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INTRODUCTION:

The sucsess of the field theory for the point particie suggests that it could also be
formulated for the strings. The first step in this direction is to introduce a string field which is a
functional of the space-time variables which are functions on the string world sheet. Indeed it is this
factthatmakesthestring fieldtheory becomequite complicated.

Duetothereparametrization invariance of the world sheet, some of the string coordinates
are unphysical. Elimination of them results in a unitary gauge which is called a light cone gauge. In
fact the string field theory is formulated for the first time in this gaugei 1] by making use of the path
integral approach which was developed in [2]. Afterwards in [3] and [4,5] a more rigorous
formulation in operator approach was developed. These methods of formulating a bosonic string
field theory werethen utilized to formulate superstring field theories in [6].

Due to the loss of manifest Lorentz invariance in the light cone gauge, most of the
charming aspects of the field theories are absent in the above theories. In a covariant siring fieid
theory compactification of the d-4 dimensions would be easily perceived, the underlying symmetry
would be revealed. it might be efficent to find the higher loop amplitudes in perturbative approach
and the nonperturbative calculations wouldbe ailowed.

An important step in this direction was made by W. Siegel [7] who formulated a free
covariant string field theory (we only deal with the open bosonic strings) by making use of the
Becchi-Rouet-Stora-Tyutin (BRST)-charge of Kato and Ogawa{‘g}. He aiso proposed to introduce
theinteractionsby incorporating the siring length parametersby hand.

The BRST-charge can also be used to define a gauge invariant, covariant free string field

\
the&r}ﬁigé which has aninfinite number of ghost fields due to the nilpotency of the BRST—chargé\
(for the free case see aiso [10] and the references there in). Indeed fewer ghost fields leads to\ a
wrong counting of the physical degrees of freedom.

Forthe interacting gauge invariant, covariant string field theory there are some different
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approachs. The one which is due to B, Witten +° *1 is based on the non-commutative algebra and
the selection of interaction points as the mid-point of the sirings. Another one consists of
generalizing the interactions of the light cone gauge string field theory to the covariant one by
incorporating string lengths by handl12.13] But this led to an over counting problem. Besides
this, due to not having a variable like the proper time, the number of loop diagrams was
increased 14l and also the relarion between the scattering amplitudes of the light cone gauge and the
covariant theory became obscure after one loop level. Through some underlying symmetry
principies K. Kaku proposed a “geometric string field theory” and he claimed that the theories
which are mentioned above are some gauge fixed variations of this [15]

In this thesis we will study a covariant string field theory which is a natural
generalization of light cone gauge one. In this approach the problems of incorporating the string
lengths by hand and introducing a proper time are resolved in [16]. A. Neveu and P. West
developed a gauge fixed action which has Osp(26.2 | 2) in the zero mode sector and Osp(25,1 | 2)
invariance in the other mass levels. Then the Parisi-Sourlas mechanisml! 7] guaranteesthe unitarity
of the theory. In [18] we have also shown that even the physical subspace of the Hilbert space is
spanned by the DDF statest 191 the resulting scattering amplitudes being equivalent to the light
cone gauge string field theory ones at all levels of perturbation expansion.

In fact Osp(d.2 | 2) invariant gauge fixed string field theory action was introduced by
W.Siegel[:"o} but it differs from the above case in zero modes. However by iatroducing another
ghost zero mode W. Siegel and his colloboraters have also developed an Osp(d,2 | 2) invariaat free
string theorjy’independenﬁygz 11

In [16] A. Neveu and P. West proposed a gauge invariant theory but they fixed the
gauge only up tothe first ghost level for the free part of the action. In [22] we performed the gauge
fixing of the whole action, which includes the three string interaction, to reach a Osp(d.2 | 2)
invariant action by some suitable gauge fixing conditions. The main difference between the free

case and the interacting one comes from the fact that latter does not possess an off-shell nilpotent

/inf—\(‘
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gauge generator as the free case. Indeed it 15 the milpotency property of the gauge generator that
vields aninfinite number of ghost fields which are essential to have the correct count of the physical
. NI L1 . Lo _ e

degrees of ireedom 7 inthe free case. This problem is resoived by using the Batalin-Vilkovisky

3

method of quantization of gauge theories (23] which is first noted in [24] in the context of string
fieldtheory.

In all of the above-mentioned theories the kinetic part of the action somehow related to
the BRST-charge which follows from the first quantization of strings. So that they are explicitly
dependent on the background metric. In {25 26] a purely cubic action is proposed. As it does not
have a kinetic term, it is free of the background and due to a different condensation of the siring
field, itis possibie to create the kinetic term in any background,

The thesis is organized as follows. In the first chapter we review briefly the light cone
gauge string field theory (we only deal with the open bosonic strings) whose knowledge is
essential to understand the Osp(d, 2 | 2) invariant theory.

Chapter II is a review of the Batalin-Vilkovisky method of quantization of gauge
theories, which will prove useful in the subsequent chapters. Due to the fact that some of the
concepts which they use are derived from the first quantization of the constrained systems, to
present the method in a more comprehensible way we begin from the first quantization. To clarify
the techniquesused we give the Yang-Mills case asan example.

The point particle, even if it has quite different features from the string, always provides
a good preperation to the string case. So in chapter III we present the first quantization of a point
particle which leads to an Osp(d,2 | 2) invariant field theory. It is shown that the Osp(d.2 | 2)
invariant theory canbe achieved after agauge fixing of agaugeinvariant action which describes the
point particles when the field function is physical and on-shell.

In chapter IV first of all we show that first quantization of a string in a gauge leads
naturally to a superspace in which it is natural to formulate an Osp(26,2 | 2) string field theory. Itis

shown that a gauge invariant action of Neveu-West after a suitable gauge fixing, by making use of



the Batalin-Vilkovisky formalism. leads ta the Osp(26.2 1 2) invariant string freld theory. The
physical subspace of the Hiibert space is shown to be spanned by the DDF states, so that the
scattering amplitude at tree fevel 15 the same as the one which results from the light cone gauge
string field theory due to the following property of the Fourier components of Neumann
functionsl {21

N
?\;rs 5
Nao Pu

i

However, we demonstrate that at ali orders of perturbation the above equivalence which was
mentioned fortree levelis satisfied.

Chapter V is devoted to the perturbative calculations in string field theory. Using the
operator approach to search for it provides more efficent way of calculaung string scattering
amplitudes. We presented the calculation of the four photon scattering amplitude at tree level as a
sample to show the techniques which one uses in the operator approach. In the second part of this
chapter we give some preliminaries of the first loop calculation in the operator approach in string
theorycontext,

In the last chapter we discuss the results of the previous chapters and also some open

problems inthe Osp(d,2 | 2) string f1eld theory.



f. LIGHT CONE GAUGE STRING FIELD THEORY

A string is described. in terms of world sheet parameters © and 1, with the coordinates
Mo Ty where O« T<eo, 0« 0 < e and Q:Ep’i The Greek indices run from 0 to d-1 and the

o 3.7
0,

. . - . R - IR i-1
light cone gauge coordinates of a vector vl are defined as v7=(1//Zi{v b V=143 (w0 vt “1

and v! where the Latinindices denote the transversal coordinates . To define a string field theory we
introduceafieldfunctional &(x). If we divide the 0 interval into an infinite set of points (0 1,07, .

... Oy this funcuional canbe written ast2]

Clx F (0 )xM0y), ... xE (O]

by suppressing the proper time dependence. Obviously this functional does not depend explicitly
on 0. When one tries to second guantize the system canonicaly, he has to introduce the canonical

momentum which is defined in terms of a master Lagrangian L which is a suitable field theory

Mx,0]=8 & / §ad(x)z x9%(0)]

X

But now the cancnical momentum has an explicit dependence on ©. Thus there is no one to one
correspondence between the field functional and the canonical momentum. Thistechnical problem

canbe resoived by fixing a common time for the entire string ast27]

X =11 =time (1.1

(dx/dT) 2 - (dxPido) 2= (dxt/dn) (dxbido)=0.

Inthis gauge, namely inthe light cone gauge, there is one to one correspondence between the string



In the light cone gauge only the transversal coordinates and the zero modes of the
longitudinal components are physically relevant so that the field functional is defined to depend
only on these variables. Now by using this field functional we want to write a master Lagrangian
which ensures that we reproduce the usual spectrum of states and Hamiltonian in the first quantized
approach. This will be achieved if the free part of the master Lagrangian generates the following

Schrodingerequation
jdoorl[-a2/axi2 (9% 0P 1 D(x) =i0d(x)iRx

Because written in terms of normal made operators of ¥ and p' (= -i 0 / 0 ¥ inconfiguration

space}itvields
iad(xylexr =t i ol ol o+ op? 1) B(x) (1.2}
: L i & i »

which ensures that the time translations will be produced by the Hamiltonian of the first-quantized
approach. As it is obvious we have already fixed the ambiguity which appears in the normal

ordering of zero modes. At T = 0 the normal mode expansions of ¥(0) and p/(0) are

t. aty, ) cos(nd /G
(1.3)

o
pl (o) =p' + q% (Oeir;f + oy ) cos(ns /o)



woere {7, =0 and they sausty the foliowing algebra

[, @, T]=nd, , & (1.4)
Now (1.2} can easly be derived by extending the range of 0 a8 - < 0/ & < 7 by
defining ' (-0) =x' (0)for 0 < 6/ < 1.
Thus the free part of the master Lagrangianis 3] { when it doesn't create confusion we

willuse x' | p' instead of ¥’ (G}, p' (0) forthe sake of simplicity of the notation)
Q6= Jf do do Dy { @lyid oy ex - oTy[-e2axi 2+ (@x 80P 1 D)} (1.5

In this approach the interactions are introduced as joining or splitting of strings at their
end points. For example three string interaction is given such that two incoming strings join at the
end points to give an outgoing string at a time T, ;. or an incoming string splits at a time T}, into

two to give two outgoing strings. This can be represented as a string diagram which is given in

figure 1.
)
Qs Wyt o+ Oy = 0
| oy
Tins
Figure 1.

Thusbyintroducing a coupling constant g, the three string interaction part of the master Lagrangian



. I L — S .
i\ 1 =€ | 7T de A0 1 Do O eyt Gy+ Ga) @ (X )P (%71 D (%3 )

&

i

N
I
[

A}

s,
.
=
—

T & X'3(03) — ¥ (0 B @yl - 0a) - x5 (0y) B( T3 Moy )y +he

where the parametrization is shown infigure 1 and 0 < 0, < 71, G, . Ivis shown in [3] that the
interactions which are introduced through the overiap d-functions can be described equivalently
using the path integrals which are taken over the appropriate Riemann surfaces. We will notrepeat
this proof here, but nevertheless for later convemence we need to review the path integral method
whichis developedin [1,2]:

N string interaction which is illustrated in figure 2 leads to the following 5 matrix

d "‘:2 d T3 LAt i) AlTy, Te ... ‘CZ\_E} (L.73

Figure 2.

where N-2 interaction times of the external strings are indicared with T, and the lastintegral [dTy
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space w nere the modes of the momenta are enumerated with n. A canbe wrilien a5

« N2 n A e E B 1 = ]
Al Ty i Il =gt K Iy, 1Ig AN t i di{rﬁ & %K{p‘n:giﬁ {1.8)
k=1 ns1
A re o 1 Lo . . N o el ot Lt : iR A e i L
where ¥ { p*; ) i5the momentum space wave function of the K string and M is a normalization

factor. B is given with the following path integral, which must be taken over the appropriate

Riemannsurface,

B= j{ i1 Dx' (0 T)exp| ;% (MiCey, ) 1 j dﬁxplgfﬁx J¥(0,1,) ~ [dodT (0,1 ~ ‘%‘P‘k T,

i
where T, — o= forthe outgoing strings and T, — - o= for the incoming ones and ¢ = © x Whenitis
onthe k0 string. L(0,7)1s the usual string Lagrangian whichis given as
€(0.,1) = (1/4m) { (dx/dT) %+ (dx/do) 2 (1.9)
Togetrid of thelinearterm inthe functional integral one canperform a change of variables:
¥on— x(on=-x(c0+iZ () | g0 N0y (')
B4 Sl B S I + Y 3 ¥, ' 54: S k'.r A 4 S S s !a‘.‘kk\-k
by making use of the Neumann function N which is defined as follows

[T + (3/30¥ I N(OT:0 1) =AN(G,T:0' 1) =21 &0 ~ ') 8(1 -1

g N{0,T;0" 1)/ dn=1(C1)



where the latter1s valued on the boundary. (0/dn) denotes the normal derivative and f is an arbitrary
but 0,7 independent function. Symbolically this change of variables effects the exponential part
of theintegral as

.
5 (& + PX)ydodi=| (XAX +PX)dodt

i

. r T S ol
= (X +ou! NPdodT] A{X+@n) ! ] NPdodT} + @my | PNP dodo

= J* X AX dodt +(2n)”13{PNP do do'dT dT

where P should be read as (nx )”1 P81~ T,). Thusby defining 2 new normalization factor

we may write B as [5]

5o A (22 e 2o -1a-11 soas wire oo o
B=iA} (d-2) exp { {2 Zm oG, gt | dodo PG, ) piS(csS IN(0,1,:0°,1,)
- X T, (1.11)

By observing that T canbe writtenin terms of Neumann coefficents as

t=0m L E L do’ N((0.,1: 0,7,

the terms of B can be combined to yield

B8 @D exp 00 E, n 20t ag L [ 00d0 o) plio,) N1, 0 ) +

s I n 2o bag | dode phph N(O,T,5 01,0 } (1.12)
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plane the Neumann function which is suitable at tree level can be Tound easty as
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The half plane can be mapped into the p = T + i0 plane at tree Jevel with the following

transformation

r H
0= L Geln(z- 2 with £ =0 {(1.145

where Z,. is the point on the real axis onto which the point T =T, on the (b string is mapped. The
interaction points are defined asthe points which maximize p(z). Inthe string scartering amplitudes
R e &
three of the Z,. will be fixed due to the Mobiousinvariance.
Fourier components of the Neumann functions are defined by the following mode

. H el
expansion [1,13]

faa)

®If o e E N . ey e ! — H 3 PR A i
N ) = g [ L (20 ) expl {8~ 1) cosan, cosang -2max(§ . &) +

o [os]
+ 22 2 N exp{m¢€ .-n¢.)cosnn,. cosan
M=gm=g . L =0 gr % 5 ni S

“

ok

where ©.T and ©'.1' belongrespectively tothestrings ¢ and s. The variables 1. and §

g

are related to P, ( the world sheet variable p will be labeled as p. when it is taken on the i

string } as



o]

+
-
fwi

-y

g
~
H

-

;
s
[
|
“
e

v U p e et tes T rus T £ LI oy r g Y ek at — ;
T, istheinteracuoniime of the £t string, Ty =Repdz,) whereatz, dp(z )dz=0and

B.. is defined interms of string length parameters as

The Fourier components of the Neumann functions, N at tree level can be given in an

miae

]

integralrepresentation asfoll owsl?

“IFE — i B { - - g
N, =lalZ. - 2,1 whenr=s
Wi — N - i
Nt o =4 (Gg a.) InlZ, - Z|

Ky
i
B3
Jaremhe
reshs
LA
-

Z

N = Ny = wlwl (2ni)2 9 gz far (2202 exp(-n L) mig@) )
Z L nm>0

where [ (z)= £ ¢ + 17, . Nowitispossible to write the three point interaction vertex , whichis
given in terms of the overlap S-functions in (1.6}, by making use of the Neumann coefficents

which would be found for the Riemann surface drawn in Fig. 1 as follows
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where the ground state is defined as ¢, P02 =0 for n>Gand @, .= Dy

hed Ay WLl &

The Lorentz invariance of the theory restricts the dimension to be d=126 even at three

L ELY,

string vertex casel’ | Whenfour string scatiering amplitude istaken inic account the duality and the

Lorentz invariance will be regained by introducing a four string interaction vertex [3.5] At one

-

loop level cne has 1o introduce also the open-closed siring interactions due to the same

3

5

1. 50 all the properties of the first quantized strings are also present in the field theory

>

o
motivaiiong>

case.



I BATALIN-VILKOVISKY METHOD OF QUANTIZATION OF GAUGE
THEORIES :

Let us consider a physical system which has m . bosonic and m _fermionic, first class

CONSIraints:
T, =10 =12, .., m,+m _=m (2.1

which satisfy thefollowing generalized Poisson bracket algebra

P
s

(Do, P 1=y TV g : { Ho, @y } =2 VP 2.

where T off vb ¢ depend on the canonical coordinates and H, isthe canonical Hamiltonian.

Generalized Possionbrackets are defined as [2%]
{ A, B} =(0.4A/8q)(9Biop;) - (-1FWEB (3 Biag, ) (3;A/0p) (2.3}

where 8,./0q; and Jy/op; indicate right and left derivatives with respect to 2n canonical variables
i=1,2,....,n LHn_=n) €AY = 0 when A is bosonic and £(A) = | when it is fermionic. Thus the

system is described with the following action

T
S = { di{ p; dqy/de - Hy } (2.4)
0

and has 2m unphysical degrees of ireedom which can be eliminated using the constraint equations

{2.1) with some gauge conditions:



toreach aunitary action:
T
N - (& a ., T p D
t}phys—«) dt ip phys dq phys ‘dt E‘Iph}ysf (2.6)
0
where a=1,2 .. . n-m. Generally (2.6)is not any more manifestly covariant.

Instead of considering the constraints separately we may put them into the original action

viasome Lagrangemultipliers, 4, as

H

i - P e 3 3 A
(Of course still the gauge conditions have to be taken into consideration to reach (2.6)). Let us see
how this action changes under the transformations which are generated by the constraints as
fotlows( 30}

SAF = { F, A%Qq 1 = (- TF AY { F @, )

where F represents the canonical coordinates and €, =€( %) and €r= €(F). Dueto this definition

we have:
8o =A% 0. /0¢ daq= Dl A% 3y iapt
(2.8)
N — y 7Y N (9T VRIS
87 ®q= -AP TV 8 pAHg= A%0p VP

where €=£(q") = £(p"). Now the change in the action is
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if we transform also the Lagrange multipliers as
SO 3 AOLa . 1Y AD B7. 0 5 im
S A A% = g A% 8 1 YAD ;a?{j + A.«\Vgﬂ (2.10)
B4 S leadsto
T
SAS = Jdt {- A% 9. Dy ieq aghiar + o A playDy/apt 1/ 3t - AY optidr oDy lopt - A% Dy,
0 (2.11)

For any function of the canonical coordinates it easy to see that the following equalities are

satisfied

8,D,/8q1 aqlat + dplar Dy /apt = ddy, fdt
(2.12)

P13 /0pt = Ny @y, (without summation over &)

where N, is a number which will be determined by he momentum dependence of the constraint.
Hence the changein the action isreduced to
T

84S = [(Ng - 1) A%y | (2.13)
0



When the constraint is linear in pyg;. Ny, = 1 but in the other cases the gauge parameter must
depend on time and vanish on the boundary, according to have a gauge invariant action under the
transformations (2. 8)and (2. 10) which are generated by the constraints.

Now it is convenient to treat the Lagrange multipliers on the same footing as the

dynamicalvariablesq;, Thus associate them an equal number of real momenta n, with the same

Urasmann parity and which obeythe following generalized Poisson brackets

(ny . 7&& b= —5(25.

In order to not to change the physical concept of the theory we constrain ny, to vanish classicaily.

Infactthese constraints generate the following transformations
A% = (A% kg P} = (-1)fux®

expressing the arbitrariness of the Lagrange multipliers.
Thus the above procedure has led to an extended phase space which is defined in terms
of the canonical variables { 4 P ;Xﬁ T, tand the constraints Gy= {ng, Py} where a=1,. . 2m.

The new Poisson bracket relations can be written as

{ G3.Gp 1= G¢ Uc&b

(2.14)
{Hy.Gy)=Gy VO,

The canonical action nowreads

S = fdt {p* agliae + Ty Ohglot -Hy - Ag P + Ty Ay } (2.15)



, . A ~2 . - .o - P
where the Lagrange multipliers 4, are interpreted as gauge fixing conditions. We enlarge this

phase space by adding a new canonical pair 1, 0, which have opposite statistics to G,. In a

unified notation where g4 = { q' . Ay |} and py = {p* Mg } so A=I. ... n+m, atheorem due

291

tobradkin-Vilkovisky [29] cante postulated as follows: The funcuonal integral

e

.
i
expi 1] dtf

[
o

s,

padgaidt+ G dn,/0t - Ejgj, ¥

does not depend on rhe choice of Y (it is arbitrary modulo the restrictions imposed on it by the

requirment of non-degeneracy), where Hw is defined in terms of the BRST charge:

Q=G n?+ (2)(-D)% ¢, UR nn° . 2.17)
as follows

Hy=Ho + 0, Va0 - (¥, Q} (2.18)

We are mostly interested in the systems where the canonical Hamiltonian vanishs, so that in the

proof of the the above theorem we set:

Hy=0 . V& =0.

The proof of the theorem is easy to achive if we can show that the functional integral is invariant

under the transformations which are generated by BRST charge as

§F = {F, 201, | (2.19)
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Dhe BRST invanance of Hy, tollows directivirom the Jacobridentiny

(-0 1w . 01,01+ {{Q.Q}.w}=0,

{where the Grasmana parity of BRST chargeis €, = 1) and the nilpotency of O
{Q. Q=0 {2.20)

A

(2.20) canbe proved by making use of the following relations, which are derived from (2.14),
@ (A\E ¢ nanh
(Gan?, Gun®) = -(-1)f G USy, it

(EDF U S Gne = (-0 (1) UR nd U nen®

.
(UShan®n®, Uderningy =0

The other part of the action transforms under Q as follows, which is derived by using a
generalization of (2.12)to G, and U%,
T T
de{ Q,padqa/dt+ 0g40n,/0t b= (“2)(-D NUJ dt d[@a{j%cngﬁﬁjidt
0

o JE—

where NU 1§ defined as

PadURc/opa = Nylfe

Thus when N;j=0 by putting the condition that 11°=0 on the boundary (this is in accord with the



=0} givesthe desired result. 1. e. The

conditten which we put on the gauge parameter o have (2. {3
action of the functional integral (2. 16)is BRST invariant. The W independence of the action follows
from the BRST invariance by taking the parameter of the transformation as

i
1]

-
-

A=y -y de.
Thistransformation vieldsaJacobian

dqp dpp ANy A, = dq'p dp 4 AN, A0, (1 + ‘{{l!f’ -y, Qf dr)

Forsmall (y' - y) itleadsto

This completes the proof of the Fradkin-Vilkovisky theorem.

Once we proved this theorem we may take

=
il
&
©
=,

e
O% = { %, Ay}

L

sothat the original part of the actionbecomes equal to (2.15). Above fermionic function ¥ which
will play an inportant role in formulating the quantization of the gauge theories with open gauge
algebras, is called "gaugefermion”.

The umitarty of the S matrix is a corollary of this theorem: By taking ¥ as above we can fix the

gauge suchthat

X +9hg/ot =0 and det{ xp + dAg /8t Dy} =0



which leads to the unitary Ehe-arf which has the action (2.6} after performing the integraiion over
the Lagrange multipliersi.,.

(Juantization of the system can be achived either in the unitary gauge or inthe covariant
description by replacing the Poisson brackets of the canomical variables of the related theory with

the commutators or anticommutators: { |, }— (/M) | ] .. Inthe covariant description the

additional 2m coordinates, which have the opposite statistics of the original phase space variables,
will playthe role of the ghosts after quantization.

The formalism which we illustrated above can also be applied to the field theory, so that
also in this case the concepts like "gauge fermion” will make sense, but now it will be a functional
of the field functions. Before representing the Batalin-Vilkovisky method of quantization of the
gauge theories let us classify the gauge theories and also give the conditions which have to be
fuifiled touse thismethod:

If A(Q)represents a classical gauge action interms of the fields fj)1 i=l,..., 0=0_+0
(n, and n_are the numbers of the bosonic and fermionic fields) we assume that there exists at least

one stationary point §, of it where

0.

5. A(0)/Bot
0o

! Recently it is shown that (311 in the case of having only bosonic constraints, it is possibie to
construct a local change of variables to realize an Osp(l, 1 | 2) invariance in the phase space which
leads, via Parisi-Sourlas mechanism, to the equivalance of the system whichis defined with the

functional integral (2. 16) tothe unitary one.



Theinfintteszmal gaugetransiormarionsare representedas

i i 2y Satie

3¢t =R, (0) 56
in terms of the gauge parameters 56%° with Grassmann parity £( 86%°) = €y, and generators
Rlge € Rig, ) =8 + &y, , Where €=£(¢'). It is assumed that in a neighborhood of § . m__
bosonic and m, fermionic Noetheridentitieshold:

(8. A(0)/S0H RY, =0 . @o=l,. .. m=mg +m,

If the rank of R%,  is maximal at the stationary point or in other terms, if the vectors
Rl enumerated by (o are linearly independent in the neighborhood of the stationary point the

theoryiscalled irreducible or zero-stagetheory [23.29],

Let us suppose that there exist some vectors Zif‘i"m which are enumerated by &y, such

that
i oge |
Rioo 21 °s] =0
0o
6Z1 %) = € + Ty Q=i .. omy=my,oemy

and they are linearly independentin a neighborhood of the stationary point or equivalently

where now



The gaugetheories which satisfy the above properties are called first-stage theories

In the second stage theories , in a neighborhood of the stationary point also Z;%9,,
. . 198 . .
have some zero eigenvaiue eigenvectors, Z» *‘“am which are enumerated by Gn=1, .
My=my, + my_which are linearly independent in a neighborhood of the stationary point. The

Grassmann parity of itis € Zy%¥! ) = €, + £, Inthis case:

.
rank Rl | =mg, - (my -m3) ; Mg My -my

tank Z}Q"mz =my -y : my >y

[
I
5

N

rank ZEO“Q :

The higher stage theories are defined in a similar way.

In all of these theories the number of admissible gauge conditions, needed to remove the
degeneracy of the action, must be equal to the number of the independent gauge generators, i.e.
The gauge conditions must eliminate only (but all) the unphysical degrees of freedom. This

condition is known as the completenesgondition ' .

- Even Batalin and Vilkovisky claimed that the formalism is applicable only to the finite-stage
theories, we will see in chapter IV that this is not necessarly true if one can show that the

completenessconditionholds.
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and it will be seen that the fields other than the original ones correspond to the ghosis).

The functional integral of the theory can be expressed inthe following form
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where we suppose that W (D) generates the correct Feynman rules. W represents the gauge
fermion and I specifies the gauge fixing. As we have seen, gauge fixing conditions can be
introduced into the action by making use of the gauge fermion so that W< (D) can equivalentiy be

written as
W (@) = W(D, 3 y/dd)

By taking the W dependence of W as above we may attribute to each @ an antifield®@* A such that
the gauge fixing condition is O p= 55}31;’5@ . Then ®* 5 has the opposite statistics of DA, we
will see that the antifields correspond to the antighost fields (for example @*; will be related tothe
antighost of the first ghost field one has to introduce, so its statistics is correct). Therefore we can

summarize the abhove discussion as

We(®) = W(@.0") |
D*=8 /5T

Pl

Let us define a transformation, in fact it is the most general version of the BRSI

transformation, as



where U 1§ an anlicommuling parameter and the antibrackeiol two operators P and () is de

5 . N Y N S R N e w - R A
Q) =0 PP HOQBD ) - (5 PAD A HOBTH

The antibracketshavethefollowing properties

1)

For

Qy=—(-nEFIFTECIHT (o py

Erj+0mEal+1]

i

—

Q. (S, P)) +cyclic permutation of Q.S P.

ahosonic operator B

3. BADASBAD)

which is generaliy different from zero, whilefor a fermionic operator F

(F,

Fy=0

and for any operator P

0



The change of the functional integral (2.2 1) under the ransformations (2.2251s

Zy =) T1d0A [ihrL( 8. We (@S0 ) (8;W(D %) 50" s

O y =

i
+ (BUBDR) (8" , YW(@,0%) |5 } pexp [iH I W(@)]
Then the functional integral is invariant under the BRST transformations (2.22)if

(W, Wi=ifl AW where A = (8804 ) (880" 4 ) (2.23}

Now the proof of the independence of the functional integral from the choice of the gauge fermion

follows if one takes the gauge parameterin (2.21) as

Of course the gauge fermion is arbitrary modulo the restrictions imposed by the requirment of
nondegeneracy.
Let us expand W in powers of + as
&
W=S+ r%%ﬁ M,,. (2.24)
i=

-Use of itin (2.23) yields the following set of equations

a=0 (S$,8)=0 | (2.25)



n=1 (M S3=iAS (2.26)

-4

-3
122 (M, S)=iAM, ¢ - (%) Z (My . M, ) (2.27)
g Uiy, -1 L2} R TR (st I tL. 27}
m=]

{2.25) is called the masterequation Except the classical part of W, namely S, the terms in (2.24)
give the quantum measure of the functional integral. Apart from the measure part the unique
equation which we have to solve is the master equation (2.25). Its solution, when restricted on 2,
will givethefull action.

Correctness of the classical limit dictatesthat the original gavge fields should beincluded

in @ as well asthe following boundary condition holds
S(2.07) g g =AY (2.28)

Toget rid of ali the unphysical degrees of freedom (nondegenarcy of the action) the rank

of the Hessian of 5 '@,@m) must be maximal at the stationary point of S(Q‘J;(P* . Proper solution of
ary p s

(2.25)isthe solution which satisfies the above condition. Letus clarify this requirment:

Byintroducing thefollowing collectivenotation
2= (R 0" ) . A=1... N a=1,. .. 2N

andthematrix



[
ey

it1s possible to write the antibrackets as

(P, Q)= (5P182% 1 (5,082).

Now the derivative of the master equation leads to:

8.(S.S)/8z% =(S,85/87%)=(5,5/80) B3, =0 (2.29)
where R ab is defined as follows:

R%, =n¥88,5/8:° 820 (2.30)

so that any solution of the master equation is a gauge invariant action. Let us assume that Shas a

stationaty pointz,:

51. S/ 523 =0
Zg

sothat the derivative of (2.29) vields the nilpotency of the Hessian at the stationary poiat:

R3, ®/b_ | =0, | , (2.31)



Generally a symmetric (2N x 2Nj type matrix when it is nilpotent has at most N independent
elements, hencefrom (2. 31 itfollows that

Ty .
rank 6 8,5 /82°82%|  =r <N

Zg

A solution of the master equation is called proper when r=N. Then all of the elements of the
Hessian of S, §; 8,5 / 6z° 820 canbe writtenin terms of N independent elements of itatz,. Hence
if all of the zero eigenvalues of the Hessian of S are included in itself, at the stationary point, the
solution of the master equationis called proper.

We can expand the solution of the master equation in terms of the antifields as

fad
A BB * A1 ... Any 5 3y
SO, D) A(q;punﬁ@ An - - - P oA S {D) (2.32)
The coefficents of this expansion, SAL ... An @), are called the structure functions and the

equations which relate them, by using (2.32)in (2.25), are called structure equations.

The minimal content of @2 depends on the reducibility properties of the theory and it
will become clear in the following. However let us suppose that the minimal set (I)Amin contains
only the original gaugefields (hi Thenthe master equation as well as the correctness of the classical

Hmit will be satisfied if we set

>

)]
e,

.. An (@) =0
. But, duetothe gaugeinvariance of the action

rank 8 8. A(9) / 8¢ 8¢ i ¢ = 8-m



where m 15 the rank of the gauge generator matnix al the stationary point ¢, Thus this solution is

not proper and the minimal set must always contain some new fields.

Zero-stage theories:

The derivative of the Noether identities with respect to the fields ¢ at the stationary

pointyields

f
R i o
[ 1@.;&‘;({1}}»‘6@‘ 564 Ri{ko §.éhj =0 (2.33)

Onthe other hand the nilpotency relation (2.31)leads to

[3,5,S(®, @)/ 304 508§, 5. 5(@, %) /50" 50| | +
8S/8@= 88/80*=0

+ (DHAEC) f Acs ) =0
which gives the following equation for the first term in the right hand side of (2.32)

[3; 8. A(Q) / S¢% 50] [8 5, S(T, @)/ 8¢"; 50C ] =0 (2.34)
5S/8D= 5SI8D*=0

where D% includes only the new fields one has to introduce. Comparison of (2.33) with (2.34)

leads to the following expression for the gauge generators, by introducing some new fields Cga" ,

Ri, =885, @5)/80";8C.% g o



Let us atiribute the following ghost mumbers (or gauge ghost numbers) to the fields

which we havemniroduced,

gh{ 08, 0"5 Coe, Cloe 1=10, -1, 1,2 1. @.

S
{2
[
[}

Rt

Ghost number of S must be zero. In fact ghost number conservation is an essential ingredient to
find the structure functions which makes 5 a proper solution of the master equation.

Now the Hessian of S is

; " e q
_ 82 A()
o | —— ) |
8030 o
ol
@:& Cio ! (D
O
‘ i
C, R%h}
O
C
O

so that the rank of the Hessian, r, reads
r=rank & 8. A(®) / St 5@ i o * 2 rank Ri&o do = (n-mg)+2m,=n+mg,,

where m, is the rank of Ri@ o- The rank of the Hessian of Sis equal to the number of fields so that

the minimal set of fields which we need is



In the irreducible theories the number of gauge conditions must be equal to the number
of the gauge generators. This restricts the gauge fermion. One way of introducing the gauge

condition isenlarging the contentof O by Zm, new fields:

BGG’,G - Foge - € BGC&) y= €Qf,a +1 € Tatis )= Sf}io‘

Thefollowing 5is still a proper solution of the master equation

SO, & )Y=S(D,... & . y+B Tog (2.37)
SUEL S E S min Y min' T o oo - R

We take the gauge fermion such thatit isindependent of ny, . however dependent on By, such

that

Y /8By, =0 {2.38)
are the gauge conditions. As we defined before gauge fixed actionis achived by setting

© 4 = Sy 1 dDA

Therefore by integrating out the Lagrange multipliers in the functional integral, we arrive to the

gauge fixed action, which will generatethe Feynman rules of the theory,

td
L
N
e

Sg 1. =S (O 8y /804 sy 5820 Q.



As it is obvious the fieids C % and B, are the Fadeev-Popov ghost and antighost fields. The

requirment of fixing the gauge completely restrictsthe gauge fermion asfollows

- . o

Now to illustate the method let us apply it to the Yang-Mills case. By taking into
PR g b g
consideration the attributed ghost mumbers of the fields which appear in the minimal set, it is
. . ~ . £ P .
ossible to find the most general form of the structure equations [2%] Butit can be easly seen that
4 g £q 3

the solution of them will lead to the following Sinthe case of Yang-Mills theory
¥ ‘ , % : * . a .
S(Ppin @ min =A(0)+0 (R, Co¥+ C o Taoﬁo Yo CO{SO Cote (2.40)
where
¢=Ap*, Rigy=DHap =8y + fgpAlg,  THO, yo= () g Coo = 1%,
‘ 2 _ v Bba b

It can be directly shown that it satisfies the master equation by using the algebra of structure
constants f%, . and the gauge invariance of A($). To fix the gauge we enlarge the set of fields so that
S reads

S(®, @) = S(Ppin © i) #7127

Thefollowing choice of gaugefermion



=F ¢ a
¥ =Tl 0y Ay
generatesthegaugecondition
ayidT, = Iy Aua =0.
Indeed T}, is the antighost and the gauge fixed action takes the following familiar form
Sg.1. = defﬁ (F2 + Tip9, D, % m, +m,9, 4,2}

First-stagetheories:

When the theory is first-stage introduction of Cea" is not suificent to have a proper
solution of the master equation. Because the rank of Ria o is smallerthan m,. Infact now the ghost
field Coa" has become a gauge field so that we have to introduce another field, which we can call
ghost of ghost, such that
(B18C" sr) BT ¥y S( @, ©°)| prog = Z1 %%,

50 that the rank of the Hessian now reads
r=rank 8 8. A@)/ 8¢ 80) | g, + 2rankRiy, | o +2rank Z;#0y, | o

=[n-(m,-m)j+2(m,-my) + 2my = n+m,+my.

Thusthe minimal setis



The ghost numbers of the new fields are defined as
gh (G ¢y = (2, 3
The requirement of ghostnumber conservationleads to
S(Ppin O i) = AC0) + ¢ Rig,Co®0 + C g (2%, C% + T%Bo Yo Cag" Cofe )+
* ‘:ﬁ*i @g‘j( Béim C* . Ejiczoﬁo CQBO CoXo)+ .. (2.41)
and use of thisin (2.24) givesthe following structure equations
(3. AWOYSHY R, C %0 =0
Ri, z %0, C %28, Awgydel) B, ;% ()i =0
(2.42)
(5, R i&ia CoXo ! 50d) Réﬁe CG§° * Ri&e T&oﬁ-a Yo Ci)ﬁa Colo -
— 2.8, AYSYH By g, CoPo C %) (1) =0
and so on.

Gauge fixing can be obtained by introducing some new fields and defining the gauge

fermion suitably as before. In this case we enlarge the set of fields by introducing three pairs of



new {1eids 1o write the proper solution of the master equation as

* % W Ky ®
. g H s 2 . .o ao {:Ef; -l . ' {Xi £y E
SI2, D )y =5D 0 D i+ By oo + By Ty + O g Mg {2.42y
These new fields have the following Grassmann parities and the ghost numbers
s3] N7

Bogo Totxo Bia Tio C T
ot ! o St SOTRE 271 gt (2.43)

-1 0 -2 -1 0 1

We require that the ghost number of the gauge fermion is -1 in agreement with the assigned ghost
numbers to the fields which take part in the minimal set. From this requirment one caa derive the
ghost numbers of the antifields of the new fields. Gauge coanditions are generated by the gauge

fermion as follows
S /8 Bogy, =0, 8y /83 Bygy =0, Sy /8 C %t =0
which will follow by integration over the Lagrange multipliers, after restricting (2.42) toX. Again

the requirment of fixing the gauge completely restricts the gauge fermion at the stationary point of

S, denoted by Qo, as follows

cank [85, 1 / 5Bogy, 50'1| opy =mg-my

rank {[88, ¥ / 8By, S0 IRIH goq, =mg-my

rank (38 ¥ /3B 30,2 124%p, 3| gy =my



e . S Bty
rank { Z; %oy, 818 1/ 8B 5C (P11} g, = my

Inthe above equation Z;%1, are theleft zero-eigenvalue eigenvectors of 8,5, ¥ / 8B, 80! and

havethetollowing properties
rank 7,1 é =m Q% Y=g, + €
21 0o | =00 1 LT e T e T e

At each higher stage the formalisim becomes more complicated, but the essence of the
procedure of finding the proper solution of the master equation and also the gauge fixing does not

change.



HI. POINT PARTICLE:

AYFIRSTOUANTIZATION:

Inaflatconfiguration space arelativistic point particle is described through thefollowing

£ 7
actionly~!

T T
A=|Ldt =-m | dr[-(dxt/ ¢t ) (dx,, 1dTH]2
0 0

The canonical momentum which results from this action
pl =m [ -{dxk /dT ) (dx, /gt e (axt /dt)
impliesthefollowing constraint

D= pf'ip%i +m2=0

andthe canonical Hamiltonian, whichis defined as

H dxt jdt - L

o= Py
yields zera. As we have seen in chapter II, we may equivalently describe this system with the

followingaction

T
A:ff\‘p“ dxb /dt - ¥ @ H)dt
0

where the Lagrange multiplier, €% | depends on the proper time 1. As it is pointed out in the



k%S

previous chapter, Ais invariant under the following ransiormarions [33]

SxH =2ceWplt pt =0 ; Bw=ePdeeW/dr

ifthe gaugeparameter satisfies

£(Ty=£(0)=0. 3.1

A legitimate gauge fixing condition must fix the gauge completely. This requires that a gauge

preserving transformation should yield € (1) = 0 for all T [32] 1n fact the following gauge

condition
[0}
— = , {3.2)
dt

is preserved by the transformations where BZE(I) /31% =0 which leadsto £ (1) =0{forall 1, dueto
the boundary conditions (3.1). If the gauge condition is W=constant, the gauge preserving
transformations have the solution £(T) = constant, where the constant is not necessarily equal to

zero. The gauge condition (3.2) leads to the following BRST action [33,34]

T
A""hﬁx dxP fdt - ew(p}"ppﬁ-m yrkdwidt-db/dip-ndodt +npe®ldn (3.3
0

where the last two terms define dc/dt = p ¥, which we need for not having second time
derivativesinthe action. The actionis Hermitiansincext*, p¥, ¢, p, @, k are Hermitian while b, 1)

" areanti-Hermitian. Thesevariables obey thefollowing Poissonbracket relations



'E:Pg\x*xé"(;g‘u Pk o@i=1
(3.4)
fp.bt =1 in.ct=-1
and the othersare zero(3. 3) isinvariant underthe following rransformations
Sxb=27ce@ptt . =0 ; Sw=ipe® ; 8p=0
8b=-2ek -cny ; dc=Acep : Bn:?\.e{ﬂ(p“ppa}-mz-np) ;
Sk = -4 e9 ¢ pgp#jl« m2-np) +pk]
. The above transformations are generated bythe BRST charge
Q=e[c(php, +m? -7 o) +pk] (3.5)
as 8F = {AQ , F}. The Hamiltonian , A, can be read off from (3.3)
A=&J{ﬁ@g+mzwuﬁ , (3.6)

where we defined ¢®= or"land it is the remnant of string length parameter. The Hamiltonian can

also be written as
A=-{Q, 1} (3.7

Now there is also an anti-BRST charge whichis given as



o Fete ¥ 3
- ~Lsde / f . 2 U .3
()= ‘:‘ﬁg B pg"p. +mT NP v R

Qand Q obey the Poisson bracket refations

Q. Q=10 0={Q,0;=0 (3.8
The first quantization can be achived as usual by making use of therule

R L B A

Thusby thefollowing replacements

- x| eme [ b=b | 0o 0 phsdgiedt | p—ididb |

N— -id/dc , k— -1d/00,

we may write in configuration space the following normal ordered, firstquantized operators
A=a11-9279x,2 +m? (3/3c)(3/ob) ] (3.9)

B

Q=04){c,A}-(3/8x)(@/3b)+2a)yiaisb (3.10)



B3 GAUGE INVARIANT FIELD THEORY AND GAUGE FIXINGL16.22

We may use the BRST-charge {3.7) to formulate a point particle field theory. For this

purpose we introduce a function

Tothis field, which livesin a superspace which has d+2 bosonic and 2 anticommuring coordinates,

we may attribute an algebraic ghost number, which is defined by the following operator
N=bgldb-cdldc ' (3.10)

By making use of the BRST charge and some field functionals itis possible to write down a gauge
invariantfree actionas

-
{
H
i
1
}

Aroe= | dzdr(do/a) { X (z, 1,-@)id X {(z,T,a)dt - X(z,1,-®)Q X(z,1,a} -
{free = 3 , . 4

- X(z,1,@)Q X(z.T.a)) (3.12)
where the range of O is
oo (U < oo and O(z,1,-a)=0(z,1, &)  for &0 (3.13)

Xz, T, @) and % {z,T, &) aretwoindependent fields which behave underthe algebraic ghost
s s P g g

number operator, (3.8), as
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and Q decreases the algebraic ghost number by ome. (3.9) is invariant under the gauge

transformations

¥ (z, T wli=-0QA(z, T, Q)
(3.15)

SH (z. T, a)=-4dA(z 1, a)ldl

where the anticommuting gauge parameter A ( z, T, @ ) has algebraic ghost number 1 and it is an
aati-Hermitian field. Later in this chapter, we wil see that this system is equivalent to the point
particle by a suitable gauge fixing and with some physical state conditions.

We may add an interaction term to (3.9) by making use of the following manifestly

Osp(d-1,1|2)invariant vertex (see the next section for the orthosymplectic group)
V(L 2, 3) = 5(61 ¢y ) 5((‘2 -Cy )5{1)1 - bz ) 5(b2 - b3 )5( Xy"l - Xp‘z) 5( Xp“z - Xp'g) .
LBy U+ Og) (3.16)

which is also invariant under the cyclic permutations of 1, 2, 3. Thus the interaction part of the

actionis

3
A =g]] f dz_(dor /@ )dT(1, 2, 3>c1ﬁi(z) X(2) X3) (3.17)

r=1



R e
&

where © {r = (Z. 1. 0 jand X
? i

(ry=X{z. T . b Due tothe definition (3. 13 ) the free

L Leen
LR

£

part of the acrion, where the ¢ dependence s explicitly shown is obviousty Herminan, Howeverin
{3.17) @ dependence is not explicit, but due to & &y + Wy + Gy } term in the vertex its
Hermiticityisguaranteed.

The whole action, A = Ay + Ay | is invariant under the following gauge

transformations
O {zZy, Ty )==QUYA {2z, T, Wy )+ g|dzndzy (U, /Gy ) (dha/a) (1, 2, 3) X (2) A3

= R(FE'} A (3.18)
33 A Zy T Gy J=-idA {21, T, Oy Yidt - g[522ﬁ23 {‘5021052‘”) (69(3?(23) f(1,2,3 2 (2)Y A3

where the anticommuting local gauge parameter A has algebraic ghost number | and 1t is an

anti-Hermitian field. {isdefined in terms of the vertex operators and ¢ as

H1,2,3)=[v(1,2,3) +v(1, 3, 2)] ¢4 | (3.20)
R(_«Q and R(?_ yare the gauge generators which are symbolically written as

?\( >-~{}(l)+g¥§(1 L3 (D)

R(zy= -id/dT -gF(1,2.3) X (2)



£
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the changemnthe

invariance of the vertex i iree pait of the acticn under

g nomnon which g sael
(318 and (3 19 is

o

SApee =8 11 | dz. (dao) div(l, 2, 3) ¢q { d[AC1) % (2) X ()] /dt +

r=1
+ AAL/AT X (2) X (3) - K(HIOER) X @) AG) + Q3)AR) X (3)] -

SEMOM[X @AG) + AR X ()] ] (3.22)
By observing the following property of the vertex
(3.23)

[zrzi, z,3 Q)] v(1,2,3)¢cy =0.

and making use of the fact that the total time derivative in (3.22) vanishs due to the boundary

conditions which we suppose to hold, one can write (3.22) as follows

3
8Apree = g 11 | dz, (dorar) dTv(1, 2,3) ¢y | dA(LYAT X (2) X (3) +

P
W
b

>
S

r=1

+ X(1) Q@) AQ) X (3) + XX @QUBAEG) |
which is indeed equal to the change of the interaction part which results from the Abelian gauge
transformations up to a minus sign, so that the whole action is invariant under the gauge

transformations (3.18) and (3. 19).
Now we want to fix the gauge such that the resulting action would have Osp(d,2 | 2)



invariance. Let us write (3. 18) and (3 19} in a unified notation. which allows us to use the

Batalin-Vilkovisky method asformulated inthe chapter 11, as
8¢ = Rlgy, (0) S

where (531 = and (b?* = 2. There are two different ways of enumerating R’ (0) by Go . One of

themistaking

sl _ A i — ..
2)9 = ii 50 R {xo = R{i‘} 5

AS

and the second one consists of setting O = {z, Z'} so that

i i i iZ .
RlZ = R{l) 311 R Rij,‘ = R(z) & .

i t

36% =84, A(zy) . 807 =84 Az,

These two different ways of enumeration have quite different features:

In the former case the theory is a zero stage one due to the fact that R, does not have
anyzeroeigenvalueeigenvector.

Howeverthe latter enumeration leadsto aninfinite stage theory due tothe fact that

: Z ol I _ I o T —
1.8‘213»«&3 sz..a——R(‘U, Zz 21_22 2= o . =

Butin both of the cases we have to introduce only one ghostfield C=C(z, &, 1). Indeed
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this 15 the no

al procedure for the zero stage theory. In the other case since R, ¢ chaages the

algebraic ghost number by -1 al each stage we must introduce a new ghost field which has an

algebraic ghostnumber one more than the

notbe more than 1 and lessthan - 1.

precedent, however algebraic ghostnumber of afield can

Thereforethe minimal contentof <§>A s

@Amm (% X ¢y

s Y

and we ariribute them the following gavge ghost numbers

wixc} = ({)VO’I‘}'
Introducealsotheantifields

¥

& ={
= minA (<,

Thus 5 can be written as

{g. g n.}@*mmAz -1, -1,-2).

* Y A oK o ¥
5S¢ (Dmiﬁ‘@ min)= A+ (X R(E)C + X R{Z)C + h.c.}

¢

Sk
X (e, T,

f(1,2,3){ X

A - | dzdt(doia)

s

§ 2 (z,1,w)idC(z, 1, a)/dt +

3
onCiztalrl + gll § dz, (du /o) dT
=1 (3.25)
X ECE) - XWX @C@) +hc
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The suitable gauge fermion which will tead to an Osp(d.2 | 2 invariant gauge fixed action is

-

Y= - dzdT (doved) [ Bz 1T, -& ) {l’%* (z,T, @) - 3dX(z 1, a)/dc]+ hec | (3.26)

1f

where B 15 the antighost field which has the same algebraic and gauge ghost numbers, namely -1.

Making useof (3.25)and (3.26)1n (2.37) vieldsthe gauge fixed action

-
o

S=S( @A Sy /80y - | dzdt(daie) {Z(z, 1) [X(z o) -
S X (z 1) dc hoc ) (3.27)

Integration over the Lagrange multiplier X sets X (z,T,a@)=08X(z,1,a)/dc in A

Hencedueto
Aly={dfdcy . Q()}
wefind the gauge fixed action as
!} -
Sg 1. = | dzdu(doya) { X (z, 1, -0)(ddt - A) X (z, 1, @) +
+ Bz, 1,-w)@dMdr - AYC(z, T, w)+C({z, 1, a)addt - AB(z,1,Q@)}+
(3.28)

3
+g I dz (dador) duv(t, 2, 3){XUXE@IXE) + BU)X 2)CE) + BUCRIX(3)} -

r=1



As before the interaction part of the action 18 sot explicily Hermitian, However it should be read
such that when explicitly written all of the possible & configurationterms are present. By taking the
algebraic ghost numbers of the fields into account, one can see that they have the following

expansion intermsof anticommuting coordinates

Thus if we define a superfield as
O=05+b g +cky +cbis
{3.28) canbe written as follows:

Sg‘ftzjdz dt (da/on) Oz, T, -0 (ididt - Aoz, 1, o) +

3

v gll| gz (oo div(l,2,3) §(1HORIK3)  (3.29)

r=1

We will examine the symmetries and their consequences of this action in the next

section.
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CaPHOPRRTIRS OF THE GALUGE FINED ACTION:

Before inguiring about the properties of the gauge fixed action (3.29), let us clarify the
relationbetweenthe Osp{d|2 )invariance [35.36] and the Parisi-Sourlas symmetry (7]

Let us define a graded manifold with x¥ = (x# | 8. 8,) where x* isbosonic, pp =0, 1,

., d-1, and
8.{2: 5?523: {Si,ezfzg (330}

On this manifold Osp(dj2) is equivalent to super-rotations or in other words Osp(di2) is group of

transformations which preservesthe distance

(x ‘}’)?' = NaB (x- 5")& {x '}"t)ﬁ,

where £20 s completely antisymmetric unit matrix, and a, b=1, 2. osp(d|2) algebraisgiven as
Py Jpo 1= Mpg Jup + Mup Jue - Mup Jve - e Jup)-

Pab» Jeal =€adJoc * e Tad + Cac b + Eod Jac

Hpv oo I=ilyp By, - o ?‘m) :

Ty Jpa I =Myp Ipa - Myup Jua )



{7 P T P o

(b,
L 15 AN

UaFob b= Mgw Jap + 160 Iy

Inthis superspacethe osp{d|2)algebra hasa differential representation

Iy =ity dax - xy dlaxky | Ty, =6, 8008, + By, 8/88,,

Jya =80/ + X, 0/08, | p, = -ig/oxt p,=0/00,.

Letustake a combination of j,rm with a constant, anticommuting tensor A#& as follows

hyadua =-Bahya 000t +h  xH 008, 2A+ B

where the operators A and B are defined as
A =—81 ?\,i’d oloxh + ;&p‘z xt 33{382
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D= @(} + %1 3_“} + 62 (332 + 8132 {2)3 (3.33)
Transformations of the coefficents under the operator A 5, @ =[A @] | leadto
E'EA@O = :‘,BL:{ Xi'L @2 . 553@; = ”;";ii S@G@Xg’ + ;';A: yH 33 .

(3.34)
5‘[1\&(1}2 =0, 5{&;@3 = :‘»p'i 5@2/3}&}’ .
and similarly under B:
85@)9 = 3";},1 xP @E . "%8@2 = —A’,LE.:’, aqigfax“ - 7&%} xk @3 ,

(3.35)
58@2 =0, 58@3 m=— 2”;5,2 8@1!31&‘* .
Weregognize the Parisi-Sourlas symmetry in (3.34) by choosing the parameters as

= 2 ‘\. = - . ’ . 3

App=20g, hpa=-0g (3.36)

Thus the Parisi-Sourlas symmetry is a part of the Osp(df2) group transformations and the

generators of it are given by
‘Jip,ﬁi =0 a/axtt + xH 9/38,. (3.37)

Now we are ready to examine the symmetries of the gauge fixed action. Let us rewrite



- o
ooy = (_{x;’zn}j d

e

¥ explia y )Py (3.38)

where (P{y"}is areal function. Thenthe free action yields

St

.
- & T N
Stree=ldyT dode (0 + m2 3,

3

P
Lk
[~

N
st

where

{3.40)
O =(a/ay¥ )8 idys -(alec)aidb.
(3.39)is manifestly Osp(d,2 | 2) invariant. One of the generators of the Parisi-Sourlas symmetry
Jop = CB/0y + y 0/db
when written in the momentum space and in the light cone gauge wherep™=A | leads to
Jg=0za){c, gﬂz +m? +(3/3c) (3 /3b) } - {8/t Y(d/sb )+ (12a) 8 /db =Q (3.41)
Similarly anti-BRST charge can be shown to be generated by J_y,. Consequently BRST and
anti-BRST charges are contained in the Osp(d,2 | 2) group which means that they are contained in

the same group as the Poincare group.

[ ® :
The interaction part of the action (3.29), can be written as |dy“dc db @3(57&, c, b). by



taking into consideration the delia functions which are present in v({. 2, 3). So that itis invariant
underthe Parisi-Sourlastransiormations.

BRST invariance of the free part of the gauge fixed action foliows directly from its
manifest Osp(d.2 | 2)invariance in the superspace (y°*, ¢, b ) and the fact that BRST charge is one
of the generators of this group. However even without writing it in the superspace one can see that

thefree part of (3.29)is BRST invariant, The BRST transformation
80z, T, -0y = K QO(z, T, W) (3.423

where K is 4 constant, anticommuting, anti-Hermitian parameter and leaves the free part of (3.29)

invariantbecause

Similarly one can show that it is also anti-BRST invariant, by using _Q_instead of Q.
Interaction partis notinvariant under the Abeliantransformations, indeed variation of it
uander (3.42) vields
j{d (da oy drv(l, 2 ’%){K{c;&{i} + &1-131’361 - (9/9tx)9/eby O(1)] 6(2) O(3) +
+ cyclic } (3.43)

By using the boundary condition

0@ T, %) = 0 | | (3.44)



we may pertorm 4 partial integration over (¢ | inthe third term of (3.43) to obtain

3
-g Il }(dzr (daesee)y dr vl 2, 3) 5‘{(21%22—%&3}}?{‘:@8!‘6&1& O(1) O(2) ¢(3)

r=1}

where V(1, 2, 3) is the vertex which does not include 8(0tq+0iy+(i2) and & ((q+Q;+C3) is the
derivative of the delta function with respect to its argument. Now the partial integration over the

firstquantization antighostb,. yields

3
g I1 fd% (dar /o) dT d(cq - g ) (e - o5 ) S xHy -5ty 8(xHy - xbta)

r=1

§ (g +ap+ag )k | Z3/9b,) 8(by - by ) 8(by - by Y o) 6@ 93) = 0.

Similarly the second term of (3.43) gives a vanishing contribution so that the change in the

interactionpartis
3
3S1= g II {dzr (dajoydrv(l, 2, S}K[gcré(f)] OCLYGR) B{(3)
r=1

Now if weadd a @3 term to (3.42) as follows

80z, T, 0) = }dz?_ dz3(daa/0ty) (dotsiiy) v(1, 2, 3)Keq O(2) 0(3) (3.45)



the kinetic part of (3.29) changes such that the total action isinvariam. This follows from two facrs.
The time derivative becames a total derivative so that it does not contribute dueto the vanishing of
thefields atthe 1-boundary and also the following property of A

{ [
%dz dr{do/ay X {z, 1T, 1A (2,1, &) =- JdzdT i) [A X (z, T, -0 )] AN (2 T a)

It can be easly checked that S is invariant under the full BRST-transformations to all
ordersing.
Thus in the interacting fieid theory case the BRST-charge gets a contribution which is

linearinthefieldfunctional. The physical state conditionisstill givenas

Qpnys, =0 Ngpys =0. (3.46)

Expansion in the anticommuting coordinates leads to the following equation for the components of

@phys.

(82 +m2 )0, + () - 30y /30 =0, (3.47)
The two states which are related as

O =0+CA (3.48)

are equivalentduetothefactthat Q A, where Ais a field which is given in components as A=bA,

has a vanishing norm. i. e. it iSa supirious state. In components (3.48) leads to

0 =0 + @ loapse +(Hatay, or=0+ralce?+mdA (3.49)
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Ay can be used to 521 Oy = UL so that G, satisfiesthe Klein-Gordoneguation

(-32 + m?) Go =0.

&, can not be removed, because all the fields soalso A ¢ must vanish at (=zc [see (3,44)], Butit
is still possible to set the (¢ dependence of the physical state arbitrarity. Thereforethefree, physical|
on-shell states satisiy the following equatioas which result from the above gauge fixing and from

the equations of motion

dOupys /9T =0 . (8% +m2) §rpye =0 (3.50)
pHys. ' / ¥phys. , ,

and they may have an arbitrary & dependence. But since the theory is invariant under Osp(d,2 | 2)

{or equivalently has Parisi-Sourlas symmetry), in perturbative expansion the Green functions,

which result when we use the free physical on-shell states as the external states, will be in the

following form

J'dxi"‘ dy dy™ db de F( Y'x + YTy, 2% + y'y ™ + cb) (3.51)

where Y is an arbitrary vector which has d+2 bosonic components. If we go to the Euclidean

coordinates ony” and y* we may change the coordinates as
¥ =p exp{ -i6) v =pexp(iB) {(3.52)
sothat the integration over the 8 variable effectivelysets Y™ = 0. Thus (3.51) yields

;{dxp dp? dbdcG( Y'x ,xx + 0% +cb) = Jd}é‘ G(Yx , xx) (3.53)



which follows from the fact that anticommuting coordinates behave like negative dimensional

bosoniceoordinates:

. ’ .
{ . . . = 7 t 1, 7.
! Fihey = -df(7Vdr o~ Firm fad sy i SHPR IR« B8 PR TR
jdbdet(be) = -df{zydzi,_g=limg . 5 JORr ") =limy . 5 Syt Tidr (e

oy
3
A
B

¢

where S 4 isthe surface of the unit sphere in d dimensions:
- 2 :
Sq=2n%2/Tedn).

Thus the theory due toitsinvariances leads to the same scattering amplitudes of the point

particleif the external states are taken on-shell aswell as physical.
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Y. STRINGS:

AYFIRST OUANTIZATION! 16])-

The canonical procedure, when one writes the string Lagrangian asthe area of the worid
sheet, leads to a vamshing canonical Hamiltonian and two constraints. In terms of these
constraints, as we have seen in the second chapter, the string (we deal only with the open bosonic
strings ) can be described with the following action

) . 3 ) 3 . R ) .
A=|dt ja do {py axH /a1 -A* [p, 2 +(oxt /90)] - 247 p,oxt 130} (4.1
where A" and A” are Lagrange multipliers. By making use of the usual Poisson bracket refations of
pand x, one can see that the transformations of them generated by the constraints do not leave the

action invariant. The invariance can be regained by transforming also the Lagrange multipliers.

Hence the following set of transformations

St =2{kTpt + x oxt /o0 }

dpt =29f kpht + xTaxt /o0 } /a0

SAT = akTiaT- 2470k T/0 + 28AT/AGKT — 2ATaKT/eG + 28AT /80 KT
SAT=9K/AT- 2ATKT/30 + 29h7/00KT — 2AYokT/96 + 2 9AT /o0 kT

leavethe actioninvariantif the following boundary conditions are satisfied
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- 2 / Lo ”“" T t
}g du{pg*—\ﬁ,\%’“ feoy IR | =0

0

‘_i

i b %3 .- -, - - A 3 - \ - - ¢

jat { kT [ (st faoyaxtt ot SR {pp‘l +axt 1 90Y] — 24T (@xh 5‘@?;% +

0 a4
4] n {4.4)

+ k7 [ pHoxt /ot -;a*gpéj +(3axt 130P] - 247 (axt / 30) ppj}g =0
0

Inthe gauge A™ =0 due to the open string boundary conditions dxt / 00 = 0 at 6=0.n |, (4.4) will

be satisfied if we putthe following conditions on the gauge parameters

K7(1,0)=K(1,1}=0

K7 (T, 0 )=x7(0,03)=0.
Now we will show that if A" =0 and A" =0, where g i50, T independent, the most

general gauge condition can bereached by a general coordinate transformation. Demonstrating this

fortheinfinitisimal caseis sufficent. Sotake

represents the small deviations from the above values of Lagrange multipliers

where €™ and £
When we use them in (4.2}, by neglecting the second order terms, they yield



(4.6)
3AT = 8K /9T -2a aK” /4o
Integration of the first equation of (4.6) over & and usiag (4.5) lead to
CTT il )
& JQ AT dOY = d( L KT doy/dr. (4.7)

v
K{1= L KT do depends on T due to the boundary conditions {4.5). As we have already seen in
'

point particle case a gauge preserving transformation should lead toK (1) =0 for al T, which can be
satisfied if the gauge fixing includes time derivatives of the gauge parameter.
Let us set in (4.6}, without the loss of generality , o =Z. In this case we may solve
those equations for arbitrary SA™, 817 if the following condition is satistied
T

[ - .

jdt J, do &7 =0. (4.8)
0

In fact for a given point z=T+i C definezy=z* +2mi, 25=-2"+2T, 23=-2+2ni+2T asit is shown in

thefigure 3.
O/"
"&
XZI xzs
n

z %

b4 b4

>
T 1

Figure 3.



By making use of the Weierstrass zeta function [(z) with a real period 2T and an imaginary period

2ni one can see that the sofution of (4.6)with a0 =% is given as follows

T
.
KT(z)=(1/4n Jd’{‘ jo do' {{(z-z') + L(z*-2'*) + [(zZ'y) + Lz*-z' (%) + Lzz'y) +
0
+ 0(z*29%) + U(z-z'3) + L(z*-z'3%)] A7 (z) +
T (4.9)
i1}
+ {V4ni) ,{d’r‘ L‘ do'f Lz-z') - {(z*-2'%) - Lz-z') + L(z*-2'¢%) - L(z-z9) +
0
+8(z*2'5*) + L(zz'3) - L{z*-2'3)] A (2)
2 I
K(z)=(-1/4ni) |dv’ do' [[(z-2') - L(z*-z*) + L(z-2'¢) - L(z*-z'(*) + U(z-2'9) +
. 1 1 2
0
- Lz 2% + Uzz'a) - LzFz'3%)] SAT() +
T | (4.10)
+ (1/4m) fd’{' L do'{ L(z-z') + Lz*-2'*) - L(zz'q) - Lz*2'(*) - L(zz'a) +
0

Y2y + Lezy) + LTy )
The following property of the zeta function [37]
Lz+2w)=0(z) +28(w)

where 2w is a primitive period of the Weiersirass zeta function, leads directly to the requirment

(4.8).



Now we are ready to fix the gauge. For this purpose we weite the Lagrange multipliers

as

& 3 : -+ - "*.‘v"“ { i
At=e%1 + A7), AT =e" A {4.11)

didi=0, s~ =nt=0. (4.12)

Tofind the BRST action let us decompose alsothe gauge parameters:

P

kt=e¥x + B, K- =eWET . (4.13)
Asusual the BRST transformations can be found through the replacement
k=0c¢, HET=0C H=0C {(4.14)

where €3 is an anticommuting, constant parameter and c, C*t, C are the anticommuting ghost

coordinates. By using thesereplacements one can obtainthe following variations

Sw=e @dEe@Qcydi+. ... Sht=eT®dEPQCTYT +. ..
(4.15)

SRT=e Wy +. ..

where " +.... " denotesthe terms which are propotional to R and A

To reach the BRST action we have to take into account the gauge fixing conditions



which can be achived by adding * kdwidt + K*%* + K&~ " tothe action. When the

variations (4. 15) are performed we may absorb the terms which are propotional to AfinK* . So
if we redefine the terms which we have to add the original action as K™ AT+ KA Titis

sufficent to take the variations as if they only consist of the the terms which are written explicitly in
{4.15). Now K™ At LK A term can be droped, since in effect itis disconnected from the rest
of the action.

The terms which do not depend on the O variable can be treated similar to the point

particle. The variations of pt and x#* and @ can be read off from (4.2} and (4. 14)-(4.15)

Sxb = 0 e®(cpt + CF pH + CaxM 190)

Spt =0 e@a(pt ¢ + CTaxt 96 + coxt /o oo (4.16)
S =)0 e¥p

where p = e Pdc/dt. Dueto the gauge fixing conditions (4. 12) the original action which now reads
Py axk /a1 - &9 ppz +( 9xM / 30¥2], is not invariant under the above variations. We define the
canonical partners of the ghost fields by adding the following term to the action

BdC/dt + BTdCT/dr. : : 4.17)

Now the original action is invariant under the transformations (4. 16) in accord with (4.17) if we

add aterm like

2e®( B3CH30 + BYIC/30) (4.18)



i
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and define the BRST transformation of the new fields as

3B =-NeWph 9%, /80 +. ..

(4.19)
BT = - (H0e®[p 2 +(3xk /a0P] + ...
where " +. ... " indicates some other terms which can be present. Infact we define the BRST
actionas
3 T
A= jd‘t L da {py oxt /31 + kdw/dt -db/dT p - ndcidt + BdC/dt + BYdCHidt -
(4.20)

- e®y ppdz +(oxt /36 - np+2 (B ACHA0 + BTAC/30 )}

which is invariant under the variations (4.16) if we define the variations of the ghost fields as

follows (inthe following it is not explicitly shown but the 0 integralsare normalizedto 1)
n E
dp=0 ; dn=(%0e? L do {{ pp_z + 3xt /30¥] - np +2(BICHIG + BTIC/IC )}
"
dc=(%) Qe L do{2CTaC /30 + 2CaCT/30 + cp}
w
8b = (%) (¥ L do{BTCt +BC +cn-k}
§C =0e®{caCtao - (op C -CraCHiso + CaC 180 }

(4.21)

3C* = e® {caC/I0 - (V2)p CF - CTaC/30 + C-aCHa0 |



3B = (0 e® [ -pyoxt /30 + cIBTRA0 + (1)p BT+ 2N 3CTII0 +
+3[BTCH + B°C]/90 + BTaCH /a0 + B3CT/30}
SBY =0 @[ (V) p, 2 +(oxt /90Y] +caB /R0 + (u)p BT + 21 aCTe0 +

it
+3[BTC™ + B'C¥]/90 + BY3C /30 + B3CT/3G}

Sk=— (15 0 e® }: do {¢f py? +(9xM F30¥ - np+2(BaCHI0 + BTeC/30 | +

Ot [pﬁ?— +(oxt /20y ] +2 C pydxk /90 + pk-p [BYCT + BCT+

+2 BT(CTaC /06 + C8CHia0) + 2B (CTaCT/ac + CaC /oo ) +

+ 21CTaC /00 + CaCT/90) }.
The BRST charge which follows from these transformations can be seen tobe
Q=04 0 J: do {cf P;Lz +( oxt ;ac)z -np+2( B-aC*/36 + BTeC/ec ]+ Ct [pnz +
-+(8x!'L J3GY 1+2C pyoxt /90 + pk - p [BYC* + B"C ]+ 2 BH(CToC /a0 +
+CACH30) + 2BT( CHACH a0 + CaC /30 )+ 2n(CTaC /a0 + CaC*d0) }. (4.22)

This can also be verified by showing that the transformations (4.21) are generated by the charge

givenin {4.22), dueto thefollowing Poisson bracketrelations



feni=-1 : {b.pi=1: {w ki=1 fot ¥V 1=V So-0y
{(4.23)

{C™(o) . B™(0")} =8(0~0") 1 {CY(o) , B(0")} =8(0-0).
The fieldsb, B, 11, 0 are anti-Hermitianwhilec, c®, x*, p* b, p, @ areHermitian.

The Hamiltonian which we read off from (4.20)1s

b “3 i ] : .
A=W j.;, dg {ppj" +{ ext /80y - np+2(BCTRC + BTIC/30Y] (4.24)
and it can be written in terms of the BRST-charge as
A=2{n.Q} (4.25)

Replacing the Poisson brackets with commutators or anticommutators as
(L3 4rl],]
1 (I &

leads to the first quantization of the string. These relations can be realized by the following

replacementsoftheclassicalfields
- xP , pt—ddixt v c— e . b=b L w—w
p— 1d/db , N— —id/oc , k— 4d8law , CT— C(o) , (4.26)

B* — 8/8C(6) , B-— B(G) ., C"— 8 8B(0).



By making use of the fol

BRST variations,

oxk(0)/ 90 %G:O,ﬁ = 3C(0) /80 |g=0, 5 = B(O)o=0.n =

one can expand the phase space variable

extend the rangeof 0 as -n < 0 =™, by defining

-0y =x(0) |

Sothe normal mode expansion reads

oHio) - axHiey/oo = X M e!le
R -
B -g_g- P e
§5/8C() + 1Blo) = 2z Bn o
’ ns-co
_i5/8B(0) + Clo) = _Z Bn e!no
Sl

]
v
.

. 1 ] ot =
@-mﬁiz(ﬁ np“ . BB n B-n="F n

agH =pH B=0/3C Bo=/2D.

The normal mode operators 00ey thef

{owing boundary conditions, whi

s in their normal modes. For the following it

Coy=Ce)y . B(O)= B(o) for O0sCs<m.

el are consistent with the

Lg

is useful Lo

(4.27)

(4.28)

ollowing (anti) commutator relations
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B) GAUGE INVARIANT FIELD THEORY AND GAUGE FIXINGI16. 22].

For formulating the field theory we may use either an oscillator representation which can

be achived by making use of the expansions (4.28) or a functional representation. To define the

latterrepresentation letusintroducethe following variables

o R &0 .\ o0
Oilgy= I L eiN0 - D_rgy = 28 eN0 - prgy= T nVeB,. oINC
Phoy=_2 aplt eM9 1 Pyo) ngw‘”f Bn el Pgoy=_Z "B e (4.30)
n=() nz(

n=l

where they have the usual representationin coordinate spacein terms of their canonical partners:
xke) . BO) . BO) (4.31)

Thefield theory canbeformulated by introducing afield functional
{4.32)

X =x (XMo), B (o), B(o), x* b, e, @, 1)

which is written in the functional representation. By making use of the BRST-charge and the field

functional the freefield theory can be described viathe following action

»'Afreeszgo)dzm(dcxfa) [ X(Z(0), 2, T, —@ )idX(Z(0), 2, T, &) / dT -
(4.33)
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where

Z(oy={ XM©), B (o), B(0) }. z={xF . b.c}

or more rigoursly Z(0)indicates all the non-zero mode operators in the oscillator representation.

Inthe oscillator representation the normal ordered Qisgivenas

Q=e®f cK-2(3/0c)M +d + D + (“)d/9b) [-cd/dc + N' + 3/36]} (4.34)

where the entries of it are defined asfollows

fi=d
L n% n 5-,1 ﬁﬂ
d= 2 2 nBg[Ly+men) Bl B + (4 (@) Py inl (4.35)

w W _ - ‘
D=2 =2 0B [L,+Hom+m)B B o + (V2)(m-n) Eﬁm_mﬁm]
£ - N
N'= 2 LE‘naﬁ‘*' ﬁ'éﬁ&ﬂ] + 2

where

i1

LX, =(1/4) L[pit(o) - 9x*(0)/30 P exp(-inc) do.



As it is obvious we have already fixed the ambiguity in the normal ordering of the zero mode

operators G . The BRST-charge can be writien as
O=alQyy + alaib(-cdidc + N' + 3/dw)

. - —— 81 .- e
where Qg 15 the BRST-charge of Kato-Ogawa %), which results when one introduces only one

pair of ghost zero mode operators. Nilpotency of the BRST-charge:

Q2=0 {4.36)
follows from the relations

Qo* =0. [N,d]=-d. [N,D]=-D, [N,M]==2M,

whichare validin26 dimensional space-time.
In the operator representation we introduce a ground state which has the following

properties
(apH, B, B V107 =0 for 0 (4.37)

to define a string field functional in thisrepresentation as

=21/ /NIMDB .B»ﬂwé_mi. . E-mm@mm%m}mmm(a_ﬁ, a,1,C,0)l07. (4.38)

i

To the fields which were used in (4.33) we assign the following algebraic ghost

numbers



where N 1s given as follows

o0 . + _
i.i,ﬂ[} + BB, +b3/eb + calac. (4.39)

HES

Asit can easly be seen Q decreases the algebraic ghost number by 1.

(4.33)isinvariant under the following gauge transformations
S (Z(o), z, T, ) =-QA{Z(O), Zz, T, @)
(4.40)
§ X (Z(0),z, T, @) =-idA( Z(0),z, T,x )/ dt + QA (Z(0),z, T,&)
where A and A’ carry algebraic ghost numbers land 2 respectively and they are anti-Hermitian.
Interactions can be introduced via three string vertex V which is obtained as a
generalization of the lightcone vertex [13].

V(L,2,3)=8(Y3(n3) - 63 +pym) Y2(My) - (3 — pom) YL ))8(@y + 0y + Q3 ). (4.41)

In the functional representation which we have written (4.41), we kept he 0., part in momentum

space instead of writing it in the configuration space as the other part and
Y' = (xt(ny), By, Cp. x#, b, ¢)

-ngf]{.gn N p2=€223013
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[
N

TS it g o )
Ny = () £y (@ By - @ 1By )

L =/al) @y -H(ay -2). (Y -a+ ),

can be used to write the three string vertex in oscillator representation asfollows

00 — I
VITL2,30 = 1400 o901 390 expl 2 2 20 [N, (ol a5 /2 - nB B %) +
" S=§,2;5
T - . o 4 = _ %""" S b
NS Cat T a s /2 -nB "B - nB, B )
(4.42)
exp floyint- o/ azdrasin(-as/ ax)] I -1/, }
T o MY s PYSST B0y
BZ ath) 3(E ar)5(§ B, )5(% By /
where
oo
o= 2 [onemM 0o ®/2 = 0B nem Bl + Bp B (4.43)
N mEsntms %-m™/ L T B nem Pom nPo -3¢
The full action is obtained by adding the following term to (4.33)
(4.44)

3
£ .
Ar=g IT | dz(0) dz, a1 (dagar) V(1. 2, 3) C(0y00 X ()X 20X (3)

r=1



where now C(0, ) possesses also the zero mode component ¢. “{-(¢) = < (&} for >0, 50 that

Afpee 15 explicitly Hermitian bur because of using a compact notation in (4.44) this is not explicit in
Ay Nevertheless the delta function of EC{F’S guarantees the Hermiticity of the interaction part of
theaction.

Ads invariant under the following gauge transformations up to order g,

3
5 (1) =-Qa) + g Il |dZ.00)dz, (daay) F(1, 2, 3) X (2) AG)
r=1
3
§ X (1) =-idAy/dr - g [1 fcizr(sj; dz, (doeJar) F(L, 2, 3) X(2) AG) + (4.45)
r=1
3 -
romam - g Il szf{c}dzr (daJa) F(1, 2, 3) X (2) A'(3)
r=1

where F is defined in terms of V and C(0;,,) as follows
F(1,2,3)=[V(1,2,3) + V(1,3,2) ] C(0;p) - {4.46)

The invariance follows from the fact that integration of total time derivative is zero and

aiso [, 12, 38]

3
[ 201V, 2,3) G0y = 0 (4.47)

r=1

When thegauge generators are written symbolically as



Ry =-id/dT - F'(1, 2. 3) %) (4.48)

o

Ry=Q - FI(1,2.3)%2)

they allow usto give the gauge transformations (4.45) in the following compact form

T
4

N
=

u""iﬂmuw»m\
I
N
.

P
\“\«-M
i

Inthe same notation we may also write the matrices Z. which were introduced in the chapter If as

follows
{/ A
7 = i Zr i 0
r
g<"-., Zf 2 Zr 3 7

Now it is easy to see that

R1=Zﬂ ; RZ =Zr2 ; R3=Zr3 Door=1,2,. ..

Thus the theory is an infinite stage gauge theory. We have tointroduce an infinite number of ghost
fields G,. At each stage we need two ghost fields which differ in algebraic ghost number. Hence

we enumerate them as Gr{zi" and Grc'tm . Their algebraic and gauge ghost numbers are listed below.



ey s . ~ G IRY

GQ‘-":’} {r(}uz {:’! 4y Gy Uy 62 S
gauge ghost # oo i 2 2 30000,
algebraic ghost# | 2 2 3 K

Ty ' s . " o B . . " * *#
o usethe Batalin-Vilkovisky method of quantization we also introduce G ., and G .., and

attribute them the following ghost numbers

G oao G o G 1o G rae G202
gauge ghost# : -2 -2 -3 -3 -4
algebraic ghost #: - | -2 -2 -3 -3

Toreach aunified notation which will be useful in the sequel, let us define
G_la—i = ;i, G “_1 Ci1 =X s G_la() = :’2, G*-l oo = i*

where G*"i g and G*-‘i o have the same gauge ghost number, namely -1 but different aigebraic
ghost numbers: the former has 0 and the latter has -1. All Grar , G*t. Oireg a0d Gram ; G*r Qir
are,respectively, commuting andanticommuting fieids. ; |
Appling the Batalin-Vilkovisky method naively consists of solving the structure
equations, to find the structure functions which aﬁows one to find the proper solution of the master
equation. In this case due to having a large number of gauge generamrs this is quité cumbersome.
Instead we will propose for S(@py; . " m@ the following eﬁpression, which repm&uces the
classical action A when one sets G = 0, and demonstrate that it satiS'fiés the master eqﬁax;ioﬁ upto

order g,



SI@rin. @ gt =G Hhid G Harar - G % G %ol -
-G %0 (1) Q1) G ®a(1)+gV(i, 2, 3) C(0yy) G1%0 (1) G_1¥12) G_1%1(3) +

fore

= LE PN r o4 SEe P ot ¥ ‘1 - ¥ o0 :
i § -G g {E;iaﬁﬁiﬁﬂigi;fﬁz -G o (1 QD (;Hf""ﬂii 1yt

r=-1

Y X L P ,
+ G pgey (DO G yPes2(1] + hic )+

+ g e tF(L 2,3 { (D G g s (D GH2) G2(3) -

rrgu-1

*

G pos e (1D G%e1(2) Ggs(3) J+ (4.49)
+ gz’t‘,'&:»ig(i* 2, 3) { (é/:) G r et {}-) G S Qle+d (2> G‘E_lrs+3ar+s+4(3) -
= G oy} C g () Gpygyz mse33))

In the above equation as well as in the following ones theintegration variables are suppressed. It is
easy to demonstrate that S has both ghost numbers equal to zero and also reproduces all of the Z.'s

correctly. The master equation now can be written as follows

() (S.5)=2 {[8,5/8G(D][§5/dG 5 g (1] +

s=-1

+ [8,513 Gt (D] [8)S/8G ¢ ey (DI + b } (4.50)

Now let us examine the terms which we get when (4.49) is used in (4.50). Without the



h. ¢ partthe master equation has the following eniries:

AjThe terms which have time derivative: It can be easly seen that order gO terms cancel each other.
Atorder g the G independent termslead to

CAF(L 2, 3) {G_ (% (D d[G_{F12)Gp%o(3) dT + Gy %ot (1) d[G%e(2) G %a (@)1 ar} -

- V(1, 2, 3) OO0 G %1 (1) G %102)dG ™ o3y dt,

which vanishs when we use the cyclic symmetry of the vertex and also due to the fact that in this

notation total time derivativeis equalto zero.

The terms which include only one G canbe written as
= K .
F(1,2, 3){- E G_1%1 (1) d[G g @) GppnPes2(3)]0T + % G 1) G%(3) d GpPo(2)dr-

(B 5o G st aeeel) 6 Gp% (2) GHs(3)]0T +

r+5>0

+ 2 G¥r~z~3 arssrt (1) Gs¥s(3) dGp,  Fre1(2)/de}

§=-1

where the terms which include G_fx—i and also the ones which have G*—ICZ—I cancelseparatelyand

the rest, which tendsto zero, can be written as follows

F(L 2, 3 - (B2, 5o 1 G gt qes(D) 61 G2 () G()dT +



O g e LEFGM(3) G e (2)/di )

. ) e . . . . ; "
Itiseasy toseethatthe G G terms yield zero because their contribution can be written

as follows
(P2, 320 o (G gy (D (@M1 G5 0 @0 + Gy g @) (d/dT) G g (1) +
2 G, gt (1) G g e AT} Gy o, g Prrssa(3)

where inthis expressionand alsc inthe above ones cyclic symmetry of the vertex is used.
B) Theterms which donot have time derivative:
* . . . -
The G independent terms can be written, by making use of the cyclic symmetry of V

and the property F(1, 2, 3)=F(1, 3,2), as

3
F(1,2.3)[-Z Q)] G.1% (1) G_1%1 (2) Go% (3) +

s=1 3
+ V(1. 2, 3) CO ) Z Q)] (1) Gyt (1) G %t 2) Gt (3)

=1

When we calculate the terms which include only one G, taking into consideration
G, a4 Gy (., type termsseperately simplifiesthe calculation. G %1 and G. ;%o including
ones of the G*r Oireg EYPe terms lead to | |
3 oo
F(1,2, 3) [ZOEN [C% (D Z G, gy @) Gprn®e2 (3) +

§=1 r=-1



and the restreads

F(1,2, 3) [ZO6)] Z520 G rag armrant (1) Gsort 2) Gpy 1%evt (3).

r=-1

., # % * El
Inthe G dependent part we seperate onlv the G .1 terms to write ail of them as
r QeeE P P ; 1

oo

F(1,2,3) {%Q(s}}{ G (DE Goy%m2(2) G L g (3) +

re=-1

o

+ 2 G st ot (D) G (2) G 3)).

r.5=0

G’ G termslead tothe cllowing expression
F(1,2, 3} [ZOG)] Z  {-G 1) G g grert @) GpygaqTrestd(3) +
r,8=-1

+02) G 4 g1 (1) G § 01511 @) GpagaaFreees(3)].

All of the sbove terms vanishes due to (4.47). This completes the demonstration of

- (5@pin. P yin) S@pig . ® i) =0



@

where S{(D . @ 018 givenin (4.45).
Letus take the gauge fermion as follows
[

WD) =~ 2 Gp g gy (1) [G %t (1) - (33e) G (1) ] (4.51)

r=-1

where E”;; +1 (eyy A€ the antighost fields and their ghost numbers can be read off by taking into
consideration the ghost sumbers of the ghost fields and the gauge fermion. Then the gauge fixed
actionis

o~
A3

S=8( Ppin. S8y - & Qo (DG (1) - @locy) G (1) ] (4.52)

r=-1

After integrating over the Lagrange multipliers (. o, we find the following gauge fixed action,

where again we suppressed the integral variables and (¢, dependence,

Sg 1. = G_1%1 (1)id G_1%1 ()t + Z G, g, (1)id GO(1)idt - G_( %1 (1) A1) G_ %1 (1)-
r=0

- Z Gy (D AM GO + Zp s 1V(1, 2,3) Gy s gt () GH) Ge)+
r=0 r+sz-1 '

+ ZLS}ﬁ’(L 2,3) 6;* o (D E?S*ﬁ-i(}fs-}i @) Gf+s+3&f+’+‘°’(3) +h. c. o (4.53)

- wherethe Hamiltonian density, infunctional representation, isgivenas



FF
R P e - e . ,
CLA = O =045 RS o I S L VA Tule * GO+ PRl Oy g0 L (4.54)
Lo I A
Letusintroduce anew field
[t
P+ 2 (G, + G % (4.55)
=0

Interms of ¢ we may write the gauge fixed action (4.53) as follows

Sg ¢ = | dZ(0) dz dT (dewier) { P (Z(0), 2, T~ Y[ id /1 dT - AP (Z(0), 2. T, & ) +

3
+g 1T ! dZ (0} dz. d1 (dajo) V{1, 2, 3) 9(Hp@)p (3) {4.56)
=1

where the free part of it leads to the following partition function (9

oo

St U U at 75 . =T
s ﬂfgg'\'“" &g"\‘;'l' + !ﬁ %j*mg T n E?‘sr\ar‘g /
sy i i : P P i b

-
T oy
vt T LA

which leads to the partition function of the string theory inthe light cone gauge:
o0
'E;{ (1 - Xn}—zé

sothatthe completenessrelation holds.



CISYMMETRIES OF THE GAUGE FINED ACTION,

Let usintroduce the Fourter transformed field { by the following definition
[an]
D{ZO), z, T, & )= (0/2n) f dy” exp(iy ) P( Z(C), z, T.¥ ) . (4.57)
g . ’

Thenby defining y™= T and making use of {(4.57), the free part of the gauge fixed action (4.56) can

be wrilten as

(+6)|dyF do deDXH(0) DE(0) DB(o) § 11§ (438
where ;——— 0.1,. .. 27and
i B 5
O =(a~xayp2) - 3/3caidb + j aa[a%xpzqc) + 3 /oB(o) 3 /oB(o) 1. (4.59)
«FT

Therefore the free part of the gauge fixed action is manifestly invariant under Osp(26,2 | 2} in the
zero mode sector and Osp(25,1 | 2) invariantin the excited mode sectors.

Instead of working in the manifestly orthosymplectic invariant form let us carry on our
calculations in the light cone gauge in which the gauge fixed action (4.56) was written. For this
porpose it is useful to remember the proof of the Poincare invariance of string theory in thé light
cane gauge [27] As it is well knowa, the closure of the Poincare algebra can easly be shown
except the commutator of B by itself which must be zero for the closure of the algebra. Let us

write this generator in the notation of [27]
T = (12723 {( gt lag DL, - (0] + (1 /g M L, - @] g0t - (1727 4% -

i/ ;a0+)n§(1m)[a,ﬁiz}ﬂ - L af] V (4.60)



where L~ , ére the Virasoro generators which inciude the d-2 transverse coordinates. When d=26

)
i

and (0} =1 the commutator of it gives
[J7 7 1=0 (4.61)

by making use of the commutators of the normal mode operators which we give the nonzero ones

helow

[y al l=n 8, o 807 | (gl =4I 8 | (g, at =42 (4.62)

Now by rescaling b— b/2 we may write Q which was given in (4.34) as follows
S -
Q=-(1200)[c(Lg - 1) + (L - 1)c] +a ﬁ; [L_Bp-Bglal + (“5)0/0b(e¥8/0w + 8/8w e®) (4.63)
where L, is given in (4.43) and it satisfies the following Virasoro algebra
[Lo, Ly l=to-m)Ly, p + 200018, 0 o (4.64)

So that it is the same algebra which L satisfy. This is due to the fact that effect of the two
commutinga}}' are canceled by the anticommuting coordinates.

Comparision of (4.63) with (4.60) gives the formal identity betwen ( and one of the
light cone generators of the Poincare group F°. So Q is one of the generators of Osp(26.2 | 2)
which is the symmetry group of the zero mode sector. Indeed it mixes the T and ¢ coordinates.
Anti-BRST chargeb— which can be found by commuting Q with one of the Sp(2) generators (see
eq.3.31) is the generator which mixes T aﬁd b. Therefore due to the simplicity of the other

generatorsin the light cone gauge and therelation



the BRST invariance of the free pait of the gauge fixed action which follows from the relations
[Q.A]={Q . ididt]=0

is sufficent to show the Osp(26.2 | 2} invariance of it when written as in (4.56).

Similar to the free case invariance of the whole action (4.56) under Osp(26,2 | 2) will
foilow if we can show that it is BRST-invariant. Now the interaction term will give some new
contributions to the BRST-charge. In fact (4.56) is not invariant under Q but it is invariant under

the folowing transformations upto order g

59.(1) = A0 P (1) - gATl [4Z,(0) dz, (o) V{1, 2, 30,9 929 3)  (4.65)

r=1

This can be proved in the same manner which we demonstrated the BRST-invariance of the point

particle and by using therelation [1,13, 16]

3 3
V(1,2,3) 2 Q) = V(1.2,3) Clo, ) 2 A®) (4.66)

The physical states are defined with the conditions

N© =0 (4.67a)
O® =0 (4.67b)



sotharthe physical fields & and @ which are related ag

G =@+ QT {4.68)

are in the same equivalence ciass, where NI' = [ If we expand @ in terms of the zero mode

operators as

P=D,+Drc+ Db+ Pych (4.69)
{4.67) gives

2M®y - (-2 + 3/3w)Dy + (d + D), =0, {4.70a)
K®p - (V2 + 3/0w)Ds + (d + D)y =0, (4.70b)
2M®5 + (d+ D)y =0, (4.70c)
K®; + (d+ D)D3 = 0. (4.70d)

By writing ®' = @ + 3@ and expanding I” in components as in (4.69) we may write (4.68) in

component form as
3@, =-2MI{ + (V2 + 3BW)5 + (d + D)y (4.712)

8Dy = - KTy + (V% + 3/00)3 + (d + DIy, (4.71b)



AP = 2M] 5+ {d + E}*M‘: . {4, ai‘,‘s

il

3Pz = KI'y +(d+D)y ‘\ (4.71d)
where 3@ is shifted by @

By making use of the operator representation of the fields (4.38) one can see that in
(4.71c) ['5 can be used to eliminate all &, so that we take P2 = 0 and now [ satisfies
(d+D)['5=0. ['5 satisfying this equation can be used to set &4 = 0 because from (4.70c)-(4.70d)
now &y satisfies 2M®4 = (d + D)D4 = 0. Atransformation which leaves Dy = Oq =0 leadsto the

following equationsfor ['y and '3,

KI'y +(d+D)i'3 = 2MI'3 +(d + D) =0. (4.72)
But now from (4. 70a)-(4.70b) we see that

IMT + (d+D)Dy= K&+ (d+ D)0y =0,

which is in the same form with (4.72). Thus we may use remnant freedom in [’ 5 and ['3in
(4.71a)-(4.71b) 1o set the & dependence of ®, and P to be prescribed. I" 5 and ['3 can not be
used to set O, and Dy to Zero because as we have seen there is not any freedom on the boundary

due to the vanishing of all the fieldsat & = oo,

Thus the physical state condition (4.67b) has led to
Qotd (Lo + ¢y )=0 (4.73)

where @, and ©4 have some prescribed G dependence. By making use of (4.71b) one can choose



a state from the equivalence class whose first component vanishes € =0 by an appropriate choice

of I’y . Now from (4.70a) and (4.70b) D, is subject to

{d+D)P,= Kd,=0. (4.74)
When combined with the free equations of motion (4. 74) yields

d®, /1 dT = 0. (4.75)

The projector E onto the DDF states, in the Hilbert space which is spanned by the fields

©,, which are subject to Q4P =0, can be written as [39]
E={0Opqg,51
where 5 is an operator which can be written in terms of the mode operators as follows

o
Bl Pozzmi 2 b - kb Zaat v o] - 8y o)

e
S=_2
Mz—-on
where kM isa light-like momentum satisfying
K2 = g, kp=1L

Theactionof Eon @0 is

E‘I}g = Qoldgs(poj



so (4. 71a) can he used to set EP, = 0. Therefore the physical on-shell states of this theory are the
f1G1 .
DDF-states (191 ;

£ s . 2

-1 1 S S - P LT -l em

AL =0Cmiy Y dzz L G, 2 exn 2o Lomte Lz

o j} - Mz-co O g fTi=- o m '
mz0 mzl

o0

(4.76)
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D) EQUIVALENCE OF THE SCATTERING AMPLITUDES OF THE Osp(26.2 | 2)

INVARIANT AND LIGHT CONE GAUGE STRING FIELD THEORIES [18L.

By following [40] let us write dowan a generating functional of Green functions in terms
of the light cone coordinates as

. o —
pi=) dZIA+(1-R) 3y )8(x -y SISOV TTB(X, I8N *) 8(B)8(B,)]

S+ Solf) + JF 8-y

(4.77)
where {§

was defined in (4.57) and Z denotes all the variables. The integral over the
anticommouting variablesisnormalized suchthat

¢
!

| dc db dB(o) dB(o) beB(o) B(o) =-1.

The support of J is restricted to the subspace which is spanned by the DDF states, (4.76), i. e.



J=Jxt w7 XMooy, X0y, The other entries of (4.86) are defined as follows

o
e P o H H o
Sl = i -0sine 1431 G’ Oy JIG7 +
it=
{(4.78)
¢ P B ra =, e 2oy B2 .
ol AoV, 2, 33 Bl B3+ he
SAUF) = <P (d[-a/ay"a/ayT + a/anasac] +
(4.79)
o
+ (oon o+ 0oy @n ~NBonB =N Bon By )l 1G>
n=y 0N NN tE-NE N “hen et

where V(1, 2, 3)is the three string interaction vertex (it includes also g) which is written in terms
of y and in(4.78)Z3 = Z.

When one sets A=1 the resultant generating functional describes a covariant string field
theory which has Osp(26,2 | 2 invariance in the zero mode sector and Osp(25,1 | 2) invariance in
the other mode sectors up to the first order in g. By introducing some new interactions, which we
will specify later, one can obtain an action which isinvariant to all ordersing.

Now we want to show that when A=0 S, decouples from Sy so that, up to a change in
the normalizationfactor, Zg[J] describes the system which has only bosonic coordinates where in
the zero modesit has Lorentz invariance and has SO(24 ) invariance in the other mode sectors:

When the & functions are taken into account the Sy part of the exponential term in Zg[J]

where <®| is the N=M=0 component of , when written in oscillator representation as in {4.38)

and it depends only on {Xiﬂa %, x7). Now one can easily see that the fermionic part of (4.79)



decouples due to the fact that it cannot have  ©(X'_. ¥!, x7; dependence. The longitudinal part of
(4.79) can be written as

P ¢ a4 {ﬁ Fg -~ ~ g N o ;o oy R P
(1/4m) | dope/ax (oia/o X o) P
-7

soitalso decouples. The 9/dy 0/dy™ part will lead toan expression like
jdy"dgf FlyTy™ +AyT + By ) (4.80)

which does not depend on A and B because going Euclidean onthe y™, y* variables we may write

g yt= pei® and the 6 integral effectively sets A=B=0[331 | so thar this part also

y= pe™
decouples from Sy (an action which isinvariant to all orders in g will still satisfy these properties
so that the results which we will represent are valid to all ordersing).

Since the derivatives of InZp [J] with respect to J generate the Green functions,
independenceof 31nZ;[J1/3A from J will lead to the desired result. So let us examine the
propertiesof;

oo

BINZR[I1/ 80 =~z [ 1-80y 18—y 8(c)8oITT 80k, 80X 8B I8E] <51

+

Dueto the Osp(2 | 2)invariance iny”, y¥: ¢, b and X (0}, X7(5): B(0), B(0) coordinates:

™

€513 45 =F [ JOxE XMe) ) cb vyt (1/74m) [ do X7 {e) X (o) + Bo)B(o) | ]
} kJ.,Iis. ﬁ» “=TF .

where we have already set y~ = XT(0) = 0 with the same argument which was used to show the
- independence of (4.79) from A and B. So by performing the integration over z= vy, ¥, ¢, b,

X7(0), X*(0), B(o). (o) weget
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where the following property of the integral (7]

§
- -y i - - -

.
I - S P I S P I R R
HOp=QCab Tip= + CD J = —iGp= alip=)iop~

is used. Since the support of J( x', X¥0) ) isrestricted to z=0, by cluster decomposition

Therefore (4.81reads
2INZ3 (S oh = Fa[ O o]

This compietes the proof of the independence of the Green functions from A, so that the Green
functions of the two theories which result when we set A=1 and A=0 are same. Asitis mentioned
above the former of these theories corresponds to Osp(26,2 | 2) invariant covariant string field
theory and the latter one leadsto the following generating functional by changing the normalization

factor,
2ol = |00 (0, X~(0), %) expl(-| AXi(oIaN(o)dxH (X (0)) S 1(@) +
+ 8 JOXN0), XT(0), X1, xT )X o), X(6), x)])

Thistheory leads tothe scattefing amplitudes which can be givenin terms of DDF states, and some

polarizationtensors €11 NP1 TN as



but now since f{x*, &'} isindependent of * ,, we may substitute the DDF states with «'_,

operators which leadstothe following amplitude
B P I LY R
AmOiT gl T G T

Indeed this is the scattering amplitude which one would find in the light cone gauge string field
theory. Therefore at all orders of perturbation the scattering amplitudes of the Osp(26,2 | 2)

)

invariant string field theory are equal to the ones which one finds in the light cone gauge.



IV. PERTURBATIVE CALCULATION OF SCATTERING AMPLITUDES:

AYFOUR PHOTON SCATTERING AMPLITUDE AT TREE LEVEL[#1]:

Before begining to the calculation of the four photon scattering amplitude et us
summarize briefly the procedure to find the general form of the string scattering amplitudes at iree
levelin terms of the Neumann coefficents [°), asa preperation to the next section.

Without the loss of generality let us consider only the four string amplitude. Generally

the four string scattering amplitudeisgivenas

@
A= '{ d’f‘jcﬁidé 4 L3NV 2, 5) ] explT(L,-D]IV(G, 3, 4)= 1= 2=
=~
where strings land 2 join at atime T’y to give the string 5 which propogates to string 6 and string 6
ata time T, separates to give the strings 3 and 4. The vertex V(1, 2, 3) is defined in (4.42} or
equivalently can be written as follows, by making use of the Fourier coefficents of the Neumann

functions which were givenin (1.15),

<V(1,2, 3= <0}, expl= 2 I\imﬂ&ﬂam+2 Nm 6 (5.1
1m0 n,m>0
where 8 = Jﬁﬁn , 8,=n Bn for n=0 and 0 "Bn , ‘30 and p=exp (-T, EO{ -1y, L, canbe

found by setting n=0 in (4.43). d5 and d6 denote the zero mode variables of the strings 5 and 6,
respectively. By writing T as the difference of interaction times, T=T5-Ty, onecan combme the

vertices and the exponential termto yield



b=l

A
b

A=| dT [d5d6 <4 <3 <Vp (1,2, 5)] [ Vs(6, 3, 4)2 12 2% (5.2

where V(1. 2, 3) 1 1s given as <IV(1, 2, 3} | but with some new Neumann coefficents which

[
L4

now depend on T

Let us derive the momentum dependent and independent parts of A explicitly. This can

. . . 41
be achived by making use of therelations [42]

O3 OD O
| A . ! T .
':‘:O;.exp{(.;;ni_;mg:% Oy My Oy + g?; Loy Oy

+K{-M Ny MK} (5.3)

where onthe right hand side of the equality we have suppressed the vecor products and the indices

which are summed over. The barred quantities are defined as follows

Myg=/m/AaMy,, ., Db =/mLli,

and similar relationsfor N and K.

Forthe anticommuting modes we have the following relation



Fnd

hed X
A {1 ) {1
+ m};j Vit 4 m%ﬁmw I

= [det(1 - UD UUN"Z exp{ - V@ (1 - UW U@yl W 4 vt (1 - U@ g0yl w4
+ VUt (1 -l Ué.i';’)-i W& vy -y UQ})-E wit) 3 (5.4)

where again we suppressed the indices which are summed over.

Making use of (5.3) and (5.4) in (5.2) to take the trace over the non-zero modes of the
intermediate strings, lead to a momentum independent measure part and a momentum dependent
exponential part which will be still multiplied with the external states. Now the external states can
betaken asthe light cone gauge ones due to the following relation [12]

NS 09, =0, (5.5)

The momentum dependent part must be same with the one which one finds by making
use of the mapping of the world sheet onto the upper half complex plane as it was summarized in
chapter I. Thus it is equale to the exponent part of (1.12) with the Neumann coefficents of four
st:riﬁg interaction diagram whichis drawn as infigure 3. |

For the measure part the unique information is the relation of it with the momentum

dependent part which is discovered by Cremmer and Gervais (31

- 4w d{wdlndet (1- (1/4)NT1gg NT2gq )/ dw J /dw =

= (40t J Clalig)[d(w da / dw) / dw]? [db,, ./ dw] 2 (5.6)
1927 434 oo 00’ © -



string | string3

string2

Figure 3.

where w = exp[T/zg] and N*,, arerelated to the Neumann coefficents as follows
f

— 4 s,
NTH _ C—/_f NTFS Oz

where Cpy .y = al By - 8gg and b, arerelated to the zero mode part of the exponential term and

their explicit form can be found in [5]. The solution of (5.6) by expressing T and T, in terms of

the Koba-Nielsen variables and the interaction pointsin the upper half planeleadsto
jotgL T det (I- (14)NT25 NT1 112 expy ";oe;l [Tay- 8¢l =

=TTz, -z (Qr/ Qs + Qs IO TT 47 JdVy,, 5.7

r<§
where the sum overiruns from 1 to 6and

T=Tey=T5=T1 , T3=T@=TE)=T2 .



g 1= @2: {55: @}m'fjii + Uziﬂﬁizi + C‘lsiﬂﬁésﬁ .
93; 94= 855 QBERH?}E + &4311)0!4§ + ﬂéiﬂﬂéi .

Z..are the Koba-Nielsen variables and the invariant volume element is given as follows, in terms of

the variablesZ,, i, . which one hasto fix due to the Mobious invariance of the string amplitude,

= | RN R B N VR V. e on

év’%}a“ §Za'zt§z %Z&; st * L Zag (iziaéef.;e @Zc ) (5.8)

Thus the four point amplitude at tree level is, up to some overall constants and
S-functions,

[ . ; \ . PR
A4y = JITT4Z, 1 a0V TT [ Z, - Zg]Pr PO [ Gs)(1-p,.p,/2) + (G { Gar)(1-p,. p/2)]
<8

exp[ 20 1 Tyy(p, 0,72 - 1) Sext. states|expl (D)2 5 0 N 08 +

717 T =eat
+ (DZ, g NB s - Zp g J/mn pri nrs_ BsT
. = ol =et :
- zr,s ””EﬁﬁnNisno BS - 25 MBINS, BST 10> (5.9

where the four point Neumann coefficents can be found by making use of (1.15).

Tocalculate the four photon amplitude we take the external states as

“external states| =<0 T1 eddpy ™™ | (5.10)



where the polarization vectors £5{p) depend on the momenta and the i. run from 1 to 24 (the
summation on them are suppressed). The polarization vectors and the momenta satisfy the following
equalities
Pepr=E P =0 {no sumimation over r}.

Due to not possessing neither world sheet ghost nor fongitudinal bosonic mode operator

dependence, use of (5. 10}in (5.9} leads to the amplitude which would result from the calculation in

the light cone gauge, Thus the four photon scattering amplitude can be written as follows
A= QJ{T? 4Z.1 &V o] TT | Z, - Zy[Pp Pt O [ Qs + Qs 1Q ) (A 4 80+ Ag} (5.11)

where ¢ is a phase factor which will be specified later. Use of the commutation relations of 0y”

yield
Ar=0a [TTefdp] Z ONOS ((NOS'y (5.12a)
res’ires”
Ay =[TTep) ] ZONTS NTT o NSS g peply ale e (5.120)
r8ras i <s"
Az =[TTefdpy ] TTZNS g pls (5.12¢)

where the primed indices should be taken different from each other. A, appear with different string

tension factors but due to our convention (&¢'='2 this is not explicit in (5.12). The Fourier



coefficents of the Neumann functions can be found by making use of (1.15) as follows (in the
following equations the definition of the Neumann coefficents are different from (1. 15} up to some

phasefactors)

1 ‘-—? ’ Ny XI g ™r — e e
NSy =(Z,-Zy= TT (Lo -Zo) aricr T ¢ G- Zg YIS pag
ra=r §=g'
-+ I P - e T WOz s
N o= [ Z{aga (2, -Zg y 1 TT (Z, -z o (5.13)
r=3 ' r=5

T i =4 — e - 5!‘ 3
ZNSy0ps = (2 975Z - Zg ) N TT (7 -2

=g r=3 =5

Now our task is to use (5.13)1in (5.11) and perform the integration. This direct but cumbersome
calculation can be simplified by observing the fact that all of the A have a common overall factor

which cancelsthe following part of the measure

1 { ZI‘ _ ZS ECEF/‘ZES + Qsilr , (5.14)

<8

Let us exhibit thisfor A. By suppressing the polarization vector part, (5.12b) canbe written asa

combination of thefollowing terms

Nrm-}“ Nr+2 Si(} NE+3 s‘mpjf-s-zs ?i”gs‘ (5.15a)

N r+2“ NE+3 S10 N+l s‘m p;r+3s Pﬂis‘ » (5.15b)
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where r+a is defined modulo 4. By giving some different values to r the above terms generate A, .

Making use of (5.13)in (5. 152) yields, up to a phase,

) R fog T . A - 3 -
(Zp-Zpyy )7 -2 p™o (@l 9) (Zpyg - Zg ¥+ X pig (Zpsn-Zg )ik

§m=rt2 S=r42

e f 042 = 043 ) TT | Z, - Z oo -ashor (5.16)

<8

The calculation of the other two (5.15b) and (5. 15¢) are similar to the above one and they lead,

respectively to
(Zo-Zon }':" {r+2—=r+3 1] r+2— v+l }
(Zp-Zpyn )‘2 42— r+3 3 { 42— r+1 }

where { r+2 — s} issame with the first paranthesis of (5. 16) except r+2 isreplaced With s.

Wefix three of Z,. by still keeping one of them as an arbitrary constaat, asfollows
Zi=0 . Z.?le , Z4=c>i

and the one which isunfixed istaken suitable to calculate the s-channel diagram:



Iy =X O<x=1.
When we keep c arbitrary the integral over x will yield hypergeometric functions which depend on
c. Inprincipletherecursionrelations of the hypergeometric functions must lead to the independence
of the amplitude from c. But due to having a large number of terms this method is not desirable.
Instead we will take the limit ¢ — <o in the integrand so that the integration will lead to the beta
functions only.

Without keeping the track of the overall sign factors the remaning part of the measure

afterthe cancelationof (5. 14)is
PP+t cyPaPa+ LuPiPa(1-xP2Ps(c-x)PaPs.
In the ¢ — oo limit dueto momentum conservation it behaves like
¥ (1-x)e [1+06 ]
where
ag=(4) (py + P =p1'Py. % =05 (3 + 22’ =P
s=(2rrp)=pre2. % =02@3+p)" =302
Before calculating the whole amplitude let us specify the overall phase factor ¢ which
was introduced in (5.11). It has two different entries: (a) All of the overall sign factors coming
from the measure as well as from A,. (b) The phases which we have not taken into account when

we found the Neumann coefficents as in (5. 13) from (1. 15). Indeed this phase ‘factor’is same for all

of the terms.



viernal states must be taken suitable to the three photon case. Lip to some
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the &, dependence of the measure cancels and the rest of it behav

iikec~ inthe ¢— == Lumit due to the momentum conservation. For the Neumann coefficents N
and NP7 (5013} is still valid if we resteict the string number to run from 1 to 3. Making use of

these the first term of the amplitude leads o
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O(cy terms again cancel due to the momentum conservation and the resultant form of the

e
B

contribution of the firstterm reads
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which isthe same amplitude giv

, = 0. Thus by makung

enin{43j forthree

variani form one ha

r use of (5.20) the scattering amplitude of three
£a' Dy £57D, {5.21)
photon scattering amplitude attree {evel.

We may use the same machinery (¢ write the four photon amplitude covarianily. For

exampiel

F1=£8 87 &

o
& ' .

when we set £7, = (O forall v,

which is defined in (5,173-(5. 19} reads to

We calculated also the other terms of the scattering amplitude in the lines of the above

calculation but itis quite length

A
cail A3,

so that we present only the part which results from A, which we
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which should be read such that £ is multiplied with the first momentum, £5 with the second. £,

PSP NS § fo b s ¢ .
withinetird and
:

with the fourth one in the sequence,

The comparision of cur results with [44] shows that the Osp(26,2 | 2} invariant string

field theory which has the same scattering amplitude with the light cone gauge field theory.

reproduces the expected result which was derived by using the covariant operator approach for the

four photon scattering attree level.



Letustake into consideration the simplest loop diagram, as shows in the figure 4.

3 T3
N | |
A t
; i
i § & 2
H
4 4
Figure 4
A 5 &

In the figure the arrows indicate the parametrization of ¢t which follows from the d-functions of
the vertices. 3 (4) and 3 {4") have the same kind of normal mode operators but different
parametrization. Tocalculatethis diagram thethree string vertex (5. 1issufficent,

The amplitudereads, up to sum overall constants,

¢ ; %
= 2| |dT dpt dex dB df, <V(3.4, e Lo Do) vz 4 2y 1

where the external states <<1 | and <22 | are DDF states (4.76), Lc-{z} and LQ{% are giveninterms
of the mode operators of string 3 and 4, the integration variables are the zero mode variables of the
one of strings which construct the planar loop,

As in the tree level case we write the integration variable T as T =T, -T and we

combine the exponential factor with the vertices which lead to

Ip= <21 |dT dpk dax df, df, <<V (B3.4.1) V(314 2) = 112 (5.23)
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fermionic operators effect only the measure part due to the fact that the external stales have only o,

Thusthe measure part yielos

- P o F - W2 e P
Egi—‘- C{_!{: ~E_z} EOi (f? ace EH}(}("IQ E_(;eli - N3 H o ?ﬁ{?} K}"‘#’- 2}22"’4-
{Caky+ Cakobp+ Bipm + BByl (5.24)
A 43. 1".‘ _.;A; 2_, P = I 1y -+ :T"':}t 07! I {_ a8

. : 3
, 3110 &KINE use 01 Ei= = Ba™ =] the ?1331&? EOGP dﬁ'i‘{‘iit‘ksﬁe reads

L= 8k - &) ;{d”f dee A B 24 [det (1- M N L2 exp (C iy k) (5.25)

N

whichis indeed the planar loop amplitude which would result from the light cone gauge string fieid
theory.

Now our task is to write (5.25) in terms of Koba-Nielsen variables by mapping the
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DIy =Tz + 1 G2y =Wy In w {(Zy 2z wil (s /iz. W) - const (5.263
where (in=—-(¢+ is used. Due lo the Mobnous invarance we may (1% three points in the upper hall
plane. In (5.3
Zx=1 Ly =X,
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Figure 5: The cut is mapped onto the arcs and W=ry/ry.

Jr canbe written in terms of Jacobi ®-functions as follows
) . - Ln PR s e
Wiy wy=-2ni [expini Al QL 11/ 0 (0, 1) (5.27)

where prime denotes the derivarive with respect to the argument and the new variables are defined

as follows

iy
Q-

fmned JUSP & va
E=0C0niytiny T= (2mytinw (5.28)

# ! /
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W
e
const. = L(Z . - LD, -T b, =0 (523
where
const, =1 =
Now due to (5.32) the difference of two zeta functions, {(£',) - Q{E,'—, -2y ), is a doubly
. . . . - B - a A i
pericdic elliptic function so there exist two solutions of (5,33}, 2%, 27, [t is possibie to write the
. . . N 5
interactiontimesTy= Re p(z’,) and To= Re p(z°,) formally [45] but it is not useful for the

explicit calculations. At first sight it seems that it is possible to solve {5.33} by making use ¢

T B L T a w5 2 -‘f “ PN 4 QIO CR S e
5.29) and the iteration techniques, as a power series in w due to the fact that 0 = w = 1. but after

‘“”‘.t

the third iteration it becomes so complicated that it does not allow the generalization to reach tothe
complete solution. Thus we know that {5.33) has two solutions but we are not able to write them

explicitly. Sothatevenif we can write & as

b
bl

a

1
@

(5.34)

(o]
=3
E:

we are not able to demonstrate explicitly that the integrationregion { 0= @ <&y |, 0<T <

.

[n)
&

[
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1 the voper hall plane.

The next step 1y to show if the Jacobian of the transformation is different from zero,

Fortunately this has already calculatedin [28] and given as

i Ay PoHm b oyt o e
twilaw g ) e (5-35)
i - K
Ll gz
R
so that it is different from zero, due to the fact thar 7+ G&,fmz maxinizep{z )by definition.
The exponentialterm in(5.25) canbe taken equal to the momentum dependent part of the
amplitude when written inthe upper half plane. Thus che momentum dependent partof (5.2331s
o . B J = 5
es{p{("k L:m =[x, w) | *'E*E-KZ (5.36}

1

Now as ir was done in the tree level case we have to find a resolvable relation between C and th

measure part (o write the latter in terms of X and w. The resultant amplitude must coincide with the

i

one which one finds by making use of the other technigues Unfortunately the relation between th
measuee and Cisquite hard to achive, since the former is very complicated. The method which fed
to(5.6) attree level can not be followed because it is closely related to the explicit form of the time

dependent Neumann function coefficents and we have found different time dependent Neumana

function coefficentsin the planarloopcase, (5.23).



The gauge conditions which respect the boundary conditions [ead 1o a superspace Jorihe
pomntparticie as well asfor the string. The string field theory winch is formulated in this superspace

has an Osp(d, 2 2) symmelry which allows us to incorporate string lengths naturally. Then the
umitarity of the theory [ollows directly by the Parisi-Sourias mechanism.
The Batalin-Vilkovisky method of quantization. which usually seemslike ‘cracking nuis

&

with a hammer for most of the known point particle gauge field theories, reveals (ts power inthe

Gaugeinvariance of the string field theorvisup tothe order of g, The invariance at order

o

L iy

I3 SLW -

pp— . R

I - A - Ry 2 w4 s Ry XY £
g i 4L, dz, VL2034 Ay U2y 3y 4
1.:‘% ’,‘{}.

[ TR T T S S Iy S R R JR i
where V(1,23 415 a function of C{0,,; The gauge generators will now have g quadratic term.

Unfortunately this will camplicate the gauge {ixing procedure. Atthe higherlevels one would have

to iniroduce also the closed string interactions for keeping the gauge invariance. [tis obvicous that
these follow from the fact that the proof of the Osp(d,2 | 2) invariance of the gauge fixed action 13

almost equivaient tothe demonsiration of the Lorentzinvariance of the light cone gauge string field

theory.

siring field theory which has the




and L, are defined (nterms of right and ieit mode operators and © 15 a closed siring field

where [, o oo A

functional, results after an integration over a Lagrange multiplier. butin any case cne hasto use a
projection operator to satisfy thns condition. It 1s not clear if some other gavge fixings can allow

one not 1o treat the above condition separarely as well aslead to an Osp(d 2 2yinvariant theory,

In chapter V we try t

o

o)
ey
i
i
oy
i
D
£

out the perturbative calculations in string field

theory by making 4 the operator approach. Attree level even il it was complicatedto do so, we

were able to calculate the scattering amplitudes. At first loop level the calculation became quite

camplicated so that for the tme being in thus approach we have not been able to calculate the

scattering amplitudes. Thus 1t seems that using the paih integral approach is more efficent than the
operatoral approach. For demonsirating that an open siring Deld theory provides a single cover of

the moduli space, one can also find some other technigues as was done for the closed string case in
1461

Obwviously the next step is to formulate a supersiring field theory which results from a
first quantization which leads naturaily to an Osp(d,2 | 2) invariance. To this aim in [47] BRST
quantizauon of the spinning particle inagauge similartothe point particie case is performed.
One hopes to utilize the covariant string field theory to discover the nogperturbative
aspects of strings. But uatil now there is no information to support this so that the problem remains

open.
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