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1 Introduction

The main argument of this thesis is the analysis of some nonperturbative features
of the Yang-Mills-Higgs (YMH) model in three dimensions for gauge group SU(N)
and some implication for the large N limit.

Along the way we have also stopped to analyze the Eguchi-Kawai reduction
method which is a tool for investigating the large N limit of any model of matrices.

Our YMH model is the direct generalization to SU(N) of the Georgi-Glashow
model [1]. This was one of the first models providing a spontaneous breaking of
a gauge symmetry, later incorporated in the celebrated Weinberg-Salam model of
electroweak interactions.

While in the WS model the symmetry breaking is implemented in the weak isospin
group, it was soon realized that the same phenomenon in the color group could
provide a new set of interesting physical phenomena. Among them the quantization
of charges of quarks and the existence and stability of nontrivial classical “soliton”
solutions to the static equations of motions [2, 3]. They are then three dimensional
objects.

This latter new field configurations were shown to possess a particle interpretation
as magnetically charged objects, and thus were named monopoles. They realized with
a smooth field configuration the older, singular, Dirac monopole [4].

Strictly the origin of the 't Hooft Polyakov monopole is exactly in the YMH
model, because the Higgs potential provides a length scale and the size for such
configurations, providing their stability.

It was however argued in the celebrated paper [5] on oblique confinement that such
configurations should exists also in pure Yang-Mills theory of strong interactions, and
play a major role in the mechanism of quark confinement with their condensation.

Already the Georgi Glashow model in two dimensions shows analogous configur-
ations, vortices [6], which account for the BCS theory of superconductivity [7].

It was an idea from the early ages of QCD [8, 9, 10] that quark confinement could
be explained with a picture analogous to that of type II superconductors but with
the role of electric and magnetic charges interchanged (and for late issues like abelian
dominance in confinement see [11, 12]).

For nonabelian groups SU(N) the vortex solutions are not stable, mainly due to
the triviality of the fundamental group, and this complicates the matter in that it
requires the breaking to some subgroup with abelian factors.

This is exactly realized in the YMH model, and indeed the ideas that were around,
about confinement and the infrared behavior of gauge theories with compact gauge
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group [13], were explicitly shown to hold in the context of the Coulomb gas approach
to the ensemble of widely separated monopole solutions [14].

This treatment is based on the fact that widely separated monopoles interact via
a Coulomb interaction, despite the exact form of the energy is not known explicitly
for generic parameters and also the space of moduli of the generic solutions has a
nontrivial geometric structure [15].

After these early years, lattice simulations have been largely employed to test the
occurrence and condensation of monopoles in correspondence to the deconfinement-
confinement transition, in the pure Yang-Mills theory [16].

Because of the absence of the Higgs field, monopoles are of no fixed size, and thus
some mechanism of generation of mass is necessary if monopoles are to be relevant
for the confinement mechanism. This is indeed found on the lattice and there are
arguments in the three dimensional continuum theory [17].

Let’s recall also that the static four dimensional theory is equivalent to the YMH
model with the limit of no potential. This is one of the main reasons of why to study
the YMH model. We choose to include also the potential which is hoped to arise
from the nonperturbative effects of the four dimensional theory.

Up to now this is the standard lore on the monopole confinement scenario. The
theory can be generalized to arbitrary gauge groups, and in particular to SU(N),
not just for academic interest, but because the presence of a further parameter, NV,
can be used to approximate the physical case of N = 3.

This method dates back to early seventies, starting with 't Hooft [18] applying
new ideas about large N to gauge theory and generic adjoint matrix fields, and is
based on the possibility to extract the leading order in N of interesting quantities.

Many interesting features are domain of this expansion, mainly: the classification
of Feynman graphs according to the surfaces where they can be embedded gives
also the order of 1/N, actually 1/N?, and this allows the contact with the string
interpretation of gauge theories on one hand, and on the other with the random
surface interpretation of zero dimensional matrix models; for suitable operators [19]
the correlation functions “factorize”, that is, are given by the disconnected part at
leading order; finally N is not renormalized, in that it is a dimensionless external
fixed parameter.

Of course a special mention is due to the pure N = co case, where one implicitly
lets N — co before removing any cutoff. This can bring the theory to have a different
phase structure. There is a specific example in one dimension that is the Kazakov-
Migdal phase transition.

The second property above, factorization, shows that for the operators which
follow it, the large IV limit is a kind of semiclassical limit. Their fluctuations are
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suppressed, and 1/N plays the role of A for them.

One of the interesting phenomena, and of recent investigation, is the emergence
of a new dynamic in the N = oo limit of some theories. These include affine Toda
models, principal chiral fields in one and two dimensions, two dimensional QCD, not
to mention the matrix models.

In all these theories the effect of taking N large is to generate an infinity of
states which coalesce to form collective excitations of some other, higher dimensional,
theory.

The emergence of a new dimension is the remnant of the matrix index of the
diagonal fields. In these theories angular variables play an important role but are
integrated, more or less explicitly, to leave an effective interaction for the eigenvalues.

An example is the theory of the principal chiral field one the line[20], which is
equivalent, for some boundary conditions, to two dimensional QCD with its inter-
pretation in terms of two dimensional string.

We come thus to our case of Coulomb gas of magnetic monopoles. It was con-
structed as a sum on the classical dilute configurations of monopoles, weighted with
the determinant of gaussian fluctuations around them.

With the Coulomb gas there is, via a Sine-Gordon transform, a dual represent-
ation and the possibility to achieve an estimate about the string tension for Wilson
loops of large area.

The string tension is related to the mass of the monopoles by an exponential
relation, which shows, like in the dual Landau-Ginzburg theory, that it is related to
the density of monopoles.

For SU(N) we have N(N — 1) kind of monopoles, with magnetic charges in
different couples of U(1) sectors, and the coulomb gas can be generalized to this
case [21].

Also the Sine-Gordon transform is easily constructed, provided one takes into
account the different species of monopoles that necessarily exist. This was not done
in [21].

One also has to consider the determinant of quantum fluctuations around the
different monopole backgrounds.

Up to this point the analysis is valid for any IV and provides no new features.

A possible new behavior comes instead from the large N limit, because there
necessarily appears a distribution of masses which are present in the theory.

These masses can be of order, a priori, in the interval from 0 to N, and the
physics of course has to be very different from case to case.

Because from the monopole construction the masses are related to differences of
eigenvalues of the Higgs field at infinity, ¢, all the model depends on its distribution
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of eigenvalues.

In the standard picture of symmetry breaking this can not be changed by any
fluctuation, once the universe has formed. One simply fixes it. The modulus of
> gets renormalized and possibly shifted as with the arguments of effective Higgs
potential, but there is no indication on its direction in the Cartan space.

In particular it is not possible to derive the distribution of eigenvalues from any
effective action like, for example, the partition function of the monopole gas.

Indeed all processes which are considered in perturbation theory end up with an
effective potential that is flat in Cartan rotations.

Nevertheless in the course of this analysis one is tempted to use the unitary gauge,
because there the physical degrees of freedom are explicit and the Higgs eigenvalues
too.

The unitary gauge is somewhat singular, because its Faddeev Popov determinant
is not defined in the continuum. It turns out to be the product at each point of the
Van-der-Monde determinant constructed with the eigenvalues of ¢*.

This factor in the functional integral seems to provide measure zero for all config-
urations where some eigenvalues coincide, giving a sort of repulsion of eigenvalues.

This immediately faces with the problem that for monopole configurations there
is necessarily some point where the eigenvalues coincide, thus giving zero weight to
all these configurations.

Fortunately as the analysis is carried on, and still thinking that the theory s
renormalizable, we can show that once the quantum fluctuations of the massive gauge
fields are taken into account, the Van-der-Monde ultralocal determinant is canceled
in part. What remains is just the Van-der-Monde determinant of the eigenvalues of

&)

Even this term does not authorize us to think to some quantum lifting of the
degeneracy in Cartan directions, because again ¢™ is fixed at the “beginning of the
universe”.

However one can think that at the epoch of its formation, the system s sensible
to this term, and thus chooses the distribution which maximizes it.

We have found this distribution, which determines back the distribution of masses
of gauge bosons and monopoles in the system.

It shows a peculiar shape, and should bring peculiar consequences in the proper-
ties of the system [82].

It is worth noting that the same distribution of eigenvalues of "Higgs field’ and
gauge boson masses, is found [22] in the recent nonperturbative solution of SU(N)
supersymmetric Yang-Mills theory in four dimensions (the /' = 1 case), once the
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complete confinement is required. It is striking that the same distribution appears
in the large N, and as its very origin is not known in that case, it can arise from
just geometrical arguments like in our case.

Coming back to our problem of the monopole gas, we have now a distribution to
analyze the system and we could proceed.

Unfortunately the very difficulty of the program is still there, because the semiclas-
sical sum needs the evaluation of the determinant in the external field of a monopole.

This problem is still unsolved despite many efforts [23, 24, 25, 26] and is non-
trivial.

We would like to extract some information at least in the large N limit, and for
this we thought to study the Eguchi Kawai reduction method which carries drastical
simplifications. The application of the EK method to the monopole determinant is
yet to be done, and I plan to study it soon.

Because we have gauge configurations with nontrivial boundary conditions, it is
necessary to be careful with the EK reduction, because it reduces all theories to a
single lattice site.

In fact models with finite volume (“hot” models) have been constructed but with
much more effort in the context of the Twisted Eguchi-Kawai reduction. We promise
to study also this possibility in the future.

We try to analyze thus the cases of EK reduction applied to the first models that
one encounters, before the theories with diagrammatical perturbative expansion: the
gaussian matrix model and the chiral field.

From the lesson of matrix models, the angular evolution plays an important role
in many models, and it happens that the EK reduction in some sense 'mistreats’ it.

Already from the gaussian model the prescription of uniform quenched momenta
does not work to reproduce the partition function of a matrix oscillator. This model
has in no way a diagrammatical expansion, and the uniform quenching gives the
wrong result.

For what regards the Principal chiral field, we analyze it on the finite time interval,
to find the known partition function. The model with fixed boundary conditions,
which would show the nice feature of large IV phase transition, gives rise to a non
solvable matrix model, but the one with integrated boundary conditions reduces to
the Itzykson Zuber unitary matrix integral and can be solved.

After some steps, the uniform distribution of momenta is shown to reproduce
the weak coupling phase of the discretized version of the model, and thus the wrong
phase in the continuum limit.

We show however that if the one dimensional chiral field is treated as a phase
factor and quenching is done on its “connections”, the quenching gives the correct
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result.

Let’s summarize our path in this work.

The first part of this work deals with some new large N ideas for the YMH
model in three dimensions. Needless to say there is a large historical and scientific
background and it is of course difficult to say something really new on these subjects.
Nevertheless some latest ideas on matrix models, subject on which I have worked
in the first part of my period here at SISSA, are a valuable tool and should find
applications in otherwise ’slow’ fields. The study of large N model of monopole
gas are not investigated, to our knowledge, for example. This work wants to be a
starting point for this investigation.

Along this analysis we have found many and different problems to think about,
the principal is the reason how the Eguchi Kawai works, an issue that also has not
been completely clarified, despite of the volume of numerical calculations.

After one finds a reliable method for the functional determinant, it will be possible
to draw definite conclusions on the large N monopole gas, which seems promising
some interesting feature, due to the competition of factors which takes place in the
large IV limit. This work will surely be continued in the near future.

I have of course to thank prof. D. Boulatov for posing problems and for discussing
their development during this year; I have surely learnt much interesting physics.

| Then I would like to thank Prof. L. Bonora for the work made on multi matrix
models, and for having introduced me to the world of classical integrable hyerarchies
on which I will surely continue some of my activity. At the same time I thank
E. Vinteler for the collaboration, for many discussions in general and on the one-
dimensional matrix model, and for the atmosphere.

SISSA itself must be reminded for the nice and stimulating environment, and
so all the people that I have met in these years. Among them A. Valleriani, V.
Antonelli; A. Fabbri, L. Sbano, D. Gouthier (the formula of double radicals), P.
dall’Aglio and P. Siniscalco also for the collaboration in the field of Hopf algebras.
To F. Vissani a special thank for the kindness he has demonstrated in human and
physical discussions, and a final thank to D. Amadori for more than psychological
support.



2 Preliminaries for the YMH model

We start by considering the Yang-Mills/Higgs 3 model built on the gauge group
SU(N), so it is a 3-dimensional euclidean theory of a gauge field A, = AT, = A, T
and a matter fleld ¢ = ¢*T, = ¢ - T both living in the adjoint representation.

Both are arranged in N x N matrix fields living in the algebra of SU(N). In all
the following we will always denote with plain symbols such fields, like A,, ¢, and
with bold symbols the vector of their components along the algebra generators, like
A, ¢ above. Whenever the field will be diagonalized, its vector will have only the
Cartan components.

To fix the notation we take the normalization such that

tr(T,T3) = -};5ab

in the fundamental representation. We will occasionally mention also the theory
with T in the adjoint representation, in next chapter, because they give rise to very
different monopole scenario.

We have thus the following notations:

219" = ¢ & = ||”.
The configuration space I' is the space of maps from R® to the couple (A, ¢) with

finite action S.
In this configuration space acts a continuous SU(N) gauge group:

Au(z) = W (2)0uw(z) + g (2) Au(e)w(z) (2.1)
¢(z) = w(z)p(z)w(z) (2.2)

which leaves the action invariant.

Because we will focus also on the large NV expansion, it is necessary to adapt the
parameters of the theory to this limit.

It is the standard remark [27] that the large N limit is nontrivial only if the
perturbative series remains finite, and this requires the coupling constants to be
suppressed with powers of N. Rescaling the fields one can require all terms to be of
the same order.

The action is then:

N
S = /d%; {ﬁtI(GwGw) + gtr(Duqﬁ’D“qﬁ) + V(¢)} (2.3)
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with Dy, = 8, + g[Au, |, G = [Dy, D] = +9(9,4, — 0,A,) + ¢*[A,, A] and V(¢)
a scalar potential.

This YMH theory in three dimensions can be seen as the static version of the four
dimensional minkowsky YMH, or even of self-dual pure YM theory, where the A,
component assumes the part of the Higgs field and a potential is argued to appear as
a nonperturbative effect [?]. It has thus also some direct phenomenological interest.

So, to make contact with the four dimensional theories, one respects four dimen-

sional renormalizability, and takes the potential to be a quartic polynomial in the

traces of the Higgs field:
V(¢) = Altr(¢*) — pT* (2.4)

(Where p is of order N). The choice of a function which is symmetric in the different
Cartan directions is not the only one [28] but is the more natural.

V(¢) induces a spontaneous shift of the Higgs vacuum value from zero to some
¢, and thus also a spontaneous breaking of the non abelian group G down to the
subgroup H which leaves ¢* invariant. This is called the little group.

2.1 Spontaneous breaking of G

The last statements follow from the constraint of finite action, which also is derived
from the four dimensional constraint of finite energy. One has two results:

e the potential V', being positive, has to vanish at infinity in all directions, so
that one must have always tr¢* — u at infinity (as, at least, %) This shows that I is
divided in disjoint sets classified by the winding of the two-sphere at infinity into the
coset G/H (a unit vector in internal space modulo symmetry around it): w2(G/H).
This group is isomorphic to m;(H) because m1(G) is trivial.

In case the vacuum Higgs field has all different eigenvalues the little group H is
the maximal abelian subgroup U~ ~!(1), and the classification has N — 1 topological
quantum numbers: Z"~!. Moreover thanks to the vanishing of my(G), this classific-
ation is gauge invariant, because gauge transformations of ¢., are homotopic to the
identity.

e then, in the spirit of the semiclassical approach, one considers the ¢’s with
|¢] = p as a Higgs vacuum and expands the action in fluctuations around that
configuration. One has a pointwise breaking of G down to the little group, which
leaves ¢(z) invariant. All gauge fields not belonging to H acquire a mass, while
those in the little group remain massless.

At points where the Higgs field has all different eigenvalues, the breaking is
maximal and the little group is UV~!(1). As ‘¢ Hooft shows in [5], the manifold
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of points where two eigenvalues of ¢ coincide has dimension d — 3, that is, for us,
consists of isolated points. We will return on this points in the next section.

In the next section we will see also, in the case of SU(N), how the topological
number which classifies the Higgs field represents the magnetic charge of the total
configuration (Higgs and gauge fields) under the broken symmetry group (modulo
equivalence under the Weyl discrete symmetry).

The little group H is always of the form 7' x G’, where T” is some abelian torus
and G’ is a simple subgroup. In any case it always includes a U(1) subgroup. It is
called the electromagnetic group and is generated by the Higgs field itself.

We have still to consider the other terms in the action, namely the Higgs kinetic
term and the pure gauge term. They can in principle forbid some of the previous
topological sectors, as happens in the gaugeless limit™.

In our case [29] the coupling to the gauge fields allows for different internal
directions of the Higgs field at infinity, absorbing the magnitude of its kinetic term.
It allows in fact for smooth configurations with nontrivial winding.

For example for any Higgs configuration of generic winding at infinity, ®, one
can define a finite action configuration in all the space as follows:

{ $(z) = (z/|z])

-1 for > 1 and some smooth field inside. 2.5
Ale) = 516,08 + a6 O 1] (25)

From this ansatz one can construct finite action solutions with nontrivial windings
(for example [30]).

This is however just a topological existence argument and does not pay attention
to whether they are a minimum of the action or not. We wanted to show it to make
explicit the configurations which belong to the various classes.

Before embarking in the next section in the analysis of the classical solutions, let
us make a final remark valid for all the configurations of nontrivial winding.

Following ¢ smoothly in all the space, one necessarily meets a point where it
has at least two coinciding eigenvalues, because otherwise the winding would have
disappeared.

This statement is obviously gauge invariant so it is true even in non regular
gauges like the unitary gauge.

*In fact with no coupling to the gauge fields the Higgs kinetic term forces ¢ to have the same
direction at infinity, and we end up necessarily with winding number zero.
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3 Classical monopoles

In this section we introduce the classification of monopoles [4, 31, 32, 33, 34, 35, 36,
37] that arise in 3 dimensions for the YM3 with group SU(N):

N ’ N ,
§ = [ €2 [Stx(GuG) + S1(D8D.0) + Mun(8) — 2P| (36)

First of all one introduces what are called point monopoles, singular configura-
tions that are the solutions of the equations of YMH plus the requirement of minimum
action:

DG, =0 (3.7a)
B%V(é) =0 (3.7b)
D" =0 (3.7¢)

The last two equations impose that one gets everywhere zero contribution to the
action from the Higgs sector, so that we are in what is called Higgs vacuum. Some
gauge fields will the have to be zero and the others will allow for nontrivial solutions
localized near isolated points.

To see this it is useful to choose the abelian “unitary” gauge ¢ € H (where H
will be the Cartan subalgebra of SU(N)). We will write ¢ = ¢ - T, where T are the
(N — 1) commuting generators of H in some faithful representation and ¢ is a vector
in RVN-1.

In this gauge the above equations imply that the Higgs field is a constant in all
space ¢(z) = ¢ and that A, has nonzero components only in the algebra of the
little group of ¢, 1.e. only if [A, doo] = 0.

For ¢, with generic eigenvalues (all different) the little group is simply U(1)N -1,
so that only the Cartan gauge fields survive in the vacuum.

In the vacuum ¢, induces perturbatively a mass term for each gauge field that
is charged with respect to ¢. For each root a of SU(N) the mass of the charged
AL, fields is mw, = g|¢., - «|. At the same time the Cartan gauge fields decouple
from the Higgs fields.

As V(¢) is flat in all gauge directions, the V'(¢) = 0 constraint only imposes a
fixes the modulus of the vacuum Higgs field: tr¢?, = u?.

We will assume at this point a vacuum ¢, with all different eigenvalues. This is
a gauge invariant statement and we will see that this vacuum configurations will be
preferred by the system itself, in the large IV limit. Alternatively it could be imposed

by some gauge invariant external source.
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3.1 Point monopoles

The G, field equation now allows for abelian U(1)V~! solutions with a singular
Dirac string [4]:
A,=T-qD, — z/r)d,tan" (y/z) (3.8)

D,=(1
€CuvAT ) -
Guu:gT'q #lil,‘la QERN 1.

q is the nonabelian charge of the monopole, but as we are in the unitary gauge, it

belongs to U(1)V~1: it is for now an arbitrary vector in RV-1.
As z — —oo we have the asymptotic form:

A,=2T-qd,® (0<®=tan"(y/z) < 2n). (3.9)

Observing the phase of a loop around the string we get a realization of m; (U(1)V 1)
and obtain the admissible monopoles: the generalized Dirac condition

etmaT = 1, (3.10)

This condition restricts the possible charges q to belong to a lattice in RV™!, in
fact q has to be reciprocal to each weight of the representation chosen for the T: for
every weight m;,

q-m; =

o] 3

n € Z. (3.11)

The lattice of charges depends thus on the representation chosen for the T's,
calling in the game also the global properties of the representation of the gauge
group.

It can be more or less dense depending on the modulus of the highest weight of
the representation.

One now introduces the (dual) co-roots, o = a;/a; - a;, (where a; are the
simple roots). For each weight they satisfy the relation m - a* = n/2, so that they
are reciprocal to the weight lattice. The coroot system defines what [31] have called
the dual group. For SU(N) the dual group is isomorphic to it, denoted SU*(N).
Moreover for roots normalized to unity the coroot lattice coincides with the root
lattice.

An immediate consequence of the relation with the weight lattice is that the
coroots (and also their multiples) are always between the possible magnetic charges
q. Monopoles in the adjoint representation of the dual group are thus always present.

Usually one studies the simplest cases of the fundamental and adjoint represent-
ations, for the gauge field.
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For T in the fundamental representation (T = ;) the weights are the funda-

mental ones and the magnetic lattice is just the coroot lattice

q= Y naf mEL (3.12)

i=1..N—-1

The monopoles of minimum charge transform in this adjoint representation.

The picture represent the coroot lattice for SU*(3), its generators as black circles.
The small triangles represent the fundamental monopoles that arise for adjoint gauge
generators’. There is thus a nice duality: for gauge variables with fundamental
(adjoint) generators, the minimum monopoles transform in the adjoint (fundamental)
representation of the dual group.

® Minimum adjoint charges
<ap> Minimum fundamental charges

A remark is due for the Weyl group which acts in the weight lattice and thus also
on the magnetic charges. It is generated by the reflection with respect to the planes
orthogonal to the roots, and sends every lattice that we have considered into itself.
The action can be seen as a reflection also on the magnetic charges.

Seen on the Cartan generators, it simply exchanges the diagonal entries (as can be

easily seen in the (overcomplete) basis 2(7T;; )i = (d:ixdji—0udjk) = b )-

In fact an other case mentioned in the literature [21] is that of gauge variables with generators
in the adjoint representation. The nonzero weights are in this case the simple roots, so that the
reciprocal lattice coincides with the weight lattice of the dual group (m= - a = n/2):

q= Z n;m; n; € Z. (3.13)
i=1..N-1

One can say that the minimum charge monopoles transform now in the fundamental representation
of the dual group. They are shown in the picture as small triangles. The monopoles that arise in
this case include also the previous adjoint charges as combinations of minimal monopoles, although
the lattice generated by them is not shown.
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On the fields, any Weyl action is equivalent to a global gauge rotation with respect
to the generator E,+ E_,, where « is the relative root, and this shows that monopole
configurations related by Weyl symmetry are gauge equivalent.

This has implications on the type of monopoles: for the usual case of gauge
variables in the fundamental representation the minimum charge monopoles are all
related by Weyl transformations.

In the adjoint representation instead monopoles are classified by the dual fun-
damental weights which are not all Weyl-equivalent: they are divided in classes
according to the N — 1 (nontrivial) elements of 7;(SU(N)/Zn). Weyl reflections
only act within these classes.

An example for the dual SU(3) is shown in the picture, the fundamental co-
weights are represented by the the small triangles, the right pointing giving the [3]
representation, the left the [3*]. The Weyl transformations are the reflections with
respect to the long-dashed lines.

One sees that the fundamental monopoles come in two triplets invariant under
Weyl, while the usual adjoint monopoles come in a whole sextet.

3.2 Regular monopoles

Let’s notice first from (3.10) that if the UV~1(1) path €?¥T® can be continuously
gauged away in SU(N) to the identity, then the Dirac string will decrease of intensity
and disappear. The gauge transformation needed to do that is necessarily noncostant,
so that one will end up with a noncostant Higgs field. If this can be done, the point
monopole is the basis for a regular one with finite energy.

It is clear that there is a great freedom to construct these regular solutions of the
equations of motion. And it is really a nontrivial problem.

The spherically symmetric solutions have been studied in detail in [32] which
have classified all the possible charges from which one can determine a finite energy
configuration.

The charges which admit spherical solutions are given by q = ' — g where ¢’
and q" are the roots of two embeddings of SU(2) in SU(N) and q” must also be in
the little group. One SU(2) q' is needed to rotate the Higgs field to a radial gauge,
and the other is a remaining freedom to define the spherical gauge configuration.

Since the factor in (3.10) is also a loop in the chosen representation of SU(N),
and since SU(N) is simply connected, the process is clearly possible for any charge
only if the generators are in a faithful representation.

In the case for example of the adjoint representation, there are N inequivalent
loops which join the identity to the elements of the center of SU(N). So, for N—1 kind
of point monopoles, the string is impossible to remove and they are genuine Dirac
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monopoles. An other accident of this case is that the minimum charge monopoles
are in this case N(N-1) (the weights of all fundamental representations), while the
nontrivial elements of the center Zy are N-1. The minimum charges can thus be
divided in (N-1) sets of N elements, and the Weyl group acts only within each set.

All this fundamental monopoles, associated to the nontrivial paths in SU(N)
around the Dirac string, cannot be made regular.

The Weyl group relates monopoles of different charges by a global gauge trans-
formation. This is a difference with the abelian case where different charges clas-
sify gauge inequivalent monopoles. This peculiarity of non-abelian theories follows
mainly from the simple-connectedness of SU(N), but also from the fact that colored
flux lines are not gauge invariant (but covariant) and can thus be deformed or
changed of color by gauge transformation.

Another important notice is that the charge quantization condition (3.10) does
not depend on the vacuum Higgs field ¢.,, and this is an advantage of the unitary
gauge.

Regular monopoles instead are constructed changing gauge transforming the
Dirac string into a varying Higgs field and this process depends on the ¢, boundary
condition.

As we are going to assume ¢, to have all different eigenvalues, the charge q”,
belonging to the little group, has to be necessarily zero, so that the magnetic charges
of spherically symmetric monopoles will coincide with g roots of SU(2) embeddings.
The figure shows them for SU(3), for N > 3 the pattern is much more complicated.

Possible spherical monopoles for SU(3)

® 3 ->2+] embedding Q=(1/2,-1/2, 0)

O 3 -> 3 embedding Q=(1, 0, -1)

O 3 ->3 only with degenerate ¢ Q=(1,-1/2,-1/2)

Only the first two cases are possible for nondegenerate ¢o,. For this cases the
solution is well-known: T, = q- T with some Eq and F_g, give the SU(2) subalgebra
and

Aur,q) = T,D, + K(mwr) [qu_id)(ié -+ Qg)u + E—qei¢(_ié + é)u]
¢(r,q) = ¢y (T —qly) + Hmar)(dy, - 9T, (3.14)
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Changing gauge to the regular, radial one one can ”smear out” the string D,
leaving an isolated singularity at the origin.

3.2.1 DMasses

In the last expressions, mw is the mass of the two charged gauge bosons in the chosen
sector of the monopole, function of the Higgs vacuum: mw = g|¢™-q| = g|¢7> —¢%°};
my is instead the mass of the Higgs field "in the sector of T,": m¥ = 2A((¢5°)? +
(7)),

They regulate the exponential decay of the massive field components of the mo-
nopole as well as its total classical action. We have in fact

W(CI)C A

m
Sq=N .
{ lql 92 (jvgg)

(3.15)

The function C is found [38] to approach the value 47 when the argument goes
to zero, which for SU(2) is called BPS limit.

In the large NV limit we will take this value, but we stress that the BPS limit for
SU(2), A — 0, is physically different because also the Higgs mass A\u? vanishes.

Considering the N(N — 1) unit charge monopoles, we see that, fixed ¢*°, their
(pseudo) mass ranges in the interval 0 < my < p/g.

We see that most of the properties of the various objects are ruled by the my
of the gauge bosons in the relative SU(2) sector, so that all depends on the Higgs
vacuum eigenvalues ¢°.

The constraint [¢*°| = y ~ O(N'/?) has important consequences on the hierarchy
of masses that are present in the model in the large N limit, because, as we will see,
necessarily there are masses that become small at least as O(1/N). We will also find
masses of order O(1/N?). '

All this affects the physics in the large N limit.

The higher charge monopoles are not realizable as single spherical configurations
in three dimensions, although the topological argument indicates the existence of
some minimum of the action.

Some can be constructed as multimonopole-like configurations which possess dis-
crete symmetry groups, with stability given by the Higgs attraction. Such config-
urations have been found to exist with tetrahedral, octahedral (but not icosahedral
symmetry, for a late reference, see [39] and therein).

All these, as well as the spherical monopoles of charge greater than 1, have higher
mass proportional to their charge and they are expected to dissociate into smaller
constituents. Hence their contribution to the infrared region is negligible and one
can discard them.
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We will instead use approximate solutions built by superimposing an arbitrary
number of minimal monopoles at large distances.

They are constructed easily in the unitary gauge and are then regularized by
means of a procedure similar to the one for the single monopole. We just need the
proof of existence [40] of the gauge transformation needed to do that, because we
will work in the unitary gauge.

Echx—:ca da) (3.16)

They depend only on the parameters of the n single monopoles {z,,q.} and
are good solution to the equations of motions for distances much bigger than the
monopole sizes. This approximation is called dilute gas.

The moduli space of generic configurations have been studied intensively, starting
from the already nontrivial case of two monopoles [15, 39], and is found to possess
a nontrivial geometry.

Fortunately the interaction of monopoles simplifies drastically for large distances
compared to the monopole size and remains function of the relative distances only.

In fact the action for such dilute multimonopole configurations is found to be
approximated by the self-action of each monopole plus a monopole-monopole inter-
action term in the form of a Coulomb interaction [13].

In the semiclassical quantization, and via a dual formulation, it is this interaction
which will account for the confinement mechanism.
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4  Quantum fluctuations

At this point one would like to start the much more ambitious program of quantizing
the theory.

Even the semiclassical treatment at one loop order is a nontrivial task, because
involves the calculation of functional determinants in classical backgrounds.

There are some simplifications in the BPS limit [38, 40] because the three-
dimensional configurations represent a four dimensional selfdual background and
there are useful relations between fermion and boson determinants in this case, but
we stress that the physics in this limit is drastically different. The main reason for
this is that the Higgs field is massless and thus gives a further long range interaction.
We thus want to consider A > 0.

A major progress was made by Polyakov, in analogy with other simpler models
he applied [14] the semiclassical quantization to the gaussian fluctuations around the
monopole solutions and carried the program to evaluate the Wilson loop resumming
the semiclassical expansion.

His treatment, for the compact QED, shows that the area law for the Wilson
loop emerges from this semiclassical treatment exactly because of the condensation
of monopoles.

Later in [21] Das and Wadia have reached the same conclusion for the problem
with SU(2) gauge group. Recently also for the case of pure Y M3 they have argued
that confinement arises from the gas of monopoles, using nonperturbative results
from the theory of the three dimensional Coulomb gas [17].

So we have, at our disposal, the minima of the classical action that are supposed
to contribute mainly to the functional integral, and after taking into account the
gaussian fluctuations around them, one can introduce the semiclassical sum.

We will see that important nonperturbative features of the model are reproduced
by this approach.

4.1 Semiclassical program

In [14, 21] the semiclassical quantization of a system of monopoles is approached
through a grand canonical ensemble of magnetic particles. The sum on all configur-
ations gives the partition function in a nonperturbative way, and after a generalized
Poisson transform, the saddle point technique can be applied.

The gauge fields are integrated perturbatively at one loop, taking into account
the regular monopole backgrounds as nontrivial minima of the action.

In this approach many approximations are to be taken carefully, and the spon-
taneously broken Higgs field plays an important game.
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First of all the gas of monopoles is assumed dilute, thus considering just the
coulomb part of the monopole-monopole interaction. The classical and one-loop
action of a single monopole configuration is taken into account also assuming the
diluteness.

The size of the monopole configuration can be kept under control thanks to the
presence of the Higgs field that fixes its magnitude through its vacuum expectation
value.

After the generalized Poissoné& Sine-Gordon transform has been used, usually one
is limited to the minimum charge monopoles, assuming the higher ones dissociate
rapidly.

We could try to consider also the higher charges. To this aim we extract, from
the Wilkinson Goldhaber analysis, that spherical monopoles have limited charge (for
limited N, |q] < N — 1 ). Moreover their mass grows linearly with the charge while
their size gets linearly shrink-ed.

4.2 Grand canonical ensemble

The partition function of pure YM in 241 dimensions is transformed into the sum on
all configurations made of any number of monopoles of charges {q,} and locations

{z,}. For SU(2) it is:

n=0 ""*

9aqp

Q=Y [[I@eee™ DemFeil (g, =£1,%2,..)

{ql ...qn} a

where ¢ is the classical and one loop contribution to the action of the one monopole
configuration [14].

For SU(N) this expression is no longer good because the weight of each monopole
depends on the charge, £ = {(q). Hence:

1 _
n=0 ""*

da 95

Qn= D / I 20 é(qa) - e Lars Fa=sy (qq in the root lattice) (4.18)
{a1~gn}" a=1

The partition function can be nicely reexpressed as a functional integral using
the standard Sine-Gordon transform [41]:

7= / Do~ sr J &= [0X0?- 5 (e X] (4.19)
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here the mass M? comes from the weight £: M? = 3272£/g%. x isa N —1 components
scalar field whose propagator is just the coulomb potential, and the sum on 7 is the
sum on all the possible magnetic charges of one monopole (the magnetic lattice). The
last term in the integral is the functional generator of the multi-charge configurations.

For the symmetry of the minimum charges, the roots q; = —q_;, the last term
becomes a cosine that gives the name to the transform.

This representation of the coulomb gas has to be understood in a perturbative
sense, because it is just the perturbative expansion which reproduces, diagram by
diagram, the dilute gas. In this spirit the x field configurations have to vanish
at infinity, although there is formally an infinite ’zero-point’ energy of the vacuum
x = 0. This problem disappears with the normalization.

4.3 Wilson loop

One can also succeed to evaluate gauge invariant operators like the Wilson loop We:
> 1 1 ~dx
We = = (Treifoadx) (4.20)

for any contour C in three dimensional space-time.

If we take into account the form of A, in the unitary gauge (3.8) for each monopole
of charge q, and location z,, (and after using the Stokes theorem) we can rewrite
the Wilson loop as an external source for the configuration of charges {q,}:

1 T 2, (ra—y) _
We = N<TreTZ°q°f5d “(y)m3&> U($)=/d2du(y)(x y)u

|z —yl3

z_if (Tr T Easentze)) (4.21)

The nice interpretation of this formula is
that instead of the flux through the loop of the
magnetic field produced by the q, charges,
one thinks to a potential (n(z), in the pic- )
ture) which acts on the charges q, at points n

T4, produced by a dipole layer on the surface \\\

S spanning the loop. The problem of evaluat-

ing the Wilson loop in the functional integral
is reduced to the average of the canonical en- )
27

semble under the action of this external po-

tential.
The dipole density is unitary and in direction of d®¢, orthogonal to the surface.
The potential is in practice the solid angle of the loop seen by the charge at z,.
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In the limit of very large loop this potential is constant on the two sides leaving
just the discontinuity, which is of crucial importance.
We can see all this by rewriting

_ 1 T a (za) —_ 1 i Mg-Qa (1'0)
We = N <Tre 2 9an > = _ZVXQ: <e 2o Mardan > (4.22)
where the sum on « is on the fundamental weights m, of SU(N).

It is straightforward to evaluate this operator in the coulomb gas ensemble (4.17),
and the result is, after a shift in the x field:

1 a2 5 ) i
We = — Z/Dxe"sa?ffdsr[(C‘X—maf’")z‘zf]”z(q')eq X (4.23)

4.4 Saddle point solution

The nonlinear above problem is solvable by the saddle point technique, remembering
that M? is asymptotically small, thus limiting the nonlinearity.
The saddle point is given by the equations, one for each my:

—&*x + mad’n = — > M*(q;)q;sin(q; - ) (4.24)
half i

(The sum on 7 runs now only on one half of the magnetic lattice because the
negative symmetric part is included in the sine).

The term m,d%n imposes a discontinuity of the solution in ’internal’ direction
m, and together with the constraint of perturbativeness x(£oo) = 0, this leaves
only the solutions of constant direction x(z) = mgx(z).

Taking the product with m,, one gets the scalar equations

N -1
2N

(0*x — 8*n) = Z M?*(q;)m, - q;sin(q; - max) (4.25)

half ¢

(where we used the fact that for the weights of the fundamental repr. m2 = %)

At this point one has to specify which magnetic charges q; to use, and we see
from the Sine-Gordon representation that higher charge monopoles give rise to a
generalized Sine-Gordon potential which is of lower magnitude, even if it has shorter
periods. This means that higher charges generate only a perturbation of the potential
due to minimal charges.

The sum over i is then limited to the minimum magnetic charges, i.e. the co-roots
of the first picture.

We have to evaluate the scalar product m, - q; of a fundamental weight with the
adjoint weights.



To this aim we remember that the roots q; are N(N — 1), and that given a
fundamental weight m,, (N — 1)(N — 2) of them are orthogonal to it, while N — 1
have scalar product 1/2 and the others (N — 1) (negative symmetric) have scalar
product —1/2.

It is then sufficient to limit the sum to the (N — 1) cases all giving result 1/2 for
the scalar product:

2V L il /2) (N — 1) 2 (4.26)
¥ 19 sin(x/2 ) 2

O’x = 0%+
where we have introduced the averaged M? given by

! S M(qp). (4.27)

M? =
([V - 1) qiiqQi-Mme=1/2

It i1s this quantity which carries information on the physics that we obtain in
the large N limit. M?(q) represents, in Coulomb gas language, the fugacity of the
monopole species q. M? is then directly related to the average density of monopoles,
which is strongly believed to be the order parameter for confinement.

Note also that many monopoles are mutually neutral and that M? is the average
in the (N — 1) sectors that are not orthogonal to m,. M? depends on « and to
evaluate the Wilson loop we will also average on my,, finally.

The solution of (4.26) is known explicitly:

dtan~le~MVF= z>0 .
x(z) = 1 01/ E (4.28)
—4tan~"e P z <0
which consists of two parts of a Sine-Gordon soliton. We remark that this soliton
is permitted only because the discontinuity allows the field to vanish at infinity.
Otherwise there could be an infinity of other classical solutions.
Inserting this into eq. (4.23), it gives the estimate for the Wilson loop:

1 92 3 [‘N—l ’ N2 12 ]
= —Yexp{-— : —n)? =} - 2) —
Wo N;ewp{ 2 [ @ | S =) = AN = 1) (eos(x/2) — 1)

1
o~ NZG“”“A (4.29)

with string tensions o, of

- _
@M N-1[2 gN-1[¢E
e 3Nz 2 VN 8 N VN (4.30)

This shows that confinement of quarks exists in this theory for generic values of

the coupling constants and for finite IV, but to extract the behavior with large N it is

necessary to perform the average for M and then for the Wilson loop ﬁ S, e ol
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The N dependence of M, that is of £, is not known explicitly. As in [14] £ is the
one loop partition function in a single monopole background, before the integration
of the zero mode translation coordinate:

3/2

m 9\ ~NZEE) o3 /Ng?
fa) = N*mi, (————”;fq))AWg-)e‘ 7 CON (4.31)

The condition of validity of the saddle point approximation, which represents the
low Debye density, is £ << 1. It can be seen to hold for finite N from the above
expression, where the exponential vanishes asymptotically. In the limit of NV large
we have to know something more precise on the whole average €.



4.5 Determinant

In the previous section, £(q) is the statistical-quantum weight of a particular back-
ground configuration, so that the higher it is, the higher is the importance of that
particular configuration, although it may have large action.

Up to now we assumed € to be some fixed quantity. Now, in order to draw some
conclusion about the string tension o, we need to find something more precise on it.

The evaluation of ¢ is the problem of calculating the functional determinant of the
fluctuating fields around the one monopole solution. It would be a hopeless problem
to calculate it exactly in an arbitrary external field, as it is equivalent to the solution
of a Schroedinger or Dirac equation in an external potential®.

We will try to extract some information from the high N analysis of the problem.

The idea comes from the fact that after gauge fixing, and better in the unit-
ary gauge, the Higgs field has only N components, while its effective action, upon
integration of the gauge sector, is of order N?. Hence the saddle point should be
applicable, and the Higgs field is a semiclassical quantity with respect to 1/N, which
acts like A — 0 to suppress its fluctuations.

We will treat the fields in one loop approximation around the one monopole
configuration A#,qg adding the fluctuating fields a,, ¢, so that: A, = /Alu +a,, ¢ =
¢+ .

In doing so, we are faced with the problem of gauge fixing, because there are zero
modes of the action. The gauge invariance involves the total field (4, + a,, ¢ + ),
and one can split the gauge variation between the fluctuating and the background
fields in an arbitrary manner.

Among the possible (infinite) choices, one can assign the whole field variation
either to the fluctuations or to the background. The latter choice is of little or no
utility, the first, instead, is quite convenient in that it keeps away the gauge invariance
problem from the background fields.

So we will keep the background fields in some fixed gauge, and consider the gauge
group as acting on the sole fluctuations:

~

5gauge(Auv ¢)=0
Ogauge(au, p) = 5(‘4‘,,45)(@“, ©) = (Dpa, —iglo, o). (4.32)
The gauge for the classical fields is left for now unspecified, even is the radial

gauge satisfy automatically the background gauge. In the next section instead we
will choose for all fields the unitary gauge.

tIn [23] has calculated numerically the expression with the heat kernel method for N=2, but the
estimate of the behavior with N has yet to be done.
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The partition function in a one-monopole background, &, is a gauge invariant
object but not gauge independent, at least in principle. Every gauge fixing could
provide different physical insight, as happens already with spontaneous symmetry
breaking.

According to 't Hooft and Polyakov £ it is better calculated in the so called
background, ”natural”, gauge, for two reasons: one is the presence of zero modes,
to appear in a moment, for the action of fluctuations, and they are best treated
in the background gauge; the second is that the candidate with opposite features,
the unitary gauge, usually addressed to be non-renormalizable, can be cured only
considering with care the ultralocal Faddeev-Popov determinant which introduces a
nonpolynomial term in the action.

This can be seen from the Vandermonde determinant appearing in the measure
of ¢ after elimination of the (SU(N)) ’angular’ part of ¢: Dy — DpA%(p).

There are two ways to deal with this A2; it can be reabsorbed in the measure by
a (nonlinear but nonsingular) change of ¢; variables, but it yields a nonlinear model
on a singular curved target space of the kind (for SU(2) for example):

4

L =73 (0up)* (4.33)

Alternatively thinking to a lattice, one can exponentiate the determinant and
convert it in the divergent logarithmic potential: §(0) 3 ;.; [log|d:i — ¢;|d*z, but
the continuum limit seems problematic due to the ultralocal nature of A2%. This
procedure can be justified with care starting from the R¢ kind of gauges ['tH,V] [42]
or with other kind of regular gauge fixing.

I can note however, that this divergent extra potential, being exponentiated
without the help of ghost fields, carries an & factor, and thus already is a quantum
correction to the action.

As the theory is renormalizable for every gauge R, in the ¢ effective action there
should be, then, a divergent term from the massive gauge fields which cancels it. In
effect it is what we find after the one loop analysis.

Hence for the eventual final saddle point analysis on the effective potential, there
shouldn’t be a serious problem from this term.

We will adopt in the following paragraph the background gauge and in the next
the unitary one.



4.5.1 Background Gauge

Here we take, as gauge fixing:
b= Dua# - iﬁ:g[é, ¢] = B(z) (4.34)

In the limit £ — oo the second term reproduces the unitary gauge. This is a variant
of the pure background gauge (that has B = 0, k = 1), already considered by [5] or
of the "natural gauge” that appears in [14]. It has a long history in the literature,
due to its double features of renormalizability together with massive ghost fields.

The usual gaussian averaging of the gauge fixing §(Fy — B), to get a quadratic
term in the action, is in some contrast with the high N analysis because removes the
gauge fixing and leaves N? degrees of freedom. On the other hand fixing strictly the
gauge in the case k # 1 presents some subtleties.

We will denote together the fluctuating fields a,(z) and ¢(z) with ® = (Z:) and

the full quadratic action will be, in matrix form, Syuear = ‘®M®. Scalar product
® - ® will imply integration on space-time.

About the action we just need to say, for now?, that it is annihilated by the
following zero modes:

. () 14
translation o) = (@(Li)) = <9AGA?> (4.36)

The complete field @ can thus be decomposed in zero modes plus nonzero ones,
®,,, eigenfunctions of the action:

® = R0} + ®o() + £.9,

The translational modes (4.36) are written in a gauge so that they satisfy the
gauge-fixing (4.34) with « = 1, B = 0. This is useful because they are orthogonal to
the gauge modes. They are normalized to

$ Explicitly it is:
~ ~ 9 g -~ ~ -
Squadr = Ntr/ [([D#,au] —[Du, a,‘])“ + ‘Q‘Guu{a#: ay] + (g[aﬁh o+l + [D/u 90])2 + t‘PVH(SD)‘P]

Together with the proper mass term for gauge fields, {1 N 92[#,a,]?, there is also the bilinear mixing
N([auy 90][D/l) ¢] + [al" ¢][Du> 99])
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o4 Ntr/ =2, + (D). (4.37)

All these zero modes are treated with the standard Faddeev-Popov method to
extract the integration on collective coordinates R;, a(z):

d ) ;
1 = Dety; | = - y [ @RDas(F.~ B)]T8 (2 af).
o J{aRj o§ JDe Lm( Sale) FHO (y))] d®RDa §(Fy )g (- 2f)
Insertion of this unity in the functional integral replaces the flat fluctuations with the
right variables R;, a(z) and gives the two determinants. The first Det gives [T; Ml/ 2,
the second is the Faddeev-Popov determinant

Det [ Fy (@(y))] = Det[Mrp] = Det [D, D, — rg*($, (4, ]]] (4.38)

doe(z)
After elimination of the first delta, the remaining fluctuations represent the functional
integral restricted the non translational modes:

Z = e=S / SRI[NM / DS (Fy(®) — B) Det[Mpple=d ®M®  (4.39)

The Faddeev-Popov determinant can be evaluated, in one loop approximation, in the
sole classical background fields.

Then, as seen from (4.37), each factor in [J; N} is the action in a space-time
direction without the potential. Because we consider spherical monopoles only, all
N; are equal and

N 1 - L
N; = =tr [ =G+ (Dg)? (4.40)
3 g
They coincide with the action in the BPS limit, hence, after the discussion of section
3.2.1, in the large N limit we also take N = N‘—gi—r%zﬁ.

One can perform a functional integration over B (with e~z J B to remove the
§(F* — B):

7 = fd3Re“5“’Jv3/2Det [f)#bu _ ngz[(z), [é, 1 /ﬁ@e—f'é(M+%Mgf)®

-1/2

_ /dBRe-Sc1N3/2Det [D#bu — 592[657 [é, m Det [M + %Mgfjl (4.41)
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Here with ‘@M ;® = F, k(@) we denote the standard gauge fi fixing term arising
from F,, while with D® = DaDey, as with the determinant Det, we integrate on
translation-fixed fluctuations.

This is analogous to the formula of Polyakov [14], but does not show the explicit
dependence on ; one has to go through the loop expansion in gauge bosons and
ghosts in the external field, and proceed to resum all contributions of generic order
in g if one wants to control the limit K — oo. Actually in this limit the ghost masses
become large so that they decouple, but at the same time the coupling with gauge
and Higgs also diverges, so that the resumming is nontrivial. We will see the first
order in an other way in the next section.

Now we proceed in a different direction, we eliminate the 6(F; — B) by direct
integration of the gauge modes.

This point of view has the advantage of showing the physical degrees of freedom
®,,, together with the explicit dependence on x that we want to compare with the
unitary gauge.

Briefly, instead of Det [M + %/\/lg f] we get the decoupled product of two de-
terminants Det, [M] Det? [\/gj\/l Fp] plus a measure jacobian dependent on . The

second determinant cancels formally the FP determinant, and A/2 disappears in the
normalization. & of course remains in the measure, but the limit is nonsingular

Let’s expand as before the fields as & = R@(()i) +®o()+£,P,. We can eliminates
the zero modes, taking into account the jacobian from @ to (a, R;).
We get (still ignoring contributions at more than one loop):

7 = / dBRe—SclHN}/?\/Det [DuDy — 9?16, [,] / D(£,®,)e 80 S BnMPn (4 49)

The dependence on « and B seems disappeared, but the eigenfunctions @, have to
satisfy the gauge fixing so that they are sensitive to x and B.

Remembering that ®, was satisfying the natural gauge ( (4.34) B = 1, & = 0),
to pass to a choice with B 3# 0, & # 1 we have to perform a gauge transformation of
the ®,, so that they satisfy the new gauge fixing:

¢, = &, + Po(an). (4.43)
This gauge transformation is:
~ A 9r 4 A -1 . -
an(Bn—1) = [DuDy = g8, (8 1] (igls ~ Dbl + B) . (4.44)

Notice that a,(B,x — 1) — oo when & — co.
Because we are just mixing with components along the gauge zero modes, the
quadratic form in the action is unaffected.
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The new basis @, is still orthogonal to the translational modes. For this reason
we can retain the same measure of translations N3/2,

However we have now eigenfunctions which are non normalized and not even
mutually orthogonal, and we have to re-normalize the measure.

Da,Dp = D[en®,] = [[dén = Dlén(®n + Do(an))] = [[dés - J

J = \/detmn [Lrn + do(ctm)do(en)] (4.45)

o= [ 1OME _ ~Mnnd o= J(F@+@a(a)) M(2+20(a)) e~ Mnnél

The new jacobian J carries the information about the gauge dependence on « of
the functional integral. J, although a formal expression, is explicitly function of the
gauge parameter. The partition function is:

£ = / dSRe-Scu\/S/?\/Det [DuD,, — ¢?(6,(6, )] - T - [[ dbne=% (4.46)

For example in the case Kk = 1, B # 0 we have a,(B,x — 1) = «a(B) and
J = \/ detpmn [Lmn + |@o(a(B))|] It does not depend explicitly on eigenfunctions, but
when x # 1 we have:

J = y/det [1n + o () - Bo ()] (4.47)
an(Byr—1) = [DuDu ~ 16,18, 1] (ig(s = Dd,pal + B) . (4.9

We can rewrite J explicitly as a function of & as:

’ - m 1 ~ n
J = Jdet [1,,m + (k= 1)2D,al™ —D,af ’} (4.49)
and after rescaling (x — 1)?, we can write:
_ 5 (m) : A ]
J = \/det [D#au ml)”ay ]

- m - n -1
J det [1,”” + 2 (D#af, )”““““““—bubu-;zw,[ . D,al )> ] (4.50)

The conclusion that we would like to draw from the present calculation is that
in the limit £ — oo the singular behavior of the FP determinant in (4.41) has been

canceled by the gauge bosons.
We pass directly to the unitary gauge, then, and we extract some information
about the large /V limit. V
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4.5.2 Unitary gauge

In this section we fix the gauge by requiring the Higgs field to be diagonal. This gauge
is called unitary following the fact that unphysical degrees of freedom are absent.
Examples of such gauges are the limit { — oo of the Stueckelberg gauge fixing,
gauges constructed ad-hoc to decouple the unphysical part of A, [27, 43, 44, 45, 46],
the unitary formulation of the Weimberg-Salam model, coinciding with the £ — oo
limit of the R, gauges.

Imposing the Higgs field to be diagonal eliminates all the local gauge invariance
apart from the aforementioned Weyl group and a subgroup which coincides with the
little group of the Higgs field, (that is at least a UV~1(1)).

In the case that we consider, we assume the background Higgs field to have all
different eigenvalues and the fluctuation to be small with respect to it, so this is
precisely the case. We will verify a posteriori whether this vacuum configuration is
(locally) stable.

The residual UV~1(1) abelian gauge invariance has to be cured in a second mo-
ment by means of a further gauge fixing.

Like all models with a Higgs phenomenon, there are pseudo-Goldstone bosons
associated to the broken flat direction in internal space. They are unphysical fields
and their degrees of freedom are "eaten up” with the standard mechanism by the
relative gauge fields which acquire one polarization more together with the mass.
This happens explicitly in the unitary gauge.

At the same time two things happen: first the gauge fixing requires, through
proper handling of the integration measure, the introduction of a Faddeev-Popov
determinant; second the massive gauge fields have a Proca propagator, which carries
bad behavior at large momentum.

For this last peculiarity the unitary gauge is usually addressed as non renormal-
izable, because the gauge fields produce, even at one loop, a new set of counterterms
not present in the original lagrangian.

There is quite a lot of literature on the self-canceling of some of these non-
renormalizable divergences, starting from [47], the remaining divergences are found
(see [48] and therein) to vanish on the equations of motions, so that on-shell amp-
litudes do not suffer of this problem. (On the other hand, in the monopole back-
ground, we have to calculate the full partition function of fluctuations, which is not
a physical quantity).

We will see that the Faddeev-Popov determinant participates exactly to render
the theory manifestly renormalizable.

This can already be inferred from the £ — oo limit of the R: gauge (for the
charged gauge fields): for any value of £, the theory is renormalizable [27, 43, 44,
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45, 46], so that the only counterterms needed are of the same form of the lagrangian.
The limit £ — oo is well defined for the massive gauge propagator, so that assuming
some suitable regularization¥ the cubic divergences cancel order by order between
ghosts and massive gauge fields (or, alternatively, between the Faddeev-Popov de-
terminant and the gauge fields). While the charged ghosts acquire an infinite mass,
thus decoupling, also their coupling to the Higgs becomes large, leaving a correct
counterterm to the gauge divergences. It follows that in the careful limit we do not
expect any new effective interactions.

A cancelation of this kind has been proven to happen in an abelian gauge model
by Appelquist and Quinn [49] long ago.

Explicitly we impose the unitary gauge by the constraintl:

F(p) = poheroed = ¢ (4.51)

It has no derivatives and acts on a field which transforms locally under the gauge
group, hence it requires the pointwise Faddeev-Popov jacobian:

5a(y)F(50‘¢($)) o = [(;5 + ¢, ]0(z —y) (4.52)

that gives the following functional determinant:

Det[Mrp] = [TT1(di + vi — 65 — 3)° = [[ A% (4(2)). (4.53)
T i<J fesd
Here a regularization has to be implicit to make sense of the infinite product.
Det[MFpp] can be exponentiated without the help of ghost fields thanks to the
relation DetA = eTr1°84 to yield an effective potential for the Higgs field:

oXx Lo Vo8(2i=8) _ 5(0) [ dalog A%((2)) (4.54)

and finally because the action is multiplied by a —1/A factor, we need to multiply
by a —h factor so that it ends up describing a one loop correction to the bare action
(in the form of a repulsion of the ¢ eigenvalues, as in matrix models).

In three dimensions it has a cubic divergent coupling constant and a non poly-
nomial structure.

Together with this one loop correction, we have then to consider the other con-
tributions from the propagating fluctuations, namely the one loop diagrams of gauge

fields a, and diagonal Higgs field .

T Dimensional regularization is not good for this scope because the divergences we have are of
the kind §(0) which vanish identically: fddp =0

Tt is the same thing to consider the & — oo limit of the R¢ background gauges of the last section,
namely [¢°, ¢] = 0 or [¢, ¢] = 0.
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Summing up, we still have to calculate:

6: NB/Q/dBR/DSO/Daue_%[scl'*'squadr_ﬁ‘s(o)fdazIOgA2(¢(r))]. (4.55)

Now we would like to exploit the fact that in the unitary gauge the Higgs field
has only NV components, while its effective action is still of order N2. In the large
N limit this implies that the fluctuations ¢ are suppressed, and ¢ is in all respect a
classical field.

In particular it will be possible to apply the saddle point method on its effective
action:

o~Tlel — /Daue-‘%[scl-i‘squadr—ﬁJ(O)fd%:logAQ(qS(z))]e (4.56)

Of course this calculation is still not simple, because it depends on the classical
field A.

To this aim, we recall the action of fluctuations

Squadr - Ntl‘/ l:([bmau] - [buvau])z + éuu[auyau] + (g[au7¢+ 99] + [Du799])2+

SRt

understanding that ¢ is diagonal.

All the effect that we want to discuss arises from the massive gauge fields circu-
lating in a loop, so we calculate the divergent part of it.

Because the gauge propagator is constant at large momentum, the loop contrib-
utes with an arbitrary number of insertions of interaction terms.

The cubic interactions in the gauge or Higgs fields do not enter at one loop, and
simultaneous interactions of two a, with a Higgs field plus a background gauge give
perturbative corrections to what we need, so we leave them apart.

From the above action (4.57) we take the relevant quadratic interaction terms of
the fluctuating a¥ with the external fields:

g alalf (262 — 262 + ol — &) (¢l — ) (4.58)

where the Higgs field ¢ = ¢ + @ has been decomposed in a different way: the
asymptotic constant field c%"o which regulates the gauge bosons mass, plus the re-
maining classical nonuniform background and fluctuating fields which have to be
treated as a total external field ¢'s ¢ = ¢ + '
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The loop consists thus of the same charged afj
field running along the loop with propagator

Yuuv 1 PuPv
—_—t (4.59)
2 2
p?—mi  mip? —mi

(with my; = g|de® — QASJOOI) and an arbitrary number

of insertions of v;; = g2(2g%§° - 2&;'\’ + @i — ) (ol —
#5)-

We insert this v;; at zero external momentum, because we are dealing with the
divergent part. We have thus, for n insertions,

Zug./dBptr( LI poz)nza(O)Z(”fg_)n (4.60)

2 _ m?2. 2 52 2. 2
1<J p m;; m;p mg; <] my;

There is a combinatorial factor which comes from the (n — 1)! ways to insert the
interactions compared with the n! ways to attach the resulting counterterm. Hence
the factor is 1/n.

Summing up all these divergent contributions we reconstruct the logarithmic
potential:

gz((2&?—2«5§°+¢§—wg)(¢§—¢})) )n _

hé(0) Cizs L ( w7,
h6(0) S (log [6: — 5] — log | — 7)) (4.61)
It clearly cancels only part of the Faddeev-Popov Van-der-Monde determinant above

in (4.55), and leaves the second term —#A4(0) [ log A2(¢°) function of the Higgs
vacuum only.

Now, on one hand it is just a constant which is the same for all the topological
sectors and can be absorbed in the normalization for what regards ¢ and all fluctu-
ations, on the other it can be thought as a potential correcting the vacuum constant
value ¢=.

This result needs some discussion. An example of this mechanism is well known
from the study of the perturbative corrections to the Higgs potential [42]: the
quantum corrections keep a nonzero Higgs v.e.v. also in the limit of no bare breaking
w— 0.

From this point of view it provides a repulsive potential for the eigenvalues,
justifying the assumption of éi +# q;j in the vacuum value.

It may appear strange that we have obtained an effective potential with a diver-
gent §(0) ~ A3 constant, because it seems to be stronger than any of the renormalized
other terms in the action, in the continuum limit.
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Nonetheless the fact that it depends only on ¢* does not allows us to treat it
like the other terms in the effective action.

The scalar potential V() is of a very different nature because it depends on the
fluctuations also. It can lead the field to attain its minimum, which has to be the
vacuum for the system, in order to be stable against local perturbations.

On the other hand this effective potential is expected to play a role let’s say,
just at the moment of symmetry breaking, when the sources should decide which
direction in the Cartan space to choose. It is at this stage that the Vandermonde
potential is important and the quantum theory requires one unique direction with
nondegenerate Higgs field.

Eventually one must leave to external sources just the discrete choice among the
N(N — 1) possible vacuums related by Weyl.

The usual potential V, degenerate in Cartan directions, gets renormalized but
still requires just [¢™] = p.

All this analysis is independent of the large N limit, but as we want to draw
some conclusion about the dilute gas of monopoles, we must know ¢*. In the next
paragraph we will find it according to the above discussion, in the large NV limit.

4.6 The Higgs vacuum

The vacuum field ¢* plays an important role in the dilute gas picture, because it
decides if the monopoles are relevant to confinement.

According to the discussion about the unitary gauge in last section, the vector of
eigenvalues ¢* € RV~ is defined by the minimum of

— 3 log |¢5° — 67| (4.62)

i<y

with the constraint

> (#7°) =i (4.63)

and we recall that x? is of order IV, so that the components of ¢ are of order 1.

The solution for finite N, although existing, is not easily found. We instead turn
to the large IV limit and introduce the non standard density of eigenvalues:

o(6) = (N%f> (4.64)

It is of order 1, as a consequence of last constraint.
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We want to solve for it to obtain the distribution of eigenvalues of the vacuum
Higgs field. The equation for p(z) is:

Nop [ 28 gy oy, (4.65)
T —y
where the right hand side is the Lagrange multiplier for the constraint (4.63) which
is equivalent to [ z?p(z)dz = p.
In the large N limit the Lagrange multiplier is negligible (in fact we do not expect
an attraction of eigenvalues coming from this constraint, because u? ~ N) and we
have to solve: ’

p 23 g, g (4.66)

—a L —Y

The by now standard method [50] is to introduce the resolvent of p as

Fly=p [* 28 g, (4.67)
Ty
which has the following properties: It is analytic out of the cut [—a,a] on the real
axis; it goes to zero at infinity as 1171; It it real on the real axis [—a, a] excluded; near
the cut it has zero real part and a discontinuity in the imaginary part given by the
unknown mp(z).
The unique function with these requirements is

Fz)= C——m (4.68)

2?2 — g2
from which we finally read (and normalize) the distribution p(z):

11
p(m)_; /a2_$2'

The result is thus an inverted semicircle law.

(4.69)

Its domain is defined by the constraint (4.63) (we have introduced the fixed scale
i* = p?/N):

N [ 2*p(z)dz = Nji? (4.70)
which gives:
i? (4.71)
p(z) of (4.69) represents the following Higgs configuration in the large NV limit:
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2 i
[ ety ). 4.72

Of course there are N! equivalent configurations related by Weyl permutations. We
show the ordered ones in the picture.

1/a

Eigenvalue distribution p(9) Ordered eigenvalues of ¢

Let’s make a few comments on this result:

e First, in the large N limit we find that the Higgs eigenvalues remain of order
one, while in the usual picture there is no indication and one could also assign all
the vacuum expectation value u to a single eigenvalue.

e Second, the Weyl degeneracy is completely broken by ¢, and no symmetry
remains apart from the abelian U/(1)V1.

o Third, and more important, our vacuum value (4.72) shows a peculiar char-
acteristic, namely that, near the edges of the distribution, differences of eigenvalues
are of order 7. As a consequence the masses of gauge bosons in the SU(2) sectors
near the two ends are vanishing as 1/N2.In the middle one has the normally expected
1/N masses.

This facts means that there will be an infinite number of very light monopoles,
with masses vanishing as 1/N.

The implications on the semiclassical picture of monopole gas are interesting, and
we will deal with them in the next section.

On the other hand, independently of the monopole gas, the presence of an infinity
of massless modes can lead to a new phase of the model, of course present only in
the N = oo sector.

Let us mention also a nice correspondence with the solvable cases of N = 2 —

N = 1 supersymmetric gauge theories in four dimensions.
In the SU(N) generalization of the (N = 1)SY My, as analyzed by Douglas and
Shenker [22], the ¢> field is represented by the points in the moduli space of the
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N = 2 theory which become the vacua of the theory broken to N = 1.

The exact solution shows that those points are exactly of the form of our ¢*.
In particular the Weyl degeneracy is completely broken, and moreover the different
charged sectors will have masses of gauge bosons and of monopoles given again by
cos(m) — COS(’/T]JV—-), for example ~ 1/N? near the edges of the distribution.

We remark that in the supersymmetric theory the ground state appears in a full
nonperturbative and geometric way, while in our case it must be stressed that we
are not dealing exactly with quantum corrections, but with a global factor in the
Higgs measure, expected to be important just during the formation of the system.

A main feature, the hierarchy of masses, is the same, and this is at least curious.
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4.7 The hierarchy of masses and Monopole degeneracies

Here we come to the observation that in the large N limit there is a hierarchy of
masses which arises from the model, once given the distribution of Higgs eigenvalues.
As N gets large, many of the objects become very light, thus bringing in a different
physics, like often happens in this limit.

We have the gauge bosons and monopole pseudo-masses

mw(q) = g|¢™ - q
M(q) = N€7dl
g
which are function of the SU(2) root q which specifies the charge of the monopole.

Explicitly as a function of the Higgs eigenvalues
INe<) 1 o oo "
™ - q :g‘\“/*—Q“Wi - @ | (4.73)

when q is the charge in the sector (77).

The possible values are N(/N — 1) and we see that according to the distribution
of eigenvalues in the Higgs field, they range in the interval (u/N?,1).

Moreover: at the ends of the Higgs domain, -y, where the eigenvalues concen-
trate, we have masses of order 1/N?, while from the standard differences we get
~ N? masses of order 1/N and more.

We can look at the distribution of differences:

o(d) = [ [dedyo(@)o(y)é(le -yl - d)
-d/2 1
= 4 dt . 4.74
I Vi@ = #)(a? — (i +d)?) .

which is logarithmic singular for d — 0 showing the phenomenon:

1 N
—loga/d. (4.75)
a

because masses are proportional to d this is also the distribution of masses in the

model, in the large N limit.

The monopole pseudo-mass M has a N factor which compensates this vanishing
for the great part of them, but nevertheless still many monopoles are massless in the
limit.
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4.8 Dilute gas in the large N limit

We will use these informations in the dilute gas ensemble of section 4.2.
We have to perform the average of £(q) in the subspace of the simple roots which
is not orthogonal to a given weight m,. This is of the form: q; = m,+mg (8 # ).
Then

{(mp) = ) Z {(mq — mp) (4.76)

ﬁ"‘a

For large N the average ¢ has the form:

which leads to the following average

AP :
NVA [ dx (e = DA ~ve-nk (4.78)

—_2 93

where the large /V limit has to be performed.

Here the first observation is that the exponential in the large N limit becomes a
delta function (times a 1/N factor).

But then the (z ~ 6)%? prefactor drives the integral to zero. The integral is
expanded and as many factors of V come from derivatives of the delta function, as
there are in front.

Unfortunately we know that also the factor v/A depends on N, so that we ca not

draw for now any definite conclusion.

What we can say is that surely the NV factor in the mass of monopoles should
make important the monopoles near the edges of the distribution, which we know
are an integrable infinity.

The preexponential factor should not create problems, because the powers of mw
which appear come from the integration on translation zero modes, which has to be
normalized to the size of monopoles, thus bringing as many factors of IV as needed.
At the same time the distribution should become relevant for the result.

Surely there is much work to be done, starting from the analysis of the fluctuating
determinant.

To this aim we introduce the EK method which should allow us this calculation
in the large N limit.
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4.8.1 A remark on the Gribov problem

Here we want to make some remark on the Gribov ambiguity and its links with
the topological sectors that we have encountered in the analysis of the monopole
configurations, and with the Faddeev-Popov determinant that we have introduced in
the unitary gauge.

The main point is that the Faddeev-Popov determinant carries the information
on how good is our choice of gauge. It represents the local jacobian for the change
of variables from the connection space to the quotient by the group action.

At points in functional space where the FP determinant vanishes, it means that
we are not taking a complete quotient, in fiber bundle language the section we have
chosen becomes tangent to the fiber along some gauge direction.

These points mark usually what is called the Gribov horizon, the name because
it is the boundary of the maximal region where a section can be continued.

Here, to be concrete, we have in three dimensions a gauge connection and a
matter field so the space of fields I' is that of couples (A,, ¢), functions from R3 to
the gauge algebra. As we have seen I' is disconnected in components according to
the total magnetic charge, as described in paragraph 2.

In every component acts the gauge group G = {g(z) : Rz — SU(N)}, and no
boundary conditions have to be imposed at infinity because by homotopic arguments
gauge transformations connected to the identity do not change component.

This is best and more appropriately seen in the regular gauges, while in the
unitary gauge we know that A, becomes singular along some Dirac string (but still
S < o0). Nevertheless in the unitary gauge the FP determinant and the gauge fixing
depend only on the Higgs field so that we can draw some conclusion.

The U-gauge has been introduced in the last paragraphs with its relative Faddeev-
Popov determinant, which turns out to be

[T (¢i(2) — ¢4(=))* (4.79)

]

Now we recall as remarked in section 2, that in nontrivial sectors of the Higgs
winding at infinity, ¢ has necessarily some coinciding eigenvalues at some point.

This is proven in any regular gauge but is valid also in other gauges because it’s
a gauge invariant statement.

In the semiclassical picture of monopole gas, at each monopole location two (or
more) eigenvalues coincide.

Hence we find that in the unitary gauge the FP determinant above seems to
vanish identically for any nontrivial configuration. More suggestively one can think
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that the Gribov horizon is made of monopole configurations. The same happens at
each field configuration throughout the whole nontrivial sectors.

This would mean that the unitary gauge is an ill defined section, in that it does
not fix the gauge. Explicitly indeed it leaves intact some subgroup at the points in
space where we have a monopole. This is so because it’s the Higgs SSB which does
not break the group invariance at the location of the monopole.

However there are two points which solve this seemingly bad problem.

e The determinant in the form above is ill defined. It requires us to live in a
distribution space, whereas we usually consider smooth functions. After this remark
it appears evident that no gauge invariance remains unfixed, because the smoothness
constrains the gauge variation at the "origin” to follow that in the neighbor. So there
is no such thing as the gauge variation at a single point, even if the theory has local
invariance.

e In the last paragraph we proved that the Faddeev-Popov determinant and its
vanishing is canceled by the gauge loops, so that if the jacobian vanishes it is just
because the change of variables is singular, and in fact at the same time the integral
takes care of this and diverges by the same amount so to correct the measure.

This is in contrast with standard Gribov phenomenon where the vanishing of the
FP determinant is a unavoidable problem.

This result for the unitary gauge shows that it is, in respect to other regular
gauges, not really a wrong gauge, it just has different properties. Moreover the
absence of unphysical fields, the Higgs field is diagonal and no Goldstone bosons
circulate around, makes it a good tool to investigate the quantum theory.



5 Eguchi Kawai reduction

The Eguchi-Kawai and Quenched Eguchi-Kawai reductions (EK and QEK) were
invented around 1982 to reproduce, in the large N limit, the nonperturbative features
of matrix field theories [51, 52, 53, 54, 55].

QEK has been applied with success to lattice QCD, with some important modi-
fications [53], where it produced nice results especially in the strong phase.

It works to reproduce the sum of all planar Feynman graphs of the continuum
theory from a single site matrix model. Taken a theory of a N x N matrix field
¢(z) € A in d dimensions:

§ = [ d% Ntr[La() + gsLo($) + g La(9) + -+ ] (5.80)
the quenched EK reduction is introduced with the following rules:

1) The field ¢(z) is reduced to a variable ¢ in zero dimensions via the prescription:
#(z) = e”F=¢e'f® where P = diag(p;...pn). The z dependence cancels in the
action thanks to locality and translational invariance.

2) The volume integral is replaced by the inverse cutoff a = %\

3) The (zero dimensional) Feynman graphs are then averaged over the N mo-
menta P with the measure azd fﬁ(% [1; d%(ap;) or any other measure flat in the origin.
As pointed out by [54] also a (fixed) random distribution of the momenta p; in
the hypercube of side A is sufficient to reproduce, in the large N limit, the planar
amplitudes. In [52, 56] G. Parisi and 1. Bars argued that the uniform distribution

should always be used.

Rule 2) above is a version of QEK obtained after scaling the fields by a factor
\/ 9‘—;, otherwise the prescription would say:

2’) The volume integral is replaced by V and all coupling constants are rescaled

by g% = 9. (%) T

Rules 2) and 2’) are equivalent but such rescaling of fields introduces a factor
)——dim.A/?

from the measure: (Zﬁ

The proof of this rules is strictly perturbative: one looks at the Feynman graphs
of the zero dimensional field and checks that they reproduce the integrands of the full
theory. The average on P gives finally the momentum integration of loops, so that
the NV — oo limit has to be taken before removing the cutoff. We show here how it
works with a generic planar diagram.
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Taken the above momentum measure, and the following EK action:
1
S = VNtr 5[P, B2+ > g-L(d) (5.81)

one has the following factors in any Feynman diagram of { loops:
from p propagators: (VN)™P;
from color traces: N'*!;

from {n,} vertices [].(V Ng,)";
from integration over p; ... p;: av—;al

while momenta p;.;...py normalize to one.

Combining the contributions and using
2p =3, rn., = p+1-3".n,, and to recover
the right large N dependence, N*T], g7, one
has to require:

r—2

- V2 -
gPt =g (;) . (5.82)

This proof relies on the existence of a diagrammatical expansion and is valid
strictly at NV = oo, because only diagrams up to N — 1 loops are reproduced. This

was an early observation [52].

There is another approach to the EK reduction which proves its equivalence in
the strong coupling phase, and it is based on the loop equations. We refer for this
to the literature in [55, 54].

We would like to show also that the reduced evolution of the charged sector (rule
1 above), which takes place in the quenched Eguchi-Kawai models formulated in
terms of group variables, like o-models or models of lattice link variables, can also
be understood from the semiclassical point of view, where 1/N play the role of the
Planck constant.

Let’s see this in more detail by examining the field theory on the group manifold.
We take here the action of a Principal Chiral Model in d dimensions with group
SU(N), plus a possible potential.

One starts from the decomposition of group variables in Cartan and angular
variables, g = whw™!. In these variables the kinetic term also gets decomposed and
the angular evolution decouples:

N .
Ly = 5tr(0.90,97") +V =

= —j‘)\—ftr(ahah_l) + Ntr (h(w‘law)h‘l(w"law) — (w"law)2> + V =(5.83)
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= D(0hon) + 23 |hi — hyll 0P, + V
< i<y

Thus the motion of the w variables is free, on the group manifold.

So if one formulates the model in terms of the angular connection a = w™!dw,
the angular dynamic is simply gaussian, and the nonlinearity manifests only in the
boundary conditions via w(z) = Pexp([ a).

We recall here that on the line the integration on angular variables leads, at
each point of time, to a factor which cancels the Van-der-Monde determinants of the
measure, and this happens on all the time interval apart from the two ends, where
the boundary conditions have to be treated carefully. It is in this way that the theory
of free fermions arises.

The partition function results then given by the sum on all the classical minima
of the action satisfying the given boundary conditions.

5.1 One dimension

Let’s restrict to the one dimensional time interval, where QEK is more evident.
Fixed b.c. translate, for diagonal and angular variables, in:

h(0) = hg w(0) = wp
h(T) = hr w(T) = wr.

These variables are somewhat redundant, because each couple (h, w) is defined at
least modulo a Weyl permutation of the eigenvalues of k, so that these b.c. come
together with all possible permutation of eigenvalues of ~(0) and A(T).

In case h has some coinciding eigenvalues the w’s also have a further ambiguity
in the "little group” of A. We shall also sum on these possibilities, then.

We will first analyze the angular motion and then the diagonal one.

5.1.1 Angular boundary conditions

equal b.c.: w(0) =w(T) = wp

In the case of fixed but equal boundary conditions on the angular part, one
can always reabsorbe wy in the & field A(t) = wy'A(t)wo (no longer diagonal) and
consider just the free orbits of w(t) starting and ending at the identity.

Such orbits are parameterized as moving in the Cartan directions plus a global
group conjugation via an arbitrary §:

w(t) = -1t (5.84)
P is a diagonal matrix with discrete entries p; = 2£n;.
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The global integration on 2, to account for all the equivalent Cartan group dir-
ections, will merge together with the h integration to reproduce the EK prescription.

generic b.c.: w(0) = wp, w(T) = wr

This is again reduced to: w(0) = 1, w(T) = wrwy! factorizing global w.

Then, still parameterizing the orbits with w(¢) = Q71e¥*Q, one has to satisfy the
condition

Q7P = wrwyt. (5.85)

This implies that: P has to coincide with the eigenvalues of log(wrwg)/T modulo
permutations and plus multiples of 2F; Q2 has to diagonalize wrwg!, and its freedom
is then only rotation in the "little group” of wrwy’.

5.1.2 Diagonal dynamic

Up to now the argument is independent from the large NV limit. This latter affects
the integration on h(t) and the average on P. For the functional integration on A(t),
as we know that it is a diagonal field, at large N its kinetic term of order N? calls
for a constant solution.

Surely for b.c. h(0) # h(T) there is no such constant solution and the dynamic
is different and nontrivial: the leading N is not given by the constant field.

To make contact with the EK reduction, however, we are forced to allow only
periodic boundary conditions, much in the spirit of the master field.

This is a pity because we are loosing the models with nontrivial b.c., for example
also the dynamic with free b.c., equivalent to free fermions on the circle, is due to
eigenvalues "moving” on the circle with nonzero momenta, so that a constant h is
not sufficient.

Moreover we loose also the angular dynamics which realizes the Weyl permutation
of eigenvalues. This latter in fact is subleading in large IV with respect to the master
field constant solution.

So, for identical eigenvalues at the boundary, we have the large N solution, h(t) =
h constant, and we are left to integrate on a field at a single point, given by

ger = 07 ey Lo (5.86)

Note however that the integration on g.; lives, modulo a conjugation, in the
little group of wy'wr, which could be smaller than the whole group. Moreover its
eigenvalues are fixed according to the b.c. .

46



This latter fact is in agreement with the general statement of the QEK reduction
that neutral degrees of freedom should not propagate [21, 54], or equivalently that
the angular ones suffice for the leading large NNV part.

All together the prescription amounts to reduce the field to™*
g(t) = e Figae™, (5.87)

integrate on the angular group in g.x and average on the entries of P.
Thanks to factorization, the average is to be performed on the free energy.
Finally we have the sum on global Weyl permutations of the eigenvalues of h
together with rotations of wg, wr. This is of course irrelevant if the model is globally

invariant.

However let’s notice that all the procedure becomes nontrivial depending on the
chosen h: In case of h having coinciding eigenvalues, this translates into P having a
continuous domain, instead of a discrete set of values.

This arises because, suppose h7 has coinciding eigenvalues, we are obliged to
consider all wr defined up to some element A of the little group of hr. Consequently
we have to consider all momenta which satisfy (5.85),

07110 = wrAw]! (5.88)

and this amounts to diagonalization of that little group, so that the spectrum of
p; becomes continuous. The integration on the possible A has translated into an
integration on non integer momenta.

These arguments are independent of the diagrammatical expansion, and a simple
example will show better how these QEK reductions work whenever there is no
diagrammatical expansion.

5.1.3 Gaussian model

Take just the matrix oscillator in any dimension d:
Z = / Depe~ [ #ourl(96)~w267], (5.89)
In Fourier components of each matrix entry ¢;;(p;;) one rewrites as

1
pi +w?

z=TI| TI

LI \pi;€3EZ

(5.90)

“*Notice that we have eliminated an Q7! ... Q factor by global invariance of the model.

47



and the free energy is expressed as a quenched sum to yield the correct result:

F = N* > log <———I——> =

2 2
pe3Z prtw
N? T

T2 log sinh(wT') (5:91)

plus the standard normalization of the Feynman path integral.

In the usual prescriptions on EK reduction one would replace p;; — (p; — p;),
and take the sum on ¢ # j of some given fixed distribution {p;}.

It is easily seen that in this way one sum is lacking, and the result is incorrect.

On the other hand if one averages over the possible distributions {p;} (that we
stress represent still classical solutions)

> | 2 log (mﬂtwﬂ (5.92)

#i | {pi€FF)

we get the right large N result apart from some subleading term because the
term in square brackets is independent of 1, 7.

The next model in order of simplicity, but already nontrivial, is the principal
chiral field in one dimension.
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5.2 Principal Chiral Field

We try here to solve the one dimensional model of a principal chiral field by means
of the Eguchi-Kawai reduction, to investigate how the quenched momenta behave to
reproduce the planar sector of the theory.

The one dimensional chiral field is known to have a peculiar structure in the
planar sector alone, showing a third order phase transition absent in the finite N
theory.

It is formulated in terms of a U (V) valued field on a line in the interval 0 < ¢t < T,
with (left and right) invariant action:

9(T) N Ty tg~10:g
Ua(0),o(T)) = [ Doty b0 (5.9

It is also the model of a U(/N) symmetric top. The boundary conditions are fixed
here to be ¢(0) and g(7).

By now this model is solvable by different techniques in the presence of arbitrary
boundary conditions and is shown to be equivalent to QC D, on a cylinder with fixed
boundary holonomies.

In the planar limit one meets a Kosterlitz-Thouless (or better Douglas Kazakov)
third order phase transition at some T, which is function of the boundary conditions,
the transition being present even with g(0) = g(T) = 1, at TuAo = 72

Z represents also the partition function for the quantum mechanics on the group
manifold, heat kernel at temperature T', which has been proven [57, 58] to be the
exact Wilson renormalization group invariant action for two dimensional YM theory.

It has been also shown to possess a stringy formulation in terms of maps between
two-dimensional surfaces.

All the equivalences are best proven writing Z as a sum on all irreps of the group
(for ex. for QC D, on the sphere, g(0) = g(T) = 1)

7= die 3w Ca(R) (5.94)
R

The large N limit provides interesting features. In that limit this sum is domin-
ated by a single kind of representations (a distribution of components of the highest
weight, namely a semicircle law for T'Ag small). This distribution in turn, being
of discrete variables, is bounded by 1, and passing above the critical coupling this
constraint leads to a different phase, much like the condensation of ordinary gases.
The transition is third order [Douglas Kazakov, Mihanan, Gross..].
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In the equivalent theory QC D,, the transition is shown to be induced by the
instantons. The instanton charges, integers ny ...ny, are dual (practically in Poisson
sense) to the weight components [59].

The components of the highest weight have also the interpretation of momenta of
free fermions on a circle [0, 7], and it is the Pauli exclusion principle which constrains
their density to be less than one. As the support of the distribution shrinks to zero,
1/v/ AT — 0, the density increases hitting the bound. This picture arises when
looking at the model as a theory of fermions, a strictly two-dimensional point of
view.

We come thus to the Quenched Eguchi Kawai approach. As it should reproduce
the planar limit of matrix field theories, so it is immediate to apply it here.

According to the general prescriptions of the last section, to each matrix index is
assigned a single momentum, and their distribution does not matter for the infrared
behavior of the system, as long as it is flat in the origin.

(An other question is whether the EK can be used to calculate the partition
function per se, in addiction to planar ‘physical’ diagrams. For zero external source
the free energy is not exactly given by diagrams and may come out incorrectly..)

Identifying g¢(t) with the holonomy around the compact space dimension, the
PCF model above reproduces 2DYM on some surfaces, depending on the boundary

conditions:
CYLINDER: g(0) ~ go,g(T) = gr, DISC: g(0) ~ 1,g(T) ~ gr,
SPHERE: ¢(0) = ¢(T) =1, TORUS: g(0) ~ g(T') = g integrated out.

5.2.1 Reduction

So we come to the PCF, where the matrix degrees of freedom are g(t), and the
quenched EK reduction can be implemented assigning a set of one-dimensional mo-
menta to its indices:

g(t) = e_iptgeipt g:;(t) = e_i(pi_pj)tgij. (P = diag(p1,...,pn))-  (5.95)

o We give discrete momenta p; = g,_,‘?n,-, (n; € Z), according to the discussion of
the previous section.

The boundary conditions, in any case, are naturally those of a torus: ¢(0) ~
g(T) = g integrated out in the EK procedure. Hence we expect no phase transition,
and the system is always in the strong coupling phase. Also we expect the partition
function to vanish, in accordance to the fact that there are no maps from the sphere
to the torus.

The replacement yields the following zero dimensional model:

7 — /dge%’x“["’g’”’g””]. (5.96)



The IZ integral over unitary matrices g gives:

2
N N et [mimng)”
PiD; { 3 2
_aNT zdeti' erot deti- e oTeA —
7 — o~ e 2ot 8l = (5.97)

A, /3P AY(y/En)

Notice that a saddle point analysis could be performed if the distribution of p;
would reach a smooth limit for large NV, according to the recent analysis of Matytsin
[60] in terms of the Burgers equation.

Here instead we have discrete variables p; in a non compact support.

5.2.2 Uniform distribution

We recall that even if this model is essentially gaussian, it has a diagrammatical
expansion once one introduces a as: g = €®, so, according to the EK prescriptions,
a uniform distribution of momenta in the presence of a cutoff should be sufficient.
One has thus 4L groups of r = NZZ coinciding integers n; (where p; = 27n,/T).
The determinant is unity in the large N limit if all n;’s are different, but there is
some cancelation with A™2(n) for any group of coinciding n;’s:
We find, for the coinciding of n;’s'™:

Lim det,-]- e‘Nﬁ“J("i_"j)z/? (Nﬁ)r(r—l)/Q
1 =
e—+0 A%(en) Aol

(=0 r=+#n;) (598

where a limit € — 0 has been introduced to approach the vanishing of n; — n;.

Out of the square Vandermonde in the denominator of (5.97) remain some non-
coinciding factors (n — m)", and finally we get:

_ _ » Nﬂ(N 27 —1)/2] ‘2= _ 623 o
- 1671’3 N(N-1)/2 (‘/Vl\t(}:/\) A AT Detnme é S T2A( )2
N )\0T2A AQ(NK_W) Hm#n(n — 777,)]\f2(72\‘7[')2
2 N2 2w \2(AT
167% \~ % 1672 \ 7 BV E) ar o —an2(2zy2 AT
—_— N Ay 7 (N—)A AT (—
(A0T2A) ( A0T2A) 0 " (N A )

The free energy is thus, in the large N limit:

F = —logZ=

ttwhere

z—1
Ag(z) = H B~ 3% (logz—3/2)
k=1

o1



N? 1673 2 1673
-3 [log(x )~ ﬁlog(NAoT:’A)] +
AT o ), 2 AT
+5log Do(N77) + 2N \T) log Ao(%—)

- [ log (4/’\‘0\) - 3/4] (5.99)

Some discussion is needed, because after all we do not find zero as a result and the
reason is not clear.

The above result was obtained also in infinite volume by Bars [56], and was
interpreted as the equivalent model in the presence of a regulator, thus exhibiting
the Gross-Witten [61] phase transition.

However the Gross Witten phase transition is a lattice artifact in this case, and
as the cutoff is removed this result coincides with the wrong phase of this model,
namely the weak coupling limit, whereas either the Bars analysis because of infinite
volume, or ours because we believe to be on the torus, should bring to the strong
coupling phase of the chiral field and thus give zero partition function.

Of course these are just numbers and can be reabsorbed in the normalization,
for what regards planar diagrams, but the presence of the cutoff is what shows the
wrong result.

We believe these being others clues which indicate that the uniform distribution
of momenta fails to reproduce, contrary to the claim in [56], the full structure of
large N matrix theories.

In the next section we instead find the correct result leaving unspecified the
distribution of momenta, but in an other reduction of the same model.

5.2.3 Prescription from connection

Here we stick to the prescription coming from the algebra degrees of freedom, A(t) =
e~*Pt Ae'Pt, This reduced time evolution, which is not pure gauge, gives, integrating

for g(t):
9(t) = goP expli / dt A(t)] = goe'*=Flte’F", (5.100)

We have thus:
9(0) = go g(T) = goe'A=PITe T, (5.101)

Inserting this in the PCF integral with an inserted group delta function and using
g_latg(t) — e—iPtAeiPt:

Z / dAe™ 34 xr(goe' I TeFT)x r(g0)



= ZXR(QO)tIR/dA“ e"?To‘AszT(A“—p“)T“eiPt
R
\ 0\ M=y
4
(TO) 2 Xh(go)e™ T (5.102)
R

1

after some steps.

P

o Alternatively we note that in g(t¢) the second factor ef* is a local gauge trans-

form for the measure, and we can take

g(t) = goe' A= Alt)=A—P (5.103)

(in fact e7*PtAe'f is gauge equivalent to A — P).

Inserting the ansatz in the partition function one has:
—IN¢r(A-P)? (A—
Z = % [ane By et ()
R

a,"‘—r—A—P2T a_pa)ra
= ZXR(QO)tI'R/dA e 3o ( P +T(A%—-p%) %
R
Hv-y

A 4
R

This shows that with this last prescription the momenta are unimportant due to
the integral on the gauge connection, and the vacuum is taken to be A = P. This
is automatically in accordance with the general quenching prescriptions for gauge
connections of Gross-Kitazawa.
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6 1D Matrix model

The matrix models introduced in the last section to test the EK prescription, al-
though may seem to have just academic interest, possess many features which are
interesting from the physical point of view, and serve as powerful tools in the solution
of complex models of contemporary physics.

Because in a first part of my stay here at SISSA I have studied this subject, 1
will review the solution arising from the exact treatment. We will try to get some
comparison with the EK approach at the end.

It is already the model in zero dimensions, called 1-matrix model, which achieved
great success by predicting the right critical exponents of two-dimensional gravity
coupled to matter of unitary conformal models, at large N [62, 63, 64]. It was shown
that they possess a nontrivial integrable structure with respect to the flow of coupling
constants, precisely as in topological gravity coupled to matter.

The one dimensional matrix model, in the case of free boundary conditions, is
exactly solvable, in the singlet sector. Its version on the time lattice, which will
inspire the following sections, is also found to contain different integrable structures
[81], yields a representation in terms of fermions on the line, and is shown to describe
correlation functions of loop operators in ¢ = 1 string theory [65, 66].

Once the model is discretized, it reduces to a chain of matrices coupled by bilinear
interactions.

The case when boundary conditions are not free, for example periodic [67], the
chain is closed and the model is not solvable in closed form. The reason is that it
receives contributions from the constrained evolution of angular variables.

With free boundary conditions instead the chain is open, and is precisely this
which renders the model solvable. Also for finite N the solution provides all correl-
ators of traces of matrices in different position of the chain, which reproduces the
correct time dependence of the original one dimensional model.

We are going to use the so called method of “Q-matrices”, illustrated largely in
our paper [81]. There is also shown the emergence of classical integrable hierarchies
which arise in the chain model of matrices, in the form of Poisson reductions of the
K P hierarchy: they are by now called 2n-boson K P hierarchies and generalized
K dV hierarchies.

6.1 Multi-matrix models

In this section we intend to analyze matrix models made of ¢ Hermitian N x N
matrices with bilinear couplings between different matrices. Unless otherwise spe-
cified, by this we mean an open chain of ¢ matrices, each linearly interacting with
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the nearest neighbors. These models have been already introduced and partially
analyzed in [68] (for other approaches to multi-matrix models, see [69],[70],[71],[72],
[73],[74]).

We review here some general results concerning g-matrix models, [68]. The
partition function of the g-matrix model is given by

Zn(t,c) = / dMydM, .. .dM,eTV (6.105)
where M, ..., M, are Hermitian N x N matrices and
g g-1
U= Z VQ + Z Ca,a.(_lfl/_[ 1"1‘14_1
a=1 a=1
with potentials
Pa _
Vo= ta, M, a=1,2...,q (6.106)
r=1

The p,’s are finite positive integers.

We denote by My, p,...p, the corresponding g-matrix model. It has become
moreover customary to associate to the generic g-matrix model (6.105) the Dynkin
diagram A,;. Occasionally we will stick to this convention and speak about nodes
and links.

We are interested in computing the correlation functions of the operators

To = trME

and possibly of other composite operators (see below). For this reason we complete
the above model by replacing (6.106) with the more general potentials

Va=> ta, M, a=1,...q (6.107)

r=1

where ., = t—a,r for r < pq.

In other words we have embedded the original couplings #,, into infinite sets of
couplings. Therefore we have two types of couplings. The first type consists of those
couplings (the barred ones) that define the model: they represent the true dynamical
parameters of the theory; they are kept non-vanishing throughout the calculations.
The second type encompasses the remaining couplings, which are introduced only for
computational purposes. In terms of ordinary field theory the former are analogous
to the interaction couplings, while the latter correspond to external sources (coupled
to composite operators). Any correlation function is obtained by differentiating InZy
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with respect to the couplings associated to the operators that appear in the correlator
and then setting to zero (only) the external couplings.

From now on we will not make any formal distinction between interacting and
external couplings. Case by case we will specify which are the interaction couplings
and which are the external ones. Finally, it is sometime convenient to consider N on
the same footing as the couplings and to set t,0 = N.

6.1.1 Orthogonal polynomials

The most popular procedure to calculate the partition function consists of three steps
[75],[76],[77]:

(z). One integrates out the angular parts such that only the integrations over the
eigenvalues are left,

Zn(t,c) = const/ ﬁ ﬁ dha i AN AN, (6.108)

a=1i=1
where

N g-1 N

q
U = Z Z Vt—?‘()‘ayi) + Z Z ca,a-}-l)‘a,i/\a-}-l,i, (6109)

a=1i=1 a=11=1

and A(A;) and A(},) are Vandermonde determinants.
(7). One introduces the orthogonal polynomials

&.(A1) = AT + lower powers, Mm(Aq) = A7 + lower powers

which satisfy the orthogonality relations

/ A1+ Db (D)eEm(Ag) = An(t, €)6nm (6.110)
where
g oo g—1
U= Z Z tarAl + Z Coat1raNatl- (6.111)
a=1r=1 a=1

(127). If one expands the Vandermonde determinants in terms of these orthogonal
polynomials and using the orthogonality relation (6.110), one can easily calculate
the partition function
N-1
Zn(t,c) = const N! H h; (6.112)
1=0
Knowing the h(c,t)’s amounts to knowing the partition function, up to an N-
dependent constant. In turn the information concerning the h(c,t)’s can be encoded
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in suitable flow equations, subject to specific conditions, the coupling conditions.
Before we come to that, however, we recall some necessary notations.
For any matrix M, we define the conjugate M

M = H—-l]\/[H, H;; = h,'(;ij, .7\7[,‘_7' = M, ]V[z(j) = ]V[j,j_l.
As usual we introduce the natural gradation
deg[Eij] = ] - i, where (Ei,j)k,l = 5i,k5’,l

and, for any given matrix M, if all its non—zero elements have degrees in the interval
[a,b], then we will simply write: M € [a,b]. Moreover M, will denote the upper
triangular part of M (including the main diagonal), while M_ = M — M. We will
write
N-1
Te(M) =Y M

=0
The latter operation will be referred to as taking the finite trace.

Coupling conditions.
First we introduce the Q)—-type matrices

q
/ T drata(M)e“Natin(Ag) = Qrm(@him = Qrn(@)hn, @ =1,...,q. (6.113)
a=1

Among them, Q(1), Q(q) are Jacobi matrices: their pure upper triangular part is
I. =% F;i+1. We will need two P-type matrices, defined by

/ ﬁd/\a(%gn(m)e“nm(m = Pon(1)hn (6.114)
/ Ay ... d)\qgn()\l)e“(ai/\nm()\q))_:. Pon(@)hn (6.115)

The matrices (6.113) we introduced above are not completely independent. More
precisely all the Q(a)’s can be expressed in terms of only one of them and one
matrix P. Expressing the trivial fact that the integral of the total derivative of the
integrand in eq.(6.110) with respect to A4,1 < a < ¢ vanishes, we can easily derive
the constraints or coupling conditions

P(1)+ V] + c12Q(2) = 0, (6.116a)
Cat,a@(@ = 1) + Vi + CapnQ(a+1)=0, 2<a<qg—1,(6.116b)
C-14Q(q — 1) + V] + P(q) = 0. (6.116¢)
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where we use the notation

Pa

VQ’ = Z Tta,rQr—l(a), Q = 172, R 7q

r=1

These conditions explicitly show that the Jacobi matrices depend on the choice of
the potentials. In fact they completely determine the degrees of the matrices Q(c).
A simple calculation shows that

Q) € [~-mayna, a=1,2,...,q

where
=(pg—1)...(ps = 1){p2 — 1)
= (pg — 1)(pg—1 — 1) ... (Pay1 — 1), 2<a<g-1
g =1
and
1 =1
= (Pa-1—1)...(p2 — 1)(p1 — 1), 2<a<q-1

Ng = (Pq~1 ~1)...(p2 = 1)(pr — 1)

Throughout this chapter we will refer to the following parameterization coordinates
of the Jacobi matrices

my
1):I++Zzal(i)Ei,i—l’ “‘I++ZZZ)1 ” { 611()
1 =0 i [=0
and for the supplementary matrices

=Y Y T E, 2<a<q-1 (6.118)

i l=—ng

Flow equations
The flow equations of the g—matrix model can be expressed by means of the
following hierarchies of equations for the matrices @Q(«).

Q@) =[04(0), Q@)], 1sf<a  (611%)
8.k
Q) =(Qe), @A), asfse  (619)
8.k

These flows commute and define a multi-component Toda lattice hierarchy, [78],[73].
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Reconstruction formulae.

The coupling conditions and the flow equations allow us to calculate the matrix
elements of Q(«). From the latter we can reconstruct the partition function as follows.
We start from the following main formula

d
ata,r

InZn(t,c) = Tr(Qr(a)), 1<a<yg (6.120)

It is evident that, by means of the flow equations for Q(a), we can express all the
derivatives of InZy with respect to the couplings ¢, (i.e. all the correlators) as
finite traces of commutators of the Q(«)’s themselves. In other words, knowing the
@(a)’s, we can reconstruct the partition function (up to a constant depending only
on N). In particular we can get

82

Err 1<a<g (6.121)

InZn(t,c) = (Q’"(a))

NN-1’

It was already noticed in [68] that this equation leads to the two-dimensional Toda
lattice equation.

6.2 Gaussian g-matrix model

Let us now concentrate on the most general case (6.111) with quadratic potentials

at most. In particular y takes the form

q q g—1
p=p(A, .8 = Z UgAg + Z ta A2 + Z Cadratatl (6.122)
a=1 a=1 a=1

The coupling conditions are

P(1) +u1 +26Q(1) + 1Q(2) = 0 (6.123a)
Uy T+ QtaQ(a) + CQQ(Z + 1) + Ca—lQ(a - 1) = 07 (Ol - 25 <o — 16123b)
P(q) + uq + 26,Q(q) + cg1Q(g = 1) =0 (6.123¢)

These coupling conditions imply that (a) has only three non—vanishing diagonal
lines, the main diagonal and the two adjacent lines. Now let us simplify the coordin-
atization of such matrix as follows

Q) = ex(a) + cofa) + e—(a) (6.124)

where

e-(a) = Zga(n)En,m—la eo(a) = Zsa(n)En,m er(a) = Z ha(n)Enn1
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with the understanding that hy(n) = 1 and g,(n)

R(n). In terms of these coordin-

ates the above coupling equations take the form of the following linear system

2t1 + Clhz(’n) =0

2t151(n) + a1s2(n) +u; =0 (6.125a)
n+ 2t1g1(n) + c1g2(n) =0

2toha(n) + cahos1(n) + cam1ha-1(n) =0, a=2,...,q~1

2tasa(n) + caSar1(n) + cac1Sa—1(n) +ua =0, a=2,...,q— 16.125b)
2taga(n) + cagat1(n) + cac1ga-1(n) =0, a=2,...,q—1

R?Tu:}ﬁ + 2tghe(n) + cg-1hg-1(n) =0

2t484(n) + cg—184-1(n) = (6.125¢)

2, R(n) + y-19,-1(n) =

The solution of this system is expressed in terms of the matrices X, and Y,, defined

as follows

Xa

and

Of course Y; = X,. One finds

2t1 C1 0 0 0
a2ty e 0 0
0 Ca 2t3 0 0 (6 1‘)6)
0 0 0 2ta-—1 Co-1
O 0 0 Ca-1 Qta
2ty cCa 0 0 0
Co Qta+1 Co+i 0 0
0 Ca+1 2ta+g 0 0 (6127)
0 O 0 th—l Cq—1
0 0 0 o1 21,
ha(n) = (_l)a(CICQ e Ca_l)—l det —Xa-—l
R(n) = (~1)ncica... cquy (det X,) (6.128)
o det Ya+1
ga(n) = (—1) TLC1C2...CQ._IW
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Moreover, if we denote by S and U the vectors (s1,$2,...,5,)" and (u1,...,u,),

respectively, we have
~1
S=-X"U (6.129)

As we have already remarked we can always without loss of generality suppress the
linear terms in u, by constant shifts of M,. In such a case S = 0.

It is now easy to see that, at the cosmological point (¢, = u, = 0), the solution
(6.128) is well defined when ¢ is even, while it is singular when g is odd - in the
latter case, for example, det X, = 0.

In the last part of this section we would like to dispel a seemingly obvious ob-
jection to the very content of this model. Take the generic quadratic model of ¢
matrices with nearest neighbor interactions

q g-1 q
U= Z ta]‘/-[z + Z Ca,a+1]VIa]V[a+l = Z [V[aAaﬁ]V[ﬁ. (6130)

a=1 a=1 a,0

The g x g matrix A is symmetric, and, for the theory of central quadrics, it can be
brought to a canonical diagonal form with all ones or minus ones on the diagonal.
The signature of A is of course a characteristic of the potential.

Let us see the consequences of this simple remark as far as the matrix model
is concerned. The diagonalization of A can be achieved by integrating in the path
integral over suitable linear combinations of the matrices M,, instead of integrating
simply over the M,’s. Of course this gives rise to a Jacobian factor, which is however
one if one uses only shifts of the M,’s. In this way one brings A to the diagonal form

A = Diag(f1,..., f3) (6.131)

but does not rescale its elements to unity. However this form is sufficient for our sub-
sequent discussion. The initial matrix model appears at this point to be equivalent
to the decoupled model with potential

U' =3 ful2

with partition function Z = const(N)(fy fz-..f,) ™ */2 We remark however that this
procedure is of no help if one has to compute correlation functions of composite
operators, in that it screws up the definition of the states and renders the calculation
of the correlators practically impossible. The procedure followed in this chapter,
i.e. the use of the generalized Toda lattice hierarchy, has precisely the virtue that it
allows the calculation of the exact correlators of significant composite operators.
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Finally let us remark that we can easily generalize the results of this section to the
cases when in the potential are present, beside the terms of (6.130), also interactions
of the type c,,3D,Dg where D, = Diag M, and 8 # a—1,a, a+1. In such cases the
method is the same as in the chain models, with the only difference that the matrices
Xo and Y, will have, at the position (e, 3), additional non-vanishing entries c,g if
the latter are present in the potential. The relative operators, called extra states, are
found to be in correspondence with the string discrete states.

6.3 Schwinger-Dyson equations

The analogous of the above coupling conditions are the Schwinger-Dyson equations,
arising from the invariance of the matrix integrals under reparametrization of the
matrix variables: M — f(M).

They appear as a set of equations for the correlation functions, and the model
can be solved also in this way.

We consider for example the two-matrix model with partition function:

7 = / DM, DM, exp(—Tr(Vi(M,) + Va(My) + cM, My)) (6.132)

where the potentials are:

Vi(My) = St M Va(My) = > sp My

E>1 k>1

The partition function is invariant under the infinitesimal transformations of the

maftrices:

M, — M, + 51,n]\/[{1+17 n > —1,e;, infinitesimal
My — M, + 621n]\/[;+1., n > —1,e2, infinitesimal

Taking into account the contributions from the measure that transforms as:

DN[1(1+€1,_1Nt1) (Tl: “"1),
DM, = { DMy(1 +e,oN(N +1)/2) (n = 0),(6.133)
DMyl + €1 0((N + BLETeMP + X0 TIMFTEMP )] (n > 1),

and the transformed potential term:
exp(Vi(M1)) = (1 — g1 o ToV] (M) M) exp (Vi (M)
we obtain the Dyson-Schwinger equations (for ¢ = 0):
LU Z(t,56) =0 (6.134)
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with:

+1, 0 =1 9
£ =5 ke A S AR o S A
Z ’“a o T )5 2 s man,

+Nt16, -1+ N(N +1)/2 6,0, n>—1

If we take the analytical transformation of general form we get the W,, constraints
for the two-matrix model.

WINZ(ty, sk, c) = 0, W Z(ty, 51, ¢) = 0, (6.135)

with

Wil = (—¢)"£ll(2) — £l+(1), (6.136)

The partition function is also invariant under mixed infinitesimal transformations
of the matrices:

M; = M; + €; e MPTP MY, nom > —1, €imm,? = 1,2 infinitesimal
(6.137)

6.3.1 Schwinger-Dyson equations in 2-matrix models

Quadratic potential
For the quadratic action S = ta M} + so M3 — cM; M, (we can always make a shift
in My, M, to put ¢t; = s; = 0) we have the following Schwinger-Dyson equations:

W, — Wiy = W Woeja
0

J=

<

252VV,—,_,1 - CI’VH+1 = (6138)

n—

Qtzﬂfn’l — CI’I/'n__l’Q = Z I/V W, n—j—2,1
7=0

n-—2

22fZI/I/n,m - CI/Vn—l,m+1 = z I/{/_7'1"/71—‘7'—2,171

j=0
(Where W, ., = (TrM7M*) and W, = W, o). From the first two equations we get :
(4t282 - CZ)I/V-,-L = OSQ(WOWn_.Q + ... W'n_QI/Vo) (6139)

We introduce the generating function for correlation functions W,:
(o o]
=Y Wit
k=0
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Using eq. (6.139) the generating function satisfies (we set Wy = 1):

25

t2~—
4t282 - C‘

_G(t)? = G(t) — 1 (6.140)

with the solution:

1 4t232 - 62 982
Gt)= —5———— |1 - 1—4t2<———-——~> =
(t) 2t2 2s, ( \/ 4ty57 — 2

i (Qn)' 252

= ng2n 141
; nl(n 4+ 1)1 4tys, — cz) (6.141)
from which we get the non-zero correlation functions:
2]1“,), 252
Waso =< TeMP >= — g 142
2k,0 =< 1rMy™ > k'(k+l)’(4t232—c2) (6 )
The same for :
2k 2t
Wo e =< TrMZ* > (2F): 2k (6.143)

llu (lv + 1) 4t232 — c?

From the second, third and fourth eqns. (6.138) we get the (M7 M,), (MTMZ)
and (M M3) correlation functions:

I/I/Qk+1 1 = 2—1’V2k+2 (6144)
S9
Wik =0

c? 1
Wak,z = @I’Vzkm + 5
2

489

5 2k)! 285)F1
_(231” +4t2> (A) (qz)

WoWar (6.145)

k + 2 k{(k -+ 1)' (4t232 - 62)k+1
Waky12 =0
I/VQk._l 3 = (L)BI/VQ]H_Q + _C—I/VOI/VQIC (6146)
’ 259 252
k-1 (2k)! (2s9)F1 ¢
2
= t e
(c Fra 232) k(K + 1)! (dfgs7 — c2)F+ 25,
I/ng,g, - 0

Also the two point functions can be incorporated in a generating function:

t S) Zsztk !
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which can solve the fourth eq. (6.138):

2ty8G(s) — ctG(t)
2ty5 — ct — t25G(1)

G(t,s) = (6.147)

The symmetry (s ¢ t) is not manifest but can be proved by means of the identity
(6.140) for G(t) and G(s).
We can write down also the Schwinger-Dyson equations for the four-point func-

tions Wa,mmm =< TrMPMP My M7 >:

n—2 n'—1
2t2Wn,m;n’,m’ - CVVn—l,m-{-—l;n’,m’ = Z Wijn-—2-—j,m;n',m’ + Z VVj,mVVn+n’—2-—j,m’
=0 =0
m—1 m'~1
232Wn’,m+m’+1 — CLVlym;nl,m/ = z WjI/Vn’,m-l-m’—l—j —+ Z I/I/jVVn,,m+m/_1Q@.l48)
i=0 =0

In this case the generating function is:

Glt,5it,s') = 3 Wommrmt™s™(#)™ (s')" = (6.149)
! P 42 !
_ 1 - [(c—t'sG(t',s))tt G(t',s") —*G(t,s")

2t98 — ct — t2sG t—t
ss'G(t',s") — s*G(¢, 3)}
2

-2t

s —g

The first four-point non-trivial correlation function is :

2¢2

[
Wl,l;l,l - (TI‘(]V[;[IVIQA{[]QJVIQ)) = "Q‘t—I’LrL;; = m
2 292 —

(6.150)

to be compared with :

4t232 + C2

—_— 1581
(4t2$2 —C2)2 (6 o )

Wap = (Te(MIM)) =

Cubic potential
The action is S = t3 M3 + to M} + saMP + s, M2 — cM; M, (we can always make a
shift in M, M; to put ¢; = s; = 0) we have the following Schwinger-Dyson equations:

n—2
3t3I/Vn+1 + QtZVVn —_ CI/Vn—l,l = Z I’I/jI/Vn_]‘_g

j=0
383I/Vn,2 -+ 2521/Vn'1 - CI/V-,H_I = () (6152)
n—2
3t3VVn+1,1 + thVVn,l — CWn_1,2 = Z I’VjI/Vn_]'_;),l
7=0
n—2

3t3vVn+1,m + 2t2I/Vn,m - CWn—l,m+1 = Z I’Vj"/Vn—j—Q,m
=0
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Writing in terms of the generating function, we get an algebraic third order equation

in G(t):

23
15G3(t) — (6t + 4ot + B“jcst)PGZ(t) +aG(t)—B =0 (6.153)
. ,_3
with:

2832€ 5 S 3 4 3
383 53

) 2s9¢ 4 A

353 3s3

+(3t3I/V]_,1 + QtQVVl)ctB + 3t3CI’V1t2

We recover the generating function for quadratic potential in the limit 3s3,3t3 — 0
if we pick up only the singular terms proportional with 1/(3s3).
We can express Wiy in terms of Wy, Wa:

CI/Vl,l = 3t3I’V3 -+ 2t21/V2 -1

From the fourth eq. 6.153 we get the generating function for the 2-point correlation

functions:
(3t3 + 2t2t)sG(s) + 3tzsGi(s) — cst*G(t)
! = 154
Glt,s) (3t3 + 2tat)s — ct? — t3sG (1) (6.154)
where:
Gonlt) = %BTG(LS)]S:(), Glt,s) = 3 G (t)s™ (6.155)

m:O

6.4 The W-constraints

This section is devoted to the derivation of the W-constraints in g—matrix models.
From both the coupling equations (6.116c) and consistency conditions, we get the
W-constraints in the form: Tr(Q™*"(a)d;_(*)) = 0 where * are the relations (6.113)

(For another approach see [79]):

q
/ [T dabn(0)e"Aatin(Ae) = Qum(@hm = Qua(@)hn, @ =1,...,q. (6.156)
a=1
W-constraints have the form:
Wil @) Zn(t,e) =0, r>0,n> —r; a=1,...q. (6.157)
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or

(L8 (@) = (=1)"TF ) Zn(t,¢) = 0.

n

involving the interaction operator T} which depends only on all the couplings Jay.aq»

except go,....0,a4,0,....0 = ta,aq-

0

TM(a) = taga;.c (6.158)
( ) qagal‘..,aa-i-n,...aq
Tr[f](a) = 00,0, ..a00c! . o +
i qaga1+a1 Gatal+n,...aqtal
0
+ aa(aa - 1)ga1...aqa
a1.y@a+n,...0q
The operator L£I/(1) has the same form as that of the two-matrix model:
cll /cL : yL s grn (6.159)
where :: is the normal ordering and J (z) is the U(1) current:
0
Z ktyez""t 4+ Nz7t + Z zk1 (6.160)
k=1 k=1 atl k
The same expression holds for LI](q).
The expression of L(a),a = 2,...q — 1 is different due to the absence of the
P-matrix term:
ol /d~ L (0, + VIR, s 2T (6.161)
with
Pa
=3 ktapz" 4+ Nz71, (6.162)
k=1
Py=Nz""'+ i O
“ - = Ot ok
The explicit expression of the first terms is:
i 3 g
‘Cn (CY) = Zktawk + Ntaylcsn,_l
k=1 8 o, k+n
& 0
L) = Sk 5 + 3 otk by 57—+
k=1 aktn gL, a,k+n

-+ N2ta,16n,—1 + fv(t;l + 2ta,2)5n,—-2
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As an example we write down the I/VElll, T/chl] and W'l[l] constraints for the three
matrix model.

wiil.

Z“k +1\f1+612()\1> +cis{o) = 0
Z Fug (A + Nuy +cip () + ca3(o1) = 0
> ksg{ok—1) + Nsi+cos (M) +az(r) = 0

N(N +1

Z Ety (me) + c12 (x110) + €13 (x101) = — ( 5 )
Z kug (Ak) + c12 (x110) + 23 (x011) = O

N(N +1

Z kti (o) + c13 (x101) + c23 {xo11) = — ( 5 )

Z Kte (Tee1) + (VN + 1) (11) + c12 (X210) + 13 (X201) = 0
Z kug (Aetr) + c12 (X120) + €23 (X021) = 0
D kte{oke1) + (N +1) (01) + c13 (x102) + €23 (x021) = 0

One easily sees from the second group of identities that the limit of pure chain
models does not exists for three-matrix models. The same thing holds for odd—q
matrix models. However, writing down the W constraints for even—q matrix models,
one can see that such a limit exists. This confirms the results obtained with other
methods.
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6.5 Discrete 1 D-matrix model
6.5.1 Nonzero momentum correlation functions

We calculate the 1-, 2- and 3-point correlation functions in the discrete ¢ = 1 matrix
model. We show that the 1-point c.f in the momenta space can be represented as
a sum of delta functions of the form §(p + 2kwp)-this means that the action of the
operators T, 2, = TrM, §r on the vacuum introduce the particles with integer momenta
p = 2kwy. The 2-point correlation functions are sums over the §-functions at integer
momenta p = (I — k)wy, hence we have extended states labeled by 2 indices which
are the discrete states of ¢ = 1 matrix model. In the Q-matrix approach [81] we have
calculated the n-point correlation functions (for n = 1,2,3) for the ¢g-multimatrix
chain model. The 1-, 2- and 3-point correlation functions are given by:

< Ta2r > = TI‘Qir
< TaarTpes > = Tr(QY)4+,(QF)-], a<pB (6.163)
< TaprTpasTya > = TrQYQYQY¥— | a<pB <~y

—((Qir)—Qfas ?,t + Q%s f,t(Qi’)+ + cyclic perm.) +
+H((QX)-QF (@) + + perm.) + 2(Q)+(Q5)+(Q3)+]

The relations above are valid for arbitrary potentials in the multi-matrix model. In
relation with ¢ = 1 matrix model we will restrict ourselves to the gaussian potentials.

The @-matrices for a gaussian model take the simple form:
Qo = hali + gac- (6.164)

In the work [81] we have already derived the form of Q%" in terms of Aq, gy :

L, LT (2r)! ko—k itk 2r—(i+k) 12r—2k—i i
v =kZ 2 Gr— ok — DT L=t (6.165)
=0 =0 A

For (Q¥); and (Q%)_ we have the same formula but the index 7 in the sum is
restricted to take values only from 0 to r — k, respectively from r — k to 2r — 2k.

To calculate the traces of ()-matrices in the relations (6.164), we need to know
the following traces Tr(I}e™) , Tr(Ife™Ifel) and Tr([Zem I el I5e).

The permutation relation:

nlm!

et =% e e A Alm) =

v

(6.166)

v=0 vli(n —m+v)l(m—ov)!

can be used to calculate the up-mentioned traces.
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We collect the needed formulae:

" om N +n
Tr(ITe) = Spmn! < 41 >
Tr(I2eT1Rel) = Z F(n,m;p,qlv) = (6.167)
v=0

_ i nlm!(g + v)! N+qg+v
B viln—m+v)lm—v)'\ g+v+1 )’
with n>m,n+p=m+gq

v=0

Te([fem Vel TNt )= > > F(n,m;p,qr,s|l,l') = (6.168)

0<I<g 0L <m+!

- plgtnt(m+0) (s+I+1")! N
= L W=D (p—g+ D {n—m— ) {m A1) sH+l+0+1

with n+p+r=m+qg+s

Inserting the relations (6.165) and (6.168) in the defining expressions (6.164), we
write the correlation functions explicitly in terms of A4, ga:

(—1)%2- k(N—{—r——k

< Tape >= Z—n)_ NP )(haga)r (6.169)

r s r—k2s-2] )1 (25)[

S TearToan>= 20,00 2 ‘?r——QA—i)!j!l!(Qs—’Zl—j)! (6.170)

k=0 1=0 1=0 j=s-I

(=127 (gahg) ™ (hags) ™ (—Z——) (X F(2r — 2k —d,i;2s — 20 — j, jJv) —
g v=0

J
=Y F(2s—20—j,7;2r — 2k — i,1|u))
u=0

with i 4+ 7 =7+ s — k — [ and where function F' is given by relation (6.168).

We omit to write down the formula for 3-point correlation function because of its
length.

To simplify the calculations we will consider in what follows only the genus 0
contribution of the correlation functions.

For the 1-point c.f., the genus 0 contribution has the maximum power of IV, which
is equivalent to setting £ = 0 in relation (6.169):

(2r)!

mNr+l(haga)r (6171)

< Ta,Qr >0:
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For the 2-point c.f. the genus 0 constraint imposes the values v =1 —1, u=j—1
in (6.171) which give contribution to the subleading term proportional to N*t7. The
leading term proportional with N**/*! (when v = i,u = j ) is zero. For genus
zero ¢ + 7 is maximum when & = [ = 0 and 7 + 7 = r + 5.We use the notation
1=r—n,]=38+n.

The above considerations permit to write the genus 0 contribution to the 2-point
ct. :

< o on >0= () (hoga) (25 (hogo) (=) Y gl <é§gﬁ)(ﬂ6-1?z>
, . r+s 0<n<min(r,s) gahﬁ
with:
1 1
(r=n)l(s—=n+ DI (r+n+1!s+n)!

ag]‘r,s) —

(n(r+s+1)+(s—r)/2)(6.173)

The sum is invariant by the transformations o <+ 8,7 ¢+ s,n < —n.
In the same way we can calculate the planar contribution to the 3-point correlation
functions.

6.5.2 Comparison with the free fermion approach

After these general considerations we consider the special case of the discrete ¢ = 1
matrix model.This will permit to find the dependence of the n-point c.f. in terms of
the time coordinates for puncture operators .

The ¢ = 1 model with discrete time has the partition function:

Z = /d.Mi exp

_gTT (§ M + fi V(M,-))

=1 ¢ i=1

with a quartic potential V(M) = M? — gM*. However, only the contribution near
saddle point V'(M,) = 0, where the potential is quadratic in the fluctuation AM, is
essential

1 (AM)?

AM
VIM)= — —2 —
(M) 4g B VB

The new partition function is (up to the constant exp(—NBe/(8g)):

M = M, + (6.174)

g g-1
2= [dMiexp {TT (Z AMA2e— Dy 41y AJVLAM,-H>
i=1 e ¢

=1

It represents a string theory on circle with radius R ~ %
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The coefficients h,, g, can be expressed in terms of the determinant D, of the
n X n matrix :

hﬂ' = ("l)aDa—lyga = (_1)cr (6175)
Dq
where:
v 1 0 ... 0
1 uw 1 0 0
0 1 wu
D, =
0 1 0
0 ... 0 . u
0 ... 0 1 u

We have introduced the parameter u = 2(2¢? — 1). In the region —2 < u < 2 the
determinant D, has the simple representation (outside this region the sin—function
is replaced by sinh):

i 1
D, = Snln £ 1w (6.176)
sinw
where w = arctan 1/(2/u)? — 1.
In the limit € — 0, we have cosw = —1 + 2€%,sinw = 2¢, hence w ~ mm — 2¢ —
mm. Instead the discrete variable @ = 1...q we define the continuous variable

¢ =1 € [0,T]. Also we must define the rescaled pulsation wp such that aw —
two, (¢ — a)w — (T — t)wp.

Due to the limit gw — Twy = 27 we can achieve the continuum limit ¢ — co, e —
0 and maintaining fixed the product ge = 7. Hence in the continuum limit the period
and the pulsation behaves as T ~ g — co, w ~ 2¢ — 0.

We can now calculate:

(haga)”

sinawsin((g +1) — a)w)’ (6.177)
sinwsin(g + 1)w .

In the continuum limit € — 0 we have:

(Page)” — (Slnfﬁtw") (6.178)
We can make an expansion in periodic functions:
2r
(haga)” = Y d{ ettuolr/2h (6.179)
=0
with &7 = 8™ | ) (=17 6.180
! !
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We perform a Fourier transform to get the 1-point CF in momentum space.

But we have 2 problems. The first problem is that the integration is in the interval
[—T/4,T/4] (we assume the contribution from only one top of the inverted harmonic
potential), and we have periodic functions which have the period nT". This problem
is resolved by observing that in the continuum limit 7 = 27 /wy — o0, and that in the
continuum limit all functions are periodic in the interval [-7'/4,T/4] — (—o0, —c0).

The second problem is that the coefficient df') ~ (=1)""% for r odd is complex.
Hence we must distinguish to cases when r is odd and even. When r is even, the
operator 72,(%) is:

T2r(t) ~ (86)_r ( T ) (_1)r/2—le4ituo(r/2—l)
' =0 !
with the real part:
Tar(t) ~ (8€)7" ( ? ) (=1)/* ! cos(4two(r/2 — 1))
=0
Instead for r odd the operator 7,(t) is multiplied with ¢ and the real part is:
Tor(t) ~ (86) 7" D < ; ) (=1)7* " sin(4two(r/2 — 1))
1=0

Now we can use the result (6.180) in the relation (6.171), and the 1-point CF in
the momentum space is:

T/4 .
< To >0 (p) = [T/J‘ dt < Taor(t) >0 € =
I ) v S d76(p + dwo( = ~ 1)) (6.181)
rir+ )0 = 9 '

This result is correct when 7 is even. Instead, when r is odd the momentum is shifted
by /2.

In the free fermion method ( see [80, 66]), the ¢ = 1 matrix model is considered
equivalent with a system of free fermions in the harmonic inverted potential. The
Liouville mode is interpreted as the classical time 7 of flight variable.

The period of the oscillations of the classical particle moving in the given potential
is related with the cosmological constant p: T = 2./B|log ut|, where 3 is the string
coupling.

The equation of motion at the Fermi surface is:

dA

= = SVoler — VOV
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where the potential is quartic V/()) = A? — gA*.
Expanding near the saddle point A = A, + z/+/B we get the equation:

dr gﬂ a

with the solution:

) = \/13%#1/2605/1(7/\/957)

The puncture operator in 2D gravity is in this case:

O, =z" = (8/2)"*ucosh™(/\/93/8) (6.182)

We can observe that the operator O, behaves in the same way as the operator
7(t) because this operator has the correlation function:

sin 2twyg

4e?

< Tor(t) >= —— "t ) (6.183)
with ¢ =n/N.
We can identify the variables (putting for simplicity ¢ = 1):

6~1/\/,§,u~x~N‘1 (6.184)

At the critical point, the cosmological constant g — 0, which means that N — co.
The time ¢ is related via Lorentz rotation with the flight time ¢ ~ i7, up to a
translation by 7'/2.
To calculate 2-point c.f. we need:

rim ren ST wgcos M Wy SN (rn) 2t (rm
R = S = L Al (6.185)
=0
o} r4n n r+n r—n rdn gy
AP = (87 (o7 Z( A R GV
Ul=r—n

In the same way we can write:

hs n s+n Zs: SE—: A s,—n} 2zt’wo(s k)

k=0 k'=s5+n
Using the expression (6.185) in the relation (6.172) we get the 2-point c.f. :
r+s 2s 2r

> T Anexpi[2two(r — 1) + 2t'wo(s £6K56)

+ s k=0 I=0

< TaarTpas > = —2(2r)1(2s)!
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where :

AP = 3 alalm ) (6.187)
0<n<min(r,s)
with a{"*) given by relation (6.173).
The 2-point c.f. can be rewritten:
Arr+s

< To2rTas >= —2(27‘)!(23)!T e

Z AkleiwoAt(r—s—(l—k))eiwoAt(r+s—(l+k))
kil

where At =t —t'.
The 2-point c.f. in the momentum space has the form:

— e ' _ / ipAt _iP(t+t)
< Te,2r73,2s > (P, P) - /2 d(At) d(t + t) < ‘a,2r(t)7_ﬁ,23(t ) > € ¢ (6:188)

r+s

= 4(2r)!(23)!N lzkz Ard(p+(r—s— (1 —k))wo)§(P + (r+s — (I + k))wo)

r 48

We have extended states at p = (r — s — ({ — k))wo (representing discrete states)
where p = —r —s...r+s. If ¢t = 0 we have extended states at p = r — lwg
(representing pure tachyons) where p= —r...r .

We considered previously the limit € — 0, or the plain limit when the radius R
goes to infinity.

Now we study the self-dual point where R ~ 1/R.This corresponds to the case
€ — 1.In this limit w =7/2 - 2(e = 1) = 7/2

Instead of € and w is better to define € and W’ asie = 1+ ¢',w = 7/2 — W'. We
can take the continuous limit ¢ — co such that g’ = Z = wy.The variable t = 2=1
is defined as before.

The 1-point c.f remains unchanged at the new limit-the self-dual point.The 2-

point c.f. is still given by the formula (6.186) but with A, given by:

A= Y a9 gl gm0 (6.189)

0<n<min(r,s)

This new restriction gives the same poles as before (6.189) at p = #i(l — k)wp, with
I — k odd, but only if o, B are both even or odd. In the cases when « is odd, 3 is
even or vice versa, we have the same poles but with [ — k even.

For consistency with the case ¢ = 0 where we have the poles p = +ikw, with &
even, we could conclude that we must have only poles with [ —% even. This condition
imposes that o is odd, § is even or vice versa. This is in agreement with the fact
that exactly at the self-dual point the 2-point c.f without momentum do not vanish
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only if o is odd and § is even or vice versa. Hence discrete states appear as poles in
the 2-point c.f. only if the free particles of ¢ = 1 matrix model belong to 2 distinct
classes with o odd, respectively even. But this is equivalent to the choosing of a
special sl; subalgebra embedding of the larger algebra sl, which characterizes the
¢ = 1 matrix model. This also could explain why the discrete states satisfy the sl,
algebra.
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