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Abstract

The formulation of a consistent scheme for treating semiclassical systems
is considered, giving particular emphasis to the case of gravity.

A critical review of the semiclassical problem is first given, stressing
the conceptual aspects of the topic; the theory usually adopted is found
to be unsatisfactory, and the need to have an unambiguous interpretation
of quantum mechanics before trying to give an alternative description is
realized. Our way to arrive at such an interpretation is rather unusual, but
it presents the advantage of being almost compelling in the choice to make:
First, we reformulate the Schrodinger equation as a set of hydrodynamical
equations involving quantities which formally play the role of mass density,
velocity and pressure for a fluid; the problem of interpreting the wave func-
tion is thus reduced to that of interpreting these quantities. We then show
how they can be derived from the Wigner distribution function exactly as
in the usual formalism of kinetic theory, and discuss how this fact provides
strong support in favour of the statistical interpretation of quantum the-
ory, according to which the state vector describes only ensembles, and not
individual systems. We also consider some implications of these results on
the possible existence of a more fundamental theory underlying quantum
mechanics.

It is shown that reconsidering the semiclassical problem in the light of
the statistical interpretation, one is led to distinguish between a strongly
and a weakly semiclassical regime, which are essentially characterized by
the size of the statistical dispersion induced in the observables of the clas-
sical subsystem by the coupling to the quantum one. It turns out that in
the weakly semiclassical regime, in which this dispersion is not negligible,
the concept of coupling equations cannot be successfully applied, and one
has rather to define a probability distribution even for the values of the
classical observables; an hypothesis which allows to specify such a distri-
bution is enunciated. Several examples of the application of these general
principles are considered, and it is shown how the treatment of semiclassi-



cal relativistic fields requires a much more sophisticated treatment of the
quantum source.

This is provided reformulating quantum theory in terms of a quasiprob-
ability functional P[y] in the space of the histories of the system. It is
shown how such a functional allows to reconstruct the usual phase space
distributions when integrated over suitable sets of paths, in a way which
clarify the relations between operator ordering, path integration and phase
space treatment of quantum theory. The relativistic extension of ply] is
also constructed, and an explicitly covariant version of relativistic quan-
tum theory is discussed in some details. It is shown how the latter allows,
formally, to consider superpositions of different mass eigenstates, although
such superpositions are not directly observable.

Finally, the application of these new techniques to the treatment of
semiclassical electromagnetism and gravity, as well as of a scalar field, are
considered. It is shown how the usual semiclassical field equations, suitably
reinterpreted in terms of averages of the field, are recovered either in linear
cases or in the strongly semiclassical regime, but that they do not hold in
general. Finally, some possible extensions and implications of the formalism
are discussed.
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Chapter 1

Introduction: Why
Semiclassical Gravity?

Gravity, as described by general relativity, is by far the most peculiar
among the known fundamental interactions. This status of things has
its deepest origin in the geometrization lying at the basis of Einstein’s
theory, which makes it the most elegant and formally perfect of all the
viable theoretical physical constructions. In this picture, gravity is not
described by some object (e.g., a field) defined on spacetime, but rather
it is the spacetime itself; the very fundamental structure of the theory
can thus be epitomized in the relation

geometry «— matter . (1.1)

In standard general relativity [1,2,3], the left hand side of (1.1) cor-
responds to the tensor

1
Ga,b = Rab - '2—gabR y (1.2)

the concept of gravitational field being reduced to that of riemannian
curvature of the spacetime manifold; in (1.2), g is the metric of space-
time, Ry, is the Ricci tensor and R = 9® R, is the scalar curvature.
The properties of classical matter to which the right hand side of (1.1)
refers are represented by the stress-energy-momentum tensor! Tab, which
can be formally obtained from an action S,, for matter, by functional

1We do not care about the possible presence of a cosmological constant, which is
not relevant for our discussion.



derivation with respect to g°*:

6Sm
Ta,b = *gﬁ . (13)

The relation (1.1) takes thus the form
Gab = K‘Tab 3 (14)

where « is a coupling constant, fixed to the value k = 87G/c?, with G
Newton’s constant and ¢ the speed of light.

Despite the aesthetic appeal of such a theory, it is pretty clear that
its domain of applicability suffers from a serious limitation: The notion
(1.3) of stress-energy-momentum tensor is well defined only for classical
matter, while the matter’s behaviour is empirically known to be ulti-
mately quantum. Hence, Eq. (1.4) cannot be applied to situations in
which quantum effects play a relevant role, and we ought to seek for a
description of gravity which could take into account such circumstances
as well. It is good to stress, at this point af the discussion, that the idea
that gravity and quantum mechanics should, somehow, cohabit, is more
a consequence of the philosophical belief known as “unity of physics”
than of some experimental result: Both classical gravity and quantum
theory have been successfully tested separately, but there is total lack
of experiments devoted to investigate their reciprocal relations. This
shows how much wildly speculative is the territory which we are now
going to explore.

There are three levels at which a “quantum principle” can be intro-
duced into general relativity; they lead to theories which can be classi-
fied as quantum theory in curved spacetime, semiclassical gravity, and
quantum gravity. We shall now briefly analyze the status of these three
classes of theories, and the chances they have to provide a reasonable

solution to the problem mentioned above.

Quantum theory in curved spacetime [4] is the study of quantum
matter in a fixed background gravitational field; trivial (only from the
point of view of gravity!) examples of these theories are QED and QCD
in Minkowski spacetime. This kind of approach is clearly suitable for
the analysis of specific effects, but not for the formulation of a funda-
mental theory: There is in fact no prescription about the back reaction



which quantum matter should exert on spacetime, the latter being sup-
posed fixed a priori. Nevertheless, the research in this sector of physics
has produced most interesting results (particles creation in cosmological
models; evaporation of black holes; criticism of the concept of particle),
some of which seem to hint at some features of a deeper theory. As a
simple example, let us briefly outline the Bekenstein-Hawking’s discov-
ery [5,6] that to a black hole can be associated a physically meaningful
temperature and entropy, making therefore possible a well posed study
of black holes’ thermodynamics. In the simple case of a Schwarzschild
black hole of mass M, these quantities read

he? 1

T 8rkG M (1.5)
ArkG
S = th M, (1.6)

where k is Boltzmann’s constant; the appearance of Planck’s constant
F in the expressions (1.5) and (1.6) emphasizes their quantum origin,
which can be clarified on the ground of the equality between entropy
increase and information loss, applied to the process of collapse of a
matter configuration to the black hole. The key of the argument is the
result of relativistic quantum theory, that a particle of mass m cannot
be localized more precisely than within its Compton length A\¢ = A/mec
[7]. In order for the particle to fit into the hole during collapse, A¢ must
be smaller than the Schwarzschild radius, and this requirement imposes
a lower limit on the value of m; consequently, the number of possible
configurations which can give origin to the same black hole of given mass
M, is limited to a well defined value by the quantum nature of matter,
allowing thus to speak meaningfully of the quantities 7" and S.

The thermodynamics of black holes [8,9] has proved to be so rich,
simple and physically interesting, that it has stimulated many spec-
ulations about the possibility to use it as the starting point for the
construction of a deeper theory [10,11]. It has also been suggested [12]
that the transformation of pure states into mixtures associated to the
process of black holes’ evaporation, provides evidence for the crucial role
of gravity in the puzzle of state vector reduction. Personally, we find
these arguments, although attractive, too vague and cloudy, and not
strong enough to justify the huge efforts which the accomplishment of



such programs would require. We rather believe that, in the absence of
experimental data, the adoption of any new physical hypothesis should
be motivated by a careful analysis of the nature and meaning of the
problems which one is trying to solve.

Quantum gravity represents, in a sense, the opposite extreme with
respect to quantum theory in curved spacetime. In this theory, in fact,
not only should the gravitational back reaction of quantum matter be
taken into account, but also the geometry would be quantized. Af-
ter more than forty years of efforts made by considerable physicists in
all the world, such a theory does not yet exist in a satisfactory form;
there have been many technical advances?, but very little conceptual un-
derstanding [13,14,15,16]; consequently, the large number of competing
ideas contrasts with the lack of strong physical principles which could be
used as heuristic guide in the choice among them. This status of things,
in which there is no general, reliable theoretical framework, induces to
think that it may be wrong to try to extrapolate our current methods of
investigation to such an exotic field, and that a critical analysis of the
foundations of modern physics should precede any further study [16].
For these reasons, we prefer not to take as granted the need to develop
a quantum theory of gravity, but rather we shall quickly review the mo-
tivations for its construction, trying to maintain an objective attitude,
in which only the experimental results are considered as unqﬁestionable.

Let us examine first the motivations of essentially formal nature.
The most serious of all is, in our opinion, the use of quantum gravity as
a remedy to cure the diseases which plague other field theories [17,18].
It is well known, in fact, that quantum theories of matter fields lead
to ultraviolet divergences when treated in a classical background space-
time; now, it happens that, in a quantum theory of gravity, the one-loop
contributions from gravitons would be comparable to the vacuum po-
larization effects of matter, leaving thus the possibility of a mutual can-
cellation. This may seem, at first, a rather strong and rigorous reason
to justify the quantization of the gravitational field, but it is more fair
to admit that, when considered on experimental grounds, it looks very
speculative. The formalism of quantum field theories, in fact, is quite

2And troubles!



messy and inelegant; the complexity of the mathematical machinery em-
ployed in the derivation of experimentally testable results, should make
us open to the possibility that another formalism may exist, which leads
to nearly the same numerical conclusions, without running into the tech-
nical problems due to the appearance of infinities. That such alternative
approaches are possible, in the sense that the currently available exper-
imental data do not uniquely fix the theory, can be realized thinking
to the case of electrodynamics, where the amount of data is extremely
high, in comparison to the situation for other interactions, because of the
possibility to perform significant experiments at relatively low energies.
It is astonishing that most of the results of QED can be understood
and even theoretically predicted by a very simple semiclassical model
[19], and that semiclassical linear theories, such as stochastic electrody-
namics [20,21] or Barut’s theory [22,23], can reproduce all the observed
details, like those related to the Casimir effect or to the anomalous mag-
netic moment of the electron, which are commonly believed to provide
indisputable evidence for the quantization of the electromagnetic field.
We are not arguing, here, on the correctness of these theories, but we
simply claim that they are possible rivals of the standard QED, which
do not resort to the second quantization techniques and which are, ex-
perimentally, as well tested as QED is. These examples make us very
suspicious about the validity of the previously advanced argument for
quantizing gravity and, more generally, of all the arguments based on
the internal consistence of theories which are not well founded from the
experimental point of view.

Another context in which quantum gravity is often invoked as a cure,
is that of spacetime singularities. A particularly striking consequence of
general relativity, which heavily relies on its geometrical character, is in
fact the prediction of the existence of “regions” to which the theory it-
self cannot be applied. More precisely, theorems have been proved [1,3]
asserting that a sufficiently general and causally well behaved space-
time, whose energy content satisfies a positivity condition, and in which
a convergence criterion is fulfilled, must admit a singularity, defined in
terms of incompleteness of causal geodesics; since these curves repre-
sent the world lines of classical freely falling particles, it follows that, in
the framework of general relativity, there is a large variety of realistic
situations in which particles (and observers) can reach the boundary of

7




spacetime in a finite proper time. The implications of such a result are
quite intriguing: If one believes that singularities do really exist, then
he/she will have serious troubles in specifying boundary conditions; al-
ternatively, it is possible to look at the singularity theorems as at a
reductio ad absurdum of some hypothesis underlying their proof: They
can therefore be used as evidence for the breakdown of the energy con-
dition or for the replacement of general relativity by another theory of
spacetime structure. It is a widespread conviction that the introduction
of quantum mechanics into the theory would have an almost miraculous
effect in solving these problems; however, even here the attitude is to
use handwaving arguments, based on a theory which does not yet exist,
to guess what such a theory could do in order to remove the pathologies
from the existing models. Until now, these studies have given a negli-
gible contribution both to the understanding of singularities and to the
formulation of a quantum theory of gravity; hence, we cannot consider
them differently from what they really are, i.e., only intuitive guesses.
Moreover, we want to point out that these arguments do not strictly re-
quire full quantum gravity, but they may equally well lead to a simpler
semiclassical theory, in which the gravitational field is not quantized,
although interacting with quantum matter; in fact, quantum fields in
curved spacetime are known to violate the positive energy condition
[4], and this is sufficient to invalidate the conclusions of the singularity
theorems, if a prescription for considering back-reaction is assigned.

On the experimental side, there is no evidence, even indirect, in
favour or against quantum gravity; therefore, if the problem has to be
tackled (and it ought to be, being a fundamental one), it is necessary to
rely on some leading principle. The lack of experimental data suggests
to try to involve the very basic principles of physics in the discussion,
through the use of some gedanken experiments. There is a statement
by Unruh [24] on this subject, which we believe is worth quoting here:
“[Gedanken experiments| serve not to test nature but rather to present
the a priori prejudices of the theorist in their simplest physical guise.
They highlight the beliefs and prejudices the theorist has about the
physical world — beliefs which could well be proven wrong by true exper-
iments, but which seem necessary to limit the infinite range of possible
theories in the absence of experiment.” |

Unruh himself suggests a gedanken experiment to support the view



that the gravitational field should be quantized. The experimental setup
consists of a neutron star oscillating in its fundamental quadrupole
mode, with consequent emission of gravitational radiation; this would
damp both the amplitude ) and the momentum P of the vibration in
a time of the order of a second, with consequent decay to zero of the
commutator [Q, P]. Such a conclusion is in contrast with the principles
of quantum theory, and the natural conclusion of the argument would be
thus the need to quantize gravity, in order to provide an additional force
due to the vacuum fluctuations of the gravitational field, which would
restore [Q, 15] to the value 1A # 0. This reasoning, which could be used
also to prove that the electromagnetic field must be quantized, seems,
at a first sight, very convincing; however, a deeper analysis shows that it
could well be inexact, so that it is not as compelling as it looks. In fact,
it is reasonable to accept that, if there exists a physical system which is
not quantum but can interact with other, quantum behaving, systems,
then quantum theory has certainly to suffer some changes; therefore, it
should not be a surprise that [C}, P] may be found to be damped to zero
by such an interaction. The only thing we must be sure about, is that
the damping could not be observed in laboratory systems, which are
the only one over which precise tests of quantum mechanics have been
performed. The result of this gedanken experiment cannot be used as a
proof of the need to quantize the gravitational field, because the experi-
ment has never been carried on for a neutron star: It proves only that a
classical field is incompatible with a theory in which [Q, ]5] = 1h forever.
It is easy to check, with a rough calculation, that for the electron in a
hydrogen atom, the gravitational damping time would be of the order of
10%° seconds, which is about 10?2 times the age of the universe according
to standard cosmology! There is no doubt that such small deviations
from quantum theory are perfectly allowed by the present technology,
since they would be practically impossible to detect. Another possible
counter-argument to this gedanken experiment is based on the existence
of stochastic electrodynamics, which we have already mentioned above.
In fact, what the experiment predicts is, strictly speaking, not the quan-
tization of the field, but only the presence of a zero point fluctuations
background; this is clearly a weaker consequence, and can be accounted
for even in a semiclassical context, as shown by the example of stochastic
electrodynamics.



Other two interesting attempts at establishing the quantum nature
of gravity by means of a gedanken experiment, are due to Page and
Geilker [25] and to Eppley and Hannah [26]. However, the Page-Geilker
argument can actually be reversed to provide a criticism to the usual
semiclassical theory of gravity, but leaving open the problems about the
necessity to quantize the gravitational field; we shall comment exten-
sively later on about a similar gedanken experiment, so we shall not
discuss it here. Eppley and Hannah consider the scattering of classical
gravitational wave packets by a quantum particle prepared in a state
with spatial localization Az. Such scattering can take place in two,
mutually exclusive, possible ways: either it produces a collapse of the
wave function, and it can thus be considered as a position measurement
(scattering by a pointlike object), or it does not produce any collapse
at all (scattering by an extended object). In the first case, it is easy to
realize that, using gravitational wave packets of sufficiently small width
and little amplitude (there is no lower limit on these quantities, because
gravity is supposed to behave classically), and starting with a particle
with well defined momentum (i.e., with a great value of Az), we are
allowed, detecting the position of classical wave packets after scattering,
to infer both the values of position and momentum for the particle, thus
violating the uncertainty principle. If, on the other case, scattering does
not collapse the state vector, then it provides a way for observing the
wave function without reduction; Eppley and Hannah show that this
would lead to a violation of causality, in the sense that signals could
be transmitted at a speed greater than ¢. They conclude that the as-
sumption that gravity is classical violates very fundamental principles
of physics, and hence that semiclassical theories must be rejected.

The weakest point of this argument relies, in our opinion, in the as-
sumption that the state vector may undergo a collapse. As we shall see
in Ch. 3, this is typical of the interpretations of quantum theory which
suppose that the wave function describe a single system, and leads to
tricky conclusions (measurement paradox). However, these are not the
only possible interpretations; for example, in the statistical interpreta-
tion [27] the state vector describes ensembles, and has no meaning for
single individuals: The concept of collapse loses therefore its meaning in
situations like that envisaged in the experiment outlined above, and the
entire argument is consequently vitiated. It is thus possible to conclude,

10



remembering the quotation from Unruh, that the gedanken experiment
due to Eppley and Hannah only displays their prejudices in favour of a
particular interpretation of quantum mechanics.

We believe this situation not to be limited to the few examples here
discussed, but to be much more general: It is very difficult to devise a
gedanken experiment which, involving only features of the present the-
ories which have already been tested experimentally, could prove in a
convincing way something about a subject so far from standard physics
as this is. Moreover, as we have seen explicitly in the previous examples,
it is extremely easy to draw erroneous conclusions because of conceptual
misunderstandings or tacit assumptions which may spoil the arguments
in a very subtle way. A clarification, from the physical point of view, of
the features of a quantum theory of gravity (e.g., meaning of the quan-
tization procedure when applied to the spacetime geometry), and of the
foundations of the theories involved in its construction, should precede,
in our opinion, the majority of the technical investigations on the en-
tire topic. In particular, a clear understanding of quantum mechanics is
especially important, in order to avoid the conceptual pitfalls to which
an improper interpretation would almost certainly lead®. We hope that
our contributions in Chs. 3, 5 and 6, although developed for different
purposes, may turn out to be useful also to this aim.

The lack of definitive arguments in favour of a full quantum theory
of gravity can be took as a motivation for constructing a semiclassi-
cal theory, in which the gravitational field is still treated classically
by means of the geometrical description of general relativity, but the
back-reaction of quantum matter on the spacetime manifold is taken
into account through some relation of the kind of (1.1). As far as we
know, in fact, semiclassical gravity could well be a fundamental theory
of nature [29,30].

Another argument supporting semiclassical gravity is of a more prag-
matic character, being based on the remark that, even if the gravita-
tional field should be quantized, nevertheless there would exist situations
in which a semiclassical theory is a fairly good approximation. In fact,

3As an example of the tricky conceptual problems which a quantum theory of
gravity must face with, let us mention those related to the interpretation of the wave
function of the universe in a quantum cosmological context [28].
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the effects of quantum gravity should become important at scales of the
order of the Planck length

c3

5 1/2
lp= (g-) ~ 1.6 x 107%%cm , - (1.7)

whose ridiculously small value, when compared to the scales of ordi-
nary quantum systems, induces to think that a regime is conceivable
which plays an intermediate role between the “rigid” scheme of quan-
tum theory in a fixed background spacetime and the still unknown full
quantum gravity. It is possible to envisage situations in which the grav-
itational field is generated by matter behaving quantum mechanically,
but is measured averaging over regions whose typical size is much greater
than [p; in such conditions it is therefore meaningful (and useful), even
if a quantum theory of gravity is available, to ask for the formulation of
a semiclassical treatment, which would constitute a fairly good approx-
imation.

The accomplishment of such a program is, although simpler that for
the case of gravity quantization, still rather difficult. The crux of the
theory is represented by the relation (1.1). The different behaviours
(classical and quantum) of its two members, in fact, forces us to face
directly with the problems arising in general whenever a classical system
is coupled to a quantum one; these are in their turn deeply intertwined
with the issue of the interpretation of the quantum formalism, which
is itself a still open foundational subject. Let us explain this point
by means of a simple example, constructed from the theory on which
almost all the results obtained so far in semiclassical gravity (mainly
in the study of black holes’ evaporation and of inflationary cosmology)
are based: The right hand side of Eq. (1.4) is simply modified in the
expectation value of the stress-energy-momentum tensor operator T of
quantum matter, obtaining

Gab = w(y|Tusl¥) , (1.8)

where |1) is the state vector of matter, normalized to one.

In this context, we can consider a situation [24,25,31] in which a
nonrelativistic particle has the same probability 1/2 to be in two disjoint
regions of space, far from each other; moreover, let us suppose that the

12



newtonian limit holds, so that Eq. (1.8) becomes
V@ = dnGmlp®, (1.9)

where & is the gravitational potential, 1(x,t) the Schrédinger wave func-
tion, and m the mass of the particle. Then, according to Eq. (1.9), the
gravitational field should be the one produced by two particles with the
same mass m/2, placed in the two regions. Performing now a position
measurement into one of these regions, the particle will or will not be
found , and each of these results will change abruptly the right hand
side of Eq. (1.9); this is easily seen to lead either to acausal behaviours
(i.e., faster than c propagation) or to drop Eq. (1.9) (and, consequently,
Eq. (1.8)). Hence, we must conclude that a semiclassical theory based on
Eq. (1.8) is incompatible with an interpretation of quantum mechanics
in which the state vector collapses when a measurement is performed.
An alternative possibility is to adopt the more solid statistical interpre-
tation, in which [¢) is not supposed to describe a single system, but
rather an ensemble of similarly prepared copies of it. Then the right
hand side of Eq. (1.8) must be regarded as an average over such an en-
semble, while, on the contrary, the left hand side is referred to a well
precise spacetime, so that it seems that Eq. (1.8) does not make any
sense at all!

We find this paradox particularly instructive, because it shows clearly
the need to achieve physical understanding and insight in the subject,
rather than to rely on a purely formal treatment, which can hardly face
conceptual problems. Moreover, it provides a good motivation for un-
dertaking a complete revision not only of semiclassical gravity, but of
the theory of semiclassical systems in general.

With this purpose in mind, we shall devote our thesis to the estab-
lishment of a framework, self-consistent both from the formal* and the
conceptual point of view, which could allow a physically well posed treat-
ment of problems involving semiclassical systems. Our discussion will
be mainly performed keeping in mind the concrete example of gravity;
however, it is easy to realize that it can be generalized straightforwardly,

*We warn here that, although aiming at self-consistency, we do not pretend to be
formally rigorous.
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and that most of the conclusions hold for an arbitrary semiclassical sys-
tem as well. In order not to spoil the logical continuity of the treatment,
no application is extensively discussed, although some of them are out-
lined from time to time, and several specific examples are considered
whenever they may help the understanding of the general ideas.

In Ch. 2 we shall give a critique of the semiclassical problem for
gravity, putting particular emphasis on the importance that a careful
choice of an interpretation of quantum theory has in order to correctly
formulate the key ideas. In this spirit, Ch. 3 is mainly a long discus-
sion of the reasons to adopt the statistical interpretation; however, it
also contains a “kinetic” representation of quantum mechanics, together
with an introduction to the quantum phase space distribution functions,
which will be used later on; a discourse about the possibility to account
for quantum phenomena in terms of a deeper “subquantum” theory is
also given. Although the material presented in this chapter, as well
as in Chs. 5 and 6, should consist, from the strictly technical point of
view, mainly of “tools” to use in semiclassical theories, they contain
much more than that, and are structured in such a way that each of
them can be regarded as a more or less self-contained presentation of
a particular topic in quantum mechanics. This is justified by the im-
portance we attribute to having a clear and precise idea of the content
and implications of the latter; in fact, as we have already stressed, most
of the foundational troubles arising in this area of research derive from
misunderstanding of quantum theory.

In Ch. 4 we shall come back to semiclassical gravity, reconsidering
the problem in the light of the results of Ch. 3; we shall find that a
“strongly” and a “weakly” semiclassical regimes must be distinguished,
depending on the amount of quantum fluctuations. In the weakly semi-
classical regime, the concept of coupling equations cannot be applied any
more, and it is replaced by a relation between the probability distribu-
tions for the classical and the quantum observables, which preserves the
semiclassical character of the description by attributing all the uncer-
tainty to the quantum subsystem. Some difficulties of the theory require
the introduction, in Chs. 5 and 6, of a functional P[y] defined over the
space of the Feynman histories for a quantum system, and which has
the meaning of a quasiprobability. In Ch. 5 it is shown how P[y] can
be integrated over different classes of histories, to reproduce the usual

14



phase space distributions, thus providing a check for its reliability, while
in Ch. 6 we present the relativistic version of P[y]. It turns out that
the latter requires, to be conveniently defined, a nonstandard formula-
tion of relativistic quantum mechanics, which introduces in the theory a
new parameter (classically linked to the proper time), but presents the
advantage of being explicitly covariant. In Ch. 7 these techniques are
applied to a formulation of a semiclassical theory for relativistic systems,
in particular for the gravitational field. Ch. 8 contains some final re-
marks, and outlines of possible applications and extensions of the ideas
presented in the thesis.

From now on, we shall work in units in which ¢ = 1, and we shall
adopt the signature +2 for the metric of spacetime. In tensors, the
indices a,b,¢,... run from 0 to 3, while 7,7, %,... run from 1 to 3; the
Minkowski metric is represented by the symbol 7,,. The sum over re-
'peated indices is implicit. Quantum operators are distinguished from
classical quantities by a “hat”, like in §. Other notations will be defined
in due place.
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Chapter 2

Critique of Semiclassical
Gravity

As we have discussed in Ch. 1, there is no striking evidence, neither of
experimental nor of theoretical nature, for the quantization of gravity.
This leads to undertaking the less ambitious semiclassical program, in
which a classical gravitational field interacts with (and is reacted on by)
quantum matter. In such a context, the main difficulty lies in the way to
account for back-reaction. The aim of the present chapter is to provide
a critical survey of the model which is currently accepted to provide a
solution to this problem.

In Sec. 2.1 we discuss qualitatively the issue of back-reaction both for
electromagnetism and for gravity, in order to gain physical insight into
the topic, while Sec. 2.2 is devoted to a brief review of the formulation
of quantum theory in a curved spacetime, which is the basis for the de-
scription of matter in semiclassical gravity. In Sec. 2.3 the semiclassical
field equations are written, and their structure is discussed. A detailed
criticism of their physical reliability is performed in Sec. 2.4, leading to
conclude that a deep revision of the subject is necessary.

2.1 The Problem of Back-reaction

When a physical system S can be considered as composed of two sub-
systems S; and Ss, its time evolution can be represented as the separate
time evolution of S; and S, under their mutual interaction; in fact, in

general, the subsystem S; exerts an influence on the behaviour of S,,
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and vice versa. Under some circumstances, it may happen that one of
these two influences turns out to be practically negligible, although it is,
in principle, still present; this leads to a great simplification of the prob-
lem, both from the physical and the mathematical point of view, and is
usually called the “external field approximation”. Quantum theory in
curved spacetime is an example of this reduced treatment.

To achieve complete self-consistency by taking into account the re-
ciprocal interaction of both systems may not be easy at all, as it can be
realized considering the case of the electrodynamics of pointlike charges.
If a particle with mass m and charge e moves in an external electromag-
netic field F°*, and we neglect the effects of the field produced by the
particle itself, the motion is described simply by the well known Lorentz
equation

mu® = e F%u, , (2.1.1)

u® being the particle’s four-velocity and the dot standing for the deriva-
tive with respect to the proper time. However, Ea. (2.1.1) is clearly
only an approximation, not taking into account the loss of momentum
undergone by the particle when accelerating, through its own radiation
field. To incorporate this feature in the theory is clearly an important
task from the conceptual point of view, since it allows to achieve self-
consistency of the treatment, but the corresponding generalization of
Eq. (2.1.1) is not trivial. In fact, in order to account for the radiation
reaction effects, the Maxwell equations must be considered for the radi-
ation field of the particle, and a careful treatment is required because of
the appearance of some divergences which are eliminated by a process
of mass renormalization. The result is the Lorentz-Dirac equation [32]
2 5

mu® = e F®uy + —e
(8]

(4® — uiyn®) , (2.1.2)

whose solution also requires some care in order to avoid formal and
physical troubles.

In the general theory of relativity, the conceptual necessity of ac-
counting for the matter’s reaction on gravity is even stronger, and the
corresponding problems are more serious. While the Lorentz equation
is independent of Maxwell equations, which only require charge con-
servation, the equation of motion for test particles in a gravitational
field (i.e., the geodesic equation) can be shown to be a consequence of
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Einstein equation: This fact does not allow, in principle, to neglect the
back reaction of matter. Strictly speaking, it is just the two-ways char-
acter of the interaction between matter and geometry which determines
the matter’s motion, even in the extreme case of pointlike particles; in
other words: “Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve.” [2]. This smaller
freedom in imposing constraints on the motion of matter can be traced
directly to the peculiar structure of Einstein equation (1.4), which has
the remarkable property of transforming the geometrical identity

VPGa =0 (2.1.3)
into the physical equation
VT =0, (2.1.4)

expressing the laws of conservation for energy and momentum.

The issue of back-reaction changes drastically if one of the two sub-
systems behaves quantum mechanically. The problems are now already
present at the level of writing the coupling equations between &; and
Sy (i.e., the field equations, in the case in which one of the two subsys-
tems is matter and the other is a field). To illustrate this point, let us
consider the concrete example from atomic physics, in which one wants
to describe in a consistent way the energy eigenstates of nonrelativistic
quantum electrons in an external electric field. The situation can be con-
veniently schematized as follows: If the external field is not too strong,
the acceleration of the electrons is small, and their radiation reaction
can be consequently neglected; moreover, since they are moving slowly,
their magnetic field can be neglected as well; therefore, the problem
is reduced to that of determining the behaviour of a system of, say, a
number Z of nonrelativistic electrons, each affected by the electrostatic
field of all the others in addition to the external one. A satisfactory
solution is provided by the Hartree method of self-consistent fields [33];
the key idea is to approximate the total wave function as a product of
wave functions ¥;(x1),...,%;(x;) for the single electrons, and to solve
simultaneously the Z stationary Schrédinger equations (n € {1,...,2}

18



labels the electrons)

K2
= 5=V + (Voo o+ W)hn = Enhn (2.1.5)

m
where W is the potential energy due to the external field, together with

the Z Poisson equations

VWV, = —dre® > ¥l (2.1.6)

m¥#n

for the “mean potential energy” V, due to the other electrons®. It is
interesting to rewrite Eq. (2.1.6) as?

Vo=e€> @m, (2.1.7)
m¥#n

where ¢,, satisfies the equation
Vi, = —dmelthy|* . (2.1.8)

To Eq. (2.1.8) can be ascribed a particular meaning: We can regard it
as the field equation linking the classical electric potential ¢,, (or, if we
prefer, the classical electric field E,, = —V,,), to its quantum source,
which is represented by the charge density eli,,|*>. Eq. (2.1.8) is thus a
first example of semiclassical field equation.

The source e|i),,|* in Eq. (2.1.8) can be rewritten in an alternative
way which suggests a remarkable generalization. Let us introduce, in

the Heisenberg picture, the charge density operator®
pe(x,1) = e 83(x1 — %(1)) , (2.1.9)

where %(t) is the position operator at time #, whose eigenstates (in the
rigged Hilbert space) we label as |x,¢):

x(t)|x,t) = x|x,t) . (2.1.10)

'In atomic physics, one may average the |t,,|? over angles in order to retain spher-
ical symmetry. We do not enter here into these technical details.

Here, e is the electron charge with sign, so that e < 0.

3Our sloppy notation could be avoided working in terms of sequences of well defined
functions of the operator %(t); however, there would be no significant change in the
treatment, and the physics would be less clear.
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The choice (2.1.9) can be motivated by the fact that, applying p.(x,t)
so defined to the eigenstate |y,t), we get

pe(x, DIy, 1) = €8 (x — ¥)ly,1) | (211

so that |y, t) is an eigenstate of charge density as well, corresponding to
the eigenvalue e %(x — y); this is in agreement with the idea that the
state |y,t) should approximate the classical concept of pointlike particle
located at y at time ¢. The unpleasant occurrence of the delta function
of operators in Eq. (2.1.9) can be easily eliminated using the identity

[ &yly iyt =1, (21.12)

which trivially leads to
pe(x,1) = e|x,t)(x, 1] . (2.1.13)

Now, let us calculate the expectation value of charge density when the
particle is in the state |3); the representation (2.1.13) gives immediately

($le(x, 1)) = elp(x, )7, (2.1.14)
where
b(x, 1) = (x, ) (2.1.15)

is the Schrodinger wave function. This suggests to generalize Eq. (2.1.8)
as

Vi = —dn(plp.l) - (2.1.16)

It is possible to go even further, remembering that the density of
current is defined, classically, as

Je = pev; (2.1.17)

the corresponding quantum mechanical operator is* (App. A)

J(x,8) =W {p“e(x,t) %(p(t) - eA(fc(t),t))} =
= (1%, 1) {x, 1) + B()]x, 8){x, ¢]) — :n—zA(x,t)[x,t)(x,t[,(2.1.18)

2m

*In Eq. (2.1.18) we write the ordering as W; however, it is trivial to check that, in
this case, the use of S would not make any difference, so that there is no ambiguity.
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where A is the vector potential of the electromagnetic field; the expres-
sion (2.1.18) has the expectation value
2

(Bl (x, b)) = g;;%wx,trw(x,o - S AGORBE, (2119)

where use has been made of the Schrédinger representation of the oper-
ator p(t):
(%, UB(1)l) = —ihVi(x,1) (2.1.20)

The semiclassical Maxwell equations can thus be postulated as:

V -E = 4me|w)?, (2.1.21)

VxB= 471'——1/) Vo — 47r—~ Ayl + %}f , (2.1.22)
aA

E=-Vo— 50 (2.1.23)

B=VxA. (2.1.24)

Of course, the system of Eqs. (2.1.21)~(2.1.24) requires to be completed
with the Schrédinger equation for (x, t),
O K2

il = (v _ -—A) b+ edip | (2.1.25)

The covariance of Maxwell equations allows to perform a generaliza-
tion of Egs. (2.1.21)-(2.1.25) to the case of a relativistic matter source.
Although the expressions (2.1.14) and (2.1.19) are not covariant, they
can be respectively regarded as the nonrelativistic limits of the time
and space components of the quantity (1]7%|#). The operator® j2 is now
supposed to be the Noether current associated to the U(1) gauge in-
variance of some lagrangian density £ describing a quantum field. The
pairs (2.1.21)-(2.1.22) and (2.1.23)~(2.1.24) of Maxwell equations be-
come thus, in four-dimensional notation,

QF = dm(pf]4) (2.1.26)
Fob = 904" — 9P 4% | (2.1.27)

>The index e is not tensorial! It only reminds that j* is the electric current.
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4° being now the four-potential. The Schrodinger equation (2.1.25)
for the wave function 1 is replaced by the Heisenberg equation for the
operator 72,

. dji(x,1) ., 07%(x, 1) -
h—t—"t = jh———+ — |H N 1.
1 ; 1h y [ (t),]e(x,t)] , (2 1.28)

where f[(t) is the hamiltonian operator of the field at time ¢, obtained
by standard methods of canonical quantization [4,7].

Eqgs. (2.1.26)—(2.1.28) form the basis of the usual semiclassical the-
ory of electromagnetism in Minkowski spacetime. They also provide a
strong motivation for writing the semiclassical field equation for gravity
as in (1.8). It is clear, however, that Eq. (1.8) alone is not sufficient
to define completely the problem, but it needs to be coupled with an
equation for the quantum evolution of the operator T.s, of the kind
of Eq. (2.1.28). Unfortunately, in the case of gravity, the spacetime
structure is not given in advance, and it may turn out to be not trivial
at all; consequently, such mathematical objects as the time ¢, or the
hamiltonian operator H(t) of Eq. (2.1.28), are not defined, and a trivial
transposition of quantum theory from Minkowski spacetime to a generic
lorentzian manifold cannot be performed. It is precisely to the problem
of describing quantum matter in a curved spacetime, which appears
so important for a correct study of semiclassical gravity, that the next
section is devoted.

2.2 Quantum Theory in Curved
Spacetime

The mathematical framework of quantum mechanics deals with the de-
scription of the concepts of state and observable. In the usual formula-
tion of the theory in Minkowski spacetime [35,36], the state at a fixed
time can be associated (up to a phase factor) to a unit vector® of a
Hilbert space H, while an observable is represented by a linear self-

adjoint operator in 7. Another concept, introduced at this level as

GHere, we limit ourselves to the case of pure states, and we do not enter in the
details concerning non-normalizable states, rigged Hilbert space, and so on; all these
topics are thoroughly discussed in refs. [35,36].
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primitive, is that of measurement of an observable on a given state; it is
a postulate of the theory that if an observable described by the opera-
tor A is measured on the state |1} € H, the only possible results of the
measurement are the eigenvalues {a,} of A; moreover, the probability
that a,, be the outcome of the measurement is

Pan) =3 [{an, ), (2.2.1)

where 7 represents a possible degeneracy index, and {|a,,r)} are or-
thonormalized eigenvectors of A.

The results of the measurements of an observable change as time
passes; this can be expressed by saying that the probabilities P(a,)
are actually functions of time, which we shall write as” P(a,|t). By
Eq. (2.2.1) it is evident that either |4), or |an,7) (i.e., /i), or both of
them must be function of time, too; the dynamical problem in quantum
theory is therefore to determine this dependence. In the Schrédinger
picture, the time evolution is all encoded in the state vector; it is easy
to realize that if ¢ and ¢ are two instants of time, |1(¢;)) and [4(¢))
must be linked by a unitary transformation in order to preserve the
normalization. More precisely,

() = U(t,t0)|¥(te)) (2.2.2)

where ﬁ(t,to) 1s a unitary linear operator in H such that ff(t,t) =
1. However, since anything can be measured experimentally is only
the statistical frequency P(a,|t) of a result, Eq. (2.2.1) suggests, as an
alternative, to consider the state fixed, allowing only the observables to
evolve: This is the Heisenberg picture, in which it is A(t) to be linked
to A(to) by
At) = U(t,t0) T A(te) U (8, 1) . (2.2.3)
Egs. (2.2.2) and (2.2.3) can be rewritten in the more common differ-
ential formalism observing that the unitarity of U(t,1,) allows to repre-
sent it as

Ul(t,t0) = exp(iQ2(t, 1,)) | (2.2.4)

"We adopt this unusual notation in order to stress that P(ay|t) is a conditional
probability [34].

23



with €(t,%0) a self-adjoint linear operator in A such that Q(t,t) = 0.
Defining the hamiltonian as

H(t)= -h % Qt', 1), (2.2.5)

t'=t

Egs. (2.2.2) and (2.2.3) become formal solutions of the differential equa-

tions
ihfl—%(t—t)l = H(t)|v(t)) (2.2.6)
and A
md“;it) — _[H(t), A(t)], (2.2.7)

holding, respectively, in the Schrodinger and in the Heisenberg pictures.
In particular, Eq. (2.1.28) is a case of (2.2.7).

There is now clear evidence for the main problem of compatibility
between quantum theory and relativity: The general formalism of the
former gives to the concept of time a very peculiar and fundamental
role, thus entering in conflict with the relativistic requirement of man-
ifest covariance. There are, apparently, two possible ways to solve this
problem. One of them relies on the idea that the spacetime coordinates
must appear all on the same footing® in the fundamental equations; this
has been, historically, the basis of the first attempts to formulate a rela-
tivistic quantum theory, but it has led to serious conceptual difficulties
[7]. Alternatively, it is possible to think that the time ¢ in the dynamical
equations is referred to a particular reference frame, that is, to a congru-
ence [38] of future directed timelike curves with a normalized tangent
vector, each of those representing a classical observer: Relativistic quan-
tum mechanics would thus involve the concept of observer in its very
basic formulation. This last approach is the one currently adopted in
studies of quantum mechanics on a fixed background spacetime [4,39],
and it has allowed to achieve remarkable results. We shall therefore

present it in more detail.

First of all, we must ask for the class of spacetimes which allow the
introduction of a global notion of time; the answer is straightforwardly

8 Apart from obvious differences due to the metric of spacetime.
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Figure 2.1: The development of the Cauchy hypersurface & along the
reference frame u®.

given in the literature [1,3], and indicates that we have to restrict our-
selves to a globally hyperbolic spacetime (M, g), which admits Cauchy
hypersurfaces. Let T, be such an hypersurface, with future directed
normal vector u® such that

Japu®u’ = —1 . (2.2.8)

Let us choose a congruence of observers o : [ — M, where [ is an open
interval of R, whose tangent vector on ¥y coincides with u® (Fig. (2.1)),
and such that the reference frame so constructed is proper time synchro-
nizable [40] (the existence of such frames follows from the global hyper-
bolicity of (M, g), which guarantees the existence of a global function =
such that u® = —~V?7 is a future directed timelike vector field). Let us
choose, moreover, the origin of the proper time 7 of these observers so
that o () € Ty , Vo ; at a time 7 # To, Yo will be evolved, along the
curves o, into another Cauchy hypersurface 5(7) = {o ()}, orthogonal
to the observers and hence representing their transverse space at the
proper time T.

Now it is possible to construct a quantum theory “adapted” to the
observers ¢, in which states and observables give a description on one
hypersurface of the foliation {(7)}, and the dynamics is described by
a unitary operator ﬁu(r,’rg) such that Uu('r,r) =1 and

dUu(r,70) i

- —ﬁﬁu(r) Uu(7,70) , (2.2.9)
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according to Eqgs. (2.2.4) and (2.2.5), where H,(7) is the hamiltonian
of the system on the hypersurface T(r). It is easy to realize that the
analogue of Eqgs. (2.2.6) and (2.2.7) are, respectively,

dj(r))

ih—?—% = H (D())w (2.2.10)
and )
indA;T(T) = [Hu(7), Au(7)] (2.2.11)

where Eq. (2.2.10) holds in the Schrédinger picture (hence with fiu(r) =
Au(To)), while Eq. (2.2.11) holds in the Heisenberg picture (in which it
is [9(7))u = [P(70))u)-

A particular case occurs when the system under study is a quantum
field, and the operators A are therefore functions of the spacetime point
z € M. In this circumstance, the derivative d/dr must be replaced by
the Lie derivative along u?, L, [32,38]. If, in the Schrodinger picture,
L,A%(z) =0, then Eq. (2.2.11) becomes

ih LA¥(2) = ~[Hu(7(x)), A (2)] , (2.2.12)

where A (z) is the operator in the Heisenberg picture:

~ ~

A (2) = U(r(2), 7o) AS ()0 (r(z),70) . (2.213)

u

This method of extending the formalism of quantum theory to the
case of a more general reference frame in curved spacetime is quite
straightforward and naive, but has led to important theoretical results
[4,39]. Nevertheless, it appears somewhat artificial and not sufficiently
general, since it relies on some hypothesis, such as the global hyper-
bolicity, which are not necessarily satisfied in a generic spacetime (and
whose validity is very difficult to test in our own universe!). Moreover,
from the point of view of semiclassical gravity, these properties could
only be verified a posteriori, after the problem of finding a spacetime
compatible with its quantum matter content has been solved; hence,
we are not allowed, in principle, to formulate a semiclassical problem
making use of this formalism, unless we restrict our treatment to very

specific cases.
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There is another possible extension of quantum mechanics to the
relativistic domain, which has both the advantages of being explicitly
covariant, and of not requiring the spacetime to satisfy too peculiar
conditions. In this theory, a distinction is introduced between the coor-
dinate time and the evolutionary time: While the former is now treated
as an observable, just as the space coordinates are, the latter is a pa-
rameter, which turns out to be proportional, in the classical limit, to
the particle’s proper time. Although it appears particularly suitable for
the treatment of matter in semiclassical gravity, practically no atten-
tion has been paid to this theory within this context. Since our aim, in
this chapter, is only to critically review the usually accepted semiclas-
sical equations, we shall postpone a thorough treatment of the subject
to Ch. 6, where it will be developed in order to provide a reasonable

description of quantum matter in our semiclassical theory.

2.3 The Semiclassical Field Equations

According to the discussion of the previous sections, the usual formula-

tion of the semiclassical problem for gravity can be summarized by the
equations [29,41,42]:

Ga(z) = m{p(7)|Tus(z)]1b(7)) ; (2.3.1)

TR (232)
H(r) = / d(z) Tog (e )u® (2 )u’(z) . (2.3.3)
()

In the set of Egs. (2.3.1)-(2.3.3), the Schrodinger picture has been
adopted, and the quantum theory is formulated with respect to the
reference frame® u?, as discussed in general in Sec. 2.2; in Eq. (2.3.3),
dX represents the volume element on the hypersurface X(7).

It is important to remark that Eqgs. (2.3.1)—(2.3.3) are not complete,
since they must be supplemented by a quantum field theory which could
express Tab(:c) in terms of more fundamental field operators acting on
the states |¢(7)). This is, however, a completely different subject, so we

9To relieve the notations, we have dropped the index u in the states and in the
operators.



shall not enter in it , and we shall rather suppose that such a theory is
given, without any further problem.

Eq. (2.3.1) seems well motivated, both by the analogy with elec-
tromagnetism given in Sec. 2.1, and by the fact that it satisfies the
correspondence principle. In fact, it is easy to understand that, when
dealing with classically behaving systems, the statistical dlspersmn of
the stress-energy-momentum tensor around the average value ("¢|Tab|¢>
becomes negligible, and Eq. (2.3.1) reduces to the usual Einstein equa-
tion (1.4). Despite these nice features, however, the semiclassical theory
based on Eq. (2.3.1) presents some serious conceptual and technical
flaws. We shall comment here only about a couple of points, since a
detailed criticism of the theory will be performed in the next section.

First of all, it must be pointed out that a straightforward calcula-
tion of <¢|Tab|¢> for quantum matter fields would lead, in general, to a
divergent expression; the right hand side of Eq. (2.3.1) is therefore the
result of complex regularization techniques [4]. This aspect of the prob-
lem is complicated further if the semiclassical theory is not regarded as
exact, but only as an approximation to quantum gravity, along the line
of thought which we have expressed in Ch. 1. In this case the one-loop
corrections due to gravitons would produce effects comparable to those
of matter fields, and they should be considered as quantum source of
classical gravity, too.

Another worrying consequence of Egs. (2.3.1)—(2.3.3) lies in the fact
that they would lead to some strong superselection rule. Their solu-
tion, in fact, consists of a spacetime (M,g) and a state vector |¢(7))
describing the state of quantum matter with respect to the reference
frame u®; since, in general, different state vectors are compatible with
different spacetimes, it follows that the superposition principle is vio-
lated [29,30] if semiclassical gravity is described by Eq. (2.3.1). More
pragmatically, we can remark that, being the Hilbert space formulation
of quantum theory strongly dependent on the global properties of M, as
seen in Sec. 2.2, not only does T, contain explicitly (as usual in general
relativity) the metric tensor gas, but also (7)) can be completely char-
acterized only once the entire spacetime structure is known; hence, to
find a solution of Eqgs. (2.3.1)—(2.3.3) is not an easy task at all, because
the theory turns out to be highly nonlinear.
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An interesting analysis, which we shall pursue in some detail, con-
cerns the physical structure of the source term in Eq. (2.3.1); this can be
conveniently studied by exploring the nonrelativistic limit in flat space-
time for the case of a single particle of mass m. The classical momentum
is, in this case,

Pa = m 8% + pifl (2.3.4)

and the classical stress-energy-momentum tensor is, consequently,
1 : 4 1 .
W8S = = upi( 860 + 6265) + — wpip; 6167 (2:3.5)
m m
i being the density of mass, which reads
p(x,t) = m&(x —x(t)), (2.3.6)

where x() is the particle’s position at time ¢. The tensor Ty, splits thus,

in the nonrelativistic limit, into three different objects, namely, the mass

density
/.L(X,t) ~ Tgo(m) ’ (237)
the mass current vector
) 1
7i(x,t) = ;p(x,t)pi(t) ~ Toi(z) = To(z) , (2.3.8)
and the stress tensor
1
IL;(x,t) = ;;#(X,i)Pi(f)Pj(t) ~ Tii(z) ; (2.3.9)

we shall now associate to each of these classical observables a quantum
operator.
For the mass density, we have

f(x,t) = mé&(x1 — %(1)), (2.3.10)

which is trivially linked to the charge density operator previously defined
in Eq. (2.1.9) by

i (x,t) = %ﬁe(x,t) . (2.3.11)
This allows to write immediately
(Wl Foo(2)l) ~ (17 (x, ) = mlp(x, D | (2.312)
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where the Heisenberg picture has been used in the calculation of the
expectation value.

Similarly, for the mass current,

1
et = 5.0, 0) = (%, 6, D0 + DO (5t (23.13)
where obviously the case A(x,t) = 0 has been considered. Thus
N A —
(D To()l9) = (PL(x, )¥) = 52 ¥(x, 1)V $(x,1) . (2.3.14)

It is very interesting to notice that, writing

9 0) = [0, 0 exp (£565,1)) (23.15)
Eq. (2.3.14) becomes
(e, ) = (Bla G, D) - TS(x,1) (23.16)
which, defining
v(x,t) = %VS(x,t) , (2.3.17)
takes the form
(Wl ) = (PIa (x, 1)) v(x,1) - (23.18)

It is easy to check that, in virtue of the Schrodinger equation, (¢|i|v)
and v satisfy a continuity equation

?i‘%é‘_@ V(i) v) =0, (2.3.19)

which corresponds to

8 (| Toa(@)l¥) = 0. (2:3.20)

As discussed in detail in App. B, the association of an operator
I1;;(x,1) to the classical stress tensor (2.3.9) is not unique, but produces
two different objects I:I}’]" and ﬁfJ depending on the use of the general-
ized Weyl’s or Rivier’s ordering rules, Eqs. (A.19) and (A.16). From
Egs. (B.14) and (B.15) we have

<¢"i§v(m)|l’b> ~ <¢‘ﬂ¥(x)t)l¢> = pij(x7t)+<'¢’l[" (X)t)ll¢'>'Ui(xat)vj(xJ) ’
(2.3.21)
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and

(DIT5(@)) = (15 (x, 1)) = <¢*Iflff(x,t)lzb)—;??;;@i@j(wlﬂ(x,t)l'zb),
(2.3.22)

where

2

4m?

Pij(x,1) = ———5 (Yl (x,1)[¥) 6:0; In(Y |4 (x,2)|4) . (2.3.23)

Now, the Schrodinger equation implies that

o Dvi A
(¥|p]w) PR —0;pij , (2.3.24)
where . 5
- = 4 : . 3.2
Iy +v-V (2.3.25)

Eq. (2.3.24) is, formally, the Euler equation for a fluid with density
(¥ |f)), velocity v, and pressure tensor p;;; it corresponds to the equa-
tion

8 (Y| T (z)|p) =0 (2.3.26)

for the expectation value of T,;. We shall recover Egs. (2.3.19), (2.3.23)
and (2.3.24) within a different context in the next chapter, where they
will play a crucial role in orienting us toward the statistical interpreta-
tion of quantum theory. Here, we attach to them only a formal meaning,
to draw the conclusion that, in the nonrelativistic limit, the right hand
side of Eq. (2.3.1) has the structure

(¥lale) (] o) s ]
( (Wlal)v: pi; + (Dlal)viv; ) : (2.3.27)

Hence, the semiclassical theory based on Eq. (2.3.1) assumes that, for
what concerns its action as source of gravity, a nonrelativistic quantum
particle acts as a fluid whose density, velocity and pressure are given,
respectively, by Egs. (2.3.12), (2.3.17) and (2.3.23). We must remark,
however, that the three kinds of terms present in the matrix (2.3.27)
are of different order in the velocity v; consequently, their contributions
as sources of gravity will be comparable only for a relativistic parti-
cle, whose treatment is beyond the approximations performed here, and

would thus require a more detailed analysis.
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There is still one point which has to be discussed before closing
this section: The form (2.3.27) for the expectation value of the stress
energy momentum tensor operator clearly depends on the choice of W
as ordering rule for the product of noncommuting operators. Having we
chosen the rule S, we would have found again the structure (2.3.27) for
(|Top|2), but with the replacement

52
pij — Pij — 7 0:0;(¢|alb) - (2.3.28)

4dm?

However, it is easy to realize that, while the Weyl-ordered stress energy
momentum tensor operator satisfies the equation

O WITE 1) =0, (2.3.29)

thanks to Egs. (2.3.20) and (2.3.26), this is not true for the Rivier-
ordered omne; in fact, being

2

N 4m262‘5l{ 8:0; (i) (2.3.30)

(BT 10) = (Y175 1)

one has, as a consequence of Eq. (2.3.29),

~ Rz . )
O (V| Tylv) = —Wégaivwmm : (2.3.31)

. ~

not vanishing unless (1h|7 (¥, 1)|7h) = const., which is not truein general.
The symmetrization rule does not produce, therefore, a right hand side
of Eq. (2.3.1) which is consistent with the identity (2.1.3), and has to
be discarded in a theory based on such field equation. We shall see
in Ch. 3 that there are other reasons, independent from the context
of semiclassical gravity although related to the discussion performed in
this section, for preferring the Weyl’s ordering to the Rivier’s one.

2.4 Criticism of the Semiclassical Field
Equations

The analysis of Eq. (2.3.1), which we have started in the previous sec-
tion, could be pursued further, generalizing it to the fully relativistic case
and exploring the mathematical structure of the problem so defined [30].
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Before carrying on such a sophisticated program, however, we believe
that one should be sure that it is physically well posed, i.e., that it does
not lead to conceptual inconsistencies [31]. For this reason, we shall
devote this section to the physical understanding of Egs. (2.3.1)—(2.3.3).

As mentioned in Sec. 2.3, a technical difficulty of this set of equations
is nonlinearity. Usually, the source of this feature is identified in the
structure of the Einstein tensor Gg[g], but we want to stress here again
that the nonlinearity we are now referring to, has another, more subtle
origin, which has to be ascribed to the fact that, in the field equation
(2.3.1), the particle is treated as an extended object. This point can be
easily understood remembering that the analysis previously performed
on the source term <¢[Tab]"¢’> has shown that, in the nonrelativistic limit,
it corresponds to the stress-energy-momentum tensor of a fluid. The
subject can be investigated further on, writing Egs. (2.3.1)—(2.3.3) in
the “newtonian” limit, in which the metric is written as

g=—(1+2®)dt’ + (1 - 2®)dx*, (2.4.1)

where ®(x, 1) is the gravitational potential (assumed to be slowly varying
in t), and terms of order ®Z are neglected. The condition

9% Papy = —m’ (2.4.2)
leads now to \
Pa = (m + L -+ m@) 8 + p;6t (2.4.3)
2m
which gives®®
N O
H(t) =ml+ o +m®(x(t),1) . (2.4.4)
m R
The semiclassical problem reduces thus to the two equations
V2® = drGmlyp|? (2.4.5)
and!! ” 52
A = — V2 DY)y . 2.4.6
ther = =5 =V + me[yly (24.6)

10We perform the quantization with respect to the reference frame 6.
11The term m1 contributes to 3 only by a global phase, and can thus be neglected.



Eq. (2.4.6) is an unusual version of the Schrodinger equation, because
it contains the nonlinear term m®[]¢ representing self-interaction of
the particle. The origin of this “correction” can be understood thinking
to the i-wave as propagating in afield created by the particle through
Eq. (2.4.5): The potential energy turns out to be a functional of the
wave function which, in turn, acts on it. This behaviour represents
the remnant, at the nonrelativistic level, of the property of the wave
function to propagate on a spacetime whose metric is determined by
the wave function itself, as in Egs. (2.3.1) and (2.3.2). More precisely,
since H depends on the spacetime metric go which, by Eq. (2.3.1), is
a functional of |¢), it follows that H will be a functional of |¢), too,
thus leading to a right hand side of Eq. (2.3.2) which is nonlinear in
). The extreme case we have considered in Egs. (2.4.5) and (2.4.6)
shows explicitly that this nonlinearity is increased by, but not due to,
the intrinsic nonlinearity of Einstein equation.

If the self-interaction of quantum matter, mediated by the classical
gravitational field, would be present in nature at a fundamental level,
it would lead to nonlinear corrections to quantum mechanics, which
would drastically change the structure of the theory. Theoretical inves-
tigations and speculations on this subject are presently performed in
different contexts [43,44,45,46,47], but nevertheless, both experiments
[48,49] and theory [50,51,52] seems to indicate that, at the moment,
there is no need for such revisions of nonrelativistic quantum mechan-
ics, provide the latter is correctly interpreted [27]. The issue appears
even more tricky if Egs. (2.3.1)-(2.3.3) are supposed to describe the
semiclassical regime of a fully quantum theory of gravity. It is, in fact,
hard to figure out how can nonlinear features emerge in this limit. The
situation is complicated further by the fact that exactly the same trou-
bles should plague the semiclassical theory of electromagnetism, based
on Egs. (2.1.21)(2.1.25); moreover, since for charged elementary parti-
cles €2 > Gm?, the nonlinear deviations, if present, would be now much
more easy to detect. This disconcerting situation makes us understand
that a clarification of the subject is indispensable, in order not to run
into trivial mistakes due to a misunderstanding of its physical ground.
We shall start by reanalysing the meaning of Eq. (2.1.8) for the Hartree
self-consistent electric field. ‘



Let us remind first that the idea underlying the Hartree method
consists in realizing that, in order to determine the stationary state of a
system of Z atomic electrons, each moving in the electric field created by
all the others, it does not make a sensible error to solve the Schrodinger
eigenvalue equations (2.1.5), together with Eqgs. (2.1.6). The analogy
between this approach and that of semiclassical gravity is quite different:
While, in semiclassical gravity, one is looking for the real spacetime
compatible with a single quantum system, in the Hartree theory the
electric potentials ¢,, are not supposed to correspond to any physically
real configuration, but rather to represent a convenient average, useful
in the calculation of the electrons’ wave functions, which are the only
objects of interest. Moreover, two things are clear from the method:

i) The potential ¢, due to the n-th electron is only an effective mean
potential;

1) The potential ¢, due to the n-th electron does not act on the n-th
electron itself.

Both of these properties are not satisfied by Egs. (2.1.21)—(2.1.25); in
particular, Eq. (2.1.25) contains the self-interaction terms mentioned
above in our discussion. We must conclude that Eq. (2.1.21)—(2.1.25)
are not a straightforward generalization of the Hartree method, but
rather that they describe a completely different problem, in which one
asks for the electromagnetic field created by a quantum particle. Let
us stress again that in the Hatree theory the electric field has only the
role of mediating conveniently the interaction between electrons, and
that there is no pretence that the fields E, = —Vy, are those which
really exists in a single copy of the system. A consistent extension of
the method would thus not be represented by Egs. (2.1.21)—(2.1.25), but
rather by the set of equations:

V -E, = 4me|,|?, (2.4.7)
B 2 OE,
V x B = dre iV, —dr = 3 A [P+ 2, (24.8)
2ma m¥En at
0A,

n — ‘—'V n 3 2.4.
E @ 5 (2.4.9)
B,=V xA,, (2.4.10)
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2
iha(;/;” = w (V —3}—; S A ) Yoted, Omibn, (2.4.11)

2m m#n m#n

for n € {1,...,Z}. Similar considerations hold for the relativistic case.

Having distinguished the semiclassical theories from the Hartree ap-
proach, we remain without our original justification for the Egs. (2.1.21)-
(2.1.25), (2.1.26)—(2.1.28) and (2.3.1)—(2.3.3), which are supposed to
describe the classical (gravitational or electromagnetic) field due to a
quantum matter source. Another point of view which is often adopted
in order to motivate the validity of these sets of equations is the com-
parison with the celebrated Ehrenfest equation

_dH ()X (1))
di?

holding for a particle subject to an external potential U(x). However,

= —(¥®)IVU(x)¥(1) (2.4.12)

Eq. (2.4.12) has the same form of the classical equation of motion with
the position x(t) replaced by (¥(¢)[X[¥ (1)),

LEORNO) __wpuosmpe),  (2419)

only if the dispersion of x around ((¢)|X|¥(¢)) is negligible, a fact de-

pending, ultimately, on the preparation process for the particle at an
initial time to, and corresponding to the condition for the particle’s po-
sition to be considered as a classical observable. If this requirement is
not satisfied, i.e., if the behaviour of the particle is truly quantum, then
Eq. (2.4.13) is inadequate to provide a good description, and it must be
corrected by adding extra terms depending on

(b(8)|% (1)) — ((t)Ix[(2))*

to the right hand side, according to (2.4.12). Similarly, we expect that
Eqgs. (2.1.26) and (2.3.1) certainly hold for a state vector correspond-
ing to well defined values of the components of, respectively, j¢(z) and

Ta(z), i.e., for a state in which matter exhibits a nearly classical be-
haviour; however, if the state vector represents, for example, a matter
configuration which is in a superposition of macroscopically distinguish-
able states, it seems very unlikely that these equations could describe
the physical situation in a reasonable way.
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The fact that semiclassical field equations like (2.1.26) and (2.3.1)
would make the classical field indifferent to the quantum fluctuations
of matter, has been recently emphasized by Boucher and Traschen [53]
for the case of gravity, showing how disconcerting it may become when
Eq. (2.3.1) is applied to the study of cosmological models whose matter
content is a quantum field. In most of the current literature [54] on
this topic, the background spacetime is assumed to be initially repre-
sented by a spatially homogeneous manifold, satisfying Eq. (2.3.1) with
the right hand side constructed out of a scalar field ¢(z), which is, of
course, initially homogeneous, too. Usually, it is argued that, as time!?
passes, ¢(z) will develop spatial perturbations, due to quantum fluc-
tuations; these, through the gravitational field equations, will induce
perturbations in the spacetime metric, which will act later as centres of
condensation for matter, after other physical processes will have taken
place. This picturesque scenario, which should provide a physical mech-
anism for the origin of the inhomogeneities (clusters of galaxies) ob-
served in the present universe, cannot unfortunately rely on Eq. (2.3.1),
because this equation do not couple quantum fluctuations of matter to
the geometry of spacetime: If the initial conditions are spatially homo-
geneous both in g, and in ¢, they will remain so forever.

Before carrying on the discussion, let us briefly summarize the sit-
uation. We have shown that semiclassical field theories are, contrarily
to a widespread opinion, substantially different from those based on the
“mean field” methods popular in atomic physics; in particular, the sim-
ilarity presented by Egs. (2.1.26)- (2.1.28) and (2.3.1)~(2.3.3) with the
Hartree equations is only superficial. Moreover, these formulations of
the semiclassical problem are unable to take into account the quantum
fluctuations occurring in the source, and they seem to involve nonlinear
modifications to quantum theory. It seems thus reasonable to ask if they
should not be rejected at all, and replaced by a less awkward approach.
We shall now provide what we consider as a crucial argument against
them, showing that they lead to unacceptable conclusions, whatever
(reasonable!) interpretation of quantum theory one may adopt.

12Referred to the fundamental observers of the cosmological model.
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Our argument is structured around the remark that in the right hand
side of Eq. (2.3.1) the wave function ) seems to be given a “materialistic”
meaning, in the sense that |[4|* and ¢*€¢ are treated as sources of
gravity (see Sec. 2.3), as if the particle were an extended object. This
is clearly hard to conciliate with those interpretations in which ¥ is
not a physical field, but only represents the probability amplitude of a
configuration; moreover, it causes serious troubles if associated to an
interpretation in which the state vector collapses when a measurement
is performed.

Let us analyze the latter point first. The state vector collapse can
be written as [35,55]

p—p, ’ (2.4.14)

where p is the statistical operator of the system; if the quantity to be
measured is an observable with eigenvalues {a,}, corresponding to the
orthonormal eigenstates'® {|a,)}, we have

p= L)l (2.4.15)

with

|¢’> = Z Cn[an> ) (2.4.16)

n

and
A =2 lenllan)(an] . (2.4.17)

According to Eq. (2.3.1), just before the measurement is performed, the
source term is

(| Tusl) (2.4.18)

while, immediately after the measurement, it becomes
<an|Tab!an> y (2419)

with a probability |c,|>. The various |a,) can correspond to different
macroscopical distributions of the sources; if the measurement has a
duration (with respect to the reference frame u*) Ar, the effect of the
state vector reduction is to change the source term from (2.4.18) to
(2.4.19) within a time A7. The inconsistency between this process and

13We suppose, for sake of simplicity, that there is no degeneracy.
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Eq. (2.3.1) is emphasized in Fig. (2.2), which shows a spacetime diagram
of the following situation. V

At time 7 a nonrelativistic particle of mass m is in a state such that
it has the same probability 1/2 to be in any of two disjoint spatial (i.e.,
on X(7y)) regions A and Bj; at time 7, a position measurement on the
particle is performed, which takes a time Ar. After the measurement
(e.g., at time 73), the particle is known to be in the region B (the other
possibility is equivalent), with probability 1. If Egs. (2.3.1) are assumed
to hold, the gravitational field at the spacetime point = will have matter
contributions from both regions A and B and, possibly, from the dotted
region in the figure, while at the point y it will have contributions only
from B and, possibly, from the dotted region. Since the time AT can be
made reasonably small, and z and y can be thus chosen very close to
each other, it is clear that the validity of Eq. (2.3.1) is guaranteed only
admitting that matter is present in the dotted region, i.e., that the act of
measurement induces an acausal (spacelike) flow of matter from A to B.
This physically unacceptable conclusion leads to drop either Eq. (2.3.1)
or the hypothesis that the state vector may collapse.

We want to stress the fact that the occurrence of a spacelike matter
flow is a straightforward consequence of the mathematical structure of
Eq. (2.3.1). In fact, the identity (2.1.3) implies

V(3 () [Fous b (7)) = 0. (2.4.20)

Eq. (2.4.20), as known, has the meaning of a conservation law, in the

t!* inside a closed spatial

sense that any change of the matter’s conten
2-surface implies a flow through the 2-surface itself. The result of the
measurement is therefore accompanied, according to Eq. (2.3.1), by a
matter flow from A to B, due to the change of the right hand side from
(2.4.18) to (2.4.19). That Eq. (2.3.1) require the spacelike flow, can also
be understood in a more physical way, thinking that, if such a flow were
absent, then, immediately after time 75 + A, near the region B the field
would be the one generated by a mass m, while at a distance d from it,
it would still be, for a time d/c, the one produced by two particles of

mass m/2, located in A and B. Such a situation is clearly incompatible

14Here we do not care about the intricate problems concerning a rigorous definition
of energy in a curved spacetime [56], since they are irrelevant to our discussion.
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Figure 2.2: A spacetime diagram of the wave function reduction due to

a measurement of position.
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with the integral formulation of Eq. (2.3.1) in its weak field limit.

These arguments lead naturally to the conclusion that Eq. (2.3.1)
could be physically acceptable only if an interpretation of quantum the-
ory is adopted in which the state vector does not collapse. As well
known, the most reliable of these are Einstein’s [57] (or statistical [27])
and Everett’s [58] (or many-worlds [59]): we shall now show that both
of them are incompatible with Eq. (2.3.1).

In Everett’s formulation, the vector (2.4.16) is supposed to describe
faithfully the matter content of space, under the hypothesis of simulta-
neous existence of different copies of the material system, each of them
described by one of the vectors |a,). When semiclassical gravity is taken
into account through Eq. (2.3.1), these copies are allowed to interact
with each other, because the gravitational field in a point of spacetime
is generated by the source (2.4.18), which takes into account all the
copies of the system through the vectors |a,) contained in |¢); this sit-
uation provides therefore a coupling between different copies, mediated
by classical gravity. An observer’s state vector, in fact, is contained in
one of the components of |7}, but by a measurement of the gravitational
field he/she can be aware of the presence of other components; such a
possibility is, however, in conflict with observations, in which the grav-
itational field due to macroscopic bodies is always found to correspond
only to one component of the matter’s state vector, against the pre-
dictions of Eq. (2.3.1). This result can be interpreted in two ways: If
we believe that semiclassical gravity could be a fundamental theory of
nature, then it is a proof that Eq. (2.3.1) cannot be the correct field
equation; alternatively, it could be considered an evidence for the quan-
tization of gravity [25]. However, even in this second case, it is obvious
that Eq. (2.3.1) is inadequate to describe the semiclassical regime, be-
cause its left hand side

Gaplg] (2.4.21)

only represents an expectation value, and does not correspond to any
precise component of the state vector of spacetime.

We run into the same troubles adopting the statistical interpreta-
tion of quantum theory. In this case, we must take the view that the

state vector |) describes an ensemble £, of equally prepared material
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systems, each of those is supposed to correspond to a gravitational field
(spacetime), so that an ensemble &g has to be considered for gravity
as well. This means again that (2.4.21) is not referred , in general,
to any physically realized situation, but only to a fictitious spacetime,
which somehow represents an “average” over £,: Eq. (2.3.1) does not
succeed, therefore, in providing us with a reliable formulation of the
semiclassical problem, in which one asks for the compatibility between
spacetime and its quantum matter content. We must nonetheless re-
mark that to realize that gravity can be described only at the level of
an ensemble £ amounts, within this context, to recognize the partial
failure of the semiclassical program; in fact, it involves the need to give
a probabilistic description of spacetime. As we shall discuss extensively
in Ch. 4, however, a revision of the subject along these lines allows to
give a consistent, although weaker, formulation to the problem; the key
idea will be to allow the field to have at least those probabilistic fea-
tures which are induced by matter. This hypothesis, when combined
with the statistical interpretation of quantum theory, removes all the
inconsistences and paradoxes discussed previously, and does not require
to deal with the most tricky problems of field quantization, since effects
of “self-uncertainty” are not taken into account. (

One might try to make a last effort for saving Eq. (2.3.1), using
“heretic” approaches, such as Bohm’s theory [60,61] or stochastic me-
chanics [62,62]. These theories, however, rely on the hypothesis that sys-
tems follow definite trajectories in the configuration space, and this is in
direct contrast to the “extended” character of the source in Eq. (2.3.1),
as shown, e.g., in (2.3.27). It seems therefore that a careful revision of
the entire semiclassical problem is necessary in order to achieve physical
consistency.
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Chapter 3

Statistical Meaning of
Quantum Theory

It is particularly important, when speaking about a physical theory, to
distinguish between the mathematical formalism and its interpretation.
In the particular case of quantum mechanics, these two aspects are so
difficult to relate each other, that the character of the resulting theory
has some features reminding schizophrenia. It turns out, however, that
in order to deal successfully with most of the applications to micro-
physics, it is not necessary to enter deeply into the subject: The Born’s
probabilistic interpretation of |1|? is totally sufficient.

It is not so if one tries to apply quantum theory to more complex
situations such as, for example, those involving macroscopic systems; in
these cases, a thorough understanding of its conceptual basis is neces-
sary in order to avoid mistakes and/or paradoxes. We encounter the
same kind of problems when trying to construct semiclassical theories,
of which semiclassical gravity is an example; as seen in Sec. 2.4, in fact,
not only does the requirement of physical consistence put severe limits
on the kind of description one should adopt, but also the choice of an
interpretation of quantum mechanics rather than another one, may in-
volve a complete change in the physical picture. We thus believe that
a clarification of the foundations of quantum theory should have high
priority within our program of work. This chapter is mainly devoted to
provide good reasons for adopting the statistical interpretation.

Our discussion will be rather unusual. We shall not follow the com-
mon line of argument which, starting from the classical paradoxes of
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quantum theory, shows how they find a natural and reasonable solution
if one accepts the idea that the state vector does not describe an indi-
vidual system, but only an ensemble of similarly prepared copies of it.
Since these aspects of the topic have been already discussed very well
in the literature [27,64], we prefer not to repeat them here, and we limit
ourselves to remind that the statistical interpretation not only provides
a viable solution to the paradoxes mentioned above within the standard
formalism of quantum theory, but it does not introduce any foreigner
metaphysical concept, and it is probably the only one which is consis-
tent with a physical characterization of probability [64]; moreover, it
leaves open the possibility of extending quantum mechanics in order to
account also for the individuals’ behaviour — a very satisfactory feature
from a methodological point of view.

Our approach is based on the following, apparently trivial, remark:
Although the interpretation of a theory is not uniquely determined by
the formalism, it heavily depends on it; a change in the formalism, even
if not leading to any new experimental consequence, can induce drastic
changes in the interpretation. Perhaps the most dramatic example of
this process has been the four dimensional reformulation of special rel-
ativity by Minkowski, which led to the introduction of the concept of
spacetime, essential in the further development of general relativity. We
shall show that there is a formulation of quantum theory, alternative
to the Hilbert space one, which almost unaveoidably leads to the statis-
tical interpretation; this is the so called “hydrodynamical formulation”
[65,66,67].

In Sec. 3.1 we develop the essential features of such formalism, and
discuss few of the interpretative problems it raises; only the spinless one-
particle case is considered, since it is sufficient for our purpose. Sec. 3.2
is devoted to the interpretation, and to a review of some general concepts
of kinetic theory which are extensively used in the discussion. It turns
out that not only does the new formalism strongly suggest to adopt the
statistical interpretation, but it makes almost impossible to resist to the
temptation of trying to “complete” quantum theory, replacing it with a
theory of individuals, rather than of ensembles; considerations on this
subject are contained in Sec. 3.3.

Our discussion follows closely that of ref. [68].
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3.1 Hydrodynamical Formulation of
Quantum Mechanics

It is well known [69] that in the nonrelativistic quantum theory of a
spinless particle, the Schrédinger equation

ih@%ﬁ = H(x,~ihV,¢) p(x, 1) , (3.1.1)
where
4 B2
H(x,—ihV, 1) = -E—W + U(x,1t) (3.1.2)
m

is the hamiltonian, with m the particle mass and U(x,t) its potential
energy, implies a continuity equation to hold in the form

%.{_Vaj:(), (3.1.3)
where!
r(x,t) =m [¥(x,¢)? (3.1.4)
and 5
306 1) = = 9(x,1)" Vb(x, 1) . (3.1.5)

Writing now ¢ (x, t) asin Eq. (2.3.15), and defining a velocity field v(x,1)
as in Eq. (2.3.17), Eq. (3.1.5) becomes

J(x,1) = p(x,1) v(x,t) : (3.1.6)

The continuity equation (3.1.3) can therefore be considered as expressing
the conservation of mass for a fluid of density u and velocity v. Tt is
natural to ask, at this point, if the analogy can be pursued further,
extracting also an Euler equation from Eq. (3.1.1), of the form

D'v,;
M 7{— = —ajpij - 7‘% &'U 5 (317)

where p;;(x, t) is the pressure tensor of the fluid? and D/dt is defined as
in Eq. (2.3.25). Surprisingly enough, this is possible!

'In the definitions (3.1.4) and (3.1.5), a factor m has been introduced in order to
make more evident the similarity of Eq. (3.1.7) below with the Euler equation for a
fluid.

2The Pij here defined has nothing to do, in principle, with the quantity defined in
Eq. (2.3.23); however, it will turn out later on that they are the same object. This
justifies our abuse of notation.
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To prove Eq. (3.1.7), let us first insert Eq. (2.3.15) into the Schrodinger
equation (3.1.1), and make use of Egs. (3.1.3) and (3.1.6) getting

as 1 __hin]le
S5 (V)P U o

applying now Eq. (2.3.25) to Eq. (2.3.17), and using Eqgs. (3.1.8) and
(3.1.4), we find

Dv. 1D _ s 1 2\
T T ma s _V<8t szS))—

= o (VI - [ V)~ VU (319

=0; (3.1.8)

In order for Eq. (3.1.7) to be satisfied, we are led to write

Oms = o (B 6] — 1 :0505101) =

= ——4:2 0;(n 8;0;1In ) , (3.1.10)
which admits the identification
. :
Pii = = p0;0;1n . (3.1.11)
In principle, to the right hand side of Eq. (3.1. 11) could be added an
arbitrary symmetric tensor field Cj; such that 9;C;; = 0: For example,

in ref. [66] the pressure tensor is identified with

K2 , 72
4mZv poi+ 4m

P; = ——pO;lnpb;ilnp, (3.1.12)

and it is easy to check that
8]’Pij = ijij . (3113)

Hence, at this level of the treatment, it seems there is no reason to prefer
Eq. (3.1.11), or Eq. (3.1.12), or some other expression; nevertheless, we
shall continue to use Eq. (3.1.11): This choice will be justified in Sec. 3.3.

We have proved the remarkable result that the system of Egs. (3.1.3),
(3.1.7) and (3.1.11) is equivalent to the Schrédinger equation (3.1.1),
once a correspondence between p and v on the one side and % on the
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other is established by the Eqgs. (3.1.4), (2.3.15) and (2.3.17). It is
therefore possible to associate to each quantum mechanical problem a
corresponding hydrodynamical one, formulated for a fluid whose pres-
sure tensor is linked to the density by Eq. (3.1.11).

These conclusions are rather exciting, but we must be very careful
about their interpretation; it is by no means obvious, in fact, which
meaning to attribute to the quantities p, v and p;;. We shall therefore
try now, to discuss some features and consequences of the formulation
developed, which may suggest a possible interpretative line.

Let us begin with a remark of formal character. The quantities
;L(X,t), j(x7t)7 and

IL;(x,t) = pij(x,t) + p(x,8) vi(x, t)v;(x,1) , (3.1.14)

can all be represented as expectation values of operators. This is a
straightforward consequence of the Egs. (2.3.12), (2.3.14), and (2.3.21),

which we rewrite here as®:
<¢’ 2 (Xat)w)) =m |¢(X,t)|2 = /-L(Xat) ) (3'1'15)
(81305, 01) = 5 96,1 T 9x,1) = i) (3.1.16)

2

- A
(|1 (%, ) [4) = ~ ik (%,1) 80 ln p (x, 1)+
Fu (X%, 1) vi(x,t)v(x, 1) = I;(x,t) . (3.1.17)

The existence of operators fi(x,t), j(x,t), and ﬁij(x,t), whose expec-
tation values are, respectively, (3.1.4), (3.1.5), and (3.1.11), is rather
difficult to justify, if quantum theory is supposed to provide a complete
description of a single particle: It is not clear in fact, which observables
should they represent in such context. It is one of the requirements that
a viable interpretation must fulfill, to clarify this point.

3We drop the subscript in I:I,;j, since we are obviously referring to the Weyl-ordered
stress tensor operator, which is the only one whose expectation value allows to extract
a pressure tensor which coincides with p;; defined in Eq. (3.1.11).
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Let us now discuss a simple specific example: A particle contained
in a rectangular box of sides L;, Ly, Ls. The wave function [69)]

P(x,t) = e"%Eﬂ / L1§2L3 sin <ngzrw1> sin (%2—;—@) sin (n—zg—mg)

(3.1.18)
corresponds to an eigenstate of energy with eigenvalue
w2h? (n?  ni n} 4
E=—|=2+2+=2, 3.1.19
om (L{ +L§+L§) (3.1.19)

where n; are positive integer numbers. Inserting the expression (3.1.18)
into Eqgs. (3.1.4) and (3.1.11) we find that p;; is diagonal, with
2522
P11 = —f%—%;—i—; sin? (%}mz) sin® (%m) , (3.1.20)
and similar results for py; and pss. The component p;; (no summation
over i) represents a pressure along the i-th direction which, according
to Eq. (3.1.20), does not depend on z;: On the walls of the box, this

pressure is maximum at the centre, and vanishes at the edges; the mean

value of, say, pi; on a face normal to z; is

Lj

L
1 ¢ n2m2h?
51y = d ofd )= — 3.1.21
pu Lngo/ m“o 73 pui(%, ) m L3 Ly Ly ( )

It is striking to notice the complete agreement between Eq. (3.1.21) and
the result given by the standard way to calculate pressure on the walls
of the box [69, page 67]; it is important to remark, in fact, that the
tensor p;; as we have introduced it, had until now only a formal role,
and there is not therefore any evident reason why it should represent a
physically meaningful pressure: The coincidence expressed by the result
(3.1.21) is thus something unexpected, and it must find an explanation
in the interpretation of the formalism which we are looking for.

Another puzzling consequence can be obtained observing that pi;
given in Eq. (3.1.21), can be also regarded as the average, over the
entire volume of the box, of the corresponding component of the pressure
tensor; taking into account the analogous expressions for Py, and pss we
can write, remembering Eq. (3.1.19),

—trp=-— (3.1.22)



where p stands for the entire averaged pressure tensor, and V = [, L, L5
is the volume of the box. The relation (3.1.22) is strongly reminiscent
of the equation of state

2
PV =3E (3.1.23)

for a perfect gas, in which E represents the total thermal energy. Again,
we ask to ourselves: Is this a simple coincidence, or is it a symptom of
some subtle analogy existing between these two, apparently totally dif-
ferent, systems? ’

Another specific example which is worth analyzing is that of a free
particle with gaussian wave packet centered in x = 0 at the time #o:

1 x?
2
[h(x,t0)|* = iR <P (-*2‘}‘27) ; (3.1.24)
where R gives an estimate of the gaussian’s width. We know that the
Schrédinger equation with U = 0 predicts that the packet will spread in
such a way that it doubles its width in a time

R?
Esone ~ o (3.1.25)
h
In the hydrodynamical formalism, it is straightforward to compute
R
Pii = e 6i; =pby ¢ (3.1.26)

The pressure given by Eq. (3.1.26) will cause the gaussian perturbation
in the fluid to suffer a “dynamical” spread determined by the Euler
equation (3.1.7), which becomes now, at ¢t = t,,

Dv K2

VYo" ..
i amzRz "V H

A rough order of magnitude estimate gives for the acceleration the value

(3.1.27)

hZ

m_'—z‘———m 3 (3.1.28)
so that the perturbation will increase its size, in the time ¢, by
R*t?
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requiring this length to be equal to R we obtain the time thyqr during
which the width of the perturbation is doubled:

mR?
thydr ~ o (3.1.30)

We are thus led, comparing Eq. (3.1.25) and Eq. (3.1.30), to interpret the
spreading of wave packets as an effect of pressure; the physical meaning
of this attractive statement is nevertheless still obscure, and has to be
clarified in an interpretation of the hydrodynamical formalism.

3.2 Interpretation

The few examples now presented, all seem to point toward an interpreta-
tion in which the fluid is taken seriously as something really “existing”.
Yet, such a concept is difficult to conciliate with some features of quan-
tum theory which follow straightforwardly from experience, such as the
relation between the wave function 3 and the probability of presence for
the particle, and the corpuscular aspects which particles exhibit during
their detection.

To understand better the nature of these problems let us consider,
for example, the scalar field p(x,t). It is clear that in the hydrody-
namical formulation given above, its role is that of density of the fluid;
nevertheless, going back to the definition (3.1.4) we see that, except for
the coefficient m which fixes the scale, 1 (x,) is essentially the squared
modulus of the wave function, |#(x,t)]?. In the Copenhagen interpre-
tation of quantum theory [37] this quantity represents the probability
density for the particle to be found at the point x during a measurement
of position performed at the time #: It is not clear, therefore, how to
conciliate this point of view with the hydrodynamical formulation in a
way which may go beyond a mere formal analogy. Alternatively, one
would be tempted to adopt an interpretation a la Schrodinger [70], in
which the particle is seen as a perturbation in a fluid of density x; as at-
tractive as this picture may look in our context, nevertheless we believe
that it could not be maintained, because of the unavoidable difficulties
connected to the process of reduction of the wave function [37]. It would
be necessary, in fact, to assume that in the course of a measurement of

position, the perturbation in the fluid becomes sharply localized at a
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single point x of the space, with a probability proportional to p(x,1):
Such an assumption looks so unnatural that we find it to be sufficient for
abandoning this interpretation, in which the fluid is naively considered
to have a real existence in the physical space.

The problems encountered in these attempts of interpreting the hy-
drodynamical formalism in terms of conventional schemes can be traced
to the corpuscular aspects of quantum particles, which are hardly com-
patible with the concept of fluid. It is well known from kinetic theory,
however, that there exist systems, like e.g. gases, which at a mMacroscopic
level are very well described by a fluid model, but reveal a corpuscular
structure when analysed on a sufficiently small scale. In these cases it
is clear that a hydrodynamical formalism is pertinent only to a descrip-
tion of ensembles, while it turns out to be completely unsuccessful if
one tries to apply it to the treatment of situations in which the peculiar
behaviour of the individuals is relevant. In order to be more explicit
on this point, let us briefly review some features of the classical kinetic
theory of gases [71], which will turn out to be useful later, when we shall
come back to the problem of interpreting quantum theory.

The system that classical kinetic theory deals with is a gas composed
of a very large number NV of molecules. According to the laws of mechan-
ics, the state of the gas at a given instant of time is completely specified
if the coordinates and the momenta of all the molecules are given at
that time; these data correspond to a point (X1,+.+, XN} P1,- -, Px) In
the 6V dimensional I'-space. As known, different points of the I'-space
can be indistinguishable at a macroscopic level: This leads to refer the
concept of a macrostate not to a single copy of the gas, but rather to
an entire ensemble of mental copies of it, all corresponding to the same
macroscopic conditions even if, at the microscopic scale, their states
can be totally different. The mathematical device which describes such
an ensemble is the density function® p(xi,...,Xwn;P1,--.,Dnlt), taking
real nonnegative values and representing the probability density in the
I-space that a generic element of the ensemble be in the microstate
(X1, Xy;P1,-..,Py) at the time ¢. If the gas is a hamiltonian sys-

*The unusual notation p(...]t) has been adopted in order to stress that this is a
conditional probability. For more details about the role of this concept in quantum
theory, see ref. [34].
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tem, the function p satisfies the Liouville’s theorem:
a P 3N )
ot 2

where the coordinates and the momenta have been relabeled in an ob-

dp . .Op\ _
5ot e 3pa) =0, (3.2.1)

vious way.

The information contained in the function p is actually overabundant
when dealing with most of the applications of kinetic theory; it is more
useful to consider the distribution function

f(x,plt) = N/d3:cz...d3de3p2...d3pN
p(X,X2,..., XN P, P2y-- -, Pnlt) (3.2.2)

defined on the six dimensional u-space under the further assumption
that all the molecules are equivalent. The interpretation of f is straight-
forward: f(x,pl|t)/N is the probability density in the p-space that a
generic molecule of the gas have position x and momentum p at the
time t; it is obvious that, if p is normalized to one, f turns out to be
normalized to N. The distribution function satisfies the equation

%—f + 2 Vxf =Vl - Vpf = (%{;)cou , (3.2.3)
where U(x,t) is the potential energy due to an external field, while the
right hand side is the variation of f due to molecular collisions; it is the
main problem of kinetic theory to find the function f as a solution of
Eq. (3.2.3) for a given molecular dynamics.

The concept of distribution function allows to establish a connection
between the microscopic treatment of the gas and its hydrodynamical
description; in fact, since f contains no information about the detailed
motion of the molecules, it can be successfully used in order to define
macroscopic quantities as averages; the simplest of these is the mass
density® '

i(x,t) =m / &p f(x, plt) - (3.2.4)

5We denote by a tilde the quantities defined here, in order to distinguish them from
the corresponding omnes treated in Sec. 3.1.
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We can also define a mass current

tﬁz/d%prQMG, (3.2.5)
and consequently the macroscopic velocity of the gas
- j(x,1)
vix,t) = = . 3.2.6
(1) £ (x,1) ( )

Using the velocity (3.2.6), a pressure tensor can be written as
Fiixt) =m [ & @Lwﬁmﬂ(ﬁwauw)ﬂnmw.@zﬂ
m

The tensor p;; is connected to the stress tensor ﬁij by the relation

fLis(x,) = — [ ppips f(x,plt) =
= pw(x,t) + [ (%, 1) Di(x, 1) 0;(x, 1) . (3.2.8)
Finally, the temperature T and the heat flux vector q are defined as

~2——k~,u(x ) T(x,t) = %z_/d3p (—1% — V(x,t))z f(x,plt) , (3.2.9)

where k is the Boltzmann’s constant, and

ax,t) = 2 [ (%—v@t»(p m¥(x,)) F(x,plt) . (3.2.10)

Let us finish this quick review of the main ideas of kinetic theory
observing that to each quantity which is conserved in a collision between
two molecules, there corresponds an equation for macroscopic quantities.

In particular, the conservation of mass leads to the continuity equation

9i
8t+VJ 0; (3.2.11)

the conservation of momentum to the Euler equation

Dv;
dt

while the conservation of energy is associated to

— ;P — S{ a.U ; (3.2.12)

_ DT 2o . 2~~



where now

| &

0
AN V4 3.2.14
5tV (3.2.14)

2

t
and

A= 1;—(8@. v 05%;) (3.2.15)

We have preferred to review the previous material rather than simply
to quote the existing literature, in order to establish a terminology which
may allow to be as much precise as possible. In fact, we are strongly
convinced that, when discussing such delicate topics as the present one,
it is necessary to make all the possible efforts in order to avoid seman-
tic misunderstandings, even at the expenses of the compactness of the
treatment.

Before we return to the problem of interpretation of the quantum
hydrodynamical formalism, we want to make a remark which, although
it still deals with the classical kinetic theory, is of great importance in or-
der to fully understand the rest of the paper. Let us suppose that, rather
than a gas, we have now a single particle whose behaviour is not exactly
known; as an example, we can consider a grain of pollen suspended in
water and undergoing a brownian motion. It is possible to define a den-
sity function in the I'-space, which completely describes an ensemble of
particles which have been equally prepared from a macroscopic® point
of view; however, since now the I'-space coincides with the p-space,
such function may well be identified with the distribution function” and
consequently denoted as f(x,p|t); it is obvious that f is, in this case,
normalized to one. We can reformulate these remarks saying that, in
the case of a single particle, the distribution function can be considered

6The term “macroscopic” is used here in an improper way. What we really mean is
that even two “equally prepared” systems may be not identical if considered in great
detail. For example, two grains placed at the same point in water with the same initial
velocity will be found, in general, at different places after some time: This is due to
the fact that the concept of “equal preparation” did not involve the molecules of water
in the vessel. It is to this coarse-graining in the preparation of the initial state that
we refer using the word “macroscopic” in the present context.

"The density function will not necessarily satisfy the Liouville’s theorem, because
the particle is not necessarily a hamiltonian system (for example, in the case of the
grain subjected to brownian collisions, these last cannot be described by a potential);
translated in terms of the distribution function, this amounts to the appearance of the
collisional term in Eq. (3.2.3).

o4



as the density function describing an ensemble whose members are men-
tal copies, all equally prepared at the macroscopic level, of the particle.
A question which arises immediately at this point is the following one:
With the distribution function f(x, p|t) we can calculate, following the
definitions (3.2.4)-(3.2.10), the quantities f, j, ¥, pi;, 7 and q; what
meaning, if any, can be attributed to them in the single particle case
which we are now discussing?

There is clearly a qualitative difference between this situation and
that of a gas consisting of a very big number of molecules; while for this
latter fi, etc. can be regarded as measurable properties of the system,
except for statistically small fluctuations, in the former it would be
evidently wrong to interpret e.g. [ as the mass density associated to
the particle. It is obvious in fact that 4 could be spread over a large
region of space, while the particle is known to be a pointlike object, with
a distribution of mass which may be approximated by a delta function.
The solution of the riddle is not too difficult, and can be understood as
follows: Let us consider a gas made of N noninteracting copies of our
particle; the distribution function for this new system is

f'(x,plt) = N f(x,plt) , (3.2.16)

defined in the p-space of the gas, now different from the 6 N dimensional
I-space. With the help of (3.2.4)—(3.2.10) it is possible to determine the
macroscopic variables for this gas, which we shall denote as i/, j/, ¥/,
Pis» T’ and ': These have now the usual operational meanings of mass
density, mass current, and so on. The corresponding quantities in the
case of a single particle are related to these, operationally well defined,
observables through the relations i’ = Nj, j = Nj, v/ = ¥, pi; = Npij,
T" = T and @ = N@, which all follow from Eq. (3.2.16). It is now
straightforward to interpret the unprimed quantities as the contribution
given by an average particle to the primed ones which are, as we have
already noticed, physically meaningful in the sense that they can be
directly measured on the gas. The example of the grain subjected to
brownian motion is particularly useful in order to clarify the meaning of
this statement: If we have a vessel containing water, in which a single
grain is introduced with known position and momentum at a time #,
we can calculate the probability density f(x,p|t) at the time ¢, and
consequently all the quantities fi, J, etc; however, we do not expect these
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to be meaningful for the single system we are dealing with, but only in
a statistical sense, as averages performed over an ensemble of equally
prepared systems. For example, there will certainly be no increase in
the pressure on the walls of a vessel when a grain is immersed in it: The
only measurable consequence could be the detection of discontinuous
hits due to the collisions of the grain against the walls; but averaging
these hits over a large number of vessels each one containing a suspended
grain we shall obtain a “pressure” whose value is in agreement with
the prediction which can be extracted from the tensor field p;;(x,1).
However, if we suspend in the water not only one, but rather a very large
number N of grains, we shall measure an enhancement of the pressure
on the walls which will be due exactly (apart from fluctuations) to the
effect of p}.(x,t) = Npij(x,t); this is the well known phenomenon of
osmotic pressure. Similar considerations can be performed for the other
quantities f, J, etc.

Our conclusions can be summarized claiming that, while for a gas
the macroscopic quantities derived from Egs. (3.2.4)—(3.2.10) have an
operational meaning even for a single copy of the gas (within the limits
fixed by the existence of statistical fluctuations), in the case of a single
particle they are only appropriate to a description in terms of ensembles,

and can in no way be used to describe individuals.

The situation for the quantum particle is very similar to the one now -
discussed; in both cases we are dealing with a theory which admits a
hydrodynamical formalism, although it treats a system composed of a
single particle: Hence, one would be tempted to draw the conclusion
that quantum mechanics, too, is a theory which successfully describes
ensembles, but fails in giving a detailed treatment of the individuals’
behaviour. However, while in the classical case the statistical character
of the hydrodynamical formalism is justified by the possibility to write
i, j, etc. as averages of quantities related to individuals, this connection
is lacking in our treatment of the corresponding variables in quantum
theory. In other words, it is not clear, at this point of the discussion, if
it is possible to write equations like (3.2.4)-(3.2.7) which could generate
the hydrodynamical quantities defined in Eqs. (3.1.4), (3.1.5), (2.3.17)
and (3.1.11) for quantum mechanics; moreover, it is not evident if, with
the help of equations of the kind of (3.2.9) and (3.2.10), one could define
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a “temperature” T'(x,t) and a “heat” flux vector q(x,t) which satisfy
an analogue of Eq. (3.2.13).

In order to solve these problems, let us try first to evaluate density,
current, and so on, with the use of the kinetic equations, and to compare
the results so obtained with the expressions given in Sec. 3.1 for the
corresponding quantities. In so doing, a function of x, p and # must be
used which play the role of distribution in the u-space: We shall use for
this purpose the Wigner function [36,73]

1
(wh)?

Po(x,plt) = —o [ 69(x + £, PPy — £,),  (3.2.17)

although it does not satisfy all the requirements necessary in order to
be properly called a distribution; we postpone a short discussion of the
oddities of (3.2.17) to Ch. 5.

Let us compute the mass density first; we have

m [ 4% P, plt) = mlib(x, 1) = pr(x,1) (3.2.18)
For the mass current we find instead
3 _ 1 / 34 73 2ip-¢/h e _
J PP Pl plt) = 5 [ @6 PR (x4 £,0) T p(x— £,1),

(3.2.19)
where an integration by parts has been performed and the derivatives
are done with respect to x; remembering the Fourier representation of
the delta function, we get

[ EpD Pale,plt) = 0,1y Tl ) = jlx,t) . (3220)

The quantities obtained “kinetically” by Eqs. (3.2.18) and (3.2.20) are
exactly the same which have already been defined, in Eqgs. (3.1.4) and
(3.1.5), directly from the Schrédinger equation; consequently, they will
satisfy a continuity equation, and the definitions (3.2.6) and (3.1.6) for
the velocity will agree with each other. The next step is to work out the
expression

—nl;/dsp (pi — mui(x,1))(p; — mv;(x,1)) Pw(x,plt) ; (3.2.21)

the rather long calculations are reported in App. C, and establish the
identity between (3.2.21) and the pressure tensor (3.1.11): We have
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thus been able to rederive the hydrodynamical quantities defined in
Sec. 3.1 by standard techniques of kinetic theory using, in the place
of the distribution function, the Wigner function P, (x,p|t). However,
we can now do even more, defining a temperature 7(x,t) and a heat
flux q(x,t) and checking if they satisfy an equation like (3.2.13) as a
consequence of the Schrodinger equation. We find (App. C)

T(x,t) = gy [ P~ v Balxoplt) =
= — 1;/:m Viinp(x,t), (3.2.22)
and (App. D)
alx,t) = 5 [ @p(p— mv(x,0)}(p — mv(x,1)) Pu(x, plt) =
- —8—;-,u(x,t) Viv(x,t) . (3.2.23)

In order to check if the heat transfer equation

DT 2 2
— = —=V .q— =pi; Ay 2.24
T 3V a4 gpihi (3.2.24)
holds for the quantities now defined®, let us first write down the expres-

sion of A;; for our irrotational velocity field (2.3.17); it is trivial to see
that
_m

Aij = “2“(81'7)3' -+ 6;,'7.1,;) = m&»vj . (3225)

The left hand side of Eq. (3.2.24) can be transformed with the help of
the continuity equation (3.1.3), finding

DT R A2
kpy—=V.[—V? —— 0;v; 8;0;1ln b, .2.26
7 (IZmV v) + 6m Orv; 0:0;1n p (3 )

which, reminding Eqgs. (3.2.23), (3.2.25) and (3.1.11), turns out to be
exactly Eq. (3.2.24).

81t is important to notice that the Egs. (3.1.3), (3.1.7) and (3.2.24) do not follow
straightforwardly from the representation of 4, etc. in terms of P, unless an equation
for the Wigner function which play a role analogous to that of Eq. (3.2.3) for f is
specified. Such an equation would be, however, equivalent to Eq. (3.1.1), and we
prefer therefore to use directly this last.
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We find this to be a remarkable result, since it shows the powerful-
ness of the “kinetic” technique now introduced. With the help of this
new method, in fact, we have not only succeeded in reproducing the
continuity and the Euler equations (3.1.3) and (3.1.7) for the spinless
nonrelativistic quantum particle, but we have been able even to define
new hydrodynamical variables in a consistent manner, in such a way
that the validity of the heat transfer equation (3.2.24) is also estab-
lished. It is important to remark that Eq. (3.2.24) could well have been
obtained directly from the Schrédinger equation, once the expressions

A2
=~ VZInp (3.2.27)
and
K2
q fenerd —‘8—‘T;L‘/1. VZV (3.2.28)

for the temperature and the heat flux have been adopted; however, there
is no justification for these definitions in such a context, and the task
of deriving Eq. (3.2.24) would thus be an extremely difficult one, there
being no argument which could help in recognizing the mathematical
structure of T' and q. This may explain why, although derivations of
Egs. (3.1.3) and (3.1.7) can be found in the literature [65,67], no one
has been given for Eq. (3.2.24), at least to the author’s knowledge.

The most important consequence of the method discussed in this
section is, in our opinion, represented by the fact that it allows to derive
quantum mechanics from the Wigner function P,, in exactly the same
way in which the macroscopic laws of a gas® can be derived from the
distribution function f. Let us analyse this point more in detail. In the
kinetic theory of gases, the molecules are supposed to behave according
to the laws of classical mechanics; this leads to define a distribution
function f(x,pl|t) which satisfies Eq. (3.2.3) and allows the hydrody-
namical and thermodynamical quantities [, j, etc. to be defined. As
we have already seen, this can be done even when dealing with a sin-
gle particle, provided we accept that the resulting “macroscopic” theory
has only a statistical meaning, in the sense that it fully describes only
ensembles, being essentially incomplete when considered at the level of

90r of a dilute solution, or of a plasma, etc.
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individuals. Similar considerations can be drawn for quantum theory;
as we have shown in Sec. 3.1, the Schréodinger equation for a spinless
particle is mathematically equivalent to the hydrodynamical equations
for an irrotational perturbation in a fluid whose density, velocity and
pressure fields can be related to the wave function through Eqs. (3.1.4),
(2.3.17) and (3.1.11). But such a hydrodynamical formalism, when con-
sidered in the light of Egs. (3.2.18), (3.2.20), etc. reveals unquestionably
its “macroscopic” character, and its intrinsically statistical meaning if
applied to the treatment of a single particle. Being the hydrodynamical
formulation equivalent to the Schrédinger equation, we are thus led to
conclude that the quantum mechanical description is necessarily a sta-
tistical one, and that although it fully represents the behaviour of en-
sembles of equally prepared systems, it fails in giving a detailed account
of the individuals’ behaviour. This is essentially the so called statistical
interpretation of quantum theory, strongly supported by Einstein in the
course of his debate with Bohr [37,57,27].

The inconsistencies between the fluid model and the corpuscular as-
pects of the particles, which we have put in evidence at the beginning
of the section, no longer constitute a problem for the theory; it is now
evident, in fact, that the hydrodynamical quantities (and consequently
the wave function or, if we prefer, the state vector) are appropriate only
to the description of ensembles, while the corpuscular features refer to
individuals: The origin of the above-mentioned problemisis therefore the
mistake, whose nature is evidently semantic, of speaking about a single
particle referring to concepts which only make sense for ensembles. A
clear example which may illustrate this point is that of the single grain
of pollen subjected to brownian motion: As we have already pointed out,
in this case the hydrodynamical quantities can well be defined in order
to provide a statistical description, but to associate them to physical
properties of a specific grain would lead to totally incorrect conclusions.

Some of the questions raised in Sec. 3.1 find a natural answer in the
context of this interpretation of the formalism. The existence of the
operators i(x,t), j(x,t) and I;;(x,t) given by Egs. (2.3.11), (2.3.13)
and (B.1) was hard to understand in the single particle picture, being
not clear which observables they were associated to; but if we assume
|¥) to represent an ensemble £ of very many equally prepared copies
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of the particle, it is evident that 4 and j can be seen as representing
observables on subensembles of £. In order to be more explicit, let us
restrict our attention to the case of f; if

E=U &, (3.2.29)

where each subensemble £, contains the same large number N of equally
prepared copies of the particle, and n is also very large, it will make
sense:

i) To consider the mass density as an observable of each &, whose
value is defined measuring the position of the particle in each copy
belonging to &, and then defining the ensemble average of them
at the point x at the time ¢; more precisely, if r labels the copies
of the particle in &,, we define the mass density in &, as

w(x, 1) = % §1_Vj &3 (x —x9(1)) (3.2.30)

x{*)(t) being the position of the r-th copy of the particle in &, at
the time ¢;

i) To assume [¢) to describe also the ensemble £ = {£,,...,&,}, whose
members are now the subensembles &,.

The operator fi(x,t) is now clearly associated to the measurements of
density in the &,’s, performed as discussed above; its eigenstates will
be those in which the u(®)(x,t) are all the same: It is evident that this
can happen only in the case of eigenstates of position, consistently with
what expressed by Eq. (2.3.10). The average value of the mass density
over the ensemble £ is given by |

;311-—‘

Eij @)(x,t) = 253 x(®(t)) (3.2.31)

which in the limits n — +o00, N — +o0is in agreement with Eq. (3.1.15).

This interpretation of y, j, p;; gives, as a by-product, further evidence
for the unreliability of Eq. (2.3.1) as description of a single system. As
we have proved in deriving (2.3.27), in fact, the various components
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of (¢]Tab|¢)) reduce, in the nonrelativistic limit, to the hydrodynamical
quantities g, j, IL;; introduced in Sec. 3.1; since these objects have no
meaning for an individual, but only make sense when an ensemble is
considered, it follows that the same has to be said for (drlfab]¢) and,
consequently, for Eq. (2.3.1).

The identity between the value (3.1.21) of the pressure and the result
of the more physical calculation given in ref. [69] is no longer mysterious,
too: They are in fact two different ways to evaluate the same quantity.
It is important to remark, however, that this pressure is exactly on the
same foot of the osmotic pressure for a single grain suspended in water:
It has only a statistical meaning. After having clarified this point, we
can predict that a particle contained in a box, in an eigenstate of energy,
will exert discontinuous hits on the walls, and that only an average of
these hits will turn out to correspond to the value given by Eq. (3.1.21)
for the pressure.

The similarity between Egs. (3.1.22) and (3.1.23) can be understood
noticing that Eq. (3.1.23) can be established even for the case of a single
molecule whose motion is “randomized” by some process as, for example,
a brownian motion; the only delicate point is that p and E have now to
be considered in the sense of statistical averages. Keeping this analogy
in mind, and remembering that trp is already an average quantity, we
should look for a reason for identifying the energy E of the quantum
particle with some ensemble average. This can be successfully done as
follows: The kinetic formalism gives, for the energy density e(x,1),

g(x,t) = /d3p (% - U(x,t)) P, (x,plt), (3.2.32)

which becomes, remembering Eq. (3.2.17),

h? ‘ R? « .
£ = ——(P Vi + V2 ")+ —V (P Vi + Ve h)+p " U . (3.2.33)
4m 8m
It is possible to define also a local energy W(x,1t) as
™m .
Wi(x,t) = ——e(x,1) ; 3.2.34
() = = ) (32.34)
using Egs. (2.3.17) and (3.2.22) we have
1 3
W(x,t) = §mv(x,t)2 + U(x,t) + 5kT(x,t) , (3.2.35)
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which is an evocative splitting of W into its “macroscopic” and “micro-
scopic” components. Finally, we shall call global energy E the integral

E E/dsm e(x,1) (3.2.36)
which can be rewritten as
E= / P ip(x, ) H(x, —ihV 1) $(x, 1) , (3.2.37)

the total divergence in Eq. (3.2.33) not contributing to the result: It is
thus immediate to identify £ with the quantum mechanical expectation
value for the particle energy. Combining now Egs. (3.2.34) and (3.2.35),
and remembering Eqgs. (3.2.27) and (3.1.11), we get
g—trﬁ = gE - /d3w (-;—,uvz e %U) , (3.2.38)

where V' is the volume of the region over which 9 is different from zero,
and p is the pressure tensor averaged over such region. Eq. (3.2.38)
reduces to Eq. (3.1.22) for v = 0, U = 0, and it is easy to interpret
also in the general case; keeping in mind that all the quantities in it
have to be considered as ensemble averages, the right hand side can be
regarded (apart a numerical factor) as the “thermal” contribution to the
energy: The terms which are subtracted to 2E/3 come in fact from the
“ordered” motion.

It is worth noticing that the equation of state for the fluid quantities
is, in the case of the quantum particle,

1 k
—trp=—puT, (3.2.39)
3 m

as it follows straightforwardly from Eq. (C.6). Eq. (3.2.39) is the same
relation holding for a perfect gas, but there is nevertheless a strong
difference between these two systems: While for the ideal gas pressure,
density and temperature are generally, except for the equation of state,
arbitrary, in the case of the quantum particle the pressure tensor and
the temperature are determined by the spatial distribution of density,
through Egs. (3.1.11) and (3.2.27). This is a situation which, because
of the less freedom involved, reminds more the case of a gas subjected
to a defined thermodynamical transformation.

63




At the end of Sec. 3.1, we noticed that the spreading of wave packets
can be alternatively formulated as an effect of pressure. Adopting the
point of view of the statistical interpretation, and keeping in mind the
analogy with the kinetic theory which was stimulated by the representa-
tion of u, j, etc. in terms of Py, such a result has nothing extraordinary
in it: Actually, it is nothing else than an example of the well known
process of diffusion. To clarify this point, let us come back to the case
of the grains subjected to brownian motion; creating a concentration
in a region of the vessel and waiting for some time, the density of the
concentration will lower, while its size will increase, simply for the el-
ementary reason that there will be more grains leaving the region of
over-density than entering it. The same argument can be applied to
the case of a single grain, provided density, pressure, etc. are now con-
sidered as quantities characterizing an ensemble, and all the reasoning
are performed in a statistical sense. It is thus clear that, in the case of
the quantum particle, if we regard (3.1.24) as the probability distribu-
tion for position in an ensemble, it is perfectly reasonable to interpret
the spread of the wave packet as the result of a diffusion process, even
though only at a statistical level.

3.3 Beyond Quantum Theory?

_he conclusions reached until now can be summarized saying that quan-

m theory, in both the hydrodynamical and the standeud (Hilbert
space) formulations, describes completely an ensemble of equally pre-
pared systems, but fails in giving a satisfactory picture of the behaviour
of .a single individual. As we have already noticed, this is essentially
the content of the statistical interpretation and is not new at all, dating
back to Einstein [57,27]. The point of view that we have developed is,
however, richer, since it provides some hints about the character of the
processes which may possibly take place beyond the limits of the quan-
tum mechanical description. Our presentation shows in fact a striking
similarity between the treatment of particles as given by quantum the-
ory, and the statistical behaviour of molecules which arises in the context
of kinetic theory; this makes unavoidable to ask such questions as: Can
we represent the quantum particles as following well defined — even if
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unspecified ~ trajectories? Can the statistical features of quantum me-
chanics be reduced to a matter of incomplete description? Can quantum
theory be regarded as the “thermodynamical limit” of something more
fundamental?

Before tackling the task of trying to answer these questions, let us
briefly illustrate the situation for what have been our classical coun-
terpart in Sec. 3.2, i.e., the grain of pollen suspended in water and
subjected to brownian motion. In the model which is generally adopted
to understand this system, the water molecules collide with each other
and with the grain; because of the large size of this latter with respect
to the molecules, in general the hits over the grain result in a zero net
force on it; however, from time to time this balance is not exact, and the
grain changes its momentum very quickly: This gives rise to the zigzag
path which is typical of the brownian motion. Both the grain and the
molecules of water move, in this model, according to the laws of classical
mechanics: In particular, the concept of trajectory has a well defined
meaning and, what is even more important, the entire system is a deter-
ministic one. However, it is clearly impossible, in practice, to prepare
two copies of the water in the vessel which are in the same microstate:
This implies that even preparing, in two distinct experiments, a grain
in the same initial state'®, its future behaviour will be ruled by laws
which are essentially statistical. Nevertheless, it is important to keep
in mind that the statistical features of this description have their origin
in deficiencies of the process of state preparation; although such inaccu-
racy requires a statistical theory in order to account for the experimental
results, it is not incompatible with the fundamentally deterministic char-
acter of the laws (classical mechanics) which rule the behaviour of the
individual systems. As we already know, the mathematical object which
encodes all the informations which are relevant in order to describe the
statistical behaviour of the grain (or, more precisely, the behaviour of
a statistical ensemble of grains), is the distribution function f(x,plt):
The knowledge of the microscopic theory underlying brownian motion
depends thus on one’s ability to derive the peculiar features of f (i.e.,
Eq. (3.2.3) and the form of the collisional term in it) in terms of classical
mechanics and general probability theory.

'0That is, with the same initial position and momentum.
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It is remarkable that such a kinetic model to explain brownian mo-
tion can be established indirectly, i.e., without observing experimentally
the motions of the molecules. The strategy to follow is not particularly
difficult: It is sufficient, in fact, to assume the validity of classical me-
chanics at the molecular level, together with some assumptions about
the particular system under consideration: This leads to find the distri-
bution function as a solution of Eq. (3.2.3). The knowledge of f(x,p|t)
allows then to derive some consequences which are macroscopically ob-
servable, and hence testable at the level of the laboratory. Actually, this
is just what Einstein did in 1905, in order to provide evidence in favour
of the atomic hypothesis [74,71].

The analogy between this well known case and the current situation
of quantum theory is quite evident, and we find it enlightening when
looking for a nontrivial answer to the third question we have asked
above: Is quantum mechanics the “thermodynamics” of some deeper
theory?

The possibility to represent the hydrodynamical quantities p, j, etc.
in terms of the Wigner function P,,, makes us rather biased in favour
of an affirmative answer. Nevertheless, this only shifts the problem,
because in such a case we must be able to give a derivation of the form of
P,,(x,plt) in terms of the theory which lies beyond quantum mechanics
and governs the behaviour of individuals, in a way analogous to that
in which f(x,p|t) is deduced from classical mechanics. Contrarily to
what happens in this last case, however, the underlying theory is now
unknown: The most natural thing to do is therefore to analyse the
properties of P, in order to gather some information about such theory.

Before coming to this point, however, we should like to discuss the
concrete example of a theory of such kind which has been suggested
almost forty years ago, and is still under debate: Bohm’s theory [60,61].
The key idea on which it is based is to assume that the quantum par-
ticle possess a well defined trajectory, but that its motion is different
from the one predicted by classical mechanics, because of the presence
of an extra influence which can be described by a quantum potential
Q(x,t). In order to determine explicitly the expression of Q, let us
take advantage from the representation (2.3.15) for the wave function;
after substitution into the Schrodinger equation (3.1.1) and separation
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into the real and imaginary parts, one gets the pair of Eqs. (3.1.3) and
(3.1.8). The crucial point lies in recognizing that Eq. (3.1.8) has the form
of the Hamilton-Jacobi equation, provided S(x,t) is identified with the
Hamilton’s principal function and the particle motion is supposed to be
affected by the additional potential

h? V2|

Q(X,t) = —"2“?;; hN

In this theory, the continuous (fluid) and discrete (corpuscular) aspects

(3.3.1)

of the quantum particle appear therefore unified in the wave function
¥(x,t), whose modulus plays the role of “pilot field” for a particle de-
scribed, in a “classical” way, by the Eq. (3.1.8) for the phase S(x,1):
The primary meaning of |1(x, )| is hence, here, that of a field determin-
ing the quantum correction (3.3.1) to the classical equation of motion,
and it is only through some assumptions about the random features of
the environment that it turns out that |1(x,?)|? characterizes also the
probability density for the presence of the particle in x at the time ¢
[75,76]; the probabilistic interpretation of 1 is thus, in Bohm’s theory,
a consequence rather than a postulate.

It might seem, at a first sight, that Bohm’s theory could provide us
with what we were looking for, i.e., a theory of the individual particles’
behaviour which admits ordinary quantum mechanics as the result of
some kind of average process over statistical ensembles; we shall now
show, however, that this is not the case, and that Bohm’s theory itself
only involves average quantities, being thus so unsuccessful in describing
individuals as standard quantum theory is. In order to discuss this point,
let us consider first an example from classical theory [77]; for a perfect
gas with temperature T(x, t) and density fi(x,t), the pressure tensor is
diagonal, with p;;(x,t) = p(x,t) ;. If the gas is subjected to an external
field, so that U(x,?) is the corresponding potential energy per molecule,
the velocity field ¥(x,¢) must satisfy the Euler equation

Dv i
= = _Vj—wU 3.2
T p— VU, (3.3.2)

where D/dt is given by Eq. (3.2.14) and m is now the mass of a molecule.
For sake of simplicity, let us restrict ourselves to study the irrotational
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isentropic perturbations; we shall have, by hypothesis,
ﬁxﬂzévﬂmﬂ, (3.3.3)
for some scalar function S, and
p(x,t) = K a(x,t)", | (3.3.4)

with K a constant and v the adiabatic index. Substituting Egs. (3.3.3)
and (3.3.4) into Eq. (3.3.2) we get after some steps

aaf ! (VS) + U + :r‘—z‘—l‘mK[L’y_l = 0 . (335)

If we define now a “thermal potential” Q(x,?) as

O= L mKpt, (3.3.6)

Eq. (3.3.5) has the form of an Hamilton-Jacobi equation for S, with a
correction Q whose origin lies in the thermal features of the system!!. It
is clear, however, that Eq. (3.3.5) does not determine the motion of any
physical particle, but rather it describes the dynamics of the elements of
fluid or, if we prefer, it accounts for the averaged molecular motion; this
can be understood remembering that, from the Hamilton-Jacobi theory,
if a particle trajectory crosses the point x at the time ¢, its corresponding
momentum is

p(t) = V5(x,1) (3.3.7)
which, by Eq. (3.3.3), would give

p(t) =mV(x,1); (3.3.8)

but we know from kinetic theory that v only represents the macroscopic
velocity of the gas, which is the average of the molecules’ velocities:
Therefore Eq. (3.3.5) does not describe the motion of real molecules,
but only of fictitious ones which follow the streamlines of the flow. To
finish with this example, we want to remark that, even if we have always

11Actually, Q can be identified with the enthalpy referred to a molecule of gas [77};
having we instead considered an isothermal, rather than an adiabatic, flow, we would
have found the “thermal potential” to be just the Gibbs free energy per molecule.
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spoken about a gas, i.e., a many-particles system, the same arguments
and conclusions apply to the case of a single particle such as the grain
subjected to brownian motion in the water; the only difference, as it
is clear from Sec. 3.2, is that T, i and p have now to be reinterpreted
as ensemble averages, rather than concrete quantities of a fluid: The
Hamilton-Jacobi equation (3.3.5) describes therefore the dynamics of a
fictitious grain, obtained averaging over a large ensemble of grains all
prepared with the same initial conditions.

With the experience acquired in working out this classical analogue,
let us return to discuss Bohm’s theory; since we are examining the pos-
sibility that it might provide the “microdynamics” underlying standard
quantum theory and describing individual processes, we shall adopt the
point of view that Bohm’s theory should be consistent with the statisti-
cal interpretation developed in Sec. 3.2. In order to see more clearly the
analogy with the previous example, let us think to quantum mechan-
ics as expressed in its hydrodynamical formulation, and to Eq. (3.1.8)
as if derived from the Euler equation (3.1.7) in a way which is com-
pletely similar to the one in which Eq. (3.3.5) has been obtained from
Eq. (3.3.2): Formally, this amounts in practice to repeating, backwards,
the calculations performed in Sec. 3.1. It is now immediate to interpret
(3.1.8) as the equation describing the dynamics of the fluid elements;
in fact it is sufficient to notice that, by Hamilton-Jacobi theory and
Eq. (2.3.17), it follows

p(t) = VS5(x,t) = mv(x,t). (3.3.9)

We have now come to the crucial point of our argument: Eq. (3.3.9)
shows that what Bohm’s theory predicts is that the trajectories of indi-
vidual particles coincide with the streamlines of the flow in the quantum
fluid. Therefore, Bohm’s theory can be accepted as a treatment at the
“subquantum” level only if mv(x,t) is the momentum of the particle
when passing at the point x at the time ¢: Eq. (3.2.20) shows that this
is not the case, and that m v(x,t) should rather be regarded as an aver-
age momentum. Hence, it would be incorrect to assume Bohm’s theory
to be a description of physical processes of which quantum mechan-
ics represents, somehow, the “thermodynamics”: In fact Eq. (3.1.8) is
equivalent to Eq. (3.1.7) exactly in the same way as Eq. (3.3.5) is equiva-
lent to Eq. (3.3.2); this proves that Bohm’s theory describes phenomena
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exactly at the same level of the hydrodynamical formulation!?, and is a
statistical theory, too. As such, it does not give a more detailed treat-
ment than standard quantum theory do: The only difference lies in the
underlying picture, which admits the concept of particles’ trajectories
as meaningful. However, our analysis shows that these cannot represent
the real behaviour of particles, but have in the best case to be regarded
only as results of a statistical average. Such a conclusion seems to point
in the direction of theories like the Bohm-Vigier’s one [78] or Nelson’s
stochastic mechanics [62,63], in which the quantum particles are sup-
posed to follow trajectories which are intrinsically irregular, of which
those predicted by Bohm’s theory are the average.

A further remarkable consequence of our argument is that the quan-
tum potential Q(x,?) turns out to have no fundamental meaning, as
far as the behaviour of a single particle is concerned. In fact, just as
the thermal potential Q(x,t) is not relevant to the molecular motions,
but enters only in determining the dynamics of the fluid elements, so
®@(x,t) accounts for the quantum features of the motion at the ensem-
ble level®® | but cannot be meaningfully used in the description of the
behaviour of an individual. It follows that the quantum potential is not
the right object to consider when dealing with such fundamental topics
as nonseparability, since it may contain spurious features coming from
its statistical nature; we rather suggest to use the distribution function
P,y (x,p|t) as a better tool in treating these delicate subjects.

The example now considered shows how difficult and intricate it
may be to construct in detail a “subquantum” theory, which could ac-
count for quantum mechanics at a statistical level of description. It
seems therefore wise not to try to invent explicitly any of such theories,
but rather to concentrate the efforts in inferring something about their
structure, through a careful analysis of the properties of the phase space
distribution function. When starting this program, however, we imme-

12And, of course, of the standard Hilbert-space formulation based on the Schrédinger
equation.

13Under this respect, the dependance of Q on the probability distribution ||? (or on
the density p, if we prefer), is not a curious feature at all, and could even be expected
a priory; in fact, if @ has to describe an average motion, it must contain information
about the ensemble over which to average, information which resides in |¢|*. The
same argument can be used to argue that Q must depend on /.
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diately runinto a serious problem, namely the nonuniqueness of the joint
quasiprobability distribution P(x,pl|t). It is well known, in fact, that
there is an entire class of them [79,80], each one correctly reproducing
the results of standard quantum theory; this arbitrariness can be traced
to the existence of many ordering rules for constructing quantum oper-
ators [131], and both are connected to the lack of a unique prescription
in the evaluation of “skeletonized” path integrals (81,82,83,34,85,86,37).
On the other hand, if we wish to interpret a distribution function in
terms of “subquantum” phenomena, such nonuniqueness appears very
tricky, and it would be attractive to guess that, although present in
the quantum mechanical description, it would disappear when the un-
derlying theory is considered, leaving a unique distribution P(x,plt).
This may seem a completely gratuitous hypothesis, and one would be
inclined to think that, even if correct, it could not be proved until the
fundamental theory is available; although we have no general results,
we nevertheless argue that this is not the case, and that even at our
incomplete level of knowledge there is evidence for discarding some dis-
tribution functions in favour of others.

To prove this statement, let us return to our derivation of the hy-
drodynamical quantities y, j and pi; from the Wigner function P, as
given in Sec. 3.3, and let us ask what would have happened having we
used, instead of Py, the Margenau-Hill function [88]

SR [Pt &0 (). (3.310)
(27h)3

It is immediate to check that the results of the calculation of the mass

Py(x,plt) =

density and current turn out to be exactly the same of those expressed

in Egs. (3.2.18), (3.2.19) and (3.2.20). In fact
m [ & P, plt) = m [h(x, )] = e (x,1) , (3.3.11)
and
[ 9P Polx,plt) = R (15 9(x, ) Vb(x,07) = j(e1); (33.12)

consequently, also the velocity field v(x,t) will be identical to the one
defined in Sec. 3.3. When considering the pressure tensor, however, a
discrepancy appears. Let us work out, in fact, the expression

%/dsp (pi — muvi(x,1)) (p; — mv;(x,t)) Ps(x,plt), (3.3.13)
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analogous to (3.2.21); following calculations similar to those of App. C,
one arrives to identify (3.3.13) with
52
Di; — maﬁj,u , | (3.3.14)
where p;; is given by Eq. (3.1.11): Surprisingly enough, the use of the
Margenau-Hill function has produced a result which differs from the one
obtained using the Wigner distribution.
We could think that the extra term

hZ

is such that it belongs to the class of tensors C;; which can be arbitrar-
ily added to p;;, as discussed in commenting Eq. (3.1.11); however, such
tensors must be divergence free, and it is trivial to check that this is not
true for (3.3.15). Hence, we are led to reject the Margenau-Hill function
as a viable phase space distribution; in fact, its use would lead to the
pressure tensor (3.3.14), which does not allow to establish a satisfac-
tory hydrodynamical formalism. Let us notice, to this extent, that the
term (3.3.15) does not produce a gradient in Eq. (3.1.9) when inserted
into Eq. (3.1.7), and is therefore not equivalent to a simple additive
“potential” in Eq. (3.1.8): This would involve major changes in the
Schrodinger equation, which we rather prefer not to modify. Neverthe-
less, one could say that the validity of the Euler equation (3.1.7) relies on
the dynamical equation satisfied by the distribution function, and that
in the case of the Margenau-Hill function it may be that to Eq. (3.1.7)
must be added some counterterms which cancel the extra contributions
coming from (3.3.15), thus reproducing exactly the Schrodinger equation
(3.1.1). This argument may turn out to be correct and worth investigat-
ing; however, we find the modifications it would eventually introduce in
the hydrodynamical formalism to be not only unpalatable, but also un-
necessary. We thus prefer to drop the Margenau-Hill function, without
altering the simplicity and elegance of the formulation.

Further support in favour of this choice comes from a reexamina-
tion of the discussion performed at the end of Sec. 2.3 in commenting
the differences between Egs. (2.3.21) and (2.3.22). In the light of the
statistical interpretation developed in Sec. 3.2, we can summarize such
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results saying that the use of the Weyl’s ordering in the formation of
the operator II;; leads to the pressure tensor (3.1.11), while adopting
the symmetrization rule one is led to (3.3.14). Since this last, for the
reasons discussed above, does not allow to write down a satisfactory hy-
drodynamical formulation of quantum theory, we are induced to adopt
the Weyl’s rather than the Rivier’s ordering; this conclusion is not sur-
prising at all, if we think that the use of the Margenau-Hill distribution
corresponds exactly to that of the ordering S in constructing products
of noncommuting operators.

The consequences of these arguments for performing a selection leav-
ing only with P,, and W are far reaching, because of the existence of the
above-mentioned interconnections between the choices of phase space
distribution functions, operator ordering and path integration. In the
case now considered, we are led not only to prefer the Wigner function
to the Margenau-Hill one, and the Weyl’s ordering to the Rivier’s sym-
metrization rule, but also the midpoint prescription when dealing with
skeletonized path integrals!*. We want to stress, however, that we do
not claim at all that the Wigner function is the correct phase space dis-
tribution, nor that such a distribution exists: All that we have proved
1s that, if one wishes to adopt the methods of kinetic theory in repro-
ducing the hydrodynamical formalism of quantum theory starting from
a distribution function, then the Margenau-Hill function fails in accom-
plishing this program in a satisfactorily way, while the Wigner function
succeeds. Of course, this is not a proof of the absolute reliability of
the Wigner function; it may well be that it fails, too, in accounting for
more sophisticated details, leaving room for a better candidate. The
really interesting point of our argument consists, in our opinion, in the
fact that the use of the kinetic representation of the hydrodynamical
quantities allows to remove an arbitrariness which is present at the level
of pure quantum mechanics; this makes entirely reasonable the possibil-
ity that, at the end, only one distribution function may turn out to be
correct, and that the nonuniqueness currently exhibited be due to the
incompleteness of the quantum theoretical treatment.

141t is worth remarking that claims about a privileged role of the Weyl rule have
already been advanced on purely formal grounds [84]; it was pointed out later, how-
ever, that such arguments were essentially unjustified [81,86]. Our point of view is
completely different, being based on a physical, rather than a formal, discussion.
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It should be not surprising that the kinetic viewpoint show itself to
be stronger than the hydrodynamical one, since it corresponds to a more
accurate level of description of phenomena; after all, the same happens
in classical physics. We have an example of this higher effectiveness
of the kinetic formalism in the fact that it does not allow for the Cj;-
arbitrariness mentioned in Sec. 3.1, when defining the pressure tensor;
in fact, the expression (3.2.21) turns out to be exactly equal to p;; as
given by Eq. (3.1.11), and rules out, for example, the alternative tensor
P,; of Eq. (3.1.12), which would be also allowed by the hydrodynami-
cal formalism. This is the reason why we have chosen to use (3.1.11)
throughout all our treatment.

We have not been able to give a definitive answer to the questions
raised at the beginning of this section. If a “subquantum” theory exists,
certainly it is not classical mechanics, nor Bohm’s theory; in fact, the
former would correspond to phase space distributions different from the
Wigner function, while the latter turns out to be just a reformulation of
quantum theory holding, as such, at the statistical level as well. Bohm'’s
theory has, nevertheless, the great merit of having explicitly shown that
the same results of standard quantum mechanics can be obtained with-
out giving up the concept of definite particles trajectories; the same
conclusion can be drawn from Nelson’s stochastic mechanics which is,
however, a younger theory from a historical viewpoint. This is an im-
portant remark, which can be generalized observing that the formalism
of quantum theory does not forbid, in principle, the existence of particles
trajectories in a possible underlying theory; it is only its extrapolations
based on a positivistic philosophical attitude which do so. Since we prefer
not to adhere to the positivistic belief, which has already proved itself to
be quite dangerous when acritically applied to a scientific context (see,
e.g., Mach’s refutation of the existence of the atoms), we shall remain
open with respect to the possibility of thinking in terms of particles tra-
jectories, and we shall not consider them as an unreasonable concept.
This attitude will prove useful in treating semiclassical systems.
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Chapter 4

The Weakly Semiclassical
Regime

The discussion of Ch. 3 sheds new light on the semiclassical theory
of gravity. Adopting the statistical interpretation of quantum theory
compels to reformulate the problem in such a way that the very concept
of field equations turns out to be applicable only to a rather limited kind
of semiclassical behaviours; this leads to distinguish between a strongly
and a weakly semiclassical regime. The description of the latter is the
main subject of the present chapter.

In Sec. 4.1 we discuss qualitatively how the statistical interpreta-
tion of quantum mechanics involves a statistical description of classical
gravity as well. In Sec. 4.2 a general analysis of semiclassical systems
is performed in the light of the statistical interpretation, and the dis-
tinction between the strongly and weakly semiclassical behaviours is
clearly formulated; moreover, an hypothesis is enunciated, which allows
to give a quantitative description of systems in the weakly semiclassical
regime. Sec. 4.3 contains some specific examples, illustrating the appli-
cation of these general principles. Finally, in Sec. 4.4 we show how some
serious problems emerge when the classical subsystem is a relativistic
field, which require, in order to be solved, a much more sophisticated
treatment of the quantum source. ‘

The treatment in this chapter is based essentially on ref. [31].
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4.1 Statistical Character of Semiclassical
Gravity

As we have seen in the previous chapter, quantum mechanics is an es-
sentially statistical theory; that this statistical character be a mere con-
sequence of the incompleteness of the theory, as suggested in Sec. 3.3, or
that it reflect a fundamental feature of the natural laws, is still a matter
of debate and speculations. Here, we shall adopt the pragmatic point of
view that, since quantum theory provides the best description we have,
at the moment, of phenomena occurring at the microscopic level, such
a description is necessarily statistical. Hence, any theory of quantum
matter turns out to be a theory of ensembles.

This assumption has a profound influence on the formulation of a
semiclassical problem, and changes it drastically. In order to investigate
this point, let us observe quite generally that there are essentially two
possible levels of description of a physical system, which we shall call,
for convenience, of first and second kind: Either the detailed state of a
copy of the system is described (individual, or first kind, description),
or a probability distribution for the values of its observables is given
(ensemble, or second kind, description). According to the statistical
interpretation, standard quantum theory is of the second kind (although
some of its modifications are of the first kind); on the contrary, classical
gravitational theory is of the first kind. The problem is: Within a
semiclassical context, can we give a first kind description of gravity, if
the matter’s description is of the second kind? It is not difficult to
realize that, in answering to this question, two different situations have
to be considered, according to the size of the statistical fluctuations in
the quantum observables which act as source of classical gravity.

To make this point clear, let us consider the example of newtonian
semiclassical gravity, in which the classical potential ®(x,t) has a non-
relativistic quantum particle of mass m as source. If |¢) represents the
state of an ensemble £ of similarly prepared particles, we can imagine
that to each copy in £ correspond a definite ®(x,t). Since the poten-
tial ® depends, classically, on the position of the source, but not on its
momentum, we expect that when [¢) is sharply peaked around a def-
inite point of space, the various ®(x,t) corresponding to the different
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copies in £ do not differ from each other; in these cases it is therefore
meaningful to speak of a definite classical field compatible with quantum
matter or, in other words, to obtain a description of the first kind for ®
from a description of the second kind for the particle. However, if )
represents a superposition of position eigenstates, different copies of the
particle will correspond, in general, to different ®(x,1); the specification
of the state |¢)) of £ does not allow, in this case, to give a description of
the first kind of @, which has now to be treated on statistical grounds
as well. In a more expressive way, we can say that the indeterminacy of
matter has been “transmitted” to the field.

We can thus infer that, in the semiclassical regime, it is necessary to
distinguish between a “strongly” semiclassical behaviour, in which the
classical subsystem admits a description of the first kind, and a “weakly”
semiclassical one, in which it is not possible to go beyond a description
of the second kind. The criterion for distinguishing between these two
regimes consists in calculating the amount of statistical fluctuations in
the quantum source. For the case of gravity, this is done by evaluating
the quantities [89]

ATused(2,y)" = (] Tus (@) Tea (W) ) — ($] T () 80) (9| Tea () 19)]
(4.1.1)

and studying their limit when y — z; if they are negligible, the be-
haviour turns out to be strongly semiclassical, and weakly semiclassical
otherwise. A much simpler calculation of

Ap(x,y)" = [(PlA (A (v)¥) - @la (xR #1a ()¥)] (41.2)

for newtonian gravity, is presented in App. E, and confirms our heuris-
tic arguments in a simple case; moreover, it shows explicitly how careful
one has to be in performing this kind of formal manipulations, because

of the occurrence of divergent expressions.

These considerations imply that one cannot, in general, recover a de-
scription of the first kind for the classical component of a semiclassical
system; in particular, it is impossible to have, in the weakly semiclassi-
cal regime of gravity, a complete knowledge about the state of a single
copy of spacetime. Conveniently rephrased, this means that the hope of
obtaining a physically meaningful metric tensor g, out of T, and 1Y)
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in a unique way, is purely illusory in the weakly semiclassical regime.
This happens because [¢) does not describe a single quantum system,
but an entire ensemble &, of similarly prepared copies of iﬁ, and each
copy in &, is compatible, in general, with a different spacetime; the cor-
rect formal treatment of gravity has not to be based, therefore, on the
concept of a metric gqp of spacetime, but rather on that of a probability
distribution P[g] for the metrics of the copies of spacetime which belong
to an ensemble &, compatible with £,,. The concept of semiclassical
field equations, providing a unique correspondence between the state of
quantum matter and a single spacetime geometry, hold no longer, and
have to be replaced by a prescription relating P[g] to |%) and Top. We
must nevertheless remark that, in the strongly semiclassical regime, the
dispersion ATypeq(z,z) is small; therefore, the dispersion in gqp will turn
out to be correspondingly small, and P[g] will be strongly peaked on
some particular metric, thus allowing to speak meaningfully of a defi-
nite spacetime compatible with its quantum matter content. Hence, in
this case, the semiclassical field equations still make sense; it is only in
the weakly semiclassical regime that such a concept cannot be applied
any more. It is interesting to observe that the lack of knowledge about
the state of the classical component in a weakly semiclassical system
should not be surprising, because this is the circumstance closest to the
full quantum behaviour that we can conceive.

Of course, even in weakly semiclassical gravity it is possible to define

an average metric (gq) over &, as

(gab) = /Dg P(g] gas » (4.1.3)
&y

Dg representing a convenient measure; moreover, it is possible to estab-
lish a unique correspondence between T., and |¥), and (gas), thus allow-
ing to resurrect the concept of field equations. However, dealing now
with ensemble averages, the field equations lose much of their charm.
They would be useful, in fact, only if a collection of similarly prepared,
identical matter systems would be available as source of the field; such
situation can be easily realized in the domain of atomic physics (and,
actually, semiclassical calculations for the electromagnetic field in such
a context are often successfully carried on [19]), but in applications of



general relativity (particularly in cosmology), the relevant physical sys-
tem is generally present in a single copy, and this makes therefore the
field equation for (g.) uninteresting.

These arguments can be used also to refine some of the criticisms
raised in Sec. 2.4 to Egs. (2.3.1)—(2.3.3). In fact, Eq. (2.3.1) must now be
reinterpreted as an equation for ensembles averages, and not for phys-
ical quantities; consequently, it would not be very attractive even if it
would turn out to be formally correct. However, this change in the in-
terpretation has a drastic effect on the reliability of Eq. (2.3.2), which
cannot be considered as meaningful if formulated in a spacetime whose
metric satisfies Eq. (2.3.1); as said above, in fact, such a metric is only
an average over &,, and does not describe, in general, any physical grav-
itational field. This consideration leaves thus the quantum dynamical
problem temporary unspecified, giving no prescription for the classical
background over which to study the state evolution. It is possible to
infer, however, that in the newtonian limit the arbitrariness disappears,
leaving with the ordinary Schrédinger equation

oYy R

Ny 7L 2 P A
zhat 2mv¢ (4.1.4)

instead of Eq. (2.4.6); this can be understood thinking that the solu-
tion ® of Eq. (2.4.5) is now only an average potential, whose source
is the unphysical density of mass m|i|?; the real potential for each in-
dividual copy of the particle in &,, does not affect the motion of the
particle to this order of approximation, leading to Eq. (4.1.4), and con-

sequently reducing the nonlinearity which we have referred to in com-

menting Eqs. (2.4.5)—(2.4.6).

4.2 The Weakly Semiclassical Hypothesis

There is a situation in ordinary quantum mechanics which is closely ana-
logue to the one of the gravitational semiclassical problem as described
above: The quantum measurement process [37,55]. In fact, let us con-
sider a microscopic system Q, coupled to a macrosystem C in such a way
that a classical observable ¢ of C acts as a pointer for the measurement
of a quantum observable ¢ of Q; then the behaviour of ¢ is driven by
that of ¢: If Q is in a state corresponding to a well defined value of g,
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also the value of ¢ will be exactly determined, while if the state of Q is
such that the dispersion of g is not negligible, the repetition of the mea-
surement process will give, in general, different values for c. However, if
there is a one-to-one correspondence

c = f(q) (4.2.1)

between the values of ¢ and ¢, the distributions for their spectra will be
the same, in the sense that

P(e) = P(q) , (4.2.2)

where P(q) is the probability for the outcome g of a measurement of the
microobservable, as predicted by the quantum theory, and P(c) is the
relative frequency with which the pointer is observed to mark the value
c= f(q).

The situation in semiclassical gravity is quite similar to this, and it
is easy to realize that it is possible to establish the following correspon-
dences:

e microsystem Q «— quantum matter;

e macrosystem C «—— gravitational field (classical spacetime);
e quantum observable ¢ «— matter source (7g);

e classical observable ¢ +—— field intensity (gab)-

It is clear, therefore, that to require the validity of an equation of the
type (2.3.1) or (2.4.5) would be as absurd as to require, in the quantum
measurement process, that the value of ¢ be determined by the expec-
tation value of ¢; such a relation can only be established, in some cases,
for the mean value of ¢, through Eq. (4.2.2). Let in fact be Eq. (4.2.1)
the injective! function linking the spectra of ¢ and g; then, repeating
many times the measurement, the average value of ¢ will be

(e) =2 P(c)e=3_Plq) fla), | (4.2.3)

1This requirement will be dropped later on.
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where Eqs. (4.2.1) and (4.2.2) have been used. Assuming analiticity of
f(g), we can expand it as

fled =ao+arg+asg +-- (4.2.4)

moreover, defining the dispersion Agq as
Ag=3 Pla)q" —(9), (4.2.5)
q
we easily get, from Eq. (4.2.3), the relation

() = f({g)) + asAg* + -+, (4.2.6)

where the terms on the right hand side of Eq. (4.2.6) that are different
from f((q))

i) depend on Agq and on higher moments of the distribution for the
spectrum of g¢;

i7) depend on coefficients of order higher than that of a; in the expansion

(4.2.4).

From ¢) and i) it follows straightforwardly that Eq. (4.2.1) implies the
corresponding relation between mean values

() = f({9)) (4.2.7)

if and only if one of the two following conditions is satisfied:

1. The observable ¢ behaves classically, i.e., its dispersion and higher
moments are negligible;

2. The relation (4.2.1) is linear.

In the case of gravity, the metric g, does not depend linearly on
Top; we expect therefore that, except in the trivial situations in which
the source behaves nearly classically, Eqgs. (2.3.1) are inappropriate to
describe the matter-gravity coupling, even in a statistical sense.

The previous discussion turns out to be very instructive, because
it provides us with a model from which the general requirements of a
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semiclassical theory can be extracted. It is therefore not necessarily
restricted to the case of the measurement process, but rather @ and C
can be two more general systems, interacting with each other by means
of a suitable coupling. Q must be allowed to exhibit quantum behaviour
in some of its observables, one of those we call g, while C exhibit classical
behaviour in at least one observable c; moreover, the interaction between
Q and C is such that ¢ and ¢ are not independent. This is what we mean,
in general, by a semiclassical system; the goal of our theory is to study
the related behaviour of ¢ and c.

There is a problem which arises immediately in such a physical sit-
uation: To what extent can it be said that ¢ behaves classically, when
interaction between the two systems is present? The answer can be given
thinking to the specific example of the measurement process, in which
"¢ represents the pointer’s position. What we ask in this case is that the
state of the measuring device (i.e., C) be such that there is a negligible
overlapping between different values of ¢, which, from this point of view,
is a classical observable; however, it is pretty obvious that the specific
value of ¢ cannot be predicted, being the pointer’s position triggered by
the quantum observable ¢, whose behaviour is unpredictable. Therefore,
for the most general semiclassical system, we must admit that ¢ displays
no interference, but nevertheless its values cannot be predicted: Only a
probability can be associated to them.

In general when speaking of “classical behaviour” of an observable

¢, we make two distinct requirements:
a) There is no interference between different values of c;

b) Preparing many copies of the system in the same way, the same value
of ¢ will be realized.

Property a) takes into account the fact that interference is not observed
at a classical level, while b) expresses the “deterministic” character of
classical observables. As discussed above, in a generic semiclassical sys-
tem the observable ¢ can satisfy only a): We thus believe it is justified to
call its behaviour “weakly classical”, and the resulting theory of C 4 Q
“weakly semiclassical”.
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For a weakly semiclassical system, therefore, only a probability P(c)
can be assigned to the values of the observable c; it follows that expres-
sions like

c=f({a)) (4.2.8)

(which are of the same kind of Eqgs. (2.3.1) and (2.4.5)) have no meaning
at all; only “statistical” equations like (4.2.7) can be meaningful. This
remark is important in order to realize that, if dealing with a single
system, then equations of the kind of (4.2.7), even if correct, are useless:
In fact their left hand side is an average that can be performed only on
several copies, similarly prepared, of the system. All that can be said
in this case is about P(c). Conversely, if many copies of the system are
available, equations like (4.2.7) can not only be tested, but they can even
be used to compute a kind of “mean” value for ¢, which is physically rel-
evant, in the case these copies act together at the same time; this is the
typical situation underlying the experiments of atomic physics in which
the electromagnetic field due to quantum-behaving sources is computed
through the Maxwell equations [19].

Let us now face the task of investigating in more details the features
of a weakly semiclassical system, and how can a theory of it be formu-
lated in general. We shall study again the previous model, consisting of
a system Q with an observable ¢ behaving quantum mechanically, and
a system C with an observable ¢ exhibiting classical behaviour. When
the two systems are coupled together, the behaviour of ¢ becomes only
weakly classical, since there is still no interference between different val-
ues of the observable, but they cannot be predicted any more.

Our starting point will be the hypothesis that, whenever Q belongs
to an ensemble described by a state |g, o) of well defined ¢ (o takes into
account the possible degeneracy), the observable ¢ of C takes the value
given by the “coupling equation”

¢ = f(g) (4.2.9)

we must remind, however, that the function f could be not injective (as
it may happen, for example, in the case of a bad measurement). Now,
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if Q is described by?

W’) = Z¢(Q7U7t)1Q707t> ’ (4'2'10)

where Y stands, from now on, for a sum or an integral, accordingly with
the discrete or continuous character of the spectrum of the considered
observables, then the probability for the value g at time % is

P(glt) =3 [#(g,0,8)" . (4.2.11)

Being the function f of Eq. (4.2.9), in general, not injective, a particular
value of ¢ can be associated to several values of ¢: We define, therefore,
by

P(c,qlt)
the probability that the value c, at time ¢, “come” from the value ¢ of
the other observable. In other words, P(c, ¢|t) can be regarded as a joint

probability for the two observables at the same time ¢. It is well known
that we can thus write

P(e,qlt) = P(c,tlg,?) P(glt) , (4.2.12)

where P(c,t|q,t) is the conditional probability for the value c at time {,
given the value ¢ for the microobservable at the same time. As usual,
the functions in Eq. (4.2.12) will be subject to the foliowing conditions:

> P(e,tlg,t) =1; (4.2.13)

S P(c,qlt) = P(elt) ; (4.2.14)

the normalization of P(c|t) then follows from that of P(g|t). We are
now ready to introduce in our model an analogue of Eq. (4.2.2), which
will be based on what we shall call the “weakly semiclassical hypothesis”
(WSH), whose content we state as follows:

WSH: The probability for the macroobservable to have the value c at
time t is the sum of the probabilities P(q|t) over all the distribu-

tions of ¢ which are classically compatible with that value.

*We work in the Heisenberg picture.
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The WSH can be formally written as

P(clt) = > ofc,q;t) P(qlt) , (4.2.15)

q

where

)1 ife= f(q)
et ={ 5 o710,
this obviously implies a(c, ¢;t) = 6(c, f(q)), and, by Egs. (4.2.12) and
(4.2.14),

(4.2.16)

P(e,t|g,t) = &(c, f(q)) - (4.2.17)
This equation holds also in the case of continuous spectra, provided
the P are interpreted as probability densities, and § is a Dirac func-
tion rather than a Kronecker symbol. It is interesting to notice that

Eq. (4.2.17) reproduces the value given by Eq. (4.2.3) for the average of
¢; in fact

() = 3 P(elt)e= 3 Pleyalt)e =
= S P(qlt)8(c, f(g))e = S P(qlt)f(q) . (4.2.18)

q

The main ideas discussed so far are summarized in Table 4.1, which
emphasizes analogies and differences among the possible behaviours of
the system C + Q. Here we want only to make a couple of remarks
concerning the physical meaning of the WSH.

First of all, the central role played by the classical coupling equa-
tions (and, thus, by the classical field equations) in the method has to be
stressed. Although no coupling equations can be written in the weakly
semiclassical regime, there is still a correspondence between the quan-
tum subsystem and the classical one, which is represented by the relation
between P(q) and P(c). The classical coupling equations are essential
in selecting those values of ¢ which are associated to a definite value of
¢; in such a way, they establish a connection between the spectra of the
two observables. This connection is “sharp” in the weakly semiclassical
regime, because no “self-uncertainty” effects® are considered for ¢, and
this allows P(c) to be completely determined by P(q).

30r, if one prefers, “self-dispersion” effects.
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CLASSICAL REGIME

o Well defined values of ¢ and g.

¢ The coupling equation
c= f(q)

is perfectly meaningful.

STRONGLY SEMICLASSICAL REGIME

o Well defined values of ¢; “almost well defined” values of ¢ (Agq =~ 0).

e The semiclassical coupling equation

is meaningful (although only for statistical averages).

WEAKLY SEMICLASSICAL REGIME

e Ouly P(c) and P(q) can be defined.

e The coupling equation is meaningless, but the WSH allows to
determine completely P(c) from P(q).

QUANTUM REGIME

e Only P(c) and P(q) can be defined.

o P(q) does not determine completely P(c).

Table 4.1: A comparison between the four regimes of behaviour of the
compound system C + Q.
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Moreover, it has to be specified that, although not explicitly stated
in its formulation, the WSH is hard to justify within the context of an
interpretation of quantum theory which deny any possible attribution
of a well defined value of the observable ¢ to the subsystem Q, except
for the case in which |¢) is an eigenvalue of §. On the other hand,
the WSH appears entirely reasonable if |) is assumed to describe an
ensemble of copies of Q, a fraction P(g|t) of which have, at time %, a
value ¢ of the observable at issue. That such a possibility do not violate
the uncertainty principle, as it might appear at first, has been carefully
discussed by Ballentine [27]; in addition, we would like to remark that,
if the weakly semiclassical approach now suggested should turn out to
be successful, it would constitute a strong indirect support for such a
“realistic” interpretation of quantum mechanics.

4.3 Examples

The previous general analysis can be applied successfully to the partic-
ular case of a newtonian gravitational field, whose potential obeys the
classical equation

Vi@ =47Gp , (4.3.1)

where p is the classical density of mass, which, in the case of a single
point particle of mass m, located at y at time ¢, is

p(x,t) =mé&(x —y). (4.3.2)

In this context, the role of the quantum observable g is played by the
particle’s position y, while the classical observable ¢ is now the value
of ® at some point x of space, ®(x); since there is no degeneracy, the
probability density is given directly by

P(ylt) = [¥(y, )" , (4.3.3)

where 9 is the wave function of the particle. Let us notice that |y, )
is not only an eigenstate of position at time ¢, but also of mass density,
with (4.3.2) as eigenvalue:

A Dly, 1) =m8(x - y)ly, 1) ; (43.4)
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a particle in the state* |y,t) corresponds therefore, by Eq. (4.3.1), to a
well definite gravitational potential

Gm
x—y|’

under the boundary condition that ® vanish as [x| tends to infinity.

B(x,tly) = — (4.3.5)

We are here in presence of an example of the situation treated pre-
viously, when f is not injective; if ®(x) is a particular value of the field,
then we shall indicate by

P(@(x);ylt)
the joint probability density, at time ¢, for ® at x to have the value
®(x) and for the particle position to be y. Using Eq. (4.2.12) we can
write P(®(x);y|t) in terms of P(y|t) and of the conditional probability
density

P(e(x)]y,?)

expressing the probability density that, at time ¢, the field at x have the

value ®(x) due to a particle at y. ,
Accordingly to Eq. (4.2.17) we shall write the WSH for @ as

P(8(x)]y, 1) = & (B(x) — 2(x,1]y)) - (4.3.6)

The probability density that the field at time ¢ be ®(x) is, by Eqs. (4.2.14)
and (4.3.6),

Pe)l) = [&yP(@)y,t) =

N /dsy‘s(‘l’(x)*@(X,i\Y))P(ylt), (4.3.7)

which takes into account the fact that classical particles located at differ-
ent points can give origin to the same field at x; this point can be better
understood working out explicitly the expression (4.3.7). Defining the
new variable

n=x-y, (4.3.8)
and remembering Eq. (4.3.5) and the properties of the delta function,
we find

G

PG = oo [ @0 Plx = al0)5 (Jal + o) @

4Or, more precisely, in a normalized state strongly picked around y at time ¢.
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introducing now the unit vector n, collinear with 1, such that = |n|n,
it is easy to get the expression

P(B(x)|t) = G(s) / dznp(x+§(;)

t) , (4.3.10)

|nj=1

where the integral is performed over the unit 2-sphere, i.e., only in the
angular coordinates. Eq. (4.3.10) has the following physical meaning:
Suppose that the value of the field at x is equal to ®(x); this implies
that the particle producing it could be everywhere on a sphere of radius
—Gm/®(x) around x; therefore, in order to compute the probability for
® at x to have that value, we must integrate, according to the WSH,
the probability for the particle’s position over such a sphere. This argu-
ment can be extended to the case of other fields, provided the spherical
symmetry is preserved.

In our theory, Eq. (2.4.5) is recovered as an average: In fact, the
mean value of ® in x at time ¢ is

(@(x,0) = [ do(x) P(3(x)lt) & (x) =

= [ &yl y,tw B(xly, ) (4.3.11)
remembering that
Vi®(x,tly) = 4rGm 6 (x — y) , (4.3.12)
we get immediately
VH®(x,1)) = dnGmli(x,t)]* = 47G (u (x,1)) , (4.3.13)

which is just Eq. (2.4.5), but written now for ().

The use of the WSH can be justified, provided it leads, in ordinary
situations, to the same results of the usual formalism. Let us therefore
investigate a model in which two particles P; and P,, respectively of
masses m; and m,, are moving under their reciprocal influence; more-
over, let us suppose that m, > m;. We shall set out this problem first
in the standard formulation, then according to the WSH and, finally, in
an approximation in the same spirit of Eq. (2.4.5).
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1. Standard theory: The hamiltonian operator of the system is, in
the position (Schrodinger) representation,
. K2 h?
H=-— Vf - —————Vg + V(|X1 - Xgl,t) 3 (4314)

2m2

2my
where V(|x; — x3/,t) is the interaction potential energy between
P; and Po; H acts on the wave function ¥(x1,X2;t) in the config-
uration space. Under the coordinate transformation

r=X; — X (4.3.15)
R = Xy F maXz , (4.3.16)
my + ma
and with the definition
17179
= ——— 4.3.17
WE (4.3.17)
the hamiltonian (4.3.14) takes the form
. h? s A? I . .
H= P —ViyV(r,t), (4.3.18)

—— v
2(my +my) T 2u

which allows for the separation of the wave function as

P(x1,%X2;t) = Ya(R, )-(r, 1), (4.3.19)
where ¥, and 7, obey the equations
. a‘l/’n(Rat) h? 2

ik = - Vivr(R, 1) (4.3.20)
ot 2(m1+m2) rY¥ I\ J \ /

O, (r,t h? .
zﬁj-é(;——z = —E—Vfd)r(r,t) + V(r,t) . (r,1) . (4.3.21)

L

Requiring now that my > m;, we get
™my + Mo = Ma
H =y
R ~ X3,

so that ¥, describes completely P, as a free particle, and ¥, de-
scribes P; as moving in a field due to P,. The probability density
that P; and P, have, respectively, positions x; and x, at time ¢ is
therefore

Plxt,alt) & [, (1 — 30, 8)7 - [, P . (4.3.22)
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2. WSH: Being m; > my, we can suppose that the behaviour of
P, is independent of Py, and that P, is thus described by a wave
function t,(x2,t) obeying the Schrodinger equation

oY, B2

(915 2m2

Now, if P, were fixed at a point x; at time ¢, then P; would be

ik Vs - (4.3.23)

described by a wave function ¥, (x;,t|x2) subjected to the equation

L0 K?
) —gtl = ”%Viﬂbl —+ V(in - Xz',t)’(/’l H (4324)

but the probability to find P in such a configuration is |12(x3,t)|?,
and the WSH requires than that the probability for the potential
energy in x; at time t to be V(|x; — x2|,t) is also [¢a(x2,1)]%
Therefore ¥; will obey Eq. (4.3.24) with a probability |¢2(x2,1)|?,
and the probability density to find P; at x; and P, at x, at time
t will be

P(x1,%5) & [th1(x1,t]x2)|* - [tha(x2, 1) [ - (4.3.25)
Moreover, from Eq. (4.3.24) it is clear that t; has the form
1/)1(}(17“}{2) = 1/;1(7{1 - X2’t) 3 (4326)

which, substituted into Eq. (4.3.25), leads to a result in complete
agreement with the one obtained by the method 1.

3. Mean field approximation: The calculations are the same as
in the previous method, but the last term of Eq. (4.3.24) is not

proportional to

V(|1 = %2],8) (4.3.27)
but rather to
(2] V(%11 = Ral, t)h2) = /dsf% V([x1 — %o, t)[a(x2,2)[? .
’ (4.3.28)

Eq. (4.3.28) can be easily justified in the case of a newtonian in-
teraction, by noticing that

Vf/d%z V([x1 = %, t)[2(x2, )" =
= 4drGmqm, / d’zq 8% (%1 — x2)|th2(%2,1))* =
= 4rGmima |ty (x1,1)|?, (4.3.29)
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which is a relation of the same kind of Eq. (2.4.5).

It is clear that, being Eq. (4.3.28), in general, quite different from
Eq. (4.3.27), this last method will not reproduce, unless in very
specific cases, the results of the exact theory, and is thus unreliable.

We interpret the identity of the results obtained by the methods 1
and 2 as evidence for the association to the potential ®(x,t|y), due to
a particle located at y, of a probability density [ (y,¢)|>. The use of
the light test particle P; is only motivated by the need to compare the
consequences of the two treatments with those of standard quantum
theory. This result seems thus to support the WSH, at least in the
nonrelativistic case.

4.4 Application to Relativistic Fields

The formulation of the WSH given in Sec. 4.2 is suitable for the treat-
ment of some situations of interest, but nevertheless it presents several
drawbacks when applied to the context of relativistic fields.

In order to understand which are the problems and how they can
be solved, let us consider, to fix the ideas, a scalar field ¢ obeying
the classical inhomogeneous Klein-Gordon equation in the Minkowski

1%0, 050 = J (4.4.1)

where J is a matter source for ¢. It is useful to represent ¢(z) in the
form of a Kirchhoff integral by introducing the Green function D(z,z")
defined as a solution of the equation

77“b(9a8g,D(:c —z') =&z - 2'); (4.4.2)

as well known [32] this amounts to splitting ¢ into two components ¢,

and ¢7b)

¢=¢,+ ¢, (4.4.3)
with
$o(z) = —/d4m’D(m — ) (') (4.4.4)
N
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and

p—

d(z) = / d¥(z")n®(z") D(z — ')V ,é(z') ; (4.4.5)
aN

in Eq. (4.4.5) d¥ denotes the measure on the hypersurface 9N, bound-
ary of the spacetime domain N, and n®(z’) is the normal to ON at z'.
The decomposition (4.4.3) contains an intrinsic arbitrariness in the defi-
nitions of ¢, and ¢, due to the fact that Eq. (4.4.2) determines D(z—=z')
only up to a solution of the homogeneous Klein-Gordon equation. This
fact does not create any technical problem at a classical level, because
only ¢ is operatively meaningful, neither ¢, nor ¢, being measurable
quantities: All the possible splittings (4.4.3) are therefore consistent
both formally and physically.

When the source is allowed to behave quantum mechanically, how-
ever, such an arbitrariness makes the formulation of the WSH ambigu-
ous. Suppose, in fact, that a choice of the Green function D (and,
consequently, of the decomposition (4.4.3)) has been performed; then it
is clear that only ¢, can inherit a well defined probability distribution
from the matter present in N. Let this be P,(¢,(z)); the probability
distribution for ¢(z) can therefore be written as

P(9(2)) = [ déy(2) P(#(2)|¢4(2)) Pu(#4(=)) , (4.4.6)

where P(¢(z)|¢,(z)) is the conditioned probability for the field to have
value ¢(z) if its source-dependent component value is ¢ (z). If Py(ds(z))
denotes the probability for the value ¢4(z) of the component ¢, we can
write, by Eq. (4.4.3),

P(¢(z)|ds(z)) = Po(o(z) — ¢s(z)) ; (4.4.7)

Eq. (4.4.6) becomes thus

P(¢(2) = [ db,(x) Py(#:(2)) Po(6(x) — ¢,(x)) . (4.4.8)

When considering the case in which N is the entire spacetime, the be-
haviour of ¢, is still determined by matter, but ¢, represents now a
totally source-free field. Since the underlying philosophy of the WSH
requires the field to have no quantum properties of its own, but only
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those which are induced by matter, it follows that the probability dis-
tribution of ¢, must be a completely classical one, i.e.,

Fy(¢s(z)) = & (¢s(2) — po(@)) , (4.4.9)

where ¢o denotes a well defined free field; introducing Eq. (4.4.9) into
Eq. (4.4.8), we get

P(4(x)) = P.(d(z) — dolz)) - (4.4.10)

The field ¢ is observable, so P(¢(z)) cannot depend on the arbitrary
splitting (4.4.3); however, the right hand side of Eq. (4.4.10) looks as
splitting-dependent, and this leads to a contradiction if another decom-
position (4.4.3) (i.e., another Green function) is chosen. Therefore, the
WSH can be applied in an unambiguous manner to a relativistic field
only if a prescription about the choice of D is given; at this stage, this
represents a highly unsatisfactory feature of the theory, but we shall not
worry too much about it, since similar problems are a typical plague of
the classical field theories, and can probably be solved only by suitable
assumptions of cosmological nature [90,91]. Hence, from now on we shall
work with an unspecified Green function D(z — z'), supposing that the
ambiguity above has been removed by a convenient prescription. More-
over, we shall make the explicit hypothesis that ¢o(z) = 0; Eq. (4.4.10)
is thus simplified in

P(¢(z)) = Pu(8(z)) , (4.4.11)

which allows us to drop the suffix s hereafter.
Much more serious problems arise when trying to apply explicitly
the WSH to the scalar field ¢. As it is clear from Eq. (4.4.1), J(z) must

be a scalar in the Minkowski spacetime; this suggests to define, for a
particle following the world line v labeled by the proper time 7 € R,

+o0
J(zh) = Q / dr 8%z — o(1)) (4.4.12)

where @ is a constant representing the “scalar charge” of the particle,
and 7 — z(7) defines the particle history in spacetime. Eq. (4.4.4)
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implies now that the classical field ¢ at the point z due to a particle
whose world line is v is

d(zly) = —Q / dr D(z — o(7)) . (4.4.13)

It is instructive to consider the case of a nonrelativistic source, in
which ¢(7) ~ 7; moreover, let us suppose, to fix the ideas, that D is the
retarded Green function [32]

DU (g — o) = 51; Ot —t)6((z —2')?) =
1

= g S X = =), (4.4.14)

O being the step function. Under these hypothesis, one finds easily

Q

tly) = — , 4.4.15
o(x,t|7) TR = () ( )

where the retarded time t,.; satisfies the equation
tret =t — |X — X(tret)] - (4.4.16)

In other words, only the intersections of the particles world lines with the
past light cone of (¢,x) contribute to the field at (¢,x); when imposing
the WSH, this would require to have a probability distribution normal-
ized over such a light cone; alternatively, one could ask for a probability
density in spacetime. Both these objects are not specified by the present
version of relativistic quantum theory, which only assignes probabilities
over a spacelike hypersurface, being based on a 3+1 decomposition of
spacetime. One might try to solve this problem by resorting to a 3+1
description of the field as well, thus renouncing to an explicitly covariant
treatment; more precisely, it is possible to consider the value of the field
at a point of space, rather than of spacetime, as the physical observable
of the theory, and to ask for the probability P(4(x)[t) that, at time ¢, a
measurement of ¢ at the point x of space give the value ¢(x). However,
it is not difficult to realize that even such a treatment does not remove
the normalization problem.

Having ascertained the failure of the conventional treatments, let us
resort to unconventional ones. In Eq. (4.4.13), the field has been labeled
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by the greek letter v in order to express its dependence on the world line
of the particle; it may be thus that it is v, and not the particle position,
which plays the fundamental role when writing the WSH explicitly. Let
us therefore ask fore the joint probability P(¢(z);vy) that the field at
the spacetime point  be ¢(z), and that the particle follow the world
line 7; this will be expressed, as usual, by

P(¢(z);7) = P(¢(z)l7) P, (4.4.17)
where P(¢(z)|v) is fixed by the WSH as

P(¢(z)ly) = 6 (¢(z) — ¢(z[7)) - (4.4.18)

In Eq. (4.4.17), Ply] stands for a probability functional assigned by
quantum theory in the space of all the possible world lines of the particle.

Unfortunately, not only no such object is defined in the literature®,
but its very existence could be seriously questioned, because it might
seem that the concept of trajectory is incompatible with the uncertainty
principle. However, there are at least three good arguments to reply
to these objections: First, as we have already remarked, neither the
formalism of quantum theory nor its statistical interpretation forbid to
take into consideration the idea of well defined particles trajectories; it
is only the “weakly realistic” philosophy developed by the Copenhagen
school to discard it as meaningless on strictly operationalistic grounds.
Second, there is aiready a formulation of quantum theory based on the
concept of particle path, which has been developed by Feynman [93] and
has proved to be as successful as the standard theory is. Third, as first
shown by Wigner [72], it is possible to assign a (sometimes negative)
joint quasiprobability P(x,p|t) to the position and momentum of the
particle at the same time ¢ (see Ch. 3 for more details).

For these reasons, we believe that to look for the functional P[y] is
not unreasonable, and we shall devote Chs. 5 and 6 to a discussion of
this problem. As we shall see, it will turn out that not only ply] can
be effectively constructed, but that in defining its relativistic version,
a formulation of quantum theory is recovered which allows to define a
probability density P(z) in spacetime, thus providing the solution also
to the normalization problem mentioned above in this section.

5With the remarkable exception of a paper by Dirac [92].
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Chapter 5

Quasiprobability Functional
Technique in Nonrelativistic
Quantum Theory

Some of the problems arising when one tries to apply the WSH to the
context of relativistic fields derive from the fact that, in standard quan-
tum theory, no prescription can be assigned about the joint probability
of canonically conjugate observables at the same time. However, since
the earlier work of Wigner [72], a phase space description of quantum
mechanics has been developed [94] which admits the introduction of
functions of x and p at time ¢ behaving as probability distributions
— except for the fact that they are not nonnegative everywhere. One
would thus be tempted to apply such a formulation to the description of
the matter source in semiclassical fields. It turns out, however, that it
is possible to go even further, defining a more fundamental object P{y],
which represents the quasiprobability for a quantum system to evolve
along the phase space trajectory 4. This allows to represent quantum
theory in a way which is very close to the classical picture, dealing only
with (quasi-) probabilities and not with probability amplitudes; such
a technique, conveniently generalized to the relativistic domain in the
next chapter, will prove to be extremely powerful for the applications
to semiclassical theories.

In Sec. 5.1 we give a more detailed discussion of our purposes, and
briefly resume some concepts and notations of the path integral for-
malism which will turn out to be useful later on. In Sec. 5.2 we show



how to define explicitly a real quasiprobability density functional P[y]
for the Feynman paths; in the same section, we give a short review of
Dirac’s approach to the problem, and compare his and our expressions
for P[y]. Sec. 5.3 is devoted to showing how, from the quasiprobability
P[v], the usual probability distributions for position and momentum can
be deduced. In Sec. 5.4 we derive the Wigner and the Margenau and
Hill functions as path integrals, over suitably chosen sets of trajectories,
of P[y]. Finally, in Sec. 5.5, we comment on our results and mention
further possible developments of the method here developed.
The treatment follows that of ref. [37].

5.1 Preliminaries

The key idea of Feynman’s formulation of quantum mechanics [95,96] is
to consider the amplitude for a system to evolve between the times ¢’ and
", with t' < ¢, as a sum, with appropriate measure, over all the possible
histories satisfying some prescribed boundary conditions at #' and #". If
we are interested, for example, in the case of a single particle in three
dimensional space (the system with which we shall deal throughout this
chapter, any generalization of it being straightforward), we could ask,
e.g., for the amplitude that the particle go from the point x’ at time ¢/,
to the point x” at time ¢”, thus fixing the boundary conditions for the
histories over which the sums will he performed.

For reasons that will become clear later in this section, a history will
not be considered as a curve in the extended phase space of the particle,
but rather as the pair of curves given by ¢ — x(¢) and t — p(¢) in its
extended configuration and momentum spaces. With this convention in

mind, the amplitude can be formally represented as

K(x" "% 1) = /D'y KM, (5.1.1)
r

where I'y is the set of histories satisfying the boundary conditions men-
tioned above, i.e., such that x(t') = x/, x(¢") = x"; the amplitude K|[v]
assigned to the history v is written as

1

Kby =exp (£5b1) |  519)
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with S[y] the action evaluated along ~:

Shi= [ dtlp@) x(0) - Bax0p(0)],  (5.13)

where H is the Hamiltonian, which we suppose, for the sake of simplic-
ity, to be not explicitly dependent on time.

In this chapter, we want to discuss the problem of assigning not only
an amplitude K[y] as in Eq. (5.1.2), but also a probability Ply], to a
single trajectory. It is obvious that here, by “probability”, we actually
mean a probability density in the space of paths: Only quantities like

/TDv Plv], (5.1.4)

where I' is some set of histories, can be interpreted as true probabilities.

If such a functional P[y] can be defined, it is clear that not only
K[y] must enter in its construction, but also the state ¥. In fact, the
amplitudes K[y] are not related to the physical state of the particle,
but only to the external conditions that influence its evolution; to get
a complete probability amplitude at time #”, which takes into account
also the specific conditions (preparation) of the particle at the initial
time t', we need to consider [95,96]

P(x", ") = /dsm' K(x" 1%, 1) (¢, 1) (5.1.5)

C/

where ¥(x, ) is the Schrédinger wave function, and C’ is the configura-
tion space for the particle at time #/. In other words, we can think of
K(x",t";x',t') as being part of the law that, in a well defined experi-
mental context, rules the evolution of a generic state .

The problem of defining a probability P[y] has already been studied,
a long time ago, by Dirac [92]. He found that such a concept can be
defined, provided P[y] is allowed to take complex values. At first sight,
such a result seems like a disaster! If P[y] is to be interpreted as a prob-
ability density, then it has to be not only real, but also nonnegative, by
very definition [97]. It seems therefore that there is no reasonable way
to assign a probability to each possible history of the particle. However,
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this would not be the only case in quantum theory in which mathe-
matical objects are defined which behave like probabilities, and yet can
attain nonpositive values under some conditions [73,98]. Since these
conditions do not correspond to any physical situation which is directly
testable, no interpretational problem is involved; in other words, sets
' of histories such that (5.1.4) turns out to be negative would have no
experimental counterpart. From such “quasiprobabilities” it is possi-
ble to construct true, experimentally meaningful, positive semidefinite
probabilities [73,98,99]. This justifies their use in calculations.

We shall devote the remaining part of this section to a few consid-
erations and remarks which will prove useful in order to justify some
procedures used in the chapter. Let us start by remembering that the
structure of (5.1.1) can be straightforwardly derived [96,86] from the
Hilbert space formulation of quantum theory, writing

K(x",t"x',t) = (x"t"|x,t') (5.1.6)

where |x,t) is an eigenstate of position at time ¢, in the Heisenberg
picture; dividing the interval [#/,"] into N + 1 smaller intervals [tx, trt1),
for k € {0,1,...,N}, with ¢/ =ty < .-+ < ty41 = t, one finds, rather
trivially,

K(x",t";x',t") = %}_I{l() dPz,...dPen
(XN+1’tN+1IXNatN> e (Xl’tl‘x07t0> ’ (517)

where T' = max { At }, with At = ty41 — tk. In getting Eq. (5.1.7) from
Eq. (5.1.6), the completeness relation for the position has been used IV
times; applying now N + 1 completeness relations for the momentum,
we get easily

. .1
K(x",t";x',t) = %}Eloﬁ / Pz . Peyd®py... oy

. N
i

exp 'h- Z (pk . Ax;c — HkAtk) s (518)

k=0
where Axj, = Xppq — Xp, N = (207)* W+ and the Hy’s are defined, in

the limit T' — 0, as
(Px| H )
(Pr|xk)

1 (xe1|H |ps)
2 (Xesa1|pr)

1
H, = +5 (5.1.9)
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We have given in some detail the derivation of Eq. (5.1.8) in order
to better understand its relation with the path integral (5.1.1). Iden-
tifying the right hand sides of both the expressions, and remembering
Egs. (5.1.2) and (5.1.3), the integral in Eq. (5.1.8) can be interpreted,
before taking the limit, as the effective summation of the amplitudes
over a set of approximated histories, constructed as follows. Let v be a
path defined by the curves t — x(t) and ¢ — p(t), satisfying x(#') = x'
and x(t") = x"; performing a partition of the interval [t',#"] as described
above, and defining x, = x(¢3), for h € {0,1,..., N + 1}, we obtain the
set of V 4 2 points in the configuration space

{XQ,XI,...,XN+1} ; (5.1.10)

which approximates the image of the curve ¢ — x(¢) and satisfies the
prescribed boundary conditions as xo = x’ and xy;; = x”. Choosing
now, for each k € {0,1,..., N}, a time 7 = (¢ + t311)/2, and defining
Pr = P(7k), we construct a set of N + 1 points in the momentum space:

{Po;sP1,---, P} - (5.1.11)
The sets
{(x0,%0), (X1,t1)5 -+, (X321, tv 1)} (5.1.12)
and
{(p())TO))(pl;Tl))---7(pNyTN)} (5.113)

in the extended configuration and momentum spaces, constitute a “skele-
ton” for the history v; an integration over all the possible sets of posi-
tions (5.1.10) and momenta (5.1.11), combined with the limiting proce-
dure T' — 0, as in Eq. (5.1.8), corresponds thus to the sum over all the
paths with definite positions x’ and x” at times ¢ and t”. Notice that
in (5.1.10) and (5.1.11) the positions and momenta are never considered
at the same time: Such sets do not approximate, therefore, any curve in
the extended phase space; however, they do approximate, as we can see
- from (5.1.12) and (5.1.13), a curve in the extended configuration space
and one in the extended momentum space. This is the reason for our
choice of the representation of the history ~.

Eq. (5.1.8) and the related comments teach us most of what has to be
known in order to give an operational, and not only a formal, meaning

101



to an expression containing a sum over histories. It could seem at first
glance that Eq. (5.1.8), being peculiar to the boundary conditions typical
of the case considered, will be of no general validity; for example, asking
for the amplitude K(p”,t’;p’,t') that the particle, having a momentum
p’ at time ¢/, will have a momentum p” at time t", one should consider
the approximate history given by

{(%0,70), (%X1,71), -+, (x5, 7)} (5.1.14)

and
{(Post0); (P1,t1),- -+ (PN41, EN11) ) (5.1.15)

rather than that defined by (5.1.12)—-(5.1.13): This would correspond
to a different expression for the path integral, and seems to lead to the
conclusion that four classes of paths must be considered, accordingly to
the four possible specifications for the conditions at ¢’ and ¢”. However,
it is not difficult to understand that this would lead to unnecessary
complications, and that the approximation (5.1.12)—(5.1.13) is sufficient
for the calculation of all the transition amplitudes; in fact, we can write,
using twice the completeness relation for the position,

K—(p// tll_ / t/) — /d3,c/ld3x,e“ipn.x/’/hI((X” t//.x, tl) eiP'-x’/h
I 7p7 “ (27rﬁ)3/2 I ’ I (271'}:1,)3/2 ’
(5.1.16

D ~—

expressing K(p”,t";p',t') as a double Fourier transform of the amplitud
K(x",#";x',#); an analogous treatment can be performed in order to
obtain K(p”,t";x/,t') and K(x",t";p’,t').

A similar situation occurs when quasiprobabilities P[y], rather than
amplitudes K[y], are considered. As it will be clear in the next section
(see Eq. (77)), the expression for P[y] contains an explicit represen-
tation of the state vector [1/) at both times t' and t"; the character of
such representation, i.e., the appearance of the wave function in the con-
figuration space, ¥(x,t), or in the momentum space, ¢(p,t), depends
clearly on the nature of the boundary conditions for the history consid-
ered. However, it will turn out that, as in the present case, a treatment
involving only paths approximated by (5.1.12)—(5.1.13) is not restric-
tive, even when our development of the formalism is considered.
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Let us close this section by establishing some useful notations about
the sets of histories with definite (even if not necessarily fixed) boundary
conditions for the position. By I'y we shall denote the set of all such
paths between the times t’ and ¢’. The subset I'; of I'y has been already
defined in relation to Eq. (5.1.1); other important subsets are I and
I, the sets of all the histories such that, respectively, x(t') = x’ and
x(t") = x”. The path integrals of a generic functional F[v] over I'g, I
and I' will be defined in a natural way as

/nyF /d3 ”/d3 '/D»,F»y], (5.1.17)

CII cl

/DyF /d3 ”/’D'yF (5.1.18)

CII

/D'yF /d3 ’/”nyF (5.1.19)

F!l

5.2 Construction of P[v]

Let us now face the task of trying to assign a quasiprobability to each
history, as discussed in Sec. 5.1. An obvious requirement to impose on
the functional P[y] is, of course, that it be normalized; we shall write
this condition as

/Dy Ph]=1, (5.2.1)

where the integral is defined by Eq. (5.1.17). Eq. (5.2.1) only means
that the particle will certainly go, somehow, from somewhere at time
t' to somewhere at time t”: It looks therefore like a very reasonable
assumption.

In the previous section it was argued that P[y] cannot be constructed
only out of K[y], but necessarily must contain also the state 1; we shall
now show how this condition, together with the normalization (5.2.1),
allows us to easily determine a reasonable form for the functional P[v].

Combining Egs. (5.1.5) and (5.1.1), and using Eq. (5.1.19), we come
to

Bt = [Dy Kl p(x(#),t) (5.2.2)

I‘II
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The probability density P(x"|t") for the particle to be at the point of
space X'’ at time t” reads thus

PO = ()P = [yl ) Kyl w(x(t),¥); (5.2.3)
I‘/I
this is normalized to one [95,100] as
1= / &z P(x"[t") = / Dy p(x(t"), ") K] p(x(¢), ) . (5.2.4)
cr Ty

A comparison between Eqs. (5.2.1) and (5.2.4) would induce us to write

Plyl = o(x(t"),t")" K[y (x(t), 1) ; (5.2.5)

such a P[v] is obviously normalized, but not necessarily real: Fortu-
nately, this problem can be easily solved. Let us suppose, in fact, that
all the reasoning leading to Eq. (5.2.5) would have been performed re-
ferring to ¢ at ¢’ rather than at t”: Then, Eq. (5.2.2) would have been
replaced [95] by

B t) = [Dyw(x(t"), ") KR (5.2.6)
I !

consequently, we should have written, instead of Eq. (5.2.5),

Plyf = p(x(t"), ") K[y 9 (x('), )", (5.2.7)

which is just its complex conjugate! Therefore we suggest to adopt, for
P[y], the real expression

Plyl = R [ (x(t"),")” K[y (x(t),1)] , (5.2.8)

where R stands for the real part; Eq. (5.2.8) can be seen as a sym-
metrization of Eqgs. (5.2.5) and (5.2.7).

In the derivation of Eq. (5.2.8), we have clearly worked with paths
whose boundary conditions are imposed on position; as a consequence,
position plays a dominant role in the final expression. However, there is
nothing in the general theory forbidding us to use histories with bound-
ary conditions on the curve ¢ — p(¢) rather than on ¢ — x(t). With

104



considerations similar to those performed so far, we find in this case, for
the quasiprobability functional associated to the path v,

Ply] = R[g(p(t"),1") K [Y]g(p(¢),t)] , (5.2.9)

where the wave function in the momentum space, ¢(p,t), is the Fourier
transform of ¥(x,1t), and

K[y] = exp ( 5'[ ]) (5.2.10)

St} e

with

/t " dtpx(t) - (1) + H(x(2), p(1))] =
Syl - pW? x(t") + p(t') - x(t') . (5.2.11)

Notice that the modified action 5 in Eq. (5.2.11), and the corresponding
amplitude K given by Eq. (5.2.10), are just the correct functionals to use
if the skeletonization of the histories is performed according to (5.1.14)-
(5.1.15); in fact Eq. (5.1.16) can be written in such a case as

K@ﬂ%p%7=/ﬁvkm, (5.2.12)
I
where T'; is the set of all paths with p(¢') = p’ and p(¢’) = p" as
boundary conditions, and 757 is the related measure.

It is easy to check that P[y] and P[y] are different from each other,
and it could therefore be thought that the range of applicability for each
one of them is rather limited: However, we shall prove that they can
both be used in every calculation which does not involve the value of

quantities at the extreme times ¢’ or . More precisely, if F'is a function
of x and p, and t € (¢/,t"), then

/mp x(4), p(¢) /mp x(1), p(t)) - (5.2.13)

As we shall see later (in Eq. (5.4.26)), the left hand side of Eq. (5.2.13)
can be identified as the expectation value of the quantum operator as-
sociated with F' in the state |[1): Eq. (5.2.13) therefore means that the
same calculation can be performed breaking the paths as in (5.1.14)-

(5.1.15), provided P is used instead of P. We shall postpone the proof
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of Eq. (5.2.13) to the end of Sec. 5.4, because it must be preceded by

some considerations which follow below.

Eq. (5.2.7), which we have obtained, heuristically, from considera-
tions about path integrals, turns out to be just the expression suggested
by Dirac [92]. Since, from our standpoint, Eq. (5.2.7) and its complex
conjugate (5.2.5) are exactly on the same footing, we shall now critically
review Dirac’s derivation, in order to understand if there is a compelling
reason to prefer Eq. (5.2.7) rather than Eqgs. (5.2.5) or (5.2.8).

The method followed by Dirac is based, in essence, on the approxi-
mation of a history v with boundary conditions expressed on position,
by the discrete sets of points (5.1.12)—(5.1.13) in the extended configu-
ration and momentum spaces. If a probability P[{(xa,tx)}, {(Pk,7x)}] is
assigned to the “path” (5.1.12)—(5.1.13), the following obvious identity
holds:

PG )} {pis i)} = o [ 5. By o8 ..y
P[{(x;wth)}v {(pvak)}] Nés(xo = XO) 53(xﬁ\r+1 - XN+1)
§%(ph — Po) -+ 83 (Ply — Pv) = N (83, -~ 6%, 65, -+ 8p,,){5-2.14)

where (---) denotes the average. In the quantum mechanical formalism,
we can thus write the quasiprobability P[{(xh,ts)},{(P&,T)}] as

P[{(xn,tn)}, {(Pr, 7)}] = N (#]O{8%(X(t0) — %o1) - -
(%t 11 ) —Xn+11)8%(B(70) —Pol) - - -83(P(ra) —pa1)}¥)s (5.2.15)

where %(t,), P(7x) are the position and momentum operators of the
particle respectively at times t, and 74, in the Heisenberg picture; O{-- -}
denotes an ordering for the ploduct of opeLators and represents the
crucial point of the treatment. If Al(tl) ,A,,(t ) are generic operators
defined at times t; < ... < t,, the Dyson chronological product [101] is

T{ds(tr) - An(tn)} = Autn) -~ Aa(tr) (5.2.16)

similarly an “antichronological” product can be defined as

T{AL () An(ta)} = Ai(th) -+ Ao(ta) - (5.2.17)
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The choice of O that reproduces Dirac’s expression corresponds to the
use of 7'; more explicitly, for O = 7/,

O{8(%(to) — %01) -+ 6*(X(tw41) — Xnvpal)
6°(B(70) — pol) -+ 8*(B(7w) — pr1)} =
= §%(%(to) — %01)8*(p(70) — pol)---
2 83(%(ty) — xn D)8 (P(iv) — pa1)E(X(tn1) — Xnp11)(5.2.18)

Substituting Eq. (5.2.18) into Eq. (5.2.15), and inserting N + 2 com-
pleteness relations for position, we get

P{(xr, 1)}, {(Pr> 7)Y = N (3]0, o) (%0, t0|6* (B(70) — Pol)lx1,t1)
< (3w, i [6%(D(7v) — P )N s ) (v, tvaa [90) (5.2.19)

Using now the completeness relation for momentum, the k-th factor in

Eq. (5.2.19) becomes

(Xk,tklﬁ?’(ﬁ(fk) - pki)l){k+1,tk+1> = (27371)3 e~ (PrAX—Hi Ati)/R ,
(5.2.20)

with Hy defined by Eq. (5.1.9). Substituting Eq. (5.2.20) into Eq. (5.2.19),

and taking the limit ' — 0, Eq. (5.2.19) becomes, according to Eq. (5.1.8)

above,

Py = lim P[{(xn, 1)}, {(Pr, 7)}] = $(x (), ') K[y]"(x(2"), ") ,
(5.2.21)
which is exactly expression (5.2.7). It is, however, obvious that the use
of 7 rather than 7' for the ordering of operators would have led to
Eq. (5.2.5): The arbitrariness in the choice of Eqgs. (5.2.5) or (5.2.7)
as quasiprobability for the history « reflects therefore the arbitrariness
in the ordering of operators according to the chronological or the an-
tichronological rule. In our opinion, the requirement to deal with a real
quasiprobability is stronger than others which could induce one to pre-
fer the ordering 7 or 7' in Eq. (5.2.15): Thus we shall use, from now
on, the expression (5.2.8) for P[v], which corresponds to a symmetrized
chromnological product.
Let us notice, finally, that the expression (5.2.9) for P[y] can be
obtained straightforwardly with Dirac’s method, simply considering the
skeletonized history as (5.1.14)—(5.1.15) rather than as (5.1.12)-(5.1.13).
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5.3 Probability Distributions for Position
and Momentum

Let us now apply the concept of a quasiprobability functional P[y], as -
previously defined, to some special cases, in order to check that it does
indeed reproduce the results of ordinary quantum theory. We shall start
by integrating P[y] over all the trajectories in I'1, obtaining easily:

P(x",t”;x’,t') = /D7P[7] - R ['gb(x",t")* K(x”,t";x’,t')-z,b(x',t')] '
r,

(5.3.1)

The function P(x",t";x',t') now derived will be useful later in clarifying

the concept of quasiprobability; moreover, it is also connected to the

probability densities for position P(x'|t') and P(x"|t"), as we shall now
show.

The probability that the particle be in x” at time t” is, according to

our formalism, the integral over the set I'' of the functional P[y]; thus

P(x"t") = / Dy Ply] . (5.3.2)
FI/
Writing the expression for P[y] in Eq. (5.3.2) according to Eq. (5.2.8),
and performing the formal integration as in Eq. (5.2.2), we get, at the
end, the well known expression

P(x"|t") = (", ) (5.3.3)

in agreement with the results of standard quantum theory [95,100], and
consistent with Eq. (5.2.3). P(x'|t) can be obtained, in a similar way,
as an integral over I".

Our method of obtaining the probability distribution for position
could be questioned, because we choose to integrate over the paths “ar-
riving” from the past to the point (x”,¢”) of the extended configuration
space; in principle it could be that the integration over another set of
histories, e.g. all those “leaving” (x",t"), lead to a different value for
P(x"|t"): The derivation of this quantity from P[y] would thus be ill-
defined. Fortunately, we shall now prove a lemma from which it follows
that this is not the case. Let in fact t¥ > t”, and let v* be a path
defined for the time interval [¢t",t%] by ¢ — x7(t) and ¢ — p*(¢), such
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that x*(t") = x(¢"), pT(¢") = p(¢”). Then it is possible to construct,
given a history v € I', a new history ¥ defined by t — x(%), ¢ — p(t)
for t € [t',t"], and t — xT(¢), t — p*(¢) for ¢t € [¢",t*]. Calling T the
set of all such paths ¥ with fixed x” at time ¢”, we have the equality

[ D3Pl = [ Dy P (5.3.4)
£ T
In fact, since
K[3] = KRh"1KR], (5.3.5)

it follows trivially that the left hand side of Eq. (5.3.4) is equal to
1P (x",1")|?; Egs. (5.3.2) and (5.3.3) then imply the validity of Eq. (5.3.4).
This result ensures that both of the definitions (5.3.1) and (5.3.2) are
well posed.

The functions P(x'|t') and P(x"|t") can be derived from the one

defined in Eq. (5.3.1) by the following mathematically obvious relations:

P(x'|t') = / &Pz P(x", 1" %', 1') (5.3.6)
Cll

P(x"|t") = / &' P(x", ;% 1) | (5.3.7)
Cl

Since P(x|t') and P(x"[t") have the meaning of probability densities
for the particle to be, respectively, in x’ at time ¢ or in x” at time
t", Egs. (5.3.6)—(5.3.7) suggest that P(x",t";x/,t') be interpreted as the
joint quasiprobability density (in C" x C’) for the particle to be in x’
at time t' and in x” at time . In fact, with such an interpretation,
the right hand side of, e.g., Eq. (5.3.7) would represent the probability
density (in C”) that the particle, having been somewhere at time t'; be
in x" at time ¢": It sounds quite reasonable to equate this to P(x"|t").
A completely analogous argument can be performed about Eq. (5.3.6).

The interpretation of P(x”,t";x/,t') given above, which relies on
the well established interpretation of P(x|t) and agrees, according to
Eq. (5.3.1), with the notion of a quasiprobability functional P[y], gives
support to the reliability of such a concept; however, we think it is
important to stress the fact that, unlike P(x|t), P(x",#";x',t') has no
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direct relation to any real experiment. More precisely, while P(x|t) rep-
resents the probability to find the particle at x at time t, P(x",t";x',t')
is not related to the probability to find it first (at time t') in x', and
then (at time ¢) in x": This latter would rather be

(", ¢ ) [ () (5.3.8)

where 1 (x",¢"|x',t') is the wave function in x” at time t" if the particle
is known to be in x’' at time #'. It is evident that Egs. (5.3.8) and
(5.3.1) differ very much from each other: While Eq. (5.3.8) involves, in
its definition, the process of state vector collapse [55], Eq. (5.3.1) makes
reference only to the unreduced wave function . This is an important
point, as can be understood from the following remark.

Let us decompose the set T'; into two disjoint sets I'# and T'?, and

define
PI(x" 1", t) = / Dy Pl , (5.3.9)
r{

with I € {A, B}. It is clear that
P(x",t";x',t') = PA(x",t";x',¢") + PP (x",1";x',t') (5.3.10)
with
PI(x" "' 1) = R [ (x",¢") KI(x",¢"; %', ) (x',¢)],  (5.3.11)

and

KI(x" "% t) = /D'y K[l . (5.3.12)

15+

However, while K!(x",t";x',t'), from Eq. (5.3.12), depends only on
the trajectories in I'l) this is not true for P(x”,¢";x',t'), which de-
pends also on 3 both at (x',#') and at (x”,¢"): Since ¥(x",t") and
P(x',t') are linked as in Eq. (5.1.5), which contains K (x",t";x',t'), and
K(x",t";x,t') is evaluated taking into account allthe trajectories in I'y,
it follows that Pf(x",t";x',#') is an object which depends on the entire
I'y, and not only on I'{. This is the underlying reason which allows P[v]
to incorporate interference effects.

This “global” character of P[y] can be realized even better intro-
ducing a new kind of amplitude functional for paths, which has also
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the effect to compactify the notations. Let v € I''; we can define a
functional over I'V as

oy] = Kyl d(x(t),1) , (5.3.13)

where K[v] is given by Eq. (5.1.2); ®[y] satisfies the relation

/ Dy &[] = $(x",1") (5.3.14)
s

and can be interpreted as a “true” probability amplitude for the history
v, in the sense that it contains not only informations about the phase
evolution along 7 (through K[v]), but also about the relative probability
between paths with different extremes. Let now 71,72 € I, and let us

construct a functional II over T x I'" as

Oy1,72] = @[yl @[] - (5.3.15)

M[y1,72] can be integrated over 72, thus obtaining, indicating by x;(t)
the position along 1,

/D’Yz Oy, 72] = P(xa(t"), 1) K[l (xa(t'), 1), (5.3.16)

whose real part is exactly P[y;]. It appears therefore reasonable to con-
sider II[yy, 2] as a more fundamental object than P[y], since this latter
can be conveniently derived from it; a further conceptual advantage of
I[y1,72) over P[y] is that, while P[y] contains, in its very definition
(5.2.8) the wave function evaluated at both values t' and t” of time,
thus presupposing an evolution equation to have already been solved,
at least formally, II[y;,v2] only contains 7 at one single value of ¢: All
the probabilities can be extracted from it simply by a convenient choice
of the paths over which to integrate, without the use of any further
dynamical principle.

It is interesting to observe, in relation to a possible interpretation
of I[y1,72], that Eq. (5.3.15) can be rewritten, using Eqs. (5.3.13) and
(5.1.2), as

Ily1,72] = expi (8] — Slya]) ¥(x2(t), 1) ¢ (xa(t), ), (5.3.17)
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and that 1 (x5(¢'),t")*¥(x1(t'),t') can be identified with the density ma-
trix p(x;1(t"), x2(¢');t'); therefore the definition of I1[y;, ;] can be straight-
forwardly generalized to the case of a mixture, simply defining

I[v1,72) = exp i (S{y1] — S[v2]) p(xa(t'), %2(t');8) (5.3.18)

The expression (5.3.18) has been already considered, at the level of a
kernel for integrals, in studies concerned both with the problem of the
influence of a system on another one [102] and with decoherence [103]:
This gives further support to the idea that it may play an important
role in quantum theory.

The functional P[y] should allow us, of course, to get results that are
much more interesting than a simple calculation of P(x|t); depending
on the set I', the integral (5.1.4) can produce a large variety of (quasi-
)probability functions. An interesting and important example consists
in the probability density (in momentum space) P(p|t) for the particle to
have a momentum p at time ¢. It is intuitively clear that P(p|t) should
be obtained by integrating P[v] over all the paths with momentum p at
time ¢: We shall now prove formally that this is indeed the case.

Choosing the partition of [¢/,#"] in such a way that p = pas, t = Tar,
with M < N, the integration of P[y] over all paths with momentum p
at time ¢ requires the volume element in the “broken” path integral to
be changed from

dswl e dSIBNd?’pg e dspN 3
as in Eq. (5.1.8) to

d3m0 e d3:UN+1d3p0 .o .dgpjy[_ld3p1yf+1 Ve dgpN .

This corresponds to summing over all the trajectories in T', but keeping
pu fixed. Thus

.1 ‘
P(plt) = %13%) V / Pzo...dPeypd®pg .. A1 dPparge ... oy
R[(xns1,tvsn)” exp § SN o(Dr- Axs— Hi Aty (o, to)] (5.3.19)

In Eq. (5.3.19) it is easy to perform, formally, most of the integrations,
accordingly to Eq. (5.1.8); this simplifies consistently the expression for
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P(pl|t), leaving us with

1 . *
P(plt) = L %}%%/d"gxofchds:cMHdg’mNH

Y(N+1)K(N+1, M +1)elP-Axa—HaAtar)/h (ML 0)p(0),(5.3.20)

where an obvious notation for the kernels and the wave functions has
been adopted. Using now Eq. (5.1.5), and taking the limit 7' — 0 under
the integrals, Eq. (5.3.20) becomes

P Xnq1/h o=iPXar/h

P(plt) = %/dsdesmMJrW'(xMJrl’t)* (2nh)3z  (2rh)3? P(xar,t),
(5.3.21)
that is
P(plt) = |¢(p,)I” - (5.3.22)

This result agrees perfectly with the predictions of standard quantum
theory [95,100], and can therefore be considered as a further successful
check on the reliability of Ply].

It is interesting to observe that the conclusion (5.3.22) could have
been reached also in the form

P(p"[t") = [ Dy Pl (5.3.23)
I
with a much more straightforward procedure. Our derivation based on

P[] emphasizes, however, the fact that both P[y] and P[y] can be used
in order to get the same physically meaningful probabilities.

It is worth noticing, in closing this section, that if f is an arbitrary
function of position, and + are paths such that ¢ — x(t), then

WIFE)) = [ Dy P F(x(1), (5.3.24)

Fﬂ

for all times ¢ € (t',t"), as it is easy to prove. Similarly, if g is a function
of momentum, and ¢ + p(t) for the histories v, then

(Wle(B()I¥) = [ Dy Pl a(p(t)) - (5.3.25)
Ty

These relations ensure that P[y] can be used to correctly compute ex-
pectation values; a more general result along this line will be given at
the end of the next section.
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5.4 Phase Space Distributions from P[]

The next logical step in the construction of quasiprobability functions
out of P[y] consists in searching for a joint distribution [73,98,79,80]
P(x,plt) for both x and p at time ¢{. However, since this calculation
will require a more delicate treatment than those performed so far, we
must first discuss the formal structure of the terms Hj in Eq. (5.1.8).
In the derivation of Eq. (5.1.8) from the Hilbert space formulation of
quantum mechanics, the form of the generic factor in Eq. (5.1.7) depends
strongly on the prescription used to order the noncommuting operators
% and p in the Hamiltonian H. It is possible to invent many of them,
but we are interested here mainly in Weyl’s and Rivier’s [79,80].
Weyl’s prescription is, for a same generic component of X and p,
1.0

An A n an—l ~m
W{z"p Eé—;Z(l>m Lt (5.4.1)

=0
this implies

Tp41 + Tk

e 5 ) = (B2 el (5.42)

leading to
(% [W{H (%, B} %) = (xXpt1 | H (X, P)Ix) (5.4.3)

where H(x,p) is the classical hamiltonian, and

%, = %(Xk“ +x0) . (5.4.4)
Rivier suggests the symmetrization rule
S{zg"p"} = %(:&"ﬁm +pma"), (5.4.5)
which gives
e ST ) = () (a5 (5.4.6)

and consequently

(e [STH(%, D) Hea) = 3 (a | B ek, D)) + 5 (e H 0, )]
(5.4.7)
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Using the completeness relation for the momentum, it is easy to see that

Eq. (5.4.3) leads to

Hy = H(Xk, Pr) (5.4.8)
while Eq. (5.4.7) implies
1 1
Hy = -Q-H(Xk-u,pk) + §H(Xk,Pk) . (5.4.9)

It is therefore clear [86,81] that a path integral formulation of quan-
tum mechanics starting with the midpoint prescription (5.4.8) would
lead to the same results of the standard theory in which the Weyl order-
ing (5.4.1) is adopted; similarly, the use of Eq. (5.4.9) in the path inte-
gral corresponds to the ordering (5.4.5) in the Hilbert space formulation.
Now, in standard quantum theory, the choice for the ordering for non-
commuting operators does not affect the relations (5.3.3) and (5.3.22)
for P(x|t) and P(p|t), and it is easy to understand that this is also the
case in our method, where such equations hold independently of the
choice between Eqgs. (5.4.8) and (5.4.9). However, when the quantity to
be calculated is P(x, p|t), it is known that the prescriptions (5.4.1) and
(5.4.5) lead to inequivalent results [79,80]. More precisely, Egs. (5.4.1)
and (5.4.5) correspond, respectively, to the Wigner [73] function (3.2.17)
and to the Margenau-Hill [88] function (3.3.10). We can thus infer that,
in our formalism, the calculation of P(x,p|t) based on Egs. (5.4.8) or
(5.4.9) will also lead, respectively, to Eqs. (3.2.17) or (3.3.10): This is
correct, as we shall now formally show.

To get the quasiprobability for the particle to have position x and
momentum p at time ¢, we must obviously integrate P[y]| over all the
histories which, at time ¢, cross the point x with a momentum p. Ac-
cording to the prescription (5.4.8), the momentum pj corresponds to
the position X, given by Eq. (5.4.4); therefore, in the path integral for
P(x,p|t), we must keep constant py; = p and

1
X = g(XM_H_ -!—X]\/[) y (5410)

for t = 737, M < N. Introducing the new variable

1

£= i(XMH - Xu), (5.4.11)
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we can write straightforwardly the volume element for the “broken”
path integral related to P(x, p|t) as’

Bdzo... oy 1d*EdPzyis. .. dsmN+1d3p0 o P 1 dPpar - d’py ;

thus

.28
P(X,plt) = %_‘IET([) N— / d32130 . .dgw]yj_ldggdst_{_z N d3$N+1

d®po .. A YERT: AL S TR d’py

: N

R [1/)(XN+1JN+1)* eXP% Y. (pr - Axi — H(Xy, pr)Ate)
k=M+1

exp ﬁ(2p §— H(x,p)Atn)

- M-1

7
exp - 3 (Pi- Axi — H(%x, P) Ati) (%0, to) | (5.4.12)
k=0
which easily becomes, with the help of Eq. (5.1.8),

1
P(x,plt) = WT%?R/GI% o d% oy

Y(N+1) K(N 41, M+1) @Pé-HEP)A0/R K (M, 0)(0(5.4.13)

Now, with the same procedure adopted to get Eq. (5.3.21), we obtain,
remembering Eqgs. (5.4.10) and (5.4.11), the Wigner function (3.2.17).

We need now only show that the alternative prescription (5.4.9) leads
to the Margenau and Hill function (3.3.10). To do this, we must de-
cide, first of all, which position x to keep fixed in the integration, to-
gether with the momentum p = par. While, in the previously treated
case of Eq. (5.4.8), x was clearly defined by Eq. (5.4.8) itself, the pre-
scription (5.4.9) is not so transparent about this point. We can notice,
however, that Eq. (5.4.9) is equivalent to writing the path integral for
K(x",t";x',t') as

/D'yK /D,m Ky /Dp7 K, (5.4.14)

1The factor 23 comes from the relation d®zprd zpry1 = 2°d3zd3¢, which is an
obvious consequence of Egs. (5.4.10) and (5.4.11).
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where

/DmKh = llgnwv/d 21 ... deydpo ... &Py
It
exp — Z (P - A%y — H(%pp1,pr)At), (5.4.15)
k 0
and
/DPVK[7] = W/dgml dzyd® Po . dapN
Iy

- N
exp % Z(pk “Axy — H (X, pr)Ate) . (5-4-16)
k=0

In Egs. (5.4.15) and (5.4.16), the position associated with the mo-
mentum p; is well defined, and equal, respectively, to xp,; and xg.
Eq. (5.4.14) can thus be interpreted by saying that half of the trajecto-
ries, in the summation, are approximated according to the correspon-
dence rule

Pr — Xp+1

while for the other half it is
Pk — Xk ;

this can also be understood by noticing that the Rivier ordering admits
the representation

1 1
S=-X+ = 5.4.17
5 X+ 5P, (5.4.17)
where X and P are the orderings
X{z"p"} =z"p", (5.4.18)
{Anﬂm} Am, An (5419)

which correspond, respectively, to the integrals (5.4.15) and (5.4.16),
and justify the use of the subscripts X and P in their measures.

In the light of these considerations, we shall write the quasiproba-
bility P(x,p|t) associated with the prescription (5.4.9) as

1 1
P(x,plt) = é—Px(x,p}t) + iPp(x,plt) , (5.4.20)
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where Py and Pp are calculated according to the prescriptions under-
lying, respectively, Egs. (5.4.15) and (5.4.16). Therefore, in the integral
for Py, we shall keep constant pyr = p and Xpr11 = X, while in the one
for Pp it will be xps that plays the role of x.

Let us first compute the form of Py; defining the new variable

g = XM — XM+1 (5421)
the volume element for the “broken” path integral is
Pro...dPey 1d* 6Py .. Py iidipo ... Eopr-1d®parsr ... dpy

and

PX(X, p|t) = lim % / d3.’L'g e d3$M_1d3€d3$M+2 e d3€BN+1

T—0
d3p0 .o dspM_1d3PM+1 s ClspN

. N
R [¢(XN+1,75N+1)* exp % > (Pr - Axgp — H(Xpy1, pr)Atr)
k=M+1
7 ,
exXp “E(P &+ H(x,p)Aty)
7 M-1
exp = 3 (Pi - Axi — H(xipr, i) Ati) (30, t0) | 5 (5.4.22)
k=0

Eq. (5.4.22) becomes, by Eq. (5.4.15),

_ 3. 13413
Px(x,plt) = Wﬂl}—%% d J:od éd TN+1
P(N+1)K(N+1, M4+1)e " PE+HEPIAMA K (N 0)15(0)(5.4.23)
Using now Egs. (5.1.5) and (5.4.21), and taking the limit under the
integrals, we get
1

Pa(,plt) = o [ E6p(x,t) P o+ 60), (5:424)

which is already equal to Eq. (3.3.10). Similarly, for Pp, the result is
1 el & )< PE/R
Pr(,plt) = 5 [ Eep(x = &7 M), (5.4.25)

which is equal to Eq. (3.3.10) as well. Thus, by relation (5.4.20), we can
claim that the prescription (5.4.9) leads to the Margenau-Hill function
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for the quasiprobability P(x,p[t).

We can now generalize the results contained in Egs. (5.3.24) and
(5.3.25) to the case of an observable F' which is a function both of
position and momentum; if the paths 4 are represented, as usual, by
t — x(¢) and ¢t — p(¢), and O stands either for the Weyl or for the
Rivier ordering, then

(IO{F (x(2), B(£)}) = / Dy P F(x(t),p(),  (5.4.26)

where the integral is performed according to the prescription related
to the ordering O, and ¢ € (t/,t"). The proof of Eq. (5.4.26) is rather
similar to the others given in this section, and is therefore omitted; we
only notice that the key idea is to show that the right hand side is equal
to

/ &zd®p Po(x,pl) F(x,p) : (5.4.27)

The relation then follows from well known properties of the phase space
distributions.

Let us prove, at this point, Eq. (5.2.13) for the case of the prescrip-
tion (5.4.8) (the case of (5.4.9) is completely analogous); for ¢t = t,
M < N, the left hand side reads

Dy PRI FG(0),p(0) = lim < [ @20 P 2xadpo ..

N
E3 Z -
Y(XN11,tN41)" exp 7 > (k- Axp— Hp Atp)p(xo, to) F(Zar, Paip.4.28)
k=0

the right hand side of Eq. (5.4.28) becomes, remembering that the wave

function in the momentum space is the Fourier transform of the one in

the configuration space,

271'
hm /d3m1 Ceydipg. Aoy d(pnytNg1)”

i ‘
i Z(Xk Apy + HiAtk)d(po, to)e 4% F(Rpr, par), (5.4.29)

k=1
where Apy = P41 — pr; when the limit is taken, (5.4.29) turns out to
be equal to the right hand side of Eq. (5.2.13), thus establishing the
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equality.

To close this section, we believe it is worth noticing that our results,
namely that, with the appropriate prescriptions, the quasiprobabilities
Ply] sum up to the Wigner and the Margenau-Hill functions (3.2.17)
and (3.3.10), give a definitive proof of the statement made in the Intro-
duction, that the P[y] are not, in general, positive semidefinite. In fact,
both (3.2.17) and (3.3.10) can attain negative values [73,98], and this is
possible only if there are trajectories for which P[v] is negative.

5.5 Conclusions

In the previous sections we defined a quasiprobability functional Ply]
on the space of histories for a quantum particle. The introduction of
such a concept allows one to reproduce not only the usual probability
densities for position and momentum, but also the phase space distribu-
tions suggested by Wigner and by Margenau and Hill, in a way which
is consistent with the usual connections between path integration and
operator ordering. More precisely, a rule for the ordering of noncommut-
ing operators in the Hilbert space corresponds to a prescription on the
way one performs the path integrals by approximating the trajectories
with sequences of points in the configuration and momentum spaces.

We have examined the Weyl and the Rivier orderings which correspond,
respectively, to the prescriptions (5.4.8) and (5.4.9): These generate in
turn, through our formalism, the Wigner and the Margenau-Hill func-
tions (3.2.17) and (3.3.10). Of course, other rules could be studied.
We believe it is worth stressing that Egs. (5.2.5), (5.2.7) and (5.2.8)
lead all to the same results as regards P(x|t), P(p|t) and P(x,p[t):
Therefore these three expressions are, for the concerns of the present
chapter, equivalent, apart from matters of taste or prejudice. In choosing
Eq. (5.2.8) we have been motivated by the wish to have a real quasiprob-
ability for P[y]; this led to a “degeneracy” of results for P(x,plt), in
the sense that the three different rules S, X and P all correspond to
the same P(x,plt), i-e., to the Margenau-Hill function. This could be
avoided simply by choosing P[y] according to Eq. (5.2.5): In so doing,

all the results would have been the same as ours, with the difference

120



that the use of the orderings X and P would have led, respectively, to
the functions

, 1

PX(Xa p‘i) =

(2mh)3

/ Bep(x, 1) e P Pp(x + £,1) (5.5.1)

and

Ph(x,plt) = Py(x,plt)” - (5.5.2)
This is in perfect agreement with already performed calculations [79],
but since the prescriptions X and P do not produce, in general, self
adjoint operators, they are not very interesting, and we prefer thus the
more symmetric real expression (5.2.8) for P[y]; of course, if further
investigations give evidence in favour of Eq. (5.2.5) or of its complex
conjugate Eq. (5.2.7), this would not create any serious problem for our
formalism: Only minor changes in the details would be implied by the
replacement of Eq. (5.2.8) with one of those expressions.

There is, however, an argument which we believe is strong enough
to rule out both the distributions (5.5.1) and (5.5.2). Let us remember
that the probability current j(x,t) for a quantum particle of mass m can
be written as

306,8) = b, 0)7 9 (1) (553)

It is natural to think that a viable phase space distribution P(x,plt)
should lead to the equation

1
ix,t) = /d3m’d3p’P(x',p’]t)63(x —-x')=p' : (5.5.4)

m
We shall now prove that this is true when P is either the Wigner or the
Margenau and Hill function, but not for P = P3 or P = P.

Inserting the Wigner function Pyy in the right hand side of Eq. (5.5.4),
we get, after some trivial steps,

h

T )oim / By dPep(x + £,1) Ve y(x —£,1),  (5.5.5)

which, remembering the properties of the delta function, turns out to
be equal to (5.5.3). Similarly, using the Margenau-Hill function in
Eq. (5.5.4), we find

I3

Wﬂ?/d3p1d3§.¢(x + g,t)*vgeip'.ﬁ/h B(x, 1), (5.5.6)

121



again equal to (5.5.3). If, however, we insert Eq. (5.5.1) into Eq. (5.5.4),
it is easy to check that the result is not (5.5.3), but rather

o, £ T, ) (5.5.7)

similarly, P} leads to the complex conjugate of (5.5.7). The incomplete-
ness of these results induces us to discard the orderings X and P; the

same conclusions would have been reached by considering

i(x,1) = (#i(x, D) (5.5-8)

for

~

i(x,) = 0 {8(x() - x1)
with O equal to W, §, X or P.

B(0)} | (5.5.9)

1
m

The ideas developed in this chapter appear to be very general, and
can be applied to a wide range of circumstances; even if we have concen-
trated more on the derivation of phase space distributions, we believe
our main result to be the reformulation of quantum theory in terms of
quasiprobabilities. This technique seems to be quite useful, since it al-
lows to compute physically relevant quantities thinking in terms of sets
of well defined paths, each assigned with a given quasiprobé;bility: In
such a way it is possible to circumvent the need to use amplitudes, and
this turns out to be particularly useful when dealing with semiclassical
systems.
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Chapter 6

Explicitly Covariant
Relativistic Quantum Theory

It has been shown in Ch. 5, how a quasiprobability functional P[y] can be
defined on the space of histories for a nonrelativistic quantum particle,
as in Eq. (5.2.8). In this chapter we want to extend the notion of the
quasiprobability functional P[v] to the case of a relativistic quantum
particle. The structure (5.2.8) of the nonrelativistic P[y] makes clear
that, in order to be able to construct its relativistic generalization, two
preliminary results must first be accomplished:

i) To find a suitable form for the relativistic action S[y];

iz) To find a four dimensional generalization ¥ of the three dimensional
wave function .

Both these problems are important and have to be solved; however, from
S[v] it is possible to define, through Eq. (5.1.2) and a path integral, a
propagator for ¥ which determines, finally, the differential equation that
¥ must satisfy. Therefore, we shall deal first, in Sec. 6.1, with the issue
of determining S[y]. Sec. 6.2 is devoted to the construction of ¥, and to
the analysis of the equation to which it obeys. In Sec. 6.3 the relativistic
quasiprobability P[y] is defined, and its relationship with the quasiprob-
ability distributions obtained straightforwardly from U are investigated.
Further details and insight into the structure of the resulting version of
quantum theory are discussed in Sec. 6.4.
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Throughout all this chapter, we shall deal with a spinless particle in
the Minkowski spacetime. The treatment follows that of ref. [104]

6.1 The Action Functional for a Relativis-

tic Particle

The three dimensional form of the action for a particle,

°slal = [t [p() 5 - ) pi0)0)] (611)

is obviously not explicitly covariant, and thus not very helpful in the
construction of a relativistic P[y]. It is well known, however, that a
four dimensional modification of Eq. (6.1.1) exists, which is covariant
and from which the equations of motion can be derived by a Hamilton
principle. Define, in fact, a path v as the pair of curves in the extended
four dimensional configuration and momentum spaces: A — z(}), A
p(A), where A € [\, )] is a parameter. Then, for a suitable choice of
the superhamiltonian [2] H(z,p, A), the four dimensional action is

shl= [ an [ G - M| (612)

It is easy to verify that, denoting by I'; the set of all the histories such
that z(\') = 2’ and z(\") = 2", with fixed 2’ and ", the action S[v] is
stationary under arbitrary variations of v belonging to I'y if and only if
v satisfies the four dimensional form of the Hamilton equations:

dz? _ OH

—d_A_ — apa 3 (6-1-3)
dp.  OH
Fe (6.1.4)

The most important problem about the action given by Eq. (6.1.2) is
represented by the choice of H(z,p,)); before discussing this point,
however, we want to show how the four dimensional action S can be

reduced to the three dimensional action S following a procedure [105]
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which is well known in classical mechanics [106], and that we shall briefly
review here.

Let us consider, as a preliminary example, a particle described by
Eq. (6.1.1), with the important feature that the hamiltonian H does not
explicitly depend on time. Then the solutions of the Hamilton equations
will completely lie on the hypersurface defined by

H(x,p) = E = const. ; (6.1.5)
the reduced action
t" .
~ (1
35 = /dt () ) (6.1.6)
J dt

together with the condition (6.1.5), will be thus sufficient to reproduce
the equations of motion under a Hamilton principle, since the variation
of the additional term E(¢" — ¢) turns out to be equal to zero. Now,
Eq. (6.1.5) can be solved to obtain, e.g., p; as a function of the remaining
coordinates and momenta,

p3 = —E(wl,mz;pl,pz;f;E) , (6.1.7)

where
t

z® . (6.1.8)

If in the range [¢/,4"] the function ¢ — z3(t) is one to one, Eq. (6.1.6)
can be rewritten as

35 = P/dt‘ [pa(ad‘”;@ - E} , (6.1.9)

where « € {1,2}, and ¥ = z%(¢'), # = z%(¢"). It is obvious that 3§
is stationary, under arbitrary variations of () and p.(f) such that
éz*(#') = 6z*(1") = 0, in correspondence of the history which solves the
Hamilton equations; conversely, requiring *S to be stationary under the
conditions mentioned above, one finds the equations

dx® _ OH

—_— = 6.1.10
dt apa Y ( )

dpe 0H

_—= = - . .1. 1
dt Oz~ (6.1.11)
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Egs. (6.1.10) and (6.1.11) do not determine, however, the full history
of the particle, but only the shape of its trajectory in the configuration
and momentum spaces.

Let us now come back to the four dimensional form of the action,
Eq. (6.1.2). If the superhamiltonian H is not explicitly dependent on A,
the motion takes place on the hypersurface

H(z,p) = € = const. ; (6.1.12)

since the term £(A\” — )\') has a null variation, it is sufficient to consider
a reduced action

(6.1.13)

If in the range [\, \] the function A — z°(}) is one to one, Eq. (6.1.13)
can be rewritten as

S:]&Pﬁﬁﬁo—ﬂ}, (6.1.14)

where H is obtained solving Eq. (6.1.12) with respect to po,
po = —H(x,p,t,&), (6.1.15)
and

with ¢ = 2°()) and ¢ = z°(\"). It is clear that S is nothing else
than the three dimensional action 2S given by Eq. (6.1.1), and that the
corresponding Hamilton equations

dzt OH
= 6.1.17
dt Op; ( )
and p OH
Pi
e 6.1.1
dt ozt (6.1.18)

determine the form of the trajectory as z'(t) and p;i(t), but lack the
A-dependence which can be obtained by the higher dimensional sys-
tem (6.1.3)-(6.1.4). It is important to notice that the constant € in
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Eq. (6.1.12), like F in Eq. (6.1.5), is determined by the boundary con-
ditions and should not, in principle, have anything to do with any pa-
rameter possibly contained into H.

After having made clear these connections between the four dimen-
sional covariant action and its three dimensional reduced form, let us
face the problem of the choice of the superhamiltonian H. A necessary
requirement is obviously that the Hamilton equations (6.1.3)—(6.1.4)
lead to the correct classical equations of motion, for the case, e.g., of a
free particle. However, it is well known [107] that this condition is not
sufficient: Every superhamiltonian of the form

H = f(1"paps) , (6.1.19)

where f is an arbitrary function, is good for this purpose. In order to
identify, therefore, another constraint allowing to define uniquely the
function f, let us apply Egs. (6.1.3) and (6.1.4) to the superhamiltonian
(6.1.19); we obtain, respectively,

dz®

= 20° ' (n®*paps) , 6.1.20

o = 2P (1"Paps) ( )

and p
Pa

- 1.21

= =0, (6.1.21)

where f' denotes the derivative of f with respect to its argument. The
relation (6.1.21) has the immediate consequence that n%p,p, is a con-
stant, which will be denoted, in general, as em?, with ¢ € {-1,+1}
depending on the initial conditions and m positive. Eq. (6.1.20) be-

comes thus

dz*®
d\

The arbitrariness in the choice of the parameter A can be removed by

= 2p°f'(em?) . (6.1.22)

requiring that dz?/dA be not only proportional, as in Eq. (6.1.22), but
exactly equal to p®. This condition leads to

fl(em?) = % : (6.1.23)

Now, it is clear that, while the universal coefficients present in the super-
hamiltonian (6.1.19) have to be independent of the particular boundary
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conditions, € and m are constants of motion, which do depend on such
specific conditions. It is therefore natural to require that f be inde-
pendent of them; it is easy to see that the only function satisfying this
condition and Eq. (6.1.23) at once is

(&) = %é : (6.1.24)

The superhamiltonian for a free particle is then
1 ab
H= 57" PaPs - (6.1.25)
It is important to notice that it is only the additional requirement that
f be independent of e and m to fix uniquely the form (6.1.25) for H: In
fact, to Eq. (6.1.25) it is sometimes preferred [105] the superhamiltonian

H = —+/—1%paps , (6.1.26)

corresponding to the choice ¢ = —1 and to a different parametrization; as
we have already stressed, both these forms of H are equally good for the
purpose of deriving the equations of motion; however, when discussing
first principles, we believe the appearance of m and/or ¢ in H to be
a disadvantage, being both of them related to the specific boundary
conditions, and having not any formal fundamental meaning other than
that of constants of motion. Moreover, the condition n®p.p, = const.
is a consequence of the classical Hamilton equation (6.1.21), i.e., of the
Hamilton principle, which is not imposed at the quantum level. We
shall thus use, in the quantization of the relativistic particle, the four
dimensional action (6.1.2) where H reduces, for the case in which the
particle is free, to the form (6.1.25).

It is worth noticing, to close this section, that whenever H does not
explicitly depend on ) it is possible to write, according to Eq. (6.1.12),

£ m?

2 ?

and consequently perform the reduction of dimensions as discussed in

H(z,p) =

(6.1.27)

relation to Eq. (6.1.15). A simple example is that of a particle with
charge e in an electromagnetic field described by the potential A,: The

superhamiltonian reads

1
H = on™(pa — eda)(ps — e4s) - (6.1.28)
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Solving Eq. (6.1.27) with respect to pg, and remembering Eq. (6.1.15),
we get

H=1/(p—eA) —ecm? +ed,, (6.1.29)
which is the hamiltonian usually adopted to describe such a system [105].

6.2 The Relativistic Wave Function

In the previous section we have achieved the first of the two preliminary
goals indicated in the introduction to the present chapter, providing an
action functional which is sufficiently independent of the specific condi-
tions to allow to be used in Eq. (5.1.2) when performing a path integral
quantization of the relativistic particle. The time has now come to find
a relativistic generalization of the nonrelativistic wave function ¥ (x, t):
This will be the second ingredient from which a relativistic quasiproba-
bility functional can be constructed.

It is obvious, from the expression (6.1.2) for the action and the re-
lated definition of a history, that in the relativistic domain the parameter
A plays the same role which, in the nonrelativistic theory, was played
by the time ¢. This can be seen even more clearly by noticing that the
path integral

K(z" X' 2! \) = / Dy K] (6.2.1)
N1

should be interpreted as the amplitude for the particle to move between
the spacetime point z' for a value A’ of the parameter ), and the point z”
for A = A" (compare Eq. (6.2.1) with the Eq. (5.1.1), which represents
the essence of the path integral formulation of quantum mechanics). We
expect, therefore, that a relativistic version of the wave function should
depend not only on the spacetime point z, but also on the value \ of
the parameter labeling the points on the classical histories; such a wave
function will be thus written as ¥(z, ).

An alternative way of looking at ¥(z,)) is the following: In order
to have a covariant formulation, the time t is raised to the level of an
observable, like the position x, and its place as a parameter is taken by
A. In the Schrodinger picture, a state of the particle is then denoted
as [¥(A)), and |z) stands for a state of definite spacetime position z; if
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ly) is another such state, corresponding to the event y, we require the
normalization

(ely) = 6%z —v), (6.2.2)
where §* is the delta function over spacetime. Similarly,

U(z,A) = (z]¥(N)) (6.2.3)
is the coordinate representation of the state |¥(})), and

P(z|)) = |¥(z, \)]? (6.2.4)

represents the probability density (in spacetime) for the particle to be
at z when the parameter has the value A [105,108,109]. Of course,

/d4:c P(e}) = (M) T() =1. (6.2.5)

With this interpretation for ¥, it is straightforward to identify the
amplitude K (z",\";z', X') as the propagator for ¥; in other words, if I'"
is the set of all the paths satisfying the boundary condition z(N') =",
then

T(e", N = / Dy Ky ¥(z(N), \) . (6.2.6)
I‘II
This equation leads to the four dimensional version of the Schrédinger
equation’:
A
m?—\g(a—?——) =H (m,.-mf—,ﬁ T(z, N, (6.2.7)
UA \ g )

where H(z,—ihd/8z,N) is the differential operator which is obtained
from the superhamiltonian under the substitution

0
dze
Eq. (6.2.7) and the correspondence (6.2.8) can be interpreted in the usual

p, — —ih (6.2.8)

way in terms of the Hilbert space of states for the particle. If p, is the
momentum operator acting on such space, its coordinate representation
is given by the relation

8Y(z,)) |
R (6.2.9)

1The derivation of Eq. (6.2.7) from Eq. (6.2.6) is performed in the same way as in
nonrelativistic quantum theory [105,95].

(z]pa|T(A)) = —1
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Eq. (6.2.7) is therefore the coordinate version of the abstract Schrédinger

equation
ihﬂ%%/\—)z — Hw() | (6.2.10)
where, as usual,
H=Hz,pN) . (6.2.11)

Everything proceeds, therefore, analogously to what happens in nonrel-
ativistic quantum mechanics.

A peculiar feature of this theory is that the particle mass appears in
it only as an eigenvalue. In order to better understand this point, let us
consider the case in which H has no explicit dependence on )\, and look
for a “stationary” solution of Eq. (6.2.7):

U(z,\) = e My (z) , (6.2.12)

with £ real. Inserting Eq. (6.2.12) into Eq. (6.2.7), and defining a posi-
tive constant m by

em’ =28, (6.2.13)

where ¢ is defined as

e =signf, (6.2.14)

we get the “stationary”, i.e., A-independent, form of the four dimensional
Schrédinger equation:

51; [—27{ (::: —m%) + smz] P(z) =0, (6.2.15)

which can be identified immediately as a generalized Klein-Gordon equa-
tion for a particle with mass m and causal behaviour defined by e. These
features of the particle are thus, in this theory, not imposed a priori,
but determined by the boundary conditions in the eigenvalue problem
corresponding to the stationary version of Eq. (6.2.7). It is worth notic-
ing, at this point, that even though our discussion is restricted, for sake
of simplicity, to the case of a spinless particle, for which ¥ is a com-
plex scalar, Eqgs. (6.2.7) and (6.2.15) can be generalized to particles with

spin, provided ¥ and 1 are considered to be multicomponents columns
[110,111,112].
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We find the fact that ¢ and m are not fixed, but take definite val-
ues only for some specific states, to be a very strong point in favour
of the theory here considered. In fact, let us remember that, at the
classical level, both & and m are fixed as a consequence of the Hamilton
equations (6.1.3)~(6.1.4), which imply, for a A-independent superhamil-
tonian, ¢ m? =const. or, separately:

1. Constancy of the causal type of the motion (¢);
2. Constancy of the particle’s mass (m).

The equations of motion (6.1.3)—(6.1.4) have not, however, to be im-
posed at the quantum level: This amounts, in the path integral formu-
lation, to integrate even on those histories changing their causal char-
acter, and/or on which the mass of the particle is not constant. A state
|¥ (X)) will not be, in general, an eigenvector of the operator H, corre-
sponding to definite values of ¢ and m, but it will be a superposition of
such eigenstates; in the case of a discrete mass spectrum,

2
[T(A)) =D cne €xp (-%%A) In,e), (6.2.16)
with |n,e) normalized vectors satisfying the stationary equation
~ 1 5
Hin,e) = zemy In,e) , (6.2.17)

and c,. complex coefficients normalized as

Slenlf=1. (6.2.18)

e
It is clear that ¢ and m play here a role analogous to the one played,
in the nonrelativistic theory, by the particle’s energy. An interesting
consequence of such a parallel is the nonlocalizability of particles with a
definite mass. In fact, in nonrelativistic quantum mechanics there are no
common eigenstates of energy and position; this implies that particles
with definite energy cannot be localized in space. Similarly, it is easy
to see that in the relativistic theory treated here, it is not possible to
conceive a common eigenstate of mass and spacetime position: Particles

with definite mass cannot be localized in spacetime. This conclusion is
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in agreement with the well known analysis of the subject given by New-
ton and Wigner [113].

In nonrelativistic quantum mechanics, if the hamiltonian is not ex-
plicitly dependent on time, the time evolution preserves the energy
eigenstates. Similarly, in the relativistic theory here discussed, if the su-
perhamiltonian does not depend explicitly on )\, the A-evolution carries
eigenstates of mass and ¢ into eigenstates of mass and ¢, corresponding
to the same eigenvalues. It is interesting to prove this statement using
the integral representation (6.2.6); let us first observe that, under the
hypothesis considered,

K(z", A" 2", M) = K(2",2', ), (6.2.19)

where A = A" — M. If ¥(z',\;m,¢) represents an eigenstate of the
superhamiltonian at the parameter value X, then it will evolve, at \/ >
A, into

/d4a:' K(2", A" 2", X)¥(z', N ;m,e) . (6.2.20)

Applying H(z", —ihd/dz") to Eq. (6.2.20), and noticing that the ampli-
tude K (z", \";2', ') satisfies the four dimensional Schrédinger equation
in the variables (z",)"), we easily get, remembering Eq. (6.2.19),

0
o 4_1 "o, 1oyt 1oy,
zh/d:c-—a/\,K(m,)\,:c,A)\IJ(:c,/\,m,e). (6.2.21)

A straightforward application of the Leibniz rule, together with the
remark that Eq. (6.2.20) does not depend on X, allows now to transform
Eq. (6.2.21) into

/d4:c' K(m",)\”;:c',/\')ih%\lf(m’,A’;m,s) , (6.2.22)
which is clearly equal to

1

ismz/d4m'K(m",/\";m',)\')‘I/(:c',/\';m,s) , (6.2.23)

thus proving our assertion.
This feature of the theory is rather important, since it guarantees
that, provided H is independent of )\, a particle with definite mass and
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causal behaviour will not change them during its evolution. Such a re-
sult is not trivial, because K(z”,\";z’,\’) contains contributions from
all the paths in Ty, many of which do not correspond neither to a def-
inite m nor to a definite £ (off mass shell contributions); nevertheless,
it turns out that both m and & are conserved in average. A detailed
discussion of the nonrelativistic analogous result concerning energy is
contained in ref. [105]. '

The result now obtained has the important consequence that a par-
ticle which is in an eigenstate of H (i.e., with well defined m and ¢) can
be fully described by the generalized Klein-Gordon equation (6.2.15).
It is therefore interesting to ask if a propagator for Eq. (6.2.15) can be
constructed from the amplitude K(z",\";z',X’). As we shall now show,
the answer is affirmative, and will turn out to give just the Green func-
tion which is commonly used in the quantum theory of the scalar field

Let us notice, first of all, that K (z",A";2’, X'), defined as
K@, X2, )= 0\ = N)K(z",\";2',)') (6.2.24)
where © is the step function, satisfies the inhomogeneous equation [95]
. 6 14 4 6 1 + n 1 ! ! . " ! 4 n !
zha/\” —H|z ,——zhaw”,)\ K*(z", A"z, ') = th§(N"'=X') 6%(2" —2').
(6.2.25)
If H does not depend explicitly on A, we can define a function K*(z",2',))

analogously to what has been done in Eq. (6.2.19), and consider the new
function

.y T .
h em? _
Az",z2'sm,e) = ol dxexp [0 K DY BN 6.2.26)
P . ,

where the A-dependence has been integrated over, keeping definite values
for m and e. A simple calculation shows that A(z",z';m, <) satisfies the

equation

1
— [—27‘( (m",—ih%) + Emz] Az z';m,e) = =8 (x" — '),

hZ
(6.2.27)
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i.e., that it is a propagator for Eq. (6.2.15). We have thus only to connect
Eq. (6.2.26) with the usual expressions for such a propagator; this can
be easily done for the free particle. The amplitude for this case is?

E(a",2',)) = (2] exp(—iHA/R)|2') =

1 1 " , 1
= (k) /d4p exp = [p (2" =z — -z—pzA ,  (6.2.28)

where the completeness relation for momentum has been used twice. By
definition (6.2.26), the propagator for the free Klein-Gordon Eq. (6.2.15)
reads thus

Az z';m,e) = —(27rlh)4 /d4p e (=" ==)/h - 2;2 —5 (6.2.29)
where we have made use of the formal equality [114]
+oo .
0/ ) e = E?i“i’(i , (6.2.30)
with ¢ real and
§i1i0 =P (2—) T in(€) (6.2.31)

P denoting, as usual, the principal part. It is immediate to recognize, in
the right hand side of Eq. (6.2.29), the Feynman propagator extended
also to the case of spacelike motions as well. A derivation, within our
formalism, of the explicit form of A(z”,z';m,¢) for a free particle is
given in the Appendix.

We find necessary, at this point, to comment on the different physical
meanings of K (z",\"; 2, \) and A(z",z';m,c); while the first of them is
a transition amplitude, in the proper meaning, between the states |z’, \')
and |z”,\"), as it is evident from the first equality in Eq. (6.2.28), this
is not true for the second one. There are, in fact, no states |z/,m,¢)
and |z",m,e) whose scalar product could give origin to A(z",z';m,¢):
The reason, as we have already noticed, is that no common eigenstate
exists for the spacetime position and the superhamiltonian. It would
be therefore incorrect to think of A(z”,z';m,e), or of any similarly

?Hereafter we shall use the short notations p,(z" —z')* = p-(z' —2') and n*’p,p, =
2
pr.
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constructed function, as an amplitude for a particle of mass m and
causal type € to evolve between the spacetime events z’ and z".

The analogy between m and ¢ in the relativistic theory, and the
energy F in nonrelativistic quantum mechanics, is particularly explicit
about this fact. The nonrelativistic Schrodinger equation (3.1.1) re-
duces, for a time-independent hamiltonian and a wave function

P(x,t) = e B p(x) (6.2.32)
to the stationary form |
1 , )
w2 [-H(x,—thV)+ E] ¢(x) =0. (6.2.33)

Defining, from the amplitude [95] K (x”,t";x',t), a function K*(x",x’,1)
as in the relativistic case, with ¢ = ¢ — #/, it is easy to check that

+oo
BB =i [ SR (0230

is a propagator for Eq. (6.2.33), since
1
K2
It is clear that, while

[—H(x,—ihV) + E] A(x",x; E) = —=§*(x" — x') . (6.2.35)

K(x" #"x' ) = (x" "%, 1) (6.2.36)

is, by definition, a transition amplitude, the same cannot be said with re-
gard to A(x",x'; E): Position and energy are incompatible observables,
and this implies that A(x",x'; F) has only an essentially mathematical
meaning, as well as A(z",z';m,¢).

6.3 Covariant Quasiprobabilities

Having established a covariant version of relativistic quantum theory,
we are now in the position to define a quasiprobability (density) for a
relativistic history v, simply following the same arguments which led to
Eq. (5.2.8) in the nonrelativistic case; the expression reads

Ply] = R[¥(=(X"), A")" K[y] ¥(=(X), A)] (6.3.1)
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where K [v] is given by Eq. (5.1.2), with S[y] the four dimensional action
(6.1.2).

The functional P[v] enjoys the generalizations of all the properties
which are satisfied by its nonrelativistic counterpart. It is easy to show,
for example, that

[ Py Pl = P@"1X"), (6.3.2)
L
where Eq. (6.2.6) has been used. The normalization (6.2.5) guarantees
then that

/D7 Plyl=1. (6.3.3)
Ty

The proof that the integral of P[y], over all the histories whose four-
momentum at the parameter value A is p, turns out to be equal to

P(p|A) = [2(p, V)], (6.3.4)
where A
B(p, \) = /d% z2wh)2 U(z, \) (6.3.5)

is the wave function in the momentum space, is also trivially performed,
mutatis mutandis, along the same lines of Sec. 5.3. The only signif-
icant change is in the expression for the “broken” path integral of

K(SE", A”; :B', )\/):

K(z",\"; 2, A') = lim ’7\/1~ / dizy...dy

A—0

. N
d'po...d*py exp % S (pr - Ak — HiANg) (6.3.6)
k=0

In Eq. (6.3.6), the interval [\,;\”] has been partitioned into N + 1
subintervals [Ag, Ag11], with £ € {0,1,...,N} and N = Xy < -+ <
An+1 = A’ the length of the (k + 1)-th of such intervals is denoted as
ANy = Agp1 — A, and A = max {A)}; moreover, we have used the
notations Azf = zf,, — zf, N = (2rR)*¥+Y) and, in the limit A — 0,

(ersalFpe) | 1 (pelFles)

1 1
2 (zrprloe) 2 (prlze)

He, (6.3.7)
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Let us come to an important issue in the formalism here developed:
The derivation of phase space distribution functions from the quasiprob-
ability functional P[y]. The argument proceeds in the same way as in
the nonrelativistic treatment of Sec. 5.4: Since by phase space distribu-
tion it is meant a function of z, p and A which is supposed to represent
the (quasi-)probability density for the particle to have spacetime posi-
tion z and four-momentum p when the parameter value is A, we should
be able to obtain it as an integral (5.1.4), with I' the set of all the
trajectories such that z(A\) = z and p(\) = p. However, the experience
obtained in dealing with the nonrelativistic case, suggests that the result
will be dependent on the particular prescription adopted in the explicit
calculation of the path integral through the skeletonization of the his-
tory and the subsequent limiting procedure; moreover, this arbitrariness
will be related to the need to use, in the Hilbert space formulation of
the theory, a prescription for the ordering of noncommuting operators.
Skipping all the intermediate steps, which do not differ significantly
from the calculations contained in Sec. 5.4, we simply claim that, for
the prescription related to the Weyl ordering (5.4.1), the phase space

distribution function turns out to be

1

Py(z,plA) = (h)e

/ PEW(z+ 6N PN (z - €,0),  (6.3.8)

which is the relativistic generalization of the Wigner function [115,116].
On the other hand, considering the prescription related to the Rivier
symmetrization rule (5.4.5) one gets

Ps(z,p|>) = 1}1)4% / PEU(z+ AP MU(e, ), (6.3.9)

(27
which generalizes the Margenau-Hill function [88] to the relativistic do-
main.

We find important to remark that our results are consistent with
those of refs. [115,116], though these last are stated for the A-independent
case. The arbitrariness in the final expression for P(x,p|A) is not a weak
point of our derivation, but it rather seems to be an intrinsic feature of
quantum theory, which can be probably removed only by the introduc-
tion of supplementary requirements (see the discussion about (3.3.14)
in Ch. 3). In the formalism of ref. [115], the relativistic phase space
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distribution is found to correspond to a straightforward generalization

of the Wigner function because of the choice, as associated vector, of

PN

hin? ag 2ipé/h 0
° i A) = P e -&, A 3.
F2 (2, p; \) 2(7rh)4i/d PN U(2+6,0) S5 U(2—E,)) , (6.3.10)
where we have adapted the notations to our standards; however, also
the vector
Fin?® pe/n O0U(z + €, N)°
Fe(z,p;A) = — 0/4 e/ O T A) gy 3.11
2(z,p; A) (271'}1)4\9 d*te b ¥(z,A), (6.3.11)

where & denotes the imaginary part, is real and satisfies the condition

[ dpFe(e.50) = (), (6.3.12)

where 7%(z, A) is given by
‘ hnab béa
“( = F : 318

FZ(z,p; M) is therefore an equally good candidate as vector associated
to the phase space distribution. A simple integration by parts gives in
fact

Fi(z,p; M) = p° Ps(z,p|)) , (6.3.14)

thus proving the existence of the arbitrariness even in this other formal-
ism.

The quasiprobability functional P[y] allows to write an evocative
representation of the current j%(xz,A). Let us define, in fact,

52, Ay) = 6z — =(1)p°(N) | (6.3.15)

where A — z()A) and A — p()) define, as usual, the path v; Eq. (6.3.15)
is justified by the relation [32]

+co
el = [ dagr(a,nm) (6.3.16)

which allows to determine the current 7%(z;v) due to a classical particle
with history v: j%(z, \;v) represents thus a kind of current in the context
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of the extended spacetime. We shall now show that the average of
7%(z, A;y) over all the possible paths in Ty is just j%(z, ) defined by
Eq. (6.3.13), i.e., that

5@, ) = [ Dy Pl Al - (6.3.17)

In the proof of Eq. (6.3.17) it is necessary to skeletonize the paths,
in order to compute explicitly the integral: A prescription about the
procedure to follow in this operation is therefore necessary. We shall
perform the calculations choosing A = (A + Auy1)/2, p(A) = par and
z(A) = (ar + Taryr)/2, which corresponds to the Weyl ordering (5.4.1)
or, equivalently, to the Wigner function (6.3.8); it is easy to check that
the use of the prescription associated to the symmetrization rule (5.4.5)
(or to the Margenau-Hill function (6.3.9)) would equally lead to the
result (6.3.17). Let us thus write the right hand side of Eq. (6.3.17),
according to Eqgs. (6.3.1) and (6.3.6), as

.1 .
}\I-I}%) Fﬂ?/ d*zo ... d* ey d*po .. APy (Tyirs Ansr)

" N
+
exp 3 (ph- A — Hul ) B(as, ho) 7 84 (2 = L4 3.18)

k=0
Performing 2V integrations and remembering Eq. (6.2.6), the expression
{6.3.18) becoines
1
(2mh)4
eiPM'(mMH—:vM)/h\Ir(wM,A)p‘;u & (1; B +2$M+1) y (6319)

R / A4 20 d* T apr d*Pae U@ ppas, A)”

which, with the change of variables { = © — z,, reads

nab aniPM'E/h

e YEHEN -6, (63.20)

2h
b [
It is now easy, performing the integration in p,, and remembering few
properties of the delta function, to verify that (6.3.20) reduces actually

to the right hand side of Eq. (6.3.13), thus establishing the equality in
Eq. (6.3.17).
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Eq. (6.3.17) acquires a particular interest if we notice that, defining

P(z,A\ly) = 8*(z — z(N)) , (6.3.21)
so that
7%(z, Aly) = P(z, Aly) p*(A) (6.3.22)
it follows easily that
P(zA) = [ Dy Ply] P(z, A1) , (6.3.23)
Lo

where P(z|)) is given by Eq. (6.2.4). The relations (6.3.21) and (6.3.22)
strongly suggest to look for a continuity equation in the extended space-
time, of the kind of

OP(z|A) N 7%z, )
oA oze

it is easy to check, with the help of Egs. (6.2.7) and (6.1.25), that
Eq. (6.3.24) is really correct, at least in the free particle case®. Let

0; (6.3.24)

us notice that in the stationary case, 7%(z, A) does not depend on A, and
turns out to be equal (apart a factor m) to the Klein-Gordon current

ab a
() = I Wr% (2) (6.3.25)

2im

which obeys a continuity equation in spacetime. However, it is clear
that, in the context of our theory, it is the Eq. (6.3.24), and not

83°(=)

= 6.3.26
8170' 0 ) ( )

which expresses the “conservation” of probability; the similarity between
Eq. (6.3.26) and the continuity equation of the nonrelativistic quantum

theory,
aLgmeV-j(x,t) =0, (6.3.27)

where
P(x|t) = |4(x, )| (6.3.28)

3For an analogous result in a theory similar to the one presented here, see ref. [117].
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and
A —
i(x,t) = %gb(x,t)*v P(x,1), (6.3.29)

is clearly only apparent: The real analogy has to be drawn between
Eqgs. (6.3.27) and (6.3.24), while the analogous of Eq. (6.3.26) is the

stationary (i.e., t-independent) version of Eq. (6.3.27), i.e.,

V-j(x)=0, (6.3.30)
with . B
i(x) = 5—¢(x)"V é(x) (6.3.31)

and ¢(x) satisfying Eq. (6.2.33).

These considerations, and particularly Eqs. (6.3.17) and (6.3.23),
give further support to the main idea underlying the quasiprobability
functional technique: Quantum theory can be represented as a classi-
cal statistical theory, provided the space of histories is equipped with the
quasiprobability density Ply].

6.4 Reduction to the Spacetime Level

In the formalism developed so far, the parameter A plays the role of an
“evolutionary time” for the particle, but it is not related in any way
to the measurements of time performed by an observer: these latter are
rather associated to the coordinate time ¢ which is, as we have already
stressed, an observable of the theory. It is clear from the treatment of
Sec. 6.1 that, at a classical level, for a free particle of finite mass m
and causal behaviour ¢, the Hamilton equations imply that the interval
AMX corresponding to a spacetime displacement Az?® is, in the limit of

1
AN = —y/engpAztAzt . (6.4.1)

T

“infinitesimal” Az?,

This allows to interpret A as 1/m times the proper length of the parti-
cle’s trajectory in spacetime, thus establishing a relationship between A
and measurements in spacetime. When passing to the quantum level,
however, we have to abandon all the results of the classical theory re-

lying on the Hamilton variational principle, which is not fequired to
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hold: Eq. (6.4.1), in particular, will not be correct any more, and will
apply only in correspondence of the classical path. As a consequence,
we must conclude that an observer making measurements in spacetime
has no way to determine the value of A, or of intervals AX: As far as
he/she is concerned, ) is a truly unobservable parameter. It is therefore
obvious that we must get rid of the A-dependence in the physical results
of the theory, in order to be able to compare them with measurements
performed in spacetime.

The probability P(z|)), as said in the comment to Eq. (6.2.4), makes
reference to the condition that the parameter have the value A: As
such, it is not directly related to physical measurements, because A
cannot be known by operating in spacetime. A physically meaningful
quantity would rather be P(z), i.e., the probability that the particle be
at the event z; this can be constructed by “projecting” the extended
spacetime R* x [\, "] onto the spacetime R*, and adopting the usual
law of probability theory

AN

P(z) = /dA P(z|\ P, (6.4.2)

where a probability density P()\) has been assigned to each value A €
[, A”] of the parameter.

The problems are now, quite obviously, which values to assign to
the extremes A’ and A", and how to determine the function P(}). The
most natural choice, if we accept that at a spacetime level there is total
ignorance about A, is

1
for A’ — —o00, A" — +o00; this assumption corresponds to an equiproba-
ble distribution in A.
We can now derive the probability distribution P(z) for the general
state (6.2.16); in order to avoid technical troubles, let us suppose the

mass spectrum to be discrete?, so that

7 em?
U(z,A) = che exp (——~— = ) Yne(T) (6.4.4)

n,e

4With some care in the normalization procedures the same treatment, with analo-
gous results, holds also in the case of a continuous spectrum.
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where n labels the mass eigenvalues, and

Yne(z) = (2|0, €) (6.4.5)
are eigenstates normalized according to
/ B2 e (2) Pt (2) = Bt Bt - " (6.4.6)
The conditional probability P(z|)) is, according to Eq. (6.2.4),
Pald) = T e eREREA G (@) (z); (6.47)

nn' e,

inserting Eq. (6.4.7) into Eq. (6.4.2), with the prescription (6.4.3) and
the limits A’ — —oco, A — 400, one finds

Z ]Cne W’ne '3)12 (6.4.8)
where the identity
A”
: L (em2 —e'm2 )X\ _
NN /\'/ dA et W = b (6.4.9)
A —4oc0 by

has been used. Eq. (6.4.8) is rather important, since it expresses the
probability of presence for the particle in spacetime, and it worth some
comments.

The main difference between P(z) and P(z|)), as it is clear by a
comparison of Egs. (6.4.8) and (6.4.7), is that in the latter, interference
between different mass values is present, while P(z) is only a sum of in-
coherent terms, each one corresponding to a single value of m and ¢, to
which a probability |c,.|? is assigned. The meaning of this is that inter-
ference between different masses and causal behaviours is unobservable

as far as spacetime observations are concerned.

We can give a more general proof of this statement by considering,
in the Schrodinger picture, the density operator associated to the state

(6.2.16):

AN = [ZONTA) = 3 e e e 0l ) nel -
o (6.4.10)
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IfQisa self-adjoint operator representing an observable, the probability
that this takes the value w when the parameter is X is

P(w|}) = tr (p(\)|w)(w]) | (6.4.11)

where |w) is the eigenvector of { with eigenvalue w, and possible de-
generacy has been neglected for sake of simplicity. For an observer

which has no knowledge about A, however, the interesting quantity is
not P(w|)), but rather

A/I
Pw)= lim /dA P(w|)) P(N), (6.4.12)
A e N
with P(A) given by Eq. (6.4.3). The linearity of the trace operation
allows to write

P(w) =tr(p|w)lw]), (6.4.13)
where now |
\
p= Jlim [ dAp(A)P(A) = > enel? - Inye)(n, el (6.4.14)
Ao froo M ™e

Egs. (6.4.13) and (6.4.14) can be interpreted by saying that, with re-
spect to measurements performed in spacetime, the pure state (6.4.10)
and the mixture (6.4.14) are undistinguishable: This is a more precise
statement of the conclusion reached in the previous paragraph.

The form of the Eq. (6.4.8) seems to present a problem related to
the conservation of probability. Even in the simple case of a single
component (A-stationary case), P(z) = [¥n.(z)]|? is not associated to
a continuity equation, because v¥,.(z) is a solution of the generalized
Klein-Gordon equation (6.2.15). This may look as a serious flaw in
the theory, because it brings as consequence thie nonconservation of the
integral of P(z) over a spacelike hypersurface. An intuitive way to
understand this point is to go back to the path integral formulation;
what in the extended spacetime is a single path with a unique z for
each value of A appears, when projected on spacetime, as a curly curve
whose points are not necessarily in a well defined causal relationship:
Under a space+time splitting, it would thus appear as if there were
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both particles and antiparticles in space [118]. It is thus clear that,
being |1n.(z)|* the probability density to find either a particle or an an-
tiparticle with mass m, and causal behaviour ¢ at the spacetime point
z, such nonconservation allows for virtual processes to occur! In the
light of the previous discussion, it appears particularly clear that the
non positive definiteness of j° has nothing mysterious in it: It is simply
a consequence of the property of the theory to describe particles and
antiparticles at the same time, and does not cause any trouble, since it
is not j°, but rather || which has to be interpreted as a probability
density.

The process of reduction to the spacetime level now discussed can
be regarded as the quantum counterpart of the reduction of dimensions
performed, classically, through the Eqs. (6.1.12)—(6.1.18). It is both re-
markable and instructive that a similar treatment can be performed also
in the nonrelativistic quantum theory, where it corresponds to a reduc-
tion to the space level, and turns out to represent the quantum version
of Egs. (6.1.5)-(6.1.11). Writing in fact P(x[t) as in Eq. (6.3.28), with
¥(x,t) obeying the usual Schrodinger equation (3.1.1) with a time inde-
pendent hamiltonian, and ¢ € [t/,t"], one can write, using the analogous
of Egs. (6.4.2), (6.4.3) and (6.4.9), -

P(x) = leal* - |ga(x)] . (6.4.15)

In the derivation of Eq. (6.4.15), the general state ¥(x,t) has been ex-
panded into energy eigenstates (supposed to belong to a discrete spec-

trum) as

b(x,t) = > cae B (x) (6.4.16)

n
where ¢,(x) are orthonormal functions satisfying the stationary equa-
tion

H(x,—thV ) ¢n(x) = E, ¢a(x) . (6.4.17)

The physical meaning of Eq. (6.4.15) is obvious: P(x) is the proba-
bility density that the particle be in x at some time; such quantity is
relevant if we do not (or if we cannot) fix the time at which to ask
for the particle’s position. This has the remarkable consequence that
simple measurements of position, without the knowledge of the time at
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which they have been performed, do not allow to detect interference be-
tween different energy eigenstates. More explicitly, let us suppose that
an ensemble of particles has been prepared, at time ¢’ — —oo, in the
superposition (6.4.16); if the position of each member of the ensembie
is measured, and the time at which this measurement is performed is
controlled and recorded, one obtains a statistical pattern which should
approximate the probability distribution P(x|t), thus exhibiting inter-
ference between different values of n. However, if the times of the mea-
surements are randomly distributed, and the only available data are the
results of the position measurements, it is clear that the statistical pat-
tern can only be compared with P(x) given by Eq. (6.4.15); but this
is the same probability distribution which could have been inferred had
the ensemble been prepared in the incoherent mixture described by the
density matrix

p,x) = D lealdu()enl) © (6.418)
n

Since Eq. (6.4.18) does not show any interference between different val-
ues of the energy, we are led to conclude that the same must happen
in the experimental procedure described above. A more intuitive ar-
gument explaining why interference cannot be observed if the measure-
ments’ times are not known is the following: In a superposition of energy
eigenstates, the detection of interference is possible by observing oscilla-
tions in the populations of different states, with frequencies |E, — E,..|/A;
if the times at which the measurements are performed are not recorded,
such oscillations cannot be seen, and the pure state (6.4.16) is, under

this respect, indistinguishable from the mixture (6.4.18).

The nonrelativistic analogy now presented, though exhibiting many
similarities with the relativistic case, contains nevertheless an impor-
tant difference. In the relativistic theory, the particle’s parameter X is
completely unobservable at the spacetime level, and has therefore to be
integrated over in the construction of physically relevant quantities such
as P(z); the nonrelativistic analogue of )\ is, however, the time ¢ (or,
more precisely, t{/m), whose status in the theory is rather unclear. In
a purely formal context, ¢ is also an unobservable parameter, because
although it labels the evolution of states and observables, no self-adjoint
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“time operator” exists which acts in the Hilbert space L?(R?®); however,
the theory makes the further assumption that ¢ is not only a “particle’s
time”, but that it can be identified with the external “coordinate time”
2%, this latter being accessible to the experimenter: This is the reason
why quantities like P(x|t) are relevant from a physical point of view,
rather than P(x).

This puzzling situation can be clarified providing the connection be-
tween the relativistic and the nonrelativistic theories, i.e., investigating
the nonrelativistic limit of the covariant quantum theory; let us there-
fore perform this analysis for the general state (6.4.4) in the simple case
of the free particle. As we have already discussed in detail, the pure
state (6.4.4), which is suitable for a treatment in the extended spacetime
R* x [\, "], corresponds to the mixture (6.4.14) when the description is
restricted to the spacetime R*. It is clear from Eq. (6.4.14) that at the
spacetime level there is no superposition of different mass states: Since
the nonrelativistic theory is essentially a space+-time treatment, we can
work out the case of a single mass component, which is general enough;
moreover, the nonrelativistic limit can be performed, by definition, only
in the case ¢ = —1 and m # 0.

If, in the explicit calculation, we consider the case of a free particle,
the solution of Eq. (6.2.15) to start with is therefore

L [ dtper=ts(p + m?) 6(p) | (6.4.19)
= d

Y(z;m) =
(27ie)

where ¢(p) is an arbitrary function satisfying the relation
[ 8" +m?) |8(p)” = 2m (6.4.20)
which guarantees the normalization®
/d4:c P(zym) P(zym') = §(m —m') . (6.4.21)

Applying the usual properties of the delta function and carrying on the
integration in pg, Eq. (6.4.19) can be rewritten as

fond b,

Y(x,t;m) = p;m)+

(27h)?

5The state we are now dealing with, has no representation in L*(R*): This purely
formal inconvenient could be solved by a “normalization in a box” procedure [95]
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% p-x+ P2+m2t> ba(pim) | (6.4.22)

where

bo(psm) = 27—1———_—_— 8 (yor+mip) | (6.4.23)

p* +m?

pa(psm) = é—i)—;\/—;———ﬂz—i ¢ (—\/p2 +m?, p) ; (6.4.24)

Eq. (6.4.22) describes a superposition of a particle state and an antipar-

ticle one. The functions ¢, and ¢, must satisfy the relation

) V/p? + m?
m

[ &0 (18:(im)? + $a(pim)P =1,  (6.4.25)

which guarantees the validity of Eq. (6.4.21). In order to be able to
define a probability density for the position in space at a given time, let
us evaluate the integral of |1(x,t;m)|? over a ¢t =const. hypersurface; a

simple calculation gives

[ E it tm)l = [ @ (1ge(pim)l + 6a(pim)l?) +
271-;1/‘13?6 FVPHTI g (pim) ga(psm)” +
o [ I G iy g(pim) . (6.4.26)

The quantity expressed by Eq. (6.4.26) depends on time, showing inter-
ference between particle and antiparticle states; however, if we restrict
the treatment to particles only, thus requiring ¢,(p;m) = 0, Eq. (6.4.26)
reduces to

[ e lulxtm) = — ﬁ/ *p|de(p;m)P? (6.4.27)

which is indeed a quantity independent of time. Eq. (6.4.27) cannot,
however, be regarded as a satisfactory normalization if |(x,#;m)|? has
to be given the meaning of probability density for the position in space
at the time ¢: In fact, its right hand side will depend, in general, on
the particular shape of the function ¢,, and a renormalization to one is
made impossible by Eq. (6.4.25), which becomes now

m

[ & p16o(pim) =1. (6.4.28)
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It is remarkable that these problems are automatically solved in the
nonrelativistic limit of the theory. Suppose that ¢p(p;m) is different
from zero only for |p| < m; it is then possible to approximate /p% + m?
as m + p?/2m, and Eq. (6.4.28) reduces, in the limit, to

[ &ploelpim)® =1, (6.4.29)

which allows to rewrite Eq. (6.4.27) as

1
/d% e tm)? = 5 . (6.4.30)

By Eq. (6.4.22), defining

1 ilp -;-,t
Pual,3im) = @Tﬁ‘)‘/‘/ epet ) o pimy . (6431)
it follows now
e—-imt/h
‘b(x,t;m) ~ Wqﬁ,\m(x,t;m) s (6.4.32)
with
/ Bz |Pun(x, tm)2 = 1. (6.4.33)

In the description of the nonrelativistic particle, therefore, we may con-
veniently adopt the function s instead of ¥; as it follows from the
discussion, to such function can be given the meaning of probability
amplitude for the particle’s position in space at a given time; moreover,
yp satisfies the nonrelativistic Schrodinger equation (3.1.1) for
. h? v
H(x,—1hV 1) = ~7;V2 . (6.4.34)
We are now able to explain the conundrum of the different status of
A and t. In the relativistic theory, performed in the extended spacetime
R* x [V, )], the state vector belongs to the Hilbert space L?*(R*), and
its evolution is parametrized by A — an unobservable quantity; when
considering the spacetime level, the dependence on A is dropped, and
the general state is no more represented by a vector of L*(R*), but
rather by a density operator p acting in this space, which is diagonal
in m and €. In the nonrelativistic limit for one of the components of 5,
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we obtain a theory which is formally similar to the relativistic one, but
with a configuration space which has one dimension less; the state vector
belongs thus to L?(R®), and evolves in t, which is now a parameter (i.e.,
not an observable) of the theory. However, it is not necessary, now, to
project at the space level, eliminating the ¢-dependence; in fact, ¢ is a
physical observable, since it was so in the relativistic theory we started
with. In other words, ¢ happens to play the role of a parameter in the
nonrelativistic limit but, owing to the approximate nature of this last,
it still preserves his feature of being observable (although not in the
nonrelativistic theory).

It is worth considering what is the effect of the nonrelativistic limit
on the phase space distributions P,, and Ps; we shall perform explicitly
these calculations only for the Wigner function P,,, since the case of P
can be treated in a completely analogous manner. Let us begin noticing
that Eqgs. (6.2.12), (6.2.13) and (6.4.19) imply, for ¢ = —1, that

U(z € \m) = e~ FmA / ke R EEO/AS (12 4 m?) a(k)

(6.4.35)

Assuming the state vector to describe only particles, and remembering

(27h)?

the properties of the delta function, we can write, using Eq. (6.4.23),
§(k* + m?) (k) = 6(k° — VK? +m?) ¢p(k;m) , (6.4.36)

which allows to rewrite Eq. (6.4.35) as

U(wie, Aym) = 1 e'i’}im”/dak ei(k.(x:té)—\/k'_B+m—2(t:t£0))/h¢P(k;m) ,
(27h)?
(6.4.37)

where now & is the spatial part of the four-vector ¢. Introducing the
nonrelativistic condition on ¢(k;m), we can approximate P,y (z, p|\;m)
as
1
(wh)
i (e~ 1

1 . 0 0
. d 0d3 dskdak/ z(2p~§—-2(p —m)é )/h
4+ (2mh)* / &t ‘

,2
K (x-)-50¢)

) ¢p(k;m)” e%'( ¢r(k';m); (6.4.38)

in Eq. (6.4.38), the terms in k?/2m and k'*>/2m have been neglected with
respect to m. Performing now the integration in £°, and remembering
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Eq. (6.4.31), we get
1
P (x,t,p,p°|A;m) ~ ﬂ5(p0 —m) PN (x,plt;m),  (6.4.39)
™

with, as usual,

1
(wh)?

P, pltsm) = —r [ € dun(x+ &, tim)" P fun(x — £, t5m)

(6.4.40)
The relation (6.4.39) is exactly what we would expect to find, since the
delta function has the effect of fixing the value of p° to m, thus neglect-
ing all the other contributions due to kinetic energy.

The theory here presented can describe tachions (¢ = 1) as well as
ordinary particles (¢ = —1); this could be regarded as a difficulty, since
faster than light motions have never been observed. However, we should
like to remark that even in the standard relativistic quantum theory the
nonexistence of tachions is not proved: They are simply assumed not
to be present, since the beginning, through the adoption of the relation
p? + m? = E? for the asymptotic states. This attitude could be taken
also in the context of our theory, imposing the condition ¢ = —1 to be
satisfied for the state (6.2.16), i.e., requiring

Cne = 6:,—1 Cny (6-441)

but still allowing histories with an arbitrary causal behaviour to con-
tribute to the amplitude (6.2.1); as it is easy to realize, the condition
¢ = —1 holds for all the values of A if it holds for some Ag: The nonexis-
tence of observable faster than light motions is thus reduced to a matter

of boundary conditions.

The initial aim of the present chapter was to perform a relativistic
extension of the concept of quasiprobability functional; however, it turns
out that the results obtained in the course of the treatment go far beyond
such a goal. The most interesting conclusion is, in our opinion, the
construction of an explicitly covariant scheme of first quantization: The
time coordinate, which in nonrelativistic quantum theory is treated as
a parameter, unlike the spatial ones, which represent the observable

position of the particle, is now raised to the rank of an observable, too.
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The coordinates {z®} represent therefore the spacetime position of the
relativistic particle, while the role of evolution parameter is now played
by a variable A which, at a classical level, parametrizes the trajectories
both of position and momentum.

In this theory, neither the mass m nor the causal type ¢ of the
particle are imposed a priori, but they are consequences of the particu-
lar boundary conditions: In particular, it is possible to conceive states
which correspond to a superposition both of m and e; only for a A-
independent system, does the concept of definite m and ¢ make sense,
and it is found that in such a case the particle can be described by
a Klein-Gordon equation. Moreover, it is easy to construct, starting
from the amplitude K (z",z', ) for the particle to evolve between the
spacetime points z’ and z” during a parameter lapse )\, the Feynman
propagator as a kind of Fourier transform of K with respect to ), as
in Eq. (6.2.26). This result is particularly relevant, as it represents a
connection between the presentation here developed and more standard
formulations of relativistic quantum theory; it suggests that, as far as
free particles are considered, our formalism agree with those based on
the second quantization of a field. If this is the case even when interac-
tions are taken into account, is still an open question which deserves, in

our opinion, further consideration.
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Chapter 7

Weakly Semiclassical
Relativistic Fields

In Chs. 5 and 6 we have developed the techniques necessary to overcome
the troubles mentioned in Sec. 4.4, which occur when a weakly semiclas-
sical relativistic field is described adopting a conventional treatment of
the quantum source. In this chapter, we shall apply these new methods
to some cases of interest.

In Sec. 7.1 we discuss the formal nature of the sources of relativis-
tic fields, to which the quantum properties are completely attributed,
according to the WSH. Sec. 7.2, 7.3 and 7.4 contain, respectively, a
semiclassical treatment of the scalar, the electromagnetic and the grav-

itational fields. The treatment follows mainly ref. [31]

7.1 Sources of Relativistic Fields

The main idea of the WSH is to extract a probability distribution for
the values of the classical observables of a system C from the quantum
behaviour of another system Q, interacting with C. We are interested,
in this chapter, to the case in which C is a relativistic field, while @ is
a quantum system coupled to C. In this context, it is of fundamental
importance to know exactly which mathematical feature of Q can be
identified as the classical source or the field.

The variational principle provides immediately the recipe. If ¢ de-
notes a generic component of a field, while x stands for a generic variable
of matter, the total action of the system matter + field is a functional
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S[x, @] both of x and ; writing S;[p] for the action of the field in
absence of coupling, we have

S[Xa‘f’] = Sf[‘ip} + Sm[XaSD] . (7'1'1)

A variation of § with respect to x amounts, according to Eq. (7.1.1), to
a variation of Sy, alone, and may be used to compactify the equations
of motion for matter in the prescription

§5bowl _ g (7.1.2)
X
Similarly, the condition
]
Slel _ (7.1.3)
b
produces the field equations for the free field, while
85hoel _ (7.1.4)
by

gives the field equations in presence of matter. Rewriting Eq. (7.1.4) as

85¢le] _ 8Sm[x, ]

- 7.1.5
allows to identify the source in the term
8Sm[x,
_ 95ulx, ] , (7.1.6)
b

which is responsible for the “corrections” to the field equations due to the
presence of matter: It is therefore on (7.1.6) that we must concentrate
in order to understand which traits of matter influence the behaviour of

the field.

Let us now discuss the structure of the classical source for some
specific cases. As first example, we consider newtonian gravity, with
a pointlike particle of mass m, following the history v, as source; the
action® is, by Eq. (5.1.3),

+oo ’
Shy] = / dt’ [p(t') . d_f{%_) - 5717—;p(1‘.')2 -m®(x(t'),t")| , (7.1.7)

!Since in what follows we are concerned only with the action S,,,, we drop the index
m hereafter.
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where t' +— x(t') is the particle trajectory in space. Performing the

variation
B(x(t'),t) — ®(x(t),t') + e (x — x(t'))8(t — t') (7.1.8)

where € is an arbitrarily small number, the source term is found to be

65[v]

_«m = m 53(}( - x(t)), (7.1.9)

p(x,tly) =
in agreement with Eq. (4.3.2). In Eq. (7.1.9), the greek letter v express
the fact that p(x,t|y) is the source due to a particle which follows the
history ~.

Let us now consider the case of the scalar field in Minkowski space-
time; with a natural choice of the superhamiltonian, Eq. (6.1.2) gives,
for the action of a pointlike particle,

7 dzé()) 1

st = [ [pam (O - Q)| 5 (7:1.10)

— 00

where @ is the “scalar charge” of the particle. Under the variation

B((3) — B(a(N) +e8(w — 2(M) (r111)
we have
J(zly) = _% = Q [ axs (e —2(V) (7.1.12)

which agrees with Eq. (4.4.12), except for the fact that the @’s in the
two expressions are not numerically equal, due to the different choices
of the world line parametrization.

When dealing with the electromagnetic field, we can insert the su-
perhamiltonian given by Eq. (6.1.28) into Eq. (6.1.2), getting

oo a
bl = [ o [pe) 5 = G ) - s s (2) — ez 0]

—COo

(7.1.13)
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The variation
Aa(z(A)) — Au(z(N)) + € 54(:1: —z(A)), (7.1.14)

where ¢, is a vector with arbitrarily small components, gives

« Lo I A . :
el = -5l =e [ AGR) — oA (=) 8 (@~ 2(1))

(7.1.15)
which, when imposing the classical equations of motion, turns out to
coincide with the commonly adopted [32] source for the electromagnetic
field,

. T %) o .
jo(zly) = e / A T 84w — o)) (7.1.16)
Classical electromagnetism is known to be invariant under gauge
transformations of 4,(z),

Ao(z) — Au(z) + Buh(a) (7.1.17)

where A is an arbitrary scalar on Minkowski spacetime. The conse-
quences of this invariance on the source can be extracted requiring that
the action (7.1.13) do not change when a transformation (7.1.17) is per-
formed. More formally, we can make the action (7.1.13) A-dependent
operating in it the substitution (7.1.17), and then require that

65[y]
dA(z)

=0. (7.1.18)

Since Eq. (7.1.18) is equivalent to considering a variation of A, of the
kind
Aa(z(X)) — Au(z(N)) + €8, (z — z(N)) (7.1.19)

it is straightforward to realize that it leads to the relation
Gajé(zly) =0, (7.1.20)

expressing the conservation of the electric charge.
It is important to realize that Eq. (7.1.20) is not automatically sat-
isfied, because the history v is not necessarily classical (we have not
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imposed the validity of the variational principle for the particle), and
consequently

p*(A) — eA*(2(A))
in Eq. (7.1.15) does not coincide, in general, with
dz®(X)
dA

(which would be the content of half of the Hamilton equations of mo-

tion). Rather, Eq. (7.1.20) has to be considered as a constraint which
any possible particle history (even a nonclassical one) must satisfy in
order to be compatible with a classical electromagnetic field.

Before proceeding to treat the case of gravity, we believe it is im-
portant to make a couple of comments about the cases discussed until
now. First, let us notice that in Egs. (7.1.10) and (7.1.13) the particle-
field interaction is accounted for by terms containing the field ¢(z(}))
or A,(z()\)) is evaluated on the world line of the particle. This makes
such expressions of the action suitable for describing either the effect
of a fixed external field on the particle motion, or the properties of a
particle, whose motion is prescribed, as source of the field; however,
both these cases correspond to situations in which the behaviour either
of the particle or of the field is prescribed. Hence, Egs. (7.1.10) and
(7.1.13) are not suitable for giving a completely self-consistent treat-
ment of the particle 4 field system, i.e., for taking the radiation reaction
into account. We must therefore be aware that any quantum treatment
based on them represents necessarily only an approximate version of a
fully consistent theory.

These kind of problems are strictly connected to our second remark,
which is concerned with the nature of the field source. In the three
examples discussed above, we have chosen the source to be a pointlike
particle; this is a concept which creates some troubles (including those
mentioned above), but it is not impossible to deal with it in the frame-
work of newtonian gravity, as well as of the scalar field theory and of
electromagnetism. However, in Einstein’s theory there is no room for
pointlike particles considered as sources of gravity, because they would
lead to an unacceptably singular spacetime metric [119]. Nevertheless,
in the following discussion about the source of gravity we deal at first
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with a pointlike particle, and only later on we extend the treatment to
the case of an extended system; the reasons for such a presentation are

essentially of pedagogical character.

Let us therefore consider the action for a particle in a gravitational

field

st = [ & [ )52 - L mm] (7120

and perform the variation

b)) — g®(z() -————L———eabé‘l(m—m)\ , 7.1.22
9% (z(A)) — g% (z(X)) + mp (A)) (7.1.22)

where g is the determinant of the metric gu, and € is a symmetric
tensor whose components are arbitrarily small. We get

650y 1 T e —
Tab(ml’Y) - 5gab($) - ——g(;z;)_é dXé ( (A))pa(A)pb(/\) 9
(7.1.23)

which is a very pleasant expression of the stress-energy-momentum ten-

- sor for a particle with world line ~.

As said above, however, pointlike particles do not fit well into general
relativity, and it would be preferable to consider a continuous fluid as
source; this can be done as follows®. Let us start considering a system
of N identical noninteracting relativistic particles in a spacetime with
metric ggp; since the parameters A can be chosen to be the same, the
action is

' Nt o dzf (A 1 , .
S =3 [ ax [pf;)(/\)——;# = 50"z (V) 2R (V)]

r=1

: (7.1.24)
where the index r labels the particles. Passing to the continuum limit,
r must be replaced by the point ¢ of some three-dimensional manifold

>The description we present here of the relativistic fluid is very schematic and
incomplete. However, for what this thesis is concerned, it is enough to guarantee that
such a description can be given, and it is not necessary to enter into the details, which
we intend to give in some future work.
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Y, and the sum in Eq. (7.1.24) by a corresponding integral over X; the

action reads now
+oo

d A) 1
shi= [ [ dente e ) S (6 e el )
- (7.1.25)
where n(£) is a convenient pseudoscalar function on . With the varia-
tion
1 -
g™(2(€,2)) — g°(2(&, )+ =" §*(z—2(¢, 1)) , (7.1.26)
—g(2(&,A))
we can calculate the source term from the action (7.1.25):
55[ _ 3
e = -2« L [
+oo
/ A 64 (z — 2(€,0)) pal€, Nps (&, ) - (7.1.27)

It is easy to realize that Ths(z|y) expressed by Eq. (7.1.27) corresponds
to the stress-energy-momentum tensor of a fluid of dust whose elements
are labeled by ¢, and follow the world lines A — (£, A); the history
~ represents now the collection of the histories for each of these fluid
elements.
Einstein’s theory, as well as electromagnetism, is also characterized

by a gauge invariance under some transformations, which are now of the

kind [3]
g*(z) — g**(z) + V' X(z) + V°X°() (7.1.28)

X9(z) being an arbitrary vector field on spacetime. As we did in the case
of electromagnetism, we can explore the consequences of such invariance
making the action X-dependent by the substitution (7.1.28), and then

requiring that
8501

51Ya($)
Let us do this explicitly for the case of the pointlike particle; Eq. (7.1.29)

=0. (7.1.29)

can be sen to correspond to a variation of g2 of the kind

®(z(N)) — ¢®(z(A +—--1——— VP z—a(N))+e® Vi (z—z(N))],
9% (x(X)) 9% (z(A)) —g(m(A))[ ) (z—z(A))]
(7.1.30)
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which leads to
VP Tw(zly) =0, (7.1.31)

which is a relation analogous to (2.1.4); the same result would have been
obtained starting from the action (7.1.24).

Like for the case of Eq. (7.1.20) in the theory of a particle interacting
with the classical electromagnetic field, Eq. (7.1.31) has to be regarded
as a constraint which any material system coupled to classical gravity
has to satisfy. There is a delicate issue which must be clarified about
Eq. (7.1.31): Classically, it is well known [3,2,120] that Eq. (2.1.4),
expressing essentially the energy and momentum conservation laws for
a system in a gravitational field, contains much information about the
equations of motion of such a system. We can show this explicitly for
the case of the pointlike particle, in which Eq. (2.1.4) allows to derive
the geodesic equation. Let us define the stress tensor

dzo(\) deb())

1T
_—-—mlwa(w—mp\)) A

T(z) = (7.1.32)

which differs from the contravariant version of (7.1.23) only by the re-
placement

g (2(N) py(A) — dm;i” , (7.1.33)

corresponding to assume the validity of half of the Hamilton equations.

A straightforward application of the rules of covariant differentiation,
together with some properties of the delta function, gives

+ oo
VT (z) = T/’iﬁ /dA 5%z — z()\))
d*z*( ) . dzb(N\) dze(N)

where I'%,. are the Christoffel coefficients; requiring now the validity
of Eq. (2.1.4), multiplying the equation so obtained by an arbitrary
function F(z), and performing an integration over all spacetime, we get

/dAF(az(A)) [‘Fg;g” +rabc(w(/\))d$d/(\” d“’;gw =0. (7.1.35)
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Assuming now that the curve' A — z()) is injective, i.e., that different
values of A correspond to different points of spacetime (this is a global
requirement which rules out, e.g., closed curves, and appears very rea-
sonable if z()\) has to represent a classical world line), and choosing

Flz) = ——— 8*(z) (7.1.36)
—9(z)
Eq. (7.1.36) gives immediately
d*z%(N) . dz®(N\) dz¢()) .

which is indeed the equation characterizing the curve A — z(}) as a
geodesic of spacetime.

This result, which can be remarkably generalized, raises the follow-
ing problem: If the condition expressed by Eq. (2.1.4) is so strong that
it contains the equations of motion of the particle, does the consistency
requirement (7.1.31) do the same? An affirmative answer would have
disastrous consequences on the semiclassical program, because it would
imply that a classical gravitational field forces matter to follow classical
histories! Luckily, the answer is negative. In fact, Tou(z|Yy) and Tos(z)
differ, as we have already noticed, by the feature that the former con-
tains the momentum p,(A), while the latter is expressed in terms of the
velocity dz®()\)/d); while for Ty(z) the equations of motion automat-
ically guarantee that Eq. (2.1.4) is {ulfilled, and vice versa, this is not
true for tu(z|y), as one can check immediately. It is only when the re-
placement (7.1.33) is made, that Eq. (7.1.31) implies a classical motion;
more formally, one can say that, at least for the case here examined, the
gauge invariance (7.1.29), together with the Hamilton equations

85[]
=0, 7.1.38)
6pa(>‘) ( '
imply the other half of the Hamilton equations:
85|
=0. 7.1.
52o(0) 0 (7.1.39)

We can conclude that, in the context of the phase space treatment of
the particle, the gauge constraint (7.1.31), although strong, does not

necessarily require a classical behaviour.
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7.2 The Weakly Semiclassical Scalar Field

Let us resume the weakly semiclassical treatment of the scalar field,
which we have interrupted in Sec. 4.4 because of the inadequacy of the
techniques adopted there.

Eqgs. (4.4.17) and (4.4.18) imply

P(#(z)) = [DyP(d(e)7) =

B /D'V §(¢(z) — ¢(z|7)) P, (7.2.1)

where P[y] is now well defined, thanks to the treatment of Chs. 5 and
6, and ¢(z|y) is given by Eq. (4.4.13), which we rewrite here in the new

parametrization (remember that the @ in Eq. (7.2.2) is not the same as
that in Eq. (4.4.13)!):

Mﬂﬂ:—@/dkﬂm—dﬂy (7.2.2)
The probability P(¢(z)) is now normalized, since

[ 46(@) P(¢(2)) = [ Dy Pl =1, (7.2.3)

by Eq. (6.3.3); therefore, it can be conveniently used to define an en-
semble average of ¢ at the spacetime point z as

(#(2)) = [ dé(e) P(4(=)) #(e) =

- /mP ) . (7.2.4)
Ty

The average field given by Eq. (7.2.4) satisfies a weakly semiclassical
version of Eq. (4.4.1); in fact, remembering Eqs. (7.2.2), (4.4.2) and
(7.1.12), we get

700,85 (¢ /DyP ). (7.2.5)
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Comparing now Egs. (7.1.12), (6.3.21) and (6.3.23), we realize that
+oo
[Py PHIGE) =@ [ Pl (7.2.6)
To -0

where P(z|)) is given by Eq. (6.2.4); in the Heisenberg picture, defining
the source operator J(z) as

i

+oo +oo
J(z) Q/dAMAM%Mszfdwﬂﬂ—iQ», (7.2.7)

we have thus
7*°0.0($(z)) = (¥|F(2)¥) , (7.2.8)

as we wanted to prove.

Eq. (7.2.8) is the first semiclassical relativistic field equation that
we recover within our formalism, and it worth some comments. Let
us start clarifying the meaning of the A-integration in Eq. (7.2.7); this
has an essentially classical origin, which can be understood considering
the classical counterpart of Eq. (7.2.7), i.e., Eq. (7.1.12). For sake of
clearness, let us make a comparison with the case of newtonian gravity,
in which the field ® at the point x of space at time t is determined by
the particle position at time ¢. In contrast, in the theory of the scalar
field, ¢ at the spacetime point z is determined by the intersectiois of
the particle world line with the support of the Green function D, no
matter at which value of A they may occur: In the calculation of ¢(z),
one must take into account all these contributions equally well, and this
explains why it is necessary to integrate over A in order to obtain the
sources J(z|y) and J(z).

Eq. (7.2.8) has the same form of its classical version (4.4.1), with
the only difference that ¢ and J are substituted, respectively, by the
average (¢) and by the expectation value (®|J|¥). This is true even
if the dispersion in the particle position (and, consequently, in J) is
large, thanks to the linearity of the theory, and would not happen in a
nonlinear modification of it. To be more explicit on this point, let us
consider a scalar field ¢ obeying the classical field equation

n0.05p + f(¢) = J , (7.2.9)
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where f is a nonlinear function. If the action of the source is chosen again
to be given by Eq. (7.1.10), we can define a family of field configurations
#(z|v), parametrized by 7, satisfying the equation

™ 0uBb(z|y) + f($(zly)) = I(z]y) , (7.2.10)

where J(z|y) is given by Eq. (7.1.12). When considering a quantum
source, the WSH can be applied as usual, to obtain Eq. (7.2.1) for
P(#(z)). Until this point, the theory is just analogous to the one devel-
oped in the linear case; nevertheless, the semiclassical field equation has
not, now, the same form of the classical one. In fact, using Eqgs. (7.2.6),
(7.2.7) and (6.2.4), we get again

| Dy PR I(ehy) = (917(2)] %) ; (7.2.11)

inserting Eq. (7.2.10) into the left hand side of Eq. (7.2.11) we get,
remembering Eq. (7.2.4),

10.0(0(x)) + [ Dy P f(#(al)) = (21F(@)9),  (1.212)

which, because of the nonlinearity of f, does not have the same form
of Eq. (7.2.9) - except for the “nearly classical” cases in which the
statistical dispersion in ¢ is so small that we can make the approximation

/777 Pl f(¢(zlv) = f({é(2))) , (7.2.13)

corresponding to a strongly semiclassical regime. We have here an ex-
plicit example of the circumstance already mentioned in Chs. 2 and 4,
during our criticism of the usual formulation of semiclassical theories.

According to these last, in fact, the semiclassical field equation corre-
sponding to Eq. (7.2.9) should be

10,04 + f($) = (V] J|¥) ; (7.2.14)

it is perfectly clear, from our treatment, that the range of validity of
this equation is very narrow, depending on the possibility to perform
the approximation (7.2.13). An equation holding throughout all the
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semiclassical regime is Eq. (7.2.12), which we can easily rewrite, in the

same spirit of Eq. (4.2.6), as

1™0.05((2)) + f({#(x))) + R(Ad(z),...) = (¥|J(2)|¥), (7.2.15)

where the term R(A¢(z),...) lumps together all the corrections due to
the dispersion

1/2

Ad(e) = | [ DrPRIs(h) - (@) ] (7.2.16)

and to higher moments of the distribution of ¢. It is clear that, unless
some specific hypothesis are made about A¢(z) and the higher moments,
Eq. (7.2.15) is very difficult to solve; however, we want to stress once
more that any solution of Eq. (7.2.15) or of the simpler Eq. (7.2.8) has,
in general, no meaning as referred to a single system, as it is particularly
evident from Eq. (7.2.4): This feature reduces considerably the interest
of the semiclassical field equations, as already discussed thoroughly in
Sec. 4.2.

The path integral treatment of the quasiprobability has shown to be
rather powerful and elegant in getting straightforwardly Eq. (7.2.1) for
P(¢(z)), together with all its consequences, without running into the
troubles mentioned in Sec. 4.4; actually, it seeius the easiest way for do-
ing that. However, let us remember that in the simple case of newtonian
gravity we have been able, in Sec. 4.3, to obtain the expression (4.3.7)
for P(®(x)|t) without using such a technique. We shall now check that
Eq. (4.3.7) can be exactly recovered making use of the quasiprobability
functional method, thus providing an example of the internal consis-
tency of the theory. If ®(x,t|y) denotes the value of ® at the point x
of space at time ¢, whose source is a particle following the history v, we
have, by Eq. (4.3.5),

+m

(b(x’th’) == |X N X(i)l

= ®(x,tx(t)) . (7.2.17)

Defining by
P(2(x);7lt)
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the joint quasiprobability density that the field has, at time ¢, the value
®(x) at the point x, and that the particle follow the history ~, we can

write, as usual,
P(®(x);7lt) = P(2(x)|7,t) Ply] (7.2.18)
where now
P(&(x)]7,1)
is the probability density that the field has, at time ¢, the value ®(x) at
X, given that the particle follows the history 7. The WSH gives

P(8(x)[7,1) = 8 (8(x) — B(x, 1)) - (7.2.19)
It is now straightforward to write

P(3(x)[t) = [ Dy 6 (8(x — 8(x, 7)) Pla] , (7.2.20)
To

and we have thus only to prove that the right hand side of Eq. (7.2.20)
coincide with the second line of Eq. (4.3.7). This can be easily seen as fol-
lows: In the path integration in Eq. (7.2.20), the positions and momenta
of v can all be integrated away, except for x(¢), which is the only one
appearing in the argument of the delta function, through Eq. (7.2.17).
Therefore, using Eqs. (5.3.2) and (5.3.4), we get

[ Dr8(@(x) = 8(x, 1)) Pl = [ &5 (8(x) — 2(x, tly)) P(ylt)
Ty

(7.2.21)
where the integration variable x(¢) has been renamed y for convenience;
this establishes the desired equality between the P(®(x)|t) defined by
Eqs. (4.3.7) and (7.2.20).

We close this section with a brief discussion of the nature of the quan-
tum treatment of the source in the semiclassical theory of the scalar field.
Let us start by considering Eq. (7.2.8) for the average (¢(z)). In the
right hand side, the state vector |¥) is fixed (we work in the Heisenberg
picture), and we need only to specify j(r), by Eq. (7.2.7), this can be
done determining #(A) (or, equivalently, |z,))). This operator must be
a solution of the Heisenberg equation of motion
ihé%(;—) = —[H(z(A),p(N)),z(N)] , (7.2.22)
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which is a straightforward generalization of Eq. (2.2.7) to the explicitly
relativistic theory developed in Ch. 6. Which expression has to be chosen
for the superhamiltonian H in Eq. (7.2.22)7 Looking at the form of the
action (7.1.10), one’s immediate answer would be

Ha (0, (V) = $1pa(N () + QB(z(N) (7.2.23)

However, let us suppose that no ezternal field is acting on the particle;
then ¢(z())) should be the self-field evaluated on the world line of the :
particle: Since such a field diverges (see, e.g., Eq. (4.4.15)), we run
into the troubles which typically occur when dealing with the radiation
reaction of pointlike particles.

An approximate solution, which is the one tacitly adopted in stan-
dard quantum theory, is to drop the ¢-dependence of 7, thus recovering
the free particle superhamiltonian

H(E(),500) = 215 (N (1.2.24)

this choice amounts to neglect the self-interaction effects, and can be
reasonably justified on the basis of the pointlike nature of the particle,
which seems to correspond to the absence of an inner structure. How-
ever, we want to point out that such a treatment cannot be totally sat-
isfactory; in fact, having we considered an extended source, there would
have been necessarily a self-interaction term in the superhamiltonian.
Let us sketch qualitatively how a self-consistent treatment would
look like, although we do not enter into the intricate technical details,
which have not yet been worked out. The main idea is still that each
history 7 of the source (which we continue to refer to as the particle,
for sake of simplicity) is compatible with a field configuration @(z|y);
moreover, the WSH is expressed again by Eq. (4.4.18), which remains
unchanged. What undergoes a conceptually deep modification is the
quasiprobability functional P[y]: This can be easily understood think-
ing that the quantum problem is now to describe the behaviour of the
particle when its interaction with the classical field is completely taken
into account, including the possibility of self-reaction; in order to accom-
plish such a result, the superhamiltonian has to be changed, and this
implies a change in S[y] and, by Egs. (5.1.2) and (6.3.1), in Ply]. In
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spite of these modifications, however, the general structure of the the-
ory as presented in this section does not suffer from any fundamental
change.

7.3 Weakly Semiclassical
Electromagnetism

The classical theory of the electromagnetic field can be formulated using
the four-potential 4, defined by Eq. (2.1.27); the field equation is

0,0, 4° = —4mj° (7.3.1)

where j2 is the electric current of matter, together with the Lorentz
gauge condition

0, 4°=0. (7.3.2)
Defining the Green bitensor D2 (z — z’) by

70,6, D%(z — z') = =65 §*(z — 2') (7.3.3)
one obtains straightforwardly
Di(z —z') =62 D(z -2, (7.3.4)

where D(z — z') satisfies Eq. (4.4.2). Neglecting again the contribution
from the boundary of spacetime, the Kirchhoff representation of A% can
be written as

A%(z) = 47r/cl4m'D(:c — )59, (7.3.5)

which, for the point particle case (7.1.15), reduces to
+oo
A%(zly) = dre / dAp"(\) D(z — z())) . (7.3.6)

In deriving Eq. (7.3.6), we have not considered the term containing the
four-potential 4%(z()\)) evaluated on the world line of the particle; this
procedure is justified by the assumption we have made, that no other
fields are present except for those due to the particle, i.e., that there
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are no external fields; moreover, we neglect the radiation reaction and
suppose that the particle do not interact electromagnetically with itself.
These are explicit hypothesis which one should drop in a further devel-
opment of the theory.

In the weakly semiclassical treatment, we shall denote by

P(A(z);7)

the joint quasiprobability density that the four-potential at the space-
time point z be A(z), and that the particle follow the world line v; the
WSH is written as

P(4%(2)|y) = § (A%(z) - 4°(2]3)) - (7.3.7)

A few words are necessary in order to explain the notations in Eq. (7.3.7),
which has to be read as a relation for components of the four-potential:
More precisely, P(A%(z)|y) is a quasiprobability density referred to the
a-th component of the potential A(z), and the argument of the delta
function is also referred only to the same a-th component. The condi-
tional probability for the entire four-vector A(z) is thus

P(A(z)ly) = §*(A(z) — Alz]7) (7.3.8)

where Eq. (7.3.7) and the definition of §* have been used. We can write
now the joint quasiprobability P(A(z);v) as

P(A(z);7) = 6*(A(2) — Alzly)) Phy] , (7.3.9)

and the probability that the potential at the spacetime point z be A(z)

as

P(A(z)) = [ Dy 8*(A(e) - A(zly)) Ply] (7.3.10)
As expected, P(A(a:))rius normalized,
/d“A(:c) P(A(z)) =1, (7.3.11)
and allows thus to define the ensemble average of A® at z as
(4%(z)) = [ d*A(e) P(A(2)) 4%(2) =

. /797 Ply] 4%(z]v) . (7.3.12)
Ty
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The average potential (A%(z)) satisfies a weakly semiclassical field
equation which has the same form of the classical one, Eq. (7.3.1); this
circumstance is due to the linearity of the theory, as explained in details
in the previous section with regard to the scalar field. To check it
explicitly, let us observe that Eqgs. (7.3.12), (7.3.6) and (4.4.2) give

170.06(A%(2)) = 4 [ Dy Ply)jilel) (7.3.13)
Ty

where j2(z|vy) is given by

jelel) =e [ dAp ()6 —2(V) , (7.3.14)

as discussed above. Remembering now Egs. (6.3.17) and (6.3.13) we
have immediately

P

/d)\\I!v:/\)gb

ehn

[ Dv PRl = U(e,)),  (7.3.15)

which, defining the electric current operator j%(z) as

IH

-
)= 5 [ DN+ PO e ), (7516

allows to rewrite Eq. (7.3.13) in the semiclassical form:
n%00,0,(A°(z)) = —4m (¥ |7%(z)|¥) . (7.3.17)

At the classical level, however, Eq. (7.3.17) does not suffice in deter-
mining the physical properties of 4%(z), because it has to be coupled
to the gauge condition (7.3.2), which guarantees, e.g., the conservation
of charge. It is therefore natural to ask if a semiclassical formulation of
Eq. (7.3.2) holds for the average (A%(z)). The answer can be obtained
using Eqgs. (7.3.12) and (7.3.5) to obtain straightforwardly

0.(A%(z)) = 47r/d4a:'D(”c —z') /D7 18,53z |y) , (7.3.18)

Ty

from which one might hastily conclude, applying Eq. (7.1.20), that a
semiclassical version of Eq. (7.3.2) holds. There is, however, a subtle
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point to consider here, which spoils this simple argument. Having not
taken self-interaction into account, the quasiprobability distribution p[v]
turns out to be independent of the presence of the electromagnetic field;
it follows that the right hand side of Eq. (7.3.18) may contain contribu-
tions even from histories which do not satisfy Eq. (7.1.20). Physically,
this means that if we do not fully consider the interaction particle-field,
than there is no reason for the charge to be conserved; more formally,
we can notice that nowhere, in Sec. 6.3, it was proved that

8.7%(z|y)=0. (7.3.19)
Hence, neglecting self-interaction of the source, we should expect that
0.{A%(z)) #0, (7.3.20)

because (A%(z)) is constructed summing also over histories which are
not compatible with a classical electromagnetic field. However, in a
complete version of the theory, which takes self-interaction into account,
the distribution P[y] would change, as explained at the end of Sec. 7.2,
and the modified P[y] would be such that only histories 4 which are
compatible with the presence of the field contribute with a nonvanishing

P[]; thus, in this fully consistent treatment, we recover the semiclassical
version of Eq. (7.3.2),
0.(A%(z)) =0, (7.3.21)

since histories not satisfying the condition (7.1.20) have P[y] = 0. We
conclude that the violation of Eq. (7.3.21) which appears in Eq. (7.3.18)
and in (7.3.20) are unphysical, being due to the incompleteness of the
treatment.

7.4 Weakly Semiclassical Gravity

Our final application of the methods and ideas developed in the previous
chapters concerns gravity, whose semiclassical treatment was the pur-
pose motivating this thesis. The classical field equation is now Einstein
equation (1.4), which we rewrite here for convenience as

Ralg] = x Talg] | (7.4.1)
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where

. 1
Tuslg) = Taslg] = 59a9™ Tealg] (7.4.2)

and the explicit expression for the Ricci tensor is [3]:
Rap = 8.T0 — 8al % + D aplea — T T %ea (7.4.3)

with I'*;. the Christoffel coeflicients given by

Fabc =

9°(Ocgar + Ovgac — Oagne) - (7.4.4)

DO | bt

Eq. (7.4.1), considered as a set of differential equations for the com-
ponents of the metric tensor, are extraordinarily complicated, in com-
parison to Eqgs. (4.4.1) and (7.3.1) considered above. Not only, in fact,
are these equations nonlinear — which suggests that we shall find again
the same problems met when dealing with Eq. (7.2.9) — but the matter
source is also inextricably linked to the metric, which appears in the
expression for Ty; this can be seen explicitly in Eq. (7.1.27), which con-
tains the factor (—g(z))~%/2, and is a consequence of the consistency of
the treatment, which now accounts also for self-reaction of the source.
These effects cannot be removed, as we did in the cases of the scalar
and electromagnetic fields, simply assuming the source to consist of a
pointlike particle, and appealing to the structureless of this latter for
justifying the absence of self-interaction; in fact, as we have already
remarked in Sec. 7.1, pointlike particles have no acceptable status as
sources of gravity, because they involve a strongly singular spacetime;
they can only be used as a schematization of the concept of test particle,
as we did in the discussion following Eq. (7.1.31). Another possibility
for not taking into account the dependence of T}, from g, could be to
assume that the self-gravity of the source is small, and to approximate
all the g,»(z) appearing in the expression of Ty, by the flat metric com-
ponents 7,5 plus small corrections hg,y(z); this is a reasonable idea, and
it presents the advantage of leading to linearized field equations. How-
ever, due to the presence of the metric 74, it is more appropriate for
studying the semiclassical perturbations about a classical determined
background than for the analysis of a spacetime whose matter content
is entirely quantum. It seems therefore that we have to face the prob-
lem of formulating a semiclassical theory of gravity without making any
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simplifying hypothesis.
As usual, let v be a history of the matter source which is compatible
with the classical field, i.e., such that

Ra(zly) = cTu(z]y) , (7.4.5)

where Rgy(z|y) is constructed from a metric gas(z|y) according to the
prescriptions of Egs. (7.4.3) and (7.4.4); in other words, v turns out to
label pairs of tensors, Tup(z|y) and gas(z|Y), satisfying Einstein equation.
It is useful, at this point, to make use of the integral representation
of Eq. (7.4.1), which allows to express the metric gs(z) in the form
[121,122,123]

gap(T) = ——2/s/dﬂ(a:/) Daba'b'(w,w')Ta,b,(m')—
N
- / d2(z")n (') V!, D™ (2,2') gaw (), (T.4.6)
N

where N is a region of spacetime with boundary 0N, dQ and dZ are,
respectively, the measures on N and N, n® is the normal vector to
ON, and Dab“'b/(m,m') is a Green bitensor which we shall define more
precisely in the following discussion. The existence of the representation
(7.4.6) for the Einstein equations is quite surprising, because of their
nonlinearity; it turns out, however, that such a nonlinearity is not of a
particularly intractable kind, and this is what allows Eq. (7.4.6) to be
written. To understand this point, let us define the differential operator

1 c
Eade[g] = 56(a(c6b)d)[:, + R(i b()i) ) (747)

where (...) denotes complete symmetrization [3], and
0= g¢*V,V,. (7.4.8)

It is trivial to check that Eq. (7.4.7), when applied to the same metric
tensor gq, appearing in it, gives

E.°[g) gea = Rablg] - (7.4.9)

Considering a metric differing from gq by a small perturbation dgap, one
can check that, to the first order in §ggp,

Eav™(g] (ged + 69ca) ~ Raslg] + §Raslg] » (7.4.10)

174



where 6§ Rgy[g] is the perturbation in the Ricci tensor induced by the per-
turbation égq; of the metric, when the background metric is gq5. Making
use of Eq. (7.4.1), and identifying § B, as due to a small perturbation
§Ta in the matter distribution, we can write Egs. (7.4.9) and (7.4.10)
as

Eabcd[g] Ged — K,Tab 5 (7.4.11)
B g] 8geq ~ k6T - (7.4.12)
Eq. (7.4.12) contains the key idea which lies at the basis of Eq. (7.4.6):

Although the correspondence between T, and Jap 1s nonlinear, as it is
clear by Eqs. (7.4.7) and (7.4.11), the perturbations §T., and 8g.p are
linearly related by Eq. (7.4.12); the left hand side of the latter contains,
in fact, the differential operator E,;[g] evaluated on the unperturbed
spacetime. This expresses the so-called quasilinearity of Einstein equa-
tion; physically, we may think to the metric at a point of spacetime as
built up adding small contributions due to the various elements of the
source, each one propagated throughout the spacetime due to all the
other elements. More precisely, if §Q(z’) is a small volume of space-
time at z', contributing to the source by an amount T,(z') §Q(z'), its
contribution to the metric at z will be

89ap(z) o Doy (z,2") Ty (z') 6Q(2") | (7.4.13)

where the propagator Dab“'b'(a:, z') depends on the metric g, of space-
time; Eq. (7.4.13) gives an heuristic explanation of Eq. (7.4.6).

A formal derivation of Eq. (7.4.6) require to define, first, the bitensor
Dab“/b’(:z:,:c'); this can be done requiring that

Eu*(z) D (z,2') = T (z,2) T (z,2') 6 (z,2'),  (7.4.14)

where I',* (z,z') is the bivector of parallel geodesic transport [124,125],
and é (z, z') is the delta function on spacetime. The support of the Green
function Daba’b,(w, z') does not consist only of pairs of points which can
be connected by a null curve, but contains also diffusive contributions
from inside the light cone [123]; the reason for the existence of these
latter is the presence of the R(icb‘;) term in Eq. (7.4.7), which acts as a
“mass term” in the propagation of the perturbations g.s, as it is clear
from Eq. (7.4.12). It is not difficult to verify now, following ref. [123],
that Eqgs. (7.4.10), (7.4.14) and (7.4.1) imply Eq. (7.4.6).
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The integral representation (7.4.6) has been used until now mainly
as a way to introduce Mach’s principle into the general theory of rel-
ativity, as an appropriate choice of the boundary conditions [126]; for
example, it has been suggested [127] that the boundary term should
vanish when IV is the entire spacetime. We shall not enter into these
arguments here, but we would like to make a remark which we find at
least curious. There is a rather close analogy between Mach’s principle
and the WSH: The former requires that the structure of spacetime be
completely determined by its matter content, while the latter expresses
the idea that spacetime should have no quantum behaviour of its own,
and that the probability distribution for the metric is totally determined
by the corresponding one for matter. From this point of view, it is not
incorrect to consider the WSH as a kind of “quantum Mach’s principle”!
It might be interesting to speculate, along these lines, about the status
of quantum gravity, as it seems that Mach’s principle does not allow
the metric to be quantized; in fact, in this case, spacetime would pos-
sess physical properties which cannot be ascribed to its matter content.
Semiclassical gravity would be thus necessarily a fundamental theory
of nature. However, the problem should be analyzed in more details
before jumping to any conclusion, and we leave it aside for future in-
vestigations, coming back to our main topic, which we left at Eq. (7.4.5).

Thanks to the representation (7.4.6), we can now rewrite Eq. (7.4.5)
as

gas(zly) = ~25 [ (e 1y) D (2,0 17) Tawlely) ,  (T.4.15)
M

where M denotes the entire spacetime, and we have stressed the depen-
dence of the measure and of the Green function from the metric and,
consequently from the history of the matter system, labeling them by
v. In Eq. (7.4.15) the boundary integral has been assumed to vanish;
this choice is not motivated by Mach’s principle, but rather by a wish
for simplicity (see Sec. 4.4), and is essentially equivalent to any other
for what the following discussion is concerned with.

Introducing the usual joint quasiprobability distribution we can write

P(g(z);v) = P(g(z)lv) Plv] (7.4.16)
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where the WSH fixes the conditional probability as

P(g(z)ly) =s63(9(z) — g(z|v)) , (7.4.17)

with 567 the delta function on the space of the symmetric tensors of type
(02), which can be defined analogously to §* by products of elementary
delta functions. Eqs. (7.4.16) and (7.4.17) allow to write the probability
distribution for the metric as

= [ Dys83(9(2) — g(z)) Pl (7.4.18)

Ty

where Ty is the set of all the possible matter histories which are com-
patible with classical gravity. The ensemble average of g, at the point
z of spacetime can be obtained by integration over the above-mentioned
space of tensors; one gets, by Eq. (7.4.18),

ga(2)) = [ dg(2) Plg(2)) gas() =
- /DyPﬂgab(mlﬂy). (7.4.19)

It is interesting to try to recover, from Eq. (7.4.19), a semiclassical
version of Eq. (7.4.1); the easiest way for doing that is to apply to
Eq. (7.4.19) the differential operator defined in Eq. (7.4.7), but relative
to the average metric (g). We find, by Eq. (7.4.9),

Eu[{g)] gea(2)) = Rasl{g(x))] (7.4.20)
and, by Eq. (7.4.19),
Eul{o)] {0e(2)) = [ DY PR Eus™((g)] geslaly),  (T:4.21)
FO

and we can conclude that

/ Dy Ply) Eas™[{9)] gealel) - (7.4.22)

Like in the case of Eq. (7.2.9), we see that, as expected, Eq. (7.4.22)
does not reduce to the form

Rul(9(a))] = x [ Dy Ply) Tus(z]) (7.4.23)
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except in the strongly semiclassical regime, in which only histories cor-
responding to approximately the same metric have a nonvanishing Plyl;
for these histories we have, in fact,

Eo*[(9)] gea(z]7) = Ras(z]7) , (7.4.24)

which leads to Eq. (7.4.23). We point out, however, that in the context
of gravity equations like Eq. (7.4.21) have a meaning which is essentially
of theoretical and formal nature, since the ensemble over which (gas(z))
represents an average consists of a set of spacetimes, which can hardly
be endowed with operational properties.

As mentioned in Ch. 1, gas plays a double role in any metric theory of
gravity; it defines what is essentially the generalization of the newtonian
potential ®, and at the same time it determines the metric structure of
spacetime. This raises a problem in understanding Eq. (7.4.16): The
quasiprobability functional P[y] given by Eq. (6.3.1) contains the wave
function ¥(z,)), which should be normalized, by a generalization of
Egs. (6.2.4) and (6.2.5) to curved spacetime, as

/d‘*m,/—g(m) 1T(e, )P =1; . (7.4.25)
M

but, if we accept that ¥(z, ) define an ensemble of particles, each one
of them compatible with a different spacetime, which metric shall we
adopt in Eq. (7.4.20)?

Although formulated for the case of a particle, which is, as seen, not
a consistent one in general relativity, this problem can be straightfor-
wardly generalized to situations of physical interest, and has therefore
to be considered seriously. Our suggestion is to regard the sum-over-
histories formalism of quantum theory as more fundamental than the
usual one, and susceptible to be applied even to circumstances in which
the latter fails. A similar opinion has been expressed by Hartle [128],
who has proved, within a more conventional framework than ours, that
the path integral approach allows a Schrodinger-Heisenberg formulation
on a hypersurface (see Sec. 2.2) only if this one satisfies some specific
conditions, which cannot be fulfilled in a generic curved spacetime. If

such a viewpoint should turn out to be correct, the use of the concept
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of state vector, and éonsequently of the wave function, in the context
of semiclassical gravity would be simply inadequate, and the concep-
tual problem related to Eq. (7.4.20) would be automatically removed.
It seems, nevertheless, that the entire problem of formulating quantum
mechanics in a curved spacetime is still open; we hope that a gener-
alization of the treatment of Ch. 6, possibly improved with the ideas
related to Egs. (5.3.13)-(5.3.18), could be useful in order to construct a
consistent theory.
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Chapter 8

Outlooks and Conclusions

In this thesis a scheme has been suggested for treating semiclassical
systems in a consistent way, with particular emphasis on the case of
gravity. As realized quite soon, the practical achievement of such a
program requires to discuss, clarify, and sometimes revise, several topics
in physics, apparently far from each other.

Starting from a critical analysis of the usual formulation of semiclas-
sical theories, which we have found essentially ill-posed from a concep-
tual point of view, we have realized the need to gain physical insight
into the foundations of quantum mechanics. Generally, this is done con-
sidering the classical paradoxes of the theory, and explaining how they
find a solution adopting one or another interpretation; we have followed
a completely different approach, reformulating the Schrodinger equation
as a set of hydrodynamical equations, and looking for a reasonable inter-
pretation of the corresponding “fluid” quantities. Our main result has
been the emergence, from such a treatment, of very strong evidence in
favour of the statistical interpretation; moreover, some other interesting
features have been revealed. Reconsidering the semiclassical problem
in the light of these ideas, we have been led to identify, within the the
semiclassical regime, a strongly and a weakly semiclassical behaviour;
of these two, the latter is the one which is closer to the full quantum
behaviour, and corresponds to the breakdown of the concept of coupling
equations (of which the field equations represents an example). In the
weakly semiclassical regime, in fact, even the classical subsystem can be
characterized only by a probability distribution for the values of its ob-
servables; nevertheless, these observables are not quantum, and such a
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distribution is thus totally induced by the interaction with the quantum
subsystem.

After having given a prescription (WSH) for specifying quantita-
tively this relation, we have realized the inadequacy of the standard
quantum formalism in treating weakly semiclassical systems. We have
thus suggested to adopt an alternative formulation, which makes use
of the path integral methods and introduces explicitly a quasiprobabil-
ity functional for paths — a new concept in quantum mechanics. This
formalism allows to recover, in the nonrelativistic theory, the usual ex-
pressions for the phase space distributions, and sheds light on the con-
nections between operator ordering, path integration and quantum dis-
tribution functions; moreover, it leads to consider a relativistic version
of quantum mechanics which is explicitly covariant.

Applying these techniques to the cases of semiclassical newtonian
gravity and of semiclassical relativistic fields (scalar field, electromag-
netism, gravity), we have found a mathematical confirmation of some
previously predicted features; in particular, we have shown how the
semiclassical field equations hold only for a statistical average of the
field, and how they assume a form analogous to that of the classical
equations only in the very special cases either of a linear theory or of
a strongly semiclassical behaviour. A semiclassical theory turns out to
be, therefore, essentially a theory for the probability distribution of the
field values, distribution which can be explicitly determined with the
methods suggested in this thesis.

The theory presented is still at a rather preliminary stage, and we
expect that it could be further developed. In particular, it should be
interesting to try to formulate a weakly semiclassical theory of electro-
magnetism which takes radiation reaction into account; this might lead
to some pleasant surprises, since semiclassical theories which consider
self-interaction effects are, in general, rather rich in their phenomenol-
ogy; for example, Barut’s theory [22,23], which is not as accurate as
ours (it assumes |¢|* as individual source), succeeds in predicting the
correct value for the magnetic moment of the electron, as well as the
Lamb shift and even the Unruh effect [129)].

A possible application which is not of formal character is the use of
weakly semiclassical gravity for predicting the spectrum of primordial
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fluctuations in the early universe; the estimate is essentially reduced to
the evaluation of the probability distribution P(g(z)) for some cosmo-
logical model filled with quantum matter. It is remarkable that this
calculation, which cannot be performed at all in the usual theory of
semiclassical gravity [53], appears very natural within our formulation.
However, we feel that an actual calculation of P(g(z)) would turn out
to be very complicated, and that the real importance of the theory pre-
sented here has therefore to be recognized essentially at the formal level.

Is this theory correct? Of course, only experiments and/or observa-
tions could say something definitive about this point. For what concerns
the case of gravity, we think that the situation might be considered al-
most hopeless; however, it is not impossible to invent some practically
realizable crucial experiment for the case of electromagnetism, which
could carry information about the validity of the general method.

In the absence of experimental data, we can observe that our theory

presents, from a structural point of view, at least three advantages:
1. it is logically and formally consistent;
2. it makes a very small number of physical hypothesis;
3. each of the hypothesis of the point 2 is strongly motiv#ed.

It is worth remarking, moreover, that a semiclassical theory would turn
out to be useful even if gravity were quantized, as an effective treatment
describing the semiclassical regime. Our scheme not only seems partic-
ularly suitable for this purpose, but it contains also information about
some features of the full quantum theory; in particular, it predicts that
the concept of field equations, determining the values of the metric and
of the matter fields, will be superseded by a prescription assigning the
probability distribution for those values.

The classical relativistic fields we have considered in Ch. 7 are, from
the point of view of a covariant hamiltonian formulation, not dynamical;
in fact, as it is clear from Sec. 6.1, the true dynamical variable is not
t but A\. However, one can extend the treatment of fields to include
their dynamics,simply considering them as the continuum limit of a
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many-particle system. It would then be straightforward to apply the
ideas of Ch. 6 in order to construct an explicitly covariant relativistic
quantum field theory, differing from the usual one by the presence of the
“evolutionary time” )A; this might be of some use in solving the serious
conceptual problems about the role of time in quantum gravity [130].

However, we believe that before considering such exotic extensions
of the formalism, we should have the ideas very clear about the meaning
of quantum mechanics in general. In fact, if this latter is a theory which
makes predictions only at the level of ensembles, such topics as quan-
tum cosmology are essentially meaningless. For these reasons we think
it is important to perform further investigations along the directions
suggested in Sec. 3.3.
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Appendices

A Operator Ordering

The main formal difference between classical and quantum mechanics
can be identified in the fact that the operators representing conjugate
quantum observables do not commute. In the exemplary case of position
and momentum of a particle, we have

[#:,5;] = 1héi;1 . (A.1)

This circumstance makes the problem of associating quantum operators
to physical observables intrinsically ill-defined. To be more explicit, let
us restrict ourselves to consider the one-dimensional case (the gener-
alization being straightforward), and ask for the quantum version of
the classical observable z%p?. Since the answer must be a self-adjoint
operator, one possibility is

n 1 o .
Q= 5(ff:2p2 +p°2%) . (A.2)

However, it is easy to realize that also

Q, = ip’% , (A.3)
A 1
Qs = (8% + 2098 + 5°47) (a4)
o 1 o o o
Qs = §(pz:r,2 + piB2p + :czpz) , (A.5)

or other operators, could equally well be assumed to represent such an
observable. In fact, the commutation relation (A.1l) implies

Q, = Q1 + K1, (A.6)
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A - 1..4

Qs =@+ 5521 ) (A7)
and

Q4= Q1 — A’1; (A.8)
in the classical limit, the terms in A? are negligible, and the different
operators Q1, @2, 3 and Q4 all “degenerate” in the classical observable
z2p?.

It is a problem of primary importance in quantum theory, to remove
this arbitrariness, assigning a well defined prescription for construct-
ing the quantum mechanical operator corresponding to a given classical
quantity. Among the rules which have been suggested to this purpose,

only three have proved to be essentially free of contradictions [131,80];
they are

a) Weyl’s prescription [132]
> (all possible orders)

P} = A9
WAZ"P"} number of all possible orders ’ (4.9)
or equivalently, using Eq. (A.1),
1 n
W{z"p"} = = > ( n ) prlpmal s (A.10)
2n =0 !
b) Rivier’s symmetrization rule
An am 1 An ~m A AT
S{E"p"} = S (@™ + ") 5 (A.11)
¢) Born-Jordan’s prescription
B{z"p™} = L fjﬁm—l;z”ﬁ’ : (A.12)
- om+ 1=

It is easy to check that the operators Ql, Qg, and Q, are examples, in
the case n = m = 2, respectively of the symmetrization, the Weyl’s
and the Born-Jordan’s prescriptions. This shows explicitly that these
three rules define operators which are indeed different from each other
for generic n and m.
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In the main discussion of this thesis, we shall be concerned with the
orderings W and S, mainly because it has been shown [133,79] that they
correspond to the use of, respectively, the Wigner and the Margenau-
Hill functions in the phase space formulation of quantum theory. It
is the purpose of the present appendix to give a slight generalization
of Egs. (A.9) and (A.11), which may allow to define the Weyl’s and
Rivier’s orderings even when operators such as §(z1 — 2) are involved.

The key of our strategy is to expand & and p making use of the
identities

[ dzti(z) =1 (A.13)

and
/dp O(p) =1, (A.14)

where II(z) = |z)(z| and II(p) = |p)(p|; one obtains

zhp™ = /dml ...dz,dp;...dpn, f.[(a:l) e l:.[(:cn)l:l(pl) ces ﬂ(pm) .
(A.15)
The problem of ordering the operators & and p is thus related to that
of ordering the product of the generalized projections fI(:ca), ﬁ(pﬁ), for

aec{l,...,n}, Be{l,...,m}.

It is easy to see that, choosing

S{M(zy) - M(z,)(p1) -+ Mpm)} =

= (i) - Mi(e)i(pr) - Tl(pm) +
HI(p) - i(pn)fi(z2) -+ Ti(22)) (A16)

one reproduces, from (A.15), the Rivier’s rule (A.11). Similarly, defining

W{Tl(z1) - () L(pr) - T(pm)} =

m > Perm{f{(ml) e H(xn)ﬂ(pl) o T(pm)} ,(ALT)

It

where 3" Perm{---} stands for the sum of all the possible permutations
of the argument, and observing that

[ﬁ(mal)?ﬁ(waz )} = [ﬂ(pﬁ1)7ﬁ(pﬁz)] =0, (A18)
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for all ay,ay € {1,...n}, £1,8: € {1,...m}, one realizes that

Y-(all possible orders)

number of all possible orders ’

(A.19)
in the numerator of the right hand side of Eq. (A.19), terms differing only
by the exchange of generalized projectors of the same observable (posi-

W{Tl(z1) -+ T(2)0(p1) - - T(pa)} =

tion or momentum) are identified. It is easy to check that Eq. (A.19),
together with Eq. (A.15), reproduces the Weyl’s rule (A.9). Hence, we
believe it is justified to regard Eqs. (A.16) and (A.19) as the correct
generalizations of the Rivier’s and Weyl’s ordering rules.

B Calculation of <¢|ﬂz‘j}1/’>

In calculating the expectation value (wlﬁw |1) of the stress tensor opera-
tor II;;, one has to decide first which ordering to adopt in the expression
(2.3.21); in this case, in fact, the quantities obtained using W or S do
not coincide. In this appendix we shall deal only with the technical
calculation of both, leaving to the main text a discussion of the possible
physical reasons for preferring the one or the other of them.

Let us start writing down, according to Egs. (A.19) and (A.16),
the explicit expressions of ﬁ,-j(x,t) under the Weyl’s and the Rivier’s
prescriptions; in the Heisenberg picture they are, respectively:

iy, ) = W {1 06 0) —a0ps(t) ) =
= 21}7,; (lx7t><X)t]ﬁi(t)ﬁj(t) +lﬁi(t) ‘x’t><x7tlﬁj(t) +
B0 ) B + BB Bt (e 1), (B

and

—Bi(0p:(1)} =

— —2%; (I, ) (x, 8] 3 (£)B;(2) + pe(£)p;(£) |x, ) (x,¢]) . (B.2)

ﬂfj(x,t) =S {,[L(x,t)

It is convenient to define the auxiliary operators

Aii(x,t) = |x, 1) (x, 1] §a()5;(¢) (B.3)
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and
Bij(x?t) = ﬁi(t) ‘X’t><xatlﬁj(t) ’ (B'4)

in terms of which II}} and IIf; can be represented as

2 (x, 1) = fn; (fiij(x,t) + Biy(x,t) + By(x, )T + Aij(x,t)’f) ,
(B.5)
and “ 1 ) A
f1506,8) = 5 (Al t) + A, 0)F) 5 (B.6)

it is thus clear that it suffices to calculate the two expectation values
(¥|Ai;(x,1)|9) and (| Bij(x,t)|4). Using Eqs. (2.1.15), (2.1.12) and
(2.1.20), one gets

(1A, ) = W0 [ By 1) P
= —R2(x, 1) 8,0;%(x, 1) , A (B.7)
and )
(1B, 1) = B B e, 1) Bi(x,) (B5)

Egs. (B.7) and (B.8) can be reduced to a more interesting form multiply-
ing and dividing their right hand side by ¥~%, and using (for Eq. (B.7))

the identity
0,0;F

F

with F' a generic function; one gets, respectively,

= 81@ n '+ & }11F3:, Inl", (B?))

. A2 K2
(] A1) = ——(lal)8:0; In g — — (P[4} 0 In 05 In ¢, (B.10)

and
- 52 ‘
(b|Bisl) = —T;(tblﬁtllb)@i Iny"0;Inv , (B.11)

where Eq. (2.3.12) has been used. Remembering now Egs. (B.5) and
(B.6), we can write

2

() (aiaj In($|ah6) + 0 In 28 In 13) ,

~ _ h
(W) = —5 o0 o

(B.12)
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2
(HITEE ) = — 5 5 (6166 (6:0; In (1) +6, In 65 I 0,1 0y T ),

(B.13)
which, by Egs. (2.3.15) and (2.3.17), give finally:
<¢|H l¥) = pi; + (Plalp)viv; (B.14)
and
hz
(BTG 1) = pi; — 1200 PlalY) + (Blalp)em; (B.15)

where Eq. (2.3.23) has been used.

C Calculation of p;; and T

In this appendix we shall perform explicitly the integrals in Eqs. (3.2.21)
and (3.2.22), in order to calculate the quantities pij(x,t) and T(x, t); let
us begin with Eq. (3.2.21). With the change of variables from p to p/,
defined as

p'=p-mv(x,t), (C.1)

and writing explicitly the expression (3.2.17) for the Wigner function,
(3.2.21) becomes

2

. o
g | RO 5 aﬁj[ (x4 &,1)4h(x = £, 1) HV ] (02

where few properties of the delta function have been used. Performing
the derivatives in (C.2) we get

2
(35¢¢+¢53¢ Op™ 05 — 5‘¢(9¢+ vzaz/)zb**
2

vjzﬂ O — —5— viv; PP C.3)

22m 2im

v; P~ 8¢+ vJBz/m/)

We can simplify (0.3) multiplying and dividing it by u; the result is

ﬁz 1/)* ¢>ﬂ<
2im < um P 4m?
+—h—— v,@ hlz- + —h——vja h’l ¢ Fz—vlvj) ’ (04)

189



where the identity (B.9) has been used. Remembering now Egs. (2.3.15)
and (2.3.17), the expression (C.4) reduces to
B2
- Wpaiajlnp , (C.5)

which coincides with the pressure tensor (3.1.11).

The temperature field T'(x,t) can be calculated noticing that, by a
comparison between the definition given in the first line of Eq. (3.2.22)
and the expression (3.2.21), it follows that

2

m
T = —— ¢ = —
"PE T %km

3k p

Viinu, (C.6)

which is exactly the result quoted in Eq. (3.2.22).

D Calculation of the Heat Flux Vector

To prove the result stated in Eq. (3.2.23), let us change variables as in
Eq. (C.1) and perform a similar treatment; we find first

3

I 0 .
(58) = o | P8 g [Hor+ €179 (x = & eI,

(D.1)
and then
B3
%= Toim (8;0;0;9™ — ¢~ 8831#-}-(91/) 0;0;¢ — 68¢ O+
+20;v470;0;¢ — 2(9@¢ 81/)—|— v,(?@'gb ¢+ vﬂ/) 0;0;% +
4
30,054 bt mb aa¢ 059" a¢ 4’mv13¢ B —
4‘ 2 2
— v o;¢” 6¢+ vvﬂﬁ 0 — ‘uv]Bv,Zz/) "quJ(?z/)"gL+
4 2 3
R Sum 2 o) - (D.2)
Multiplying and dividing by g, and using the identities (C.5) and
—aii%?&g: = 6i(9j8k In F + 0 lnF(?jBk In F' + 6j In F8,0;In F+
+ak1nF0,;3jth+ BilnFaj InF o InF (D.3)
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(D.2) becomes

3

gi e (@01'5‘5 ¥ +20:;0;1n p 6; ¥ +0;0;In 12 8;In ¢_+

= 16im? P 4 P
+5j1n—1—fb—*3jln-§&ln% -+ %-vajailngajln%: +
+-2l%z—vi8jln%i6jln %— + 2—?—1;,- 9,8, 1n 1 + %”lvja,-ajln# -
~8-’g-2 v;v; 0 In lgi — %7—2—3 v;v; 0; 1n —zgi - %Zi vivjvj> (D.4)

which, remembering Eqgs. (2.3.15) and (2.3.17), reduces to
g = ——%pv%i. (D.5)

E Statistical Dispersion of the Source in
Newtonian Semiclassical Gravity

Classical newtonian gravity relies on the field equation (4.3.1); the den-
sity of mass is thus the matter’s observable which is responsible, in this
theory, for the gravitational field. In the present appendix, we shall
calculate the statistical dispersion of x4 when the source is a quantum
particle of mass m, working it out explicitly for a particular class of
states. We shall perform all the calculations at a fixed time tg, thus
avoiding to be obliged to distinguish between the Schrédinger and the
Heisenberg pictures.

Expanding the generic state |1} into eigenstates of position we can
write, using Egs. (2.1.12) and (2.1.15),

[¥) = [ de b)), (B1)
so that, by Egs. (2.3.11) and (2.1.13),
A (x)[Y) = mep(x)[x) , (E.2)

which allows one to write the expression (4.1.2) as
Ap(xy)" =m [p(x)p(y) 8 (x = y) = ¥(x) D (y)p(x)(y)"| . (E.3)
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In order to see how a superposition of position gives rise to a dis-
persion in the mass density, let us consider a situation similar to that
envisaged in Sec. 2.4, in which the wave function % has support in two
disjoint spatial regions A and B. We assume the simple form

900 = A= xal) + pma(x), (E4)

where the complex coefficients c4 and cp satisfy the normalization con-
dition

‘CAIZ -+ ICBIZ =1, (E5)
and x4, xB are the characteristic functions, respectively, of A and B.
Substituting Eq. (E.4) into Eq. (E.3) we find:

B3 = fleal A g5y — ) 4 jepl? X2 oy )

Va Vs
__ch|4 XA(X) XA(y) | l4 XB(X) XB(y) _
VA VB VB

lealtleplt XA X2O) oy 2000 XA}

where the properties
xa(x)” = xa(x) (E.7)

and

xa(x)xB(x) =0, for ANB=0 (E.8)

of the characteristic function have been used. Let us now consider the
limits in which the regions A and B shrink their volume to zero, re-
spectively around the points x4 €A and xp € B; this allows to use the

property

= 6%(x — x4) - (E.9)

Physically, the wave function (E.4) turns out to correspond, in this limit,
to a superposition of two states, each of them representing a complete
localization either at x4 or at xg. The limit of Eq. (E.6) gives

Ap(x,y)* =m’ |cal’|esl’
|(6%(x — xa) = 8%(x — x8)) - (6°(y —x4) = 8(y —x5))|,  (E.10)
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exhibiting correlations for x,y € AUB only when both ¢4 and cp are
different from zero. In particular, when x = y, we obtain

Ap(x,%) = m|calles] 6% — x4) — 6%(x — x5)| . (E.11)

F  Calculation of A(z",z';m,¢)

It is interesting to notice that, in our formalism, the explicit form of
A(z",z';m,€) for the free particle case can be straightforwardly derived
from Eq. (6.2.26), thus avoiding the long calculations which would occur
performing the integral (6.2.29) [114]. In order to prove explicitly this
statement, we need to know the function K*(z",z',)); since Eq. (6.2.28)
contains only gaussian integrals, it is easy to find

Sl e(}) 1o
Ko (et 2',0) = T (2ahay OF (25,\) ’ (F.1)

where we have defined
o =np(z" -z ) (2" - ). (F.2)

Inserting Eq. (F.1) into Eq. (6.2.26), and performing the change of vari-
able

1
we obtain immediately
—1 e iem?
A(z",z'sm,e) = e / d¢ exp (w'( + 4h2§> (F.4)

The integral in Eq. (F.4) belongs to the general case [134]

+co

/ d¢ exp (—a - 4’%) - (g)éfﬁ (\/@) : (F.5)

0

where K is the Bessel function of imaginary argument [134] Eq. (F.5)
is valid provided Ro > 0 and RS > 0; since in our case only the second
of these conditions is fulfilled, let us add, consistently with Eq. (6.2.30),

an “infinitesimal” positive imaginary part to o, thus obtaining

"o, . —im € 2 - (mo .
A@",2im,e) = (aﬂ,o) Kl(h s(cr—!—zO)) . (F.6)
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With the usual prescriptions in taking the square roots of complex ar-
guments, Eq. (F.6) generalizes the known expression of the Feynman
propagator [114] to the case in which ¢ can be also equal to +1; the

massless case is easily recovered observing that, for small |z|,

1
Kl(z) = ; —I— R(Z) y (F7)
where

IhlmO R(z)=0; (F.8)

in the limit m — 0 we obtain therefore

3 1
A(z",2'0) = —— « —— F.

(&30 = G T (.9

which is the well known Feynman Green function for a massless Klein-
Gordon equation.

For completeness, we present a calculation, along the same lines of
the previous one, of the nonrelativistic function A(x"”,x’; E) for the free
particle case. Being

K(x",x' t) (x "|exp(—th/h)]x)

2
P
d* . —-X)——t F.10
where m is the partlcle s mass, it follows that
_ 3/2 imlx” _ x1|2
K*(x",x',t) = (——T——> _— F.11

Inserting Eq. (F.11) into Eq. (6.2.34), and defining the new variable

m 1/2

we get

o V2m mE
i (27r EE / df exp (zlx" x'|?6* + h292> . (F.13)

The integral in Eq. (F.13) can be evaluated after expressing the expo-

A(x",x'; E) =

nential in terms of trigonometric functions; the result is [134]

21 E
A(x",x;E) = —————?———/— exp it T—n——-|x" -x1] . (F.14)
4r|x" — x'| RY 2
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