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Introduction

One of the strongest effort in theoretical physics, in recent times, has been the attempt
to construct a consistent quantum theory of gravity. Such an achievement would lead
to a theory describing in a unified and consistent way all known fundamental interac-
tions, the so—called Theory Of Everything (TOE). At present, the only candidate for
being a TOE is Superstring theory [1, 2]. This theory dates its origin in the late 60’s.
And the fact that after 30 years, despite all progress and developments achieved so
far, it is not a completely settled theory, yet, unrolls how such an ambitious project

is very difficult to be accomplished.

But what has to do Superstring theory with black holes? One crucial issue in
quantum gravity is the understanding of the physics of the black holes. In particular,
the statistical microscopic interpretation of their entropy has been an open problem
in theoretical physics since long time ago, [3, 4]. In 1996 Vafa and Strominger [5]
gave a first convincing statistical interpretation of the entropy of black holes. In fact
this result has been obtained in the context of String theory which seems now able to
provide a first glance to the resolution of this long standing problem (for reviews see
[6, 7]). The main topic addressed in thi s thesis is the study of classical black holes
solutions in supergravity and string theory which, in view of these recent results, has

acquired a renewed interest.

Superstring theory describes one dimensional extended strings, rather than point—
like particles, as it happens, instead, for quantum field theory. The infinitely many
vibrational modes of the string can be regarded as an infinite tower of particle excita-
tions with growing mass and spin. The tension T' = (27a/) ! of the string introduces
a length scale [, = Vva! in the theory, so that the typical mass of the modes is
M, = (¢/)"1/2. String theory is much more constrained than field theory. Indeed,
while it is possible to write down an infinite number of field theories that are renor-
malizable and anomaly free, only five different string theories are consistent at the
quantum level in the perturbative approach. Moreover, their consistency always re-
quires that the number of space time dimensions is ten and that the theories are



supersymmetric in space time. The five possible theories are the following ones:

e Type ITA: non—chiral theory of closed strings with 32 supersymmetry charges
e Type IIB: chiral theory of closed strings with 32 supersymmetry charges

e Type I: theory of unoriented open and closed strings with 16 supersymmetry
charges and SO(32) gauge group

o Heterotic Fg x Fg: theory of closed strings with 16 supersymmetry charges and
Egy x Eg gauge group

e Heterotic SO(32): theory of closed strings with 16 supersymmetry charges and
S0O(32) gauge group

For energies below M, that is for distances larger than [, strings appear as particles
whose spin and mass are determined by their internal fluctuations. Moreover, at large
distances, rapidly oscillating strings look like very massive particles with respect to
the energies used to probe the theory. Thus, as long as one is interested in the
low energy behaviour, only the lowest (massless) states are really relevant, while the
massive modes give simply small corrections that appear as terms with higher power
of o. In this regime the dynamics of massless string states can be effectively described
by a supersymmetric field theory [8, 9, 10], whose action is completely determined by
the underlying string theory:

e Type IIA — non—chiral N = 2 supergravity
e Type IIB — chiral N = 2 supergravity

e Type I and Heterotic SO(32) — N = 1 supergravity coupled to Super Yang-
Mills with SO(32) gauge group

e Heterotic F5 x B3 — N = 1 supergravity coupled to Super Yang-Mills with
Es x Eg gauge group

Until 1994 superstring theory was known only in its perturbative formulation and
a big effort was spent in the study of all its phenomenological aspects, in order to
understand which of the five consistent string theories was the more suitable to give
rise to our physical (four dimensional) world. And there has been an intense study
of all possible supersymmetry breaking and compactiﬁcation schemes, in order to

obtain, from the ten dimensional theory, a four dimensional effective one. This has
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been done by splitting the ten dimensional space time into a compact and a non-—
compact submanifold, M;q = Mg x IR, 3, working out the geometric structure the
compact manifold Mg should have in order to end up with a four dimensional effective
theory which looked like more suitable to reproduce, at the TeV scale, the Standard
Model.

After all this work (the so—called first string revolution) string theory appeared
as a unified description of gauge and gravitational interactions based on the powerful
techniques of two dimensional conformal field theory (CFT). Moreover, its low energy
limit, namely supergravity theory, looked like a field theory describing supersymmetric
couplings of matter with gravity. However, such a formulation could not answer all the
questions left over by ordinary field theory. Moreover, the possibility of considering
five different string theories as equally suitable, in principle, to describe our physical
world, did not really solve the problem of unification.

In order to find definite answers, a non—perturbative understanding of the theory
had to be gained. In the last four years there have been major breakthroughs in under-
standing the non—perturbative aspects of string theory (this is called, nowadays, the
second string revolution). It is clear that if a TOE exists, it must-be non—perturbative,
perturbative methods being just a (possible) way to study it around particular vacua.
One of the big surprises that have emerged is that the five superstring theories can
be actually viewed as perturbative realizations on different backgrounds of a larger
and unique quantum theory, called M—theory, [11, 12, 13]. An introductory but
illuminating review on non—perturbative aspects of string theory is [14].

The key ingredient of these recent developments has been duality, a new symmetry
of string theory and quantum field theory which allows one to relate a given regime of
one theory to a different regime of the dual theory. This idea dates from many years
ago in the context of electromagnetism [15, 16, 17, 18] and, more recently, has been
used in the context of supersymmetric field theory [19, 20]. The power of duality is

“that it lets one study non—perturbative properties of a given theory using already well
known perturbative tools (perturbative expansions, Feynmann diagrams, scattering
amplitudes, etc...) on its dual theory. The duality at the base of M-theory, which
should therefore encode all the already known dualities (like S and T dualities), is
called U-duality. Reviews on duality in string theory are [21, 22] while [23] is a recent
review of the progress in understanding M—theory.

A first evidence whether strong/weak coupling dualities are correct can be gained

from the study of those quantities that are protected from quantum corrections by
the supersymmetry algebra, such as BPS states. The role of these non—perturbative



states of the string spectrum, in order for U-duality to be a true symmetry of the full
theory, was noticed in [11]. However, it is only after a seminal paper by Polchinski,
[24], that it has been possible to find a very simple and elegant description for such
states. Indeed, although non-perturbative, these states can be simply defined, at
weak string coupling, as hypersurfaces on which string world-sheets can end through
a boundary. Since this corresponds to choose Dirichlet rather than usual Neumann
boundary conditions for the fields in the world—volume directions, these objects have

been called D-branes.

The possibility of describing D-branes via a powerful and efficient CFT has
opened up the possibility of studying many non-perturbative aspects of string (or
better M) theory using ordinary stringy techniques. In fact, all recent developments
in understanding string theory in all its aspects, in particular its non—perturbative
properties, has to do, in a way or another, with D-branes. For extensive reviews on

D-branes see, for example, [25, 26].

One of the most exciting recent developments has to do with black holes. Actually,
if superstring theory is the quantum theory of gravity one should have expected to
find also solutions, in its formulation, to those unanswered questions left over by
ordinary quantum field theory and general relativity. It seems now that string theory
is able to give a microscopic explanation of the entropy of extremal (and some near-
extremal) black holes as a statistical entropy associated with its microscopic stringy
constituents. Indeed, since the seminal works of Beckenstein and Hawking in the 70’s
[3, 4], one of the open questions in black hole physics has been that of providing a
microscopic interpretation of their thermodynamics. One of the most exciting results
of the recent developments in string theory is that D-branes are actually the missing
stringy states which really seem to provide the quantum mechanical description of
black holes, [5]. In fact the string theory description of regular point-like black holes
is generically given in terms of several D-branes wrapped in various way along the
compact part of space time, possibly with massless open strings stretched between
them (for an introductory review on microscopic entropy counting see [27]).

D-branes are BPS solitons carrying Ramond-Ramond charge. The presence of
such objects, at the level of low energy effective supergravity theory, was already
known, [28]: they are general BPS black hole-like solutions of supergravity equations
of motion (existing in any dimensions) called p-branes, where p is the number of
extended spatial dimensions (a point-like object is a O-brane). At the string level,
it was natural to expect the appearance of solitonic states whose low energy effec-
tive description were the p-branes. However, fundamental strings are not charged
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under the R-R fields and it was difficult to look for these states within perturbative
string theory. Now this gap has been filled. In the last few years there has been
an intense study on D-branes physics and on p-branes and many progress towards
the understanding of the structure of M—theory have been made. However, there are
still open problems and unanswered questions. Some of them will be faced in this
thesis and they mainly concern the black hole-like and BPS nature of these objects.
These two features are intimately related and have far reaching implications. On the
one hand these supersymmetric black holes turn out to be the basic ingredients to
build up near—-BPS ones and are the starting area where to understand at a deeper
level the microscopic entropy computations, thanks to the possibility of character-
izing, in a precise way, their microscopic structure. On the other hand, being BPS
states, they are the primary tools to check many duality conjectures and the fact that
are protected from quantum corrections by supersymmetry, when moving from weak
to strong coupling (and viceversa), allows to study them just using the low energy
effective theory, namely supergravity.

The main focus in this thesis is on four dimensional space time and on BPS black
hole solutions living there. But these solutions will be seen has obtained from ten
dimensional supergravity and superstring theory upon compactification. The content
and the goals of the present work will now be explained through a detailed description
of the content of each chapter.

The dissertation is organized as follows.

In chapter 1 I review the basic properties of both p-branes solutions of supergrav-
-ity theory and of the stringy D-branes. Emphasis will be put on all those aspects
which make manifest the fact that these objects are actually the description in dif-
ferent regimes (strong and weak, respectively) of the same non—perturbative states.
I outline the way one can construct a single charged p-brane configuration in any di-
mension and how to obtain from the latter more complicated multi~charged solutions
as intersections of many p-branes. Then I show how it is possible to obtain lower
dimensional configurations upon compactification of these solutions on compact (in-
ternal) manifolds. Emphasis will be put on four dimensional black holes. D-branes
will be introduced as non—perturbative states of string theory and I will give all es-
sential technical tools so to be able to study their properties within CFT". Our main
interest regards D-branes in type II theories and in this context I will show that the
proper formalism to be used to deal with D-branes and their dynamics turns out to
be the so—called boundary state formalism. In this first chapter I will settle all the
essential rudiments of this formalism.



In chapter 2 I introduce the concept of U—duality both in string theory and su-
pergravity trying to emphasize, in particular, its role in studying the properties of
BPS black holes. I will describe some relevant properties which are common to any
regular black hole in four dimensions and for whose systematic study U—duality plays
a prominent role. In particular, using the properties of U—-duality, one can get two
important goals: i) to be able to generate from a given (simple) black hole solu-
tion a huge number of more complicated solutions depending on many scalars and
gauge fields, eventually recovering the full U-duality BPS spectrum ii) to establish
a clear and precise way to make possible the correspondence between a given super-
gravity configuration and its microscopic description in terms of stringy objects (like
D-branes, fundamental strings, NS5-branes, KK-monopole, etc...). Within N = 8
supergravity, which will be our main concern in this analysis, it turns out that the
most general regular black hole, modulo U-duality transformations, belongs to a
N = 2 consistent truncation (the so—called STU model) of the full N = 8 theory.
The explicit geometrical embedding of the STU model inside the full N = 8 theory
will be achieved with the solvable Lie algebra formalism. The latter turns out to be
the suitable technical tool to implement U—duality transformations on the black hole
solutions in order to be able to generate, from solutions within the STU model, the
more complicated and general ones. And all essential properties of this formalism

will be outlined.

In chapter 3 I explicitly construct some BPS black hole solutions of N = 8 su-
pergravity. My main concern will be on the regular ones, that is those having a
non—vanishing entropy. Thanks to the analysis carried out in the previous chapter I
could concentrate on the STU model truncation of the original mother theory and
study BPS black hole solutions within this latter simplified model. Thanks to the
embedding, these solutions will be however solutions of the full N = 8 theory. After
a general analysis of the structure of BPS black hole solution in N = 8 supergrav-
ity I will concentrate on those preserving 1/8 of the original supersymmetry, these
being, as it will be explained, the only regular ones. I will derive the explicit struc-
ture of both the first order differential BPS equations and of the second order ones
(the equations of moetion) the fields should satisfy, looking for solutions of the both
systems. Indeed, as noticed in [29], differently from what happens with instantons
in ordinary gauge theories, in this case the first order differential equations do not
imply the second order ones. Therefore, in order to find a solution one should solve
both systems of equations. These will be BPS supergravity solutions. However, the
already outlined algebraic embedding will allow not only to promote these N = 2
solutions to be solutions of the full N = 8 theory but also to infer their corresponding
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microscopic stringy (ten dimensional) configuration.

In chapter 4 I make a step forward. Indeed I illustrate in detail a precise macro-
scopic/microscopic black hole correspondence within a non-trivial orbifold compact-
ification. Instead of considering compactification on tori, which is the main concern
in chapter 3, here I will try to show how things work when considering more compli-
cated internal spaces. While there has been an intense study on black hole/D~brane
correspondence within toroidal compactifications of string theory, much less has been
said for more complicated ones, like for instance those on Calabi-Yau (CY) spaces.
While from a macroscopic point of view these black hole solutions have been known
for a long time, different problems arise when trying to find an appropriate D-brane
description of these solutions in such non-flat asymptotic spaces. Indeed the possi-
bility of describing D-branes in a simple way relies on the possibility of implementing
the corresponding boundary conditions in the C F'T' describing string dynamics. This
is in general too difficult to be performed on CY spaces. Actually there exists special
cases, such as orbifold compactifications, which capture all non-trivial aspects of more
general CY spaces but turn out to be sufficiently simple to be treated with ordinary
boundary state techniques. We will deal with the orbifold T®/Z3 and the microscopic
object considered will be the dyonic D3-brane. The main goal of this chapter will be
to show that a D3-brane wrapped on such manifold represents a Reissner-Nordstrom
black hole, in four dimensions. This will be achieved by comparing in detail the
precise matching between stringy (boundary state) computations for the D3-brane
wrapped on the orbifold and the corresponding ten dimensional supergravity 3—brane
solution suitably dimensionally reduced to 4 dimensions. The result obtained for the
asymptotic fields emitted by the D3-brane will match the ones obtained within the
supergravity approach and will be those representing a regular and dyonic RN black

hole.

Most of the original contribution presented in this thesis is contained in chapters
2.3 and 4 and has been carried out in the collaborations [30, 31, 32, 33, 34].

Let me end with an important comment. Through out this thesis I mainly refer to
BPS black holes and speak about their non vanishing entropy. On the contrary, the
original works by Beckenstein and Hawking refer to non—extremal black holes only.
Hence, before ending this Introduction, it is necessary to make an important remark.



Entropy of extremal black holes

After the recent developments in string theory-oriented black hole physics, there
has been a renewed interest on whether extremal black holes do or do not follow
the Beckenstein-Hawking (BH) entropy formula. A puzzle that people working in
General Relativity have not solved, yet. While the recent results indicate an area law
even for extremal black holes, semi-classical arguments seem to indicate that their
entropy is zero or, at least, not equal to A/4Gy.

In the original derivation, [3, 4], the entropy area law has been derived for non-
extremal black holes while, as shown in [35], if one moves from non-extremality
to extremality, the usual thermodynamical treatment of black holes seems to break
down because the fluctuations in the temperature 7' diverge. There have been re-
cent attempts to circumvent these difficulties (see for example [36]), but an unique
and unambiguous answer, in the context of semi-classical general relativity, has not
been found, yet. Actually, thermodynamics is only an approximation to some more
fundamental description based on statistical mechanics and since the black hole tem-
perature is a quantum mechanical effect the statistical description should involve a
quantum theory of gravity. String theory, which at present seems to be the only
consistent candidate for a quantum theory of gravity, has given an answer to this
question: the entropy of black holes is computed, at weak coupling, using statistical
methods. Differently from what happens semi-classically, it turns out that if one
defines the entropy as proportional to the logarithm of the number of microstates for
a given macroscopic configuration (S ~ log 1), then the extremal limit is not singular
at all and one can still find a non-zero result. The number of open string states
does not go to zero in the extremal case and the entropy remains different from zero.
Moreover, at least for some simple configurations, S is precisely equal to the area of
the horizon, as predicted by the BH formula. And this holds both for extremal and

for non—extremal cases.

The fact that semi-classically the entropy of extremal black holes cannot be de-
termined as a limit of the non—extremal ones can be derived also from geometric
arguments. Essentially, while the analytic continuation of a non-extremal black hole
has the topology disk x S?, that of an extremal one is anulus x S2. This means
that it is not possible, for a non—extremal black holes to become smoothly an ex-
tremal one because this would imply a topology change. A semi-classical entropy
computation, in the two case, gives the area law and zero, respectively, [37, 38, 39].
String theory, which gives a statistical microscopical approach to the problem, seems
to contradict these conclusions, as already pointed out. Actually, if one considers the
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4 dimensional black hole solutions of supergravity one generically finds non—extremal
solutions: their metric in general has a near horizon topology of the type R* x S§?
and turns out to be the exactly extremal one just in a limiting sense while there is
not any topology change. The extreme Reissner-Nordstrom (RN) metric can then be
reached just as a limit in the parameter space of a non-extremal one: the topology
is still R? x S? and the entropy obeys the area law. It seems, therefore, that from a
field theory point of view the correct way to approach the problem is to think of an
extremal black hole just as a limit of a near-extremal one. Exactly extremal black
holes do not exist in nature. The physical reason for that is claimed to be that there
could be string theoretic arguments on stability of the solution which would prevent
the metric near the horizon from being topologically ezactly extremal, such that the
area law continues to be valid, [27].

Despite all recent developments, a very conservative approach could still be skeptic
about the string theory result. Indeed the essential problem remains that at present
each D-brane/black hole correspondence should be checked by an ad hoc calculation
and the agreement between the BH entropy and the number of string states does
not follow from first principles. The explanation of black hole entropy provided by
string theory should be understood at a deeper level. While gravity seems to describe
the quantum properties of all black holes in a unified but incomplete way, string
theory seems to give nice answers but loosing the unified character of the properties
of different black holes. In order to avoid any possible disagreement between field
theory and string theory point of views, it would be necessary to find a microscopic
but still unified way of describing black hole physics in the context of string theory. In
the last two years there have been in fact various attempts, especially in the context of
the AdS/CFT correspondence [40], to give an answer to this question based on some
unifying principles but a definite answer has not been found, yet (see for example
41, 42, 43, 44, 45]).

In the present thesis I will not try to solve the apparent contradiction that is
present in the semi—classical general relativity approach to the quantum properties
of black holes. Rather, I will adopt the unambiguous string theory point of view and

speak about BH entropy both for non-extremal and for extremal black holes.



Chapter 1
D—branes and p—branes

In this chapter I review the general structure and properties of both p—brane solutions
of supergravity theory and of the stringy non—perturbative states known as D—branes
trying to emphasize all the elements that make them be the description in different
stringy regime (strong and weak coupling, respectively) of the same non-perturbative
states. In the first section I recall the form of p—brane solutions in d dimensional
supergravity theory and then briefly outline how one can construct, starting from
these ’building blocks’, multi-charged p—brane solutions obtained by intersecting p—
branes in a given dimension d or as compactification down to lower dimensions of
higher dimensional solutions. In the second part of the chapter (sections 1.3 and
following ones) I introduce the D-branes as non-perturbative states of the string
spectrum outlining the way they can be described within weakly coupled string theory.
In this context I will introduce the so—called boundary state formalism which turns
out to be a very suitable formalism to describe D-branes as sources of closed strings.
I will end with some comments on the D-brane/p-brane correspondence.

1.1 p-—branes solution in supergravity

A p-brane in d dimensions can be defined as a p—dimensional object that is localized
by d — p — 1 spatial coordinates and independent of the other p spatial coordinates,
thereby having p translational space-like isometries. In general, the effective action

for a p—brane has the form (in the Einstein frame):

1 1 1
I(gE)(P) = —/ddﬂcv ) [R - ‘Z’VMCbVMfﬁ T35

agp 12
——— P [ 1.1
23 (p+2)! (p+2)] ( )

10



Chapter 1: D-branes and p-branes 11

where k4 is the d dimensional gravitational constant, Fiyi0) = dAgpqq is the field
strength of the (p+ 1)—form gauge potential and a = a(p) is some real number which
depends on p. For various values of p and a the functional I is a consistent truncation
of some supergravity bosonic action I5Y¢%4 in d dimensions. By consistent truncation
we mean that a subset of the bosonic fields of the full theory has been put equal to
zero but in such a way that all solutions of the truncated action are also solutions
of the complete one. Among all fields of the complete theory, the only relevant ones
characterizing a p—brane solution are therefore just the graviton gasy, the dilaton ¢
and the (p + 1)—form gauge potential Ap4.

In any dimension, a p dimensional object is electromagnetic dualto a p = d—p—4
dimensional one which couples magnetically to the same gauge potential. Provided a
given gauge potential A, 1, we call elementary an electrically charged p—brane solution
while solitonic a magnetically charged one. The distinction between elementary and
solitonic is the following. In the elementary case the field configuration is a true
vacuum solution of the field equations following from the action (1.1) everywhere in
d-dimensional space—time except for a singular locus of dimension p 4+ 1. This locus
can be interpreted as the location of an elementary p-brane source that is coupled to
supergravity via an electric charge spread over its own world-volume. The elementary
p-brane has therefore a d—function singularity at the core, requiring the existence of
a singular electric charge source for its support so that the equations of motion are
satisfied everywhere. Such a source term is given by the p-brane world~volume action
which has the following form (in the Einstein frame):

S (e?:_%'\/—det(auXM(f)auXN(ﬁ)QMN) + Ap+1)

(1.2)
where T}, is the p-brane tension, u,v = 0,...,p and g = 0, XM ()8, X" (€)gun is

S = Syv+Swz = Tp/

Woi1

the induced metric on the world—volume Wy;. While Swv is the generalization of
the point particle action for a p—extended object, Sy z represents the source term
for the (p + 1)—form gauge potential. I will come back on the explicit form of this
action in the following (see section 1.3); for the meantime let us just say that an
elementary p—brane is actually a solution to the equations of motion of the combined
action I4(p) + Sp. For the the solitonic solution, on the contrary, the corresponding
field configuration is instead a solution of the supergravity field equations everywhere
in space-time without the need to postulate external elementary sources. However,

the field energy is concentrated around a locus of dimension p.
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The field equations derived from the truncated action have the following form:

1
Ryny = 551\/10531\7(/) + Sun (1.3)
Var, (e M Moty = 0 (1.4)
a 2
_ 1.
D¢ = o 2

where Syrx is the energy-momentum tensor of the (p + 2)-form F:

1 +1
p )FQQMN] (16)

S = ", Fy — —
MN‘ 2<p+1)!6 [M... N (p+2)(d—2

When looking for an elementary solution, according to the previous discussion, on the
right hand side of the above system of equations should be added the source terms,
coming from the action (1.2), see [28] for details . The parameter a is determined by
the requirement that the effective action (1.1) and the sigma model action (1.2) scale
in the same way under rescaling of fields. For a supersymmetric solution it turns out

that: B
(p+DE+1) _, ,+rld=-p=3)
d—2 d—2

Providing a P,y1 x SO(d — p — 1) anséitz (Ppy, is the p + 1 dimensional Poincaree

(1.7)

group), the action I;(p) + S, admits the following elementary p—brane solution:

ptl

2 | kp ‘(g—:%j v kP @2 m n
ds* = {1+ F dz" dz” nu, — | 1+ 5 dy™ dy" dmn

1 kp \ 7
Al_j,l.../,bp+1 = _m 6/11’“:“17-}—1 1 + Tﬁ+1
1 ky \ 7 kp
(me-.-upH - m €t tipt (1 + Tﬁﬁ) ('3m <1 + pp+1
0 = (14 ) (18)
rp+l1 :
where the coordinates XM (M = 0,1...,d — 1) have been split into two subsets:
z#, (u = 0,...,p) (the coordinates on the p-brane world-volume) and y™, (m =

p+1,...,d—1) (the coordinates transverse to the brane); r = /Y™y, is the radial
distance from the brane; Qz.o is the volume of the sphere SP*2 and k, is related to
the other parameters of the theory by:

2627,

k = o
P (D + 1)1

(1.9)
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and where we have chosen the static gauge for the potential Ay, ,,,,. Indeed all its
non vanishing components are along the p—-brane world-volume. The actual electric
charge of the p-brane is then:

1
T Vkg

It is clear therefore that on our solution the density of charge of the p—brane equals,

° f 0 By = V2T (-1 (1.10)
Sp

in suitable units, the p-brane tension, giving a “mass=charge” relation (as I will
show in the following this is one of the different ways one can see this objects are
actually BPS, namely they preserve some fraction of the original supersymmetry).
Finally, the gauge potential has non-vanishing components only along the p-brane
world-volume while all other components of Apr,. ., With M; = myyq,...,me
have been put to zero. An important point, as noticed in [28], is that while the
Einstein and dilaton equations are essentially source free (i.e. for the above solutions
the d—function coeflicient vanishes at § = 0), the antisymmetric tensor equation is a
d—function source, as it should be for an elementary solution.

The action (1.1) admits also the following solitonic p—brane solution:

2 kﬁ _(% L v kﬁ (5‘% m n
ds® = (1 o+ ey dzt dz” n,, — | 1+ e, dy™ dy™ 6,mn
Flpyay = V2k4 95 €p+2)/ Spe2
k= \ 2
) (1 n ——rpil) (1.11)

where €(p49) is the volume form on the sphere {2,.5. Now F{y12), being a harmonic
form, can no longer be written globally as the curl of a potential A but it satisfies the
Bianchi identities (i.e. F' is closed but not exact, as opposite to the previous case).

The topological magnetic charge of this solitonic p-brane solution is by definition:

=/,
g5 = F (1.12
i \/ind Sp+z )

and by Dirac quantization condition is related to the electric Noether charge by the

usual relation e, g5 = 2mn. This implies the following relation between the tension of
the p and that of the dual p-brane :

265 T, T5 = 2mn (1.13)

These p-brane configurations are solutions of the second order field equations

obtained by varying the action (1.1). However, when (1.1) is the truncation of a
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supergravity action both eq.s(1.8) and (1.11) are also the solutions of a first or-
der differential system of equations. This happens because they are BPS-extremal
p-branes which preserve 1/2 of the original supersymmetries. Actually, the above
defined p—brane solution represents a bosonic background where all fermionic fields
have been set to zero. In general, the supersymmetry transformation rules for these

fermionic fields, namely the gravitino ¢, and the dilatino A, have the following form:
Oy = VME-F.A{[A[(@)G Oc A = N((D)E (114)

with My (®), N(®) being some functions of the bosonic fields.

The requirement of unbroken supersymmetry is that there exist Killing spinors e
for which both d1; and éA vanish:

VMC—F]\/IM(CI)) =10 N((I)) =0 (1.15)

Since the supersymmetry transformation rules of any supersymmetric field theory are
linear in the first derivatives of the fields (eq.1.15) is actually a system of first order
differential equations. This system has to be combined with the second order field
equations of supergravity and the common solutions to both system of equations is
a classical BPS saturated state. Now, substituting in the supersymmetry transfor-
mations (1.14) our p-brane bosonic background and expressing the ten dimensional
gamma matrices as tensor products of the p + 1 dimensional gamma matrices I',
on the p-brane world—volume with the 9 — p gamma matrices I',, on the transverse
space one can see that this fleld configuration preserve half the supersymmetries.
This important feature is intimately related to the 'mass=charge’ condition discussed
above and also to the xk-symmetric nature of the p-brane world-volume action, [46].
Essentially what happens is that there are some Killing spinors which are actually
the 'supersymmetric partners’ of the Killing directions defining the p—brane world—
volume. This results holds true for any kind of BPS p—brane solutions of supergravity
theory in any dimensions. In section 1.2 I will reconsider in a more systematic way
this issue in the context of 4 dimensional supersymmetric black holes, which are the

ones we will be mainly interested in.

1.1.1 Intersecting and compactified p—brane solutions

The above (single charged) p—brane solutions can be considered as the building blocks
of more complicated solutions which are charged under more than one gauge field.
Indeed, there exist multi—charged solutions in all d dimensional supergravity theo-

ries. Moreover, from a given solution in d dimensions (either single charged or multi
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charged) one can get corresponding solutions in lower dimensional theory upon com-
pactification. This has opened up the possibility, using some well-established rules,
to build up a plethora of p—brane like solutions of supergravity theory in any dimen-
sions with a variety of property and characteristics. The literature on this subject is
'Ciuite vast and all these solutions have been classified according to the various values
of d, p, # of charges, # of conserved susy. In the following I will not try to review this
subject but rather to remind few aspects which will be relevant for future discussion.

Because of the possibility of compactifying a given solution down to lower dimen-
sions, the complete classification of intersecting p-branes solutions has been carried
out in the 11 dimensional supergravity theory. All other solutions can then be ob-
tained by the former upon various compactifications. Essentially, any given p-brane

solution of the type (1.8) is characterized by an harmonic function H, =1+ TSL and

a Killing spinor direction (determined by its world—volume position in space—time)
along which supersymmetry is conserved. When considering intersecting p—branes
configurations, the two basic questions one should ask himself are:

i) How do all the different harmonic functions of the constituent p-branes enter
the multi-charged solution?

ii) How many supersymmetries are preserved (indeed the most interesting solu-

tions are the susy preserving ones due to their stability properties)?

As already noticed, due to the possibility of compactifying a given solution to
lower dimensions, these questions should better be posed in the higher dimensional
supergravity theory, i.e. 11 dimensional N = 1 supergravity. Specifying eq.(1.8) in
d = 11 and factorizing an overall conformal factor, one has for a single Mp-brane:

05 = HV (y) [Hy () (df — da? + .. — da2) — (g2 + o+ dyly)]  (116)

In the case of orthogonal intersections (that is with angles Omodm/2), the metric
describing a number of intersecting Mp-branes solution is in general of the following

form:

as =[] B ()] (1.17)

where the overall conformal factor is the product of the appropriate powers of the
harmonic functions associated with constituent Mp—branes and where the metric is
diagonal and each component inside [...] is the product of the inverse of harmonic
functions associated with constituent p;~branes whose world—volume coordinates in-
clude the corresponding coordinates. Let us give a clarifying example, considering,
for instance, the intersection of a M2 and a M5-brane. Suppose the M5 brane to lie
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in directions (¢, z', 2%, 2%, z*, %) and the M2 brane in directions (t,z",z°). According

to the above rule the corresponding metric will read:

ds? = HZPH)® [H7'Hy*' (d* — ds?) — Hy' (dzf + da + daf + daf) +
—H;" (dzg) — (dy? + ... + dyy)] (1.18)

This harmonic function rule [47] is not peculiar of 11 dimensions but rather can be
applied to intersecting p—branes solutions in any dimension. As far as the number of
supersymmetry is concerned, on general ground one can construct supersymmetric in-
tersecting p—branes when spinor constraints associated with the constituent p-branes
are compatible with one another with non-zero Killing spinor. When none of spinor
constraint is expressed as a combination of other spinor constraints, intersecting n
p-branes preserve (-}5)” of supersymmetry. One can introduce an additional p-brane
without breaking any more supersymmetry, if some combination of spinor constraints
of existing constituent p-branes gives rise to spinor constraint of the added p-brane.
For instance, the above solution, eq.(1.18), has been shown to preserve 1/4 of the

original supersymmetry.

The above harmonic function rule has been formulated for intersecting brane
whose corresponding harmonic functions H, depend only on the overall transverse
coordinates. Therefore, in the case at hand, both for H; and Hs it turns out that

r = /y}+y?+y3+y% This means that the branes are delocalized along those
orthogonal directions the other branes are instead extended in. However, this rule
can be extended even in the more general cases, when one or all the harmonic func-
tions depend on the relative transverse coordinates. The all possible supersymmetric

configurations have been classified, for this more general case, in [48].

This kind of reasbning (both regarding the harmonic function rules and the super-
symmetry preserving rules) have been extended to more involved configurations, like
branes intersecting at non—trivial angles, solutions with momentum added along an
isometry direction, or KK monopoles added on the over-all transverse space, etc.... A
complete classification of all supersymmetry preserving intersecting M—branes solu-
tions has been carried on in [49]. A review on all these issues is [50, 51] while relevant
works are [52, 53, 54, 55, 56].

The lower dimensional p—branes can be obtained from those in 11 dimensions
through dimensional reduction. For instance, all intersecting p-branes in d = 10 can
be obtained from intersecting M—branes through compactification on S* and various
duality transformations. Moreover, once the compactification procedure has been
specified, one can retrieve both pure R-R solutions, pure NS-NS or mixed one, like
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for example bound state constructed out of R-R branes, NS-NS branes, windings
and KK monopoles. There are two ways, in general, of compactifying p-branes to
lower dimensions: one can compactify along a longitudinal direction that is along a
direction the p—brane is extended (this is call diagonal dimensional reduction because
both the world—volume and space-time dimensions are lowered by one units) or one
can compactify along a transverse direction (this is call vertical dimensional reduction
and only the space-time dimensions is lowered in this case) [59, 60, 61]. Since fields
depends on transverse coordinates, vertical dimensional reduction is more involved.
For this reason one takes periodic array of parallel p-branes along the transverse di-
rection. Then, one has to average over the transverse coordinates, integrating over
the continuum of charges distributed over the transverse direction. This process is
known as delocalization. Indeed, the resulting configuration is independent of the
transverse coordinate, making it possible to apply the standard Kaluza—Klein dimen-
sional reduction. While in the diagonal dimensional reduction the value of p remains
unchanged, in the vertical one is p that doesn’t change. Therefore, according to
eq.(1.8), in the vertical dimensional reduction the asymptotic behavior of the fields

changes. For a review on this subject see for example [62].

Combining intersecting rules and dimensional reduction in different ways is pos-
sible to cover a very vast space of supergravity solutions, both BPS and non-BPS.
As for the single charged ones, any of these solutions should satisfy, together with
the equations of motion, a system of first order differential equations like that of
eq.s(1.15) whose precise structure will depend however on the number of supersym-
metries preserved by the solution and on the given supergravity theory.

Among all these solutions a relevant role is played, for instance, by those 4 di-
mensional regular BPS configurations which can be obtained as intersection of R-R
p-brane solutions of type II supergravity theory (either ITA or IIB). Indeed, as pointed
out in the Introduction, it is possible for these kind of configurations to give a weak
coupling description in terms of intersecting D-branes and a microscopic counting for
the entropy of the 4 dimensional black hole solutions can be performed. Anyhow, in-
dependently on their higher dimensional origin, the BPS black holes, i.e. the O-brane
solutions, are in general of particular interest. Starting from a p-brane solution in
d = 10 dimensions, one can obtain O-branes in d < 10 by wrapping all the constituent
p-branes around the cycles of the internal manifold. The resulting black hole metric
will have in general the following form:

ds3 = hei(r) [h7(r) di® — dr® — r2dQ3_,)] (1.19)

where, according to the harmonic functions rule, h(r) = []i—, H;(r) with H;(r) the
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n constituent harmonic functions. As can be easily seen from the 0-brane metric
above, the dimensional reduction of single-charged p-branes leads to black holes
with singular horizon and zero horizon area. To have black holes with regular event
horizon and non—vanishing horizon area one has to start from multi-charged p-branes
in higher dimensions. This is achieved in d = 4, 5 with n = 4, 3 respectively. Consider,

for instance, the four dimensional case. The above metric reads:
ds® = h™z(r)dt® — h2 (r) (dr®+1r*d3) (1.20)

The area of the horizon, Areay, is:

W=

Areay = ;1_1;% /ng r2h(r)% = ll_fg(l) dQgr? (II HJT)) ~ lg% r=%  (1.21)
=

In order for Areay to be non-vanishing one needs then n = 4. Similar computations
in d = 5 dimensions leads to the result n = 3. In any dimension 11 < d < 6 there are
no BPS regular black hole solutions of the corresponding d dimensional supergravity
theory. The same result can be obtain also in a group—theoretical way which however
resides on some properties of BPS black holes horizons related to U-duality and which
will become apparent in chapter 2 where I will introduce U—-duality and discuss various
geometric properties of BPS black holes.

In order to analyze in a more precise way the structure of a given family of BPS
black hole solutions it is necessary to specify the dimensions one is working in. Indeed,
lowering the space—time dimensions the supergravity theory becomes more and more
involved because of the number of fields present in the game. In particular, the scalar
fields describe a o—-model geometry whose general description is crucial to the BPS
and regularity properties of the various black hole solutions. In the following we will
concentrate on 4 dimensional black holes.

1.2 BPS black holes in 4 dimensions

Let us now concentrate on the structure of BPS black holes (i.e. p = 0) emerging
as solutions of N—extended supergravity theories in 4 dimensions. Starting from the
general solution (1.8) one can easily get a 1/2 supersymmetry preserving 0-brane

solution in 4 dimensions. Indeed in this case one has:

p=0 ; P=0 ; a==V3
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'and the solution reads:

1 1 '
k -z . 3
i = (1+5) Tap— (145 (dr® +1* d©3)
T

r
-1
r
B\ 7
) <1+70> (1.22)
where:
ko 5. 82
H(T)—— (14‘7) ) A3H(’)“) = - ax;?H(’l‘)——O

is the unique harmonic function depending on the charge kq carried by the single
vector field present. As already noticed in the previous sectioﬁ, this solution is sin-
gular, that is has zero horizon area. In order to have a regular solution one should
have a bound state of n = 4 intersecting elementary p-branes which conspires to give
the right exponent to the 4 dimensional metric. And moreover, in such a case the
complete solution would depend on more than one gauge field and more than one
scalar field. In the case of toroidal compactification (that is N = 8 supergravity in
4 dimensions) there is a one to one correspondence between the number of gauge
fields and of harmonic functions in 4 dimensions and the number of constituent p—
branes in the original uncompactified 10 dimensional theory. For compactifications
on non-trivial manifolds things go in a different way. One of the reasons why it is
o is that the relation between the parameters a, p and p, eq.(1.7), it is actually
not conserved upon compactifications on compact spaces with fewer supersymmetry
(as it happens instead for compactifications on tori). For instance, for Calabi-Yau
compactifications, which yield N = 2 supergravity in 4 dimensions, one can actually
have a consistent truncation of the effective 4 dimensional N = 2 supergravity to a
bosonic action which admits a single charged regular and BPS 0-brane solution: this
is just Maxwell-Einstein gravity and the solution is the extremal Reissner-Nordstrom
(RN) black hole! As it has been shown long ago this solution is a 1/2 supersymmetry
preserving of N = 2 pure supergravity. But, as far as the number of supersymmetry
is conserved, it corresponds to a 1/8 preserving solution within N = 8 supergravity.
In the latter theory, as noticed in the previous section, such a 1/8 preserving solution
would be obtained as a bound state of at least 4 elementary constituents. The RN
solution looks like (in the static gauge):
2 ko - 2 ko ’ 2 2 502
ds® = (1+7) dt* — <1+—> (dr? + 12 dS3)

T
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ko)

Ay = - (1 + 7) (1.23)
and corresponds to a solution within pure N = 2 supergravity where no vector fields
other than the graviphoton are present and correspondingly no scalars fields are
switched on. In chapter 4 we will construct such a solution as a compactification
on a particular Calabi-Yau space (the orbifold T®/Z3), of a ten dimensional configu-
ration whose low energy 4 dimensional effective description will be indeed that of a

RN solution of pure N = 2 supergravity.

The RN metric for small values of r it is approximated by the horizon geometry:
AdS, x S* (1.24)

that corresponds to the Bertotti-Robinson metric [63]:
2

M2 \
a2 - ZBE g2 0% (sin®(0) de” + dO7) (1.25)
Mig r2 '

ds% R =
where the parameter Mpr = \/7;(2) is known as the Bertotti-Robinson mass. The
near horizon geometry of the RN metric manifests explicitly in its “direct product
structure” (1.24) the presence of an horizon. The very important fact is that a
sufficient and necessary condition for a BPS O-brane solution in 4 dimensions to be a
regular one is to exhibit such a near horizon geometry. In the general case, however,
‘the form of the full metric is different from the RN one, eq.(1.23), because it would
depend on more than one harmonic function and, according to the number of gauge
fields present, the Bertotti-Robinson mass would equal a proper combination of all
the charges (either electric or magnetic) and the above relation would read now as
Mgr = [P(g,p)]"/* with P(g,p) being a quartic polynomial in the charges (in the
next chapter we will show the important property that such a quartic polynomial
is a U-duality invariant quantity). One should have many possible ways to obtain
regular BPS black hole solutions in 4 dimensions upon compactification of higher
dimensional theory configurations. However, each of them will exhibit a RN-like
metric and a AdS, x S? near-horizon geometry with a given precise value of the
Bertotti—Robinson mass Mgg.

In chapter 3, within a systematic study of toroidally compactified black holes, we
will construct some regular BPS solutions of N = 8 supergravity which will exhibit all
these feature like having a RN-like metric (and a AdS; X S 2 pear-horizon geometry)

and depending on various vector and scalar fields.

In general, as already pointed out, when looking to BPS black hole solutions of
4 dimensional supergravity, one has to solve a complicated system of coupled first
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and second order differential equations that depends essentially on two ingredients:
1) the self interaction of the scalar fields that is described the metric h;;(¢) of the
scalar manifold M., of which the fields ¢ are interpreted as coordinates and i1)
the non—minimal coupling between these scalars and the vector fields A* of which
the exponential coupling expla ¢) F(Qp +2) in the action (1.1) is just the simplest ex-
ample. Indeed, for all 4 dimensional N—-extended supergravity theories the bosonic

supergravity action has in general the following form:

S = / d*z/—g {21% + %ImNAg(qﬁ) FAF® 4 —;-hij(@aﬂqsfa“qﬁ + %ReNAg(qb) FARE
| (1.26)

where h;;(¢) is the scalar metric on the m dimensional scalar manifold M uq,, and
Nas(9) is a complex and symmetric @ x 7 matrix (7 being the number of vector
fields) depending on the scalar fields and known as the period matriz. Depending on

the number /V of supersymmetries there are two essential things that change, namely:

1. The relative and total number of vectors and scalars, that is @ and m

2. The geometry h;;(¢) and the isometry group G of the scalar manifold M.,

‘Without entering into any details let me just remind that all supergravity theories
share a deep geometric structure whose understanding backs its origin to the semi-
nal paper by Gaillard and Zumino, [20], where it has been pointed out the fact that
for each supergravity model the isometry group of the scalar manifold M., is sim-
plectically embedded in the group Sp(27@) transforming the quantized charges (and
the electric and magnetic field strengths). This is due to the existence of a vector
bundle structure on M., that essentially is a consequence of supersymmetry: each
transformation on the scalar fields should have a counterpart on their supersymmetric
partners, the vector fields, and the way this happens is dictated by supersymmetry.
Starting from [20], during the subsequent years the geometric nature of supergravity
has been deeply studied and many of its implications have been investigated. Nowa-
days this feature is at the core of the recent developments in string theory where,
because of the relation between the transformations on the scalar manifold and on
the quantized charge, the classical isometry group of M., has been promoted to be
a quantum symmetry of the full string spectrum, the so-called U—duality group [64].

I will come back on this important issue in the next chapter.

The non—canonical coupling in the action (1.26) between scalar and vector fields
in the field strengths kinetic term implies that the quantized charges fulfilling the



Dirac quantization condition, namely:

L
g = Gy pA:/ FA  with GKU“ 0 (1.27)
g2 52

- OF),
are not the physical charges of the interacting theory. The latter can be computed
by looking at the transformation laws of the fermion fields, where the physical field
strengths appear dressed with the scalar fields, [65]. Indeed, in extended supergravity
there are three kinds of fermions: the gravitino t4,, the dilatino fields x4pc (that
are spin 1/2 members of the graviton multiplet for N > 3 and transform in the three
times antisymmetric of the R-symmetry group SU(N)) and the gauginos A, that
are spin 1/2 members of the vector multiplets (that exist only for N < 4). The

supersymmetry transformation laws of these fermion fields are:

1,
Sban = Viea —7 T80 Yue” (1.28)
5XABC’ - 41 PABCDliB#@i’)’#ED - 3T[(;];|pg,ypa Ec] (129)

for the gravitino and dilatino, respectively, and:
Sy = aPip 0.0 ® + bT v eq (1.30)

for the gaugino, a, b being some numerical coefficients depending on the specific model.
T4p and T are the physical dressed graviphoton and matter field strengths, respec-
tively. Once a given model is considered, the simplectic structure of the supergravity
theory let one obtain all the necessary relation between the physical field strengths,
the scalar fields, the quantized charges and the 'naked’ field strengths entering the

lagrangian.

1.2.1 Central Charges in N—extended D = 4 supergravity

The D = 4 supersymmetry algebra with N supersymmetry charges reads:

{Quao» Qps} = 1(CY*)op Pudan — CopZap
(A B=1,...,N) (1.31)

where the susy charges @, = QL% = @7 C are Majorana spinors, C is the charge
conjugation matrix, P, is the 4-momentum operator and Z,p is the central charge.
The central charge is an antisymmetric tensor Z4p = —Zp4 that admits N/2 skew
eigenvalues and, in terms of these eigenvalues, the well known Bogomolny bound on
the mass of a BPS state generalizes to:

M >|2| V¥Z,I=1,...,N/2 (1.32)
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In order to understand this result let us introduce the following combination of su-
percharges:

- R R
Salla = 5 (Qarvo i€ Qy )a (1.33)

where the index a has been written as a pair of indices as:
A= (a,I) where a=1,2;I=1,...,N/2 (1.34)

Combining eq.(1.31) with the definition (1.33) and choosing the rest frame where the
four momentum is P, =(,0,0,0), one obtains the algebra:

{gi ) ?ﬁ,} = e, C PG (M F Z1) 015 (1.35)

By positivity of the operator {—S—::I . —S—ZCJ} it follows that on a generic state the Bo-
gomolny bound (1.32) is fulfilled. Moreover it follows that the states which saturate
the bounds:

(M + Z) |BPS state,i) =0 for some Z; ’ (1.36)

are those which are annihilated by the corresponding reduced supercharges:
5., |BPS state,i) = 0 (1.37)

These states are in a different representation with respect to the other massive states.
Indeed eq.(1.37) defines short multiplet representations of the original algebra (1.31):
one constructs a linear representation of (1.31) where all states are identically anni-
hilated by the operators —5’2 for I = 1,...,Nmag. For different values of np,,, one
has different shortening, corresponding to different number of preserved supersym-
metries: this is the generalization to various supersymmetry preserving solutions of
the single charged O-brane solution discussed previously and which preserve 1/2 of
the original supersymmetry. Eq.(1.37) select the killing spinors of the solution and
is indeed the generalization to various supersymmetry preserving BPS states of the
first order differential equations (1.15). The fact that BPS states fulfill short multi-
plets is the group representation theory argument which confirms that these states
are actually exact states of non—perturbative string theory: a short supermultiplet, if
supersymmetry is unbroken, cannot be renormalized to a long supermultiplet.

Let me end this section with an observation that will reveal its usefulness in the
following. There is a result obtained by Witten and Olive long time ago [19], that
is crucial in order to unroll the deep role of central charges in looking for charged
BPS solutions in supergravity. What they have shown is that the central charges
have a topological meaning, being the topological charges corresponding to solitonic
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configurations of a given supersymmetric theory. Let us very briefly remind their
argument which, although introduced for an N = 2 theory, is easily extended to
higher N. When the vector and scalar fields composing matter supermultiplets are
in a configuration corresponding to a ’tHooft—Polyakov soliton, then in the integrand
defining the supersymmetry charge from the super—Yang—Mills lagrangian:

L= /d4m [-—EFSVF“““ + %DuéaD”CI)“ — V(@) + fermions (1.38)

the boundary terms:
ReZ = / d’z & (P°F)
ImZ = / d*z 950, (B F,) (1.39)

are different from zero and appear as central charges in the algebra (1.31) (here we
have just Zap = Zeasp because of the N = 2 supersymmetry). The two above
integrals have exactly the form of the electric and magnetic charges defined from the
action (1.38) multiplied by the expectation value a = /< ® &% >4 of the scalar
fields:

ReZ =aq , ImZ =ap (1.40)

A similar kind of reasoning holds true for any supergravity theory in 4 dimensions.
Indeed, in full analogy to what happens in the above case, for any N—-extended su-
pergravity theory one has a relation between the central and matter charges and the
dressed field strengths Typ = Tip + Thp and (for N = 3,4) Ty = T;* + T; making
explicit the dependence of the former from the quantized charges and the asymptotic
values of the scalar fields, as in eq.s(1.39),(1.40). We have:

Zap = / Tan :/ (hajasF™ = f4pGa) = hajasp™ — Fig (1.41)
sz, s

where (g4, p") are the conserved quantized charges and ( fA, k), according to the
geometric structure of any supergravity theory, are simplectic sections of the Sp(27)
bundle over M., and depend on the asymptotic values of the scalar fields through
the period matrix Myx. Summarizing, according to the discussion below eq.(1.27),
the physical meaning of the central and matter charges Z4p5 and Z; is that of being
the physical charges of the interacting theory (being the integral of the physical field
strengths). The central one, Z4p, has also the meaning of being the central charge
of the supersymmetry algebra, of course. In the next chapters I will come back on

these issues.
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1.3 D-branes

If supergravity is the low energy effective theory of string theory, one should expect
the appearance, at the string level, of non—perturbative states whose low energy coun-
terpart are the p—branes. However, one of the major difficulties that has to be tackled
in order to do that is to fit these non—perturbative states into the conformal field the-
ory defining perturbative string theory. And this is the reason way the string theory
(i.e. weak coupling) description of the supergravity p-branes has been a long stand-
ing non-solved problem in string theory. On the contrary these states are expected
to be present in the string spectrum in order for the conjectured dualities between
string theories to be valid, [11, 66] (actually their discovery, at the end, has been the
most strong support in favour of the validity of the duality picture). In a seminal
paper, [24], Polchinski showed that these non—perturbative states are indeed present
and moreover that it is possible to give their description within weakly coupled string
theory. These objects are the D-branes and the remainder of this chapter is devoted
to their description.

A D-brane can be defined as an hypersurface on which the string world-sheet can
end through a boundary. Since this correspond to choose Dirichlet rather than Neu-
mann boundary conditions for the field in the world—volume directions, these objects
have been called D-branes. Their existence was already known as possible exotic
kind of open string theories (indeed the usual open string theory can be defined as a
theory of D9-branes, in modern parlance). However, it has been the realization that
they are actually present as non—perturbative solution of closed string theories and
their subsequent identification with the R-R p-branes of supergravity that revealed
the preeminent role of D-branes in string theory.

The more important properties characterizing the D-branes, and crucial to let
their identification with the supergravity p-branes being possible, are essentially
three:

e they are charged under the R-R p—form gauge fields (differently from funda-
mental strings and NS 5-branes)

e they are BPS states

e they are non—perturbative states of string theory (their mass goes like 1/g,, in

string units)

As already said, a D-brane can be defined as an hypersurface on which open strings

can end. In a generic theory of open strings there are two kind of boundary conditions
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such open strings can satisfy in order to solve the bulk equations of motion. These
conditions should be satisfied by the bosonic and fermionic world-sheet fields (X and
v respectively). The bosonic fields can satisfy Neumann or Dirichlet b.c. while for
the world—sheet fermions one has to identify the two chiral components (¢ and TZ) up
to a sign. The most natural choice is to associate the + to Neumann and the — to
Dirichlet. A Dp-brane is a theory of open strings which satisfy p+1 (N,+) boundary

conditions and 9 — p (D,—) boundary conditions:

N:  0,X%— =0 P =% a=0,1,..,p
D: (Xi—Y)|pmo =0 of=—¢ i=p+l,.,9 (1.43)

where Y is a (9—p) dimensional vector in space-time. In this way the original SO(9, 1)
Lorentz invariance of the theory is broken to SO(p, 1) x SO(9 —p), corresponding to a
flat topological defects positioned at transverse position Vin space—time, a Dp-brane.

_—
9.
"

X" X

9

Figure 1.1: a Dp-brane as an hypersurface on which open strings can end. The direction orthogonal
to the brane are Dirichlet, the ones parallel to the brane are Neumann.

At this stage D-branes seems to be rigid hyperplanes infinitely extended in a
number of spatial dimensions. Actually, the fact they do couple to fundamental
strings implies that they are not rigid objects, but rather dynamical ones (67, 68].
They fluctuate (and these fluctuations are described by open strings starting and
ending on the D-brane), they emit closed strings (indeed the open strings living on
the world—volume can close and come out), they can move and interact. In fact the
analysis of all this D-branes physics has been a major field of study in the last few
years.

D-branes are BPS states. This can be easily seen as a consequence of the boundary
conditions of the world—sheet fields. The two supercharges of the type II theory are
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defined in terms of left and right moving currents which gets reflected into each other
at the boundary. Only the linear combination Q, -+ cg‘ﬁ @ﬂ of the two supercharges is
conserved while the other one, Qo — c2#Qp, is broken (c2” is a phase factor coming
from a parity transformation along Dirichlet directions X*). Hence a D-brane is in-
variant under half the supersymmetry of the original type II theory, which is precisely
the same BPS condition satisfied by a p-brane solution of the low energy effective
theory. When more than one D-brane is present, i.e. when the world—sheet has more
than one boundary, the combination of supersymmetry left over is the intersection of
those left by each of the branes. In presence of a Dp and a Dg-brane, one finds that:

16, if g—p=10
# of conserved SUSY = ¢ 8, if ¢g—p=4,8 (1.44)
0, if g—p=2,6

This means that besides single Dp-branes preserving 1/2 of the 32 supersymmetries,
there exist BPS configurations formed by two of them preserving also other fractions
of these supersymmetries. For example, it turns out that two parallel Dp—branes pre-
serve 1/2 supersymmetry while a Dp and a D(p +4) or D(p + 8)-brane preserve 1/4
of supersymmetry. In fact this discussion can be extended to more complicated con-
figurations with more D-branes at arbitrary angles or superposition of any number
of Dp-branes, etc... (for a classification of all supersymmetric configurations of these
bound states, see for example [49, 50, 52, 53, 54, 55]). In this way one can reproduce,
at weak coupling, all possible different supersymmetry preserving R—R p~brane solu-
tions of the low energy effective supergravity theory, discussed previously, as various

intersecting D—branes configurations.

As already noticed, D-branes are dynamical excitation of string theory and Polchin-
ski’s b.c. prescription allows for an exact o—model description of fundamental strings
in presence of D-branes. Their low energy effective action, at leading order in the
string coupling constant g, has been found to be the following Dirac-Born-Infeld

action [58] (written in the string frame):

Sper = —Tp / d”“&e‘d’\/—det (G + Fuw) — iy / (ANe”) ) + form.
Wpt1 Wot1
(1.45)
where F = 2ma'F),, — Buw g and b are the pull-back of the metric gy and the Byy
field on W4, (the latter being the Dp-brane’s world-volume) and F),, is the world-
volume field strength. The quantity A indicates the formal sum of all the pulled—back
R-R forms. Therefore, the term A A e represents a sum of forms and it should be

understood that one has to pick—up the part of it which is a (p + 1)—form and can
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then be integrated over the (p + 1) dimensional world-volume W,,;. The tension T,
and the charge density y, are equal (as should be for a BPS state) and are given by:

T, = pp = (2)° (@) (1.46)
The factor e™? in the action (1.45) corresponds to the disk topology and therefore
the effective tension of the Dp-brane is actually T,/g,, indicating the solitonic (or
better non—perturbative) nature of D-brane states, as predicted by Witten in [11].
This fact make them quite different from the NS5-brane (which has a mass going
like 1/¢? in string units) and this is indeed at the origin of the possibility of giving of
them a flat space~time description at weak string coupling (this not being the case for
the NS5-brane). Indeed the strength of the gravitational field of all these objects is
determined by x2,M where M is the given (density of) mass. Since Newton constant
is proportional to g2 in string units, k3, M — 0 as g, — 0 not only for the string but
also for the D-branes (and not for the NS5-brane). Since the space time becomes
flat, one should have expected to exist some non-singular description of these states

at weak coupling, even if they are non—perturbative in nature.

The action (1.45) encodes all the interactions of the Dp-brane with the massless
modes of the strings, therefore the complete low energy effective action is eq.(1.45)
augmented by that of these massless modes, that is, written in the string frame:

1

2
2K7,
3

Z p + 2 P+9)

1 ) 1
Iés) /d,lox —g e‘2¢ |:<R—— §VM¢VM¢__ ﬁe ¢HM,NPH]\/INP> .

+ ferm. (1.47)

Due to the normalization of the gravitational term and the field strength kinetic
term, the gravitational tension (and charge density) should be defined in units of the
coupling ﬂm(lo) to be:

- 3—
Ty = fi, = V2r (4r%) 7 (1.48)

where Tp = \/in(lo)Tp and the same for p,. From the above formula one can easily
see that D-branes fulfill a Dirac quantization condition. Indeed a flat Dp-brane with
vanishing gauge field (F,,, = 0) couples minimally to the R-R (p+1)—form A1) with
the charge (1.46) and therefore the Dp-brane acts as a source for Ag,1). Of course
all R-R forms are not independent degrees of freedom, because of Hodge duality: the
(p + 2)—-form field strength that couples to a Dp-brane is dual to the (8 — p)—form
field strength that couples to a D(6 — p)—brane. This is the 10 dimensional analogue
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to the duality between electric and magnetic point charges in 4 dimensions and so
one expects a Dirac quantization condition between 1, and g, to hold. Due to the
non—canonical normalization of the gauge kinetic term in the action (1.47), one should
actually expect the charge (1.48) rather than that defined in eq.(1.46) to satisfy this
condition. Indeed, from eq.(1.48) one sees that:

fip flo—p = 27 (1.49)

The fact that the Dirac quantization condition is satisfied with the lower possible
lvalue of the integer n (n = 1) means that D-branes are really the elementary quanta
carrying R-R charges.

In a quite straightforward way one can compute, from the action (1.45), the asymp-
totic fields generated by the Dp—brane. And the crucial result is that these turn out
to match exactly to those corresponding to the p-brane supergravity solution, ob-
tained by the solution (1.8) in the limit (1) — 0. This is another strong indication
that indeed D-branes are the string theory description of R-R p-brane solutions of
supergravity theory. Notice, indeed, that the action (1.45), taking vanishing F,,
field and transforming to the Einstein frame trough the metric rescaling g% = e %gs,
coincides with the p-brane world—volume action (1.2). The p-brane density charge
(and tension) fulfill a Dirac quantization condition whose value of n is undetermined,
of course (see eq.(1.13)). On the contrary, the D~branes, as shown above, are really
the elementary quanta carrying R-R charge. It is actually an elementary p-brane
solution fulfilling the Dirac quantization condition with n = 1 which corresponds, at
weak coupling, to a Dp-brane. This indicate that the multi charged BPS p-brane so-
lutions carrying n units of R-R charge can be seen, at weak coupling, to be described
by a superposition of n (parallel) Dp-branes.

As anticipated, the relevant observation has been that although effectively defined
through open strings ending on them, this objects are present at the non—perturbative
level also in theories of closed strings. In a type II theory, D~branes are seen as objects
whose fluctuations are determined by the dynamics of open string starting and ending
on them and as sources of closed string states which couples minimally to the R-R
forms. As for their low energy counterpart, the p—branes, they are present in type
IT and type I theories for values of p according to the presence of the corresponding

R-R gauge potential. In table 1.1 are reported all possible Dp-branes.

Thanks to the modular invariance of the string world—sheet, all the relevant prop-
erties of D—branes can be reformulated in a closed string language, this being much
more suitable when considering D—branes in the context of type II theories. Doing

a modular transformation from the open string modulus t to the closed string one
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String Theory R-R fields D-branes present in the spectrum
Type IIA Ay, App;m Do, D2,D4, D6, (D8)
Type 11B ¢, A, A:{UPU D(-1),D1,D3,D5, D7

Type 1 A D1, D5, D9

Table 1.1: The D-brane scan in different string theories. There is no R~R potential for the 9-
brane, this being type I theory itself (anomalies cancellation needs 32 of these objects to be present).
The D8brane in type IIA corresponds to a non vanishing cosmological constant, m # 0, and the
corresponding low energy effective theory is massive type IIA supergravity, [69, 70, 71, 72]. The
two heterotic theories have no R-R fields and therefore no D-branes. Relevant works on space time
filling branes, like D9-branes and other more exotic branes are [73, 74].

I (¢ = 1/1), the computation of the open string one point function on the disk, for
instance, can be seen as a closed string emission by the D-brane while the cylinder
amplitude can be seen either as a one loop open string vacuum amplitude or as a tree

level exchange of (virtual) closed string states between two D-branes:

o

Figure 1.2: the interaction between two D-branes seen as a one loop open string vacuum diagram
or equivalently as a tree level closed string one (t is the open string modulus while 1 is the closed

string one).

In the open string parametrization, the cylinder has a fixed length 7 equal to
the length of the open strings and a variable circumference t corresponding to the
loop proper time while in the closed string parametrization the cylinder has a fixed

circumference 27 equal to the length of the closed strings and a variable length 1
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corresponding to the propagation proper time.

In the context of type II theory such a closed string point of view turns out to be
the more suitable one. There exist a very powerful formalism, the so—called “bound-
ary state formalism”, which is very useful to treat boundaries (which are naturally
associated with open string) from a closed string point of view. This formalism has
been developed originally in [75, 76, 77]. The main idea is that the boundary itself
can be regarded as a closed string coherent state, the boundary state, implementing
the relevant boundary conditions. In the next section I will outline its main features

and properties within the description of D-branes.

1.4 The boundary state formalism

The boundary state formalism is very suitable to study D-branes physics. Indeed
it allows an easy and powerful description of a static D-brane, a rotated or boosted
one, a D-brane with electro-magnetic flux on its world—volume and it is particu-
larly helpful in studying D-branes’ interactions. Finally, and this is very useful in
the comparison to p-brane solutions of supergravity, using this formalism it is quite
straightforward to compute the long distance behaviour of the (massless) fields the
brane can emit (the graviton, the dilaton and the R-R field strength). A boundary
state describing a D-brane can be defined as a coherent state written in terms of
closed string oscillators which implement the boundary conditions (N or D) of strings
which the brane can emit. This state encodes all the interactions between the D—

brane and the fundamental strings in the semiclassical eikonal approximation. Let

us consider the usual string mode expansion (in units where 2ra’ = 1 and taking
z2=o0+1iT):
TH .
YM 2 - __pu O!“ 27'mz . O{ﬁ e—21rmz
XH(2) 9 \/ZL?Z n )

wu(z) — Z( ;LL r)7rmz + ,(/)/.L —%rmz)

n>0

T TH z ) | —Orniz ~u  2rniz

T - Sl e e

Zﬁ_“(f) _ Z(Jﬁe—%mz +¢ﬁne2wmz<> (1.50)
n>{0

For a Dp-brane at 7 = 0 and Dirichelet position Y in space-time, the boundary
state should therefore satisfy the following boundary conditions (in the closed string
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channel) for the bosonic and fermionic oscillators:

N: 8,X%,-|B)=0 (qpa - imZa) oo |B) =0 a=0,..,p

rolB) =0 (V' +ind) l=o|B) =0 i=p+1,..,9
(1.51)

D: (X'-Y"

where, because of the modular transformation, there has been essentially an “ex-
change” between o and 7, as it is appearent comparing the above b.c. with those of
eq.(1.43) and 7 accounts for the two possible signs for the fermions (the reason why
expliciting the dependence on 7 will become manifest shortly). According to eq.(1.50)

the above b.c. can be summarized as follows:

(P + (Sp)ip”) [B.m) = 0
Ya)|Bom) = 0
(= in(S,)0%,) 1Bm) = 0 (1.52)

where S, is a diagonal matrix with £1 entries for N or D b.c. respectively. The

solution can be in general factorized in a bosonic and a fermionic part as:

The first condition in eq.(1.52) regards the bosonic zero modes. It just states that
the boundary state carries no momentum along the Neumann directions and then
the zero modes part of the boundary state, |0,)5, can be constructed out the Fock
vacuum as a superposition of Dirichelt momentum states |k;):

— 1 i d*?k E v
s = 699 (V=) 0) = [ 2 o8

For the fermions, the only zero modes are in the R-R sector (which has integer
modding) and the state |0,,7)F can be constructed in various ways in the R-R bi-
spinor space (see [78, 79]). Call |a), |3) the spinor states created out of the Fock
vacuum. Generically, the zero modes part of the R-R boundary state will be of the

form:

0, ,MF = Sap la) |5) (1.53)

Imposing the third of eq.s(1.52) with n = 0, one finds:

: 11
p L+l

S=Cr..T :
1+

(1.54)
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In the NS-NS sector there are no zero modes. The final supersymmetric boundary
state can then be evaluated solving the boundary conditions eq.(1.52) for the oscillator
part, once the GSO projection has been taken into account. Given the GSO projection
operator P = 1/2(1 + (=1)¥), the projected boundary state is:

{1/2(|B,77) +|B,-n)) R-R

]B,n):P‘B:m: 1/2(|B,n) — |B,-n)) NS - NS

(1.55)
where the + sign in the R—R component of the boundary state depends on the overall
chirality (type IIA or type IIB) and where now it is apparent the reason why to let
be explicit the suffix n to the fermionic part of the boundary state in eq.(1.52). The

final result is:

|BY)g = exp Z(a‘inSW&’in)} 10,) B

Ln>1

|1B,mr = exp —inZ@ﬁnSﬁﬂkn)} 10p, ) F

n>0

In all what stated nothing has been said about the ghost (b, c) and the superghosts
{B,7) part of the boundary state. Actually this part can be determined requiring
the boundary state to be BRST invariant, i.e. requiring that (Q + @) |BY) = 0. It
is easy to show that, apart from the zero modes, their contribution exactly cancels
that of a pair of bosonic and fermionic unhpysical fields recovering a light—cone gauge
treatment in which only physical fields propagate (there are some subtleties instead

concerning superghost zero modes on which I will come back further on).

From the above boundary state one can also construct that corresponding to a
rotated or boosted Dp—brane. This can be done by the same procedure but starting
from rotated (or boosted) boundary conditions. Equivalently, as it has been shown
in [80], the rotated and boosted boundary states can be obtained by applying to the
static one a Lorentz transformation with negative angle (or rapidity). Consider for
instance a rotation of an angle wo in the plane (X?, XP*!) where the two directions
are N and D, respectively. The boundary state for the rotated Dp-brane is obtained
by applying the rotation e(~™®/ 7™ to the boundary state | Bp) of a static Dp-brane.

The bosonic zero mode part now becomes:

. ; ; Pk v
10p, a)p = 6 (cosma XPH! —sinraX?) 6677 (V' - o) = /We”"y k()
where k(a) = (0,...,0, —sinma kP, cosma kPH kP2 k°7PF) is transverse to the

rotated D—brane world—volume. Even the fermionic zero modes are affected by the
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rotation. What happens, essentially, is that the matrix S, eq.(1.54), transforms as
S(a) = Ag(a) SAg'(a), where Ag is a SO(2) matrix in the spinor representation.

Hence one gets:

1+t

S(e) = CTY..T7"! (cosmaI? + sinmaPT) .
141m

(1.56)
and the fermionic zero modes contribution to the boundary state, |0,,7)r, consis-
tently transforms to |0, ,7, a)r. The effect of J on the oscillator part of the boundary
state amounts to transform the matrix S¥ as S(a) = Ay(a) S Ay (), where Ay is a
SO(2) matrix, in the fundamental representation, generating a rotation of an angle
ma in the plane (X7, XP*1). The net result is:

1, 0 0 0
0 cos2ma  sin2no 0
S = 1.57
(a) 0 sin2ma —cos2mo 0 (1.57)
0 0 0 "’18——;»

An identical procedure should be carried on in order to generate a boosted D-brane:
indeed a D-brane moving with a velocity v along a Dirichelet direction X* can be
considered as to be rotated by an imaginary angle in the plane (X?, X?). The angle
is 7 times the rapidity € defined such that v = tanhme. Finally, one can construct
in a similar way the boundary state corresponding to a Dp-brane with constant
electromagnetic flux on its world-volume. It can be obtained, for example, from
that relative to a rotated or boosted Dp-brane by T—duality. Indeed, turning on an
electric field on a Dp-brane is equivalent, in the T-dual picture, to boost a D(p — 1)-
brane in the direction along which T-duality has been performed. Turning on a
magnetic flux, instead, is equivalent, in the T-dual picture, to rotate a D(p — 1)~
brane in the direction along which T—duality has been performed (see [81],[82]). An
important feature of Dp—branes with magnetic flux turned on is that they do couple
also to other R-R forms beside the (p + 1)~form. The corresponding coupling can be
evalueted by expanding the WZ term in the Dp-brane effective action eq.(1.45): for
a F # 0 there are more terms contributing other than the one with the A4,y form.
This means that a Dp-brane with magnetic flux on n planes has lower dimensional
branes effective charges switched on; more precisely, it can be interpreted as a bound
state of n + 1 Dg—branes with ¢ = p,p—2,...,p — 2n.

The first important thing a boundary state representing a Dp-brane encodes, is
the coupling of the Dp-brane to all the tower of string states. This can be computed
by computing the overlap between the boundary state |B) and the corresponding
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closed string state |¥). In this way, for instance, one can reproduce the correct Dp-
brane couplings 77 and [P to massless R-R and NS-NS fields given in eq.(1.48).
Moreover, within this formalism, one can also compute directly the asymptotic fields
emitted by the Dp-brane by the following correlation (and then Fourier transforming):
< ¥ >= (B|+#|¥) , where H is the closed string Hamiltonian. For more details see
[78].

1.4.1 D-branes interactions

‘With the use of boundary state tecniques one can reproduce all the known results
concerning interactions of Dp-branes. In the present subsection, using the above
defined boundary states for D-branes both at rest and moving, I will review the

essential aspects of the interaction between two D-branes.

The D-branes cylinder amplitude can be interpreted in the closed string channel
as a classical force experienced by the two branes and mediated by closed strings
exchange. In the boundary state formalism it is obtained as the correlation between
the two boundaries as: A = <B1[%lBQ>. Schematically:

A | I e R

1

<{B/l o IB,”

Figure 1.3: The formal correspondence between the different boundary state components and the
string world—sheet boundaries entering the interaction.

The amplitude is:
A = N/ dl [(Blle"lH[BQ>N5_NS + <B1;E—ZH.BQ>R_R} (158)
0

where we have separated the contribution from the NS-NS and the R-R boundary
state while the overall factor NV is an unknown quantity because the boundary state
by itself it is determined up to an overall coefficient. It is precisely computing the
above amplitude that one can fix this overall normalization for the boundary state

by comparison to the already known open string result ([24],[83]). According to the
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definition of the GSO projector operator, the above amplitude splits in four different
contributions (two for each sector) in which no correlation depend on the absolute
value of 7 of the given boundary state but rather on the product n7n'. These four
contributions correspond to the four spin—structures of the covering torus that we
shall call R+, R—, NS+ and NS—. Defining (B;|e™*#|By)yy = (B1,nle”#|By,7')
the amplitude can be rewritten as:

(e 0]
1
A = N/ dliKBlle_lHlB?)NS-%- — (Bile™|By)ws- +
0

+ (Bile | Ba)ry + (Bile™"|By)g] (1.59)

A compact way of writing this result which will be very useful for further considera-
tions is:

A = N/oo dl%Z(t) Z(1) (1.60)

where it has been definied the “partition function” in the spin structure s as:
Zs(l) = <B1|€_ZH\B2>S (161)

According to the corresponding boundary state decomposition, the partition functions
split into the product of a bosonic and a fermionic part, Zg(l) and Zr(l). Each
of these partition functions can be further decomposed into a zero mode and an
oscillator contribution, Zy(l) and Z,s(l). In full generality, the evaluation of all
different contributions can be computed by means of the explicit boundary state
structure outlined above. Suppose to consider, for instance, the interaction of two
parallel and static Dp—branes. The contribution of the zero mode part of the bosonic
partition function reads:

2

&Pk . 9-p 1
Zg (1) = %H/(—z;)g:;em're" = Vp+1(27rl)_226_2_ | (1.62)

o
“’i ta

where 7 = }71 — }72 is the distance separating the branes in the transverse space. For

the contribution of fermionic zero modes one finds:
ZNst =1, 728 =2, Z8 =0 (1.63)

As for the oscillators contribution, this can be computed in terms of the S matrices
defined before and charaterizing each of the D-branes. For the bosons one finds:

B = [[det™1 (1 +e*™STS,) (1.64)

. n=1

Z
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For the fermions the four different spin—structures yield different contributions:

o0
ZEE() = H det™1 (1 £ e 43T S,)

n=1

oo
ZNIE(D) = ][det 1 (1 e USTS,) (1.65)

n=1
As for a single boundary state, the oscillator part of the ghosts and superghosts gives
a contribution which is opposite to that of a pair of boson and fermions fields. This
amounts to use, at the end, a 8 x 8 light—cone matrix S in the above equations instead
of a 10x 10 one. While there is no contribuiton to zero modes from the bosonic ghosts,
as anticipated the superghosts zero modes are present and subtle to be treated. In
the NS-NS sector there is no contribution since the superghosts are antiperiodic and
have no zero modes. In the R-R sector, however, the superghosts are periodic and
have zero modes. While in the RR+ spin structure they are fake (as it happens for
the fermions) and their contribution is just to lower by a factor 2 the 25 contribution
in eq.(1.63), in the R-R— spin structure the superghosts zero modes are true zero
modes and should be treated in some way. This is a delicate point whose way out has
been looked for in different directions (see for example [76] and [79]). I will come back

on this aspect in chapter 4 where an alternative and effective way out is proposed.

Coming back to the computation of the interaction of two static and parallel Dp—
branes, using all the above results one can finally get the expected result, according to
[24] (fixing the normalization factor to be N = sz /2%). With some straightforward

calculations one gets:

_ Vo+1 Codl .21 ! H_aﬁi 0]2il)
A = 24(271'\/07)1"“1/ lg—E‘Ee 4mz§az 19 211) =0 (1.66)

where 9, are Jacobi’s theta functions while 7 is the Dedekind 7 function (see for
example [1], appendix 8.A or [2], section 7.2).

Due to the well known Jacobi abtruse identity, the numerator in the > sums up
to zero and therefore the overall result is indeed 0. The vanishing of the amplitude is
a consequence of the 1/2 spacetime supersymmetry left unbroken by the BPS system
of the two parallel D-branes. The interpretation of this result in the closed string
channel is as the no-force condition one should expect to hold for the interaction
between a BPS combination of states. Indeed, a level by level cancellation occurs
between the attractive exchange of NS-NS bosons and the repulsive exchange of R-R
bosons within each supermultiplet with growing mass and spin. The same vanishing

result occurs also in the open string channel, of course, where its interpretation,
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however, is given in terms of the expected vanishing energy for the vacuum of a theory
with some unbroken supersymmetries. According to (1.44) the same vanishing result
holds even for a Dp-D(p + 4) and for a Dp-D(p + 8) system and it can be easely

computed again within the boundary state formalism.

Upon use of the moving boundary state one can also compute, in a perfect analo-
gous way, the interaction of two D-branes moving along some D direction with relative
velocity v = tanh we . Again the computation reproduces precisely the already known
result, [83]. Notice that the way D-branes are defined according to Polchinski’s de-
scription let us to describe them in terms of a fixed background conformal field theory
but does not easely generalize to time-dependent backgrounds. Therefore, in study-
ing D-brane dynamics, one has to do some approximation. Indeed, according to [83],
one should consider the forward scattering of two parallel D-branes in the eikonal
approximation, where one brane moves in a straight line past the other with a given
impact parameter b. The branes interact by string exchange but no back-reaction on
their trajectories or internal states is taken into account. Actually, this is the right
picture the boundary state has been defined for, according to what stated at the
beginning of the previous section. Using the explicit form of the moving boundary
state, one retrieves the correct result, that is:

v, °dl e 1e 9, (€| 2i1)93 (0|231)
A = P / e T = Y (—1)lte e e 0 (167
232V )P Jo 2 ;( ) 91 (1€|2:0)n° (24]) 7 (1.67)

where b is the impact parameter and e the relative rapidity. Notice that now, differ-

ME

ently to the static case and independently of the dimensionalities of the two Dp and
Dg branes interacting, the result is not vanishing. This is consistent with the fact
that such a state is not BPS and so one does not expect a no—force condition to hold.
As a consistency check between eq.s(1.66) and (1.67) one can see, as it should be,
that taking ¢ = 0 in the second equation one gets the first one.

As already noticed, all these results are insensitive to whether the computations
are carried on in the open or closed string channel. Nevertheless, it is their inter-
pretation that is different. It is particularly interesting, for instance, to look for the
different ways the string modes sum up at short and long distances. One can show in
a rigorous way the intuitive result that while at short distance the open string picture
is the more suitable one, at long distance is the closed string picture which is more
likely. Indeed, at short distance, according to fig.1.3, the major contribution comes
from bride and very short world-sheets (t — oo, 1 — 0). In the open string channel
the massless modes give the dominant contribution while in the closed string channel
the contribution of the massive modes is comparable to that of the massless ones.
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Therefore at short distance the most natural description of the D—brane interaction
is that in the open string channel, where a simple truncation to the massless mode
is sufficient to give a good approximation. At long distance is the opposite. The
dominant contribution arises from very tiny and long world—sheets (t — 0,1 — oc)
and while in the open string channel one cannot select the massless modes as the
dominating ones, the more suitable picture turns out to be the closed string one,
where now its massless modes give a leading contribution with respect to the massive
ones. It is interesting to notice that in the case of moving D-branes, eq.(1.67), the
leading term in the velocity is a scale invariant term. Indeed, both a long and short
distance one has A ~ v*/b%7P, [84]. For interesting generalizations of this result to
spin dependent effects, see [85, 86].

The massless spectrum of type I string is 10 dimensional N = 2 supergravity and
indeed in the long distance limit one retrieves the different contributions given to the
amplitude by the different supergravity fields. The no-force condition has therefore
the meaning that in the interaction of two 1 /2 supersymmetry preserving BPS states,
the NS-NS attraction (dilaton-+graviton) is balanced by the R-R gauge repulsion (of
course this hold at each massive level, also). In the case of a Dp-D(p + 4) BPS
state, there is no R-R interaction because the two branes couple to different gauge
fields. The no—force condition holds now, at the massless level, because the graviton
attraction is exactly balanced by the dilaton repulsion. The other BPS case, the
Dp-D(p-+8) state, is a bit more subtle; for a complete treatment of that case see [79].

1.5 D-branes versus p—branes

Through out this chapter I gave an overview of the properties of both the supergravity
p—branes and the stringy D-branes trying to emphasize all the elements which make
manifest their deep relation. The possibility of describing this non—perturbative state
at weak coupling in string theory through a powerful and efficient CFT description has
opened up the possibility to study many non—perturbative aspects of string theory
and has given much support to all duality conjectures which have so dramatically
changed our present view of string theory.

As far as the relation between D~branes and p—branes is concerned, there are few
remarks I would like to make before ending this chapter.

The first important thing one should notice is that, according to the definition

of section 1.1, D-branes turn out to be the weak coupling description of elementary
p-brane solution of the low energy effective theory (and not of the solitonic ones).
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Indeed, by definition, a Dp-brane is a source for the R-R (p + 1)—form and its low
" energy effective action always has a source term (the DBI action). Therefore, they
correspond to the elementary p—brane solution of supergravity. The fact that one can
have a string weak coupling description of all Dp-branes, even of p/(6 — p) (electro-
magnetic) dual pairs, is due to the fact that from the string coupling point of view
D-branes are all on equal footing since their tension and charge are always propor-
tional to 1/gs, independently on the value of p. On the contrary, since the “gauge”
coupling of the string to the NS By field is proportional to the string coupling g,
itself, the NS5-brane is a genuine soliton from the string theory point of view (the
NS5 is electromagnetic dual to the string) and its tension goes like 1 /g?. No way of
describing the NS5-brane as a fundamental object, at weak coupling.

From the point of view of black hole/D-brane correspondence, there is another
remark one should make. The D-branes and the p-branes are the description of
(probably) the same object in very different regions of the parameter space. The
regime of the parameter space in which supergravity is valid is different from the
regime in which weakly coupled string theory holds. The microstates entropy count-
ing (which is one of the biggest achievements of D-brane physics) is based on the
question of counting BPS states in the D-brane world-volume theory. This can be
done in the opposite regime with respect to the regime of validity of supergravity.
Due to supersymmetry, however, one can actually extrapolates results obtained in the
D-brane phase to that of the black hole phase. However, this holds true only for su-
persymmetric configurations. For near—extremal or for far to extremality black holes
it is hard to trust the weak coupling description. Indeed, in the absence of supersym-
metry we do not know how to follow the states from weak to strong coupling. And
this has lead, at the beginning, to think that such agreement could arise only for pure
BPS configurations. However, there have been various calculations on near—extremal
D-brane configurations whose microscopic entropy counting matches perfectly the
macroscopic entropy formula arising from the low energy black hole solution of the
supergravity equations of motion. These results have convinced people working on
these issues that the main contribution to the entropy could be understood without
supersymetry.

In full generality one could expect that the transition from weakly coupled string
states to black holes happens when the string length becomes of the same order of
the curvature radius at the horizon. Indeed, the classical spacetime metric (and the
black hole picture) is well defined in string theory only when the curvature is less
than the string scale 1/I2 . The B = 0 equation takes the form of Einstein’s equation
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with matter consisting of the other massless fields in the theory plus an infinite series
of higher order terms multiplied by powers of the string length. When the curvature
is small compared to 1/{2 the higher order terms are negligible and one can integrate
out the massive modes and the theory reduces to general relativity coupled to some
matter fields. On the contrary, when the curvature is of order 1/l or greater, the
higher order terms are important and the metric is not well defined. According to this
Ipicture Horowitz and Polchinski has stated the so—called Correspondence Principle,
[87]. The precise statement is the following:

(i) when the curvature at the horizon of a black hole becomes greater than the
string scale, the typical black hole states becomes a states of strings and D-branes

with the same charge and angular momentum
(#3) the mass changes by at most a factor of order unity during the transition

What they have shown is that for a large class of black holes this correspondence
principle provides the BH entropy up to a numerical factor of order unity. While these
results are a convincing evidence that the very origin of microscopic entropy could not
resides on supersymmetry (and therefore that could be possible to find a microscopic
explanation for any kind of black holes) the precise numerical coefficient has been
computable only for BPS and some near-BPS configurations. And this means that
there are still some concentual basis in the D-brane /black hole correspondence that

have to be understood. But these results seem however very promising.



Chapter 2

U—duality and black holes in
Supergravity and String theory

In this chapter I recall the concept of U—duality both in supergravity and string
theory and try to outline its role in studying BPS black hole solutions. This subject
is quite extended and can be approached in many different ways. I will not try to be
complete but rather to focus on those aspects which turn out to be relevant in the
discussion of black hole solutions of supergravity and string theories. In particular,
making use of the already outlined structure of N—extended supergravity theories in 4
dimensions, I will illustrate some relevant properties which are common to any regular
BPS black hole in 4 dimensions, for whose systematic understanding U-duality plays
a preeminent role. Part of the content of the present chapter refers to results obtained
within the collaborations [33, 34].

2.1 The classical and quantum U—duality groups

In all recent developments of string theory a preeminent role has been played by
the concept of duality. Essentially, the existence of a duality between two different
string theories denotes a correspondence between the regimes of the two theories
which preserves the spectrum and the interactions. In the case of non—perturbative
dualities this means that the perturbative regime of one theory is equivalent to the
non—perturbative one of the other. And this is rephrased saying that the two (per;
turbative) theories are dual one to each other. Such a duality correspondence allows
one to consider the two related theories as different mathematical descriptions of the

same one.

42
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Since suitably compactified superstring theories mapped into each other by dual-
ity transformations have the same low—energy effective field theory, dualities between
superstring theories should be strictly related to global symmetries of the underly-
ing supergravity. For this reason, a proper starting point for a discussion of duality
in superstring theory is the analysis of the global symmetries of its underlying low
energy effective theory. Indeed, as already reminded in the previous chapter, in all
supergravity theories the scalar fields ¢* (i = 1,-,m) are described by a m-dimensional
o-model, i.e. they are local coordinates of a non—compact Riemann manifold M and
the scalar action is invariant under the isometries of M. The isometry group U is
promoted to be a global symmetry group of all the field equations and the Bianchi
identities when its action on the scalar fields is associated with a suitable correspond-
ing transformation of the vectors or in general p—forms gauge fields (and fermion
fields, also) entering the same supermultiplets as the scalars. The implementation
of U isometries in a supersymmetric consistent way is the basic issue of U-duality
symmetry (which were called hidden symmetries in the early days) in supergravity.
According to [20], this is an essential feature of any supergravity theory: they have a
symmetry under U—duality which acts non linearly on the scalars and linearly on the
field strengths and their duals, that are fitted together into a single suitable simplectic
representation. The low energy supergravities can be divided in two classes:

o for thed =4, N < 2 and the d =5, N = 2 cases the scalar manifold M., can

admits isometries, but it is not necessarily a coset space U/H

o for all the other theories, like for instance any d = 4 with V. > 2 and all the
maximally extended supergravities in dimensions d < 11, the scalar manifold is

necessarily a homogeneous coset space U/H

In the first class of theories the local scalar geometries defined at string level acquire
perturbative and non-perturbative quantum corrections (due to the few supersym-
metries conserved) while in the second class the local scalar geometry is given by the
natural Riemannian metric defined on U/H and is protected by (enough) supersym-

metry against quantum corrections.

Of particular interest in what will follow is the case of maximally extended super-
gravities (that is with 32 supercharges). These theories correspond, in any dimensions,
to the low energy description of toroidally compactified type II string theories and are
therefore very likely to be considered in the context of the study of four dimensional
supergravity black holes obtained by higher dimensional compactification of p—~brane

solutions of supergravity theories. Moreover, the mathematical structure of these
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maximal models is more constrained by their high degree of supersymmetry and so
easier to be studied. Indeed in this case the scalar manifold has a universal structure

in d =10 — r dimensions:
Ud - ET+1(T+1)

Fd B HT+1
where the Lie algebra of the group Uy is the maximally non compact real section of the

(2.1)

exceptional E,,; series of the corresponding simple Lie Algebras and the algebra of
H,,, is its maximally compact subalgebra [88]. In table 2.1 we summarized the series
of these various scalar manifolds, the study of their geometry being of the utmost

importance in studying the role of dualities in supergravity theories.

SO TIS | Glassical U-duality growp | M aubgmonn B | scalar manfotd Ui
9 Eam = SL(2,R) x O(1,1) 0(2) 3
8 B33 = SL(3,R) x SL(2,R) 0O(2) x O(3) 7
7 Eyq = SL(5,R) O(5) 14
6 Es5y = SO(5,5) S0(5) x SO(5) 25
5 Eg(6) Usp(8) 42
4 o SU(8) 70

Table 2.1: U-duality groups and maximal compact subgroups of maximally extended supergravi-
ties.

The fundamental role of U—duality in string theory has become more clear after
the seminal paper by Hull and Townsend [64] where these classical U—duality groups
have been promoted to be exact quantum symmetries of the full string spectrum. It
turns out in fact that U—duality unifies all dualities already known (and conjectured)
to be present in string theory (namely 7" and S—dualities). In order to clarify the main
ideas underlying all these developments, let us consider for instance type IIA (or I1IB)
string theory compactified on a six torus TS. Tts low energy states are described by
an N = 8 supergravity in d = 4 dimensions. The scalar manifold is [88]:
By
SU(8)

The moduli of 7% are G;; and By; (i = 1,...,6), the internal components of the 10
dimensional metric Gy and the antisymmetric tensor field Barn. They naturally

M =

(2.2)

span the moduli-space of T 6.

_ 50(6,6)
~ 5S0(6) x SO(6)

Mrp (2.3)
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while the dilaton and the axion B, span the manifold:

_ SL(2,R)

Mg = 002) (2.4)

The isometry groups of these three manifold are U = Eyry, Gr = O(6,6), Gg =
SL(2,IR). There is a natural action of SO(6,6) on the moduli space: in general this
takes a given string theory into a different one while a discrete SO(6, 6; Z) subgroup
takes a given string theory to an equivalent one. The latter is the T-duality group of
toroidally compactified string theory. This statement has been verified order by order
in string perturbation theory. The conjecture is to promote suitable discrete version
of Gy and the full U to be exact string S and U—-duality groups. In the light of the
previous discussion on the classical U-duality group, the restriction to the integers of
the S and U—duality groups can be understood even at the supefgravity level, once it
is demanded that the duality symmetries preserve the lattice spanned by the integer
valued electric and magnetic charges carried by the (charged) solutions of the theory.
Indeed, in the presence of more than one gauge field the charge vector @ must fulfill a
simplectic (or pseudo-orthogonal) invariant generalization of the Dirac quantization
condition:

(@, @) =p'dqy —pmez (2.5)
where (, ) is the simplectic (or pseudo-orthogonal) invariant scalar product. Requir-
ing the action of the full duality group U on the vector Cj to leave the charge lattice

invariant, the group U is naturally broken to the following restriction to the integers:

Sp(2n;zZ) p odd

2.
SO(n, n;Z) D even (26)

U—%U(Z):Uﬂ{

where p is the degree of the p—form gauge potentials in the theory and n the number
of these potentials (for instance, in 4 dimensions one has p = 1, for point-like charged
objects). In table 2.2 are reported all classical and (conjectured) quantum duality
groups for type II string theories compactified to lower dimensions on tori.

Whereas T—duality has been checked to be an exact symmetry of string theory,
the S and U-duality are non—perturbative and so cannot be established within a
perturbative formulation of string theory. Evidences for these dualities were drawn
from the analysis of the BPS spectrum of the effective supergravity theory, under
the hypothesis that these states already include the known BPS excitations of the
fundamental string. As extensively explained in the previous chapter, BPS states
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b;{l?f«ncf;lzlig;e Classical U-duality group String T-duality Quantum U-duality group

10 SL(2,R) 1 SL(2,7z)

9 SL(2,R) ® SO(1,1) Zs SL(2,Z)® Z,

8 SL(3,R)® SL(2,R) SL(2;Z) ® SL(2;Z) SL(3,z) ® Sl(2,z)

7 SL(5,R) S0O(3,3;z) SL(5,2z)

6 SO(5,5) S0O(4,4;z) SL(5,z)

5 Eﬁ(s) (]R) 50(5, 5; Z) ES(G) (Z)

4 By (R) S0(6,6; z) B (Z)

Table 2.2: Duality symmetries for type II string compactified to d dimensions.

are those solutions of supergravity theory which saturate the Bogomolny bound, i.e.
whose masses equal one or more eigenvalues of the central charge. If we consider
theories having a large enough supersymmetry (e.g. N > 4 in D = 4), the central
charge is not affected by quantum corrections and therefore the value of the BPS mass
computed semiclassically is exact. Moreover, a duality transformed solution is still a
solution of the supergravity theory since duality transformations are symmetries of
the field equations and Bianchi identities. This property, together with the fact that
the BPS condition is duality invariant, implies that all the BPS states of a super-
gravity theory fill a representation of the U-duality group (therefore also of the T
and S—duality groups). The conjecture that Gs(Z) and the whole U(Z) are symme-
tries of the superstring spectrum requires the perturbative electrically charged string
excitations fulfilling the BPS conditions to be in the same duality representation of
a magnetically charged BPS soliton state of the low—energy effective supergravity
(indeed S—duality exchanges electric and magnetic charges). But this state already
belongs to a representation of U(Z) which is completely filled by BPS states, there-
fore the S and U-duality conjecture implies that the electrically charged superstring
excitations fulfilling the BPS condition should be identified with equally charged BPS
states of the low—energy effective theory. The fact that two superstring theories which
differ at a perturbative level, when compactified to a lower dimension, have the same
low—energy effective supergravity theory, and therefore the same BPS solitonic spec-
trum, is an evidence that they should correspond through a non perturbative duality.

A similar construction can be done of course even for 16 supercharges string
theories, like the heterotic string and indeed in table 2.3 are reported the classical
and quantum U-duality groups for toroidally compactified heterotic string.

Under more involved dualities, relying on compactification on non-maximally
symmetric manifolds, it has finally been possible to relate one to each other the
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Sdpi);cf;lzligf Classical U-duality group | String T—duality | Quantum U-duality group

10 0(16) ® SO(1,1) 0O(16,z) 0(16,Z) ®@ Z,

9 0(1,17) ® SO(1,1) 0(1,17; z) 0(1,17,2) @ Z,

8 0(2,18) ® SO(1,1) 0(2,18;z) 0(2,18;Z) ® Z,

7 0(3,19)® SO(1,1) 0(3,19; z) 0(3,19;Z) ® Z,

6 0(4,20) ® SO(1,1) 0(4,20;Z) 0(4,20;2) ® Z,

5 0(5,21) ® SO(1,1) 0(5,21;z) 0(5,21;Z) ® Z,

4 0(6,22) ® SL(2,R) 0(6,22;z) 0(6,22;2) ® SL(2,Z)

Table 2.3: Duality symmetries for heterotic string compactified to d dimensions.

10 dimensional string theories with different supersymmetries, like heterotic and type
I with type II theories. In particular, a very much studied duality, both at effective
field theory (i.e. supergravity) and string level is that between type Il compactified
on K3 x T? and heterotic string compactified on 7° which in fact admit the same
low energy effective theory, i.e. N = 4 supergravity in four dimensions and whose
spectrum of extremal black hole states is also the same. More recently, there has
been an intense study even in dualities involving less supersymmetric theories, like
those with 8 supercharges (corresponding to Calabi-Yau compactification of type II
theories or heterotic string on K3 x T?). Relevant references on this subject are
[11, 64, 89, 90, 91].

The possibility of relating, via duality, all string theories (with different number
of supersymmetries in 10 dimensions, like type I and type II theories, and different
compactifications thereof) has lead to the possibility to relate all the 5 known su-
perstring theories and therefore view them as perturbative realizations on different
backgrounds of a larger quantum theory, usually called M-theory. Even if the physical
content of the latter is not known so far (while its low energy limit is 11 dimensional
supergravity) it is expected to admit all the known dualities as exact symmetries, by
definition. The possibility of outlining (and testing) such a unified picture is indeed
the most important achievement in recent developments in string (and supergravity)
theory. For reviews on dualities and their role in string theory see for example [21, 22].

There has been a huge number of works in the last 5 years on this fascinating
subject and in almost all duality checks a prominent role has been played by D-
branes and by their low energy counterpart, the supergravity p-brane solutions and
in this contest, the study of BPS saturated states in supergravity theory, which look
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like (multi) charged black holes in the four dimensional effective theory, is then of

particular interest.

2.2 The properties of central charges at the black

hole horizon

For reasons that have been just clarified, it is very interesting to study the non per-
turbative BPS states which need to be added to the string states in order to complete
linear representations of the U-duality group. Actually, these are, generally, BPS
black holes. The latter, as illustrated in the previous chapter, can be viewed as inter-
sections of several p-brane solutions of the higher dimensional theory wrapped on the
homology cycles of the compact internal space. Of particular interest in 4 dimensions
are N = 8 black holes. Indeed N = 8 supergravity is the 4 dimensional effective
lagrangian of both type ITA and type IIB superstrings compactified on a torus T 6 or,
alternatively, it can be viewed as the effective lagrangian of 11 dimensional M-theory
compactified on a torus 7. For this reason its U—duality group, Fr(7y(Z), unifies all

superstring dualities relating the various consistent superstring models.

As T will show in the next section some properties of U-duality are very useful to
enable the study of these regular black hole solutions in 4 dimensional supergravity,
in particular in order to be able to generate other solutions, acting via U-duality
transformations, once (a possibly simple) one is given. Before doing that, however,
there is a number of general properties of regular black holes in any N-extended
supergravity theory which is time to outline. These properties rely on some features
the central and matter charges Z4p and Z; of any N-extended supergravity theory
satisfy and which are relevant to the study of BPS black hole solutions. In the present

section I review these important properties.

The properties of any supergravity theory governed by an action of the kind of
eq. (1.26) can be easily inferred by introducing the so—called geodesic potential V
(92, 93, 94]. In the sequel I will follow essentially [95] and [96].

From an action of the kind of (1.26) one can derive the field equations varying with
respect to the metric, the vector fields and the scalars. However, inserting spherically
symmetric O—brane black hole ansatz, such equations reduce to a system of second
order differential equations in the variable r one can think to be the Euler-Lagrange
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equations derived from an effective action which has the following form:

1
Sefr = /[,eff(T)dT ;T=—
dU\? det dep
carr) = (5] +hs 21 v6,0) 1)

where U(r) = —%1gh(r) (h(r) being that of eq.(1.20)) while the geodesic potential
V(¢) is defined as:

e

V(6,Q) =50 M) 29

where § is the simplectic vector of the quantized charges (p*,qa) and M(N) is a
simplectic matrix whose blocks are given in terms of the vector kinetic matrix Mg

as:
A B
M(N) = (C’ D) (2.9)
with:
A = ImN + ReNImN 'ReN
B = —ReNImN™
C = —ImN 'ReN
D = ImN!

The field equations from the original action are equivalent to the variational equations
obtained from the effective action (2.7) provided we add the latter also the following

du\? d¢* d¢ oy _
(E) +h~——7_——7—e V(g,Q) =0 (2.10)

constraint:

Let us first consider a simple case where we assume that the scalar fields are constants
from the horizon r = 0 to spatial infinity:

¢ = constant = ¢} (2.11)
Extremal black holes satisfying such an additional simplifying condition are named

double-eztreme black holes. It follows from eq. (2.10), upon use of eq.(2.11), that:

(j—“) =V (6,Q) | (212)
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At the horizon 7 — —o0, the metric (1.20) should approach the Bertotti-Robinson
metric eq. (1.25), as any regular black hole metric should do, so that we have a
boundary condition for the differential equation (2.12):

1 1 dr 1
2U(r) 2% = — 2.
© M3, 72 Areay 72 (2.13)
Using this information, for double—extreme black holes we have:
Area
V(o Q) = S (2.14)

where ¢y denotes the values of all scalar fields at the horizon, which in this case are
the same as their values at infinity. The very important fact is that the above result
is more general and it is true also for generic extremal black-holes where we relax
the condition (2.11) but we still assume that the kinetic term of the scalars @ in the
original lagrangian (1.26) should be finite at the horizon, that is:

< o0 (2.15) |

Indeed, using again the boundary condition (2.13) on U(r) we find:
deot d¢? 4 r—eo
¢" d¢’ m o2 T2

; Y? = finit tit ‘ 2.
i ar dr Atean nite quantity (2.16)

However, we must have Y2 = 0 if the moduli ¢* are assumed to be finite at the

horizon. Indeed, if Y2 s 0, near the horizon we could write:

d : T—00 ]
T df 2% const —+ ¢ ~ const x logT (2.17)

and the scalars would diverge for 7 — —oo. Therefore also for generic (regular)

extremal black holes eq.(2.12) holds near the horizon and then the same result reached
before, namely eq. (2.14), holds true.

The area of the horizon is hence expressed in terms of the finite value reached
by the scalars at the horizon. One can easily show that ¢g is determined by the
following extremization of the potential (2.8):

ov
¢

lu =0 (2.18)

Indeed considering the variational equation for the scalar fields derived from the
effective action (2.7) we have: '
1 ov

00 =3¢ o

g (2.19)
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Near the horizon the contribution from the quadratic terms proportional to the Levi
Civita connection I’ ;k d. ¢ d,¢* vanishes so that eq. (2.19) reduces to:

P o 10V g dr ] 2.30
dr2 " 2 ¢ g Areay 12 2:20)
whose solution is: 5 oy
. T . .
Y™ Kreay 09 1087 T ¥ (2.21)

Invoking once again the finiteness of the scalar fields ¢* at the horizon we conclude that
the extremum condition (2.18) must be true in order to be consistent with eq. (2.21).
In this way we have reached the important conclusion that the scalars, independently
form their value at infinity (i.e. independently from the boundary conditions of the
given solution) flow at the horizon at a fixed point ¢, = @x that is determined as
the extremum of the geodesic potential. And this holds for any extremal black hole

with finite horizon area.

Upon use of the geodesic potential one can. illustrate another very important
property of supergravity black holes. In general one can always consider an arbitrary
theory of gravity coupled to scalar and vector fields described by an action of the
type (1.26). For any such theory there is a period matrix A and correspondingly we
can construct the potential (2.8). Moreover one can look for extremal solutions of
such a theory and, according to the discussion presented in the previous section, the
value attained by the scalars at the horizon is determined by eq. (2.18), provided
we look for finite horizon area solutions. However, if supersymmetry is not advo-
cated no special relation exists on the number of scalars relative to the number of
vectors and any simplectically embedded scalar manifold is allowed. In the case of a
supersymmetric theory, on the contrary, there exists the concept of central charges of
the supersymrﬁetry algebra and the geodesic potential satisfies a particular sum rule
between the charges Zsp and Z;. Indeed, let us introduce the so—called generalized
central and matter charges which are those of eq.s(1.41) and (1.42) defined for any
value r of the integration sphere as:

Tap ; ZI(QAapA»Qb(T)):/TI (2.22)
52

Zag(an, p", 0(r)) = /

S7

These generalized charges are scalar field dependent and reduce to the canonical ones
for r — co. In terms of these generalized charges the geodesic potential can be

rewritten as a sum of squares of such charges according to the following formula, [97]:

= 1 — —
VIUSY (4,Q) = §ZABZAB + ZIZI (2.23)
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It is useful to reconsider the extremization of the geodesic potential from the point of
view of the above relation. Writing the extremum condition as the vanishing of the

exterior differential, one gets:

0 = v (4,0Q)|x

1 _ap 1 _ _ _
5 VZas 7% + = Zas vz vz, 7+ 2, v (2.24)
H

|

Expanding the covariant derivatives of the charges on the scalar vielbein (which pro-
vides a frame of independent 1-forms on the scalar manifold) eq.(2.24) can be satis-
fied only if the coefficients of each vielbein component vanishes independently. This
implies that, at the extremum, the following conditions on the central and matter

charges have to be true:

ZE = 0 (2.25)
ZHp 2y = 0 (2.26)

For all values of NV the matter charges Z; vanish at the horizon. The meaning of the
second relation becomes clear if we make a local SU(N) transformation that reduces
the central charge tensor to its normal frame where it is skew diagonal. Focusing for

simplicity on the case with N even, in this frame Z,p reads:

Zyve 0 0 0
Z_| 0 B 00 e 6:(0 1>
0 0 .. O -1 0

0 0 0 Zpe

and the only non vanishing entries are
leZlg,ZQEZ34,... 7ZN/2EZN—1N (227)

Eq. (2.26) implies there are two possibilities for the eigenvalues of the central charge
at the horizon: or all vanish, or at most one of them, say Zﬁp = Z |, is non zero
while all the other vanish. Implementing eq. (2.25) and the definition of the geodesic
potential, eq. (2.23), in eq. (2.14) one finds:

P
Areag = 47rZ\Zf|2 (2.28)
i=1
and therefore if the horizon area (and hence the entropy) of the black hole has to be
finite then we can exclude the first possibility (i.e. ZX¥ =0 for any «) and we find:

N
Areag = 47r|Z£,I/2l2 >0 ; ZP=0 a= 1,---,—2— -1 (2.29)
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Eq.(2.29) leads to the conclusion that BPS saturated black-holes are classified by
the skew eigenvalue structure of their generalized central charge Zap(®) evaluated
at the horizon. The only BPS black holes that have a non vanishing entropy are
those admitting a single non-zero skew eigenvalue Z ]{ffg while all the other Z%® has
to vanish. In the context of toroidally compactified supergravity (that is N = 8 in
four dimensions), which is the one we will be interested in the next chapter, it is
easy to see that these regular black holes are those preserving 1/8 of the original
supersymmetry. Indeed, in the light of the discussion of section 1.2.1 and according
to the eq.(2.29), in the case of N = 8 supergravity we have:

Central Charge  # of preserved SUSY Entropy

Z =Ty = T3 = 74 1/2 0
ZlZZQ?éZ3:Z4 1/4 O
Ty # Ty Zs & Zy 1/8 £0

Let us finally illustrate the last important property of regular BPS black holes. As
we have just seen, the horizon area can be found by extremizing the geodesic potential
and then replacing the fixed values of the scalars in eq. (2.14). Since the only free
parameters appearing in the geodesic potential are the quantized charges (p*,qa),
it follows that the fixed values of the scalars will depend only on such quantized
charges and so will do the horizon area. By construction, on the other hand, the
geodesic potential is a simplectic invariant and hence an invariant under U-duality
transformations. This means that defining ¢ € U as an element of the U-duality
group one can show that:

Vigh, A9)Q) = V(#.Q) (2.30)
where g¢ denotes the non-linear action of the group element g on the scalar fields ¢
while A(g) € Sp(27, R) (@ is the number of vector fields contained in the theory).
Hence also the horizon area Areaym obtained by substitution of the fixed scalar values
in V(¢,Q) will be a U invariant. More precisely, the entropy (i.e. the horizon area)
turns out to be in all cases a moduli-independent U—duality invariant expression,
homogeneous of degree two, built out of electric and magnetic charges and as such can
be computed through certain (moduli-independent) topological quantities which only
depend on the nature of the U-duality groups and the appropriate representations of
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electric and magnetic charges. For 4 dimensional black holes the entropy was shown
to correspond to the unique quartic invariant of F; built with its 56 dimensional
representation [92], while for 5 dimensional black holes it turns out to be expressed
by the unique cubic invariant of the corresponding duality group Es. For BPS black
holes in dimensions d > 6 there are non non—trivial invariants and the entropy turns
out to be zero. These group theoretical results agree with what stated in the previous
chapter, namely that regular black holes exist only in 4 and 5 dimensions while
for higher dimensional effective theories all black holes are singular (indeed regular
solutions are extended ones, like the 6 dimensional string and the 10 dimensional
3-brane).

Summarizing, there are 3 important and universal properties characterizing any

regular BPS N-extended supergravity black hole in 4 dimensions:

e all dynamical scalars fields characterizing the solution, independently of their
values at infinity, flow towards the black hole horizon to a fized value of a pure

topological nature given in terms of the quantized electric and magnetic charges

e in all theories with N > 2 all central charges eigenvalues (both of matter and
susy central charges) but one vanish, at the horizon, and the only non—vanishing
one equals the BPS mass

e the entropy formula is a U—duality invariant quantity built out of the quantized
charges and can be determined by group properties of the U-duality group
without knowing any detail of the structure of the given specific black hole
solution

All these properties, which have been discovered and fully analized in a series of
papers by various authors (see in particular [92, 98]), are the most important ones
charaterizing four dimensional BPS black holes and deeply rely on the structure of
matter coupled supergravity theories and reveal all the implications U-duality has
on low energy solutions of string (and M) theory.

2.3 U-duality orbits and the generating solution

Upon further use of the power of U—duality, in the present and in the following section
I will explain the relevance and the main properties of the so~called generating solution
of BPS regular black holes.
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As explained previously, the equatiéns of motion and the Bianchi identities of the
N = 8 classical supergravity theory in 4 dimensions are invariant with respect to the
U-duality group E7¢7). This invariance requires the group Er(r) to act simultaneously
on both the 70 scalar fields ¢* (z = 1, - - -, 70) spanning the manifold M = E7(7)/SU(8)
(see table 2.1) and on the vector @ consisting of the 28 electric and 28 magnetic
quantized charges. The U-duality group acts on the scalar fields as the isometry
group of M and on @ in the 56 (symplectic) representation. A static, spherically
symmetric BPS black hole solution is characterized in general by the vector Q and a
particular point ¢ on the moduli space of the theory whose 70 coordinates ¢ are
the values of the scalar fields at infinity (r — o). Acting on a black hole solution
(@ , $s) by means of a U-duality transformation g one generates a new black hole
solution (@7, Q9):

0o 7 0 = go
wew [Snge= s
Q—Q=A(9)-Q
The BPS black hole solutions fill therefore U-duality orbits.

where  A(g) € Sp(56,R) (2.31)

As far as regular BPS black holes (which, as already noticed, are the 1/8 susy
preserving ones) are concerned these orbits turn out to be parameterized by 5 func-
tions Z(Q, ¢oo); (I =1,...,5) which are invariant under the duality transformations
(2.31). These invariants are expressed in terms of the 8 x 8 antisymmetric central
charge matrix Z AB(@, ¢oo) (the antisymmetric couple (AB), as A and B run from 1
to 8, labels the representation 28 of SU(8)) in the following way, [99]:

L, = T (22)" k=1,...,4
— 1, = 1
L = Tr(Z2)" - Z(TrZZ)2 + 55 (eascprreaZ*PZ°PZPF Z9M + c.c)
(2.32)

where ZZ denotes the matrix Z4° Zop and the convention Z4P = (Z4p5)* is adopted.
Among the 7 (Cj, $oo)1 & particular role is played by the moduli-independent invariant
l%(@) that is the quartic invariant (which will be denoted in the sequel also by P4 (Q)
in order to refer to its group theoretical meaning ) of Ey(7y. As already explained in the
previous section, it is related to the entropy of the black hole, namely S =7 (P(4))1/ 2,
For a fixed value of Zs (@) the inequivalent orbits are parameterized by the remaining
four invariants I(Cj, Boo)k, (kK = 1,...,4). The behavior of the scalars describing
the regular solutions with fixed entropy is schematically represented in fig. 2.1: the
scalar fields flow from their boundary values ¢, at infinity which span M.y (the
disk) to their fixed values ¢y at the horizon r = 0. It should be understood, of course,

that the ¢ axis is a 70-dimensional space, where 70 is the dimension of M. The
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Figure 2.1: the radial dependence of the scalar fields from the horizon to the spatial infinity.

invariants Z(Q, ¢e); turn out to be independent functions of the quantized charges
in any generic point @o, of the moduli space except for some “singular” points where
the number of truly independent invariants could be less than five. This is the case,
for example, of the point ¢, = @y parameterized by the fixed values of the scalar
fields at the horizon. In this point the only independent invariant is the moduli-
independent one, Zs (indeed, according to the discussion of the previous section, in

this point only one central charge eigenvalues is non vanishing).

The generating solution may be characterized as the solution depending on the
minimal number of parameters sufficient to obtain all possible 5—plets of values for the
5 invariants on a particular point ¢, # ¢g of the moduli-space (a possible vacuum
of the theory). From the above characterization it follows that the whole U —duality
orbits of 1/8 BPS black hole solutions may be constructed by acting by means of E
transformations (2.31) on the generating one. In particular, if we focus on 1/8 BPS
black hole solutions having a fixed value of the entropy and on a particular bosonic
vacuum (specified by a point ¢ in the moduli-space), by acting only on the charges
of the generating solution with the U-duality group it would be possible to construct
the whole spectrum of 1/8 BPS solutions of the theory realized in the chosen vacuum
doo (see fig. 2.2). Since in a particular point ¢, # ¢g OB M eqr the minimum number
of parameters a solution should depend on in order to reproduce all the 5-plets of
values for the independent invariants is obviously 5, we expect the charge vector Cj
of the generating solution (Cj, $s0) to depend on five independent charges.

That the number of parameters the generating solution should depend on is 5
could be even understood in an equivalent way by means of the SU(8) gauge—fixing
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1/8 BPS black hole
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Figure 2.2: the scalar moduli-space M and the action of the U-duality group on a generic point
‘¢>OO. The tower on each point of M represents the 1/8 BPS black hole spectrum of the theory realized
on that bosonic background. In a generic point ¢ it describes a “snapshot” of the U~duality orbit
of this particular kind of solutions. Acting on the charges only, one generates all black holes having
the same values of the asymptotic fields and moves in the tower at a given ¢o. Acting on both
the charges and the moduli one moves in M but the solution does not change its ADM mass (this
being a U-duality invariant quantity). Since the U-duality orbit is characterized by 5 invariants
I;, in a point ¢ in which Z; are independent functions of the charges Q the generating solution
may be characterized as a minimal set of solutions in the corresponding tower on which the five
invariants assume all possible values (compatible with the BPS condition). Therefore the generating
solution should depend only on five charge parameters and, by acting just on the latter by means
of the U—duality group (“vertical action” in the figure), one is able to reconstruct o/l the states of
the tower.

procedure which brings the central charge matrix Z4p into its normal form (2.27).
Let us rewrite the expression of the central charge in its normal form ZV in a way

that is more useful for the present purpose:

|Z1|e" e 0 0 0
SUGB) 0 | Z5|e2¢ 0 0
z Z% = ) 2.33
4B 0 0 | Z3]et% e 0 (2.33)
0 0 0 | Zy|etPse

where the eigenvalues are ordered in such a way that [Z4| > |Z3] > |Z2| > |Z1]. In this
way Z depends only on 4 real eigenvalues |Z,| and 4 phases ,. Via another SU(8)
transformation one can eliminate the phase in the first 3 blocks adding a compensating
phase in the last one. The number of independent parameters therefore is 5, the four
real eigenvalues and an overall phase. Through eq.(2.32) it is apparent the relation
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between these 5 parameters and the 5 invariants Z;.

Let us now motivate, in brief, the result obtained in [100] according to which the
generating solution for 1/8 BPS black holes in the N = 8 theory is described within
a suitable N = 2 truncation of the theory, the STU model.

First of all, let us notice that the 5 quantities in eq. (2.32) are invariant with
respect to the action of SU(8) on Z4p5. The gauge fixing performed above, eq.(2.33),
corresponds to a 48-parameter U duality transformation on the 56 quantized charges
@ and 54 scalar fields in the expression of the central charge (16 of the 70 scalar fields
are already absent in the expression of the central charge because they belong to the
centralizer of the normal form, see next section for more details). As a consequence
of this rotation the four skew—eigenvalues of the central charge will then depend only
on 8 quantized magnetic and electric charges N = (p",q") (the normal form for
the quantized charges) and on 6 scalar fields which define the vector and the scalar
content of the N = 2 STU model describing the generating solution. The 6 scalar
fields (3 dilatons b; and 3 axions a;, @ = 1,2,3) belong to 3 vector multiplets and
span a manifold Mgry = [SL(2,R)/SO(2)]* and the 4 electric charges g and 4
magnetic charges p* (A = 0,...,3) transform in the (2,2,2) of [SL(2,R)]>. In the
framework of the STU model, the local realization on moduli space Mgpy of the
N =2 supersymmefry algebra central charge Z and of the 3 matter central charges
Z* associated with the 3 matter vector fields are related to the N = 8 central charges
eigenvalues in the following way:

Z =12, , Z'=TP,2" (2.34)

where IPY = 2b;(r) is the vielbein transforming rigid indices o to curved indices 7. I
will come back on this point in chapter 3. On the 1/8 BPS black hole solutions these
four eigenvalues are in general independent in a generic point of the moduli space and
the BPS condition reads:

Mapm = rl—i-)r{olo | Z4(ai, bi, Q)] (2.35)

Since the SU(8) transformation used to define the STU truncation of the original
theory did not affect the values of the 5 invariants in eq.(2.32), the latter are expected
to assume all possible 5-plets of values on BPS solutions of this theory. From this we
conclude that the generating solution for 1/8 BPS black holes in the N = 8 theory is
a solution of the STU truncation as well. '

To make more explicit the relation to the STU model, the five invariants in
eq.(2.32) are better rewritten using the normal form for the central charge Zup (in
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this way it is also more explicit the relation of the fifth invariant Zs and the horizon
area, eq.(2.28)). Indeed, in this basis, using the relation (2.34) one can directly read
the values of the matter and central charges within the N = 2 truncation. The five
invariants read (in rigid indices ):

4

(oo, D = 3 1 2o

a=1
4

4
TG = Y12l -2 Y VAPIZE + 4 (BT + 1 257)
a=1 a>f=1

(2.36)

In the framework of the N = 2 ST'U model there is still a residual invariance of
the above quantities represented by the 3 parameters group [SO(2)]?, isotropy group
of the scalar manifold Mgy and subgroup of SU(8). It acts on the four phases 6, of
the central charge eigenvalues Z, leaving the overall phase 6 = > o Po invariant. The
generating solution is obtained by fixing this gauge freedom and therefore it depends,
consistently with what stated above, on 5 parameters represented by the four norms
of the central charge eigenvalues |Z,| plus the overall phase 6. These quantities are
U—duality invariants as well. It can be shown indeed that the norms |Z,| may be
expressed in terms of the four invariants Z, (k = 1,2, 3,4) while the overall phase is
contained in the expression of the Pfaflian in Zs and thus is an invariant quantity as

well which is expressed in terms of all the five Z;. Indeed, see eq.s (2.32) and (2.36):

1
— (eapopprenZ B ZOP 7P 25" v cc) = 4(Z1Z3Z525 + Z172737,) =

96
8|Z122Z3Z4|COS(9 (237)

The moduli independent invariant Zs, computed in the STU model, is the quartic
invariant of the (2,2,2) of [SL(2,IR)]® and it is useful to express it in a form which
is intrinsic to this representation. We may indeed represent the vector Q= (p*, qz)
as a tensor ¢**?2* where o; = 1,2 are the indices of the 2 of each SL(2,IR) factor.
The invariants are constructed by contracting the indices of an even number 2m of
¢®1%2® with 3m invariant matrices €4,5,. This contraction gives zero for m odd while

for m even one finds:

qalazasqﬁlﬂZﬁaealﬂl6a2ﬂ2€a3ﬁ3 =0

P(4) (p7 Q) = qalazaaqﬁlﬂzﬁaq"/l’yz’}’aq5152§3Ealﬂl €anBa€y161€720: €z 1 €Bsds =
4(pPq0 + q102) (0'P* — P°g3) — (P°q0 + P a1 + Pq2 — Pg3)?
Pg(p,g) = cx(Pulp,q)?
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Puylpa) = ¢ x(Pulp9)
(2.38)

where the components of ¢*1*2®3 are expressed in terms of the 8 quantized charges
according to the following:

—_ 0, 211 __ .1, 121 _ 2., 1,1,2 __ 3.
—P,Q’ —paQ’—p,Q’ —pa

@ = =000 =5 =6 P =0 (2.39)

It can be shown rigorously that the quartic invariant written above is the only inde-
pendent invariant of this representation, that is any other invariant may be expressed

as powers of it.

Summarizing, the three main facts reviewed in the present section are:

e The U-duality orbits of 1/8 BPS black hole solutions are characterized by five
U—duality invariants Z;.

-

e The generating solution (@), ¢ is characterized by a generic point on the mod-
uli space ¢ (in which the five invariants should be independent functions of the
charges @) and by five independent charge parameters @ such that, by varying
the latter, one obtains all possible combinations of values of Z; consistent with
the BPS condition (Zs > 0).

e The generating solution of 1/8 susy preserving black holes of N = 8 supergrav-
ity can be thought of as a 1/2 preserving solution of an STU model suitably
embedded in the original theory. In this framework the five invariants Zr can be
expressed as proper combinations of the norms of the four central charges |Z,|
(the supersymmetry and the three matter ones, in NV = 2 language, correspond-
ing to ¢ = 4 and « = 1,2, 3 respectively) and their overall phase 6, according
to eqs.(2.36) and (2.37).

2.4 The “nature” of the generating solution

As it has been clarified above, the STU model is a N = 2 truncation of the N =8
briginal theory and, within this latter theory, its BPS black hole solutions are 1/8
supersymmetry preserving ones. Without specification of the proper embedding in the
mother N = 8 theory these solutions can be pure NS-NS, R-R or of a mixed nature.

This distinction, from the 4 dimensional point of view, relies on the identification of
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the relevant (dimensionally reduced) 10 dimensional fields which enter the solution,
namely which are switched on. A pure NS-NS solution is a black hole solution whose
10 dimensional origin can be traced back only on the metric tensor Gy and the
antisymmetric 2-form Bpy. A mixed solution is one where both NS-NS and R-R
fields contribute and in particular By y is switched on (this meaning some string or
NS5-brane state, besides D-branes, to be present at the microscopic level). Finally
a pure R—R solution is one whose unique NS-NS field present is the metric tensor
but all other fields are R—R. Actually, it is the algebraic characterization of scalars
and vector fields which identifies the nature of a given solution. The aim of this
section is to illustrate the physically different ways the generating solution (and any
other solution within the STU model) can be embedded in the original theory. In
particular I will show the proper embedding by which it turns out to be a pure R-
R solution, this being the setting where a macroscopic/microscopic correspondence
is more suitable: indeed in that case, according to the definition given above, the
microscopic interpretation of the solution can be given in terms of a bound state of
D-branes without any NS-brane or KK monopoles.

The 10 dimensional interpretation of the fields characterizing the solution depends
on the embedding of the STU model inside the N = 8 theory. A powerful tool for
a detailed study of these embeddings is based on the so—called Solvable Lie Algebra
(SLA) approach, [101]. In the following I will summarize the main features of this
formalism while I refer to [102] for a complete review on the subject.
 The solvable Lie algebra technique consists in defining a one to one correspondence
between the scalar flelds spanning a Riemannian homogeneous (symmetric) scalar
manifold of the form M = G/H and the generators of the solvable subalgebra Solv
of the isometry algebra G defined by the well known Iwasawa decomposition:

G = H& Solv (2.40)

where H is the compact algebra generating H. A Lie algebra G, is solvable if for
some n > 1, its n* order derivative algebra vanishes:
PG, = 0 where
DG, = [G,,Gy] ; DEIG, = [DWG, DRG]
Actually the scalar manifold M., of N = 8 supergravity has the above coset struc-

ture and can be globally described as the group manifold generated by Solv and
whose parameters are the scalar fields:

Solv = {T;} o; < T;
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The solvable group generated by Solv acts transitively on M,q,. Considering the
N = 8, d = 4 theory as the dimensional reduction on a torus 70 of type IIA or IIB
supergravity theories in d = 10, the solvable characterization of the NS-NS and R-R
scalars in the four dimensional theory was worked out in [103, 104] and is achieved by
decomposing the solvable algebra Solv; generating the 70-dimensional scalar manifold
of the theory with respect to the solvable algebra Solvr generating the moduli space
of the torus My = SO(6,6)/SO(6) x SO(6) (the classical T-duality group). Since in
the formalism outlined above Solvr is naturally parameterized by the moduli scalars
G.j, Bi; (4,7 denoting the directions inside the torus), the complement of Solvr inside
Solv; is a nilpotent 32-dimensional subalgebra parameterized by the 32 R-R scalars.
The general structure of the solvable algebra defined by the decomposition (A.2) is
the direct sum of a subspace of the Cartan subalgebra CSA and the nilpotent space
spanned by the shift operators corresponding to roots whose restriction to this Cartan
subspace is positive:

Solv = Cx ® Y {Ea} (2.41)

acA+
Cx € C is the non—compact part of the CSA and A™ is the space of those roots which
are positive with respect to Cx. '

In the case of the N = 8 theory in d = 4, Solv is generated by the generators
of the whole Cartan subalgebra of Eqn (all Cartan are non—compact, Cx = C) and
all the shift operators corresponding to the positive roots of the same algebra. The
Cartan generators correspond to the radii of the internal torus Gy plus the dilaton
¢, the positive roots correspond to the remaining 75 moduli and enter the structure
of Solvp while the shift operators corresponding to the positive spinorial roots of the
SO(6, 6) T—-duality group are naturally parameterized by the R-R scalars. The precise
correspondence between the positive roots of Er(7) and type IIA and type IIB fields
is summarized in table 2.4 at the end of this section. Although this correspondence
is fixed by the geometry, in what follows we shall define algebraically two different
classes of embeddings of the STU model within the N = 8 theory which describe
NS-NS or R-R generating solutions, respectively.

Let us recall the main concepts on how to define the embedding of the STU model
describing the generating solution from the reduction of the central charge matrix Zp
of the IV = 8 theory to its skew diagonal form, ZN | eq.(2.33). The scalar manifold of
this N = 2 truncation is: ‘

SL(2,R)

Msry = {5—0(5)"} 3 (2.42)

The centralizer of QN , which is defined as the maximal subgroup G¢ of [Eq(7) such
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that Go - G = OV, is S0O(4,4) while the centralizer He of ZN is SO(4)?, maximal
compact subgroup of G¢. On the other hand the normalizer Gy of Qv , which is
defined as the subgroup of Er(y that commutes with the centralizer, |Gy, G¢] = 0,
is the isometry group of Mgy, [SL(2, IR)]B, while its isotropy group [50(2)]3 is the
normalizer Hy of ZV. Given the central charge in its normal form, Gy and Gg¢
are then fixed, up to isomorphisms, within E7(;y and therefore also the embedding
of the final STU model, Mgy being given by Gy /Hy. The scalar content of the
latter model, in terms of the N = 8 scalars, is defined by embedding Solv(Mgry)
into Solv(Er ), OV define the quantized charges of the model, while as usual the
real and imaginary parts of the skew eigenvalues Zj of the central charge define the
physical dressed electric and magnetic charges of the interacting N = 2 model.

The above defined procedure of reduction of the central charge to its normal
form, when applied to Z4p in different bases, yields skew eigenvalues depending on
the scalar and charge content of STU models embedded differently inside the original
theory (the algebras Gy and Go C Eq¢7y would in general depend on the original
basis of Z,p). As I will explain in the following subsections there are essentially two
physically different classes defined by this embedding.

2.4.1 The NS-NS STU model

Let us consider the central charge matrix in a basis Z;5 in which the index A of
the 8 of SU(8) splits in the following way: A=(a=1,...,4a =1...,4), where
a and o' index the (4,1) and (1,4') in the decomposition of the 8 with respect to
SU(4) x SU(4) = SU(8) N SO(6, 6) (this is the basis considered by Cvetic and Hull
in defining their NS-NS 5-parameter solution, [99]). The group SU(4) x SU(4)" is
the maximal compact subgroup of the classical T-duality group and decomposing
with respect to it the 28 of SU(8) will define which of the entries of Z ;5 correspond
to R-R and which to NS-NS vectors (the former will transform in the spinorial of
SU(4)* = SO(6)%):

28 — (1,6') + (6,1') + (4,4') (2.43)

the (1,6') + (6, 1) part consists of the two diagonal blocks Z, and Zyy and define the
12 NS-NS (complex) charges, while the spinorial (4, 4') correspond to the off-diagonal
block Z,, and define the 16 (complex) R-R charges. The skew—diagonal elements
which will define Z]J\\,/S correspond then to NS-NS charges (Z12, Z34, Zv2, Z3y) and
therefore the corresponding STU model will contain 4 NS-NS vector fields. Let us
work out the embedding of G and G¢ within Er(). Let the simple roots of Er(7) be
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o, whose expression with respect to an orthonormal basis €, is the following:

Q] = €1 —€2; Qp = €3 —€3; Qi3 = €3 — &4
Qg = €4—€5; Q5 = €5 — €5 ; Qg = €5 1+ €p
1 V2
oy = ——5 (€1+€2+€3+64+65+66)+—2—67 (244)

The group He = SO(4)2 ¢ SO(6)? C SO(6,6) consists of four SU(2) factors act-
ing separately on the blocks (1,2), (3,4), (1'2'), (3'4') of the central charge matrix.
The centralizer at the level of quantized charges G¢ on the other hand is the group
S0O(4,4) regularly embedded in SO(6,6). If the latter is described by the simple
roots o, ..., Qs, a simple choice, modulo isomorphisms, for the Dynkin diagram of
G would be as, . .., 0. The solvable subalgebra of G¢ consists of only NS5-NS gen-
erators. The algebra Gy, being characterized as the largest subalgebra of Solv(Er(7))
which commutes with Gc, is immediately defined, modulo isomorphisms, to be the
[SL(2, ]R)]3 algebra corresponding to the roots 8, = V2€z7, o = €1—¢5 and B3 = €;+6o.
The scalar manifold of the corresponding STU model has the form:

GN . SU(l, 1) 50(27 2) ‘ (,82,63) (245)

Mty Hy  UQ) (Br) S0(2) x SO(2)

The reason why the above expression has been written in a factorized form is to
stress the different meaning of the two factors from the string point of view: the
group SU(1,1)(B;) represents the classical S-duality group of the theory and the
corresponding factor of the manifold is parameterized by the dilaton ¢ and the axion
B,y In the same way it can be shown that the second factor is parameterized by the
scalars Gss , Ges , G5 and Bsg and its isometry group acts as a classical T-duality, i.e.
its restriction to the integers is the perturbative T—duality of string theory. This non-
symmetric version of the STU model is the same as the one obtained as a consistent
truncation of the toroidally compactified heterotic theory and therefore describes the
generating solution also for this theory (the string interpretation of the 4 scalars
spanning the second factor in Mgry is in general non generalizable to the heterotic
theory).

2.4.2 The R—R STU model

- Let us start with the central charge matrix Z,p obtained from Z;z through an
orthogonal conjugation, such that the new index A of the 8 of SU (8) assumes the
values A = 1,1",2,2,...,4,4, the unprimed and primed indices spanning the 4 of the
two SU(4) subgroups previously defined. Let us now consider the decomposition of
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SU(8) with respect to its subgroup U(1) x SU(2) x SU(6) (which is the decomposition
suggested by the Killing spinor analysis of the 1/8 BPS black holes, see the next
chapter) such that the 8 decomposes into a (1,2, 1) labeled by i = 4,4" and a (1,1, 6)
labeled by i = 1,1/,...,3,3. The 28 decomposes with respect to U(1) x SU(2) x
SU (6) in the following way:

28 — (1,1,1) +(1,1,15) + (1,2, 6) (2.46)

where the singlet represents the diagonal block Z;;, the (1,1,15) the diagonal block
Zz5 and the (1,2,6) is spanned by the off diagonal entries Z, . The skew-diagonal
entries which survive the gauge fixing procedure defined above and thus entering the
new normal form of the central charge Zf{R are now Z, = Zy,11,4s = Zog, 43 = L3z
and Zy = Zyu, which are R-R charges. It is however interesting to notice that
these four charges are part of the set of 10 R-R charges entering the diagonal blocks
(1,1,1) + (1,1,15). These charges can be immediately worked out by counting the
entries with mixed primed and unprimed indices (R-R) contained in these two blocks
or in a group theoretical fashion by decomposing the (1,1,1) + (1,1,15) in (2.46)
and the (4, 4') in (2.43) with respect to a common subgroup U (1) x SU(3) x SU(3)' =
[U(1) x SU(6)]N[SU(4) x SU(4)']. Both the decompositions contain a common rep-
resentation (1,1,1') + (1, 3,3') describing 10 R-R central charges. The 3 and 3’ are
spanned by the values 1,2,3 and 1,2, 3" of the indices a and a’ of the 4 and 4' re-
spectively. These charges correspond to the 1+ 9 vectors of an IV = 2 truncation of
the N = 8 theory with scalar manifold SU(3,3)/U(3) x SU(3). A truncation of this
theory yields the STU model defined by the new SU(8) gauge fixing which brings
the central charge Z,p to the normal form ZﬁfR. The 4 complex charges in Z]Q/R will
depend on all the 8 R-R quantized magnetic and electric charges Q’}{R and the 6 scalar
fields of the new STU model. Therefore, differently to the previous defined class, in
this case all gauge fields (and hence the corresponding charges) come from R-R 10
dimensional forms. The centralizer SO(4, 4) of Q¥ is now no more contained inside
S0O(6,6) and therefore its solvable algebra contains R-R generators as well. As a
common feature of those truncations belonging to this class, the scalars entering each
quaternionic multiplet split into 2 NS-NS and 2 R-R. Indeed the centralizer SO(4, 4)
is now the isometry group of the manifold SO(4,4)/S0O(4) x SO(4) describing four
hypermultiplet scalars and therefore its solvable algebra has 8 R-R and 8 NS-NS
generators.

In order to specify a precise truncation within the class, however, one should also

choose the way the simple roots (i.e. the scalar fields) are shared out SO(4,4) and
the isometry group [SL(2,R)]° of the STU model. An interesting possibility is the
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one where the system of simple roots for SO(4, 4) is chosen to be:

Y1 = €1+t € Y3 = €3+ €1, Yo = €5+ €p

Yo = Q7 (247)

Here the root f = v2¢; = Zle ~v; belongs to the SO(4,4) root space. In the
solvable language, since the Cartan generator and the shift operator corresponding
to this root are parameterized by ¢ and B, , these two scalars are now part of a
quaternionic multiplet, known as the universal sector. The isometry group of the
STU model which commutes with the above defined SO(4, 4) centralizer is generated
by a [SL(2, IR)]3 algébra which is regularly embedded in the isometry group GL(6, R)
of the classical moduli space of T° and defined by the following roots:

B = €1—€; Po =€3—€1; B3 = € — € (2-48)

The scalar manifold of this STU model is now symmetric among S,T, U since it is
contained in the moduli space of T® (its scalars are all NS-NS but there is no ¢ and
B,.):

Gy SU(L,1) SU(1,1) SU(1,1)

Msry = Hy U() (1) x "—(‘]‘(‘1)—@2) X _Uh“)_‘(ﬂa) (2.49)

From the table 2.4 we can read the scalar content of this model to be: Gss, Grs, Go1o
and 3 radii. The interest in the above embedding is that the all excited scalar fields,
although NS-NS, come from the metric tensor rather than from the antisymmetric
tensor Bysy. On the contrary, and this is a common feature of all embeddings falling in
this class, all charges are R-R. This means that this particular embedding represents
a pure R—R solution whose microscopic description can be given in terms of D-branes
only. Therefore, it is likely to look for the generating solution within this particular
embedding because this is the case where a microscopic entropy counting can be more
easily performed.

As already reminded (see the discussion after eq.(2.46), the group-theoretical anal-
ysis performed above, relies on the embedding of the STU model via the intermediate
N = 2 consistent truncation described by the coset manifold SU(3,3)/SU(3)xU(3) C
Eqery/SU(8). This manifold is the moduli space of the 7°/Z3 orbifold and then one
could expect that in this class falls also a truncation whose black hole solutions can be
seen as 1/2 supersymmetry preserving solutions of type IIA compactified on 7°°/Z;.
This is indeed the case and the proper embedding as been worked out in [100] (where
it is apparent that the choice for the simple roots is different from that defined above).
On the contrary, it is interesting to notice that the case of a pure R-R configuration
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cannot be obtained within this compactification. Let us see why it is so. The orbifold
T°/Z; is a singular limit of a Calabi—Yau space (CY) characterized by the relevant
Hodge numbers h(;1) = 9 and h( 9 = 0. The compactification of type ITA on such
space gives a 4 dimensional supergravity theory where the number of vector multi-
plets is ny = hq,y) = 9 and the only hyper is the universal one (that containing the
dilaton). Indeed we have ng = hq 9 + 1 = 1. Let us now consider which 10 dimen-
sional fields survive the orbifold projection. In general, for any CY compactification,
the following table holds: where 4,1, 7,7,k k = 1,2, 3.

Space-Time Dimension Massless spectrum - .
10 (ITA) Gun Bun | ¢ | Am Amnp
4 Guu ) Gij ) Gz7 Buu ) Bz} ¢ A;L A,_LL}' 3 A'ijlc ) AZT]E

All the vector fields surviving the orbifold projection arise from the R-R forms
Ay and Apsvp while the ones usually coming from the NS-NS fields in a toroidal
compactification are absent because are projected out (there are not l-cycles on
T /Z3, as for any CY space). The A, field arising from the R-R 1-form and the 9
vectors A ;5 arising from the R-R 3—form give rise, in the low energy effective theory,
to the N = 2 graviphoton and the 9 vectors of the 9 vector multiplets.

The vector multiplets scalars (two for each vector multiplet) comes all from NS-
NS sector, 9 from G;5 and 9 from B;; while the universal hypermultiplet is made
of the dilaton ¢, the pseudoscalar B, and by the two R-R scalars arising from the
3—form, A;jx, and its complex conjugate (hso = hos = 1 for a CY space).

Moreover (and this is the crucial difference w.r.t. the embedding (2.46)-(2.48))
all G;; components are projected out because they are dual, on a CY, to 3—cycles
of the type (1,2), which are absent since hq1 ) = 0. Each vector multiplet’s com-
plex scalar is made of 2 NS-NS fields, 1 coming from the metric and one from the
anti-symmetric tensor. Therefore in this case the 3 vector multiplets belonging to
STU c SU(3,3)/SU(3) x U(3) contain (scalar) NS-NS fields coming also from the
2-form Bysy. And this means that it is not possible to find a pure R-R configura-
tion compactifying type ITA on this CY space because one always has B—components
switched on. Actually, what stated above is a general feature of type IIA compactifi-
cations on CY manifolds: each vector multiplet always contains a scalar coming from
the metric tensor and one coming from By therefore no way to obtain pure R-R

supersymmetry preserving solutions of the low energy supergravity theory.
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The embedding (2.46)-(2.48) is different. While the vector fields are the same as in
the previous case, the scalar fields are not. Although NS-NS, all excited scalars come
from the metric tensor rather from the 2-form B. The 10 dimensional fields which
contributes to the 4 dimensional solution are Gy, Ay, Aynvp while By can be
consistently put to zero. From this last consideration one can easily see that the
microscopic configuration corresponding to a solution within this STU model (either
generating or not) should be given in terms of a 1 /8 supersymmetry preserving bound
state of DO, D2, D4 and D6 branes without the presence of any KK or NS5-brane
state. In the next chapter I will come back on this issue by considering some explicit
solutions of the STU model.
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[ ITA'] IIB Tomn | €&-components | a;,—components |

[ Ao o [ e1n [ A(-1,-1,-1,-1,-1,-1,v3) [ (0,0,0,0,0,0,1) ]
Bg 1o Bg 10 Qo1 (0,0,0,0,1,1,0) (0,0,0,0,0,1,0)
Gg10 Gg 10 @g (0,0,0,0,1,~1,0) (0,0,0,0,1,0,0)
Ag Ag 10 as.3 I(-1,-1,-1,-1,1,1,V?) (0,0,0,0,0,1,1)
Bgg Bgg g1 (0,0,0,1,1,0,0) (0,0,0,1,1,1,0)
Ggo Ggg a3 2 (0,0,0,1,—~1,0,0) (0,0,0,1,0,0,0)
Bg1p Bg1g o33 (0,0,0,1,0,1,0) (0,0,0,1,0,1,0)
Gg10 Gg 10 Qs 4 (0,0,0,1,0,~1,0) (0,0,0,1,1,0,0)
Ago10 Agg as,s (-1,—-1,~1,1,1, ~1,V2) (0,0,0,1,1,1,1)
Ag Ag10 o036 L(—-1,-1,~1,1,-1,1,v2) (0,0,0,1,0,1,1)
Brs Brg 4,1 (0,0,1,1,0,0,0) (0,0,1,2,1,1,0)
Geg Grg 7% (0,0,1,-~1,0,0,0) (0,0,1,0,0,0,0)
Brg Brg @43 (0,0,1,0,1,0,0) (0,0,1,1,1,1,0)
Gro Grg aq.q 0,0,1,0,~1,0,0) (0,0,1,1,0,0,0)
B71o Bria oy 5 (0,0,1,0,0,1,0) (0,0,1,1,0,1,0)
Gr10 G710 4.6 0,0,1,0,0,-1,0) (0,0,1,1,1,0,0)
Av7g10 A7s 4,7 4(—-1,-1,1,1,-1,—1,v2) (0,0,1,2,1,1,1)
A7 g10 Arg 4.8 s(=1,-1,1,-1,1, =1, v/3) (0,0,1,1,1,1,1)
Aq A7 1o g9 =(-1,-1,1,~1,~1,1,v2) (0,0,1,1,0,1,1)
A7g9 | Arsgig @410 £(-1,-1,1,1,1,1,V%) (0,0,1,2,1,2,1)
Bs 7t Bg7 5,1 (0,1,1,0,0,0,0) (0,1,2,2,1,1,0)
Gg 7 Gert ag,2 (0,1,-1,0,0,0,0) (0,1,0,0,0,0,0)
Bgs Bgs as.3 (0,1,0,1,0,0,0) (0,1,1,2,1,1,0)
Geg Ggs 5.4 (0,1,0,-1,0,0,0) (0,0,1,0,0,0,0)
Bgo Bsg a5 5 (0,1,0,0,1,0,0) (0,1,1,1,1,1,0)
Ggo Gsog a5.6 (0,1,0,0,-1,0,0) (0,0,0,1,0,0,0)
Bs 10 Bs 10 ag.7 (0,1,0,0,0,1,0) (0,1,1,1,0,1,0)
Gs10 Gg 10 @5,8 (0,1,0,0,0,-1,0) (0,0,0,0,1,0,0)
As710 Ag 7 as5.9 i(-1,1,1,-1,-1, -1,vV2) 0,1,2,2,1,1,1)
Ags10 Ags a5,10 i(-1,1,-1,1, -1, -1,v2) (0,1,1,2,1,1,1)
Agg1o Asg 5,11 L(-1,1,-1,-1,1,-1,v2) - (0,1,1,1,1,1,1)
Ag Ag 10 as,12 T, -1, -1, -1,1,V2) (0,1,1,1,0,1,1)
Asgo | Assogio @513 #(-1,1,-1,1,1,1,v2) (0,1,1,2,1,2,1)
AgTo Ag7910 5,14 1(-1,1,1,-1,1,1,/2) 0,1,2,2,1,2,1)
Asrs As7810 515 --(——l,l,l,l,-—l,l,\/i) (0,1,2,3,1,2,1)
Apvp As789 5,16 i(-1,1,1,1,1,—1,v2) (0,1,2,3,1,2,1)
Bsg Bss ag,1 (1,1,0,0,0,0,0) (1,2,2,2,1,1,0)
Gs¢6 Gss Qg2 (1,-1,0,0,0,0,0) (1,0,0,0,0,0,0)
Bs7 Bs7 g3 (1,0,1,0,0,0,0) (1,1,2,2,1,1,0)
57 Gs 7 og 4 (1,0,-1,0,0,0,0) (1,1,0,0,0,0,0)
Bsg Bsg ag.5 (1,0,0,1,0,0,0) (1,1,1,2,1,1,0)
Gss Gsg Qg6 (1,0,0,-1,0,0,0) (1,1,1,0,0,0,0)
Bsg Bgo ag,7 (1,0,0,0,1,0,0) (1,1,1,1,1,1,0)
Gsg Gsg 6,8 (1,0,0,0,~1,0,0) (1,1,1,1,0,0,0)
Bs1o Bs 10 g9 (1,0,0,0,0,1,0) (1,1,1,1,0,1,0)
G510 G510 g 10 (1,0,0,0,0,—1,0) (1,1,1,1,1,0,0)
By Buy ag,11 0,0,0,0,0,0,v2) (1,2,8,4,2,3,2)
A, 10 Apy ag,12 1(1,1,1,1,1,1,V2) (1,2,3,4,2,8,1)
Ag 10 Ass 26,13 +(1,1,-1, =1, -1, —=1,v/2) (1,2,2,2,1,1,1)
As 710 Ag 7t 6,14 (1, ~1,1,—1,=1,—1,+/2) (1,1,2,2,1,1,1)
Agg1o Ass 6,15 i, -1,-1,1,-1,-1,v2) (1,1,1,2,1,1,1)
Asg10 Asg 6,16 (1, —1,-1,-1,1, -1,/3) (1,1,1,1,1,1,1)
Asg As10 ag,17 L1, ~-1,-1,~1,-1,1,v2) (1,1,1,1,0,1,1)
Asgo As8910 5,18 (1, -1,-1,1,1,1,v2) (4,1,1,2,1,2,1)
Asto As 7910 ap,19 i(1,-1,1,-1,1,1,v2) (1,1,2,2,1,2,1)
Asa A57810 as.20 11, -1,1,1,-1,1,/2) (1,1,2,8,1,2,1)
Auvs As7s9 ag,21 i(1,-1,1,1,1,-1,v2) (1,1,2,8,2,2,1)
Asge Ass910 g, 22 (1, 1,-1,-1,1,1,v2) (1,2,2,2,1,2,1)
Ases Ags810 ag,23 L(1,1,-1,1,-1,1,V2) | (1,2,2,3,1,2,1)
Aput Assgo ag,24 =(1,1,-1,1,1,—1,v2) (1,2,2,3,2,2,1)
Asgr Ass710 ag,25 L,1,1,-1,-1,1,v2) (1,2,8,3,1,2,1)
Apvs Asg7To ag,26 11, 1,1, -1,1,—1,v2) (1,2,3,8,2,2,1)
Apyg Ass7s g, 27 1(1,1,1,1, -1, -1,v2) (1,2,3,4,2,2,1)

Table 2.4: The correspondence between the roots of the U-duality algebra £7(7y and the
scalar fields parameterizing the moduli space for either ITA and IIB compactifications on
T5. The o;’s (i = 1,...,7) are the simple roots while the ¢;’s are an orthonormal basis in

the roots’ space. The seven Cartan generators correspond to the dilaton and the six radii.

The notation am n for the positive roots was introduced in [103].
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BPS black hole solutions of N=8

supergravity

In this chapter I will concentrate on N = 8 supergravity. /N = 8 supergravity is the
four dimensional effective theory of both type ITA and type IIB superstrings com-
pactified on a torus 7 or, alternatively, it can be viewed as the effective theory of
11 dimensional M-theory compactified on a torus 7. For this reason its U-duality
group Er(7)(Z), unifies all superstring dualities relating the various consistent super-
string models. BPS black hole solutions within this theory provide non—perturbative
states which are essential to complete the U-duality multiplets and to give a first
consistency check for the validity of the unified M—theory picture. In this chapter I
address the construction of such solutions. The N = 8 supergravity falls in the class
of theories admitting a lagrangian of the type (1.26), and therefore all the general
properties addressed so far (chapters 1 and 2) regarding BPS black hole solutions of
N-extended supergfavity theories hold true also in this case.

In the first section I consider the general structure of these solutions with particular
emphasis on the solvable decomposition of the whole scalar manifold in the case of 1/8
supersymmetry preserving solutions, which promotes the STU model to be the correct
N = 2 consistent truncation one has to consider when looking to the most general
regular black hole solutions of N = 8 theory modulo U-duality transformations. As
explained in previous chapters, within N = 8 supergravity the only regular black holes
are those preserving 1/8 of the original supei"symmetry or, said in a dimensionality
independent way, preserving 8 supercharges. Therefore the solutions one finds could
be also consider as 1/2 preserving one of the relevant /N = 2 supergravity theory
characterizing the STU model. I will construct the solvable algebra of the STU
model and show how it is embedded in that of SU(3,3)/SU(3) x U(3) and the latter

70
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in that of E7(s). This chain of embeddings is the essential tool for any solution within
the STU model to be a solution of the complete theory and therefore, thanks to the
solvable embedding given, we could just address the (simpler) goal of finding non-
trivial solutions within this simplified model. In section 2 I explicitly compute the
'4system of first and second order differential equations characterizing the STU model
and which should be satisfied by any BPS black hole solutions. Finally, in the last
sections, I will be able to give some interesting explicit examples of BPS black hole
solutions characterized by non-trivial features, like having a regular horizon and a
RN-like metric, a different number of gauge fields and various non-trivial scalars,
namely evolving ones (¢ = ¢(r)), but such as to leave the black hole regular at the
horizon. Part of the content of the present chapter refers to results obtained within
the collaborations [32, 34].

3.1 Black hole solutions of N =8 supergravity and

solvable decomposition

The qualifying equation defining BPS state within a given supergravity theory is
eq.(1.37), that is:

S |BPS stated) =0 for [ =1, fimaq
gf] lBPS St&t@,’];) # 0 fOI' I = Nomaz + 1: T 4 (31)

where (A — a,I) as in (1.34). According to the value of n,q, such state preserves
a different amount of supersymmetry. For n,,., = 4 the state preserve 1/2 super-
symmetry, for npme = 2' it preserve 1/4 supersymmetry while for nm,,, = 1, which
represents the minimum shortening and is the one we are interested in, the state
preserve 1/8 supersymmetry. The (bosonic) action of N = 8 supergravity has the
following form:

L = / diz/—g {QR + —EIHL/\/'AE(gb) FART 4 %hij(gb)auqua%j + %ReNAg(gb) FARE
(3.2)

where the indices A, ¥ enumerate the 28 vector fields, h;; is the Ey(r) invariant metric
on the scalar coset manifold and Ny is the usual period matrix. The complete N = 8
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supergravity multiplet is made of the following fields:

fields spin # of fields

I 2 1
Ya, 3/2 8
A 1 28
Xapc 1/2 56
@ 0 70

Eq.s (3.1) can be translated into first order differential equations for the bosonic
fields of supergravity. In order to do that one should consider a configuration where
all the fermionic fields are zero, namely a bosonic background. Setting to zero the
SUSY transformation laws of the gravitino ¥4, and dilatino xa4pc fields of N = 8
supergravity one finds the following Killing spinor equation:

dexapc =0 66¢Au =0 (6E¢ = 0) (33)
where the supersymmetry parameter satisfies:

EFyu€ar = 1Cq € =1,...,Nnaz (3.4)
€ag = 0 i 1> Nmas

Here £* is a time-like Killing vector for the space time metric (in the following we just

write &4, = 7°) and ey, ¢! denote the two chiral projections of a single Majorana

Spinor: sear = €ar , vs€ = —e*. The above system of equations (3.3) is a

system of first order differential equations the bosonic background fields should fulfill.

Independently from the value of 7,44, the Killing spinor equation has two crucial

features, that is:

1. Tt breaks the original SU(8) automorphism group of the supersymmetry algebra
to the subgroup SU(2 Nmaz) X SU(8 = 2 Nimes) % U(1)

2. It enforces a decomposition of the scalar field manifold into two sectors:

e a sector of dynamical scalar fields that evolve in the radial parameter 7

e a sector of spectator scalar fields that do not evolve in 7 and are constant
in the BPS solution

The first feature is the reason why the solvable Lie algebra Solvr, generated by the
scalar fields of the relevant N = 8 theory, has to be decomposed in a way appropri-
ate to the decomposition of the isotropy group SU(8) with respect to the subgroup
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SU(2nmaz) X SU(8 — 2 Nmesz) X U(1). Actually this decomposition of the solvable Lie
algebra is a close relative of the decomposition of N = 8 supergravity into multiplets
of the lower supersymmetry N’ = 2n,,4,. This is easily understood by recalling that
close to the horizon of the black hole one doubles the supersymmetries holding in the
bulk of the solution. Hence the near horizon supersymmetry is precisely N' = 21,4
and the black hole solution can be interpreted as a soliton that interpolates between
ungauged N = 8 supergravity at infinity and some form of N’ supergravity at the
horizon.

In the case we are interested in, namely 1 /8 preserving solutions, we have ng,,, =
1 and Solv; must be decomposed according to the decomposition of the isotropy
subgroup: SU(8) — SU(2)xU(6). As it has been shown in [100], the corresponding
decomposition of the solvable Lie algebra is the following one:

Solv; = Solvs & Solv, (3.5)
Solvy = Solv (SO*(12)/U(6)) Solvg = Solv (Eguy/SU(2) x SU(6))
rank Solv; = 3 rank Solvy = 4
dim Solvs = 30 dim Solvy = 40
(3.6)

The rank three Lie algebra Solvs defined above describes the thirty dimensional scalar
sector of N = 6 supergravity, while the rank four solvable Lie algebra Solv, contains
the remaining forty scalars belonging to N = 6 spin 3/2 multiplets. It should be
noted however, that, individually, both manifolds exp [Solvs] and exp [Solvs] have
also an N = 2 interpretation since we have:

exp [Solus] = homogeneous special Kéhler

exp [Solvs)] = homogeneous quaternionic (3.7)

so that the first manifold can describe the interaction of 15 N = 2 vector multiplets,
while the second can describe the interaction of 10 N = 2 hypermultiplets. Indeed,
if we decompose the N = 8 graviton multiplet in N = 2 representations we find:

N=8spin 2 V= spin 2+6xspin 3/2+15xvect. mult.+10x hypermult. (3.8)

Introducing the decomposition (3.5) the authors of [100] found that the 40 scalars
belonging to Solv, are constants, namely independent of the radial variable r, while
the 30 scalars in the Kéahler algebra Solvs can be radial dependent. To be more
precise, the scalar fields ¢’ separate in three sets, namely:

{¢(a) = constant , dw) , P} (3.9)
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The scalar fields ¢,y are those and only those generating S olvy (which will be hyper-
multiplets scalars in the relevant N = 2 decomposition) which is then characterized
by fields not entering dynamically the solution. The black hole does not couple to
them. The scalars ¢ are defined as the maximum number of those scalars belonging
to Solvs that can be gauge—fixed to zero with a U-duality transformation. Actually,
the corresponding gauge transformation is precisely that yielding the central charge
Zp in its normal form, eq.(2.27). The remaining scalar fields, ¢(, are the only
dynamical ones up to U-duality transformations and are those generating the pre-
viously introduced STU model manifold, Mgsry. Hence the regular BPS black hole

solutions of NV = 8 supergravity can be classified within the NV = 2 truncation:

Ik L(Z’R)r (310)

SU®)  Hy | 80(2)

Coming back to the decomposition (3.8), let us notice that although at the level
of linearized representations of supersymmetry we can just delete the 6 spin 3/2
multiplets and obtain a perfectly viable N = 2 field content, at the full interaction
level this truncation is not consistent. Indeed, in order to get a consistent N =
9 truncation the complete scalar manifold must be the direct product of a special
Kihler manifold with a quaternionic manifold. But this is not true in our case since
putting together exp [Solus] with exp [Solvs] one reobtains the /N = 8 scalar manifold
E(7)/SU(8) which is neither a direct product nor K&hlerian, nor quaternionic. The
reason for this relies on the decomposition (3.5) which is a direct sum of vector spaces

but not a direct sum of Lie algebras. In other words we have:
[Solvs , Solvs] # 0 (3.11)

One has to determine a Kahler subalgebra K C Solvs and a quaternionic subalgebra
Q C Solvs in such a way that:
(K, Q=0 (3.12)

Then the truncation to the vector multiplets described by K and the hypermultiplets
described by Q is consistent at the interaction level. An obvious solution is to take
no vector multiplets ( K = 0) and all hypermultiplets ( Q = Solvy) or viceversa (I =
Solvs, Q = 0). Less obvious is what happens if we introduce just one hypermultiplet,
corresponding to the minimal one dimensional quaternionic algebra. The authors of
[100] have shown that in that case the maximal number of admitted vector multiplets
is 9. The corresponding Kihler subalgebra is of rank 3 and it is given by:

SOZ’L)SU(g,g) = Solv (SU(3, 3)/SU(3) X U(3)) C SOl’Ug (313)
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This is the N = 2 truncation whose relevance has been clarified in the previous
bchapter, see in particular section 2.4. From a string theory compactification point
of view, this truncation is the minimal physical one in the sense that, being com-
patible with one (and only one) hypermultiplet, it always accounts for the universal
sector (that containing the dilaton ¢), which should be present, of course. Moreover,
although the 18 scalars parameterizing the manifold SU(3,3)/SU(3) x U(3) are all
scalars in the NS-NS sector of SO*(12), the corresponding embedded STU model is
a R-R STU model, that is falls in the second class, according to the classification
carried on in section 2.4. It is therefore of interest to build up STU model trunca-
tions embedded in Mgy(ss = [SU(3,3)/SU(3) x U(3)] X Mouat, Moua: being the
quaternionic manifold SO(4,1)/S0O(4) describing 1 hyperscalar. Within this latter
model we are going to construct the N = 2 STU model as a consistent truncation.

Hence, in the next section, I will make explicit the subsequent solvable embedding
Mgry € Mgy,sy C Erry/SU(8).

3.1.1 The solvable Lie algebra of the STU model

Let us illustrate the solvable Lie algebra parameterization of the coset manifold that
‘plays a crucial role in the discussion of 1/8 preserving BPS black holes, the STU
model. The building block is the manifold M = SL(2,1R)/SO(2) which may be
described as the exponential of the following solvable Lie algebra:

SL(2,R)/SO(2) = exp|[Solv]
Solv = {o3,0.}

los,00] = 204
/10y 01 s
03 = 0 —1 1 04 = 0 0 ( : )

From (3.14) we can see a general feature of Solv, i.e. it may always be expressed
as the direct sum of semisimple (the non-compact Cartan generators of the isometry
group) and nilpotent generators, which in a suitable basis are represented respectively
by diagonal and upper triangular matrices. This property, as we shall see, is one of
the advantages of the solvable Lie algebra description since it allows to express the
coset representative of a homogeneous manifold as a solvable group element which is
the product of a diagonal matrix and the exponential of a nilpotent matrix, which is

a polynomial in the parameters. The simple solvable algebra represented in (3.14) is
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called key algebra and will be denoted by F. The STU coset manifold is:

SU(1,1) S0(2,2)
U1 " 50(2) % S02)
SU(L,1)  SU(1,1)  SU(LL)
OO

(%é%?l)g (3.15)

5T2,2] =

where the symmetric or asymmetric nature depends, according to the discussion of
section 2.4, on the basis chosen for the original central charge Z4p and the way simple
roots spanning its algebra are chosen within the complete starting sets. The solvable
Lie algebra generating Mgry is the sum of 3 commuting key algebras Fj:

SL(2,R)\®
Msry ("—gé‘(2—)2> = exp [SolvsTy]
Solvgry = OO F3
F; = {hi, 9:} ; hi, 93] = 24 |
R = 0 (3.16)

the parameters of the Cartan generators h; are the dilatons of the theory, while the
parameters of the nilpotent generators g; are the axions. The three S5 O(2) isotropy
groups of the manifold are generated by the three compact generators gi = g; — g;f .

3.1.2 The (solvable) embedding of Msry in Mgy ,s)

The manifold Mgy(s3) has of course a slightly more involved solvable algebra with
respect to the one of the STU model. Indeed, it is a 18 dimensional Special Kéhler
manifold and is generated by a solvable algebra which contains the solvable Lie algebra
of the STU model plus some additional nilpotent generators. Explicitly we have:

SU(3,3
MSU(3,3) = —5—17@—)—(;7])-(—3—) = exp [SOZ'USU(B,3)]
Solusy(ss = Solvsty © Xns @ Yys ® Zns (3.17)

The 4 dimensional subspaces Xys, Y s, Zyg consist of nilpotent generators, while
the only semisimple generators are the 3 Cartan generators contained in Solvgry
which define the rank of the manifold. The algebraic structure of Solvsy(s,s) together
with the details of the construction of the SU(3,3) generators in the representation
20 are reported in appendix A. Eq. (3.17) defines the embedding of Mgy inside
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My (s ), ie. tells which scalar fields have to be put to zero in order to truncate the
theory to the STU model. As far as the embedding of the isotropy group SO(2)? of
Mty inside the Mgy s 3y isotropy group SU(3); x SU(3)y x U(1) is concerned, the
3 generators of the former ({1, 92,93} ) are related to the Cartan generators of the
latter in the following way:

- 1 1

gl - 'é' (A ‘+‘ '2‘ (HC;[ - Hd1 + H01+52 - Hd1+d2)>

_ 1 1

ga = 5 A —+ 5 (Hcl - Hdl - Q(Hcl—}—cz - Hdl+d2))

- 1 1

g3 = '2‘ </\ + ‘2‘ (—2(H01 - Hdl) + (H¢31+62 - Hd1+d2))> (318)

where {c;}, {d;}, 1 = 1,2 are the simple roots of SU(3); and SU(3), respectively, while
A is the generator of U(1). In order to perform the truncation to the STU model,
one needs to know also which of the 10+10 vector fields have to be set to zero in
order to be left with the 444 of the STU model. This information is provided by
the decomposition of the 20 of SU(3, 3) in which the vector of magnetic and electric
charges transform, with respect to the isometry group of the STU model, [SL(2,TR)]*:

SL(2,R

20 A (2.2 2)@2x [(2,1,1) @ (1,2,1) & (1,1, 2)] (3.19)

Skew diagonalizing the 5 Cartan generators of SU(3); x SU(3), x U(1) on the 20
we obtain the 10 positive weights of the representation as 5 components vectors 7

(A'=0,...,9):

Hc1 H61-|-02 Hd1 Hd1+d2

{C(n)}={2, 5 55 , A}
Cn)-v)) = vfylvi)
Cn)-Ju)) = —vfyPd) (3.20)

Using the relation (3.18) we compute the value of the weights v’ on the three gener-
ators g; and find out which are the 4 positive weights 7 (A = 0,...,3) of the (2, 2, 2)
in (3.19). The weights 7 and their eigenvectors [vé‘*,y) are listed in Appendix A.

In this way we achieved an algebraic recipe to perform the truncation to the
STU model: setting to zero all the scalars parameterizing the 12 generators X &
Y @ Z in (3.17) and the 6 vector fields corresponding to the weights v», A’ =
4,...,9. Restricting the action of the [SL(2,IR)]* generators (h;, g;, g:) inside SU(3, 3)
to the 8 eigenvectors |v2 }(A = 0,...,3) the embedding of [SL(2,IR)]® in Sp(8) is

T,y
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automatically obtained *.

The embedding of the manifold Mgy (3 3) inside the N = 8 theory, that is inside
Solv; C Solv; can be obtained in a straightforward way. Indeed the structure of
M s0s(12) is the same as the one of Msuy(3,3), €q-(3.17), with the only difference that the
X, Y, 7Z subspaces are 8 dimensional rather than 4 dimensional. Indeed, each of them
is a direct sum of a R-R 4 dimensional subspace and a NS-NS one. Therefore, the 30
dimensional manifold Mgo.(12) has both NS-NS and R~R scalars (i.e. 18+412) while,
as already explained (see also Appendix A), the 18 dimensional manifold Mgy (s 3) is
only NS-NS (i.e. 18 +0).

Solvy = SOZ’USU(;J,’g) ® Xrr D Yrr ® Zgrr (3.21)

For more details see [102].

3.2 BPS black hole solutions of the STU model

As previously emphasized, the most general 1/8 black-hole solution of N = 8 su-
pergravity is, up to U-duality transformations, a solution of a N = 2 STU model
suitably embedded in the original N = 8 theory. In the previous section we have
outlined how to perform this embedding. Hence, from now on I will refer to the
N = 2 STU model itself, being explicit that in order for its black hole solutions to be
even solutions of the complete N = 8 theory one should take care of the embedding
procedure outlined and on all the duality properties of this embedding, according to
the discussion carried on in chapter 2.

The STU model is a N = 2 supergravity theory coupled to three vector multiplets
and no hypermultiplets. Hence, as extensively anticipated, it describes the N = 2
supersymmetric interaction of a metric g,,, four gauge fields Aﬁ (the graviphoton
and three matter gauge fields, A = 0,1,2,3)), three complex scalar fields {z'} =
{S,T,U} (2% = a; +ib;, i = 1,2, 3), the supersymmetric partner of the graviton and
the graviphoton, the gravitino ¢4, and three dilatino Ail4 supersymmetric partner
of the three matter gauge fields and the 3 complex scalars. The relevant N =2

1Tn the Sp(8) representation of the U-duality group [SL(2,IR)]® we shall use the non—compact
Cartan generators h; are diagonal. Such a representation will be denoted by Sp(8)p, where the
subscript “D” stands for “Dynkin”. This notation has been introduced in [100] to distinguish the
representation Sp(8)p from Sp(8)y (“Y” standing for “Young”) where on the contrary the Cartan
generators of the compact isotropy group (in our case g;) are diagonal. The two representations are
related by an orthogonal transformation.



Chapter 3: BPS Black Holes solutions of N=8 Supergravity 79

supergravity action (see [105, 106] for notation) is:

S = /d‘*:v\/—gﬁ where
L = R[g]+hij*(z,2)8uzi0“5j*+(ImNAgF,/_\FE"'+ReNAzF{\ﬁEI"> (3.22)

According to the notation of chapter 2, the NV = 8 central charge eigenvalues Z, will
split in the N = 2 central charge Z = ¢Z4 and the three matter central charge (the
integral of the matter physical field strengths) Z* = P, Z* and eq.(2.35) holds true.
In N = 2 language it follows that Z* = A”*V;,Z. From now on we shall use 7 for
curved indices and « for rigid ones. All the geometric quantities defining the STU
model (the scalar metric h,;+, the period matrix Ay, etc...), which are necessary to
make explicit the form of the action (3.22) are reported in appendix B.

Specifying eq.s (3.3),(3.4) to our case, that is Ny, = 1, and writing them in a
N = 2 language, one gets:

Ofermions = 0

Pes = Hegpe? if A, B=1,2 (3.23)

and can be specialized to the supersymmetry transformations of the gravitino and
gaugino within the STU model in the following way:
1 — AP0 B
66"/)/4“1 = VMEA - ZTpo' 7T Yu€ABE = 0
S = iV 2 yea +G;ffy”"eABeB =0 (3.24)

where i = 1,2,3 labels the three matter vector fields, A, B = 1,2 are the SU(2)
R-symmetry indices and T}, and G;Ji are the graviphoton and matter field strengths
respectively (the — sign stands for the anti-self dual part). According to the procedure
defined in [32], we adopt the following ansétze for the vector fields:

th(r)

it = ZUE M) = 2n(pt +i0N)
FA = 9ReF M, FA = —oImp-IA
A gA
Y = g—geabcz“dxb A dx® — —<3T—)62udt ANT-dT
27 r
FA = ~——(£leabca:“da:b A dz® — %qudt AT - dT (325)
2r T

where A, =0,1,2,3 and:

- 1 ag.b ., e = o
EF™ = —euexdz’ Ndzt+ ——dt AT -dd =
2r3 r3
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E,.dx® A dzt + 2Eg,dt A dz®
i = / E-dz® A dz®
N

2
=]

(3.26)

The moduli-independent quantized charges (p*, ¢=) and the moduli-dependent elec-
tric charges £5(r) [32] are obtained by the following integrations:

drpt = /FA:/ F* = 2Ret"
s2 S

B or
4 = Gy = [ @ G =
Tqs 5 b s ) 5 BFE/
Arti(r) = - / F* = 2lmt® (3.27)
5

where S? and S% denote the spheres centered in r = 0 of radius 7 and oo respectively.
The expression of the moduli-dependent charges £x(r) in terms of the scalars (a;, b;)
and the charges (p”, g=) is given in appendix B.

As far as the metric g,,, the scalars 2° = a;+ib;, parameterizing [SL(2,R)/SO(2)}?,

and the Killing spinors e4(r) are concerned, the ansitze we adopt are the following:

ds? = M2 — e Mgz:  (r? =17)
£ = ()
ealr) = D¢y &4 = constant
Yoba = Fieapé® ’ (3.28)

Substituting the above ansétze in eq.s (3.24), after some algebra, one obtains an
equivalent system of first order differential equations on the background fields. The
vanishing of the gravitino transformation rule implies conditions on both the functions
U(r) and f(r) (for the case p = O0and p=1,2,3 respectively). However, the equation
for the latter is uninteresting since it simply fixes the form of the Killing spinor
parameter. The vanishing of the dilatino transformation rule translates instead into

conditions on the scalar fields z;. After some algebra one obtains:

dzt M\ _ MmN VA
- = 2 < - )hj 0;+1Z2(2,2,p,9)| = %‘—( > )Z (Z’Z’p’Q)l_Z"[
did M) _ |
YU - 2(5) e (5.29)
where the supersymmetry central charge Z has the following expression:
1
Z(Z,E,p, Q) = Py T" = —]V[ZPE - LAQA

47 g2
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The vector (L"(z,Z), Mx(z,%)) is the covariantly holomorphic section on the simplec-

tic bundle defined on the Special K&hler manifold M gry, see appendix B.

Notice that the way the last of eq.s(3.28) has been written expresses the reality
condition for Z(¢, p, ¢) and it amounts to fix one of the three SO(2) gauge symmetries
of Hy already giviﬁg therefore a condition on the 8 charges and the scalar fields. In
general however, as pointed out in [107], one should in fact consider a more general
form for the killing spinor condition, namely:

z
Yey = ii@ew e? (3.30)

and, as noticed by Moore, imposing the reality of the central charge could in principle
imply that some topologically non-trivial solutions are disregarded. Nevertheless
studying such a special class of solutions is not among the purposes of our present
investigation and therefore we shall choose the supersymmetry central charge to be
real (ImZ = ReZy = 0). Without spoiling the generality (up to U—duality) of the
black hole solution it will be still possible to fix the remaining [SO(2)]? gauges in H
by imposing two conditions on the phases of the Z*(¢, p, q).

Let us consider the gauge fixing procedure in more detail. The four central charges
Za(gb,@) of the STU model, depending on the asymptotic values of the six scalars
oo = (a°,b5°) and 8 charges Q = (p*, gs), transform under [SL(2,IR)]* duality

(2.31) as follows:

Vg € [SL2, R’ Za(¢9,G7) = hy - Zu(6,0)
hy € SO(2)°®  hy Z,=€%2Z, (3.31)

Hence an [SL(2,R)]® duality transformation on the moduli at infinity and on the
quantized charges amounts to an [SO(2)]® phase transformation on the four charges
Z,. This holds true in particular if we consider g € [SO(2)]®. It follows that the
[SO(2)]® gauge fixing may be achieved by either imposing three suitable conditions
on the phases of the central charges, or alternatively fixing the [SO(2)]* action on
@ on a chosen point ¢2 of the moduli space at infinity. As far as the search for
a generating solution is concerned, as it has been pointed out in chapter 2 (section
2.3), it will be the necessary to show that the five invariants, computed in ¢, are
independent functions of the remaining five charges. Since, on one hand, the two—fold
action of a duality transformation (and in particular of a [SO(2)]? transformation) on
both the quantized charges and the scalar fields is an invariance of the equations of
motion, and on the other hand the charges @ are “constants of motion” (with respect

to the r—evolution), we expect that the three gauge fizing conditions on the electric
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and magnetic charges have a counterpart in three r~independent conditions on the
fields @(r), such that the restricted system of scalar fields and vector fields is still a
solution of the field equations.

Actually, all this kind of reasoning holds true for any solution within the STU
model, even for those depending on less than 5 parameters. Indeed, as I will show
in the following, there could exist solutions depending on say m charges but being m
parameters solutions, where m < n. For instance, as already noticed in chapter 2, the
double—extreme solution found in [108, 109, 110, 111], although depending on the full
set of 8 (independent) quantized charges, is actually a one parameter solution, the
only independent invariant being the moduli-independent one, Zs. In the following I
will propose more involved black hole solutions where, however, the same mechanism
holds true, that is m < n. The generating solution is the one such that m =n =5

(for other solutions within this model see for instance [112] and references therein).

As already stressed, in order to find a proper solution we need also the equations
of motion that must be satisfied together with the first order ones. The former can be
derived from the action (3.22). The two subsequent subsections are indeed devoted
to compute the explicit form of both the first and second order differential equations
within the STU model.

3.2.1 The first order differential equations

Now that the STU model has been constructed out the original SU(3,3)/SU(3)xU(3)
model, we may address the problem of writing down the BPS first order equations. To
this end we shall use the geometrical intrinsic approach defined in [100] and eventually
compare it with the Special Kahler geometry formalism. Indeed the solvable formal-
ism enables one to write down the somewhat heavy first order differential system of
equations for all the fields and to compute all the geometrical quantities appearing
in the effective supergravity theory in a clear and direct way.

In order to compute the explicit form of eq.s (3.29) in a geometrical intrinsic
way we need to decompose the 4 vector fields into the graviphoton Fﬁy and the
matter vector fields F},, in the same representation of the scalars z* with respect to
the isotropy group H = [SO(2)]?. This decomposition is immediately performed by
computing the positive weights 7 of the (2,2, 2) on the three generators {g;} of H
combined in such a way as to factorize in H the automorphism group Hay: = SO(2) of
the supersymmetry algebra generated by A = g1+92+4¢3 from the remaining Hpaster =
[SO(2))? = {G1 — 2, 0+ — g3} generators acting non trivially only on the matter fields.
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The real and imaginary components of the graviphoton central charge Z will be
associated with the weight, say 7 having vanishing value on the generators of H,,gser.
The remaining weights will define a representation (2,1,1)®(1,2,1)® (1,1,2) of H
in which the real and imaginary parts of the central charges Z* associated with Fﬁu
transform and will be denoted by 4%, ¢ = 1,2, 3. This representation is the same as

the one in which the 6 real scalar components of z* = a; + ib; transform with respect
to H.

It is useful to define on the tangent space of Mgy curved indices m and rigid
indices 7, both running form 1 to 6. Using the solvable parameterization of Mgy,
which defines real coordinates ¢™, the generators of Solugry = {T™} carry curved
indices since they are parameterized by the coordinates, but do not transform in a
representation of the isotropy group. The compact generators IK = Solvsry+S olngU
of [SL(2,1R)]? on the other hand transform in the (2,1,1)® (1,2,1) & (1,1,2) of H
and we can choose an orthonormal basis (with respect to the trace) for IK consisting
of the generators IK™ = T™ + T™. These generators now carry the rigid index
and are in one to one correspondence with the real scalar fields ¢™. There is a one
to one correspondence between the non—compact matrices IK™ and the eigenvectors
[vi,) (i = 1,2,3) which are orthonormal bases (in different spaces) of the same

representation of H:

\{Kl,]K{]K?’,IK‘l,IKQIKG}J > i]vi),[vﬁ),]vi’),|v;),|v§),]v2)}/ (3.32)

(K™} Ly}

The relation between the real parameters ¢™ of the SLA and the real and imaginary
parts of the complex fields 2* is:

{™} = {—2a1,—2a2, —2a3,log(—b1),log (—bs),log (—bs), } (3.33)

Using the Sp(8)p representation of Solvsry, we construct the coset representative
L(¢™) of Msry and the vielbein P™ (that is the real version of the complex vielbein

IP% introduced in chapter 2) as follows:
L(a;,b;) = exp(Tne™) =

(1 —2a191) - (1 — 2asgs) - (1 — 2a3g3) - exp (Z log (—b,i)hz-)

. 1 -
"= —Tr (KL L) = {—
o 2v/2 I( ) {

da, _day _dag dby dby dby,
20,7 2by7  2b3° 2by7 2by’ 2by
(3.34)
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The scalar kinetic term of the lagrangian is Y. (P;)?. The following relations be-
tween quantities computed in the solvable approach and Special Kéhler formalism

hold:
LM — Re(i4" (hjepn)), —Re(h”" (£:))
(P LEM) ﬁ(xmghw*@ ), ~Im(h <f?>>>
(vIL'TMY Re(My), —Re(L%)
((vSIIL"CM) B ﬁ(lmuvm, Im(LE>> (3.35)

where in the first equation both sides are 6 x 8 matrix in which the rows are labeled
by m. The first three values of m correspond to the axions a;, the last three to the
dilatons log(—b;). The columns are to be contracted with the vector consisting of the
8 electric and magnetic charges [Q) e = 2m(p™, gz) in the special coordinate simplectic
gauge of Mgry. In eqs (3.35) Uis the simplectic invariant matrix, while M is the
simplectic matrix relating the charge vectors in the Sp(8)p representation and in the

special coordinate simplectic gauge:

l@)Sp(S)D = M‘@>5c
K 0 0 0 6 0 0 10
1 0 O 0 0 0 00
0 0 O 0 0 0 01
P L I ]
0 0 0 0 1 0 00
00 0 -1 0 0 00O
0 1 0 0 0 0 0 0

Using egs. (3.35) it is now possible to write in a geometrically intrinsic way the first

* order equations:

- (25) s PReLTMd).

aU eV 1 0 o
- = — L'CM|Q)se
- (?Tz)z\/iwwﬂ CM(Q)
0 = (L'TM|t)s. (3.37)

The above system of equations can be equivalently written using the the special
geometry approach. In order to do that it is necessary, of course, to characterize the
manifold Mgy within the special coordinate formalism. This is done in Appendix
A where I report the full explicit form of eq.s (3.37) in the complex formalism and



Chapter 3: BPS Black Holes solutions of N=8 Supergravity 85

where everything is expressed in terms of the quantized moduli-independent charges
(91, P%).
The fixed values of the scalars at the horizon are obtained by setting the right

hand side of eq.s (3.37) to zero and the result (consistent with the literature, [108,
109, 110, 111]) is the following:

phqn — 2p'q ~ i/ f(p. q)
2p%p° — 201
phan = 20°q, — i/ f(p, 9)
2p'p® — 2p°q2
A 3 :
. phas — 2p°¢s — i/ f(p,9)
ba) g = .
(as + ib3) fiz 2557 — 300, (3.38)
where f(p,q) is the Ey7) quartic invariant Py(p, q) expressed as a function of all the
8 charges (remember that the entropy of the solution is S = m/Py(p, q)):

(al + ibl)fia: -

(ag +1bo) iz =

Flpg) = —@"w+r'a+0’e+0°e)? +4(0'ar’e + p'ap’e + PPapie)
—4 (p°q19293 — qop'P*P?) (3.39)

and, as expected, is symmetric under any permutation of the iridices 1,2,3.

3.2.2 The second order differential equations

In order to find the solution of the STU model we need also the equations of motion
that must be satisfied together with the first order ones. In what follow I will use the
more well known Special Kéhler formalism. Let us first compute the field equations
for the scalar fields z;, which can be obtained from an N = 2 pure supergravity action
coupled to 3 vector multiplets. From the action of (3.22) one get in general:

Maxwell’s equations:

the field equations for the vector fields and the Bianchi identities read:

Oy (V *QQK”) = 0
ou (V=3F) = 0 (3.40)
The electric charges £*(r) defined in (3.27) are moduli dependent charges which
are functions of the radial direction through the moduli a;, b;. On the other hand, the

moduli independent electric charges g, in eqs. (3.29) are those that together with p*
fulfill the Dirac quantization condition, and are expressed in terms of t*(r) as follows:

i = 5-Re W), ()] (3.41)
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Equation (3.41) may be inverted in order to find the moduli dependence of £,(r).
The independence of g, on r is a consequence of one of the Maxwell’s equations:

80 (v=37(r)) = 0= 8,Re [N(2(r), 2(r))e(r)]" = (3.42)

Therefore, using the ansatz (3.25) the second equation is antomatically fulfilled while
the first equation, requires the quantized electric charges gy defined by eq. (3.41) to
be r-independent (eq. (3.42)).

Scalar equations:

varying with respect to z* one gets:

1 e : *
0 (VTR D) + 0has 0,0 0 4
(aiImNAE)F.{\FEl“ + (aiReNAz)F{\ﬁm" =0 (3.43)

which, once projected onto the real and imaginary parts of both sides, read:

e?U a alb! 1 "

” ot 9 tt — A X - A D)
4b12 (a’l + 2 r 2 bz > 9 ((aaiIInNAE)F,. F -+ (8a1ReNAg)F,_ F )
U By 2 __ 2 1 .
sz (bgl + 2_7} + Qfﬁ_l;_z_)) = 5 ((abiImNAE)F./.&Fz‘" + (8biReNAg)F,{\F“|”)

(3.44)

Einstein equations:

Varying the action (3.22) with respect to the metric we obtain the following equa-

tions:
RMN = -—hij*aj\,jzia]\f-z-j* + S]\/[N
1
Sun = —2ImNys (FJIQIF]?' - ZQNINF{\FEI. -+

~s. 1
—ZRQNAS <FA/>[F]§| - ZQMNF./.XFZ'" (3.45)

Projecting on the components (M,N) = (0,0) and (M,N) = (a, b), respectively,
these equations can be written in the following way:
2

u//_*_;u/ — _Qe—QUSQQ
1
@Y+ (B + (@) = —2e75y (3.46)
where:
2¢* AT A b
Sgg = — s ImNas(p"p” + £(r)*4(r)”) (3.47)

© = Tyt
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 In order to solve these equations one would need to make explicit the right hand side

expression in terms of scalar fields a;,b; and quantized charges (pA, gs). In order to do
that, one has to consider the ansatz for the field strengths (3.25) substituting to the
moduli-dependent charges £, (r) appearing in the previous equations their expression
in terms of the quantized charges obtained by inverting eq.(3.41):

Mr) = ImNTME (gs — ReNsg p?) (3.48)

Using now the expression for the matrix M,x in eq.(B.3), one can find the explicit
expression of the scalar fields equations of motion written in terms of the quantized
r-independent charges. They can be found in Appendix B where, together with the
explicit expression of the first order differential equations, we report the full explicit
‘expression of the equations of motion for both the scalars and the metric.

3.3 The solution: a 2 parameters solution

- As the system of first and second order equations (B.6), (B.8) is quite involved, let us

da
dr
db
dr

du

dr

first consider the particular case where S =T = U. Although simpler, this solution
encodes all non—trivial aspects of most general ones, namely: it is regular, i.e. has
non vanishing entropy, and the scalars do evolve, i.e. it is an extreme but not double
extreme solution. First of all let us notice that eq.s (B.6) remain invariant if the
same set of permutations are performed on the triplet of subscripts (1,2,3) in both
the fields and the charges. Therefore the solution S = 7' = U implies the positions

q1 = ¢» = g3 = ¢ and p' = p? = p* = p on the charges and hence it will correspond

to a solution depending on 4 independent charges (p°, p, g0, ¢). Notice that, although
depending on just one axion, a, and one dilaton field, b, this is not simply an axion—
dilaton black—hole: such a solution would have a vanishing entropy differently from
our case. The fact that we have just one complex field in our solution is just because
the three complex fields are taken to be equal in value. The first order equations,
(B.6), simplify in the following way:

Ll(r) 1 . 3 O
B i( ) ~9b(r) (b(r) g = 20(r) b(r) p+ (a(r)” b(r) + b(r)°) P’)

= =

i
H_

(—0(r))
— 3b(r)q—6a(r ) b(r)p+ (3a(r)b(r) — b(r)*) p°

> 1 ) (3a(r)q— (3 a(r)® + b(T)Q) P+ (a(r)B + a(r) 6(7)2) P’ + q)

( et > ! 372 (3 a(r)q— (3 a(r)®> — 3b(r)?) p+ (a(T)3 —3a(r) b(r)?) p° + qo)

(3.49)
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a(r)s, b(r) = b(r); (4 = 1,2,3). In this case the fixed values for the

where a(r) =
scalars a(r), b(r) are:

 pg+p g
Qfiz = 572 _ 9.0, 2 _ 90
«p b q
f(pu Q7p07q0)
d 2(p? — p°q) (3:50)

where f(p,q,p% q0) = 3p*¢* +4p°qo —6pp°ago —1° (4¢° +1° @?).
Computing the central charge at the fixed point Z i, (p, ¢, 0°% o) = Z(afiz, bfiz, P, ¢, P°, q0)
one finds:

Ziiw(0, 0% @0) = | Zpisle”
|Zpio(p, 0, 0% @)l = Fp,q,0" a0)"/*
p°f(p, 4, 2%, 90)*/?

2(p? — qp°)3/
~2p9% +3pp’ ¢ + 1% g

cosf = 20— (3.51)

The value of the U~duality group quartic invariant Py is:

sinf =

Puy(p,0.0% %) = |Zsi(p,0.0°, a0)* = f(p,4,2°, q0) (3.52)

According to the general analysis carried on in chapter 2, we know that the entropy
of the solution is:

Hence we see from eq.s (3.51) that in order for Zy;, to be real and the entropy to
be non vanishing the only possibility is p° = 0 corresponding to § = 7. It is in
fact necessary that sinf = 0 while keeping f # 0. We are therefore left with just 3
independent charges (g, p, go)-

Setting p’ = 0 the fixed values of the scalars and the quartic-invariant become:

g
afi:z; - “2_?5
V3¢ + 4qop
b = — YLD
2p
Py = (3¢*® + 4qop?) (3.53)

From the last of eq.s (3.49) we see that, putting the additional constraint p° = 0,
the axion turns out to be double fixed, namely does not evolve, a = ay;; and the
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'reality condition for the central charge is fulfilled for any r. Of course, also the axion

equation is fulfilled and therefore we are left with just two (axion—invariant) equations
for b and U:

db e”(r) 3¢
d’f‘ - i?"Q\/m(qo + 4p b(’f‘) p)
% = i;g(_—zb((%“)m(% + :il(g + 3b(r)*p) (3.54)

which admit the following solution:

L (Ay + ki /7)
W= G )
. —1/4
M) ((Al +ki/r)(A2 + %)3)
o i\/5(3q2+49013)
4dp
b = i (3.55)

In the limit r — 0O:

o\ 12
b(r) — — <—i> = bfiz
ko

e o r(k k)T = A

as expected, and the only undetermined constants are A;, A;. In order for the
solution to be asymptotically flat it is necessary that (4, A3)~/4 = 1. There is then
just one undetermined parameter which is fixed by the asymptotic value of the dilaton
b. We choose for simplicity it to be —1, therefore A; = 1, Ay = 1. This choice is
arbitrary in the sense that the different value of b at infinity the different universe
(=black-hole solution), but with the same entropy. Summarizing, before considering

the equations of motion, the solution is:

4= 0fic = - ,b(r) = =y 5%, 0 = [H1(7‘)H2(7“)3]~1/4

o Ha(r) (3.56)

where Hy(r) = 1+ ki/r, Ha(r) =1+ ko/r and k; and ks, given in (3.55).

Let us now consider the equations of motion. In the case S = T' = U the structure
of the My matrix (B.3) and of the field strengths reduces considerably. For the period
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matrices one simply obtains:

2¢® —a?> —a? —d? 3a2b+b —(ab) —(ab) —(ab)
—a* 0 a a —(ab) b 0 0
ReN = , InN =
) —a* a 0 a o —(ab) 0 b 0
-a®> a a 0 — (ab) 0 0 b
(3.57)
while the dependence of £*(r) from the quantized charges simplifies to:
—3a?p4+3agtqo
b3
—3ad p+b2g+3a? gta (—2 b2 p+qo)
b3
EA(T> = —3a8 p+b% g+3a® g+a (——262 P+QO) (358)
3

b
—3ad pt+a? pP+b% g+3a% g+a (—2 b2 p+qo)
3

Inserting (3.58) in the expressions (3.25) and substituting the result in the eq.s of
motion (B.7) one finds:

110 !
(a’uz?bﬂw%) = 0
b 2 _ 2 B2 e2U (2 — (—3a? p+3ag+qo)®
b+ 2— + (Gl ) I (v & ) (3.59)
r b rt

The equation for a is automatically fulfilled by our solution (3.56). The equation for
b is fulfilled as well and both sides are equal to:

(kz - kl) €4u (]131 -+ ]{12 -+ &71_]@)
2br4
If (ky — k) = 0 both sides are separately equal to 0 which corresponds to the double
fixed solution already found in [108, 109, 110, 111]. Let us now consider the Einstein’s
equations. From equations (3.46) we obtain in our simpler case the following ones:

2 3
Z/{” Zap — U’ 2 7\ 2 n2
+-U @)+ gz () + (@)
i 2 / —ou

The first of egs.(3.60) is indeed fulfilled by our ansatz. Both sides are equal to:

3 (ky — kp)?

16 r4(H,)? (Ho)? (3:61)

Again, both sides are separately zero in the double-extreme case (ky — k1) = 0. The
second equation is fulfilled, too, by our ansatz and again both sides are zero in the
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double-extreme case. Therefore we can conclude with that eq.(3.56) yields a 1/8
supersymmetry preserving solution of N = 8 supergravity that is not double extreme
and has a finite entropy:

3 1/2
Spy = 2 (qu3 + Zp2q2> (3.62)

depending on three independent charges. Let us finally address the important ques-
tion on the number of truly independent parameters our solution depends on. Ac-
cording to the discussion of chapter 2, we have (in rigid indices):

7 3q° 5
ZIZZ2:ZB = ———(—_—Eb—(;—j—)—é—/—Q—(qo—FZp——b(T’) p)

Ly = —(W (qu + 32%: + 3b(T)2p> (363)

All the central charges Z, are pure imaginary and the overall phase is then fixed (and
equal to 0 mod 27). Therefore this solution, although depending on three quantized
charges, is a 2 parameter solution and, as anticipated, falls in the class of those
solutions for which m(= 2) < n(= 3).

3.4 The solution: a 4 parameters solution...

Let us now consider a quite more involved solution, namely a 4 parameters one. Let
us then relax the restricting condition § = T' = U and start with just the first (usual)
gauge choice regarding the reality of the central charge. The [SO(2)]® gauge fixing
is performed now by demanding two of the matter central charges Z°, (i = 2,3) to
be imaginary and the SUSY central charge Z to be real. These three independent
conditions on the four phases of the central charges should fix the gauge freedom and
leave with a 5 parameter solution. Actually, as we shall see, this is not the case:
the above gauge choice implies, automatically, also the third matter charged to be
pure imaginary leaving therefore with a 4 parameters solution, independently of the

number of charges the solution will be parameterized on.

Setting Z%3 to be pure imaginary implies that on our solution the axions as,3(7)
are double—fixed to their valued at the horizon: as3 = aéfg . This gauge fixing implies,
therefore, the vanishing of the left hand side of the two equations for as 3 in (B.6).
Performing the substitution ags — agf:f in the system (B.6), after some algebra one
obtains the following:

db, |

—E';— = al(—Esble - E5b1b3 —+ E7b2b3 — Egalbgbg -+ ElCLl + Eg)
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db
—CZT‘E = ag(—Esble 4+ E5blb3 - E7bzb3 -+ Egalbgbg -+ Elal -+ EQ)
db
> = on(Febiby — Fsbiba — Brbabs + Bsaibobs + Fron + F)
di
ET— = Qu(Egblbz + E5b1b3 + E7bgb3 - Ega1b2b3 -+ E1a1 + Eg)
da
—3;1 = 011('-E1b1 -+ Egbg -+ E4b3 — Eﬁalbg - E5a163 -+ Egblbgbg)
0 = (Elbl - Egbg + E4b3 -+ Esalbg — E5a1b3 + Egblbgbg,)
0 = (Elbl + Egbg - E4b3 - E6a1b2 -+ E5(J,1b3 + Egblbgbg)
0 = (Elbl 4 E3by + Eybs — E¢a1by — Esabs — Egbﬂ)gbg) (364)
where:
U )
o = & (é_ b
72 Gdijkbjbk
U
o - +(5)
r2 —8dijkbibjbk
dije = dgjr) 5 diaz = 1/6 (3.65)

and the coefficients E, are:

El = (i + agizagimp() i a;izp.?, . agiIPQ

By = qo—abalp + ab g + i

Ey = ¢2— agimpl

Ey = g3— aétizpl

Es = P2 - ‘lgmpo

E, = p°— agia: »°

E; = p'

Es = 7’ (3.66)

where:

i P°q +pta - P2 + P’a Jie °q0 -+ prqr + PPge — P°as
2 oplp® — 2p0¢gs P 2pip? — 2p0qs

(3.67)

as it should be, eq.(3.38). The introduction of the 8 coefficients Fq in place of the 8

charges (p, gs) is just for convenience.

Let us now divide the possible solutions of the last three conditions in egs. (3.64)
in two separate cases: Eg = 0, Es # 0. Let us focus on the Eg = 0 case first. The first
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surprise is that in this case £; = 0 identically and also the third axion, a;, becomes
double-fixed:

fio _ B3 _ B

o = a" = 5 - B (3.68)

This implies, as anticipated that, although depending on 5 charges (E», Es, Es, Fs, E7),
the solution we will find is a 4 parameters one. The equation for a, is automatically
fulfilled and the equations for the dilatons and for I/ decouple from the axions and

may be solved independently. The fixed values for the b; fields are:

, [ELE , [E.Es . FoF
fiz 287 bf’lz - 2445 fiz 2426
it EsE;s ' F:Es by \ E.E. (3.69)

Let us introduce the four harmonic functions as follows:

Hy(r) = Ap+ko/r (0 =2,5,6,7)
ke = e/2E, (3.70)

where € = £1 refers to the sign in the Killing spinor condition. It is easy to see that
performing the following ansatze for the b; and the metric U:

b, = —. H,H;
V HsHg
. _ [T
H,Hg
by = [ HyHg
H;H,

! = (HyHsHgH;) V/* (3.71)

both the first and second order differential equations are satisfied. The solution, con-
sisting of the three b;, the double-fixed a; and U is expressed in terms of 5 independent
charges (and four harmonic functions): FEs, Es, Es, E7, F3. Notice that the b; and U
depend only on the first four E, (through four harmonic functions), while the last
appears in the axion equations. As far as the entropy is concerned, we see that:

e "X r(4E,EsEeE;) " (3.72)

and therefore the entropy of the solution is S = 27 (E;EsEgE;)'/?. Notice that this
result, reduces to that of the previous section in the simplified case ¢; = ¢2 = g3 = ¢,
p1 = P2 = p3 = p, €q.(3.62).

Since seven charges enter the expression for the five parameters F,, it is useful to
set two suitable charges to zero such that the five E, are still independent. A possible
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choice is g3 = 0 = ¢o. In this way also the fixed axion fields get a simply expression
with respect to the E,:

fiz __ 3 fiz 3445 - _fiz 3

g = — , a3 = ——— , a3 = —— 3.73
1 EG 2 E7E6 3 E7 ( )
while the expression for the U—duality invariant entropy, written in terms of the
(p™, gx) charges, turns out to be:

1
Spu = 27 (p'p*p®e° — 1(291«11)2)1/2 (3.74)

In this way the solution we have found depends on four harmonic functions and
five independent charges: qo, q1, ", %, p?. Of course one could also change the charge
basis and use the 5 F,’s instead of the (p®,gg). This would be perfectly equivalent.
However, as far as one would eventually like to generate other solutions via U-duality
transformations, it is more convenient to use a basis on which one knows how to act

on. This basis is the simplectic one, (p*, gs).

With few straightforward calculations one can see that if the second possibility
is considered (i.e. Fg # 0), one would find that, provided the reality of the central
" charge Z, the solution would be non-regular, that is would have vanishing entropy.
In order to recover a regular solution one would have to relax the condition of reality
- of the central charge, this being out of our present purpose.

As already notice let us finally show that although depending on 5 (independent)
charges, our solution is not a 5 parameters one: the five invariants Z; (I=1,...,5)are
not independent functions of the five charges. Indeed the 4 central charges eigenvalues
computed on the sphere at infinity are (in rigid indices):

i

i = S(B-Bs=Eo+ B)
7, = 2:'/5(E2+E5_E6_E7)
7 = —Q—\Lfi(Eg—E5+E6~E7)
Zy = %(E2+E5+E6+E7) (3.75)

These charges are independent and therefore the first four invariants in eq.(2.32) are
independent as well. However, the overall phase is fixed to be § = 0Omod2r and
it is not a free parameter. Therefore our solution (3.71)+(3.73) is actually a four
parameters solution. Acting on it with U-duality transformations one could cover
only a 55 dimensional subspace of the full U-duality orbit which depends, on the
contrary, on 56 parameters. The overall phase 6 is lacking.
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3.5 ... and its microscopic description

Being a 4 parameters solution, it is more useful to perform on (3.71)4(3.73) the
corresponding fourth gauge-fixing choice on the quantized charges so to have an equal
number of charges and independent parameters in the solution (i.e. m = n = 4). This
is more natural, in particular when trying to give its microscopic interpretation in
terms of fundamental objects. Setting ¢, = 0 or equivalently E5 = 0, the axion fields
are gauge—fixed to zero and the solution looks like a pure dilatonic one, depending on
four independent charges (go, p',p?, p®) and with the following non vanishing entropy:

Spi = 27 (p'p°p’e")"? (3.76)

while the the expression (3.75), when written in terms of the quantized charges,

becomes:

)

VA — 2 3+,1
7

z. — 2 .3 1

5 2\/5(‘10“’ p’—p)
7

Zy = (g0 —p"+p* —p")

[\
5

Zy = (o +0*+p° +p") (3.77)

i
m
'According to the discussion of chapter 2, if the STU model is embedded in the full
N = 8 theory according to formulae(2.46), (2.47) and (2.48), the microscopic descrip-
tion of the above solution can be given in terms of the intersection of four bunches of
D-branes. According to the discussion in chapter 2 (see in particular section 2.4 and
table 2.4), the central charge Zs (which represents the graviphoton dressed charge)
and the matter charges Z, (o = 1,2,3) are related to the gauge fields coming from
the 10 dimensional R-R 3—form A np coupling to D2 and D4-branes and from the
R-R 1-form Aj; coupling to DO and D6—branes. As extensively explained, the precise
relation between dressed and naked charge relies on the geometric structure of the
internal compact manifold. Our solution is hence described, at the microscopic level,
as a 1/8 supersymmetry preserving intersection of 4 bunches of these D-branes. The
fact that each of the central charge eigenvalues is real or pure imaginary (in our case
they are all pure imaginary) implies that the solution is pure electric or magnetic,
that is it is not made of electromagnetic dual objects.

One can think, for instance, of 3 bunches of orthogonal D4 branes (N;, Ny, N,
respectively) wrapped on the internal torus T° with Ny DO branes on top of them.
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Let us consider the torus T to be labeled with coordinates x4, Zs, ..., £g while the
4 dimensional space-time with coordinates zy, z1, 2, x3. The D4-branes are posi-
tioned in the following way: ‘

Nyl - | - | x
Ny
Ny | x| x| x|X

Table 3.1: The position of the D4 branes on the compactifying torus: for any given brane

the directions labeled with % are Neumann while those labeled with - are Dirichles.’

The above configuration is 1/8 supersymmetric and adding any number of D0
branes the number of preserved supersymmetries does not change, [49]. The precise
relation between the above microscopic configuration and the macroscopic solution
can be more easely obtained by rewriting the expression of the quartic invariant,
eq.(2.36), as:

Ts = (|Zi| + |Za| + 23| + | Za]) (1Z1] = | Za| — | Zs| + | Zal) (| 21| + | 22| = | Zs] + | Z4l)
(—1Z1] = | Za] + 25| + | Za]) + 81 21| Z2|| Z5]| Z4] (cos 6 — 1) (3.78)

In the case at hand & = 0mod 27 and the last term in the above equation drops out
(according to the fact that it is a four, rather than a five parameters solution). The

above expression reduces to:
_7:5 = 5095159253 (379)
where, using relations (3.77), it follows:

so = (|Z0] +|Za] + 25| + | Za]) = V200

51 = (|Z2] = 22| — |25 + | Z4]) = V2pu
(=121 + | 22| = 25| + | Z4]) = V22
(

—|Z0] = | Za| + | Zs| + | Za]) = V2ps (3.80)

5y =

S3 =

As noticed in [113], the charge vector basis we have chosen turns out to be the suitable
one for the microscopic identification, as for reading off the values of the integers N,
from the relations (3.77). First notice that in our units, namely o' = 1, provided
the asymptotic values for the dilatons, the four dimensional quanta of charge for any
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kind of (wrapped) Dp-brane is equal to v/27. Moreover, according to the definition
(2.5), our quantized charges (ga,p") are integer valued. The entropy formula (3.76)
is reproduced microscopically by the above D-branes configuration, table 3.1, if we
have precisely Ny = qo, N1 = p1, Na = py, N3 = p;. Indeed the microscopic entropy
counting fot this configuration has been performed in [54] and gives:

Smicro = 27‘(’\/ NQleVQNg (381)

which exactly matches expression (3.76). From the configuration in table 3.1 one
can obtain, by various dualities, other four parameters solutions. For instance, T-
dualizing on the whole 7, one obtains a configuration made of Ny D6-branes and 3
bunches of (N1, Na, N3) D2-branes localized in the planes (z*,z%), (2% 27), (2%, 29)
respectively.

From the above four parameters configuration one could infer the microscopic
structure of the five parameters one. In [114] it has been noticed that the 5 parameters
solution could be obtained from the above switching on a EM flux F' on the D4-branes
world-volume in such a way to preserve supersymmetry. This would imply effective
additional D2 and DO charge, [115], and, from a macroscopic point of view, the switch-
ing on of the real parts of the three matter central charges Z1, Z, Z3 (which indeed
represent effective D2-brane charge). The microscopic entropy counting, in that case,
should be better performed in a 7—dual picture. Indeed, T-dualizing along x5, 7,
one would end up with four bunches of type IIB D3 branes (Ng, N1, No, N3 respec-
tively) at angles. The overall angle (the fifth parameter!) would be determined
essentially by the flux F' and would be the right one in order to preserve supersym-
metry, that is, an U(3) angle, [49]. For F' = 0 one would get the D3-branes to be
orthogonal, hence recovering the four parameter solution (although in a T—dual, type
IIB, picture).

In the last couple of years, there has been an intense study on the correspon-
dence between macroscopic and microscopic black hole configurations. This has been
done both for N = 8 compactifications (see for example [54, 116, 117] and references
therein) and for N = 2 compactifications, [112],[118]-[125]. In fact, all these solutions
were somewhat particular under one circumstance or another. What we mean is that
a precise and general recipe to give this correspondence for any macroscopic configu-
ration is still lacking. On the contrary, if we know how to transform the generating
solution into a generic one, in particular to those whose microscopic interpretation
is known, then we can derive the microscopic stringy description of any macroscopic
solution. And this could shed light on the very conceptual basis of the microscopic
entropy counting (for recent work in this direction see for instance [44, 126]).



Chapter 4

Compactified superstring

configurations as black holes

As anticipated, in this chapter we will construct a regular 4 dimensional black hole
obtained by compactification of a string theory configuration on a space which, as
opposite to the torus 79, breaks some supersymmetries, namely a (particular) Calabi-
Yau space. This will be very instructive under many respects.

As explained through out this thesis, in the last couple of years there has been
much effort in finding a microscopic description of both extremal and non—extremal
black holes arising as compactifications of different p-brane solutions of ten dimen-
sional supergravity theories. However, as far as the microscopic description is con-
cerned, these studies have been mainly devoted to toroidal compactifications and less
has been said about Calabi-Yau (CY) ones. Different problems arise when trying
to find an appropriate D-brane description of these solutions in a non-flat asymp-
totic space. Indeed, the problem of describing curved D-branes, such as D—branes
wrapped on a cycle of the internal manifold in a generic compactification of string
theory, is in general too difficult to be solved. Polchinski’s description of D~branes as
hypersurfaces on which strings can end relies on the possibility of implementing the
corresponding boundary conditions in the CFT describing string dynamics and very
little has been done for a generic target space compactification (for a recent discussion
of this and related issues, see [127]). On the contrary, these kind of compactification
are interesting because various general results that are valid in the toroidal case no
longer hold. In particular, it is not straightforward to generalize the harmonic func-
tion rule (see chapter 1) and it is also no longer true that the minimum number of
different charges (that is, carried by different microscopic ob jects) must be 4 in order
to obtain a regular black hole in four dimensions.

98
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There exist special cases, such as orbifold compactifications, which capture all
the essential features of general CY compactification, in which however ordinary D-
brane techniques can be applied. We will consider the self~dual type IIB D3~brane
wrapped on the orbifold 7°/z; [128, 129] and show that, upon compactification, it
corresponds to a regular dyonic RN black hole in 4 dimensions. I will start by re-
viewing the interaction of electromagnetic dual D-branes and this will be also the
occasion to address some non-trivial aspects regarding the interaction of electromag-
netic dual extended objects in string theory. Indeed, the first section will be devoted
to review some general properties of the electromagnetic interactions between dual
pair of Dp/D(6 — p)-branes, showing the role of the different spin-structures in de-
scribing the gauge interaction. Then we will specialize to the case of p = 3 (which
is self dual in 10 dimensions) and then consider, in section 4.2, both the interactions
of D3~branes when compactified on the orbifold 7%/Z; and, as anticipated, the low
energy description of one of such object from the point of view of the non-compact 4
dimensional space. The identification of the wrapped D3-brane with a regular dyonic
RN black hole will be finally obtained by computing one—point functions of the 4
dimensional supergravity fields. Most of the content of the present chapter refers to
results obtained within the collaborations [30, 31].

4.1 R-R interaction for dual Dp/D(6 — p)—branes

As extensively explained in the previous chapters, the R-R sector of closed strings
contains gauge forms which couple to D-branes. A Dp-brane is electrically charged
with respect to the (p + 1)-form A,y and magnetically charged with respect to
the dual (7 — p)—form A(7_p). The opposite happens for a D(6 — p)-brane. A Dp
and a D(6 —p)-brane have therefore both an electric-electric and magnetic-magnetic

interaction, and an electric-magnetic and magnetic—electric interaction.

More in general, consider generic dyonic objects [130, 131, 132] carrying both an
electric and a magnetic charge with respect to the same gauge field. Their electric—
electric and magnetic-magnetic interaction, call it diagonal, can be defined in the
usual way through potentials, whereas the electric-magnetic and magnetic—electric
interaction, call it off-diagonal, is more subtle to be treated since the presence of
both electric and magnetic charges do not allow for globally defined potentials. Long
time ago it has been developed a general framework for describing in a unified way
both the diagonal and the off-diagonal interactions, [133, 134]. We will briefly review

this general framework which turns out to be very useful for discussing D-brane R-R
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interactions, showing that some recently derived results for dyons in various dimen-
sions [135, 136] are naturally obtained within this scheme. Then we will specialize to
D-branes, showing how both the diagonal and off~diagonal interactions are actually
encoded in the different spin—structures contributing to the cylinder amplitude.

4.1.1 Interactions of charges, monopoles and dyons

As well known, the electromagnetic potential generated by a magnetic monopole
cannot be defined everywhere; in the case of a p—extended object in d space time
dimensions, there exists a Dirac hyperstring on which the potential is singular. As
a consequence, the phase—shift of another electrically charged g—dimensional object
along a closed trajectory in this monopole background, which would be a gauge—
invariant quantity if the potential were well defined, suffers from an ambiguity. In
fact, the requirement that the phase-shift should remain unchanged mod 27 leads to

the famous Dirac quantization condition eg = 27n.

It is possible to define a mod 27 gauge-invariant phase-shift also for open tra-
jectories by considering a pair of charge and anti-charge instead of a single charge.
Since an anti—charge traveling forward in time is equivalent to a charge traveling
backward, this system can in fact be considered as a single charge describing a closed
trajectory !. The phase-shift for such a setting in the monopole background is then
a gauge-invariant quantity (provided Dirac quantization condition holds). Actually,
this is the setting that can be most easily analyzed in the string theory framework7
since it corresponds to D—branes moving with constant relative velocities. Indeed the
available techniques for computing explicitly branes interactions allow us to deal only

with rectilinear trajectories, more in general with hyperplanes as world-surfaces.

The phase-shift for a system of a charge and an anti—charge moving along two
parallel straight trajectories in a monopole background is a special case of the general

analysis carried out in [133, 134] that we shall briefly review.

We will consider dual pairs of branes, namely p-branes and (d—4—p)-branes (with
d being the dimension of the corresponding space time). It is convenient to describe
the interactions formally in the Euclidean signature (which can be then continued to
the Lorentz one). With such a metric one can consider closed world surfaces of the

branes, as they would correspond, in Lorentz space time, to brane/antibrane pairs,

11f one consider only the usual electric—electric part of the interaction, one can even consider
a single infinite straight trajectory; the corresponding phase-shift is gauge—invariant provided we
require any gauge transformation to vanish at infinity.
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as explained above.

The world surface X, 1y of the p-brane is (p + 1)-dimensional and couples to the
(p + 1)~form gauge potential A, 1y. We introduce the notation:

/ A1) = D41 - Ape) (4.1)
D(p+1)

This can be rewritten as:

E(73+1) ’ A(P+1) = E(;nv’—2) ) F(p+2) (4-2)

where F' is the field strength Fyi2) = VA1) and Y(p4p) is an arbitrary (p + 2)-

dimensional surface whose boundary 9% (,15) is Y(piq). In formulae:
Er2) - VAp+) = 08442 - Apry) = Spen) - At (4.3)

The diagonal (electric—electric and/or magnetic-magnetic) interaction of two p-

branes, whose world surfaces are E'(p +1) and Y1) respectively, can be written as:

Ipiag = (€'e + §'9) Xipyay - PE(pro) = (e + g'9) Xip i) - D1y (4.4)
where e, ¢ (g, ¢') are the electric (magnetic) charges carried by the two branes, D is
the propagator, that is the inverse of the Laplace-Beltrami operator [ = 9V + V9,
ie. OD =1, and P = VDO. In the Euclidean path-integral, this interaction appears
at the exponent, namely the integrand is e /Dies,

Consider now what we call the off-diagonal interaction of two mutually dual
branes, a p-brane and a (d — 4 — p)-brane, in d = 2(qg + 1) dimensions (the case
p=q— 1 is self dual):

Iofr-Diag = eglzl(d—Z—-p) T PY(pa) + e'gE(p+2) ) *le(d—Q—p) (4.5)

Here *F = ¢/29F means the Hodge dual of a form F, obtained by contracting its
components with the antisymmetric tensor. It is crucial to observe that the Hodge
duality operation depends on the dimension d = 2(g+ 1) of space time (that we shall
suppose to be even in any case). In fact, the ¢ tensor satisfies (¢/29)2 = (—1)7+11
and el = (—1)9"1e. Using these properties, one can see that P + (—1)4"*P* =1 in
the space of antisymmetric tensors, as it is equivalent to the Hodge decomposition.
Therefore *P + P* = *1. Now, the insertion of the *1 between E,(d—Z—p) and X9

yields a contact term given by their intersection number; assuming by a “Dirac veto”



that this number is zero, we get *P = —P*. Finally, transposing the second term in
eq.(4.5) and using the above properties, we get finally:

Ioff—Dia,g = (eg’ -+ (_1)qelg) 2,(d—Z--p) ) *PE(P+2)

1 ‘ 7 * *
= 5(6’9’+ (—1)%€'g) (Sl4_n_p) - "Pl(pr2) + (= 1) B2y - "PEig_s )
(4.6)

In order for the path integral over e'lesf-pies to be well defined, it is necessary to

impose the Dirac quantization condition [135]:
(eg' + (—=1)%€e'g) = 2mn (4.7)

The point is that I,f;—pie; depends on the (supposed irrelevant) choice of the un-
physical E’( d—2-p)> which is only constrained to have the physical brane world surface
V’( d—3-p) 35 its bpundary: 82’(d_2_p) = El(d—B—p)' However, the path—integral integrand
is in this case e*esr-Diss and this has no ambiguity. Indeed:

Loff-Diag = (271) D4 o_py - "V DZ(p4) (4.8)

Now, if we change E’( d-2—p) keeping its boundary fixed, the ensuing change of Iofs_piag
can be written as 61,;f—pisg = (27n)0V(4-1-p) - *V.DZ(p41), Where the boundary of
Vig-1-p) 18 the union of the old Zl(d—Q—p) and the new one. By integrating by parts,

using V* = *8 and 0%(y4+1) = 0 since we consider closed world-surfaces, we get:
6105 Diag = 2m)V(a—1-p) - “Lips1) = 27 (integer) (4.9)

since Vig—1-p) - "T(p+1) 18 the intersection number of the closed hypersurface X 1)
and the hypervolume V4_1—,) and is therefore an integer. Notice that relaxing the
Dirac veto, eq. (4.6) is a consistent expression provided eg’ + (—1)%'g = 4mn.

4.1.2 Compactification

The above properties remain valid also when we compactify some of the dimensions,
in particular compactifying six (the directions z%,z* + 1, a = 4,6 ,8) of the ten
- dimensions of string theory. Objects whose extended dimensions are wrapped in the
compactified directions will appear point-like in the 4 dimensional space time. In
particular, as anticipated, we will be interested in the sequel in the case of the D3~
brane, occurring in Type IIB string theory, compactified on the orbifold T5/Z5. The
3-brane of Type IIB is a special case since it is both electrically and magnetically
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charged with respect to the self dual R-R 4-form; this peculiarity will be relevant
in our study giving rise, both before and after the compactification, to a dyonically
charged state. From the 4 dimensional space time point of view, this will look like
the interaction of two dyons, whose values of electric and magnetic charges turn out
to be dictated by the brane’s different orientations in the compact directions. For
instance, if the two (off-diagonally) interacting branes are parallel in the compact
directions, then it is easy to see (we will be explicit in the following) that Ioss_pie =
-(27rn)2’(d_2«p) -*V DX p41) = 0 and this will be interpreted in 4 dimensions by saying
that there is no off-diagonal interaction between to ”parallel” dyons, that is having
the same ratio (magnetic charge)/(electric charge). In fact, two such dyons behave
with respect to each other as purely electrically charged particles. It is amusing to
notice that although the Dirac quantization condition is automatically implemented,
as we said, once the off-diagonal interaction is correctly normalized in 10 dimensions,
it might look somewhat non obvious at first sight in 4 dimensions, due to the non-
intuitive features of compact spaces. We will explore the ensuing pattern of charge

quantization in section 4.2.

In the following, we are going to consider the off-diagonal interaction of two pairs
of D3-branes/antibranes, wrapped on the compact space and moving linearly in space
time (the brane’s parameters will be labeled by B, the antibrane’s ones by A and the
index 7 = 1,2 labels the two pairs). We will take the trajectories in space time to
describe a line in the (¢, z) plane. In each of the two pairs, the brane and the antibrane
are parallel to each other. This means that each pair is described by two parallel four
dimensional hyperplanes, three directions being compact and specified by the angles
o) (a = 4,6,8), which are common to the brane and the antibrane, in each of the
three tori which compose T and one direction w® in the plane (¢, 7). In the Lorentz
space time, the (¢, ) direction w® is specified by an hyperbolic angle, the rapidity
v (wgi) = sinhv(® | w = cosh v®). The (¢, z) trajectory of the brane of the pair
is taken in the positive ¢ direction and is located at position yg), zg) in the transverse
(y, z) plane, while the trajectory of the antibrane is taken in the negative ¢-direction
and is located at position yg), zﬁf). It is convenient to introduce a complex variable
§& = y + 1z. The positions of the brane and the antibrane of the two pairs in the

transverse (y, z) plane is depicted in fig.4.1.

According to the general construction, the diagonal and off-diagonal interactions
Ipiag and Iof5—pigg are given by eqgs.(4.4) and (4.6) respectively. In order to integrate
along the hypersurfaces, let us suppose first that the angles 0¥ are different from the
angles 8" Considering the propagator D we shall write Dy(r) = [ d%k/(27)¢D(k)er
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Figure 4.1: the position of the brane/antibrane pairs in the transverse (y, #) plane. In each couple
the brane and the antibrane are joined by a Dirac string.

with D(k) = 1/k*> = [° dle~'*". The integration along the planes in the compact
space and along the (¢, z) plane will result in putting to zero all the compact and the
(t, ) components of the momentum k. Hence, after those integrations, the propaga-
tor D will be reduced to the Fourier transform of D where only ky, k. are different
from zero, that is the two dimensional propagator Do in the plane (y, z). Thus, the
only possible derivatives occurring in the previous equation will be in the (y, z) plane.
Actually, by doing the integration over [ as the last one, the other integrations fac-
torize into the product of integrations along the planes (t,z), (y,2) and the three
compact planes (2% 2% + 1) respectively. In the following it will be useful to define
the two dimensional complex propagator:
1 £-¢

D2(€)€I> = %Ig_—;\—

where ) is an infrared cut—off and Dy (€,€') = ReDy(€,£'). In the diagonal case, the

integration in the (t,z) plane gives:

IDmg = /dﬁ /dt /dktdkm i( (Uw(l t(")w(”))k —l(kt+k2)

1) ,w

where w(® represents the direction of the 4 branes trajectories in the (t,z) plane. The

integrations in the (z*,z*+ 1) planes gives instead:

NONNS AR ®))
rem — a‘t Aa V H cos ( 82y
a9 l&(l) AN 52(2)| Vol T5/Zg

where V1) and V® are the volumes of the wrapped 3-branes. This factor turns the

ten dimensional charges e'e + ¢'g into the 4 dimensional dyon charge combination
g g
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eWe® + ¢ The remaining integrations in the (y, z) plane are over the straight
lines joining the brane in fg) and the antibrane in fg) for each of the two pairs: =1, 2,
and give, taking into account the 10 dimensional charge:

% (2
ve o _ () @ g (1) @)
By = [y 4 000 [ a6 GReie, €)
L (68 e
- e (S8 e o
In the off-diagonal case, the integration in the (¢,z) plane gives:
IF iy = (0 Aw®) / ! / i / Bhidhs o)k -42)
0 iag
@) )
w /\w

The result is therefore &1 (the degenerate case where the trajectories (1) and (2) are
parallel should be taken to be zero). The integrations in the (22,2 + 1) planes give

instead: 1) =) _
a\v A& 128
Icomp 9(1 2
of f~ Dzag |O! A& Q)I VO]. Tﬁ/Zg HSID )

This factor turns the 10 dimensional charges eg’ + €’g into the 4 dimensional dyon
charge combination e®g® — gMe® = 27n. The remaining integrations in the (y, z)
plane give in this case:

& ¢
Igf} Diag ~ /(1) df(l)/\agm /(2) df(Q)-85(2>ReD2(§(1),§(2)) _
53 EB
1) 2 (1
= iImln gﬁl*ﬁ‘)- b €B>
2m gg) . ‘fff) A . §B
—a 0—-7
= o on (4.13)

There are here two important observation that we can make. First, considering
pairs of branes/antibranes automatically eliminates any infrared divergence. Second,
the off-diagonal interaction is given by the difference of the angles by which any curve
joining fg) and gﬁ}) is seen from 5591) and fg), or viceversa. We thus see explicitly
that Iofr—piag is defined modulo 27. Concluding, the total diagonal and off-diagonal
interactions are given by

( De® +g( )9(2))
tanh(v(H) — ol )
Lff—piag = =% (e(l)g( ) — gl ) ImD, (4.15)

IDiag ReD, (4.14)
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with

W) ) )
Dy=In £ @ A @
B A A B

Notice the interesting fact that in d = 2(q¢ + 1) = 10, where the gauge field is
a g = 4 even form, the 3-brane is a dyon in the sense that it has e = g = p3 and
that it has both a diagonal and an off-diagonal interaction with itself. In fact, the
off-diagonal interaction is in this case proportional to eWg®@ 4 e g() (whereas for ¢
odd it is proportional to eV g® — e g1} and different from zero also for e) = ¢
gV = ¢, On the contrary, for d = 2(¢ + 1) = 4, where the gauge field isa ¢ =1
odd form, two “parallel” dyons having e = e and gV = ¢g(® do not have any

off-diagonal interaction, the latter being proportional to e g(® — @ g,

It turns out from our analysis that the d = 10 off-diagonal interaction, propor-
tional to eiggio, becomes automatically proportional to el(ll)gf) — 8512) gfll) upon com-
pactification down to d = 4. This happens because the off-diagonal interaction is
proportional to the factor [], sin(@,(zl) — 62, which is zero when the branes (1) and
(2) are seen by a non-compact observer to be parallel in the sense that el’) = e
and gV = ¢g®. More in general, notice that the off-diagonal interaction between two
dyons (1) and (2) is symmetric both for ¢ even and for g odd, under the exchange
of every quantum number, (1) <+ (2). In fact, the transverse (y,z) contribution to
the amplitude, that is Dy, is symmetric, Dy(1,2) = Dy(2,1), whereas each pair of
the remaining non transverse directions (t,z) and (2%, 2+ 1) gives an antisymmetric
contribution; therefore, since e(g® + (=1)%e® g1 is symmetric for ¢ even and an-
tisymmetric for ¢ odd, the total amplitude turns out to be symmetric in both cases,
see eq.(4.6).

4.1.3 The interactions in string theory

As already noticed, the diagonal electric-electric and/or magnetic-magnetic inter-
action between two Dp-branes is a well defined quantity also for open trajectories.
In this case, in fact, there is no strict necessity of considering interactions among
pairs of brane/antibrane (although this is advisable to avoid infrared problems). In
string theory, the diagonal R-R interaction of just one Dp-brane at § (1) with another
Dp-brane at £®) is encoded in the RR+ (even) spin-structure cylinder amplitude:

N2 00
ADpicg = %il/o dl<B£1)’§(1)[e—zHle(92)75(2)>R+ (4.16)

Actually also the off-diagonal R-R interaction can be expressed in string theory
within the boundary state formalism. On general ground one can suspect that the off-
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diagonal interaction, if present, should be encoded in the RR— (odd) spin-structure,
which indeed produce the correct topological structure of the interaction and gives
potentially a non—vanishing result for dual pair of a Dp-brane and a D(6 — p)-brane,
as we shall see. At first sight it seems the odd spin—structure to give a vanishing con-
tribution. Indeed , the Dp/D(6 — p) system can have a maximum of 6 ND directions,
when the Dp and the D(6 —p)-branes are taken to be completely orthogonal. In these
directions there are no true zero modes and therefore as far as the contribution of the
fields along these directions is concerned, the odd spin—structure partition function
Z*%~ is non vanishing. More in general this holds for any non zero relative angle or
flux in these directions. Then there are the two light—cone coordinates, ¢ and z, which
are tilted by the relative velocity v between the two branes and therefore the corre-
sponding bosonic and fermionic pairs of fields have again no zero modes and give a
non vanishing contribution, also. However, there is a pair of DD directions left, y and
z, in which there are zero modes, in particular fermionic ones which give a vanishing
contribution. This is what one obtains at first sight. In order to give a meaning to
the odd spin—structure contribution one has to modify the simple cylinder amplitude.
This problem is related to the previously discussed necessity of considering the more
involved system of a Dp brane/antibrane pair, say located at fg’)A in the transverse
plane, with one D(6 — p)-brane (or antibrane) located at £(). According to the pre-
vious general description, this interaction is expressed by an integral over a Dirac
string joining §g) and 5&?, which we represent parametrically by £!)(s), s = (0,1).
The expression we propose for the off-diagonal odd amplitude in string theory is the
following:

PN o} 1
Aot f-Diag = Mp#fi—p/ di | ds (BZ(,U,U“),5(1)(s)lJ(s)j(s)e’lH|Bé2,)p,v(g),E(”)R_

v ' | (4.17)
In the above expression J and J are the left and right moving supercurrents whose
matter contribution is: J = 8X*¢, and J = 6X*,. Along the Dirac string, 9,0 =
0s F i0,, where O, is the normal derivative, that is along the direction 7 orthogonal
to the Dirac string; 7 is therefore the (Euclidean) world-sheet evolution time of the
closed superstring.

The odd spin structure correlation is now different from zero due to the supercur-
rent insertion. Indeed, since the odd amplitude vanishes unless there is the proper
fermionic zero modes insertion, only the part of the insertion containing %Ez (or
z,y interchanged) will contribute (and for this reason the result would be the same
also inserting the complete supercurrent including also the ghost part). Since the

fermionic correlation gives an antisymmetric result, one is left with an antisymmetric
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bosonic correlation which is zero except for the zero modes part:
_ ; —0 _
(BOVT()7(s)e™# B, e = 2i(BP|(0,0,7 — 8,20,y)uboe™ T | B, ) re (4.18)

Now, in the odd spin-structure case the contribution of the fermionic and bosonic
oscillator modes cancel by world-sheet supersymmetry. The fermionic zero modes
insertion gives 1/127:52 = wg{/}g = 1/2. The (y,z) bosonic zero modes give instead
the correct position dependence of the amplitude. Indeed notice that ds(0sy, 0sz) =
(dy, dz) along the integration line, and that as an operator (8ry,0-2) = —(0y, 0:)
since the 8, derivatives of the coordinates are canonical momenta acting as derivatives
on the corresponding coordinate. Therefore ds(0sy0;2z — 0s20,y) = dy0, — dz0y =
dé¢ A 8. Moreover, for the transverse bosonic modes < €M(s)| [5~ dle @) >=
Dy(£0)(s),£P)), whereas the remaining non transverse part of the amplitude gives

+1. Finally one obtains:

(1)

_ , 3
/ dl / ds (BV|J(s)T(s)e™ H|BE &) = / N dED A B,y Dy (€W, €@)  (4.19)
£s

which reproduces pfecisely the expected result for the off-diagonal interaction ob-
tained previously.

It is now time to come back into a subtlety that was already pointed out in chapter
1 regarding the treatment of the fermionic and superghosts zero modes in the odd
spin-structure. The insertion of supercurrents is essential to give a non—vanishing
result and is justified by the path integral approach. Indeed, in the path integral
point of view, the superghosts determinant is born as a 'primed’ determinant with
the zero modes ’excluded’, or ’inserted’ in the present language, since it corresponds
to the Jacobian of the super—diffeomorphism gauge fixing necessary to gauge away the
non-harmonic part of the world-sheet gravitino. However, it remains an integration
over the harmonic zero modes part of the world—sheet gravitino which is nothing else
but the supermoduli. Since the gravitino couples to the supercurrent, this leads to
the well known super-Teichmiiller insertion of the world-sheet supercurrent [137].
Actually, in the cylinder case there is only one modulus, the previously introduced /,
and thus one would expect only one supermodulus and one supercurrent insertion.
In the case at hand, however, one has to consider simultaneously the interaction of a
brane and antibrane pair with a given brane (or antibrane). It is then not surprising
to see the occurrence of the pair of supercurrents J and T as if the interaction would
correspond to the torus topology rather than cylinder one. In any case it is a fact
that the boundary state amplitude eq.(4.17) reproduces exactly the correct result for

the off-diagonal electric-magnetic interaction.
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Another approach to cure superghosts zero modes has been discussed in [79, 138]
and consists essentially in giving a regularization prescription for canceling the zero
modes contribution of superghosts and longitudinal unphysical fermions. By doing
so the problem is cured in a very simple way and one directly obtains a non van-
ishing result for the odd spin—structure cylinder amplitude. However this cannot be
interpreted directly as a phase-shift, due to the absence of the wedge product struc-
ture typical of a Lorentz-like force. While in our treatment such geometric structure
emerges naturally, in the latter approach it should be put as an external input.

4.2 Wrapped D3-branes and RN black holes

As anticipated, from now on we will specialize to the case p = 3. In this section, I will
first briefly review some results about the dynamics of D3-branes in 10 dimensions
obtained in [139, 140] within the boundary state formalism. In particular T will
consider the precise structure of the amplitude for the scattering of two moving of
such D3-branes with an arbitrary relative orientation putting in evidence the various
contributions coming from the four different spin—structures arising in the closed
string channel computation. Then, I will consider the same kind of interaction by
considering the same configuration when wrapped on a compact space, so to give
point-like objects in 4 dimensions. I first consider the case of a toroidal compact
manifold, 7° and then move to the orbifold case, T®/Z3. As anticipate, this turns out
to be the weak coupling description of an extremal RN black hole, in 4 dimensions.
Indeed, in the remainder of the section I will show the precise correspondence between
the solution of the effective d = 4, N = 2 supergravity theory emerging as the low
energy effective theory of the 3—brane solution of type IIB supergravity compactified
on T°/z; and the fields emitted by the D3-brane in the long distance limit (found
by computing one—point functions on the disk of the supergravity fields). The two
set of fields will coincide and will be exactly those representing a RN black hole in 4
dimensions, eq.(1.23).

4.2.1 D3-branes interactions in 10 Dimensions

Let us start from a 3-brane configuration with Neumann boundary conditions in the
directions t = z° and 2%, and Dirichlet in z = z',y = 2%,z = z° and z°"!, with
a = 4,6,8. The coordinates =%, %™ will eventually become compact. Consider then
two of these D3-branes moving with velocities V) = tanhov(®, V& = tanho®
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along the 1 direction, at transverse positions }_}(1), }7(2), and tilted in z%, z%! planes

with generic angles o) and 6

. As extensively explained in chapter 1, the cylinder
amplitude in the closed string channel is just a tree level propagation between the

two boundary states, and reads:

—

- E.% "l Z L)(BW, y® gD YW |-t BR) ) g) Y@ (4.20)
where the sum over « is made on the four spin—structures, R+, R—, NS+, NS—. The
bosonic zero mode part of the boundary state is in this case:

|B,v, 0 Y >p= /ﬂei%'?lk“(v 6)) (4.21)

) b) a1 (27r)6 ] *
with k#(v), 8 = (sinhvk!, cosh vk, k%, k3, cos 0,k%, sin ,k®). Integrating over the mo-
menta and taking into account momentum conservation which for non vanishing rel-
ative velocity v = v — v® and relative angle 8, = = g — 0$?) forces all the Dirichlet

" momenta but k2, k2 to be zero, the amplitude factorizes into a bosonic and a fermionic
partition function:

A = 231nh|v|H 25sin |6, I/ 4nl° ZZBZF (4.22)

where fiz = /27 is the D3-brane tension, b = PO ¥ (b = |6 — @) is the
transverse impact parameter (in the 2,3 directions) and:

Zgp =< v, 001 [, 07 >%

In the above expression, only the oscillator modes of the string coordinates z* appear,
since we have already integrated over the center of mass coordinate. Moreover, ac-
cording to the discussion of the previous section, we imagine that the two transverse
fermionic zero modes are soaked up due to the supercurrents insertion. Notice also
that world—sheets with { < b? give a subleading contribution to the amplitude, and
in the large distance limit (b — oo) only world-sheets with [ — co will contribute.
The amplitude A can be written, in agreement with the fact that it corresponds to a

phase-shift, as a world sheet integral:

/dTH/dfa/ dl(4nl)3e” 4I—ZZBZF | (4.23)

in terms of the true distance r = \/ b2 + sinh® 72 + 3, sin? 0,£2. In the limit v, 6, —
0, translational invariance along the directions z!, 72 is restored and the integral over
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the world—sheet produces simply the volume V3,; of the 3-branes. The remaining
part of the boundary state has been explicitly constructed in [139, 140]; after the
GSO projection, the partition functions are:

2isinh v 2sinf
' 11 :

=n(2
Zp =n(2) 91(i22il) LL 9, (% |2il)

o U ba .
Zeven — p(23) = {92(1;{221) H?92(?]2”)+

-'193 Z—-[ZZZ H’ﬁg +'l94 Z—lQZl H’l94 -—‘225)}

7944 — (2z’l)‘4191(i—7—r-|2il) Hﬁl(?‘ﬂzm (4.24)

The even part of the amplitude represents the usual interplay of the R—-R attraction
and NS-NS repulsion, leading to the well known BPS cancellation of the interaction
between two parallel D-branes (vanishing like v* for small velocities). In the large
distance limit (b,{ — c0), the behavior of the partition functions is

ZpZg™ — 2coshv [ [ 2cosb, — 2 (2 cosh2v+ > _ 2cos 29a> (4.25)

In the odd part, instead, the oscillator’s contribution cancel between fermions and
bosons by world sheet supersymmetry, and one simply gets:

ZpZ3® = 2isinhv [ | 2sind, (4.26)

Let us make few comments. Let us first suppose the two D3-branes to be parallel.
In this case, the odd spin—structure contribution vanishes and everything is encoded

in the even one. In this simplified case, the long distance limit for Z§'*" reads:
Zg®" — 16 coshv — 2 (2 cosh 2v + 6) (4.27)

This expression has the right form to make explicit, in the amplitude, the different
contributions from exchange of vector, graviton and scalar fields respectively. Indeed,
when a velocity is turned on, their dependence on v is different. In the eikonal
approximation, which is the one these computations are carried on (see chapter 1),
one can easily show that the exchange of a field of spin s is proportional to cosh(sv).
Therefore in the above expression the first term represents the vector field exchange
(R-R repulsion), the second one the graviton exchange and the last one the dilaton
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exchange (altogether the NS-NS attraction). When v = 0 the configuration is BPS
and the two terms cancel:

Zem 516 — 16 = 0 (4.28)

From the expressions (4.26) and the one of the R-R vector field exchange in
(4.25), one could already had the intuition that the even and odd R-R spin—structures
should encode the diagonal (Coulomb-like) and off-diagonal (Lorentz—like) gauge
interaction, respectively. Indeed, while the cosine is a signal of a radial force, the
sine is the signal of an orthogonal one. From eq. (4.26) one sees that, together with
the necessity of having a non vanishing relative velocity v between the two branes,
in order to get a non vanishing contribution from the odd spin-structure one also
needs the two D3-branes being non parallel (i.e. 6, # 0). This is quite obvious:
the condition for having non zero Lorentz interaction between eztended objects is to
have a complete non parallelism between the corresponding world-volumes. This is
a generalization of what happens in 4 dimensions to point-like particles where the
Lorentz interaction is non vanishing for non zero relative velocity, this condition being

rephrased saying that there is a tilting between the world-lines of the two particles.

Summarizing, the diagonal interaction between two D3-branes at positions £
and £ in the transverse plane is, at large distances:

Ipiag = 13 cOthv H cot B, Dy €M — €3] . (4.29)

ddk eiE-F o0 B

is the Green function in d dimensions.

where

2
I

e 4

[S1icH

The off-diagonal interaction between a D3-brane at transverse position £3) and
a pair of D3—brane/antibrane at §g) and gﬁf) is instead the same at all distances and
given by:
&

Ioff—Diag = £ /ﬁ N dEM A 8oy Dol — £ (4.30)
B

4.2.2 D3-branes interactions on T and T°/Zs

In this section we shall apply the general construction that we have introduced to the
case of the Type IIB D3-brane wrapped on the orbifold T®/z5. Compactifying the

directions z%, 2%}, a = 4,6,8 on TS one gets N = 8 supersymmetry, which is further
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broken down to N = 2 by the Z3 moding, and this configuration will correspond, as we
shall see, to a solution of the low energy effective N = 2 supergravity with no coupling
to any scalar. The orbifold T°/Z; is a singular limit of a CY manifold with Hodge
numbers hy; =9 and h; 5 = 0. The standard counting of hyper and vector multiplets
for Type IIB compactifications tells us that ny = his and ng = hyy + 1 [22] and
the four dimensional low energy effective theory we are left with is therefore N = 2
supergravity coupled to 10 hypermultiplets and 0 vector multiplets (see [105, 106] and
references therein). In particular, the only vector field arising in the compactification,
namely the graviphoton, comes from the self dual R-R 4-form A, ,, under which the
D3-brane is already charged in 10 dimensions. '

As explicitly shown in [139, 140], a D3-brane wrapped on T°/Z;3 does not couple
to the hypers (as it must be) and has both an electric and a magnetic charge with
respect to the graviphoton, consistently with the fact that the D3~brane is selfdual
in 10 dimensions. This can be seen by analyzing the velocity dependence of the large
distance behavior of the scattering amplitude for two of these D3-branes moving with
constant velocities in the four dimensional non—compact space time, in which they
look point-like. I will review this results in the following. The boundary state describ-
ing this 3-brane wrapped on 7°/Z; can be obtained from the one constructed for the
non—compact D3-brane essentially through the usual quantization of the momentum

along a compact direction.

More precisely, the construction of the 7°/Z3 orbifold is the following. One starts
with a covering torus T° which is the product 7% = T2 x T2 x T2 of three identical
two—tori 77 with modulus 7 = ™3, Each T? = IR/T, defined by the equivalence
% ~ z +m + nT, is symmetric with respect to Zs rotation g : z; — e™/3z,. The
Hamiltonian is invariant as well and so one can gauge this Z; symmetry by projecting
the Hilbert space of the theory onto Zs-invariant states with P = 1/3(1 + g + ¢%).
In particular, only 1 /3 of the 32 supercharges survives this projection, so that one
has N = 2 residual supersymmetry in d = 4. Modular invariance at the one-loop
level requires the inclusion of twisted sector in the Hilbert space, in which strings
are closed only up to a Z3 gauge transformation. Moreover, the Z3 action is not free
but has 33 fixed points where the space T°/Z; is no longer a manifold. Notice that
hi2 = 0 means that the number of complex deformations is 0 in this case, consistently
with the fact that the orbifold procedure “freezes out” any possible freedom in the
choice of the 3 T?’s [22]. This reflects into the fact that the wrapped D3-brane we
consider must have one Neumann and one Dirichlet direction in each of the 3 T%’s and
is therefore wrapped on a 3-cycle which is “democratically” embedded in 7®. This
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last observation implies there is no contribution from the twisted sector for the D3-
brane. Indeed, according to the above discussion, the wrapped D3-brane has mixed
boundary conditions in the three 7% composing 7°/Z3 and this is not consistent with
twisting [139, 140].

Let us start concentrating on a single 72 factor, first. The only lattice compatible
with the Z3; moding is the triangular one, with modulus 7 = = Re'5. The lattice of
windings L = Ly + iL, is given by I = m7 +nR = £(2n+ m) + i3 Rm, with m,n
integers, that is

R V3
Lm = —Q—-Nm y Ly = 7RNy
where N, N, are integers of the same parity. The lattice of momenta is as usual
determined by the requirement that the plane wave e’?® is well defined when z is

shifted by a vector belonging to the winding lattice, and one finds:
27rn T

s T s y — —=—"N

R py \/gR Yy

where ng,n, are again integers of the same parity.

Pz =

We choose in each of the T2 an arbitrary Dirichlet direction 2’ at angle 6 with
the z direction and an orthogonal Neumann direction y' at angle & = 6 + 7 with
the z direction, and fix its length. This amounts to choose an arbitrary vector L in
the winding lattice, which is identified by the pair (Nz, IVy) or, more conveniently for
the following, by the orthogonal pair (7, —7,), which corresponds to the orthogonal

direction of allowed momenta (see fig.4.2). In this way:

Ly=—Lsinf, L,= Lcost, |
V3R _ . R

cosf = —ﬁ——nw , Sinf = ——"my

where
L

H

- R
Ti=3

=2 ==
T, + 37y

We are now interested in the bosonic non oscillator modes contribution to the
whole picture and let us start, for simplicity, recalling the result for the non compact
case. The boundary state for the bosonic non oscillator modes in a given z4, zott

plane is:

Y )0 >

00,0, >p= 4(
/ P py i(pzYot+py-Y y)6 (COS pr sin me) lpm,py > ( : 1)
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Figure 4.2: the D3-brane tilted by an angle ¢ in one of the T%’s composing the orbifold. The y
direction is the (original) Neumann one, while z is the (original) Dirichlet.

X

The d—function selects momenta parallel to the Dirichlet direction we have chosen.
Indeed if w is the direction of the generic p'momentum, the argument of the é—function

becomes proportional to sin(f — w). Using of the normalization:

<o, o, o7 >= (2m)%5 (o — o) 8 (B — pP)
one recovers the following vacuum amplitude:
(Bél), o, YO | B 9@ PN =
= /dpzdpye"i(pm'AY”“y’AYy) 6 (cos8Mp, — sin§Mp,) & (cos §®p, — sin 6@ p,)

1
~ i 90 — g@)]

(4.32)

In discretizing this result we adopt the following strategy. Let us begin by supposing
(1) £ 9®) . First we substitute in eq. (4.32) the previously derived expressions for the
discretized quantities § and 6 and extract some Jacobian from the Dirac 6—functions,

obtaining:

. o LW 9@ ‘
(B, 00, P01 | B, 00,70 p = = g > 6 (0, = n) s (P, ~

g,y
same par

Since in this case the solution of the condition enforced by the é—functions is n, =
n, = 0, all the momenta are zero and the exponential drops as in the continuum case.
The Dirac é—function containing only integers can now be turned to a Kronecker
one; however, since the latter is insensitive to an integer rescaling whereas the former
transforms with an integer Jacobian, we shall keep an arbitrary integer constant in
this step:

) (h‘g)ny — ﬁél)?’bm) (5( (2)n - 'I’L(2 ) NO_ w0y, _(1) O_(2) a2, = 1V6n2’05ny,0

Tig Ty Ty,
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Therefore 2, with Vol(T?) = (v/3/2)R?
L(g(l))L(9(2))
Vol(T?)
The integer N is fixed to 1 by the requirement that for #1) = 6 the ampli-
tude reduces to the “winding” L?/Vol(T?). Actually, in order to achieve the above

(B, 0W e | BP®) 5 = N

limit, an infinite L(#) is in general required because of the discreteness of the al-
lowed angles, even if for strictly parallel branes finite L(#)’s are possible. Indeed,
LOW)YL(6@) sin |00 — 0@ | = [RIAE —nlhn®) [Vol(T?). In this way the continuum
and discrete results differ by the integer J acoblan mHnl? —aa®| (which vanishes
for #1) = @), The final result is then:

- - L(OOYL(64) RT3 — 773
B p —IH B(2) 02 VN, — _ 1M My Ty s _
< 0 79 ,3/1|€ i 0 ’ 2>B VOI(TZ) sin !H(l) _ 9(2)| (4 33)

The above result could have been obtained starting directly from the compact bound-

ary state, that is, by first discretizing the continuum boundary state (4.31) and then
computing the amplitude. The correct discrete boundary state turns out to be:

- 1
P00 ¥ 2= 02 e

same par

e~ Filn=Yetny VI 5 (771 — Tomg) g, my > (4.34)

and reproduces correctly eq.(4.33) with the definition < ng, ny|mg, my >= V3R, m. Orymy -

Postponing for the moment the Z3 identification, let us now consider as an in-
structive intermediate result the case of T°. The result eq. (4.33) can be generalized
in a straightforward way giving for the total contribution from the compact part of
the bosonic non oscillator modes:

I 1 2
W 40 FO i 50 g pon _ VEIV(B?) L
<BO 79(1 ) | | ,Y >B VOI(TG) ( 30)
where V(B'), V(B?) are the volumes of the two D3-branes. This factor can be
reabsorbed in the definition of a four dimensional mass M (from now on o) — 0l =
0,):
) V(B)V(B =(1)=(2) _ =(1) =(2)
ZVIZ = [1% ( l) ( 2) — 2,”1_[ |n g1 Not1Tg | (436)

Vol(T)

The contribution of the fermions doesn’t change during the compactification and the

sin |6,]

amplitude (4.22) becomes in this case:
M? e 1
4= S lv] Jo 47rz ZZBZF (4-37)

2Notice that we consistently take Y. 0n,,00n,,0 = .

gty
same par
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and can be rewritten this time as a one dimensional world-sheet integral:

2 -3 ——T—Z— 1 s
A= M/ d’l’/dl (4ml) " 2e ‘Igz;ZBZF (4.38)

in terms of the four dimensional distance r = V/ b2 + sinh® v72.

Eqgs. (4.29) for the large distance diagonal interaction between two branes at the
positions €1 and €™ and (4.30) for the scale-independent off-diagonal interaction
between a brane at transverse position £® and a pair of brane and antibrane at fg)

and &1), modify to:

IDiag = Oloyen COthu D)€ — @ | (4.39)
el
Ioff-Diag = FCodd /(1) dE™ A ey D€ — €] (4.40)
3
with:
Cloven = [13 H cosl, , Cloga = i3 Hsin 0, (4.41)

Recalling (4.36) and noticing that:

the two coupling can also be written as:
Ceven, = sz\f ( S +ﬁglﬁgz+>l>
Cosd = 2T H (A0, - 7ln®) (4.42)

As expected, the orientation of the D3-branes in ten dimensions affects the effective
electric and magnetic couplings of the corresponding 0-branes in 4 dimensions. Notice
that the Dirac quantization condition for the off-diagonal coupling cqq, which is
satisfied in 10 dimensions with the minimal allowed charges [24], remains satisfied in
4 with an integer which depends on the D-branes orientation in the compact space.
This result can also be understood in terms of the relevant N = 8 supergravity. Notice
in fact that:
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with ¢; = ¢§” — gz’)§2) and:

¢§1,~ — 4 (1,2) . 9 + 9 (1,2) , (21,2) _ _9(1,2) _ 0(1,2) i 9(1,2)

2

¢31 2) _ (1,_) 9(1 2) 6&1’2) ¢41 2) 9(1 2) 4 9 (1,2) 92(31‘2)

The effective couplings can thus be rewritten as

4
o = 3 (#0674 5057

i=1
4
Qodd = Z( 5 )9(2) 91(1)652)) (443)
g==1
with:
M M
égl) = — C0S gbz(-l) , éz@ = —CO0S ¢§2)
2 2
oM oy e M

9 =7 i oo 9 o (4.44)

This second consideration allows to keep track of the coupling to the various
vector fields. In fact it happens that the ten vectors fields arising from dimensional
reduction of the R~R 4-form, couple to the wrapped D3-brane only through four
independent combinations of fields, with electric and magnetic charges parameterized

2 Since the electric and magnetic charges corresponding to

by the four angles ¢§1
a given ¢§1’2) cannot vanish simultaneously, the 3-brane cannot decouple from any
of the four effective gauge fields, in agreement with a pure supergravity argument

achieved in [100].

Therefore, wrapping a D3-brane on T°, one obtains a four parameter family of
inequivalent four dimensional dyons whose effective couplings depend on the orienta-
tion of the D3-brane in the compact part of the space time. Actually, the number of
really independent parameters is three because there is a relation between the ¢§1’2)
angles, that is Zle qﬁgm) = 0. Notice finally that when two of these branes have
equal 'qb,gl’z)’s (vielding vanishing ¢;’s) their diagonal coupling no longer depends on
the angles and the off-diagonal one vanish, as appropriate for identical dyons in d = 4

dimensions.

Let us discuss finally the orbifold case. As explained in [139, 140], the only effect
of the Z3 moding is to project the boundary state for T° onto its Zz-invariant part.
This projection can be easily performed by first computing the amplitude on T
with a relative twist z, in the orientations, 8, — 6, + 27z,, and then averaging
finally on all the possible z,’s (i.e. the projected boundary state will be defined as:
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|B) = PIB,6) = 1/3(1 + g + ¢%)|B,05) = 1/35 40,9 1B, 66" + A6,), where
Al = 27rza; the same holds for the second D3-brane). In order to preserve at least
one supersymmetry it turns out that > Af, = 0 (the possible values for Af, are
0,2n/3,4m/3).

Since the bosonic zero modes contribution (4.35) does not depend explicitly on
the angles, the only modification introduced by the Z; moding is in the volume:
Vol(T®/z3) = 1/3Vol(T®). For the fermions, instead, one simply sets 0, — 0, + Ad,.
Under this relative rotation one has correspondingly:

O1 — 1+ 2m(24 + 26 + 28) = Py

Py = by +2m(—24 — 26 + 25) = P2 + 47 zg
b3 — d3 + 27 (2 — 26 — 25) = a3 — 47z
Gy — Oy +2m(—24+ 26 — 23) = Py + 472

The averaging procedure has the important consequence of projecting out, with re-
spect to the T° case, the contribution depending on the non invariant @q, @3, ¢4
Indeed, the 1/3 of the averaging cancels with the 3 coming from the volume of T°/Z;

and:

Z H cos(f, + 272,) = ;11 cos ¢,

{za} @
1
Z H sin(6, + 27z,) = ~1 sin ¢
{za} o
Z H cos2 (6, + 27z,) =0 (independently of 6,) (4.45)
{z} @

One is therefore left wit the contribution of the sole e;, g charges:
Qeven = (é(ll)é?) + §’§1)£7§2)>
(1) ~(2) ) (12)> (4.46)

A(1) &
Codd = (61 9
Hence, after the Z3 moding, only one pair of electric and magnetic charges survives,

o

(1
-4

consistently with the fact that, as already pointed out at the beginning of this section,
only one vector field survives to the projection in the low energy effective theory,
namely the graviphoton. The fact that the Dirac quantization condition still holds,
like in the TP case, is due to the fact that the averaging procedure (4.45) can be seen
as the superposition of 3 pairs of D3-branes on T, with relative angles 8, + 27z,
instead of 8,. Since Dirac quantization condition holds for each pair of those, it holds

also for the sum of the interactions.



120

Summarizing, wrapping a D3-brane on T°®/Z3, one obtains a one parameter family
of dyons (rather than 4 as for 7°) whose effective couplings depend only on the
orientation of the D3-brane in the compact part of the space time. Finally, let us
remark that the Z; projection, which reduces the 4 independent gauge fields to 1, is
also responsible for the decoupling of the scalars fields from the 3~brane. Indeed, the
expression for the even partition function in the large distance limit is now:

Z§ — 2coshv Z H 2cos 2(0, + Ab,) — 2 | 2cosh2v + Z Z 2cos2(0, + Ab,
{Ad,} @ {A8.} a

(4.47)
Upon use of eq.s(4.45), see in particular the third one, one finally gets:

Zg" = 4 cosh v cos Z Af, — 4cosh2v (4.48)

According to the discussion of the previous subsection, the absence of the velocity
independent term means the absence of any scalar field exchange and the interaction
is mediated just by exchange of the graviton and the vector gauge field: thus, the
D3-brane wrapped on T /73 looks like a RN configuration, being a source of Gravity
and Maxwell field only. Notice finally that now, in the case of parallel branes and
vanishing velocity the no force condition still holds but, due to the less supersymmetry
left, eq.(4.28) gets modified to:

Zgn w4 —4 =0

The number of supersymmetry left are 4 rather than 16, as opposite to the maximally
supersymmetric case. Indeed our configuration is a 1/2 BPS state within N =2

theory, the former one 1/2 BPS within N = 8 theory (i.e. toroidal compactification).

4.2.3 The 3-brane wrapped on T6/Z3 as a SUGRA solution

In this subsection we will make the correspondence between our configuration and the
actual extreme RN black hole solution more precise. Indeed, I will explicitly show the
exact correspondence between the supergravity solution and the D—brane boundary
state description of such a black hole. In this case, as anticipated, the effective four
dimensional theory is N = 2 supergravity coupled to 10 hypermultiplets and 0 vector
multiplets, the only vector field in the game being the graviphoton. Since there are
no vector multiplet scalars the only regular black hole solution can be the double—

extreme one. From a supergravity point of view this is somewhat obvious and the same
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conclusion holds for every Type IIB compactification on CY manifolds with A{%?) = 0.
The interest of the T°/Z3 case lies in the fact that an explicit and simple D—brane
boundary state description can be found. It would be obviously very interesting to
find more complicated configurations which correspond to regular N = 2 black hole
solutions for which an analogous D-brane description can be constructed.

When ten dimensional supergravity is compactified on a CY threefold M{Y we
obtain d = 4, N = 2 supergravity coupled to matter. As well known the field content.
of the four dimensional theory and its interaction structure is completely determined
by the topological and analytical type of M$Y but depends in no way on its metric
structure. Indeed the standard counting of hyper and vector multiplets tells us that
ny = hb® and ng = AGY + 1. Furthermore, the geometrical datum that completely
specifies the vector multiplet coupling, namely the choice of the special Kahler mani-
fold and its special Kihler metric is provided by the moduli space geometry of complex
structure deformations. To determine this latter no reference has ever to be made to
the Kahler metric g;;+ installed on M$Y (for a review of this well established results
see for instance [141]). Because of this crucial property careful thought is therefore
needed when one tries to ozidize the solutions of four dimensional N = 2 supergravity
obtained through compactification on MSY to bona fide solutions of the original ten
dimensional Type IIB supergravity. To see the four dimensional configuration as a
configuration in ten dimensions one has to choose a metric on the internal manifold

in such a way as to satisfy the full set of ten dimensional equations.

We will start by showing that the oxidization of a double extreme black-hole
solution of N = 2 supergravity to a bona fide solution of Type IIB supergravity is
possible and quite straightforward. It just suffices to choose for the CY metric the
Ricci flat one whose existence in every Kéahler class is guarantee.d by Yau theorem
[142]. Our exact solution of Type IIB supergravity in ten dimensions corresponds
to a 3-brane wrapped on a 3-cycle of the generic threefold M$Y and dimensionally
reduced to four dimensions is a double—extreme black hole. Let us then argue how

this simple result is obtained.

As well known, prior to the recent work by Bandos, Sorokin and Tonin [143] Type
IIB supergravity had no supersymmetric space-time action. Only the field equations
could be written as closure conditions of the supersymmetry algebra [144]. The same
result could be obtained from the rtheonomy superspace formalism as shown in [145].
Indeed, the condition of self duality for the R-R 5—form Fsy that is necessary for
the equality of Bose and Fermi degrees of freedom cannot be easily obtained as a

variational equation and has to be stated as a constraint. In the new approach of
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[143] such problems are circumvented by introducing more fields and more symmetries
that remove spurious degrees of freedom. For our purposes these subtleties are not
relevant since our goal is that of showing the existence of a classical solution. Hence
we just need the field equations which are unambiguous and reduce, with our ansatz,

to the following ones:

Ryun = Tun (4.49)
1

5
VuFG?PP =0 Fc(zl),..gs = 57 €61 GsHy... H Fg)l M (4.50)
Tun=1/(2-4) F ](V?) F ](\?) being the traceless energy-momentum tensor of the R-R
4—-form Ay to which the 3-brane couples and Fis) the corresponding self dual field
strength. It is noteworthy that if we just disregarded the self-duality constraint and
we considered the ordinary action of the system composed by the graviton and an

unrestricted 4—form:

1

T 9k

S

1
/dlom,/g(m) <R(10) - ﬁF(%)) (451)

2
(10)

then, by ordinary variation with respect to the metric, we would anyhow obtain, as

source of the Einstein equation, a traceless stress—energy tensor:

1 1
Tun =55 (F N — 5 59MNF(25)>

The tracelessness of Ty is peculiar to the 4—form and signals its conformal invari-
ance. This, together with the absence of couplings to the dilaton, allows for zero

curvature solutions in ten dimensions.

For the metric, we make a block—diagonal ansatz with a Ricci-flat compact part
depending only on the internal coordinates y® (this corresponds to choosing the unique
Ricei flat Kéhler metric on M$Y), and a non—compact part which depends only on

the corresponding non-compact coordinates z#:
ds? = gfﬁ) (z)dz*dz” + g((l? (y)dy“dyb (4.52)

For gfﬁ) we take the extremal R-N black hole solution, as will be justified below.
This ansatz is consistent with the physical situation under consideration. In general,
the compact components of the metric depend on the non-compact coordinates z*,
being some of the scalars of the N = 2 effective theory. More precisely, using com-
plex notation, the components g;;+ are related to the ALY moduli parameterizing the
deformations of the Kahler class while the g;; (gi«;+) ones are related to the A(1?)
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moduli parameterizing the deformations of the complex structure. In Type IIB com-
pactifications, as already stressed, such moduli belong to hypermultiplets and vector
multiplets respectively. In our case, however, there are no vector multiplet scalars,
that would couple non—minimally to the gauge fields and the hypermultiplet scalars
can be set to zero since they do not couple to the unique gauge field of our game, the
graviphoton. Therefore gu(z,v) = gan(v)).

The 5—form field strength can be generically decomposed in the basis of all the
harmonic 3—forms of the CY manifold Q@9):

R(2,1)
Fisy(z,y) = Fy(z) AQEO(y) + > Fly (z) APV (1) +cc. (4.53)
: k=1

In the case at hand only the graviphoton F(OQ) appear in the general ansatz (4.53),
without any additional vector multiplet field strength F(g), and conveniently normal-
izing:
Fioy(2,1) = —=F2 (z) A (0G0 1 0@ 4.54
G\, Y) = \/—2— (2) Z ( . )
Notice that this same ansatz is the consistent one for any double—extreme solution
even for a more generic CY (i.e. with h(1? #£ 0).

With these ansiitze, eq. (4.49) reduces to the usual four—-dimensional Einstein
equation with a graviphoton source, the compact part being identically satisfied. The
latter is a non trivial consistency condition that our ansatz has to fulfill. In fact,
in general, eq. (4.49) taken with compact indices gives rise (after integration on the
compact manifold) to various equations for the scalar fields. Indeed, the compact
part of the ten dimensional Ricci tensor Ry, is made of the CY Ricci tensor (that
with our choice of the metric is zero by definition) plus mixed components (i.e. R )
containing, in particular, kinetic terms of the scalars. The corresponding stress—
energy tensor compact components on the right hand side of the equation would
represent coupling terms of the scalars with the gauge fields. In our case, however,
these mixed components of R,, are absent. Therefore the complete ten dimensional
Ricci tensor vanishes (Rq = 0) and self-consistency of the solution requires that also
the complete stress—energy tensor Tp, should vanish. This follows from our ansatz
(4.54) as it is evident by doing an explicit computation. This conclusion can also
be reached by observing that the kinetic term of the 4—form does not depend on gg
when g;; = 0, see eq. (4.55) below.

The four—dimensional Lagrangian is obtained by carrying out explicit integra-
©%) Such that
”9(3,0)!!2 = V2 /Vey (since the volume of the corresponding 3—cycle is precisely the

tion over the CY. Indeed, choosing the normalization of Q@9 and Q
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volume Vi of the wrapped 3-brane) one has (2 = 1/v2(y® + iy**!) and dy =
id3zd*Z):

[ v =Ver i [ 000 a0
cY

cY

0,3)

=Vy = / &y /am |90 (4.55)
CcY

In terms of /-3%4) = hﬁ?m)/ Vey one finds:

1 1
S = d*z Ry — —=1 F° Folw 4,

20, / A ( = g NooFu (4.56)
In the general case, eq. (4.53), the integration over the CY gives rise, of course, to a
gauge field kinetic term of the standard form: ImANys F*F” + ReNysF A FE where
AS = 0,1,...,h? but in our simpler case there is only F(Oz) = F with Im/Ny =
VZs/Vey. As well known the four dimensional Maxwell-Einstein equations of motion

following from this Lagrangian admit the extremal dyonic RN black hole solution:

ds? = —H(r)~2dt* + H(r)*(dr® 4+ r?dQy,)
Fom = \/%? cosalp [H(r)]H(r)™? |, Fpp = ﬂ% Sin & €mnp0F [H (1)]

(4.57)
where the harmonic function is H = 1 + ko/7 with ko = 2&?4)M/Q2 and M = V3 T;,
in agreement with the general expression (1.9). Notice that, as a general feature of
matter coupled supergravity, the kinetic term, and correspondingly the propagator of
A is not canonically normalized, and therefore the effective charges appearing in a
scattering amplitude are rescaled by a factor V3/ 'Voy. Then the couplings are:
é:]—;{cosoz, g:-‘%{sma (4.58)
and satisfy the extremality condition M? = (&2 4+ 3*)/4. As usual hatted charges are
expressed in inverse units of the effective coupling \/55(4). The parameter M depends
directly on the 3-brane tension fi3 through the relation M = [3Vs /v/Vey and the
arbitrary angle o depends on the way the 3-brane is wrapped on the compact space.
At the quantum level, & and § are quantized as a consequence of Dirac condition
&g = 2mn; correspondingly, the angle  can take only discrete values and this turns
out to be automatically implemented in the compactification.

Now note that in the case of T°/Z3 the square volume of the wrapped 3-brane
V2 defined by the second of eqs.(4.55) is automatically a constant just because the
number of vector multiplets is zero. For a generic CY compactification we have:

i [, 000 A8 = e [ 6.9)
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where I (¢, ¢) is the Kahler potential of the moduli fields ¢(z) associated with com-
plex structure deformations. Hence in the generic case the 3-brane volume is dressed
by scalar fields and depends on the z-space coordinates. Telling the story in four—
dimensional language the graviphoton couples non—minimally to scalar fields. How-
ever, on the hand to oxidize the RN type of black—hole solution we discuss in this
paper, it is crucial that we can treat the D3-brane square volume Vi as z-space
independent.

4.2.4 - The D3-brane wrapped on T°/Z; in String theory

As anticipated we will now give a further evidence of the D-brane/black hole corre-
spondence we have worked on so far, by showing the precise correspondence between
the supergravity solution (4.57) which represents an extremal RN black hole as a
3-brane solution of type IIB supergravity wrapped on the orbifold 7°/Z3, and the
corresponding long range fields emitted by the wrapped D3-brane, using the boundary
state formalism. We will compute one—point functions (V) = (¥|B) of the massless
fields of supergravity and compare them with the linearized long range fields of the
supergravity RN black hole solution (4.57). This method presents the advantage of
yielding direct informations on the couplings with the massless fields of the low energy
theory.

Recall that the original ten dimensional coordinates are organized as follows: the
four non—compact directions z°, ', 22, 3 span My, whereas the six compact direc-
tions z%, 2%, a = 4,6,8, span T°/Z;. The three T%’s composing T are parameter-
ized by the 3 pairs 2%, z%*!, and the Z5 action is generated by 27/3 rotations in these
planes. The boundary state |B) of the D3-brane wrapped on a generic Zs—invariant
3—cycle can be obtained from the boundary state |Bs(f)) of D3-brane in ten dimen-
sions with Neumann directions z° and z'*(6,), where the z'%(,) directions form an
arbitrary common angle §; with the X directions in each of the 3 planes z?, z%*!
(actually, we could have chosen 3 different angles in the 3 planes, but only their sum
will be relevant, as it could be inferred from eq.(4.62) below). First, one projects
onto the Zs—invariant part and then compactifies the directions z%,z°"!. The Z;
projection is implemented by applying the projector P = 1/3(1+ g+ ¢%) on |B3(6y)),
where g = exp [i27/3(J* + J7 + J®%)] is the generator of the Z; action and J**** is
the 2%, 2°*! component of the angular momentum operator. This yields

B) = % 7 By (0 = A0 +65)) (4.59)
{a8}
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where the sum is over Af = 0, 27/3,4/3. It is obvious form this formula that |B) is
a periodic function of the parameter 6y with periodt 27 /3. Therefore, the physically
distinct values of @y are in [0, 27/3] and define a one parameter family of Z3—invariant
boundary states, corresponding to all the possible harmonic 3—forms on T%/z5, as we
will see. As it has been shown in section 4.1, requiring a fixed finite volume Vp3 for
the 3—cycle on which the D3-brane is wrapped implies discrete values for 8y. The
compactification process restricts the momenta entering the Fourier decomposition
of | B) to belong the momentum lattice of 7°/Z;. Since the massless supergraviton
states |¥) carry only space time momentum, the compact part of the boundary state
will contribute a volume factor which turns the ten—dimensional D3-brane tension
fis = v/2r into the four dimensional black hole charge M=V, 2./Vov fis, and some

trigonometric functions of #y to be discussed below.

Using the technique of [78], the relevant one-point functions on |Bs(f)) for the
graviton and 4-form states |h) and |A) with polarization A and AMMFQ are:

(B3(0)|h) = —M T haen SM™(0) , (Bs(0)|4) = —% T Anrnpo Sas(8) TNEQ

' (4.60)
where T is the total time. As explained in chapter 1, the matrices S(8) = A(6)SAT(6)
are obtained from the usual ones corresponding to Neumann boundary conditions

along z°, 74, 28, =%

Swuw = diag(—1,-1,-1,-1,1,-1,1,-1,1,=1) , Sup =T"
“through a rotation of angle 8 in the 3 planes z%, 19! generated in the vector and
spinor representations of each S0(2) subgroup of the rotation group S0(8) by:

_ 9 : 9 aa+1
) , AS(G)-—cosi—smiI‘

cos@ sind

avo) = (

—sinf® cos@

After some simple algebra, one finds:

(B3(0)|h) =M T {hoo + R B2 4 B =Y " feos 26 (A — A%FITY) — 25in 20 At }

<B3 (9)|A> — ZMT [COS3 f (140468 - A0479 _ AOSSQ _ A0578)
+sin3 2 (A0579 - A0568 . A0478 - A046.9)
1 cos (AVTO 1 AU 4 ADSTE) y gin g (A0S 4 A0S 4 AV)]  (461)

The one—point functions for the D3-brane wrapped on T 6/z3 are then obtained
by averaging over the allowed Af’s: (¥) =1/3 Z{M}(Bg((?)l\ll). One easily finds the
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only non—vanishing averages of the trigonometric functions appearing in eq.s(4.61) to
be:
1z:cos.g‘é’—lcos?ﬁ lZsing’e——lsm?ﬁ (4.62
3 T4 ° 3 T 62)
{80} {a6}
so that finally (meaning now with h and A all the four dimensional fields arising from

the graviton and the 4—form respectively upon compactification):

- M
(hy = M2T (b + A" + W + h%) |, (4) = 5T (cos 30pA° — sin 36,B°)  (4.63)
where we have defined the graviphoton fields:

AF = J4#468 - Au479 _ A,u569 _ Au5?8 ’ Bt = Au579 - A[.L568 . Au478 . A/_L469 (464)

Using self duality of the 5—form field strength in ten dimension, one easily see that
F& = *F% so that A# and B* are not independent fields, but rather magnetically
dual. Using the A* fleld, we get electric and magnetic charges:

~ ~

M M
e = - cos3by, §= - sin 36, (4.65)

4]

or viceversa using the B* field. Comparing with eq. (4.58) one finds that o = 36,
and therefore the ratio between e and g depends on the choice of the 3—cycle, as
'a,nticipated. Also, as explained, only discrete values of 6y naturally emerge requiring
a finite volume. The identifications (4.65) are in agreement with the diagonal and
off-diagonal phase—shifts found in the previous section between two of these configu-
rations with different 6y’s, call them 6(2). Indeed:

ore
Acven ~ 4 cos 3 (9(1) _ 9(2)) = eWe® 4 3153
M (1) (2) s(1D5(2) _ 5152
Aodd~—4—8m3(9 -0 ):e g —gve (4.66)

Notice that all the compact components h® of the graviton have canceled in
(4.63), reflecting the fact the black hole has no scalar hairs. Moreover, the one-
point function of the R-R 4—form is precisely of the form of our ansatz (4.54), with
the unique holomorphic and antiholomorphic 3—forms QG0 and Q¥

(4.63). Indeed:

showing up in

QB — Qdzt AdaS AdeS, OO = dFt A dFS A dZB (4.67)
so that the real 3—form appearing in (4.54) is given by:

QB ¢ 5(073) — ReQ) (w468 AT 509 w578) 4 TmQ (w579 B8 _ AT w469)

(4.68)
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where w®® = 1/4/2 dy® Ady® Ady®. The precise correspondence between the boundary
state result (4.63) and the purely geometric identity (4.68) is then evident. The
combination of components of the 4—form appearing in (4.63) is proportional to the

integral over the D3-brane world-volume V3

(Ay =12 Re/ (A+iB) A QB0 = / (A +§B) (4.69)
2 143 Vito

This formula yields an interesting relation between the parameters jis, M, 8y and the
complex component € in (4.67) defining the 3-cycle: one gets Q = (M /fiz)e~%%,
Notice that one correctly recovers |Q] = m, the arbitrary phase being the
sum of the arbitrary overall angles 6, appearing in the boundary state construction.
Finally, dropping the overall time 7', inserting a propagator A = 1/¢* and Fourier
transforming eqs. (4.63) with the identification (4.69), one recovers the asymptotic

gravitational and electromagnetic fields of the RN black hole, eqgs.(4.57).

This definitively confirms that our boundary state describes a D)3-brane wrapped
on T° /73, falling in the class of regular four~dimensional RN extreme black holes ob-
tained by wrapping the self-dual D3-brane on a generic CY threefold. This boundary
state encodes the leading order couplings to the massless fields of the theory, and al-
lows the direct determination of their long range components; falling off like 1/r in
four dimensions. The subleading post-Newtonian corrections to these fields arise
instead as open string higher loop corrections, corresponding to string world-sheets
with more boundaries; from a classical field theory point of view, this is the standard
replica of the source in the tree-level perturbative evaluation of a non-linear classical
theory. In a series expansion for r — 0o, a generic term going like 1/r! comes from a
diagram with [ open string loops, that is [ branches of a tree-level closed string graph
(each branch brings an integration over the transverse 3—momentum, two propaga-
tors and a supergravity vertex involving two powers of momentum, yielding an overall
contribution of dimension 1/r).

As pointed out by the authors of [146], heuristically speaking the reason why
single D-brane black holes are non-singular in CY compactifications, as opposed to
the toroidal case, is that the brane is wrapped on a topologically non—trivial manifold
and therefore can intersect with itself. This intersection mimics the actual intersecting
picture of different branes holding in toroidal compactifications that is the essential
feature in order to get a non-singular solution in that case. In our case, such analogy
is particularly manifest since the boundary state Zz—invariant projection (4.59) can
be seen as a three D3-branes superposition at angles (27/3) in a T® compactification.
As illustrated in [49] such intersection preserves precisely 1/8 supersymmetry, as a
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single D3-brane does on T°/Z3. For toroidal compactification this is not enough to
get a regular solution however, because, as explained in chapter 1, in that at least
4 intersecting D3-branes are needed. Finally, since this extremal RN configuration
is constructed by a single (bunch of) D3-brane, it naturally arises the question of
understanding the microscopic origin of its entropy. This is still an open problem.
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The solvable description of

Mgir(3,3) and Mgy

The solvable Lie algebra description of a non-compact Riemannian manifold M is
based on the following theorem [101]:

Theorem: If a non—compact Riemannian manifold M has a solvable subgroup
exp(Solv) of the isometry group acting transitively on it, then M admits a solvable
description, i.e. it can be identified with the solvable group of isometries:

M = exp(Solv) (A.1)

For instance all homogeneous manifolds of the form G/H ( G non-compact semisimple
Lie group and H its maximal compact subgroup) fulfill the hypothesis of the above
theorem and their generating Solv is defined by the Iwasawa decomposition:

G = He Solv
SOZ’U = C'[(EBNZJ (AQ)

where @ and IH are the Lie algebras generating G and H respectively, Cx is the
subalgebra generated by the non compact Cartan generators of Gand A4l is the
subspace of Giconsisting of the nilpotent generators related to roots which are strictly

positive on Ck.

Applying the decomposition (A.2) to the manifold Mgy (3,3) one obtains:

SU(3,3) = [SU(3)1® SU(3): ® U(1)] ® Solvsys,z)
Solvsyazy = F1 O Fa @ F3 @ Xys © Yns & Zys

130
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Xns = Xis @ Xyg, Yvs = Yhe ® Yy, Zys = Zs ® Zys
h;, g = 2g 1=1,2,3
[FZ, F] = 0 i1#7
[ ] = +Yys, [h?n Xzi\_'fs] = :tXJj\:fS
[ ﬁ ] = iz%s J [h°’ Xz%rs] = Xﬁs
[hla 1%/ ] = Z%s J [hl ’ Yz:\trs] = YZ%IS
g1, Xnvs] = g1, Yns] = [g1, Zns] = 0
g2, Xns] = [g2, Ywsl = [g2, Zks] = 0, [, Zys] = Z}s
g3, Yhs] = [gs, Xfs] = [g3, Zns] = 0
83, Yis] = Yis: [gs, Xys] = Xis
[F1, Xns] = [Fa, Yys| = [F3, Zys] = 0
(Xns, Zys] = Yys (A.3)

as explained in section (2.1) the solvable subalgebra Solvsry = Fi @ Fy @ Fj is the

solvable algebra generating Mgry. Denoting by «y, @
SU(3,3), using the canonical basis for the SU(3,3) al
have the following form:

-1,...
gebra, the generators in (A.3)

, 5 the simple roots of

hy = H, g =ik,
h2 = Haa g2 paay iEas
hy = Ha5 83 — iEas
X+ — Xi!_ - i(E—M + E013+a4+a5)
o X;- = Bogtostas — Loay
X=. = 1 = i(Eaa+a4 + E—(a4+a5))
s Xz_ =~ Ea3+a4 - E-—(a4+as)

vi. — Y =B tartastastas T F—(atas+as))
Vs Y;- = E011+a2+013+0z4+a5 - E—(a2+a3+a4)
Y- _ ; = i(Ea1+0£2+043+014 -+ E-(az+a3+a4+a5))
s YZ_ = Ea1+az+a3+a4 - E—(a2+a3+a4+a5)

7+ - ZT = i(Ea1+az+a3 + E-—az)
s zf = Boytartas = E-gy

7~ _ Zl_ - i(EaH-az + E—(a2+as)) (A4)
s ZQ- = Eal-l-az - E—-(az-i-aa)

We compute the SU(3,3) generators in the 20 represe

ntation of the group, which is
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symplectic. The weights 7 of this representation, computed on the Catan subalgebra
C of SU(3)1 D SU(3)2 & U(l) are .

,D»A’

Hcl HC1+62 Hdl Hd1+d2

TS 2 )
{0,0,0,0,3)

111 1 1
Gy
03059
I
G003
P

L
gty
PR
PR (A-5)

These weights have been ordered in such a way that the first four define the (2,2, 2)
of SL(2,R)® C SU(3,3) and in the physical interpretation of this agebraic constru-
ciotn, 7° is related to the graviphoton for its restriction to the Cartan generators
H,  He sep Hayy Hiyvdy Of Hmotter = SU(3)1 @ SU(3)2 is trivial.

After performing the restriction to the Sp(8)p representation of [SL(Z, R)]? de-

scribed earlier in the paper, the orthonormal basis \/va\’y) (A=0,1,2,3) is:

1 11 1
- Gnog gy
IR
" Lrgetid
B
= pyy 00
= {ppp0000
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The STU model and the full set of
first and second order differential

equations

All the geometrical quantities defined on Mgy may be deduced form a cubic prepo-
tential F'(X):

=6, oae= ()
Z - y £y 3 z) =
FE(Z)
1
S
X4 =
G o= |,
U
FE(Z) = 8EF(X)
K(z,Z) = —log(8ImSImTImU])
hi(2,2) = 8:0;K(2,2) = diag{—-(S-9) ", -(T-T)",-O0-U)""}
e . ImFAQImFEHLQLH
= F 2
Nz R Y ey
FAE(Z) = BAagF(X)
) X1x2x3
The covariantly holomorphic symplectic section V(z, %) and its covariant derivative
Ui(z,Z) are:
LMz, %) .
= — ) — KD, 7
Ved) = (ym) =<0
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— iA(Z7z) - az]C —
Ui(z,%) (hi|AE(Z,E)> ViV(z,z) = (6 5 WV (z,%)
— . fir(2:2) \ = _ O K — -
Ui(2,2) (hmg(z,'z' > = ViV (z,Z) = (O + 5 Wiz, 2)
Ms(z,%Z) = Nzalz,2)L%(2,%)
hiz(z,Z) = Nsa(z2)f(2,2) (B.2)

The real and imaginary part of A/ in terms of the real part a; and imaginary part b;
of the complex scalars 2 are:

2010203 —(aza3) —(araz) - (aia)
ReN = |~ (a2 a3) 0 as a2
— (a,l a,3) as 0 ay
~ (a1 a2) ap , u 0 .
a2 bz ba n b1 (aa? ba?+(a22+b2?) ba?) _aibabs _gabiby __aabiby
by b3 by ba ba
’ _elz_zb& %1 0 0
IHLA[ = _a 2:; b3 6 blbbg (B‘g)
T 2
_.as b1 bg O 6 —b—l-—b—g-
b3 b3

" Using the above defined quantities, the first order BPS equations may be written in
a complex notation equivalent to (3.29):

L ( ) \/\lel(gi)(gl (0 +Ta-TrS+aS+T (- [Tp1) + 2+ Tp*S—5°S)
% = i( T)> \/12ImI(I§)(£)1 oo +Tq-Up'T+@T+5 (-(Up*)+a1+Up° T —p*T)
%g = :t( ) \ﬂﬂmlgggl)l )[(q0+%q2—Tp1U+q3U+§(—(Tp3)+q1+Tp°U—p2U))
T - i( ) 2v/2([Tm(S 1(fzﬂ)nn(U)l>1/2)[QMS(TUPO“UpQ-TpS“”)Jr

—(Up") + g2) +UQS] (B.4

The central charge Z(z,Z%,p, ¢) being given by:

- _ 1 0 2 3
Z(z,%,p,q) = <9\/—([Im( S)m(T )Im(U)|)l/2>[qO+S(TUp Up* ~Tp*+q) +

T (- (Up') + ) +Ugs] (B.5) .

Setting z* = a; + ib; eqs.(B.4) can be rewritten in the form:

da1 eu(r) b1 0
—= = /=5 [~b1q1 + baga + b3gs + (— (a2 azbr) +araz by +aranby + b1 by bg) p +
dr T 2bab3
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+ (= (azba) — az bs) p* + (az by — a1 b3) p* + (a2 by — a1 bz) P°]

db, eH(r)

b
= t—5/ ——[a1q1 + a2g2 + asgs + (a1 az ag + ag by by + az by by — a1 b2 b3) p° +
dr 2bb3

r

+ (= (ag az) + by b3) p* — (a1 ag + by b3) p® — (a1 a2 + b1 b2) p* + qo]

da;g
7;7"— - (17273) - (27 173)
dbsy
— = , 2, 2,1,
2 = (1,2.3) = (2,1,3)
dCLg
— = 2,1
= (1,2,3) — (3,2,1)
dbs
—_— = 2,1
- (1,2,3) — (3,2,1)
au Il ! [ ( by b by b bo bs) p°
= a1q1 + 6292 + as3qs + (a az — - -
ar 12 93/2(—bibabg) M2 1q1 292 343 1a2a3 —azbrbs —agbibg —arbabs) p- +
— (agag — by bs) p* — (a1 a3 — b1 b3) p* — (a1 a3 — by ba) P° + o
0 = big -+ bogo + bsgs + (a2 a3 by + a1 azby + a1 ag by — by by bs) p° — (agzba + agbs) p'

— (a3 by + a1 b3) p* — (az by + a1 ba) P°

(B.6)

The explicit form of the equations of motion for the most general case is:

Scalar equations:

IBY] /
" a9 a
<a1 b T >

1 T bl

—2b162U 02 2 01
T[al by b3 (p”” — £(r)o”) + b2 (—(bsp p') + b3 £(r)o £(r)1) +

by (—2ag a3 p° £(r)o + az p* £(r)o + az P> £(r)o + az p° £(r)2 +

—p® £(r)2 + a2 p° £(r)s — p* £(r)3)]
2U

—b2 bg r4
—bo? b3? P12 + by % by P22 + by ? 5221032 +ai? b2 032 8(r)o* +
—b12by% b3 £(r)o? + as? b1 by? (07 — £(r)o”) + a2” br? by
(0°% — £(r)o?) — 2 a1 ba® b (o £(r)1 + ba? b3? £(r)1 % +
—b1? 32 £(r)2” + 2 a2 b1 bs” (= (p° p®) + £(r)o £(r)2) +
—b12bo? £(r)32 + 2a3 b1 2 by? (—(p° %) + £(r)o £(r)3)]
(1,2,3) = (2,1,3)

2 2
[_(a12 b22 b32p0 ) + b]_2 b22 b32p0 + 2 a 622 b32 popl +

(1,2,3) = (2,1,3)
(1727 3) - (3’ 27 1)

(1,2,3) = (3,2,1) (B.7)
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Einstein equations:

2
Z/[”—%-;Z/{I = —26—2u500
1
@W+Z@ﬂ@%mm = 2e Sy (B.8)

- where the quantity Sgp on the right hand side of the Einstein eqs. has the following
form:

etV 21 27 2 02 2y 2; 2 02 272 0,1 25 2 12 24, 2, 22
Spo = W(m“bz b3"p™ + 01702 b3 p T —20a1b2°b3°p p + 02" b3 p T + b1 b3 +

102

+by25y% 2%+ a1 ba? b2 £(r)o? + b1 bo? bs? £(r)o? + as? b1 % bo? (p°° + £(r)o?) +
+a22 612 b32 (p02 + E(’I’)QQ) —2a7 522 b32 ﬁ(’r)g E(’I")l + 522 b32 E('f)12 + b12 532 E(’I‘)gz -+
~2a9 012 b3 (0 p? + £(r)o £(r)2) + b1 b2 £(r)3> — 2a5 b1 ba? (PP + £(r)o £(r)s)) (B.9)

The explicit expression of the £, () charges in terms of the quantized ones is computed
from eq. (3.48):

go+a1 (a2 a3 p°~as p?—a0 pP+q1)+az (—(as p)+g2)+as g
by bs by
a1’ (az azp’—a3p?—as P3+q1)+b12 (az as PD~;3 pi-an P3+Q1)+a1 (%-I-az (-—(as P1)+q2)+a3 Q3)

5162 b3
balr) = | o, (a22 (a3 p®—p®)+b2? (a3 P°—p®)+a2 (e p?)+a1)) +a2? (—(as p* ) +g2)+b2* (—(as ') +42)+02 (g0+a3 a3)
b1 b2 b3
a3 go+a1 (—(as® p?)—bs® p*+az (as® p'+bs” p°—as p? ) +as q1) ez (as® p+b3” p' a3 ¢2) +as g3 +b3” a3

broats (B.10)
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