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0 Introduction

We work over an algebraically closed field with characteristic zero.

One of the most important invariant structures one can attach to a vector bundle E

on P" is its first cohomology module Mg = H!(E). By theorem B of Serre
H'(E(k)) =0 if k>>0 (=),
moreover, by the Serre duality,
HY(E(k))=H" ' (E*(~k—7r—-1)) =0 if k<<0 ()

hence Mg is a graded module of finite length. A lot of interesting properties are known for
ME ( see [Hol, [BH], [R], [D] and ref. therein ), for instance, Horrocks ( see [Ho] ) proved
that Mg completely determine the bundle E and gave a technique to explicitly reconstruct

a vector bundle £ from its first cohomology module Mg.

One of the fundamental questions raised since the appearance of the Horrocks paper con-
cerns what kinds of properties a finite-length and graded module M should have in order
to be the first cohomology module of some vector bundle on a projective space. In the
case of rank-two vector bundle on P? this problem was solved by Rao who was able to
characterize the graded modules which comes from vector bundles in terms of constraints
on their minimal free resolutions. Furthermore, similar but weaker results are known for
rank-two vector bundles on P? ( see [R] and [D] ). In this case it is known that in order
that a graded module M is the first-cohomology module of some vector bundle E on P3,
it is necessary that for any minimal free resolution of M one can construct a very special
kind of monad whose cohomology represenfs the bundle ( see chapter III of this thesis for

a resume of this construction ).

Another fundamental problem concerning the module Mg is the estimate of its “size”.

In other terms the problem consists in the determination of the least absolute value the
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number k should have in order to () and (**) above hold. More precisely, let E be a
vector bundle ( more generally, a reflexive sheaf ) on P2, if ¢; and ¢, are the Chern classes

of E (c1, ¢z and c3 if E is a reflexive sheaf ), we ask for the solution to the following

Problem A: find two functions f; and f; of ¢; and ¢ ( of ¢1, ¢p and ¢3 ) such that for

every E holds
HY(E(k)=0 if k> fi(er,c2) ()
HYE[E) =0 if k< fa(ciye2) (++)

The problem of determination of f; was completely solved when Barth-Elencwajg [BE]
introduced the notion of spectrum of a stable vector bundle with ¢; = 0 and Hartshorne

[H] generalized it to reflexive sheaves with any c;.
Let us recall the following theorems from [H] and [E] ( and ref. therein )

Theorem : Let E be a rank two reflexive sheaf with ¢; = 0 or —1 on P?, and assume
HO(E(—1)) = 0. Then there exists an unique set of integers {k;};2, called the spectrum

of E, with the following properties ( where H denotes the sheaf @ O(k;) on P* ):

R (P%,E(k)) = h'(P',H(I+1)) for k< -1
R}(P*,E(k)) = hY (P ,H(I+1)) for k>-3 if c1=0 and 1>-2 if e =-1

Proposition: If E is stable, the spectrum is connected and {—k;} = {k; + c1}.
Combining the two statements it turns out that

R (E(k)) = 0. k<21

and this result is sharp ( see sec. 8 of [H] ) hence the problem of determining the best f,
for which (++) holds is solved by setting fo := —[%].
On the contrary, the problem of finding the best function f; such that (+) holds, is

harder and, as far as we know, widely open.

In this thesis we will try to gain a better understanding of this problem by using one of
the most powerful techniques in the study of vector bundles ( resp. reflexive sheaves ) on
P" i.e. a method “alla Castelnuovo” which can be described as the attempt of deducing
relevant properties of the bundle starting from the behaviour of its restriction to a general

hyperplane. Similarly to what happens in the study of space curves, a lot of interesting
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properties of the bundles on P™ can be proven with an inductive argument starting from

the analysis, which is hopefully simpler, of the two dimensional case.

As we are interested in vanishing theorems for stable vector bundles and reflexive sheaves,
the possibility of begin such an inductive argument rests ultimately on the invariance of the
stability property when restricting to a general hyperplane. Moreover we need a vanishing

theorem, possibly sharp, which covers the two dimensional case.

As regards to the first question, it is completely solved by the so called “Barth’s restriction
theorem”which says that, with the only exception of vector bundles with ¢; = 0 and ¢; = 1,

the general plane restriction of a stable reflexive sheaf on P3 is stable:

Theorem ( Barth’s restriction theorem): Let E be a stable rank two vector bundle on P"
with n > 3. Suppose (c1,¢2) # (0,1). Then the restriction Ey to a general hyperplane H

is also stable.

On the other hand, the vanishing we need for vector bundles on P? is provided by a
theorem of Hartshorne which says that, given a stable rank two vector bundle £ on P2,

- we have A'(£(t)) = 0if t > ¢, — 2 (and this bound is sharp).

Theorem ( Hartshorne ): Let £ be a stable rank two vector bundle on P? with Chern
classes c¢; and ¢;. Set t := min{k : hY(E(k)) # 0}. Then A*(E(1)) =0 for I > ¢y — % —

| 1 — et

In the first chapter we will give a short proof of these theorems.

The first application of the method alla Castelnuovo described above, was given by
Gurrola who proved in [G] the following

Theorem : Let E be a rank two, normalized, stable reflexive sheaf over P® with Chern
classes ¢, ¢y and c3. Then
RUE() = 0 if lZ—;—cg——;—(cl——l)cz—l—%ce,
This estimate turned out to be optimal in the case of high c¢3. Indeed Gurrola was
able to prove that the bound above is sharp for stable reflexive shaves with maximal cj.
On the other hand, as pointed out by Ellia in [E], the result of Gurrola is not sharp when

c3 = 0 i.e. when the sheaf is indeed a vector bundle. The progress in this direction given
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by Ellia is contained in the following ( see E])

Theorem: Let E be a stable, rank two vector bundle on P3, with Chern classes ¢; = 0,
3

¢y > 36. Then A (E(k)) = 0if k > (¢ +c2 — m?+m)/2, where m :=min{n: n2 =}
In the fourth chapter of this thesis, we will further improve these results by reducing
the coefficient of the quadratic part of the last bound and by estending the result to stable

reflexive sheaves with any ¢; and ¢z < (% +5+ 2¢;). Indeed we will be able to prove

the following

Theorem I: Let F be a stable rank two reflexive sheaf on P3 with ¢p > 35and ¢y < ca( %+
5+42c1). Set m = [2]. Then h'(F(k)) =0 if k> 523—}—921—!—1”—(—12:—"1—) —ci(ca—m)+ 52— 5.
¢

The starting point of our analysis is the following proposition which represents a

stronger version of Corollary 2.2 of [G] and which will be proved in the second chapter of
this thesis:

Theorem II: Let E be a stable rank-two reflexive sheaf on P3. Suppose there exists an
integer z > 0 s.t. AY(Fy(k)) =0if k> = and H is a general plane. Then h'(F(z)) <
${cz—£§—cl}+c2(l+%)—% and R} (F(2)) =0if t > z{c2 — 2 i} tea(1+ L) -3
In the light of the proposition above, the following question becomes crucial: let E be a
stable, rank two, normalized vector bundle on P?, and let H be a general plane; what can

be said about the cohomology of Ex? In other words, we would like to solve the following

Problem B : Find a function g(c2) s.t.

kY (Eu(p)) =0 if p > g(c2)

Combining the Barth’s restriction theorem and the result of Hartshorne stated above, we

have a first estimate for the function g(cz): g(c2) == c2 — 2.

Rather surprisingly, as pointed out by Ellia in [E], the vanishing thus obtained is not sharp.
The point is that a set of d points in P? which does not impose independent conditions to
curves of “high” degree has a particular geometrical configuration. For instance, the worst
case is when the d points lie on a line, and the next case is when there are d — 1 points

on a line. Now, if A(Eg(k)) # 0 for big k and for every plane H, it follows that for most
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planes, Ez has a section vanishing along a set of points containing many points on a line
such that this line is a high order jumping line for Eg. From these “super” jumping lines
it is possible to build an unstable plane of high order for E. With this argument Ellia was
able to show that h'(Eg(k)) = 0 if k > g(c2) := ¢z — m where m is the round-up of %i

In the fourth chapter we will improve the argument above and we will be able to
show that all the super jumping lines are constrained to lie in a fixed and very unstable
plane. The final result of that chapter will be the Theorem I stated before. Moreover in
the course of our analysis we will gain a better estimate for the function g of the problem

B by showing that g(c2) < Zc; ( see theorem 1.8 of the chapter 4 ).

But it is only in the last chapter that we will succeed in the attempt of the determi-
nation of the best shape for the function g solving Problem B at least in the case ¢; =0

and ¢z > 20. Indeed we will prove the following ( see the introduction of the last chapter )

Theorem III:let E be a stable rank two vector bundle on P3? s.t. ¢;(E) = 0 and ¢ > 20.
Suppose H to be a general plane. Then h'(Eg(p)) =0if p > 5—2—(};)——3 Moreover, if ¢c3(E)
is odd and hl(EH(EEL%)—_E)) # 0 for any plane H of P?  then F belongs to one of the

following classes:
a) E is a t’Hooft bundle associated to cy + 1 skew lines lying on a quadric of P?;
b) the spectrum of F is maximal, hence F(1) has a section which is a multiplicity 2

C'z—l
2

structure ¥ on a degree plane curve Yj s.t. wy ~ Oy (—2).

Combining theorems II and ITI we will get

Theorem IV: Let E be a stable rank two vector bundle on P? with ¢; = 0 and ¢y > 20.

Then h*(E(k)) =0if k > %g- +Z + —W—L(—l—zzﬂ — c1(ca —m) + 72, where m = [02;1] 0.

A natural question, now, is how far from giving a sharp answer to Problem A theorem
IV is. To understand this, let us briefly review what happens in the case of integral space
curves. Let C be an integral and non degenerate curve in P™ 7 > 3, and let I¢ be its sheaf
of ideals in P". If 0 — Ic — Ops — O¢ — 0 is the defining sequence of C, it is clear that
the hypersurfaces of degree n in P7 trace out a complete linear system on C if and only if

h*(Ic(n)) = 0. In their paper [GLP], Gruson, Lazarsfeld and Peskine proved the following



Theorem ( GLP ): Let C C P7 be an integral and non degenerate curve of degree d.
Then

i) h'(Ic(n)) =0ifn>d+1—r:

ii) h'(Ic(d — 7)) # 0 iff C is smooth and rational and, either d=r+1,0or d > r+1
and C has a (d 4+ 2 — r)-secant line.

One of the most relevant things this theorem emphasize, is the fact that the non
vanishing of h'(Ic(n)) for large n is intimately connected with the existence of a high-

order secant line to C.

Coming back to our problem, let us remark that, if E(n) is the least twist of £ admitting
sections, then the sequence 0 — O — E(n) — Ic(2n + ¢;) — 0 where C is the zero locus
of a section of E(n), shows that h'(E(n)) = h'(Ic(2n 4 ¢1)) thus Problem A above can

be viewed as asking for an analogue for vector bundles of the GLP theorem.

The concept which replace the notion of multisecant in the realm of vector bundles is
obviously that of jumping line of high order, thus we can suspect that the non vanishing
of h*(E(n)) for large n is a sign of the existence of a high order jumping line for the vector
bundle. Because of the fact that the maximal order of a jumping line of a vector bundle is
sharply bounded by a well known function of the second Chern class, Chang conjectured

that the answer to Problem A is given by

Conjecture :

f1(0,¢2) <2¢p +1 — (4ea + 5)%
fl=1,62) <204+ 3 — (e2 4+ 1)

Rl

It seems to be very hard to prove the conjecture by Chang or, at least, a vanishing which
is linear in ¢y. Partial results are available when the spectrum of E has a particular shape
or when ¢y is very small. In [H;9.17] is proven that the conjecture holds for stable vector
bundles with ¢; = 0, ¢co = 2m + 1 and maximum spectrum, in [E] for stable vector bundles

with spectra (0°?), (—1,0°272,1) and for stable vector bundles with ¢; = 0, ¢z < 5.

In the third chapter of this thesis we will proceed a little bit in this direction proving the

following

Theorem V the conjecture is true in the following cases:
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a) for vector bundles with ¢; = 0 and sp = (-m,..,—1,0?%,...,m);

)
b) for vector bundles with ¢; = —1 and maximum spectrum;
c) for vector bundles with ¢; = —1 and sp = (—1%,0%);

d) for vector bundles with —1 < ¢; <0, ¢3 < 6.

Let us come to the outline of this thesis.

In the first chapter we will give a short proof of the Barth’s restriction theorem and of the

vanishing theorem of Hartshorne stated above.
In the second chapter we will prove Theorem II.

In the third chapter we will prove Theorem V; moreover we will achieve the results, inter-
esting in their own, of the complete characterization of the vector bundles of the points a)
and b) of Theorem V (see theorems 1.1, 2.1). The vanishing will turn out as a corollary:
in the corollary 1.4 we will prove the point a) and in the corollary 2.7 we will prove the
}Joint b).

In the fourth chapter we will prove Theorem I and in the last chapter Theorems III and
IV. B

I heartily thank my thesis advisor Philippe Ellia for suggesting me the problems we

will be concerned with, for his help and encouragement.

I also would like to thank Emilia Mezzetti for a lot of interesting discussions.

References

[BE] W. Barth, G. Elencwajg: Concernant la cohomologie des fibres algebriques stables
sur P™. In Springer LNM, Vol 683, 1-24 (1978)

[BH] W. Barth, K. Hulek: Monads and moduli of vector bundles. Manuscripta math. 25,
323-347 (1978) |



[C] M. C. Chang: A bound on the order of jumping lines. Math. Ann.262,11-516 (1983)

[D] W. Decker: Monads and cohomology modules of rank 2 vector bundles. Comp. Math.
76, 7-17 (1990)
[E] Ph. Ellia: Some vanishings for the cohomology of stable rank two vector bundles on

P3. To appear in J. reine angew. Math.

[GLP] L. Gruson, R. Lazarsfeld, Ch. Peskine: On a theorem of Castelnuovo and the equa-
tions defining space curves. Inv. Math. 72, 491-506 (1983)

[G] P. Gurrola: A bound for the vanishing of the first cohomology group of a rank two
stable reflexive sheaf on P3. Comm. in Algebra 19, 2487-2494 (1991)

[H] R. Hartshorne: Stable reflexive sheaves. Math. Ann. 254, 121-176 (1980)

[Ho] G.Horrocks: Vector bundles on the punctured spectrum of a local ring. Proc. London

Math. Soc. 14, 689-713 (1964)



1 The Barth’s restriction theorem and a
vanishing by Hartshorne

As we said in the introduction, one of the most powerful techniques in the study of
vector bundles ( resp. reflexive sheaves ) on P™ is a method “alla Castelnuovo” which can
be described as the attempt of deducing relevant properties of the bundle starting from
the behaviour of its restriction to a general hyperplane. Similarly to what happens in the
study of space curves, a lot of interesting properties of the bundles on P" can be proven
with an inductive argument starting from the analysis, which is hopefully simpler, of the

two dimensional case.

As we are interested in vanishing theorems for stable vector bundles and reflexive sheaves,
the possibility of begin such an inductive argument rests ultimately on the invariance of the
stability property when restricting to a general hyperplane. Moreover we need a vanishing

theorem, possibly sharp, which covers the two dimensional case.

As regards to the first question, it is completely solved by the so called “Barth’s restriction
theorem” which says that, with the only exception of vector bundles with ¢; = 0 and
c2 = 1, the general plane restriction of a stable reflexive sheaf on P? is stable. On the
other hand, the vanishing we need for vector bundles on P? is provided by a theorem
of Hartshorne which says that, given a stable rank two vector bundle € on P2, we have
h*(E(t)) = 0if t > ¢» — 2 (and this bound is sharp).

Let us come to the outline of this chapter.

In the first section we will give a proof of the Barth’s restriction theorem which rests on a

famous theorem of Gruson-Peskine-Laudal.

In the second section we will recall some well known properties of the numerical character

useful in what follows.

In the third section we will prove the Hartshorne vanishing theorem.



I) A proof of the Barth’s restriction thorem

The goal of this section is to give a simple proof of the following

Theorem ( Barth’s restriction theorem): Let E be a stable rank two vector bundle on P™
with n > 3. Suppose (c1,¢z2) # (0,1). Then the restriction Ex to a general hyperplane H

is also stable.
The proof of the theorem we are giving rests on the following well known result

Theorem ( Gruson-Peskine-Laudal ): Let C C P* be an integral curve of degree d, and
let H be a general hyperplane. Set o := min{k: h'(Icnu(k)) # 0}. If d > 0® + 1, then
R (Ic (o)) # 0.

The proof of the Barth’s restriction theorem will follow after a lemma and a proposition.

Lemma ( Glueing lemma ): Let E be a vector bundle on P™ and let H and K be a
general hyperplane and a general codimension two linear space respectively. If R (En) =
h%(Er) =t and h°(Ex(—1)) = 0, then R°(E) =1t.

Proof. Let us show that, if H is a hyperplane containing K, then h’(En) = t.
By semicontinuity it is clear that h°(Eg) > t. Let us consider the restriction sequence
0 — Eg(-1) - Eg — Ex — 0. As h°(Eg(—1)) = 0 we have that the injection
H°(Eg(-p)) — H°(Eg(—p+1)) is indeed an isomorphism if p > 2. But H°(Eu(—p)) =0
if p >> 0 hence H°(Eg(—1)) = 0 and the map f : H'(Eg(—1)) — H°(En) is injective.
By comparing the dimensions it follows that f is an isomorphism. Let us consider the
blow up F of P™ along K and let p : F — P" and ¢ : F — L the standard projections
where L is a line missing K and representing the pencil of hyperplanes through K. From
a standard theorem ([H] thm 12.11) we have that g,p*E is a vector bundle of rank ¢ on L.
Let us now consider the natural morphism g : ¢.p*E — ¢(p*E |v) ~ H°(Ex)® Or where
Y :=p 3 (K) ~ K x L. As g is an isomorphism fibrewise, it is indeed an isomorphism of
vector bundles hence g.p*E ~ H°(Eg) x Or and h°(E) ~ h%(q.p*E) =t. ¢
Proposition ( Maruyama ): Let E be a semistable rank two vector bundle on P™ (n > 3).

If His a general hyperplane, then the restriction Ey is also semistable.
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Proof. Let us suppose Ey be not semistable for every H. Set mpy := min{k :
R (Ex(k) # 0} and my = supg(mpy) < 0. By semicontinuity mg = myg for the general
H hence a section of Ey(mg) vanishes on a codimension two scheme. We have 0 — Oy —
Ex(mo) — Iz(cy + 2mg) — 0 and 0 — O — Ex(mo) — Iznk x(c1 + 2mg) — 0 where
K is a general hyperplane in H. As ¢; +2mg < 0 we have h°(Eg(mg)) = R°(Ex(me)) =1
and h°(Ex(mo — 1)) = 0. Applying the glueing lemma we conclude A{E(my) = 1 in
contrast with the semistability of E. {

Proof of the Barth’s theorem. If m is sufficently large, the general section of E(m) is
irreducible and smooth. Let us consider the exact sequence 0 — O — E(m) — Ic(cr +
2my) — 0 where C is a smooth and connected curve of degree d = ¢z + cym + m?. Let
us suppose Ey be non stable for a general hyperplane H. By the proposition Eg is
semistable. Restricting to H the sequence above we immediately get o(C) = ¢1 +m ( we
keep the same notations as in the theorem of Gruson-Peskine-Laudal ). If ¢; = 0, we have
o =m, d = cy + m? hence, if c; > 2, d > ¢? + 1 and from the theorem of GPL we find
0 # R°(Ic(o)) = h°(E) in contrast with the stability assumption. Similarly, if ¢; = —1,

we have d > 2 + 1 for every ¢, and the conclusion follows. ¢
IT) The numerical character

In this section we will recall the definition and the principal properties of the numerical

character ( see [E], [EP] and [GP] ).

Let K an algebraically closed field and set P? := Proj(K|[zy,z1,z2]). Let Z be a zero

K[IﬂyzlyzZ]
I

dimensional subscheme of P? and set 4 := ) where T is the omogeneous ideal

of Z. The Hilbert function of Z is h(Z,k) := rkAy. Let us suppose the line zo = 0 miss
Z. Then A has a natural structure of R := K[z, z]-graded module of finite type with a

resolution of the form

OﬁéR[—ni]——»@R[—i]——)A——ﬁo



Definition: the set of integers X z(no, ..., no—1) is called the numerical character of Z.
Let us recall some properties of the numerical character.

i)ng>ny 2 ... 2 ng-1;

i) s is the minimal degree for the curves containing Z;

iii) h1(Iz(k)) := B = degZ — h(Z,k) = 3¢ [(ni — k — 1) = (i = k —1)4] where +
represents the positive part.

Proposition I ( [EP] ): If there exists ¢ s.t. ny—1 > 1t + 1, then there exists a curve T
s.t.:

a)if Z':=Z NT then xz = (Roy ey Pi—1);
b) if Z” is the residual scheme of 7' inside Z, then xz» = (mo,..mg—t—1) with m; =
Tg4qi — t. <>

Corollary II: If x 7 is not connected then every curve of degree o := min{k: h°(Iz(k)) #
0} is reducible. ¢

Proposition III ( [E] pag.53): If d := degZ , o has the same meaning as before and g,

v are integers s.t. d = (U(ZH) + ”(“;1) +v<o(c—1),and 0 < v < p < o —3, then
Ry, ()< h‘lI’d,a with &4, := (0 + p,0+p—1,.., (0 + V)2, .o+ 1,077 7). O

III) A proof of the Hartshorne’s restriction thorem

In this section we will give a short proof, based on the properties of the numerical

character listed above, of the following theorem due to Hartshorne ( see [H])
Theorem: Let £ be a stable rank two vector bundle on P? with Chern classes ¢; and ¢;.
Set t := min{k: h°(E(k)) # 0}. Then h'(£(l)) = 0for I > ca — 12 — 1 —cqt.

Proof. Let W be the zero locus of a section of £(t) and Z be the zero locus of a section

of £(n) with n >> t. From the sequence 0 — O — £(n) — Iz(ci + 2n) — 0 we have that
t+nte =0 :=min{l: h°(Iz(l))# 0}. Let C be a degree o curve containing Z. From
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th following commutative diagram

0 0
1 l
0 - 0 - 0] — 0
! ! e
0 — O(t—n) - £ = Iz(t-{—n—l-cl) — 0
! ! !
0 —- O(t—n) — Ly — Izc(t+n+c) — O
l ! !
0 0 0

we see that W C C. But in the construction of the diagram above it is clear that the
role of W and Z can be interchanged, thus every curve C’ of degree ¢ containing W does
contain Z. Because of the fact that W is locally complete intersection, it follows that, if
n is big enough, there exists an irreducible curve of degree ¢t + n + ¢; which contains W
hence we may suppose the zero dimensional scheme Z be contained in an irreducible curve
of degree o. From the corollary of section II it follows that the numerical character of Z

is connected.

“What we are going to do now is to show that the theorem easily follows from the bound
for hiz given in the last proposition of section II. To keep notations as simple as possible
and because of the fact that the cases of even and odd ¢y are very similar, from now on
we will assume ¢; = 0. With the same notations as before we have degZ = ¢y +n? = d.
We would like to bound h;z with hé,d,a where @4, is the maximal character given in
proposition III of section II. We have to check that d < o(c — 1) (+) and find integers
v, p such that d = 0(02'*_1) + "(”;1) +v (*)and 0 < v < p < o — 3. The inequality

(+) is equivalent to ¢y < ¢? + (n — 1)t + (¢ — 1)n which can be assumed if n is sufficently
large. Let us set p := 0 —2t—1 = n—t—1. Obviously p < ¢ — 3. From (*) we
find v = ¢y — (¢t + 1) hence we must check 0 < ¢ —#(t + 1) < n —t — 1. The first
follows from x(€(t — 1)) = #(t + 1) — ¢z ( here x is the Euler characteristic ) and from
RY(E(t — 1)) = h?(E(t — 1)) = 0. The second can be assumed if n >> 0. From proposition
III we get @40 = (2n—1,...(n+c2 —¢)?,...,t +n+1,(t +n)?") and a simple computation
shows that

0 [>2n—2

l —
P, (1) = { @no2-0Cn=1-l) 9n —3>1>n+e—12 — 1.

13



In particular we have hl(Iz(n+c,—t2 —1)) < {mEtzea=Dnttizes) — p2(O(c, —n—17—1))
(**). On the other hand, from 0 — O — £(n) — Iz(2n) — 0, we find 0 — H*(E(cp —t* -
1)) = H(Iz(n+cy — 2 = 1)) = H*(O(cz —t* =1 —n)) — H*(E(c2 — t* — 1)) (++)- But
h2(E(cy —12—1)) = hO(E(—cy +12~2)) = 0 because t* —c; —2 < t—1 which is equivalent to

t(t+1) < c+1 which, as above, follows from the comparison with the Euler characteristic.
Finally combining (+-+) with (**), we have H(Iz(n+c; —t*—1)) =~ H*(O(c2 —t*—1-n))
hence h!(£(c;—t2—1)) = 0. The same argument shows that h*(£(1)) = 0 when [ 2> co—1%—1

and the theorem follows.
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2 A proof of Theorem II

In this brief chapter we will complete the description of our inductive argument by
showing how a vanishing theorem for the cohomology of a stable reflexive sheaf on P? can

be deduced from a vanishing theorem for the cohomology of its general plane restriction.

Our main result will be the proof of Theorem II of the introduction that we restate for the

benefit of the reader.

Theorem : Let E be a stable rank-two reflexive sheaf on P2. Suppose there exists an
integer ¢ > 0 s.t. h'(Fg(k)) = 0if k£ > z and H is a general plane. Then h!(F(z)) <

z{co — £ —catte(1+%)-Land A(F(t) =0if t > z{co—Z —c1} e (1+ $)— L.

Let us start with the following ( see [E], [G] )

Lemma : Let E be a stable rank two reflexive sheaf on P®. Let z > 0 be an integer.
Assume that for a general plane, H, h'(Eg(k)) = 0if £k > z. Then if t > z + 1,
h'(E(t — 1)) # 0 implies R} (E(t — 1)) > A (E(2)).

The proof of the lemma rests on the following well known

Deﬁnition-Theorem ( Castelnuovo-Mumford ): A coherent sheaf F on P" is said to be
k-regular if hi(F(k —i)) =0,if 7 > 0. If F is k-regular then

i) F(k) is globally generated;

ii) the natural maps H°(F(k)) ® H°(O(m)) — H°(F(k + m)) are surjective;

iii) F is (k+1)-regular.

Proof of the lemma. From the exact sequence
0— E(t—1) — E(t) — Ey(t) — 0

we get
0— H°(E(t—1)) - H(E(t)) » H(Ex(t)) » H'(E(t —1))
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In particular, for t > ¢, we know that H°(Eg(t)) = 0, thus we have exact sequences
BY(E(t)) & HO(BR(t) - HY(BE(t—-1)) = HY(E(X)  (+)

We consider the following commutative diagram

HY(E(t))® H°(Opa(1)) — HU(E(t+1))
fi®id ] L fina
HY(En(t))® H°(Ou(1)) = H°(En(t+1))

Tt is clear that, when o is surjective, f; is an epimorphism implies fi+1 is also an
epimorphism. By hypothesis we have h*(Eg(t—1))=0ift 2z~ 1. Moreover h?(En(t —
2)) = hO(Ef(—t — 1)) = A% (Ep(-t—1—c)) =0if H is general because t > 1 and Ex
is a stable vector bundle. From the Castelnuovo-Mumford theorem we have that Ep 1s
t-regular if ¢ > = + 1 hence the map « is surjective there.

Finally, from (*), we see that f; is surjective iff g; is an isomorphism; hence, if g; is an
isomorphism for any ¢ > t+1, then g, will be an isomorphism for all m > ¢. But this can
only happen in case h'(E(t — 1)) = h'(E(t)) = 0. ¢

Proof of the Theorem(see [E] Lemma II.2). From the restriction sequence to H
0— E(-1) — E — Eg —0

and from hi(Ex(l)) = 0, h2(Ex(l)) = 0if [ > o (the first by hypothesis, the second by
stability), we find H2(E(I-1)) ~ H?(E(l)) ifl > z hence both vanish because h?(E(p)) =0
if p >> 0. Furthermore, by stability, we have H*(E(l)) = 0if [ > 0 hence R} (E(z)) =
RO (B(2))— x(B(2)) < SosicxhO(Far(i)) — x(F(2)) (+). From [H1;7.4] we get h(Ex()) =
x(Ea()+h' (Eu(i)) < (t+1)(t+2+c1)—t—2—c1ifi <z and kY (Eg(z)) = x(Eu(z)) =
(z +1)(z + 2+ ¢1). Moreover, for a coherent sheaf 7 of rank r on P3, the Riemann-Roch
theorem says ( [H2;2.3] )

r 1
X(.F) =7+ (C1;—3> —262+'2“(C3 -—Clcz)——l
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hence

(P62 +11146) —co(I+2)+F =0

x(EB(l)) =
128 +92 +13146) —co(I+3)+ 2 e =-1

Combining with (+) and after some short calculations we find h*(F(z)) < z{co — 22 —

c1} +ca(1 4 5) — 2. The conclusion follows from the last lemma. .
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3 Vanishings for the cohomology of certain
families of stable rank two vector bundles on
P ()

Introduction

One of the motivations of the present paper is provided by the following problem,
which, as far as we know, is widely open (see [H2;9.17]):

determine the least integer m.,(c2) s.t. A'(E(k)) = 0 if & > m,(cz) for every stable,

normalized, rank two vector bundle F on P3.

A similar problem was solved by Gurrola (see [G]) in the context of stable reflexive sheaves.
Indeed he was able to show that, given a stable, normalized, rank two reflexive sheaf
F with Chern classes ci, c3, c3, there is a function m(c;,ca,¢3) s.t. h'(F(k)) = 0 if
k > m(cy,c2,c3). Moreover that bound turned out to be sharp in the sense that it is
realized by reflexive sheaves with maximal c;. However, in the case ¢3 = 0, that bound
gives a vanishing which should be very far from being sharp for vector bundles. Indeed on

one hand the function m(cy, ¢z, ¢3) found by Gurrola is quadratic in ¢z, on the other hand

it was conjectured by Chang ([C]) that it should hold:

mo(cz) < 2co + 1 — (dep + 5)2

1 1.1
_ <2+ = —(ca+ )7
m_1(ez) < Cz+2 (c2 4)

In the paper [E], Ellia was able to improve in the linear part the vanishing by Gurrola but
it seems to be very hard to prove the conjecture by Chang or, at least, a vanishing which

is linear in c¢y. Partial results are available when the spectrum of E has a particular shape

(*) The content of this chapter represents a paper which is going to be published in
“Annali di Matematica pura ed applicata”

18



or when ¢, is very small. In [H2;9.17] is proved that the conjecture holds for stable vector
bundles with ¢; = 0, c; = 2m + 1 and maximum spectrum, in [E] for stable vector bundles

with spectra (0°2), (—-1,0C2_2, 1) and for stable vector bundles with ¢; = 0, ¢c2 < 5.
In the present paper we will proceed a little bit in this direction proving the following
Theorem the conjecture is true in the following cases:

a) for vector bundles with ¢; = 0 and sp = (-m,..,—1,0%,...,m);

b) for vector bundles with ¢; = —1 and maximum spectrum;

c) for vector bundles with ¢; = —1 and sp = (—1“,0“);

d) for vector bundles with —1 < ¢1 < 0, co < 6.

In the first two sections of the paper we will achieve the results, interesting in their
own, of the complete characterization of the vector bundles of the points a) and b) (see
theorems 1.1, 2.1). The vanishing will turn out as a corollary: in the corollary 1.4 we will

prove the point a) and in the corollary 2.7 we will prove the point b).

As what concerns for point c) and d) of the proposition, they will be proved in the third

section of the paper: point c) in proposition 3.6 and point d) in proposition 3.4.

I) The family of stable rank two vector bundles with spectrum (—m,..,—1,0%,1,..

In this section we will prove the following

Theorem 1.1: Let E be a stable vector bundle with ¢ = 0, c2 = 2m + 2 and
spectrum —m,—m + 1,...—1,02,1, ... m — 1,m. Then one of the following must happen:

a) E(1) has a section whose zero locus is a curve Y’ which is the disjoint union of a
line D with a curve Y which is a double structure on a degree m + 1 plane curve and s.t.
wyr = Oy:(—2).

b) E(2) has a section whose zero locus is a curve Y which is the scheme theoretic

union of two skew lines L; and L with a curve Yy which is a double structure on a degree

m + 2 plane curve and s.t. wy, = Oy,(—A), where A :=Yp N (L U Ly) and degA = 4;
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The proof of the theorem will follow after several lemmas.

Lemma 1.2: Let E be as in 1.1, then E has an unstable plane H of order m.

Performing the reduction step with respect to H (see [H2;9.1]) gives us E as an extension
0—E — FE-—Izu(-m)—0 (1.1)

where the Chern classes of E' are (—1,m + 2,m? + 2m + 2).

Proof. From well known properties of the spectrum (see section 3 and references
therein) we have h'(E(—1 — m)) = 1, h}(E(—m)) = 3 therefore there exists a section
h € H°(O(1)) such that h € Ker(H°(O(1)) @ H*(E(—m — 1)) —» H'(E(—m))). If H is
the plane defined by h = 0 we have

0 — E(—m—1) - E(-m) — Eg(—m) — 0 (+).

The exact cohomology sequence shows that h°(Eg(—m)) 5 0 and H is unstable of order
m. The last part of the statement comes from [H2;9.1].

Lemma 1.3: Let E' be the sheaf coming from the reduction step (1.1), then E’ has

an unstable plane H’ of order m+1. Performing the reduction step with respect to H' we

get
0— E"(-1)— EFE — Iz gp(-m—1)— 0 (1.2).

the Chern classes of E” being (0,1,c}). Moreover the plane H' can be chosen to be the

same of H arising in lemma 1.2.

Proof. Dualizing the reduction step sequence (1.1) we get ([H1;9.1])
0— E-L B'(1) — Og(m+1) — 0 (++)

The cohomology long exact sequence shows that h%(E'(m — 2)) = h*(E(m —3)) = 1,
h2(E'(m—3)) = h?(E(m—4)) = 3. Moreover the map f induces a morphism f : H2(E) —
H2(E'(1)) hence the following diagram commutes

HYE(m —4)) =5 HX(B(m - 3))
L f Lf
HY(E'(m —3)) - H(E'(m-2))
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Since h%(Eg(m — 3)) = h*(Eg(—m)) = 1 we have from (+) that the map multiplication
by h in the top row is zero. Finally because the vertical rows are isomorphisms, we have

that the bottom row is also zero and h2(El(m —2)) = h2(E'(m - 2)) =1. {

Proof of the theorem 1.1. Since E is stable, E” is semi-stable. It follows ([H2;8.2])
that ¢ = 2 or 0 (cj must be even ). If ¢; = 2 since x(E") > 0 and h*(E") = 0 [H2;8.2]
we get h°(E") # 0.

If ¢!/ = 0 then E” is a vector bundle with ¢; =0, c2 = 13 since it is semi-stable, it is in
fact stable.

In conclusion there are two possibilities for E':

a) cf = 2, E" is semi-stable given by
0->0—E">Ip—0

where D is a line;

b) ¢f =0, E" is a null-correlation bundle.

a) From (1.1,1.2) and the last short exact sequence we have 1 = R%(0) = R*(E") =
R°(E'(1)) = h°(E(1)). Hence E'(1) has a section which vanishes on a degree m + 2 curve
X' and E(1) has a section which vanishes on a degree 2m+3 curve Y’ s.t. wyr = Oy (—2).
Moreover, since E”, E' and E are isomorphic outside H and D cannot be contained in
H (otherwise h°(E'(1)) > 2 but A9(E'(1)) = h%(E") = 1), we have Resy(X') = D and
Resg(Y') ~ X' where Resg(C) is the residual scheme of the curve C with respect to H.
Finally from the first isomorphism we conclude that X' is the union of the line D with
a degree m + 1 curve S lying on H ( indeed degX' = m + 2), and from the second we
conclude that Y’ is the schematic union of D with a double structure on the plane curve
S ( this union being disjoin because wyr = Oy+(—2)).

b) This time: H°(E"(1)) ~ H(E'(2)) ~ H°(E(2)). Arguing as above we get that
E(2) has a section vanishing along a curve Y, such that wy = Oy, degY = 2m + 6,

Y = Y, UC where C = L; U Ly is the union of two skew lines and where Yy is a double

structure on a curve P C H, ( indeed degP = m + 2 as follows from the computation of
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the degree of the zero locus of a section of E'(2) ). We may assume L; ¢ H (E"(1) is
globally generated). Moreover since wy = Oy, L; intersects Yj in a subscheme of length
two. This means that L; is contained in T%,(Yy) the Zariski tangent plane to Y, at the
point z; = L; N P. Set A := CNY, and suppA := z; Uzy. Let ¥y be given by the Ferrand
construction

0 — L, —Ip—L—0
where L is an invertible sheaf on P. Applying the functor Hom(*,wps) to the sequence
0— 0y — 01, ®0¢c — 0y — 0
we get the usual long exact sequence of sheaves
.. — E2t*(Oa,wps) — Ezt*(Oy,,wps) ® Ezt*(Oc,wps) — Ezt®(Oy,wps) —
Ezt*(0a,wps) — Ezt*(Oy,,wps) ® Ezt*(Oc,wps) — ....

From lemma III-7.3 of [H] we have that Ezt’*(Oa,wps) = 0. Moreover, as Yy and C are
locally complete intersection curves ( see [B] prop. 1), the last term also vanishes (indeed
the structure sheaves of Yy and C have resolutions of length 2). Recalling lemma III-7.4

of [H], the sequence above becomes
0 — wy, we — wy ~ Oy — wa — 0 (*)
Tensoring (%) by Op we get
0— Tor'(Op,wa) 4, wy, |p ®(wec ® Op) > Op — O(z,1u{zs} — O

The sheaves Torl(Op,wA) and wec ® Op are supported on the points z; and z;. Fur-
thermore, as Y is locally complete intersection, wy;, is locally free on Y, hence the first

component of the map f and the second of the map g vanish and we can write
0 — wy, [p— Op — Ofz,}ufz,} — 0

which shows that wy, |p~ Op(—2z1 —z2). Since wy, |p~ wp® L™ ( [B] prop 1) we deduce
L ~ wp(z1 + z3). In particular A*(L) = 0 which implies that the natural restriction map
from Pic(Yy) to Pic(P) is injective [B]; it follows wy, = Oyy(—A).
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To conclude the proof we need to show that cases a) and b) are effective. For the case
a) it suffices to take ¥ as the disjoint union of a line with a suitable double structure on

a plane curve of degree m + 1 (see [HR] 2.10, 2.11).

b) Let P C H be a smooth curve of degree m + 2. Let z1, z» denote two points of P.
Let L := wp(z; + z2). Observe that Np ® L is globally generated. Therefore taking a
suitable surjection N} — L we can construct a double structure, ¥y, on Ps.t. Ipy, ~ L.
We may also assume that the embedded Zariski tangent plane to Y; at z; is different from
H ( otherwise Yy would be a plane curve but this is impossible because R (Iy,(-1)) =
RO (wp(zy + z2) ® O(—1)) # 0). Let L; be a line intersecting P at z; and such that:
L;¢ H, L; C Ty Yy, Li N Ly = ®. We define Y as the scheme theoretic union of Yy and
C:=LyUL,.

To construct the desired vector bundle E we have to show

i) wy has a section which generates almost everywhere;

i) A (Iy(—m + 1)) # 0.
Indeed Y is a locally Cohen Macaulay and generally locally complete intersection curve,
thus a section as in i) will yield an extension: 0 — O — E(2) — y(4) — 0 with E a
rank two reflexive sheaf. Since p,(Y) = pa(Yo) +2 (because L; C T;,Yp) we easily see that
cs(E) = 2p,(Y) —2 = 0 and E is a vector bundle with the required Chern classes.

Finally i) is equivalent to h*(E(—m—1)) # 0. This condition implies sp(E) = (-m,...,—1,0%,1,..

i) From h'(L) = h'(wp(z1 + z2)) = 0 we get the injectivity of the restriction map
from Pic(Yy) to Pic(P). Moreover wy,(A) |p~ L™ ® wp ® O(z1 + z2) = Op implies
wy, (A) 2 Oy, hence a generic section of wy,(A) ~ wy |y, generates everywhere (on Yo).
Since wy |c~ wc(A) ~ Or, ® Or, we see that we can find sections of wy |1, and wy |¢

which glue to give a section of wy generating almost everywhere (in fact everywhere).

ii) To prove that h'(Iy(—m + 1)) # 0 we proceed as follows. Firstly we have
R (Iy-(-m+1)) = h°(Oy(—m + 1)) = h*(Oy-(m — 1)). Moreover from the sequence 0 —
Iy, y — Oy — Oy, — 0 where 1, v ~ Or,(—2)® Or,(—2), we see that h!(Oy(m —1)) =

h(Oy,(m—1)). Finally from the cohomology exact sequence associated to 0 — L(m—1) —
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Oy,(m—1) = Op(m —1) — 0 and from h*(L(m — 1)) = A°(L*(—m + 1)@ wp) = 0 we get
R*(Oy(m — 1)) = R (Oy,(m — 1)) = k*(Op(m — 1)) = h®(wp(1l — m)) = h°(0Op) = 1. &
Corollary 1.4: Let E be as in theorem 1.1. Then A!(E(p)) =0if p > 22 —1

Proof. a) The sequence (1.2) reads:
0— E"(-1)— E' — Iz g(-m—-1) —0 (%)

with lengthZ' = ci(gﬁ = 1. From the defining sequence of E” we see that h*(E"(l)) =0
if | € Z thus R*'(E’'(k)) = 0 if £ > m + 2. Dualizing (7) we have (see the proof of theorem
9.1 of [H2]):

0— E'(1) — E"(1) — Lirg(m+2) — 0 )

where W is a subscheme of Z (see (1.1)) and lengthW = lengthZ — 1. From the properties
- of the spectrum [H2;7.1-5] we have (sp(E') := {k;}): R*(E'(l)) = h*(®O(ki +1+1)) =0
if I > ¢co(E') —2 = m and from (%) we get h'(Lywp(r)) = 0if » > 2m + 1. This implies
W (Iz(D) = 0if I > 2m + 2. Indeed from the sequence 0 — Iz z — Iyym — Lz — 0
we get hl(IZ’H(2n'L + 1)) < h(Iw,z(2m + 1)) and from 0 — Lyy,z — Oz g — Ow,g — 0
we find %Iy, z(2m +1)) = 1 thus A} (Iz,g(2m+1)) < 1. The form of the Hilbert function
in terms of the numerical character of Z ( see point (iii) of pag. 112 of [EP] ) shows
that the Hilbert function of Z is strictly increasing until it attains lengthZ. This allows
us to conclude h'(Iz g (1)) = 0 if I > 2m + 2. Finally from the sequence (1.1) we find
hY(E(p)) =0ifp>3m+2 =32 1,

b) This time the sequence (1.2) reads:
0— E"(-1) — E' — Og(-m —1) — 0 (o)

As E" is a null-correlation bundle we have A}(E"(l)) = 0if I > c(E") —1 = 0 and
R*(E'(r)) = 0 if » > 1. Dualizing (o) we get:

0— E'(1) — E"(1) — Izug(m+2) — 0

where Z is the same scheme of (1.1) ([H2;9.1]). Arguing as above we find h'(E(p)) = 0 if
P23 —-2.9
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II) The family of stable rank two vector bundles with spectrum (—m +
1,..,m—2)

In this section we will be concerned with the family of rank two stable vector bundles
on P?® with ¢; = —1, ¢; = 2m — 2 and the maximum spectrum (—m+1,...,m — 2). As our
situation is very similar to that of rank two stable vector bundle with ¢; = 0 and maximum

spectrum, we will be sketchy and follow sec. 9.3-17 of the paper [H2].

What we are going to prove is the following

Theorem 2.1: For any m > 2 the stable vector bundles with Chern classes (—1,2m—
2) and maximum spectrum, form an irreducible, non singular, rational family of dimension

3m? + m — 1. Moreover, given any vector bundle E in the family, then the following are

true:

1) A%E(1)) = 1 and if s € H°(E(1)), then (s)o describes a degree 2m — 2 curve Y,
which is a multiplicity two structure on a degree m — 1 plane curve;

2) hKY(E(m)) > -"—L(—"%'—"—l—) — 1 and if s € HY(E(m)) is general, then it vanishes in
codimension 2 and its zero locus is a curve C which is the disjoint union of a degree 2m —2

plane curve with a complete intersection (m,m-1). ¢
We begin proving the following result:

Proposition 2.2: For any r > 2, the moduli space of rank 2 semistable reflex-
ive sheaves with Chern classes (0,7,72 +7) ( [H2;8.2] implies that such sheaves are only

semistable and not stable and have the maximal c3 allowed) is irreducible and non singular

of dimension »? 4+ 4r + 2.
The proof of proposition 2.2 will follow after several lemmas.

Lemma 2.3: Let F be any sheaf as in 2.2, then F' has an unstable plane H of order

r. The reduction step with respect to H gives us F as an extension
0—000(-1) — F —Iyyg—0 (2.1)
where Y is a degree r plane curve.
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Proof. The proof of the existence of H goes along the same lines of lemma 1.2.

Reduction step gives
0— F' — F — Iy g(-r) — 0 (6)

The Chern classes of F' are (—1,0,c¢3). From (6) and the semistability of F', we see that F’
has order of instability -1 (see[S]). Proposition 3.8 of the paper [S] says ¢3 < ¢2(c2+1) =0,
thus F' is a vector bundle. Moreover as h°(F') # 0,h°(F'(—1)) = 0 we see that F is given

by the extension

0— 00— F — Ix(~1)—0 (3)

with X a curve with degX = ¢, = 0. But then X = &, Iy(-1) - O(—1) and (3) splits.
Finally putting s := lengthOy-, we have ([H2;9.1]) 2s = ¢} =0, s =0, W = & and ()

becomes the extension of the statement. ¢

Lemma 2.4: Every semistable rank 2 reflexive sheaf F' with Chern classes (0,7,72+r)
is given by an extension 0 » O — F — Iy — 0 where Y is a degree 7 plane curve.
Conversely every such an extension gives a reflexive sheaf with the right Chern classes.

This construction gives us a family which is irreducible of dimension 72 + 4r + 2.

Proof. [H2;8.2.1] implies that the extension of the statement gives a semistable reflex-
ive sheaf with Chern classes (0,7,72 + 7). Conversely lemma 2.3 implies F' to be given by
(2.1) where Y was a degree r plane curve and so F' has a section whose zero locus is Y.
Dualizing the reduction step sequence (2.1) ( see [H2;9.1]) we get 0 — F' — O @ O(1) —
Iz r(r+1) — 0, where Z is a zero dimensional scheme s.t. lengthZ = 72 +r ([H2;9.1]). To
prove the statement concerning the family it is sufficient to note that giving F' is equivalent

to giving a plane H and two plane curves without common components with degrees r and

r+1. O

Proof of the proposition 2.2. To complete the proof we are only concerned with the
smoothness. What we have to check is the equality between the dimension of the family
above and the dimension of the Zariski tangent space to the moduli space at a sheaf F. The

Zariski tangent space at F' is Ezt'(F, F') and we have to show dimEzt'(F, F) = r® +4r+2
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if F'is given by (2.1). To calculate dimExt!(F,F) one can apply the functor Hom(-, F)
to (2.1)

0 — Hom(F,F) — Hom(0O & O(-1),F) — Ezt*(Ou(-r),F) — Ezt'(F,F) — 0

Ezt!(Og(-r), F) can be found applying the functor Hom(-, F') to the resolution sequence
of Ox(r), Ext'(O(—1),F) = H*(F(:)) and H(F(3)) are easily calculated from (2.1).
To find dimHom(F, F) we can proceed as follows. Firstly we have dimHom(F, F) > 2
because F is not stable. Then applying Hom(F,-) to (2.1) we find dimHom(F,F) <
1 + dimHom(F,Og(—r)) and applying Hom(-,0u(—7)) to (2.1) we get

dimHom(F,Op(—r)) =1 so dimHom(F, F) = 2 and the proposition follows. ¢

Taking into account 2.3, 2.4, the proof of the following lemmas goes exactly as the

one of lemmas 9.11-12 of [H2]:

Lemma 2.5: Let E be as the statement of the theorem. Then E has an unique

unstable plane H of order m — 1. Performing the reduction step with respect to H gives
0——»E'(—1)—+E——>I3,H(1~m)———>0 (2.2)

where E' is a stable reflexive sheaf with Chern classes (0,m — 1,m? —m); H is also the

unique unstable plane of order m — 1 of E'. &

Lemma 2.6: The restriction of E and E' to H is described by
0 — Og(m—2) — En — Izg(l—m)—0
and By ~ Iz p(m —1) @ Ou(l —m). ¢

Proof of the theorem 2.1. Theorem 9.1 of [H2] says that the sequence (2.2) has a dual
one: 0 — E(1) — E'(1) — Om(m) — 0. Tensoring by O the last map and taking into
account lemma 2.6 we get a surjection v : By = Iz a(m—-1)®0u(1-m) — Og(m-1)—0
where v is given by a form f of degree 2m — 2 and not vanishing on Z on the second factor
and a scalar on the first. With a simple counting the parameters we conclude the statement

concerning the dimension of the family (see [H2;9.13-14]).
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Proof of 1). We have A°(E(1)) = R%(E') = hR%(O(-1) ® O) = 1 as follows from the
sequences of lemmas 2.3 and 2.5. Giving s € H°(E(1)) is equivalent to giving E(1) as an
extension

0— 0 — E(1) — Iy+(1) — 0

where Y is a degree 2m — 2 scheme of codimension 2 s.t. wy = Oy(—3). As the sheaves
E(1), E' and O @ O(—1) are isomorphic outside the unstable plane H, it is clear that the
support of Y is in H. From the sequence of lemma 2.6 we have H'(Eg(1)) = H°(Ou(m —
1)), so the restriction of Y to H is a plane curve Y, of degree m — 1. Because of wy =
Oy (—3), no component of ¥ can be contained in H and so the conclusion comes from the

degrees.

Proof of 2). From the sequences of Lemmas 2.3 and 2.5 we get H°(E(l)) ~ H*(E'(I-1)) ~
H°(O(l —2)® O(1 — 1)) if I < m and A°(E(m)) > R°(O(m — 2) ® O(m — 1)) (note
that the sequence in the middle of the proof of lemma 2.4 shows that Z is a complete
intersection (m,m — 1) in H). Therefore E(m) has sections vanishing in codimension

2 o m — 2 curve C s.t.

2 . Let s be such a section. Its zero locus will be a degree m
we = O¢(2m—5). The sequence of lemma 2.6 shows that H(Og(i+ m—2)) ~ H*(Ex(1))
if 7 < m. Moreover such isomorphisms are part of an injection H?(O y(m —2)) — H(Ex)
of H)(Op)-(graded)modules, hence any section of Eg(m) is a produci of the unique section
of Ex(2 — m) by a form of degree 2m — 2. In particular this is true for the restriction
spg of s to H whose zero locus is then the union of a degree 2m — 2 plane curve P with

Z. Arguing as in the proof of lemma 9.16 of the paper [H1], it can be easily seen that
Z M P =&. On the other hand the sequence

0—E —080(-1)—Izg—0
obtained dualizing the reduction step (2.1) (see [H1;9.1]) shows that, outside H, s is a

complete intersection (m,m —1). &

Corollary 2.7: Let E be as in theorem 2.1. Then h'(E(p)) =0if p> 222 —1

Proof. As the the proof is very similar to that of corollary 1.4 we are going to be very

sketchy.
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Let E' be the sheaf arising from the sequence (2.2). Dualizing the defining sequence of E'

(see (2.1))
0—060(-1) — E' — Og(-m+1) —0 )

we find ([H2;9.1])
0—E — 00 0(1) — Izu(m)—0 (o)

where Z is the same scheme of (2.2). From () we see h*(E'(l)) = 0 if I € Z. From the
properties of the spectrum we find h2(E'(1)) = A} (®@O0(k; + 1+ 1)) =0if [ > cp(E') -2 =
m—3 (sp(E') := {k;}). Finally from (o) and (2.2) we conclude h'(Iz (7)) = 0ifr > 2m—3
and R (E(p)) =0if p>3m—4=32-1. ¢

I1I) A vanishing theorem

We start recalling the following facts (see [E],[HR] and ref. therein).

Proposition 3.1: Let E a rank 2 vector bundle on P?, with Chern classes ¢, cq,

—1 < ¢; £0. Let M denote the graded module H*(E(x)). If
0—Ly—ILy—Ly— Ly 5 Lo— M —0

is a minimal resolution of M, then rk(L;) = 2rk(L¢)+ 2, and there exists an isomorphism

¢ : Li(c1) — Ly s.t. €d€*(c1) = 0 and which induces a minimal monad for E:

Moreover L#(c1) is direct summand in Ly ([HR;3.2]). ¢

In the sequel we will put: Ly = B1<i<rO(—a;), I, = B1<j<ar+20(—0;), a1 < .o < ar;

Br < ... < Barga.

If moreover E is such that RY(E(—1)) = 0, we denote by sp(E) = {ki}1<i<c,, the
spectrum of E. Furthermore we set kT := maz{k;}, s(n) := #{ki|lk; = n}. Finally we
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denote by r(n) the number of minimal generators of degree n of the module M. Then the

following properties hold (m; := dimM;):

Dr(m)=0,m>k" —cy, ar <kt —1—c¢; ;

2)r(m)=0,m< -2—kT, oy = -1 kT, s(k") = #{t|a; = =1 — kT };

3) Bory2 > ar+1,061 > ap

A{-0i} = {B;j + ar};

5)moy—i=355;8(0)7 —i+1),i20;

6) s(4) =22 ;5541 8(0) Sr(—i—1) <s(i) —1for 0 < i < k¥, r(—=1—k7) = s(k).
Lemma 3.2: Using the above notations, suppose Ly has r summands with degrees

< l. Then L; must contain at least » + 3 summands with degrees > 1 —~1if ¢; =0, > —I
if ¢; = —1 (see [HR] prop 3.3). ¢

Lemma 3.3: Using the above notations, A'(E(m)) = 0,if m > (8, — a1) + (Br41 —
7042) —+ ...+ (621‘——1 - ar) + (627~ — C!l) + (182r+1 - l}!l) -+ (,821'—!—2 - 3) (see [E] II1.5 ) <>

The aim of this section is to prove the following improvement of Corollary IV.6 of [E]:

Proposition 3.4: Let E be a stable vector bundle with ¢, < 6. Then h'(E(m)) =0
if m > 2¢y + 2 — (4eo 4—.‘5)1/2 and ¢; =0orm > 2¢c; +1/2 — (2 + 1/4)1/2 and ¢; = —1.

Let us start by proving three lemmas

Lemma 3.5: Let E be a stable vector bundle with Chern classes (-1,6) and spectrum

(—2,—12,0%,1). Then E is the cohomology of a monad of one of the following types:
0 — O(-3) — 20(-1)®20 — 0(2) — 0
0 — O(=3) @ O(~2) — O(=2) ®20(~1) ® 20 ® O(1) — O(1) ® 0(2) — 0
In particular, applying lemma 3.3, we get h*(E(m)) = 0 if m > 8.

Proof. From the properties of the spectrum we find m_y = 1, m_; = 4, 7(-2) = 1,

0<r(~1)< 1.

a) 7(—1) = 0: none of the a’s is equal to -1, moreover the generator in M_, has no

relations in degree -1 so none of the 3’s is equal to -1. By the symmetry property 4) we
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have {8;} = (0°*2,1°%2). From the constraint on the ranks and the property 3) above we
have {a;} = (—2,0?). Finally lemma 3.2 with [ = 0 implies a = 0;

b) 7(~1) = 1: now one of the a’s is equal to -1 and the generator of M_» has one
relation in degree -1 thus property 4) implies {8;} = (—1,0°,1¢,2). By property 3) we
have {a;} = (—2,-1,0%,1%) and from the constraint on the ranks ¢ = a + b+ 2. Again
lemma 3.2 with [ = —1 gives b = 0 and with [ = 0 gives a = 0. ¢

Proposition 3.6: Let E be a stable vector bundle with Chern classes (—1,¢2) and

spectrum (—12/2,0°2/2), Then E is the cohomology of a monad of the following type:
0 — (c2/2)0(=2)®u0(—1) — (c2/2+1+u)0(—1)®(c2/2+1+u)0 — u0S(c2/2)0(1) — 0

where u < maz(c — 5,%). In particular, applying lemma 3.3, we get R (E(m)) = 0if
m > maz(2cy — 5, 32).
Proof. We have m_; = ¢3/2, 7(—1) = ¢2/2. From the properties 3), 4) we find {8;} =

(0c2/2+1+u qea/2+14w) [o.1 = (—1¢/2 0%). Let us consider the following sequence
0 — K — (c2/2 +1+u)0 - (c2/2)0(1) (3.1)

Suppose now the map j to be generically surjective and define G := coker(uO(—1) —
(c2/2 4+ 1+ 4)0). From the Eagon-Northcott complex associated to j : G — (c2/2)O(1)
(7 is the map induced by j )

0 — O(u) — G®O(2) 21 (e3/2)0(1) ® O(Z) — 0

we infer u < ¢y/2 otherwise G would have a section contained in the kernel of; and this
cannot happen as follows from the sequence 0 — (c3/2)0(=2) — Kerj @ F — E — 0
(F == Ker((2 + 1 +u)O(-1) — Ly)), recalling that h°(E) = 0 by stability. Suppose
now the map j of (3.1) to be not generically surjective. Then lemma 3.7 of [HR] implies
RO(K(1)) > 4(c2/2+1+u)—10(cz/2—1) and h°(E(1)) > 4(c2/2+1+u)—10(c2/2—1)—u.
But R°(E(1)) < 1 otherwise the zero locus of a section of E(1) would be a plane curve Y’
with wy = Oy (—3) which is impossible. This gives u < ¢c; — 5. ¢
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Lemma 3.7: Let E be a stable vector bundle with Chern classes (—1,6) and spectrum

(—2%,-1,0,1%). Then E is the cohomology of a monad of the following type:
0 — 20(—3) — 30(-2)® 30(1) — 20(2) — 0

In particular, applying lemma 3.3, we get h'(E(m)) =0if m > 9.
Proof. We have m_, = 2, m_; = 5, 7(—1) = 0. Arguing as above we find {8;} =
(—1%,09%° 1978 93) f4.} = (—22,07,1%). From lemma 3.2 with [ = —1 we get b = 0. Let

us consider the following sequence
0 — K — a0 @ 30(1) - 20(2) (3.2)

The map k cannot have rank < 2 otherwise lemma 3.7 of [HR] would imply A’(E) >
RO(K) > a+ 12— 10 = a + 2. Setting G := coker(aO(—1) — a0 @ 30(1)) we have from
the Eagon-Northcott complex associated to k : G — 20(2) (k is the map induced by k)

0—O0(a—1) — G—20(2)— 0

Again, we must have a — 1 < 0 otherwise E would have a section. ¢

Proof of proposition 3.4. a) ¢; = 0: all the allowed monads are listed in tab. 5.3 of
the paper [HR]. For all but the 6(4) it is sufficient to apply lemma 3.3 to the monad. The

case 6(4) is treated in corollary 1.4.

b) ¢; = —1: the properties of the spectrum listed in section 7 of [H2] and in proposition
5.1 of [H3] show that, if ¢, < 6, all the possible spectra are covered by lemmas 3.5-7,
proposition 3.6 and corollary 2.7. {
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4 Some vanishings for the cohomology of
rank 2 stable reflexive sheaves on r: and for
their restriction to a general plane

In this paper we will be concerned with two questions raised by Ellia in the paper [E].

The first part is devoted to an improvement of the results of [E] concerning a vanishing for
the cohomology of the restriction to a general plane H of a stable rank two (and normalized)
vector bundle E on P?. By Barth restriction theorem and a result of Hartshorne ([H1;7.4])
it follows that, if H is general, then h'(Eg(k)) = 0 if £ > ¢; — 2. In [E] this result was

L1/2
improved in the sense that h'(Eg(k)) = 0 if k > ¢; — m where m is the round-up of .

The starting point of the proof was that if h*(Eg(k)) # 0 for a general plane, then Eg
would have a section vanishing on a set of points with an high degree intersection with
a line L, which turns out to be very unstable. In the Proposition 1.4 we will see that all
these lines, obtainéd varying H, have to lie in a fixed plane which turns out to be much
unstable. This will give us a contradiction and we will be able to improve the results above
showing that h'(Eg(k)) = 0if & > -g-cz (see theorem 1.8). As noted in [E;9.1] this result

should not far from being sharp.

In the second part of this paper we will be concerned with the problem of finding
the least integer me, (c2) s.t. AY(E(k)) = 0if k > me¢,(c2). In the paper [G], Gurrola
found a function m(cy,cs,¢3) s.t. RN (F(k)) = 0if k > m(c1,ca,¢3) (+), for any stable
rank two reflexive sheaf F' with Chern classes ¢;, ¢z, cs. This bound is sharp in the
sense that it is realized by some reflexive sheaves with ¢3 = cg — ¢o. However this bound
should be very far from being sharp for vector bundles. Indeed in [C] it is suggested that
mo(ca) < 2¢p + 1 — (4ey + 5)7. In the paper [E]lthe following improvement of the linear
part of (4) was proved: my(cz) < 52-22— + %cz -+ —cjg— In the Theorem II.3 we will improve
these results also in the quadratic part, showing that mg(cy) < il—;—é + 2¢,. Similar results

turns out to hold in the case ¢; = —1.
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Finally we will show ( see Theorem III.4) that an improvement of (+) holds also for reflexive
sheaves if c; is not too big. It turns out that if a stable reflexive sheaf F" is s.t. (4) is near
to be sharp, then c3 has to be high and there exists a very unstable plane containing a lot

of singular points of F (see Theorem III.2).

I) Vanishing for the restriction to general plane

In this paper all sheaves are assumed to be normalized.

Let € be a stable rank two vector bundle on P2. Theorem 7.4 of ref [H1] says that
hi(E(m)) =0ifm>c;—2and ¢y =0orifm2>cy—1 and ¢; = —1. If E is a stable rank
two, normalized vector bundle on P3 with cs > 4 we know by Barth restriction theorem
that FEp is stable if H is a general plane of P3 thus h}(Eg(m)) =0if m > c2 — 1. What

we are going to do is to improve this result (see Theorem 1.8). We recall lemma I.1 of [E].

Lemma I.1: Let £ be a semistable rank two vector bundle on P? with ¢; > 4. Set
t:=min{n € N: h(E(n) # 0}. Assume h'(£(c2 —k)) > 0 and ¢ +3 > 3k — 2vEk —1if
cg=00rcy+1>3k—2tif ¢; = —1. Then

Di(t+e)<k—1andt<k?

ii) consider a section of £(t) : 0 — O — &(t) — Iz(2¢ + ¢1) — 0, then Z contains a
subscheme Z' contained in a line and s.t. lengthZ' > co +t —k+ 2+ c1.

Proof. For the case ¢; = 0 we refer the reader to [E]. As the case ¢; = —1 is very
similar we are going to be very sketchy.

i) [H1] 7.4 implies co — k < ¢z —t? + 1t — 1 so that ¢(t — 1) <k —1:

ii) set 7 := maz{m € N : h'(Iz(m)) # 0}. As R (Iz(co+t—k—1)) = h'(E(c2 —k)) #
0 we have T > ¢y -+t — k — 1. We would like to use [EP] cor 2 with s = 2. We have to check
a)d=degZ =c;+t* —t > 4;b) T > £ —1. a) follows from the hypothesis c2 > 4 because
£ is stable so t > 1. To see b) we show that ¢ +t -k —1> -;—l — 1. By i) it is enough to
check ¢y > 3k — 1 — 2t which is the hypothesis. Finally Z cannot be a complete intersection
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(2, 2) because of 7 > 2 —1 and so [EP] Cor2 implies that there exists a subscheme Z' C Z
contained in a line s.t. lengthZ' > 17 +2>co+t—k+1. O

The proof of the following goes along the same lines of Corollary 1.1.2 of [E]:
Corollary 1.2: If D is the line containing Z' then

a) Ep ~ Op(r) ® Op(—r +¢;) with 7 > co —k + 2 + cq;

b) if L is different from D then £ ~ Or(p) ® Or(—p +¢1) with p < c3 —k +¢;. O

Remark: the uniqueness at the point b) of the last corollary rests on the fact that the
degree of a subscheme of the zero locus of a section of £ is bounded by the second Chern
class. As the component of the zero locus of a section of a torsion free sheaf of rank two

which miss the singular locus is also bounded by the second Chern class we can conclude:

Corollary 1.2’: Let F be a torsion free sheaf on P2. If 0 < ¢ and k have the same meaning
as above and the same constraints of lemma I.1 hold, then there can be at most one line

missing the singular locus of F which is unstable of order > ¢y — k + 24+ cq.

Following [E] we will say that a line L is a super-jumping-line (s-j-1), if &1 ~ Or(r) @
Or(—7 4 c¢1) with r > ¢ — k + 2 + ¢;. Corollary 1.2 implies that under the hypothesis of
Lemma I.1 there is exactly one s-j-1in P2. Let F be a stable rank two reflexive sheaf on P?
with ¢; > 4. Set t := min{n € N; h°(Fg(n)) # 0} with H a general plane (¢ is positive
by the restriction theorem of Barth ). Suppose now that Fy satisfies the hypothesis of

Lemma I.1 for H general. Then we have the following

Proposition 1.3: If F satisfies these hypothesis then there exists a plane H containing

infinitely many s-j-1.

Proof. Corollary 1.2 says that if K is a general plane of P® then it contains an unique
s-j-1. Let U C P** be an open set s.t. if K € U then K contains an unique s-j-1 Lx. Let us
consider the map s between U and the grassmannian of the lines of P® which associates to
every plane K € U the corresponding s-j-1 Lx s : U — G([,P3?), s(K) = Lx. The map s
can be thought as a rational map from P** to the grassmannian: s : P** — —— — G(I,P?).
What we are going to do is to prove that s cannot be extended to a morphism of P3*.

Firstly we give a different interpretation of s. Let 0 — QOpa. — Vps- — Opa.(1) — 0
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(P(V) ~ P**) be the tautological short exact sequence of P**. The fiber Qg pa+ of Qps-
on the plane K is the hyperplane of V corresponding to K. If K € U then the line
Lxg C K can be identified with a point lying in K* ~ P(Q}s.), in such a way that s
can be thought as a section of the projectivized bundle P(Q5s.) defined over U. To see
that s cannot be extended to a morphism of P%* to G(I,P?) is equivalent to see that
s cannot be extended to a global section of P(Q}ps.). Let us suppose that there exists
a global section § of P(Q%a.) extending s. Giving 3 is equivalent to giving a bundle
injection 7 : 0 — Ops- — Qpa.(k) where k is some suitable integer (see [H;I1-7.12]).
This implies that Qpa.(k) has a nonvanishing section and thus c3(Qpa.(k)) = 0. From
the multiplication formula for Chern classes (see [0SS]) it is immediately seen that the
only possibility to vanish c3(Qps. (k)) is by setting k = —1 but this gives a contradiction
because h’(Qpa.(—1)) = h%(Tpa-(—2)) = 0. This shows that s is a really rational map of
P3%*. To conclude the proof it is sufficient to take H to be a singular point of s. &

Remark: From the description of the proof of proposition 1.3 it is clear that every plane
containing at least two of the s.j.l. of the image of the map s is singular for s thus it
must contain infinitely many s.j.l.. We can thus obtain another proof of the proposition by
observing that there are surely planes containing two s.j.l.: it is sufficient to take the s.j.l.
contained in two general pencils of planes and get two surfaces (swept out by the s.j.1. of

the two pencils) which intersects on a curve each point of which is contained in two s.j.l..

The central fact proved in this paper is contained in the following

Proposition I.4: Let F satisfy the same hypothesis of proposition 1.3. Moreover let us
suppose ¢; > 3k, ¢ > 35. All the s.j.l. are contained in an unique plane K which is
the only singular point of the map s of proposition 1.3. That plane is unstable of order
>co—k+2+c.

The proof of the proposition will follow after three lemmas.

Lemma I.5: The general plane of every one-dimensional component V of the singular

1

locus of the map s of the proposition 1.3 is unstable of order > %cz -3

Proof . Let us call X the closure into the grassmannian of the image of the map s of

the proposition. We have dimX = 2. As the general plane contains one s-j-1, it is clear
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that X cannot be the set of lines containing a fixed point of P?® thus we can suppose that
the general line D € X miss the singular locus of F. Set H € V a general plane of the
family. From Corollary 1.2’ we know that the number —a := min{n : h°(Fg(n)) # 0}
is negative. Call Z the zero locus of a section ¢ € H°(Fg(—a)). By restriction to a
general line D C H,D € X of the resolution of the ideal Iz we find lengthD N Z :=
zp > c;—k+2+c1—a> 2c;+1— a(+). Because of the fact that H contains infinitely
many lines of X it is clear that it must exists a point p € Z lying in infinitely many s-j-1
(otherwise a > 2—21 + 1 in which case there is nothing to prove). This implies that the two
equations defining Z around p have degree bigger than zp thus z% < ¢, + a®. Combining

with (+) the last inequality and after some short calculations we easily get the proof of

the statement. ¢
Lemma I.6: The singular locus of the map s of proposition 1.3 is zero-dimensional.

Proof. Let us suppose, by contrast, there is an one dimensional component V in the
singular locus of s. Set t := min{n : h°(F(n)) # 0}. From theorem 0.1 of [H3] we have
t < (3¢ + 1)%. Set f € H°(F(t)), call Y the zero locus of f . Lemma 1.5 says that the
general H € V is unstable bigger than £ — 1 thus for the general line L C H we have
F |~ O(r)®O(—r+cy) with » > € — 1. By restriction to L of the resolution sequence of
Iy- and keeping in mind the hypothesis c; > 35, we immediately see that lengthLNY > %cz
(+). Because of the generality of L, it is clear that H € V must contain a component of
Y. This implies that there is a line L' C Y and that V is the pencil through L’. Condition
(+) shows that the two equations defining ¥ at a point p € L have no terms of degree less

than %, thus (£2)? < degY < ¢ + t? < 4cp + 1 which gives a contradiction. ¢
Lemma I.7: All the s.j.l. are contained in a surface.

Proof. Suppose by contrast every point of P® be contained in some s.j.l.. Let K be
a plane which is an isolated singular point of s. If p is a general point then every plane
H' containing p is regular for s and contains an unique s.j.l.. Let L be a line containing
p and suppose L C H'. If p' := LN K then p’ must lie on some s.j.l. L' C K (there are
infinitely many ones on K) and this leads to an absurd because L and L' should span a

plane through p containing two s.j.l.. ¢
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Proof of the proposition. Last lemma implies there is a surface containing co? many

s.j.l. thus it must be a plane H. Uniqueness is a consequence of the uniqueness of the s.j.L.

contained in the general plane. ¢

Now we are ready to state and prove the main theorem of this section.

Theorem I.8: Let E be a stable rank two vector bundle on P® with ¢ > 35. Let
3 < k < ¢, be an integer and H a general plane. Then HY(Eg(cs — k)) = 01if ¢z > 3k.

Proof. Suppose H!(Eg(cz — k)) # 0 for every plane H. By proposition 1.4 there is
a plane K which is unstable for E of order r > ¢o — k + 2+ ¢1 . Consider the restriction
sequence of E to K: 0 — E(-1) » E — Ex — 0. The fact that h°(Ex(—7)) # 0
and the stability of E imply H'(E(—r — 1)) # 0. Theorem 8.1 of [H2] implies that

—9112"—@ —1< —r—1and clgcz < k which contradicts the hypothesis k < 2. ¢

II) A vanishing for stable rank two vector bundles on P?

We recall the following (see [G;2.1-2]):

Lemma II.1: Let E be a stable rank two reflexive sheaf on P23, Let = > 0 be an integer.
Assume that for a general plane, H, h*(En(k)) =0 if k > . Then the module H*(E(*))
is generated in degrees < z — 1. Furthermoreif ¢ > z + 1, h(E(t — 1)) # 0 implies
RYE(t—1)) > R (E(t)). ¢

Corollary IL1.2: Let E be a stable rank two vector bundle on P?, with co > 35. Let

m = [%].

i) If H is a general plane then RY(Eg(k)) =0if k > c2 — m.

ii)For every integer t > ¢z — m+ 1, h*(E(t — 1)) # 0 implies RY(E(t —1)) > R'(E(2))-

Proof. i) m > 3 because c; > 35. Then we may apply Theorem 1.8 with m = k. i)
Follows from i) and Lemma IL.1. ¢

Finally we are ready to state the main theorem of this part.
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Theorem IL.3: Let E be as in the last corollary. Then h'(E(k)) = 0if k& > 2 + 2 +

mi-m) _ ci(ez —m) + 422 where m = [£] O.

42
Remark: Setting ¢; = 0 and m = % we have h'(E(k)) = 0if k > 3&% + 222 so0, as
anticipated in the introduction, this theorem improves (and extend to the case ¢; = —1)

the result of [E] in the quadratic part of the bound.

The proof of the theorem rests on the following

Lemma I1.4: Let F' be a stable rank-two reflexive sheaf on P® s.t. ¢» > 35. Suppose
there exists an integer z > 0 s.t. A'(Fg(k)) = 0if k > z and H is a general plane. Then
hR(F(z)) Szfca— 22 —c1} +e2(1+ %) — 2 and A(F(2) = 0if t > 2{co — Z —er } +

2 2 2

Proof of the lemma (see [E] Lemma I1.2). From the restriction sequence to H we find
R*(F(1)) =0if I > .
By stability we have h!(F(z)) = h(F(z)) — x(F(2)) < Zo<i<zh®(Fr (i) — x(F(z)) (+)-
Finally from [H1;7.4] we get h°(Fg(2)) = x(Fu(2))+h (Fu(z)) < (#+1)(E+2+c1)—t—2—cs.
Combining with (+) and after some short calculations we conclude (see [E] Lemma II.2).

¢

IIT) A vanishing for stable rank two reflexive sheaves on P3

We think it may be useful to give a short proof of the following proposition which is
probably well known.
Proposition: Let F be a torsionfree sheaf on P? with Chern classes ¢y, ¢3. If n is the
length of the singular set of F' we have ¢1(F*) = —c1, co(F*) = ¢3 — n.

Proof of the prop.. As F is torsionfree, we have codim(suppEzt*(F,0)) > 3 [0SS]
so that Ezt®(F,0) = 0 and the homological dimension of F is 1 . Let 0 — E; —

E; — F — 0 be a minimal resolution of F. Dualizing we obtain 0 — F* — (E;)* —

(E1)* — Ezt'(F,0) — 0 and finally ci(F*) = c—4(F)e,(Ext' (F,0)). As F is torsionfree,
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the support of Ezt!(F, O) is a zero dimensional scheme S, let n be its length. By induction
on n, and starting from the resolution of the coordinate sheaf of a point in P? we find
ci(Ezt'(F,0)) = 1 —nt?. As the support of Ezt'(F,0) is by definition the singular set of
F', we have the thesis. ¢

Lemma IIT.1: Let F be a stable rank two reflexive sheaf on P2 and let H be an unstable
plane for F' of order 7. Suppose n to be the length of the singular set of Fy. If 0 —
F' — F — Izy(—r) — 0 is the reduction step sequence with lengthZ = s, then s >

) —|—r2~—-n+c1r.

Proof. Let 0 — O - F3(—r) be the map given by a section of Ff(—r). Dualizing
and twisting we have a map i*: Fj — Og(—r) which fails to be surjective on the zero
locus, W, of . As the scheme Z is defined by the image of the composition 1% o for:
F 5 Fy 4, Fg 5 Og(—r) where 7 is the natural restriction and f is the natural
inclusion, we have that the degree of Z is bigger than the degree of W. The conclusion

comes from the Proposition above because lengthW = c2(Fi(—7)). ¢

Theorem IIL.2: Let F be as in Lemma IIL.1. Let H be a general plane and k be an
integer s.t. 3 <k < €. Assume that h'(Fu(co — k)) # 0. Then c3 > ca(Z+5+ 2¢1) and
the plane of proposition 1.4 must contains at least 3{cs + c2( + 5+ 2¢1)} singular points
of F.

Proof. From Proposition 1.4 we know there exists an unstable plane K for F' of order

P > ¢y — k+ 2+ ¢1. Performing the reduction step with respect to K we get
0——>F'-——>F——>Iz,K———+0

where the Chern classes of F' are ¢;(F') = ¢1 — 1, co(F') = ¢ —7 — ¢c1, ca(F') = ¢3 —
¢s — cir — 12 + 2s. Let n be the length of the singular locus of Fx. Then Lemma III.1
implies s > ¢ + 72 — n + ¢;7 and c3(F') > ¢3 + ¢2 + 72 + ¢17 — 2n. From now on we
suppose ¢; = 0 because in the case ¢; = —1 the proof is almost identical. As F' is a stable
reflexive sheaf, theorem 8.2 of [H2] implies c3(F') < co(F')? (in the case ¢; = —1 F'(1) is
semistable and the condition is c3(F'(1)) < co(F'(1))? + c2(F'(1)) . Combining with the
formulas above we have c3 + ¢c2(1 +27) < cg +2n. As 2r 4+ 1 > 2¢cy — 2k + 5 we must have
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c2(c2—2k+5) < 2n—c3 < c3 (c3 > n). The hypothesis ¢, > 3k implies ¢ —2k+5 > Z+5
so, finally, we get ¢a( +5) < c3, 2 {cs + c2(% +5)} < n and the theorem follows. ¢

Now we are ready to state the following generalizations of Corollary I1.2 and Theorem

II1.3.

Corollary III.3: Let F be a stable rank two reflexive sheaf on P? with ¢, > 35 and

c3 < ca(Z +5+2¢1). Set m = [63—7]
i) If H is a general plane then h'(Fyg(k)) = 0if k£ > ¢y — m.

ii) For every integer ¢t > ¢o —m+1, h'(F (¢t — 1)) # 0 implies R} (F (¢t — 1)) > h*(F(2)).

O
Theorem III.4 : Let F be as in the corollary above. Then h'(F(k)) =0if k> % + £ +
POF) —ei(ep —m) + 22— . 0

The proves of the Corollary and the Theorem follow immediately from Theorem III.2,
Lemma II.1 and Lemma I1.4. {
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5 A wvanishing for the cohomology of the
general plane restriction of a stable rank 2
vector bundle on r

Throughout this paper we will assume all sheaves to be normalized.

This work arise in the atterﬂpt of solving the following problem: given a stable rank two
vector bundle E on P® and a general plane H, what can be said about the cohomology
of Egx? In particular, is it possible to determine a function f(c2) s.t. h'(Em(p)) = 0 if
p > f(c2)? The starting point of the analysis, of course, is the Barth’s restriction theorem,
which says that Ep is stable if H is general. Furthermore, by a result of Hartshorne (see
[H1;7.4]), if £ is a stable rank two vector bundle on P? s.t. ¢;(£) = 0, then h'(€(p)) = 0
if p > ¢y — 2. Combining the two results we have a first estimate for the function f(cz):
f(c2) := c2 — 2. Surprisingly, as pointed out in the papers [E] and [F], the vanishing thus
obtained is not sharp. In this paper we succeed in the attempt of finding the better shape
for the function f, by proving a vanishing which turns out to be sharp. Moreover, we
will be able to classify the “extremal cases” for which the vanishing is optimal. The main
result of this paper is encoded in the following

Theorem 0: let E be a stable rank two vector bundle on P3? s.t. ci(E) =0, ca > 20.
Suppose H to be a general plane. Then A!(Eg(p)) =0if p > 6—2(—12);3 Moreover, if ¢c2(F)
is odd and hl(EH(EZ(ET)_—S)) # 0 for any plane H of P?, then F belongs to one of the
following classes:

a) E is a t’"Hooft bundle associated to ¢y + 1 skew lines lying on a quadric of P?;

b) the spectrum of E is maximal, hence E(1) has a section which is a multiplicity 2

structure Y on a degree 672"1 plane curve Yj s.t. wy =~ Oy (—2).

The outline of the paper is the following. In the first section we will remark that, if we
suppose £ to be a stable rank two vector bundle on P? s.t. h*(€(p)) # 0 for p big enough,

then the zero locus of a least degree section of such a bundle has a high degree subscheme
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contained in a plane curve of degree < 2. In the second section we will prove one half of
theorem 0, by showing that, if the general plane restriction Ex has an unstable conic of

order bigger than 672—1, then E is a t’Hooft bundle. In the third section we conclude the

proof of the theorem. In the last section we will apply theorem 0 to a vanishing for the

cohomology of a stable rank two vector bundle on P? (see [E],[F] and [G])-

I Some preliminaries

Let us start with the following:

Lemma I.1: Let £ be a stable rank two vector bundle on P? with ¢; = 0, ¢ > 9. Set
t = min{n € N : h°(£(n)) # 0}. Assume h'(E(ca —k)) # 0, with k < ©2£2 and consider
a section of £(t): 0 — O — £(t) — Iz(2t) — 0, then one of the following is true:

i) Z contains a subscheme Z', of length 2’ > ¢3 +t — k + 2, which is contained in a line;

ii) Z contains a subscheme Z”, of length 2” > 2(c2 +t—k + 1), which is contained in a

comnic.

Proof: We would like to apply Corollary 2 of [EP] with s = 3. Set 7 = maz{n € N :
R(Iz(n)) # 0}, then from the hypothesis we have 7 > ¢ — k + 1. We have to check a)
d:=degZ > 9,b) T > %. a) follows directly from c; > 9. b) follows if we prove that
t+c,— k>4 =< The hypothesis k < £2F* implies that it suffices to show that

34+ 2 >t + 2(4). If t = 1, this follows from ¢; > 9. If t > 2, we start by recalling that
the proposition 7.4 of [H1] implies ¢c; — k < c2 — t2 —1,thus 2 <t < (k — 1)%. To check
(+) it is then sufficient to show that 3t + ¢ > k—1+ 2 which is always true because
k—1+% < 2 + 5 by hypothesis and 7 +5< 2+ 3tif ¢ > 2. &

Corollary 1.2: We assume the same hypothesis of lemma I.1. One of the following is true:

a) there is an unique line L containing a subscheme Z' C Z, of length z' > ca +t—k+1;

b) there is a reduced conic C containing a subscheme Z” C Z, of length 2”7 > 2(cz+t—k+1).

Moreover, if C is reducible, we can suppose each of the components of C to contain at
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least ¢; +t — k + 1 points of Z”.

Proof: from lemma 1.1 we know that Z contains either a subscheme Z’ of length
> ca +1—k+ 1 contained in a line L, or a subscheme Z” of length > 2(co +t — k + 1)
contained in a conic C. What we have to show here is that, if L is not the unique line
containing a subscheme of Z of length > ¢y +¢ — k + 1, then there is a reducible conic
containing a subscheme of Z of length > 2(c2+t—k+1) (s.t. every component does contain
at least ¢ + ¢ — k+ 1 points), and that if the conic C cannot supposed to be reduced, then
there is a unique line containing a subscheme of Z of length > ¢ + ¢ — k + 1. But this is
very simple to prove, indeed if the line of the point i) of the lemma is not unique, then,
simply by taking the union of two such lines, we get a reducible conic of the type we need.
Moreover, if the conic C cannot supposed to be reduced, its support, which is a line, does
contain a subscheme of Z of length > ¢y +¢—k + 1. Finally this line is necessarily unique
otherwise C' could be supposed to be reduced. ¢

Proposition I.3: If the statement b) of the corollary 1.2 happens, then t =1, k = 912'—&

and Z is contained in the conic C.
The proof of the proposition rests on the following:

Lemma I.3: The conic C of the statement b) of the corollary 1.2 is unstable of order
r>cy—k+1.

Proof of the lemma: we begin by supposing C to be smooth. The exact sequence
0 — O(—t) > &€ — Iz(t) — 0 (+) tensored by O¢ yields a surjection &c — Oc(t) ®
Oc(—27) — 0, whose kernel is Oc(—t) ® Oc(2”).
The sequence splits because degOc(—t) ® Oc(Z”) > 0, thus the statement follows by
the hypothesis on the length of Z”. Let us suppose now the conic C to be reducible:
C = Ly U Ly. Again, tensoring the sequence (+) by O¢ we get a surjection as above. Let
us call K the kernel of such a surjection. Tensoring by O, the sequence 0 —» K — & —
Oc(t) ® Oc(—2Z”) — 0 we see that K |1,~ Or,(degL; N Z” —t). As degL; N Z" —t >
¢z —k +1 and because of the fact that h°(K) = h%(K |1,) + h°(K |1,) — 1, we see that
RY(Ec(—ca + k — 1)) # 0 and the lemma follows. ¢

Remark The same proof of lemma 1.3’ shows that a line coming from the statement a) of
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corollary 1.2 is unstable of order > ¢ — k + 1.
Proof of the proposition 1.3: let us perform a reduction step with respect to C:
0 — & —E&-—Ic(—r)—0 (+4)

with » > ¢ — k 4+ 1. From proposition 1.1 of [H3], we deduce ¢1(€') = —2, c2(&') <
¢y —2(cy —k +1) <1, thus ¢;(£'(1)) =0, c2(€'(1)) < ez —2(c2 —k +1) —1 <0, and the
equality in the last formula implies k& = 52—;—3 On the other hand, (++) and the stability
of £ imply that £ is semistable and cs(£'(1)) > 0. Putting all together we conclude that
k=t &~ 0(-1)@O0(-1) (indeed ¢;(£'(1)) = c2(€'(1)) = 0 implies E(1)~0e0),
and ¢t = 1 ( indeed A°(£'(1)) = 2). Finally from the statement b) of corollary 1.2 we
conclude that degZ” = ¢; + 1 = degZ and the zero locus of a least-degree section of £ is

contained in C. ¢

Corollary I.4: If the conic C is smooth ( resp. if C = L1 UL ), then £ |c= Oc(—42)®
Oc(252) (€ [pi O (—=54) ® O, (9557) ).

Proof. It follows from the fact that the order of instability of £ |c is 4—”—%’:2 (see the

proof of lemma 1.3). ¢

II A characterization of t’Hooft bundles

Suppose now E to be a stable rank two vector bundle on P3 with ¢; =0, ¢ > 20
and s.t. h'(Eg(co —k)) # 0 if H is general and if k is constrained as in lemma I.1. Then,
from corollary 1.2 and proposition 1.3, we know that there are only two possibilities for the

restriction of F to H:

a) there exists an unique line Ly C H which is unstable of order r > ¢; — k + 1 (see the

remark following lemma 1.3%);

b) the second Chern class is odd, k = <2 and there exists a section s € H°(Eg(1)) s.t.

the zero locus Zy of s is contained in a reduced conic Cg.

What we are going to do now is to analyze what kind of implications the statement b)
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above has. Let us assume, then, ¢; to be odd, h*(Eg(%52)) # 0, h(En(1)) = 2 for H
general plane. The goal of this section is to prove the following:

Theorem II.1: let us assume that the statement of point b) above holds. Then £ is a
t’Hooft bundle associated to ¢y + 1 skew lines on a quadric Q.

The proof of this theorem will follow after two propositions and a lemma (see proposition

I1.4).
Let us start with the following:

Proposition I1.2: let E be as above. Then we have h’(E(1)) # 0. Moreover, if ¥ is the

zero locus of a section s € H°(E(1)), then Y is contained in a quadric Q.

Proof: set [ := min{n € N : h%°(E(n)) # 0}. Let us consider the usual sequence
associated to a section s € h°(E(l))

0 — 0 — E(l) — Iy(2l) — 0

Twisting and tensoring by O¢,, we find a surjection f : Ec, — Oc,(l) ® Ocy(—=A) — 0
where A := Y N Cy. Set K := kerf. If Cy is smooth, then K ~ Oc¢, (A) ® Ocy(~1).
If Ci = Ly U Lo, then K |1~ Op,(§; — 1) where 6 := deg?¥ N L;. On the other hand
corollary 1.4 says that, in the first case, E |c,~ Ocy, (—<5) @ Ocy(%51), and, in the
second, E |p,~ Or.(—%1) ® Or,(%5). Recalling that —I > —(3c2 + 1)z (see [H3]),

and that (3¢ + 1)% < @=L because c; > 20, we conclude —I > __(ﬂ;_l_)' Putting all

together we see that the sequence 0 — K — Ec, — Ocy,(A) ® Ocy (=) — 0 (0 —
K |p,— Ep, — Or,(6; — 1) — 0) splits when Cp is smooth (when Cxg = L U L), thus
degA = (cp —1+21) > 20 ( degé; = <272 +1 > 10). In any case every quartic containing A
must contain Cr, thus there cannot be syzygyes in degrees 3 and 4, hence, by a theorem of
R. Strano (see [S]), the conic Cp lifts to a quadric @ containing a curve Y’ s.t. Y'NH = A.
The conclusion comes at once by lemma II.3 bellow.

Lemma IL.3: let F be a stable rank two reflexive sheaf on P® with ¢; = 0. Set [ :=
min{n € N: h°(F(n)) # 0} and call Y the zero locus of a section s € H°(F(l)). Suppose
there exists a curve Y’ and a quadric @ s.t. Y' C Y, Y’ C Q and degY' > ¢2 — 1+ 2L
Thenl!=1andY' =Y.

48



Proof: let us call W := ResqY. We have the following commutative diagram:

0 0

| !
0 — O(-1) - O(=1l) — 0

! ! |
0 - F = F L g — 0
l ! !
0 — Iw(l-2) — Iy(l) — Iyngqe — 0
1 ! !
0 0 0
where F' := kerf and the bottom exact sequence is the usual one. From corollary 1.5 of

[H2], we conclude that F’ is a reflexive sheaf. Furthermore, an easy computation show
that c;(F'(1)) = 1 and cp(F'(1)) < 2 — 21 (see [H3] prop. 1.1). On the other hand the
diagram above shows that F’(1) is semistable hence c(F'(1)) > 0. Putting all together
we have | =1 and deg Y' = degY =c2+ 1. ¢

Proposition II.4: the quadric @ of the last proposition is smooth and £ is a t"Hooft

bundle associated to cp + 1 skew lines on Q.

Proof: firstly Q cannot be reducible. Indeed if it were @ = Hy U Ha, Hy %+ Ho,
then, by corollary 1.4, both H; and H, would be unstable of order > 92;1 From the
restriction sequence 0 — FE(—1) — E — Ey — 0 we see that K (E(—<5tL)) # 0, hence
spE = (-m,—-m+1,...,—1,0,1,...,m—1,m) where m := 232_—1 and spFE is the spectrum of

E (see theorems 7.1-5 of [H2]). Furthermore lemma 9.11 of [H2], implies that there is an

unique unstable plane of order 672_1 for E and this contradicts the hypothesis H; # Ha.
Hence Q is irreducible. As in the last proposition, call ¥ the zero locus of a section of
E(1). We have degY = ¢z + 1 > 21, wy =~ Oy(—2) and degwy = —2(e2 +1). A curve
with arithmetic genus < 0 lying in an irreducible quadric must fall in one of the following
classes: a) a line L in a quadric cone with degwy = —2; b) a conic C in a quadric cone
with degwc = —4; c) a rational normal cubic C in a quadric cone with degwc = —6; d)
a curve W of type (0,7) in a smooth quadric with degwy = —2r; e) a curve W' of type

(1,7) in a smooth quadric with degwy = —2; f) a quartic X on a smooth quadric with

degwy = 0. Only case d) is compatible with the condition on the degree. ¢
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III Conclusion of the proof of Theorem 0

In this section we are going to consider the case a) at the beginning of section II.
Therefore we suppose that, for the general plane H, there exists an unique line Ly which
is unstable for E of order > ¢c; —k+ 1, with 0 <k < in—% What we are going to do is to

prove the following

Proposition III.1: Let F be as above. Then ¢; is odd, k = 022—+3 and the spectrum of E

is maximal (see [H.2] section 9 for a description of such bundles).
The proof of the proposition rests on the following

Lemma II1.2: there exists an unstable plane K for E of order » > ¢ — k + 1 s.t., if H is
general, then Ly = KN H.

We would like to give two different proves of this lemma. The first is a simple conse-
quence of a theorem of R. Strano. The second is more geometric and improves a method

used by the author in the paper [F].

First proof : set [ := min{n € N : h°(E(n)) # 0} and call X the zero locus of a section
s € H°(E(l)). Tensoring by O, the exact sequence associated to s: 0 — O(—1) = E —
Ix(I) — 0 we get a surjection Er, - 0r,(1-T7)—0(T:=LynX), whose kernel is
Ory (T —1). Asl < (3cg+1)? and Er, ~ Or,(r) ® Op,(—7) with r > ¢; —k+1 >
221 > (3cp + 1)2 we have that —I > —r and the sequence 0 — Op, (' — 1) — Er, —
Op,(I=T) — 0 splits thus degl' =7 +1> ¢y —k+1+1> €222 +1> 20. It is clear that
every cubic containing I' must contains Lpg, thus there cannot exist syzygyes in degrees
< 3. By a theorem of R. Strano (see [S]), the line Ly lifts to a plane K containing a curve
X' s.4. X'NK =T. Obviously K is unstable of the same order of its general line.

Second proof : by letting the general plane H to vary, we obtain a two dimensional family
of lines U := {Ly : h°(Eg) = 0} C G(1,P?) in the grassmannian. Following [E] we will
call super jumping line (s.j.]) a line which is in the closure of U into the grassmannian.
Proposition 1.3 of [F] shows that there are planes containing infinitely many s.j.l. Arguing

as in lemma 1.5 of [F] it is easy to see that a plane containing infinitely many s.j.l is
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C2

unstable of order > < — 1 and the same proof of lemma 1.6 of [F] shows that there can be

2
only finitely planes containing infinitely many s.j.] and in fact only one by the uniqueness
of Ly for H general. Call K such a plane it is clear that K is unstable for E of the same

order of its general line.

Proof of proposition IIL.1: from the restriction sequence 0 — E(-1) - E — Ex — 0
we see that, if K is unstable of order 7, then h*(E(—r — 1)) # 0. The argument at the
beginning of the proof of proposition II.4 shows that r < c—gl(%—) and, if the equality in
the last formula holds, the spectrum of E is ma:imal (in this case the description of E is
given in lemma 9.15 of [H2]). Combining (+) wish the hypothesis on 7 ( see lemma II1.2)
we get k > 5%"—?1 and equality implies maximalit;" of the spectrum. The conclusion comes

at once by the hypothesis on k. ¢

IV A vanishing for the cohomology of stable rank 2 vector bundles on P?

In this section we would remark how theorem 0 allows us to give a vanishing for the
cohomology of a stable rank two vector bundle or. P3. (see for more details [G], [E] section

II and [F] section II ). The vanishing to which we allude is the following

Theorem III.1: Let E be a stable rank two vector bundle on P? with ¢; = 0. Then
R (E(k)) =0if k > —czé + 2+ _79_(1_;_1) — c1(c2 — m) + 5%, where m = [_c%—_l] O

The proof of the theorem rests on the following

Lemma : Let F be a stable rank-two reflexive sheaf on P23 s.t. ¢ > 35. Suppose there
exists an integer z > 0 s.t. h'(Fg(k)) = 0if k > z and H is a general plane. Then
R (F(z)) < z{co — 2 —a}+e(l+ 2)y— % and RYF(1) =0if t > z{ca — 2l +
a4 5)- %

Proof of the lemma: (see [F] Lemma I1.4). &
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