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Abstract

In this thesis, we present some systematic studies on low dimensional strongly
correlated systems: the Heisenberg spin magnets and the t-J. model for the
two dimensional lattices. We have studied these systems through numerical
and analytical research. Various physical properties of the systems are obtained
in our approach. The results obtained are believed to provide useful insights
about the correlated behaviors of the model systems, which are closely related
and motivated by the discoveries of the high temperature superconductors.

First, we have proposed a new method concerning the spin wave theory
on finite lattices. In this thesis we have developed a systematic spin wave
expansion for the quantum fluctuations of a generic spin Hamiltonian on a
finite lattice, where 1/zS is the small parameter. The idea was applied to
the J;-J» Heisenberg model in the square lattice and the Heisenberg model in
the triangular lattice (AHT) in two dimensions. By comparing with the exact
diagonalization results, we have shown that for large enough /5, the ground state
with long range antiferromagnetic order is instable. The non-Néel ordered state
sets in at a smaller value of J, than the previous estimates. For the triangular
lattice, contrary to the previous results of finite size extrapolation, we also show
that the ground state on the triangular lattice indeed has long range Néel order.
The new method has also been applied to the Jz-Jy model.

Second, we have studied an anisotropic spin magnet in two dimensions,
through long wavelength field theory, numerical research, combined with the
finite size spin wave theory. A possible spin liquid is suggested to exist in this
two dimensional system, and a phase transition from the gapless spin liquid
phase to a ordered phase occurs at the critical anisotropy a, = 0.1. In partic-
ular, we have found that the gapless spin liquid phase may be thought of as a
set of decoupled spin chains, exhibiting the one dimensional feature.

Third, we have introduced a new method, which we called Lanczos Spectra
Decoding (LSD), to extract information about dynamical correlation functions
of many-body Hamiltonians with a few Lanczos iterations and without the lim-
itation of finite size. We apply this technique to understand the low energy
properties and the dynamical spectral weight of a simple model describing the
motion of a single hole in a quantum antiferromagnet: the ¢-J, model in two
spatial dimensions and for a double chain lattice. The simplicity of the model
allows us a well controlled numerical solution, especially for the two chain case.
We have found that the single hole ground state in the infinite system is contin-
uously connected with the Nagaoka fully polarized state. Analogously we have
obtained an accurate determination of the dynamical spectral weight relevant
for the photoemission experiments. The spectral weight is in qualitative agree-
ment with the old approximate techniques: the retraceable path approximation
for J, = 0 and the string theory for J, > 0. However, contrary to the previous
approximations, the band tails for J: = 0 or the asymptotic J: — 0 one hole
ground state again approach the Nagaoka energy. We have given a simple ana-



lytical argument, supported by our numerical data, showing that the vanishing
of the spectral weight close to the Nagaoka energy is faster than any power law.
We have also been able to show that spin charge decoupling is an exact property
in the Bethe lattice but it is not fulfilled in more realistic lattices where the hole
can describe closed loop paths during its motion. Our detailed numerical results
on this simple model represent a benchmark for possible developments to the
more interesting t-J model in the physical small .J limit.

Finally, we have discussed possible physical applications of the results, in
particular, related to the high temperature superconducting materials.



Chapter 1

Introduction

In this thesis, we have studied several two dimensional models of strongly cor-
related electron systems. This is a highly challenging issue at the current time,
because of its importance for the anomalous properties observed in the high
temperature cuprate superconductors. Much of the work presented in the forth-
coming chapters is inevitably technical. In this introduction, we would like to
introduce readers to broader issues and questions related to this work and at-
tempt to place the work of this thesis in its proper context. Following that, a
short historical review of the models which we will study will be presented. The
technique review will be retained until it is used.

1.1 General Review

In the last two decades, there have been exciting breakthrough in condensed
matter physics, mainly due to the discovery of the high temperature supercon-
ducting materials, as well as due to the discovery of the quantum Hall effects.
The experimental breakthrough has shed new light on the excitement of the
strongly correlated systems. In the mean time, various attempts to explain
these correlated behaviors have introduced some new concepts of importance,
such as the spin charge decoupling, fractional statistics, etc.

In 1986, Bednorz and Muller[2] found that the cuprate materials have phase
transitions to superconducting state at a critical temperature which is much
higher than the conventional transition temperature. Shortly after that, An-
derson [3] realized that the superconductivity could not be understood before
the thorough investigation of the normal state of the new materials. There is
a lot of experiments showing that the reference compounds of the high tem-
perature superconductors have a broken symmetry ground state. For example,
the ground state of LaaC'uO4 is a Mott insulator, i.e. insulating because of the
large value of the onsite Coulomb repulsion, {/. The appearance of long range
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antiferromagnetic order, the paramagnetic susceptibility and the apparent ab-
sence of an energy gap in the optical spectrum at energies below 3el” all lead to
this conclusion. Upon doping, the hole is introduced in the C'uO; planes, which
are the common feature of the high temperature superconductors and the anti-
ferromagnetic long range order fades away. The carriers of the superconductor,
i.e. the holes, are mainly confined on the C'uO; planes. The low dimensionality
and the strongly correlations between the holes are widely believed responsible
for the novel behaviours.

The discovery of high temperature superconductors had a sobering effect
for theoreticians. In particular, it soon becomes clear that high temperature
conductivity had to be the result of an interplay between various different phe-
nomena which were not yet sufficiently understood even by themselves. These
phenomena include:

o The generation of magnetic correlations as a consequence of strong inter-
actions between electrons and the influence of mobile vacancies on such
magnetic states;

o The particular behavior of electrons in the vicinity of a Mott-Hubbard
metal-insulator transition;

e The effect of static disorder on the correlated behavior of electrons;
e The peculiarities of two-dimensional fermi system;
o The preconditions for superconductivity in a strongly correlated system.

Anderson[3] first proposed that a doped Mott insulator described by the
one band Hubbard model should contain the basic physics of the high-T. su-
perconductors. The model was proposed independently in 1963 by Gutzwiller,
Hubbard and Kanamori[4, 5, 6], to describe the competition between delocal-
ization and correlations in narrow-band transition metal.

H = -t Z c;{c,cj-,, + UZCE[C,‘ICLC“ (1.1)

<nn>,s i

where c;, (c!) are the electron annihilation (creation) operators of spin ¢ = (1.1
) at site i, < nn > indicates summation over nearest neighbours, the indices ¢, j
run over I\ lattice sites, the two-body interaction is on-site and repulsive({” > 0).

For {7 = 0, H reduces to a system of non-interacting electrons, while for { = 0
(atomic limit) the electrons are fully localized, and at half-filling the ground
state contains exactly one electron per site, i.e. the system is insulating. The
latter feature still holds for finite ¢t and U = ¢, and the corresponding system
has been shown to be an antiferromagnetic insulator.

In the large U/ limit, it is more convenient to use a canonical transformation
to project out the doubly occupied sites, costing energy U. This leads to the



CHAPTER 1. INTRODUCTION 3

so-called ¢-J model:

H = —t Z (C},]Cj,; + h.c.) +J Z (Si . Sj — %ninj). (1.2)
<ij>.@ <ij>
where the constraint of no double occupancy is understood. n; is the density
operator at site i with n;, = c}oc,-,,. J = 4t?/U under this convention. The spin
density operator S; is defined as S; = c}%ci.

Zhang and Rice(7] also showed that the low-energy physics of cuprate super-
conductors is determined by the singlet state formed by the additional hole on
oxygen with the existing hole copper. The hopping of this singlet is described by
an effective t-J model which makes this model even more pertinent to high-T,
superconductors.

At exact half-filling case n; = 1 for all i, the ¢-J model is reduced to the
so-called Heisenberg model.

H=1J > 8;-S; (1.3)
<ij>
This model was introduced by Dirac early in 1929. van Vleck has used it to
study the magnetic solid. Although this model is rather old and longstand-
ing, a number of questions arose following the discovery of the copper-oxide
superconductors.

Before going on with the specific models, we would like to stress the impor-
tant role of the dimensionality in understanding the strongly correlated electron
systems.

The fields of low-dimensional systems have been expanding during the last
decade, particularly due to the discoveries of the quasi-one-dimensional organic
conductors, the Quantum Hall Effect and high temperature superconductivity.
In addition to these three fields, there are also other systems, such as mesoscopic
systems, quantum dots, where low dimensionality is a key feature. In parallel
with these experimental developments, there have been many exciting theoret-
ical developments of conceptual importance, such as the notions of soliton-like
excitations and the spin-charge decoupling, fractional statistics and fractional
charges.

The low dimensionality takes a much more important role in strongly cor-
related systems rather than in the conventional solid state physics, which is
characterized by the free and independent particle approximation. For exam-
ple, in the electron system, as well known, in three or higher dimensions, the
interaction can be renormalized. This lead to the famous Landau fermi liquid
theory. But in lower dimensions the conventional perturbation theory has in-
frared singularity which is not renormalizable. In one dimension, this gives the
so-called Luttinger liquid. It has been a challenging question whether the con-
ventional perturbation theory may be also applied to two dimensional systems.
We will see another example of a spin systems, where low dimensionality is of
importance, in the next section.
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1.2 Heisenberg Hamiltonian

The study of the Heisenberg Hamiltonian goes back to the early days of quantum
mechanics. However, the antiferromagnet was not as well understood as the
ferromagnet.

In one dimension, the quantum spin chain with s = % is exactly solvable
by Bethe-ansatz. The ground state does not have long-range antiferromagnetic
order and the correlation function decays as a power law. The low energy excita-
tions are gapless. For arbitrary spin (S # 1), there is not exact solution. How-
ever, Haldane[8] argued that The half-integer spin chains have gapless ground
states with algebraic correlation function, and the integer spin chains have fi-
nite energy gap above the ground state in which the correlation function decays
exponentially.

Beyond one dimension, the exact solution for the ground-state energy or
wave function of the Hamiltonian on an infinite lattice is unknown. There are
some rigorous proofs regarding the nature of the ground state, however. It has
been shown that the ground state of the three-dimensional antiferromagnetic
Heisenberg model for spin S > 1[9] and quite recently for S = 1 is character-
ized by antiferromagnetic long-range order. The long-range order disappears at
some finite critical temperature in 3D. In two dimensions, the Heisenberg model
cannot exhibit long-range order for any spin at finite temperature[10]. The situ-
ation may be quite different for the ground state (T=0) of these models. It has
been shown that antiferromagnetic long-range order exists in the ground state
of the isotropic antiferromagnetic Heisenberg model on a square lattice[11] and
on a hexagonal lattice[12] for any S > 1. So far, no rigorous proof is avail-
able for the existence or noexistence of antiferromagnetic long-range order in
the ground state of the isotropic spin-i antiferromagnetic Heisenberg model on
a square lattice. The extensive numerical and experimental results have lead
to the conclusion that the 2D Heisenberg model displays long range antifer-
romagnetic order and that there is no evidence of any exotic behavior in the
unfrustrated model.

Again, the behavior of the systems shows strong dependence on the dimen-
sionality, in which it is embedded.

1.3 Spin Liquid State

The search for disordered (spin liquid) ground states in two dimensional elec-
tronic models has been pursued since the seminal work of Fazekas and Anderson
[13] on quantum antiferromagnet in frustrated lattices. This problem has been
revived in the last few years due to the resonating valence bond conjecture of
high temperature superconductors.

On the other hand, although many studies indicate that there exists a finite
zero-temperature staggered magnetization in the 2D square lattice, it has also
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been shown that the energy difference of ordered and disordered states is very
small; therefore it is of great interest to test the stability of the long range order
under various frustrations.

1.3.1 Heisenberg Model on the Triangular Lattice

One way of destroying antiferromagnetic long range order is by introducing the
lattice frustration. The simplest one in this catalog is the triangular lattice. It
was indeed the first system to be proposed by Fazekas and Anderson[13] as a
candidate for a spin-liquid.

The situation is puzzling as regards the triangular lattice case. On this
lattice the “frustration” implies that the classical system is not very stable
(B =< 2s;.s; >= —1/4), and the spin-wave calculations predict an impor-
tant reduction (by about one half) of the sublattice magnetization by quan-
tum fluctuations[14, 15, 16]. Perturbation theory[17], series expansions[18] and
high temperature calculations[19] have been developed, which suggest that the
spin-wave calculations possibly underestimate this renormalization. Many vari-
ational calculations have been done exhibiting either ordered (20, 21] or disor-
dered solutions[22, 23, 24].

In the square lattice case, numerical methods (Q.M.C., Ulam’s or Trotter-
Suzuki methods) have brought very interesting indications on Néel order|[25, 26,
27, 28, 29]. Unfortunately these methods which allow to handle large samples
cannot be applied to the triangular case: they lay on a property of positivity
of offdiagonal matrix elements which is violated in the triangular case; it is
the well known sign problem which plagues many studies of strongly correlated
fermions. Exact diagonalization of the Hamiltonian are thus the last resort to
gather new information on these models. This approach has been developed by
other authors[30, 31, 32, 33, 34, 35, 36, 37]. Most of them conclude to the absence
of Néel order for the triangular Heisenberg antiferromagnet (AHT) at T = 0.
However, the results is shown strongly dependent on the extrapolation. Unlike
the square lattice, there is no established systematic extrapolation formulae for
the triangular lattice.

We have developed a scheme for applying a systematic SWT on a finite
lattice. It has the advantage that one can directly check the accuracy of the
results on the small size system, while yielding reliable prediction on the infinite
system. By using the finite size spin wave theory, we will show that the ground
state of the Heisenberg model on a triangular lattice is, contrary to the finite
size scaling, an ordered state. The finite size scaling has to take into account
the deviation from the simple N~% behavior. This, in turn, strongly supports
that the spin wave theory is an extremely good quantitative approximation for
the antiferromagnets.




CHAPTER 1. INTRODUCTION 6

1.3.2 Jl—-]g Model

The antiferromagnetic long-range order might be destroyed by introducing frus-
trating interaction. The simplest one of these is to take into account the next-
nearest neighbor antiferromagnetic interaction. This leads to the so-called Ji-Ja

model.
H:J1§:Si'sj+-f2 Z S;-8§; (1.4)

<nnd> <nnn>

This model has a classical phase transition at %’f = 0.5. In the classical limit,

for o < % the ground state has conventional Néel order with two sublattices.
When a > 1, the same classical limit yields a ground state where the previous
sublattices are decoupled and each one has antiferromagnetic order. At a = 1
any state with total spin equal zero for an elementary square is a possible grouna
state. This includes the two configurations discussed above as well as many
others with no long range order. In the quantum case, it has been argued that
there is a spin liquid state between the two ordered states.

Many questions remain still open especially in 2D and 5 = % for this simple
model. For example there is now a considerable amount of numerical work
[38][39] in order to detect a first realization of a spin liquid state for large
enough Ja. Linear spin-wave theory [40] and series expansion [18] have indeed
predicted a possible transition for J» > 0.38. However on a rigorous ground
very little is known.

We have applied the finite size spin wave theory to the frustrated 2D Heisen-
berg model. In the .J;—J, Heisenberg model we have found that SWT works very
well for small frustration (J» < 0.2) and an accurate estimate of spin-rotation
invariant quantities can be obtained with only few terms of the expansion in —é—
We finally confirm the existence of a non classical spin-liquid state for large Ja.

1.3.3 J,-J, Model

Despite considerable efforts, the evidence in favor of a spin liquid in two di-
mensional frustrated quantum antiferromagnets is weak at best, with the single
exception of the kagomé lattice where a disordered ground state is plausible,
even if the presence of nonconventional magnetic order is still possible.

As well known the one dimensional Heisenberg chain has a spin liquid ground
state, it is persuasible that in two dimensions when the anisotropy is suffi-
ciently strong the one dimensional behaviour may be extended to two dimen-
sions. This leads us to the so-called J.-J, model. This model does not in-
troduce frustration and therefore presents several advantages with respect to
the previously investigated systems, the most important being the absence of
any plausible order parameter competing with the Néel staggered magnetization

m = Y. Sg exp(Q - R) [Q = (7, 7)]. The modelis defined by the Hamilto-
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nian

H= %: |7:5R - SRyx + /SR " SR4y] (1.5)

where S are spin 1/2 operators living on a square lattice, x and y are unit
vectors and 0 < J, < J..

The first term in the Hamiltonian represents a stack of one dimensional
Heisenberg chains, and the second term represents the coupling between the
chains. In the limit of extreme anisotropy o = -j—f = 0, the two dimensional

system is a stack of decoupled spin % chains, each of which is disordered in its
ground state due to strong quantum fluctuation. At finite anisotropy, each chain
begins to couple to the others and finally, in the limit of perfect isotropy a = 1,
the system becomes the ordinary two dimensional Heisenberg spin system with
ordered ground state. A phase transition have to happen for a € [0, 1].

The isotropic limit (J, = .J;) has been extensively studied by exact diag-
onalization [41] and quantum Monte Carlo[27, 42] with the resulting evidence
of a finite staggered magnetization in the thermodynamic limit[42] m ~ 0.3075
quite close to the spin-wave theory (SWT) estimate m = 0.3034[43]. Physically,
the strongly anisotropic model (1.5) describes a system of weakly coupled AF
chains whose study has attracted considerable interest among theoreticians and
experimentalists in view of the possibility to observe the peculiar features of one
dimensional physics[44].

The presence of an order-disorder transition in model (1.5) has been conjec-
tured by several authors[45, 46] and can be motivated by the standard mapping
of the 2D quantum model (1.5) into the (2+1) dimensional O(3) non linear
sigma model (NLoM) defined by the action

5= % / drdydt [T,(9,m)° + T,(8y1)? + vo(den)?] (1.6)

where n is a unit vector. The lowest order estimates of the parameters give T, =
T4, Ty =Ty /45" = 4a®(Jo + Jy) where a is the lattice spacing. Two limits
of the action (1.6) can be easily analyzed: The isotropic model is known to be
ordered for the physically relevant parameters{47] while the J, — 0 limit of the
action (1.6) correctly describes a stack of uncoupled (1+1) dimensional models
which are disordered at any finite “temperature” g = (T, \o a,?)“l/2 owing to the
Mermin Wagner theorem[10]. Most interestingly, the order—disorder transition
occurs at a finite value of the spatial anisotropy and belongs to the universality
class of the classical three dimensional Heisenberg model.

The finite size spin wave theory predicts a phase transition at o ~ 0.1, which
is consistent with the numerical exact diagonalization results. We will also show
that the ground state of the spin liquid state has gapless excitations and it may
be thought of as decoupled one dimensional chains. Finally, a phase diagram
will be calculated by the spin wave theory.
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1.4 Single Hole Motion in a Antiferromagnetic
Background

During the last few years, a huge amount of analytical and numerical work has
been devoted to the study of the ¢-J model. [48] However the physics contained
in the ¢-J model is far from clear because of the interplay between antiferromag-
netic long range order and charge degrees of freedom. Exact numerical methods
are usually limited to a very small linear size in more than 1D and practically
nothing about the low energy physics has been understood numerically.

In this thesis we will make a detailed numerical study of an oversimplified
version of the #-J model, i.e. neglecting the spin fluctuations in the exchange
term (S; - S; — S7S; in Eq. (1.2)) and considering only the properties of a
single hole. Due to the simplification of the model, we are able to work directly
in the infinite size system and have a satisfactory description for the low energy
dynamics of a single hole in such a simple model of an antiferromagnet:

H=~t Y (o +he)+ T Y Sisi. (1.7)
<i,j>,0 <i,j>

A basic motivation of this work is also to obtain reliable numerical results on
this simple ¢-J. model since it maybe useful for further developments on the
more interesting ¢-J model. For instance already Trugman[49] and Kane, Lee
and Read[50] used the ¢-J, model in order to test the prediction of a given
approximation on the t-J model. Most recently, Preloviek and Sega[51] also
carried out a calculation of this model at low doping. In fact most of the
physical properties of the ¢-J model remain probably valid even for the t-J;
model. In this respect it is worth mentioning that the ¢-J model and the ¢-J.
model have the same limit for J or J, — 0 and for infinite spatial dimensions
the two model coincide, since the spin fluctuations are irrelevant. [52]

The single hole problem represents certainly a further simplification but is
still physically relevant, since the single particle excitations in magnetic insula-
tors can actually be studied by the photoemission and the inverse photoemission
spectroscopy.

For a single hole a rigorous theorem proven by Nagaoka[53] is known for
J. = 0. The so called Nagaoka theorem states that for a bipartite finite lattice
in more than one dimension d > 1 the ferromagnetic state with maximum spin
is the unique ground state in any subspace with given total spin projection, say
on the = axis.

A complete description of the one hole spectrum in the J. = 0 limit, not
limited to the ground state, was first given in [54], where the so-called “retrace-
able path approximation” (RPA) was introduced. In the Ising limit as a hole
hops in a Néel state, it scrambles the spin along its path. In order to return
the spin configuration to its original state, it was argued[54] that, to a good
approximation, one can consider only paths in which the hole retraces its path
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back to the origin, thereby returning all of the spins to their original position.
In this approximation one can write down an explicit analytic solution for the

Green’s function:
sy/w? =4z~ 1)~ (z = 2w
Gy = VT =D = (:=2)

e (1.8)

and the spectral weight A(k,w) = —E=ImGy(w) reads

/4(z = 1)t? — 2
Alw) = 1.9
() 47(2%? — w?) (1.9)
where = = 2d is the number of nearest neighbors. The spectral weight is com-

pletely incoherent and dispersionless with a one particle band, which is 75%
narrower (in 3D) than the noninteracting band. The RPA is exact in 1D and
for the Bethe lattice (where Nagaoka theorem does not apply), and recently it
has been shown to be exact in the limit of infinite spatial dimensionality. [52]

For finite J,/t, the competition between the kinetic energy ¢ favoring the
ferromagnetic configuration and the exchange energy J, favoring the antiferro-
magnetic alignment of the neighboring spins makes the problem of particular
interest. By neglecting closed loops, i.e. in the Bethe lattice case, a closed so-
lution is possible [55, 56] which we will refer in the following as the “string pic-
ture”. In the string picture, the hole movesin an antiferromagnetic background,
leaving behind a string of overturned spins, which costs an energy proportional
to the length of the path. The overturned spins behave like an effective linear
potential for the hole. In the continuum limit, valid for .J, — 0, the problem
is reduced to a one dimensional Schrodinger equation with a linear potential
V' ~ xJ. where x is the length of the string.

9% J.(z -
H:—\/:—ltéﬁ+—]i—(~2——2-)-;r—2\/:—1t. (1.10)

The solution of this equation leads to a series of bound states, with energies

_ = J:(x = 2) 2/3 -
E,=a,V: lt(th) 2V =1t (1.11)
where a, are the zeros of the Airy function Ai(z). Recently, Vollhardt et al [562]
have shown that the string picture is exact up to order T}f’ where d is the spatial
dimensionality.

Contrary to the J. = 0 case for finite .J, the spectral weight has é-function
peaks at energies E,. The weight of the §-function at the lowest energy is
called the quasiparticle weight Z and is found to vanish linearly in J;, using the
continuous limit (1.10).[50]

Later Kane, Lee and Read[50] introduced a self-consistent Born approxima-
tion that can be considered as an extension of the retraceable path approx-
imation to the more physical {-J model. Their approach is widely accepted
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since they were able to reproduce the asymptotic behavior of the t-J, model
in the string picture and a big amount of numerical work on small lattices
seems to be in qualitative agreement with the theoretical predictions of this
theory.[57, 58, 59]

In the retraceable path approximation or in the string picture and similarly
within the self-consistent Born approximation, it is important to neglect closed
. loop paths in order to simplify the analytic structure of the one hole Green’s
function. However this is certainly an approximation even in the simple t-J:
model. In fact the most important effect due to the inclusion of closed loop paths
in this model was first noted by Trugman.[49] In 2D a hole can hop around a
square plaquette one and half times without disturbing the spin background
with a net translation to the next-nearest-neighbor along the diagonal. This
means that the hole can “unwind” the string and self-generate a next-nearest-
neighbor hopping. The hole does not have an infinite effective mass in this case
but has a finite mobility. Therefore the full localization of charge carriers in
RPA and the string picture is an artifact of the approximation.

In this work, we will apply the Lanczos method to the infinite two chains
and two dimensional lattice. A variational result is obtained for the ground
state energy and wave function. Then we will introduce a novel method, which
we called the Lanczos Spectra Decoding, to analyse the data and extract infor-
mation for the dynamical correlation functions in the thermodynamical limit.
We will also discuss the problem of spin charge decoupling, phase separation
and the spin configuration in the ground state.

Another interesting issue is whether the spin and charge degrees of freedom
are decoupled or not.[60, 61] Spin charge decoupling is well known to occur
in one dimension where a one electron excitation can be decomposed into a
spinon excitation which carries spin and no charge and a holon excitation which
carries charge and no spin. We will show in the present thesis that spin charge
decoupling is eract in the Bethe lattice with arbitrary coordination number
z and present some numerical work, ruling out the possibility of spin charge
decoupling in physically relevant lattices where closed loops are allowed.

1.5 Structure of the Thesis

In Chapter 2, we will introduce the finite size spin wave theory in order to get a
reasonable comparison between theory predictions and numerical calculations.
We will give in detail the treatment of the singular spin wave modes, which
exist in any finite system. The validity of the finite size spin wave theory will
be shown in Chapter 3. We will study three magnetic models there, namely,
the Ji-J» model, the J,-J, model and the Heisenberg model on the triangular
lattice(AHT). The finite size spin wave theory successfully predicts the spin
liquid state in the first two models. However, the AHT exhibits an ordered
ground state.
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Chapter 4 will be dedicated to the study of the J,-J, model. We will inves-
tigate this system numerically there. We will try to show that the disordered
phase is gapless and its long wavelength properties can be interpreted in terms
of decoupled one dimensional chains. A phase diagram will be presented at the
end of this Chapter.

In the following chapters, we will concentrate mainly on the single hole
problem in the {-J. model and we will make use of the Lanczos method to
calculate the single hole spectral function in the infinite system. In Chapter 5,
we will first introduce a transformation to eliminate the charge degree of freedom
to get an effective spin Hamiltonian in a given momentum subspace. Then we
will consider the consequence of the spin charge decoupling on the single hole
spectral function. We will use the Lanczos method in order to diagonalize the
effective spin Hamiltonianin the infinite lattice (Chapter 6). We will concentrate
on two chains (2C) and two-dimensional (2D) square lattices. The 2C case is
much more easy for numerical study compared to the 2D lattice. However the
2C lattice is already important for the ¢-.J, model, because it already satisfies
the basic properties of an higher dimensional lattice, such as the existence of
closed loop paths and the validity of the Nagaoka theorem.

Most of the above results were obtained by use of the Lanczos Spectra Decod-
ing method, which allows us to analyze the Lanczos data in the infinite system,
where only a relative small number of Lanczos iterations is possible (Chapter
6). The validity of the Lanczos Spectra Decoding is proved analytically and
numerically in the Bethe lattice case (Chapter 7). In Chapter 7, we will also
present our numerical results for both the J, = 0 and the finite J, case in 2C
and 2D lattice. Finally we will discuss about the formation of a ferromagnetic
polaron around the hole for small J,, and about the analytic form of the spectral
weight close to the Nagaoka energy.




Chapter 2

Finite Size Spin Wave
Theory

In this chapter, we will develop a systematic %— spin wave expansion for a generic
spin model on finite size lattice[62]. In the next chapter we will present the finite
size spin wave calculation for the Ji-Jo model, the J.-J, model on the two
dimensional square lattice and the Heisenberg model on the triangular lattice.
Comparison between the theoretical predictions and the numerical calculations
on the finite size system show that the finite size spin wave theory is efficient
for studying the ground state properties of the spin system.

Anderson[63] extended the spin-wave theory introduced by Holstein and
Primakoff[64] for ferromagnets to the study of the ground state of antiferromag-
nets with large spin S. Following Anderson, during the same year, Kubo[65]
using the Holstein-Primakoff transformation and an expansion in powers of %,
derived Anderson’s results. The foundation of spin-wave theory is the assump-
tion that antiferromagnetic long-range order exists in the ground state and that
the amplitude of zero-point motion of quantum fluctuations about the classical
Néel state is small. Initially, this approach was thought to be an expansion
in powers of % Later, however, it became clear that the result of spin-wave
theory is the leading order in a perturbation-theory expansion in the number
of loops, which is also an expansion in powers of %, : being the coordination
number. Still this expansion is strictly valid for higher dimensional lattices,
where = is large and the fluctuations are suppressed. Since the role of quantum
fluctuations becomes more important for small S and lower dimensionality, it is
natural to question the speed of convergence of this approach for the smallest
possible spin case, the spin——}ﬁ; antiferromagnet.

For clarity, we will consider the Heisenberg model in this chapter. First we
will present a short introduction for the conventional spin wave theory. The
following section will be devoted to the finite size problem, where the delicate

12
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of the singular modes is given in detail.

2.1 Spin-Wave Theory

We consider an L x L square lattice of lattice spacing a and N = L2 sites. The
degrees of freedom are vector spin operators S, attached to the site at r and
obey the usual commutation relations

(S5, SE] = iS) 8y o (2.1)

where the superscripts a, 3, and v stand for the z, y, and z components or any
cyclic permutation of them. We consider periodic boundary conditions. (Notice
that in our units /i = 1 and the lattice spacing a = 1.)

We wish to find the eigenstates and eigenvalues of Heisenberg Hamiltonian.
Let |S7) denote the eigenstates of the operator S with eigenvalue Si. (We will
use the same symbol both for the operator and the eigenvalues of the operator.)
The Hilbert space in which the Hamiltonian operates is spanned by the basis

sin =TT 1sz) S e2)

~ Since the Hamiltonian commutes with the operators of the total spln and the =
_component of the total spin, namely,

Sty = D5
} (2.3)
btzot = Eb:

r

we may choose to work in a subspace with well-defined eigenvalues of $,,; and
Siot- Specially, Marshall[66] proved that the ground state of the antiferromag-
netic Heisenberg model on a bipartite lattice is characterized by Siot = 0.

In order to define the ground-state staggered magnetization, w= add a field h
to the Hamiltonian, which couples to the spins of the two sublattices differently,

H'=H+hY (-1)s; (2.4)
where || = 2 4+ y and v, y are the two components of the vector r. Then, we
define

ml = 7{,—2(—1)'"'.&;

r (2.5)

ml = lim lim (0/m!]0)

h—0 N—co

Provided that we take the thermodynamic limit before we set the external sub-
lattice field h to zero, if the ground-state expectation value m! remains finite we
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shall say that the ground state is characterized by antiferromagnetic long-range
order.

First, we introduce the Holstein-Primakoff transformation as implemented
for antiferromagnets. An equivalent representation to the spin basis is obtained
by labeling the basis states by the eigenvalues of the “spin-deviation” operator

n.=S-5; (2.6)
When the site r is on one sublattice, say 4, and
n. =S+ 5; (2.7)

for a site r on the other sublattice B. In this representation the Hilbert space
is spanned by

) = [ Inr) (2.8)

and eigenvalues of n, are 0, 1, ..., 2S. A general state can be expressed as
)= 3 CnDlind) (2.9)
{n-}

The operator S is diagonal in this representation, while St and S; when 1 is
on the A sublattice have the following properties:

Stine) = /25 [1 = 255 nrfne = 1)
57 Ine) = /250 +1) [1 = 8] I +1)

When the site r is on the B sublattice, the action of the above two operators is
intercharged. It is a convenient bookkeeping device to introduce the operators

(2.10)

atln,) = Vo, + 1y +1)
a,.\nr> = \/‘n—,;!n"‘ _ 1) (2.11)

and similarly when r is on the B sublattice. The operators al and a, obey the
usual commutation relations for two-component system of bosons,

[ar, al] = &0 (2.12)
lar.ap] = [al, a.,T.,] =0

These equations can be obtained by applying the operators to a general state
and using the definitions. We find

St = V2Sf.(nr)ar
S: = v 25al f.(n,)
S; = S—n, ‘ (2.13)
n, = alay
fo(ny) = 1— 5%
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for r on the A sublattice and

SI =V 25@1.&("‘7')

So= V25f(ns)ar (2.14)
S = =S+4n,

n, = ala,

when r is on the B sublattice.

In the Eq. (2.11) the eigenvalue n, is free to take any value from 0 to ¢
rather than from 0 to 2S. There is no discrepancy, since the sector of states with
0 < n, < 25 will not be connected to states with n. > 25 because |n, = 25) is
annihilated by S7(S!) when r is on A(B) sublattice:

S n, =25) =0 (2.15)

The Hamiltonian can be expressed in terms of ¢ and af, operators using the
expressions for S*, St , and 5™, and therefore the spin problem is transformed
to an equivalent problem of interacting bosons:

H = —NdJS?+ 2dJSZ n,

TS 3" [fs(ne)ar fs(ne)ar + af fs(ne)al, fs(ne)]
. ./)

{r,r
- J Z e
{rr")

+

(2.16)

The operator fs(n,), if we allow n, to take values from 0 to co, can be expanded
as

n, n;
fs(ny)=1-ra—ge = (2.17)

We emphasize that if we truncate this expansion at any order, condition(2.15),
which decouples the physical from the unphysical states, is no longer satisfied.
If, on the other hand, we restrict ourselves in the physical subspace of 2S+1
dimensions, then this operator can be written as

fs) = 3 d(S)nr (2.18)

m=0

In the linear spin-wave approximation introduced by Anderson[63] for an-
tiferromagnets, one retains in Eq. (2.16) terms up to quadratic in the boson
operators. This means that fgs(n,) is approximated by 1 and the last term of
Eq. (2.16) is neglected, i.e.,

Higy = —NdJS? + 2dJ'SZ ne +JS Z (ara, +alal)) (2.19)
L

{r,r1)
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This Hamiltonian connects the physical states with 0 < n, < 25 with states
having n, > 2S. If the ground state expectation value of n, is small compared
to 25, this approximation makes sense. This condition can be checked once the
spectrum of Higy is found.

A quadratic Hamiltonian such as Hj,, can always be diagonalized. We
introduce the Fourler transforms of these operators as

1 ik-r
ap = ‘/ﬁ z;e ar (2.20)

where the vectors &k correspond to the reciprocal space of the lattice. We perform
a canonical transformation to new operators «y, and ch:, which also obey boson
commutation relations,

ar = upag +vgal (2.21)

where o and C\'L satisfy the same commutation relation as ay, a}:. Substituting

Eq. (2.21) in Hisy, the functions ug, vi are determined so that the coefficient

of a;{,a‘}: is zero. We obtain

u _ 14¢o(k)
TV em (2.22)
. — - 1—60(‘&" :
ve = —sgn{1r) "—Jﬂeo(k)
where Z
- 1
v = 5 ) cos(k-ey)
; ’ (2.23)
k) = Vi-n
where e, is the unit vector in the y direction, and
Hiw = E§ + ) 2wo(k)ng (2.24)
k
where
ng = a{,ak
Ey = —dJSN(S+¢)
£ = F-y/1-91 (2.25)
k
wolk) = 2dJS/1—1%

The ground state |t’g) is defined by the conditions ay|yn) = 0 for all k in the
Brillouin zone. For square lattice, £ = 0.158 and the ground state energy per
site in the linear spin-wave approximation is -0.658.

Keeping terms up to % in the expansion[43], we find that the diagonal terms
of the Hamiltonian have the form

H = By+ Y w(k)(2(nf +nf,nd,) - 21+ CraJaf,nf ]+ (2.26)
k
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where .,
Fo = —dJSN[1+4&]
wlk) = wolk) [1+ %] (2.27)

Cio = \1-at/1-14,

The ground state energy per site in this approximation for the spin- % model on
a square lattice is Jﬁ% = —0.6705. Since the energy of the Néel state is —0.5 and
in the linear spin-wave approximation is —0.658, and the next correction in the
% expansion is small, one might conclude that there is an apparent convergence
in the case of the ground state energy. It is very different, however, to justify
an expansion in powers of 7% and therefore the expansion parameter for S =
is really the expectation value of n,.. That is to say, the ground state is in a
linear superposition of state with very small amplitude for those with large n,.
Therefore the convergence of the expansion could be explained if

[

€= 71\7 > () < 1 , (2.28)
- ,

We obtain

1 1
e===S |l—— -1 (2.29)
2N 2 [ 1 =7k J

and, for a square lattice, ¢ = 0.197, which is a rather small number.
The energy of the elementary excitations is given by w(k) and, in the long-
wavelength limit w(k — 0) = ck. We define
Z.= — (2.30)
€o
where ¢y is the “bare” spin-wave velocity obtained in the linear spin-wave ap-
proximation, namely, cg = v/2.Ja. For the antiferromagnet on a square lattice
in the above approximation the ratio Z, = 1+ £ = 1.158.
The ground state expectation value of the staggered magnetization operator
for S = 1 is obtained as

i

1
mt = 5~ € (2.31)

and for a square lattice m! = 0.3034. Hence spin-wave theory predicts an
ordered ground state with finite staggered magnetization approximately 61% of
its classical value. In one dimension the integral (in the thermodynamical limit)
diverges logarithmically due to the long-wavelength modes. This instability can
be attributed to the fact that the ground state fails to develop long-range order
in one dimension. The fact that the integral diverges also means that there is
no small expansion parameter, and that the perturbative expansion around an
ordered state is incorrect for spin chains. Note that even in higher dimensions,
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the singular modes exist. However, they do not contribute to the integral in the
thermodynamical limit. This is a concrete example of how low dimensionality
is important to determine the physics of systems. The singular modes will take
an extremely important role in our finite size system study, where the Brillouin
zone is only composed of finite points.

We wish to add to the Hamiltonian a term of the form H, Y. S5 The

perpendicular susceptibility is defined as x| = -‘gi‘f;%, where (M) is the ground

state expectation value of % >, S%. \. describes the response to an external
magnetic field in a direction perpendicular to the staggered magnetization. We
define

Zy = —— (2.32)
where N1 0 = I&—J Including the next correction in the + expansion, we ob-
tain the value Z, = 1 — £ — 2¢ = 0.448 for an isotropic spin-% square lattice
antiferromagnet.

2.2 Spin-Wave Theory in Finite Lattice

Numerical methods on spin Hamiltonians are generally limited to calculation
of ground state correlation functions on a given finite lattice. Indeed in any
finite size simulation the antiferromagnetic order parameter m is extracted by
a systematic finite size study on a square lattice N = L x L of the spin-spin
correlation function C'(R— R') =< Sg-Sk >, t.e. :

m = lim %;(~1)RC(R)

L—oco

Despite the accuracy between the extrapolated order parameter m and the spin-
wave prediction, the validity of SWT is still questionable in principle since the
agreement is based on a single (or few) extrapolated quantities. In some other
cases, the systematic formulae for extrapolation is very hard to get. For the
above reasons it is important to apply spin-wave theory directly on finite size
and compare exact data obtained by Lanczos or Monte Carlo with the SWT
approximation.

Several attempts to generalize SWT on finite size have recently been pub-
lished [67][68]. However, as it will became clear in the following, all these ap-
proaches are based on unnecessary approximations to avoid spurious finite size
divergencies for the ¥ = 0 = (0,0) and k = @ = (7, 7) spin-wave modes. In
these approaches these divergencies are removed by imposing an ad hoc holo-
nomic constraint on the sublattice magnetization: it is set to zero (as it should)
on any finite size.

In the present section we derive a systematic spin wave expansion on a finite
lattice. We show here that the mentioned spin-wave divergencies (“Goldstone
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modes”) do not affect spin rotation invariant quantities and a straightforward
calculation of the spin-spin correlation function C'(R — R’) is possible up to
second order in 1/S, fully consistent with the spin-wave theory expansion.

In order to simplify the derivation, we consider only the leading term in
S. The high order contribution is straight forward. The classical state is the
antiferromagnetic (Néel) state and we can use the following Holstein-Primakoff
transformation:

= V25(1 - ) Sl = V25dl(1-22)

J
= S-—n; S5 = ny;—S5

1
BT

(2.33)

]

where a and a are canonical creation and destruction boson operators, and
n; = a;ra,; is the number of bosons at the site i. The indices i,j label lattice
points R; and R; belonging to the two magnetic sublattices. After substituting
these expressions in the Hamiltonian, we can use translation invariance and
write the leading term of the Hamiltonian in terms of

1 .
t —ikr t
a, = ——= E e G,
FTVUN £

H=S8%Ec + SHsw + 0(1)

JZ
, Bo=—=N
is the classical energy and Hsy reads:
1
Hsw = JZ Z[DkaZak -+ Enk(a}cat_k + aka_k)] (234)
k

Here Z = 2d is the number of nearest neighbours, 7, = ws—‘”—gﬁ-}‘l, and the
diagonal part in this particular case is constant Dy = 1. The leading part of the
Hamiltonian is free and can be generally diagonalized by the known Bogoliubov
transformation which acts independently on any k wavevector:

ap = upop + 'Ukai_k

with
Dy + €

up =
2€k

e =/ D} —n?

being the spin wave energy in unit of JZS. However the k¥ = 0 and k = Q
modes, important at finite size, cannot be diagonalized by this transformation
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since u; and vy are not defined in this case. We can in fact define two hermitian
operators that commute with the Hamiltonian

Q- =a} +ao
Qy= i(“g - aQ)
and write the singular & = 0, @ contributions in (2.34) in the form:

'] ASZ 9 9
Hs = 12 (DOQ;—}—DQQ;—D()-DQ).

The physical meaning of these two operators becomes clear if we use the Holstein-
Primakoff transformation for the total spin along the x (y) axis Sf(‘;t) = % SRl

Then at leading order Q, = ST A/z% and @, = S;r‘” /«/%\7 and the singular
part of the Hamiltonian

HS o (SZot)Q + (S;rot)z

represents a term which clearly favours the singlet ground state, in agreement
with the Lieb-Mattis theorem[69].

Since @, and @, commute with the Hamiltonian, and [Q.,Qy] =0, we can
formally diagonalize the Hamiltonian in a finite size in a basis where Q; and @,
have definite quantum numbers. In the chosen basis Q. and @, become classical
numbers ranging continuously from —oc to oc and the Hamiltonian Hg becomes
a simple classical contribution. The ground state has then Q, = @y =0, i.e. it
is a singlet (as it should on any finite size and for any 5)[69] and can be formally
written as the normalizable Fock state |0 >, of the operators «y, ap and aq
projected onto the subspace of Q- =@, =0:

[oe] o0
|sw >= / da | dBe’*@=+Qu0 >, (2.35)
-0 —00

This state is the formal ground state |¢)g > of H for S — oc and includes usual
spin-wave fluctuations on the Néel state |V >, i.e.
1Yk g1,
PERETR AR
0>e=| [ —— | Iv>
g
k#0,Q

Unfortunately ¢'sw after projection on @ = @y = 0 is eigenstate of operators
with continuous spectrum and, as it is easily seen from (2.35), it cannot be
normalized. This singular behaviour is a consequence of the large S expansion,
since at any finite S the Hilbert space is finite and any operator on a finite
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Hilbert space has a discrete spectrum. As a consequence for infinite S a Bose
condensation of the k = 0, Q modes occurs since the expectation value for the
average number of modes

< Yswlafag|vsw >
< Ysw|vsw >

diverges for k = 0 or Q.

Nevertheless a systematic finite size study of spin-rotation invariant quanti-
ties as for example the ground state energy and the spin-spin correlation function
C(R — R') is indeed possible. For example the ground state energy derived in
the previous example for Heisenberg Hamiltonian is perfectly finite and well
defined on any finite lattice. In fact, having in mind that Q, = Qy =0, we get
for the contribution to the energy linear in S - the spin wave term —:

JZ JZ
- — ;oo— ,__._ — —_———
< Hsw >= Esy = Z 5 (ex — D) 5 (Do + Dq)
where ) ' means summation over all k but &k = 0,@Q in the Brillouin zone. Note
also the non vanishing negative term coming from the careful analysis of the
singular contribution Hg. This term is negligible at infinite size but is important
for any accurate estimate of the energy at finite size.

2.3 Regularization

In order to calculate the next order correction in —51— to the energy it is important
— as well known by standard perturbation theory — to compute the expectation
value of the perturbation V" on the unperturbed state [vgp >

< Ysw|V|vsw >

<Vo>= ‘
< tsw|[sw >

(2.36)

Unfortunately as we have seen < Ysw|¥sw > is infinite due to the presence
of the singular modes at & = (0,0) and & = (m,7) and Eq. (2.36) takes the
indeterminate form =>. The gaussian integral in Eq. (2.35) can be formally

evaluated, yielding
,. 1 12 4o ,
[isw >= exp[—2—(aQ —ay7)]0 >, (2.37)
Then it is easily verified that Qelsw >= Qy|vsw >= 0.

In order to regularize expression (2.37) without changing its gaussian form
it is enough to introduce a parameter §

(aff - af?)] (2.38)

[RS8

r < Usw|=q< Olexp]
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In this Wa-y }11’1} R < 'wsw\ :< 'l’swl-
We define a regularization of the expression (2.36) by

< psw|V]vsw > _ lim & < Ysw|Vitsw >
< pgwlsw > f—1 5 < pswl|tsw >

(2.39)

The previous form has the following advantages
o Both numerator and denominator are finite for 6 # 1

o The Wick’s theorem can be applied because both , < ¢sw| and |sw >
are gaussian “quasi-free” wavefunctions.

o If the perturbation contains the singular operators @« and @y, they do
not contribute: @, = 0 and Qy = 0 exactly for any 6.

The results obtained with such regularization should represent the correct
S — oo limits for spin rotational invariant correlation functions. In fact, at the
end of the analytical calculation we have verified that < S? >= 0 up to the next
leading order in % Instead using a different regularization, say

<V >=lim 5_%@%“_\/}1_2_& (2.40)
—_ R 2y >R
< 52 ># 0, probably because the item (3) is not satisfied for the latter regu-
larization (2.40).
It is clear however that a more rigorous mathematical analysis is necessary
to prove that the S — o< limits does not depend on the regularization, at least
among all the possible ones that do not invalidate the singlet nature of the

ground state.



Chapter 3

JI-JQ MOdel, Jgj-Jy M()del
and Heisenberg Model on
the Triangular Lattice

In this chapter, we will use the finite size spin wave theory to study several
spin models in two dimensions. These includes the frustrated Heisenberg model
(J1-7J2 model)[62], the anisotropic Heisenberg model (.J,-J, model)[70] and the
Heisenberg model on a triangular lattice (AHT).[71]

3.1 »]1--]2 Model

In order to get the spin-spin correlation function C(r), we add the following
spin-rotation and translation invariant term to the Heisenberg Hamiltonian

1
H'=SJihe Y Sk -Spys,
R,

where the vectors Tu are equivalent lattice vectors in any of the possible or-
thogonal directions with |7,| = [7|. By use of the Helmann-Feynman theorem
the spin-spin correlation function is obtained by differentiating the ground state
energy of the Hamiltonian in presence of the external perturbation with respect

to h,,
2 d
7) = —‘——Z]V,Jl Zh—rEG(h,)
In the following we describe in detail the calculation of the spin-spin corre-
lation function on opposite sublattice. For Jo € 0.5 th classical Néel state is

still stable. Then the Hamiltonian can be expanded as:

H=S5Ec+SHgw + Hins (3.1)

el

23
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where 1
Ec = —5(1 -0 — hr))Jll\i’rZ

where o = %: Hsyy is the leading free boson term in the expansion with

Dy=1- a(l - (ﬂ:) + h,

e — M+ heTk

8 = coskycosky

o= 1 Z ek
23 T
’

and

Hie = —o5xhZ D 8(ki—katks—ks)
klk:nk\;ki
(nkl“kz - aékl—kz + ﬁrkl—k;)a};lakza{_aak4
—AnZ S [8(ka = ko~ ks — Ra)(m, + Bri,)al, arar,ar,
kikakaks
+8(ky + bz — ks — ka)adi,af al ar,ar] + hoe
(3.2)

The next leading contribution to the energy is obtained by the evaluation of

< sw|Hindsw >
Eint -
< Pswl|tsw >

with the chosen regularization (2.39).
1 N 12 2 12
Ei = —§JIZ—4—(C,;+h,~C;. —"CYC,S")-}'fo (33)
where 9
Ch=w ; (Ve + mUi Vi)
=23 (-
§ N - k
and (', is obtained substituting the function ny with 7 in the expression for (),

while Hj, comes out after a careful treatment of the singular modes , yielding
a finite size correction to the ground state energy:

1
Hee = '2—]12(C,, + hrCT)

Differentiating :
EFg = SEEC + SESVV + Eint
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with respect to h, and letting h, = 0, we can get the spin-spin correlation
function between two sites on different sublattices
) 1 4 1 1- 0C,
(So-S,)=~(5- —C N) e 56,,—%7 (3.4)
where
. 1 1 — o+ aby) — pret*r
G =52 '{( r -1
N [(1—-a+ab)? ——77,;]2
C"n = C"f/ - ',g
and

oc, 1 Z e (1 — o+ aby) — m)me(1 — 5;)
oh, N 3 (1 — o+ ad)? -2

Similarly, we have the spin-spin correlation function between two sites on
the same sublattice for r # 0

—( 1 1/ \2 1 ~1 06';7
(SoSr) = (5= 5C7)" = 3Gy ah. (3.5)
where
1 . (I —a+aby)
Cvjl'(r) — /(1 Zkl){ - — - 1}
Py (1= o+ ade)? — ngl?
and

oc! 1

1—&)ng
————1:{)—-: /(1___ezk7) ( k —
h, N ; (- a+ad)?—-nl?

In the previous quantities the singular contributions of the £ = 0,k = Q
modes cancel out at the end of the calculation after many non trivial simplifica-
tions and FEj,; is perfectly defined and finite quantity, as well as its derivatives
with respect to the field h,.

The above equations fulfil the sum rule N )" C'(R) = 0 order by order in
consistent with a singlet ground state[69].

Thus we have finally obtained an ordered expansion of the spin spin corre-
lation function:

51

C(R) = (-1)R5? + a(R)S + A(R).

The order parameter m can then be expanded in the following way:
m(L) = S+a&+8/5

with & and § simply related to the functions a(R) and B(R) on finite size:

24 = 31[- D o (-1)Fa(R
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N
The ground state energy per site for h, =0 is given by:

23 = (z_(—_lziﬁ_@ B dz)

£ =2 57100) + aC(e,)]

The low energy and long wave length physics of the Heisenberg magnets is
determined by the two physical quantities: spin wave velocity and spin wave
stiffness, as predicated by non linear ¢ model. Fisher and Ziman[72, 73] have
shown that the spin wave velocity and spin wave stiffness is related to the finite
size correction to the ground state energy and the square magnetization as:

AE = “S&=¢
) VN (3.6)
72— L .
AM* = #4p19\/ﬁc

where cp is the spin-wave velocity and p, is the spin stiffness. ¢ and ¢ are two
pure numbers which depend only on the lattice structure. For the square lattice,

1 1
= — —— = 1.438.
‘T on Z |m|3 8
m#0

, 1 1
¢ = —— — = —0.6208.
77 2T

Within the finite size frame, both the correction to the ground state energy
and the square magnetization can be calculated easily, hence the spin wave
velocity and the spin wave stiffness.

47 N3 5/2(1 = 2a)

where Ci(o0), C4(><), Cy(oc) and M (o) is the corresponding quantities calcu-
lated on the infinite lattice.

We show in Tab. 3.1 a comparison of spin-wave results and exact data on
finite systems obtained mainly with Quantum Monte Carlo. The accuracy of
the spin wave theory is confirmed even for any finite and large size. The finite
size order parameter is always slightly smaller than the spin-wave prediction
(with exception of the 12 x 12 lattice where error bars are too large). Our
results give therefore a strong support to the existence of long range order
in the S = } Heisenberg antiferromagnet, and that the ground state can be

J1SZ l1—a
aE =22, [\/2(1 T 50) — e (i (20) + tg——-\/—ﬁi——Cg(m)}
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my ma Megact Ey By Eeract
0.5238 | 0.5251 | 0.5259 | -0.6920 | -0.7026 | -0.7017
0.4501 | 0.4545 | 0.4581 | -0.6676 | -0.6801 | -0.6789
0.4133 | 0.4173 | 0.420 -0.6620 | -0.6746 | -0.6734
10 | 0.3913 | 0.3945 | 0.397 | -0.6600 | -0.6726 -0.6715
12 1 0.3766 | 0.3793 [ 0.378 | -0.6591 | -0.6717 -0.6706
oo | 0.3034 | 0.3034 | 0.3075 | -0.6579 | -0.6704 | -0.6692

[o.c] W=>) IS ol

Table 3.1: First and second order contribution in % for the staggered magneti-
zation (m; and m») and ground state energy per site (£} and F») for the square
lattice Heisenberg antiferromagnet as a function of the lattice size N = L x L

for J, = 0. The exact values are obtained by diagonalization [38] or by quantum
Monte Carlo[42].

% my ma Meract £y E, Eezact L
0.05 | 0.5184 | 0.5122 | 0.5223 | -0.6711 -0.6815 | -0.6806 | 4
0.10 | 0.5118 | 0.5193 | 0.5180 | -0.6508 -0.6607 | -0.6598 | =
0.15 | 0.5034 | 0.5166 | 0.5129 | -0.6313 -0.6402 | -0.6395 | =
0.20 | 0.4922 | 0.5150 | 0.5066 | -0.6128 -0.6200 | -0.6199 | =
0.30 | 0.4553 | 0.5283 | 0.4885 | -0.5801 -0.5791 | -0.5830 | =
0.40 | 0.3602 | 0.7357 | 0.4573 | -0.5592 -0.5233 | -0.5511 | =
0.10 | 0.4318 | 0.4439 | 0.445 -0.6281 | -0.6397 6
0.20 | 0.4038 | 0.4344 | 0.431 -0.5914 | -0.6004 =
0.30 | 0.3548 | 0.4414 | 0.405 | -0.5595 -0.5613 =
0.40 | 0.2407 | 0.6309 | 0.370 -0.5377 | -0.5121 =
0.05 | 0.2876 | 0.2922 -0.6383 | -0.6504 o0
0.10 | 0.2687 | 0.2804 -0.6193 | -0.6308 =
0.15 | 0.2458 | 0.2685 -0.6010 | -0.6114 =
0.20 | 0.2171 | 0.2576 -0.5836 | -0.5924 =
0.30 | 0.1301 | 0.2580 -0.5527 | -0.5541 =
0.40 | -0.0606 | 0.5086 -0.5312 | -0.5078 =

Table 3.2: Same as in Tab. 3.1, for different values of Ja, and increasing sizes
4 % 4 (top), 6 x 6 (middle, data for mepq.; taken from Ref. [39]) and oo x >
(bottom).

naturally represented by the Néel state dressed by small quantum fluctuations.
The order parameter is very much close to the spin-wave predictions and in
close agreement with the Monte Carlo estimate.
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0 0.1 0.2 0.3 0.4 0.5
J./3,

Figure 3.1: First order S+4a (dashed lines) and second order (continuous lines)
correction S+ é + %B for the order parameter m plotted for§=1/2foradx4
(upper curves) and 6 x 6 lattice (lower curves). The full squares and triangles
are the exact diagonalization data for the 4 x 4 and 6 x 6 respectively. The
arrows indicate the value of Jo where the second order contribution is worse
than the first order estimate, suggesting a breakdown of the expansion.

As we turn on Ja (See Tab. 3.1) the spin model is strongly frustrated and
we expect the spin-wave expansion to be convergent or at least accurate in the
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region where the order parameter is the same as in the classical case (S — o).
With this technique we can therefore detect a possible spin liquid state by
looking for a breakdown of the spin-wave expansion for large .J,. We show in
Fig.3.1 the order parameter as predicted by spin-wave theory compared with

the available exact results on a 4 x 4 and 6 x 6 lattice as a function of %; The

agreement is very good for —Jj—f < 0.2 and in fact the second order contribution

seems already enough to give an accurate answer. The infinite size prediction
plotted in the same picture should therefore be quite reliable in this region.
For J, large enough the second order term does not improve the first order
estimate and we can define a crossover value of J 2 = Jc where the second order
contribution becomes a worse estimate of the order parameter compared to first
order one. As shown in Fig.3.1 we get Jo = 0.30 for the 4 x 4 lattice and
Je = .35 for the 6 x 6 one. These results indicate that a possible breakdown of
the spin-wave expansion occurs already at Jy ~ 0.30. This estimate is slightly
different from the linear spin-wave result (see Fig.3.1) where a critical value of
% = 0.38 for S = % was found when the first order contribution of the order
parameter m; = S5 + & vanishes. However the next leading contribution to

linear spin-wave my = S+ & + {%, that we have explicitly calculated in this
work, indicates that the previous estimate is quite approximate because the
higher order corrections have opposite sign and become more and more relevant
close to the transition point.

3.2 J,-J, Model

Although it has been shown that the renormalization group flow drives the
isotropic model towards weak coupling, making the spin wave theory asymp-
totically exact at long wavelengths, the validity of the spin wave theory in the
anisotropic system is not obvious. In order to check the validity of the spin
wave theory in the anisotropic system and to determine the critical point of the
phase transition to the spin liquid state, we have perform the finite size spin
wave analysis for the .J,-J, model. Comparison between the results of the exact
diagonalization and those of the finite size spin wave theory gives a estimate of
7= ~ 0.1 as the critical point.
From similar calculation as in the last section, the ground state energy is
given by
E=C+ st+Hint (39)
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where
€ = ~3(J +,)S(S + OV

H,, = .]5“}:,/(1—1~ a)? + (e + amny)?
Hint = —3J% ‘\‘ (C"7 06’39) +3J:(Ch. + aCly,)

Ne = cosky

Ny = cosk (3.10)
Co. =N Z ’(‘/L + U kvk)

C")y - I\I Z (‘/— + 77yU”k)

In order to calculate the spin-spin correlation function, a magnetic field is
introduced as in the last section. By using Helmann-Feynman theorem, We
have the spin-spin correlation function

L1 1 1 ,0Cy
Sn-S.)=—(5S—=Cr)° — — —aC—* 11
for the opposite sublattice.
Sg-S S —=C L Cac%y 3.12
S0+ = (5 — 5C1) ~ 12053 (312)
for the same sublattice but » # 0, where
o, = L5 (1+0) = (n= +any)e’™
N | U+ a)? = (e +any)
1+ a)
Cvl — (1 - lk1 ( — 1
" NE: {vr-+®2~mx+awV
ac, 1+ tkr __ +
dgf _ 211\( Z — )l a)e (1= 0"7y)] (3.13)
[(1+a) — (1 +amy)?]2
8Ch,  _ 9l (e = I+ a)(1 = e*")(ne + any)
— = 2%
o P [(1+ )2 — (e -+ amy)2]?
C = Z (nr — y) (Tlr“’a’b)
- N

A+ @)= (e +any)?

In above expression, it is easy to show that when J, = 0, i.e. a =0, the last
term vanishes, when Jy = Jg, t.€. = 1, the last term also vanishes due to the
fact that C' = 0. In both cases, the previous results are recovered. Here the two
different behaviors in one and two dimensions are coined in a single formulae.

From the calculated spin-spin correlation functions, the order parameter is
calculated as we have done in the last section.



CHAPTER 3. J;-Jo, Jx-Jy AND TRIANGULAR LATTICE 31

In order to check the validity of the spin wave theory, we have performed
Lanczos diagonalization on several lattices up to 32 sites. The finite size spin
wave theory compares quite favorably to numerical results in bipartite lattices
for sufficient large .J,. As a consequence, SWT is able to describe the leading
size corrections in finite lattices and therefore represents a powerful method for
analyzing small size data.

The breaking down of the spin wave theory occurs at %y- ~ 0.1, as shown
in Fig.3.2 where a finite size estimate of the order parameier is plotted as a
function of the anisotropy a. The breakdown of SWT at o < 0.1 again suggests
that a qualitative change in the ground state properties is occurring in this
regime.

It is important to note that the critical point increases, when higher order
expansions are included. The increase of the critical anisotropy parameter a,
in going from first to second order gives confidence about the actual occurrence
of the transition, which is in fact enhanced by quantum fluctuations. Therefore,
on the basis of the field theory mapping and SWT, we expect that by lowering
the anisotropy parameter a = J,/J, a disordered phase sets in within a finite
interval o, > o > 0. This prediction should be qualitatively correct because
field theory methods are known to reproduce the physics of QAF both in the
isotropic two dimensional limit[47] and in the one dimensional (o = 0) case,
provided the topological term is included in (1.6)[8].

More detailed study of the spin liquid state in this model will be presents in
the next chapter.

3.3 Heisenberg Model on the Triangular Lat-
tice

The triangular lattice consists of three sublattices, 4, B and C, with spins
on each sublattice at an angle of 23: to those on the other two sublattices.
Nearest-neighbor pairs of spins are on different sublattices, while each spin is
on the same sublattice as all of its second neighbors at distance /3, nearest-
neighbor spacings. We choose a particular classical ground state with spins on
the A sublattice oriented along the : axis, and those on the B and C sublattice
oriented 33; away from the > axis in the 2-z plane (the sites are lying in the 2-:
plane and the rotation between A and B is around the y axis perpendicular to
the plane). We then introduce the three kinds of Holstein-Primakoff bosons a,
b and ¢, on the sublattice .4, B and C, respectively to parameterized the spin
operators. The species a describes the quantum fluctuations of the spin away
from its classical direction =: S, = S — afa, St = av/25 and S~ = ot V25 (at

9

leading order). On the other sublattices we have to take into account the =5
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Figure 3.2: Order parameter m = /S(x,7)/V for different lattice sites com-
pared with the first (dashed lines) and second order (continuous line) SWT
results. The Lanczos data are obtained on tilted lattices Lv/2 x L2 with
L = 2 (triangles), L = 3 (squares) and L = 4 (circles). The lowest curves refers
to the infinite size SWT results.

rotation so that on the C' sublattice:

Se = B(s- o+ VIS [~
5. = —4(5—cle)+ V35 |- B (3.14)

Sy = \/_2;6;:?
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at the order we need in the —1¢ expansion. On the B sublattice, we just rotate

by —"% We then substitute in the Hamiltonian and expand, keeping only the
quadratic part in the H-P oscillators.

It is then necessary to introduce the Fourier transforins of the bosonic op-
erator @, b and ¢. Each sublattice is itself triangular so that all &k vectors are

living in a hexagonal Brillouin zone. This leads to the following formula:

H= éJS: S [(a{,,ﬂk)Ho(k) (;:;) - 3] (3.15)

k
Qg
o = bk (316)
Cr

and ap = f—i. The new Hamiltonian to be diagonalized is Hy(k), a 6 x 6 matrix
~ of the form

where

N [(1+ M =3M
Ho(k) = ( M1 +M> (3.17)
where
0 =z =z
M=zt 0 =z (3.18)
z 20 0
In this formula, the complex number z is given by
1 ik5L
i= 5 ;e (3.19)

where L = 1,2, 3 and the two-dimensional vectors 8, are poiﬁting towards half
of the neighbors of a site. We made use of the set

ESEIP I S
22 BTV T
The key observation is that all the 3 x 3 blocks building Ho (k) are permutation

matrices and thus can be diagonalized simultaneously in the basis.

61 = (1.0) 63 = ( (320)

Uy
Ua

(1,1,1)
(1.4,5%) (3.21)
(1,7%7)
with j = exp(2iw/3). The appearance of the cubic roots of the unity is the

manifestation of the ternary symmetry of the problem.
Choosing that

Uus

11 1
U=|1 j : (3.22)
172
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we can diagonalize the Hamiltonian Ho(k) to a block form

(U o) (1+M -3M\ (U 0
HO(")‘( 0 U)<—3M 1+M)(0 U"1> (3.23)

Then the Hamiltonian is decoupled to three modes:

i 1+p —3pi
Hi(k) = ( s 1+ppi> (3.24)

where i=1,2,3and py =z + 2%, po = zj> +z"j and p3 = zj + 752,
The three 2 x 2 Hamiltonian have the usual form as that in the square lat-
tice. However, only the first mode can be diagonalized by the usual Bogoliubov

transformation. This is because that for the other two modes pi(k) # pi(—k).
For example,

pa(k) = pa(=k) # p2(—F) (3.25)
We have to carefully symmetrize the other two mode, which leads to the mixture
of the 27¢ and 379 modes. Finally, to the leading order,

1 1, 3
T (ol )
Hy = JSz Ek wi(alar + 5) + 2ws(adar + 5)] - 5NS: (3.26)

where

wi(k) = V(1=2p)(1+4p1)
wa(k) = /(1=2p2)(1+4p2)

To the leading order of %, there are three Goldstone modes due to the
structure of the lattice. It is important to note that two of them are degenerate.

The remind part of the calculation is the same as in the last two section.
We will not repeat them here. It turns out that in the first order perturbation
theory the singular modes (now the singular mode is located at £ = (0,0))
cancel. Both of the ground state energy and the staggered magnetization have
the same form as in the infinite lattice with summation over all possible points
of the Brillouin zone except the singular modes.

Comparison with the results of the exact diagonalization shows that the
ground state has Néel long range order, contrary to the previous results of the
finite size extrapolation. (See Fig.3.3) Bernu et al carried out the same analysis
with the symmetry study of the numerical spectra and got the same results.
(74] (Fig.3.3 is taken from their unpublished paper).

Finite-size scaling analysis indicates that the leading correction to these
parameters should go as N-1/2. analysis of the results (see fig.3.3) shows that
for these small values of N the subleading correction is important: the N — o¢
extrapolation is thus rather difficult, but an extrapolation to a zero value seems
highly improbable.

The careful comparison between the exact results and the first-order spin-
wave results leads us to conclude that the spin-wave approximation seems an

(3.27)
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Figure 3.3: Néel order parameter as a function of the sample size. The order
parameter is normalized by its maximum value. Triangles (resp. squares) stand
for N = 3p (resp. N =3p+ 1) samples; black symbols stand for diagonalization
results; open symbols stand for first order spin-wave results; dotted lines : large
N fits (N > 5000) of first-order spin-wave results (Xn =X +aN—1/2),

extremely good quantitative approximation for the considered sizes; on the basis
of the present data, it seems highly hazardous to adopt other estimate of the
thermodynamic limit than the spin-wave results[15]



Chapter 4

Spin Liquid State in the
Jz=Jy Model

As we have shown in the previous chapter, there exists a finite regime in
anisotropy parameter space, where spin wave theory breaks down and a spin
liquid state sets in. In this chapter, we will present a detailed study of the
spin liquid state.[70] We will also discuss the difference behaviors between the
even and odd numbers of chains. The two dimensional square lattice is shown
following the behaviors of the odd numbers of chains. A phase diagram for a
generic spin model will be presented in the end of this chapter.

4.1 Energy Spectrum and Gapless State

Further numerical evidence of the phase transition can be obtained by the struc-
ture of the energy spectrum as a function of the total uniform magnetization.
According to a recent analysis[75] the presence of Néel long range order in the
thermodynamic limit reflects in the structure of the energy spectrum in finite
size systems. In fact, if long range antiferromagnetic order is present in the
system, the dependence of the energy E(S) on the total spin S must follow the

approximate relation:
E(S) ~ E(0) + S(S+1)/(21y) (4.1)

up to a maximum value Spas of the order of the square root of the number of
sites N. Eq. (4.1) approximately reproduces the energy spectrum of a spin-S
rigid rotator with a momentum of inertia per site Iy /N corresponding to the
uniform susceptibility \ of the model. Notice that this criterion correctly repro-
_duces the absence of antiferromagnetic long range order in one dimension where
the energy spectrum scales as[8] E(S) ~ E(0) + S?/(2\N). The relation (4.1)

36
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Figure 4.1: a): rigid rotator anomaly é&x~' = V(E(S) — E(0))
—1/(2xvL), where \r is estimated on finite sizes for 8 (triangles), 18 (squares)
and 32 (circles) lattice sites. The continuous lines are guides to the eye, the
dashed line represents the ideal behaviour in a quantum antiferromagnet. b):
Finite size scaling of the inverse susceptibility. The finite size data (notation as
in Fig.3.2) extrapolated (see text) to infinite size (continuous line). The stars
are the exact values in the isotropic and one dimensional case.

is in fact quite well verified both for the isotropic system and for the anisotropic
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ones up to a ~ 0.1 where significant discrepancies appear (see Fig.4.1a). The
strong deviations from Eq. (4.1) which develop in the numerical data can be
directly related to the asymptotic decoupling of the chains in the square lattice,
leading to an approximate linear dependence E(S) ~ E(0)+AS. This anomaly
does not seem to scale to zero in the thermodynamic limit but instead persists in
all the lattices we have analyzed. From our finite size data an accurate estimate
of the uniform susceptibility can be extracted by a quadratic fit of the energy
spectrum E(S) at small but finite (uniform) magnetization S /N. The results
can then be extrapolated to infinite volume by use of a finite size scaling of the
form[42] x7!' = x&L + 4 N2 4 B/N which is known to work both in the
isotropic limit and in one dimension (extreme anisotropy). The extrapolation,
shown in Fig.4.1b for several values of the anisotropy parameter, is in fact in
good agreement with the known values at @ = 0 and & = 1 (also shown in the
figure) and predicts a smooth, featureless susceptibility in the whole anisotropy
range. This result indicates that the system remains gapless across the phase
transition and suggests that the nature of the disordered phase of this model
might be more exotic than the expected nondegenerate singlet, in agreement
with a conjecture put forward by Haldane[8).

4.2 Even v.s. Odd Number of Chains

However, the possibility of a gapless phase contrasts with the commonly ac-
cepted phase diagram of the model (1.5) defined on two chains[76, 77] where a
gap A(e) is believed to open at every finite value of the anisotropy parameter a.
The disordered phase in the two chain model is in fact continuously connected
with the a — oo limit where the gap is interpreted as the effect of the finite size
of the lattice along the y direction. The same result actually holds for every
even number of chains while an odd chain model remains gapless all the way to
the o — oo limit. Therefore it is not too surprising that the Hamiltonian (1.5)
on square clusters preserves the peculiarities of the odd chain sequence and does
not open a gap at any a. In finite clusters, however, a gap is always present and
we must investigate whether it disappears in the thermodynamic limit. We have
analyzed the finite size scaling of the gap in the case of two chains (L x 2), three
chains (L x 3) with antiperiodic boundary conditions along the y direction, and
for square clusters. For any o the lowest excited state is always a triplet but its
size dependence is quite different in the three cases. In order to see whether a
gap is present in the strong anisotropic region we assumed that, for o« — 0 and
L — oc, the gap A(L,a) can be expressed in a scaling form, as usual near a
critical point:

A(L.a) = A(L,0)F [aL(log L)"?] (4.2)

where the one dimensional gap A(L,0) is known to scale as 1 /L. The specific
form (4.2) has been chosen in order to match with first order perturbation theory
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in o and does not depend on the number of chains of our lattice. However, the
scaling function F'(2) behaves quite differently in the three geometries, as can
be seen in Fig.4.2. The correctness of our scaling form (4.2) can be inferred
by the collapse of the finite size numerical data on a smooth curve in all cases,
provided a is sufficiently small. The region where the universal curve F(x)
is defined increases with growing size and the thermodynamic limit at fixed
(small) a corresponds to the large x region of the scaling curve which should be
extrapolated from the finite size data. In the two chain model F'(x) clearly goes
through a minimum and then grows, suggesting a linear asymptotic behavior
at large © which implies a finite gap of order J, at small « in agreement with
field theoretical analysis[76]. Instead, the scaling function is always monotonic
both in the three chain case and, even more convincingly, in the square clusters,
supporting the absence of a gap in these systems.

4.3 Decoupling and Phase Diagram

" In order to understand how a disordered gapless phase may appear in 2D it is
useful to consider other physical quantities like the spin-wave velocity and the
momentum dependence of the magnetic structure factor. Again, SWT provides
a valuable help in the interpretation of the numerical results. The spin velocity
is almost constant at all anisotropies ranging between the one dimensional value
“¢y = m/2 and the isotropic limit[42] ¢, ~ 1.56 which are both reproduced within
"~ 10% by second order SWT generalized to anisotropic models. A surprising result
“ of SWT is the enhancement of the anisotropy in the spin velocity ratio induced
by quantum fluctuations:

2
Cy
Cr

Cla) = Ly rleoskecosk)eosks tacosky)
© N4 J+a) —(cosks + acosk,)?

aZ(a) Z(a)=1- %C(a) (4.3)

In fact, while at lowest order the spin velocity ratio coincides with the anisotropy
parameter, the one loop calculation always reduces the Z(«) factor. Obviously,
the correction C(a) vanishes at the isotropic point o = 1 but diverges loga-
rithmically in the a — 0 limit. Therefore, SWT suggests the occurrence of a
decoupling transition at a finite value of o signaled by Z(a.) = 0. The same
anisotropy renormalization factor Z(a) governs the long wavelengths behavior
of the physical correlation functions. In particular, the magnetic structure factor

behaves as
Sk, ky) o k2 + a'Z(a)k§ (4.4)

In order to verify these predictions we tested Eq.(4.4) against Lanczos diagonal-
ization in the 32 sites lattice. The results are shown in Fig.4.3 together with the
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Figure 4.2: Diagonalization data of the gap scaling function (see Eq. 4.2) for
the two chain model, three chains and square clusters. For the two and three
chains, open triangles refer to L = 4, full triangles L = 6, open squares L = 8§,
full squares L = 10, open circles L = 12. For the square clusters open triangles
correspond to 8 sites, full triangles to 18 sites, open squares to 32 sites and stars
to the 4 x 4 cluster.

zero and one loop SWT results for the spin velocity ratio in the thermodynamic
limit. The numerical data are in good agreement with the spin-wave results
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Figure 4.3: Square of the spin velocity ratio vs. anisotropy. The dashed line is
the leading SWT result, the continuous line includes the one loop correction in
the thermodynamic limit. Finite size estimates on a 32-site lattice for aZ(a)

are obtained by exact diagonalization (full triangles) and second order finite size
SWT [62] (open triangles).

in the 32 site lattice, and show an even larger effect. Therefore we are led to
conclude that at long wavelengths a decoupling transition may actually occur in
strongly anisotropic spin models. The phase diagram of the anisotropic model
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(1.5) suggested by SWT is depicted in Fig.4.4 for generic spin S systems. The
transition line where the staggered magnetization vanishes has been calculated
at the lowest order spin-wave level together with the locus Z(a) = 0 where we
expect a “decoupling transition”. At the same order in 1/S we have found that
these two lines approximately coincide up to a critical value of a beyond which
the system disorders without decoupling. In the strong anisotropy limit the
transition is characterized by the vanishing of both the staggered magnetization
and the spin velocity ratio leading to a picture of basically uncoupled chains
with interesting experimental consequences about the possibility to observe 1D
behavior in real systems. We believe that this phase diagram is qualitatively
correct although higher order terms in the SWT expansion (available only for
the magnetization) may quantitatively change the phase transition line. In or-
der to fully characterize the disordered phase, topological defects must be taken
into account leading to a possible difference between integer and half integer
spin systems(8].
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Figure 4.4: Phase diagram of the spatially anisotropic Heisenberg model ob-
tained via one loop SWT. The order parameter vanishes along the continuous
line and the spin-wave velocity ratio along the dashed line. The long dashed line
indicates a crossover transition between a decoupled phase (DP) and a normal
disordered phase with a finite spin velocity ratio.




Chapter 5

t-J 2 MOdel

In the following chapter, we will study another different but related topic, i.e.
the doped spin systems. This is highly challenge problem in understanding the
strongly correlated electron systemns.([78, 79] In order to minic the problem, we
will concentrate on the single hole in the Néel background. With the new Lanc-
zos Spectra Decoding (LSD), we successfully solve the problem in the infinite
two chains and the square lattice. Despite the neglecting of the spin fluctua-
tions, our results is believed to provide useful insights in the strongly correlated
electron systems.

In this chapter, we will first introduce a transformation to eliminate the
charge degree of freedom to get an effective spin Hamiltonian in a given mo-
mentum subspace. With this effective Hamiltonian, we can formally express
the single hole Green’s function as an expansion of the skeleton paths. Then
we will discuss the effect of spin charge decouling on the single hole Green’s
function. We will show that spin charge decoupling is an exact property in the
Bethe lattice but it is not fulfilled for more realistic lattices where the hole can
describe closed loop paths during its motion.

5.1 Effective Spin Hamiltonian

The {-J, Hamiltonian (1.7) is translation invariant and the most general one-hole
state with total spin ST = A/, — $ and total momentum —p ( hole momentum
p ) can be written as

1 .
Uy >= —— ePRep Tr|So > 5.1
|¢ \/7\_2 R,oTR|S0 (5.1)

where |So > is a pure spin state that satisfies: i) ng|So >=|So > for all sites
R, ii) njo|So >= |So > i.e. the spin at the origin is fixed to oo = —%, i)
the total spin along the z-axis is a well defined quantum number on the state

44
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|So >, i.e. $T|So >= M;|So >. The operator Tk in (5.1) is the translation
operator that brings the origin O to the lattice point R. It is formally defined
by:

TRCR/,,,T_R = CR+R',0 (52)

States with definite momentum [¢;, > are eigenstates of T such that Tgr|v, >
= e PRy, >, as it is easy to check using relation (5.2) in the definition (5.1).
Note also that the sum over ¢ in the definition of |y, > in (5.1) is used only for
later convenience since cr ,Tr|So >= Trco,-|So >, which is non vanishing
only for ¢ = —-%.

The state ¢, > in (5.1) represents the most general one-hole state with
given hole momentum p and definite total spin projection along the z-axis ST .

In fact, the Hilbert space spanned by |Sp > contains Dg, = (1\5\{—11) vectors,
while the Hilbert space of one hole contains Dy = (]ﬁy’) (l\f\;j\f:"_l) vectors, where

T
Ny = i—:—"—l-v— is the number of spin up electrons. Since all of the one hole states

with definite momentum have the same dimension, such dimension is equal to
QNE, i.e. it is exactly equal to the dimension Dg, of a spin system defined on
N — 1 sites.

After the identification of the one hole Hilbert space with the Hilbert space of
a spin model it is then possible to derive a pure spin-Hamiltonian. We evaluate
" the expectation value of the t-J. Hamiltonian on the one-hole state [¢p >,

E, =< ,|Hy >, and consider first the case J, = 0:

t —ip(R1—Ra) _ @ ' 3 ' S
E, = w Z eTiP—Ra) o bo[T.RICLLUIP CR+TH,0C}2'UCR:,‘QQTRQQDO >

Ry ,R2,R,7y,7,01.72
(5.3)
Now i) oy = o5 since the total ST has to be conserved in order to give a non-
vanishing contribution in E,. ii) R = Rs and R+ 7, = Rj, otherwise we create
a doubly occupied site which is projected out either by Por by overlapping with
< So|. Finally we obtain that £, =< SOIH;”ISO > with:

HT =t Z e‘i“T“T_TP(clwa,cu,,,cTO,aco,,,/). (5.4)

aal Ty

H?J acts only on spin states and in fact for S = 1 it is possible to express the

term between parenthesis in terms of spin operators only:

; - 1
XR,R; = ZC}QDUICR,.UCLJ-'O‘CRJ',O' = SMRMR; + 2SR, - Sk, (5.5)

g7’

Finally H If-f I reads:

Hifl =ty e T Xom, =ty e 0,5 Tr,. (5.6)
Tu '

Th
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Notice that the product of the operators T_,, and Xo,r, appearing in H;ff
is still a permutation of spins which leaves the origin O unchanged. Moreover
the operator \ just interchanges the spins at sites R; and R; we have that
\Ri,R; = \Rj,R, and that \??,,R,- = 1.

Analogously for J; # 0, by following the same steps, we have to add to H ;f S
the conventional spin contribution without all the bonds connecting the hole at
the origin O:

B = 1Y o Ty + s > S& Sk, (5.7)
T (i, )#0

The full Hamiltonian commutes with So (since it actually does not depend on
the spin at the origin) and thus it can be defined on N — 1 sites.

In conclusion for any eigenstate |So > of H;ff with definite S5|So >=
—1|So > we have an eigenstate of the t-J: Hamiltonian written in the form
(5.1). In fact, by use of the variational principle any eigenstate of (1.7) or (5.6)
is obtained by T[Z—P < Up|H|tp >= 0, 5&= < So|H|So >= 0 with the condition
< Ypltp >= 1, < SolSo >=1 respectively. Since E, =< Up|H|¢p >=<
SolHl_fffI.S'o > and < ¥p|tp >=< SolSo >, it clearly follows that all the
eigenstates of H ;-f f with definite spin at the origin define a true eigenstate of
H by use of (5.1). The one hole problem can be therefore formulated in terms
of a diagonalization of a pure spin Hamiltonian A I‘jf f for the given momentum
p. [80] A similar effective Hamiltonian can be obtained for the ¢-J model, by
substituting S° with S in (5.7).

It is interesting to note that H;ff is not translational invariant and that the
momentum of the hole appears as a simple parameter. It is just this property
that will allow us to diagonalize the t-J; model in certain momentum subspace
in the infinite lattice.

As it is shown in the Appendix many useful dynamical quantities such as
the Green’s function and current operators can be easily translated in terms of
spin operators acting on this spin Hilbert space where the hole is fixed at the
origin.

5.2 Green’s Function for J. =0

Following Brinkman and Rice[54], we can expand the Green’s function G in
terms of the momenta < H|(H;ff)k |H > of the Hamiltonian on the translation
invariant ground state of the undoped system |H >. For J, = 0 at vanishing
doping the Hamiltonian is classical and |H > is given by:

|H >= N > +|N'>) (5.8)

1
fﬁ(l

where |N > and | N’ > are the two possible determination of the Néel state.
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The one hole Green’s function can be generally written as a summation of
all possible path described by the hole during its motion through the lattice. A
path is then defined by a set of coordinates {R)}" with [ = 1,...,k, which are
connected by nearest neighbor vectors 7,

R} —_ R{._l = Tll! . (59)

Among all the possible paths it is useful to identify the skeleton ones. [81] A path
{Ri}" of length n is a skeleton path if Riy; # Ri—; forany (=1,...,n—1. By
definition, for any skeleton path, the hole never retraces its path immediately.
It is clear that all the remaining paths can be obtained by dressing each site
R, of the skeleton path by all possible retraceable paths. The retraceable paths
can be then summed exactly. :

Instead of giving the detailed derivation, we will present the final result and
some special cases. The most general Green’s function can be written in a formal
expansion of skeleton paths of length n:

G(R.w) = Grr(w) Y K(w)™Cu(R) (5.10)

where Gpg is the Brinkman Rice result (1.8), which includes only re:tracea.ble
path contribution starting from the origin R = O and coming back to the same
site: v

1 K(c
Gar(w) = : — 1_‘[(52)_)2, (5.11)
< (1- 5 TAW)) ¥ (w |
the coefficients: C,(R) = > Q({Ri}*™) and Q({Ri}") are spin
all skeleton {Ri}2?"
correlation functions, which, generally speaking, depend on the path,
Q({Rl}n) =< HIXRnan—l XRp—1,Rp-2 - 'XRhRulH > (512)

In the Ising case 2({R;}") vanish for odd n and for even n are simply equal
either to zero or one if the corresponding skeleton path change or not the Néel
order. They are instead complicated correlation functions in the t-J model for
J — 0. In this case expression (5.10) is still valid provided we include the odd
n contributions.

The function A '(w) appearing in (5.10) is the exact contribution of all possi-
ble retraceable paths on each site of the skeleton path different from the origin:

t 1

K(w) = 1T = 20 i TV [w —sgn(whw? —4(z — 1)t2] (5.13)

Two possible limits can be exactly solved using the previous expression.




CHAPTER 5. T-Jz MODEL 48

5.2.1 Bethe Lattice Case

The Bethe lattice is defined on a Cailey -tree with coordination z and for z = 2
it coincides with the one dimensional chain. In the Bethe lattice each site has
= —1 sons and one father and there is only one path that connects two arbitrary
sites of the lattice because, by definition, there are no closed loops in this lattice.
As in one dimension there is only one skeleton path connecting the origin to
a given point R and Q({Ri}") = Q(R,), which is only a function of the final
hole position R,,. We can immediately write the exact expression of the Green’s
function on a Bethe lattice using the previous general expression (5.10):

G(Rn,@) = Q(Rn) GF**(@) (5.14)

where GF¢¢ = Gpr(@) K(Z)". Note that for z = 2 we get the exact expression
given in (5.11). It is interesting that the “strong correlation” in the one hole
problem in the Bethe lattice is only contained in the static function Q(Ry), since
GFree(w) is exactly the free electron Green’s function in the Bethe lattice. This
has consequences for the spin charge decoupling. (See next section)

5.2.2 Retraceable Path Approximation

Let us consider the diagonal Green’s function G(R = O,w) for the ¢-J, model.
In the general expression (5.10), Q({Ri}") is either one or zero depending on
whether a given permutation preserves the Néel order or destroy it. The shortest
skeleton paths with Q({R;}") = 1 is known to be three times the path around
the elementary square plaquette of nearest neighbors. Thus n = 12 for such a
skeleton path. There are 8 possibilities to build such a path starting from the
origin in 2D ( 4 neighbors times 2 possible opposite directions) and 2d(2d - 2)
in general dimension d. Then the next leading correction to the Brinkman and
Rice result is

G(R = 0,w) = Gpr(w) (1 +2d(2d - 2) K(w)!2 + ) (5.15)

Since |A(w)]| < 2—;_—3 for any w, the correction to the Brinkman and Rice result
turns out to be less then 1.1% in d = 2 and 0.15% in d = 3. This has also been

noted in % expansion[52] but appears also quite natural in this formalism.

5.3 Spin Charge Decoupling

In 1D, if spin charge decoupling occurs, the one particle Green’s function can be
written as a simple product of a spinon contribution and a holon contribution:

G(R.t) = G*F'™°" (R, t) G*'"" (R, 1) (5.16)

This property is exact in d = 1 for the infinite / Hubbard model and is asymp-
totically valid for large (R,t) at finite U.[82]
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The spin charge decoupling manifests itself in the one particle Green’s func-
tion and in principle can be detected even at higher dimensionality as speculated
by several authors following P.W. Anderson.[3] For J,J. — 0, or ' — o one
expects no dynamics for the spinons and that the holon contribution has exactly
the free particle behavior, because there is only a unitary charge carried by the
single hole.

Thus, as a consequence of spin charge separation, the one hole Green’s func-
tion should be written in the following way:

G(R,t) = Q(R) GFr*¢(R,1) (5.17)

The free electron Green’s function is nothing but the free propagator in the

Nagaoka limit:
1

w— € + i0sgnw

Glk,w) = (5.18)
where ¢, = 2t(cos k; + cos ky) is the energy of a free hole.

By Fourier transforming in time and by taking the imaginary part of the
equation (5.17) we obtain the spectral weight as a function of the final position
- of the hole and the frequency w:

A(«.R) = Q(R) AF™**(w, R)  (5.19)

" The previous expression is exact in one dimension even for this simplified t-J,
" model where the spinon function is particularly simple Q(R) = ér,0.[82] By Eq.
© (5.14) spin-charge decoupling is generally valid in the Bethe lattice. Thus we
have obtained that the occurrence of spin-charge decoupling is automatically
satisfied for lattices that do not allow closed loop paths. In this respect the
Bethe lattice is more similar to a 1D lattice rather than to an infinite d one.

Equation (5.19) can be considered as a direct and measurable consequence
of spin-charge separation. In fact , by measuring the spectral weight for two
different positions of the hole we should get that the ratio:

AW, R) QR
Aw.R) _ Q(R)

= independent of w (5.20)

Since in two spatial dimension we can perform exactly 13 Lanczos steps, it
is possible to evaluate with a reasonable accuracy A(w,R) for R = (1,1) and

R = (2,2). We show in Fig.5.1 the ratio f.}l((t??l)) that according to expression
(5.20) should be independent of w if spin-charge decoupling is satisfied. This
is clearly not true in the present case as the presence of the skeleton paths,
strongly renormalizes the spectral weight as a function of the distance of the
hole from the origin. The absence of spin-charge decoupling is even more clear
for the 2C case (Fig.5.2), where 4(w, R)/A(w, R = O) is w dependent even for

relatively large R and quite low energy.




CHAPTER 5. T-Jz MODEL 50

04— X (
f\ /

(1,1).0)

o / |
0.2 ok g |

A(R=(R,2),w)/A(R

Figure 5.1: The ratio of the spectral weight at different sites for the two dimen-
sional lattice. The method used to calculate A(R,w) is described in [83]

Based on the numerical results and the previous analytical ones we conclude
that spin-charge decoupling can occur mainly in lattices where closed loop paths
are forbidden by the geometry. In these type of lattices the Nagaoka theorem
cannot be applied. We have thus found an interesting relation between the
Nagaoka theorem, spin charge decoupling and presence or absence of skeleton
paths in a given lattice. Of course we cannot rule out more complicated form
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of spin-charge decoupling such as the one discussed in [84].

Our results seems to be in disagreement with recent high temperature ex-
pansion suggesting spin-charge decoupling in 2D at least at short distance.[60]
This work however is done at finite doping for the t-J model. Thus it would be
interesting to apply the high temperature expansion directly to the ¢-J, model
to clarify this issue.
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Figure 5.2: (a):The ratio of the spectral weight at different sites for the two chain
lattice. The spectral weight as a function of R was obtained by Fourier trans-
forming A(p.w) obtained by the standard Lanczos Spectra Decoding. Moreover
since at fixed n, A(R,w) is exactly zero for R large enough, only a finite number
of momenta are necessary to implement ezactly the mentioned Fourier trans-
form (b):The calculated spectral weight for R = O. The solid line is got by
summing the spectral weight for all momenta verifying the independent relation
AR = O,w) = I%A(p,w). The data points are calculated directly by the
Lanczos Spectra Decoding using a trial state with a hole localized at the origin,
i.e. without using the translation invariance.



Chapter 6

Lanczos Method for
Dynamical Correlations

In this chapter, we will first give a short review of the conventional Lanczos
method, working in the finite size system. Then, we will explain how to adapt
it to the infinite size system. In order to calculate the spectral functions of the
single hole in the t-J, model, we will introduce a novel technique, which we
called Lanczos Spectra Decoding.

6.1 Lanczos Scheme in Finite Lattice

The Lanczos technique is widely used in strongly correlated electron systems.
Contrary to the quantum Monte Carlo technique, it does not suffer the “fermion
sign problem” or any other instabilities at low temperature. Dynamical correla-
tions can be easily obtained using this technique. However, it has been restricted
so far to small systems, typically 4 x 4 (for Hubbard model), or at most 26 sites
(for ¢-J and t-J, model) and 36 sites (for Heisenberg model).[57] Because of the
lack of a systematic way for finite-size scaling analysis in doped system like ¢-.7.
model, some infinite system properties are still unclear or even misleading. In
this section, we will develop a scheme, which allows us to analyze the infinite
system Lanczos data in a very efficient way, so that we are able to calculate the
spectral function of the ¢-J. model with good accuracy.

Lanczos method is devised to diagonalize huge Hamiltonian matrix of large
dimension Nj,. The method starts with a trial wave function ¢7. A new basis
is generated by Hamiltonian multiplication, s; = HifqﬁT >, for i=0,1,...,n. An
orthogonal basis { e; } can be iteratively calculated, after orthogonalization of
the vectors s;. Formally we have

bitileiris = Hle; > —a;ile; > —bile;_; >

53
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a;

Il

< ej|Hle; >
biv1 = < 6;‘+1‘H\€i > (61)

where by = 0, leo >= |t >, ai are the diagonal elements of the Hamiltonian in
the Lanczos basis. for i = 0,...1 and b; the off-diagonal ones fori=1,...n.

Thus in the Lanczos basis the Hamiltonian turns to a tridiagonal form. The
spectrum of the tridiagonal matrix will coincide with the one of the original
Hamiltonian, when n = Np. Since usually Np ~ 107-109, it is prohibitive to per-
form a diagonalization with n = Ny with the available computers. Fortunately
the ground state energy and wave function converge for n ~ 102 << Ny, justi-
fying the success of the method. Anyway, in any diagonalization in a restricted
basis with n << N, the Ritz theorem holds and the variational principle applies
for all the eigenvalues and in particular for the ground state.

6.2 Lanczos Scheme in Infinite Lattice

In an infinite system, the Lanczos scheme (6.1) can be applied efficiently, pro-
vided it is possible to define a simple finite basis that allows to represent the
vectors sp = H™|UT >, generated by the iterative application of H to the trial
state. This is in fact the case for our effective t-J; Hamiltonian (5.7), where it is
convenient to work with the basis of spin states with a definite value of Sz = +i
on each site. In fact in such a basis the non-diagonal part of the Hamiltonian
is localized around the origin 0.

For any fixed momentum p, We start from a Néel state with a hole at origin.
Since the J; term of the Hamiltonian is diagonal, the only part of the effective
t-J, Hamiltonian, relevant to generate new states, is the kinetic term. In each
multiplication of the effective Hamiltonian, the hole is translated to its z nearest
neighbors by the translation operator Tr, (see Fig.6.1). Then the spin exchange
operators \o,r, move the hole back to the origin, leaving an overturned spin
background and generating = new states.

The possibility to work with a finite basis even in the infinite system was
first noted by Trugman{49]. In fact the overturned spins are located within a
region around the hole with radius n. We can thus update only the defects over
the Néel state, which are finite at any finite number of multiplications of H.
After n steps, the Hilbert space is finite having at most dimension z".

This exponential growth of the Hilbert space ~ =" makes the problem in-
tractable even for relatively small n. Fortunately many of the generated states
appear several times during the expansion process of the Hilbert space, due to
the presence of the Trugman-like paths,[49] and also due to the translation in-
variant symmetry implicitly used by means of the effective Hamiltonian (5.7).
After all, the dimension of the Hilbert space turns out to be considerably smaller
than the previous estimate, and in fact it grows much slower than ", e.g. ~ 1.9"
for = = 3. In this way we have reached n = 26 for the 2C case and n = 14 for
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Figure 6.1: The application of the effective ¢ Hamiltonian(5.6) on the trial state.
(a):The Néel state with one hole. The hole is located at origin. (b):The state
after the action of T;,. T;, translates the Néel state one lattice space along
the direction p. The hole moves to the nearest neighbor. (c):The final state.
The spin exchange operator moves the hole back to the origin and leaves an
over-turned spin defect in the Néel background.

the 2D case with an Hilbert space dimension at most equal to ~ 12.2 x 10°.
The smallest finite lattice which contains the full information of the first



CHAPTER 6. LANCZOS METHOD 56

exact n Lanczos steps has linear dimension 2n + 1. Therefore, our results corre-
spond to a 53 x 2 lattice in the 9(' case and to a 27 x 27 in 2D, which is by far
larger than the size of a typical finite size Lanczos calculation[57]. Moreover the
possibility to work directly on the infinite system has indeed some advantages.
First of all, contrary to any finite size algorithm, in our scheme the ground state
energy is a variational estimate for the infinite system at any finite n. Secondly
in any finite size algorithm the Néel state contains the ferromagnetic state with
probability of order 9=~ while our trial wave function is always free of the fer-
romagnetic component for .\' — oc. Thus, in the infinite system we can avoid
a fictitious transition to the fully polarized state for small but finite J., which
is clearly only a finite size effect as we will show in the next section.

However the finiteness of n often leads to appreciable systematic errors. In
these cases we overcome this difficulty by carrying out a systematic extrapolation
in 1/n — 0, following a scheme which is analogous to the finite size scaling
analysis for finite lattice calculations.

We conclude this section with some technical comments about the algorithm.
The basis generated by the iterative application of H ;f / does not depend on the
momentum p of the hole. Hence we only need to generate it once, which takes
less than two hundred seconds of CPU time on a Cray-C90. After that, we can
do the usual Lancgos iterations for fixed parameters p and J,, which typically
takes 102-103 seconds of computer time.

6.3 Lanczos Spectra Decoding: a Novel Tech-
nique

With the n + 1 eigenvalues E; and eigenfunction |¥; > of the Lanczos matrix
truncated after n step, the spectral weight can be formally calculated as

Ak,w) = Im (Ol YT
2 |(®;]T7)*6(w — Ei) (6.2)
1=0

Il

In the following we assume that the energies E; are set in ascending order :
Ei+1 > E;.

As a result of the finiteness of our restricted Hilbert space, we get a sum
of 6-functions in the spectral weight at any fixed n. This feature appears in
the exact spectral function in all Lanczos calculations on any finite lattice. An
estimate of the thermodynamic limit is obtained by smoothing the é-functions
in Eq. (6.2) with Lorenzians of a given small width &,[67, 58]

-1
6w — E;) — Im— al

G E - (6:3)
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For small 4, reasonable results can be obtained, provided that the resolution of
the energy levels becomes much smaller than § when n is sufficiently large but
still much less than Nj. [57]

Of course, n = 26 and n = 14 for 2C and 2D respectively are by far smaller
than the conventional number of Lanczos iterations in a finite system calcula-
tion. Even though the ground state energy is already convergent up to 10~3
or even more for J, > 0.2 , such a small number of Lanczos steps is usually
far from enough for the spectral weight. In fact by the conventional method of
smoothing the é-functions described in (6.3), either one miss the details of the
spectral weight for ¢ large or in the opposite case one gets too rapid oscillations
which are obviously unphysical.[78]

A more efficient method for evaluating the spectral weight was recently in-
troduced by us.[78] In the following, for reason of completeness we will give
a brief review of this new method named Lanczos Spectra Decoding. In this
simple method, we introduced an interpretation of the Lanczos scheme. With
this interpretation, the spectral function can be calculated accurately, efficiently
and easily even with a small number of iterations n. Of course our method is
particularly important whenever the limitation of working with a small n is
really prohibitive. As we have seen in fact the Lanczos scheme in the infinite
system has a computational cost growing exponentially with n, whereas in any
finite size calculation the algorithm is only linear in n. We expect therefore
that our method is essential in the first case but maybe helpful only for a small
. computer-time factor in a finite size calculation.

As well known the spectral weight 4(w) is a distribution that may be divided
into two parts A(w) = A.n(w) + A(incon(w), a coherent one Acon(w) which
contains only §—function contributions and an incoherent one A;,, .01 {(w) which is
a continuous and usually smooth function of w. The Lanczos Spectra Decoding
has been introduced to make use of the smoothness properties of Aipcon(w)
in a simple and efficient way . In the following we therefore assume that the
spectral weight is incoherent. This is not a limitation since coherent peaks can be
easily separated out from the incoherent part by identifying all the quasiparticle
weights Z; = [(¥;|¥7)|? that remain finite for n — oc.

n
If the spectral weight is incoherent , since by completeness > Zi =1, one
=0
expects that 7; % Thus

Z(w) = (n+1)Z; (6.4)

may define a smooth function of w at the discrete Lanczos energies w = E;. The
full spectral weight is then closely related to the previous function:

Alw) = Z(w)pr(w) (6.5)

where p; represents the Lanczos density of states (LDOS) in the restricted
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Hilbert space generated by the Lanczos algorithm:
) = = > 6w - E) (6.6
W)= —— w— E; .
PL 1 2. i

(v
where the factor 71—:71- is determined by the normalization condition J depr(e) =
— 00
1. For n = Ny in a finite system, pz coincides with the actual density of states
of the many body system, but, in an infinite lattice ( N = ), pr(w) does not
generally converge to the many-body density of states for n — oo. This will be
shown exactly in the Bethe lattice case.
By definition, the number of states dN between energies € and € + de are
given by
dN = (n+ 1)pr(e)de. (6.7)

So the Lanczos density of states can be calculated as

1dy
n+1 de

pr(e) = (6.8)

Finally , using finite difference instead of differential, the coarse grained Lanczos
density of states can be estimated up to order O(;}g) by

1
&) = , 6.9
prE) (n+ 1)(Eip1 — Ei) (6:9)
where the energies
E;+ E;
& = _—Jf.2_—+—1 (6.10)

lie at the middle of two consecutive eigenvalues.
The function Z(w) which is known at energies E; can be easily interpolated
at the energies & where also py is known:

Z(E,:) = (Zg.H + Z,j)/z. (6.,11)

If Z(w) is a twice-differentiable function, eq. (6.11) is accurate up to O() as
well. Thus within the same accuracy A(w) = Z(w)pr(w) easily follows at the
discrete energies w = §;:

1 i Zi
Zis1 ¥ ) . (6.12)

A(fi) = -2- (——————-—-—Ei+l — Ei

The knowledge of A(w) close to the previous “special” points & can be
easily achieved by standard piecewise interpolations or extrapolations. At the
end, we can verify the sum rule JAW)dw =1, as a check for the accuracy of
the calculation.



Chapter 7

Low Energy Physics of t-J;
Model

In this chapter, we will first show the efficiency and the validity of Lanczos
Spectra Decoding in the Bethe lattice, where the ¢-J, model is exactly soluable
at J, = 0 limit. Then, we will discuss the low energy physics of the {-J, model at
finite J, in the Bethe lattice and at any J, in the two chain and two dimensional
lattice.

7.1 A Single Hole in the t¢-J. Model for the
Bethe Lattice

In this section we will show that Z(w) and pr (w) are well defined functions and
can be calculated exactly in the Bethe lattice.

On the Bethe lattice, the problem is exactly solvable because the skeleton
paths are absent and the retraceable paths can be summed analytically. This
exact solution has two meaning for us: (1) as a test for our scheme and assump-
tions, (2) as an hint to interpret the Lanczos scheme for the physical 2C and
2D lattice.

The spectral function in the Bethe lattice is dispersionless and completely
incoherent (see Eq.1.9).

Using the Lanczos algorithm eq.(6.1), the Hamiltonian on the restricted basis
has vanishing diagonal part {(a, = 0) and

by, =
b, =

N%

-1 for n>1 (7.1)

This can be easily understood. On the Bethe lattice, each multiplication of the
Hamiltonian generates z — 1 new states, except for the first iteration, which

59
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Figure 7.1: Comparison of the spectral weight obtained by the Lanczos Spectra
Decoding (6.12) for 10, 18 and 26 (8,11 and 13) Lanczos iterations with the
corresponding analytical results (solid lines) for the Bethe lattice with coordi-
nation number = = 3 (z = 4). Triangles, squares and circles correspond to the
small, medium and large n calculation respectively. The long dashed lines and
dashed-dot lines are fit of 4(w) obtained by the standard method (see Eq.6.3)
with 6 = 0.05 and é = 0.1 respectively.

generates : states. The problem maps onto a one dimensional problem. Then
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Figure 7.2: The single hole quasiparticle weight of the ¢-J, model on the Bethe
lattice with z = 3 and z = 4 respectively. The inset is an expansion of the
small J, region and the axes have been scaled by a factor 1000. The Lanczos
matrix was truncated after n = 40000 Lanczos steps, by far enough to obtain
convergent n = o< results even for very small J,.

it is possible to compute analytically Z and p; in Eqs.(6.4,6.6), because of
the simple structure of the Lanczos matrix in the Bethe lattice. In fact the
wavefunction components ¢;, ¢ = 0,1,,-- n of an eigenstate with energy w
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satisfy the iterative relation in the Lanczos basis:

Vigr = wi =0

Vito + V=1 = wiy i=1

(ig1 + Vi)V —1 = wiy 2> 2
Thus from the third equation solutions are possible for w” < €jp where egr =
—9t\/7 — 1 is the Brinkman-Rice approximation for the single hole ground state.

Then the components of the eigenstates on the Lanczos basis are given by: ¢¥; =
5 5
. w?—€hp —Ww .
ReAX—1!, where A = Y= BR " andthe complex number A is determined
€BR
2.z
"= Y. Finally
. Va(z=1)
o is determined by the normalization condition S 97 =1, and the function
i

by the first two equations, yielding ¥ = 7“-’;1[!0 and 1o =

Z(w) = lim ¢3(n+ 1) reads:

Z(w) ([ — o] fo w? < €2
= p= T
“ 2[z4% — (22 + 1)t%w?] BR

o) = AW)/Z()

Here A(w) is the Bethe lattice density of states in Eq.(1.9). In this case, pr(w)
has singular inverse square root behavior near the band tail.

By use of the Lanczos Spectra Decoding introduced in the previous section
we have obtained good approximation to the exact solution with n ~ 10, much
less than in the conventional calculation (see Fig7.1).

At finite J., the only change is with the diagonal part of the Lanczos matrix

ap = l4—: (7.2)
@ = ‘%‘(3: 142z -2)(i—1)) for i#0 (7.3)

This result can be easily obtained by counting the number of broken bonds in
the states generated at different Lanczos iterations. In this formalism we obtain
therefore that the motion of a hole in a Bethe lattice is exactly equivalent to a
one dimensional motion of a particle in a linear potential, provided we identify
the distance of the particle from the origin with the label i of the Lanczos basis.

By diagonalizing numerically the Lanczos matrix for large n we can easily
confirm the prediction of the long wavelength Hamiltonian (1.10), namely that
the spectral function is k-independent, i.e. it is dispersionless, and that A(w)
contains only é-function peaks, i.e. there is no incoherent part. In fact due
the linear potential all the one- hole states are localized bound states. It is
important to remark that the corrections to the asymptotic J, — 0 behavior is
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quite important for the quasiparticle weight Z even for very small J,. For Z the
correct linear behavior x J, is found only for J, ~ 103 (see Fig.7.2), whereas
the behavior of the ground state energy and the gap is more reasonable.

7.2 A Single Hole in the ¢-J. Model for the Two
Chains and Two Dimensional Lattice

7.2.1 Spectral Weight for J, = 0 Case

For J; = 0 the spectral weight A(w) is an even function of w and in the following
we will concentrate on its negative frequency region. In this model we found
(78] a sharp peak in the spectral weight 4(w) located at an energy close to the
retraceable path prediction, egp = —2ty/z — 1, and, a second peak at energy
~ —t. In the 2D case, the spectral weight looks similar, although the first peak
is rather small. In 1D, the exact BR solution leads only to one peak but with a
divergent spectral weight ~ W;%; at the bottom ¢p of the band. Already in the
2C case such a divergence disappears within the retraceable path approximation,
as well as in our numerical scheme, which includes all closed-loop paths. In fact
the peak in Fig.7.3,7.4 does not depend much on the number n of Lanczos steps.

We also found that the first peak in the spectral function has a remarkable
dispersive feature although the bottom of the spectrum appears k-independent.
The dispersion of the first peak is not present neither in 1D or in infinite
dimension[52] and the importance to go beyond the retraceable path approxi-
mation is already clear even in 2D.

For the density of states D(w) = [ éifl_’—j—dA(w,p) = A(R = O, w), our results
(Fig.7.4) present some small oscillation around the retraceable path analytic
solution (1.8). In 2D however the retraceable path expression for z = 4 seems
already quite accurate, at least away from the band tails.[78] All the above
results have been recently confirmed.[81]

As discussed in the introduction a key question is the determination of the
band edge energy ¢, i.e. the threshold energy where the spectral weight begin
to vanish. As a first step we identify the Lanczos ground state energy for
n — 00, Eo, which may or may not converge to the Nagaoka energy. For
instance, by neglecting closed loop paths, i.e. in a smaller Hilbert space, one
obtains the Brinkman-Rice energy €pr as a variational estimate of F,. In the
retraceable path approximation ep coincides with E, as it is reasonable to
expect in general.

In order to have an accurate estimate of Ew, it is useful to have a guess
about the asymptotic behavior of the quantity A, = E,, — E., for n — 0. The
way A, vanishes for n — oc is related to the form of the Lanczos density of
states at low energy. In the Brinkman-Rice case the exact solution in (1.9) gives

pr(€) ~ (w—ep)~/2. Thus, using Eqs. (6.9), At~ L yielding A, ~ L.

ndAy? n<
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Figure 7.3: Calculated momentum dependent spectral function for different k
in the magnetic Brillouin zone. For the 2C A(k,w), the wavevector k ranges
from from (0. 0) ( bottom) to (7,0) (top) with nine equally spaced values. For
each k, we have shifted the spectral function by 0.25 successively. For the 2D
A(k,w) the k-path in the magnetic Brillouin zone isT — M — X — T, where
T = (0,0), M = (7,0) and X = (7/2,7/2)-

For J. = 0 the inclusion of the skeleton paths seems to support a finite Lanczos
density of states (see Fig.7.5), yielding, by the same argument Ap ~ ;1; We have
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Figure 7.4: Calculated & = 0 spectral weight and one particle density of states
for n = 10,18,26 (8,11,13) for the 2C (2D) model. Solid lines are cubic inter-
polations of the largest n, and the dashed lines are the Brinkman-Rice densities
of states (Eq. 1.9) and guides to the eye for the 2D A(k,w). The lines and the
points for the DOS are calculated as described in Fig.5.2. The symbols for the
points are as in Fig.7.1.

plotted in Fig.(7.6) the estimated ground state energies as a function of 1/n for
several momenta for the 2C case. Many of the estimated Lanczos energies -
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Figure 7.5: The Lanczos density of states on the Bethe lattice (for = = 3 and
z = 4), the 2C and 2D lattice respectively. The symbols for the points are as
in Fig.7.1. The continuous lines are the exact results for the Bethe lattice and
guides to the eye for the 2C and 2D lattices

exact upper bound of the true ground state energy — are clearly below e¢gp
(even for the 2D case also shown in the picture). Thus, a previous suggestion
that the one hole energy in a quantum antiferromagnet should be close to egp
[85, 86] is not confirmed by our numerical results. In Fig.(7.6) it is a remarkable
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Figure 7.6: Plot of the lowest eigenvalues of the 2C' and 2D model as a function of
1/n, the inverse of the Lanczos-iteration number, for the same momenta shown
in Fig.7.3. The horizontal dashed lines denote the Brinkman-Rice ground state
energies.

property that all the extrapolated energies are very close to the Nagaoka energy,
independent of the momentum of the hole, E = —3 1+ 0.02.

The above results give a robust evidence that prpos is finite up to the
Nagaoka energy. Even in this case the spectral weight A(w) = Z(w)prpos(w)
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can in principle vanish for w > € due to the vanishing of the factor Z (w). This
is the scenario suggested in [81] using the expansion for the Green’s function
in terms of A'(w) (5.10). In the interval N'(w)a < 1 (for lw|/t > (——;—1—) +a)
when the expansion (5.10) converges the Green’s function is surely real, thus
determining a lower bound for ep. After some extrapolation it was found in
[81] that a <z —1, i.e. €B should be higher than ey for the 2C or the 2D case
using the first 18 or 12 coefficients Cn(R) of the Green’s function expansion,
respectively. Although the above analysis is surely correct, the basic conclusion
is affected by systematic errors due to the knowledge of too few coefficients in
the expansion.

As it is shown in Fig.7.7, this scenario looks already unlikely within the Lanc-
zos Spectra Decoding method because Z(w) seems to be smoothly connected to
the Nagaoka energy. It is clear however that this is not enough for a definite
conclusion.

In order to solve the latter controversy without relying on the Lanczos Spec-
tra Decoding, we have reproduced the Miiller-Hartmann—Ventura expansion
(Tab. 7.2.1) and extended it up to the first 26 coefficients for the 2C case.
This information was already contained in the first 26 Lanczos steps in an infi-
nite lattice since the iterations defined in (6.1) can be formally obtained by the
knowledge of the first 2n + 1 momenta of the Hamiltonian on the trial state. As
it is shown in Tab. 7.2.1 the Miiller-Hartmann—Ventura extrapolation:

! . a'.’n

Cn(R) = C(R)W (7.4)
used to determine the radius of convergence « is not stable when large skeleton
paths are included. For large n, we find that «, #(R = O) and C(R = O) are
always going up. At n = 26, C(R = O) becomes 5 times larger than their value
obtained for n = 18, while a changes from 1.88 to 1.92. (Tab. 7.2.1)

Instead of using the fit (7.4) with the calculated momenta Ch(R), we apply
the well established ratio method, well known for the study of critical phenom-
ena. Using this method we evaluate the radius of convergence «, analogous to
the critical temperature in the language of critical phenomena, and the power
law exponent 0 describing the vanishing of the Green’s function at the band
tails, analogous to a conventional critical exponent in the same language.[87]
We define

C”n.
C"n-—l

u(n) = (7.5)

and the linear intercept at % — 0 with two next consecutive points

p(n,n—2)= —;—[nu(n) —(n—2)u(n —2)}. (76)
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Figure 7.7: The expected smooth quantity Z(w) = (n+1)x Z at J. = 0 plotted
as a function of the energy for different Lanczos iterations. The continuous
line connects the n = 26 data. By comparing the data at different Lanczos
iterations, Z(w) seems to be non vanishing just above ¢y .

In fact p is expected to behave as

u(n) = o[l + % + 0(7‘1-._;)] (7.7)
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where « gives the position of the singularity and 6 = —(1+g) gives the exponent
of the Green’s function at the band tail G(w) & (w—ep)?. This kind of analysis
is much more stable than the extrapolation used in [81]. In Fig.7.8 the data for
the linear intercept p(n, n—2) suggests that the % corrections are well behaved,
and approximately linear for n > 20. By accident this number is very close to
the maximum n reached in the previous analysis [81], giving further evidence
that for this problem a very large number of coefficients C', are necessary to
obtain reasonably converged results.

Then, by estimating a , by a linear fit in the region n > 20, we obtain
o = 2.00 4+ 0.02 ~ z — 1 both for R = 0 and for p = 0, as an independent
check that a should not depend on R (Culp = 0)=>r Cn(R)). Thus we have
a clear evidence that the band edge energy coincides with the Nagaoka energy
since G(w) appears to be real only for w < en in the 2C case.

For the critical exponent 6 we have a much less accurate result probably
because the vanishing of the spectral weight close to ey is characterized by
overall essential singularities of the type 5"7:15, as we have suggested in our
previous paper.[78]

Here we can give a very simple argument supporting this singular behavior
for Z(w). For the spectral weight the behavior close to ey should be the same,
because, as we have previously shown, the Lanczos density of states is approxi-
mately constant in this region. After n Lanczos steps the hole forms a polaron
state | P > with maximum spin but total 5; = 0in a region of linear size { ~ 1,
as it is also confirmed by direct calculation of the spin arrangement around the
hole (see next section). The overlap of the ground state of the Hamiltonian
matrix truncated after n Lanczos steps is then approximately given by !

1 TV . _v
Zo~ v = A 527" (7.8)
(\F/z) 2

where V' is the volume of the polaron equal to 2¢ for the 2C case and &7 for
general spatial dimension d > 1. The quantity Zo X n according to the Lanczos
Spectra Decoding method characterizes the behavior of the smooth function
Z(w) at an energy w = €N + const./n. Solving for n from the latter equation
and assuming , as we have already mentioned, that { x n we can substitute
V o (w—ep)~? in (7.8) and obtain:

A(w) x Z(w) (w—en)"3/2e T @ for 20 (7.9)
A(w) x Z(w) (w = ey)~ 42t TR (7.10)

1The state < P| with maximum spin and S; = O has the same overlap with all the possible
states of the Hilbert space with S: = 0, thus in particular < P|N >2= ( ‘1, ) , where V = gd
v/2

is the volume occupied by the polaron, and the binomial coefficient (‘/"/2) is the number of

ways to put V/2 spin up and V7/2 spin down in a region of V' spins.
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p(n,n—2)

71

Figure 7.8: The linear intercept ;(n, n—2) defined in the text (7.6) as a function
of £ for p = (0,0) and R = (0,0). The dashed lines are linear extrapolations of
the last six points. The two horizontal arrows indicate the Brinkman-Rice and
Miiller-Hartman estimates. The vertical arrow indicates the largest n analyzed

in [81].

where A is an overall constant depending on the dimensionality. Using the
above formulas we have obtained good agreement with numerical results over a

range for Z covering up to two decades (see Fig.7.9).
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Figure 7.9: The behavior of Z(w) at band tail for p = (0,0) and p = (7,0). The
solid lines are the least square fit by expression (7.10).

7.2.2 Spectral Weight for Finite J,

For finite J, a coherent part shows up in the spectral weight although, contrary
to the string picture, at most only the first few energy levels contribute to the
spectral weight with true é-functions. (See Fig.7.10) In order to characterize
these 6-function contributions we can check whether the quasiparticle weight Z;
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converge to some finite value for n — oo, whereas if the energy level E; belongs
to the incoherent part only Z(w) = (n+1)Z; remains finite for n — oc. Another
method to distinguish the coherent part from the incoherent one is to analyze
directly the wavefunction components of the eigenstate ¥; on the Lanczos basis
{e;}. As we have seen in the previous section the label j measures the length
of overturned spins in the state i. The quasiparticle weights Z; > 0 only if the
Néel state ¢;=p will have a non vanishing component with the state ¥;. This
obviously occurs if the eigenstate ¥; is “localized” in the Lanczos basis even for
n — o, otherwise only a probability ~ % to be in the Néel state is expected to
survive.

Using the above criteria, shown in Fig.7.11 and Fig.7.12, we have a clear
evidence of a single quasiparticle weight for J. not too large, and an incoherent
part which is rather similar to the J, = 0 one. For larger J; the incoherent part
moves quite fast at higher energy, leaving probably more than one é-function
contributions to the spectral weight. Thus it is possible to conclude that the
inclusion of closed loop paths does not suppress the first quasiparticle weight,
but completely washes out all the quasiparticle excitations at higher energies.
Even the few peaks that appears in the incoherent part cannot be associated to
“string state” resonances — as suggested by [58, 88] — because are rather similar
to the J. = 0 ones, where localized string states cannot exist. We thus confirm
the conclusions of [57] for physical values of .J,.

As far as the energy spectrum E(p) is concerned we obviously found that
the lowest energy state has a finite quasiparticle weight and has momentum
p = (0,0), instead of (T,%) as commonly accepted for the ¢-J model. [89, 50]
This is because in the t-J, model the spin fluctuations are neglected, while they
play an important role for the energy dispersion E(p) (See Fig.7.13).

Finally for the quasiparticle weight as a function of .J, we can apply the same
argument at the end of the previous section by assuming that Z is basically the
overlap of an S, = 0 polaron state of size §, where £ may be roughly identified
with the correlation length within the string picture £ o< J; /3 We should get
essential singularities like

7 x JTUSem2ITY for 2C
Z x JrU%e for d> 1. (7.11)

As in the string picture where we could not detect the correct Z o« J: behavior
for reasonable values of .J. (see Fig.7.2 ), we expect that these kind of singu-
larities are important only at a value of J, ~ 10~3. For larger values of J,
one obtains a crossover to a J: /3 behavior surprisingly valid for a quite large
range of J. both in the string picture or in the realistic cases shown in Fig.7.2
and 7.14. In the latter picture it is also evident that at some small value of J;
the Z factor should vanish much faster than J;l/ 3 otherwise we should get an
unplausible critical value of J., where the quasiparticle weight vanishes. This
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Figure 7.10: The spectral function at J. = 0.30 and k& = (7,0) and J. = 2.00
and & = (0,0).

at least supports the existence of essential singularities in the .J, — 0 limit for
the quasiparticle weight as in Eq.(7.11).
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Figure 7.11: The dependence of Z x (n + 1) on the Lanczos iteration number n
for J. = 2.00. From left to right, the ground state, the first excited state and
the second excited state are plotted. The ground state quasiparticle weight is
convergent up to 1071% and Z x (n + 1) is proportional to n as expected. The
first excited quasiparticle weight is poorly convergent instead. However, the
Z x (n 4+ 1) still show an approximate linear behavior. Finally for the second
excited state, Z x (n + 1) is decreasing with increasing n, clearly indicating the
incoherent nature.

7.2.3 Ground State Properties for Small J,

The accurate determination of the ground state energy in the small J, region is
important to detect a possible transition between an essentially antiferromag-
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Figure 7.12: The 2C wavefunction of the single hole in the Lanczos basis for
J,=2,p=(0,0)and J, =03, p= (7,0). The solid line denotes the ground
state, the dotted one the first excited state and the dashed one the second
excited state.

netic state and a state where the hole fully polarize the spins in a finite region of
space with size £?, that remains somehow phase-separated from the remaining
antiferromagnetic region. In fact the latter variational state has an energy that
approaches the Nagaoka energy for £ — oc. At finite J., by optimizing the
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Figure 7.13: The energy dispersion of the lowest quasi particle state for J. = 0.3.
The path in the magnetic Brillouin zone is the same as in Fig.7.3.

size { of the ferromagnetic region, one gets[86] corrections to the asymptotic
Nagaoka energy proportional to J;d +2

Supports to a possible transition come from the infinite dimension limit pre-
dicting that the antiferromagnetic state defined at large J, is analytically con-
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Figure 7.14: Calculated quasiparticle weight Z as a function of 7213,

nected at small J, not to the Nagaoka energy but to the much higher Brinkman-
Rice energy. Thus there should be a critical value J, where the ‘phase separated’
state becomes lower in energy as we decrease J..[86, 58] This is somehow the
scenario proposed by Emery et al for the doped t-J model. We will show in the
following a clear numerical evidence that the above scenario is not confirmed
in the ¢-J, model for a single hole.

Contrary to the string picture or the infinite dimension limit we see in
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Figure 7.15: The ground state energy as a function of T3, The data points
refers to n = 26 (2C) and n = 14 (2D). The continuous lines are a fit £ =

a+bJ3/3+c.]‘._ of the data. The dotted line is the energy of the “phase separated
polaron” described in the text.

Fig.7.15 that the asymptotic value for the energy is clearly given by the Na-
gaoka energy, although the leading corrections to the energy seem quite well

fitted by the string picture exponent .]22/3. In fact the diagonal elements of
g
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Figure 7.16: The diagonal matrix elements of the Hamiltonian in the Lanczos
basis. The solid line refers to the two-chain lattice and the dashed line to the
Bethe lattice with z = 3.

the Hamiltonian in the Lanczos basis describe approximately a linear potential
(Fig.7.16) as in the string picture. This is obviously important for the small J,
correction to the energy. Moreover in Fig.7.15 it is shown that the ‘phase sepa-
rated’ state is well above the estimated energies even for very small J;, leaving
open a possible transition at an unphysically small value of J. ~ 10~* for 2C.
However, for 2D, we do not have the enough accuracy as show in Fig.7.17.

7.2.4 Spin Arrangement in the Ground State

Although we have shown that the Nagaoka energy is the ground state energy of
the ¢-J. model for J. — 0 it is not clear what spin background is favoured, in
this limit. For instance we could have that the Nagaoka state is degenerate in
the thermodynamic limit with an antiferromagnetic state.

In order to solve this issue, we have calculated the hole-spin-spin correlation
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Figure 7.17: Same as in Fig.7.8 for the 2D case, the data are taken from [81].

function, by measuring the one involving the spins in the :-direction of the
staggered magnetization

CH(R:)

N < "P/’p!hz*s'fzislz?,--l»rﬂ l4hp >

A + 12
< S0|Sk,Shiqr, S0 > (7-12)

i
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and its spin rotation invariant version

CH(R)) = N <UplhlSrSri4nltp > (7.13
< : 13)
= < bOiSR.SR;+r,, 1So >
where h! is the hole creation operator at origin. These correlation functions
measure how the spin background is perturbed by the hole.

For small J., as expected the finite n corrections are important and tends
erroneously to enhance the antiferromagnetism (see Fig.7.19). Instead by study-
ing the behavior of C(R) as a function of 1/n it is quite clear that the spins
are strongly correlated in the z-y plane and for n — oo the isotropic correlation
seem to approach the fully polarized value 1/4 for J, = 0, presumably at any
finite distance from the hole.

The symmetrized correlation function C*(R;) has been introduced since, for
J. — 0, the total spin is a well defined quantum number and the isotropic
hole spin-spin correlation does not depend on the polarization of the total spin.
Thus even in the S, = 0 sector a polaron solution with maximum spin leads to
a maximum C(R;) = %, whereas C¥(R) = 0 for this polarized state since the
contribution of the parallel spins are exactly cancelled by the one of antiparallel
spins (all these contributions have the same weight in the polaron solution).
In this way, we can unambiguously distinguish the ferromagnetic region with
CH*(R;) > 0 from the antiferromagnetic one with C*(R;) < 0. As shown in
Fig.7.18, we have found that for large J. all the spins are correlated in the
- direction since the two previous correlation functions are almost identical.
There is a clear evidence of an antiferromagnetic correlation which approaches
the asymptotic value C(R) — —1/4 with a correlation length similar to what
appears in the wavefunction components in the Lanczos basis (see Fig.7.12).



CHAPTER 7. LOW ENERGY PHYSICS OF T-Jz MODEL 83

0.2 [ T N L L B S B B B B
X 2J.=0.0 — CxR) ]
011 ©J,=1.0 “ Cx(R)]
ok ]
-0.1 N e ) —
—02F T - -
i S I DN T S N A | 1%1 ] -

2 4 6 8 10

Figure 7.18: The hole spin-spin correlation function C'*(R) and C#(R) with r, =
(1,0). For large J. C'(R) is purely antiferromagnetic. However for vanishing (or
small) J;, the ferromagnetic component in the 5;-S, plane are important.
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CHAPTER 7.
n Cn(0) Cn(2) Cn(4) Ca(10)
6 0 2 0 0
10 0 2 8 0
12 4 2 3 0
14 18 4 6 10
16 36 28 15 14
18 120 66 33 28
20 270 244 151 96
22 846 668 404 182
24 2400 1868 1305 734
26 7052 5590 3906 2238
28 21432 16250 11503 7378
30 63538 49950 35581 22844
m Cn(16) Cn(26) Cn(36) Cn(50) Ca(p=0)
6 0 0 0 0 0
10 0 0 0 0 4
12 0 0 0 0 .12
14 0 0 0 0 14
16 0 0 0 0 58
18 21 0 0 0 150
20 50 0 0 0 416
22 127 48 0 0 1352
24 440 150 0 0 3704
26 1118 440 107 0 11394
28 3792 1688 422 0 33850
30 11949 5050 1418 238 103498
2n C'n (U) C’n(Q) Cn(4) C"ﬂ(l())
32 193448 152314 108676 70960
34 590154 472488 340675 223698
36 1824844 1471492 1068182 708496
38 5677040 4609274 3385018 2264848
40 17818480 14539266 10760828 7287326
42 56220728 46154304 34459409 23573566
44 178693158 147425926 110826815 76581474
46 570790364 473551402 358473393 249911680
48 1834737522 1529492974 1164976270 819090516
50 5926011194 4963905566 3804186739 2695446152
52 19240493885 16187397249 12476330859 8905934658
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2n Cn(16) Cn(26) Cn(36) " (50) Chn (64)
32 39081 17614 5714 1140 0
34 128823 58446 19510 1204 534
36 414196 106574 70917 18258 2981
38 1348874 670086 251056 67790 12460
40 4397638 2215908 383914 258922 55639
12 14437674 7572526 3126095 968326 222326
11 47561630 25474418 10934279 3569044 386787
16 157303528 85932026 38263835 13147300 3468307
18 521003825 200492088 133406362 47855170 13327978
50 1737377480 983073358 4645637159 173622392 50912034
53 5300668507 3333034862 1616935261 626834742 192138728

2n Cn(82) Cn(100) Cn(122) Cn(144) Clp=0)

32 0 0 0 0 984446

34 0 0 0 0 3087090

36 0 0 0 0 9727036

38 1190 0 0 0 30898232

10 7634 0 0 0 98692630

42~ 35058 2661 0 0 317324618

14 164380 19237 0 0 1025581138

16 697614 96205 5944 0 3332494632

48 2901958 472897 47830 0 10882673258

50 11813430 2117499 258806 13277 35702392358

53 47077158 9171222 1332600 117733 117646241223

Table 7.1: The non vanishing coefficients Cp(R) of the ¢-J. Hamiltonian on
the 2C lattice. Only those coefficients which are not included in the Miiller-
Hartmann’s table are shown. The notation is similar to the one in ref. [81], i.e.
d? = |R|? and nge is the number of skeleton paths at a given distance and for a
given direction (note that there is an extra factor two for R # O if we do not
distinguish the two possible directions as in ref. [81]). The data for n = 26 are

accurate up to £b.
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a Br=0 Cr=0 o2n
1.88136 2.39084 1.26191 22-36
1.88356 2.42844 1.38458 22-38
1.89515 2.63760 2.34793 22-40
1.89049 2.54888 1.86730 22-42
1.89824 2.70449 2.81409 22-44
1.89667 2.67137 2.57441 22-46
1.90428 2.83985 4.08250 22-48
1.90575 2.87370 4.48588 22-50
1.91050 2.98860 6.20875 22-52

a ﬁR:O CjR:O 2n
1.88136 2.39084 1.26191 22-36
1.88399 2.43662 1.41397 24-38
1.89752 2.68445 2.65495 26-40
1.89228 2.58627 2.06374 28-42
1.89925 2.72657 2.98843 30-44
1.89721 2.68362 2.66328 32-46
1.90523 2.86235 4.34957 34-48
1.90657 2.89433 4.75851 36-50
1.91148 3.01404 6.68424 38-52

Table 7.2: Fit of the coefficients C,(R) for R = O using the ansatz (7.4), in the
given intervals of n given in the rightmost column.
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Figure 7.19: The extrapolation n — oo of C*(R) and C'#(R) for the three lattice
sites closest to the hole at J. = 0. The horizontal line is the value of C*(R) for
the fully polarized Nagaoka state.




Chapter 8

Conclusion

In this thesis, we have developed a scheme to generalize the spin wave theory to a
finite size lattice, and we have applied it to the frustrated 2D Heisenberg model,
the anisotropic Heisenberg model and the Heisenberg model on the triangular
lattice. The same technique is applicable to more general Hamiltonians with
or without frustration, including triangular and Kagome’ lattice, anisotropic
models, efc. eic. where it can yield accurate results with a minor computational
effort. It has the advantage that one can directly check the accuracy of the
results on the small size system, while yielding reliable prediction on the infinite
system. In the J;-J» Heisenberg model we have found that SWT works very
well for small frustration (J» < 0.2) and an accurate estimate of spin-rotation
invariant quantities can be obtained with only a few term of the expansion in
+. We finally confirm the existence of a non classical spin liquid state for large
Ja. Contrary to the previous results, the finite size spin wave successfully shows
that the Heisenberg model on the triangular lattice has indeed a long range
ordered ground state.

Our numerical and analytical results strongly support a spin liquid state
existing in the J,-J, model. The spin liquid state is shown to have gapless low
energy excitation. A phase diagram of this model is presented by the numerical
results, showing that this spin liquid state behaves as a set of the decoupled one
dimensional chains. This is an example of how the one dimensional behavior
might extend even in two spatial dimensions.

Let us conclude by mentioning our results on the single hole problem for the
t-J. model, which has taken most of the time during my Ph.D studies. After
all, the picture of the one hole ground state in the -/, model seems clear. In
fact, as we decrease J., we approach the Nagaoka state with maximum spin
and with total S; = 0 (which is by the way a conserved quantity) due to
the proliferation of closed loop paths that strongly enhance the ferromagnetic
correlations around the hole in the z-y plane. Thus there exist a ferromagnetic
polaron with a length which diverges for J. — 0, but that is continuously

88
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connected to the antiferromagnetic length obtained at finite large J,. In this
way this polaron state is somehow similar to the phase separated variational
state[86], but we have to emphasize that in our approach the localized polaron
conserves the translational symmetry because it is defined after the Galileo
transformation (5.1) and consequently it is not “phase separated”. Moreover
the total spin projection on the :-axis vanishes, as it is conserved locally by the
effective Hamiltonian (5.6). The energy of this state is much smaller than the
“bhase separated” variational state and represents the real picture of the single
hole ground state in the ¢-J. model.

We have presented here a successful attempt to go beyond the retraceable
path approximation and the string picture for the hole dynamics in an antiferro-
magnetic spin background. A new Lanczos-type of analysis of the Hamiltonian
enabled us to get very accurate results for the 2C problem and qualitatively
similar ones for the 2D case. At J, = 0, a clear dispersion of the main incoher-
ent peak of A(k,w) both for the 2C and the 2D case was found. Contrary to the
prediction of the large spatial dimension, we found, at least for the 2C model,
that the bottom of the incoherent band is dispersionless and coincides with the
Nagaoka energy €y, i.e. the minimum possible energy by the Nagaoka theo-
rem. This resolve a controversy recently proposed by Miiller-Hartmann. In fact,
based on the Lanczos Spectra Decoding gnethod, we have given an argument im-
plying that A(w) o (w—ex)~#? tetw=<m7 and if for instance A o (esr—en)?,
we can easily understand why the infinite dimension limit get erropéously no
weight for w < €gg.

For finite J,, contrary to the string picture, we found only one coherent
quasi-particle weight and an incoherent broad spectrum at higher energy. A
second quasiparticle peak may appear in the spectral function but has always a
very small weight. The possibility of a phase transition as a function of J, is not
compatible with our numerical results for the ground state energy, unless for
an unrealistically small value of the coupling, and, in consequence, the Emery’s
argument about the phase separation for small J is found unlikely in the {-J;
model.

The spin charge decoupling is surely not evident at small distance R. How-
ever, it still remains open whether the spin charge decoupling happens asymp-
totically at large distance, although for the 2C case we have ruled out this
possibility up to a distance of about 10 lattice spacings.




Appendix A

Quasiparticle Weight,
Green’s Function and
Current Operators

An important quantity to characterize the dynamics of the single hole is the
so called quasi-particle weight appearing as the residue of a simple pole in the
one-hole dynamical Green’s function. This residue can be alternatively calcu-
lated [90] by means of the overlap of the ground state |y, > of one hole with
momentum p and the state ¢, ,|H >, where |H > is the translation invariant
ground state without holes:

Zy = | < Hlc) ;olp > P = | < H|So > | (A.1)

where we have explicitly used that n, 0|So >=|So >. For t > 0, i.e. positive
time, the Green’s function is defined as

G(p.t) = —2i < H|c} e {H-i=Eakte, 11 > (A.2)

where Ej is the corresponding energy of the state |H >. Here the factor two
comes from the requirement that G(p,t — 0%) = =2 < H|n, ,|H >= —i. The
normalized state |y, >= V2¢p o |H > is of the form (5.1), if we choose

SH = Van,olH > . (A.3)

Due to the correspondence of eigenstates between H ;f f and H, we can expand A
|So > in terms of eigenstates of H;ff and easily check that the propagation of
|So > with the effective Hamiltonian, |So >:= eiH;fftlSo > e‘iH;”t, corre-
sponds exactly to the propagation of ¥, with the exact ¢-J. Hamiltonlan and

Gp.t) = —i < SH|emH ~is) g8 (A.4)

90
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Using that ng >= ﬁniy,,lH >, that the commutator [H;ff,n,,'o] vanishes

and that G does not depend on o, we get, after Fourier transform G(p,w) =
[ae]

[ dt G(p,t) e,
0

Glp.w) =< H]|- (A.5)

1
—_—|H >.
+i6— HYY |
Another important quantity is the current operator, which is useful when
we calculate the transport properties. On a discrete lattice, it is defined as[7]:

J = |legt Z C:rq,,CR-'rT,,o + h.c. (A.6)
Ro

The matrix elements of the current operator between two one-hole states with
given momentum p define an effective current operator j¢/f acting on spin states
only: ,

<y il >=< SIS > (A7)

Analogously to calculation shown in Section II, the effective current operator
can be written as . :
jeff = [——ieotelpr“ XOT“T-,-" -+ h-.C.] (A8)
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