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Introduction

The subject of this dissertation is the study of some aspects of the asymptotic
behaviour of solutions of linear second order partial differential equations with Dirichlet
boundary conditions in varying domains. More precisely, let  be an open subset of R™
and let (£2;) be an arbitrary sequence of open subsets of §2. Assume for simplicity that
2 is a bounded set with smooth boundary and that the partial differential operator is the
Laplacian. We refer to the single chapters for the precise hypotheses. Let f € H~1(Q).
For each h € N let u; be the solution of the Dirichlet problem

up € Hg(Qn)
(0.0.1)
—Aup = f in Qp,

extended by zero on Q\Q}. Using the variational method it can be easily proved that the
sequence (up) is bounded and so it has a subsequence that converges weakly in Hga(Q)
to some function u. We are interested in the equation satisfied by the limit function u.

One form of this equation can be obtained in the following way. Let wp be the

solution of the Dirichlet problem
Wp € H& (Qh)

(0.0.2)
—~Awp =1 1in Qp,

extended by zero on 2\Q,. Like (up), the sequence (wp) has a weak limit w in H}(Q).
Let now ¢ € C§°(Q) and take wypp and upp as test functions in (0.0.1) and (0.0.2)

respectively. Writing the equations in the weak form we obtain

7

/DuhD(whap)d:c —/ DwpD(upp)de + (1L,unp) = (f,wry),
Q Q

where (-,-) denotes the duality product. Note that here we can pass to the limit since the

terms containing DupDwy, cancel out. Thus we get that u is a solution of the problem
u € H}(Q)
(0.0.3)
/ DuD(wy)dz — / DwD(up)dz + (1,up) = (f,we), Yo € C§(Q).
Q Q

In Chapter 2 we provide a self-contained presentation of the properties of the so-

lutions of an equation of the form (0.0.3), in the more general case of a linear elliptic
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operator of the second order with bounded measurable coefficients. The results men-
tioned therein were obtained in a joint work with G. Dal Maso (see [18]).

Remark that, if in (0.0.1) we consider an elliptic operator A4 instead of the Laplacian,
in (0.0.2) the adjoint operator A* will appear. Let us notice also that the solution wuj
of (0.0.1) satisfies an equation of the form (0.0.3) with w replaced by the solution ws
of (0.0.2).

Let ¥ = {w € Hy(Q) : —Aw < 1in D'(Q), w > 0a.e. in Q}. Note that the
solutions wy, of (0.0.2) belong to K. We prove that for every w € K and f € H~1(Q)
there exists a unique solution u of (0.0.3). Moreover the solution depends continuously
on w in the weak topology of Hj(2). We show also that the family of problems of
type (0.0.3) with w € K, is closed under the weak convergence of the solutions and
that for each w € K there exists a sequence (Qj) of open subsets of Q such that for
every f € H™'() the solutions up of (0.0.1) converge weakly in H () to the solution
u € Hj(Q) of (0.0.3). This means that the family of problems of type (0.0.3) with w € K
can be considered as the closure of the Dirichlet problems (0.0.1) with respect to the weak
convergence in H} ().

Problem (0.0.3) was introduced by Dal Maso and Garroni in [13], where it is studied
in an equivalent formulation. They proved that for every w € K there exists a positive
Borel measure p on {2, depending on w and vanishing on the subsets of 2 of (harmonic)
capacity zero, such that for each f € H7!(Q) the solution u of (0.0.3) coincides with
the solution of the relaxed Dirichlet problem

u € Hg(Q)NL2(Q)

(0.0.4) (—Au,v)—l—/ﬁuvdp = (f,v)
Vv € Hs(Q)NLA(R).

Note that the relaxed Dirichlet problem (0.0.4) is not satisfied in the sense of distributions
since we do not assume p to be a Radon measure, and hence C$°(Q) is, in general, not
included in Hg(€2) N L2(Q). So one of the advantages of using problem (0.0.3) is that
the space of admissible test functions is the usual space C$(2). In Chapter 2, where
we treat problem (0.0.3) independently of (0.0.4), we shall see that another advantage
of (0.0.3) is that in the statements of the results (and most of the proofs) we do not have
to use fine properties of Sobolev functions connected with capacity theory.

The following example shows that the limit function u is not in general a solution

of an equation of type (0.0.1), but of type (0.0.4). Consider the particular case in which
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2 = (0,1)" and (Q4) is given by the following construction: for.each h € N divide Q
into A™ cubes of edge 1/h and inside each such cube consider a closed ball of radius 7,
0 < ry < 1/(2h), concentric to the cube; let E, be the union of these balls and Q =
Q\ E} . Define, up to subsequences, a constant k by

lim A%/In(1/ry), n=2
h—co

(0.0.5) k=

lim h"r;;"z , n>3.
h—oc0

Then it can be proved, using the results of [35] or [9], that the asymptotic behaviour of the
sequence (up) is determined by the constant k. If k = +oo, then u, converge strongly

in H} () to zero; if k=0, then uy, converge strongly in H}(Q) to the solution u of

u € HY(Q)

—Au = f in{.

If 0 < k < +oo, then the convergence is only weak and the limit function u is the
solution of

u € Hi ()
(0.0.6)

—Au+cpku = f in Q,
where ¢, is a strictly positive constant depending only on the dimension n of the space.
So, in the limit problem a new term appears, taking into account the asymptotic effect
of the Dirichlet condition on the boundary of the balls. Roughly speaking, this is due to
the fact that for f € L?(Q), the equation satisfied by wuj, in € is

—Aup+ A, = f-1g, ,

where 1g, is the characteristic function of ), and A, is a measure concentrated on 9E}, ,
whose physical meaning is that of charges induced on the boundary of the “conductor”
E), kept at null potential.

Now we come back to the case of an arbitrary sequence (23) of open subsets of 2.
It is known (see, for instance, [15]) that there exists a subsequence, which we still denote
by (), and a positive Borel measure p on 2, absolutely continuous with respect to
the (harmonic) capacity, such that the sequence (uj) weakly converges in HZ(Q) to the
solution u of (0.0.4). If Q is unbounded we replace equations (0.0.1) and (0.0.4) by

—Aup + Aup = f and (—Au,v)—{—/\/

uvd:c—{-/uvd,u:f,
Q Q



4 Rodica Toader

respectively, where \ is some strictly positive real number.

This compactness result holds for a large class of linear elliptic equations and systems
of equations. We treat in Chapter 3 the case of a vector valued function u and a linear
operator, studied together with G. Dal Maso in [19]. More precisely, let A: H}(Q,R™) —
H=1(Q,R™) be an elliptic operator of the form

(Au,v) = /(ADU,Dv)d:c,
Q

where A(z) is a fourth order tensor and (-,-) denotes the scalar product between ma-
trices. Let f € H™1(Q,R™) and let u, be, as above, the solution of the Dirichlet
problem

up € Hé(Qh,Rm)
(0.0.7)

Aup = f in Qp,
extended by zero to Q. In the limit a relaxation phenomenon may occur. Namely, there
exist an mxm matrix T(z), with |T(z)| = 1, and a measure u. not charging polar
sets, such that the limit u of the sequence (up) is the solution of the relaxed Dirichlet

problem

w € HY(Q,R™) N I2(Q,R™)

0.0.8 ADu, Dv)dzx w,v)du = (f, v
(0.08) /Q(AD D )dw/Q(T ) du = (f,)
Yo € HY(Q,R™) N L2(Q,R™),

where, in the second integral, (-,-) denotes the scalar product in R™. This result was
established in [20] for symmetric A and 7', and in [7] in the general case.

The problem of finding the new term u which appears in the limit was considered
by many authors under different assumptions on the domains and on the operators. A
wide bibliography on this subject can be found, for instance, in [12].

The capacity method allows us to determine it in a large variety of cases. We
illustrate it here in the case of the Laplacian. For every z € R™ let D,(z) be the closed

ball of radius p centered in z. Assume that the limit
hl_if;‘o cap(Dy(z)\ 0, Q) = a(Dy(2))

exists for every z €  and for almost every p > 0 such that D,(z) C Q and that

for some bounded measure A on 2, absolutely continuous with respect to the capacity,
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we have a(D,(z)) < A(D,(z)). The function o can be considered as an asymptotic

capacity associated to the sequence (§21,). Then for A-almost every z € £ the limit

. a(Dy(x)) — oz
2B XD, (o) ~ )

exists and the measure p is given by u(E) = [, g(z) d\. The function g can be seen as
the asymptotic capacity density with respect to the measure \.

In the case of a general elliptic operator (linear or not) a suitable notion of capacity
associated to the operator has to be defined in order to repeat this construction. In
Chapter 3 we use it to identify the pair (T, z) which appears in the limit problem (0.0.8)
and the notion of capacity we associate to the elliptic operator A is the following one.
If K is a compact subset of Q and £, n € R™, then the A-capacity of K in Q relative
to £ and 7 is defined as

Ca(K, &) = / (ADu®, Du") dz
QK

where, for every ( € R™, u¢ is the solution in Q\ K of the Dirichlet problem

us € HY(Q\K,R™), u=( ondK, uS=0 ondQ

/ (ADué,Dv)dz = 0  VYve HF}(Q\K,R™).
O\K

Note that we do not assume the system to be symmetric and this is the reason why we
need two parameters ¢ and 7 in the above definition of capacity (see the last section of
Chapter 3 for the easier case of symmetric systems).

Assume that the limit

Hm Ca(D,y(2)\ s, €m) = a(Dy(z),€,m)

exists for every z € Q and for almost every p > 0 such that D,(z) C Q (we shall see
that this condition is always satisfied by a suitable subsequence). The main result of this
chapter, Theorem 3.3.7, shows that, if the asymptotic capacity « can be majorized by

a Kato measure A, then for A-almost every = € Q there exists an mXxm matrix G(z)

such that (D, (2). £.m)
. aLplT),6,1) .
eis__l}lom /\(DP(CB)) - (G( )6777)

vE&,meR™.
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Moreover, for every f € H™'(Q,R™), the sequence (uj) of the solutions of (0.0.7)
converges weakly in HJ(€2,R™) to the solution u of (0.0.8) with T(z) = I—g% and
p(E) = [L|G]dX. If A is symmetric, the same result (Theorem 3.4.3) holds under the
weaker assumption that A is a bounded measure.

In the last two chapters we present some results on the asymptotic behaviour of the
solutions of the wave equation on varying domains, which were originally published in [43]
and [44]. We shall always assume that the solutions of problems (0.0.1) converge weakly
in H3(Q) to the solution of problem (0.0.4). We show that a relaxation phenomenon
occurs also for the wave equation, and that the measure p appearing in the limit is the
one that characterizes the asymptotic behaviour of the corresponding elliptic Dirichlet
problems. In the fourth chapter we take up the case of finite time intervals.

Let T > 0. On the cylinders Q4 = Q5 x (0,T) we consider the problem

O%uy,
ot?

up =0 on 00y x (0,7)

— Aup = fr in Qp

(0.0.9)
up(0) =uf in Q4

up(0) = up  in Qp.

Abstract results (see, e.g., [32]) show the existence and uniqueness of a solution u; of
(0.0.9) satisfying up € C[0,T); H3 (1)) N CH[0,T); L*(Q)). We are interested in
the asymptotic behaviour of the solutions u, of (0.0.9) as h tends to infinity, without
Imposing any geometric restriction on . To characterize it, is enough to know the
behaviour of the solutions of the corresponding elliptic Dirichlet problems.

Denoting by H the closure of Hg()NL2(Q) in the L?-norm, we prove the following
result. If the data of problem (0.0.9) satisfy

fo—=f w-L'0,T;L*(Q)),
uh) —u® w-HH(Q),
up = u' w-I*(Q) andu'e H,
then the solutions u; of (0.0.9) converge to a function u in the following sense

(0.0.10) up = u w*-L2(0,T; H (Q)),
(0.0.11) up —u  w*-L%(0,T;L*(Q)),
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and the limit function u is the solution of the relaxed evolution problem

%%~Au+uu=finQ:Qx(O,T)

u=20o0n00 x(0,T)
(0.0.12)

u(0) =u’ inQ

u(0) =u! inQ,

where the same measure p that characterizes the limit of elliptic Dirichlet problems
appears. Under stronger assumptions on the convergence of the data of (0.0.9) we obtain

also the convergence of the energies. More precisely, if

fo—=f sLN0.T;L%(Q)),

uf = u’ w-Hi(Q) and/ [Du%|2dz:—>/ |Du°[2+/ [l dp
Qp Q Q

up —»u' s-L*(Q) andule€ H,

then (0.0.10) and (0.0.11) hold with u solution of (0.0.12) and, in addition,

/ Duf dz [ 1Du()Pde+ [ WO s-C(0.7)
un() = () s-C°([0,T); LA(Q)).

Our results extend those of Cioranescu, Donato, Murat and Zuazua obtained in
[10] under the assumption that the limit measure p is a nonnegative Radon measure
belonging to H™1(Q).

In the last chapter we study the behaviour, as the time goes to infinity, of the
solutions of the wave equation on varying domains. We consider now the sets Qp of the
following form. Let (A7) be a uniformly bounded sequence of compact subsets of R™
such that for every h € N, Q) = R™\ K}, is connected. The connectedness assumption
implies, see, e.g., Theorem XI1.91.5 in [38], that the Laplacian with Dirichlet boundary
conditions on {25 has an absolutely continuous spectrum. We assume also that the limit
operator A = —A 4 ;1 has an absolutely continuous spectrum. Let us remark that the
results in [38] imply that this assumption is satisfied for instance, by the measure arising

from the sequences of domains considered in the example (0.0.5), (0.0.6), and more in
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general for those considered in [9], [41] and [35]. The behaviour of the solution up of

( 2
aa;;h —Aup=0 inQ, xR
up =0 on dQr xR
(0.0.13)
up(0) = uf)
ur(0) = uj,

as the time ¢ goes to infinity can be decribed using the wave operators W} which associate
to the initial data (u?l., u}l) of (0.0.13) an initial condition for the wave equation on the
whole space R™ such that uy is asymptotically equal, as the time goes to infinity, to the
solution of the free space equation, see Definition 5.2.1. The existence of W} was proved
for instance, in [29] together with some fundamental properties of the wave operators.
We are interested in the behaviour of W}, as h goes to infinity.

Following the lines of [29] we prove the existence and unitarity of the wave operator
W for the relaxed wave equation (see Theorem 5.2.6). Then we prove that the wave
operators W}, converge to W in the following sense: if n € H1(R") x L*(R™) is such
that suppn N Ky = @ for every h, then Wjn converges to Wn in the energy norm (see
Theorem 5.3.2). Our result generalizes for this relaxed formulation the one obtained by
Rauch and Taylor (see [37]), which was confined to the case when the asymptotic elliptic
Dirichlet problem (0.0.4) is not a relaxed one. The crucial step in the proof of this result
is a uniform energy estimate (see Theorem 5.3.1) which shows that it is enough to know
the behaviour of the solutions for finite time intervals and allows us to use the results of

the previous chapter.
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Chapter 1. Notation and preliminaries

1.1. Sobolev spaces and capacity

Let €2 be an open subset of R™, n > 3. If 2z, y € R™, z -y denotes their scalar
product; the Euclidean norm in R™ is denoted by |-|. M™*™ will denote the space of
n X m matrices. Notice that, if M € M"*™ we shall write |M| to denote its Euclidean
norm as an element of R"™ .

The space D'(Q) of distributions in  is the dual of C{°(Q2). Given two num-
bers p and ¢, with 1 < p,¢g < 400 and 1/p+1/q = 1, let WHP(Q,R™) denote the
usual Sobolev space, i.e. the space of all functions v in L?(Q,R™) whose first order
distribution derivatives Dju belong to LP(2,R™), endowed with the norm

oo m = [ 1DulPds+ [ fupds,

where Du = (D;u®) is the Jacobian matrix of u. The space 11 7(Q, R™) is the closure
of C§°(2,R™) in WP(Q.R™), and W~14(Q,R™) is the dual of Wy ?(Q,R™). The
symbol R™ will be omitted when m = 1. When p = ¢ = 2 we shall use the notation
HY (Q,R™), HJ(Q,R™) and H~}(Q,R™), respectively.

For every subset E of Q2 the (harmonic) capacity of E with respect to  is defined
by cap(E) = inf [, |Dul*dz, where the infimum is taken over all functions v € H}(Q)
such that u > 1 almost everywhere in a neighbourhood of E, with the usual convention
inf @ = +co. We say that a property P(z) holds quasi everywhere (abbreviated as q.e.)
in a set E if it holds for all © € E except for a subset N of E with cap(N) = 0.
The expression almost everywhere (abbreviated as a.e.) refers, as usual, to the Lebesgue
measure.

A function u :  — R™ is said to be quasicontinuous if for every ¢ > 0 there exists
aset £ C (2, with cap(E) < ¢, such that the restriction of u to Q\E is continuous. We
recall that for every u € Hj(Q2,R™) there exists a quasicontinuous function #, unique
up to sets of capacity zero, such that u = @ almost everywhere in Q. We shall always
identify u with its quasicontinuous representative i, so that the pointwise value of a
function v € H}(Q,R™) is defined quasi everywhere in Q.

For any u € Hj(Q2) we shall denote by ut and u™ the positive and the negative
parts of u: uT =u V0, u” = —(uA0). Then u =ut —u~ and it can be easily proved
that for any u € Hi(Q), u™, v~ € HL(Q).
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If U is an open subset of 2, each function v € HJ (U, R™) will always be extended
to © by setting u = 0 in Q\U. If v € H}(Q,R™) and u = 0 q.e. on Q\U, then
u € HY(U,R™). Let us recall that the weak convergence in Wy?(€2, R™) implies for a
subsequence the strong convergence in L? on every compact set. Moreover, if a sequence
(un) converges to u strongly in W3 '?(Q,R™) then a subsequence of it converges to u
pointwise q.e. in . For fine properties of Sobolev functions and of their quasicontinuous

representatives we refer to [48].

1.2. Measures

By a Borel measure on {2 we mean a nonnegative, countably additive set function
with values in [0, +o0] defined on the o-field B(Q) of all Borel subsets of Q; by a Radon
measure on {! we mean a Borel measure which is finite on every compact subset of
2. If u is a Radon measure on 2, we shall always identify it with the corresponding
continuous linear functional defined on the space of all continuous functions on Q with
compact support. For any Borel measure p, L(Q2), with 1 < r < 400 denotes the
usual Lebesgue space with respect to the measure ;. When p is the Lebesgue measure
we use the standard notation L7(Q).

We denote by M(2) the set of all positive Borel measures g on § such that
p(E) = 0 for every Borel set E C Q with cap(E) = 0. If E is u-measurable in Q, we
define the Borel measure pl E by (ul_E)(B) = pu(E N B) for every Borel set B C ,
while p1), is the measure on E given by p,(B) = p(B) for every Borel subset B of E.

For every open subset U C 2 we define a Borel measure uy by

0 ifcap(B\U)=0,
+o0o0 otherwise,

(1.2.1) o) = {

forevery B € B(£2). As U is open, it is easy to see that this measure belongs to My ().
Forevery z € R™ and p > 0 weset B,(z) = {y € R": |[z—y| < p}, D,(z) = B,(z)
and Bj(z) = R™"\B,(z). A special class of measures we shall frequently use is the Kato

space.

Definition 1.2.1. The Kato space K*(Q) is the cone of all positive Radon measures
p on £ such that

lim sup/ ly — z|>* ™ du(y) = 0.
QNB,(z)

p—0t zcQ
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For every p € KT(Q) and for every Borel subset E of Q we define

Il sy = sup / ly — 2P~ du(y).
zeE JE

For every p € KT(Q) it is easy to see that el g+(@) < +oo and ||p||p+(p) tends to
zero as diam( E) tends to zero. For more details about Kato measures we refer to [30]
and [16].

If X is a Banach space we shall denote by (-,-) the duality product between X',
the dual of X, and X and it will be clear from the context which is the Banach space
we refer to.

A positive Radon measure p on Q is said to belong to W™19(Q) if there exists
f e W=b4(Q) such that

(f,ap>=/ﬂsodu Vo € CS(Q).

In this case the above equality holds for every v € T/’{f"ol’p (Q) and we identify f and
p. Remark that if 1 is a nonnegative Radon measure which belongs to H~1(£), then
p € Mo(R2) and H3(Q) C LL(92).

Given an arbitrary subset E C R™ its characteristic function 1g is defined by
lp(z) =1if z € E and 1p(z) =0 if z € R\ E. For a function v(z,?), v will denote
the partial derivative with respect to ¢ and Dv the gradient in z.

For p € Mo(Q) we set V = H}(Q) N Li(Q) Then V is a Hilbert space with the

scalar product given by

(u,v)v:/DuDvdw+/uvd:&—l—/uvdu.
Q Q Q

We denote by H the closure of V' with respect to the L?-norm. Then V Cc H = H' C V!
with dense and continuous imbeddings (compact if Q is bounded). Let us remark that
functions in V' with compact support are dense in V with respect to the norm induced

by the above scalar product. Note that if 4 = uy for some open subset U of Q then
V = HYU).

Definition 1.2.2. For every measure p € Mo () we define A, as the union of all finely
open subsets A of Q such that p(A) is finite and by S, we denote the complementary
of A,. For the definition and properties of the fine topology we refer to [22].

In [4] it was proved that functions in V are equal to zero q.e. on S u- A similar

characterization holds for H.
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Proposition 1.2.3. The space H can be characterized by

H={ueL*(Q)|u=0ae onS,}.

Proof. Let Y = {u € L*(Q)|u = 0 ae. on S,}. Let u € H. Then there exists a
sequence u, € V such that u, — u strongly in L?(Q), so there exists a subsequence
converging pointwise a.e. to u. Since u, € V, u, =0 g.e. on S,, hence v =0 a.e. on
S, and HCY.

We have to prove now the opposite inclusion. Since there exists an increasing se-
quence Ay of finely open sets such that u(Ax) < co and cap(A,\UrAr) =0 (see [4]), it
is enough to show that for a bounded finely open set A C 4, with p(A4) < oo, we can
approximate 14 with functions in V'. By Proposition 1.2 in [4] there exists an increasing
sequence u, of functions in H}(A) such that u, — 14 pointwise g.e. (hence pointwise
p-a.e.) and 0 < u, < 14. Since pu(4) < oo, u, € Li(Q), hence u, € V. Ul

1.3. ~y-convergence and relaxed Dirichlet problems
With a measure y € Mo(§2) we associate the functional F, defined by

/lDu|2d$+/ lul?dp  if u € Hy ()N L2(Q)
Q Q

too ifwe LX)\ (HL(Q) N I2(Q)).

Fy(u) =

On Mo(Q) we consider then the following notion of convergence introduced in [15] (see
also Definition 2.7, Theorem 2.1 in [3]).

Definition 1.3.1. We say that a sequence (pp,) of measures in Mo(2) ~-converges to
the measure ;1 € Mg(Q) if the functionals F,, I'-converge in L?(Q2) to the functional
F,, that is if the following two conditions are satisfied:

(¢) for every u € L*(Q2) and for every sequence (uj) converging to u in L%(Q)
Fiu(u) < liminf Fy (u1)

(i¢) for every u € L?({2) there exists a sequence (uj) converging to u in L?(Q) such
that
F(u) > limsup Fy, (us).

h—co
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We refer to [11] for the main properties of the I'-convergence.

Let us recall here some results on the class Mo(Q). If pp € Mo(Q) ~-converge
to a measure p € Mo(f2) then for each open subset w of Q the sequence (1y) of the
restrictions of the measures pj to w, y-converges in w to the restriction p* of g to w
(see Theorem 4.10 of [13]). Moreover, for every u € Mo(Q) there exists a sequence Sy of
compact subsets of 2 such that the sequence (ccs,) v-converges to p (see Theorem 4.16

of [15]).

Definition 1.3.2. Given p € Mp(Q2) and g € H~1(R), a function v is a solution of
the relaxed Dirichlet problem

{UEV
—Av+ovpu=g inQ

if v €V and for every o €V

/DvDsoder/wdu:(g,@)-
Q Q

If p = py for some open subset U of Q then v is a solution of the relaxed Dirichlet
problem above if and only if v € H}(U) and —Av = ¢ in U. Note that for unbounded
domains {2, a solution exists if and only if ;1 > Am for some )\ > 0, where m denotes
the Lebesgue measure on R", see, for instance, [3]. Remark also that in general v is not
a solution in the sense of distributions and if we define 8 = f+ Av then f € H71(Q)
and supp 5 C supp u.

It can be proved that a sequence (pp) of measures in Mo(R™) ~-converges to the
measure 1 € Mo(R") if and only if for any ¢ € H™*(R™) the solutions v, of the relaxed
Dirichlet problems

vp € HY(R™) N Lih (R™)
(1.3.1)
—Avy + vy + ppvp =¢ in R®

weakly converge in H'(R™) to the solution v of the relaxed Dirichlet problem

v € HY(R™) N Li(R”)
(1.3.2)
—Av+v+puv=g inR"
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For bounded domains ) it is enough to consider g = 1. These particular solutions will
play an important role in the sequel so let us fix a notation. If A is the elliptic operator

we study and 2 is bounded, let w be the solution of the relaxed Dirichlet problem

w e Hj(Q) N L2(Q)
(1.3.3)
Avw+wpu=1 1n .

If we consider a sequence (up) of measures in Mo(2) then wy will denote the solution
of

wy € Hy(Q)N L2, (Q)
(1.3.4)
Awp +wppup =1 in Q.

It can also be proved (see [17]) that the set {weplp € C§*(Q)} is dense in V. If Q
is unbounded we shall use in Chapter 4 test functions of the form w¢, where, for some
r > 0, w is the solution of problem (1.3.3) on 2, = QN B, and ¢ € C§(Q,). As

r > 0 varies, the set of functions of this kind is dense in V.



Chapter 2. Limits of Dirichlet problems on varying
domains

The purpose of this chapter is to give an elementary description of the asymptotic
behaviour of solutions of linear elliptic equations with Dirichlet boundary conditions in
varying domains. When we say “elementary” we mean that we want to avoid (at least
in the statement of the results) the use of fine properties of Sobolev functions connected
with capacity theory.

Our problem can be described in the following way. Let A be a linear elliptic
operator of the second order with bounded measurable coefficients on a bounded open
set & of R™. Let f € H71(Q) and let (£2) be an arbitrary sequence of open subsets of
). For each h € N let us consider the solutions up of the Dirichlet problem

Up € H&(Qh),
(2.0.1)
Aup = f in Q4

and study the behaviour of up when h tends to infinity. Basic a priori estimates show
that the sequence (up) is bounded in H}(Q), hence it has a subsequence that converges
weakly in H}(Q) to some function u. We want to find the equation satisfied by the limit

function u. Let w} be the solution of the Dirichlet problem

wj € H3 (),
(2.0.2)
A*wy =1 in

where A* is the adjoint operator of A. As we did for uj, we can prove that w} has a
weak limit w* in H}(2). By taking now suitable test functions in (2.0.2) and (2.0.1)
and passing to the limit we find that u is a solution of the following problem:

u € Hy(Q)

(2.0.3)
(Au, w*p) — (A*w*, up) + (1,up) = (f,w*y) Yo e C§(0).

We provide here a self-contained presentation of the properties of the solutions of this
equation and use it in the study of the asymptotic behaviour of the solutions of (2.0.1).
Let us notice that the solution uy of (2.0.1) satisfies an equation of the form (2.0.3) with

w* replaced by the solution w} of (2.0.2). We shall prove the existence and uniqueness
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of the solution of (2.0.3) and the continuous dependence of u on w*. More precisely, let

us denote by K* the set of all functions w* such that
(2.0.4) w* € Hy(R), A*w* <1 inD'(Q), and w* > 0 a.e. in Q.

Note that the solutions w} of (2.0.2) belong to KA* (Proposition 2.1.1) and so does
their limit. For any w* € K* and any f € H~!()) we shall prove that there is one
and only one solution of (2.0.3). Moreover, if f € L°(Q), the solution u belongs
to Hg(€2) N L°°(Q). The estimates one can prove for this solution give its continuous
dependence on w* in the weak topology of H3(Q). This shows, in particular, that the
family of problems of type (2.0.3) with w* € K* is closed under the weak convergence
of the solutions.

One of the advantages of studying limits of Dirichlet problems by using directly
(2.0.3) is that some of the proofs can be made independently and in a rather elementary
way. We do not have to use (in the statement of the results and most of the proofs)
singular measures nor fine properties from capacity theory. Moreover the space of admis-
sible test funtions is C§°(£2). The degeneracy of the equation (2.0.3), that follows from
the fact that w* can be zero on sets of positive measure, represents a difficulty of the
problem but not a major one since it still allows us to prove the existence and uniqueness
of the solution.

The third part of the chapter is devoted to the proof of the following density result.
We shall show that for any w* € K™ there exists a sequence Q; of open subsets of
such that for every f € H™'(2) the solutions up of (2.0.1) converge weakly in HZ(Q)
to the solution u of (2.0.3). This means that the family of problems of type (2.0.3) with
w* € K* can be considered as the closure of the Dirichlet problems (2.0.1) with respect
to the weak convergence in HJ(Q). By the theorems proved in the previous sections it
is enough to prove the existence of a sequence ), such that the solutions wj of (2.0.2)
converge weakly in H}(Q) to w*. This will be done by using the method of Cioranescu

and Murat [9] following a simplified version of [14].

2.1. Notation and preliminaries

Let us fix an nxn matrix (a;;) of functions of L>(R") satisfying, for a suitable

constant o > 0, the ellipticity condition

n

(2.1.1) > a(2)6 > alel?

1,5=1
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for a.e. z € R™ and for every £ € R™.
For every open set U of R" let A: HY(U) - H™Y(U) and A*: HY(U) — H~Y(U)
be the elliptic operators defined by

Au = — Z Di(a;;Dju) and A%u = — Z Di(a;; Dju).
i,5=1 Hy=1
It is well known that, on H}(U), A* is the adjoint operator of A4, that is: (A*u,v) =
(Av,u) for every u,v € HL(U).
Let €2 be a bounded open subset of R™. Let K* be the set of functions which satisfy
(2.0.4); then it is easy to see that K* is a closed convex subset of Ha(Q2). Moreover, for
every w* € K~

a/ |Dw*|* dz < (A*w*,w*) < /w*d:c,
Q Q

and this estimate shows that K* is bounded, and hence weakly compact in Hj(9).
Let wg be the solution of the Dirichlet problem

wg € Hg ()
A*wi=1 1in .

By the maximum principle we have w* < w§ ae. in Q for every w* € K*. As
wg € L®(Q2) (see [42]), the set K* is bounded in L*°(Q).
Let us denote by H* the set of all functions w* € Hg(Q) with the property that

there exists an open subset U of § such that w* is the solution of the Dirichlet problem
w* € H(U)
{ A*w* =11in U.
We shall show that the closure H of H* in the weak topology of Hi(f2) coincides with

K*. We begin with the easier inclusion: H C K*. It is enough to prove that H* C K*.

Proposition 2.1.1. Let U be an open subset of Q and let w* be the solution of the
Dirichlet problem
w* € H}(U)
(2.1.2)
Aw*=1wmU.
Then w* € K*.
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Proof. To prove that w* € K* we follow the argument of [5]. Let z be the solution of

the variational inequality

z € Ky

(A*z—1,v—2) 2 0 Yv € Ky,

(2.1.3) Kuo={veHy(Q) : v<0ae on Q\U}.

By the maximum principle we have z > 0 a.e. on Q (see, e.g., [31], Chapter II,
Theorem 6.4), so that z = 0 a.e. on Q\U, hence z € H}(U) (see, e.g., [2]). If v € HI(U)
and v = 0 a.e. on Q\U, then v € Ky. Therefore from the variational inequality we
obtain easily that z|; is a solution of (2.1.2), hence z = w* a.e. in . Since all solutions
of variational inequalities with an obstacle condition of the form (2.1.3) are subsolutions
of the corresponding equation (see, e.g., [31], Chapter II, remark after Definition 6.3),
we conclude that A*w* < 1 in Q in the sense of distributions, hence w* € K*. ]

The inclusion K* C H  will be proved in the third section.

2.2. Some existence and uniqueness results for the limit problem

As mentioned in the introduction, we want to prove that for any w* € K* and any
f € H™'(Q) there exists one and only one solution of (2.0.3). In order to do this we

need to prove first some lemmas. Let us begin with the case of w* € W1>°(Q).

Lemma 2.2.1. Let w* be a function in Wh(Q) such that A*w* < 1 in D'(Q)
and w* > € in §2, for some constant ¢ > 0. Then there ezists a unique solution of the

problem

u e H}Q)
(2.2.1)
(Auyw) — (A", up) + (Lug) = (Fu'g) Vo € HY(Q),

Proof. The existence of a unique solution of (2.2.1) is a consequence of the Lax-Milgram
lemma. Indeed, let us consider the bilinear form on H3(Q2)x H}(Q) defined by:

afu, ) = (Au,wp) — (A"w*,up) + (1, ug).
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It can be easily seen that

n n

a(u,p) = /(Z aiijuDicp)w* dz — /(Z ajiDjw*Dip)u d:c—i—/ up dz.
2 1,7=1 ,7=1 Q
To show that a is coercive we estimate
a(u,u) = / (Z aiijuDiu)w* dr — / ( Z ajz-Djw*Diu)u dz -{—/ vt dz.
ij=1 € =1 “

Since w* € W'=(Q), the distribution A*w* belongs to H™1°°(Q). Then the
inequality A*w* < 1 in D'(Q) implies that (1 — A*w*,v) > 0 for every v € H}''(Q),
v > 0. As u € H}(Q), we have u? € H}''(Q) and uD;u = 1D;(u?). Then

- 1

——/(Z avj,‘Djw*Diu)ud:c—F %/ u?dz = -2—(1-—A*w*,u2> > 0.
Q

i,j=1 Q

Since w* > € a.e. in (2, the ellipticity condition (2.1.1) implies that

n

/Q(Z aiijuDiu)w* dz > EQHDUH%2(Q)7

ii=1
which, together with the previous inequality gives
1
a(u,u) > saHDu]IQLQ(m + (1 — A*w*, u?) + 5/ uw?dz >
Q
1
> caf|Dul|Z2(q) + 5““”%2(9) > cellullf e

for some constant ¢. > 0, and this proves that a is coercive. ]

Lemma 2.2.2. Under the hypotheses of the previous lemma the solution u of (2.2.1)

satisfies the estimate
lullzie) < ellflla-1@),
where the constant ¢ > 0 depends only on Q and on the ellipticity constant o and does

not depend on ¢.

Proof. By taking ¢ = _uj as test function in (2.2.1) we obtain
w

u2

(Au,u) = (A*w", =) + (1, %*-) = (f,u).

2 2
Since i—; € Hé’l(Q) and 1—A*w* > 0 we have (1 — A*w*, —u—*) > 0. By the ellipticity
w

condition we get
al|[DullZzqy < (fru) < Al z-2 @) llull 20

and the Poincaré Inequality implies the conclusion of the lemma. L]
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Lemma 2.2.3. Under the hypotheses of Lemma 2.2.1, if f > 0 in  then the solution
u of (2.2.1) is positive.

Proof. This can be easily seen by taking in (2.2.1) the test function ¢ = E:;; Indeed,
we have
_ . 5 uu _
(Au,u™) + (1 — A*w™, — Y= {(f,u").
Since uu™ = —(u~)? and 1 — A*w* > 0, we have (1 ~A*w*,uu ) <0.As f >0

w* '
in £ and v~ > 0 a.e. in Q, we have (f,u™) > 0, hence (Au,u™) > 0. The definition
of u” and the ellipticity condition (2.1.1) imply

sothat v~ =0 a.e. in 0. ]

We shall use this lemma to compare the solution u of (2.2.1) with the solutions of

the problems

w € H(Q) N Lo(Q)

(2.2.2)

(Aw,w*p) — (A*w*, we) + (1, wp) = (1, w*p) Ve CF ()
and
(22.3) wo € Hy(Q2)

A’w() =1 in Q

Lemma 2.2.4. Under the hypotheses of Lemma 2.2.1 problem (2.2.2) has a unique

solution w and w < wq a.e. in Q, where wg is the solution of (2.2.3).

Proof. Lemma 2.2.1 gives the existence of a unique w € H}(Q) that satisfies the equation
n (2.2.2) for any ¢ € H}(Q). By Lemma 2.2.3 we have w > 0. Then by taking the
(w = wo) in (2.2.2) and (w — wo)* in (2.2.3) and taking the difference
of the two equalities we obtain (w—wp)™ =0 a.e. in £, that is w < wy a.e. in Q.

Since wo € L*(Q) we get w € L>®(Q) and so w is a solution of (2.2.2). The uniqueness

follows by density arguments. U

test functions
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Lemma 2.2.5. Under the hypotheses of Lemma 2.2.1, if f € L=°(2) then the solution
u of (2.2.1) satisfies the estimate |u| < ||f|lpeo(@)w a-e. in Q, where w is the solution
of (2.2.2).

Proof. Let ¢ = ||f]/1=q). Multiplying the equation in (2.2.2) by ¢ and subtracting the
equation (2.2.1) satisfied by u we obtain that cw — u is the solution of the equation in
(2.2.1) with f replaced by ¢— f. Applying now Lemma 2.2.3 we get cw—u > 0 a.e. in

Q, hence u < cw ae. in Q. The inequality u > —cw is proved in a similar way. [

Lemma 2.2.6. Let w* € K*and let ' be a regular bounded open subset of R™ such
that Q@ CC Q. If w* is eztended by 0 on Q'\Q, then A*w* < 1 n D'(Q).

Proof. This property was proved in [8], Lemma A, in the case of the Laplace operator
—A. For the sake of completeness, we repeat the proof here for a general linear elliptic
operator A. Let us define the set K" = {v € H}(Q') : v < w* ae. in Q'} and let =

be the solution of

z e Kv
(2.2.4)
(A*z—1,v—2) >0 VveK¥.

Then z > 0 in . Indeed, =z is the greatest subsolution of A*v = 1 that belongs
to K™ . (See, e.g., [31], Chapter II, Theorem 6.4.) As 0 is such a subsolution we have
z>0in Q.

We claim that z = w*. If we take v = w* in (2.2.4), we obtain
(A*z —1,0w* —z) > 0,
Since 0 < z < w* in ', we have w* — 2 =0 on Q'\Q hence
(2.2.5) (A2 = L,w* —z) > 0.
As 1 —A"w* > 0in Q, we ‘get
(A*w* — Lw* —z) <0,
and subtracting (2.2.5) we obtain

(A*(w* —2),w" — z)

IN
o
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and so, the ellipticity of A* implies w* —z =0 in Q. Since 0 < z < w* =0 in Q'\Q,

we have shown that w* = z in Q' and the conclusion follows from the inequality
1-4%2>0in O,

which holds for all solutions of variational inequalities with an obstacle of the form (2.2.4).
(See, e.g., [31], Chapter II, remark after Definition 6.3.) Ul

Theorem 2.2.7. For any w* € K* and any f € H™Y(Q) there ezists a solution u of
the problem

u € Hy(Q)
(2.2.6)

(Au, wo) — (A*w*, up) + (1, up) = (f,w*y) Ve e C5°(Q),

which satisfies the estimate |ull < celifllg-1q), for a suitable constant c¢ that
Hg(2) ()

depends only on Q and on the ellipticity constant o and does not depend on w* .

Proof. Let us consider a regular bounded open subset Q'of R™ such that  CC Q' and
let us extend w* by 0 on Q'\Q.

By Lemma 2.2.6 we have that v* = 1— A*w* > 0 in D'(£)'), hence v* is a positive
Radon measure. As A*w* € H71(Q), we have also that v* € H1(Q)/).

&€
i
verges a.e. to (a;;) and satisfies the ellipticity and boundedness conditions with the same

We can approximate (q, ;) by a sequence (af;) of matrices of class C*° which con-
constants as (a;;). We shall denote the corresponding operators by A. and AZ. Let
v; € C(Q), v¥ > 0, approximate v* strongly in H™1(Q') and let w? be the solution
of the Dirichlet problem

w: —€c H(% (Q,)v

1 —Afw?=v?in H1(Q).
From the regularity theory we deduce that w? € C*°(Q').

Let us prove that w} —¢ converges to w* weakly in HZ(Q'). Since w?—¢ is bounded
in Hy() it has a weak limit v € H} (/). We write the weak form of the equation:

n

[ (3 asipion;ur) de = [ pdo=tze)  veem@)

,5=1

As (aj;) is bounded, we have |a5;D;p| < M|D;p| € L*(€) and the pointwise

convergence a.e. of a$;Dip to a;; D;p implies, by the Lebesgue Dominated Convergence
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Theorem, the strong convergence in L*(Q'). As Djw? converges weakly in L?(Q) to

Djv we obtain that the left hand side of the equation converges to

/ > a;DipDjvda.

1,j=1
Then, as v} — v* in H71 ('), (v, ) converges to (v*,¢), so that v satisfies the same
equation as w*, i.e.

n

J(E aibpn)io= [ pi—trg)  veem@),

1,5=1

hence w* = v a.e. in Q.
Let us prove now that w} — ¢ — w* strongly in H}(Q'). In the equations satisfied

by w* and w] we take as test functions w* — w? + ¢ and obtain

(A'w™, 0™ —w) (v, w* —wl4e) = (L, w* —wi+c) = (AXwl, w* —wl)+ (V7w —w!+e).

The ellipticity condition for A* gives
ol D(w* — w2y < (AL(w —w]),w" — ul)
and using the previous equality we substitute (AXw?,w* — w?) and obtain
al|D(w* — w:)l{%gm,) < (Afw® — A"w w' —wl) + (v — v ut —wl +e).

As v7 = v* strongly in H71(Q') and w? — e — w* weakly in H}(Q'), the second term

in the right hand side converges to zero. Let us consider the first term

n

(ATw* — A*w* " —wl) = / (3 (@,
Q

4,5=1

—a;;)Djw Di(w* —wl))dz.

.

As ay; and (af;) are bounded, [(af; —aj;)Djw*| < M|Djw*| € LQ(Q')‘, (a$; —a;;) Djw*
converges pointwise a.e. to zero, by the Lebesgue Dominated Convergence Theorem,
the convergence is also in L*(Q'). As D;(w* — w}) converges weakly in L?(Q) to zero
we get that the first term converges to zero and so ||D(w* — w:)”%?(ﬂ’) — 0, that is
w; — €& — w* strongly in H3(Q').

We shall continue now the proof of the existence of a solution of (2.2.6).
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Let us consider the function w} Ve. As A*w? < 1 and A% < 1 we have that
1 —-A*(wlVe) > 0. (See, eg., [31], Chapter II, Theorem 6.6.) Since w} —e¢ — w*
strongly in Hg (') and w* > 0, also (w!Ve) —e — w* V0O = w* strongly in Ha(Q').
As (wfVe) € Wh>(Q), by Lemma 2.2.1 there exists a function u. € H}(Q) such that

(22.7)e (Aeue, (wlVe)p)—(AL (wIVe), uep)+(1,uep) = (£, (wiVe)p) Vo € HY(Q).

By Lemma 2.2.2 we have HusllHé(Q) < || fllz-1(a). so that, up to a subsequence,
u. converges weakly to a function u € H}(2). We shall consider now test functions
¢ € C§°(Q) and by passing to the limit in (2.2.7). we get that the limit function u is a
solution of (2.2.6). As u. — u in H3(Q) and luellzio) < cllflla-2(e), from the lower

semicontinuity of the norm we obtain that |[ul|g1(q) < || flla-1(0)- H

Proposition 2.2.8. Let w* € K* and f € H Q). If u € H}(Q)NL>®(Q) is a
solution of (2.2.6) then u satisfies the equation for any test function ¢ € H3(Q)NL>(Q).
Moreover, if uy, uy € H}(2) N L>(Q) are solutions of (2.2.6) then uy = us.

Proof. Let u € H§(Q) N L*(Q) be a solution of (2.2.6) and let ¢ € HI(Q) N L>°(Q).
Since w* € K'* is also in L*°(§) the products up and w*y belong to H}(Q) N L°(Q),
hence all terms of the equation are well defined. There exists a sequence (¢3) of functions
in C5°(Q2), bounded in L*°({2), that converges strongly in Hj(2) to ¢. We consider in

(2.2.6) ¢h as test function, pass to the limit in the equation
(Auaw*croh> - <A*w*7u(19h> + <1au"r’)h> = <f7w*59h>

and obtain that u satisfles the equation with ¢ as test function.

In order to prove the uniqueness let us denote by u the difference u; —uy. We have

n

/Q( Z aijDJ;uD,-go)w* dm—/ﬂ( Z aj,-Djw*Ditp)udx-[—/ updz =0 Vo € C5°(R).

i,j=1 ij=1 Q

As w* and u are bounded, this equality holds for any ¢ € Hg(Q) N L>=(Q). Then we

can take u as test function and obtain

n

(2.2.8) /(Z a;;DjuD;u)w* dz — /(Z a; Djw* Diu)u d:z:-}—/ uwldr =0.
Q Q
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We have that

& 1
(Z a;; Djw*Diw)udr = Z(A*w*, u?)
Q4 2
1,5=1
and since (1 — A*w* u?) > 0, we get

n

/(Z az-ijuDiu)w*d:z:-%— ;)1—/ u?ldzr < 0.
Q Z

A Q
,7=1
As the first term is nonnegative, by the ellipticity of (a;;) and the positivity of w*, we

obtain that v =0 a.e. in Q and so the uniqueness is proved. Ll

Theorem 2.2.9. Let w* € K* and f € L®°(Q). Then there ezists a unique solution
of the problem

u € Hy(Q)NL=(Q)
(2.2.9)

(Au,wie) — (A"w™, up) + (Lup) = (f,w*p) Y e C(Q).
Moreover, u satisfies the equation for any test function ¢ € H3(Q)NL>®(Q) and we have
the following estimates |lullgiq)y < cllflla-1@) and |Ju|l < ||fllze@w < || fllze()wo
a.e. in § where w and wo are the solutions of (2.2.2) and (2.2.8), respectively, and c

18 a constant depending only on Q and on the ellipticity constant o and not on w*.

Proof. Let us consider the construction done in Theorem 2.2.7 for the proof of existence.

If we denote by w§ the solution of the Dirichlet problem
w§ € Hg ()

Acwi =1 in ,
and by w. the solution of

we € Hi (Q2)

(Aewe, (w2 Ve)p) — (AZ(wI Ve),wep) +(Lwew) = (1, (Wi Ve)p) Ve HH(Q),
then by applying Lemma 2.2.5 and Lemma 2.2.4 to A. and (w? V €), we obtain that
lue| < | fll Lo (ywe < ”f“Loo(Q)U)S. Since the weak convergence of u. to u and of w,
to w proved in Theorem 2.2.7 implies the pointwise convergence of a subsequence, by
passing to the limit we obtain |u| < ||f]|ze@w < | fllze (@ywo. Since wo € L=(Q),
also u € L*°(§2). Then the uniqueness and the fact that the equation is satisfied for any
test function in Hg(Q2) N L*®(Q) follow from Proposition 2.2.8, and Theorem 2.2.7 gives
the first estimate. [l
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Till now we did not use the capacity theory. To prove the uniqueness of the so-
lution for (2.2.6) in H}(Q) for any f € H™ (), we have to use the quasicontinuous

representatives of Sobolev functions.

Theorem 2.2.10. Let w* € K* and f € H™1(Q). Then there ezists a unique solution
of the problem

u € HH(Q)

(Au,w'p) — (A"w”, up) + (Lup) = (f.w'yp) Vo€ C5°(Q).

Proof. The existence was proved in Theorem 2.2.7. By linearity, it suffices to prove the

uniqueness for f = 0. We begin by showing that if u € H}(Q) satisfies
(2.2.10) (Au,w o) — (A*w*, up) + (1,up) =0 Yo € C§°(£2)

then it also satisfies
(2.2.11)
(Au,w*v) —(A"w™ )+ (L, uv) =0 Vo € Hy(Q)NL>(Q) such that uDv € L*(Q,R").

Note that for this choice of v, the product uv belongs to H}(2). Indeed, assume that u
and v are extended by zero to R™. Since uv € L?(Q) and the derivatives in the sense of
distributions D;(uv) = D;uv + uD;v belong to L*(Q), we have uv € H}(R). Now the
quasicontinuous representative of uv is zero q.e. on R™\Q and so, uv € H}(Q). This
shows that all terms in (2.2.11) are well defined.

Let (¢x) be a sequence of functions in C§°(Q2), bounded in L*(2), which converges
to v strongly in Hg (). Take ¢y as test functions in (2.2.10). As w*yy converges to w*v
strongly in Hg () (note that since w* € L*°(Q), we may apply Lebesgue Dominated
Convergence Theorem) we pass to the limit in the first term and get that (Au,w*¢i) —
(Au, w*v).

As w* € K*, v* = 1 - A*w* is a nonnegative Radon measure belonging to H~!(Q)

and

(Liupr) — (A"w* upg) = / upr dv* .
Q

Since ¢ converges to v strongly in H}(f2), it converges, pointwise q.e. and hence

v*-a.e. Then also upr — wv pointwise v*-a.e. As [ |upr|dv* < M [, |uldv* and
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u € L}.(Q), we may apply Lebesgue Dominated Convergence Theorem to obtain that

uwpr — uv in L1. (). So, passing to the limit in (2.2.10), we get

(Au,w*v) —l—/ uvdv* =0
Q

which is equivalent to
(Au,w*v) — (A"w*,uv) + (1,uv) = 0.

To prove now the uniqueness, for each k& € N let u; be defined by truncation:
—k, ifu(z) < —k,
up(z) = ¢ u(z)if —k < u(z) < k,
k, if u(z) > k,

Since ur € Hi () N L>°(Q) and uDuy = upDuy € L?(Q,R™), we may take v = uj as

test function in (2.2.11) and obtain

n

(2.2.12) /(Z a.iijuDiuk)w* dzx —/(Z aj,-Djw*Diuk)u dz —I—/ uurdz = 0.
Q Q Q

Cong=1 3,7=1

As w* > 0 and DjuD;up = DjupDjuy the first term is nonnegative by ellipticity. We
have uDjur = £D;(u}), so that

/(Z ajiDjw*Diuk)Udm—l—/uukdl.:
“ Q

Ly=1

1 1
(l—A*w*,ui)—k-—/(uuk—u‘i)drz:—l——/uukd:c.
2 Ja 2 Ja

[NEI

Since all the terms are nonnegative, from (2.2.12) we deduce that v = 0. U

Proposition 2.2.11. Let f € H™Y(Q), let U be an open subset of Q and let u and

w* be the solutions of the problems

u € Hy(U) w* € Hy(U)
and
Au=finU A*w*=1inU.
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Then u is the solution of

u € H}(Q)
(2.2.13)
(Au, w*e) — (A*w*, up) + (1,up) = (f,w*p) Ve C5P(R2).

Proof. Let v € C§°(Q2). Since u, w* € Hy(U), the products up and w*y belong to
HG(U) so that can be considered as test functions in the equations satisfied by w* and

u, respectively. We obtain that
(Av,w o) = (fiw* ),  (A"w' up) = (Lup), VYoe C5F(Q)
and by subtraction, we get that u is the solution of (2.2.13). ]
Let us study now the dependence on w* of the solutions of (2.2.13).

Theorem 2.2.12. Let f € H71(Q), let wi € K* and let uy be the solution of the

problem

up € H&(Q)
(2.2.14)
(Aun, wip) = (A*wj,unp) + (Lunp) = (f,wip) Ve e CP(Q).

Assume that wj converges weakly in H}(Q) to a function w* € K*. Then uj converges
weakly in H} () to the solution u of (2.2.13).

Proof. The estimate Huh”Hg(Q) < c||fllg-1¢n), proved in Theorem 2.2.9, gives the
existence of a subsequence, still denoted by uy, that converges weakly in H} (Q) to some

function u. Then

(Aup, wio) — (A*wi, upe) + (L upp) = (f,wie)

can be written as

n n
/ (Z aiijuhDicp)w}; dr — / ( Z ajiDjw}:D,-L,o)uhd:c +/ upp dz = (f,wpe),
¢ =1 ¢ ij=1 @
we may pass to the limit and obtain that u is a solution of (2.2.13). The uniqueness
of the solution implies that the whole sequence (uj) converges weakly in HZ(Q) to the
solution u of (2.2.13). Ul
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Theorem 2.2.13. Let Q4 be an arbitrary sequence of open subsets of Q. Then there
exist a subsequence, still denoted by Qp, and a function w* € K* such that for every
f € H7Y(Q) the solution up of (2.0.1) extended by 0 on Q\Qp converges weakly in
H§(Q) to the solution u of (2.2.18).

Proof. Let wj be the solution of (2.0.2). As (w}) is bounded in H3(Q) there exists a
subsequence, still denoted by (w}), that converges weakly in H3(Q) to a function w*.
Since wj € K™ (Proposition 2.1.1) and K* is weakly closed we obtain w* € K*. Let
up be the solution of (2.0.1). Then, as (up) is bounded in HE(Q), it has a subsequence
that converges weakly in H}(2) to some function u. By Proposition 2.2.11 wup is the
solution of (2.2.14) and by applying now Theorem 2.2.12 we deduce that the limit u is
the solution of (2.2.13). U

2.3. A density result

Our purpose is now to complete the characterization given by Theorem 2.2.13, that
i1s we want to show that if w* € K*, f € H7(Q) and u is the solution of (2.2.13)
then there exists a sequence of domains 2 such that the corresponding solutions up of
(2.0.1) converge weakly in H() to w. From Theorem 2.2.12 it follows that we have
only to prove that any w* € K* can be approximated by solutions of (2.0.2).

Let us return to the sets K* of all functions which satisfy (2.0.4) and H* defined
in Section 1 (before Proposition 2.1.1). We shall prove that the weak closure in HI(Q)
of H* is equal to K*. As we have already remarked the closure of H* is contained in
K* (Proposition 2.1.1). So we have only to prove that any function w* € K* can be
approximated by functions in H*. To this end let us define two auxiliary sets:

K7 - the set of all functions in K* that are continuous and strictly positive on ()
and

K3 - the set of all functions in H}(Q) that satisfy A*w* + bw* = 1 in the sense of

distributions on §, for some continuous and positive function b.
Remark 2.3.1. K; CCY%Q)NK*

Proof. Let w* € K3 . By De Giorgi’s Theorem (see, e.g., [25] Theorem 8.22) w* € C°(Q).
Since A*w* + bw* = 1 in the sense of distributions and b > 0 we get w* > 0 and
A*w* S 1. D
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Remark 2.3.2. The closure of K in the weak topology of H}(Q2) contains K.

Proof. Indeed, let w* € Kf. Then A*w* 4+ v = 1, where v € H™}(Q) is a positive

) . v . )
Radon measure. Since w* > 0, we can define y = — . We can approximate u strongly

w
in H~1(Q) by continuous and positive functions b..

Let w? € K5 be the solution of the following Dirichlet problem:
wr € H} (D),

A*w? +b.wl = 1.

Then w} > 0 and, as b. > 0, A*w? < 1 in the sense of distributions on 2.

By De Giorgi’s Theorem w? € C%(Q) hence 1 — A*w? = b.w? € C°(Q). As (w})
is bounded in H}(Q), there exists a function @ € H}(Q) such that w? converges to w
weakly in H}(Q). Since w! < wp, where wi € H}(Q) is the solution of A*w§ =1
in Q, and w§ € L*=(Q) we have that (w}) is bounded in L*(Q2), hence w € L*=(Q).
We have

n

/ (Z ajiD_,'w:Digo) dz —I—/
Q

i,j=1 Q

bowlpdr = / pdr Ve e C5° ().
Q

Passing to the limit as ¢ — 0, we get

n

d

/(Z ajiDsz*Digo) dz +/ 1599—’;- = / wdz Ve C5o(9).
Q i Q w Q

The above equation is satisfied for all ¢ € H3(Q). This can be proved by density

arguments using the fact that @ € L*(Q2) and that Hj(Q) € L}, (R2) for any positive

Radon measure belonging to H~(2). As w* is a solution in H3(Q), we get that w*

=W
a.e. in . So, w} converges to w* weakly in H(Q). U
Remark 2.3.3. The closure of K} in the weak topology of H(2) is equal to K*.

Proof. Let us first remark that by definition, K C K*. Let w € K*. Then v = 1—-A*w*
is a positive Radon measure that belongs to H~}(Q). We can approximate it strongly
in H7}() by a sequence of positive smooth functions v.. Let us consider the solution

ve of the Dirichlet problem
' ve € H, 3 (Q)

A*ve +vev. = 1.



Partial differential equations in perforated domains 31

By the maximum principle v. > 0 and by De Giorgi’s Theorem v. € C°(Q). By the
same arguments as before we obtain the weak convergence in H}(Q2) of v, to w*. In
order to obtain a sequence of functions in K7 let us consider the solution wg € H3(Q)
of A*wg = 1. By the strong maximum principle (see, for instance, [42]) we have that
wg > 0 and, by De Giorgi’s Theorem, w§ € C°(Q). We define then w* = (1—e)v:+ews.
It is easy to see that w} € K{ and w? — w* weakly in H(Q). U

The conclusion of the Remarks 2.3.1-2.3.3 is that KZ is dense in K* with respect
to the weak topology of H§ (), hence, in order to prove that H* is dense in K~*, it is

enough to show that every element of K} can be approximated by elements of H*.

Theorem 2.3.4. The closure of H* with respect to the weak topology of HA(Q) con-

tains K*.

Proof. As we have mentioned above it suffices to show that the closure of H* with
respect to the weak topology of Hj(2) contains Ki. Let w* € Kj. This means
that w* € Hg(f2) and there exists a continuous, positive function b on £ such that
A*w* +bw* =1 on  in the sense of distributions.

In order to get a sequence of functions in H* that converges weakly in H}(Q) to w*
we shall use the method of Cioranescu and Murat [9] following the lines of [14]. There
exist a sequence of open subsets 25 of Q, a sequence z, of functions in H(Q) that
converges weakly in H'(2) to 1 and two sequences A\, and vy of measures in H —1(Q)
such that A*zp, = vp — Ay In Q, A, converges to b weakly in H 1 (Q), v converges
to b strongly in H=(Q) and (Ap,¢) = 0 for every function © € H}(Q4). For the
construction see [14]. WWe may assume that 0 < 2z, < 1 a.e. in ().

Let us define up = zpw*. By construction uy, € H} (24). From the weak conver-
gence of z, to 1 we deduce that u; converges to w* weakly in HY{(Q).

Let w} be the solution of the Dirichlet problem

w} € Hy(Q),
A*wi =1on Q..

We extend wj by zero on Q\ Q. Then (w}) has a subsequence that converges to
some function v weakly in HE(Q). We want to prove that w* = v. (As a consequence

the whole sequence (w}) converges to w*.) The properties of z;, and w* imply that



32 Rodica Toader

. there exists ¢; > 0 such that ||ua||p=(q) < c1. There exists also ¢ > 0 such that
lwillzeo (@) < c2. We have

n

(ATup,up —wy) = / ( Z a;;DjurDi(up — w}))dz =
Q

1,7=1
= /(Z ajiDjzhw*Di(uh -wZ))d;z+ /(Z ajiDjw*thi(uh —_ w}"l))d:c =
Q i,j=1 Q 7,=1

n

Z a;; Djzp Di(w* (up — wy))dz — / ( Z aﬁDjthiw*)(uh — wy,)dz+

ij=1 Q=1

:/Q n

-}-/ Z a;; Djw™Di(zp(un — wy))dz — / (Z ajiDjw*D,-zh)(uh —wy)dz =
Q.

i,j=1 € 45=1

= / w*(up — wy)dvy + / (1 —bw")zp(up — wy)dz—
Q

Q
- /Q( Z aj,»Dj:hDiw*)(uh — wy)dzr — /;2( Z aj,-Djw*Dizh)(uh — w})dz —
i,j=1 vj=1
=L +1,— I3 — I,

where we have used the fact that w*(up —w}) € H5 () so that (An,w*(ur —wj)) = 0.

As w*, (up), (w;) are bounded in L>=(Q), the product w*(up — w}) converges to
w*(w* —v) weakly in H}(Q). Then the strong convergence of v, to b in H~1(Q) implies
the convergence of I; to [, w*(w*—v)bdz. Since up—w}j — w*—v in L*(), the second
term I converges to [,(1—bw*)(w* —v)dz. From the weak convergence of Djz; to 0
in L?(9), the boundedness in L>(f2) of (up —w}) and its strong convergence to w* —v
in L*(Q) we deduce that I3 — 0 and the same arguments hold for I4. So that

allun — Wiy < (A" (un — ), un — ) =
= (A*up,up — wp) — (A*wi,up — wi) = (A up,up — wp) — (L, up —wj) = Zy
Since Zj converges to [, w*(w* — v)bdz + [,(1 — bw*)(w* —v)dz — (L, w* —v) =0 we

get w* = v. So, for any w* € KJ there exists a sequence of functions wj in H* such

that w} converges to w* weakly in Hg(f2), hence H* is dense in K*. tl

Theorem 2.3.5. Let w* € K* and f € H™1(Q). If u is the solution of (2.2.13) then
there ezists a sequence S, of open subsets of §) such that the corresponding solutions wup
of (2.0.1) extended by 0 on Q\Qp converge to u weakly in H} ().
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Proof. Theorem 2.3.4 gives the existence of a sequence 0 of open subsets of  such that
the solution wj of (2.0.2) converges weakly in H3(Q) to w*. Then the corresponding
solutions uy of (2.0.1) converge weakly in Hj () to u. This can be seen for example by
using Proposition 2.2.11 and Theorem 2.2.12. Cl






Chapter 3. A capacity method for the study of limits
of elliptic systems on varying domains

Let © be a bounded open subset of R™ and let A: Hj(Q,R™) — H71(Q,R™) be

an elliptic operator of the form
(Au,v) = /(ADu, Dv)dz,
Q

where A(z) is a fourth order tensor and (-,-) denotes the scalar product between matri-
ces. Given a sequence (§2,) of open subsets of §, we consider for every f € H™1(Q,R™)

the sequence (u) of the solutions of the Dirichlet problems

{ up € H&(Qh,Rm)
(3.0.1) ’

Auh:f ith,

extended to by setting up = 0 on Q\Q,. We want to describe the asymptotic
behaviour of (u3) as 7 — co. As in the scalar case, a relaxation phenomenon may occur.
Namely, if (up) converges weakly in Ha (2, R™) to some function u, then there exist an
mxm matrix T(z), with |T(z)] = 1, and a measure u, not charging polar sets, such

that u is the solution of the relaxed Dirichlet problem

u € HY(Q,R™) N L3(Q,R™)

3.0.2 z U, v ==
( ) /Q(ADu,Dv)d —}—/Q(T ,0)dp = (f,v)
¥o € Hy(@,R™) N I2(Q,R™),

where, in the second integral, (-,-) denotes the scalar product in R™ while (-,-) is the
duality pairing between H~1(Q, R™) and H}(Q,R™).

The problem we consider in this chapter is the identification of the pair (T, u)
which appears in the limit problem (3.0.2). To this aim we introduce a suitable notion
of capacity. If K is a compact subset of Q and £, 7 € R™, then the A-capacity of K

in  relative to € and n is defined as

Ca(K,¢&n) :/ (ADu®, Du")dz,
K
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where, for every ( € R™, u¢ is the weak solution in Q\ K of the Dirichlet problem

ub e HY(Q\K,R™), uS=( ondK, uS=0 ondQ
/ (ADu®,Dv)dz = 0  Yv € HY(Q\K,R™).
QK

For every x € R™ let D,(z) be the closed ball with centre z and radius p. Assume that
the limit

lim C_A( ( )\Qh,f,n) = a(DP(l‘)’g’n)

j—+oo
exists for every = € 2 and for almost every p > 0 such that D,(z) C . Our main result,
Theorem 3.3.7, shows that, if o can be majorized by a Kato measure A (Definition 3.1.1),

then for A-almost every = €  there exists an mxm matrix G(z) such that

. afDp(z), &) o, m
esps_l:om D) = (G(z)&,n) Vé&,ne R™.

Moreover, for every f € H™'(Q,R™), the sequence (uj) of the solutions of (3.0.1)
converges weakly in Hg(Q2,R™) to the solution u of (3.0.2) with T(z) = éggI and
p(E) = [5|G|d)\. If A is symmetric, the same result (Theorem 3.4.3) holds whenever

A is a bounded measure.

3.1. Notation and preliminaries

Let § be a bounded open subset of R™, n > 3. The case n = 2 can be treated in a
similar way by using the logarithmic potentials. We assume that the boundary 9Q of Q
is of class C. Let A(z) = (a¥ 5(7)), with 1 <4,5 <n and 1 < o, < m, be a family of
functions in C(Q) satisfying the following conditions: there exist two constants ¢; > 0
and ¢ > 0 such that

alil <)°> ady(@)efer veen veeM™ ™,
(3.1.1) b ef |

ZZIa (2)] < e Vz € Q,

i a,pB

and let A: H3(Q,R™) — H~1(Q,R™) be the elliptic operator defined by

(Au,v) = /Q(ADu,Dv)d:c,
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where ADu is the mxn matrix defined by (ADu)? = » Y ayD;uP.
For fixed = €  the Green’s function G(z,y) = G* (yJ) isﬂthe solution of the problem
A*G* =46, inQ
G* € WoP(Q,M™*™), 1<p< I,

where A* is the adjoint operator of A, ¢, is the Dirac distribution at z, and I is the
mxm identity matrix. Since the coefficients are continuous the existence of the Green’s
function can be obtained by a classical duality argument. It is well-known that, as the

boundary of €2 is of class C'!, there exists a constant ¢; > 0 such that
(3.1.2) |G(z,y)| < cslz—y[*™™ for every z,y € Q.

This estimate can be proved by using classical regularity results, as in [1]. For any

R™ -valued bounded Radon measure y, the solution u of the problem
Au=p inQ

u € Wy P(Q,R™), 1<p< i

can be represented for almést every = € {) as
(313) u(e) = [ 6le,)duly).
If, in addition, p € H™*(Q,R™), then this formula provides the quasicontinuous repre-
sentative of the solution u.
3.2. Definition and properties of the p-capacity
We introduce now two notions of capacity associated with the operator A.

Definition 3.2.1. Let £, 7€ R™ and let K be a compact subset of 1. The capacity
of K in ) relative to the operator A and to the vectors ¢ and 7 is defined by

(3.2.1) Ca(K,€,n) = /Q \K(Apuﬁ,pu")dw,
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where, for every ( € R™, u¢ is the weak solution in 2\ K of the Dirichlet problem
us € HY(Q\K,R™), uS=( ondK, u®=0 ondQ

/9 ,(ADuC,Dv)d:c =0 VYoe€ H}(QK,R™).

We extend u¢ to Q by setting u¢ = ¢ in K. In (3.2.2) the boundary conditions are
understood in the following sense: for every ¢ € C§°(Q,R™) with ¢ = ( on K we have
ut —p e HH(Q\K,R™).

Remark 3.2.2. For every ¢ € C§°(2,R™) with ¥ =n on K we have

Ca(K &) = [ (ADW, D) da.

This can be easily seen by taking u” — 1, which belongs to Hg(Q\K,R™), as test
function in the equation (3.2.2) satisfied by u¢.

Remark 3.2.3. The function C4(K,¢&,n) is bilinear with respect to £ and 1. Moreover
there exist two constants ¢4 > 0 and c; > 0, depending on n, m, and on the constants

c1 and ¢y which appear in (3.1.1), such that
Ca(K,€,€) 2 cacap(K)|E]* and |Ca(K, €, n)| < escap(K)E]|In],

for every compact set K C  and for every £, 7 € R™. For the proof see Proposi-
tion 3.2.7.

Let p € Mo(Q) and let T = (tog) be an mxm matrix of Borel functions satisfying

the following conditions: there exist two constants cg > 0 and ¢z > 0 such that
celél® < Ztaﬂ(x)gagﬂv
o,

(3.2.3) ’
> ftas(@)] < e
a,fB

for p-almost every z € Q) and every £ € R™.
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Definition 3.2.4. Let ¢, n € R™. For every Borel set E.CC §2 the (T, p)-capacity of
E in Q relative to A, ¢, and 7 is defined by

CRM(E.En) = [(ADu, D) de+ [ (Tt - ), (" = )i,
Q E
where, for every ¢ € R™, u¢ is the solution of
us € H} (Q,R™), u—-(Ce€ Li(E,Rm)

(3.2.4) /Q(ADUC,DU) dz —{—/E(T(uc —(),v)dy =0

Yo € H3(Q,R™) N L2(E,R™).

The existence and the uniqueness of the solution u¢ of problem (3.2.4) follow from the

Lax-Milgram Lemma.

Remark 3.2.5. For any ¢ € H}(2,R™) with ¥ —n € Li(E,Rm), we have

(3.2.5) CTHM(E, €n) = /Q (ADuf, Dy) dz + [E (T(u* =€), (¢ —n))du.

To prove this fact it is enough to take u”7—1), which belongs to H(Q,R™) ﬂLi(E, R™),
as test function in the equation (3.2.4) satisfied by ué. In particular (3.2.5) gives

CEM(E,&m) = [ (ADut, Dy)do,
Q
if ¥ =n p-almost everywhere on E.

Remark 3.2.6. If u is bounded, then u” € Li(E,R"‘), thus we may take u” as test

function in the equation satisfied by u® and we obtain

CLH(B,&m) = "/E(T(ue—é),n) d.

We shall compare now the capacity C‘z’“ with the p-capacity C* relative to the
Laplacian, introduced in [15], Definition 5.1.
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Proposition 3.2.7. There ezist two constants cg > 0 and cg > 0, depending on n,

m, and on ¢y, ¢a, Cs, 7, such that for every Borel set E CC )

(3.2.6) cs CH(E)E)* < CRH(E,E,6)  VYEER™,
(3.2.7) ICVH(E, &) < co CHE)IE||n]  VEmER™.

Proof. To prove (3.2.6), let v = (u®)* /£, if €% # 0, and v® = 0 otherwise. Then,
using the ellipticity of A and T, for every Borel subset £ CC 2 and for every £ € R™

we obtain
CTH(E, €,6) = / (ADuf, Duf) de + / (T(uf — €),uf — €)dps >
Q E
2 k(/ lDuﬁlde/ u® — €2 dp) >
Q E

> km’-’Z(/Q lea|’-’dz+[Elv“~—1Pdu> > mECHE)EP,

a=1

where k = min{c;,cs}.

Using Holder Inequality it can be easily proved that

of-

ICTH(E,&,m)] < ¢(CTH(E,€,6) 2 (CTH(E,n,n))? .

Hence it suffices to prove (3.2.7) for £ = n. Let vg be the C*-capacitary potential
of E in Q (see [15], Definition 3.1). Define ¥* = (1 — vg)é*. By (3.2.5), using the

boundedness of A and T, Young Inequality, and then Poincaré Inequality we get
CLH(E < M( [ |Du||Dy|d §— &)l —€ldu) <
AH(E 6,6 < (Ql u*| [Dip|dz + Elu €Y —¢ldp) <
M €2 1 2 13 2 E 2
< (e[ [DubPde+ = | [DYfPdete | Jub—€Pdp+ = | [ —¢E[Pdy).
2 Q € Ja E ¢ JE

For a suitable choice of & the sum of the terms containing ué can be majorized by
ﬁl,‘,—C’;{’“(E,&{), hence there exists a constant K such that

CTH(B,€,6) < K( /Q Dy dz + /E W — €[Pdy) <

< KIeP( [ 1DosPds+ [ losld) = KIgPCH(E).
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Theorem 3.2.8. For every Kato measure pu (see Definition 1.2.1) the solution uS of
(3.2.4) corresponding to a Borel subset E of §) of sufficiently small diameter belongs to
L*(Q,R™) and tends to 0 in L°°(Q,R™) as the diameter of E tends to zero.

Proof. Let E be a Borel subset of  and let u¢ be the solution of (3.2.4). If u¢ €
L (2, R™), then the representation formula (3.1.3) for the solution of a linear system

of second order partial differential equations gives

(3.2.8) / Gz, )T (y)(ué(y) — ¢)du(y) for ae. z €Q,

where G(z,y) is the Green’s function associated with the operator A and with the
domain Q. In this case the measure T'(u¢ —()ul_ E belongs to H~1(2,R™) and (3.2.8)
provides the quasicontinuous representative of u¢.

Let us consider the operator U: L?(Q,R™) — L°(Q,R™) defined by

_ L Gz, 1) T(W)(F(y) = ) duly).

Since the functions t,g are bounded, we may apply estimate (3.1.2) for the Green’s

function and we obtain
IUfi =Ulllrz@rm) < cserllfi = fallzee (a,mm) Sug/E |z — y|* 7" du(y).
e

As p € KH(Q), the integral in the above formula tends to zero as diam(E) tends to
zero, so that for sets E of sufficiently small diameter the operator U is a contraction,
hence it has a unique fixed point w in L (Q,R™). By (3.1.3), for f € LE(Q2,R™) the
function wy = Uf is the solution of the Dirichlet problem

wy € Hj(Q,R™)
Awy=-T(f - pL_E inQ,

so that the fixed point w belongs to H}(2,R™) and is a solution in the sense of distri-
butions of Aw = —T'(w — {)uL_ E, and hence a solution of (3.2.4). Therefore u¢ = w
and we conclude that for sets F of sufficiently small diameter u¢ € LY(92,R™). Then,

from (3.2.8), for the quasicontinuous representative of u$ we have

= | / Gz, y)T(W)(uS (y) — ) du(y)| < [E G IT@ () — ¢l duly) <

< coerlu = Clleammy sup [ o —yP"duty),
T€QJE
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which implies that ||u¢||fe~(qrm) < CE”UC”LEO(Q’RWI) + cg|(|, where the coefficient cg
is given by cszcrsup,cq [ | — y|* "dp and tends to zero as the diameter of E tends
to zero. As u¢ € H3(Q,R™) and u vanishes on sets of capacity zero, ”uC”Lﬁc(QyRm) <
|u¢]| Lo (@, rm) and from the previous inequality we obtain that [[uS||ze (g rm) tends to

zero as the diameter of E tends to zero. ]

Proposition 3.2.9. If u is a Kato measure then

o Gt Do), 6m)
=0t p(Dy(z))

(T(z)&:m)
for p-almost every z € Q and for every £, n € R™.

Proof. Let x € Q. Since every u € K7(Q) is bounded, by Remark 3.2.6 we have

(3.2.9) CTH(D,(x), ) = — /D T €0 ).

By the Besicovitch Differentiation Theorem (see, e.g., [9], 1.6.2),

1

(3:2.10) Jim s | e ) = T e

for p-almost every z € 2 and for every £, n € R™. The conclusion follows now from
(3.2.9), (3.2.10), and Theorem 3.2.8. ]

3.3. 'yA—convergence

In order to study the asymptotic behaviour of sequences of solutions of Dirichlet
problems in varying domains we introduce the notion of y*-convergence and show that

under certain hypotheses the v -limit can be identified.

Definition 3.3.1. Let (23) be a sequence of open subsets of Q, let u € Mo(Q), and
let T be an mxm matrix of Borel functions satisfying (3.2.3). We say that (Q5) 7&-

A
converges to (T, u), and we use the notation Q -2 (T, ), if for every f € H71(Q,R™)

the sequence (u) of the solutions of the problems

up € Hg(Qh,Rm)

/ (ADuy,Dv)dz = (f,v) Vv € H (Q1,R™),
Qp
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extended by zero on Q\Q4, converges weakly in Hg (2, R™) to the solution of the relaxed
Dirichlet problem

u € HI(Q,R™)N Li(Q,Rm)
(3.3.1) /(AD'LL,DU) dz +/(TU,U) dp = (f,v)
Q Q
Vv e H(Q,R™) N Li(Q,Rm).

Remark 3.3.2. Let u € Mo(Q2), let T be an mxm matrix of Borel functions satis-
fying (3.2.3), and let v and S be defined by

V(E) = / IT|dp,  S(z)= ég;l

Then the measure v belongs to MO(Q) and the matrix S satisfies (3.2.3). Moreover

Qp, ——% (T, 1) if and only if Qj ———> (S,v). This shows that, in Definition 3.3.1, it is not
restrictive to assume |T(z)| = 1 for every z € Q. However, it is sometimes useful to
consider also matrices T which do not satisfy this condition.

If m=1and A= —A, we shall always assume that T'(z) = 1 for every z € Q. In
this case we use the notation Q) —% L.

The following compactness result is proved in [7].

Theorem 3.3.3.  For every sequence (Q) of open subsets of Q0 there ezist a sub-

sequence (£2;,), a measure u € Mo(Q), and an mxm matric T of Borel functions

A
satisfying (2.8), such that §j, 22 11 and Q5. N (T, p).

The localization property of the v -convergence is also proved in [7].

A A
Theorem 3.3.4. If Q) -2 (T, p) then QpNU BN (D) > 1)) for every open subset
U of Q.

A A
Proposition 3.3.5. Suppose that Q) —% (T,p) and Qp o, (T,2). If p = [ and
p(Q) < +oo, then T(z) = T(z) for p-almost every z € Q.

Proof. Let f € H™'(Q,R™) and let u be the solution of the relaxed Dirichlet prob-
lem (3.3.1). Then we have

/Q((T—T)u,v) dp =0 VYoeH}(Q,R™) NIZ(Q,R™).
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In particular, since p(§2) < +o0, this equality holds true for every v € C§°(£2,R™). So,
varying v, we obtain that (T —T)u = 0 u-almost everywhere in Q. Since p(Q) < +o0,
the set of all solutions u of (3.3.1) corresponding to different data f € H~1(Q,R™) is
dense in H}(Q,R™). This implies that T =T p-almost everywhere in Q. U

For every z € Q2 let dqo(z) = dist(z, 052).

' A
Theorem 3.3.6. If Q, % W, with p(2) < +oc, and Qp Ja, (T, i), then for every
z € ) there exists a countable set N(z) C R such that

Ca(Dp(z)\Qn, &,1) = CL*(D,(2),€,7)

for every p € (0,da(z))\N(z).

Proof. Let us fix z € . It is proved in [15] that there exists a countable set N;(z) C R
such that for all p € (0,dq(z))\ N1 (z)

Q\(Dy(2)\ ) =2 ul_Dy(e).

Then, applying Theorem 3.3.3 to the sequence Q5 = Q\(D,(z)\Q4), we obtain that
there exist a subsequence, still denoted by the same index 7, and an mxm matrix T of

Borel functions satisfying (3.2.3) such that
~ 76‘ ~
Qp — (T, pn_D,(z)).
Now we apply the localization result (Theorem 3.3.4) to the sequence () and we obtain

Q4N By(z) 25 4 0unB,(x) =S (1,
RN By(r) — P, @ rNBy(z) — ( |Bp(z)’“lap(z))'

The same localization result applied to the sequence Qj gives

A
~ YB,o(=) =
Qp N Bp(:l,') =N BP(.T) NN (Tlsp(z)’/“llap(x)) s
hence T =T p-almost everywhere in B,(z) by Proposition 3.3.5. On the other hand,
since p(f) < 400, for every z €  there exists a countable set N2(z) C R such that
p(@D,(z)) = 0 for all p € (0,dq(z))\ No(z). Together with the previous results this
implies that

S 72 (T, 5L D, (2)) for every p € (0, da(2))\ (N1 (z) U Na(2)).
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Let Kp = D,(z)\Qs = Q\ Qs and let uj be the weak solution in 4 of the problem
up € Hl(ﬁh), up =€ on 0K, up=0o0ndN

_ (ADup,Dv)dz =0 Vv e HY(Qn,R™).
Qn

As usual we extend up to Q2 by setting up =€ on Kj. Let ¢ € C§(Q,R™) with ¢ = ¢

on Dy(z), and let z, = up —¢. Then zp is the solution of the problem

zn € H (Qn,R™)
[ (ADzy,Dv)dz = (f,v) Vo€ HE (S, R™),
Q .

where f is the element of H™1(2,R™) defined by (f,v) = — Jo(ADp, Dv)dz. By
Definition 3.3.1 the sequence (z,) converges weakly in H2(Q,R™) to the solution z of

the problem
z € Hy(Q,R™) N Ly(Dp(z), R™)

/(ADZ,DU)CZIL‘ -{-/ (Tz,v)du = (f,v)
Q Dy(x)

Vo € Hy(2,R™) N L2(D,(z),R™).
This implies that (up) converges weakly in H}(Q,R™) to the solution u¢ of (3.2.4)
corresponding to ¢ = ¢ and E = D,(z). Consequently (ADuz) converges to ADué
weakly in L*(Q,M™>™). Let us fix now ¢ € C$°(Q, R™) with ¢ = on D,(z). Then,
by Remarks 3.2.2 and 3.2.5,

Ca(D,y(z)\Q, &, m) = /Q(ADuh,Dv,b) dr — /Q(ADuﬁ,sz)da: = C’};*“(Dp(x),gn),

and the proof is concluded. Cl

Given a family (f,),>0 of real numbers, we say that esps_l)ign fo = a if for every
neighbourhood V' of a there exists a neighbourhood U of 0 such that fp € V for almost
every pe U. .

Let (1) be a sequence of open subsets of . For every closed ball D,(z) C Q and

for every £, 7 € R™ we define ‘
o/(Dy(a), 1) = liminf Ca(D,(2)\ 2, €,7),
a"(Dy(z),&,n) = limsup Ca(D,(z)\ 2, €, 7).

j—oo

(3.3.2)

We are now in a position to prove the main result of the chapter.
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Theorem 3.3.7. Assume that there ezists a measure N € K1(Q) such that

(3.3.3) o"(Dy(x),€,€) < MDp(2))I€f

for every closed ball D,(z) C Q and for every £ € R™. Assume, in addition, that for
every = € §

(3.3.4) a'(Dy(z),&,m) = " (D,(z),&n) for ae. p € (0,da(z)).
Then there ezists an mxm matriz G(z) of bounded Borel functions such that

- . a/(Dp(fE),éﬂ?) — esslim a”(DP(m)’gtn) — Nz
(3.3.5) espsilgn Do) p——l)O ND,(2)) (G(z)€&,m)

for X-almost every z € Q and for every £, n € R™. Let T and p be defined by

G(z)
|G(z)|

u(E) = / |G| dA for every Borel set E C {1,
E

T(z) = for every z € Q

with the convention that 0/0 1s the mxm identity matric I. Then T satisfies (3.2.3)
A
and Q 22 (T, p).

Remark 3.3.8. Theorems 3.3.3 and 3.3.6 imply that every sequence (Q;) has a
subsequence which satisfies (3.3.4). Therefore condition (3.3.3) is the only non-trivial
hypothesis of Theorem 3.3.7.

Remark 3.3.9. For every closed ball D,(z) C 2 let

B"(D,y(z)) = limsup cap(D,(z)\ Q).

j—+co

If there exists a measure A € K1(Q) such that 8”(D,(z)) < M(D,(z)) then the estimates
in Remark 3.2.3 imply that (3.3.3) is satisfied with A replaced by ¢sA. This condition is
satisfled, for instance, in the periodic case with a critical size of the holes (see [9]) and

for the sequences of domains considered in [35] and [42].

Proof of Theorem 8.8.7. Let us fix € Q. From the compactness result (Theorem 3.3.3)
we obtain that there exist a subsequence, still denoted by (Q4), and a pair (T,ﬂ),
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~ A -~
with T satisfying (3.2.3) and i € Mo(Q), such that Q; —% f and Qp —2 (B, [).
By Theorem 5.15 in [15] for almost every p € (0,dq(z)) we have cap(D,(z)\ Q) —
CH(D,(z)). The first estimate in Remark 3.2.3 gives

cal€*eap(Dy(2)\Qn) < Ca(Dp(2)\ 0, €)

and passing to the limit we get
csCH(D,(2))]€l* < limsup Ca (D, (2)\ 2, §,€) = @"(Dy(2),€,6) < A(Dp()EF -
p—r
Applying now Theorem 2.3 in [6] we get that [i is absolutely continuous with respect
to A. The above estimate implies that the density djﬁ(:t:) is bounded, so i € K*(Q).
Let

dji G(z
6le) = (@), T =gk, wB)= [ Glar = [ a,
with the convention that 0/0 is the mxm identity matrix I. Then
_T@) L dp o
T(z) = Tl (w) >0,andT(z)=1, if d)\( z)=0.

As T satisnes (3.2.3) f-almost everywhere, T satisfies (3.2.3) p-almost everywhere.

Since Qp ——-> (T, ) and T(z) = Iggl f-almost everywhere in 2, by Remark 3.3.2 we

have also {2, — i — (T, ).
Let us prove now (3.3.1). Applying Theorem 3.3.6 we obtain that C4(D,(z)\
Qp,&m) — Cﬁ’ﬁ(Dp(x),é,n) for almost every p € (0,dq(z)). Thus

o'(Dp(2),6,m) = a”(Dp(w), €,m) = CTF(D,(z), €,1)

for almost every p € (0,dq(z)) and for every £, n € R™. We may now apply Proposi-

tion 3.2.9 and the Besicovitch Differentiation Theorem to obtain

s lin & Le@) ) _ o CRH(D,(@), ) st B0 _
p—0 A(D,(z)) p—0 f(Dy(z)) 0 AD,(z))

= (T(2)¢, 77) (w) = (G(z)&,n)

for every {,n € R™ and for A-almost every z € Q such that %(z) > 0. Since
ChH(Dy(a),6,m) < cs CF(D, (@)l In] < esi(Dy())I€] ] by (3.2.7), we obtain that

esslim & Pe(@).6m) 0 a0
p.lw (D, (z)) 0 = (G(z)¢,m)

for \-almost every = € Q such that & (:v) = 0. This concludes the proof of (3.3.5). [l
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3.4. The symmetric case

If the operator A4 is symmetric, then the A-capacity can be obtained by solving a

A
minimum problem. If ) 2% (T, 1), with p(Q) < +oo, then the matrix 7' is symmetric
(see [20], Corollary 5.4). In this case we have

C:‘Z’“(E,ﬁ,f) = min {/ ADué, Du) dz +L( (ué =€), (ut — €))du}

uEHI(Q,R™)
for every measure p € Mg(Q2), for every £ € R™, and for every Borel set E CC Q.

Remark 3.4.1. Assume that A and T are symmetric. If pu; < po, then
CT MUE 6 < C’T #2(E€,€) for every Borel subset E of  and every £ € R™.

This monotonicity property of the capacity with respect to the measure allows us

to extend the derivation theorem to any bounded measure in Mg(€2).

Theorem 3.4.2. Assume that A is symmetric. Let u, v € Mo(Q), with v() < +oo,
and let T' be an mxm symmetric matriz of Borel functions satisfying (3.2.8). For every
z € ) and for every £ € R™ let

T,
(3.4.1)  f(z,8) = hgliélf Cd “((IID) ((:c)))g 19 (with the convention that 0/0=1).
— 1% P

Assume that there ezists £ € R™\{0} such that

(3.4.2) f(z,6) <+0 Ve and / flz,§)dv < +oc.
Q

Then pu(§2) < +oo, p is absolutely continuous with respect to v, and

f(z,6) = (T(:c)§,§)%(;v) for v-a.e. z € Q and for every £ € R™.

Moreover, the liminf in the definition of f is a limit for v-almost every z € Q and for
every £ € R™.

Proof. For every z € Q let

CH(D,(2))
@) = Bt @)
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The estimates in Proposition 3.2.7 give

(3.4.3) cslé]* fi(z) < f(z,€) S léPfi(z) VeeQ VEeR™,

thus fi € LL(Q) and fi(z) < +oo for every z € Q. Then from Proposition 2.3 in [6]
we deduce that p(Q2) < +co and that p = fiv, ie., u(E) = [, fi dv for every Borel
set B C ). By Proposition 2.5 of [3], there exist a measure A € KT(2) and a Borel
function ¢:§2 — [0, 4-00] such that u = g\. For every k € N let gx(z) = min{g(z),k}.
Since grA belongs to KT(£2), Proposition 3.2.9 implies the existence of a subset E; of
2 such that fEl grdA = 0 and

i Ca7(Dp(2),6,6)
P~ (9:N)(D,(2))

Since A + v is a bounded measure on 2, by the Besicovitch Differentiation Theorem
there exists a set Ey C Q such that (A + v)(E2) =0 and

= (T(2)&,6) Yz eQ\E, VEER™ VkeN.

lim ((AgiAzgi? ()g) _ gk(m)d(/\di y)(m) < 4o  VeeQ\E, VkeN,
g Y DPp(@) v

PBOEND,E) T ) ST e s

By (3.4.2) and (3.4.3) we have fi(z) < +oo and f(z,£) < +oo for every z € Q and for
every £ € R™. Let E=E{UE,. For z € Q\FE and £ € R™ we have

X T /\ Ir) = 1m (gk/\)(Dp(x)) mC’i»gk)‘( ()7635)

ge(2)(T(2) €, €) DT >( ) = lim 1) D,0) lim OB
i Ca(Dp(2),68) o CXP(D(2),6,6) | v(Dy(a))

p=0 (A4 v)(Dy(z)) ~ om0 ( p()) p—=0 (N +v)(Dy(z))

So, for every Borel set F' C Q\E and for every ¢ € R™ we have

dA
L@@ 80555 @ldo ) < [ [ T @ ),

hence -

/ 01(2)(T(2) £, €) d) < / f(z,€) dv
F F
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for every Borel set F' C 2. Passing now to the limit as k& — +oc, by the monotone

convergence theorem we have

/F (T(2)€,6) dp = /F o()(T() €,€) dA < /F f(z,€)dv

for every Borel set F' C 2 and every ¢ € R™. Thus, fi(z)(T(z)¢,€) < f(z,€) for

v-almost every z €  and for every £ € R™. Since

CTH(D,(2).£,€) < / (TW)E, ) F () duly)

Dp(x)

by the Besicovitch Differentiation Theorem we obtain f(z,£) < fi(z)(T(z)¢,€) for
v-almost every ¢ € Q and for every every £ € R™. So we proved that f(z,§) =
fi(@)(T(z)&,€) for every £ € R™ and v-almost every = € 2. Moreover, by the Besi-

covitch Differentiation Theorem for v-almost every z €  and for every £ € R™ we

have
For6) = timint CATRD 6Oy O3M(Dole).£6)
R 5 B () X o) B
1
< limsup —————— T(y)€, dv = T(z)E €),
S Hmsup 2o DP@( ()6, ) i(y) dv(y) = f(2)(T(2) €, ¢)
and this completes the proof. [l

The hypotheses in Theorem 3.3.7 can be weakened by using the monotonicity of the

A-capacity and the previous result.

Theorem 3.4.3. Assume that A is symmetric and that there ezists a bounded Radon

measure A on §0 such that

a"(D,(z),€,€) < MDp(z))[é)?

for every closed ball D,(z) C Q and for every £ € R™. Assume, in addition, that for
every x € §) there ezists a dense set D C (0,dq(z)) such that

(3.4.4) o'(Dy(z),€,€) = o"(Dy(z),&,€) for every p € D and every £ € R™.

Then there ezists an mxm symmetric matriz G(z) of bounded Borel functions such that

esslim o'(Dy(2),,0) = esslim " (Dp(2),€, ) = z
sl XD, (2)) s i ND,(2)) (G(2)¢,€)
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for A-almost every = € Q and for every £ € R™. Let T and p be defined by

G
@) = 1a@)

p(E) = / |G| dA for every Borel set E C £,
E

for every z € Q2

with the convention that 0/0 is the mxm identity matrizc I. Then p € Mo(Q), T sat-
. 4
isfies (8.2.8), and Qp —= (B, ).

Proof. Since C4(+, ¢, &) is an increasing set function, o' (D,(z),¢,€) and o”(D,(z),£,€)
are increasing functions of p, hence (3.4.4) implies that o/(D,(z),&,€) = (D ,(z),£,€)
for almost every p € (0,dq(z)). As in the proof of Theorem 3.3.7, we obtain that
Qp, lé} (T, 1), with /i absolutely continuous with respect to A. Since g—g—(:c) is bounded,
we have [i(2) < +oc. Let G(z) = T(x)g—’}\(r) Since p(E) = [ |G|dA = [, |T| dji, and
fr € Mo(R2), we have p € Mo(Q2). The conclusion follows now by repeating the same ar-
guments as in Theorem 3.3.7, the only difference being that now we apply Theorem 3.4.2

instead of Proposition 3.2.9. L1






Chapter 4. Wave equation on varying domains

In this chapter we study the wave equation on varying domains, with Dirichlet
boundary conditions. Let T > 0, let £ be an open subset of R™ (n > 3) and let (Qp)
be a sequence of open subsets of 2. On the cylinders @ = Q4 x (0,T) we consider the

problem

d*u .

Btzh — Aup = fp in Qp
(4.0.1) up =0 on 00y x (0,T)

up(0) =ul in Qp

wr(0) =u} in Q.

Abstract results (see, e.g., [32]) show the existence and uniqueness of a solution u, of
(4.0.1) satisfying up € CO([0,T7]; H3 (1)) N CL([0,T); L?(Q4)). We are interested in the
asymptotic behaviour of the solutions uj of (4.0.1) as h tends to infinity.

Under the only hypothesis on the sequence (23) that there exists a measure p
absolutely continuous with respect to the Newtonian capacity such that for any ¢ €
H71() the solutions vy of

vp € H3 ()
(4.0.2)
—Avy + v =g in Qp

converge to the solution v of the relaxed Dirichlet problem

v e HH Q)N Li(Q)
(4.0.3)
—Av+v4ovp=g in{Q,

we prove a convergence result for the solutions of problem (4.0.1). More precisely, de-
noting by H the closure of Hj(Q2) N L2(Q) in the L?-norm, we prove the following

theorem.
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Theorem 4.0.1. Under the above assumption on the sequence (Q4), if the data of
problem (4.0.1) satisfy A

fo—f w-L'(0,T; L*(Q)),
u% - uO w—Hé (Q’) )

up = u' w-L*(Q) andu' € H,
then the solutions up of (4.0.1) converge to a function u in the following sense

(4.0.4) up —u  w-L=(0,T; Hy(Q)),
(4.0.5) up =t w -L™(0,T; L*(Q)),

and the limit function u is the solution, in the sense of Definition 4.1.1, of the relazed
evolution problem

&*u )

—a—t—z——Au+pu=me:Q>< (0,7)

u=0 on 00 x(0,T)
(4.0.6)

u(0) =u® inQ

u(0) =u! inQ,

where the same measure p that characterizes the limit of elliptic Dirichlet problems
appears.  Under stronger assumptions on the convergence of the data of (4.0.1) we

obtain also the convergence of the energies.

Theorem 4.0.2. If in addition to the hypothesis on () considered in Theorem 4.0.1

we assume that
fo—F s-L'(0,T; L*(9)),
u) = w-HYQ) and / |Dul|* dz — / | Du®|? +/ [ dys
Qn Q Q
up = u' s-L*(Q) andu'e H,

then the same conclusions of Theorem 4.0.1 hold and, in addition,

/Q IDu()f dz /Q Du()[? dz + /Q Ju()Pdp,  s-C(0,T1)
in() = () s-CO([0, T L()).
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Our results extend those of Cioranescu, Donato, Murat and Zuazua obtained in [10]
under the assumption that the limit measure y is a nonnegative Radon measure belonging
to H1(Q).

Since choosing p = pg, we can consider problem (4.0.1) as a particular case of the
relaxed evolution problem (4.0.6), in this chapter we study the general case of limits
of relaxed problems corresponding to a «y-convergent sequence of measures, see Defini-
tion 1.3.1. Let us remark that the hypothesis we made on the sequence (Q) corresponds
to the y-convergence of the measures pgq, . The convergence results proved in Theorem-
s 4.2.1 and 4.2.5 are the analogues of Theorems 4.0.1 and 4.0.2 above.

4.1. Notation and preliminaries

Let ' > 0, Q2 bean opensubset of R*, n > 3, Q@ = Ox(0,7) and ¥ = 802 x(0,T).
Let p € Mo(2) and V and H be defined as in Chapter 1. Given f € L*(0,T;L*(Q)),

u® € V, u! € H, the relaxed formulation of the wave equation we study is

( 0%y )
a7 Au+pu=f inQ
u=20 on %

(4.1.1)
u(0) = u® in

L 2(0) = u! in Q.

For a function v(z,t), v will denote the partial derivative with respect to ¢t and Dv the

gradient in x.

Definition 4.1.1. We say that a function u is a solution of problem (4.1.1) if
(we ([0, T V)N CH([0,T); H)

u(0) =u®, u(0) =ul,

“

5—; u(t)v d:c+/ Du(t)Dv dx+/ u(t)vdy = / f@)vdz in D'(0,T), VveV.
L at® Jo 0 ~ Q Q

The existence and uniqueness of the solution follow from the abstract theory developed
in Chapter IIT §8 of [32] where the result is obtained first for u € L*(0,T;V) N
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W1°(0,T; H) and then it is proved that, after possibly a modification on a set of
measure zero, u € C°([0,T); V)N Cl([(j? T); H). Then Lemma 8.3 [32] gives the following

energy equality for the solution:
E(t) = / |Du(t)[? dz +/ lu(t)|? dp + / |a(t)|* dz =
Q Q Q

t
:/ |Du°|2dm+/ |u°|2d,u+/ !ullzd:c—l—/ /f(s)zl(s)dmds.
Q Q Q 0 JQ

d%u
ot?

(4.1.2)

Remark that on (Q\suppp) x (0,T) u is a solution of the wave equation —Au=f

in the sense of distributions.
Let X, Y be reflexive Banach spaces such that X C Y with continuous and dense
imbedding. We shall use the following space introduced in [32], Chapter III, § 8.4:

Co(0,T:Y) ={f € L*(0,T;Y) : t = (v, f(¢))y is continuous
from [0, 7] into R for every fixed v € Y'}.

According to Lemma 8.1 in Chapter III of [10] we have
L=0,T;X)nCs(0,T;Y) = Cs(0,T; X) .

For a bounded domain 2 let w be the solution of the relaxed Dirichlet problem

{ w € HY(Q)NLL(Q)
(4.1.3)

—Aw+wp=1 inQ.

If we consider a sequence (up) of measures in Mo(Q) then wj, will denote the solution

of

{ wy € Hy(Q)N L2, ()
(4.1.4)

—Awp +wppp =1 in Q.

Recall that the set {we|p € C§°(2)} is dense in V. If 2 is unbounded we shall use test
functions of the form wey, where, for some r > 0, w is the solution of problem (4.1.3)
on @, =QNB, and ¢ € C§(Qr). As r > 0 varies, the set of functions of this kind is

dense in V.
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4.2. Asymptotic behaviour of the solutions of the wave equation in varying

domains

Cioranescu, Donato, Murat and Zuazua studied in [10] the asymptotic behaviour of
the solutions of the wave equation on bounded perforated domains Q) with a critical
size of the holes in the case when the measures uq, ~-converge to a Radon measure.
We show in this section that their results hold also in the case of arbitrary measures in
Mo(2), with  a domain not necessarily bounded.

The main result of this section is

Theorem 4.2.1. Let pp,pu € Mo(Q), let u% € Vi, up € Hy, frn € LY0,T;L3*(Q)).

Assume that the following conditions are satisfied

ph —1

fn = f w-L* (OaT; LZ(Q))a

u) = u® w-HQ) and / |ud|? dup < ¢,
Q

up = u' w-L*(Q) andu' e H,

with ¢ being a positive constant independent of h. Let up € C°([0,T]; V4 )NC([0,T); Hy)
be the solution of the problem

( 52uh .
52 — Aup+ppup = fr in Q
up =0 on 2
(4.2.1)
up(0) = uf mn
L 4r(0) = up mn Q.

Then u° € V and
up = u w*-L%(0,T; Hy (1)),

up —u w*-L=(0,T;L*(Q)),
”uh”L‘”(O,T;Vh) < C)

where u s the solution of problem (4.1.1) and C is a constant independent of h. More-
over, for every 8 € H™1(Q),

(0, un()) = (6,u(-)) strongly in C°([0,T]).
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In order to prove this theorem we shall need some lemmas. In the case of a bounded
domain the proof can be simplified using the compactness of the imbedding of Hj(Q)
into L*(9).

Lemma 4.2.2. Let Q be an open set in R™, up, pu € Mo(Q) such that pp — p, let
vp € L0, T; Vi) N Whe(0,T; Hy) such that

(1) vp = v w*-L2(0,T; Hy(Q)),
(2) vp — v w*-L*(0,T; LQ(Q)),
(3) llvnll o 0,1yv) < C,

where C' is a constant independent of h. Then v € L>=(0,T;V) N WhL(0,T; H), for
every § € H™1(Q), (8,v,())) — (6,v(-)) strongly in C°([0,T)), v(t) € V for every
t€[0,T], and [v|lr=(0,rv) < C.

Proof. Remark that as v, € L*°(0,T; V3)NW1>°(0, T; Hy), after possibly a modification
on a set of measure zero, vy, is a continuous mapping of [0, T] — Hy , therefore, according
to Lemma 8.1 in Chapter III of [32], vy € C5(0,T;V3).

Let us prove now that for every 6 € L?(Q) the function gy : [0,7] = R defined by
gu(t) = /Q vp(z.t)8(z) dz convergesin C°([0,T]) to the function g : [0,7] — R given by

g(t) = / v(z,t)0(z) dr. Using Ascoli-Arzeld Theorem, we show that (g3) is relatively
Q
compact in C°([0,7]). Indeed, it is equibounded since

95 ()] = | /Q on(z,)8(z) dz| < [[onllze (o702 6] 2y < C

independently of ¢ and h. To see that it is also equicontinuous it is enough to show that

al = |lop(-,t +2) — U (", )|l Loo (0,7—=;22(q2)) converges to zero uniformly in h. As

t+e
lva(-st +€) = vr(- t)||poo(0,7—e;02¢0)) < sup / l0n ()l 20y ds
te[0,T—e] Jt

and due to the weak*-convergence in L*(0,T; L*(2)), ||9x(s)|lz2(e) < C, we get that

al converges to zero as € — 0, uniformly in k. So, passing eventually to a subsequence

we get that g — ¢ in C°([0,T]). Let us prove now that (8,v4(-)) = (8,(-)) strongly
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in C°([0,T]) for every § € H™1(2). We show that it is a Cauchy sequence in C°([0,T]).

For § € L*(Q) let gx(t) = / vi(z,t)0(z) dz. Then
Q

lgn(t) = g (B)] < |gn(t) — ga(t)] +19a(t) — Gnr ()] + 1Gnr (t) — gnr (8)] =
= (6 = 8,vn)| + (B, v — v )| + (8 — B, vn)| <

< (Ivallzes 0,753 (2)) + lvnr | oo 0,32 (2))) 16 — Ol zr-2¢0y + |(vn — var, 0)].

Choosing now 4 in L%() to approximate § in H~1(Q) and using the previous step we

have that (gr) is a Cauchy sequence, hence for every 8§ € H1(Q)
gr(-) = (6,vp(-)) — g(-) = (8,v(-)) strongly in C°([0,T]).

In particular, for each ¢ € [0, T, vi(¢) — v(t) weakly in H ().

Using now the definition of the ~-convergence we get that v(t) € V for each t €
[0,7]. Indeed, in the case of bounded 2 this is obvious since the weak convergence in
Hi(Q) implies the strong convergence in L*(Q) and we can use the definition of the
7y-convergence as it is given in Chapter 1. If Q is unbounded we have F,, (vy(t)) < C,
vr(t) — v(t) weakly in Hg () for each fixed t € [0,7] and then using Lemma 2.2 of [3]
we get F,(v(t)) < Uminfy_eo F, (va(t)) < +co and hence v(t) € V for every t.

As, by (3), esssupsepo qyllvn(t)|li;, < C for a constant C' independent of h, we
also have esssup,co 7 [o(t)]l;; < C. So, in order to prove that v € L*(0,T;V) we
have to prove the measurability of v : [0,7] — V. Using Pettis’ Theorem [21], since V
1s separable, it is enough to prove that the map ¢ — (¢, v(¢)) is measurable for every
¥ € V'. Hence it suffices to prove the measurability of ¢+ — (1,v(t))yv for 1 in a dense
set in V. If Q is bounded we take 1 € {wy|e € C§°(2)}. If Q is unbounded we also
consider n of the form wy, now with w being the solution of problem (4.1.3) in Q, for
some r > 0 and ¢ € C§°(Q,), both extended by zero on Q\Q,.. Let wy be the solution
of problem (4.1.4) on Q or Q,. Then wpp — wp weakly in Hi (). For each fixed
t € [0,T] we have:

/Dvh(t)D(thp)d:c—l—/ vh(t)wh@d,uh:/Dvh(t)goth dz+

Q Q Q

+/Dc,9vh(t)th da:+/ Doy, (t) Dpwy, dm—/Dgavh(t)th dz+
Q Q Q

+/whvh(t)g9dyh:f vh(t)n,odx-l—/Dvh(t)Dgowh dx—/Dgavh(t)th dz .
Q Q Q Q
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Since wvi(t) converges to v(t) weakly in HZ (), the last expression converges to
/ v(t)p dac—}—/ Dv(t)Dpw dr ——/ Dov(t)Dw dz = / Du(t)D(we) d:c—}-/ v(t)wedy .
Q Q Q Q Q

Then since / r(t)wppds — / t)wedz and for every h € N

t——)/Dvh whga)dl—l—/ ()whgodyh—{—/ v (Hwrpdr
Q Q

1s measurable, we obtain that also

z‘——>/Dv (we da:+/ ()wgoclu%»/v(t)wgoda:
Q Q

is measurable, and so v € L>=(0,T;V).

We have to show now that v € L*°(0,7;H). As from (2) we deduce that © ¢
L>(0,T;L*(Q)), it is enough to prove that o(¢t) € H for a.e. t € (0,T). From the
definition of ¢ it follows that

/Ofw(t)/ga(t)edmdt:—/OTzz}(t)/Q«v(t)adxdt.,

for every ¢ € C§°(0,T) and every § € L*(Q). Choosing 8 = 15, with ¢ € C$°(Q),

since v(-,t) =0 q.e. on S,, we have

T
/ 1/)(1‘)/ v(t)ls, pdrdt =0 Ve e Cg°(2) Yy € C§°(0,T)
0 Q
so v(-,t) =0 a.e. on S, for a.e. t € (0,7), hence v(t) € H for a.e. t € (0,T). ]

Proof of Theorem 4.2.1.  The hypothesis on u} and the definition of «-convergence
imply u® € V. From the energy equality (4.1.2) and the convergence hypotheses on the

data we get
(1D )llz20y + lun@®llzz (o) + lan(t)liF, ) <
1t
02 2 2
< (DR o) + s, oy + k)7 + = [ 1l ds <

1 t
< (||DU2”?L2(Q) + ”u(f)z”%ﬁh(ﬂ) + i llF )Y + 7;/ I7n(s)llz2(eyds < ¢
2 Jo
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independently of ¢ and h, so (u3) is bounded in L*°(0,T; L*(R2)), and hence (uz) is
bounded in L*°(0,T; L*(£2)). Since (Duy) is bounded in L*°(0,T; L?(Q, R")), it follows
that (uz) is bounded in L*°(0,T; H}(Q)). (If Q were bounded we could have used the
compactness of the imbedding of H () in L%(£) to obtain the uniform boundedness of

the L?-norm of uj.) Passing eventually to a subsequence we have,

up —u  w-L=(0,T; Hy (),

up = w-L%(0,T; L*(Q)).
Since the previous inequalities show also that ”uhHLm(OyT;Lih(Q)) < ¢, we may apply
Lemma 4.2.2 to obtain that u € L*°(0,7; V)N W1°(0,T; H).

We show now that u is a solution of the relaxed wave equation. If Q is bounded, in

the equation satisfied by up we take as test function v (¢)¢(z)ws(z) with ¢ € C$°(0,T),
v € C5°(R) and wy the solution of problem (4.1.4). If Q is unbounded, we fix r > 0

and consider a test function of the same kind as above, but with wj the solution of
problem (4.1.4) on Q, and ¢ € C§(£2,). We obtain

/uhz];apu‘h dzdt—i—/ Duthhv,bgoda:dt—}—/ DupDowpt dz dt+
Q Q Q
—I—/ UpPpw d,udtz/ frbowy, dx dt.
Q Q

Applying Fubini’s Theorem we get

T T
/pwh(/ dup dt)da:—}—/ thD(gp/ upth dt)dz—
Q 0 Q 0
T T
—/ thDn,o(/ uhwdt)dm—{—/whDgoD(/ upt dt)dz+
Q 0 Q 0

T
+/wh<p(/ uhd)dt)duh:/ frbowy dz dt .
Q 0 Q

Note that, although the measure uj; is not assumed to be o-finite, Fubini’s Theorem
can be applied to the measure wppuy , which is always o-finite. Now, using the equation
satisfed by wy,
T T
/ thD<np/ up dt)da: -l—/ whtp(/ UpY dt)duh =
Q 0 Q 0
T
- / 9..9(/ untp dt) de
Q 0
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and the convergences
T .. T ..
| st [ edtuon 2@
0 0

T T
A¢(t)uh(t)dt—\/o Y(H)u(t)dt w-Hy(Q)

we pass to the limit and obtain

T T
/gow(/ du dt)da:+/ cp(/ u¢clt)dx—
Q 0 Q 0
T T
—-/ Dva’p(/ u&dz‘)dl‘—k/ wD:,oD(/ updt)dz 2/ fuwipdzdt.
Q 0 Q 0 Q

T
Since w is the solution of —Aw +pw = 1 and (p/ Yu dt is an admissible test function,
0

the above equality becomes

T T
/gow(/ z,budt)d:z—}-/ ch,oD(/ uydt)dr+
Q 0 Q 0
T T
-i—/wDa,cD(/ uz,”rdt)da:—{—/ wgo(/ updt)dy = / fopwdzdt .
Q 0 Q 0 Q

Using now Fubini’s Theorem and the fact that the equality holds true for every o €
C§°(0,T) we get

a—;/ u(t)wpd:z:-{—/Du(t)D(wgo)da:—}—/u(t)w;odu:
5t~ Q Q

Q
= / fwe dz.
Q

Now if Q is bounded we use the fact that this holds true for every » € C$(R2) and
{we |y € C5°(Q)} is dense in V. If Q is unbounded we take into account the fact that

also 7 > 0 may vary. Then the set
{we|r > 0, w is the solution of problem (4.1.3) on Q,, » € C§°(2,)}

is dense in V. So, in both cases we obtain that the limit u is a solution of
&u
ot?

In order to prove that the initial conditions are satisfied we need the following two

— Au+up = f.

lemmas (see Propositions 2.8 and 2.9 of [10]). If X and Y are Banach spaces we denote
by B(X,Y) the space of bounded linear operators from X to Y.
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Lemma 4.2.3. Suppose Q 1s bounded. Let wp and w be the solutions of problem
(4.1.4) and (4.1.8), respectively, and consider the operators P, : Hy — L%*(Q) and
P : H — L*(Q) defined by Pry = wypyo and Po = wp. Then P, and P can be ex-
tended as operators defined on V| and V', respectively, and, for every q € (1 -},

' n-—1

Py € B(V{,W™9(Q)) and |[Pallavyw-reiy S ¢ P € BV, W4(Q)) and

1Pl Beve, w-raqa)) < cq-

Proof. From the definition we have P, € B(Hp, L%(2)) and | Prll B(#,.L2¢0)) < c. Fix
p > n and define Ryp = wpp for every ¢ € W'Ol’p(ﬂ). Then

| DR s < Cyllelgoa,.

with C, independent of h, so Ry € B(W3 (), V4). The previous estimate shows that
Ry € B(Wy(Q),HY(Q)); if ¢ € WgP(Q) with p > n then, by Sobolev Imbedding
Theorem, ¢ € CO*Q) with A =1 — % and

/ lwipl’dun < sup lsDIQ/'llvhlgdﬂh < ellelirig)
Q {wn >0} Q ¢

Let us consider now the adjoint operator R} : V] — W™19(Q) given by
(Riv. ) = (b, Rap) = (b, wnp) Ve VY Vo WyP(Q).

If ¥ € L?(Q2) then (¢, Rpy) = / Ywppdr = / @Pp dz, hence R} is an extension of
Q Q
Py Ll

Lemma 4.2.4. Assume Q is bounded. If v, € L°(0,T; Hy) N W10, T;V}) and

vh = v w*-L®(0,T;L*(Q)), Pyop — Po w-L*(0,T; W~19(Q)) for some q € (1,=5)
then for every ¢ € L?(Q)

/1uhvh(-)godm—>/wv(-)godw strongly in C°([0,T]).
Q Q

Proof. We have Pyvy — Pv w*-L°°(0,T; L*(R2)). It suffices to apply Corollary 2.6 in [10]
to Ppvp with X = L*(Q) and ¥ = W’"l’q(Q). , ]
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Proof of Theorem 4.2.1 (Continuation). Let us prove now that the limit function u

satisfies also the initial conditions. From Lemma 4.2.2 we deduce that
(O, un(-)) — (6,u(-)) strongly in C°([0,T]) V6 € H™H(Q).

Since ux(0) = uf — u® weakly in HZ(Q), we get u(0) = u°.

1 we want to

Suppose now that 2 is bounded. In order to prove that @(0) = u
apply Lemma 4.2.4 to vy = up. We have thus to show that Pptip — Pu weak-
ly in LY0,T;W~11(Q)). We have Ppiip = PrAup + Prfr — Pr(unpr). As ||Auyp —

“hﬂhHLm(O,T;VA) < ¢, from Lemma 4.2.3 we get ||Pp(Aup — unprn)|peo,mw-10) < C

for every g € (1, 7%5).

Now Py fr = wpfi is relatively compact in the weak topology of L(0,T; L%*(£2)).
This can be proved using Dunford’s Theorem (see Theorem 1 p.101 in [21]) since the
hypotheses are satisfied; indeed,

1. L*(2) has the Radon-Nikodym property,

2. (wnfr) is bounded in L'(0,7;L*(Q2)) (as (fr) is bounded in L'(0,T; L%*(2)) and
(wg) is bounded in L*>(Q)),

3. / frwprdt is bounded in L?(Q) for every measurable set E C [0,7] and

4. tE——> lwa frl|z2(q) is uniformly integrable on [0,T]. The last assertion follows from
the fact that (fs) is relatively compact in L'(0,T; L*(2)) that implies, see Theorem 4
p. 104 in [21], that ¢ —= ||fa|lz2(q) is uniformly integrable on [0,T].

Now Phip = whtip — wi weakly in L°°(0,T;L*(Q2)), 2 (Putin) = Paiin, so that

Pypiip converges weakly to Pt and applying Lemma 4.2.4 we get

(4.2.2) /dh(-)wh/p dz — / u(Jwpdz  strongly in C°([0,T]) Ve € L*().
Q Q

In particular / Tp(0)wpp dz — / u(0)wep dr. Then, as us(0) = ul = u' € H weakly
in L*(Q) and {Qwap} is dense in HS? we get u(0) = ul.

If €2 is unbounded we fix some r > 0 and apply the above results constructing
the operators using as functions wj, and w the solutions of problems (4.1.4) and (4.1.3),
respectively, on 2., and taking the function ¢ € C§°(£2,). Then since the set of we
constructed in this way is, as also r > 0 varies, dense in H we get u(0) = u! in this
case, too.

Finally the uniqueness implies that the whole sequence converges and that u €

Co([0,T); V) N CL([0, T); H). O



Partial differential equations in perforated domains 65

Under stronger assumptions on the data the convergence of the energies can be

proved.

Theorem 4.2.5. Let pp,pu € Mo(Q), let u% € Va, up, € Hy, fr € LY(0,T; L (Q)).

Assume that the following conditions are satisfied
T
Hhr — U,

fo— f s-LY(0,T5 L*(Q)),

u) = w-HHQ) and
/ |Dul | d —!—/ [ud|? dpy —%/ |Du®|? dz —i—/ [u®? dp
Q 0 Q Q

up = ut s-L*(Q) andu' € H.
Let up € CO([0,T); Vi) N C([0,T); Hy) be the solution of the problem (4.2.1). Then
(423) [ IPus(P ds + [ fua O s J1Dutyde+ [ s s-co(0.1)
Q Q 0 Q
(4.2.4) un(-) = u() s-C°([0,T); L*(Q)),
where u 1s the solution of problem (4.1.1).

Proof. Fix t € [0,T]. From Theorem 4.2.1 we get that u(t) converges to u(t) weakly
in H3(Q) and also that lun(t)llz2(0) < C. Hence there exist a subsequence 1, () and
a function v € L*(Q) such that uy, (¢) — v weakly in L?(Q). It follows then that

/ Up, (t)wp, o dz — / vwe dx for every o € L*(Q),
Q Q

where, as in Theorem 4.2.1, wy, and w are the solutions of the corresponding relaxed
elliptic Dirichlet problems (4.1.4) and (4.1.3) on Q, if @ is bounded, or on some ,, if

{1 is unbounded. In the proof of Theorem 4.2.1 we have seen that
/ Up, (t)wh, ¢ do — / w(t)we dz for every o € L*(Q);
Q Q
this yields

(4.2.5) u(t) = Pyv,
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where Py is the orthogonal projection from L%(Q2) on H.
Since un(t) converge to u(t) weakly in Hj(2), by the definition of ~y-convergence

we have

(4.2.6) / | Du(t)]? dz +/ lu(t)|* du < 1iminf(/ | Dup (t)|* dz +/ lun(t)|? dun) -
Q Q h=oo "Jg Q

The weak convergence in L?(Q) of up, (¢) to v implies

(4.2.7) ' / lv]? de < liminf(/ i, (1)) dz) .

From the hypothesis on f5 and the convergence result for the solutions obtained in
Theorem 4.2.1 it follows that

(4.2.8) / /fh s)tin(s) dmds—)/ /f s)dz ds.

By the conservation of energy (4.1.2) we have

L 1Pun 0 de [ (OF dun, + [ sy o) do =

= [ 1D, e + [P e+ [ i, e+ / [ Fualshin, () da s,

which by (4.2.8) and the hypotheses on the data, converges to

T
/[Du0|2d$+/ |u°12du+/ |u1|2¢zl~+/ /f(s)zl(s)d:z:ds.
Q Q Q 0 Q ’

By applying again the conservation of energy (4.1.2), this expression is equal to

L pufds+ [ e [ laop de,

which is less than or equal to

/IDu(t)lzdx—l—/ |u(t)[2dp+/ o]? de.
Q Q Q

From (4.2.6) and (4.2.7) we deduce that

/xv|2dx:/ li(8)[? dz .
Q Q
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Then the above equality of the L?-norms, together with (4.2.5), implies that w(#)

converges to u(t) weakly in L*(Q2), and moreover, that for every t € [0,T]
[ 1Dus(t) de+ [ s dus — [ 1Du() da + [ Ju(o) di,
Q Q Q Q

and f lun(t)]? dz — / [i(t)|? dz. Then it follows that for every ¢ € [0, T], un(t) — u(¢)
Q Q
strongly in L2(9).
The convergence hypotheses we made on f5, u) and u} and the fact that
ll@n|lzoe 0, 502(0)) < C, together with the energy equality (4.1.2) prove that Ei(-) is

equicontinuous. The convergence of the energies
(4.2.9) Ex(-) — E(-) s-C°([0,T))

follows then from the Ascoli-Arzela Theorem.
To prove (4.2.3) and (4.2.4) we need the following lemma (see also Proposition 4.3
in [10]).

Lemma 4.2.6. Assume Q s bounded and let
1 . 2 1 2 1 2
er(v)(t) = 5[0 l|z20) + SIDv()lz2(a) + SIv®Iz2, (o)
for v e C°([0,T); V) N C[0,T); Hy) and
1. 9 1 5 1 2
(o)) = 51 ey + 5 IDU O + 5 MOz 0y

for v € C°([0,T]; V) N CY([0,T); H) and wp and w be defined in (4.1.4) and (4.1.3).

Then under the assumptions of Theorem 4.2.5 we have
en(un — wrp)(-) = e(u —we)(-) s-C°([0,T7),
for every ¢ € C=(Q) such that ¢(-,t) has compact support in Q for every t € (0,T).

Proof. We have

ern(un — wap)(t) =en(un)(t) + en(wnp)(t) — / in(t)wrp(2)]? dz—
(4.2.10) . |

- [ 1Dus)D(wrp (@) da - [ lattruns o dus.
Q Q
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From (4.2.9) we obtain that ep(up)(-}) — e(u)(+) strongly in C°([0,T7]).

Consider now the second term in (4.2.10). We have

o (M z2(0) = Nwp( ez s-C°([0, T
Then
[ 1DCnp) o+ [ Tunole)? din = | DunDlune(t?)do+ [ fonl Dot} do

Q 0 Q
+ [ e dun = (une?) + [ fusPIDp(o) de

Q 0

which converges in C°([0,T]) to (1,we?) + / lwl?|Dol* dz. Hence en(wrp)(-) —
Q

e(we)(-) strongly in C°([0,T7).
To show the convergence of the third term we approximate (z,t) in C°([0,T}; L?(Q))

by functions of the form Zf:o n:(t)¥:(z), with n; continuous functions and ¥; € L*(Q).
Applying now (4.2.2) to the functions ¥; we obtain

/ Up(z, Jwr(z)o(z, ) de — / u(z, Yw(z)i(z,-)dz  s-C°([0,TY).
Q2 Q
Consider now the last two terms in (4.2.10). We have

/DuhD(whap)d:I:—{—/uhwhapduh:/Dw}zD(uhgo)da:—l—/ Dupwp Dy dz—
Q Q Q Q

——/ thDgouhdav—}—/ UpwWhe dig = (l,uhap>+/D(uhwh)Dgoda:—'2/ Dwp Douy, dz,
Q Q Q Q

and / D(upwp)Dedz = (—Ap,upwp). As © is bounded, from Theorem 4.2.1 we de-
Q

duce that up — u strongly in C°([0, 7], L?(Q)) and this implies that the above expression
converges strongly in C°([0,71]) to

(1,u<,9)+/ D(uw)Dgadw—2/Dngoud:c,
Q Q

which completes the proof. ]
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Proof of Theorem 4.2.5 (Continuation). To use Lemma 4.2.6 we approximate u by
functions of the form we, with ¢ smooth. First of all note that it is not restrictive to
assume that ) is bounded. Indeed, u is the strong limit in C°([0,T]; V)N CY([0,T}; H)
of the sequence ¥ru, where ¥, € C§°(R™) are functions of the form v (z) = gb(J{—!) for
a suitable ¥ € C*°(R) such that 0 < ¢ < 1, ¢(s)=1for 0 < s < 1 and #(s) =0
for s > 2. Since ¥pu have compact support we may assume that Q is bounded.

Let now w be the solution of (4.1.3). We may assume that there exist positive %
and 7 such that 0 < wu(z,t) < kw(z) for every t € [0,7] and q.e. = € € and also
that {u(-,t) > 0} C {w(-) > n}. (Otherwise, let v, = @i\—%:’I—'—’ﬁ, for n > 0 and gn,
be a function of class C* such that g, (s) =s for s < m—1, gm =m for s > m
and gm < 2. Then as k — co and n — 0, with 2kn — co, gogy(u)v, — u strongly in
Co([0,T}; V)N CY([0,T]; H) and gogn(u)vy < kw and {gogy(u)v, > 0} C {w > n}.)

Then u/w is bounded and belongs to C°([0,T]; H3(2)) N C*([0,T); L*(R)). Hence
there exists a sequence ¢; € C*(Q) with ¢;(-,t) having compact support in  for every
t € (0,T), and such that we; — u strongly in C°([0,T]; V)N CY([0,T]; H) as | — .

Now, let wy, be the solution of problem (4.1.4). Then

lir — 2| peo0,7,22(0)) <

< lw — waill Lo (0,7,22(2)) + I(wn — w)dillzes(0,7,22(2)) + |1t — Wil Lo 0.7,22(0))-

From Lemma 4.2.6 we deduce that

limsup |len(ur — wren)|lpes 0,1 < 2lle(u — wor)|| e 0.1)-
h—co

Since
Hm ([(wn = w)i| e o,1,220)) = 0,

we get that

hl_i?;o [4n = llze=(o,102(2)) < 2lle(w — wer)||ze(o,1) + & — wi]l Lo (0,7,22(0))

and passing now to the limit as | — co we obtain that wa(-) — 4(-) strongly in
C°([0,T]; L2(Q)). This convergence together with (4.2.9) implies that (4.2.3) also holds.
Ll
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Let us consider now the case of a sequence of domains Q; C Q converging in the
sense mentioned in the introduction. This corresponds to the existence of a measure
g € Mo(2) such that the measures pgq, defined by (1.2.1) ~-converge to the measure

tt. Then the results announced in the introduction hold.

Proof of Theorems 4.0.1 and 4.0.2. It suffices to apply Theorem 4.2.1 and 4.2

.5,
respectively, to the measures pp = pq, - L]

Remark 4.2.7. If instead of the Laplacian we consider a symmetric linear elliptic

operator, the results proved in this chapter also hold, with some obvious modifications.



Chapter 5. Acoustic scattering in varying domains

In this chapter we study the behaviour, as the time goes to infinity, of the solutions
of the wave equation on varying domains. Let (K3) be a uniformly bounded sequence
of compact subsets of R™ such that for every h € N, Qp = R"\ K} is connected. The

behaviour of the solution u, of

2 ‘
dd;h —Aup=0 mmQp xR
(5.0.1) up =0 on dQ, xR
un(0) = v}, n(0) =uy

as the time t goes to infinity can be decribed using the wave operators Wj which
associate to the initial data (u9,u}) of (5.0.1) an initial condition for the wave equation
on the whole space R" such that u, is asymptotically equal, as the time goes to infinity,
to the solution of the free space equation, see Definition 5.2.1. We are interested in the
behaviour of W}, as h goes to infinity.

On the sequence () we make the assumption that there exists a measure p,
absolutely continuous with respect to the Newtonian capacity, such that for any ¢g €
H~1(R") the solutions wy, of the elliptic Dirichlet problem

wp € Hi ()
(5.0.2)
—Awp +wp =g in Qy

weakly converge in H*(R™) to the solution w of the relaxed Dirichlet problem

1mn 2(pn
5.03) we H'(R")Nn L (R™)
—Aw+w+pw =g in R".

As seen in the previous chapter, a relaxation phenomenon occurs also for (5.0.1),
and the relaxed wave equation obtained in the limit contains the same measure g which
appears in (5.0.3).

Following the lines of [29] we prove in Theorem 5.2.6 that the wave operator W for

the relaxed wave equation

du + 0 inR"xR
—— u u = m
(5.0.4) dt? H

u(0) =u® ©(0)=u!
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exists and is unitary. Then we prove that the wave operators W}, corresponding to (5.0.1)
converge to W in the following sense: if n € H'(R") x L%(R™) satisfies suppnNK}; = @,
then Whin converges to Wn in the energy norm (see Theorem 5.3.2).

Our result generalizes for this relaxed formulation the one obtained by Rauch and
Taylor (see [37]), which was confined to the case when the asymptotic elliptic Dirichlet
problem (5.0.3) is of the form (5.0.2). To our knowledge the study of the asymptotic
behaviour of the wave operators corresponding to relaxed problems is new. In order to
prove this convergence we show by a uniform energy estimate (see Theorem 5.3.1) that
it is enough to know the behaviour of the solutions for finite time intervals and then use
the results of the previous chapter.

Note that since K, are uniformly bounded, also the measure 1 appearing in the limit
has compact support. We assume also that the sets 2, are connected. This implies that
the Laplacian with Dirichlet boundary conditions on §2; has an absolutely continuous
spectrum (see, e.g., Theorem XI.91.5 in [38]). Our study of the wave operator W is
made under the hypothesis that the limit operator A = —A + u has also an absolutely
continuous spectrum. This holds for instance if y € L?(R") with p large enough and p
has compact support. A slightly more general example of measure p for which A has
an absolutely continuous spectrum is discussed in Remark 5.1.1.

Since choosing p = pg, we can consider problem (5.0.1) as a particular case of the
relaxed evolution problem (5.0.4), we study the convergence of the wave operators for
the relaxed problems corresponding to a y-convergent sequence of measures, see Defini-
tion 1.3.1. Let us recall that the hypothesis we made on the sequence (1) corresponds

to the «y-convergence of the measures pq, .

5.1. Notation and preliminaries

Throughout this chapter we assume that there exists r > 0 fixed such that the
measures in Mo(R™) we shall consider have support included in B,. Let p € Mo(R™)
be such a measure, let V and H be defined as in Chapter 1 and let A:V — V’ be the
operator defined by A = —A + u, in the sense that

(5.1.1) (Au,v)y = DuDv dz —l—/ uvdy for u,v € V.
R~ n

Given a self-adjoint operator T': H — H we denote by D(T), R(T) and N(T) its

domain, image and null-space, respectively.
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Let A: D(A) — H defined by D(4) = {u € V|Au € H} and Au = Au for every
u € D(A) be its realization in H. Then, as A is the operator associated to the lower
semicontinuous quadratic form on H given, for u € V by / | Dul? dz —{—/ 1% du,
we get that A is self-adjoint and nonnegative (see, for instaxfzne, [11] Proposiféion 12.16
and Theorem 12.13). This implies that the spectrum o(A) of A4 is included in R and
also that A!/2 exists. The second representation theorem (Theorem VI.2.23 [28], p. 331)
implies that D(A'/?) = V.

Being self-adjoint, to A : D(A) — H we can associate a unique resolution of the
identity E such that

ntu

(Au,v)yg = /+OO AE,o(d\) Yue D(A), Yve H.
In particular for each Borel subset w of R E(w) € B(H, H) is a self-adjoint projection
and the set-function E, ,(-) defined for u,v € H by Eyo(-) =(E(-)u,v)y is a complex
measure on B(R). Moreover E is concentrated on the spectrum of A in the sense that
E(o(A)) is equal to the identity operator 1y : H — H. E is also called the spectral
decomposition of 4 or the spectral measure of A. For the definition of a resolution of
identity and other properties of it see, for instance, [39] and [28].

On Hy = L*(R™), we consider the self-adjoint operator Ay : D(Ap) = H*(R") —
Hy given by Apu = —Awu. Then Ay has an absolutely continuous spectrum, i.e., if
we denote by Ey(-) the corresponding resolution of the identity, for every u € Hy the
measure (Ep(-)u,u)n, is absolutely continuous with respect to the Lebesgue measure
(see, for instance, [28] Chapter X §1.1 and 1.2]).

We assume that also 4 has an absolutely continuous spectrum.

Remark 5.1.1. Let Q be a connected open subset of R™ such that R™\Q) is compact,
let g € LP(Q) for p > n/2 be a function with compact support, and let p = ug +gm,
m being the Lebesgue measure on §2. Then the operator 4 = —A + p has an absolutely
continuous spectrum. Indeed, in this case Majda showed in [34] that the spectrum
o(A4) of A is absolutely continuous except for at most a countable set {k;} of isolated
eigenvalues of finite multiplicities. He also pointed out that the essential property in
proving the absolute continuity of the spectrum is the unique continuation property. It
was shown then by Jerison and Kenig in [27] that the unique continuation property holds

for g € LP(Q2), with p > n/2, hence in this case A has no eigenvalues.
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In most of the examples considered in [35], [9] and [41] the limit measure y is of the
type mentioned above and so, the limit operaﬁor has an absolutely continuous spectrum.
Let us introduce the unitary group U(t) giving the generalized solution of the relaxed

wave equation
d*u
(5.1.2) dt?
u(0) =u®, w(0)=u'.

—Au+pu=0 iInR"xR

Note that the wave equation on an exterior domain  C R"

2
%t—;‘—m:o n QxR

u=0 ond xR

is a particular case of (5.1.2) corresponding to g = Lq.
Let B = A'?. Then B: D(B) =V — H is a self-adjoint and nonnegative operator
and

5.1.3 Bu = D'lt2d$+ ’U,Zd/,l.
H
R7 R

It follows then that B is injective since Bu = 0 implies Du = 0 and as v € V =
H'(R™) N L2(R™), it follows that u = 0, and |lullp = ||Bu|# is a norm on V. We
shall denote by [D(B)] = V the completion of the domain of B with respect to this
norm. Remark that using Sobolev Imbedding Theorem it can be proved that V={ue
L (R™)| Du € L*(R",R"),u € L2(R™)}. We shall use in the sequel also the unitary
extension B of B to V. As R(B): = N(B), B:V — H is a bijection.

On D(B) x H we define U(¢)(u®,u') = (u(t),v(t)), for —oo < ¢t < 400, by

u(t) = cos(tB)u’ + B~ sin(tB)u'
v(t) = —sin(tB)Bu® + cos(tB)u',
where B~ 1sin(¢B) is understood as the function of the operator B corresponding to

f(z) = % Note that general facts of operational calculus (see, for instance, Lem-
ma 13.23, Theorem 13.24 in [39]) imply that u(¢) € D(B) =V for every t and

1Bu)lE + o @lF = 1Bu®llF + llut |15 -
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Then U(t) can be extended uniquely to a unitary operator on H = V x H with the

norm given by

(e o) = 1 Bully + oty = [ 1DuPdot [ uPdut [ pide.

Moreover, v(t) coincides with the derivative 1(t) of u(t) and U(#)(u%,u?) = (u(t),u(2))
represents the unitary group giving the generalized solution of (5.1.2) at time t, with
initial data (u®,u'), in the sense considered, for instance, in [36] Chapter 4, p. 103.

Using Lemma 8.1 of [29] from the assumption that A has an absolutely continu-
ous spectrum we deduce that the self-adjoint operator generating U has an absolutely
continuous spectrum.

Note that the norm on H is the energy norm associated to the wave equation. In
the same way Ho is defined by [D(Bg)] x Ho, where By = Acl,/2 and [D(Byp)] is the
completion of its domain with respect to the norm |jul|}, = [g. [Dul* dz. We use the

following notation for the energy norms: for every Borel set w C R”
(e, ) oy = 1DullTo ey FlvllEays () By = I1Dul 20y +lullZz () + 101172, -

Then [[(u,v)l[zomn) = [[(u,v)lle and [[(u, v)l|p@r) = lI(w,0)]l -

We recall here some basic properties of the solutions of the wave equation that we

shall use in the sequel.

Remark 5.1.2. Assume that the initial data u® and u! for the wave equation on R"
are smooth functions of compact support. Then the norm of the solution on compact
sets tends to zero as the time tends to infinity. More precisely, let » > 0; we prove that
for every € > 0 there exists 7 = T(¢,u®,u!) > 0 such that

lu(@)llz2B,4) < €
”(u(t)7’d(t))]lEo(Br_]_l_i.t_T) S £ fort Z T’

where u(t) denotes the solution at time ¢.
The solution of the wave equation on R™
d*u

3 —Au=0, u(0)=1u, @0)="u’
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1s given by:

w(z,t) = c(n){% (%) - /O t ( /|x~€!:pu0(§)da> ——;2—1——-p—2dp+

- (%)T /Ot (/|r_§|=pul(§)dd> —ﬁd/)}
(see [24]).

Choose § > 0 such that suppu®, suppu! C Bsja. Fix e > 0. IfT > c+r+1+6
then for every # € Bry14¢—1 wehave B;_(z) D Bs D suppu®, suppu!. So, for p > t—c

the integrals on the sphere |z — | = p are zero, hence in the formulas for u, Du, u; the
1

t2_p2

has to be derived with respect to ¢ and so, by standard estimates we get the decay of

integrals in p are to be computed between zero and ¢ —c. This implies that only

the norms as ¢ goes to infinity.

Remark 5.1.3. It can also be proved that the L?(R™)-norm of the solution of the
wave equation on R” is bounded independently of t.
Indeed, if we compute the Fourier transform of the wave equation in the z variable
we get (see, e.g. [43])
sin(|€]¢)
€l
As u®, u! belong to C§°(R™) Paley-Wiener Theorem implies that 4°, 4! are entire

analytic functions on C". Since @' € S, 4!(¢) < (14 |€])™* for any natural k. As

n > 3, 1/[¢]* is integrable near the origin and at infinity we use 4! € S, we have

AP
Jo e < o=

a(t, &) = 4°(€) cos([¢]t) + a1 (€)

and so,
€

with ¢ dependent on u! but independent of t. We have also

sin([€[t)lz2rny < ¢,

15°(€) cos(l€[t) | z2mmy < e,

50, |lu(t)||L2mn) < ¢, with ¢ dependent on the initial data but independent of ¢.
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Remark 5.1.4. We shall need in the sequel also the following estimates for the
resolvents of A and Ag. Recall that Ry(A) = (A + A)~L.

a) [[RA(A)Aullr2rny < 2||ullz2(rny, for w € D(A) (and obviously the same esti-
mate holds for Ag);

b) let w and f be an open subset of R™ and, respectively, an element of H}(R™)
such that for some r > 0 and s > 0 either w C B, and supp f C B;,,,orsupp f C B,
and w C B, ,; then, for s and A such that sv/\ > 2,

2 ‘S'\‘/’:\' n—2
H(=A+X) 7 fllZ2(w < ce V2 (VA) 13-y | Br s

where ¢ > 0 is a constant independent of A, f, w and s, and |B,| is the Lebesgue
measure of B,.

Property (a) can be found, for instance, in [28] Chapter V, § 3.11, while (b) can be
obtained by using the explicit representation of Rj(A4g) in terms of Green’s function.

Indeed, we have

(B(40)f)(e) = [ Hale =y, V0 (y)dy, where
supp

S 212
Hy(z,1) = (47r)""/2/ e~de= 5 dé,}
0 5n/-
and
(5.1.4) Hy(z,k) = k" 2H,(zk, 1)

see [38] Problem 49, Chapter IX, Vol. II. By density we may assume f = divF with
F; € C°(R™). Then

W)= (B =Y [ Diule —y, VIR ()dy

and applying Holder inequality and (5.1.4) we deduce that

/Iu(g;)|2 de < CAn*ZHflI%I“I(R”)/ (Z/ f(DiHn((as-—y)\/X; 1))2dy> dz <
w W \ ;=1 YSupp

n—2 2 - &0 _s\T; — yz)/\ _lz=ylZa d5 2
< A" -1 me // (/ e 6'(——'——6 B — dydz .
( ); w Jsupp f 0 20 5 /2
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Applying Jensen Inequality for the measure e °d§ we get

yIPA? _lz—u? > dé
[kt < 2 g [ [ ([T EIE R s By,
w supp f

so that
lwa@sw%ﬁm//4ﬂmemm
w Jsupp

where

_an [T e s dS
g(pv/\)'—/\ A Ze ‘e Sn+2°

Since for every A > 0 the function g(-,\) is decreasing, using the assumptions made on

w and suppf we obtain

// g(lz = yl, Ndyde < lBr!wn/ g(p, \)p" " Hdp.
w Jsupp f s

Standard estimates show that for s and A such that sv/A > 2,
o \/—- 5
[ st < e E A

and the proof is concluded.

5.2. Wave operators for the relaxed wave equation

This section is devoted to the proof of the existence of the wave operator for the
relaxed wave equation and to the study of some of its properties. Let us remark that
the case of an exterior domain {2, i.e., an open and connected subset of R" whose
complementary set is compact, corresponds to L= pugo.

The behaviour of the solution of the wave equation as the time goes to infinity can

be characterized by the following operators.

Definition 5.2.1." (cf. [29] Definition 3.1) Let H;, Hz be two separable Hilbert spaces,
let U1, Uz be continuous unitary groups on H; and H,, with self-adjoint generators
Ty, Tp,ie Uj(t) = e T for —c0 < ¢t < 400, 7 = 1,2, and assume that T} and T,
have absolutely continuous spectrum. Let J € B (H1,H2). If

I’V:LL“S—IIIHUO( )JUl(t)GB(Hl,Hg)

t—tco



Chapter 1. Notation and preliminaries

1.1. Sobolev spaces and capacity

Let Q be an open subset of R®, n > 3. If z, y € R™, z -y denotes their scalar
product; the Euclidean norm in R" is denoted by |- |. M™*™ will denote the space of
n x m matrices. Notice that, if M € M"*™ we shall write |[M] to denote its Euclidean
norm as an element of R"™.

The space D'(Q) of distributions in Q is the dual of C§(Q?). Given two num-
bers p and ¢, with 1 < p,q < +oc0 and 1/p+1/q = 1, let WHP(Q,R™) denote the
usual Sobolev space, i.e. the space of all functions u in LP(£2,R™) whose first order

distribution derivatives Dj;u belong to LP(Q2,R™), endowed with the norm

HUHZ;VLP(Q,R”") = /QIDu[‘pdw%—/S;[uiPd;v,

where Du = (D;u®) is the Jacobian matrix of u. The space Wol’p(Q, R™) is the closure
of C&(Q,R™) in WhP(Q,R™), and W~14(Q,R™) is the dual of Wy ?(Q,R™). The
symbol R™ will be omitted when m = 1. When p = ¢ = 2 we shall use the notation
HY(Q,R™), H3(Q.R™) and H~ (9, R™), respectively.

For every subset E of 2 the (harmonic) capacity of E with respect to  is defined
by cap(E) = inf [, |Dul*dz, where the infimum is taken over all functions u € Hj(f)
such that v > 1 almost everywhere in a neighbourhood of E, with the usual convention
inf @ = +o00. We say that a property P(z) holds quasi everywhere (abbreviated as g.e.)
in a set E if it holds for all z € E except for a subset N of E with cap(V) = 0.
The expression almost everywhere (abbreviated as a.e.) refers, as usual, to the Lebesgue
measure. 4 |

A function u: 2 — R™ is said to be quasicontinuous if for every € > 0 there exists
aset B C Q, with cap(E) < ¢, such that the restriction of u to Q\E is continuous. We
recall that for every u € Hj(Q,R™) there exists a quasicontinuous function 4, unique
~up to sets of capacity zero, such that u = % almost everywhere in 2. We shall always
identify u with its quasicontinuous representative @, so that the‘pointwise value of a
function u € H(2,R™) is defined quasi everywhere'in Q.

For any u € Hg(Q2) we shall denote by u™ and u™ the positive and the negative
partsof u: ut =u V0, u~ = —(uA0). Then u =uT —u~ and it can be easily proved
that for any u € H}(Q), u™, v~ € H3(Q).
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Theorem 5.2.6. The wave operators Wi(U,Up,J) and Wi (Uo,U,J*) ezist, are
unitary and mutually adjoint.

To prove this theorem we define

(5.2.1) J(u,v) = (B~ JBou,Jv) € H  for every (u,v) € Ho,

where B, By are the unitary extensions of B and By = A(l)/2 to [D(B)] = V and
[D(By)], respectively, and we show that W4 (U, Uo,j) and W4 (U, U, j*) exist, are
unitary and mutually adjoint. Then we prove that J and J are (U, +)-equivalent in
the sense of Definition 5.2.2 and this will conclude the proof of Theorem 5.2.6.

In order to prove the existence of the wave operator for the groups U (t) and Ug(t)
and identification operator J we shall use a result of Kato, Theorem 9.3 in [29]. where
from the existence and completeness of the wave operators Cy = W4(B, By, J) it follows
that the wave operators W (U, Uy, j) and W4 (U, U, j*) exist, are complete and are
mutually adjoint partial isometries. (As we shall see, in our case they are unitary.) We
begin by proving the existence of the wave operators Cy. This can be done applying
the following theorem (see the proof of Theorem A.1 in [46]; the statement is modified
according to [33]). If X, Y are Banach spaces, Bo(X,Y) will denote the space of
compact operators from X to Y, and B;(X,Y) that of the trace class dperators (for -

definition and properties see, for instance, [28]).

Theorem 5.2.7. Let Jy: Hy — H be a bounded linear operator such that JoD{Ag) C
D(A), J5D(A) C D(Ag) and assume that for every bounded interval w C R

(1) (:—l.]o -— Jvo)EQ(w) & BI(HO,H)

2) (JoJ¢ — 1)E(w) € Bo(H, H)
(3) (JSJQ — I)E()(LU) S Bo(HQ,HQ) .

Then the wave operators
Wy =s — lime't4o JremitA
t—teo
W3 =s — lime'4 Jye~ 4o
t—Zdoc

ezist and are unitary. In addition Wi = W2 and the invariance principle holds, i.€e.,
Wi(p(Ao), p(A4),J3) = Wy for every continuous monotone increasing function o. (It

holds also for more general classes of functions ©.)
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Proposition 5.2.8. Let J: L*(R") — H be the operator -given by Definition 5.2.5.
Then the wave operators Cy+ = Wi (B, By, J) ezist and are unitary.

Proof. 'We apply the previous theorem for Jy = J. Remark that since the support of
p is included in By, jf € H, for every f € L*(R"). We have (J*f)(z) = j(2)f(z). If
u € D(A) then it is easy to see that ju € D(4p) so that J*D(A) C D(Ap). From the
definition of j it follows also that JD(Ag) C D(A).

Let us verify now (1): let u € D(A4g) and let v = Eg(w)u. Then, as jv =0 on B,
implies that A(jv) = —A(jv), it follows that

(AJ — JAo)v = A(jv) — j(Av) = —A(Jv) — j(—Av).

Since v € D(Ag) (see, for instance, [39] remark after Theorem 13.33) we may write
everything in the classical form so that —A(jv) — j(=Av) = —Ajv — 2DjDv. This
shows that only the spectral measure for Ay is involved, so we get (1) using the same
arguments as in [46].

(2): We have to prove that a bounded sequence in H is transformed into a con-
vergent one. Let u, € H be such that ||un|z2rr) < ¢ and let vy = E(w)um.
We have (JJ* — 1)E(w)un(z) = (5*(z) — 1)vm(z). Since j*(z) —1 = 0 on BS,,,
supp ((j2 = 1)vm) C Bry1. For wy Nw = @ we have (E(w1)E(w)tum, B(w)uy) = 0,

hence
//\Q(E(d)\)vm,vm):/ N(E(dN)E(W)um, E(w)un) =
R R
_ / (BB ()i, E@)un) < Muml3an

Then, using for instance Lemma 13.23 and Theorem 13.24 in [39] we get that v, € D(A)
and / N (E(d\)vm,vm) = ||Avm]|/% . Tt follows that
R

(Avmm, o) 11 = / Do ? da + / oml it < || Ava| [loml] < Mc?
n Rn

so that |[Dvn||z2(rm) < ¢1. From Rellich’s theorem we deduce that (2) is true. Then
(3) can be proved in a similar way.

So the hypotheses of the theorem are satisfied and the existence of the wave operators
Wi(A, Ao, J) and Wi (Ag, A, J*) follows. Moreover, since the invariance principle holds,

the wave operators W4 (Bg, B, J*) exist and are unitary, hence complete.
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Let Uy(t) = e7"Fo and Uy(t) = e~P. According to Theorem 6.3 in [29] if J is a
(U2, £)-asymptotic left inverse to J*, the existence and completeness of W4+(Bo, B, J*)
implies that the wave operators Cy = Wx(B, By, J) exist, J* is a (U1, £)-asymptotic
left inverse to J and Ci = (Cy)™! = Wx(Bo, B, J*).

So it is enough to prove that J is a (U, +)-asymptotic left inverse to J*. According
to Definition 5.1 in [29] this means that we have to prove that

st_—;iiorgl(JJ’ - 1)Ux(¢t) =0.
It suffices to prove that the limits are zero for ¢ — oo since we may then apply the result
for —B. By the definition of j, (j?(z) ~1) = 0 on R"\B,4; so the following lemma

will conclude the proof.
Lemma 5.2.9. If u(t,-) = e_it”*l/zf, f € H, then

lim / lu(t,z)]*dz =0 for each compact set K C R™.
K

t—+oo

Proof.~ Let Qxu(z) = 1x(z)u(z), we have then to prove that

lim |Que ™ fl=0

t—+oco

for every compact set A C R™. Abstract theory (Theorem 2.3 in [47]) implies that if
Qk is A% _compact, this is true for every f € H. Hence we have to show that Qp is
AY/? _compact, that is that for every S C H bounded in the graph norm of 4'/2 which
in our case is the norm of V', the set QxS is precompact in L*(R™). Since K is a

compact set, this follows from Rellich’s Theorem. [

Remark 5.2.10. Using the notion of equivalence of identification operators given in
Definition 5.2.2, and the existence of the wave operators C1 we can prove the existence
of the wave operators with J replaced by the projection P on H . In order to do this is
enough to verify that

st:iliolgl(,] - P)e_itAélz =0.
We have u = u; 4+ uy with u; = u on Bry; and 0 outside and uz = 0 on Bry
and u2 = u on Bf ;. As suppy C B,, us € H and by the definition of J we have

Jus = uy = Puy. Then

I(J = PlullLz@n) = I(J — Plullzarny < Clluillza(s,) = Cllullz2s,)-
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. . oAt/ .
Since now we consider u of the form e~it4o 2f with f € L*(R™), the L?-norm of u on
every fixed compact set tends to 0 as t — Foo, hence, J and P are equivalent.
The following result gives the existence of the wave operators with identification

operator J.

Theorem 5.2.11. Let J be the operator defined by (5.2.1). Then the wave operators
W4 (U, Uy, j) and Wi (U, U, j*) ezist, are unitary and mutually adjoint.

Proof. We shall use the wave operators Cy = Wi(B, By, J). The intertwining property
holds: C+By C BCy+ and C1B C BoCl.
Let f € D(By), g € R(Bo). Then Uo(t)(f,g) = (uo(t), (1)) is given by

{ ug(t) = (costBo)f + By ' sin(tBo)g
to(t) = —(sintBo)Bof + (costBy)g

so Boug(t) = %e"itBO(Bof +19) + %eitBo (Bof —tg) and, for t — toco,

1 _; : 1, .
J Boug(t) ~ -ée“”BC'i(Bof +1ig) + §e’tBC;(B0f —1g) =
1 . 1, .
= 5 "P(BCLf +1Csg) + §e”B(BC’;Ff —iC=zg)

where we used the intertwining relations. Similarly,

Jio(t) ~ ST B(BCLf +iCrg) + 5% (BCx f —iC=g).

Hence, as ¢ — oo JBouo(t) ~ Bux(t) and Jig(t) ~ ux(t) in H, with (us(t),04(2)) =
U(t)(f«,9+) and . ,
fa=5(Ch+C)f £ 5(Ch - C2)Bg g

g2 = F5(Cy — C)Bof + 5(C++ 0.
Note that B;'g is well defined since By is injective and g € R(Bo). Set (u(t),v(t)) =
J(uo(t),0(t)) = JUs(t)(f,g). From the definition of J we have Bu(t) = JBouo(t) and
v(t) = Juo(t). Then

1TTo()(f,9) = Ue)(fs g5 = (u(t), 0(2)) = (wa(t), i ()5 =
= [ B(u(t) — ux(t)lF + llux(t) — Jio(®lE

which tends to zero as ¥ — +o.
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Since f € D(By), g € R(Byp) form a dense set in Hg, we conclude that there exist
operators Wi such that Wi(f,9) = (f+,9+).

Let us prove now that J* is a (Uo, &)-asymptotic inverse of J, that is

s — Lm(J*J — 1)Us(t) = 0.

t—>+oo

We have

I(1 =TI, )3t = (1 = By J* BB J Bo)u, (1 — J*J)o)||, =
= [|Bo(1 — B5 J*J Bo)ul| o + (1 = J* Tl -

In order to prove that it tends to zero as ¢ — £oo it is enough to show that

”(1 - J*J)Bolto(t)HHo —0 ast— +oo
1 —J*Nuo(t)||z, =+ 0 ast— +oo

and the expressions for Boug(t) and wg(t) we derived above imply that this follows from
the convergence of (1 — J*J)e™Boy to zero as t — +oo for every v € Hy, which is a
consequence of the completeness of Cy (see [29]). Now we may apply Theorem 6.3 in
[29] to obtain that W4 (U.Up, J) is an isometry. Since by symmetry the same holds true
for Wi (U, U, J*) we apply again Theorem 6.3 in [29] and get that Wa(Up, U, J*) and
W4 (U, Uy, J) are unitary and mutually adjoint. : 1

We prove now that the operators J and J are equivalent in the sense of Defini-
tion 5.2.2.

Theorem 5.2.12. The identification operators J and J are (Uo, &) -equivalent, i.e.
s — limy100(J — j)Uo(t) =0.

Proof. Let ¢ > 0 small and let ¢ € CP(R") x Cs°(R™). By Remark 5.1.2, we may
choose T > 0 such that

(5.2.2) ”UO(t'*'T)@“Eo(B,H.;_,) <e¢e fort > 0.

It can be seen in the same way that the L?-norm of the solution on a fixed compact
subset of R™ converges to zero as the time ¢ tends to infinity. So, we may choose T
such that setting (uo(¢),d0(t)) = Up(t + T)¢ we have also

(5.2.3) Iluo(t)llL2(3r+1) <e fort > 0.
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Then we prove that for ¢ large enough
I(J = NUo(t + T)pll ey < e,
which, taking into account the definition of J, reduces to proving that for ¢ large enough

(5.2.4) [(JBo — BJJuo(t)||12(rn) < ce.

(JBo — BJ)uo(t)||2(rn) =
= [[(J = 1)Bouo(t) + Bo((1 — J)uo(t)) + (Bo — B)Juo(t)l|z2(r) -

First of all note that, by the choice of T,

1Bo((1 = J)uo(t))ll2(rm) = ID((1 = F)uo(E))llL2(8,40) < €-

To evaluate the other two terms we use the representation formula for the square root

AY/? proved in [28] Chapter V, §3.11:

(5.2.6) A2y = -1-/ AU2RA(A)Aud)  for u € D(A),
0

where Rx(A) = (A + A\)7! is the resolvent of A and the integral is a Bochner integral
in H, the analogous formula for Ay, and the estimates for the resolvent given in Re-
mark 5.1.4. We have also ||uo(t)||z2(r) < C, with C depending on ¢ but independent
of ¢, see Remark 5.1.3. Then we can choose Ag > 0 such that )\(1)/202 < ¢. The integral
in the representation formula (5.2.6) will be written as the sum of two integrals on the
intervals (0, o) and (Ao, +o00). The two terms will be estimated using the inequalities
(a) and (b) in Remark 5.1.4, respectively.

Let s > 0 be a parameter we shall choose later. Then there exists .(s) such that

(527) HUO(t)”L2(B,+23+1) S e for ¢ Z t,;-(s) .

Recall that by the choice of T', see (5.2.2) we also have || Duo(t)||12(B,,..,) < €. Then
there exists a function § € C§°(R"), with 0 < § < 1,8 =1 on B,y, and suppf C
Bryst1 such that [[Bo(fuo(t))||r2mny = [|[D(Buo(t))|lr2mry < ce. We write ug(t) =
Oug(t) + (1 — Q)up(t) and

I(J = 1) Bouo(t)|z2rn) < ||Bo(fuo(t))llz2(rm) + 1(J — 1) Bow| £2(=n) »
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with w = (1 — 0)ug(¢).
As w € C5°(R™), to estimate |[(J — 1)Bowl||z2(rn) We can use the representation

formula (5.2.6) and we obtain
1(J = 1) Bowl| 2 &) <

(5.2.8) 1 [Ho oo
< :—/ -{-/ A_—l/zI!R)\(AO)AOWIIL2(Br+1)d/\,
i 0 AO

where we used the fact that supp (j — 1) C Bry1. Since ||w||z2mny < |luo(t)|z2rr) <
C, from estimate (a) in Remark 5.1.4 and the choice of Ao we get that the first integral
is less than cc. Applying estimate (b) in the same remark, and using the fact that
suppw C B, , we can find s, independent of ¢ such that the second integral in (5.2.8)
is less than €.

It remains to estimate ||(B — Bo)(Juo(t))||z2(r~)- We evaluate separately the norm

on Bf,, and on B,4+;. We have

rr38

I(Bo = B)(Juo()llz2(me,,) <

L ofr [ . .
<o [T [T AT IR A0) Aoluolt) ~ Ra() Ao, .
(O AD T

Now, for the first integral we use inequality (a) in Remark 5.1.4 both for
Rx(40)Ao(juo(t)) and Ri(A)A(juo(t)); by the choice of Ay we obtain that it can be
estimated by ce. For the second one, remark first of all that on BE_, A(jug(t)) =
Ao(Juo(t)). Let f = Ao(juo(t)) and Bx = (—=A + AN)(Ra(4g) — Ra(A))f. Then
Br € HTH(R") and (—A + A)Ra(A)f = f — Bx. Using the relaxed Dirichlet problem
satisfied by Rx(A)f we deduce that supp 3\ C suppu C B, and that I8\l -1 rmy < e,
with ¢ indepenc&gnt of A and t. With this notation the integral between )y and infin-
ity becomes / ATY2)(=A + A)_lﬁAHlﬂ(B:H) d\. Since suppfx C B, estimate (b)
in Remark 5.1.4 shows that this integral can be made small by a suitable choice of s
independent of ¢.

We consider now the norm on Br1s. As above, using (5.1.3) and (5.2.7), it can be
proved that there exists a function § € C§°(R™), with 0 < § < 1,6 =1 on Birias
and suppf C Bryzs41, such that || Bo(8juo(t))llz2(rm) = | D(05uo(t))]lz2(rr) < € and
[B(67uo(t)llz2rmy = [|D(8juo(t))||r2(r) < €, for every ¢t > t.(s) (note that the
term containing p in (5.1.3) disappears because j = 0 on suppp). So we have now to
estimate [|(Bo — B)((1 — 0)juo(t))|lL2(s,,,)- Let z = (1 — 6)juo(t). We shall use again
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the representation formula (5.2.6) and since we have to evaluate the norm on B,1+, and
suppz C B[, ,,, for the term involving the resolvent of Ay we apply the estimate () in
Remark 5.1.4 and choose s large enough (independent of t) to make its norm on B4
less than ce. So it remains to prove that HBz”%%B,J,a) < ce for s large enough. As

Az = Apz, using (5.2.6) we have

1 )\0 . O _
1Bz||12(B.,.) < ;/0 +j£ A2 RA(A) Aozl 2(B, ) AN -
(0]

The first integral can be made small using estimate (a) in Remark 5.1.4 and the choice
of Ag. To evaluate the second one, let v = Ry\(A)Agz. This means that

—Av+ A4 pv = —Az.

Taking v as test function we get

1 1
/R |Dv]2—|—/\/R 1v|2+/ﬂ [v)? dp = N DzDv < -2—/ IDz]z—{—;/ |Dvl]?.

Let now x be a cut-off function between B, and B2, and take vy as test function.
Then
DuvvDy + / | Dv)?x + /\/ lv]®x —I—/ v dp =0
R™ Rn" RrRn RrR»

”DZ“riz(Rn)

and we obtain
5[ xS DXl

Hence
C

2
“v“LQ(B,-.{_S) -<— 5/\3/2,

so that choosing s large enough

oC x> C
—1/2 9 —1’/2 <
/AO AT vl 2By S //\ A Tane S €

o]

Chosen s such that all conditions imposed above be satisfied, we can choose ¢ > t.(s)
in.order to obtain (5.2.4).

Let now ¥ € Ho. Then there exists ¢ € C§°(R™) x C§°(R") such that || — |z, <
€. Then

I(7 = I)To(t + Tl < (T — PVt +T)& = @)l + I = HVa(t + Tz < 2,

for t large enough and the proof is concluded. O
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Proof of Theorem 5.2.6. By Theorem 5.2.11 the wave operators Wi (U, Uo,j) and
W (Uo,U,J*) exist, are unitary and mutually adjoint and by Theorem 5.2.12 the op-
erators J and J are equivalent. It is easy to see that Definition 5.2.2 implies that
Wi (U, Uy, J) = Wi (U,Us, J) and Wa(Us,U,J*) = W (Us, U, J*). O

5.3. A convergence result

Let us consider now a sequence of measures up € Mo(R"), with suppuy C B,
and assume that up — p with g € Mo(R") and suppy C B,. Let Ap : Vi — VY be
defined by Ay = —A+pp, see (5.1.1), where Vj, = H? (R™)NL, (R"),let Hy = WLQ(R,I)
and let A, : D(Ay) C Hp — Hj be the corresponding realization in Hj , defined by
D(Ap) = {u € Vi : Apu € Hp} and Apu = Ayu for u € D(A,). The operators
Ap are self-adjoint. Remark that since their domains of definition are not dense in
L?*(R™) we need to consider each operator defined on its own space. Let Bj = A}L/Q,
Hp = [D(Br)] x Hy and let Uy : Hp — Hyp, be the unitary group giving the solution of
the relaxed wave equation defined by A,. We assume that A and A; have absolutely
continuous spectrum.

Since the operator J given in Definition 5.2.5 does not take into account the measure
p, the same proofs for the existence and unitarity of the waves operators hold for every
Ap . We are going to show now that the wave operators corresponding to pj, converge.
Let Wi = Wy (Up,Uo,J) and W = W, (U,Up,J). With the notation for the energy
norms used in Section 1, let ||(u,v)| g, () denote the F-norm on w corresponding to
H=Hh-

Let us show first that the behaviour of the solutions at a finite time T characterizes

the behaviour of the wave operator corresponding to initial data ¢ € CE(R™) x CE(R™).

Theorem 5.3.1. Given » € C§°(R™) x C°(R™), for every € > 0 there exist T =
- T(e,p) > 0 and ¢ € C§2(R™) x C§(R™) for which

We —U(-T)¢lpmn < and

[Whe — Un(=T)¥||%, (rny < €

uniformly with respect to h.
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Proof. Let € > 0 small. We may choose T > 0 such that setting (ug,vo) = Uo(T )y,

(5.3.1) luollz2(p,41) <€  and

”Uo(t + T)99[|Eo(Br+1+z) <e fort>0
(see Remark 5.1.2). Let ¢ = jUo(T)y, where j is the function considered in Defini-
tion 5.2.5. Asfor |y| > r+1+1t, Bs(y) C B¢, and suppu C B, on B, .,, by the
finite propagation property for the solutions of the wave equation and by the unique-
ness of solution of the relaxed wave equation, we have U(t)y = Up(t)s. Since on BE 4
Y = Uo(T')p, it follows that on BE, ., , U(t)y = Up(t)y = Ug(t+T)e. As U is unitary,

U(t)%/)”%(an) = ||¢H?=;(Rn) = ll¢||%o(R")7 (as ¢ =0 on Br).

Now
1% ey = / Dot + joDuol® dz + / lovol? da
R R»

and using the convexity of z ~ |z|%, the conservation of energy ||Uo(T)¢llE,rr) =

lloll o(mn) » and the estimate (5.3.1) we obtain that
T 512 1 2
WY pmny < ce+ i“:z“SOHEO(Rn)-
Since

”Uo(t)'r/)“%o(Bf-Hﬁ) = ||Uo(t + T)L’QHZEO(B:“"") N
Y

= [Uo(t + T)ellEymn) — Vot + D)l Eo(B,pain) > llolEomn) — €7

for every ¢ > 0, we have

U@ NE B, 1y = 1T @D Ewn) — 100 By ae ) <

r4+14t

(5.3.2) L .
< ce+ ’1‘:”@”150(11") — llellgymmy +€° < Ce,

where ¢’ depends on ¢ but not on €. As on Bf,,,, we have U(t + T)U(-T)¢ =
Uo(t+T)p and on B,i14¢ both terms have energy norm less than or equal to Ce!/? for
some C > 0 (|| -||5 £ Ce implies |- ||, < Ce), it follows that

(5.3.3) Ut + YU (=T — Uo(t + T)pl| o (mny < ce-
We shall show now that

We — U(-T)l/)“%(nn) < ce.
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Since Wi = s-lim; o0 U(—1)JUp(t)y, it is enough to prove that for ¢ large enough
JU(~(¢ + T)JUo(t + T)p — U(=T)b 3 mmy < e
As U is unitary and ¢ = jUg(T)e, this is equivalent to

1TTs(t + T)g = U TU(T)emry < ce.

By (5.3.1), [[(J = 1)Uo(t + T)¢|lgo(r=) < €, so, from (5.3.3) we obtain
(5.3.4) [T70o(t + T — U(t) JUo(T)pl By mry < ce .

To pass from the Ej energy to the E energy we have to take into account the term
containing the integral with respect to p. Since suppu C B;, this term is estimated by
(5.3.2), which, together with (5.3.4) gives

[7To(t + T)e — U($)JUo(T)¢ll prny < e,

and the proof is concluded by remarking that the same arguments hold for each A and

the choice of T' and ¢ is independent of h, so that we have also
[Wicp — Ua (= 1), ey < e

[l

This theorem, together with the results obtained in the previous chapter for the
solutions of the wave equation for finite time intervals, allows us to prove the conver-
gence of the wave operators. Although the definitions used are different, the solutions

considered in this chapter coincide with the solutions studied in the previous one.

Theorem 5.3.2. Let pp,p € Mo(R™) with supppup, suppu C B,. Assume that
V,LLh s 4 and that the corresponding operators Ap and A have absolutely continu-
ous spectrum. Then the wave operators Wi (U, U, Ji) converge to the wave operator
Wi (U,Uo, J) in the sense that for every ¢ € Ho, if we set (wi,w?) = Wy(Un,Us, Jn)p
and (w',w?) = Wi (U,Us,J)¢, we have

Dwj — Dw' w-L*(R™) and wi —w? s-L*(R").
Moreover,

(5.3.5) “Dwflz”QL?(Rn) + ”w}z”%ﬁh(R") - ”lelliz(nn) + {lellig<an),
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and similar results hold for W_(Uy,Uo, Ji). For the wave operators W,.(Ug, Uy, J}) we

have the following result:
Wi (Uo, Un, J} ) = W4 (Uo, U, J")p strongly in Ho

for every ¢ € Ho with suppe N B, = O, and the same convergence holds for
W_(Uo, Uy, J}).

Proof. Let Wy = W4 (Up, Uy, Jy) and W = W4 (U,Us,J). Let ¢ € Ho and ¢ > 0.
Then there exists ¢ € C§(R") x C§°(R™) such that || — &llgorr) < €. As Wy is
unitary, we have |[Wxp — Wi¢| g, (rn) < €.

We showed in Theorem 5.3.1 that there exist T > 0 and v such that ||W,5 —
Un(=T)¢| g, (rmy < € for every h. Note that, by construction, 1 = 0 on B,. We apply
Theorem 4.2.5 and setting (up,up) = Up(—=T)¢ and (u,u) = U(=T)y we get that

| Dunl|7zrny + ||uh||:;:3h (rny = 1 DullZ2gny + ”“H%g(m)
up — w strongly in LQ(R") .
Hence we deduce that (5.3.5) holds and also that w3 — w? strongly in L*(R™).

Let Wo,n = W4 (Uo,Un, J;) and Wo = Wi (Uo, U, J*). Let n = (n',n?) € Ho with
suppn N B, = ©. Then n € H and n € Hy for every h. As Wy = (W)* and
Wo = W*, we have

Wo,nm, @) = (Wr)™n,0)m0 = (1, Waep) s, -

So, using the definition of the scalar product in Hj,, we have

Wosn,o)= [ Dr'Dwydat [ wukdun+ [ nuddo
Q Q Q

and the term containing pj disappears since suppn N B, = @. Now the convergence

results we obtained for w, = (w},w?) imply that

(Wo,um, ) — (Wom, ).
Since
1Wo,nmll zomny = IInll 27y = Il 2R = IWonll 2orr) »

from the weak convergence we deduce that

|Wo,nn — WOU“EO(Rn) — 0.
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In the particular case of exterior domains mentioned in the introduction we have

the following result.

Theorem 5.3.3. Let (2,) be a sequence of open connected subsets of R™ such that
K =R"™\Qy are contained in a ball B,, independent of h. Assume that there ezists a
measure [, absolutely continuous with respect to the Newtonian capacity, such that the
solutions wy of (5.0.2) weakly converge in H(R™) to the solution w of (5.0.8). Assume
in addition that A = —A + p has an absolutely continuous spectrum. Let Uy and U be
the unitary groups giving the solution of (5.0.1) and (5.1.2), respectively. Then the wave
operators Wi (Up,Uo, Ju) converge to the wave operator Wi (U,Uy,J) in the sense that
for every v € Ho, 1f we set (wy,wi) = Wi (Un, Us, Ja)p and (wl,w?) = Wi (U, Uy, J)p,

we have

Dwy — Dw' w-L*(R™) and w} —w? s-L}*R").

Moreover,
(5.3.6) [ DwhllZ2mn) =+ | Dw! |72y + w122 (e

and similar results hold for W_(Uy,Uo, Jy). For the wave operators W (Uy, Uy, J5) we

have the following result:
Wi (Uo, Ur, Jg ) = Wi (Uo, U, J* ) strongly in Ho

for every o € Ho with suppy N B, = @, and the same convergence holds for
W_(Us, Up, J§).

Proof. As remarked in the introduction the hypothesis made on the sequence () that
the solutions of (5.0.2) converge weakly in H!(R™) to the solution of (5.0.3) is equivalent
to the v-convergence of the measures pp = ugq, to the measure u. Since the solution of
the relaxed wave equation corresponding to pg, coincides with the solution of (5.0.1),
also the wave operators for this problem coincide with the wave operators on the exterior
domain {2, with the usual definition. Hence, in order to get the convergence of the wave

operators, it suffices to apply the previous theorem to the measures up = uq, . O
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