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Introduction

Two-dimensional models have been during last years an extraordinary laboratory for
testing fundamental ideas of Quantum Field Theory (QFT). This is due to two ba-
sic reasons. The first one is the existence in two-dimensions of theories possessing an
infinite number of integrals of motion, the so-called integrable models. It was real-
ized at the end of the seventies that this circumstance has important consequences on
the scattering theory since it completely prevents particle production and permits the
factorization of multiparticle amplitudes in a product of two-body amplitudes. The
additional dynamical requirement that stable asymptotic particles must be associated
to the poles of the scattering amplitudes (the bootstrap principle) permitted the de-
termination of the exact S-matrices of many lagrangian integrable theories, as the
Sine-Gordon model and the O(n) non-linear sigma model [1].

The second reason relies in the infinite dimensional character of conformal symmetry
in two dimensions which allowed the complete solution (i.e. the determination of all
correlation functions) of an infinite number of QFT's corresponding to fixed points of the
renormalization group [2, 3]. Many of these theories have been identified as describing
the universality classes of widely studied two-dimensional statistical systems.

An important progress in the understanding of the general structure of the space of
two-dimensional QFTs was made with the discover that some particular perturbations
of conformal field theories preserve an infinite number of conserved currents and lead
to new not-scale invariant integrable models whose exact S-matrices can be determined
by the bootstrap method [4]. A particularly relevant example of a theory solved in this
way is provided by the Ising model in a magnetic field.

It is commonly believed that the S-matrix encodes all the informations necessary to
determine the off-shell physics of a theory, and in particular the correlation functions.
In the domain of integrable theories, an important step in this direction is represented
by the so-called form factor bootstrap [5, 6]. Form factors are matrix elements of
local operators between asymptotic states. A series of requirements on their analytic

structure (strongly simplified by the integrability condition) gives rise to functional



equations which have been solved in a large number of cases. Once the form factors
are known, correlation functions can be expressed as infinite sums over intermediate
multiparticle states. This thesis is mainly devoted to the description of this approach
to the computation of correlation functions and to his extension to massless and not-

translational invariant integrable theories.

In chapter 1, after reviewing the basic lines of the S-matrix and form factor boot-
strap for massive integrable models, we discuss the ®;,; deformation of the minimal
non-unitary model Mj 5. Such model appears as particularly suitable for detailed anal-
ysis since it exhibits both simple short distance structure and scattering theory. We
compute in closed form the exact matrix elements of the trace of the energy-momentum
tensor ©(z) which enter the spectral representation of the two-point correlation func-
tion. Comparison with conformal perturbation theory (see appendix A) shows that the
first few terms in the expansion over intermediate massive states are sufficient to repro-
duce with remarkable precision the correlation function up to scales of the order 1072¢,
where ¢ is the correlation length of the theory. This extremely fast convergence of the
form factors series is a general feature of massive integrable models and is the basis
of the numerical computation of correlation functions in physically relevant problems,

such as dilute polymers and percolation.

The functional equations for form factors are obtained without reference to any
particular operator, so that finding their most general solution amounts to classify
the operator content of the quantum theory under investigation. This observation
shows that the form factor approach provides a well founded theoretical framework for
studying the mapping and reduction phenomena among different integrable models. A
particularly suggestive example of this kind is considered in chapter 2, where the form
factor approach is used to investigate the so-called “staircase model”. This model,
that can be formulated as a scattering theory for a single scalar particle of mass m, is
characterized by a remarkable off-shell pattern [37]: the thermodynamic Bethe ansatz
method (see appendix B) reveals that the renormalization group trajectory associated
to this theory crosses an infinite series of fixed points before developing a finite corre-
lation length at very large distances. In particular, the last fixed point visited by the
trajectory before the crossover to the massive region corresponds to the Ising model.
The scattering amplitude of the Staircase model depends on a real parameter 8y and
can be considered as an analytic continuation to complex (non-perturbative) values of
the coupling constant of the S-matrix of the Sinh-Gordon model. Using this analytic

continuation, we study the behaviour of the form factors of Sinh-Gordon model varying



8, and we show that, for bounded values of the momenta of the particles (p << me),
the Sinh-Gordon model actually collapses into the thermally perturbed Ising model.
In particular, we establish that the elementary field ¢(z) and the trace of the energy-
momentum tensor @(z) of the Sinh-Gordon model are mapped into the magnetization
operator o(z) and the energy operator e(z) of the Ising model, respectively. It is
worth to stress that the reduction just described is essentially different from the usual
quantum group reduction. Indeed, in the latter scheme the reduced models are ob-
tained as projection of some original theory at specific values of the coupling constant.
On the contrary, the staircase model provides an explicit example of a theory able to
show a rich variety of different behaviours depending on the energy scale at which it

is observed.

For higher energy ranges the analytically continued Sinh-Gordon model is expected
to reduce to a massless theory describing the crossover among two successive fixed
points. In spite of some subtleties in the definition of two-dimensional massless scat-
tering, many important progresses have been made in recent years in the description
of massless integrable theories in terms of factorized S-matrices [7, 8, 9]. We show in
chapter 3 that also the form factor bootstrap can be extended to the massless case
once the differences in the analytic structure with respect to massive models have been
properly identified. Although the knowledge of form factors is itself a relevant theo-
retical result (they can be used, for instance, to prove the locality of the theory [6]),
their utility for the computation of correlation functions in massless theories is a priori
doubtful due to the absence of any infrared cutoff. We investigate this important issue
taking as an example the flow from tricritical to critical Ising model; among other
interesting features, this model provides the simplest example of spontaneous super-
symmetry breaking. A factorized S-matrix for this integrable flow can be constructed
in terms of left and right-mover neutral fermions [7]. We compute the form factors of
the trace of the energy-momentum tensor ©(z) and of the magnetization operator o(z)
and show that, when inserted in the spectral representation for correlation functions,
they give rise to two different situations. The expansion of the two-point correlator of
o(z) turns out to be infrared divergent; nevertheless, we can show that the form factor
series, after regularization and resummation, gives the expected scale dimension in the
large distance limit. The need for resummation can be traced back to the fact that the
magnetization operator lacks a local representation in terms of the fermions. On the
contrary, ©(z) has a simple infrared fermionic expansion and its two-point correlator
exhibits fast convergence properties analogous to those observed in the massive case.

Although further investigations are certainly needed, we expect that a similar pattern



generalizes to other massless integrable models.

The main purpose of chapter 4 is to show that the bootstrap approach can be
successfully extended to integrable models with linear inhomogeneities and that the
computation of the correlation functions for those systems can be achieved by means
of a suitable generalization of the form factor techniques. We analyze the general situ-
ation in which translation invariance is broken by the presence of defect lines allowing
reflection and transmission processes. The particular case of vanishing transmission
corresponds to the boundary field theories which have recently received a lot of atten-
tion in view of their potential application to a wide class of physical situations. In the
S-matrix approach, the problem is reduced to the determination of the reflection and
transmission amplitudes of the bulk particles with the “impurities”. We show that the
requirement of factorization of scattering amplitudes severely constrains the possible
bulk S-matrices if both reflection and transmission are different from zero. Correlation
functions can be computed passing to the quantization scheme in which the spatial
dimension is parallel to the defect line, so that the hilbert space and, consequently, the
form factors of the theory are the same as in the bulk case. Then, a spectral representa-
tion can be introduced in which the defect (or boundary, in the purely reflecting case)
appears as an additional operator localized in time whose form factors are expressed in
terms of the reflection and transmission amplitudes. We use this technique to study,
directly in the continuum limit, the Ising model with a defect line and to exhibit its

ultraviolet non-universal behaviour.



Chapter 1

Bootstrap methods in massive

integrable theories

1.1 PFactorized S-matrices

Two-dimensional Quantum Field Theory (QFT) is nowadays the most advanced sub-
ject in the domain of relativistic field theory. This fact relies on a fundamental pecu-
liarity of two dimensional models, i.e. the existence of theories admitting an infinite
number of integrals of motion, the so-called integrable models. Among those, an im-
portant role is played by the models corresponding to the fixed points of the renormal-
ization group, namely the Conformal Field Theories (CFTs) [2, 3]. Here integrability
emerges in the form of a very rigid algebraic structure based on the infinite dimensional
Virasoro algebra which permits the complete solution of the theory, namely the com-
putation of all correlation functions. As shown in ref.[4], an infinite number of integrals
of motion can survive when perturbing a CFT by particular relevant operators which
lead to not scale-invariant (massive or massless) integrable models. While the algebraic
language characteristic of CFTs is no longer useful for the study of such models, the
most effective approach turns out to be the one based on the direct computation of
the exact S-matrix of the theory. The origin of the effectiveness of this method can be
understood analyzing the main consequences induced on the scattering theory by the
presence of infinite integrals of motion [1].

Consider a relativistic scattering theory containing IV types of particles with masses
Mg, @ =1,...,N. We will denote A,(p") the particle a with two-momentum p, satis-
fying the mass-shell constraint p,p* = m2. We also define the light-cone components
of p#

p=p"+p'; p=p"-p' . (1.1)



The states
] ap (pl )Aﬂ2 (Pz) an(pﬁ) >in(out) (12)

form the basis of the asymptotic in (out)-states which is assumed to be complete in a
local field theory. The S-matrix is the operator connecting these two sets of asymptotic
states. Let’s assume that the theory possesses an infinite number of integrals of motion

P, with different spin s, whose action on the asymptotic states (1.2) is given by

P Aa () ... Aan(2h) > m(out)—Zwa* ) Aay () -+ - Aan(P2) Sin(oury - (1.3)

The additivity of the contributions of the largely separated particles contained in
asymptotic states follows from the fact that P, is assumed to be the integral of a local
density. Moreover the spin structure dictates the following form for the eigenvalues
w3 (p)
wy (p") = K5p° 5 (1.4)
where p is defined in eq.(1.1) and k] are constants.
If we now consider a generic scattering process in which the state | Ao, (P)) - - - Aan(Ph)

evolves into the final state | Ay, (g}') - - - Ab,.(g%) >out, conservation of charges P, implies
Swli(pl) =D wild) - (1.5)
=1 j=1

Since we required the existence of infinite charges with different spin, eq.(1.5) is a
system of infinite equations for a finite number of unknowns which will be satisfied in
general only if n = m and the set of initial two-momenta {p4,...,p"} equals the set of

final two-momenta {¢”,...,¢%}. In other words, we conclude that

a) only elastic scattering processes are admitted (i.e. there is no particle production) in
which each initial two-momentum s indwidually conserved (this automatically implies

the conservation of the number of particles with a gien mass).

All this does not mean that the scattering is trivial since, for instance, if the initial
state contains particles with the same mass, they can exchange momenta in the final
state, or be replaced by other particles with the same mass.

The second fundamental simplification induced by integrability on the scattering
theory can be intuitively understood by the following argument [10]. Consider the
collision process of three particles with spatial momenta ki, ko, k3; the three possible
space-time diagrams are depicted in fig. 1. Let’s now apply to the initial state the

operator exp(iaP,), with s > 1 and a some real parameter. Since the charge is locally

8

>in



conserved and the particles are initially widely separated, the exponential operator will

act separately on the wave packet of the i-th particle which we write in the form

Wi(e) >=| [ dk explib(z — )] (k) > , (1.6)
where f(k) is any reasonable function peaked at k = k;. We have

[¥i(2) > = exp(iaP)lgi(z) >
“+oo
= l/—oo dk expliaw,(k)] exp[ik(z — z;)] f(k) > . (1.7)

By stationary phase approximation, we see that ¥i(z) is peaked at z;, while ¢ is

peaked around the value

d
T=z,—a [dkwe(k)] L (1.8)
Then, recalling eq.(1.4), we conclude that the exponential operator with s > 1 displaces
the “centre of mass” of the i-th wave packet by an amount depending on the mean
momentum k;, so that taking the parameter a sufficiently large we can alter the relative
position between any two particles with different momenta. As a consequence, we can
pass in fig. 1 from a diagram to another applying exp[iaP,] to the initial state. Since
this operator commutes with the S-matrix, we conclude that the amplitudes for the
three possible sequences of collisions in fig. 1 are equal and factorize in the product of

three two-body S-matrices. With obvious notations
5(123) = 5(23)5(13)5(12) = 5(12)5(13)S(23) . (1.9)

These cubic relations, also known as star-triangle or Yang-Bazter equations, are triv-
ially satisfied if the S(ij) are ordinary functions, but give rise on the contrary to severe
constraints to the two-body S-matrix in the case the spectrum of the theory contains
particles with the same mass which differ for quantum numbers related to some internal
symmetry.

Generalizing the displacement argument just illustrated one concludes that

b) any n-particle scattering amplitude can be factorized in n(n — 1)/2 two-particle am-

plitudes as if the n-particle process consists in a sequence of pair collisions [11].

Hence, we see that the problem of obtaining the complete S-matrix for a two-dimensional
scattering theory possessing non-trivial integrals of motion reduces to the determination

of the two-body S-matrix. We will now show that severe constraints on the two-particle

9



scattering amplitudes are imposed by the general requirements of analyticity, unitarity
and crossing symmetry.
According to the fundamental properties a) and b) above, we define the n-particle

scattering amplitude for a relativistic integrable model by the relation

| Aay (P) Ay (85) - - A (P2) >in= S22 (ph, 8, -, P) | by (PY) Ay (85) - - - Ao (PR) >out
(1.10)
(here and in the following summation over repeated indices is understood). Due to

factorization, we immediately restrict our attention to the two-particle process

|Aa(PY) As(ph) >in= Sey (1, 75) Ac(PV) Aa(ps) >ou - (1.11)

The two-body S-matrix actually depends only on the Mandelstam variable

s = (p,i‘ +p§)2 ) (1‘12)

which is the only independent relativistic invariant which can be constructed out of the
momenta entering the process. It is easy to show that as an analytic function of the
(formally) complex variable s, the matrix S must exhibit two square root branch cuts
along the real axis for s < (mg —my)? and s > (mq +my)? (see fig. 2a). Indeed, above
the two-particle threshold s = (m, + ms)?, the unitarity condition for the S-matrix

reads
Sil(s) [S:(a)] = &z (1.13)
where the star denotes complex conjugation. Using the standard real analyticity prop-
erty
[55()] =S (114)
we see that eq.(1.13) requires the presence of a cut for real values of s above the

threshold. Denoting by s + 10 and s — 30 the values of the upper and lower edges of

the cut respectively, we have
S (s +10)S(s — 0) = 656, . (1.15)

This equation precisely implies that the matrix 5¢(s) takes on again its initial value
when analytically continued twice around the branch point s = (ma + ms)*.

On the other hand, in a relativistic theory crossing symmetry implies the coinci-
dence between the amplitudes for the process A.(p})As(ph) — Ac(p))Aa(p>) and the
crossed one A,(p))Aq(—ph) — Ac(py)As(—p>) (the bar denotes charge conjugation)
[12, 13]. Then we get the equation

Sed(s +1i0) = §%(2m?2 4 2m? — s —10) , (1.16)

10



which maps the unitarity cut into an analogous one originating at s = (m, — my)>.
The presence of such cuts gives to the s-plane the structure of a Riemann surface with
several sheets; the first of them is usually referred to as the “physical” sheet.

Besides the two cuts, the only other singularities of the two-particle S-matrix are
supposed to be simple poles located in the interval (m, — mp)* < s < (m, + me)? of
the real axis and corresponding to stable bound states.

The analytic structure of scattering amplitudes is substantially simplified if we
introduce the parameterization in terms of the rapidity variables  which are related

to the energy and momentum of a particle of mass m by the relations

° = mcoshf

p' = msinhf . (1.17)
In terms of rapidities relation (1.12) becomes
s = (P(61) + P4 (6,)) = m? + m} + 2m,my cosh § (1.18)

where we defined § = 8, — 8,. This relation shows that, modulo 27i-translations, two
values of the rapidity difference ( and —8) correspond to the same value of s. Thus the
physical sheet of the s-plane can be mapped into the strip 0 < Im# < 7 of the §-plane
as shown in fig. 2 in such a way that the two-particle S-matrix becomes a meromorphic
function of the rapidity difference (the other sheets of the Riemann surface are mapped
into successive strips of width ¢7 in the §-plane). According to this mapping, eqs.(1.15)

and (1.16) are immediately translated into
S (6)S27(—9) = 826 (1.19)

and

S54(6) = Si(im — 6) (1.20)

respectively.
The rapidity formalism permits also a very elegant and suggestive algebraic de-
scription for the scattering processes in integrable theories. In order to illustrate this

point, let’s rewrite eq.(1.11) in the form
|Aa(61)A6(62) >in= S(6:1 — 02)|Ac(61) Aa(82) >our - (1.21)

In doing this we have to fix §; > 6, in order to specify that the S-matrix is computed
in this case on the upper edge of the unitarity cut in the s-plane. Using eq.(1.19) we

also obtain

|Aa(91)Ab(62) >out: Szg(ez hd Gl)lAc(Gl)Ad(92) >in 9 (122)

11



where S is now taken on the lower edge of the cut since 8 — 6; < 0. Hence, we see
that eqs. (1.21) and (1.22) are both encoded in the equation

| Aa(61)Ap(82) >= Sep(6r — 2)| Aa(62) Ac(61) > (1.23)

provided we define the state |A4(6;)A45(6;) > to be an in-state for 6; > §; and an out-
state for §; < §;. This ordering prescription generalizes in natural way to the n-particle
states since, due to factorization, the analytic structure of the n-particle amplitude is

reduced to that of each two-particle sub-channel. Then we define

|Ag, (1) Aay(02) - - - Aa,(6n) >in 10 >802>...>0n
]Aal(f)l)A”(()g) .. -Aa,,(gn) >out if 91 < 62 <...< 9,, .
(1.24)

Moreover, if we introduce the particle creation operators A4(#) through the definition

|Aa, (01)Aay(82) - . . Aq,(87) >= {

| Aa (01) Aay (8) - .. Aan(8) >= Aa, (61)Aay(82) . . . Aa, (62)0 > (1.25)

where |0 > is the vacuum state, eq.(1.23) immediately leads to the so-called Faddeev-
Zamolodchikov algebra

Aa(8:)Ap(82) = S(61 — 62) Aa(82)Ac(b:) - (1.26)

This algebra encodes the main properties of scattering theory for integrable models
(apart from crossing symmetry which is an additional constraint peculiar to the rela-
tivistic case). Indeed, the unitarity relation (1.19) appears as the consistency condition
of the algebra (1.26) when it is applied twice. On the other hand, the Yang-Baxter equa-
tion (1.9) can be obtained requiring the associativity of the Faddeev-Zamolodchikov
algebra: starting with the product A,(6:1)As(f2)Ac(0s), there are two ways (differing
for the sequence in which the pair commutations are performed) to get the product
Ai(65)AR(82)A;(8;) in which the order of the rapidities is reversed; if the algebra (1.26)

is associative the two procedures must give the same result and we get the equation

59(812)S53(013) Sk (623) = 53¢(653)59:(813) S5 (B12) (1.27)

g

where 8;; = 6; — 6;. This equation can be graphically represented as in fig. 3.

The basic dynamical principle entering the determination of the S-matrix is the so-
called bootstrap condition. The poles located on the real axis of the s-plane between
the two branch points are mapped into the interval (0,47) of the imaginary axis of the
§-plane. If the amplitude S%(f) has a simple pole with positive residue at § = iug,
(due to real analyticity S%(8) is real for purely imaginary rapidities), then the particle
A, with mass

m? = s(1us,) = ml + mj + 2mamy cos ug, (1.28)

12



is a direct channel “bound state” of A, and A,. According to the last equation the
quantity 4, = m — u, can be interpreted as the internal angle of the triangle with

sides 74, mp, M. so that we get the relation (see fig. 5)
uly + up + 'u,ga =27 . (1.29)

We require that the particle A. belongs to the set of “fundamental” particles A,
(1=1,2,...,N) used to construct the asymptotic states. The pole term

. ¢ _de
Sas(6) = g—g_-‘-f—"%;—i; (1.30)
corresponds to the diagram in fig. 4, where the vertices represent the three-particle
couplings g. If the residue turns out to be negative, then, according to (1.20), the
pole corresponds to a bound state in the crossed channel. A displacement argument
analogous to that used to obtain the Yang-Baxter equation leads to the bootstrap
equation

95S(8) = gi,Sih(8 — a8,)ST (0 + L) (1.31)

J
which is represented in fig. 6.

The combined use of egs.(1.19), (1.20), (1.27) and (1.31) has allowed the determi-
nation of the factorized scattering theories associated to a large number of integrable
models. Among those we simply recall the Sine-Gordon theory [1], the Ising model
in a magnetic field [4], the O(n) non linear sigma model (related to the problem of
self-avoiding polymers in the limit n — 0) [14] and the g-state Potts model (related to
percolation in the limit ¢ — 1) [15]. For details and a complete bibliography on the

subject we refer the reader to the review article ref.[16].

1.2 Form factors

The knowledge of the exact S-matrix amounts to a complete reconstruction of the
on-shell physics of a theory. Hence, it is natural to start from this result in order to
approach the problem of computing also off-shell quantities as the correlation functions.
This would allow us, in particular, to recover through the S-matrix approach the
conformal data, as the anomalous dimensions, characteristic of the ultraviolet regime.
In the sequel we will prove that a relevant part of such ambitious program can be
actually realized in the context of integrable models.

A fundamental achievement has been obtained through the so-called form factor

bootstrap proposed in ref.[6]. Form factors are the matrix elements of a local operator

13



O(z) between asymptotic states

Foitm (@00 101,y 00) = out < Aat(6)) ... Aar, (6,,)|0(0)| Aa, (81) - - - Aa,(6n) >in
(1.32)
In the following we will suppress the subscripts “in” and “out” and we will consider the
form factors as analytic functions of the rapidities which assume their physical values
when the rapidities fulfill the ordering prescriptions (1.24). In particular, we restrict

our attention to the matrix elements
Faran(01, ., 00) =< 0]0(0)]Aq, (61) - - - Aaa(6n) >, (1.33)

which are pictorially represented in fig. 7. There is no loss of generality in doing this,

since crossing symmetry provides the relation

Faiam(@ 00 101y, 00) = Far it ayan (0 im0, 00 +4m, 01,0, 00)  (1.34)

aj...an

(the shift of i7 in the rapidities of the crossed particles corresponds to change the sign
of the two-momentum). Let’s now analyze the fundamental properties of the form

factors.

1. Two-dimensional Lorentz covariance implies, for a generic operator of spin s, the

relation

Foian(O1+ A, .. 0, +A)=eFy a.(01,...,6n) , (1.35)

showing in particular that the form factors of a scalar operator depend only on the
rapidity differences §;; = 6, — 0;.

2. In order to deduce the monodromy properties of form factors, let’s consider
the two-particle case for a scalar operator O(z) (the spin structure is trivial under

monodromy) [5]. In momentum notation we have
Fop(s +140) =< 0[0(0)]Aa(p}) Ab(p2) >in (1.36)
while through analytic continuation to the lower edge of the unitarity cut we obtain
Fap(s —10) =< 0]0(0)| Aa(py) Ae(P2) >our - (1.37)

Inserting a complete set of out-states between O(0) and the two-particle state in (1.36)
and using property a) of section 1, we immediately determine the discontinuity of Fap(s)

across the unitarity cut

Fap(s +130) = < 0]0(0)|Ac(p})Aa(Ph) >out out < Ac(Ph)Ad(ph)|Aa(pt)Ab(ph) >in=
= Foy(s —10)S(s +10) . (1.38)

14



This is the only branch cut for the two-particle form factor in the s-plane. Indeed,
crossing symmetry (1.34) together with egs. (1.36) and (1.37) implies

out < Ap(p5)|0(0)] Aa(p}) >in=< 0]0(0)[Aa(py) As(—p%) >in= Fup(2mg+2my —s—i0) ,
(1.39)
in < A(B)0(0) Aa(pl) >ou=< 010(0)| Aa (p) As(~58) >out= Fa(2m?+2m3 —s:+i0) .
(1.40)
On the other hand, the two matrix elements on the left-hand side of previous equations
should coincide (this is immediately seen using completeness of “in” and “out” bases

and the general result ou < Ap(ph)|4a(PY) >in= 8us8(p} — Ph)) so that
Fop(2m? + 2m? — s —i0) = Fyp(2m2 + 2mi — s +10) . (1.41)

In terms of rapidities, eqs.(1.38) and (1.41) can be recast in the form (valid for an

operator with generic spin) o 4
Fab(91)02) - ch(92761)5’§g(91 - 92) ] (142)
Fab(ez, 01 — ‘L’ﬂ') = Fab(el -+ ’1:71', 92) (143)
(to be precise, these equations are obtained for §; — 6, > 0 but the result holds true

on the whole strip 0 < Im(§; — 6;) < 2« by analytic continuation). Sending 6, into
6, + i, eq.(1.43) leads to the relation

Fab(gl -+ 27:71',02) = Fab(GQ,el) . (144)

The generalization to the n-particle case is straightforward once one realizes that, due
to factorization, the properties (1.42) and (1.44) should hold for each two-particle sub-
channel. Then we have [5, 6]

Fo . aiasran(01yo 500,001, ..., 0,) = 5322‘;11(95—‘9£+1)Fal...b;+lb;...an(91, ey biv1,6i...,00)
(1.45)
Fulagan(01 +2im,0s,...,0,) = Foy ana, (02, -,0n,61) - (1.46)
Notice that eq.(1.45) can also be obtained simply using the Faddeev-Zamolodchikov
algebra (1.26).
3. The form factors are meromorphic functions of the rapidity differences 6;; in the
strip 0 < I'méf;; < 27 with simple poles of two different kinds.
i) Bound state poles. If the scattering amplitude S%(6) has a pole at § = iu, in the
physical strip corresponding to a bound state A., then the form factor Fiy, _a.a6(61, -+, 0n+2)
has a pole at 0,11 — 8,42 = 1u, with residue (see fig. 8)

. /
1TES9, —Ony2=tus, al...anab(ely ooy em 971-[—1) 9n+2) = gaFal...anc(els ey 0117 en—{—l) )
(1.47)
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where g, is the three-particle coupling constant appearing in (1.30) and 6;,, =

o psinué my, _ sinud d Te-
0n41 — tarctan Trncosue s B = e = ot (the expression for 6, is obtaine

quiring conservation of energy and momentum at the three-particle vertex). Equation
(1.47) provides a recursive relation among form factors with n and n +1 particles.

ii) Annihilation poles. In order to understand the origin of the second kind of poles
let’s consider the particular case of (1.32) in which m = n = 1 and O(=) coincides with

the identity operator. We have
out < Aar(0)]Aa(0) >in= 2m64a:6(0 — 0') . (1.48)

This simple example shows that in the general case a singular contribution is present
in the right hand side of eq.(1.34) when a particle A, appears both in the initial
and the final state with the same rapidity . Intuitively, this circumstance can be
understood thinking that, when crossed from the final to the initial state, the particle
A,(8) becomes Az(6 + im) and annihilates the particle 4,(f) already present in the
initial state. A more formal argument based on LSZ reduction shows that, if 8/ > 0 >
6, > ...> 0,, we have to write [6)

aa1 an(9/]9 91, 9 ) = Fé,aal‘__an(H' + 1:7(', 6, 91, . v 7971)
4 2780a6(8 — 6')Fay (61, -+, 60) (1.49)

an 010(6,!9”7 9176) an .ayad’ (9n7"')9179)9, -—’I:’TF)
+27830:8(0 — ') Fy,.a(Ony - -5 01) - (1.50)
Using eqs.(1.45) and (1.19), the last equation can be transformed into

(810,01, +,60) = Fuay.oanat(8,01, -, 00, 8’ — i)

+27r5aa,6(9 — 0S8 (81, .., 040) Fy, 6, (01, - -+, 0n) (1.51)
where
Sobn (61,00, 60]0) = Shrea (g, — — 0)S2e3(8, — 6) ..  Glron (6, —0) . (1.52)

Subtracting eq.(1.49) from eq.(1.51) we find

Falaalu_a"(el + 'I:Tl' 9 91, Hn) = Facu an&'(g 91, e ,9,1,0, — 'L7l") (1.53)
+2m6aarb(8 — 0) (Shtn (61, .., 0a16) — 81622 .. 88) By, ba(81,-+56n) -

While for a # a' or 8 # 6’ this equation is equivalent to (1.46), it also implies that the

form factor Fiua,. an(0,0,61,...,0,) has an “annihilation” pole at §' = 0 + ix whose
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residue is given by

—1 Tes@’:G—{-irF&'aal...an(gly 97 91) ceey Hn) = (154)
60852 .. 60— Stb (B, 8,10)] Py (61, -, 60)

This equation provides a recursive relation among form factors with n and n+2 parti-
cles.

The set of equations (1.35), (1.45), (1.46), (1.47), (1.54) proved to be powerful
enough to permit in many cases the complete reconstruction of the form factors [6, 17,
18, 19, 20]. In particular, Smirnov was able to use the form factor bootstrap to prove
the local commutativity of the fields. Others interesting applications can be found in
refs.[21, 22, 23, 24, 25, 26, 27].

1.3 Massive deformation of the model Mj;

The aim of this section is to show the efficacy of the form factor bootstrap through the
application to a specific model, namely the ®; 3 massive deformation of the minimal
non-unitary model Mjs [20]. As we will see, such model exhibits a relatively simple
scattering theory which allows to minimize the technical complications and to expose
concisely the fundamental steps of the method. As usually happens when dealing with
non-unitary theories, there is however a price to be paid for this simplification, i.e.
properties taken for granted in ordinary QFT, such as the positivity norm of the states
in the Hilbert space, are no longer guaranteed for non-unitary models and may require
a generalization to handle apparently paradoxical situations [28, 29, 30, 31].

The model we will discuss in the following can be formally described by the action
A = Acpr — 1A /cp(w)dzm , (1.55)

where we defined ¢ = &, 3 and Acpt stays for the action of the minimal model Majs.
The important data of this CFT are collected in tables 1 and 2. The presence of 7 in
the action reflects the non-unitary features of the model. With respect to the Kac-table
and the fusion rules of the conformal point, the field ¢ is an operator even under a
Z, symmetry, with conformal weight A, = 1/5. With regard to the massive phase,
the corresponding theory is integrable [30, 4] and the spectrum is given by one Z, odd

particle 4 in bootstrap interaction !. The mass m of the particle 4 may be expressed

!As discussed in ref. [30] and confirmed in ref. [31], the model presents a Z, spontaneous symmetry
breaking and it is very similar in many respects to the Ising model in the low temperature phase.

The actual spectrum consists in two kink excitations above a doubly degenerate vacuum. Since the
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in terms of the coupling constant appearing in the action (1.55) as [32]
A = (0.333121)m®/° . (1.56)

The two-particle elastic S-matrix was determined in ref.[30] and is given by
1
S(8) = i tanh 5 (@ —1-725) . (1.57)
This scattering amplitude satisfy the unitarity equation (1.19) and presents no poles in
the physical sheet so that no additional bound states are created. The aforementioned

unusual features of the model appear in the crossing symmetry relation

S(8) = —5(ir - B) (1.58)

which differs for a minus sign from the standard equation (1.20). This circumstance
suggests that a factor should be associated to each crossed particle. Asa consequence,
the charge conjugation C of the particle A obeys the relation C? = —1.

We now turn to the computation of form factors. In the present case the notation
can be simplified denoting by Fn(f1,.-- ,Bn) the matrix elements in eq.(1.33). Notice
that the absence of bound states in the model under consideration leaves us with
only the kinematical recursive equation connecting the form factors with n and n + 2
particles; there is no way to relate form factors with a different parity in the number
of particles. This situation is typical of the models which exhibit a Z,-symmetry and
whose physically relevant operators have nonvanishing matrix elements only on states
containing a number of particles with fixed parity. To be specific, in the following we
will be particularly interested in the trace of the energy-momentum tensor O(z) =

T#(z) which is expressed in terms of the perturbing field by the relation
O(z) = —2miA(2 — 24,)p(z) - (1.59)

Since the fields o, which is supposed to create the particles, and ¢ are respectively
odd and even with respect to the Z, symmetry of the fusion rules (see table 2), we
conclude that ©(z) has nonvanishing matrix elements only on an even number of
external particles. For this reason we will restrict our attention to the form factors
Fy(Biy ..., 02n) in the remaining part of this section.

Of course, the anomalous crossing property (1.58) induces slight modifications (in
the form of insertion of powers of i) into the equations for form factors related to

crossing symmetry, namely egs. (1.46) and (1.54), which now read

Fy(B1 + 2w, . .. ,B2n—1,B2n) = (“‘1)n+1 Fon(B2y - -- , B2n> B1) (1.60)

internal degree of freedom of the kink excitations are frozen, they behave as a single particle A but

-with the unusual features discussed in the text.
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and

'—7:Te'sﬁ'=5+i77F2n+2(ﬁl):nglaﬁ?,'"7,3271) - (1 _( 1 HS(ﬂ IB)) FQﬂ(ﬁh 7ﬁ2") 3
(1.61)

respectively. On the contrary (eq.1.45), which relies just on unitarity, remains un-

changed and in the present notation can be written as

FZ"(Bla' .. a/BinBi-l—l)' -'76271) = F2n(/61a' . ',ﬁi—i-la/Bi)- .. 7/8271) S(ﬁz _181'-1—1) . (162)

To find the solution of the above functional and recursive equations, the first step is to

solve the simplest system

F(B) = S(B)F(-P),
FyB+2ir) =  Fy(-p).

Let Frpin(B) be the solution of (1.63) with no poles and zeros in the physical sheet.
Explicitly,

(1.63)

g = |0 (k+3+if) ’
Frin(B) = N sinh = H 4 2r

: 1.64
2 iZo|T (k+2+if) (164

(B =17 — f3), where we choose the normalization constant A such that F,(it) = 1,

l.e.
~i(v3r) 2 exp (G/7) | (1.65)
where G is Catalan’s constant. Finin(B) satisfies the functional equation
inh
P + i) Fagn(f) = — < A?—S2BF (1.66)

2 sinh% (,6 + z%)

and for large values of 3 behaves as

Foin(B) =~ Z exp ['B ;“r] , (1.67)

where = = z'N .

The general parameterization of the form factors which takes into account the

kinematical poles and the monodromy structure is given by

an(ﬁh . --7,3271) H,, an 231, m?n) H Frin 'BU y (1-68)

<7 T +$J
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where H,,, are normalization constants, Qza(21,- - -,%2n) symmetric functions of 1, ..., Z2n
and z; = e%. By using the residue condition (1.61) and the functional equation (1.66),

we obtain for the Qs,’s the recursive equations

Q2n+2(_$, T,T1y-0- ,332,1) = :c"+1 \/0’2,1(121, ceey 1132,-1) 'Dgn(mlwl, v ,1232,1) an(ml, ey 112,1) ;
(1.69)
where
: : Tk 2n—k
Don(z|z1,. .- T2n) = Zsm—é—w oe(T1, -+ Ton) (1.70)
k=0
and og(z1,...,2m) (k = 0,1,...m) are the elementary symmetric polynomials in m-

variables generated by [33]

[I(z+ i) = me"kcrk(:cl,...,zm) . (1.71)
=1 k=0

In writing eq. (1.69), we chose the normalization constants such that
—2n
Honz =2 (7N?/2) " Hon - (1.72)

We want to stress that equation (1.69) was obtained without reference to any particular
operator, so that its general solution would provide the form factors with even number
of particles of all the operators of the theory local with respect to the field which
creates the particles 2. Rather than facing this general problem, in the following we
will restrict our attention to the trace of the energy-momentum tensor ©(z) since it
has a particular physical interest and will be important in the applications of the next
section. In order to select the form factors of ©(z) [17, 25], we exploit the fact that the

the energy-momentum tensor is a conserved current satisfying the continuity equation
8, T*(z) = 0. This allows us to write

T () = (848" — g" 80\ A(z) , (1.73)

where A(z) is a scalar operator. Introducing the light-cone coordinates z* = z° + z'

and the energy-momentum components

T, (z) = 01 A(z) (1.74)
T__(z) = 02 A(z) (1.75)
one easily gets the following relations among form factors (in obvious notations)
01F£++ — _lom‘l Fm@
4 o,
Tm—1 FI-- = ~—1<71F,(3 . (1.76)
Om 4

2See ref.[19] for an analysis of this point in the context of the Sinh-gordon model
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Since all the components of the energy-momentum tensor are supposed to have the
same singularity structure, the last equations implies that for m > 2 the form factors

Fg(ﬁl, ..., Bm) contain an overall factor oy0,,—;. Then we will look for those solutions
of eq.(1.69) in the form

Q2n(m17 .. 'amn) = 0'10_271—1R2n($1) o '7$2n) ’ n>1. (177)

Since ©(z) is a scalar operator, equation (1.35) implies that the total order of Qan(21, - - ., 2n)

is equal to n(2n — 1). Moreover, from the relations
E = L /cla:lToo(:c) , (1.78)
2T
< A(B)|E|A(B') >=27mé(B — B') cosh B, (1.79)
where E is the energy, one gets the result
Fp(ir) =< A(B)|©(0)|A(8) >= 2rm? (1.80)
which provides the initial conditions for the recursive equations (1.69) and (1.72)
QQ(‘ED‘BZ) =01, (181)

H, = 2rm?® . (1.82)

The following property of the symmetric polynomials o is extremely useful in the
solution of eq.(1.69)

or(—z,z,21,...,2,) = 0k(T1y--,Zn) — 220 a(T1,...,20) . (1.83)
One finds
-1 . _
Rop = 4 fn=1, (1.84)
(=1)™(¢77 )ap detdy; n>2.

In the previous expression Ay; is a (n — 2) x (n — 2) matrix with entries

Akj = O045-2k+1 - (185)

For n = 0 one also recovers the vacuum expectation value
FP =< 0/9(0)]0 >= nm? (1.86)

obtained from the thermodynamic Bethe ansatz [32].
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1.4 Correlation functions

The computation of correlation functions is the central problem in QFT. Unfortu-
nately, no general method is known to face it, apart from perturbation theory which
is affected by the usual problems of convergence and renormalization. Even in two
dimensions, although the situation appears very satisfactory for the CFTs, the only
exactly computed off-critical correlator remains the two-point function of the magneti-
zation operator in the scaling Ising model which is known to be a solution of Painleve’
equation [34]. The purpose of this section is to show how the possibility to compute
exactly the form factors in integrable models leads to a very effective way to evaluate
correlation function in such theories.

The basic idea is very simple [23]. Consider for instance the two-point function of

a local operator O(z); inserting a complete set of asymptotic states we find

< 0(2)0(0) >= f; [ fﬂ—@iﬁ— < 010(2)] A0, (B1) - - Aan(B) > (1.87)

X < Ag (B ... Aa,(82)]0O(0)]0 >

s 4B, . ..dB, ot e
————-—————Fal,_,an yeerypMn Fan._‘al nyeo.- e i=1 i i ,
n=0 ~/151>52>-.->6n (271‘)” (ﬁl 5 ) (/8 1,31)

where the restriction on the integration ranges ensures that the sum is performed over
physical states and we used euclidean invariance to choose z* = (ir,0). Since the
form factors Fy, 4.(B1,.-.,0n) are supposed to be known for the integrable theory
under consideration and since all the integrals above are nonsingular and convergent,
expression (1.87) provides a representation of the correlator in the form of an infinite
sum over multiparticle intermediate states. Of course, from the practical point of view,
the utility of such representation relies on the hope that the convergence of the series
is fast enough to provide good numerical approximations also at intermediate scales
using partial sums (clearly, the series (1.87) is dominated at large distances by the
contributions coming from the states with lowest number of particles, so that it can
be seen as an infrared expansion). We will now show, using as an example the model
discussed in the previous section, that this hope is in fact completely confirmed.

Let us consider the correlation function G(z) = (©(z)©(0)) where ©(z) is the
trace of the energy-momentum tensor of the model Mj;s perturbed by the relevant
operator @; 5[20]. The form factors F3(Bi,...,Bk) for this model have been explicitly

computed in previous section. In the present case, the representation (1.87) specializes
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to

o 2k
Gz) = > (-1)* / MFQO,C(,BM, 3 Bok) Fyp(Bok, - . ., B1) exp (—ercoshﬁ;) ,
k=0 (2k)}(2m)?* i=1
(1.88)
where the integration now ranges over all the real values of rapidities and the over-
counting of the states is prevented by the factorial in the denominator. The factor
(—1)* = % is peculiar to the model under consideration and is present because we
need to cross n particles in order to pass from the first to the second line of eq.(1.87).
A first important check of the validity of our solution (1.84) and of the fast rate of
convergence of the series (1.88) can be performed by extracting CFT data directly
from the massive phase of the model. A relevant quantity is the central charge of the
original M3 ; model, ¢ = —2, which can be obtained from the correlator < ©(z)®(0) >

in terms of the c-theorem sum rule [35]

¢ = f; [1al < 0(z)0(0) > &%= . (1.89)

Using the spectral representation (1.88) and keeping only the two-particle contribution,
we get for the previous quantity the approximate value ¢ = —0.600316. Including also
the four-particle contribution, the resulting estimate ¢ = —0.600006 becomes very
close to the exact value. As clarified in ref.[22], such fast convergence is due to the
softening of the multi-particle branch cuts. The remarkable convergence of the series
also extends to the very short distance region of the correlation function and allows us
to probe its ultraviolet behaviour. This can be directly seen by comparing the short-
distance values of G(r) with the perturbative expansion discussed in appendix A and

based on the operator product

(r)p(0) = Coo(r) I + C2,(r) (0) + --- (1.90)
where the off-critical structure constants have the following regular expansion in A

r) = P (1—iAr®5Q 4 -1 )

] o (1.91)
Ce (r) = »7%/3 (Cg, —Ar¥5Q, 4. .

The conformal structure constant CZ., can be found in table 2 and the first coefficients
@1 and @, are computed as explained in appendix A. From the general formula (A.25)

we read

& = - [ <ole()p(0) e Py (192)

Q: = — [ <p(eo)plw)p(1)p(0) >crr dy
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where the prime on the integrals denotes the regularization with respect to the infrared

divergencies. Q; can be computed exactly
2
4
r (3)
8
r ()

On the other hand, Q. has been computed numerically. Combining the null-vector

0, - C;i’tan (—’5:)

> (1.93)

conditions at levels 3 and 4 satisfied by the operator ¢ [2, 36], the 4-point conformal

correlation function

< p(00)p(,3)p(1)p(0) >crr = |2(1 — )|"*/* F(2,3) (1.94)
satisfies the second-order differential equation

2}(1 — z)%(z® — 2 + 1)F"(z) — 2(1 — z)(62° — 92° + 11z — 4)F'(2) + (1.95)
4
+§—5-(39m4 — 782 + 1172* — 78z + 14)F(z) = 0

(analogously for ©). The solutions of this differential equation can be expressed in power
series in the annuluses around the singular points ¢ = 0 and ¢ = oo and in each of such
domain combined into a monodromy invariant combination. The numerical integration
of (1.92) gives for the finite part of the integral the value @ = —1.58 +0.01. Using the
relationship (1.59) and the vacuum expectation value (1.86), one obtains the following

short-distance perturbative expansion for the two-point correlator

G(r) = - (%@m\)z [1—ix Q7] +=% 4 (1.96)

———1—5§i/\7r2m2 [C;’,,, — 1A Q> 'r'8/5] r2% 1O ((mr)12/5)
In fig. 9 the zero-order (dashed line) and first-order corrected (full line) short distance
expansion and the large distance expansion (1.88) with up to four-particle contribution
(dotted line) are compared at intermediate distances. A very impressive agreement
is observed which extends also to the ultraviolet region, as shown in fig. 10 where
the infrared expansion with up to two-particle (dashed line) and four-particle (dotted
line) contributions is compared with the short distance expansion (full line). Thus,
it is evident that the first form factors are able to reproduce with high accuracy the
behaviour of the function, following very closely its power law singularities at short-
distance scales. Concluding this section, we want to stress that this remarkable fact
is not peculiar to the model under consideration ® but emerges as a general feature of

massive integrable theories.

3See for instance refs.[17, 23] for other detailed examples.
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Chapter 2

The staircase model

2.1 Roaming trajectories

Typically, when a fixed point of the renormalization group is perturbed by a relevant
operator, two qualitatively different behaviours are expected: a) the perturbed the-
ory develops a finite correlation length corresponding to massive excitations and the
correlation functions decay exponentially at large distances; b.) the correlation length
remains infinite also at large distances and the theory, massless although not scale-
invariant, interpolates among two different critical regimes. In this chapter we will
discuss in some detail a model which provides a remarkable example of intermediate
behaviour with respect to the two typical situations outlined above. This model was
proposed by Al. Zamolodchikov in ref. [37] and consists in a relatively simple purely
elastic scattering theory which under TBA analysis reveals a very unusual off-shell
pattern. The theory contains a single particle, which is chosen to be a boson of mass

m, and is defined by the two-particle amplitude

sinh 8§ — 2 cosh 8,
sinh § + 2 cosh 8, ’

S(8) = (2.1)

where 0 is a real parameter. This amplitude satisfies the usual requirements of uni-

tarity and crossing symmetry which for a single particle theory read simply
S(6)s(-6)=1, (2.2)

S(8) = S(im — ) . | (2.3)

S5(0) exhibits two simple zeroes in the physical strip at positions § = '—2’: + 6y, paired
via the unitarity relation to two simple poles in the unphysical strip at positions § =
— I+ .
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The TBA analysis of this model goes along the standard lines described in the
appendix B for the “fermionic case” since from eq.(2.1) we get S(0) = —1 (note that
the same off-shell pattern discussed below can be obtained supposing that the particle
of the theory is a fermion and changing the sign of the amplitude (2.1)). Since only
one particle is present, one has to deal with the single TBA equation

Rm cosh 8 = €(8) + ﬁ i -‘;—i—' &(8 — 8')L(8') (2.4)
where
L() =1n (1 + ) (2.5)

and the kernel ¢(#) defined in eq.(B.13) in this specific case is given by

1 1
9(6) = cosh(6 + 6o) | cosh(6 — o)

(2.6)

The ultraviolet effective central charge cyv = C (mR = 0) is easily obtained using
the relations (B.32), (B.27) and (B.26); it turns out to be

v =1 . | (2.7)

The interesting features of the model under consideration appear when equation
(2.4) is solved numerically and the effective central charge at intermediate distances is
computed through eq.(B.24) [37]. The results of this analysis for various values of the
parameter §, are shown in figs. 1la-d where the effective central charge C is plotted

as a function of the logarithmic scale

z=In mA . (2.8)
2

For 8, = 0, C’(m) shows the usual behaviour smoothly interpolating between the ultra-
violet limit C’(:c = —o0) = ¢y and the value C’(:I: = 4+00) = 0 characteristic of massive
theories; but for 6y # 0 the situation becomes highly non-trivial and C(z) develops a
“staircase” pattern which becomes more and more visible as §, increases. More pre-
cisely, for §y sufficiently large (say 6y > 20) C(z) clearly exhibits a series of plateaux at
values coinciding with the central charges of unitary minimal models M,; the plateau
at C = 1—6/p(p + 1) lies inside the interval —(p — 2)85/2 < = < —(p — 3)fo/2 with
p = 3,4,.... Since the difference in the heights of the neighbouring steps becomes
small as £ — —oo, the numerical resolution becomes insufficient in the deep ultraviolet
limit and the picture is slurred. Nevertheless, at 6, = 50 one can clearly distinguish 8

steps, the highest being of height 21/22 and corresponding to M;; central charge.
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These results unavoidably lead to an interpretation of the model defined by eq.(2.1)
closely related to the massless RG flows between the theories M,y and M,_; induced by
the perturbing field CI”(’I 3)- Indeed the characteristic pattern of figs. 11a-d are suggestive
for a one-parameter family of roaming trajectories interpolating between all the fixed
points M,: according to eq.(2.7), each trajectory starts from the limiting fixed point
Mo and then, for 6, large enough, flows very close to the fixed points M, spending
approximately the same fraction 6y/2 of the RG time z near each one. In ref. [37] it
was shown that for 8, > 1 and z ~ —(p—2),/2 (this is the value corresponding to the
switching from c,1; to c,) the function C (z) reproduces with high accuracy the values
obtained by the TBA system proposed in ref.[7] as describing the flow from M,; to
Mp. Thus we can imagine that the limiting §, — co trajectory starts at M., and
then proceed on the critical surface following the massless trajectories My — My,
until at M3 it develops a finite correlation length and gives rise to a massive infrared
behaviour.

One can use the numerical data for C(z) to compute the beta-functions along the
RG trajectories [37]. Indeed, let’s call & the operator which draws the field theory
along the trajectory and g the conjugated coupling constant. Then the expectation

value of @ on the TBA geometry can be written as

x 8C

_roc 2.9
<®>R= 5E G, (2.9)

We now eliminate the dependence on R fixing R = 1 and normalize the field ® through

<® >poy= —% , (2.10)

where the minus sign is due to the fact that ¢ monotonically decreases along the
trajectory. Requiring g to be zero at the ultraviolet fixed point, egs.(2.9) and (2.10)
give

g(z)=1-C(z) . (2.11)
On the other hand the beta-function is simply defined as the derivative of the coupling
constant with respect to the scale parameter so that
oC
6(g) = . (2.12)

9z

The last two relations give a parametric representation of 6(g). figs. 12 show the
behaviour of the beta-function for different values of the parameter 0(g) develops
deep minima in correspondence of the values g = 6/p(p+ 1), p = 3,4,... which become

progressively indistinguishable from zeroes when 6, increases. Note that, while the
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higher minima turn subsequently to zeroes when 8y grows, the beta-function in between
to zeroes is stabilized at the corresponding interpolating shape.

An interpretation of the results presented above from the conformal perturbation
theory point of view was proposed in ref. [39] where the following hamiltonian density

was argued to describe the staircase model:
H ="M, + ABf, 5 — ABF; (2.13)

Here H, stays for the hamiltonian density of the minimal conformal model M, and the
suffix p for the fields denotes that they belong to M,. For A > 0 and A = 0 eq.(2.13)
simply corresponds to the deformation studied in sec. 1.6 and interpolating between
M, and M,_;. The aim of the irrelevant perturbation coming from @’(’3,1) is then to
deform this interpolating trajectory in such a way to avoid that it stops at M, (M,_1)
in the ultraviolet (infrared) limit. This would make possible a multiple crossover of the
type described above. A detailed perturbative study of the RG equations corresponding
to the deformation (2.13) was carried out in ref. [39] in the limit of large values of p. To
leading order in 1/p it was shown that, for A and ) both positive, there exists a unique
one parameter family of solutions exhibiting the characteristic behaviour of roaming
trajectories. Indeed, if we denote by z the RG time and by 6, the parameter labelling
the solutions, it turns out that each trajectory come close to each fixed point My in
the time interval (p—p' —1/2)6y < § < (p—p'+1/2)6,. In particular, for the RG flow

of the function C(z) defined in sec. 1.5 one obtains

C(kbo) = it O(p™), (2.14)
C((k+1/2)80) = epi— 5(ept = pbs) + O(™") (2.15)

for integer k.

In conclusion we make some remark about the particular deformation of the fixed
point M, defined by eq.(2.13). Both the perturbations ®(; 3y and ®(3,) are separately
integrable (see sec. 2.1 and ref. [4]). But, while in the general case a linear combination
of two integrable perturbation does not generate an integrable field theory off criticality
(this is the case, for example, of Ising model under simultaneous thermal (®(;3)) and
magnetic (@(1,2)) perturbations), the combination of ®(; 3 and ®(3,) was argued to
be integrable in ref. [38] so that one can expect (2.13) to correspond to a factorized
scattering theory.

The multiple crossover exhibited by the theory (2.13) for A and A positive gives
rise to an interesting critical behaviour as a function of the relevant “temperature-

like” parameter A. Indeed for A = 0 the theory is in the universality class of M,
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but the thermodynamic singularities as A — 0 are determined not by M, alone, but
simultaneously by all the fixed points M,, M,_;,..., M3. Some exact exponents are
obtained in ref. [40].

2.2 Sinh-Gordon theory

The scattering amplitude (2.1) can be considered as an analytical continuation of the
S-matrix of the Sinh-Gordon theory, namely the theory of a two-dimensional scalar
fleld ¢(z) with the action

A= /dza: [%(@1@2 — —?;coshgqﬁ(w)} . (2.16)

It can be regarded as a perturbation of the free massless conformal action by means of
the relevant operator cosh g¢(z) of anomalous dimension A = —§2/8x or, alternatively,

as a deformation of the conformal Liouville action
A= /d%; [%(auqs)? - ,\ew] (2.17)

by the relevant operator e=9¢.

Action (2.16) possesses a Z;-symmetry under the substitution $ — —¢ and can be
mapped into the action of the Sine-Gordon model by an analytic continuation in g,
namely g — ig. In a perturbative approach, ultraviolet divergencies come only from
tadpole diagrams and can be removed by a normal ordering prescription. This gives
rise to finite wave function and mass renormalization, while the coupling constant g
does not renormalize.

The Sinh-Gordon model (SGM) is the simplest example of a large class of integrable
theories, the affine Toda field theories. Integrability allows the determination of the
exact S-matrix which is given by [41]

sinh § — 1 sin =2
f,B) = 2., 2.18
5(6, ) sinh@—{—isin%ﬁ ( )

where B is the following function of the coupling constant g:

242
B(g) = . 2.19
(9) 87 + g2 ( )

It is evident from this relation that in the Sinh-Gordon theory B(g) takes values in
the range [0,2). The two-particle amplitude (2.18) has no poles in the physical strip
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(then there are not bound states) and exhibits two zeroes at the crossing symmetric
positions ¢wB/2 and in(2 — B)/2.

An interesting feature of (2.18) is its invariance under the substitution
B—-2-0B, (2.20)

corresponding through eq.(2.19) to the strong-weak coupling constant duality

g — 8_7!‘ . (2.21)
g

At the self-dual point B(+/8m) = 1 the two zeroes of the scattering amplitude collide

at § = 1w /2. If we now analytically continue the parameter B to the complex values
%
s

the zeroes split again but along a direction parallel to the real f-axis and (2.18)exactly
- coincides with the scattering amplitude (2.1).
The form factors for the Sinh-Gordon model were computed in ref. [18]. They can

be parameterized as

k k k m-m(g’.?)
F . H Q z, l l 2.2
"(91’ ’en) i ) i<y ((E, + 213_]) ( 3)

where z; = €% and §;; = 6; — 0;. Fyn(f) is an analytic function given by
Frmin(6, B) = N(B) Z(4, B)
o Jgp sinh (22) sinh (£(1 — 2)) sinh £ 9
=(0,B) = exp [8/ izz (4) (2( 2)) 2 sin? (; )} (2.24)
0

T sinh? z T

4/ dz sinh (TB) sinh (%(1 - g—)) sinh %}

sinh? z

N(B) = exp

(é = 17 — ). Fnin(d,B) has a simple zero at the threshold § = 0 and no poles in
the physical strip 0 < Im 8 < , with an asymptotic behaviour img_.o. Finin(8, B) = 1.
In eq.(2.23) HF are normalization constants which depend on the operator one is
considering. The functions Q¥(zy,...,z,) are symmetric polynomials in the variables
z;, solutions of the recursion equations which link the n-particle and the {(n-+2)-particle

form factors

—ilim(f — 0)FF (8 +i7,0,6,,6,,.. (1 - Hs —6;,B) ) F5(81,...,0,).
6—0
(2.25)
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For form factors of spinless operators, the total degree of Q* is equal to n(n — 1)/2
whereas their partial degree in each variable z; depends on the operator O which is
considered. It was shown in ref. [19] that a general solution for the Q% can be written

in terms of the so-called elementary solutions Q,(p) given by

Qn(p) = det Mij(p) , (2.26)

where M;;(p) is an (n — 1) X (n — 1) matrix with entries M;;(p) = o9i_;[1 —J + p] (o

are the elementary symmetric polynomials, p an arbitrary integer and [n] = %%/52))

Form Factors of ¢(z) and O(z)

Important operators of the SGM are the elementary field ¢(z) and the trace of the
stress-energy tensor ©(z). They are odd and even operators respectively under the
Zy symmetry of the model with normalizations given by < 0 | ¢(0) | § >= 1 and
< 0|0(0)] 68 >=2nM?, where M is the physical mass. The whole set of form factors
of the elementary field ¢(z) is given by

_ [4sin(wB/2) e
F3(6y,...,0,) = (“7\7‘(‘5)_‘“)

They are automatically zero for even n (in agreement with the Z, parity of the model)

Q.(0) TT Finl033) (2.27)

i LT

whereas for odd n they vanish asymptotically when 6; — oo, as follows from the LSZ
‘reduction formula. Concerning the form factors of O(z), Fy,; = 0 whereas Fy) are

given by

2 : n—1 ] B
F2(?1(617 e 79271) e 27TM (4SIH(WB/2)> Fm-‘ (9‘])

N(B) N(B) Q..(1) [ -, (2.28)

i<; Tt

and they go to a constant when §; — o

Kernel Solutions

The general structure of the form factors of the SGM is that of a sequence of finite
linear spaces whose dimensions grow linearly as n increasing the number 2n — 1 or
2n of external particles. In fact, at each level of the recursive process the space of
the form factors is enlarged by including the kernel solutions of the recursive equation
(2.25),1e. Qu(—z,z,Z1,...,2_2) = 0. With the constraint that the total order of the
polynomials is ﬂ"—;——l—l, the kernel is unique and given by X,(zy,...,z,) = detog_j.
This solution gives rise to the half-infinite chain under the recursive pinching z; =
—Zy ==z

e = QW S Ql), QW =%, 0 (2.29)

31



and therefore the whole space of form factors presents the foliation structure!

QSLL - ngl-az - QY - 511—)2 = ... le) - 1
QS?A - QELS-;)-Q Qgs) - Qg}—)z — ..o — U3

!
1

!

Q) - Qi — QP — T,
QE:Q-; - Qg?z - Yn

Q&Tf) —  Yny2

!

(2.30)
The explicit expressions of such solutions can be found by determining the linear com-
bination of Q,(k) which reduces to X, at the level n.

2.3 C-theorem in the staircase model

Since the staircase model may be seen as the SGM at B = 1:!:3;90, it is natural to study
the behaviour of the form factors of the latter model under this analytic continuation
[24]. As we show, the presence of a scale o in the rapidity axes may induce a non-
uniform convergence in series expansions obtained in the original Sinh-Gordon model.
Consider for instance the total variation of the central charge Ac = cuy — Cir going from
the short to the large distances. For both the SGM and the staircase model, Ac = 1.
Let us try to express it as a sum-rule fulfilled by the two-point function of the trace
O(z)
3 00

Ae= frz < ©(r)0(0) > d?r = ;Ac@") , (2.31)
where Ac® is the contribution to the variation of the central charge coming from
the 2n-intermediate states. In the original SGM with real coupling constant, the con-
vergence of the series to the value Ac =1 1s extremely fast and almost saturated by
the two-particle contribution Ac(?) [18]. This has to be expected, given the massive
behaviour of the model and the threshold suppression phenomena analyzed in [22].
Similar behaviour has been also observed in supersymmetric models [42]. However, in
the staircase model the situation is drastically different. Consider initially the two-

particle contribution to the c-theorem sum rule

3 o |=(26,60))
Ac(2)(9°)=§/; df (Eosh409 '

1This is the structure for form factors of odd operators. Analogous structure arises for the form

(2.32)

factors of even operators.

32



The plot of such a quantity (fig. 13) shows that Acm(é’o) monotonically decreases from
the value very close to 1 at 6, = 0 (corresponding to the Sinh-Gordon self-dual point)
to 1/2 for §y — co. The asymptotic value 1/2 can be easily obtained analytically by

noticing that

=(0,6) = sinhgh(e,%) , (2.33)
6-6
h(6,60) ~ e;{p (———QQ) 6 > 6y ’
—1 9 < 90

and therefore for 8y — oo the integral (2.32) simply reduces to

3 ro sinh*6 1
AcD([8] — 00) = -2-f0 B = (2.34)

Concerning the higher particles contributions Ac(?™, all of them vanish in the limit
6y — oo. In fact, the 2n-particle form factor entering the formula (2.31) for Ac™) is

given by eq.(2.28) and after the analytic continuation they may be written as

sinh % h(6;;,6
Fon(01y...,0,) = 21m?gon(60) Qan(1) H 2 (6:5,60) ,

i<j T; + z;

(2.35)

where gan(80) = (4 cosh 8,)"*N?("=1)(§,). Analogously to the two-particle case, the
Ho-dépendence coming from h(f;;) is strongly suppressed in the integration over rapidi-
ties and the asymptotic behaviour in 6y of Act®™ is only determined by the exponential
factors contained in gs, and Q5,(1). In the large 6y limit, N(8p) ~ exp (__19301) and
then g2n(6o) ~ exp{-—(n~ 1)2 |90|}. On the other hand, for 6y — oo Qan(1) ~
exp{(n — 1)(n — 2)|60|} P(z;) where P(z;) is a symmetric polynomial. So, for n > 1
Acl?™)(]6y] — o0) — 0 as exp (—(n — 1)8;). Therefore the result of the series (2.31) is
Ac = 1/2 instead of Ac =1, i.e. a violation of the ¢c-theorem sum rule.

Although striking, the non-uniform convergence of the series has a natural interpre-
tation once the nontrivial interplay between the two scales § and 6; of the problem is
correctly taken into account. In fact, since the n-particle contribution in (2.31) behaves
as e (M) given any length scale 7 there is always an integer N, such that the states

with a number of particles n > N, give a negligible contribution to the series (2.31).

N
This means that any partial sum Acy = 5 Ac(®™) only reproduces the variation of

m=1
the c-function from the infrared limit 7 = co up to a certain scale r(N), In usual situa-

tions, when c(r) is a smooth function in the deep ultraviolet region, the first few Acl?)
are sufficient to give the correct value of Ac, with high level of precision. But for the

staircase model this is not the case. Consider a scale r, such that ¢(r;,6p = 0) > 1/2
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(fig. 14). According to the results of the TBA analysis, after the first jump from 0 to
1/2, the function c(r,6y) stays constant at 1/2 until a value proportional to e~ 10l/2
is reached and, only at this point the second jump takes place. The other jumps occur
at r, ~ e~ 10l("=1)/2 314 for §, — oo, they accumulate to the origin. Truncating the
series (2.31) to any N, there is always a value §; such that c(rgN), 6] > 165]) = 1/2,
i.e. the point of the second jump is always ahead of the corresponding length scale

rgN), however small T§N) may be, and therefore

1
im L == . 2.36
lim w}jﬁlm Acn(fo) = 5 (2.36)

2.4 Collapse of the Sinh-Gordon model to the Ising

model

Taking the limit 8, — oo (keeping 6 fixed), the S-matrix of the SGM goes to 5 = —1,
i.e. to the S-matrix of the thermal perturbed Ising model. Together with (2.36),
these results naturally suggest that for §, — oo the Hilbert space of the original
SGM collapses to that of the Ising model, spanned in the local sector only by three
independent families of fields, those of identity {1}, magnetization {c} and energy {e}
operators. It is therefore interesting to find the mapping between the operator content
of the two models.

It is easy to see that the elementary field ¢(z) of the SGM is mapped onto the
magnetization operator o(z) of the Ising model. In fact, analytically continuing the
form factors (2.27) and taking the limit ; — oo, the f, dependences coming from
different terms of the original expression compensate each other and we obtain the

following finite result

2n+1 g
Fira(61,- s 02n) = ()" T ta.nh%‘l : (2.37)
i<j
These are precisely the form factors of the magnetization operator o(z) of the thermal
perturbed Ising model [5, 23]. This field belongs to the interacting sector of the theory
and its correlation functions satisfy non-trivial differential equations [34, 43]. Notice
that in this limit the boundary conditions of the field ¢ have been modified: in the
original SGM its form factors vanish for large values of §; whereas in the resulting
expression (2.37) they go to a constant.
On the other hand, taking the limit §y — oo for the analytic continuation of the
form factors of © (2.28), all of them vanish but F, = 2mrm?sinh 6/2. Hence the operator
©(z) of the original SGM is mapped onto the energy operator ¢(z) of the Ising model.
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This is a free field (a result which is manifest by the absence of higher form factors)
and its correlators can be easily expressed in terms of Bessel functions. Also in this
case the boundary condition of the field ©® has been changed, since originally F? goes
to a constant for large values of 6; whereas after taking the limit §, — oo it diverges
at infinity.

It is also interesting to analyze the behaviour for §; — oo of the kernel solutions.

In this limit the recursive equations (2.25) become

Qniz(—z,z,21,...,2,) = —2" 0o, Qu(z1,...,2n) 7 =o0dd

Qn+2('—ma$a$1, cee ,an) =0 n = even

(2.38)

The kernel solutions of the Z; even operators of the original SGM are therefore mapped
onto the free sectors of the Ising model, i.e. those given by the identity and energy
operators. Indeed, their form factors are different from zero only at a given level n in
the number of external particles (where they coincide with ¥, defined in sec. 2.2.2)
and, due to the second equation in (2.38), they decouple from the rest of the recursive
chain. Correlators of the operators defined by such form factors can be also expressed
in terms of Bessel functions.

 Such a decoupling in the recursive chain does not occur, on the contrary, for the
kernel solutions of the odd operators of the original SGM. Their explicit expressions
may be written as determinants of minors of the matrix ¥,. In fact, consider the
half-infinite chain of form factors Qﬁr_‘gz,n (n odd and m = 1,2,...) satisfying the first

equation in (2.38), with the initial condition
QY, = —2"0, 3, . (2.39)

It is easy to see that? Q&Bz = [2n+2](%}_,n_1) and in general

QY = H...[Emm](nﬁ;_lMzm_l)...] (2.40)

(%ﬂ’””)] (2 n+1)
Such form factors define matrix elements of operators belonging to the magnetization
sector. For instance Q(!) defines the form factors of the magnetization operator itself
whereas Q) those of the operator OC) = (o(z) + 1/M?8%(z)) etc. In general such
operators have the distinguishing property that their two-point correlation function
< O™ (r)O™(0) > decreases at infinity as exp[—nMr].

2We denote by [A](a‘b) the determinant of the matrix obtained by A eliminating its a row and b
column.
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Chapter 3

Massless integrable models

3.1 Massless scattering

We have seen in the previous chapter that, in presence of integrability, the bootstrap
method based on factorized scattering is the most powerful approach to the study
of massive models. Hence, it is natural to investigate if and to which extent similar
techniques can be extended to the analysis of massless integrable models. Recently,
many important progresses have been made in this direction in spite of some subtleties
arising when trying to define the notion of massless scattering in two-dimensional space-
time [7, 8, 9]. These results, which we will briefly review in this section, rely on the
basic assumption that the fundamental properties a) and b) of section 1 characterize
the dynamics of scattering processes also in the case of massless integrable theories.
The best way to introduce massless scattering is probably to consider it as the lim-
iting case of some massive relativistic scattering theory. In order to avoid inessential
notational complications, we will consider a model whose spectrum consists of a single
self-conjugated particle A(f) of mass m; the extension to the general case is straight-
forward. Taking the limit m — 0 of a two-particle process, two different situation can
occur in two-dimensions: a) one of the incoming particle becomes a right-mover and
the other a left-mover; b) both the particles become right-movers or left-movers.
Let’s first analyze case a). The Mandelstam variable s is the only independent
relativistic invariant quantity. In the case of diagonal scattering as the one we are
considering, the s-plane has only two sheets; we will call “physical” the first one and
“unphysical” the second. As m goes to zero, the unitarity and crossing cuts of the s-
plane (see fig. 2a) join in the origin so that the Riemann surface splits into two distinct
sheets: the “upper” (“lower”) one contains the half of the physical (unphysical) sheet
with Ims > 0 and the half of the unphysical (physical) sheet with Ims < 0. The
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unitarity and crossing relations (1.15) and (1.16) are immediately specialized to the

present case and read

Srr(s +10)Srr(s —10) =1, (3.1)

SRL(S + ’LO) = SRL(—S —_ 'LO) R (32)
where we denoted by Sp; the scattering amplitude for the right-left scattering (obvi-
ously the massless scattering processes are diagonal in the indices R and L). Some care
is required to pass to a parameterization in terms of rapidities. We want to send m
to zero in eq.(1.17) while keeping energy and momentum finite; then it is sufficient to
replace 8 by 8 4 By/2 and to take the limit m — 0,8y — +co in such a way that the

massive parameter M = me®/? remains finite. According to the sign in front of By we

get

p=p = —e€ for right-movers ,

0 1 M Jé]

—e” for left-movers . (3.3)

3
I
l
3
fl

For practical manipulations, one can think that a right-mover Ar(8) or a left-mover
Ap(B) are obtained from A(§) in the limits

Ar(B) = lim A(B+6o/2)
A(B)= Lim A(B-Bo/2) . (3.4)

Bo—+o0

From egs.(3.3) we obtain the relation

s = (Pa(Br) + PE(B))" = MPeH % (3.5)

showing that, contrary to the massive case, each value of 8 = 3; — 3, in the strip 0 <
Imf < 2w corresponds now to a different value of s. This implies that in the massless
case we need two 2wi-periodic, meromorphic functions of the rapidity difference in order
to represent a function defined on the two sheets of the s-plane. We denote by Srr(3)
(Sre(B)) the values of the scattering amplitude on the “upper” (“lower”) sheet defined
above. Then, by definition, Sgr(8) (Srr(8)) must be obtained from the value S(6)
(5(—8)) of the massive amplitude in the limit A(8;) — Agr(B:) and A(6:) — AL(652)
Sre(B) = lim S(6+4A),

SwiB) = Im_S(—8- o) (3.6)
Now it is straightforward to take the limit of egs.(1.19) and (1.20) to get the massless

unitarity and crossing relations [7]
Sre(B)Sr(B) =1, (3.7)
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SRL(ﬁ) = SRL(ﬂ + iﬂ') . (38)
Of course, they are nothing else than the translation in the rapidity language of eqs.(3.1)

and (3.2) respectively. From their combination we obtain the cross-unitarity equation

SRL(,B)SRL(ﬂ - ’I:T{') =1. (39)

Turning to right-right and left-left scattering, we notice that the variable s identically
vanishes so that all the analyticity arguments characteristic of the S-matrix formalism
cannot be applied to this case. This circumstance clearly reflects the loss of intuitive
understanding with respect to the scattering process of massless particles moving in
the same direction in one spatial dimension. Nevertheless, the amplitudes Sgrr and SrL
can be formally introduced starting from the massive theory and taking the massless
limit prescribed by eqs.(3.4). Since in this case the rapidity shifts cancel, we simply
find

Srr(B) = Scr(B) = S(B) » (3.10)

so that, in the formalism of rapidities, RR and LL scattering follow the same formal
rules of massive scattering. In particular, the following “ynitarity” and “crossing”

relations hold

Srr(B)Srr(—=B) =1,
Srr(B) = Srr(ir — B) (3.11)

(the same for Srz). Notice that, since in the present case the only relativistic invariants
are ratios of momenta, according to egs.(3.3), the amplitudes Sgr and Spr correctly
depends on the difference of rapidities. Due to this fact, they are completely indepen-
dent on the mass scale M. Thus we conclude that this parameter plays a role (namely,
scale invariance is broken) only in presence of a rapidity dépendent RL scattering.
We have seen in the previous chapter that an ordering prescription over rapidities
can be introduced in order to identify the physical asymptotic states and that such
prescription arises from the analytic properties of the two-particle scattering amplitude.
In the massless case the amplitude Srr(8) (SrL(B)) behaves as the massive amplitude
5() so that it is natural to assume the prescription (1.24) for the ordering of right (left)
particles in “in” and “out” states. Hence, what we need is to assign a prescription for
the ordering of right-movers with respect to left-movers. Obviously, a two-particle state
containing a right-mover and a left-mover is (for all possible values of the rapidities) an
asymptotic in-state if the right-mover is at z = —oo while the left-mover is at € = +00;-

it is an out-state in the opposite case. This observation suggests the definitions
|AR(B1)AL(B2) >in = |AR(B1)AL(B2) >
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|AR(B1)AL(B2) >our = |AL(B2)AR(B1) > . (3.12)

The two asymptotic states are related by the S-matrix in the following way

|AR(B1)AL(B2) >= Srr(B1 — B2)|AL(B2)AR(B1) > . (3.13)

Using eq.(3.7) we also obtain

|AL(B2)AR(B1) >= Sri(Br — B2)|Ar(B1)AL(B2) > . (3.14)

We are now in the position to introduce a Faddeev-Zamolodchikov algebra for massless

scattering in the form

Aal(ﬁl)Aaz(ﬁ2) - Salaz(ﬂl - 182)A042(162)A041 (ﬁl) ’ (3'15)

where o; = R, L and Ag(8), AL(B) are the creation operators for right and left movers
respectively. Clearly, the last equation agrees with eq.(3.14) provided that

Str(Bi — B2) = Sre(B2 — B1) - (3.16)

This equation can also be obtained directly in the limit from the massive case (see
€q.(3.6)). Equation (3.15) suggests the best interpretation for the scattering amplitude
of two massless particles moving in the same direction: it is the phase which results
when commuting two particle creation operators. The appearance of this phase is
explicitly seen in the lattice Bethe ansatz approach [46, 47] or in the classical limit
[48] where the two-particle wavefunction and the two-soliton solution respectively are
observed to exhibit non-trivial monodromy when one particle is moved through the

other.

Extending the previous considerations to a generic state containing 7 right-movers

and [ = n — r left-movers we conclude that it is an in-state if it is written as

|AR(B1)AR(Bz2) - - AR(B)AL(Br+1)AL(Br + 2) ... AL(Bn) >
,81>,32>,..>ﬁ,-, /Br+1>,6r+2>---,8n; (317)

the corresponding out-state is

|AL(Br)AL(Bn-1) ... AL(Br+1)AR(B:)AR(Br — 1) ... Ar(B1) >, (3.18)

with the rapidities satisfying the same inequalities as before.
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3.2 Massless form factors

Massless form factors are defined to be, as in the massive case, the matrix elements of
local operators between asymptotic states. In order to determine their basic analytic
properties we will follow the same strategy used for the scattering amplitudes in the
previous section. Let’s start with the two-particle massive form factor of a scalar
operator O(z)

F(s) =< 0|0(O)| A A(E) > , (3.19)

satisfying egs.(1.38) and (1.41). In the massless limit in which the two particles become

a right-mover and a left-mover, these equations reduce to
FRL(S + iO) = SRL(S + iO)FRL(S — iO) )
FRL(-—S + ’LO) = FRL(—S — iU) . (3.20)
As explained for the scattering amplitudes, we need two functions of rapidities to cover
the two sheets of the s-plane. We denote by Frr(f1,52) (Frr(B1,B2)) the values on

the “upper” (“lower”) sheet defined in the previous section. According to egs.(3.4),

these functions are obtained from the massive form factor F (61,62) as the limits

FRL(IBhﬂZ) = lim F(ﬁl+ﬁ0 /82'—@22) 9

Bo—++o0 2’
Fpo(Br,:) = lim F{f:— Bo B+ Fo (3.21)
’ fo—+oo 2’ 2
Then we can take the limit of egs.(1.42) and (1.43) to get the equations
Fro(f1,82) = Swi(Bs— B2)Fre(By, )
Fre(Bi +im,B2) = Fru(Br—im,B2) , (3.22)

which translate eqs.(3.20) and hold for operators of generic spin. From their combina-

tion we get
Fr(B1,B2) = Sr(B1 — B2)Fri(B1 + 271, 32) - (3.23)

Since

Funlfo,B) = Jm P8~ 2,0+ 2) = Fru(0, ) (3:24)

and since Frr(81,02) and F11(B1,P2) behaves as in the massive case, the monodromy

equations for the massless two-particle form factors.can be written in the compact form

Falaz(ﬁhﬁz) = Soqaz(ﬁl —’,32)Fa2a1(,627ﬁ1) )
F&Laz(ﬂl + 27”:7132) = Fa2a1 (1327B1) ] (3.25)
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where o; = R, L. The generalization to the n-particle form factors

Faran(Biy- -5 Bn) =< 0]0(0)]Aa, (B1), - - - s Aan(Bn) > (3.26)

reads

Fal...a;ag.*.l...an(,@l) s ,ﬁi;ﬁi+17 v 7ﬂﬂ) =
Sa,'&i+1 (131 - /Bi—i-l)Fal...a;_{_la;...an(ﬂl: .. 716i+1),8i7 2o 7ﬂn) ) (327)

Fala?---an(/gl + 271’7:,,82, s )Bn) - Faz-.-anax (ﬁ% s 7ﬁn7ﬁ1) . (328)

The matrix elements (3.26) are meromorphic functions of rapidities defined in the
strips 0 < Imf; < 2w. We have seen that in the massive case the form factors admit
simple poles associated to bound states in the scattering amplitudes and to particle-
antiparticle annihilation. Stable bound states are usually forbidden in massless theories
due to the absence of thresholds. This leads to exclude the presence of the first kind of
singularities in the right-left sub-channels, the only ones to which standard S-matrix
theory can be applied. On the other hand, we have seen that right-right and left-left
scattering formally behave as in the massive case. Hence, whenever the amplitude
Seo(B) has a simple pole for 8 = 7u (u € (0, 7)) with residue g, we expect the following
equation to hold

7:Tesﬁn.i.l—ﬁn.{,g:qual...anaa(Bl, oo )ﬁnaﬁn+17ﬁn+2) - gFal...ana(,Bla oo 7,Bn7}6n+1 - ‘L'LL) °
(3.29)

Concerning the annihilation poles, it is clear that again they can only occur in right-
right or left-left sub-channels since the two-momenta of a right-mover and a left-mover
cannot be made opposite in sign through analytic continuation in the rapidities. The

residue equation in this case reads

—1 resﬁ’=ﬁ+i7-’Faaa1---cxn(IB/7;87:317 oo aﬁn) = (1 - H Sa;a(lgi - ﬁ)) Fal---an(ﬁl’ o 7Bn) .
= (3.30)

We conclude this section noting that symmetry under spatial inversion provides the

relation

Fal...an(ﬁly v ,,Bn) - FP[an]...‘P[al](—'ﬁna ey _ﬁl) ) (331)
where P[R| = L, P[L] = R.
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3.3 The flow from tricritical to critical Ising model

3.3.1 General features

Tt is well known that the perturbation of the minimal unitary model M, with central

charge

18
p(p+1)

by the relevant operator ¢, 3 leads (for positive values of the coupling constant) to a

c =

(3.32)

massless theory flowing to the model M,_; in the infrared limit [44, 45]. It was shown
in ref.[4] that the QFTs describing these flows admit an infinite number of conserved
currents and therefore are integrable; the corresponding factorized scattering theories
were determined in refs.[7, 9]. In the following we will consider in detail the simplest of
these theories, namely the flow from the tricritical Ising model (p = 4) to the critical
Ising model (p = 3) with the purpose to apply to it the massless form factors bootstrap
introduced in the previous section.

The minimal unitary model M, (¢ = 7/10) describes the tricritical point related to
the spontaneous breakdown of Z,-symmetry in two-dimensional systems [49, 50]. The
conformal dimensions of the model are collected in table 3; a set of primary mutually
local scalar fields whose conformal families form a closed operator algebra is listed in
table 4.

The tricritical behaviour can be observed, for instance, in an Ising ferromagnet with

vacancies described by the lattice hamiltonian

H=-B> oiojttj+ky ti, (3.33)
(i9) i
where the sum (45) runs over nearest neighbors only; the Ising spin o takes values &1
while ¢ takes values 0,1 so that the parameter k is a chemical potential controlling the
vacancy density. The phase diagram of this system is schematically represented in fig.
15. A line of phase transition points separates region I with spontaneous magnetization
from the disordered phase II. The tricritical point T divides the second order phase
transition line (continuous part) from the first order one (dashed part); the point C,
located on the transition line at zero vacancy density, corresponds to the critical Ising
model.
A field theoretical description of tricritical behaviour can be given in terms of a
Landau-Ginzburg lagrangian for a single scalar order parameter (the “spin” field).

The possible coexistence of three different phases, implying three degenerate minima
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for the potential, leads to the choice

6
Lig = -;—(3“45)2 + > ged® . (3.34)
k=1

The tricritical point corresponds to g; = 0 for ¢ = 1,...,5. The fields appearing in
the lagrangian (3.34) can be matched with the primary operators of table 4 using a
prescription suggested by A. Zamolodchikov [51]. We start with the natural identifi-
cation ¢ = o and define recurrently the composite operator : ¢* : as the most singular
term remaining as ¢ — 0 in the operator expansion @(z) : ¢*71(0) : after the subtrac-
tion of the contributions with dimension lower than the dimension of : ¢F~! :. Using
the fusion rules of M, (see table 5) we find : ¢ 1= ¢, : ¢° := o/, : ¢ 1= ¢ and
: ¢° i~ 0,0tc = 0,0%¢. Last relation expresses the equation of motion for the field
theory (3.34) at the tricritical point; it also shows that : ¢° : is an irrelevant operator.
Also : ¢ : is irrelevant and is usually identified with €”.

The tricritical Ising model (TIM) possesses two kinds of discrete symmetry. The
~ first one is the Z,-symmetry under spin reversal o — —o which, according to the fusion
rules in table 5, divides the theory in an even sector containing the conformal families
{I},{e},{€'},{€"} and an odd sector containing {c},{c'}. The second symmetry con-
cerns the “Kramers-Wannier” or “duality” transformation which, in analogy to what
happens in Ising model, maps the spin fields o, ¢’ into the dual “disorder” fields p, p'
with the same conformal dimensions (3/80,3/80) and (7/16,7/16), and changes the
sign of the energy e; the fusion rules imply that the operators ¢’ and €” are respectively
even and odd under this transformation. The fields o, 0’ and their dual p,p’ are not
mutually local since the fermion fields ¥ = ¢(6/10,1/10) and P = $(1/10,6/10) are generated
in their OPE. For instance, we have

o(z,2) p(0,0) ~ (22)/1° [/%(2, 2) + 2/%9(2,2)] + ... - (3.35)

The operator algebra generated by the primary fields {I,0,¢,0',¢’,¢"} and its dual
generated by {I,u,—¢,p',¢’,—€""} are isomorphic and represent two different “local
sections” of the conformal theory M,. In this sense we say that the TIM is self-dual.

Self-duality as well as invariance under spin reversal are expected to characterize
the whole phase transition line in fig. 15. Hence, the subleading energy ¢, being the
only relevant operator in M, invariant under both the discrete symmetries, is uniquely
identified as the field which drives the flow along the line. The action for this low can

formally be written as

A= A, + :\/dzws'(w) , (3.36)
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) being a coupling constant with scale dimension A~ (mass)” 5 whose sign determines
the direction of the flow.

Further insight into the physical properties of the model can be obtained using a
lagrangian description alternative to (3.34). This possibility arises from the fact that
TIM is the only model of the minimal unitary series appearing also in the discrete series
of superconformal theories discovered by Friedan, Qiu and Shenker [49, 50]. Then we
can describe the tricritical point by the super Landau-Ginzburg action proposed by A.
Zamolodchikov in ref.[51]

Aps, = / £2d°6(D8DS + £8°) , (3.37)

where D = 85+ 08,, D = 85+ 00 and the superfield 8(2,0,%,0) = e(z,2) + 0(z,2z) +
(2, %) + 08¢’ (2, Z) coincides with the superprimary ®(1/10,1/10) of the Neveu-Schwartz
sector. In this formalism the spin fields appear as primary fields in the Ramond sector
(corresponding to periodic boundary condition on the cylinder) and the order-disorder
degeneracy is a consequence of the commutativity of the zero mode Ramond generator
G, with the dilatation generator Lo: p = Goo, p’' = Goo’. The subenergy ¢ = [d’0%
preserves global supersymmetry and the perturbed action (3.36) can be written as
[52, 53] ;

A= /dzzdzﬂ (02D + 8° +)3) . (3.38)

Self-duality manifests itself as the invariance of the above action under the substitutions
® — —3,0 — —0 or, equivalently, € = —¢,% — ¥,% — —,e’ — €. The integration

in 0 and @ and the exclusion of ¢’ lead to the following expression for the action
_ _ o1 _
A= f &2 [8685 By — §0F — (g + ) - zgws} , (3.39)

For /g < 0 the bosonic potential V(e) = (ge? + A)?/4 has two degenerate minima at
gy = £4/—)/g and the fermion and the boson acquire the same mass m = 2v/—gA;
since V(ex) = 0, global supersymmetry s preserved. The factorized S-matrix of this
massive supersymmetric integrable theory describing the scale region of TIM along the
dashed line in fig. 15 was determined by A. Zamolodchikov in ref.[52].

For )/g > 0 the bosonic potential has a single minimum at € = 0; since V(0) > 0,
supersymmetry is spontaneously broken. The boson becomes massive (m. = X))
while the fermion stays massless and plays the role of goldstino. A low energy effective
action for the goldstino can be obtained integrating out the scalar field in the Landau-
Ginzburg action (3.39). At first order one finds [53]

A= [ & [¢5¢ + 509 — %wwx&é@ b ] . (3.40)
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As could be expected, this action corresponds to the Ising model (free massless ma-
jorana fermion) perturbed by the irrelevant operator (¢0%%)(8¢) ~ TT, which is
the lowest dimension nonderivative field invariant under Z, and duality transforma-
tions. The two discrete symmetries of the theory appear in this context as the in-
variance property of the action (3.40) under the substitutions ¥ — %,% — —1 and
1) — —p, — —1p which we identify as corresponding to the duality transformation

and to spin reversal, respectively.

3.3.2 Scattering theory and form factors

The factorized scattering theory for the flow from tricritical to critical Ising was de-
termined by Al. Zamolodchikov in ref.[7]. The basic assumption is that the massless
neutral fermion appearing in the action (3.39) is the only stable particle of the theory
while the massive boson may decay and does not enter the asymptotic states. Thus,
the spectrum of particles is the same as in the infrared fixed point. Since the right-right
and left-left amplitudes cannot vary along the flow, they will preserve the infrared value

Srr(B) = ScL(B) = -1 . (3.41)

Concerning right-left scattering, TBA analysis shows that the minimal solution of the
cross-unitarity equation (3.9) tending to —1 in the infrared limit, namely

Sru(B) = tanh (g _ ’715) , (3.42)

is in fact the correct choice. The values of this amplitude on the “upper” sheet of the
s-plane read

s —iM?
T s tiM?
where M is the mass scale entering the parameterization (3.3). Using eq.(3.1) to get

S(s) (3.43)

the values on the “lower” sheet we see that, while the physical sheet is free of poles,
the unphysical one contains two poles at s = £iM? which can be interpreted as a
reminiscence of the unstable boson. Using the effective action (3.40) to compute per-
turbatively the next to leading term in the infrared expansion of Sgr(s) and comparing
with the exact expression (3.43) we get the relation M? = A?/2.

We now turn to the computation of form factors using the general properties ex-
posed in the previous section. In order to simplify the notation, we consider the

following subset of form factors:

Fr,l(ﬁl)ﬂ27 s 7:81‘;:81,:[%, o >ﬁl,) =
< 0]O(0)|AR(B1)AR(B2) ... Ar(Br)AL(B1)AL(B:) - - - AL(B]) > (3.44)
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Any other form factor of the local operator O(z) can be obtained from these using
€q.(3.27). We parameterize the functions (3.44) as

Fr,l(ﬁla:@%- "aﬁr;lggvﬂ;v“:ﬁll) = va’QTvl(ml’mz’""mvr;yl’yz"” ’yl) %
JR—— . T ! ,~— ,'
H frr(Bi — Bj) H H Fre(B: — BS) 11 M , (3.45)

1<i<i<r  Ti +z; i=1j=1 1<i<i<l Yi +Y;

where z; = €%, y; = e % and H,; are normalization constants introduced for later
convenience. The auxiliary functions frr, frz and frr satisty the following equations

obtained combining eqs.(3.25) for a scalar operator

falaz(lB) = Sa1a2(ﬁ)fa1a2(ﬁ+27ri) (346)

Given the scattering amplitudes (3.41), (3.42) we choose the following solutions with

neither poles nor zeroes in the strip 0 <Imf < 27
fre(B) = frr(B) = Sinh—g‘ ; (3.47)

oo SiIl.2 M
fre(B) = exp (—g— ——/D dt--—(—ﬁ——)) . (3.48)

¢ sinhtcosh %

The function frr(B) satisfies the equation

fru(B +im)fro(B) = i}ige—-ﬁ : (3.49)
where v = 1/2¢26/  being the Catalan costant. The functions (3.47), (3.48) com-
pletely take into account the monodromy properties in eq.(3.45). Since the scattering
amplitudes Sgr and Spr, in this theory are free of poles, only kinematical poles appear
in the form factors and are explicitly inserted in the parameterization (3.45) through
the factors z; +z; and y; +y; in the denominator. As a consequence, after requiring the
form factors to be power bounded in the momenta, @, have to be rational functions
separately symmetric in the {z;} and {y;} with at most poles located at z; = 0 or
y; = 0.

Inserting the parameterization (3.45) into the residue equations (3.30) we find the

recursive relations satisfied by @,

LT+l pr({z:})
M({vi})

P!
X Z (—im)kAk({yi})Qr,I(mla' "1mr;y1""1yl) 3
k=0

Qr+2,1(—m,m,w1, ey TriYisy e 7yl) =
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e a({yi})
_ ) = o ferrr M)
Qr,l-{-?(wl"'"a:”yl’.”’yl,y’ y) y pr({ml})

3 (mig) oe{@)QuilErr s ow) » (3:50)
k=0

where the primed sums run over odd indices if (r + ) is even and vice versa, and

pr({z:}) is the basis of symmetric polynomials in the variables {z;} generated by
[I(z + =) = > 2" *pe({z:}) (3.51)
Jj=1 k=0

(analogously for Ax({y:})). In writing eqgs. (3.50) we have chosen

I r

-Hr,l = 7

¥
*mﬂrﬂ,l = *mﬂr,lw . (3~52)

Equations (3.50) are quite general since they were obtained without reference to any
particular operator. In the following we will restrict our attention to some operators
of particular physical relevance, namely the trace of the stress-energy temsor ©(z) =
T#(z), the magnetization (order) operator o(z) and the disorder operator g(z). Since
all these fields are spinless, eq.(1.35) implies that under a lorentz transformation the
functions @, ({z:}; {v:}) behave as

Qri({ee}i{e ™ u}) =

r(r=1) (I-1
LI Qe () - (3.53)
Selection rules for the form factors are obtained assigning the transformation properties
of the massless particles under the discrete symmetries of the theory. According to the
above discussed invariance properties of the fermionic action (3.40), we assign even
Z,y-parity to both right and left-movers, and even (odd) parity to right (left) movers

under duality transformation.

Trace of the energy-momentum tensor

The trace of the energy-momentum tensor is expressed in terms of the ultraviolet
perturbing field by the relation

O(z) = 2wA(2 — 2A.)e(2) . (3.54)

Since the subenergy ¢’ is even under both spin reversal and duality transformation, ©
will have nonvanishing form factors F}; only for even r and [, starting from r = [ = 2

(the vacuum expectation value Fy o must be identically zero since it is known to vanish
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in the infrared limit). Moreover, adapting the argument of section 1.3, one easily

realizes that the conservation of the energy-momentum tensor implies the factorization

Qra({zi}; {w:}) = e Tra{zi}i {wi}) - (3.55)

Inserting this expression into (3.50) we get the recursive equations for T;;

1 !/

Trr2u(—2, 2, {z:}; {v:}) = mf"“’;—’lZ (—iz)* A Tra({=:} {9:})

k=0

Trie2({zi}s {wit v, —y) = y'”'ﬂ'/—\ii (—iy)*pr Tra({zi}; {:}) - (3.56)

Pr k=0

The leading infrared contribution to F is easily computed using the action (3.40)

e ! - ! ’ !
Fy5(B1,8:; 85, 8) — —A4mM?sinh 2 5 P sinh@—i—@- ehrtPa=bi=Py (3.57)

With this information we fix the exact F3, to be

47['M2 ,81 —_ ﬂg

! ]
Y . — ﬁ
FZ,z(ﬁl,ﬁz;ﬁpﬁz) = " sinh 5 B 2

11 feu(Bi — B)sinh =22 . (3.58)

1,7=1,2 2

The recursive equations (3.56), (3.52) are then iteratively solved by using (3.58) as

initial condition. With the normalization constant

H2n,2m — 7,‘_]1/1'27:71(11-{—1)+m(m—l—1)22(n?+m2)—n——m,,)(—Qnm (359)

the first right chains are determined to be
2 M\
Toa(eds ) = 6 ()
n—-2 n—1
Tyesfoids ) = @7 (52)" 3 oo

k=0

(3.60)

Using the right-left symmetry relation T, ({z:}; {v:}) = T, -({y:}; {z:}) one can imme-

diately obtain the solution for the corresponding left chains.

Order and disorder operators

The invariance of the theory under spin reversal implies that the magnetization (order)

operator ¢ has nonvanishing form factors only on an odd number of particles. Taking
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Fio= Fo1 =1 as initial conditions for the recursive equations, we obtain

Qr,O = pi(_r—l)/2 3
r/2—1
Qr1 = *:\?/3— ,
Qra = 23 ped T
k=0
(r/2-2) r
T k/2
QT,3 = -—_r—/_é_—T lekAZ/ 3
A3 k=0

(3.61)

where the prime denotes sum over even indices only and 7 should be chosen such that
r + 1 is odd.

The disorder operator p is nonlocal with respect to the magnetization. This cir-
cumstance induces a slight modification in eq. (3.50) [6, 23, 20, 54] (the minus sign in
front of the product becomes plus). One can easily check that the functions ¢, for
p derived from the modified recursive equation are still given by the formulas (3.61)

with r 4+ [ even (p is Zs-even).

3.3.3 C-theorem and correlation functions

We have seen in the first chapter that the knowledge of form factors in massive in-
tegrable theories allows us to express the correlation functions as infinite sums over
intermediate multiparticle states and that very precise numerical estimates are pro-
vided by the first few terms of the series. An analogous expansion can be formally
written also in the massless case but obviously serious doubts on its practical utility
are raised by the absence of any natural infrared cutoff. To be concrete, let’s consider
the two-point function of a local operator O(z) in the massless flow we are consid-
ering. According to the prescriptions introduced in section 1.1 to select the physical
asymptotic states, the spectral representation of this correlator reads

© 1+ dp,...d3,dB. ... dB!
<0()0(0) 5= ¥ o [ P

r, =0 e

Mr [ ! ;
il E P —B;
X exp [— 5 (j=1 efi 4+ jE=1 e J)} ) (3.62)

lFr,l(ﬂly' = ’,Bth; .. :Bll)lz

where we used euclidean invariance to set z = (ir,0). This expression clearly shows

that, contrary to the massive case, the convergence in the infrared limit 8; — —o0, 8] —
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+o0 is no longer guaranteed by the exponential factor inside the integral and completely
relies on the behaviour of the form factors F;; in this limit.

Let’s first analyze the case of the trace of the energy-momentum tensor. As explic-
itly shown by the relation (3.57), F»» goes exponentially to zero in the infrared limit
so that the 4-particle contribution to the correlation function Go(r) =< ©(r)0(0) >
is convergent; it can be easily checked that also the form factors with higher number of
particles are well behaved and that their contributions to the infrared behaviour of the
correlator are subleading with respect to the 4-particle contribution. Then, plugging
expression (3.57) into the integral (3.62), we find

16
T2 M8’

A logarithmic plot of Ge(r) obtained including in the spectral representation (3.62)

Go(r) ~ T — 00 . (3.63)

the first two contributions is shown in fig. 16; the dashed line represents the expected
ultraviolet asymptotic. Using eq.(3.54) and the conformal OPE one finds

2
Go(r) ~ M* (gm) (Mr)™25 -0 (3.64)

where the constant o = A/M*/5 = 0.148695516 was determined in ref.[38]. The figure
clearly shows a very fast ultraviolet convergence analogous to that observed in the
massive case. Such convergence is confirmed by the computation of the difference

between the central charges of the ultraviolet and infrared fixed points. Using the
formula [35]

Ac= ?’2- [arr <eme) >, (3.65)

we obtain Ac®) = 0.19600 = .00007 from the 4-particle contribution and Ac®) =
0.1995 + .0004 adding the 6-particle one. We recall that the expected value is Ac =
7/10 —1/2 = 0.2.

A very different situation must be faced when trying to compute the correlation
functions of the order and disorder operators. The leading infrared behaviour of the
form factors of o and g can be determined in general specializing the form factor
bootstrap to the Ising critical point where Srr = —1 and frr(8 — B') = e(B=8/2
Inserting the initial conditions Fig = Fo,1 = Fopo = Fy 1 = 1in the recursive equations
obtained in this way (a simplified form of eqs.(3.50)), we find

Bi — B;

Ff.f*(ﬁl,...,ﬂr;ﬁi,...,ﬁ,’):Htanhﬁ";ﬁf’tanh :

i<j

(3.66)

where the superscript IR denotes the infrared solution and r + I must be taken odd

for o and even for . Expression (3.66) clearly shows that the integrals in the spectral

50



representation of the correlators G,(r) =< o(r)o(0) > and Gu(r) =< p(r)u(0) >
are infrared divergent. This circumstance can be ascribed to the fact that the fields
o(z) and p(z), contrary to ©(z), do not enjoy a simple infrared expansion in terms
of free fermions. As a consequence, the computation of G,(r) and G,(r) requires the
resummation of the whole (suitably regularized) form factor series. We now show how
this kind of resummation can be performed in the low energy limit to extract the
infrared conformal dimensions A, = A, = 1/16. Using the form factors (3.66) and

exploiting their complete factorization in a left and a right part we can write
9 2
- ®© 1 oo T dfB; B; — B; o s

IR(;\ — AIR(\ o (IR(yY 3 i i P £ e
G (t) = Ga. (t) - G” (t) = ] ";—' /A H -é; (H ta.nh 5 [ Z 1 3

=1 1<J

(3.67)
where t = Mr/2 and A is an infrared cutoff. Shifting the rapidities we obtain the
expression

2

GR(t) = [i;l; /0 wf[%—% (Hta.nh ﬂ_;@i) e—fe“‘Z;leﬁf} : (3.68)

r=1 1<J

which can be considered as the square of the partition function of a classical gas of

particles living on a semi-infinite line and subject to the pairwise interaction
2
V(B:i—Bj)=—In (tanh é’—g—'—gj—) ; (3.69)

the activity of the gas depends on the coordinates and is given by

1 B—A
e te

Ug) =5

This function keeps a constant value Uy = 1/27 inside a box of length L ~ In e—t: Thus

we see that removing the cutoff A amounts in this context to take the thermodynamic

(3.70)

limit L — oo of a gas with constant activity Up. In this limit, the standard relation
between the partition function and the bulk-free energy per unit length f(Us) allows

us to write

t

The bulk-free energy f(Up) for the classical gas with interaction (3.69) was computed
in ref.[55, 23] and reads

pyas
5IR —2f(L)L eh)
G™(t) ~ et~ | — . (3.71)

1 ) 1 )
f(Uy) = 53 arcsin®(270p) — o arcsin(27Uy) . (3.72)

Thus we have f(1/27) = —1/8 and the relation (3.71) gives the expected infrared
behaviour for the two point functions of the fields o(z) and p(z).
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Chapter 4

Applications to non-homogeneous

systems

4.1 Factorized scattering in presence of a defect
line

We have seen in the previous chapters that the bootstrap techniques based on the
factorizable S-matrix are extremely effective in the description of homogeneous inte-
grable systems. Such systems, however, are in many cases a mathematical idealization
of the real physical samples which may present instead boundary effects and various
types of inhomogeneity or defects. It is an interesting problem in statistical mechanics
to estimate the influence of the inhomogeneities on the results obtained in pure cases
and to develop the corresponding theory. With reference to systems with boundaries,
they have been the subject of a wide investigation which has employed a large variety
of techniques [56-62]. An important progress toward the understanding of QFT with
boundary has been recently provided by the bootstrap approach developed by Goshal
and Zamolodchikov for the integrable models defined on half plane [63]. The aim of
the present chapter is to describe this approach starting from the slightly more general
situation in which an infinite “defect line” breaks the translation invariance of a theory
defined on the whole plane [64]; as we will see, the boundary case is recovered in the
particular situation of an impenetrable defect. Before developing the bootstrap theory,
it is worth to briefly discuss general aspects of statistical models with lines of defect in
order to gain some insight to their properties [65-71].

One of the main reasons for considering extended lines of inhomogeneities is that

only such kind of defects may affect the critical properties of the pure systems. Indeed,
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in the opposite case where there are only a finite number of localized inhomogeneities
in the lattice, they would be eventually neutralized by iterating the Renormalization
Group transformations so that the regime of the pure model will definitely take over.

Scaling considerations are also useful to understand in simple terms the continuum
version of the models with an infinite line of defect and to show that they may inter-
polate between a bulk or a boundary statistical behaviour. For sake of clarity, let us
consider the simplest physical realization given by a system at temperature T in the
bulk but heated at a different temperature 7' along a line placed at the y axis. This
system may be equally regarded as two semi-infinite copies of the model at tempera-
ture T coupled together through the energy density at the defect line. Its continuum

properties are described by the euclidean action
A=Ap+g /dzr 8(z) e(r) (4.1)

where Ap is the action relative to the bulk and €(r) is the energy density with scaling
dimension v. The scaling dimension of the coupling constant g = (T — T') is then given
by y, = 1 —v. Consequently, all those systems with an irrelevant energy operator
of scaling dimension v > 1 will exhibit the bulk critical behaviour near a defect line.
On the contrary, those models which have a relevant energy operator with v < 1
will present a surface critical behaviour. The reason is that, in the former case the
effective coupling constant may become arbitrary small and then the action reduces to
that of the bulk theory, whereas, in the latter case it may take arbitrary large values
éuppressing all the fluctuations across the defect line between the two semi-infinite
copies which will eventually decouple.

An exception to the above pictures is given by the purely marginal case, i.e. v =
1 which is realized in the Ising model. The interesting result obtained in the past
by Bariev [66] and McCoy and Perk [67] is that the model presents a non universal
critical behaviour, with the critical indices of the magnetization operators continuously
dependent on the parameter g of the action (A.1). The energy operator on the contrary
remains a purely marginal operator for all values of the coupling constant g since its
critical exponent v is fixed at the Ising value of 1 [66, 67, 68, 69].

Let us now turn our attention to the boostrap theory of the integrable statistical
models with an extended line of defect placed along the y-axis in the two-dimensional
plane. The general action of the system can be written as

2 dg;
A= Ap + / &7 §(z)Lp <¢,-,-@—) , . (4.2)
where Ap stays for the action of the integrable bulk theory whose factorized S-matrix is

supposed to be known. The additional interaction, responsible for scattering processes
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which take place on the defect line, will generally spoil the original integrability of
the theory: particles which hit the defect with sufficient energy may excite internal
degrees of freedom of the defect (being eventually absorbed by it), or may give rise
to production processes with multiparticle states propagating through the two semi-
infinite systems placed on the two sides of the defect line. However, assuming that the
additional interaction along the defect line is still compatible with the existence of an
infinite number of conserved charges in involution, the dynamics drastically simplifies
and consequently is suitable for an exact analysis, as we show in the sequel.

By translation invariance along the y-direction (which we here identify with the
time axis in the Minkowski space), for the theory described by the action (4.2) we
still have the conservation of the energy but not of the momentum. Therefore we
may have scattering processes with an exchange of momentum on the defect line,
compatible though with the conservation of the energy. If in addition to the energy
other higher charges are also conserved, the scattering processes at the defect line must
be completely elastic. In particular, this means that a particle which hits the defect
line with rapidity 8 can only proceed forward with the same rapidity or reverses its
motion acquiring a rapidity of —8. A further effect of the interaction with the defect
line may be a change of the label of the particle inside its multiplet of degeneracy.
The interactions of the particles | 3;1 > with the defect line will then be described
in terms of the transmission and reflection amplitudes, denoted respectively by Ti;(8)
and R;;(8) (fig. 17).

The interaction of the particles at the line of inhomogeneity may be encoded in a
set of algebraic relations analogous to those which describe the scattering processes in
the bulk. In order to illustrate this, an additional operator D associated to the defect
line should be introduced in the theory'. This operator may be considered in relation
to an additional particle state with zero rapidity in the entire time evolution of the
system. Its commutation relations with the creation operators Af(ﬁ ) associated to the

asymptotic particles in the bulk are given by

AB)D = Ry(B)AN(—B)D +T;(8) D AYB) ;

DANB) = Ri(—B)D AY(~F)+T(~H) A(B)D - (4:3)

The first of these equations expresses the scattering of a particle that hits the defect
coming from the semi-infinite system on the left hand side with rapidity 8. The second
of (4.3) is obtained by an analytic continuation B — —f of the scattering amplitudes of

a particle that approaches the defect coming from the semi-infinite system on the right

1For simplicity, we discuss the case of a defect without internal degrees of freedom and therefore

carrying no additional indices. The formulation of the more generale case is straightforward.
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hand side. The consistency condition of this algebra requires the unitarity equations
Rij(B) Rjr(—B) + Ti;(B) Tin(=B) = bix 5 (4.4)
R{(B)TH—B) + T/(B)R5(-B) =0
Additional constraints emerge from the crossing relations
Ri(B) = S55(26)Rulir —B) ;
T5(8) = Ti(im—8) .
The first equation in (4.5) is obtained according to the argument proposed in [63] which

(4.5)

exploits the quantization of the theory in the scheme where the time axis is placed along
the z-axis. With reference to the second equation in (4.5), the transmission channel
of the process shares the same properties of ordinary scattering in the bulk, the only
difference being the occurrence of the particle D with zero rapidity. Thus, it is natural
to assume that in the transmission channel the crossing symmetry is implemented in
the usual way. We will assume the validity of eqs. (4.5) and will check that they are
actually satisfied each time we will provide explicit solutions of the scattering theories
with a line of defect.

As we discussed in section 1.1, the presence of an infinite number of integrals of
motion usually implies not only the elasticity of all scattering processes but also their
complete factorization, i.e. an n-particle scattering amplitude can be entirely expressed
in terms of the elementary two-body interactions. A crucial step for proving the fac-
torization property of the total S-matrix is to impose the associativity condition of
the algebra (4.3). In terms of physical process, this means that we prepare initially
an asymptotic two-particle state consisting of | Af(ﬁl)A;(ﬂz) > with 8, > B., and
we let it scatter with the defect particle D with zero rapidity. The final output of the
process should be independent from the temporal sequence of the elementary two-body
interactions. Although what we have just described looks like an ordinary three-body
process of the type that occurs in the bulk, there is however one distinguishing feature.
In fact, in the three-body processes which take place in the bulk, given an initial state
| Af(ﬁl)A;(ﬁz)AL(ﬁg) > identified by a set of three ordered rapidities 3, > B> > s,
there is an unique final state given by the reverse ordering of the rapidities and pos-
sible exchange of the internal indices among the particles. On the contrary, for the
scattering processes on the defect line we may have four possible final states, namely:
(a) the state with both particles reflected by the defect line; (b) the state with both
particles transmitted; (c and d) the states with one particle reflected whereas the other
one transmitted. The final states may also differ from the initial one for the exchange
of the internal indices and the above four possibilities give rise to a set of reflection-

transmission (RT) equations shown in fig. 18a-d.
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The first of these (fig. 18a) coincides with the well-known boundary equations
already analysed in [61, 62, 63],

S (By — o) Ryg(B2)S(By + o) Rep(B1) = Ran(B2) ST (B2 + B1)Ryo(B2)Seq(Br — B2) -

(4.6)
The RT equations associated with the configurations of figs. 18b-d are given respec-
tively by

S'm(B) — Ba) Tis(B1) Trma(B2) = S¥(By — B2) Tem(B2) Tar(B1)
SI(By — Ba) Tro(B1) Rea(Ba) = Ree(B2) SI(B1 + B2) Tse(B1) (4.7)
SI2(By — B2) Ryo(B2) SI(Br + B2) Tw(B1r) = Tav(Br) Rea(Ba) -

Although a general solution of these equations is still lacking, it is easy to see that they
become extremely restrictive once applied to QFT with a non-degenerate spectrum,
i.e. those which have a diagonal S-matrix in the bulk. In fact, whereas eq.(4.6) and
the first in (4.7) are identically satisfied, the last two equations in (4.7) become in this

case

Sas(Ba + Bb) = Sav(Bs — Ba) » (4.8)
Sab(Ba + Bo) Sab(Ba — Bo) =1,
Hence, from the first equation in (4.8) we see that the S-matrix in the bulk has to be a
constant and from the second equation (or equivalently from the unitarity condition)
this constant is fixed to be 1. Thus we conclude that the only integrable QFT with
diagonal S-matrix in the bulk and factorizable scattering in the presence of the defect
line are those associated to generalized-free theories.

Obviously this restriction on the bulk S-matrix does not apply when one considers
purely reflective theories because they are ruled only by equations (4.6). Non-trivial
solutions of these equations have been analysed for several models and they provide
explicit examples of QFT with boundary [72], some of them of relevant importance in

statistical mechanics.

4.2 Ising model with a defect line

As we have seen at the end of the previous section, the validity of the Transmission-
Reflection Equations in the case of non-degenerate mass spectrum selects S = —lasa
possible scattering matrix in the bulk. This solution can be identified as the scattering
" amplitude of the particle excitations of the Ising model, given by the massive Majorana

fermions. The Lagrangian density of the continuum theory in the bulk is given by
Ls = T(z,t) (i7", — m) (e, 1) - (4.9)

56



In the Majorana representation, given by 7° = o2, 4' = —i0y, the fermionic field
U(z,t) is real, i.e. ¥(z,t) = ¥(z,t). The physical content of the model, as defined by
the Lagrangian (4.9), does not depend on the sign in front of the mass term since it
can be altered by the transformation ¥ — ¥; ¥ — —U of the fermionic field. As it is
well known, the mass m is a linear measurement of the deviation of the temperature

with respect to the critical one
m=2m(T —T,), (4.10)

and the symmetry m — —m simply expresses the self-duality of the model. In the high
temperature phase given by m > 0, the vacuum expectation value of the magnetization
operator o vanishes, whereas, the corresponding quantity of the disorder operator p is
different from zero. Under the duality transformation, the role of order and disorder
operators is teversed whereas for the energy operator ¢, given by € = 1P¥, we simply
have a change in its sign.

On a square lattice, the Ising model with a line of defect can be realized in two
different ways (fig. 19). The first is the chain geometry with bulk coupling constants
J and modified couplings J parallel to the defect line. The second one is the ladder
geometry, with the modified set of couplings placed in the perpendicular direction.
Since the two geometric realizations are related by Kramer-Wannier duality symmetry,
from now on we can restrict our attention to one of them, say the chain geometry. In

the continuum formulation, the defect line introduces the additional term?

Lp = —gb&(z)¥(z,t)¥(z,t) (4.11)

to the Lagrangian (4.9). The new interaction is purely marginal and therefore the beta-
function associated to the coupling constant g is identically zero. The marginality of
the interaction has as a consequence that the theory presents a non-universal ultraviolet
behaviour in the magnetization sector, with the critical exponent of the magnetization
operators which depend continuously on the parameter g, whereas the energy operator
always keeps its original value of 1 of the Ising model [66, 67, 68, 69].

In this section we are interested in determining the reflection R(f5) and transmission
T(B) amplitudes for the scattering of the fermion with the defect line, i.e. the S-matrix
elements between initial and final states u(p;) and u(ps) with p; = £p;. To this aim,
let us consider the perturbative series of the Green function of the fermion field ¥

based on the Feynman rules

2The exact relationship between g and the lattice coupling constants will be established in section

4.5 by comparing correlation functions computed in the lattice and in the continuum formulation.
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7 i(2m)2 8% (p — ) phimy ——@—— = —ig2m §(po — 7o)

For the self-energy entering the exact propagator we have the following series of dia-

—_@bze—o—»— + o8 |+ 00— | ---

where we have to integrate on the spatial component of the momentum running in the

grams

internal lines. The integral on the intermediate state is given by

. . 1 m O—{—m
‘_;c—. = (—ig)*18(ko — po) [ %k—ﬁ P,—_'H%;m = —g?§(ko — po) 5
In the above quantity we have discarded by parity the infinity related to the linear term
in k. With this prescription, the geometric series for ¥ is finite and can be expressed
in a closed form as

w— Z"%(PO’)’O —m)
w —1im sin X

w=+/pt—m? , sinx = — J

-
142

We can now apply the usual LSZ reduction formulae, and for the transmission and

Y(po) = 2w 1 6(po — pp) sinx , (4.12)

where

reflection amplitudes defined by
ot <B'| B >in= 2186(8— B)T(B,9)+2m6(8 + B') R(B9) ,

we have

7(8,9) = cos x sinh

sinhB —isiny
(4.13)
sin x cosh 3

R(B,9) =

The transmission amplitude also contains the disconnected part relative to the free

7 .
sinh 8 —#sin x

motion.

Before commenting on the properties of these amplitudes, it is interesting to present
an alternative derivation of (4.13). This is obtained by implementing the algebra (4.3)
on the creation operators of the fermion field. Let ¥ (z,t) be the solutions of the free

Dirac equation in the two intervals ¢ > 0 and z < 0, i.e.

(a,t) = 6(x) V4(a,t) + 6(~2) T_(2,1), (4.14)
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with the value at the origin given by ¥(0,t) = 3 (¥4(0,t) + ¥_(0,¢)). The mode
expansion of the two components of the fields ¥4 (z,t) is expressed as

d £ —im(t cosh B—z si - im(tcosh B~z si
ﬁymnzzfgpmAmwp (teoshp—zsinhf) 4 T Al () eim(tcoshpmesinhA)] (4.15)
ﬁr—
27

_8 —im(t coshB—z si -8 ] im(icosh B—xsi
'gb((i))(:n,t) = — we 2 Ay(B)e (tcoshf—asinhf) | ¢ 2Azi)(,8)e (tcosh 3 nhﬁ)] )

with w = exp(in/4), @ = exp(—in/4). The operators A.(F) and AL(B) satisfy the

usual anti-commutation relations of a free fermion

{4(8),4L(6)} = 2w 6(8 - 9) , (4.16)

although they are not all independent. They are related to each other by the conditions
at z = 0 which arise from applying the eqgs. of motion to (4.14), i.e.

B =)0, = 5@ +92)(0,4) ; (417
@ —eD)0,8) = 4@ +4)(0,0) . '

These equations are equivalent to the relationship between the modes

ale) ) _ oy [ AR
o ( 1(~ﬁ>) - (e ) 1

where

_8 . B g . B
we™? + fwer  —wer + fwe™?
M = _B 9. B bl 9. _B )
we™ 2 +5wez we? — Jwe 2
8 g _8 8 g8
—we? — jWe”? we 2 — jwe?
N = £ 2 _B _B 2 B .
—we? —Twe ? —we 2 + swe?
Hence,

( AL(B) ) N ( AL (-8) ) _ ( R(8,9) T(8,0) ) ( AL(-B) )
AL(-P) Ap) ) \TB:9) RBg) )\ ALB)

(4.19)
with R(B,g) and T(3, g) given in (4.13). Note that, although the boundary conditions
(4.17) are both linear in g, there is however a feedback between the two components of
the fermionic field. The final dependence from the coupling constant is then expressed
in terms of trigonometric functions of the auxiliary angle x.

Given the explicit expressions of the amplitudes (4.13), it is easy to check that
they satisfy the unitarity and crossing equations (4.4) and (4.5). They present several

interesting features. Firstly, by taking their sum and difference we obtain

sinh 1 (8 +1x)

e =T(0,0)+ R(Br9) = St
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cosh% (B —1ix)
cosh 2 (B +1x)

which can be considered as partial-wave phase shifts, with § and 6, crossed functions

e?% = T(B,9) — R(B,9) =

of each other. Secondly, notice that as functions of the coupling constant g, they satisfy
a strong-weak duality given by

T<ﬁ,§) = —T(8,9) , R(ﬂ,g) = R(B,9) - (4.20)

At the self-dual points g = +2 the transmission amplitude vanishes and therefore the
defect line behaves as a pure reflecting surface. From the unitarity equations (4.4), the
corresponding reflection amplitudes R(8,+2) become pure phases, as can be explicitly

seen by their equivalent expressions

cosh # & isinh £

R(B,£2) = — .
(6 ) cosh—gq:isinhg

(4.21)

They coincide with the reflection amplitudes of the Ising model with fixed and free
boundary conditions respectively, as determined in [63]. To establish directly the pure
reflecting properties of the defect line at the self-dual points, let us analyse more closely
the decoupling which occurs in the boundary conditions when g = £2. For g = 2, the
boundary conditions (4.17) become

@ =) 0,6) = @Y +9D)0,8) ;

(4.22)
8 = 4(0,8) = L +92)(0,1),
and taking their sum and difference, they can be written as
(), _ (4.23)
(7 +427)(0,8) = 0.
For g = —2, the original boundary conditions (4.17) are reduced instead to
(¥ +90)(0,8) = 0; (4.24)
(@ —4)(0,8) = 0

Equations (4.23) and (4.24) explicitly show that the two semi-infinite systems across
the defect line are completely decoupled, and each of them can be treated as a QFT in
the presence of pure reflecting surface whose role is to supply the appropriate boundary
conditions [63]. At first sight, though, one may be surprised by the asymmetric form
assumed by the eqs. (4.23) and (4.24) which treat differently the two fermionic fields

U.(z,t). However, this asymmetry has a physical origin. By means of the mode
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expansion (4.15), the first equation in (4.23) and (4.24) can be used to determine
directly the reflection amplitudes R(8,+2). By the same token, using the second
equation in (4.23) and (4.24) we find R(—8,+2), instead. But, this is physically
correct, the reason being that, in order to have a reflection of a particle described by
U, (z,t) with the defect (boundary) line, this particle must approach the origin with
positive rapidity 8. On the contrary, a reflection of a particle described by ¥_(z,1)
with the defect (boundary) line is only realized for negative values of its rapidity.

Further support of the identification of R(3,+2) with the reflection amplitudes of
the Ising model with fixed and free boundary conditions comes from the analysis of the
relationship between the lattice and the continuum formulations of the chain geometry,
which will be established in section 4.5. Anticipating the result, this is provided by the
formula

sinx = tanh2(J — J) . (4.25)
Hence, the condition sin y = —1 corresponds to a coupling constant J along the defect
line infinitely larger (and positive) than the coupling constant J of the bulk. As a
consequence, the spins along the defect line are frozen into a fixed boundary condition.
On the other hand, the condition sin x = 1 is obtained in the anti-ferromagnetic limit
J — —oo where the spins along the defect line are aligned in antiparallel configurations.
Since the nearby spins couple to a surface with vanishing magnetization, this situation
corresponds to the free boundary conditions [65].

Let us now turn our attention to the analytic structure of the reflection and trans-
mission amplitudes. For negative values of g, the interaction with the defect line is
attractive and consequently the theory presents a bound state with binding energy
e, = mcos Y. It is quite instructive to calculate the transmission and reflection ampli-
tudes Tp(B) and Ry(3) relative to the scattering of the fermion with the excited state
present on the defect line. The first thing to observe is that both amplitudes R(3) and
T(B) present a pole singularity at 8 = ix and 8 = i(7 — x). The reflection amplitude
R(S) has positive residue at both locations, given by isinx. On the other hand, T'(8)
presents a positive residue with the same value as R(f8) at 8 = ix and a negative
residue —isin x at the other pole 8 = i(w — x). The problem of identifying which one
of the two poles corresponds to the bound state is solved by selecting the singularity
with positive residue in both amplitudes. This is the pole at f = ix. The relative
binding energy is positive, as it should be. To recover the transmission and reflection
amplitudes relative to the excited state, we have to impose the commutativity of the
graphs shown in figs. 20a-d. Since the S-matrix in the bulk is —1, the reflection ampli-
tude Ry(B) coincides with the original one i.e. Ry(8) = R(B) whereas the transmission
amplitude is given by Ty(8) = —T(B). If we again identify the singularity associated
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to a bound state as that pole with a positive residue in both channels, we see that for
the defect bound state amplitudes the role of the two poles has been reversed! Namely,
the pole which corresponds to the bound state in Ry(0) and Ty(B) is now located at
B = i(m — x) and is relative to the original ground state of the defect line3.

As a final remark of this section, the marginal nature of the defect interaction in the
Ising model can be also inferred by looking at the high-energy limit of the amplitudes.

For large values of 8 we have

T(B)~cosx , R(B)~isiny . | (4.26)

Hence, except for the special values of the coupling constant g where one of the two
quantities vanish, both amplitudes are always simultaneously present. Since this limit
probes the short distance scales of the model, we see that its critical properties of bulk

and surface behaviour are simultaneously present.

4.3 Bosonic theory with a defect line

Another solution of the reflection-transmission equations is provided by the massive
free bosonic theory with the S-matrix in the bulk given by § = 1. As an example of a
bosonic theory with a line of defect, we consider the model described by the Lagrangian

1
L = 5 [(0up)? —m?e* g 8(2)¢’] - (4.27)
For the equation of motion we have
[O+m?+ g8(z)|e =0 . (4.28)

As for the Ising model, one can obtain the reflection and transmission amplitudes
by an exact resummation of the perturbative series in the coupling constant g. The

calculations are analogous to the fermionic case, and rather than repeating them here,

3Note that the presence of the transmission amplitude has been quite crucial in order to discriminate
which one of the two poles with positive residue in the reflection channel corresponds to the bound
state. In the pure reflecting situation, as for instance may be the case of the Ising model with a
boundary magnetic field considered in [63], the occurrence of positive residue at both poles in the
reflection amplitude and a misinterpretation of their role could in fact lead to a paradoxical hierarchy

of bound states obtained by applying iteratively the boundary bootstrap equations.
iRor an -irrelevant interaction which leads to a bulk critical behaviour near the defect line, we

expect in fact a vanishing of the reflection amplitude in the high-energy limit. On the contrary, for a

relevant interaction, the system should show a purely surface critical behaviour characterized by the
vanishing of the transmission amplitude.
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we prefer to exploit the algebraic approach directly. The solution of the equation of

motion may be written as

o(2,t) = B(2)ps (2,8) + 6(~2)p- (2, 1) , (4.29)

where the mode decomposition of the two fields p1(z,t) is given by
dlB —im(t cosh B~z sin i tm(tcosh B—z si
pe)(m,8) = [ 5 [Agwy(8) emimicoshomzsimd) i g1, (g) meom= ] (4.30)

The operators A.(8) and AL(ﬁ) satisfy the usual commutation relations of a free

massive boson
[4:(8), AL(8)] = 2w 8(B—6) . (4.31)
The interaction along the defect however makes them not linearly independent. In

fact, substituting eq. (4.29) into the equation of motion, the latter is equivalent to the

boundary conditions

¢+(0,t) —_(0,¢) = 0 (4.32)
o0, ~ - (0,0) = s (0,8) +-(0,1)),

4m

which, in terms of the mode, can be written as

( AL(B) ) _ (R(ﬁ,g) T(ﬂ,g)) (A?—'(”ﬁ)) , (4.33)
AL (-B) T(B,9) R(B,9) AL(B)

The transmission and reflection amplitudes in the above formula are given by

sinh @
T8 9) sinh B + ig/4m ’
(4.34)
_ 1g/4m
R(B,9) = - sinh B +ig/4m

These amplitudes satisfy the unitarity and crossing equations (4.4) and (4.5). It is
easy to see that by substituting sinh 8 in (4.34) with the linear momentum k, the
two resulting amplitudes are the same as those obtained in one-dimensional quantum
mechanics for the scattering in a §-function potential (see, for instance, [73]). However,
due to the relativistic nature of the QFT, there is an important difference between the
two cases, as shown by the analysis which follows on the pole structure of the amplitudes
(4.34).

For the 271 periodicity of the amplitudes, we can restrict our attention to the strip

—im < B < i7. Let us consider initially the case when g is a positive quantity. As long
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as g satisfies the condition 0 < g < 4m, there are two poles on the negative imaginary
axis relative to the unphysical sheet. By increasing the value of g they approach each
other, and there is a critical value g, = 4m where they collide at position 8 = —im/2.
Additional increment of the coupling constant causes the poles to move in the complex
strip keeping their imaginary part equal to —iw/2 but acquiring a real part (fig. 21).
In terms of QFT, this means that the bosonic theory with a coupling constant of the
defect line larger than 4m presents two resonance states. As g grows, these poles
move to infinity, and in the limit g — oo, the defect line acts as a pure reflecting
surface. Indeed, the transmission amplitude vanishes, whereas the reflection amplitude
expresses the fixed boundary condition ¢(0,t) = 0.

Let us now analyse the case when g is a negative quantity. In the range —4m <
g < 0, the amplitudes present two poles placed on the positive imaginary axis relative
to the physical sheet. The closest one to the origin can be interpreted as a defect
bound state. By decreasing g, these two poles approach each other until they finally
collide at B = 47 /2 for the critical value g, = —4m. Further decrement of the coupling
constant makes them move in the complex strip with an imaginary part equals to
ir/2 and with a real component which increases by decreasing g. However, these
poles are now located in the physical strip and therefore the theory presents instability
properties. The easiest way to explicitly illustrate this instability is to consider the
analytic continuation 8 — (1,325 — ﬁ) in R(B). As discussed in section 4.5, the resulting

A

quantity R(8), given by
. g/4m
R = — 4.35
(ﬂ?g) COShIB+g/4m ? ( )
can be interpreted as the amplitude relative to the emission of a pair of particles

with momentum 3 and —8 from the defect line placed along the z-axis [63]. Then, for

g < —4m, R(B) presents a pole for real values of 8 that induces a spontaneous emission
of pairs of particles. The occurrence of such processes obviously spoils the stability of
the theory.

In light of the above results, we can summarize the discussion by saying that the
QFT associated to the Lagrangian (4.27) makes sense only for values of g in the range
—4m < g < co. In a path integral approach to the problem, it is easy to see that there
may be a competition in the Lagrangian (4.27) between the genuine mass term and
the defect interaction. Adopting the interpretation of the é-function interaction as a
suitable limit of a constant potential in the strip (—¢, €) around the origin, when g is
sufficiently positive in this interval, we may have an effective mass of the field ¢ in this
strip higher than the threshold mass m in the bulk. This produces the resonance poles

in the transmission and reflection amplitudes. Viceversa, for negative values of g, the
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effective mass of the field ¢ in the tiny interval around the origin is smaller than the
mass gap in the bulk and it decreases until it vanishes at g = —4m. After this value it
becomes imaginary, giving rise to the instability property previously discussed.

It is likewise interesting to understand the different behaviour of the bosonic and
the fermionic theories in terms of the coupling constant. The reason is that the physical
content of the fermionic model does not depend on the sign of the mass term, which
enters linearly in the action. Therefore, by varying the coupling constant g, there is
no a real competition with the genuine mass term in the action, so that the fermionic
model cannot present instabilities or resonance states. In fact, crossing the critical
values g = =+2, the poles simply interchange their positions, i.e. the weak coupling
regime swaps with the strong coupling one.

As a last comment on the bosonic theory analysed in this section, the defect in-
teraction is associated to an irrelevant operator and therefore the defect line should
be completely transparent in the ultraviolet limit. Indeed, taking the the high-energy
limit 8 — oo of the amplitudes (4.34), the reflection amplitude vanishes whereas the

transmission amplitude is identically equal to 1.

4.4 Models with multi-defect lines

The solutions so far determined for the fermionic and bosonic theories in the presence
of a single line of defect can be generalized and geometrical situations with a richer
structure of defect lines can be also included. In this section, we analyse the case of
two parallel lines of defect, and then the quantization conditions induced by a periodic
array of defects. Due to the different behaviour of the fermionic and bosonic theories,

it is convenient to discuss them separately.

4.4.1 Fermionic theory

Let us initially consider the Ising model with two parallel lines of defect, one placed at
the origin along the y-axis with strength g;, the other shifted by a and with strength
g2 In the fermionic formulation of the model, the field ¥(z,t) has a free motion in
each of the three intervals I_ = (—o0,0), Iy = (0,a) and I = (a,+0o0) separated by
the two defect lines. Therefore in each of the three intervals the field ¥(z,t) admits
the usual decomposition in modes and the role of the defect lines is to provide the

boundary conditions at the edges of the intervals. The first of them is at z = 0 and is
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given by

@~ 0,8) = @i +9)0,8) 5 (4.36)
(@8 = p)(0,8) = S8 +9P)0,1)
whereas for the second boundary condition at ¢ = a we have
(2 2) _ g2 (1) (1 .
B — N at) = 2+ 9N a,1) 5 (4.37)

B — N (a,t) = 2@F + 9P (at) -

In these equations the intervals are labelled by the subscript of the fields while their
components by the upper indices. By using the notation R; and T; (¢ = 1,2) for the
reflection and the transmission amplitudes relative to the defect line with strength g,
it is easy to see that eliminating the intermediate modes relative to the interval I,
there is a linear relationship between the modes of the fields in the intervals J_ and I
given by

( AL(B) ) _ (R(ﬂ,gl,gg,a) T(ﬁ,gl,gg,a)) (A’L(—ﬁ)

. D).
AII—(*ﬁ) T(ﬁ7917927‘1) R(IB791792)0’) AI&-(IB)

where

T,(8)Tx(8)

T(ﬂ,ghg%a) = 1_7](ﬁ,a)R1(,3)R2(IB),

(4.39)
Ry(8) + 1(8, a) Ra(B)[TF(B) — R1(B)]
1- ﬂ(ﬁ,a)Rl(ﬁ)Rz(ﬁ)

In the above expressions 7(43,a) is a pure phase given by 7(8,a) = exp[—2imasinh 8].

R(ﬂaghgha) =

The above amplitudes satisfy the unitarity and crossing equations (4.4) and (4.5).
They describe the physical situation of a particle coming from the interval I_ with
rapidity 8 which hits the first defect line and, as result of this interaction, it can
be either reflected or transmitted. When it is reflected, it appears as an asymptotic
particle with rapidity —3 whereas when it is transmitted it approaches the next defect
and can again be reflected or transmitted. As shown in fig. 22, these two types of
process may be repeated an arbitrary number of times at the two defect lines.

Due to the existence of the fixed points g = &2 of a single defect line, it is interesting
to analyse some special limits of the expressions (4.39). To begin with, note that, at
the values g; = +2 where T} = 0, the total transmission amplitude T'(8,g1,92,2)
vanishes as well, whereas the reflection amplitude reduces to a pure phase given by
R(B,+2,g2,a) = Ry(B,£2). In this case, the first defect acts as a pure reflecting

surface which therefore completely screens the presence of the second defect. The
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total transmission amplitude also vanishes when g = +2. Concerning the reflection

amplitude, it becomes a pure phase given by

sinh B(1 +n71(B,a)sin x1) + isinx(1 — n71(B, a)) .

sinh B(1 + 7(B,a)sinx;) — sin x(1 — (8, a))
(4.40)

The total reflection process is now the result of an infinite sequence of elementary trans-

R(ﬁ) g1, :‘:2’ a’) - 77(:37 CL) R?(lga j:2)

mission and reflection scatterings at the first defect line combined with pure reflecting
processes at the second defect line. Hence it is not surprising that the final expression
depends on both R,(3,42) and the separation distance a.

Except for the values of g when the defects behave as mirror surfaces, the possibility
for the fermion to go back and forth between the two defect lines produces typical
resonance phenomena which are illustrated for instance by plotting the absolute value
of T(B,41,92,a). An example is shown in fig. 23.

Finally, by taking the limit @ — 0, the two defect lines behave as a single one but
with an effective strength g given by

g1+ g2

_ _9ite (4.41)
1+ g192/4

This composition law of the defect strengths is similar to the addition of velocities in
relativistic dynamics. The effective coupling constant g has as critical values g = +2
and reaches these limits when either g; or g, are equal to £2. This can be also seen

by analysing the fixed points of the composition law defined by the iterative map

gnt+4g
ey = oY 4.42
g +1 1+gng/4 K ( )

for some initial value g.
The natural generalization of the situation with two defect lines is to consider a
periodic array of defects all with equal strength g and separated by a distance a. The

fermionic field satisfies in this case the equation
'8 —m—g 3 §(a+na)| Ue,t) =0, (4.43)
and admits the decomposition
U(z,t) = i f(z —na)f(—z + (n+1)a)¥,(z,t) , (4.44)

with ¥,(z,t) solutions of the free Dirac equation. The dynamics of the model is entirely

encoded into an infinite set of linear equations relative to the boundary conditions
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between the interval na and (n — 1)a, i.e.

B2, — 9@)(na,t) = L+ W) (na,t) ;

@B, — pDY(na,t) = L@E + 9P (nayt) - (4.45)

The simplest way to solve these equations is to employ a relativistic generalization of

the Bloch theorem [74], i.e to associate a wave vector k to the spinor field ¥ such that
U(z +a,t) = e U(z,t) . (4.46)

Equivalently,
¥, (na,t) = e* ¥, _((n —1)a,t) . (4.47)

The wave vector k can always be confined to the first Brillouin zone —7/a < k < 7/a.

Plugging (4.47) into eqs. (4.45), the resulting system is compatible provided that the

equation
sin(ma sinh 3)

sinh

is valid. This equation gives rise to a band structure in the energy levels of the Majorana

coska =

[cos(ma sinh ) — sin x (4.48)

cos X

fermion of the Ising model, completely analogous to the periodic potentials considered
in condensed matter physics. In fact, eq. (4.48) can be satisfied for real k if and
only if the right hand side of the equation is less than unity. Consequently, there will
be allowed and forbidden regions of § and the corresponding spectrum of the energy,
given by E = mcosh 3, consists of a family of energy bands. A characteristic form of
the spectrum is plotted in fig. 24. For the pure reflecting values g = £2, the above

equation reduces to the quantization condition of the rapidity variable 8
sinh 8 = +tan(masinhg), (4.49)

which arises by considering the fermionic field defined in a strip of width a with fixed
(+) or free (—) boundary conditions at the edge of the interval.

4.4.2 Bosonic theory

The discussion of the bosonic theory largely follows the previous one and egs. (4.39) is
valid as it stands on the condition that we insert the bosonic amplitudes instead. Also
in this case there are typical resonance phenomena produced by the trapping of the
bosonic particle between the two defect lines. There is however a significant difference

with respect to the fermionic case and this concerns the composition law relative to
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two defect lines with a separation @ — 0. In this limit, the two defect lines behave as

a single one with an effective strength g given by

g=6+3 . (4.50)

Due to the peculiar properties of the bosonic system discussed in section 4.3, this
composition law implies that a system with two defect lines in the limit a — 0 may
become unstable although each of the defect lines taken individua]ly does not present
any instability property. Viceversa, one can obtain a well-defined bosonic system as a
result of the limit @ — 0 of a system which presents instability properties at one defect
line and resonance states at the other.

Taking the limit g; — +oo, the first defect line becomes a pure reflecting surface
and the total transmission amplitude vanishes. In this case the reflection amplitude
reduces to R(8,+00,g2,a) = —1. The total transmission amplitude also vanishes when
the second defect line acts as a pure reflecting surface. The corresponding reflection

amplitude is a pure phase given by

sink 8 — iz2(1 - 17(8,9))
sinh 8 +1;%(1 — 7(8,a))

As in the fermionic case, the presence of an infinite periodic array of defect lines of

R(B, g1, +00,a) = —n(B,a) (4.51)

strength g and separation a gives rise to a band structure described by a Kronig-Penney

type equation
, . inh
cos ka = cos(masinh B) + 9 Sln("ﬂf‘lsm B) . (4.52)
m sinh 8

The pure reflective case g — +oo gives rise to the quantization condition

masinhB = 7n , (n=0,%£1,...) (4.53)

relative to the bosonic field in a strip of width a with fixed boundary conditions
©(0,t) = p(a,t) = 0 at the end points of the interval.

4.5 Correlation functions

The purpose of this section is to show that the spectral methods described in the previ-
ous chapters dealing with bulk theories are also suitable for computing the correlation
functions of models with linear inhomogeneities.

The easiest way to approach the problem is to use a formalism which takes full
advantage of the solution of the theory in the bulk. To this aim, it is convenient to

interchange the original role of the z and the ¢ axes by the transformation z — —it,
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¢ — iz. The new space has a Minkowski structure with the defect line placed now
at ¢ = 0. In this new geometry, the space of the states is the same as in the bulk,
and therefore, even in the presence of the defect line, the local operators ¢; can be
completely characterized by their known form factors. The presence of the defect line
can be taken into account by defining an operator D placed at t = 0, acting on the
bulk states. This operator plays the role of the S-matrix of the problem, and therefore,

standard formulas of QFT allow the correlation functions to be expressed as

<0 l T[¢1(-’E1,t1) . ..D. . -¢n(mn7tn)] l 0> .

<® t1)...Pn(z,,t,) > =
(znt) (@ntn) > <0[D|0>

(4.54)

In the above formula, &;(z;,t;) are the fields in the Heisenberg representation, i.e.
the representation where the time evolution is ruled by the exact Hamiltonian of the
problem, including the defect interaction. On the other hand, ¢:(z;,t;) are the field
operators of the bulk theory and, as such, their time evolution operator is the bulk
Hamiltonian®. The main advantage of eq.(4.54) is that, using the completeness rela-
tion of the bulk states, its right hand side can be entirely expressed in terms of the
Form Factors of the bulk fields and the matrix elements of the operator D which are
determined as follows. '

The defect operator D encodes all information relative to the physical processes
which take place at the defect line. To examine them, we have to initially realize
that the first effect of the interchange of the = and the ¢ axes consists in an analytic
continuation of the original rapidity 8 — (z% — ﬂ), the reason being that, to preserve
the Minkowski structure in the new set of axes, we have to interchange correspondingly
the momentum and the energy role. For convenience, it is useful to introduce the new

transmission and reflection amplitudes, given by
- T , T
i) =7(5-8) , RO =R(i5-8) . (4.55)

They enter the expression of the simplest matrix elements of the operator D, given
by D11 =< B | D |8 >, Dap =< B1,02 | D |0 >and Doy =< 0| D] B,B >
For the fermionic and the bosonic theory analysed in the previous sections, the first
matrix element is easily computed by resumming the perturbative series with the defect

interaction now localized at t = 0 and the result is

<B|D|6>=2xT(B)6(B—9) . (4.56)

5An equivalent way to look at eq. (4.54) is to consider a transfer matrix approach in the euclidean
space. The transfer matrix may be written as 7 = exp[—Hpt] for all ¢ but ¢ =0, where it is placed
the defect line. Hence D in (4.54) can be interpreted as the continuum limit of the transfer matrix

operator which connects the states below and above the defect line.
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By the same means, for the other two matrix elements, we have respectively

< B1,B2|D]0>= 27 R(B:) 6B+ B2) (4.57)

and
<0|D|6,60,>= 2r R(6,) (6, + 62) . (4.58)

Hence, T(ﬁ) describes the process where a particle with rapidity @ hits the defect line
and is transmitted through it, keeping the same value of the rapidity. On the contrary,
R(B) may be interpreted as the amplitude for the creation or the annihilation of a pair
of particles with equal and opposite rapidity 8. These three processes are compatible
with the dynamics of the model because in a situation where the defect line is placed
at t = 0, the processes are constrained by the conservation of the momentum but not
of the energy.

For the general matrix elements of the operator D, we can exploit the factorization
property of the scattering theory and write down a set of recursive equations which
involve the elementary two-body interactions considered above. For the bosonic case,

the recursive equations are expressed by

<PBiyeesBisersBm, B D] b1,...0,>=
= 2m ZR(ﬁ)5(ﬂ+ﬂ,) <:81a°-°)16i—17:6i+17"'/3m ID ] 91,...9,, > +(459)

+21 S T(B)S(B—0;) <Py B | D |01y 0im1, 001,000, 00 > ;
j=1

<PBiy.--esBm,| D|b1,...0,,0 >=
=21 S R(6)5(8+6;) < Biy--eyBm | D |01,y 0im1, 0041, .-, 00 > + (4.60)
=1

+27 iT(e)a(g‘_ﬁJ) < ;817---7/81'—17,3_7'4-1,---,,8m ID l 91,-'-7971 >

J=1
For the fermionic case, taking into account the anti-commutation relations of the fields,

they can be written as

<161""7/Bi)'°°7ﬁm)/8|D|917---9n>= (461)
= 20 Y (=1 RSB+ B) < Buye s Bicts Bivts- B | D |01y > +
+2r i(—l)ﬂ':i’(ﬁ)a(ﬁ—ej) < By B | D Oayee b5ty Biity s>
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<:81a-°-7,8m,lp ‘ 91,...9,”9 > =

n

= 2m Z(——l)'R(G)&(G + 91) < ﬁl) . °'7ﬁm l D I 917' .- 791'—1791'-}-17' .- agn > —{462)

=1

+2m 3 (=1 IT(6)8(0 - B5) < B, sBic1,Bisty e s Bm | D101,y bn >,
j=1

These recursive equations express the exact resummation of the perturbative series
associated to the scattering matrix elements < m | D | n >. Since the particles are
created or destroyed in couples, the non-vanishing matrix element < m | D|n >
are only those with m — n even. They are proportional to < 0| D |0 > (which,
for convenience, is set equal to 1) and the recursive equations permit to express all
of them in terms of the elementary matrix elements Dy 1, D20 and Dy, as previously
determined.

A useful method for solving the recursive equations is to introduce a generating
functional of the matrix elements of D by the formula

G( = ﬂﬁ_) — — [

) = exo [ a6 (22 o) + w81+ HEnEn©)] - (459
G depends on the two currents n(3) and 7(8), which commute or anti-commute, de-
pending on whether we are considering the bosonic theory or the fermionic one. The

matrix elements of D are then given by

0 0 0 0 G
87(6,) " 07(61) On(B1)  In(Bm)

<Buyee By | D1y By >= (2m)7F

n=~=0

(4.64)

We are now in the position to compute correlation functions of local operators of
the Ising model and the bosonic theory with a line of defect. Note that in computing
the left hand side of eq. (4.54) we should consider two different cases, namely: (a) the
case where some of the operators ®; are in the upper half-plane and the others are
in the lower one, or (b) the case where the operators &; are all in one semi-plane, for
example the upper one. In the former case, one has to use the general matrix elements
<1i|D|j>,and consequently both transmission and reflection amplitudes will enter
the final expression of the correlation functions. In the latter case, on the contrary, the
correlation functions will depend only on the reflection amplitudes R(B) because, in
virtue of the time ordering in eq. (4.54), the defect operator D is in this case the last
in the row and so, it acts directly on the vacuum state | 0 >. Hence, the only matrix
elements which enter the computation are D;g =< i | D | 0 >. Those describe the
creation of the particle pairs and therefore only depend on fZ(ﬁ )-
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In the remaining part of this section, using the form factors of the Ising model
determined in [5, 23], and the matrix elements of the defect operator we compute some
correlation functions of this model in the presence of the defect line®. The simplest one
is the one-point function of the energy operator €(z,t) which can be computed through
the formula

eo(t) = > <0]|e(z,t) [n><n|D|0> . (4.65)
n=0
The energy operator couples the vacuum only to the two particle state, as can be easily
checked by the fermionic representation of this operator, and for its matrix element we
have

<0 |elz,t)] B, B >= 2mmsinhﬁ1'2’52 X (4.66)

X exp [—mt (cosh 81 + cosh B;) + ima (sinh B, + sinh 3,)] ,

Hence the above sum (4.65) consists of only one term and using eq.(4.57), it can be

expressed as

: o sinh2 —2mtcos
Eo(t) =m mnx/(; dﬂzm—gae 2mtcosh 3 . (467)

The one-point function does not depend on z, as it can be equivalently argued by
translation invariance along this axis. The above integral reduces to closed expressions
in terms of Bessel functions when the defect line acts as pure reflecting surface. In the

case of fixed boundary conditions, we have

e(t) = —m [K;(2mt) — Ko(2mt)] , (4.68)
whereas for free boundary conditions

e(t) = m [K1(2mt) + Ko(2mt)] (4.69)

In the general case, the one-point function interpolates between the two curves. The
critical exponent of the energy operator in the presence of the defect line can be ex-
tracted by looking at the ultraviolet limit ¢ — 0 of its one-point function. For this
limit we have .
sin x
€olt) ~

olt) ~ =5

From this expression, we see that the defect line does not influence the critical exponent

(4.70)

of the energy operator, which is the same as in the bulk, but rather enters the uni-
versal amplitude of the one-point function. For the pure reflecting case, the universal

amplitudes coincide with those calculated in [60].

6All correlation functions will be computed in the euclidean space obtained by the analytic con-
tinuation ¢ — 2.
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The relationship between the coupling constant in the continuum theory and in
the discrete formulation can be extracted by comparing eq. (4.70) with the analogous

lattice computation, which reads [75]

eo(t) ~ tenh A=) zétj 7 (4.71)

Hence, we have the following identification
siny = tanh2(J —J) . (4.72)

In addition to the one-point function of the energy operator, it is also interesting to
compute its two-point function. To simplify calculations, it is convenient to define the

function

exp|[—t cosh 8 + iz sinh ]
cosh 3 —sinx )

F(z,t) = = / dp

Let us initially consider the situation where the energy density operators are on opposite

(4.73)

sides of the defect line, i.e. t; > 0 and ¢; < 0. The relevant expression in this case is

given by’
Gilprps) = 3. <0l e(p) |i><i|D|i><jlelp) [0> - (4.74)
1,J
As before, the above series terminate. To explicitly evaluate it, in addition to the

matrix elements Dy and Dy 2, we also need the matrix element D, given by

<B1,B2 | D1 61,0,> = (2m)? [R(B) R(61)8(B1 + B2)8(6r + 62) +
+T(B1) T(B2)8(B1 — 6:) 8(B2 — 62) +  (475)
— P(B1) T(B2) 8(61 — 62) 6(B> — 61))]

With the notation t = t, — t; and z = o — @1, eq. (4.74) can be expressed as

Gi(p1,p2) = cos’x [(aaa F(z, t))2 ('g:—zF(m,t))z (gtF(:z: t)ﬂ +

+ eolta) eolta) - (4.76)

When the defect line acts as a pure reflecting surface, all fluctuations across it are
suppressed and this formula correctly reduces to the vacuum expectation values of the
energy densities.

Let us consider now the situation where the two energy operators are on the same

side of the defect line, with ¢t > ¢ > 0. For convenience, let us introduce the notation

TTo simplify the notation, in the sequel we denote the couple of coordinate (z;,t;) simply by pi-
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t=ty—t, L=ty +t1, T = @y — 2, and 7 = v/z2 + 2. The two point function can be

written in this case as

Ga(p1,p2) = Z<0| (p2) |i><il|elpr)|i><i|D|0> . (4.77)

There are only a finite number of non-vanishing matrix elements of the energy density

and therefore the series truncates. It can be written as

Ga(p1,p2) = L+ LI+ 15, (4.78)

where

dB, dB,
o= LTI G| o) e >< B pr) [0< 01D 0>

oo 2 2
o d3; dgs,
L = 21121 /+ 551_ & 2IB 0| e(pa) | Br,B2 >< 1, B2 | €(p1) | B3, Bs >< B3, | D |0 >
1 ©dp;  d
I3 = ﬂ/:io 2% 2ﬁ6 <Ole(p2)lﬁl7ﬂ2 ><181’:B2le(pl)l:83)--,,86 >< ,637"'7.36‘@‘0>

I; coincides with the two-point function of the energy operator in the bulk,

b = m? {(%m,(mr))z + (5 ;Komr))? - (Ko(mr»?]

"The qﬁantities which appear in I, and I5 are the higher matrix elements of the energy
density (which may be directly computed by the fermionic representation of this op-
erator, ¢ = 10 ¥) and the matrix elements of the defect operator D, given by (4.64).
Considering that the computation of these quantities is lengthy but straightforward,

we shall only present the final result
(2500)) (rtesd) - ) (1)
(-C%F(m,z)y - (%F(m,f))z - (ai;zp(m,i)> 2} +

+ eo(t1)eo(t2) -

I, = 2m?siny

I; = m?sin’y

Returning to eq. (4.77), the two-point function can be cast in the form

2

Ga(p1,p2) = eo(t1)eo(t2) + [‘B%KD(T) + sinX%F(fcvz)r + [%KO(T)}
- [sinx 5 68_["(:1: t)]2 — [Ko(r) +sinx—§2—F(m,z)r . (4.79)
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It is now easy to verify that the expressions (4.76) and (4.79) coincide with those
obtained in the lattice calculation [75].

As our last example, we discuss the one-point function of the magnetization operator
o(p) in the low temperature phase in the presence of the defect line. It can be calculated
through the formula

oo(t) = . <0]o(p)n><n|[D][0> . (4.80)
n=0
The magnetization operator couples the vacuum to all states with an even number of
particles and its form factors are given by [5, 23]
_{ an Bi — B;
<90 l 0'(0,0) l Bh" .ﬂgn > = ("“L) HtanhT .

i<j

(4.81)

Since the matrix elements of D in (4.80) are different from zero only for pairs of
particles of opposite momentum, we are lead to consider the matrix elements of the
magnetization operator given by < 0 | o(0) | —B1,B1,-++s—Pn,Bn >. They can be

conveniently written as

<01]0(0,0) | =B1,B1,--- = Py Bn >= 1" (Iﬂl tanh,@,') x det W(Bi,B8;) ,  (4.82)

where W (8;,5;) is the n X n matrix given by

2 ,/cosh f; cosh B;
W (8:,6;) = ( y/cosh d ﬂ) : (4.83)

cosh B; + cosh 3,

Hence, the one-point function is the sum of an infinite number of terms and can be

expressed as a Fredholm determinant

GO(t) _ 5_02 ;Ll—' /_oo d,Bl . ,dﬁn (fI 7 tanh ﬁk R(ﬁk) e—thcoshﬁk> detW’(ﬁg,ﬁ;’) =

n=0 k=0

= Det(1+2zW) . (4.84)
The explicit form of the kernel is given by

E(/Biymt7X)E(lBjamt7 X)

W(B:,Bix) = cosh f3; + cosh §; ’

(4.85)
where

E(B,mt,x) = sinh §e ™" (cosh B — sin )V, 2=
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In terms of the eigenvalues of the integral operator and their multiplicity, oo(t) can be

also expressed as
oo(t) = JT (1 + 2z 0)% (4.87)
=1

As far as mt is finite, the kernel is square integrable and therefore all results valid for
bounded symmetric integral operators apply (see, for instance [76]). In particular, for
mt — 00, ao(t) falls off exponentially to the bulk vacuum expectation value. However,
when mt — 0, the integral operator becomes unbounded. The multiplicity of the
eigenvalues grows logarithmically as a ~ %ln ;117 whereas the eigenvalues become dense

in the interval (0, c0) according to the distribution

Ap) = L (4.88)

cosh p

Hence, for the critical exponent of the magnetization operator, defined by

C
oo(t) ~ ek t—0, (4.89)
we have
1 feo 27z 1 1 0, .
z.(x) = — - /; dp In (1 + coshp) =3 + 53 aTccos (—sinyx) - (4.90)

This expression agrees with the lattice calculations [66, 67] and since it depends on the

coupling constant, it explicitly shows the non-universality of the model.
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Appendix A

Conformal perturbation theory

Consider an off-critical theory obtained perturbing a CFT by a relevant operator ¢(z)

of conformal dimension A = A, < 1; the action can be represented as
A= Acrr+9 [ @2 la) (4.1)

where the coupling constant g has scale dimension g ~ (mass)?~?2. The problem we
want to face is the perturbative computation of the correlation functions of the local
fields A;(z) of the theory. In the following we assume a one to one correspondence
between the off-critical (renormalized) fields A; and the conformal fields of the ultra-
violet fixed point, denoted by A;. Let’s consider for instance the two-point correlator

of a field &(z); formally, from the action (A.1) we get

3(z)3(0) > Z( g)n/<cb 2)3(0)(11) - - @(yn) >crr 91 .- d'yn . (A2)

Although all the conformal correlators appearing in the right hand side are in principle
exactly known, the above expression cannot be used in practice since the integrals are
in general both ultraviolet and infrared divergent. While one can think to eliminate the
ultraviolet divergences through a renormalization procedure, the infrared divergences
cannot be absorbed in any local quantity of the theory and lead to non-analyticity in
the coupling constant g. An alternative approach for the computation of correlation
functions was proposed by Al.B. Zamolodchikov in ref.[17]. The starting point is the
operator product expansion (OPE) of the perturbed theory

®(z)®(0) = z Cie(z)A4:(0) . (A.3)

The basic observation is that, due to the local character of the OPE, a regular expansion

in g should be expected for the off-critical structure functions Che(z)

Cio() = 222205280 (CL0) L 00t 4+ O30 + .. (A4)
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where t = gr?=?2 is the dimensionless expansion parameter and C;g]) is the CFT
structure constant. As a consequence, non-locality (and then non-analyticity) in the
computation of < ®(z)®(0) > is entirely encoded in possible non-zero vacuum ex-
pectation values (VEVs) of the fields 4;. We recall that, while only < I ># 0 is
CFT, non-zero VEVs can be developed in the off-critical theory by the fields which are

“neutral” with respect to all the symmetries of the theory. Dimensional analysis gives
Aj

< A; >=gT5Q;, (A.5)

where @Q; are pure numbers. Some of these VEVs are available by non-perturbative

techniques like the thermodynamic bethe ansatz. Then one can think to compute

perturbatively the correlator in the form

< ®(2)®(0) >= ZO&,@(m) < Ai >, (A.6)

the problem being reduced to the determination of the coefficients Cég’) (n > 0) in
eq.(A.4). We will now show, following ref.[17], how to develop the infrared finite per-
turbation theory for the structure functions. For simplicity, we will assume that both
A and Ag are lesser than 1/2 so that the fields ¢ and & do not need renormalization.

Consider the matrix

IHg, R,€) = < A*(00) A1(0) >{7 A7)
oo (___g)n . ) ] 2

et —— A e n A 0) > d .. d n s
nz::O n! ./5<|yi,<R < A%(oo)p(y1) - - - o(yn)Au(0) >crr d°1 Y

where ¢ and R are ultraviolet and infrared cut-off respectively. Using the standard

CFT normalization we can write
Ii(g,R,e) = 8.+ O(g) . (A.8)

The matrix elements I. are in general divergent in the limit ¢ — 0 ; the singular

dependence can be factorized in the form

(g, R,e) = U (9,)Ii (9, B) - (A.9)
From dimensional arguments and analyticity in g we have
, oo In) (g€2—2d)n
UI (g,E) = Z Ul m . (A].O)

n=0
Since only the terms with negative powers of ¢ survive in the limit ¢ — 0 and since

A < 1, we conclude that only a finite number of terms is present in the right hand side
of eq.(A.10). It is also clear that

U'(g,e) =0 for Ay > Ay, (A.11)
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so that, if we order the field with increasing dimensions (Ap < Ay £ Az < ...), then
U/ has triangular form. Defining the renormalized fields as

Ap = (UT)LA, (A.12)
and fixing the normalization of the matrix U, ! as

U (9,¢) = & +O(g) » (A.13)

we obtain Ax = Ay + ... with only a finite number of fields of dimension lower than

Ay, omitted. The renormalized matrix elements

1¥(g, R) =< Ax(c0)Al(0) >{ (A.14)
are independent on the ultraviolet regularization and have the following dimensional
structure ! (gRE22)

k _ = k(n) gR - "
II (g’ R) - n;OII Rz(Al"Ak) . (A.].S)

Since now we should take the terms with positive powers of R, the series eq.(A.15) is

infinite and its resummation gives rise to a non-trivial function of R. In particular the

e I¥(g,R) < Ag(00)4(0) >R
e A T Ay w4
are the VEVs (A.5). Define the quantities
GEo(g,2, R) =< AF(c0)®(z)@(0) >\M= (A.17)
Z (= g) < Ak(c0)p(y1) . - - (3n)B(2)B(0) >crr dy1 .. d’Yn

n=0

In the previous expression we do not need the cut-off ¢ since the ultraviolet singu-
larities of the above correlators are integrable due to our assumption A Ay < 1/2.
Substituting eq.(A.3) for the product &(z)®(0) in eq.(A.17) we get

Gg@(gawv R) = Z Ctlﬁtb(m)IIk(ng) (A18)
l§
so that
Chola) =3 Gholg 2, BT M) (9, R) - (A.19)
l
IWe recall that < fik(oo) = limz,z-_.oozmA"iz‘&" < ,:11:(2,2) in such a way that <

Ap(00)41(0) >crr= ki
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Since the structure functions C%4(z) appear in the local OPE (A.3) they cannot depend

on what happens at spatial infinity and are expected to be finite as R — co. To first

order in g we have

jlk(g,R, 6) =< Ak(oo)/-i[((]) >CFT

o[ < ARA) >err &y (4.20)
_ 5 _ 271.ng (0) dp p= 28280428541
e<r<R
6 k (0) R2(Ak=A1=A41) _ 2(Ak-2A-A41)
B B 7rgC' Ar—AN—A+1
Therefore to first order we find
2(Ag—A;—A+1)
Y SO R A21
(g7 R) 61 T O A Al A+ 1 9 ( )
E?(Ak-—Al—-A-{-l)
(A.22)

k k(O)

Substituting eq.(A.21) into eq.(A.19) we get 2

Chale) = 3 (< Ae0)2()200) >err g [ < A(e)e)2()2(0) >err &)

i
RZ(Ak Al A+1)
5k Ck (0) 2(A-244) O(q? A.23
( + g A, A1~A+1lm| + (g) ( )
_ k(O Iz |2 (Ap—223) g e < Zlk(oo)tp(y)@(m)@(O) >CFT dzy
y

g3 OO TR T aaann 4 og)
gl el *e A —A—A+1 '

If |y| > |z| we can use the OPE (A.3) to evaluate the integral in eq.(A.23)

-/ll<R < A¥(00)p(y)®(2)8(0) >crr dy (A.24)

— o z o (D)Cf:l(O) f err P2(3k=2-2) ]mlz(grzl_\@)
r<

0) RHA— 2084 ] l2(A:—2A¢) .

_ kO (
*”ZC Coo A A A TI

Thus we see that the last term in eq.(A.23) exactly cancels all the possible infrared

divergences. Moreover, since only positive powers of R are non-zero in the limit R —

if such “resonances” occur logarithmic divergences are

2This formula is valid for Ay —A; #1— A
present in the perturbative expansion which require a particular treatment
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oo, only a finite number of terms is present in the sum. For practical application it

is useful to exploit the scaling properties of conformal fields to recast eq.(A.23) in the

form

(A.25)
ﬂ +0(¢%),

Cko(z) = |o[23+229) [05 87 — gla =) x
RZ(Ak—Ag——A—{—l)

A* B(1)3(0 &Py — =5 cEO0gY)
(1, < Aoodet)p(0)900) >crr 'y = 2 OO S x5

in which the conformal correlator appears in the standard form.
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Appendix B

Thermodynamic Bethe ansatz

In this appendix we will describe the basic lines of a powerful method, known as ther-
modynamic Bethe ansatz (TBA) [77, 78, 79, 80, 81, 82], which gives the possibility to
recover the ultraviolet data of an integrable model using only the on-shell informa-
tions contained in the S-matrix. This allows us, in particular, to test if the minimal
S-matrix obtained using the bootstrap procedure is the correct one to describe the
massive theory arising from the relevant perturbation of a CFT.

Let’s start by considering a relativistic field theory living on a torus generated by
two orthogonal circles B and C of circumference L and R respectively. One can develop
an hamiltonian approach to this situation choosing the time direction along the circle
B or, alternatively, along the circle C'. This leads to the definition of two different
Hamiltonian, Hc and Hp respectively. Therefore the partition function of the theory

can be written in two different ways:

=

Z(R,L) = tree PHE = trge BB (B.1)

where B (C) is the space of states on B (C).
Consider now the limit L — oo, L > R. This corresponds to the thermodynamic

limit for the system living on B and we can write
InZ(R,L) ~ —RLf(R) , (B.2)

where f(R) is the free energy for unit length at temperature T = 1/R. On the other
hand, in the limit we are considering, the second expression for Z(R, L) in eq.(B.1) is
dominated by the contribution of the ground state of Hc whose energy Eo(R) depends
on the size R of the system:

Z(R,L) ~ e Bo(BAL (B.3)
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In the ultraviolet limit R — 0, where the system is described by a CFT with central
charge c, the ground state energy behaves as Eo(R) ~ —n¢/6R, where

¢ =c—12dmin (B.4)

dmin being the lowest anomalous scale dimension in the CFT. In a unitary theory
din = 0 and & = c. In light of this result we introduce the scaling function C(mR) (m
is the mass scale of the theory) such that C(0) = ¢ and write

Eo(R) = -—E%C’(mR) . (B.5)

Putting together eqs.(B.2), (B.3) and (B.5) one sees that the determination of C(mR)
reduces to the computation of the free energy of a system of relativistic particles living
on a line of length L — oo at temperature 1/R. We will discuss this problem for
the case in which the system of particles is described by a diagonal scattering theory
containing n species of particles with masses mq, a = 1,...,n.

Generally speaking, the wave function formalism is inappropriate to describe a
system of relativistic particles due to the virtual and real particle creation. But for a
system of N particles on a line of length L much larger than the correlation length ¢
there exist regions of the configuration space in which the particles are widely separated
from each other: |z; —z;| > &, Vi # j (€ ~ 1/my if my stays for the mass of the lightest
particle in the theory). In these free regions the off-shell effects can be neglected and it

is sensible to describe the system by a Bethe wave function P(z1,...,2n) proportional

to the free wave function l]y[ ¢'rivi. Now the important step: the passage from a free
region to a different one ziznl which, for example, particles ¢ and j exchanged their
positions can be described simply by multiplying the original wave function by the
scattering amplitude S;;(6;;). In particular, if weimpose periodic boundary conditions,

this criterion leads to the relation
ePl T Si(6:) =1, i=1,...,N . (B.6)
Jig#e
Defining
Si;(8) = e (B.7)
eq.(B.6) can be written as
m; L sinh g; + Z 5,'7'(6,'1')_: 2rn; , (BS)
JigF
with NV integers numbers n;. This system of transcendental equations selects admissible

sets of rapidities in free regions. Note that in the non-interacting case, where 8;; = 0,
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eq.(B.8) reduces to the usual quantization condition for the momenta of a particle in
a box: p; = 2mn;/L.
If identical particles are present, statistical constraints on the wave functions must

be taken into account. The unitarity condition allows two different cases:
(a) Si;(0)=-1 . (B.9)

Then the wave function is antisymmetric in the coordinates of two identical particles
with the same rapidity. This is allowed for fermions but implies that a system of
bosons cannot contains identical particles with the same rapidities. Under this respect
bosons behaves like fermions since each value of rapidity can be occupied by at most
one particle. As a consequence, all the integers n; in eq.(B.8) must be different and
we refer to this case as “fermionic”. On the other hand, if the identical particles are
fermions, the states with coinciding rapidity are allowed and there are no constraints

on the numbers n;; we will refer to this case as “bosonic”.
(b) S:;(0)=1 . (B.10)

In this case the situation in just inverted, bosons giving rise to the bosonic case and
fermions to the fermionic case.

Since each set of N integers n; for which the system (B.8) admits a solution selects
a set of rapidities, we can imagine a system of levels in the rapidity space. In the
thermodynamic limit I — oo the distance between two adjacent levels behaves as
0; — 6,41 ~ 1/my L (think to the free case) and it is useful to introduce continuous
level densities p,(6), with the index a referring to different species of particles. We also

define rapidity densities of particles §,(6) as

ule) = ") (B.11)

where n4(0) is the number of particles of species a contained in an interval Af around
6 such that 1/m;L < Af < 1. Using these definitions equation (B.8) can be rewritten

in the integral form

maLcoshf + 5 / 46’ das(6 — 6")55(6') = 27pa(8) , (B.12)
b=1
where 5 5
gbab(é)) = %Eab(G) = —i-é—e—lnSab(G) . (B13)

The free energy Lf can be computed by the usual thermodynamic relation
- 1 -
Lf(p,p) = Hp(p) = 75(p:0) ; (B.14)
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where the total energy Hp(p) is given by

Ha(p) =3 / d6mapa(0) cosh 6, (B.15)

and S(p, p) is the entropy of the system. The number of particles in a rapidity interval
Af is pa(8)A8 and pa(9)Af is the number of levels in the same interval for a given
species of particles with mass a. Therefore the number of possible distributions of such

particles among these levels is

[pa(8)A0]!
[5a(0)A0]! [(pa(8) — Pa(th))AE]! (B-16)
in the fermionic case, and
[(pa(6) + pa(0)A0]! B

POIGIEGR
in the bosonic case. Since the entropy is the logarithm of the number of possible

distributions for given densities p and § in the limit I — oo, we have

Srermi(p, ) = Z / d6 [palnpa — palnpa — (pa — Pa)lnlpa — pa)l (B.18)
a=1
and
Ssowe(r) = 3 [ 401(pa + o)ln{pa+ ) = palmpa = ulnpe] - (B19)
a=1

At this point we have to minimize the free energy in order to determine the densities
p and j at equilibrium. They are related by the dynamical equation (B.12) from which
we get

= — (0 —0) . (B.20)
Define the pseudoenergies e4(f) by

pa6) _ =0
pa() 1L e

(B.21)

and introduce also

Lo(8) = +in (1 £ ™) (B.22)

(here and in the following upper and lower signs refer to the particle a being of fermionic
or bosonic type, respectively). Using eq.(B.20) to compute the variation of Hg and S

with tespect to jq, the extremum condition for f take the form

n 400 9/
Rmg, cosh 8 = g,(8) + Z/ £l~—— Pab(6 — 6"\ Ly(8') . (B.23)
p=1" " 2w
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These are the TBA equations written in unified form for fermionic and bosonic case.
The numerical solution of these integral equations provides the values of the pseudoen-

ergies €,(6) which are the necessary ingredients for the determination of the function
C(r) (r = mR) through the formula

ety = -y

ma
- .7}_22::1/_00 0 Lo(6)*r cosh 8 . (B.24)

This expression can be explicitly evaluated in the limit 7 — 0. In this limit 6 has

to be taken very large in order to give a non-negligible contribution to the left-hand
side of equation (B.23). One has

a 2
P2 cosh 6§ ~ f;—ma o —m—emp (9 - ln—) . (B.25)

m1 my mq T

Numerical work shows that the pseudoenergies assume constant values €, in the range
—In(2/r) < 8 < In(2/7), where the left-hand side of eq.(B.23) can be neglected, and
grow exponentially at very large values of |§|. In the interval in which they are constant
eq.(B.23) reduces to

b=+ Nopln(l£e™) (B.26)
b=1
with - 20 )
Nap = — / = Gual8) = — 5= (8as(00) — bu(—o)) - (B.27)

On the other hand this region does not contribute to the integral in eq.(B.24) which is
sensible only to the large || limit for 7 — 0. In this limit the pseudoenergies €,(¢) are
determined by eq.(B.23) in the form

a e nT /
ST = 2,(0) + Z f - du(0— 0)Ls(8) (B.28)
where
La(8) = £in(1 £ %), (B.29)

and we have
T Mg o0

¢(0) = Z lim / 49 Lo(0)5— (B.30)

r—0

(in last line the parity of €,(6) was used to change the 1ower boundary of integration).

Taking a derivative of eq.(B.28) with respect to § one obtains another expression for
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rme e which can be substituted in eq.(B.30) and, after several integration by parts,

2 my
allows to arrive at the final result

c= (), (B.31)
a=1
where ( )
6 L= 6 [  z+e,/2
ot = — i —— de ——2— . B.32
Ca (60) w2 X { L(e—sa) 72 Jo z eTtea -+ ] ( )

Here the €, are determined by equation (B.26) and L(z) is Rogers’ dilogarithm function
[83]

(B.33)

1 = Iny  In(l—vy)
L($)=—§Ody [1—y+ ” }
In conclusion we give an expression for the quantities Ny, defined in eq.(B.27) and
entering eq.(B.26). Since the S-matrix element Su(f) for a purely elastic scattering
theory can be written as product of the building blocks

sinh £(6 + i)
sinh (6 —iar) ’

fal6) = (B.34)

then ¢ap(8) = 3 B[ fa;](8) and Nuy = ¥; N[fo;], in an obvious notation. Direct com-

putation gives

HIA(O) = —iinfuld) = ——— T (B.35)
and
Nifa) = (1 = |a)sgna for —l<ax<l, (B.36)

where sgna is the sign of « (sgn0 = 0).

83



Bibliography

[1] A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. 120 (1979), 253.

[2] A.A.Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B 241 (1984),
333.

[3] C. Itzykson, H. Saleur and J.B. Zuber, Conformal Invariance and Applications to
Statistical Mechanics, (World Scientific, Singapore 1988) and references therein.

[4] A.B. Zamolodchikov, in Advanced Studies in Pure Mathematics 19 (1989), 641;

[6] M. Karowski, P. Weisz, Nucl. Phys. B 139 (1978),445; B. Berg, M. Karowski, P.
Weisz, Phys. Rev. D 19 (1979), 2477; M. Karowski, Phys. Rep. 49 (1979), 229.

[6] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field
Theory (World Scientific 1992), and references therein.

[7] ALB. Zamolodchikov, Nucl. Phys. B358 (1991), 524.
[8] A.B. Zamolodchikov and ALB. Zamolodchikov, Nucl. Phys. 379 (1992), 602.

[9] P. Fendely, H. Saleur and AL.B. Zamolodchikov, Int. J. of Mod. Phys. A8 (1993),
5751.

[10] R. Shankar, E. Witten, Phys. Rev. D17 (1978), 2134.

[11] J.B. McGuire, J. Math. Phys. 5 (1964), 622.
P.P. Kulish, Theor. Math. Phys. 26 (1976), 132.
[.Ya. Arefyeva, V.E. Korepin, Pis’'ma Zh, Eksp. Teor. Fiz. 20 (1974), 680.
D. Tagolnitzer, Phys. Rev. D18 (1978), 1275.; Phys. Lett BT6, (207).

[12] C. Itzkytson, J.B. Zuber, Quantum Field Theory (Mc Graw-Hill).

89



[13] G. Barton, Introduction to dispersion techniques in field theory (W.A. Benjamin
Inc., New York 1965).

[14] A.B. Zamolodchikov, Mod. Phys. Leit. A 6 (1991), 1807.

[15] L. Chim and A. Zamolodchikov, Int. J. Mod. Phys. A 7 (1992), 5317.
[16] G. Mussardo, Phys. Rep. 218 (1992), 215.

[17] ALB. Zamolodchikov, Nucl. Phys. B 348 (1991), 619.

[18] A. Fring, G. Mussardo and P. Simonetti, Nucl. Phys. B 393 (1993), 413.
[19] A. Koubek and G. Mussardo, Phys. Lett. B 311 (1993), 193.

[20] G. Delfino and G. Mussardo, Phys. Lett. B 324 (1994), 40.

[21] J.L. Cardy and G. Mussardo, Nucl. Phys. B 340 (1990), 387.

[22] J.L. Cardy and G. Mussardo, Nucl. Phys. B 410 (1993), 451.

[23] V.P. Yurov and ALB. Zamolodchikov, Int. J. Mod. Phys. A 6 (1991), 3419;
[24] C. Ahn, G. Delfino and G. Mussardo, Phys. Lett. B 317 (1993), 573.
5] G. Mussardo and P. Simonetti, Int. J. Mod. Phys. A 9 (1994), 3307.

[26] J. Balog, Phys. Lett. B 300 (1992), 145; J. Balog and T. Hauer, Polynomial Form-
Factors in the O(3) non-linear sigma model, KFKI-1994-10-A, hep-th/9406155.

[27] C. Destri and H.J. de Vega, Nucl. Phys. B358 (1991), 251.
(28] J.L. Cardy, G. Mussardo, Phys. Lett. B 225 (1989), 275.

[29] F.A. Smirnov, Nucl. Phys. B 337 (1989), 156; Int. J. Mod. Phys. A 4 (1989),
4213.

[30] N. Reshetikhin and F. Smirnov, Commun. Math. Phys. 131 (1990), 157.
[31] G. Mussardo, Int. J. Mod. Phys. A 7 (1992), 5027.
[32] P. Christe and M.J. Martins, Mod. Phys. Lett. A 5 (1990), 2189.

[33] I.G. MacDonald, Symmetric Functions and Hall Polynomials (Clarendon Press,
Oxford, 1979)

90



[34] B.M. McCoy and T.T. Wu, The two dimensional Ising model (Harvard Univ.
Press, 1982).

[35] A.B. Zamolodchikov, JETP Lett. 43 (1986), 730; J.L. Cardy, Phys. Rev. Lett. 60
(1988), 2709.

[36] M.P. Mattis, Nucl. Phys. B 285 (1987), 671.

[37] ALB. Zamolodchikov, Resonance Factorized Scattering and Roaming Trajectories,
ENS-LPS-335, 1991.

[38] Al.B. Zamolodchikov, Nucl. Phys. B358 (1991), 497; Al. B. Zamolodchikov, Nucl.
Phys. B366 (1991), 122.

[39] M. Lassig, “Multiple crossover phenomena and scale hopping in two dimensions”,
Julich preprint, November 1991.

[40] M. Lassig, “Exact critical exponents of the staircase model”, Julich preprint, Jan-
uary 1992.

[41] A.E. Arinshtein, V.A. Fateyev and A.B. Zamolodchikov, Phys.Lett. B87 (1979),
389.

[42] C. Ahn, Thermodynamics and Form Factors for Supersymmetric Integrable Field
Theories, 1C/93/144.

[43] O. Babelon and D. Bernard, Phys. Lett. B288 (1992), 113.

[44] A.B. Zamolodchikov, Sov. J. Nucl. Phys. 46 (1987), 1090.

[45] J.L. Cardy, A.W.W. Ludwig, Nucl. Phys. B285[FS19] (1987), 687.
[46] L.D. Faddeev and L.A. Takhtajan, Phys. Lett. A85 (1981), 375.

[47] N.Yu. Reshetikhin and H. Saleur, Lattice regularization of massive and massless
integrable field theories, USC-93-020, hep-th/9309135.

[48] P. Fendley, H. Saleur and N.P. Warner, Ezact solution of a massless scalar field
with a relevant boundary interaction, hep-th/9406125.

[49] D. Friedan, Z. Qiu and S. Shenker, Phys. Rev. Lett. 52 (1984), 1575,

[50] D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. B151 (1985), 37.

91



[51] A.B. Zamolodchikov, Sov. J. Nucl. Phys. 44 (1986), 529.
[52] A.B. Zamolodchikov, Moscow preprint (October 1989).
[53] D.A. Kastor, E.J. Martinec and S.H. Shenker, Nucl. Phys. B316 (1989), 590.

[54] M.Yu. Lashkevich, Sectors of mutually local fields in integrable models of quantum
field theory, Landau-94-TMP-4, hep-th/9406118.

[55] B.M. McCoy, C.A. Tracy, T.T. Wu, J. Math. Phys. 18 (1977), 1058.

[56] K. Binder, in Phase Transitions and Critical Phenomena, vol. 8 ed. C. Domb and
J. Lebowitz (Academic Press, London 1983).

[57] H.W. Diehl, S. Dietrich and E. Eisenriegler, Phys. Rev. B 27 (1983), 2937.

[58] H.W. Diehl, in Phase Transitions and Critical Phenomena, vol. 10 ed. C. Domb
and J. Lebowitz (Academic Press, London 1983).

[59] J.L. Cardy, Nucl. Phys. B 240 [FS 12] (1984), 514; Nucl. Phys. B 324 (1989),
581.

[60] J.L. Cardy and D.C. Lewellen, Phys. Lett. B 259, (1991), 274.

[61] 1. Cherednik, Theor. Math. Phys. 61 (1984), 977.

[62] E. Sklyanin, Journ. Phys. A: Math. Gen. 21 (1988), 2375.

(63] S. Ghoshal and A. Zamolodchikov, Int. J. Mod. Phys. A 9 (1994), 3841.

[64] G. Delfino, G. Mussardo and P. Simonetti, Phys. Lett. B 328 (1994), 123; Scat-
tering theory and correlation functions in statistical models with a line of defect

preprint ISAS/EP/94/123.
[65] F. Igloi, I. Peschel and L. Turban, Adv. in Phys. 42 (1993), 683.
(6] R.Z. Bariev, Sov. Phys. JETP 50 (1979), 613.
[67] B.M. McCoy and J.H.H. Perk, Phs. Rev. Lett. 44 (1980), 840.
[68] L.P. Kadanov, Phys. Rev. B 24 (1981), 5382.
[69] A.C. Brown, Phys. Rev. B 25 (1982), 331.

[70] M. Henkel and A. Patkos, J. Phys. A 20 (1987), 2199; Nucl. Phys. B 285 [FS 19]
(1987), 29; U. Grimm, Nucl. Phys. B 340 (1990), 633.

92



[71]

[72]

[73]

[74]

[75]

[76]

(7]

[78]

T.W. Burkhardt and J.Y. Choi, Nucl. Phys. B 376 (1992), 447.

A. Fring and R. Kéoberle, Nucl Phys. B 421 (1994), 159; Nucl Phys. B
419 (1994), 647; ?Boundary Bound States in Affine Toda Field Theory” USP-
ISQSC/TH/94-03, hep-th/9404188.

R. Sazaki, "Reflection Bootstrap Equations for Toda Field Theory”, preprint hep-
th/9401008; E. Corrigan, P.E. Dorey, R.H. Rietdijk and R. Sasaki, Phys. Lett. B
333 (1994), 83; E. Corrigan, P.E. Dorey, R.H. Rietdijk, ”Aspects of Affine Toda
Field Theory on a half-line”, hep-th/9407148.

P. Fendley and H. Saleur, "Deriving boundary S-matrices”, preprint USC-94-
001, hep-th/9402045; "Exact Theory of Polymer Adsorption in Analogy with the
Kondo Problem”, USC-94-006, cond-mat/9403095; M.T. Grisaru, L. Mezincescu
and R.I. Nepomechie, "Direct Calculation of the Boundary S-matrix for the Open
Heisenberg Chain”, UMTG-177, hep-th/9407089.

S. Ghoshal, ”Boundary S-Matrix of the O(n) Symmetric Nonlinear Sigma Model”,
preprint RU-94-02, hep-th/9401008; L. Chim, "Boundary S-matrix for the Inte-
grable g-Potts model”, preprint RU-94-93, hep-th/9404118.

H.J. Lipkin, Quantum Mechanics: new approaches to selected topics (North Hol-
land, Amsterdam 1973), Chapter 8.

E.I. Blount, in Solid State Physics, vol. 13, ed. H. Ehrenreich, F. Seitz and D.
Turnbull, (Academic, New York, 1962).

L.F. Ko, H. Au-Yang and J.H.H. Perk, Phys. Rev. Lett. 54 (1985), 1091.

M. Bocher, An Introduction to the Study of Integral Equations, Hafner Publishing
Co. N.Y.

AlLB. Zamolodchikov, Nucl. Phys. B342 (1990), 695.

C.N. Yang and C.P. Yang, J. Math. Phys. 10, N7 (1969), 1115.

[79] T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990), 485.

[80] P. Christe and M.J. Martins, Mod. Phys. Lett. A5 (1990), 2189.

[81] Al B. Zamolodchikov, Phys. Lett. B253 (1991), 391;

[82] M.J. Martins, Phys. Rev. Lett. 65 (1990), 2091; M.J. Martins, Phys. Lett. B240,

404; H. Itoyama and P. Moxhay, Phys. Rev. Lett. 65 (1990), 2102;

93



[83] L. Lewin, Dilogarithms and associate functions (MacDonald, London, 1958); Poly-
Flsevier-North Holland), New York and Ox-

logarithms and associated functions (

ford, 1981.

94



Figures and tables

(@ (b) | (c)

figure 1

95



\ I 1T — !
v 2 2 i
(ma —mb) T (mafmb)
figure 2a

16
v i v
III
e
il 0 !
figure 2b

96



figure 3

figure 4

97



figure 5

figure 6

93




figure 7

figure 8

99



mTtG

10

m4GE

-25

-50

-100

-125

-150

.04

0.086

figure 10

100

.08




0.8

o
'O 0.6

0.4

0.2

0.8

0.6

0.4

0.2

llll]llll|IIIIIIII![II!I'

Il!l\ll\!lllll]lll![llll

|
)
O

—10
x=log(mR/2)

- figure 11a

IIII[[KI!]IIIIIIIII]I!]I

1I!Jlllll!|lllll.ll

[

- 540 - -20

x=log(mR/2)
figure 11b'

101



0.6

0.4

0.2

0.8

0.6

0.4

0.2

—Tlll!llll“lllll‘ll‘llll

~100 ~50 0
- x=log(mR/R)

R figure 11c

llllllli‘llll\l!ll‘ﬁll

_200  —100 0
D _‘_leog(mR/Z)‘
figure 11d

102



0.1

2 0:05

figure 12b

103



Ac(z) (90)

0.4
0.2 t
0 [ P A B S TSR S [T T PRI ST S e IR R |
2.5 5 7.5 10 12.5 15 17.5 20
9o

figure 13

(
l
|
\
S

=
H>

o O
o
e EERENRRRRRRERE
| ! |
| | x
| B
|
|
1
|
|
|
\
|
1_1 \_l_l__L,L\ TR

Acn(fo > 65) ?L

‘ i 1 11'1 ‘ \1( | . i

o) }‘o

figure 14

104



© C 1/8

figure 15

figure 16

105



R;;(B)

D

figure 17

figure 18a

106







.

figure 18d

<

figure 19

108










figure 21

111






3 |t

12 |

t-

1=

. 3
-

[

[a)

3 |t

figure 24
113

= r

>

ka



3 0 I = g
om0 T P
—& 3 o= &1L
o 3 Y =233
table 1
_ Rt
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n - - 2
crp=Cs o +ChL W | cg=i(})
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pet = 1]
table 2

114




3 7
2 6 0
.5 3 !
10 80 0
1 3 o
10 80 10
A 3
0 16 2
table 3
= Pgp identity
oc=®3 3 magnetization
8080
E=®, 1 energy
10710
o' = &1 1 sub-magnetization
16716
¢/ = &6 s  vacancy density
10710
e = @3 3 (irrelevant)
22
table 4
even *even
exeg=[1]+ce']
ereer=[1] 4 el W LOIND)
exe'=cye] +c;5[e”] ! 3\,/ T(%)rz(%)
£k g = [1] CZ=Cl
even =odd ;=13
o' =cilo) -l
exo=c{o’]+cs[o] =1,
E’*UV:Cﬁ[‘T] c6=;-
4
e xo=celo’]+¢q(a] =1k,
4
odd =odd 7
Cq = 3C
o' rot=[1]+cyle”] c3=i_l
o'ra=c,le] +cele’] 9 3
T*xo= [1] +c5[5] +c7[5'] +c9[6”]
table 5

115



Ringraziamenti

Desidero innanzitutto esprimere la mia gratitudine al mio relatore Giuseppe Mussardo
per le cose che mi ha insegnato e per il legame di schietta amicizia che ha voluto
stabilire con me.
Un ringraziamento particolare va anche a Prospero Simonetti per il proficuo rap-
porto di collaborazione avuto nel corso dell’ultimo anno, ma non solo per questo.
Ringrazio infine il settore di Particelle Elementari della SISSA per la straordinaria

occasione di crescita culturale ed umana che mi ha offerto tre anni or sono.

116



