case there is a one-parameter
family of rational solutions [37], which are all obtained by a birational transformation from the family

y(m):i_:—(ill%c—zﬁ’ p=1

At z = 0 the the behaviour is y(z) = az(1 + O(z)), and then the limit of theorem 2 for p — n € Z\{0}
and ¢ = 0 yields the above one-parameter family. Recall that R = 0 in this case.

Remark 1: The equation

2
—1_%
cos(mo) = 5
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determines ¢ up to ¢ = *0 +2n, n € Z. * These different values give different coefficients a and
different domains D(en, =0 + 2n). Thus the same branch y(z;zo, 1, Too) has analytic continuations on
different domains with different asymptotic behaviours prescribed by theorem 1. In particular, note that
if So # 0 it is always possible to choose

0<Ro <1.

Observe however that for 0 < o < 1 the operation o > +0 + 2n is not allowed, because ¢ leaves (.
Then, our paper does not give any information about what happens for ¢ = 1.

We also note that o = o(zo) and a = a(o; 2o, %1, Zeo), therefore a(o; 2o, 21, Too) # a{Eo+2n; To, T1, Too).

Remark 2: The domains D(c) and D(—oc), with the same 65, intersect along the common bound-
ary Soarg(z) = Rologlz| + 0280 (see figure 5.2). The asymptotic behaviour of the analytic con-
tinuation of the branch y(z;zo,%1,%e) at z belonging to the common boundary is given in terms of
(0(z0),a(0; 20, %1, T0)) and (—a(zo), a(—0; 20, 21, Teo)) Tespectively.

This implies that the two different asymptotic representations of theorem 1 on D(c) and D(-0o)
must become equal along the boundary. Actually, from theorem 1 it is clear that along the boundary of
D(c), the behaviour of y(z) is

y(z) = Alz;0,a(0)) z (1+0(|z|*))

where ¢ is a small number between 0 and 1 and

. — ia(z;o)y—1 - ia(z;o)
A(z;0,a(0)) = a(Ce )T+ 5T 16aC’e
2% = Ce®9) O =e%% q(z;0) = Roarg(z) + Soln ]a:]]

So arg(z)=Ro log |z|+02S0

We observe that a(z; —o) = —a(z; o). After the proof of theorem 2 we’ll see that a(o) = 1‘67;(1—7): this
immediately implies that ,
A(z;—0,a(—0)) = A(z; 0,a(0))

Therefore, the asymptotic behaviour, as prescribed by theorem 1 in D(o) and D(—0), is the same along
the common boundary of the two domains.

We end the section with the following

Proposition: Let y(z) ~ ax'™% as z — 0 in a domain D(e,0). Then, y(z) coincides with y(x;0,a) of
theorem 1

Proof: see section 5.8.

5.4 Alternative Representations of the Transcendents

We study the critical point & = 0 (the points = 1, co will be discussed in section 5.6).
If So # 0, the freedom o — =£o + 2n allows us to always reduce the exponent to 0 < o < 1. So,
the values of o we may restrict to are

0 < Ro < 1for So #0,

0<o<lforoeR.

In the (In|z|, So arg(z))-plane we draw the domains D(¢), D(—c), D(~0c +2), D(2— ), etc - see figure
5.5 (left). Here 0; and 8, are the same (e may not be the same, so we choose the smallest). We suppose
that the domains and the corresponding transcendents of theorem 1 are associated to the same triple.
So we have different critical behaviours predicted by theorem 1 in the different domains for the same
transcendent. Some “small sectors” remain uncovered by the union of the domains (figure 5.5 (right)).
If z — 0 inside these sectors, we do not know the behaviour of the transcendent. If ®o = 1, a radial path
converging to z = 0 will end up in a forbidden “small sector” (see also figure 5.7 for the case Ro = 1).
If we draw, for the same 62, the domains B(c), B(—0), B(—c + 2), etc, defined in (5.11) we obtain
strips in the (In|z|, Yo arg(z))-plane which are certainly forbidden to theorem 1 (see figure 5.6). In the
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Imo arg(x)

In |x]

D(-6-2) 772

-5/2

85

Imo  arg(x)

Directions not
allowed.

32

7

Inx|

Figure 5.5: Domains for 0 = 3 + iS¢. The numbers close to the lines are their slopes. The “small
sectors” around the dotted lines represented in the right figure are not contained in the union of the
domains. If x — 0 along a direction which ends in one of these sectors, we do not know the behaviour

of the transcendent.

Imo arg(x)

Y

F / 18,imo

Figure 5.6:

The figure represents a possible
configuration of the strips where

theorem 1 does not give answers.

It is in these strips that we might
expect movable poles.
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strips we know nothing about the transcendent. We guess that there might be poles there, as we verify

in one example later.

What is the behaviour along the directions not described by theorem 17 In the very particular
case (o, 21, Zo0) € {(2,2,2),(2,~2,-2),(~2,-2,2),(=2,2,—2)} (and so zo = £2 1), it is known that
PVI,-_1, has a 1-parameter family of classical solutions [37]. The asymptotic behaviour of a branch
for radial convergence to the critical points 0, 1 ,00 was computed in [37]:

—In(z)"2(1 + O(In(z)™1)), =z—=0
yiz) =< 1+l -2)2(1+0(In(1—z)™)), z—1
~zln(1/z)"?(1+ O(In(1/2)~!), =z — o0

The branch is specified by |arg(z)| < 7, |arg(l — z)| < . This behaviour is completely different from
~ a(z)#~7 as z — 0. Intuitively, as zo approaches the value 2, 1 — o approaches 0 and the decay of
y(z) ~ az'~? becomes logarithmic. These solutions were called Chazy solutions in [37], because they
can be computed as functions of solutions of the Chazy equation.

This section is devoted to the investigation of the local behaviour at = 0 of the analytic continuation
of a branch in the regions not described in theorem 1.

5.4.1 Elliptic Representation
The transcendents of PV I, can be represented in the elliptic form [22]

) =P (L@ 0003

where P(z;wy,ws) is the Weierstrass elliptic function of half-periods w1, ws. u(x) solves the non-linear
differential equation

£0) = 21 (P (en(@enta))), 0= B2 (5.13)

where the differential linear operator £ applied to u is

L) = ol -2) Te 4 (1 -2m) 2Ty

The half-periods are two independent solutions of £(u) = 0 normalized as follows:
T 1
wy(z) = 5 F(z), waz):= —i[F(:c) Inz + Fi(z)]

where F'(z) is the hypergeometric function

and

0 1 2
Fi(z):=) [((;)!5‘2] 2 [wm + %) —p(n+ 1)] z"
n=0

d 1

n—1
40 = fnr), v(3)=-r-2m2 B =1 varm=v@+ Y
1=0

a+1

The solutions u of (5.13) are in general unknown. Before trying to study them in general terms, we
solve it in a special case:

4In the case o = 1 +iv, v € R\{0}, the freedom ¢ — —o + 2 is equivalent to ¢ = 1 +iv = ¢ — 2w =1 —w.
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Ezample: The equation PV I,-; /5 has a two parameter family of solutions discovered by Picard [44] [42]
[37]. It is easily obtained from (5.13). Since a = 0, u solves the hypergeometric equation £{u) = 0 and
has the general form

u(z)

Bt vwi(z) + vawa(z), 1 €C, 0<Ry; <2, (v,m) #(0,0),

A branch of y(z) is specified by a branch of Inz. The monodromy data computed in [37] are

To = —2C0STry, I3 = —2C0STT2, Too = —2COSTT3,
vy 1%} Vi — Vg

r = — 9 =1——, r3=——= for 11 > s
2’ 2’ 2 7
Vo Vi Vy — 11

rn=1——= Ty = — r3 = for vy < 1.
2’ 2’ 2 7

The modular parameter is now a function of z. Since we are interested in it when 2 — 0 we give its
expansion: ’
s (z)

7(z) =

We see that &7 > 0 as z — 0. Now, if

1 , 44
ola) ;(arg:c —iln|z|) + ;T-ln2+ O(z), z—=0.

< S, (5.14)

we can expand the Weierstrass function in Fourier series. Condition (5.14) becomes

1 Cx
3 Sy + —\%?‘i arg(z) — Bvs —+0(z), asz—0

™

4In2 In 4In2
1n|:c!+—-——n R <————-—lm’ + 2=
™ ™

7
namely,
Ry +2)In|z| —7Sv; —41n2 (Rre +2) < Srparg(z) < Re—2)In|z| —7Sv; —41In2 (Rwe —2). (5.15)

or
Any value of arg(z) if Sve = 0.

The Fourier expansion is

y(z) = z+1 4 1 1 - _1..|_
3 F(z)? | gin? (—%[im(ln(m) + %%) - 771/1]) 3
[ee] 2
" .. 9 n.. Fl(m) )
18 S — Y (———— ivg(In(z) + - TV
nz=:1 e_2nj;rl((:)) — g2n 2[ 2(in(z) F(m)) 1]

1
+
sin’ (—%[iz/z(ln(:c) + %(—(f)l) - 7ry1])

N8

+ (1—-%-%—0(2:2)) {

. -1
1 iy
-3 {I%Z_—T] 272 L Oz + 23772 + :1:4"”2)] , 2 — 0in the domain (5.15)

As far as radial convergence is concerned, we have:

a) 0 < Ry < 2,

sin?(.) 4

1 1] e
- [16"2‘1

} z? (1+ 0(|z**])),

. . ~1
1] em 1 1] éem™ . 5
—_ —— | —— Va2 4 =y - = | — va !
ve) = { {16'/2—1] TR [16”2"1] : } +060), >0, (5160
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in accordance with theorem 1. We can identify 1 — o with vy for 0 < Rvy < 1, or with 2 — vy for
1 < Rvy < 2. In the case Rus = 1 the three terms z*2, z, 2272 have the same order and we find again
the behaviour of theorem 1 '

— vy E i_ 2—vy § — vz )1 _l_ —iSvg 1 —21B e 1 0 §
y(z) {az + 5 + 6o (14+0(z°)) =az + 5.2 + Teaz® (14 0(z%)),
where a = —} [T%;;—y%]

b) Rvy = 0. Put vy = iv ( namely, o = 1 —iv ). The domain (5.15) is now (for sufficiently small |z|):
2In|z| — 7Sy — 8In2 < Swparg(z) < —2In|z| — 7811 +81n2, (5.17)
or
2In|z| + 7Sy — 8In2 < Soarg(z) < —2ln|z| + 78y +8In2.

For radial convergence we have

(2) = 1+ O(z) +0)
= sin? (% In(z) + vBe) 7o) .
2 2 F(x) 1

This is an oscillating functions, and it may have poles. Suppose for example that v, is real. Since
Fy(z)/F(z) is a convergent power series (|z| < 1) with real coefficients and defines a bounded function,
then y(z) has a sequence of poles on the positive real axis, converging to z = 0.

If v = 0, namely vy = 0 (and then zo = 2)

1
sin?(mvy)

(1 +0(|=z[))-

y(z) =
In the domain (5.17) spiral convergence of z to zero is also allowed. In that case, the non-constancy
of arg(z) still gives a behaviour (5.16).

The case b) in the above example is good to understand the limits of theorem 1 in giving a com-
plete description of the behaviour of Painlevé transcendents. Actually, theorem 1 (together with the
transformation o — —o) yields the behaviour (5.16) in the domain D(c) U D(~0) (Ro = 1):

(1+5)In|z| + 6,80 < Soarge < (1 —5)In|z| + 6,F0,

where radial convergence to z = 0 is not allowed. On the other hands, the transformations o — +(o—2),
gives a further domain D(o — 2) U D(—0 + 2):

(=14 &)In|z| + 6,80 < Soargz < —(1+5) In|z| + 6,0,

but again it is not possible for = to converge to z = 0 along a radial path. Figure 5.7 shows D(o) U
D(-0)UD(2 - o) U D(c — 2). Note that a radial path would be allowed if it were possible to make
& — 1 and the interior of the set obtained as the limit for & — 1 of D(¢)UD(—0)UD(2—-0)UD(c —2)
has the shape of (5.17). Actually, the intersection of the two sets is never empty. On (5.17) the elliptic
representation predicts an oscillating behaviour and poles along the paths not allowed by theorem 1. So
now it must be definitely clear that the “limit” of theorem 1 for & — 1 is not trivial.

Remark on the ezample: For p half integer all the possible values of (2o, 21,%os) Such that z3 + % +
12, — ToT1Te = 4 are covered by Chazy and Picard’s solutions, with the warning that for p = % the
image (through birational transformations) of Chazy solutions is y = co. See [37].

We turn to the general case. In section 5.9 we will prove the following theorem:

Theorem 3: For any complez v1, vo such that
vy & (—00,0]U[2, +00)
there ezists a sufficiently small r such that

y(z) = P(niwi(z) + vaws(z) +v(z);wi(2), wa(z))
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slope=-1- 'Er
slope=-1 ) '\\slgpez—z

3 Imo arg(x) Imo arg(x)

slope=-1+ &
8, Imo 1 v +81n2
slope=1-& * .

Vo Injx|

8,Imc ]

slope=l ~
slope=l+0

Domain D(c )yD(—c)yD(c-2)yD(-o+2) for o=1+iImc, Comparison with the domain

where Piccard solution is expanded (picture above).

Below we represent the domain D (%v,,v,) of theorem 3 for immaginary v,, and we compare it to
the domain D( ) with the identification v, =1- o (and for suitable 6,. 6, ).

The numbers close to the boundary lines are their slopes (£=1- G is arbitrarily small)

Imv arg(x)

' In|x|

Figure 5.7:
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< r}
The function-v(z) is holomorphic in D(r;v1,v2) and has convergent ezpansion

—imyy m iTvy m
v(z) = Zanz” + Z brmz™ <§62""2 m2*”2> + Z CmT" <i6”2 z”2> (5.18)

n>1 X n>0, m>1 n>0, m>1

in the domain
-—’l:‘n‘lll

1627

LEe%
el

16»2

2— 1 2] ve

D(ryvi,va) == {9: € Cy such that |z| <, z

<r,

where @y, boym, Cnm are rational functions of va. Moreover, there ezists a constant M (v;) depending on

vy such that u(z) < M(vs) ( 62_,,2 et 4 61;:21 z? ) in D(r;v1,va) .
The domain D(r; vy, va) is
lz| <7, Realnjz|+Cy —Inr < Svpargz < (R —2)In |z + Cy +Inr, (5.19)

Cl = —[41112&21/2 -+ ngl]_], Cz = Cl + 8In2.

If vy is real (therefore 0 < vy < 2), the domain is simply |z| < r. The critical behaviour is obtained
expanding y(z) in Fourier series:

w2 o2 SN peminT U 2 1
73( ,w,w):—————i-_ ————~—-.-——<1——cos<n——))+————————— 5.20
27 1207 ' w3 n; 1 — e2minT 2w, 403 o2 (ﬁ) (5-20)

The expansion can be performed if S7(z) > 0 and ‘S} (ff%)l < $7; these conditions are satisfied in

D(r;v1,va). Let’s put Fy/F = —41In2 + g(z). It follows that g(z) = O(z). Taking into account (5.20)
and theorem 3, the expansion of y(z) for z — 0, ¢ € D(r;v1, 1), is

2

=[5 ”‘] FE e )
= [ T P X () UL T

_— L —iwy n L w(a)
(U2+9)g($) 9+V2 elnﬂT wi(z) — (0'—”2 g((ﬂ) 2_V2 e_“rnwl(m)
162—1—1}2 ]_62 V2
N 2 1
4w (7)? gin? ( 2nz+i2Inl6+ 5 —igg(z) + 2’2'1(2))

where

1 4

Sil’lz(...) evag(z) €71 e xyze wl(a) + e—ugg(m )e 6‘:":1 m—yze—iw-:T(?;)-)- _9

We also observe that wi (z) = TF(z) = §(1+ 12+0(?), B2 - iy

lirs_m‘szrl(a;) 32(1+0(2)),
e9®) =1+ O(z) and

)

In order to siﬁgle out the leading terms, we observe that we are dealing with the powers z, %72,
2 in D(r;vy,vs). If 0 < 15 < 2 (the only allowed real values of v3) |£"2] is leading if 0 < v < 1 and
|z2772| is leading if 1 < vo < 2. We have

—iTVy €i7ru1

1672

2—1/2 1253

8

. u(e)
e:i:zﬂ"‘wl(a:) =1+ 0] (]ml + l

16272

1 eiﬂ.Vl 1723 Vo 2—vo
gi.;2_(_)=~416V2a: [14 O(Jz| +|z"*| + |z*~*2])]

Thus, there exists 0 < § < 1 (explicitly computable in terms of v;) such that

froarem L, 1 e™m 1T L,
y(x) - [.2_31“ Z [161}2—1:' T - 4 [lﬁyw l:l z

(1+0())
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-den] - ] s @ r0Eh), v =1

- —Li& ] 22 (1+ 0(2®) f0<wm<1

16v2—1

~i [1%:;?]“1 222 (14 0(z%)) fl<in<2

The behaviour is the one of theorem 1 for o = 0 in the first case, ¢ = 1 — v» in the second, ¢ = vy — 1
in the third.

We turn to the case Svy # 0. We consider a path contained in D(r;v1,v3) of equation
Svparg(z) = v —V)Inlz|+b, 0<V <2 (5.21)
with a suitable constant b. Thus |z27%2| = |z|>*~Ve?, |22| = |z|¥e~" and
|z72| is leading for 0 <V < 1,

|z*2|, |z|, |z>~*2| have the same order for V =1,

|z27"2| is leading for 1 <V < 2.

IfFv=0,
1TV
—1—6—1;93"2 <r, but z¥2 40 as 2 — 0.
Iy =2,
e—im/l oy .
162—”2‘ I <r but z°7" A0 as z — 0.

This also implies that v(z) 4 0 as z — 0 along the paths with ¥V = 0 or V = 2. Therefore we conclude
that:

a) If x — 0 in D(r; 11, v2) along (5.21) for V # 0, 2, then

1 1fe™m ), 1[em 17", 5
= |- — - | —— —_—— = 1.
y(z) [2m 1 {myz_l}w 1 [161,2_1 T (1+0(z%), 0<é<

The term —} [&5=r] (1 + higher orders) is gl—. The three leading terms have the same order if

the convergence is along a path asymptotic to (5.21) with V = 1. Otherwise

) =~ | s | (14 06)
or

1 e - PR 4
Vo) =1 [os| @0+06)
according to the path. This is the behaviour of theorem 1 with 1~ o = v or 2 — 1.

Let v2 = 1 — ¢ and consider the intersection D(r;v1,v2) N D(o) in the (Inz|, S, arg(z))-plane. See
figure 5.7. We choose v such that a = ——% [ﬂ?%] According to the proposition in section 5.3, on the
intersection we identify the transcendents of the elliptic representation to those of theorem 1, (we do not
need to specify 1, 65, because the intersection is never empty).

Equivalently, we can choose the identification 1 — ¢ = 2 — v3 and repeat the argument.

The identification makes it possible to investigate the behaviour of the transcendents of theorem 1
along a path (5.10) with £ = 1. (5.10) coincides with (5.21) for V = 0 if we define 1 — ¢ := 13, or (5.21)
for V = 2 if we define 1 — 0 = 2 — vo. We discuss the problem in the following two points:

b) If V = 0 the term
1

sin? (——z%z Inz+ [(21n16+ Z1] —i%2g(z) + f;%)
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i'frUi
B ‘4616 | e rag(@)Hin TS !
va

3

1- 261;"21 mvoeyzg(z)ﬂ”:l(:) + | S zt? euzgw)‘*—mwvf(w))}

is oscillating as x — 0 and does not vanish Note that there are no poles because the denominator does
g p

V2

not vanish in D(r; vy, vs) since i < 1 < 1. We prefer to keep the trigonometric notation and
) g

e
write 1
y(@) = 0(2) +
F(2)? gin2 ( “Ing+ [i%In16+ T —i%g(x)+%ﬁ(%)
_ 1+ O(z) +0()

sin® ( “ng+ [i%2Inl6+ ]+ 3o Com(v2) [91‘;:21 m"°] )

rv(z) _  w(z)

The last step is obtained taking into account the non vanishing term in (5.18) and 7725 = 7@

v(z)(1 + O(z)).
¢) If V = 2 the series

o —imy no
_} : n en(2—v2)g(=) : g2ve e“””:l((zz))
2 =
ea(=) \ 2™ o 6‘7 v
n=11— e T

which appears in y(z) is oscillating. Again, y(z) does not vanish.

We apply the result to the problem of radial convergence when fto = 1. We identify v, =1 — o and
choose vy = iv, v # 0 real. Let  — 0 in D(r;11,4v) along the line arg(x)= constant (it is the line with
= 0). We have

y(z) = O(z) + - 1
= T 5
F(2)? gin? (glnm —vInl6+ Zv + Sg(z) + 2’;”1((1))
We use again (5.18), F(z) =14 O(x), g(z) = O(z) and ,,’Z’l(”;)) = 11;((?) =v(z)(1 + O(z)). We have
1+ 0(z
~ y(a) = O(a) + — Tt
sin ( Inz —vInl6+ T 4+ 3> | com(V) [( = ) T ] + O(x))
= 0() + 14+ 0(z)

sin® ( Inz —vinl6+ 2 + 37 ) com(v) [(e":vl ) x“’]m)
The last step is possible because sin(f(m) +0(z)) = sin(f(z)) + O(z) = sin(f(z)) (1+ O(x)) if f(z) A0

iy

as ¢ — 0; this is our case for f(z) = {Ilnz —vIn16+ 5+ + Yoo Com(V) [(%—;—-) :c“’]m in D.

Thanks to the identification at point a), we have extended the result of theorem 1 when o =1
and the convergence to z = 0 is along a radial path, provide that the limitation on arg(z) imposed in
D(r;vq,iv) is respected, namely

—7Sy; — Inr < varg(z)

The above limitation is the analogous of the limitation imposed by B(g, a;62,) of (5.11).

As a last remark we observe that the coefficients in the expansion of v(z) can be computed by direct
substitution of v into the elliptic form of PV I, the right hand-side being expanded in Fourier series.

5.4.2 Shimomura’s Representation

In [52] and [27] S Shimomura proved the following statement for the Painlevé VI equation with any value
of the parameters «, 3,7, 9.

For any complez number k and for any o € C — (—00,0] — [1,+00) there is a sufficiently small 7,
depending on o, such that the equation PVI, g s has a holomorphic solution in the domain

Dy(rio k) ={zeCo | |z| <r, le ka7 <, lefFz7] < r}
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with the following representation:
1

coshz("T“1 Inz -+ % + 3%—))’

y(z;0,k) =

where
v(z) = Z an(o)z™ + Z bam(0)z™ (e kgt )™ 4 Z Cnm(0)z"™ (ebz7)™
n>1 n>0, m>1 n>0, m>1

an(0), bnm (o), cnm(0) are rational functions of o (and they may actually be computed recursively by
direct substitution into the equation), and the series defining v(Z) is convergent (and holomorphic) in
D(r;o, k). Moreover, there exists a constant M = M (o) such that

lo(z)] < M(0) (Jal + e~ ! ~7| + |e"27]). (5.22)

The domain D(r; o, k) is specified by the conditions:
|z| <7, Roln|z|+ Rk —Inr] < Soarg(z) < (Ro — 1)Inlz| + [REk +In7]. (5.23)

This is an open domain in the plane (In|z|, arg(z)). It can be compared with the domain D(e; 0,61, 62)
of theorem 1 (figure 5.8). Note that (5.23) imposes a limitation on arg(z). The situation is analogous
to the elliptic representation. For example, if Ro = 1 we have

Soarg(z) < Rk +1nr], (Inr <0)

After the identification of the Shimomura’s transcendent with those of theorem 1 (see point a.l) be-
low), the above limitation turns out to be the analogous of the limitation imposed to D(e;0;61,62) by
B(o,a;6,,0) of (5.11).

Like the elliptic representation, Shimomura’s allows us to investigate what happens when 2z — 0
along a path (5.10) with ¥ = 1, contained in D,(r; 0, k). It is a radial path if Ro = 1. Along (5.10) we
have |z7] = |z|¥e~". We suppose So # 0.

a) 0 < ¥ < 1. We observe that |[z'~7e~*| — 0 as z — 0 along the line. Then:

1 4

coshQ(”—;l Inz+ g— + l%m-l) T ro-lekev(@ + gl-oe—ke—v(z) 4 2’

y(z;0,k) =

1

— Ao~k ,—v(z) 1-0
de™"e z (1 + e~ke—v(m)m1~a)2

= 4e ke (@) gl-o (1 + e“”(@O((e_kxl“’[)) .

Two sub-cases:
a.1) ¥ # 0. Then |z°¢*| — 0 and v(z) — 0 (see (5.22)). Thus
y(z;0,k) = de %21~ (1 + O(|z| + |eFz7| + |e Fz! 7))

Following the proposition in section 5.2, we identify y(z;; 0, k) and y(z;0,a) (a = 4e™*) on Ds(r;0,k) N
D(e;0:6,05), which is not empty for any 6;, 82. See figure 5.8.

a.2) ¥ = 0. |z°e*| — constant< r, so |v(z)| does not vanish. Then

y(z) = a(x)z'™ (1+0(e *z'77))), a(z) =4de Fe™®,

which must coincide with the result of theorem 1:

C ia(x) c? 2ia(z) 1—0o 1—0o1
y(zy=all+ 256 + gzt T (1+O(Jz|* 1)) .

b) £ = 1. In this case theorem 1 fails. Now |z!~7e¢™*| — (constant# 0) < r. Therefore y(z) does
not vanish as z — 0. We keep the representation

1 1

cosh®(Z5lInz + & + 22y 7 sin?(1%5 Ing + ik + 22 — 1)

y(z;0,k) =
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Imo arg(x)

In(x)

Res -1

Shimomura’s domain =

and
Rec-G
our domain = ’\§
Figure 5.8: The domains D,(r;0,k) and D(e;0;61,02,5)
1 Slope=Re o -1 Im o arg(x)
B ; :
sin "(.....)

Shimomura’s domuain
Jora given G

In| x|

1—0% ;
ax)x Slope= Re ©

Figure 5.9: Critical behaviour of y(z; 0, k) along different lines in D,(r; 0, k)
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—

Yo Y

1

Figure 5.10: Base point and loops in C\{0,1} and in CP*\{0, 1, c0}.

v(z) does not vanish and y(z) is oscillating as £ — 0, with no limit. We remark that like in the elliptic
representation, cosh?(...) does not vanish in Ds(r; 0, k), so we do not have poles. Figure 5.9 synthesizes
points a.l), a.2), b).

As an application, we consider the case ®o = 1, namely ¢ = 1 — v, v € R\{0}. Then, the path
corresponding to ¥ = 1 is a radial path in the z-plane and

1
sin? (gln(a:) + & 1y iv(;:))

y(z;1—iv,k) =

1+ 0(z)
sin® (§10(z) + % = §+ 55 st bom(0) (e 0))

5.5 Analytic Continuation of a Branch

We describe the analytic continuation of the transcendent y(z; 0, a).

We fix a basis in the fundamental group w(P*\{0,1,00},b), where b is the base-point (figure 5.10),
and we choose a basis g, 71 of two loops around 0 and 1 respectively. The analytic continuation of a
branch y(z; o, 21, T ) along paths encircling z = 0 and z = 1 (a loop around z = co is homotopic to
the product of g, 1) is given by the action of the group of the pure braids on the monodromy data (see
[21]). Namely, for a counter-clockwise loop around 0 we have to transform (z¢,21, o) by the action of
the braid 87, where

Br: (Zo,Z1,%T0) = (—%0,Too — ToZ1,T1)
B2 (o,%1,%s0) H (T0, T1 + ToToo — T1LF, Too — T0L1)

For a counter-clockwise loop around 1 we need the braid 52, where
Ba i (%0,%1,Tc0) F (Too, =1, To — T1Too)
2 2
B3+ (Zo,%1,%e0) H (0 — T1%T00; L1, Too + ToT1 — Teol7)

A generic loop P'\{0,1,00} is represented by a braid f, which is a product of factors 81 and Ss.
Let o and a be associated to (zo,%1,Zc) and let z € D(0). At z, the branch y(z;zo, 21, %) coincides
with y(z;0,a). The braid 8 acts on (zo, 21, %) and produces a new triple (xg , :céi ,z8). We plug the
new triple into the formulae of theorem 2 and we obtain the new parameters o, a” for the new branch
y(z; mg, mf, z8) which coincides, at the same point z, with y(z; oB,ab).

To further clarify the concept, consider the transcendent y(z; 0, a) in the point € D(o). Let us start
at z, we perform the loop 7; around 1 and we go back to z. The transcendent becomes y(z; B2 , af ).
Namely

w t ylzo,a) — y(z; 0, d).
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Univ. covering around x=0.

’ xDO )

x'= exp{2mi}x

/ R
TR X X M Xy "Xy
*x branch cut
- D
V Ylxix,x,%,,)
branch cut (XX X 00) X1 = (x- 1)exp{2ni}

0 °x 2 2 2
Yo xg xfy)

Figure 5.11: Analytic continuation of a branch for a loop around z = 0 and a loop around z = 1. We
also draw the analytic continuation on the universal covering

Now let z € D(¢). Suppose that z' := e2™iz € D(o) (this assumption is always possible if 0 < Ro < 1;
if Ro = 1 we may need to consider D(c) UD(—0o)UD(oc—2)UD(2—0¢)). The loop 7 transforms z — '
and according to theorem 1 we have

y(z;0,a) — y(z';0,a) = a[zl}l_a (1 +0 (|$I|5))

= ae” 2™z 77 (1 + O(|z|%)) = y(z; 7, ae ")

This means that, if we fiz a branch cut for z, the analytic continuation of y(z; 0, a) starting at z, going
around 0 with the loop 79 and returning back to the same z is

Y0 y(z;0,a) — y(z;0,0677™) (5.24)
On the other hand, if z is considered as apoint on the universal covering of Cp N {|z| < €} we simply
have
Y : y(z;0,0) — y(z';0,a)

Now we note that the transformation of (o, a) according to the braid f; is
B?: (0,a) = (0,ae™?™7) (5.25)

as it follows from the fact that z¢ is not affected, then o does not change, and from the explicit compu-

tation of a(x'g%,wf i,zﬁ) through theorem 2 (we will do it at the end of section 5.8). Therefore (5.24)
is

2
o : ylz;o,a) — y(z;00%,aP)

Thus theorem 1 is in accordance with the analytic continuation obtained by the action of the braid
group.

5.6 Singular Points z = 1, z = o0 (Connection Problem)

In this subsection we use the notation ¢(® and a(® to denote the parameters of theorem 1 near the
critical point z = 0. We describe now the analogous of theorem 1 near z = 1 and z = co. The three
critical points 0, 1, co are equivalent thanks to the symmetries of the PV I, equation.

a) Let

r=1 yl@) == i) (5.26)

t

I
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Im o arg(x)
Imo arg(x)

log I}N log x|
\

>1

(00)

<1 (00)

O_SG Re ©

Figure 5.12: Some examples of the domain D(M;0;60y,02,5)

Then y(z) is a solution of PV I, (variable z) if and only if §(¢) is a solution of PV'I,, (variable t). The
singularities 0 and oo are exchanged. Now, we can prove theorem 1 near ¢ = 0. We go back to y(z) and
find a transcendent y(z;0(®), a{*)) with behaviour

oo 1
y(z; 00, al)) = ale) g™ (1 + O(W)> T -+ 00 (5.27)

in
D(M;0();0,,6,,5) = {z € C@o} s.t. |z| > M, =019 lz|~7 < Im_”(m)l < ¢ 029!

0<é<1}
where M > 0 is sufficiently big and 0 < § < 1 is small (figure 5.12).
b) Let
z=1-t, ylz)=1-9() (5.28)

y(z) satisfies PV I,, if and only if §(t) satisfies PV'I,. Theorem 1 holds for §(t) near ¢t = 0 with coefficients
o1 and a¥). Going back to y(z) we obtain a transcendent y(z; ), a!)) such that

y(z, oD, a®) =1 -a®Wa -z eP 1 +0(1-2) z-1 (5.29)
in
D(e;0');60,,0,,5) == {z € CKTI} st [1—z| <e, e 591 — 27 <|(1- m)"mi < eb2%9,
0<d <1}

We choose a triple of monodromy data (zo,Z1,%s) and we compute the corresponding o0 =
o (z4), 0 < Ro©® < 1, and o). We recall that a(®) depends on the triple but also on ¢(®), namely for
the same triple the change o{® — £0(® + 2n changes a(?; so we’ll write a(® (£0® + 2n).

Let z € D(0®) U D(=o6@) U D2 - o@)UD(c® —2) 5. At z there exists a unique branch
y(z; To, T1, Too ) whose analytic continuation is y(z; 0, a(c™)) if z € D(c®), or y(z; 0@, a(—5®))
if z € D(—o®), etc.

The branch y(z; o, 1, %) is also defined for z € D(M; (™) U D(M;—0(®)) U D(M; —c{>)) U
D(M;o(®) —2) 6. As it is proved in [21]

1, 1
y(x; 20, T1, Too) :;y(t; Too) —T1,T0 = L1Tco); T = n

From the data (Teo, —T1,Z0 — T1Zoo) We compute o(®) and a(®) (g()), a(®) (—g(=)), a(w)(a(“) —2),
etc. The analytic continuation of the branch y(z;zo,21,%s) is then y(z; 00 al®) (o)) if z €
D(My;0(®), it is y(z; —0(®), al®) (=g (®))) if z € D(My; —0(*)), etc.
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:,’ D ?&'(@?_8)

In|x|

0,Imci N\

O_Re 6”1 (Im 5=0) is considered.

In the figure the special case Re ©

Figure 5.13: Connection problem for the points z = 0, z = o0
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The above discussion solves the connection problem between z = 0 and z = oo.
In the same way we solve the connection problem between z = 0 and = = 1 by recalling that in [21]
it is proved that a branch y(z; zo, Z1, Teo) 18

Y(T; 20,71, Teo) = 1 — §(t; 21,20, T0%1 — Too), ZT=1-—1
We repeat the same argument. We remark again that for Ro® = o) = 1 it is necessary to consider

the union of D(¢®)), D(=aM), D(2 — ¢M), D(¢V) — 2) to include all possible values of arg(1l — z).

5.7 Proof of Theorem 1

In order to prove theorem 1 we have to recall the connection between PV I, and Schlesinger equations
for 2x 2 matrices Ao(z), Az(z), A1(z)

dz 4
Az
%%L — All—’-:v ‘ (5.30)

dA. _ [AsA0 + Ay,A
dx z 1—z
They are the analogous of (1.32) (CoMp2). We look for solutions satisfying

Ao(a:)+Am(w)+A1(:c):<—E)“ 2) =—Ax HeC, 2u¢Z

tr(A;) = det(4;) =0

Now let 4 4 A
Az, z) = —;l = =

z—z z-—1
We explained that y(z) is a solution of PV I, if and only if A(y(z),z):12 = 0.

The system (5.30) is a particular case of the system
A, n
ddl‘ = zl/il[AUdBV] f,w(x)

-C-l% = —-i— ZZ?:I[BIHBV/] + Zzlzl[BVJ AIJ»] gl—“’(x) + Z:?:1 [BV:BV’] hvu’ (SC)

where the functions fu,, guv, hyuy are meromorphic with poles at z = 1,00 and 3, B, + 3 p A = —Ax
(here the subscript p is a label, not the eigenvalue of A !). System (5.30) is obtained for f., = g =
b,,/(a# —:L'b,,), huy :0, ny = 1, N9 2—“2, a; = bg = 1, b1 = (0 and Bl = Ao, Bg = Am, A1 = Al.

We prove the analogous result of [50], page 262, for the domain D(e;0):

(5.31)

Lemma 1: Consider matrices BS (v =1,..,n2), A% (1 =1,..,n1) and A, independent of z and such
that
0 0 _
SOBY+ Y A=A
v p

Z BY = A, eigenvalues(A) = z, -

5 , o€

TR

Suppose that fyy, guv, By are holomorphic if |x| < €, for some small € < 1.
For any 0 < & < 1 and 0,8, real there exists a sufficiently small 0 < € < € such that the system
(5.81) has holomorphic solutions A,(z), By (z) in D(e;0;01,02,5) satisfying:

14 () = A5l < C Ja]'

5This is always possible for any arg(z) if |z| is small enough

6The necessity of considering the union of the four domains comes from the fact that if Ro () = Re(©) =1 it is not
obvious that we can move from z € D(c(®) to = € D(M, 6(°>)) keeping arg(z) fixed, therefore keeping the same branch
of the transcendent.
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lz™* B, () z* = BJ|| < C a)' ™
Here C is a positive constant and & < o1 < 1

Important remark: There is no need to assume here that 2u ¢ Z. The theorem holds true for any value
of p. If in the system (5.31) the functions f.., guv, Ay are chosen in such a way to yield Schlesinger
equations for the fuchsian system of PVI,, the assumption 2u ¢ Z is still not necessary, provided the
matrix R is considered as a monodromy datum independent of the deformation parameter z.

Proof: Let A(z) and B(z) be 2 x 2 matrices holomorphic on D(e;0) (we understand 8y, 63,5 which have
been chosen) and such that

IA@)I < G, [IB@)]| <Cy  on D(e0)

Let f(z) be a holomorphic function for |z| < €. Let o3 be a real number such that & < gp < 1. Then,
there exists a sufficiently small € < € such that for z € D(e;0) we have:

le** A(e) e¥H| < Chfz| ™2

lla** B(z) 24| < Cafe| ™"

< C1Cy |zt

- / ds A(s) s* B(s) s~ f(s) z"
L)

< CiCs |zt

zh / ds s* B(s) s A(s) f(s) zt
L(z)

where L(z) is a path in D(e; o) joining 0 to z. To prove the estimates, we observe that

2] = [|z4128(5 =8| = max{|a”|?,]e°| 3} <7 |g[~%,  in D(go0)

Then )
Iz A(z) =74 < ||z JA@)]] || 274 < "% Oy |2|~7

— (691$U Iz|a2~&) Cl lmrag

Thus, if € is small enough (we require €727 < e~%157) we obtain ||z* A(z) || < C1|z|~72.

We turn to the integrals. The integrands are holomorphic on D(g; o), then they do not depend on
the choice of the path, but only on the peint z. We choose a real number ¢* such that 0 < ¢* < & and
we choose the path

arg(s) = alogls|+b, a= %:_—U, or arg(s) =b=arg(z) if So =0

where b is chosen appropriately such that L(z) stays in D(e; o). See figure 5.14. Then we compute

=4 ds A(s) s B(s) s~ f(s) z*
L(z)

ds z7% A(s) (2)/\ B(s) (%)—A f(s)

where by |ds| I mean dd |ds(¥)/dd|, and ¥ is a parameter on the curve L(z). The last step in the
inequality follows from
S A
|6)-

and the observation that, on L, |s?| = |s|7e . Thus

a* - gt
e G R
xz T 2

L(z)

[El

=

< ¥y 010y max]f |/ |ds|

{ié’%l s~ %]
= max
L
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arg(x)

/

@

\ log |x|
D@\ L(x
N
Path of integration.
Figure 5.14:
The parameter s on L(z) is
s(9) = T e
where 9 € (—oo,arg(z)] or € [arg(z), +o0). Then
. ds . la| | 1] amsterms g e la] |. 1 o
d 7 = —— o 11 - = (1=o™) — 12 = 1—o
/L(z)[sus; /mew A T I
Then, the initial integral is less or equal to
1S Imlaxtf(a:)l C,Cy constant |z|* ™7
z|<e
Now, we write |z|'~% = |2|727% |z|* =72 and we obtain, for sufficiently small e:
eh1S |m|a,x§f(m)| C1Cs constant |z|'~% < C,Cs |z ™72
z|<é€
(2 5)
We remark that for ¢ = 0 the above estimates are still valid. Actually ||z*|| = ||z 0 0 I} di-

verges like |logz|, ||z A(z)z—2|| are less or equal to C; |log(z)|?, and finally ||z~ fL(z) ds A(s)
s™ B(s) s~ f(s) 2] is less or equal to C1C> max |f] |log(z)|? Ji(a 105l | log s|2. We can choose L(z) to
be a radial path s = pexp(i), 0 < p < |z|, « fixed. Then the integral is |z|(log |z|? — 2log |z| +2 + o?).
The factor |z| does the job, because we rewrite it as |z|°* |z|'~72 (here o3 is any number between 0
and 1) and we proceed as above to choose ¢ small enough in such a way that (max|f| || x function
diverging like log” |z|) < 1.

The estimates above are in a sense enough to prove the lemma.

We solve the Schlesinger equations by successive approximations, as in [50]: let B,(z) := 272 B, (z)z".
The Schlesinger equations are re-written as

dA o2 _—
‘&'f = Z[AuvaBvx A] fur (T)

v=1
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dB, 1 - _ s -
dz ;[BV:ZI A(A,,(:z:) - Aﬁ)zA] + Z{me AA#‘”A] Guv(2) + Z [By, Bur] huvi ()
2 =1

vi=1

Then, by successive approximations:

AR (2) = 45 + /Lm ds Y J[AED(s), 5" B ()57 fun(s)

v

B,(,k) (z) = BY +/ ds {%[B,(,k_l) (s), Z S_A(A!(‘k_l)(s) - AZ)SA]-I—
L(z) n

+Z B\ (s), s AP (5)2%] g s>+Z BFN(s), BU ™ (5) h }

The functions A(k) (z), B¥)(z) are holomorphic in D(e; o), by construction. Observe that 1A%l < C,
[|1BY|| < C for some constant C. We claim that for |z| sufficiently small
k -0
145 (2) — ALl < Clal*~
Hz—A (4 (@) - 49) zAH < Czft-oe (5.32)
ok Y
1B () = BYJ| < Cloft =
where & < 0y < 01 < 1. Note that the above inequalities imply ||A,(‘k)|| < 2C, [|B,(,k)H < 2C. Moreover
we claim that b1
148 (@) - 45V (@)l < € 6+ faft =
Hx—/\ (AE]“)( z) - A(k U(m) H < 2 gk |g)imee (5.33)
1B (2) = BV (@)]| < € 6o~
where 0 < § < 1.
For k = 1 the above inequalities are proved using the simple methods used in the estimates at the
beginning of the proof. Then we proceed by induction, still using the same estimates. We leave this

technical point to the reader, but we give at least one example of how to proceed. As an example, we
prove the (k + 1)t* step of the first of (5.33):

L k k -0
|AFH) () — AP ()] < © &* [t~

supposing the k** step of (5.33) is true. Let us proceed using the integral equations:

|AFH) (z) — AP (2)]] = I

n2
/ ds 3 (AP B — Af-DABED sy
L(z)

v=1

<

s BED5 BB _ BB AB) £ ()

AE,,k)SABI(/k)S—A - ALk_l)sABl(,k_l)S_Al | fuw (8)]+

L(z) rv=1

+ dls
L(z)

SAB,(/k—ns—AAELk-n _ SAB’(/k)S_AALk) ' | f (5)

Now we estimate
HAELIc)SABI(jk)S——A _ ALk—l)SAB’Ek—l)S—A}! <

< || AR sABEs~A — Al B | +

+ “AEZ“"USAB,(,MS“A - AEL’“_USABZ(,’““US_AH
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< AP — AG=D|| (s BE s~ A+ [ AFTDN ] [1BSY ~ BEEDI s~
By induction then:
< (C 61 |5 20 1895~ 420 (C 651 |5 ) %7 |5| -8
The other term is estimated in an analogous way. Then
|AG+D — AB]| < constant 8nyC? max | fu| g1 0180 |1=0 |g|tm

We choose ¢ small enough to have constant 8nyC max |f| e57|z|'~% < §. Note that the choice of € is
independent of k. In the case o = 0, |z|*~¢ is substituted by |z|(log? || + O(log |z|)).-

The inequalities (5.32) (5.33) imply the convergence of the successive approximations to a solution
of the Schlesinger equations, satisfying the assertion of the lemma, plus the additional inequality

27N (Au(z) — Az < CPlal' 7
H iz -

We observe that we imposed

- - (%3 — —_ Cx,
€727 SCE 01\50', 61 G SCE 01 S0

, (5.34)

where c is a constant constructed in the theorem ( ¢ is proportional to $=% and C' = max{||4}]], || Bo||}
).
We turn to the case in which we are concerned: we consider three matrices A3, A2, A? such that
AJ+AJ=A, AQ+AD+ A = diag(—p, p)
tr(AY) = det(4?) =0, i=0,z,1

Lemma 2: Let r and s be two complé:r numbers not equal to 0 and co. Let T be the matriz which

brings A to the Jordan form:
diag(§,-%), o #0

-1 _
T7AT = 0 1
0 0)° =20

The general solution of

A3+A;+Ag=(‘0“ 2) tr(Ag) = det(4y) =0, A0+ A° = A

is the following:

Foro #0,£2u:
R et Gt A ) N S
8u\ = %+ (2p) ' TN
z =z g _c
g=r( 5, 1) w-r(h TE0)
T4 4 s T 1
where

(rD) a-G7) 0d) e
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() as(Bl) (G e

For o =2u: A and AS as above, but

= (35) 2= 7) =) o7
=(n) =50 -0 %) 639

or

or

For o =0:

We leave the proof as an exercise for the reader. O
We are ready to prove theorem 1:

Theorem 1: The solutions of PVI,, corresponding to the solutions of Schlesinger equations (5.30)
obtained in lemma 1, have the following behaviour for © — 0 along a path So arg(z) = (Ro — X) log |z|+
bSo, 0 < X < &, contained in D(e;0,01,02):

y(@) = a(z) &7 (1+ O(|[")), og#0
y(z) = sz (1+0(|z|"), o=0

where 0 < § < 1 is a small number, and a(z) can be computed as a function of s. Namely

a(z) = —41—5

along any path, except for the paths So arg(z) = Rolog|z| + bS0o, along which z° = Ce'*®) (C is a
constant =|z°| and a(z) is the (real) phase). In this case

a(z) = —4% (1 — 25 Ce® 4 52 C’2ezi"(”‘)) =0(1), forz—0

Proof: y(z) can be computed in terms of the 4;(z) from A(y(z),z)12 = 0:

(z) = z(Ap)12 — z(Ag)12
V&) = U o) (Ao)ie + (A)ie + 2(A)1z - 2(Ao)z — (A)1s + 3(A1)1s
_ (Ao)12 1

i
(Aiz 1-a(1+ (592)

As a consequence of lemmas 1 and 2 it follows that |z (41)12] < ¢ |z| (1 + O(|z]'~7)) and |z (Ao)12| <
¢ |z|*=% (1 + O(|z|*~7*)), where c is a constant. Then

_ W0 17
y(=) = =2, (1+0(z1"7))

From lemma 2 we find, for ¢ # 0, £2u:

o2 —4p? [x“’

(A = -
\ 0)12 T 324 s

(14 O(la]=7)) + 5 27 (14 O(|e]~*)) = 2(1 + O(Ja[*~*"))
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o? —4u?

(A1)12 =-T 8y

(1+O0(lz"=))
Then (recall that & < o)

T

vie) = *ﬂ%‘“ +0(al'= ™)) +s 27 (1+0(|z[' 7)) = 21+ O(la*=7) | (1+0(la]'™™))
Now z -+ 0 along a path
So arg(z) = (Ro — X) log |z| + b0
for a suitable b and 0 < ¥ < &. Along this path we rewrite =7 in terms of its absolute value |z°| = Clz|*

(C = e~%97) and its real phase a(z)

z° = C |z|F ), a(z) = Roarg(z) + Soln|z .
! ( ( ) g( ) I !SUarg(z):(?Ro‘——E)log]zl+b§a‘
Then

) = 2 L 20 @1 1 O(af =) + 50 5P (14 01| (14 O(al )

. For ¥ # 0 the above expression becomes

y(@) = =537 (L+0(al' ") + O(1af*)

We collect the two O(..) contribution in O(|z|®) where § = min{l — o1, £} is a small number between
0 and 1. We take the occasion here to remark that in the case of real 0 < o < 1, if we consider z —+ 0
along a radial path (i.e. arg(z) = b), then ¥ = & = ¢ and thus:

£2177(1+ O(|z|7)) for 0 < o < %
y(z) =

Lal=o(1+ O(|z|'~7)) for § <o <1

Finally, along the path with ¥ = 0 we have:
-0

y(z) = = 1 G —2Ce™) +5 Czezm(m)> (1+0(lz]*~"%))

We let the reader verify that also in the cases o = +2u the behaviour of y(x) is as above (use the
matrices (5.35)and (5.37) — the reason why we disregard the matrices (5.36), (5.38) will be clarified at
the end of the proof of theorem 2) and that for o =0

y(z) = s z (1+ O(Jz|*~))
For ¢ = 0, we recall that 0 < o1 < 1 is arbitrarily small. O

In the proof of lemma 1 we imposed (5.34). Hence, the reader may observe that € depends on &, 6;
and on ||A3]], ||4%]|, ||42]]; thus it depends also on s (=> on a). The second inequality in (5.34) has been
used in section 5.2 to construct the domain (5.11).

5.8 Proof of theorem 2

We are interested in lemma 1 when

by
a, — zb,’
au,b,€C, a,#0 Vp=1,..m

Equations (5.31) are the isomonodromy deformation equations for the fuchsian system

fuvzguuz hp,z/=0

dy TLAL(E) & B.(2)
dz ;z—a”_l—;z—xb,, Y
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As a corollary of lemma 1, for a fundamental matrix solution Y (z,z) of the fuchsian system the limits

V(z) := im Y(2,7)

z—0

— 1 —A
Y(z):= imé %Y (zz, 1)
exist when z — 0 in D(e; o). They satisfy

~

Y

dif_[’“ A% A

dz =

Z—a, =z

v i B, (z) 7

—=

In our case, the last three systems reduce to

= A
Y _ [Af@) | Au@) A (5.39)
dz z z2—x  z~—1
dy AY AT
—_—= 1Y A
dz [z -1 * z} (5.40)
v (43 A% ] -
—_— = |— 1Y 5.41
dz { z * z— 1] (5:41)
Before taking the limit z — 0, let us choose
1 .
Y(z,z) = (I—l— 0 (;)) 7 A R z = 00 (5.42)
and define as above A _ | A
Y(z) = iﬁr})Y(z,x), Y(z):= 3181_14,1(13 F7Y (zz,xz)
For the system (5.40) we choose a fundamental matrix solution normalized as follows
Yn(z) = (I+ 0 (%)) zAe R 20 (5.43)

={I+0(z)2*C, 2-0
=GUI+0z-1)(z-1)7C, z-1

Where él"lA(l’él =J,J= < . Co, C1 are connection matrices. Note that R is the same of (5.42),

G
0 1

0 0
since it is independent of z. For (5.41) we choose a fundamental matrix solution normalized as follows

Tr(2) = (I+ 0 G)) A, 2500 (5.44)

=Go(I+0(2) 27 Cy, 2z—0
=G(I+0(z-1)(=z-1)7C, z-1
Here Gg'A3Go = J, GT1ASG: = J.
Now we prove that ) .
Y(z) =Yn(z)
f"(z) = f’N(z) Co (5.45)

The proof we give here uses the technique of the proof of Proposition 2.1. in [28]. The (isomonodromic)
dependence of Y (z,z) on z is given by
dY (z,z) A (z)

= Er Y(z,z) = F(z,2)Y (2, 1)
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Then .
Y(z,z) = Y(2) +/0 dzy F(z,21)Y (z,21)

The integration is on a path arg(z) = aloglz| + b, a = &'g_‘—fi (0 < o* £§), or arg(z) = 0 if So = 0.
The path is contained in D(c) and joins 0 and z, like L(z) in the proof of theorem 1 (figure 10). By
successive approximations we have:

YO (z,2) = V(z) + /0 * do F (57 (2)

T
Y®(z,2) =Y (2) + / dey F(z,2,) Y (2, 2;)
0

Y™ (z,2) = V(2) +/ dz1 F(z,2)Y "1 (2, 21)
0

T —
0

T Ty 1 ~
= [I+/ dzq / d.’IIz.../ dz, F(z,21)F(z,23)..F(z,z0)| Y(2)
0 0
Performing integration like in the proof of theorem 1 we evaluate [lY M (z,2) — YD (z,z)||. Recall
that Y'(z) has singularities at z = 0, z = z. Thus, if |z| > |z| we obtain

MC™

< =5 E——
I, , (m — sigma®)

=",

Y™ (z,2) - YD (2, 2)|

where M and C are constants. Then Y(® = ¥ + (Y™ —¥) + ...+ (Y — Y (»=1)) converges for n — oo
uniformly in z in every compact set contained in {z | |z| > |z|} and uniformly in z € D(o). We can
exchange limit and integration, thus obtaining Y (z,z) = lim, e Y™ (2,z). Namely

Y (z,2) = U(z,2)Y (2),

Tp—
0

00 T Ty 1
U(z,z) =1+ Z/ dz / dxz.../ dz, F(z,21)F(2,22)..F(2,2p)
n=170 0

being the convergence of the series uniformly in z € D(o) and in z in every compact set contained in
{z ] |z| > |z|}. Of course

U(z,z)=I1+0 (%) for £ — 0 and Y (z,z) = Y (2)

But now observe that

V(z) =U(z,2)" Y (2,2) = (I—l— 0 (—1—)) <I+ 0 (—2)) 7= 2 0

P(2) = P (2)

Then

Finally, for z — 1,
Y(2,7) = Uz, 2)¥n(2) = Ule,2) Gi(I + Oz = 1)) (= = 1)’ (1
=G (z)(I+0(z - 1))(z - 1)’y
This implies

Cl = 01
and then A o
M, = Cre®™I (5.46)

Here we have chosen a monodromy representation for (5.39) by fixing a base-point and a basis in the
fundamental group of P! as in figure 5.15. My, M1, M,, My are the monodromy matrices for the
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solution (5.42) corresponding to the loops v; 1 = 0,2, 1, 00. Moo M1 MMy = I. The result (5.46) may
also be proved simply observing that M; becomes M; as ¢ — 0 in D(o) because the system (5.40) is
obtained from (5.39) when z = z and z = 0 merge and the singular point z = 1 does not move. z may
converge to 0 along spiral paths (figure 5.15). We recall that the braid 8; ;41 changes the monodromy

" matrices of %1_{ = Zn Ailu)y according to M; = My, My, Mi+11\/[iM,-111, My — My for any

=1 z—u;

k#1,1+1; tﬁerefore, if arg(z) increases of 2 as z — 0 in (5.39) we have

Mo~ My, Mg M MM, My~ M
If follows that M; does not change and then
M1 = Ml = é{162ﬁiJC'1 (547)

where Mj is the monodromy matrix of (5.43) for the loop % in the basis of figure 5.15.

Now we turn to Y (z). Let Y (z,z) := 7Y (22, ), and by definition Y(z,2) = Y(z) asz — 0. In
this case

. —A A _ —A A7 L - -
dY((iZ,CE) _ [:E (Ao + Az A " T Allx ] Y(z,z) = F(z,:z;)Y(z,m)
X

xr T — P
Proceeding by successive approximations as above we get

Y(z,2) = V(z,2)¥ (2),

el T Tn—1 _ .
Viz,z) =T+ Z/ dml.../ dz F(z,21)...F(z,2,) = I forz — 0
n=170 0

uniformly in z € D(¢) and in z in every compact subset of {z | |2| < 1a1c—|}

Let’s investigate the behaviour of Y'(2) as z — oo and compare it to the behaviour of Yn(z). First
we note that

My (zz) = AT + O(z2))(z2)*Cy — 22Cy for z — 0.
Then .
[z72Y (22, 7)) {m—A?N(a)z)] =z MU (zz,2)2* = V(2)CtzA.

On the other hand, from the properties of U(z, z) we know that =AU (zz,z)z" is holomorphic in every
compact subset of {z | |z| > 1} and z~U(zz,z)z* = I + O (%) as z = co. Thus

U(z) := lim MU (22, 2)z?
z—0

exists uniformly in every compact subset of {z | |z| > 1} and
~ 1
U(z)=1+0 Z) #oo

Then : ~ . _ A
Y (2) = U(2)2*Cy = Yn(2)Co,

as we wanted to prove. Finally, the above result implies

Y(z,2) = "V (Z,2) 7w (2)00

{ zAV(i—,z)ég (I+0(z/z))z=727CoCy = Go(z)(I + 0(2))z7CoCo, 2z —0

MV (2,2)G (0 (2 -1))) (2 - 1)7 ¢ = Go@)I +0(z —2))(z ~2)"C.Co, z—z
Let Mo, M; denote the monodromy matrices of Y (z) in the basis of figure 13. The above result implies:
Mo = C51C5te*™ CoCo = Cyt MoCo (5.48)

My =C;1C e 01 Co = Ci ' i G (5.49)
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The same result may be obtained observing that from

d(z=2Y (22, )) M Agzt M Azt AN
= Y .
o " + P + oo z (zz,z) (5.50)

we obtain the system (5.41) as z = £ and z = co merge (figure 5.15). The singularities 2 =0, z = 1,

z =1/ of (5.50) correspond to z = 0, z = z, z = 1 of (5.39). The poles z = 0 and z = 1 of (5.50) do
not move as ¢ — 0 and 516- converges to oo, in general along spirals. At any turn of the spiral the system
(5.50) has new monodromy matrices according to the action of the braid group

M1 ad M007 Mo ]V[OOMlM;l
but
M() — ]\/ID, M:z; — M:E
Hence, the limit f"(z) still has monodromy My and M, at z = 0,z. Since V = YnCo we conclude that
My and M, are (5.48) and (5.49).

In order to find the parameterization y(z;o,a) in terms of (zo,Z1,%Ze0) We have to compute the
monodromy matrices My, M1, My in terms of o and a, and then take the traces of their products. In
order to do this we use the formulae (5.47), (5.48),(5.49). In fact, the matrices M; (i = 0,1) and My
can be computed explicitly because a 2 x 2 fuchsian system with three singular points can be reduced
to the hypergeometric equation, whose monodromy is completely known.

Lemma 3: The Gauss hypergeometric equation

2
z(1-2) -37‘1;{ + [0 — z(@o + fo + 1)] W _ afoy =0 (5.51)

dz

is equivalent to the system

A 1 0 0 1 0 1
ar 1 1 52
dz L <—0050 —’YO>+Z—1<O 70‘0‘0“50)] v (552

- Yy
where ¥ = ((z—l)%)'

Lemima 4: Let By and B; be matrices of eigenvalues 0,1 — -y, and 0,7 — a — B — 1 respectively, such
that

BD + Bl = diag("—aa _6)7 @ 7& /B

Then
a(1+Bﬁ—’7) a(v—aﬁ—l) r
_ a— a-—
Bo = (ﬁ(ﬁﬂ—w) 1 Bly—e-1) )
a—pf T a—f3
B, = gﬁ%%l —(Bo)12
1= -
—(Bo)a1 B ﬁa-!fﬁ )
for any r # 0.

We leave the proof as an exercise. The following lemma connects lemmas 3 and 4:

Lemma 5: The system (5.52) with

av=a, fo=B+1, vo=7v a#f

is gauge-equivalent to the system

ax _
dz ~

where By, By are given in lemma 4. This means that there exists o matriz

1 0
G(z) == ( -8 a(B+1-7)] 1 a—f 1)
(.) BFImB [0‘ 2+ =5 ] T 2 BB r

By B
- +Z_1] X (5.53)
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3)

(1): Branch cuts and loops for the fuchsian system associated with
PVI,

(2): Branch cuts and loops when x—(

(3): Branch cuts and loops for the rescaled system before and after
X—=0

Figure 5.15:
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such that X (z) = G(z) ¥(z). It follows that (5.53) and the corresponding hypergeometric equation (5.51)
have the same fuchsian singularities 0,1,00 and the same monodromy group.

Proof: By direct computation. O

Note that the form of G(z) ensures that if y1, y2 are independent solutions of the hypergeopmetric

equation, then a fundamental matrix of (5.53) may be chosen to be X (z) = (yliz) yziz)>

Now we compute the monodromy matrices for the systems (5.40), (5.41) by reduction to an hyper-
geometric equation. We first study the case o ¢ Z. Let us start with (5.40). With the gauge

YN (z) :=2"% V(2)

we transform (5.40) in

dy® [ A A-5I L
dz z—1 z

We identify the matrices By, By with A — 21 and A? with eigenvalues 0, —o and 0, 0 respectively.

Moreover A} + A — £1 = diag(—p — §, 1 — %). Thus:

(5.54)

g a
a=pty, B=-ptg, y=o+l

a—-B=2u#0 by hypothesis

The parameters of the correspondent hypergeometric equation are

OL():—"[L“'%
Bo=1-—p+3
Yo=0+1

From them we deduce the nature of two linearly independent solutions at z = 0. Since y9 € Z (0 ¢ Z
) the solutions are expressed in terms of hypergeometric functions. On the other hand, the effective
parameters at z = 1 and z = oo are respectively:

ap=ay=p+%
Bi=Po=1-p+3
Nni=a+pfo—rn+l=1
Qoo =g =p+ %
o =ao—Y+1l=p—-73
Yoo =g — Bo+1=2p
Since v, = 1, at least one solution has a logarithmic singularity at z = 1. Also note that v, = 2y,
therefore logarithmic singularities appear at z = oo if 2u € Z\{0}.

For the derivations which follows, we use the notations of the fundamental paper by Norlund [41]. To
derive the connection formulae we use the paper of Norlund when logarithms are involved. Otherwise,
in the generic case, any textbook of special functions (like [34]) may be used.

First case: ap,fo &€ Z. This means
oc#X2u+2m, meZ

We can choose the following independent solutions of the hypergeometric equation:
At z=0 o
?A )(Z) = F(ao, Bo,70; 2)
9 (z) = 21 Flap — 70 + 1,60 — Y0 + 1,2 — 703 2) (5.55)
where F(a, §,7; 2) is the well known hypergeometric function (see [41]).

At z =1
v (2) == Fax,B1, 7151 — 2)
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yi) (2) = glen, Br,m;1 - 2)
Here g(e, 8,7; 2) is a logarithmic solution introduced in [41], and y = = 1.

At z = oo, we consider first the case 2u ¢ Z, while the resonant case will be considered later. Two
independent solutions are:

1
yi>) = 27 F(ao, ooy Yoo )
1
Y8 = 278 F(Bo, fo — 1o + 1,80 — o + 1; ;)
Then, from the connection formulas between F(...;z) and g(...; z) of [34] and [41] we derive
5,557 = 1, 4§”] Cooo

e—-iwao T(1+ag—Bo)T (1—70) e—imBo L(1+B0 o)l (1—o)

T'(1—Bo)T'(1+a0—0) P(1—ao)T(1+8o—"0)
eim(vo— ag—1)T(1+a0—Lo)T(v0—1) eim(vo—~Bo— —1)T(1+B0~a0)T (vo—1)
T(a0)T (70 —Bo) T(Bo)T (vo—ao)

[y§0)7y§ 1= [y( ,yél)] Co1

0 __ wsin(w(ao+B8o)) T'(2—v0)
Coy = sin{map) sin(wBo) I'(1—ap)T(1—PBo)
o =1 T'(0) ___ T@2-w)
T(vo—a@0) ' (70—Fa) I{1-ag)T'(1-80)

‘We observe that
F

Y (z) = (I+ 5 +0 ('Zl_z)) zdiag(““_%’“_%), Z =00
= Go(I + 0(2)) »diag(.~o) G31Co, 20
=GT+0E-1))(z-1)7C, z-1

where Go = T of lemma 2; namely Gy AGy = diag(%,—%). By direct substitution in the differential
equation we compute the coefficient F

0
(A1 (A1) o —2u? /1 -—r
F=-< ! 1=2p ) where A?z————-————)

A L
S (D o\

Thus, from the asymptotic behaviour of the hypergometric function (F(a,8,; %) ~1, 2z 00) we
derive

oo o2 1
'Y(l)(z) — <y§ :(z) 7'5;,,(1(3521) yéoo))

From _
Y(l)(z)N (i Z* > G’glég, z—0 (5.56)

we derive

y(l)(z) - ( *(Z) ?J(Dl( )) éalé’o

Finally, observe that G; = (Z w —Z br) for arbitrary a,b € C, a # 0, and w := ﬁ“—;ﬁ—“—i. We recall
that y;l) =g(aa, 1, 1;1 = z) ~ Plar) + P(B1) — 2¢(1) — ir +log(z — 1), |arg(l — z)| < 7, as z — 1.

We can choose a = 1 and a suitable b, in such a way that the asymptotic behaviour of YO for z = 1is

precisely realized by
(1) (1)( ) N
YW (z) = ( (2) w3'(z ) o))

* *

Therefore we conclude that the connection matrices are:

Gy =0 ((COoo)u T §u(‘1<2;‘# (Coco)1 2>

(0000)21 T g,_, 1 2“) (0000)2
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(Cooo)11 T 57311_2—5;%(0000)12 )

2 2
(Coco)ar T ;’u(l(f;‘,l) (Cooo)22

¢, =Con (Ggléo) = Cun (

Tt’s now time to consider the more complicated resonant case 2u € Z\{0}. The behaviour of Y1) at
z=0018 ‘

Y(l)(z) = (I-}— —}Z—?— + 0 (%)) Zdiag(_ ~%.u-%) R

0 R 1.3.5
— forp=2-,1,2,2,2, ..
R ( )3 Or/l' 27 ’21 12?

0 O
0 0 1 3 5
R-(Rzl O)’ for p = 5 1, 5 2, 5
and the entry Ris is determined by the entries of A9. For example, if g = % we can compute Ry =
(AD)12 = __r024_1 (and Fio arbitrary); if p = —5 we have Ry = (49)21 = —%gif—l (and Fy; arbitrary);

. _ o2 (a?—4)
if 4 =1 we have Ryjp = —rZ——=.

Since o € Z, R # 0. This is true for any 2u € Z\{0}. Note that the R computed here coincides (by
isomonodromicity) to the R of the system(5.39).

There is a logarithmic solution at co. Only Cpeo and thus Co and &y change with respect to the
non-resonant case. We will see in a while that such matrices disappear in the computation of tr(M;M;),
i,7 = 0,1,z. Therefore, it is not necessary to know them explicitly. Actually, it was not necessary to
compute them also in the non resonant case, the only important matrix to know being Cp1, which is
not affected by resonance of p. This is the reason why the formulae of theorem 2 hold true also in the
resonant case.

Second case: ap, fy € Z, namely
o= x2p+ 2m, m € Z

The formulae are almost identical to the first case, but Co; changes. To see this, we need to distinguish
four cases.
i) o =2u+2m, m = ~-1,-2,-3,.... We choose

yél)(z) = go(a1,B1,m;1 - 2)

Here go(z) is another logarithmic solution of [41]. Thus

T(—=m)T'(~2u—m+1) ' 0
Coy = < I'(—2p—2m) >

0 ___I(1-2p—2m)
I'(1—m—2p)T'(—m)
As usual, the matrix is computed from the connection formulas between the hypergeometric functions
and go that the reader can find in [41)].
i) o=2u+2m, m=0,1,2,.... We choose

y$? = glar, b1, m;1 - 2)
Thus
0 P(7T;+21)r£,)2”+m)
Cor = ( T(2u+2m+1) ( ugdm) )
T TuFm)L (m+1)

iil) o = =2+ 2m, m =0,-1, -2, .... We choose

ygl)(z) = go(a1,B1,m;1 - 2)

Thus
T(1—m)T(2u—m) 0
Coy = T(2u—2m)
01 = 0 r(1+2p—2m)
TTRu—m)T(I—m)
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iv) o= -2p+2m, m =1,2,3,.... We choose

v (2) = glo1, B1,m; 1 - 2)

Thus T(m)T(m+1~2p
I'(2m-—2
001 ( [‘(om+1 —2u) ( 0 “ )
T'(m+1—-2p) F(m)

Note that this time F = ( 0 1~03#> in the case ¢ = £2u (le. m = O) because A has a special

form in this case. Then in Co the elements ————L(O”’ (Coco )12, o> (2p)° 2ff)2 Cooco )22 must be substituted, for
8u{1-2p) 8u(1—2p)
m = 0, with 1_2”(6000)12, 1_2#(0000)22

We turn to the system (5.41). Let ¥ be the fundamental matrix (5.44). With the gauge

Y (z) = G5t (f’(z)@o)

we have
dy® By, B
= |22, 2 y®
dz z +z—1
By = G 143G, ( 1 ‘4’§>
is 4

This time then

011'—:—%
,312%4'1
=1

Qoo = —%
:Boo = %
Yoo =0
If follows that both at z = 0 and z = 1 there are logarithmic solutions. We skip all the derivation of the

connection formulae, which is done as in the previous cases, with some more technical complications.
Before giving the results we observe that

Y@ (z) = <I+ 0 (—i—)) diag(s.—¢ zZ— 00

=G;'Go 1+ 0(2))2" Cy, 2—0
=G3'G 1+0@E-1)=z-1)7 C;, z-—1

where

Then

Then, the connection problem may be solved computing C;. The result is
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Cl — ((O(I)oo)ll _g-_l-z}‘—l—i_(céoo)12>
0 (C({Joo)Zl 3%2(0600)22
Cl = C&’ncé
where

F(ﬁo—ao) e'nrczo 0
(C! )—1___ T'(Bo)l(1—ao)
0co = T'(xo—Bo) £imBo _TP(1—e0)T'(Bo) eimBo
T{ao)I'(1-Bo) T(Bo—co-+1)

0 " sin(wo
001 = (_sin(wao) __2_.(1‘;20) )

™

The case o € Z interests us only if ¢ = 0 (otherwise o ¢ Q). We observe that the system (5.40) is
precisely the system for Y(?)(z) with the substitution o ~ —2pu. In the formulae for 22,4 =0,1,00 we
only need Cp;, which is obtained from C§; with ap = p.

As for the system (5.41), the gauge Y ?) = GEIYQO yields By = (8 0) B = <8 ! 6 s). Here
01

G is the matrix such that G51AG, = ( 0 0) . The behaviour of ¥'(?)(2) is now:

Y@ () = (I+O(%)) 27 2 00

=1
=G, 1+0()7C),, z—0
= él (1+0z-D))(z-1)7 C;, z—1
Here C:r’z is the matrix that puts B; in Jordan form, for i =0, 1. Y@ can be computed explicitly:

9 (1 slog(z)+(1—s)log(z—1)
)(z)”‘(o ) 1 >

1 0
%=(o )

1 0
C{:(O 1—s>

To prove theorem 2 it is now enough to compute

If we choose éo =diag(1,1/s), then

In the same way we find

2 -2 = tr(MoM,) = tr(e2 7 (Chy ) "™ ¢y
2 -2l = tr(M; M) = tr((C]) ' e*™ O Cgit €™ Con)

92— a2 = tr(MoMy) = tr((Ch)~1e>™ CyCyte®™ Con)

Note the remarkable simplifications obtained from the cyclic property of the trace (for example, C’g,
¢y and Gy disappear). The fact that Co and & disappear implies that the formulae of theorem 2 are
derived for any p # 0, including the resonant cases. Thus, the connection formulae in the resonant case
24 € Z\{0} are the same of the non-resonant case. The final result of the computation of the traces is:

I) Generic case:
2(1 - cos(no)) = z3

(ff ©) (2 + F(J l'l’) s+ F(a,u) s) = .’E% (557)

Z_F(U,u)e—iﬂ'd S — -F—(?,—[.L—)%:ZFS_) =

7
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where
16°T(%4L)!
L—pu+ §)°T(n+ 5)?

2cos*(%o) _ 4—13
cos(ma) — cos(2mp)  TF + T2 — ToT1Too |

flop) = F(o,pu) = f(mu)F(

1) 0 € 2Z, zo = 0.
2(1 — cos(mo)) =0
4sin®(rp) (1 — a) = z?
2

4sin®(mp) a = 22,

IT) 22 = 4sin®(wp). Then (5.12) implies 22, = —2? exp(£2mriu) . Four cases which yield the values of
o non included in I) and II) must be considered

III1) 22, = —zie~2mir
o=2u+2m, m=0,1,2,..
_ Tm+1)T@u+m)?® ,
T 16D (p +m o+ )2 7]
112) 72 = —zie™ik
c=2u+2m, m=-1,-2,-3,..
n 1 -1
s= 1 16D (u 4 m o+ 2)T(=20 - m+ DPT(—m)? o3
cost () 2
I113) 72 = —zle2miv
oc=-2u+2m, m=123..
. I'(m — 2u + 1)2T(m)? 2
T 16— (—p o+ 1) T
I114) 22, = —gle~2mik
c=-2u+2m, m=0,-1,-2,-3,..
mt -t

1
— —2p+2myy_ = 41-\ 2t — 211 1-— 2,2
s cost(m) {16 T(—p+m+ 2) (2u —m)T(1 —m)* =7

To compute o and s in the generic case I), with z2 # 4, we solve the system (5.57). It has two
unknowns and three equations and we need to prove that it is compatible. Actually, the first equation
2(1 — cos(mo)) = x3 has always solutions. Let us choose a solution oy (£oq + 2n, Vn € Z are also
solutions). Substitute it in the last two equations. We need to verify they are compatible. Instead of s
and % write X and Y. We have the linear system in two variable X, Y

F(ao) F(fro) X f(oo) 32 —2
F(og) €717 prooye™ ™o Y 2~ f(o0) =%
F(a0) Floo)
e T ) 0
F(O’o) e~ Moo m@ ixed)

This happens for oo € Z. The condition is not restrictive, because for ¢ even we turn to the case I1) of
the theorem 2, and o odd is not in 2. The solution is then

The system has a unique solution if and only if 2¢sin(mag) = det (

2(1 + e~#90) — f(og)(z? + 22 e~"°0)

= Floo)(e2mmo — 1)

floo)e ™70 (e~ m70x? + 22 ) — 2770 (1 4 e~*%0)

Y e F(Uo) 6"2“‘70 _ 1
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Compatibility of the system means that X ¥ = 1. This is verified by direct computation:

e [2(1+ ) — (af + 2e™) f(0)] [(#2e=" + %) f(o) — 21+ e~ )]

XY = (e—2imo —1)2

‘8cos?(ZZ)(z} + 22,) f(0) — 4(4 — sin®(22)) — (2 + 22,)? — zdzial ) f(0)?
—4sin® (7o)

4—g2

P e obtain

Using the relations cos?(2Z) = 1 — z3/4, cos(wo) = 1 — z3/2 and f(o) =

(III% + zgo)g - (5170.23151200)2 f(U'))

1 o 5
XY=—— —2 by = 4
= ( B

= -3;15 (4— (23 + T2 — ToT1Tes) f(0)) = ZE.l.z. (4—(4—-22) =
0 0

It follows from this construction that for any o solution of the first equation of (5.57), there always
exists a unique s which solves the last two equations. Recall that

1
4s

To complete the proof of theorem 2 (points i), i%), 4i%)), we just have to compute the square roots of
the z2 (i = 0,1,c0) in such a way that (5.12) is satisfied. For example, the square root of I) satisfying
(5.12) is

zo = 2sin(§o)

— 1 F 1
= Tiew ( (o) s+ VF(o.n) S)

JEF -1
oo = Jiom ( () \/F(o,#)se'iﬂiq'>

which yields i), with F(o, u) = f(o, u)(2G(a, w)?. .

We remark that in case II) only ¢ = 0 is in Q. If y integer in II), the formulae give (2o, 21,%c0) =
(0,0,0). The triple is not admissible, and direct computation gives R = 0 for the system (5.54). This
is the case of commuting monodromy matrices with a 1-parameter family of rational solutions of PVI,.
07

Proof of remark 2
We prove that a(0) = g55(—y, namely s(o) = =5 for a = —4,. Given monodromy data (zo, 1, Too)
the parameter s corresponding to o is uniquely determined by

7 (“F” * o) =
1

Fiy (=P s ) =24

"Remark: In order to solve the R.H. for the monodromy data (zo,Z1,%cc) We choose branch cuts in the z-plane.
When z is small we just need to fix @ < arg(z) < a+ 2m, @ € R. Let A(z,z;20,%1,%Zc0) be the matrix solution of

the R.H. Consider the loop z — z' = ze?™; the analytic continuation of A along the loop is A(z,';%0,21,%T0) =
Az, z; mg ,:cf1 , T 1) In other words, A(z,z';70,21,%c0) c01nc1des with the solution of the R.H. obtained with the same
83

branch cut a < arg(a:) < o+ 27 and new monodromy data (a:o1 T, ,zoo) transformed by the action of the braid group.
When we write A(z z'; xo,xl,moo) we are considering A as a function on the universal covering of Co N {|z| < €}; when

we write A(z,z; x’gl ,xfl , :cgé) we are considering the solution of the R.H. as a “branch”.

In the proof of theorem 2 we start from a point ¢ € D(o) and we take the limits  — 0 of the system and of the rescaled
system. At z we assign the monodromy Moy, M1, My characterized by (zo,21,Zoo) and then we take the limit proving the
theorem. If we had start from another point z’ = ze?>™* € D(c) (provided that this is possible for the given D(c) and ) we
take the same monodromy Mg, M1, Mz, because what we were doing is the limit, for £ — 0 in D(o), of A(z,z;%0,71,%oc)
considered as a function defined on the universal covering of Cp N {|z| < €}.




118 CHAPTER 5. CONNECTION PROBLEM AND CRITICAL BEHAVIOUR FOR PV,

We observe that f(o) = f(—o) and that the properties of the Gamma function

(1 - 2)T(z) = -8—57(;—) T(z +1) = 2I'(2)

imply
1

Fo)

Then the value of s corresponding to —o is (uniquely) determined by

o 0 r T =

7@ (2 - e F(U)se_m) G

We conclude that s(—0) = —55-

The last remark concerns the choice of (5.35), (5.37) instead of (5.36), (5.38). The reason is that at
z = 0 the system (5.54) has solution corresponding to (5.55). This is true for any o # 0 in {2, also for
o — £2u. This is equivalent to the behaviour (5.56), which is obtainable from the Go = T of (5.35),
(5.37) but not of (5.36), (5.38).

F(—o) =

O

Proof of formula (5.25)
We are ready to prove formula (5.25), namely:

B2: (o,a) > (0,ae™2")

For ¢ = 0 we have zop = 0 and 57 : (0,71, Zoo) — (0,%1,%c0). Thus

2
2 z2

zOO o0

a=
z?+ 12 w4zl

=a

For ¢ = £2u-+2m, we consider the example o = 2u+2m, m = 0,1,2, .... The other cases are analogous.
We have s = 22 H(o) = —z2 H(o)e? ™, where the function H (o) is explicitly given in theorem 2, ITI).
Then ' _ .

B1: s= —xiH(a)eQ’”“ = —z2H(0)e*™* = —ge?mis

Then
B2: s st = arsae T =ge

For the generic case I) (o & Z, ¢ # £2u + 2m) recall that
F(0) s+ gy = 7if(0) — 2
{ F(o)e ™ s+ f(j;)—é%:m-—s =2~ 13,f(0)
has a unique solution s. Also observe that 81 : Too = z1. Then the transformed parameter f; : s+~ sh
satisfies the equation

1 2
W—2—m1f(0)

=— (zf(a) s+ -15(7})-—;)

F(o)e“i"” P+

Thus s%1 = —e?™@ 5. This implies

271 -2
BE: s+ 5™ = arrae ™

We still have to prove the following
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Proposition: Let y(z) ~ az'™% as z — 0 in a domain D(e,0). Then, y(z) coincides with y(z;0,a) of
theorem 1

Proof: Observe that both y(z) and y(z;0,a) have the same asymptotic behaviour for  — 0 in D{o).
Let Ag(z), A1(z), Ax(z) be the matrices constructed from y(z) and Ag(z), Ai(z), A (z) constructed
from yz; 0, a) by means of the formulae (1.36) of section 1.10 and the formulae which give ¢o in terms of
y(z) in section 6.1. It follows that 4;(z) and Af(z), i = 0,1, z, have the same asymptotic behaviour as
2 — 0. This is the behaviour of lemma 1 of section 5.7 (adapted to our case). From the proof of theorem
2 if follows that Ag(z), Ai(z), A-(z) and Aj(z), Ai(z), A;(z) produce the same triple (20,21, Zoo)-

The solution of the Riemann-Hilbert problem for such a triple is unique and therefore 4;(z) = A} (z),
i=0,1,z. We conclude that y(z) = y(z;0,a). O

5.9 Proof of Theorem 3

To start with, we derive the elliptic form for the general Painlevé 6 equation. We follow [22]. We put

v d
u =/ A (5.58)
0 AA=-1(A=-1)
‘We recall that
du_Qudy Bu_ 1 dy , o
de = Oy dz  Ox - Vyly —1)(y — =) dz Oz
from which we compute
d2u 22 —1 du u

aﬁ—l_m‘(m-l)gi dz(z — 1)

_ 1 dy (1, Lo, Ly 11,1 1 dy\*
 Vyly =Dy — =) |de? r z-1 y—2)dc 2\y y-1 y-—=z dz

By direct calculation we have:

Pu  2z-1 Ou u 1yl -DHly-=z) 1

22 Va1 dr @1 2  a@-1) (-2

Therefore, y(z) satisfies the Painlevé 6 equation if and only if

du  2z-1 du u Vyly-1y -2 T T — 1\ z(z-1)
& s 1) de "I -1) | 2(l-2)? [2“”5?2”@—1)2*( 2><y~z:5>2j9

We invert the function u = u(y) by observing that we are dealing with an elliptic integral. Therefore,
we write

y=f(w,2)

where f(u,z) is an elliptic function of u. This implies that

g—% =Vyly— 1y —=)

The above equality allows us to rewrite (5.59) in the following way:

d? d 1 1 b6}
2(1 - z) gz—‘2‘+(1—2a:) E,;’L”Z v= gy et (5.60)
where ) ( D
X — T r\xr —
W(u,z) = 2af(u,z) — 2ﬁf(u,x) +27f(u,x) — + (1 25)f(u,m) —
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The last step concerns the form of f(u,z). We observe that 4A\(A — 1)(A — z) is not in Weierstrass

canonical form. We change variable:
l1+z

3 bl

A=t+

and we get the Weierstrass form:

4 4
DA-DA—z)=4t° —gat —g3, g2 = 5(1 —z+72%), g3:= ‘27(93 -2)(2z - 1)(1 +z)

u_/y” 3 dt
2 o 4t3 — got — g3

y(z) =P (%;w;,c@) + 1—;:3

We still need to explain what are the half periods w1, we. In order to do that, we first observe that the
Weierstrass form is

Thus

which implies

43 — got — g3 = 4(t —e1)(t — e2)(t — e3)

where
2—x _2z-1 1+

5 0 ®T T3 8T T3

€1 =

Therefore

€2 — €3 2
g:=+el —ey =1, n%:;——-(;:z, Ke=1-k*=1-2z
1—€s3

and the half-periods are

1 1 de B 1 de ke
w1 = g-/O \/(1_52)(1_5252) _[} \/(1_62)(1_1:&-2) "‘K( )

=iK'(1 - z)

IR R S AN
==k Jien e ) TEE T
The elliptic integrals K(z) and K'(1 — z) are known:
T 11

! — - .7_T_ 1 .]; . —
K'(1 :I:)—2F<2,2,1,1 z)
where F(z) is the hypergeometric function

(33ee) - £ 100

n=0

K(z) and K'(1 — z) are two linearly independent solutions of the hypergeometric equation
1
z(l—2)w" + (1 -2z — = 0.
Observe that for |arg(z)| < =:
11 11
—F (—2-, 5 1;1 - :v) =F (5, —2—,1;z> In(z) + Fi(z)

where
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Therefore wy(z) = —£[F(z) In(z) + Fi(z)] where F(z) is a abbreviation for F' (3}, §,1;z). The series of
F'(z) and Fy(z) converge for |z| < 1. Incidentally, we observe that

1

y(z) = P (u(z)/201(2),w2(2)) —es = — CIEED
Proof of theorem 3: We let z — 0; if §7 > 0 and
(- )| <or (5.61)
4(4.)1 )

we expand the elliptic function in Fourier series (5.20). The first condition S > 0 is always satisfied for
z — 0 because

4
Sr(z) = _717111 2+ =12+ 0(z), @0,
We look for a solution u(z) of (5.13) of the form
u(z) = 2viwi(z) + 2vews () + 2u(z)

where v(z) has to be determined from (5.13). We look for a holomorphic solutions v(z), bounded if
z — 0. We observe that
v(z)

2w (z)

w(z) v, v
4oy (z) —QL + _Q—T(x) +

nyn i, iB@) 0
T2 2 m F(z) 2w ()
Thus, if £ — 0 the condition (5.61) becomes

Fi(z) _
, (note that Fla) ~ 4In2+ O(z) as ¢ — 0).

(24 Rve) In|z| - C(z,v1,v2) — 802 < Srparg(z) < (Rvp — 2)In|z| — C{z,11,1n) +8In2.  (5.62)

where C(z,vy,1) = [Sgor + 4In2%ws + 781 + O(z)]. We expand the derivative of P appearing in

(5.13)
. (u m\° & n2e®™T (nnu x \° cos <4w1)
—a—?;P (5,(—01,6‘-)2) - (w—l) Z 1 — e2minT s (2&01) - (2(4)1) Sil’ls (ZZF.IL)
Wi

n=1

3 oo 3 ;T _jomu
; (Tr ) - eqmnT ( inzly —ingu“> + 44 ( . ) e’ +e e
==|— — (€21 — 7B
; — p2minT o s rw \ 3
2i \wr n=1 l-e 2 (e 1 — ¢ ’4w1>

Now we come to a crucial step in the construction: we collect e *#1 in the last term, which becomes
- T 3 847”4“'1 + 6“1”4‘“1
4 — -
2&)1 <627mml— . 1)

< 1. From now on, this condition is added to (5.61) and

i e | 2w
The denominator does not vanish if le Ty

reduces the domain (5.62). The expansion of 2P becomes

o u. 1 . 3 o n26i1rn[-—l/1+(2—-1/2)'r—2—w]-] 'ifrn[v1+v-_>r+~1—]
‘5&73 (§,w1,w2) =5 (5‘1‘) :L; 1 g2mint (e - 1)

( - )3 627"1'{1/1+V2T+§:~1~:l +e7ri[u1+vzr+2—3-l—]
T4 5o 3
(eﬂ"i [u1+u27+§—3—1—] _ 1>

Let’s write ———zl—)l = —41In2 + g(z), where g(z) = O(z) is a power series starting with z. We have

20.)1

c
inCr _ T C g(z)
e 160 © 16 (1 +0(z)), -0, for any C € C.




122 CHAPTER 5. CONNECTION PROBLEM AND CRITICAL BEHAVIOUR FOR PV,

Hence ) ,
a u e~ . o el .
. — 2—va ,—iT 55T va oI T
— — frone —_— w 2wy
Bu (2""1""2) Fl\B g ¢ V16 €

where

3 oo n2en(2—ug)g(z)

. 1 r - y T S 24z
ﬂr’w):z(m(m)) ;1~[.1_69<z>f"xzny 5 "”“’(zwl(a:)) (z 1)

16

The series converges for sufficiently small |z| and for |y| < 1, |yz| < 1; this is precisely (5.61). However,
we require that the last term is holomorphic, so we have to further impose |z| < 1. On the resulting
domain |z| <7 < 1, Jy| < 1, |2| <1 F(z,y,z) is holomorphic and satisfies

F(0,0,0) = 0.
The condition |y] < 1, |z} < 1is ;;T"I;;— v ET | < 1, |, el'g:: z”2¢" %7 | < 1, namely
Rve In|z| — C(z) < Srparg(z) < (2 — Nn)In|z| - C(z) +8In2, (5.63)

which is more restrictive that (5.62).
The function F can be decomposed as follows:

) e——iﬂ'ul eimjl
.7'-=.F(EE ——532_”2 ——g"? | +

7162 " 16v2
e—im/l e €i7TV1 o e—i7ru1 ez’ﬂul
2—vg —UT 5o va St | 2—vg vo
+ [}— (x, Trara LIgm e Flz, e

e—in-ul R e’iﬂ'l/l e—~i7r1/1 5 eim/l
—_— a—v2 va A 4] va
= F (:c, 162""2x ) 1o 2 | +G | =z, 162"”2m ' T "%, v(x)

The above defines g(a:,y, z,v). As a function of its arguments it is holomorphic for |z|, |y, |z|, |v| less
then some ' < 1. Moreover
g(oy 07 Oa ’U) = g(.’E,y, zZ, O) =0.

Let us put u = ug + 2v, where ug = 2viw; + 2vowy. Therefore L{up) = 0 and L(ug + 2v) =
L(ug) + L(2v) = 2L(v). Hence (5.13) becomes

(03

L(v) = =g (F+0). (5.64)

We put
o ! r_ __E

w:=zv' (wherev' = da:)’

and the equation (5.64) becomes
,_ 1 a z(w + 1v) o
el s s gl T g
Now, let us define o
Q(x7y?z) = 2(1 - m)g }-(m7 y) z)?
+ 1
Vo g 00) = 0Ty &Gy,

-z  2(1—gx)p
They are holomorphic for |z|, |yl,|z|, |v], |w| small (say less then ' < 1) and they are such that
®(0,0,0) =0, ¥(0,0,0,v,w) = ¥(z,y,2,0,0) = 0.
Our initial equation (5.13) becomes the system

dv

T— =w
dz ’
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dw e—im/; o el ! e~ i - ez'vrul
T = oz, ng 2, 1—6;?33"‘) + (T, T 2, e @ v(@), w(a).

A system having the structure of the system above, with some slight changes in the arguments of ® and
¥, has been studied by S. Shimomura in [27]. He reduced it to a system of integral equations

._17”/1 9y eim/l " Phmiiies! . emul .
($) / ) {@(t 162— VQt 2, 1672 t 2) +\I’(t, 162—u2t 2 16U2 pu— 'U( ) ( ))}

e~imv . eimn ” - e~ i1 . el ” dtd
= R {72 t 4 2’ + 27 t , t
o x /;/(z) S /L(s { 71622 " 1672 )+, 71622 1672 v(t), w( ))} tds

and he solved it by successive approximations, with the initial condition vg = wo = 0. The path L(z) is
a path connecting z to 0 in (5.63), like the path considered in the proof of theorem 1.
We refer the reader to [27] and to the last of [52]; for reasons of space we just take the result:

For any complex v1, vy such that
vy & (—00,0]U [2,+00)

there ezists a sufficiently small v < 1 such that the system has a solution v(z) holomorphic in

< r}
with an expansion convergent in D(r;vy,va)

_ . . n e iYL s m . et v m
_Zanx + Z nm® -——*—‘—-162_1/2$ + Z CnmT 16”2m

n>1 n>0, m>1 n>0, m>1

—-i7Tu1

162"

Ty
et

2—va —_— 2
" | 16v2

D(r;vy,va) = {az e Cy such that |z| <, <r 2

where an, bum, Cnm are rational functions of vy. Moreover, there exists a constant M (vs) depending on

vy such that v(z) < M(vs) (lx[ + 16;1,; + ) in D(ryvy,va) .

Ein’ul
1672

2—vs

z¥2

We conclude that:

Theorem 3: for any vy ve such that
vy € (C—{(—00,0]U[2,+00)}),
there ezists a sufficiently small v such that
y(z) = P(riw1 (z) + vowa(z) + v(z); w1 (), wa(z))

in the domain D(r;v1,v2), where v(z) is given above.

D(r;vy,v2) is more explicitly written in the form 5.19 which makes it evident that it is contained in
(5.63).
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Chaptér 6

Reconstruction of 3-dimensional FM

Chapter 3 was a didactic exposition of the procedure of inverse reconstruction of F'(t) through (1.22),
(1.23). Monodromy data were assigned, the functions ¢, were computed directly from (3.1) and the
conditions of isomonodromicity (1.13). This procedure is an alternative to the direct solution of the
boundary value problem.

Here we follow the same procedure, but the situation is highly non-trivial. The solutions of

Oio = Vido
ov; =[V;, V]

where V = ¢o diag(p,0, —u) ¢g* and (Vi)i; = ([0ki — Ors] Vij)/(ui — uj), was partly given in section
1.10 in terms of Painlevé trascendents; in section 6.1 we’ll give the explicit, computable solution of the
above system in terms of the transcendent. Its dependence on the Stokes’ matrix is as follows: the
Painlevé transcendents are parametrized by a triple (2o, 1, %) of monodromy data of a 2 x 2 fuchsian
system (see chapter 5) and therefore ¢o(u) = ¢ (u; o, 1, o) locally. Since the fuchsian system is the
2 x 2 reduction of a 3 x 3 fuchsian system (see section 1.10) which is connected to (1.11) by Laplace
transform (see section 4.8), the Stokes’ matrix of the corresponding (1.11) is expressed in terms of the
triple (2o, 21, Zso) itself (see [21]):

1 20 Xo
S=10 1 x|, =z2+22+1% —2071700 = 4sin’(mp).
0 0 1

After the determination of ¢g, we compute ¢1(u), ¢2(u) and ¢3(u) by direct substitution of the
solution (1.12) into the differential equation (1.11). In generic cases this is enough, but for resonant
values of p the matrix R in (1.12) does not vanish. Some entries of ¢, are indeterminate and we can
fix them thanks to the higher order conditions of isomonodromicity (1.13) and the condition (1.14), for
p=1,2,3. The non zero entries of R appear as parameters in the ¢p’s.

The final hard problem is to obtain the closed form F = F(t) from the parametric equations (1.22),
(1.23).

At the end of the procedure we get F' = F(¢) in terms of the monodromy data S, u, R.

6.1 Computation of ¢y and V in terms of Painlevé transcen-

dents
Let n = 3. We can bring 7 to the form:
0 01
n={0 10
100
Let
0 —Q3 QQ
V(’U.) = Qg 0 —-Ql
-0 0
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which is similar to

d
o= diag(p,0,—p), p= \/—(Q% + Q2% + Q2) constant, p= —5

By simple linear algebra we find the eigenvalues and eigenvectors of V. g is precisely the matrix whose
columns are the eigenvectors; imposing also the condition

dedo=n

we find

i Q2Q3+p G
e E (7
Vau (Q2+402)2 ()

i $20Q3— EQl 1
1
Vou (p2102)2 G

i Q1Q2—pQs Q1 i 01Qo+uQs 1
V2u (Q2102)3 G(U) [ Vapu (Q%—{-Qg)% 1G(u)
i 1 o '3 1
$o = VT (03 +93) G(u) %f VM (Qf +03)2 G(lu)
Qs
i

where G(u) is so far an arbitrary function of u = (u1,u2,u3). To determine it we impose the condition

d
5‘20_ = Vi(u)do (6.1)
Uj
We observe that ¢in0 = Q:/(ip), i = 1,2,3, and that (6.1) for the ¢i20’s is equivalent to the equation
8;V = [Vi,V]. In particular, the last equation implies 7, V = 3, u;0;V = 0. Thus V(u1,u2,u3) =
V(z), where

_uzg— U
- Uy — U1
Finally, 8;V = [V;, V] becomes:
a2, 1
— == 00
a7 2813
df2s 1
dz  1-=z ks
dQls 1
eSS ¢ P ¢ 2
dz  z(z-1) il (62)

The equations (6.1), (6.2) are reduced to PVI,. The product and squares of the entries of ¢o are
expressed in terms of a Painlevé transcendent y(z) in section 1.10, where we followed [16]. Now we work
out the explicit expressions for the entries. Let

H:=us —u;.

The reader may verify that the following entries of ¢o satisfy (6.1), provided that y = y(z) is a Painlevé
transcendent and

ko exp {(2p - 1) " d¢ ¥E55

k=k(z,H) = T , ko € C\{0}.
¢o is a function of (z, H):
$130 =1 Vg
13,0 = iz
& — vk y—1
23,0 NN
¢ VeV
33,0 NN
_lVy-Ty -z [ A ]
T A (T [T R
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®32,0

B

ez -z lyly-1)
$11,0 = —L—Q\/%[% [A <B+%§i> +,u2(y—1~z)]

¢%1,o=§£3—\/—\2—-(;%—)—% [A <B+_2—/ii> +u2(y+1—m)}

y
1 VHSy—-z [A< 2

¢31,0=—-2—ﬁ§m\/5m B—i—y—_—;)-i—u(y—l—i—a:)}

where

Ef“ Eys Eiaf
¢o = E}”L Ey Eaf
B3y

E3y Essf

wher
- VEITT _ VEGT
VHVI=z  VHVz -1

Ep=—  §i=123
W

f:f(I7H> =

_ e -y _ s + s
2u? ’ - 02402
03 + 03
2u?
Q3 + pfh
212

Ey =~ By =1

Qo83 — plhy

B = 02 + Q2

y BHaz=-—

and

N (y— Dy —=)

\/—\y/\T/"ﬂ;m—i [y(yA— D u]

”ﬁg [y(yfi 1) - u}

The branches (signs) in the square roots above are arbitrary. A change of the sign of one root (for
example of \/ﬁ) implies a change of two signs in (Q1, 22, Q3), or the change (¢ 0, ¢is,0) — —(di0, Pis0)-
The reader may verify that all these changes do not affect the equations for ¢p and V. We only remark
that in the definition of f(z, H) we chose /1 —z =iz — 1.

Ql:i\/m\fﬁ{ A M]

Qo =1

Q3 =

Conversely, given a solution (01, s, Q3) of (6.2), a corresponding solution of PV, is

B zR(z) (1307 _ (00 +p05) >
o= e o= () - (M) (0:2)

The reader may verify directly that the above formulae solve (6.1), (6.2) and satisfy the equations of
section 1.10.
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6.2 Explicit Computation of the Flat Coordinates and of F' for
=3

Let t = (¢!,#2,1%) with higher indices. We compute the parametric form ¢ = t(z, H) and F' = F(z, H))
using

3 3 3
t' = Z bisodin, = Z Pinodi, = Z $i1,00i1,1, (6.4)
3 3
1
F=2 1t ¢inotisr — ) (din1di12 + di,3di,0) (6.5)
2 i=1 i=1

The final pourpose is to obtain a closed form F = F'(t). We recall that p; = u, ye = 0, p3 = —pu. Let
us compute ¢, @2, ¢3. We decompose

¢p=¢o Hp, p=0,1,2,...
namely, H; appears in the fundamental matrix
S(z,u)= (I +Hy 2+ Hy 22+ Hs 28+ )220, 250
which is solution to the equation

ag

— A — b
E-luslle u=wrva

By plugging =(z,u) into the equation we find the H;’s. We give now the explicit expression for the
entries of the H;’s. The “generic” expression is valid whenever 1 does not have one of the special values

listed below; in the following hg;.“) (u) are arbitrary functions of u = (u1,ug,u3) to be determined later:

Hj; generic case:

Uy
Hii=—"29 _ R =0
S TR !
p=3 1
Hiz, = hgg)(’u), Ri3y = Uhs,
H;; ——-Zﬁ;-—-if(i ) # (1,3)
U'l—_l‘l‘/lj—,ui »J ’
p=—3%
H3p = héll) (uw),  Rzi1,1 = Usy,
Hy; ——ui—-——if(z‘ ) # (3,1)
U’l—l‘*'/ij—/.l.i yJ 3
p=1: )
Hipq = h§2) (u),  Riz1 =1y,
Hasy = h$) (),  Rasn = Uss,
u..
Hiq = ——4 5 (.5) € {(1,2), (2,3
= Tt ) £ {(1,2), 2.9)
H= -1 )

Hy1 = hg) (u),  Roi1 = Ua,
Hszzp = h:%) (u),  Rsz;1 = Usa,

Ui it (i) g {20, 3,2}

Hi = ———
at 1+ p5 —

HQ; let Z/l’f_), =U Hl -—Hl Rl-
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Generic case:

Ui
Hijo=——2"—, Ry=0
J,2 2+ [ — i 2
p=1
Hizp = h{)(w), Risp=1lhss
Ui
Hijo = 5 ——if (i,4) # (1,3
o= i ) £ (1)
p=-1
‘ Hs1 5 = hgi) (u),  Rai2 =Usp
Ui
1:1'Z — 27,2 -f ., . 371
4.2 _”——_“2'*'#;‘—/11‘1 (4,7) # (3,1)
w=2:
Hizo = b3 W), Rizp=Uays
Hyzp = h%) (u),  Roggo =Usy
Uijo .., .
Hijo = ——2=— if (i, 1,2), (2,3
3,2 2+/ij'—pil (i,7) € {(1,2), (2,3)}
p=-2

Hopo = hg?)l) (u), Roy2 = Uy 2

Hazz = hgd;) (u), Rsz2=Usp

Usjo e s
Hi' :____._L_..__f , 2’1’ 3’2
2= T i ) £, (3,2))
Hs;let Us :=U Hy — Hy Ry — Hy Rs.
Generic case: "
Hi;z = —CHA s Rs =0
P By — :
p=3;
Hyzs = hg? (u), Rizz =1lh33
Ui;.3 e
Hiig = SV B , 1,3
7,3 3_*_#]_#21(2])#( )
p=-3%
Hii3 = hg) (u), Ra13=1Usz3
Uij3 e r
Hijs = g —— i (i, 3,1
17,3 3_*_'“]__#11 (ILJ);A( )
p=3:
Hyizz = hg) (u),  Rizz=Ungs
Hjs,3 = hg? (u),  Rasz3=Usz
His = —285 i (i,5) ¢ {(1,2), (2,3)}
T 34—
p=-3

Hs 3 = hé‘? (w), Roiz=Ungs

Hsz3 = hé? (u), Raz3=1Usgz
Usj 3

gﬁz:zﬁmﬂQH&DJ&%}

Hij3 =

129
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6.2.1 The generic case p# £, +£1, 2, +2, +3

Let p# £, +1, 2, £2, +3 and let

2

'E% By Eisf
¢o=| Z* By Eaf
Efﬂ Es» Essf

Eij = E; j(z) and f(z, H) have been previously defined. A hard computation gives us the entries of Hy,
H,, Hs, then ¢1, ¢, ¢3 and finally ¢ and F from (6.4), (6.5). Being the computation very hard and
long, we omit it and just give the result:

t' =u +a(z) H

1 H
P =15 P e
1 H
* =173 @ o ap
_ (@) @ . (et d) be) bie) olz) | be) (ha(z) —a(@)]  H
P TR R Syt T B T A CENAIE R | femp
Fo(t) := —;—tl (t*)? + —;-(tl)%3

where
a(:r:) = E21E23 +z E31E33

b(z) := Eo2 Eoy + = E32E5
by(z) := Eo3Bas +x F33zEse

a1 (z) := B2, +z B2y

bo(z) := EZ, + z E3,

e(z) = Ei +z E3,
Tfhely depend rationally on z, y(z), 9%(;’”—). Note that F— Fj is independent of u1, namely it is independent -~
of t*.
6.2.2 The case of the Quantum Cohomology of projective spaces: y = —1

Let u = —1. This is a non-generic case, corresponding to the Frobenius Manifold called the Quantum
Cohomology of CP2. In this case the unknown functions hé?, hélz), hg‘i) have to be determined. It is

known that
0 00
Ri=13 00|, R;=0
030
The direct computation gives

0 0 0\ 0 0 0
Ry = | b(z) H ! 0 0], Ry = 0 0 0
0 b(@) H f 0 bz) H f7H(hSY) = hE7) 0 0

which implies

Flo, H) = 5 b(z), (6.6)

M =)
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hg? is determined using the differential equation :

9L

T = Ei¢o + Vipr
Ui

which implies:
oY)  EwBu  OhSy  EpBExn  OhS)  EspBa

dur f 7 Ous f7 dus

and thus

ongy ony . ohy _
Bul 8“2 (9’(13

because:

Er2FEq1 + Ego By + B30 B3 =0
as it follows from ¢f ¢g = n. Therefore h%) is a function of z = (ug — u1)/(u2 — u1) and H = uz — us.
Keeping into account (6.6) and the relations:

or z-—1 oz T oz 1

du, H ' du; H Oug H
OH _, ©OH _, B8H

B = Bw Tl Bw
we obtain
ony 3 any 5
oz T+ ——&—LEM o O0H
which are integrated as follows:
Ky = 3In(H) + 3/ dg—-—E?E—;. (6.7)
E31E32

Before determining hg‘? it is worth computing ¢ through 6.4. Explaining the details is too long and
tedious, so we give just the final result:

t* = u; +a(z) H,
= hé%), (6.8)

z) 1
(”3) - (Er))z H

(6.9)

We observe that h( 2) does not appear in ¢. We also observe that both ¢! and t* coincide with the limits
for p — —1 of the same coordinates computed in the generic case. Instead, such a limit does not exist
for #2.

Now we turn to the differential equation

0y

Bu, = E;jp1 + Vigo

which gives three differential equations for hg%). Since we already know t, I write the coeflicients of the

equation in terms of ¢:
¢ 2
Ohgy 4 ot3 2 _8_75__ e atl’
au,; Bu, Buz 6u,'

which are immediately integrated:

i=1,2,3.

1
hg) - 5(tz)z + 143

Finally, I give the result of the (hard) computation of F' through 6.5, without explaining further

details:
1 5 3 H3
F=Fy(t) + -ﬁ—al(m)c(x)‘ + Zb(m)bl (z)e(z) + (b2(z) — a(z))b(z)? (6.10)

Remarkably, this coincides with the limit, for u — —1, of the generic case.
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6.3 F(¢) in closed form

1)Generic case p # £3, +1, £3, £2, £3

If we keep into account the dependence of f(z, H) and k(z, H) on H, we see that both ¢t and F — Fy
can be factorized in a part depending only on z and another one depending only on H

tz(w7H) = T’Z(I) H1+MJ
tg(iL‘,H) = 7‘3(5[7) H1+2#
F(z,H) = Fy(t) + F(z) H>*

where 75(z), 73(z) and F(z) are explicitly given as rational functions of z, y(z), é—yfl by the formulae
of the previous sections. Hence the ratio
t2
(t3) 7%

is independent of H. This is actually the crucial point, because now the closed form F = F'(t) must be:

F(t) = Fo(t) + (£%) 75 (*i:r)

()7

where the function ¢(¢) has to be determined.

Remark: Of course, also

F(t) = Fo(t) + (tz)% o1 (jr;;‘)

(t3)72n
or

_ (t2)4 t2
are okay.

Remark: The above forms of F' can also be obtained by imposing quasi-homogeneity (namely, (1.3)).

We’ll obtain closed forms F' = F(t) in the following way: Suppose that the entries of S are a triple
(T0, T1, oo )

i) First we choose a critical point z = 0,1, 00 of PVI, and we expand y(z;zo, %1, L) close to it up to

any desired order: this is the transcendent y(z; o, a) of theorem 1 of chapter 5. The coeflicients of the

expansion, which are rationals in a and o, are therefore classical functions of the triple (actually, a and
o are rational, trigonometric or I' functions of the monodromy data; we refer to chapter 5 for details).
The most efficient way to do the expansion is to start by computing the expansions of {4 (z), Qa(x),
Qs(z) (we have already given the explicit connection between y(z) and the Q;’s). The algorithm used
is an expansion of the 2;’s in a small parameter [see the appendix A]. It turns out that the effective
variable in the expansion is a variable s — 0

zifz—=0
si=K1—-zifzx—1
Lifz — o0
ii) We plug the above expansions into 7;{z) and F(z), obtaining an expansion in s. In particular

2 _ ()

(89) 8 ry(a(s)) ¥

is expanded.
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iii) One of the following cases may occur

( 0
- oe]
2
—Ea — fors =0
1+2
T +2p CO
\ no limit

where (p is a non-zero complex number. If the limit does not exist, the problem becomes complicated.
This may actually occur for particular values of the monodromy data (we'll see later that this is the

case of the Quantum Cohomology of CP?, provided that we take et* (¢2)3 instead of ¢2 (t3)“1£+i2eﬁ). If
the limit exists, we have a small quantity X = X (s) = 0 as s — 0; in the three cases above X is

( -T2
HE
2p

73

-1
-
X =4 e
7172

___Q__.C
1+ 0
L 7 IFER

3

iv) We invert the series X = X (s) and find a series s = s(X) for X — 0. Thus we can rewrite 7, = 75(X),
T3 = Tg(X), F = f(X)

v) We compute H as a series in X and as a function of 3. Now ¢ becomes the variable; namely:

H=HX,t)= {};%(3] i

vi) By substituting H (X, %) into F — Fy = F(X)H?32* we obtain a power series for F'— Fy in the small
variable X. In other words, we obtain ¢(() as a power series in ¢ or % or ¢ — (p-

vii) Finally, we simply re-express X in term of the variables t* and ¢3 and that’s all. We get the closed
form F'(t) as a power series whose coefficients are classical functions of the monodromy data.

6.4 F(t) from Algebraic Solutions of PV,

We refer to [21] for the algebraic solutions of PVI,. The Stokes’ matrix of the manifold is

1 oo o
S = 0 1 T
0 0 1

and in [21] branches of the algebraic solutions of PVI, are reconstructed from the above monodromy
data. The construction fits into the general framework of chapter 5, but in [21] the monodromy data
corresponding to algebraic solutions are carefully analyzed and parametric simple forms for the tran-
scendents are given. In particular, the Stokes’ matrices coincide with the Stokes’ matrices of the Coxeter
groups Az, Bz, H3 (or to their images with respect to the action of the braid group).

Algebraic solutions are defined up to the equivalence relations given by symmetries of PV I,. There
are five equivalence classes. We compute F(t) in closed form for the representatives of classes given
below.

I) Tetrahedron (ds), p = —3%

yz—0
((L'D,x]_,.'L'OO) = (O?——l)_l)
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134 CHAPTER 6.
1 2 —
y(z)=§:c+0(:c), z=s5s—0

tz
—0forz —0

3
2

We apply the procedure above. I computed y up to order z*®. The small variable is

T
and the final result is
 F_R= %ké B — k2 (8 X*+0(X™), X =0
2 1"
ol )

= g @ -8 @2 o |

ko is the arbitrary integration constant in k(z,H). I checked the result up to m = 16. Note that
different solutions F(¢) corresponding to different values of ky are connected by symmetries of the

WDVYV equations [16].
i)z—1
(130’551751:00) = (_"1707_1)
1

1/(:6(,5)):1-§.S-l-0(52)7 s=1-z—=0

X is like in i) and
F—Fy= %ké )P+ () X2+ 0(X™), X =0

— 4 k’4 (t3)5 +k2 (t2)2(t3)2 +0 tz "

1570 0 . (t3)%

Here k2 has the opposite sign w.r.t. the previous case. The result is checked up to m = 16.
((1}0, T1, xoo) = ('—17 —"13 0)
1

ii) z—= o0
(e(s) = 1 +0(s)], 5= 0

Again, X is as in 1) and 1), and the result is precisely as in ).
iii) Now one example for different monodromy data zo, 1,2 and z — 0

(1'07-'17175500) = (lalal)
4% 2
=—23(1+0(%), 0<d<l, z=s5-0

determined by the formulae in chapter 5 or by the explicit parametric form for y(z) in [21]. This time
the computation of the expansion of y(z) is harder than before, because of the fractional exponent. I

omit any detail. The final result is:
2 72
t —-)Co=*-"2'—5*\/—2‘k0, z—0

El

(#%)2
t2
= [(t3)% _COZIa z—0
3149282 3 ,3v5 y2, 2187 5 a5 4 m
kg (£ X2+ kg ()7 XT+O(X™), X =0

119751372
F—-Fy= k§ (t3)° —
> = Tosaizs 1o () 15625
I've checked it up to m = 14. Substituting X as a function of ¢> and ¢> we obtain
2
() —a @PEP +0(X™),  a=-T2

F—Fo:%cdg
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II) Cube (B3), p= —=
The computa’mons are similar to those for the case As. I just give a few details, namely only the case
z — 0 and

(mov T, :EOO) = (07 —1’ “\/i)

y(z) = gac—}—O(:cz), z—=0

3
Now
2
G
and the final result is
512 5 5v7 16,3 919,313 2’“/— 23,3 m
F*F0=8505k0(t) ”ﬁko(t)(t) (t)t—}—O(X )
for any m I have checked.
I1T) Icosahedron (Hs), p = —2%. We give one example:
14+/5
($0¢$17100) = (0717 T)
3+
v = S0, w0
Now
£2
X =
(#*)?

The final result is

18 ,

F-F= ZEC

() + 307 (F)(F) +a (2P @) +O(X™)
where a = —512/5/[3(v/5 — 5)% (v/5 + 5) ] k2
Remark: In 1), II), III) we have recovered the polynomial solutions (1.5), (1.6), (1.7).

IV) Great dodecahedron (H3), p = —%. Just the final result, which is a power series:

F— [AO+Z Ak( t3)2>k}

512 4i/5
9

8505k0 (t3) 7k3 (tz)z(tB)S + l *)* iv5 (t?)5 1 (£2)8

8 B gopd ()7 T b4k (13)°

3
k2 (%)% + +

the series can be computed up to any order in X = t2/(t3)> — 0. We obtained it for ¢ — 0
and (zo,T1,Teo) = (O,lz——‘/g,—‘/—%’—l), for ¢ = 1 and (%0,%1,%T0) = (%,O, ‘/52“1), for £ — oo and

(T, 71, To0) = (%57 1_52—_1,0)
V) Great icosahedron (Hs), = —§. The final result is a power series:
13 > t? k
F~F0:(t3)T I:AQ+Z Ak( 32)]
k=2 (t3)3
54 4 a3 o oi00348 213 (.3 1 () i (@)
= t —_ —a” (t* t t
s (7~ 50” )+ ga ') + 55 S+ 5 )% "

for X = ¢2/(¢%)% — 0. Here ko = 270% /30 a:3. We checked this expansion for z — 0 and (2o, %1, Too) =
(07 7 1—2\/5 1—2\/57 0)'

), £ — oo and (z9,21,%Te0) = (—1,
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6.5 Closed form for QH*(CP?)

In this case the factorization is 3 = m3(z)H ! and F — Fy = F(z)H , but

2 = h{) = In(H%) + /z(.'.)

This implies that
ot (tz)a
is independent of H and that
1 2
F(t) = Fy(t) + e (et (t3)3)
or

Ft) = Folt) + €7 o (¢ (1)?)

The situation is more complicated now, because the behaviour of y(z) for z — 0 is not like a z*=7(1 +
higher order terms) as in the previous section. The same holds for z — 1 and z — co. The reason
for this is that the monodromy data are in the orbit w.r.t the action of the braid group of the triple
(70,71,%T00) = (3,3,3). Hence, the monodromy data are real and their absolute value is greater than 2,

so Ro(® = 1. For the data (3,3,3) we have 6 =1 —iv, v = -2 =In (3+‘/— This case corresponds to

an oscillatory transcendent if z converges to the critical points along radial directions. Moreover, we do
not even know the behaviour of the transcendent and if it has poles for some values of arg(z). We recall

that the effective parameter is s = ¢ or 1 — @ or 1. It turns out that et* (t3)? has no limit as s — 0.

In the following, we compute F'(t) in closed form starting from the expansion of y(z) and the Q;(z)’s
close to the non-singular point z, = exp{—i%} and we obtain the expansion of F'(t) due to Kontsevich

Our result is interesting because it allows us to obtain such a relevant expression starting from the
isomonodromy deformation theory applied to Frobenius manifolds.

On the other hand, it is not completely satisfactory. Since the Frobenius manifold can in principle
be reconstructed from its monodromy data, we should be able to express the coefficients Ny as functions
of the monodromy data. The critical behaviour of y(z) close to a critical point depends upon two
parameters which are classical functions of the monodromy data (actually, they depend on (zq,z1,Zco)
through algebraic operations and trigonometric and I" functions). Thus, we should compute F(t) from the
local behaviour of y(z) close to a critical point. The choice of a non-singular point z, is not satisfactory
because the expansion of y(z) close to z, depends on two parameters (initial data y(z.), ¥'(z.)), which
in general are not classical (known) functions of the two parameters upon which the critical behaviour
close to a critical point depends. Thus, they are not classical functions of the monodromy data. This is
due to the fact that in general the Painlevé transcendents are not classical functions.

We now compute F'(¢) in closed form. We expand y(z) close to

—g
T, =e '3

This choice comes from the knowledge of the structure of QH*(CP?) at the “classical” point ¢! =
3 = 0 [17] (se also [25]). Namely, we know that

0 0 3¢g )
U=413 0 01, g:=¢et
0 3 0

with eigenvalues
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1 1
q”s 1 g3
¢o = (q‘%e—i% -1 q%ei% )
1 o.m -
-3¢i% —i%

The matrix ¢g is

1
g se -1 g3e
Thus
U3—u1 g
Tp= ——- =g '3
Uy — Uy

Remark: . lies at the intersection of the “spherical” neighourhhods of the critical points z =0, z = 1,
z = 00, defined by the condition that each neighbourhood does not contain another critical point in its
interior. Also the point Z, = €'% is at the other intersection. Any permutation of u, ug, us yields z. or
Z.. The analysis which follows can be repeated at the point Z..

Remark: We understand that the choice of z, is not satisfactory, because we have to rely on the
knowledge of QH*(C'P?) at the point t* = t*> = 0, and not only on the monodromy data (which actually
were computed in chapter 4 from this knowledge itself!).

In order to compute y(z) we start from Q;(z), Q2(z), Q3(z). We look for a regular expansion
o<

Q)= 0oF @-z)f, =123

k=0
We need the initial conditions QEO). We can compute them using

Q; =ip dizo

which implies . , .
00— L g _ i qo_ i
' Y RV S NV
Then we plug the expansion into (6.2) and we compute the coefficients at any desired order. Finally,
we obtain y(z) from (6.3). We skip the details and we just give the first terms of the expansions, the
“effective” small variable being s 1=z — z. — O

5’21:—2\—:?—(l —zf>s+~zfs +<T§—I§'L ) (%~I6§zx/—)s+

Qy = %/—-— (————mf)s—-\ff (—1%+11§i\/§>33—(§% zx/—>s+

; 4 1
Q3 = %—E — %s + gi\/gsz + ~s‘°’ - ——?iz'\/gs‘1 + ...

. 1 1, 1 1, =, 13 o 37 e 17
y(z) = z\/——{— 35 3@\/53 35 + = 1\/—3 -I— 135" 3s ~ 55 + ..
Once we have Q, Qz, Qg, we can compute the E;;’s and ﬁnally the flat coordinates t(:c H) and F(z, H).

At low orders:
=t |
=y 5

=[-9s+0(s*)] H™'

- 6¢\/§+ 28+ 0(32)] H

g = exp(t?) = ﬁg’“/_ do [1 +iV3s + O(s* )]

where go is an arbitrary integration constant (recall that ¢ is obtained by integration).
F= 12’\@32 + 133 - —1—i\/§s4 + 0(s%)
6 6 18

The following quantity is independent of H

P
il
o
w
0
o=
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1
For example, if we take the cubic root (—% + £1v/3) ¢¢ of $531V3 qo we compute
_ A (3L (L L 2 3
X =¢3 5 21\/5 s 2+21\/§ 5% 4+ 0(s°)

Another choice of the cubic root does not affect the final result (actually, we will see that F'— Fp is a
series in X3). X is the small parameter that tends to 0 as s — 0. We invert the series and find s = s(X),
and then we find H = 73(X)/t3 as a series in X — 0. Finally, the non cubic term in F is computed:
1 1 1 1 31 1559
F—Fy=— 3 XG XQ 12 X15 0 Xl?
TR EE TN Tng” T30 T 1995840 ¢ Tsseras200 o~ T 0K

We obtained this expansion through the expansions of the Q,’s and of y(z) at order 16. If we put go = 1,
this is exactly Kontsevich’s solution, with

N;=1, No=1 N3=12, N;=620, Ns=87304.

Though not completely satisfactory to our theoretical purposes, the above is a procedure to com-
pute Gromov-Witten invariants, which is alternative to the usual procedure consisting in the direct
substitution of the expansion (6.11) in the WDVV equations.

Remark: We observe that for the very special case of QH*(CP?)

92 1
—é—(—t—z—)—z' (F—'FO) :’U.1+'U:2+U3—3t
This follows from the computation of the intersection form of the Frobenius manifold QH*(CP?) in
terms of F' and by recalling that its eigenvalues are ui, us, us (see section 2.3). Therefore,

52
EGZ_)E (F — Fp) =u; +ug +ug —3u; —3alz) H
= H(1+ z — 3a(z)), x:w—l, H =us —uy.
Uy — Uy

The above formula allows to compute F' — Fy faster than (6.10).

The formulae (6.7), (6.8), (6.9) and (6.10) are completely explicit as rational functions of y(z) and
%. Of y(z) we partly know the behaviour close to a singular point (chapter 5), but the information we
have on it when z tends to the point along a radial path is not complete. We know that

y(z) = P(rawi(z) + vaws(z) + v(2); w1 (2), wa (2))

and we know the form of v(z) for a limited domain of & which include radial paths with some limitations
on arg(z) (namely arg(z) must be greater or less of some angle if z — 0). Therefore, for a limited range
of arg(z) we may write the asymptotic expansion for the parametric solution (1.23) (1.22) of the WDVV
eqs. Still, the problem of inversion to obtain a closed form F'(¢) is very hard.
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We present a procedure to compute the expansion of the painlevé transcendents of PV I, and of the
solutions of

@, 1
FarRal
aQy 1
ds  1-—s Qs
dQds 1
ds  s(s—1) ke (&-1)

close to the critical point s = 0. Here we use the notation s instead of z. The system (A.1) determines
the matrix V (uq,uq,us) = V(s)

0 —03 Q o — s
Visy=| Q5 0 -0 |, g= — 1 (A.2)
-, W 0 Uz —

The corresponding solution of the PV I, equation is

—sR(s) 01 + 051
=2 R(§) = | ————— A.
y(s) 1—s(1+ R(s) (s) [ w?+ 032 (A.3)
A.1 Expansion with respect to a Small Parameter
We want to study the behaviour of the solution of (A.1) for s — 0. Let
s:=¢€z
where ¢ is the small parameter. The system (A.1l) becomes:
a1
s
dQQ €
dz  1—ez s
@ __ 1 g0, (A4)

The coefficient of the new system are holomorphic for € € E:= {e € C | |¢] < e} and for 0 < |z]| < ]—610—{,
in particular for z € D := {2z € C| Ry < |z] < Ry}, where R; and R are independent of € and satisfy
0<Ri <Ry < ;15

We will use the small parameter expansion as a formal way to compute the expansions of the Qs
for s — 0, the only justification being that in the cases we apply it we find expansions in s which we
already know they are convergent. To our knowledge, there is no rigorous justification of the (uniform)
convergence of the expansions for the {;’s in terms of the variable s restored after the small parameter
expansion in powers of e.
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For e € F and z € D we can expand the fractions as follows

d, 1
— = = 00
dz z 8
dQs
dz = € r;)z €" Qlﬂg
dQls
E = —; Z 2" Q]QQ

n=0
and we look for a solution expanded in powers of €

(o]

Qj(z,€) = Z an)(z) "

. j=1,2,3.
n=0

We find the Qg.n)’s substituting (A.6) into (A.5). Et order ¢ we find

oY 0= =2

ng)r _ % ng)ﬂgo)

ng)l _ _% ng)ﬂgo)

APPENDIX A.

(A.5)

(A.6)

where o is so far an arbitrary constant, and the prime denotes the derivative w.r.t. z. Then we solve
the linear system for ng) and ng) and find

0% =2

MIQ

-z
+az?

ng) =ibz"% —idz
where @ and b are integration constants. The higher orders are

(S

n—1—k

an) z) / ¢ Z Ck Z Q(l) )Q('n 1—k— z)( 0

n 1 n
' = = ol + 4 ()

n 1 n
o = —— ool + 47 ()
where

n 1« n—
AP =230 4P 200 ()

k=1

particular solution

n n—k
Ag(z) = —= [Z P () A" P ) + 3 2 af(z) Qg"“’““”(z)]
k=1 =0

The system for Q(n) Q™ is closed and non-homogeneous. By variation of parameters we find the

" Za'/2 z e (n 2—0/2
o) == [Cac iRl -

— [ ererP

)y _% () _ aln)
92(=) = 5 (07 - A7)
where

1 10 (n n
RV (z) = ~A{" (2) + 2 AL (2) + A (2
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Result: - N
(5) = 3~% Z bgch) Sk+(1—0)q + S% Z ag"]) sk+(1+d)q 7 j= 1,3
k, g=0 k, g=0
o
Qg = Z b(°) k+(1-0)g Z a shH(1l+o)e (A7)
k, ¢=0 k, ¢g=0

The coefficients a(” ) and bgz) contain e. In fact, they are functions of a := e~ %, b := be¥.

A.2 Solution by Formal Computation

Consider the system (A.1) and expand the fractions as s — 0. We find

;1
ds s 2204

oo
dﬂz Zs 203

ng = Z s™ (0 (A.8)
We can look for a solution written in formal series

co
Qj(S) :8_% Z b;g k+(1 a)q_*_s2 Z a k+(1+a')q , .7: 1’3

k, g=0 k, g=0

Z b2) k(11— cr)q_|_ Z a ght+(1+o)g

k, q=0 k, q=0

Plugging the series into the equation we find solvable relations between the coefficients and we can
determine them. For example, the first relations give

ic  (iSHR 1, ila$0 140
QQ——-—Q——i—(l-aS + . = 1+0_8 + ...

= (0 s™F + ) + (all)sF +...)
Q3 = (B s™F + ..) + (—ialy s T +..)

All the coefficients determined by successive relations are functions of o, b(()o), af)o) These are the three
parameters on which the solution of (A.1) must depend. We can identify b00 with b and a[()%)) with a.

A.3 The Range of ¢

The above computations make sense if o is not an odd integer, otherwise some coefficients of the expan-
sions for the ;s diverge (see for example the first terms of {22 in the preceding section).
Moreover, the expansion in the small parameter yields the following approximation at order 0 for {2a:

10
Qs =~ 5 = constant

The approximation at order 1 contains powers 2177, z! 7. If we assume that the approximation at order
0 in € is actually the limit of 2 as s = ¢ z — 0, than we need

—-1<Ro<1

Of course, this makes sense if s — 0 along a radial path (i.e. within a sector of amplitude less than 27).
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The ordering of the expansion (A.7) is somehow conventional: namely, we could transfer some terms
multiplied by s% in the series multiplied by s~ %, and conversely. I report the first terms:

2 b* 1 a? a’ 1+
Ql(s):bs 2(1-m8 +4(1_0_)S+(1+g)23 +)

- ¥ oo o? a®
+as? (1—1-(1——:—;)—25 +4(1+U)s-(1+0)23 +)
-2 b2 1—0 U(U - 2) a2 140
93(8)-’Lb5 2 <1—(1—_—0_~)—28 +4(1-O’)S+(1+U)25 + ...
.z bz 1—0 U(U + 2) (1,2 140
—1a82 (1-}-({—_:‘)—28 +4(1+0_)S—'(1+J)2S + ...
Qa(s) =i AP S A T
28 =0y (1—-o0)? 140

Note that the dots do not mean higher order terms. There may be terms bigger than those written
above (which are computed through the expansion in the small parameter up to order €) depending on
the value of Ro in (—1,1).

Finally, we note that we can always assume:
0<Ro <1,

because that would not affect the expansion of the solutions but for the change of two signs. With this
in mind, the expansions above are:

Q1 =bs"5(1+0(s*7)) +as?(1+0(s))
Qs = ibs™ 5 (1+ 0(s'77)) —ias® (1 + O(s))
Q= 52‘1(1 +0(s7))

They give a Painlevé transcendent with the behaviour of theorem 1 of chapter 5.

A.4 Small Parameter Expansion in one Non-generic Case: “C-
hazy Solution”

We need to investigate what happens if Ro = 1.
We do it only for ¢ = 1. If we perform the small parameter expansions as before, we find the same

Q(O) than before. But due to the exponent z~1/? the integration for le) gives

o) = -55{’ 2% +ib?1In(z)

In this way, we find for ); and Q3 an expansion in power of ¢ with coefficients which are polynomials
in In(z); also the powers z=1/2, z1/2 ... | 2*/2 n > 0 appear in the coefficients. {2, is an expansion in
power of € with coefficients which are polynomials in In(z) and =z.

It is not obvious how to recombine z and € when logarithms appear. We can put ¢ = 1. Anyway, we
see that the first correction to the constant § in Q3 is In(s), which is not a correction to the constant
when s - 0, because it diverges.

This makes us not trust the validity of the expansion (A.8) for o = 1.

We can try an expansion which already contains logarithms of e. The experience with Chazy solutions
to the Painlevé VI eq. suggests to choose:

400 400 2k+1

3

= 2 X006 g I=18 (4.9)

k=-1n=0
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+o0 +oo

k=0 n=0

Then we substitute in (A.5) and we equate powers of ¢ and Ine. I omit long computations. The
requirement that we could re-compose the powers of Ine and In z appearing in the expansion in the form
In(z¢) imposes very strong relations on the integration constants. The result to which we are led when

we solve the equations for the coefficients Q equa‘cmg powers up t0 g nle)" and e1/2 is
s==ze, €—0

lem o( ! >+0(e%),

-1 1 1
QB=——"T—7+0 (——) +0(e7),
52 (In(s) + C) nejr
i i 1 1
2 = lns+C’+O<(lne)”>—FO(E )
The substitution of these formulas in (A.3) gives the asymptotic behaviour for s — 0 of the Chazy
solutions. We remark that the above 2;’s imply

1
Q§+Q§+Q§=—Z+o(1)

therefore, p? = ;‘1;, an then we have only Chazy solutions!
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