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"Introduction

The results presented here concern two problems that seem to interact enough

to justify the title of this thesis. That is, a yariational problem, (P), of the type
(P,) Minimize /ﬂ F(Vu(@)) + g(z, u(z)) dz

and a differential equation, (F,), of the type

(P2) 2’ = Vo(z).

Both problems are studied in R™ and v is, essentially, a convex function.

There are several papers concerned with problems of type (P ), that arise from
various applicative fields. When f is convex, the Direct Method of the Calculus of
Variations can be applied and, so, the existence of a solution is assured under stan-
dard conditions. Besides the question of the existence of solutions, some further
problems that are of interest even in the convex case are, for example, qualitative
results on the solutions ([K.],[S.]), the equivalence of two problems ([B.S.]) and
the validity of the Euler-Lagrange equations. When f is not necessarily convex,
the Direct Method cannot be applied. Moreover, the existence of a solution is not
guaranteed, even if the problem has a very simple formulation ([C.C.]). Still, for
some particular non-convex problems arising from shape optimization, and apart
from many papers concerned with numerical aspects, there are some existence
results (e.g. [C.P.T ],[Ce.3],[Tr.]) and some results establishing the validity of the
Euler-Lagrange equations ([C.P.]). One of the techniques used in dealing with
the non-convex case is computing the integral on Q by describing at first Q as a
collection of trajectories of the ordinary differential equation z’ = Vu(z), where
v is the candidate solution, and then using the co-area formula. In this context,

this is the link between the two problems stated above.
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Most of the existence results cited here give solutions that are convex func-
tions. This is why we begin to study (P,) for the case of a convex v. If we only
know that v is convex, the gradient of v does not necessarily exist everywhere.
The classical way to deal with (P,) in this case is to change it into the differential
inclusion given by the subgradient, namely =’ € dv. However this approach does
not seem to be helpful for the purpose of integrating on {2, since we really need
trajectories of 2’ = Vu(z) in order to be able to perform the change of variables
under the integral sign. That is why the approach presented here is different than

the usual one.

The result presented in the first chapter is contained in [V.1]. It deals with

the following problem :

Minimize /Q(h(IVu(r){)+ u(z)) dz

on u € Wy''(Q), where Q is an open, bounded and convex subset of R” and A is
not necessarily convex. There are several papers studying this type of problem
([Ce.3L,[C.P.T.],|G.K.R.],[K.S.W.],IM.T.]). In particular, in [Ce.3], an existence
result has been proved, when n = 2, under assumptions linking the properties
of the function h to the properties of 2. There the proof makes substantial use
of the fact that Q is a subset of R% The result presented in this chapter holds
for 8 C R™ and it generalises the one in [Ce.3]. The main result is that, when a
property connecting the geometry of 912, the width of Q and the subdifferential
of h is satisfied, there exists a solution to the problem stated above. Also, this
result is valid for a larger class of convex sets than the one considered in [Ce.3].
The solution turns out to be —cd(z,dN), where ¢ is a constant depending on h.

As stressed above, the solution is convex and the result is achieved by integrating



on the trajectories of &’ = —cVd(z, OQ) Notice that d(z,09) in general will not
be C'. To use the co-area formula, one needs a lipschitzean mapping and has to
compute jacobians. That is why, in order to obtain precise estimates, one must
deal with principal curvatures of surfaces in R™ and n-th order determinants.
The proof of the main result is rather technical, long and it uses some thions of

differential geometry.

The results presented in the second chapter are based on [T.V.], a joint pa-

per with Giulia Treu. In [B.S.] the following result is presented : set I(u) =
1

/ §]\7u|2 + (Au — f)u, where A > 0 and f € H"*(), and consider the follow-

Q

ing problems

(1) Minimize I(u) on {u € Hy(Q) : |u(z)| < d(z,00Q)}
and
(2) Minimize I(u) on {u € Hy™(Q) : |Vu(z)| < 1}.

Under the assumption that 2\ > |V f|, (1) and (2) are equivalent. It appears
interesting that a restriction on the gradient may be equivalent with a restriction
on the function.

The problem considered in [B.S.] arises from the elasto-plastic torsion problem
([E.T.],[B.St.],[B.2)).

We consider the functional

1(w) = [ F(Vu(@)) + g(a, u(z)) do

defined on ug + Wy ?(Q), where we ask only the convexity of f and no further
regularity conditions on f, we ask g to be quite regular, C! in u and ¢/ to be

lipschitzean and we impose some lipschitz condition on ug. We consider two
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problems : the first one is to minimize I on the set of those u such Vu € K
a.e., where A is a compact and convex subset of R™ such that 0 € intK and
the second problem is to minimize [ with suitable obstacles for u. Under an
assumption involving the second derivatives of g, we prove an equivalence result
that generalizes the one obtained in [B.S.]. Notice that we do not impose that
up = 0 and that, while the problem considered in [B.S.] admits a unique solution,
in our case, the problem may lack uniqueness. Finally, when the problem is more

regular, we give other equivalence results under weaker assumptions.

The results presented in the third chapter are contained in [C.V.], a joint
paper with Arrigo Cellina. We study the trajectories of the diﬁﬁerential. equa-
tion ' = Vuv(x) where v is a convex function. As showed above, the motiva-
tion for this problem comes from the Calculus of Variations. In several papers
([C.P.T.],[Ce.3],[C.P.],[Tr.],[V.1]) the basic tool used to infer the truth of proper-
ties like the existence of minima or the validity of the Euler Lagrange equations
was integration along the trajectories of z" = Vuv(z), where v is the candidate
solution. Here the purpose is integrating over {) by integrating along the trajec-
tories of a differential equation; hence sets of measure zero do not count. This
explains the different emphasis of this paper with respect to ways previously
used in dealing with discontinuous right hand sides. In our approach we want
7'(t) = Vu(z(t)) to hold for a.e. t and pay the price of losing a set of initial data
having measure zero. The main results of this chapter are : given an open region
2, for a.e. initial data (P,) admits a unique (maximal) solution, which is defined
on an open interval, and the trajectories of (P,) fill Q in a one to one way, on the
complement of a null-measure set.

Besides convex mappings, we deal with mappings whose composition with a

monotone function is convex and prove the same results stated above. The
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motivation for considering this class of mappings comes from the Calculus of
Variations : in fact, it is known ([K.],[S.]) that the solution, v, to the basic
problem

minL(qu(:c)lz +u(z))dz , upy, = 0
on a convex domain {2, is such that the mapping z — -—-(—v)% is convex. Hence

our results apply in particular to this solution v.

The results presented in the fourth chapter are contained in [V.2]. It treats

the non-uniqueness set for the Cauchy Problem

Py { 25 ST

_ Where T is a set-valued map. The main results are that, under some assumption
on T, the set NV, consisting of those zq for which (C P)(zo) admits at least two
solutions has null measure, and the closure of N along the trajectories of (C P) has
null measure, too. It was proved in [Ce.2] that, when 7 is maximal monotone, the

~set N has null measure. When 7' is the subgradient of some lipschitz function
having convex sub-level sets, there is ([C.T.]) a finer result on the set of non-
uniqueness. The hypothesis made on T in this chapter is weaker than the ones
in [Ce.2] and [C.V.]. The class of those T satisfying the assumptions requested
here contains both the class of lipschitzean mappings and the class of maximal

monotone mappings. In particular, this result applies for the inclusion

(0) = X

8

(CP_)(zo) { z'(t) € D™ (u(z(t)))

. . . ) 1 .
where u is a semiconvex function i.e. there is ¢ > 0 such that u(z) + -éch[? is
convex. It appears that the set of semiconvex functions is particularly important

when studying viscosity solutions ([E.]).
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Chapter 1. A Variational Problem on Subsets of R

This chapter provides an existence result for a minimum problem in the scalar
case of the Calculus of Variations. When one does not assume convexity in the
variable gradient, the functional to be minimized is not lower semicontinuous.
Hence, one cannot pass to the limit along minimizing sequences but one has
to follow a constructive approach. The following problem, arising from shape
optimization, has been considered by several authors ( [Ce.3], [G.K.R.], [K.S.W ],

[M.T.]) under different assumptions on the nonlinearity A :

Minimize /Q(h([Vu(;r)l) +u(z)) dz

on u € Wy (Q), where Q is an open, bounded and convex subset of B? and A is
not necessarily convex. As stressed in the introduction, an existence theorem has
been proved in [Ce.3]. Here, the same problem is considered in the n-dimensional
case and the results obtained are more general than those stated in [Ce.3]. The
main result gives a condition under which the problem has a solution and the
solution is given explicitly. The nature of the condition is geometric and, for
given ) and h, one may explicitly check if the condition is satisfied. However,

the n-dimensional case is more complicated than the 2-dimensional one and the

proofs are rather technical.
Notation and Preliminary Results

We denote by |z| the euclidean norm of z. For a point z and a set U in some
R™, by d(z,U) we mean the distance from z to U i.e. d(z,U) = inf{|z—y|,y € U}.
For a C' mapping f : R™ — RF, call df the differential of f. For a matrix

A € R™F the jacobian of A, JA, satisfies JA = | det A| when m = k, and, when



JA={_ A?)l/2 : A; is a k-order minor of A}.

For a C* function f, we set the jacobian of f, Jf, to be J(Vf) ([E.G.]).

In what follows we shall need some geometric considerations, in particular
the notion of principal curvatures of a surface in R”. As we shall deal only with
parametrized surfaces, we will present just this special case. A parametrized
n — l-surface in R" is a smooth map ¢ : U — R™, ¢ = (¢1,... ,¥n), where U
Is a connected open set in R™™!, which is regular, i.e. d:(p) has rank n — 1
for all p € U [Th., p.110]. By smoothness here we mean C? functions. Image’
de(p) is the tangent hyperplane to ¢ at the point p € U. Consider, in the

tangent hyperplane, the n — 1 linearily independent vectors v;, which are v; =
Op _(Oer  Opn
9 06T 06

by n(p), is a unit vector, orthogonal to the tangent hyperplane. unique up to the

) [Th., p.114-115]. The normal at a point p, which we denote

sign, and we choose it to be such that

vi(p)

(1.1) det > 0.

Vn-—.l ()
n(p)

When the surface is the boundary of a convex set, this definition of the normal
gives the inward normal. Observe that, as n-n = 1, we have that dn-n = 0.
This means that dn is a linear mapping for which the tangent hyperplane is

invariant. Call T'(p) the tangent hyperplane. The linear map
—dn : T(p) = T(p)

is the Weingarten map at p € U. Its eigenvalues are called the principal
curvatures of ¢ at p. In the case of a convex surface, one can prove that the

principal curvatures are all (not necessarily strictly) positive. Denote by V the
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(n —1) x n matrix where the i-th row is v;. We want to write —dn in the system
of coordinates in T' given by the matrix V. Call T the (n — 1) x (n — 1) matrix

of —dn in the new system of coordinates. We have
—dn =TV.

Setting V? to be the transposed matrix of V, we obtain

—dn-Vi=T.VV’
As V - V' is invertible (the rank of V is maximal),

I'=(—dn-V)(V.-VH"

Hence the principal curvatures are solutions of the equation
(1.2) det(—dn - VI — AV - V) = 0.

In the case the surface is given as the graph of a function, we may give an explicit
equation whose solutions are principal curvatures. Let @ : U — R be a smooth

function, and define ¢ : U — R™ by ¢(p) = (p,%(p)). In this case, the vectors v;

become v; = (0,...,1,0,..., B—Ezﬁ) where 1 is in the ¢-th spot. The normal is
1, oy oY
n=-(=22 - 4
w( 73} nr )
ad) 2 a¢ 2 1/2
where w = (1 + (5?) +... (5§ ) ) . Forsimplicity, denote by H the hessian
1 n—1
matrix of 9 and F' the matrix which has the element on the i-th row and j-th
/ :
column equal to gg)- : gg— Then the element 7,j of the matrix V - V! equals
SLoaE :
VitV :5i+5—5—8?,where(5i =lift=jandé; =0ifi #j5. SoV-Vi=T4F.
1 0G;

The element 4, 7 of the matrix —dn'V? is

0 0 10, ;1,0 %4

-1
Vij = 8—,5,7(_—11) V= gg(zgg)' 6§,~(_J) A

9



Computing this last quantity, one obtains
P |
—dnV' = —H.
w
so formula (1.2) becomes
1
(1.3) det(—H — A(I + F)) =0.
w
Observe also that (1.3), in the case di = 0, becomes
(1.3") det(H — AI) = 0.

We shall also need the notion of focal point. Consider a parametrized surface

¢ : U — R™ and the family of smooth maps ¢, : U — R" given by

©s(p) = g(p,s) = w(p) + sn(p) for s € R.

Fix p€ U and call 8 : R — R" the map given by 8(s) = ¢(p) + sn(p). A point
z € Image 3 is said to be a focal point of ¢ along 3 if z = B(sg), where sq is
such that the map ¢, is not regular at p [Th., p.132]. The position of the focal
points is well determined, in spite of the fact that the normal may be chosen in

two different ways.

Lemma 1.1
Let o : U — R™ be a parametrized surface and call g : U xR — R™ the function
gien by

9(p,s) = ¢(p) + sn(p).

Then Jg may be written in the form

(1.4) Jg(p,s) =v(p) II I —s\

i=1,n—1

10



where \; are the principal curvatures at p and

vi(p)
(1.5) v(p) = det Vo (p)
n(p)
]
Proof

Tg(p,s) = | det ( Aot sdn )1

where dy 4 sdn is a (n — 1) X n matrix and n is a row vector. So Jg(p,s) is a
polynomial in s. Moreover, Jg(p,s) = 0 if and only if there exists v € R™, v # 0

such that
( de + sdn ) v=o0.

n
That is (dp + sdn)-v = 0 and n - v = 0. This last equality is satisfied when
v € T(p), the tangent hyperplane at p. So Jg(p,s) = 0 if and only if there exists
a v € T'(p) such that (de 4+ sdn) - v = 0. But dp + sdn = dy; and dp, - v =10
for some v € T'(p) if and only if ¢ is not regular at p. So Jg(p,s) = 0 if and only
if o(p) + sn(p) 1s a focal point along the normal line through p. From Theorem
1in [Th.], pag. 132, we see that focal points have the form ¢(p) + %n(p) where
A; are the non-zero principal curvatures at p. Since Jg(p, s) is a poly;lomial in s,

it has the form
p7 5) - V H I'S - -—l

where the product is made over the non-zero principal curvatures at p. One can
easily see that we arrive to the form requested in the conclusion of our lemma.
Moreover, the map v appearing in (1.4) is Jg(p,0) that is :
vi(p)
v(p) = Jg(p,0) = det |

Vn-1(p)
n(p)

11



Notice that the determinant appearing in Lemma 1.1 is the same as in (1.1),
it is strictly positive and depends only on p.

Notice also that in the product we have, in fact, only factors that correspond
to non-zero principal curvatures.

We also need the following technical lemma :

Lemma 1.2
Let {xi}i=1,n be n strictly positive numbers and 0 < T < minie{1,..n} Ti- Lhen

the function u : [0,T] — R given by

T n
/t H(:z:,- — s)ds
) — 1:1
H(Ii —t)

u(t

is decreasing. B

Proof Call v(t) = [[(z; —t). Observe that u is well defined, that is it has a
=1
limit in T. If T' < minz; this is obvious and if v has T as a k-order root, then

_ () ED)
limu(t) = lim v(t) =1 v(?) =
t T t/T v'(t) t AT v(t)( )
We have r
V() +'(t) [ w(s)ds
u'(t) = — :

We want to prove that

T
v2(t) + v’(t)/ v(s)ds > 0, that is

v*()

v'(2)

w(t) :=

T
+/ v(s)ds <0, since v is decreasing.
t



»

’02

Notice that w(T) = th}n% 0
v

increasing, we are done.

exists and it is < 0. So if we prove that w is

We have to prove that v"> > vv”. Computing, one obtains

v"(t) — v(t)"(t) = iﬂ (z; —t)* > 0.

=1 j2i

We have the following

Proposition 1.3

Let A = (a;;) € R™" be an invertible matriz and B = (b;;) € R"™DX" be such

that
1 0 ...00

(1.6) - BA= _ 0 = (I,1,0).
0 010

Then
JB = j’lg(mm“?n)m'

Proof Call A’ = (a};) the inverse of A. We have that (4')™' = 4, so the
element a;; may be computed as follows :

Denote the n — 1-order minor of A’ obtained by removing the j-th row and the

i-th column by A%;. Then

1
——A
det A’ sl

|las;| = |

13



Multiply now the equality (1.6) by A’ to obtain

B = (In..l,O) - A,

ne11 e+ cee Qn_yn

So the minor obtained from B by removing the i-th column equals the minor of

A’ obtained by removing the n-th row and the i-th column, i.e. A’.. That is

IB= (3 (AN = det (Y a2)?

i=1,n 1=1,n

1/2

= 2
‘]B - ‘]A(i;naln)

Main Results

Let 1 be an open, bounded and convex subset of B®, n > 2. We shall assume

that the map & : [0, +00) — [0, +00] satisfies the following

Assumption H

sup{t > 0: h(t) = 0} = max{t > 0: h(¢) = 0} < +oco.

Our purpose is to solve the following problem :

(P) Minimize /ﬂ (A(IVu(@)]) + u(z)) dz on u € WEH(Q).

We shall need the following definitions :

14



Definitions of p and A

Set p = max{t > 0: h(¢t) = 0} and call A the set of supporting linear functions
at p, A= {a:h(s) > a(s—p), for every s > 0}. We have 0 € A. Call A = sup 4,
0<A< oo

Call, for z € Q, Il(z) = {y € 8Q : |z — y| = d(z,00)} the projection of
in 0. Notice that IT : Q — 99 is an upper semicontinuous multivalued map.
Denote also for y € 99, II"Y(y) = {z € Q : y € (z)}. T (y) is closed and

y € II7*(y). We have the following preliminary result :

Lemma 1.4

If there exists a function o in L>(Q) such that :

(1) 0<ea(z) <Aae z€Q

(22) /Q(a(:c)(—n(ﬂ(x)), Vn(z)) + n(z)) de = 0 for every n in C5°(Q)

then the function u : @ — R given by u(z) = —pd(z,dQ) is a solution to the

problem (P). H

Proof a) The map z — d(z,9Q) is differentiable a.e. and its gradient is
(a.e.) —n(II(z)) [G.T., p.354]. In particular, II(z) is single valued for a.e. z in

1. Then, a.e. on Q, Vu(z) = —pn(y),y the unique point in II(z). In the case
, = —n(y).
[Vu(@)] ~ Y

Let a be a function in L*(Q) satisfying (i) and (i7). Then, for any vector v,

p>0

when p > 0
h(IVu(e) +v]) = h(IVu()| + [Vu(e) + v = [Vu(z)]) 2
2 h([Vu(2)]) + a(z)(|Vu(z) + o] = [Vu(z)]) =

15



Vu(z)
[Vu(z)]

> h(|Vu(z)]) + a(c){ ) = h(|Vu(z)]) + a(e)(-n(y), v)

and, for p = 0,
h(lv]) > a(m)]vl > a(z)(—n(y),v) for a.e. z € Q.
Hence, for every p and for every function 7 in Wy (), we have
[T+ V) + (u + 7)) de 2

> [(a(IVul) +u) do + [ (afe)(-n(ll(2), Vi) + ) da.
By approximating a function n in W, 1(Q) by standard mollifiers, one sees that

(11) must be satisfied for every function n in Wy (2), so

VU +In) + () de > [ ((19u]) + u) da

for all n in Wy"'(Q), that is

LV +0) do 2 [ ((Vul) +u) do

for all v € Wy (Q). =

So, in what follows, we shall find sufficient conditions in order to assure that
u given above is a solution to our problem. We have to construct our o and
to do this we shall need some assumptions on {2, more precisely a smoothness
assumption on the boundary.

Notice that, £ being open and convex in R", the Hausdorff measure on its

boundary is the n — 1-dimensional measure.

Definition 1.5
We say that ) has almost smooth boundary if and only if 99 may be

written as

0Nl=SUN

16



where
a) /—tn—l(N) =0
b) S is open in 0N and it is of class C% i.e. for all y € S, S is of class C? at

Y. - B

Lemma 1.6

Let Q have almost smooth boundary. Then 0Q) may be written as

o0 = () S)uUN

=1

where pn,—1 (N) = 0, S; are open with respect to the topology of IQ and two-by-two
disjoint. Moreover, for each 1 there exists an open U; CR™™!, a parametrized sur-
face (i.e. a C* mapping) o, : U; — R™ such that S; = ¢;(U;) and the determinant
given by (1.1), computed for ;, is uniformly bounded and strictly positive on Us;.

Proof Q) = N'U S where p1,,;(N’) =0, S is open in Q and forally € S, S
is of class C? at y i.e. for each y € S there exists an open neighbourhood V, C S
and a C? one-to-one function ¢, : U, — V,, for some open U, C R™ % Each open
subset of V,, is, in turn, a parametrized surface, so we may choose 1}, to be such
that the determinant appearing in (1.1), computed for ¢,, is strictly positive on
T,

We want to apply the Vitali’s covering theorem. To do this, notice that 9Q is
homeomorphic with the unit sphere in R, the semisphere is homeomorphic with
the open unit ball in R™~! and bfoth homeomorphisms are lipschitz so preserve
open sets and null-measure sets. Now, in R®! we may apply Vitali’s covering
theorem to obtain the covering we needed on S i.e. a countable family of open
and disjoint sets, each subset of some V,, whose union covers S up to a set of

measure 0. B

17



We have the following remark :

Proposition 1.7
Let y € 0 such that there ezists £ € QNI (y). Then there ezists a
neighbourhood V,, of y in 90 such that the surface Vy may be represented as the

graph of a conver function, for a suitable choice of coordinates. E

Proof There exists an open ball around z, contained in (2, such that each
half-line issuing from a point of the ball in the direction of y — z intersects 9
exactly in one point. That it is at least one point is obvious and that there
cannot be two points in the intersection follows from the convexity of € and the
fact that z is an interior point. Choosing now a system of coordinates centered
at y, with n — 1 directions contained in the orthogonal hyperplane to z — y and
one direction as ¥ —y, one may write, locally, 00 as the graph of a function. The

convexity of this function follows from the convexity of . E

Lemma 1.8
We have, for all y € 09 :
(1) When II7Y(y) # {y}, 09 is differentiable at y;

(17) There exists a unique point y= € Q) such that
I y) = {Ay + (1 = Ny=: A€ [0,1]}

(e) Fyx #y, for all A€ (0,1), Ay + (1 — A)y*) = {y}. m
Proof (i) Take z € II7(y), = # y.
We may apply Proposition 1.7 so, by moving the origin of the coordinates

in y and taking one axis as ¢ — y and n — 1 axes in the normal hyperplane to

x —y in order to obtain an orthonormal basis, there exists an open ball B in R""1,
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containing 0, such that, locally, 02 may be written as z = ¢(¢) with ¢ convex
on B.

Since y € II(z), in the new system of coordinates we may write

10,Z) — (& (O 2 1(0,7) — (0,0) , where T = d(y, z).

That is
P(6)" = 22p(€) + 1€ > 0, for all € € B.

Since ¢ is convex, in order to prove that it is differentiable at 0, we have to prove
that Jp(0), the subgradient of ¢, contains only one point. Suppose there is v # 0
such that v € d¢(0). Then

o(tv)? — 2Fp(tv) + *lv* > 0, for all t > 0, ¢ sufficiently small.
lim —s(t0)? — 27 (1 +t|v]* > 0. But
t@g?y( v)" — T?(fo( v)+tlv|" > 0. Bu
1
lim —(tv) = ¢'(0;v) > |v|* > 0 and %i\IBap(tv) = 0.

tN\O T

So 0 > 2z|v|* > 0, a contradiction.

(27) If I N(y) = {y}, y* = y. If there is z € II7*(y), = # y, by (i) above,
the tangent hyperplane to 9Q is unique and orthogonal to = — y, so II7!(y) is
included in a half-line. Moreover, Q) being bounded, II71(y) has to be bounded.
So it has to be a closed segment line contained in §2, having one of its extreme

points y. The other one will be yx.
(¢22) If, for some X € (0,1), there exists z € I(Ay + (1 — Ny*),z # v, then
d(y*,z) < d(dy + (1 — Ny*,y%) + d(Ay + (1 — Ny*,2) =

=d(Ay + (1 = Ny*,y%) + d(Ay + (1 — Ny*,y) = d(y*,y) < d(y*, 2)
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Notice that, whenever II7!(y) # {y}, it may be written as

where y* is the point given by (iz) above. Call

(1.7) l(y) = d(y, y*).

Notice that, ! being bounded, [(y) has to be bounded. About the function

[: 990 — R we have the following

Lemma 1.9
Let 9 be of class C? in a neighbourhood of y. Then :

(2) l(y) < ; where A is any principal curvature of 0 at y;
(11) When l(y) < —i— for all X principal curvature of 9 at y, then

(y + l(y)n(y)) # {v}

(v11) | is continuous at y. H

Proof To prove this result we shall recall Theorem 2 in [Th., p.134], that
claims that, given a point y on a surface and s € R, the map that associates to
each point of the surface the distance to y + sn(y) attains a local minimum at
y if and only if there are no focal points between y and y + sn(y). If we denote
by r(y) the smallest radius of curvature, corresponding to the greatest principal
curvature, we see [Th., p.132] that this may happen if and only if s < r(y).

Denote z = y + I(y)n(y). Point (z) is obvious from the considerations above,

since d(z,0Q) = [(y).

Notice that, if 9Q is C? at y, then r(-) is continuous at y.
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(1) If I(y) < r(y), there exists a point zo €  and #o, {(y) < to < r(y), such
that zo = y + ton(y). From [Th., p.134] we see that there exists a neighbourhood
V around y in 99 such that ¢o = d(z0,y) < d(20,0) for all § € V. It is easy to

prove that

d(z,y) < d(z,9)

for all z € {y+1tn(y) : l(y) < t < to} and § € V. Consider t, — I(y),

l(y) < tn <to. Then, as y & I(y + t,n(y)) from the definition of [, we have
d(y + t.n(y),00) < d(y + tan(y),y) < d(y + t.n(y),0) for all § € V.

So (y 4+ t.n(y)) NV = @. If we suppose that II(z) = {y}, then, because of
the upper semicontinuity of II, for all z, — z, y, € II(2,), y» — y. In particular,

(y + t.n(y)) NV # 0, a contradiction.

An immediate consequence of (7¢) is that, whenever 91 is of class C? at v,

I(y) # 0.

(#i7) Consider y, — y such that I(y,) = 1. As yn € I(y + [(yx)n(ys)), the
upper semicontinuity of II implies that y € II(y + In(y)), so [ < I(y). Suppose
that [ < I(y). If, on a subsequence, I(y,) = r(y,), by continuity we obtain I =
r(y) 2 I(y) > I. So we must have {(y,) < 7(yn). Point (i7) assures us that there
exists z, # Yn, 2n € U(yn + {(yn)n(yn)). On a subsequence, z, will converge to
some zp and, by the upper semicontinuity of II, z € II(y+In(y)). From Lemma
1.8 (iii) we see that zo =y (as [ < I(y)).

There exists a neighbourhood V" of y such that, locally, with a suitable choice
of coordinates, 9 may be represented as the graph of a C'%-function (see Propo-

sition 1.7).
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For n such that both y, and z, are in V’, consider the two dimensional plane
P that contains y,,z, and yn + I(yn)n(y.). Its intersection with the surface
00 is a 1-dimensional convex curve C. The distance from any point of C to
Yn + {(yn)n(yyn) is greater than or equal to [(y,). Moreover there are two points

on C, y, and z,, that have the distance to y, + {(y»)n(y.) equal to I(y,).
Claim 1.10 There ezists a point Q,, in V'NC such that the radius of curvature
of C at @), ts smaller than or equal to l(y,). Moreover, Q, — y. u

Assume Claim 1.10. We have a point @, on Jf and a curve through @,

contained in 9} such that the curvature of this curve is >

l(;n). But [Th., p.135]
the curvature of curves on a surface are bounded from below and from above by
the minimal, respectively the maximal principal curvatures. So, in particular,
using our notation, r(Q.) < I(y.). As Q. — Y. passing to the limit, we obtain
r(y) < I. But we assumed that [ < [(y), so r(y) < [(y) which contradicts point

(1) above. |

Proof of Claim 1.10 We shall prove the following :

Let f:[0,a] — ® be a convex function of class C?, a > 0, such that :

a) f(0) =0, f(0)=0

b)1(% (1)) = (0,1)] > 1

¢) (e, f(a)) = (0,1)] = |(0, £(0)) — (0,1)| = 1.

Then there ezists a point (to, f(to)) on the curve (¢, f(t)) such that the radius
of curvature at (to, f(to)) is smaller than or equc;l to 1.

It is easy to see that this implies the conclusion of Claim 1.10.

Suppose, on the contrary, that

7(s)
1+ 1)

< 1for all s € {0, 4q].
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Multiplying by f'(s) and integrating from 0 to ¢, we obtain

1
e Y
Since f2(t)—2f(t)+1* > 0 we have f(t) < 1—(1 — ¢2)"/>. These two inequalities
imply that
, t
O e

Integrating again from 0 to a, we obtain
fla)<1-(1 —a®)"%

But f(a) =1—(1 - (12)1/2 and we obtain a contradiction. E

Definitions of o and S

Let = € ) be such that II(z) = {y} and 99 is of class C? in a neighbourhood
of y. Define a(z) by :

n—1

T1(1 = d(z,0Q));)

i=1

/dl(y) (1=t at
(1.8.1) a(z) =

where A; are the principal curvatures of Q) at y. For all other £ € 0 define
(1.8.2) a(z) =0.

For all y € 99 such that 9Q is of class C? in a neighbourhood of y set B(y)

to be
I(y) 221
(1.9) Bw)= [T -ta) d
i=1
where A; are the principal curvatures of 89 at y. |
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We may state now our first theorem :

Theorem 1.11

When Q has almost smooth boundary, the function o defined by (1.8) satisfies

| (e} (—n(1L(=)), Vn(2)) + n(z)) dz = 0, for every n in C(®).
]

In order to prove the theorem, we shall need some preliminary considerations.
From Lemma 1.6 we see that there exist open sets U; C R™™!, C? mappings

w; : Uy = 9Q such that ¢;(U;) are disjoint and

prn-1 (O | wi(U3)) = 0.

1EN

Call V; = ¢;(U;) and
Q= {z e UY(V): d(z,00) < |(TI(z))}.
Consider the map g; : U; x R — R" given by

Gi(&,8) = @i(€) + sn(p:(§)).

Call g; the restriction of g; to the set {(£,s) : € € U;,0 < s < I(i(€))}. In order
to simplify the notation, we shall use l;(§) for I(;(€)) and n;(¢) for n(p;(€)).
Notice that /; is continuous. €; is the image of {(¢,s) : € € U;,0 < s < Li(6)}.
From Lemma 1.8 (iii), one sees that the projection of a point g;(¢,s) in §; is
unique, so g; is invertible on ;. Set Uf = {¢ € U; : [;(£) > €}. Call f; the map
from ; to R"! given by

filgi(€,8)) = ¢.
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We have :

Lemma 1.12

. 1

K P
n—1

(1) Jgi(€,8) = v;(€) [T (1 — sAx), where {\:} are the principal curvatures at
k=1

©i(€) and v; is the determinant given by (1.1) for the surface o;;
(211) g; is lipschitz on its domain ;
(iv) Setting Qf to be the image of {(£,s) : € € Us,0 < 5 < Li(€) — ¢},

fi is lipschitz on Q. |

Proof In order to prove (i) we shall apply Proposition 1.3. From the
definition of f;, we sée that Vf; - Vg, = (I,-1,0). So we need to compute the
derivatives of g; with respect to the variable s. Fix ¢ and set §(s) := gi(£, s).
Then we see that Vé(s) = n,(£), a vector of norm one, that is |[V§] = 1. Apply

now Proposition 1.3 to obtain

1
Jgi.

1
Jfi = —|Vé| =
[ Jgil I
(11) follows immediatly from Lemma 1.1 and Lemma 1.9 (i).
From (i1) we see that Jg; < 15, a bounded function, so ¢; is lipschitz.

Since there exists ¢ > 0 such that v;(¢) > ¢ for all ¢ € U; (see Lemma 1.6),

appliyng (i) and (i) we obtain that f; is lipschitz on Q. |

Lemma 1.13

QF and Q; are open in Q and satisfy

p(O\JQ) =0 ase—0;
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p(2:\QF) =0 ase = 0;

pE\UJ2) = 0.

Proof We may write
Q\Uﬂf = AOUBOUC,-E

where :

Ap is the set of the z €  such that II(z) is not single valued, a set of measure

By is the set of the z € Q such that II(z) € N, also a set of measure 0, as
pn-1(N) = 0.
C:=(Q\Q)U{z € Q; : d(z,00) = [(II(z))} is the image through g; of the

set contained in R™ given by

{(&,8) : £ € Ui, max(0,5:(§) —¢) < s < L(6)},

a set that has measure < ep,_1 (U5).
g; being lipschitz, u(Cf) — 0, as ¢ — 0.

Notice also that [ is continuous on each Vi, so §1; is open in (2. H

Lemma 1.14

a € L=(Q) and, for all z € Q,

0 < a(z) <sup fy) < +oo.
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Proof Applying Lemma 1.2 we see that 0 < a(z) < S(II(z)) when S(II(z))
is defined and a(z) = 0 when § is not defined. Moreover, B(y) < fé(y)l dt =
l(y) < d(Q), the diameter of 2. As!is continuous, « is continuous on ;. Lemma

1.13 proves that
1(2\ U Q) =0.

Since a is bounded, the conclusion follows. ]

We may now prove our theorem.

Proof of Theorem 1.11

First, we prove that, for all 7 € N,

/Qi(a(a:)(—*n(ﬂ(:v)),Vn(:c)) + n(z)) dz = 0, for every n in C5°(12).

Let i € N and 7 be any function in Cg°(2). Call

I= [ (a(z)(~n(1I(z)), Vn(z)) + () dz

Since the integrand is in L*(0)), by Lemma 1.13 we have also

1 =liry [ (a(2)(~n(1l(2)), V) + 1) do =

e—0

=lim [ (o(z)(—n(l(z)),Vn) +n) :

i e in.]fi dz.

On €, f; is a Lipschitzean map with values in Uf . By the co-area formula [E.G.

3

p.117] we have

/;(a(wﬂ—n(ﬂ(ﬂc)), V) + n)jlﬁ.lfi dz =

1
= Jue (fnfnffl(e)(a($)<mn(n(~’”)),Vn) +7)

37 dH) d¢
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where H is the one-dimensional Hausdorff measure.

The set f7'(€) is the segment described by

¢ = ¢i(€) + sni(£)

for 0 < s < [;(€). On it the Hausdorfl measure coincides with the Lebesgue

measure. We have :

1
—_dH = Jg; dH =
'/Qfﬂf,-_l(i)ani nsnfrl(s)n I

l;(&)—e¢
= [ (@) + ani )06, ) ds.
1(€)
Denote G(€,s) = / Jagi(€,t) dt.
) d
By integrating by parts, since Jg;(¢,s) = -—EEG,'(Q',S) and

d
21-5-77(%(5) + sn;(£)) = (n, Vn), we have

)
(

1:(€)—¢ kil '
dH = —nGili©~ 4 /0 n, V)G ds.

/ 1

aensie) | IS

Since n]aq = 0 and ¢;(€,L(8) — &) = @i(€) + (L(€) — e)n;(§),

Lo g dH = —n(g(€ ) ~ NGHELE) — ) + [ (n,Vn)Gds
Qfﬂfi_l(ﬁ)n-]fi = GG, b i\Sy b 0 y VI as.

Then
dH =

1
Jor o (@RI, )+ )

Li(€)—=
= [, Vod{—adgi + Gi} ds = n(ai(6, UE) - ©))Gil6, L) — )
where Jg; = Jg;(¢, s) and the functions Vn and « appearing inside the integral

are computed along {¢;(£) + sn;(£) : 0 < s < [(€) — €}

Notice that o was chosen such that {—aJg; + G;} = 0, so we obtain

dH =

1
Lo (@I, V) 4 )
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= 1(g:(6,1(6) — £)) Gi(&,1(&) — ).
Hence
= lim [ m(g(6, 6) — e))Gi(£, E) —<) de.
Since 7 is uniformly boﬁnded and G;(¢,1(€) —¢) converges uniformly to 0, the

integral converges uniformly to 0 so that
(1.10) [ (@(@)(=n(1(2)), V1) + 1) dz = 0.

Since ﬂ(Q\UO,) =0, by (1.10)

/Q(a(a:)(——n(ﬂ(:c)), Vn(z)) + n(z)) dz = 0, for every n in C°(Q).

We have the following

Theorem 1.15

Let Q be an open, bounded, convez subset of R™ with almost smooth boundary.
Assume that the map h satisfies Assumption H and p and A are defined as
above. Assume also that, for a.e. y € 00 such that O is of class C* in a

neighbourhood of vy,
I( )n-—l
[T -sa)ds<a
0

k=1
where Ay are the principal curvatures of Q) at y and I(y) is defined by (1.7).

Then the function u: Q — R given by u(z) = —pd(z,00) is a solution to the
problem (P).

Proof
The conclusion is an immediate consequence of Theorem 1.11, Lemma

1.14 and Lemma 1.4. B
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I(y) !

We shall give now some estimates for / H (1 — sAg) ds. We have
0 k=1

Corollary 1.16

Let Q2 be an open, bounded, convez subset of R™ with almost smooth boundary.
If one of the following coﬁditz’ons is satisfied, the function u : Q — R given by
u(z) = —pd(z,09) is a solution to the problem (P) :

(a) l(y) < A a.e. in 0Q

(b) W(Q) <A where W(Q) = sup{d(z,90) : z € 0}

(c) Q is a ball of radius < nA

(d) Q is a cube with side of lenght < 2A. ]

Proof (a) We have 0 < 1 — s\, < 1 for all s € [0,{(y)] and A; principal

curvature at y (see Lemma 1.9 (i)). So

=y 1)
/y H(l-s)\k)dsgf T 1ds = I(y).
0 k=1 Q

(b) For a.e. y € 99, I(y) = d(y + {(y)n(y),y) = d(y + {(y)n(y),0Q) <
< sup{d(z,09) : z € Q} = W(Q). So we may apply (a).
(c) If  is a ball of radius R, then {(y) = R for all y € 90 and all curvatures

1
equal T So the condition in Theorem 1.15 becomes

R s
/ (1 —_ ’}—%)nnl d.S S A
0

The integral may be computed to obtain

R S\no1 , R

n
(d) In the case of a cube with side a, the curvatures are all 0, I(y) = g for almost

all y € 09, so the condition becomes
2

a
0 2
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Chapter 2. On the Equivalence of Two Variational Prob-

lems

The results of this chapter are based on [T.V.], a joint paper with Giulia Treu.
We generalise here a result on the equivalence of two problems, proved in [B.S.].
As we remarked in the introduction, the following result has been proved in [B.S.]
set I(u) = /Q %]Vu|2 + (Au — f)u, where A > 0 and f € H'*°(Q), and consider

the following problems

(1) Minimize I(u) on {u € Hy(Q) : |u(z)| < d(z,00)}
and
(2) Minimize I(u) on {u € Hy™(Q) : [Vu(z)| < 1}.

Under the assumption that 2X > |V f|s, (1) and (2) are equivalent. This problem
arises from the elasto-plastic torsion problem. There are several results regarding
this problem, concerning the regularity of the solutions, the existence of the
Lagrange multipliers and numerical aspects ([B.2],[H.S.],[E.T.],[B.St.]).

We are concerned in this chapter with a more general functional, namely

I(w) = [ J(Vu(e)) + glz,u(2)) de,

where we ask f to be convex, we ask also some regularity conditions on ¢ and we
prove a more general equivalence result than the one proved in [B.S.]. The main
improvements might be that we allow f not to be very regular, that we do not
impose 0 as a boundary condition and that we control the directional derivatives,
not only the Lipschitz constant. Also, our case may lack uniqueness of solutions.
When g is C?, we give some weaker conditions under which problems (1) and (2)

are equivalent.
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Notation and Preliminaries

Throughout this chapter, for n € N, we denote by :
) - an open and bounded subset of R™ with lipschitzean boundary 9;
K - a compact and convex subset of R" such that 0 € intK;
f - a continuous function from R™ to R;
g - a continuous function from R™ x R to R.

Let p > 1 and up € W'P(Q). On the set ug + W5 7(Q) we define the functional

I(w) = [ f(Vu(z)) + gle,ul(2) da.

In this context we say that [ is coercive with respect to the weak topology of
WP if and only if the sub-level sets {u € W'? : I(u) < ¢} are weakly compact

in W'? for every c € E.

0 fre K

We denote by jg the indicator function given by jx(z) = { too ifzeR\K

On ug + Wy™P(Q) we also define the following functionals :

J 7 (u) = / Ik (Vu(z)) + u(z) dz
Q

JH(u) = A]A(Vu(x)) —u(z) dz .
Let us assume that there is at least a function v € ug 4+ Wy™P(Q) such that
J*(v) < 4co0. Applying the direct method of the Calculus of Variations we see
that both J~ and J* admit a unique minimizer. We will denote by uj, uf the
minimizers, respectively, of J~ and J7*. It is easy to check that uy < uf a.e. on
Q.
We set
Ky ={u€ug+Wy?(Q): Vu € K ae. on 0}

and, for uy,u, € ug + Wy ?(Q), we denote
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We = {u€ug+WyP(Q):uy <u < uyae. on QF.

Up,u2

One can check that both W2, , and K,, are convex subsets of ug+ Wy ?(Q). It is

up,u2

also easy to see that K,, C WP_ ,. We will consider the following two problems
o CWo_ g

(P) Minimize /Q F(Vu(2)) + gz, u(z)) dz on WP ..
and
(P,) Minimize /Qf(Vu(:c)) + g(z,u(z)) dz on K.

We may already remark that, when K,, # 0, then both uy and u are
defined, and so, if f is convex and I is coercive, we can apply the direct method
of the Caiculus of Variations to prove that both (P;) and (P,) admit solutions.
Our purpose is to find sufficient conditions in order to assure that the set of
solutions to (P;) coincides with the set of solutions to (P,). To that purpose
we need some preliminary results from convex analysis and some properties of
lipschitzean functions.

We denote by A the polar of K, K° = {z € R" : (z,k) < 1Vk € K}. When
G C B", 7 denotes the Minkowski function y5(z) = inf{\ > 0: z € AG}. We

recall that the following property holds :

(*) Vi (v)yRe(h) > (v, h)

for every v, h € R™ (see [R.]), where (-,-) denotes the scalar product in B™

We have the following results on lipschitzean functions :

Lemma 2.1

Let u : R™ — R. Then the following statements are equivalent :

(2.1) u 1s lipschitzean and Vu(z) € K for a.e. z € R™;
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u(y) —u(z) < ygo(y — ) for all z,y € R™;

—~~
o
[SV]

~—

(2.3) there is e > 0 such that u(y) —u(z) < yge(y — z)Vz,y € R" |z —y| < &.
]

Proof Using the fact that yx. is positively homogeneous, it is very easy to
see that (2.2) & (2.3).
(2.1) = (2.2) : Assume, by contradiction, that there are z,y € R™ such that
u(y) — u(z) > Yro(y — z) then there is § > 0 such that u(y + v) — u(z + v) >
Yreo(y — z) for every v € R™, |v| < §. Then, we find vy, of norm less than §, such
that, on the segment line between z + vo and y + vy we can integrate to obtain
that yre(y —z) > /()1 Ye(Vu(z +vo + t(y — 2)))vx-(y — =) dt, since Vu(z) € K
a.e. Now, using (*), we get yxo(y — z) > '/OI(Vu(a: +vo+tly—2z)),y—c)dt =
u(y + vo) — u(z 4 vg) > yre(y — z), a contradiction.
(2.2) = (2.1) : If (2.2) is satisfied, since 0 € intK°, then u is lipschitzean and
thus a.e. differentiable. Choose = € R™ such that u is differentiable at z. Then,
for every h € R™ and ¢t > 0, %—(u(z +th) —u(z)) < %—’)’[\"o(th). By letting ¢ | 0,
we obtain that (Vu(z),h) < yxe(h). In particular, for every h € K°, vxo(h) < 1
and (Vu(z),h) < 1. This implies that Vu(z) € (K°)° = K ( see [R.]). B

Lemma 2.2

Let G CR™ and let v : G — R satisfy
(2.2 u(y) — u(z) < yro(y — ) for all z,y € G.

Then there is W: R™ = R, an extension of u, such that U satisfies (2.2).
Moreover, if G is closed, v: G — R satisfies (2.2°) and V0sg = Yag’ then the
function T : R™ — R, given by

o\ _[v(z) fzedG
”(’”)“{a(x) ifrez"\G "’
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also satisfies (2.2). E

Proof We consider the family I' = {(v*,G*) : G C G C R",u* : G* —
R,uj, = u, and u” is such that u*(y) — u*(z) < yre(y —z) for all z,y € G*}. We
order this family with the relation (u}, G7) < (u3, G%) if and only if G7 C G} and

uy = uj. It is easy to see that (I', <) is not empty and each chain has an upper

Igs
bou;.d, and so, by Zorn’s Lemma, there is a maximal element (v, G') € I'. We will
prove that G = R™. Indeed, otherwise there is zg € R™\ G'. We prove that v’ may
be extended to G' U{zo}, which contradicts the fact that (v, G’) is maximal. To
do so, it is enough to find 6 € R such that —yxo(zo—2) < v/(z2)—0 < yxo(z — 20)

for all z € G'. We can find such @ if and only if
sup{u'(z) — yre(z — z0) : 7 € G'} < inf{v/(z) + yKo(z0 — 2) : 7 € G'}

So we are left to prove that u/(z) — yxe(z — z0) < ¥/(y) + Yre(zo — y) for all
z,y € G'. Using the subadditivity of yxo and the fact that (v/,G’") € T' we find
the result we needed.

Denote by @ a maximal extension of u. To prove the second part of the lemma
it is enough to check that —yxo(z — y) < v(y) — u(z) < yxo(y — z) for all
y € G,z € B*\ G. For such z and y, there exists a point z on the segment
line between z and y such that z € dG. Since G is closed, z € G and then
v(y) —T(z) = v(y) — v(z) + u(z) —u(z) < yxe(y — 2) + Yxo(z — z). Using now
the fact that yx is positively homogeneous, we obtain v(y) —%(z) < vxo(y — ).

The other part of the inequality follows analogously. m

Finally, for simplicity, we let functions defined on R™ to belong to Sobolev

spaces on {2, if their restriction to 2 does.
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Main results

Our results concern mainly the equivalence (in the sense that the sets of
solutions coincide) betweeen the problems (P;) and (P) stated above.

We shall assume that f, g'and ug satisfy the following

Assumption A
i) f 1s convez;
i) the restriction of g to Q X R is continuously differentiable with respect to the
last variable and ¢!, its differential, is lipschitzean;

iii) up(y) — uo(z) < yxo(y — z) for all z,y € Q. |

We remark that we will not make further regularity restrictions on f.

Also, notice that, when ug satisfies iii) from the above assumption, due to Lemma

2.2, we may extend ug on ™ and then we may apply Lemma 2.1 to obtain that

up € Ky,. In particular, K, # 0.

Since g, is lipschitzean it is differentiable a.e. We will impose on ¢ further con-

ditions. We remark that each of those conditions imply that g(z,-) is convex.
We have the following regularity result on the solutions to some variational

problem :

Theorem 2.3

Let f, g and ug satisfy Assumption A. Let uj,us € K,,. Let@w € WP _ be

Uy,u2

such that I(w) < I(u) for allu € WP . If
(2.4) sup{vr(—Vag,(z,v)) : (z,u) € @ x R} < inf{g,(z,u): (z,u) € Q x R}

thenu € K,,. ]
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Proof First of all we apply Lemma 2.2 to up and we denote by uf an

extension of the function uy to R”, satisfying (2.2). We define also

and

ey Ju(z) ifzeQ vy fuz) ifze
ul(x)‘{u;(x) foer\Q “2(‘”)“{u5(m) ifzer\0

sy Ju(z) fze
u(m)-{ug(ag) ifzer\ Q.

Since §) is bounded, uj,u; € K,, and ug is lipschitzean, then u; and uy are
lipschitzean, too. In view of the second part of Lemma 2.2 and of Lemma 2.1,
ul, u; € Ky, and both satisfy (2.2).

Let h € R™, h # 0.
Using the same technique presented in [B.S.] we consider the following functions

defined on R"
u} (z) = max{w(z + ) — i+ (h), T(2))
i (@) = min{T (2 — h) + e (1), T (2))

and the sets
Ef = {a € B s uf (2) = (o + ) — 7r0o(h) > 7(2)}

Ey ={z eR":u;(z) =u"(z — h) +vr-(h) <T*(z)}.
The following properties hold true:
) uy <up <uf <uj, ae inRY
i)z € Qforae z€ EFfUE;;
i) B = Ef — h.
The inequality u; < uj in i) is obviously satisfied. We prove only that
uf < u}, the remaining inequality can be proved in the same way. If z in R™\ E}"

the property is true by the choice of uj. For a.e. z € Ejf

uf (2) =@ (e +h) = yxe(h) < w3z +h) — o (h) < uj(e).
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ii) We prove that z € Q for a.e. z € Eff. Indeed, we have, for a.e. = € E},
@ (2 + h) — yro(h) < uj(z + h) — ygo(h). Moreover, for every z € Ef \ Q,
u3(z) = u(z). Using the properties of u3, we obtain the result we need.

The proof of property iii) follows immediately from the definition of the sets Ejf
and E} .

Then, by i), uj ,uf € WP

oy Now, by the assumption on 7 and by the definitions

of uf and uj, we have that, for X €]0, 1],
1@+ Muy — 7)) = I(7) =
o J(VE(2) + AMVui (z) - Va(e) - f(Va(z))

gz u(z) + Auf () — W(z)) - glz,u(z)) dv =

(2.5) L, V(@) + X(Va(z + k) = Va(z)) - f(Va(z)

h

+o(z,1(z) + Ma(z + h) — yxe(h) = 7(2)) - g(z,7()) dz > 0

and
I+ Auy — ) — I(7) =
[ A(Va() + Mz () — V(@) ~ £(Va(z)
+9(z,u(z) + Ay (¢) — w(2)) - g(z,u(z)) dz =
(2.6) /E_ f(Vu(z) + AM(Vu(z — k) — Vi(z)) — F(Vu(z))

(2, 8(z) + ATz — h) + 7xe(h) - T(a)) ~ g(z,7(z)) dz > 0.

In the last integral we make the change of variables that maps z in z + A and we

obtain

(2.7) /E L F(Va(z + h) + A(Va(z) — Va(z + b)) — F(Va(z + b))

h
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+g(z + h,u(z + h) + AN(T(z) + o (h) — lz + h)) — g(:; + h,u(z + h)) dz > 0.

Adding term by term the inequalities (2.5) and (2.7) and using the convexity of

f, we have that
L, 6o+ h,7(e 4 )+ A(T(&) + 35 (8) — 5 + ) = gl + (e + )

+glz,u(z) + Az + h) - ke (k) - (=) — g(a, 7(z)) da > 0.

We divide now the last inequality by A > 0 and let A | 0. Since g is continuously
differentiable with respect to the last variable, we may apply the dominated

convergence theorem to obtain

(2.8) /E 0@ + ha(e + b)) — gl (2, ()] (@(x) + yice (h) — T + b)) dz > 0.

Now, we remark that, for every z € Ejf, u(z) + yxo(h) — @(z + h) < 0. Let us

consider the other factor. We have
(2.9) 9.(z + h, Tz + h)) — g, (z,u(z))

= gu(e+ b2z + ) = g,z + b, T(2)) + gl (= + h,u(z)) — g, (2, u(2)).

g, is lipschitzean and so it is differentiable a.e. Set then ¢ = inf{g” (z,u): (z,u) €
O xR} and s = sup{yx(—V.g,(z,u)) : (z,u) € Q x R}. Using the fact that ¢’ is
lipschitzean with respect to the first variable, by the proprerties of lipschitzean
functions and recalling (*), we get, for a.e. =z € E}f, g (z+h,u(z))~g (z,q(z)) >
—s7ke(h). By the same argument, we get also ¢’ (z + h,@(z + h)) — ¢.(z +
h,a(2)) > i(a(s + h) — a(z))

Thus, since for z € Ef, u(z + h) — u(z) > 7x-(h), we recall (2.4) to obtain
that g,(z + h,@(z + h)) — g.(z,u(z)) > 0 for a.e. z € EF.
Hence, we conclude that, for e\-/ery he€R™ h#0, u(EF) =0, so

Tz + h) —u*(z) < ygo(h) for a.e. z € R™
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We apply this result letting h in a countable and dense subset of R™. By a
standard argument, using the fact that Vu exists a.e. on Q and recalling (*), we

find that Vu € K a.e. on 0. ]

Notice that, since K,, C W”_ ., to prove that (P;) and (P,) are equivalent,
ug yug
it is enough to prove that (P;) admits at least one solution and that each solution
of (Py) lies in K.

We state now our first equivalence result.

Theorem 2.4
Let f, g and ug satisfy Assumption A and assume that I is coercive. Then
both (P1) and (P,) admit solutions. Moerover, assume that one of the following

statements holds true

(2.10) sup{yr(—V.g. (z,u)): (z,u) € QA xR} < inf{g),(z,u) : (z,u) € A xR}

(2.11) sup{yK(=Vg.(z,u)) : (z,u) € & x B} < inf{g,,(z,u) : (z,u) € QA x R}

and for every A €]0,1], z € K, y € R*"\ K, f(Az+(1-XA)y) < Af(z)+(1-X)f(y).

Then u minimizes I on K, if and only if u minimizes I on W¥_ . |
0 Ug sy

Proof As we noticed above, under the conditions of Theorem 2.4, K, # ]
and both (P;) and (Pz) admit solutions.
p

a) Assume that (2.10) holds true. From Theorem 2.3, any minimizeron W'_

0 %o
belongs to K,. Since K,, C W’_ ., we are done.
Ug »Ug
b) Notice that (2.11) implies that ¢/, > 0 and so g(z,-) is convex. Assume
1
that (2.11) holds true and, for [ € N, set [;(u) = I(u) +7/Qu2(:r) dz. By setting

1 C e
gi(z,u) = g(z,u)+ 7u2, we may apply the result of a) to [; to find v, a minimizer
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for I; on ng,ug" such that u; E K,,. Let now | = oco. We may pass to the limit
on a subsequence of (u;) and, by using the lower semicontinuity of I and the fact
that u; are uniformly bounded in L*°(Q), we find ¥ € K,,, 2 minimizer for / on
I/Vfo_,u;,. Let now v be any minimizer for I on Wf;,ug" Then I(v) = I(@). Set

vk ={z € & : Vou(z) € K} and assume, by contradiction, that u(Q \ vg) > 0.
Then, for A €]0, 1],

/Q FOVE(Z) + (1 - \)Vo(e)) de < / M(VE(E) + (1= N F(Vo(z)) dat

Ly, M(VEE) + (1= Df(Vo(z)) de

and, since g(z,-) is convex, we find that
I+ (1= A)w) < AI(@) + (1 = N)I(v) = I(T)

which contradicts the fact that % is a minimizer for I on Wf_ ot
00

The following example shows that, when (2.10) is not true, the two minimum

problems may not be equivalent :

Example 2.5 Let f(¢) = %52 and g(z,u) =ucosz, @ =] —nm,7[and uo(z) =
—2. Solving the Euler-Lagrange equation one obtains that the minimizer of I(u)
on ug + Wy?(Q) is @(z) = 2 cos z. We can choose a positive a such that % is also
the minimizer of the problem with the obstacles uy and ug associated to the set
K = [-2+ 4,2 — a]. Anyway, there exists a set A with positive measure such

that |u'(z)| > 2 — a, for every z € A. H

We give another example to show that we cannot drop the strict convexity re-

quired by (2.11) :
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Example 2.6 Let @ =] —1,1[, K = [~1,1], uo = 0, g(z,u) = 0 and

0 if |z] < 2
f(‘”)"{m2—4 if |z| > 2.

Then sup{7x(—Vg.(z,u)) : (z,u) € QxR} = inf{g” (z,u) : (z,u) € AXxR} =0

and !
u(z) = 1
2zl -1 ifjz|] < =
2
. C . 11
is a minimizer for I on W2 () such that [/|=2on]— 5 -2—[ ]
070 L

If the problem we deal with is more regular, we may weaken the restriction (2.10)

from Theorem 2.4. We have

Theorem 2.7
Let f, g and ug satisfy Assumption A. Assume that g € C*(R™ x R) and

that I is coercive and such that every minimizer of I on W'f_ + IS continuous on

0. If
(2.12) YE (= Vg, (z,u)) < gl (z,u) for all (z,u) €A xR

then u minimizes I on K,, if and only if u minimizes I on vag,ug'
Proof Again, our hypotheses assure the existence of solutions.
Let @ be a minimizer for I on 'ch_).’ug. Since vk (—Vz¢.,) and g/, are uniformly
continuous on compact sets and since % is uniformly continuous on §, in view of
(2.12), there is § > 0 such that v (—Veg,(21,2(y1))) < gi,(72,U(y2)) for every
T1,Z2,41,Y2 € O such that |z; — 25| < § and |y; —y2| < 8. Let now h € R™, h # 0,

|h| < é. The same construction that we made in the proof of theorem 2.3 leads

us to
164 + b e + ) — g (o, 5(=))](5(z) + 7o (k) — Tz + b)) dz > 0.
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We recall that Eff = {z € Q : u(z + k) — u(z) > yko(h)}. For z € E;if
we may write g, (z + h,u(z + h)) — g.(z,u(z)) = gl (z + h,u(61))(T(z + h) —
u(z)) + (V4. (02,u(z)), h) where 6;,60; lie on the segment line between z and
o+ b So ge + hyu(e + b)) — (6 0(2) > Trc(— Vg (82, 7(2) e (h) —
(—=V.g.(02,%(z)),h) > 0. As above, we have that p(E;) = 0. In this case,
¥ is continuous, so Ej is open and thus we may apply directly Lemma 2.1

to conclude that @ € K,,. Again, since K,, C W?”_ the two problems are
%o

?ug- ’

equivalent. ®

Our last result shows that, with more regularity, the condition (2.12) may re-

placed with
(2.13) Y (—=Vag,(z,u)) < g (z,u) for all (z,u) € Q X B and

forevery X €)0,1], z € K, y e R"\ K f(Az + (1 = A)y) < Af(z) + (1 = N f(y)-

Corollary 2.8
Let f, g and ug safisfy Assumption A. Assume that p > n, I is coercive
and g € C}(R™ x R). If (2.13) holds true then u minimizes I on K,, if and only

if u minimizes I on WP_ . B
Uo ,uo

Proof To prove this corollary we use the same method as in b) from theorem
2.4. That is, we approximate I with the functionals I;(u) = I(u)-l—-}/Q u?(z) da.
The hypotheses of our corollary allow us to conclude that, for every [ € N, there
is a minimizer u; for I; on ng,uc}“ such that u; is continuous on Q (since p > n).

Thus, we may apply Theorem 2.7 to obtain that w; € K,,. Passing to the limit,

on a subsequence, we find %, a minimizer for I on Wf _ +» such that 7 € K.
00
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By reasoning as in b) from ‘theorem 2.4, we conclude that any other minimizer

belongs to K, and so, the two problems are equivalent. B
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Chapter 3. On Gradient Flows

This chapter contains the results obtained in [C.V.], a joint paper with Arrigo
Cellina. The purpose of these results is to contribute to the theory of existence
of solutions to ordinary differential equations in R", when the right hand side of
the equation is not necessarily continuous. More precisely we are interested in
the properties of a special family of right hand sides, namely the gradients of a
class of functions that contains the family of convex functions. As shown in the
introduction, the motivation for this problem comes to a large extent from the
(multi-dimensional) Calculus of Variations. The technique of integrating along

the trajectories of
(CPy)(zo) z'(t) = Vu(z(t)) , 2(0) = =0,

where u is the candidate solution, is used in many papers. This technique raises
the following questions : given an open region ), do solutions to (C Py)(z) exist,
at least a.e. with respect to zo in 7 do the trajectories of (C'Py)(zo) fill  in
a one to one way, at least on the complement of a null-measure set 7

Since here the purpose is to integrate over ), null measure sets do not count
and so, the approach we use is not the usual one. Essentially, the previous
emphasis in dealing with discontinuous right hand sides was in modifying the right
hand side, by building an upper semicontinuous convex valued multifunction out
- of it, as in the definition of the subdifferential of a convex mapping or in defining
the solutions in the sense of Filippov. In this way one can show the existence of a
(generalized) solution for all initial data zo. HOWGVGI‘; in this case, the derivative

of the solution z(t) does not, for a.e. ¢, equal the original right hand-side and this

makes the trajectories unsuitable for integrating along. In our approach we want
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this equality to hold for a.e. ¢t and pay the price of losing a set of initiaf data
having measure zero. The results of this chapter are better clarified by examining
the simple example where u is the convex mapping on R? given by z — sup{|z;|}
ie. u(z) = |2|e.  may be taken to be the unit square about the origin. It
is obvious that if we regularise by subtracting the set consisting of the two
diagonal lines, then on the remaining set 2, the solutions to (CPg)(z) exist
on a maximal open interval of existence (w-(z¢),w4(z0)) and are unique for all
initial data in Q,. Moreover, for ¢ — w, solutions converge to the boundary of
the original set 2, while for ¢ — w_ they converge to 2\ 2,; finally, the collection
of the trajectories is a partition of §,,.

The above result follows easily since in this case the set we have removed, the

diagonals, is the set of non-uniqueness for the Cauchy problems
(C'Ps)(z0) 2'(t) € Ou(z(t)) , =(0) = zo

and it happens that this set coincides with the set of non-differentiability of
u and is closed. However this property does not hold in general for a convex
function : in fact, our example 3.5 shows a convex mapping on R? such that the
corresponding set of initial points lacking uniqueness for (C'Ps) is dense in 2 and
does not coincide with . Still our theorems guarantee, for the class of mappings
we consider, the validity of all the claims previously made for the special case
discussed above.

As explained in the introduction, the results obtained in [S.] and [K.] induced
us to deal here also with mappings whose composition with a monotone function

is convex.
Notation and Preliminary Results

Let n > 1 be a natural number. For S C R™, S denotes the boundary
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of S ; we use (-,-) to denote the scalar product in R", and u to denote the n-
dimensional Lebesgue measure ; u, and u* are, respectively, the interior and the
exterior n-dimensional Lebesgue measure. For measurable A C R™ and B C A,
p(A) = p(B) + p(A\ B) ([Co.]pp.39,42). When f :R™ — R" is a lipschitzean
mapping of constant [, p(f(A)) < {"u(A) for every measurable A C R™ ([E.G.]).
For the sake of simplicity, we deal with differential properties of functions only
at points that are interior to the domain of definition. We denote by Vu the
gradient of a real valued function. When u is a convex function, du denotes
its subgradient ([R.]). When the real valued function u, defined on a subset of
R™, is not necessarily convex, we consider the subdifferential of u at z to be the

(possibly empty) set given by

(81) D7u(z) = {p € ®":limjnf uly) = “I(;)__”w?p’y ~%) > 0} ([B.DE]).

When u is convex, D”u = du. For u : Domu — =, S C intDomu and zo € S

we will consider the following two types of Cauchy problems :

(croYeo { 27 VU i (0p.yen) { Y € D7)

We say that 2, : I — S is a solution to (C' Py )(zo) if I is an interval containing
0 in its interior, z,,(0) = o, x4, (+) is absolutely continuous and, for a.e. t € I,
Tz, is differentiable at ¢, u is differentiable at () and 2/, (t) = Vu(z,(t)).

Also, we say that z,, : I — S is a solution to (CP_)(2o) if I is an interval
containing 0 in its interior, ,(0) = zo, T4, (+) is absolutely continuous and, for
a.e. t € I, z,, is differentiable at ¢, and .z} (1) € D~ u(zs,(t)).

Maximality of solutions is intended in the classical way and we shall deal only
with maximal solutions. When u is convex, we will call (C P;) the Cauchy problem
(CP_). We recall ([A.C.],[B.1]) some properties of solutions to the differential

inclusion (C'Ps), in the case S is open :
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-for all zo € S there exists at least one (maximal) solution 24, : (w-,wy) — S
to (CPs)(zo);

- (CPy)(zo) admits a unique solution in the past;

- theset N = {zq € § : (C'P5)(z0) admits at least two distinct solution in the
future } has n-dimensional Lebesgue measure 0 ([C.T.],[Ce.2]);

- u(z5,(+)) is non-decreasing;

-forae. t € (w_,wy), 2, (t) = vm(t), where |v,(¢)] = min{|v],v € du(z,,(¢))};

- if we denote by m, the minimum value level set of u then

tliuIE |22 (t)] = 400 or tlfurg Tz,(t) € 0S Um, and

tl%gi |24 (¢)| = 400 or 1&111‘52 T4, (t) € 0S.

Finally, when 2 C R™ we say that A C ) is convex in Q if A is the intersection

of ) and a convex set.
Main Results

It is our purpose to prove the following theorem on differential equations

generated by gradients of convex mappings :

Theorem 3.1
Let u be a conver mapping with domain Domu C R"; let § C Domu be open.
Then there exists a set 0, C Q such that p(Q\ ) =0 and for every zo € Q,, :

(i) the Cauchy problem on Q,
(CPV)(J,-O){ i’((g)):xvou(m(t))

admits the unique (mazimal) solution 4, on (wY,wy) ;

(i) the Cauchy problem on Q
'(t) € Qu(y(t))
OPp y'(
ore |} <2
admits the unique (mazimal) solution yz, on (w?,w?) ;
(1ii) Wi =wY =wy , W WY, yuy = T4, on (wY,wy) and
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Yoo (w2, wY]) C 2\ Q. | "
The proof of the main result will need a technical lemma from measure theory.
Lemma 3.2

Let C' C R™ be compact and f : C — R™ be lipschitzean with lipschitz constant

l. Set Z ={y € f(C): there are z; # z5 € C, f(z,) = f(z2) = y}. Then, for all
measurable Y C f(C) such that Y N Z =0,

u(Y) < P (FHY))

]
Proof Let ¥ C f(C)\ Z be measurable. For k € N set
— 1
Uki{xeczvyegy#m__ﬂ,wz ~}
|z — yl k
(Uk)r is an increasing sequence of closed subsets of C. Set V, := f(Ug) and

fr = f,Uk. It is easy to check that V, N Z =0 and f7': Vi — U} is lipschitz of
constant &, so it maps measurable sets into measurable sets. Moreover, Uy and Vj
are measurable (being closed), and so are V;NY and Uy N f~1(Y) = f7'(ViNY).
So we may write

p(ViNY) = p(f(Ue 0 f7HY))) S Pu(Us 0 F7HY)) < Ppa(f7HY))
Set V' = UV,. Then Y NV and Y \ V are measurable. Moreover

p(Y NV) < Pu(f(Y))

We claim that x(Y \ V) = 0. In fact, we show that Y\ V C f(B), where

£ = £ o

lzx — 2|

B = {z € C: there exist z; € C,z} — =z,
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Let y € Y\ V and let z € C be such that f(z) = y. Since for every k y is not
|f(zk) = f(=)] 1
< .

|zk — 2 k
C is compact, so a subsequence of {z;} converges to some z~ € C. In particular,

in Vi then z ¢ Uy, so there exists z;, € C, zy # x, such that

f(z*) = f(¢) = y. But,sinceye€eYandYNZ =0, z*=2. Soz € B and
y € f(B). Since B contains only points in C for which either f is not differentiable

or the jacobian is 0, by the coarea formula ([11]) we see that p(f(B)) = 0. So

p(Y)=py nV) < u(f7HY)

Proof of theorem 3.1 We wish to define the set £2,. For this purpose we
consider solutions z, of (C P5)(zo). Obviously, z,,(0) = zo. It is known that the
set N = {20 € Q: (CPy)(z0) admits at least two distinct solution in the future
} has measure 0. We will consider points along z,, at negative times. These
points are the initial data of new Cauchy problems. Hence we define the set A =
{zo € @ : 3 ()i, t; T 0 such that (CPj)(z4(¢)) admits at least two solutions }.
Clearly N C A. Notice that for every solution z to (CP;), z(t) € A = z(s) € N
for all s < t such that z(s) is defined.

a) It is our purpose to show that u(A4) = 0.

It will be enough to prove that u(A N B(z, R)) = 0 for a generic closed ball
B(z, R) contained in Q. Call, for A > 0, D) = B(z, R—\). Set M, = sup{|v|: v €
du(z),z € Dy}. For € > 0 define the mapping f. : Dy — R™ by f.(z0) = 2, (—¢).
Notice that Dy = f7'(f.(D»)). Since one has uniqueness in the past to (C Ps) for

all initial data, for ¢ fe is well defined. Moreover Dyy.ar, C fo(Dy) C D A

< A
2]\/[%

The monotonicity of Ju implies that f. is lipschitz of constant 1. Since, for all

To € DAN A, z5,(t0) € N for some to > —¢, a fortiori f.(z0) = z5(—¢) € N. So

fe(DyNA) C fo(DA)NN and hence DyNA C f7Y(f.(DANA)) C 1 f-(D)NN).
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We want to apply lemma 3.2 to f. and t;) Y = f.(Dx)\ N. Since D, is compact,
fe is lipschitz and p(N) = 0, f.(D,) \ N is measurable and u(f.(Dy) \ N) =
p(fe(Dy)). Moreover Z C N, where Z = {y € f.(D,) : 3z; # z, such that
fe(z1) = fe(z2) = y}. In fact, let y = z,,(—¢€) = z5,(—¢), 71 # z, € Dy. For
1=1,2, call y; : [0,¢] = Dy, vi(t) = z4,(t — €). Then y; and y, solve (CPs)(y)
on [0,e]. Moreover y;(e) = z; # 25 = y2(€), so y € N. Now, from lemma 3.2
we have

p(f(Dy)) = p(fo(DA) \ N) < p(F7H(fe(DA) \ N))

We also have Dy = f71(f.(D))) = f7Hf(Dx)\ N)U £71(£-(Dy) N N) so that

€ £

(D) = pu(FTHF(D)\ N)) + = (F7H(fo(D2) N N))
hence pi(f.(Dy)) < p(Dy) — p*(f71(fo(Dr) N N)). Then
pH(Da0A) <@ (f7H(f(Da) N N)) < pu(Dy) = p(f-(Dy))

Since Dytenr, C f-(Dy), we have p*(Dy N A) < u(D,) — p(Dxtenr, ). By letting
€ —+ 0 one has that p(Dy N A) = p*(DyN A) = 0.

b) Set 2, = O\ A and let 2 € Q,.

To prove (ii) : by the definition of Q,, (CPs)(zo) has a unique maximal
solution, which we denote by yg, : (w?,w) — Q. Since Q is open, the maximal
interval of definition will be open too.

Set : w¥ = inf{t € (W?,w?) : yuo(t) € N} and WY = wl. Set also z,,(t) =
Yzo(t) for all t € (wY,wY). By the definition of wY, y.,(t) € Q\ Q. Vi € (w?,wY)
and so, by the definition of Q,, y,,(wY) € O\ Q.. Since z,,(0) = 2o € Qy,
wY < 0. We will prove that w¥ < 0 and that, for all t € (WY, wY), T4 (t) € Q.

It cannot be that w¥ = 0. In fact, we would have for all t € (w?,0), y,,(t) € 4

which, according to a previous observation, implies that y,,(t) € N V¢ € (w?,0),
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hence zo = y;,(0) € 4, a contradiction. Assume now that for some ¢ € (wY,wY)
we have (1) = y,,(¢t) € A. Again, we see that y,,(s) € N C A for every
s € (wY,t) which contradicts the choice of w¥. So z4,(t) € Q, forallt € (w¥,wy).

Since any solution to (CPy)(zo) is a solution to (CPp)(zo) and zo ¢ N,
(C Py)(zo) admits at most one maximal solution which will coincide, on its inter-
val of definition, with y,,. By the above, y,,((w?,w¥]) C O\ Q,, so the maximal

interval of definition of the solution to (C Py)(z) is contained in (w¥,wY).

So to prove the theorem, we are left to prove that for a.e. ¢ € (w¥,wy),

2, (t) = Vu(@a(2)):

For ae. t € («w¥,wY), z4, is differentiable at ¢ and z, (t) = vn(t), where
|vm (t)] = min{|v|,v € du(z(t))}. We show that for one such ¢, u is differentiable
at z;,(t). Assume this is not true. Then there is v € Ju(z4(t)), [v| > |vm(t)].
We claim that the following holds :

Claim 3.3

For every zg € Q and v € OJu(zo) there are € > 0 and z, a solution to
(CP)a(zo) on [0,¢], such that

|z(s) — zo] > slv| Vs € [0,¢]. E

Proof of Claim 3.3 By choosing an appropriate € > 0 one may construct,
as in [A.C.] pp. 100, a sequence of piecewise linear mappings z, : [0,e] — O, that
converge uniformly to z : [0,e] — 2, a solution to (C'P)s(zo).

€
At step n, set =} = zo + —v. For k € {1,...,n — 1}, choose v € Qu(zk)
n

and set zft! = 2k 4 Ev:. Denote also v = v. z, : [0,e] — Q is given by
n
k kE ek+1
To(s) =2k 4 (s — En—)vﬁ when s € [-E—, i(———j——l] The monotonicity of du implies
n n

easily that |vi] > Jvi™!| for i > 1. We prove, inductively on &, that
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ek e(k+1)

(3.2x) |, (s) — zo|* > 52|v|2 on ( - -

]

When k£ =0, s € (0, E], T,(s) = zo + sv so (3.2) is obvious. When n —1 >
n

' E oelk+1
k > 1, assume (3.2;_;) is true and let s € (%—, e( : )] Then
s € ; ek, . € i ek, 4
ICL‘n(S) - :BOl - (_( Z ’Un) + (3 - _)Unﬁ ——( Z vn) + (5 - —>vn =
T 0<i<k-1 n 7 o<i<k-1 n
ek ek ¢ . e? -
= (s = =)?[vil* + 2(s — —=)=(v}, v)+ =5l Y vl =
n non 0<i§Zk—1 n? 0<i<k-1
k k g . k
= (s = Pk +2(s = )Z@E, 3 vl) + fen(S) —aof? 2
n N gi<k-1 n
ek N i E%k?
> (s = =Vl +2(s —=)=(vf, D vh)+ —-[]-
n n’n o<icho1 n

The cyclical monotonicity of du ([R.]) implies that
(@ = 20, 00) + (2% — 25, 00) + ..+ (2h — 2k 0k ™) < (af — @0, 0E). So

(vi, ¥ )= T |vi]>> k|v|?* and
0<i<k~-1 0<i<k~1
k ek ek €%k?
— ol > (s — Y2 _ ERyeR
fou(s) 2o 2 (s = Lyt 25 - Ly, 4

of* = s*[v].
Now, since z, converge to z, |z(s) — zo| > s|v| Vs € [0,¢]. This proves the

claim. B

Applying the previous claim to z,,(¢) and v we find € > 0 and z : [0,¢] — €,
a solution to (C Pp)(x4,(t)), such that |z(s) — 24, (t)] > s|v| for all s € [0,€]. Since

Tz () € Qu = Q\A and 2, (= ys,) is a solution to (C Ps) (24, (1)), £(s) = 24, (t+5)
gt 5) — (1)

s
inequality implies that |z} ()] > |v] > |vm(t)| = |z, (¢)], a contradiction.

> |v|. However, T4, (-) is differentiable at ¢, so the above

All the claims have been proved. ]
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Remark 3.4
The set A = Q\ Q,, defined in the proof of the theorem, does not coincide, in

general, with the set of points where u is not differentiable. For Q = B|0,2] and

(2) = |z| for |z| <1
wE = 2]zl —1for 1 <|z| <27

{z : |z| = 1} where u is not differentiable are “passed through” by the solutions,

the set A consists of the point 0; the points

that remain absolutely continuous mappings satisfying a.e. (C Py).

Example 3.5 A convez function u, defined on an open, bounded and conver
set €1, such that N is dense in Q.

Let B C [0,1] be countable and dense and let A : [0,1] — [0,1] be an increas-
iIl1g mapping, discontinuous at every point of B and such that A(0) = 0 and
/ h(s) ds = 1. Then f(z) = / h(s) ds is a convex mapping which is not dif-
?erentiable at any point of B gnd the set {(z1,22) € [0,1]* : f(z1) < z» and
z1 < f(zz)} is convex, open, bounded and such that 9 is not differentiable on
a dense subset A/.

Set u : @ — = to be u(z) = —d(z,090). Clearly u is convex and Vu(z) =
n(Il(z)) a.e. = € Q, where II(+) is the projection on 90 and n(-) is the outward

normal to 9Q ([Ce.3]). For z € Q, consider the differential inclusion

"(t) € Ju(y(t))
(CF>)(a) { y(0) = I,yi’f))e 0

and set N = {z € O : (CPy)(z) admits at least two solutions }. We will prove
that N is dense in €.

Assume that there is an open ball G C ) such that GNN = 0. Forz € G
and z € II(z) it is easy to check that the mapping y : [0,|z — z|] = Q, y(¢) =

Z—X

T+t

| | solves (C'P3)(z). Since z € G, y has to be the unique solution to
z—z

(CPs)(z), hence TI(z) contains exactly one point. II(-) is upper semicontinuous,
so if we set P = IIj,, P is a continuous mapping from G to 9. It was proved

in [Ce.3] that II(Q2),s0 also P(G), contains only points of differentiability of 9.
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Moreover, G is open so P(() contains at least two points: let zo be the center
of GG; a point z € G on the normal through zo to P(zg) — zo is such that
P(z) # P(z0). Since G is arcwise connected, P(G) C 9 is arcwise connected,

so P(G) N M # 0 which leads to a contradiction. =

The next theorem extends the results of Theorem 3.1 to gradients of a larger

class of mappings u :

Theorem 3.6

Let 2 C R™ be open and u : & — R be such that there exists a mapping
z 1 u(Q)) = R for which :
(a) z is continuously differentiable on intu()) and 2’ is strictly positive.
(b) v = zou is the restriction to 0 of a convez function.

Then there exists Q, C Q such that u(Q\ Q) =0 and for all zo € Q, :

(i) the Cauchy problem on Q,

e ] 2SIt
admits the unique (mazimal) solution z,, : I — Q, where I is an open interval
containing 0;

(ii) for a.e. t € I, z,, is differentiable at t, u is differentiable at z,,(t) and
xl (t) = Vu(zg,(1)). E

zo
Proof Notice that, if u satisfies the conditions above, then its sub-level sets
are convex in {2, since they coincide with the sub-level sets of v. Denote by m,
the minimum value level set of u (which may be empty). Obviously, m, is closed
and convex in (2. Moreover, intu(Q) = u(f2 \ m,,) and so u is locally lipschitz on

2\ m,. We first prove that, for all z € Q \ m,,

Ov(z) = D™ v(z) = 2'(u(z)) D u(z) :
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Indeed, for p € R,

u(y) — u(z) (p,y — )

lim inf - _
A 2'(u(2))ly — z|
_—1.___ imin z(u(y)) — z(u(z)) — (p,y — x)
2'(u(z)) ul(y%;;f(f) ly — 2] +
Ly @ =@y 2 (w) = 2(ulz)
1 iminr 2e@) = 2(u(@) = (py — 2)
Z'(u(z)) u(y%;’z(z) ly — |

since u is locally lipschitz and z is differentiable. Also,

ligri}ilpf —— (p,y — ) = — 1 h{}.l_,ixnf __.(_]_T_’y;:lc)‘
u(y)=u(z) z (u(m))ly - ‘T| z (u(z)) u(y)=u(z) Y T
p

So p € D7v(z) if and only if € D7 u(z). When z € m,, it is easy to see

2'(u(z))
that 0 € D~u(z). Moreover, if z € intm,, then D~ u(z) = {Vu(z)} = {0}.

Since v is convex, there is a set Q, C Q such that u(2\ Q,) = 0 and that
for all zy € €2, the claims of theorem 3.1 hold. Set 2, = Q, \ dm,. We shall
prove that ), satisfies the claims of our theorem. It is clear that u(Q\ ©,) <
w2\ Q) + p(0m, N Q) = 0, since dm, N Q is contained in the boundary of a
convex set. Fix z¢ € ,,.

Assume first that zp € intm, : then there exists a ball around zg such that
u is constant on this ball. Then the unique maximal solution to (CP_)(zo) is

T4,(t) = zoVt € R and all the claims of the theorem are satisfied.

Let now zo € Q, \ m,. Then there are T_ < 0 <@y and y,, : (W_,T;) = N
y(t) € u(alt)
y(0) = 2o

Moreover, there is w* € [@_,0) such that y,, (@-,w?]) T\ Qy, Yoo (w*,T4)) €

such that y,, is the unique maximal solution on 2 to (C Ps),(z0) {
Qy, and for a.e. t € (w*,@y), ys, is differentiable at ¢, v is differentiable at y,, (t)
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and y, (t) = 6v(yzo (t)). From the classical theory of monotone differential in-
clusions we know that u(y,,(-)) is increasing and :

Lim Jyz, (2)] = +o00 or lim yzy (1) € 02 U Imy;

tlTianli Yz, ()| = +o0 or tl%ar}z Yz, (1) € 09

Notice that, for all ¢ > w*, y,(¢) € £, : indeed, otherwise y,, () € Q, N
m, and the Cauchy problem (CPs),(yx(t)) admits two distinct solutions (one
constant and the other one a reparametrization of y,,) in contradiction with the
choice of €,,.

Set h : (w2,@y) — (0,400) to be A(t) = _r and consider the

2/ (u(ys, (1))
Cauchy problem (3.3) { il((g)) : (l)z()\(t)) . Since h is continuous and strictly pos-
itive, (3.3) admits a unique maximal solution A : (w_,w;) — (w=.@y) which is
continuously differentiable, strictly increasing and }Tlurﬁ At) = wy, tllvigz AMt) = w=.
Define now x4, (%) : (w_,wy) = Qy by T4 (2) = yao (A(2))-
We will prove that z,, satisfies the claims of our theorem.

(i) A is continuously differentiable, y,, is absolutely continuous so z, is ab-

solutely continuous and for a.e. t € (w_,w,)

23 (8) = N (D), (A1) € X(O) D70 (yae (A(1))) =

= N ()2 (u(yeo (A1) D™ (Yo (A(2))) = D™ u(25, (1))
Since 4,(0) = yz,(A(0)) = zo, 2, is 2 solution to (CP-)(zo).
Moreover, if lim |z4,(t)| # 400 then Iim 2., () = lim yz,(A(2)) = lim y,,(s) €
thwy ttwy ttwy sty
0. Also, either }LH_I |z (t)] = +o0 or tlfﬁ T4 (1) = tljulxr.l. Yz (A(2)) = 514131 Yz () €
INU (2 \ Q,), from the properties of w*. In both situations we find that z,,

1s maximal. So to prove (i) we are left to prove that z,, is the unique solution
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o (CP-)(zo) . We will prove only the uniqueness in the past since the unique-
ness in the future follows analogously. Assume, by contradiction, that there is
z : I} = Q,, a maximal solution to (CP-)(zo), and ¢ € I; N (w—,0] such that
Z(to) # Zz,(to). Since z4,(to) & m, and Z(to) € m., there is ¢ > 0 such that
Z(t) & My, T4,(t) & m, for all t € (4o — ¢, 0]

Let A : (to — €,0] — (0, +oo be gwen by A(t) = 2'(u(z(t))). Consider
the Cauchy problem (3.4) { Z( . As above, (3.4) admits a unique
maximal solution 4 : (a,0] — to — ¢,0] which is continuously differentiable,
strictly increasing and ltxgl,u(t =ty —¢. Let 7: (a,0] = Q be given by y(t) =

Z(p(t)). Then 7 solves (C Pp),
all £ € (0,0], 1'(2) = 2/ (w(T((t)))) = #(u((2))) = ' (u(yz (1)) and

)
(

o) so it has to coincide with y,, on (e, 0]. So, for

#(A(8)) = 2'(u(y=(A(s)))) = (), 0].

1
N(s)
Since p(A(0)) = 0, u(A(s)) = s for all s € (A™*(a),0] and A7} (a) =ty — . Then

T (8) = Yro(A(5)) = F(A(s)) = T(p(A(s))) = Z(s) on (to — ¢, 0]

a contradiction.

(if) For all t € (w_,w) , u(yz (A(t))) € intu(2) and for ace. ¢ € (w_,wy) Yz, is
differentiable at A(t), v is differentiable at y, (A(¢)) and ¥, (A(1)) = Vu(yz,(A(2))).
For such ¢, z,, is differentiable at ¢, v = z7! o v is differentiable at z,,(t) =
Yz, (A(t)) and

2t (8) = N (B, (A1) = !

) MO V(o) = Vulzz(®).
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Chapter 4. A Qualitative Result for a Class of Differential

Inclusions

In the previous chapter, we have considered the Cauchy Problem

(C’Pa)(xo){ z((g)) € i:(m(t))

where u is a convex function with domain in R™ and we have proved that the set
N, consisting of those zq for which (C'P;)(z¢) admits at least two solutions has
null measure, and that the closure of N along the trajectories of (C Ps) has null
measure, too. In this chapter we prove that these results are true for a larger

class of differential inclusions.
We shall assume that 7" satisfies the following

Assumption S

T : DomT C B™ — R™ is a locally bounded upper semicontinuous multifunction
with conver and compact values and with open domain DomT; Moreover, there
ezists ¢ > 0 such that (u—v,z —y) > —clt —y|* forallz,y € Q,u € Tz,v € Ty.

We may state now the first theorem of this chapter :

Theorem 4.1

Let T' satisfy Assumption S. For zo € DomT, consider the Cauchy Problem

P | £ € 1)

Set N = {zo € DomT : (CP)(xo) admits at least two distinct (mazimal)

solutions }. Then pu(N) = 0. H

Proof Since T is upper semicontinuous and it has convex and compact values,

(CP)(zo) admits at least one solution for every zo € DomT. It is easy to see
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that if z(-) and y(-) are, respectively, solutions to (CP)(zo) and (C'P)(yo) then,

for every ¢ > 0 such that both z(—t) and y(—t) are defined,
|lz(—1) — y(—1)| < |20 — yole™

This implies that (C'P)(zo) admits a unique solution in the past. We use the
notation z,(-) to denote the solution to (C'P)(zo) at negative times.
For z € DomT and t € R, set Ai(z) = {y € DomT : 37, a solution to (C P)(z),
such that Z(¢) = y}. Since T is locally bounded, there exists € > 0 such that, for
all t € (0,¢), As(z) is compact and connected ([A.C.]).
For ¢t > 0, set D; = {zo € DomT such that z,,(—t) is defined}. Define f; : D; —
DomT by fi(xo) = @4 (—t). f; is lipschitzean with constant . We say that z
is a critical value for f; if and only if there is y € f,"!(z) such that either the
jacobian of f; at y is 0 or f; is not differentiable at y. Denote by V}, the set of
critical values of f;. The co-area formula ([E.G.]) assures that u(V},) = 0.
Claim 4.2 For every zo € N, there is an open interval I, C (0,+oc) such

that xq is a critical value for f;, Vt € I,. =

Proof of Claim 4.2 Since zo € N, there is ¥ > 0 such that A;(z¢) contains
at least two points. Therefore, there is z, a solution to (CP)(zy), and there are
to > 0 and € > 0 such that, for every t € (0,¢), A:(z(¢o)) contains at least two
points. Moreover, there is § > 0, § < ¢, such that, for all ¢ € (0,6), A;(z(to)) is
compact and connected. Fix ¢ € (0,§). Since A;(z(¢0)) is connected and contains
two distinct points, it contains an infinity of points and so, being compact, it
contains at least an acumulation point yo. So there are y; — yo, ¥; # yo such
that fiis,(¥:) = fireo(yo) = zo0. If fiyy, is differentiable at yo, denote by v a

vector of norm 1 in R" such that a subsequence of Yi— Yo

lyi — wol
dftrt,(yo)v = 0 and thus the jacobian of fiis, at yo is 0. We may then set

converges to v. Then

60



I.‘L‘o = (tg,to+5) B

Return to the proof of the theorem. Set G = U, ,en [z, G is an open subset
of R, so we may write G = [y Jx, where Ji are open and two-by-two disjoint

intervals. For k € N, choose t; € J;. Then N C Upen Vs, and so p(N) =0. =

Theorem 4.3
Let T satisfy Assumption S. Let Q C DomT be open. Then there exists

Qr C Q such that p(Q\ Qr) = 0 and, for every o € Qr, the Cauchy Problem
z'(t) € T(z(t))
(CP)(JEO){ 1.(0) =zg , :C(t) €0

admits the unique (mazimal) solution x,, which is defined on some open interval
(w-,wy). Moreover, there is w* , w_ < w?* < 0, such that z4,((w_,w=]) C Q\ Qr

and T4 ((w*,wy)) C Qr. |

Proof The proof is analogous to the proof of Theorem 3.1. Define the set
A={zo € Q:3 (t;)i,t; L 0 such that z,(—t;) € N}. We show that u(A) = 0.

It will be enough to prove that p(A N B(z, R)) = 0 for a generic closed ball
B(z, R) contained in Q. As in theorem 3.1, for A < R, define D) = B(z, R— 1),
My = sup{|v| : v € T(z),z € D,}. For € > 0 define the mapping f. : Dy — R"
by fe(zo) = zz,(—¢). Since one has uniqueness in the past to (C'P) for all initial
data, for ¢ < —i— fe is well defined. Moreover, Dy;enmr, C fo(D)) C D%. feis

2[’\/[5\_ ’
lipschitz with constant €. We conclude, analogously to the proof of the theorem

from the previous chapter, that Dy N A C f71(f.(Dx N A)) C f71(f-(Dy) N N).
Since Dy is compact, f. is lipschitz and u(N) = 0, f.(D))\ N is measurable
and p(fo(Dr) \ N) = p(f.(D))). Moreover Z C N, where Z = {y € f.(D,) :
3zy # x5 such that f.(2;) = f.(z2) = y}. Apply now lemma 3.2 to f. and to
Y = f.(D))\ N. Then

p(fe(Dr)) = p(f(DA)\ N) < € p(f7H(fo(D2) \ V)
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We conclude that

p*(Dx N A) < (D)) — e ™ u(Dryerr,)- By letting ¢ — 0 one has that
p(DyxNA)=p*(DyNA)=0.

Set now Q7 = 0\ A and let zo € ,. By the definition of Qr, (CP)(zo) has
a unique maximal solution, z,, : (w-,wy) — Q. Since Q is open, the maximal
interval of definition will be open too. Set w> = inf{t € (w_,wy) : z,,(t) € Qr}.
By reasoning as in the proof of theorem 3.1, it is easy to see that all the claims

of the theorem are satisfied. H

We denote by D~u(z) the subdifferential of u at z (see (3.1)).

Corollary 4.4 Let Q C R™ be open and u : Q@ — R be semiconvez. Then
there exists Q, C Q such that p(Q\ Q) = 0 and, for every z¢ € Q,, the Cauchy
Problem

(0Pteo | 2 €2 e(0)

2(0) = zo , z(t) € admits a unique (mazimal) solution z,,,

which is defined on some open interval (w_,w,). Moreover, there is w*, w_ <

wX <0, such that zz,((w-,w=]) C A\ Q, and z;,((w*,wy)) C Q. H
1

Proof Since u is semiconvex, there is ¢ > 0 such that g(z) = u(z) + —2—c]x|2

is convex ([E.]). From the definition of D~ it is easy to see that p € D~ u(z) if

and only if p + cz € dg(z). The monotony of dg assures that we can apply the

results of the previous theorems to (C P_). E
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