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Introduction

At present, the only consistent quantum theory of gravitation is superstring
theory. After the discovery of the Green-Schwarz mechanism [1] and the
subsequent discovery of the heterotic string [2], this theory received a new
interest and was studied in greater detail. Among all the five known pertur-
bative string theories, type I, type ITA and IIB, heterotic SO(32) and Egx E,
the last one received most of the attentions, because of its more interesting
phenomenological implications. During the last two years, however, the new
developments in string theory that led to the exploration for the first time
of non-perturbative phenomena, revealed the existence of several dualities
relating one theory with an other and also with eleven-dimensional super-
gravity. It is becoming clearer and clearer that there are not five distinct
string theories, but on the contrary one single theory that reveals itself as
a given striﬁg theory or 11d sugra in different perturbative regimes. Due
to these relations, it is clear that the heterotic string is now on the same
footing of the other perturbative strings, that are presently analyzed much
more than what done in the past.

Aim of this thesis, in particular, is to present some results concerning mod-

els with NV = 2 supersymmetry in four space-time dimensions, obtained by



compactifications of type I string theory. Our first result is a test of the
conjectured type I- heterotic duality [3]. This duality is believed to be a
strong-weak duality in ten dimensions, but after suitable compactifications
of both theories in four dimensions, it can be shown that exists a region of the
moduli space of the theory in which both descriptions are weakly coupled.
In this region, then, it is meaningful to compare perturbative amplitudes of
both models. We test the aforementioned duality by comparing [4] a class of
higher derivative gravitational couplings of the form, in superspace notation,
F,W? where W is the gravitational superfield of the N = 2 supergravity,
that appear on both theories at one-loop level. The study of higher deriva-
tive terms is crucial if one wants to establish a string-duality beyond the
low-energy effective action level. The duality predicts the heterotic Fy cou-
plings to be equal to the type I ones in a given limit. We compute the
F,’s at one-loop in the type I model, showing that they receive contributions
only from the N = 2 BPS states of the theory and that, in the appropriate
limit, they coincide with the heterotic couplings already computed in [5, 6],
in agreement with the given duality. These higher derivative F-terms have
been studied in greater detail in the past. In Calabi-Yau compactifications
of the type II string the F,’s represent the partition function at genus g of
the twisted Calabi-Yau sigma-model [7]. Moreover, they also played a crucial
role in establishing a test of N = 2 type II-heterotic duality in four dimen-
sions [5]. Their properties and application will be reviewed in chapter 2. We
fhen analyze more general one-loop threshold corrections in K3 x T? com-
pactifications of type I string theory [8]. These corrections can be written in

general in terms of an N = 2 supersymmetric index [9, 10, 11], analogously



to what has been previously showed to happen in N = 2 four dimensional
compactifications of the heterotic string [12]. Studying the superconformal
algebra underlying these heterotic models, it has been found [13] that the
mentioned N = 2 supersymmetric index is determined purely in terms of the
BPS states of the theory and, in particular, it counts the difference beteween
the number of BPS hyper and vectormultiplets present in the string spec-
trum. In a similar fashion we find that exactly the same thing happens in
N =2 K3 x T? type I compactifications, again in agreement with heterotic-
type I duality. This result, however, is shown to be valid also for more general
type I models, now called orientifolds, by an explicit one-loop computation
of the mentioned F} gravitational couplings, where it is reproduced the BPS
dependence of these amplitudes. It is important to note that this result is
independent on any string duality statement and indeed all these orientifold
models but one, cannot have a weak heterotic dual theory.

The present thesis is organized as follows. In chapter one we review the
construction, the spectrum and the basic properties of four dimensional
N = 2 theories arising from the type I string compactified on the six-manifold
K3 x T?. We then briefly review what D-branes and orientfold are, in or-
der to construct general type I compactifications involving these objects. In
chapter two, as already anticipated, a survey on higher derivative F-terms of
the form F,W? is given, pointing out their importance in string dualities.
Chapter 3 is devoted to type I-heterotic duality, where this is analyzed for
d <10 and i.n particular for d = 4. A dual pair of four dimensional models
is presented and then it is performed the one-loop computation of the F,’s

in type I, to test the aforementioned duality. The structure of threshold



corrections in type I K3 x T? compactifications and their relation with the
N = 2 supersymmetric index is presented in chapter four, where it is then
shown the purely dependence of this index on the BPS states of the theory.
After that, we show the one-loop moduli dependence of the F, couplings for
orientifold models, pointing out their BPS dependence. Some comments and
remarks are finally given in the conclusions, while technical details about the

one-loop computations are reported in the appendix.



Chapter 1

Compactifications of Type I
string in 4d with N =2 Susy

Type I string theory is a theory of unoriented closed and open strings. It con-
tains both gravity, in the closed string spectrum, and massless gauge mesons,
in the open one. It is also possible to realize non-abelian gauge symmetries by
considering Chan-Paton factors [14], that is non-dynamical degrees of free-
dom to the ends of the open string; consistency with tree-level unitarity and
factorization of amplitudes shows that the only allowed Chan-Paton gauge
groups are SO(n) and USp(2n) [15]. Unoriented strings means simply that
there are not “arrows” on the strings, and that the world-sheet parity oper-
ator {): 0 — 7 — o, where 0 < ¢ < 7 parametrizes the spatial coordinate of
the world-sheet (as usual, for closed strings, 0 < ¢ < 27), is a global sym-
metry. In particular, all the states in the string spectrum are required to be
{Y-invariant, in order to be physical. At the massless level, in the open string

sector this simply fixes how € acts on the Chan-Paton degrees of freedom,



while in the closed string sector, where {2 exchanges the left and right-moving
modes, it projects out all the Q-odd states. The low-energy effective field the-
ory describing the interactions of only the massless string states is the ten
dimensional chiral N = 1 supergravity coupled to SO(n) or USp(2n) super
Yang-Mills theory. All these theories are in general plagued with gauge and
gravitational anomalies that make them quantum-mechanically inconsistent.
It was however discovered by Green and Schwarz [1] a mechanism that al-
lowed an anomaly-free coupling of pure N = 1 sugra with super Yang-Mills
theory for the groups SO(32), Eg x Eg, Es x U(1)**8, U(1)*%®. While the first
two theories are known to be realized in terms of strings (type I and heterotic
for SO(32) and heterotic only for Eg x Eg), no string model is known for the
last two. The only consistent theory of open and closed string is then SO(32)
type I string theory. We will see in the next sections compactifications of this
model down to four dimensions, making also use of non-perturbative stringy
solitons, i.e. D-branes. In particular in section one we review the standard
geometric construction of type I models that present N = 2 susy in four di-
mensions; in sections two and three D-branes and orientifolds are introduced
and their basic properties reviewed. Finally, in the last section, we construct
more general four dimensional type I vacua, making use of D-branes and

orientifolds 1.

1There exist other constructions of type I vacua in four dimensions, based on suitable
products of rational conformal field theories [16], that will not be discussed in the present

thesis.




1.1 Standard geometric compactification

All known string theories are consistent in a flat space-time background
only in ten dimensions. In order to construct “realistic” models, we have
to deal with six extra dimensions. The commén way to do this is to con-
sider them as Kaluza-Klein like directions, forming all together an inter-
nal six-manifold K. According to the usual Kaluza-Klein reduction, mass-
less fields in four dimensions will be in one-to-one correspondence with zero
modes of K¢ and the number of unbroken supersymmetries in 4d will de-
pend on the number of covariantly constant spinors on Ks. In ten dimen-
sions type I theory presents N = 1 supersymmetry, that is 16 conserved
supercharges; in order to obtain a model that has N = 2 in four dimen-
sions, that is 8 supercharges, we then need a manifold that break precisely
half of the supersymmetries. Since a model N = 2 in 4d can be consid-
ered as a toroidal compactification of a N = 1 six-dimensional theory, we
take K¢ to be a direct product K¢ = K4 x T? and try to find a suitable
four-manifold that gives N = 1 in six dimensions. Luckily, the answer is
unique and is given by the Kummer surface called K3. It is a Ricci-flat
compact Kahler manifold, topologically unique, whose hodge numbers are
hOO = 127 = 1AM = pl2 = p21 = RO = 20 = RO = 1 ALI = 90,
In order to understand which is the four-dimensional low-energy effective
field theory arising from this compactification on Ks = K3 x T2, let us
analyze the massless spectrum of type I SO(32) theory in ten dimensions.
Its bosonic content is given by the graviton gy and the dilaton ®, com-

ing from the Neveu-Schwarz Neveu-Schwarz (NS-NS) sector of the closed



string, the antisymmetric tensor field Bpsy, arising from the Ramond Ra-
mond (R-R) sector and the vector fields A§,;, coming from the open string
sector. All capital indices M, N run from zero to nine, while a runs over the
adjoint representation of SO(32). We then have the fermions: a left-handed
gravitino Wys. a right-handed spinor A and left-handed gluinos 2, all be-
ing 16-components Majorana-Weyl spinors. These states combine together
in two supermultiplets: the gravitational (garn, Barwv, @, ¥ar, A) and gauge
(A3r,¢*) multiplets. Before analyzing the massless spectrum that arises in
four dimensions, it is useful to consider, as first step, the six-dimensional the-
ory compactified on K'3. We will then subsequently compactify this model
down to four dimensions on T%. 2 We only consider bosonic states, since
supersymmetry will automatically give us the fermionic partners. Accord-
ing to the hodge numbers given above, the antisymmetric tensor field By
produces a six-dimensional Bj; and b, = 22 scalars, the dilaton @4 gives
an other dilaton ®s and the vector fields A%, give simply rise to Aj vectors.
The massless modes corresponding to gyn are a six-dimensional graviton
gis and a number of scalars equal to the dimension of the moduli space of
the K3 metric deformations, that is known to be 58. We then have a total
of 81 scalars, neutral under the gauge group, one of which is the dilaton
and the remaining 80 parametrize the full moduli space of K3. In terms of
the N = 1 supermultiplets in six dimensions, the massless spectrum con-
tains one gravitational multiplet, that in 6d is composed by the graviton

9is, one right-handed gravitino and the two-form Bf;, that is the part of

2From now on fi,7 = 0,1,2,3,4,5, p,v = 0,1,2,3 run respectively over the six and

four space-time directions, while 7, j = 6,7, 8,9 represent K3 indices.




the antisymmetric tensor ﬁeld whose field strength is self-dual, one tensor
multiplet composed by B7; (the anti-self dual part), one left-handed spinor
and a scalar, 20 hypermultiplets (A~,4¢) and ny vectormultiplets (A%, °F)
in the adjoint of the gauge group, of course. This is not, however, the end
of the story. There is a well-known relation [17] that has to be satisfied in
order to have a consistent model. The coupling of the ten-dimensional sugra
with super Yang-Mills and the Green-Schwarz mechanism for cancelling the

anomalies modify the field strength of the antisymmetric field to be

L Y
Hyxp = dipyBypy + 1 ( (M)NP (w(M)NP) (1.1)
where w(I'Y) are respectively the Chern-Simons three-form associated to the

Lorentz and Yang-Mills gauge groups. This implies that
o

stHz T Ka(trR/\R—trF/\F) =0 (1.2)
since H has to be globally defined. The integral of the Euler class RA R gives
the Euler characteristic of the corresponding manifold, and for K3 is equal to
24. We then need to define our theory on a non-trivial background inserting a
total of 24 instantons inside K'3. When relation (1.2) is satisfied, moreover,
the six-dimensional theory is also anomaly-free [18]. Since the number of
massless states is given by the topology of the internal manifold, as we have
seen, for six-dimensional theories the requirement of anomaly-cancellation
is often written as a constraint on the number of supermultiplets. In par-
ticular, if ny,ny and ng are respectively the number of vectc;r, hyper and

tensormultiplets of the model, cancellation of anomalies or, more precisely,

the cancellation of the coefficient in the anomaly polynomial proportional to



TrR*, require that
ng —ny = 244 — 29(ng — 1) (1.3)

The simplest way to satisfy (1.2) is to embed the SU(2) spin connection in-
side the SO(32) gauge group. Since SO(32) D SO(28) ® SO(4) = SO(28) ®
SU(2) @ SU(2), with this choice of background the unbroken gauge group
will be SO(28)®SU(2). In addition to the massless spectrum derived above,
we obtain also charged and further neutral hypermultiplets, the last one cor-
responding to the deformations of the gauge bundle. This content can be
easily derived by using various index theorems, relating the net number of
chiral fermions to topological quantities (see e.g.[19]). In particular we obtain
10 (28.2) and 45 (1,1) hypermultiplets, where we have denoted respectively
their representations under SO(28) ® SU(2).

Summarizing, the six-dimensional massless spectrum arising from K3 com-
pactifications with the spin connection embedded in the gauge group, consists
of one gravitational and tensormultiplet, 65 neutral and 10 (28,2) hypermul-
tiplets and 381 vectormultiplets forming the adjoint of SO(28) ® SU(2). As
has to be, this spectrum verifies relation (1.3). It is important to remem-
ber that there are in general different ways to solve the topological condi-
tion (1.2) that lead to different massless spectra and unbroken gauge groups
in six dimensions. In any case, however, the number of tensormultiplets
that can arise in this kind of compactifications is always fixed to be one,
altough it was shown by Sagnotti [20] that supersymmetric anomaly-free six-
dimensional theories with more than one tensormultiplet can be constructed
through a generalization of the Green-Schwarz mechanism. We will see in

the next sections that these low-energy models are actually realized in type

10
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I string theory by considering more general vacua involving D-branes and
orientifolds.

Finally, the further compactification on T2 gives rise to a four-dimensional
graviton g,,, two vector fields g,4(5) and three scalars gu4, gss, 945 from g;5,
a dilaton ®4 from ®¢ and an antisymmetric tensor field B,., two vectors
B,4(5) and one scalar By; from Bj;. Finally Af gives four-dimensional gauge
bosons and two scalars ¢%, in the adjoint of the gauge group. In terms of
N = 2 supermultiplets, the massless spectrum is formed by a gravitational
multiplet (g,.,2¥,,A,), 65 neutral and 10 (28,2) hypermultiplets (), 4¢)
and (ny + 3) vectormultiplets (A%,1%, 2¢%) where (ny + 3) is the number
of vectors present in six dimensions (in our case 381) plus the three more,
coming from the torus compactification; ¥,, A and 9® are, of course, the
gravitinos, the fermion matter and the gluinos. Note that, among the four
vectors arising from T2, a linear combination A, belongs to the gravitational

multiplet. For this reason, this gauge field is also called the graviphoton.

1.2 D-branes

String theory is a perturbative first-quantized theory defined only on-shell.
For this reason, it has been a long-standing problem how to take into ac-
count non-perturbative states, like monopoles or dyons, or more generally,
non-perturbative effects in this theory. In particular, non-trivial solutions of
various supergravity theories, called p-branes, a sort of soliton extended in
p-spatial directions, were known (for a review on this subject see [21] and ref-

erences therein) and it was a problem how to interpret them in string theory

11



up to two years ago, when in a seminal paper [22] Polchinski suggested that
the type II (and type I) p-branes, charged under the antisymmetric tensor
fields coming from the Ramond-Ramond closed string sector are simply de-
scribed in string theory as Dirichlet p-branes (commonly denoted D-branes),
i.e. p-dimensional hyperplanes where open strings can end. So, type II string
theories are theories of only closed strings at the perturbative level: in order
to describe solitonic sectors one has to introduce open strings as well. In
a modern language, the usual type I string theory is a theory of Dirichlet
9-branes.

Altough D-branes were discovered historically [23] by analyzing the behaviour
of open string theory compactified on a circle of radius R — 0, we will briefly
review here their characteristics following a different path and pointing out
some properties more than others, according to the use we will do of them.
Let us consider for simplicity the bosonic string; in a flat background the

two-dimensional action is simply

1
S = 4’0 0, X 0% X, (1.4)
dra! M

where g runs from 0 to 25 and M represents the two-dimensional world-sheet.

Taking the variation of the action with respect to X, we have

§S = / P 6(0,X")0°X,, =

2ra’

ol

_ / o SXA0X, + 5— / dSe6X,0, X" (1.5)
2ra’ Jam ,

While the vanishing of the first term in (1.5) gives us the equations of motion
for X*, the vanishing of the second fixes the possible consistent boundary

conditions for the fields. If we are dealing with closed strings, there is no

12



boundary on the world-sheet and the second term in (1.5) automatically
vanishes (at the “boundaries” 7 = Foco we always take 6X = 0); in the
presence of open strings we have to make it vanishing. The usual way to do
this is to choose Neumann boundary conditions (b.c.) 9,X*|apsr = 0 where
n is the direction perpendicular to the boundary; with this choice we obtain
the usual open string whose ends are free to move in all the space. An
equally good choice is to take Dirichlet boundary conditions § X*|55; = 0 or,
more generally Neumann b.c. for some directions and Dirichlet b.c. for the
remaining. This second possibility was ignored in the past because it breaks
manifestly the Lorentz invariance of the theory, as a topological defect in
general does. Parameterizing the world-sheet as usual with 7 and 0 < o < 7,
the Neumann b.c. fix the mode expansions of X to be

Xn(r,0) =" +p'T + % > -CY—,;—(e’i""+ +e7™T) (1.6)

n#0 1

where we set o/ =1/2 and o4 = 7 4 &, whereas the Dirichlet b.c.
X(o=0,7) = zo
X(o=m71) = z (1.7)

give

Lo b
B(r,0) = wf + T2

1 at . N
g+ =Y L(emint —gmineT) (1.8)
2 n
n#0
As we can see from (1.7) and (1.8), in the directions corresponding to Dirich-

w

let b.c., the ends of the string are fixed and the total momentum is vanishing.

In both Dirichlet and Neumann b.c., however, the canonical quantization

v

vl =nn*6,1m. If we impose Neumann

rules for the , are the usual [0, a

b.c. for p+1 directions (we single out the time to be always Neumann) and

13



Dirichlet for the remaining 25-p, the ends of the strings are constrained to
live in a p-spatial dimensional hyperplane that we call a Dirichlet p-brane or
simply a (D)p-brane. We will see in the following that this hyperplane has
all the properties to be identified as an extended soliton in string theory; in
this way we interpret the open strings living on the D-brane as excitations
of it. For a flat space-time background, the conditions (1.7) are equivalently

written as

0, X(oc=0,m;7)=0 (1.9)

similarly to the Neumann b.c.
0,X(0 = 0,m;7) = 0 (1.10)

We see then that Dirichlet «» Neumann for 87 « Jo. Actually, there is a
symmetry in closed string theory that sends d7 <+ do and is just T-duality.
More precisely, if we take one of the spatial directions, say X?°, to be a circle

of radius R, then under the T-duality trasformation sending
al
R —_ E’ m <« n
¥ a¥ o -aP (1.11)

where m,n are the Kaluza-Klein and winding modes on R, the theory is
invariant. In open string theory, T-duality is not a symmetry but it can

always be considered as the trasformation of variables

XP o XP, XP - —XP (1.12)
under which
80X25::6XL—5XR—>6XL+5XR=BTX25 (1e13)
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and viceversa. In this way, indeed, [23] found that bosonic open string theory
at radius R is equivalent to a theory of (D)25-branes on a radius o’/ R, where
the Kaluza-Klein modes of the original open strings are mapped to strings
whose ends wrap around the circle before ending on the D-brane 2.

As in any topological defect, it is interesting to consider zero modes of D-
branes, that is the spectrum of massless open strings living on them. A
generic (D)p-brane breaks the Lorentz group SO(25,1) in SO(p, 1)@S0(25—
p), so that in the p+1 world-volume of the D-brane the 26 massless open

string states o™ |0 > are splitted into a vector field and 25-p scalars:
0> p o= 0,..,p
0> i o= p+1,..,25 (1.14)

The p+1 dimensional classical action describing the interactions of these
states between each other and with the usual “bulk” closed states was derived

by [24] at all orders in o for a constant field strenght F,,. It is given by

S, =T, / P 0e™\[det[Gry + Buy + 270/ F,] (1.15)

where p,v = 0,...,p+ 1 and G,,, B,, are the pull-back of the graviton and
the antisymmetric tensor field to the (D)p-brane. T}, is the D-brane tension
and e~? is the right dilaton dependence coming from a disk computation in
the string frame, where the bulk action is weighted with e~2%. In the string
frame the tension of ordinary strings is ~ g2, where g5 = e<*> represents the
string coupling constant; on the other hand the effective D-brane tension is

~ T,/gs, as shown by eq.(1.15), that is a typical dependence in the coupling

3Strictly speaking, the dual radius is the orbifold S!/Z, where we have orientifold

planes at the fixed points. See the next section for a survey of orientifolds.
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characteristic of a non-perturbative object, altough slightly different for a
typical soliton mass that is of order 1/g%. For this reason D-branes are some-
times called “stringy”-solitons*. The dynamics of configurations of multiple
D-branes can be equally well described. In this case we have to in general
to consider, among the strings whose ends live on a given D-brane, those
stretched between two different D-branes; all these strings are however mas-
sive, having a non-vanishing tension, and then the low-energy world-volume
action of n D-branes is simply given by n copies of (1.15) with total gauge
group U(1)". On the other hand, in the limit in which two D-branes overlap
each other, the lowest stretched modes become massless and the effective
world-volume theory gets enhanced to a U(2) gauge theory, where these new
massless modes correspond to the A* charged gluons. For n-coincident D-
branes the world-volume action is of course enhanced to U(n).

Let us now turn to the superstring, the case we are actually interested in.
All the properties we have decribed up to now for D-branes coming from the
bosonic string are valid in presence of supersymmetry with simple general-
izations. If we denote with 1 g the left(right)-moving world-sheet fermions
in the R-NS formalism, by supersymmetry and (1.12), Dirichlet b.c. can be

implemented simply by sending

YL — YL, Yr— —Yr (1.16)

“It is worth while to point out that this 1/g-dependence was already predicted several

years ago by Shenker [25] that argued that the large order behaviour of the perturbative

expansion in string theory allowed for non-perturbative effects at weak coupling of order

e“l/gs_
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in the usual Neumann b.c.; since it is the relative sign between the two
boundaries that is relevant, the mode expansions is unaltered, except a sign
between left and right moving modes, exactly as in (1.8) ®. The low-energy
effective action for n (D)p-branes is the supersymmetric generalization of
the bosonic one and it is [26] the dimensional reduction of N =1 U(n) ten
dimensional super Yang-Mills theory down to p+1 dimensions. In the super-
symmetric case, however, D-branes enjoy two more fundamental properties:
they are the sources of the R-R antisymmetric tensor fields and they are
BPS-saturated states. Let us discuss these two properties in some more de-
tail.

R-R antisymmetric tensor fields arise in both type ITA B and type I theories;
due to the different chiralities of their supersymmetries, type IIA contains
p-forms with p odd, type IIB even p-forms and tyﬁe I, as we saw in the last
section, the antisymmetric two-form Bpsy and its Hodge dual six-form. All
these tensor fields present a U(1) local gauge symmetry, but at the pertur-
bative level, in every string theory, there does not exist any state charged
under any of these fields. This can be verified by computing three-point am-
plitudes between R-R forms and any string state, but it can be argued easily
by noting that in general a p+1-form couples minimally to a p-extended
object, generalizing the usual minimal coupling between a vector field (1-
form) and a charged particle (0-brane). Actually, even the R-R two form
does not couple minimally to perturbative strings. On the contrary, it was

realized by Polchinski [22] that (D)p-branes are the sources for the R-R p+1

>Note that in the heterotic string D-branes do not exist because they require left and
right moving sector of the string to be both bosonic or supersymmetric as can be easily

deduced, for instance, from (1.16).



tensor fields and, amazingly, with the minimum charge allowed by Dirac-
Nepomechie-Teitelboim’s [27] quantization condition. It follows that type
IIA(B) theory has only even(odd) D-branes whereas type I contains 1,5 and
9-branes. In the same work [22], the force between two D-branes has been
computed through a one-loop annulus computation and it has been shown
to vanish; moreover, all the D-branes charge densities are always equal to
their tensions. These two important facts show that D-branes are indeed
BPS-saturated states where these properties hold. In particular they break
exactly one half of the supersymmetries. There are several ways to see this;
we will use here a conformal field theory approach that is useful to explicitly
construct the unbroken supesymmetries in terms of vertex operators, also in
more complicated D-brane backgrounds, as those we will consider in the next
sections. |

Let us start from type I, i.e. 9-branes. In this case the linear combination of
unbroken supesymmetries is just Q% +Q$% (as can be deduced for instance by
requiring (-invariance) where )1, Qr are just the 16-components Majorana-

Weyl left(right)-supercharges that in the R-NS formalism are given by

Qs = [dzeFs302) (1.17)

where ¢, r and Sf p are respectively the bosonization of the superghosts
and the space-time spin-field operators for both sectors ®. If we take one

direction, say X°, to be a circle, we can then construct 8-branes, according

®We use here and throughout all the present thesis the formalism originally introduced
by [28].
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o (1.16), simply by sending
YL =YL, Yr— —V¥R (1.18)

while leaving invariant the remaining directions. Since the fermion fields ¥, g
act on the spin-field operators S¢ p essentially as gamma matrices, it is easy

to see that (1.18) require for consistency that
St — S¢, Sg— (79711)°‘ﬁ53,g (1.19)

We can then argue that a (D)8-brane fixed in the 9" direction leaves unbroken

the linear combinations of supercharges given by

Q% + (V") Qrye (1.20)

The generalization is strightforward: a (D)p-brane fixed in the directions

XP*1 ..., X? leaves unbroken the combinations

Qf + H ") Qre (1.21)
m=p+1
for p even and
Qf + H my)2Q% (1.22)
m=p+1

for p odd, according to the different chiralities of type IIA and IIB theories.
It is also possible to consider more general backgrounds where different or
non-parallel (D)p-branes are present. Consider for instance a (D)p-brane
extended in the directions X° X, ..., X? and a (D)g-brane, with q>p, ex-
tended in X°, X, ..., X% Among the usual open strings living on the same
brane, consider those stretched between the two. For these kind of strings,

we have Neuamnn b.c. on both ends for directions X° X*, ..., X? (call it N-N
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b.c.), Dirichlet-Dirichlet (D-D) b.c. for X7t ..., X° but we have now also
mixed b.c. D-N or N-D for the X?*?, ..., X7 directions, i.e. open strings in
which one end is fixed to a D-brane while the other is free to move. These

mixed conditions D-N and N-D b.c.

X(oc=0,7) =129 0, X(c =0,7)=0

0, X(c=m,7)=0 X(o=m,7)=12, (1.23)
fix the mode expansions for z to be

] # . .
XEN,ND = Ig’ﬂ + .;_ Z EY_T_(e—zro'q. T e——'zro'._) (124)
reZ+1/2 |

In this case the bosonic oscillators o, have half-integer modes, while in the
fermions this Z,-twist shift the NS and R modes to be respectively integer
and half-integer. What about supersymmetry in these backgrounds ? The
total number of conserved supercharges will be the intersection between the

linear combinations

9
Qz+ TI (+v")**Qryp (1.25)
n=q+1
and
9 9 g+1 5
i+ I (") Qrs= Q5+ I (v"v")** TI (v"v")*Qrs (1.26)
m=p+1 n=g+1 m=p+1

The number of unbroken supersymmetries is then basically given by the

number of 41 eigenvalues of the matrix

g+1
M= T (") (1.27)
m=p+1
When ¢-p=2 mod 4, M? = —I and all eigenvalues are purely imaginary,

meaning that a system with p and p+2, or p+6, D-branes breaks all the
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supersymmetries. On the contrary if g-p=0 mod 4, M? = I and since M is
traceless, the eigenvalues will be £1 in equal number. This implies that the
system p-p+4 and p-p+8 is supersymmetric, altough in this case the number
of conserved supercharges is one-quarter of the original supersymmetries.
The same argument also applies when we have D-branes intersecting at right-
angles 7; in all the cases we will have unbroken supersymmetries if the sum
of the ND and DN directions is a multiple of four. The class of N = 2
4d type I models we will construct in the end of this chapter, for instance,
involves both (D)9 and 5-branes. The presence in type I string theory of a
world-sheet parity symmetry, however, allows and requires the presence of
other non-dynamical objects, the orientifold planes, that will be the topic of

next section.

1.3 Orientifolds

We mentioned at the beginning of this chapter that in type I theory the
string spectrum is required to be Q-invariant. This operator exchanges left

and right-moving modes on the world-sheet
QX'L,RQ—I = XR,L (1.28)

but it obviously leaves invariant the sum X = X; + Xp. This means that
it acts locally on space-time. If we denote with |z} the lowest string state

localized in z, Q-invariance requires, for instance, that among the closed

"The case of branes intersecting at generic angles has been considered by [29].
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string states

(QLLL,—lo‘?{,A + aﬁ,_lai,_l)li) (1.29)

only the symmetric combination is physical, whereas the antisymmetric one
is projected out from the spectrum in all space-time. Consider now, as usual,
one direction, say X?° in bosonic string theory, to be compactfied on a circle
S* of radius R and perform the trasformation (1.12); the spatial-coordinate

associated with the circle in the new variables is
X' = X,%’S — X}’;* (1.30)

that changes sign under an Q-trasformation. This phenomenon drastically
alters the action of £ in this dual theory. There are not anymore states
projected out from the string spectrum, but on the other hand states located
at different points are not anymore independent, due to relation (1.30); in
particular Q-invariance now implies that for any propagating state localized
in |z) there exists an “image” state in | — z) with the same wave function.
This means that the dynamics of this model is completely fixed once we know
it on “half” of the circle SY of radius 1/R, i.e. on the segment S /Z,. The
two hyperplanes corresponding to the fixed points X"?% = 0,7 are known as
orientifold planes. In brief, if we start from the bosonic theory of unoriented |
closed and open strings (25-branes) defined on R?** x S! and perform the
trasformation (1.12), the dual model we get is a theory of oriented closed
strings and 24-branes on R"** x S¥/Z, plus two orientifold planes. Unlike D-
branes, orientifold planes do not carry any physical degree of freedom and are
not dynamical objects; on the other hand, they can act as sources absorbing

or emitting closed strings. The same considerations performed here for the
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bosonic case are also valid for the superstring and are easily generalized for a
generic torus compactification 7™. Type I SO(32) string theory compactified
on T™, for instance, is equivalent to a theory of (9 — n)-branes moving on
T™/Zy with 2™ orientifold (9 — n) hyperplanes, i.e. hyperplanes of dimension
(9 —n). Similarly to (D)p-branes, p-orientifolds are also sources for the R-R

p+1 antisymmetric tensor fields with a charge QF that is [30]

Qy = -277°Q7 (1.31)

where QP is the (D)p-brane R-R charge. We saw that when n D-branes
overlap each other, there is an enhancement of the world-volume gauge the-
ory up to U(n). In presence of orientifolds, there is also the possibility for
n D-branes to overlap each other to the fixed points; in this case there are
additional massless string states corresponding to strings stretched between
a D-brane and the image of another brane, with the result of a further sym-
metry enhancement from U(n) up to SO(2n).

It is quite interesting to understand which is the constraint that singles out
the SO(32) gauge group as one of the 10d anomaly-free Yang-Mills couplings
with V = 1 supergravity, in the dual theory of D-branes and orientifolds. The
argument is very simple. Orientifolds and D-branes are sources for R-R ten- 7
sor fields; while in uncompactified spaces there is no constraint to the number
of D-branes one can have, in compact spaces this number is constrained to
give vanishing R-R fluxes, that otherwise could not spread off to infinity.
This implies that the total R-R charge of p-orientifolds and (D)p-branes has
to sum up to zero for each p. Taking only one compact direction, this means,
because of (1.31), that we need 16 8-branes plus the corresponding images.

In the R — 0 limit (uncompactified 10d space-time in the dual theory) all
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branes collaps together on the fixed point giving rise to the SO(32) gauge
group as the only possibility. We will see in the next section that consis-
tency conditions similar to the present one allows to construct consistent
type I N = 2 models in four dimensions not directly reachable by the stan-
dard geometric compactification reviewed in section one. It is worth while
to remember that, altough the description we gave here about orientifolds
follow closely [30], they were effectively considered also in [31, 32], but from

a slightly different point of view.

1.4 Orientifold compactifications

One of the most important consistency conditions for oriented closed string
theories is modular-invariance of one-loop amplitudes; when this property
holds, the theory is simultaneously anomaly-free and ultraviolet finite; on
the other way, for theories based on open and closed unoriented strings this
important property is lost. It was however noted in [1, 33] that in this case
the cancellation of divergencies that appear in one-loop amplitudes plays the
same role of modular invariance in oriented closed strings, implying simulta-
neously UV finiteness and cancellation of anomalies. Later on, [34, 35] argued
that the presence of one-loop divergencies in type I theory can be interpreted
as inconsistencies in the equations of motion of some massless closed string
states, according to the usual UV-IR relation between dual string channels.
This last interpretation is indeed easily extendable to the case of D-branes
and orientifolds. We learned in last sections that type I string theory in a

modern language is a theory of unoriented closed strings interacting with
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(D)9-branes, where the number of branes is fixed by requiring the total R-R
flux to be zero. For 9-branes the corresponding R-R tensor field is a 10-
form A;g, an unphysical field whose kinetic term automatically vanishes; it

is present in the action only with the term

iq / Ao (1.32)

Its “equation of motion” then trivially requires ¢ = 0, where ¢ is the total
charge carried by 9-branes and orientifolds. In case of a compact space,
there are more consistency conditions analogous to (1.32), because we can

have several R-R fluxes in the compact directions.

Type I string theory, according to considerations that dates back to [31],
can be constructed starting from type IIB theory and taking the quotient un-
der Q. This point of view is very useful to construct compactified orientifold
models. After this operation, type IIB loses its modular invariance, because
we are now obliged to consider unoriented closed surfaces in the world-sheet,
like the Klein bottle, that spoils this property. The theory is no more UV fi-
nite and consistent, but introducing boundaries on the world-sheet, i.e. open
strings, one can hope to cancel the divergencies carried by the Klein bottle,
as indeed happens. The interpretation of this mechanism in our by now fa-
miliar language, is that the quotient of Q in type IIB created 9-orientifolds
filling all space, and inducing a non-vanishing charge in (1.32) that has to be
balanced by introducing an appropriate number of (D)9-branes. According
to this point of view, we can then construct type I vacua starting in ten
dimensions from type IIB theory and taking into account the €-projection.

Since we are interested to models that present N = 2 susy in 4d, that is
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N =1 in 6d, we consider then IIB orientifolds on K3 and afterwards we
compactify them down to four dimensions on a T? torus. In order to have
also an explicit construction of these models, we take K3 in its orbifold limits
T*/Zx with N = 2,3,4,6. All these models have been already constructed
in (36, 37, 38], and we will then simply review their constructions, following
in particular [37] 8. The total discrete group by which we mod out the IIB
theory is then a combination of the space-time symmetry group Zy, acting
on 7% and the world-sheet parity operator Q. The structure of the elements
of the total group is fixed by requiring the closure of the group. In particular

there are two possible choices [37]:
Zv = {1,9,05,9;} kj=1,2,..,N—1; (N=234,6) (1.33)
and
Z5 = {1,057, Q1) k,j=1,2,...,N/2; (N =4,6) (1.34)

where, ay = exp (271/N) is the generator of the discrete group Zy, that acts

on the two complex T* coordinates zq, 2, as
(21,22) = (an 21,05 22); (51, 22) = (e’ 21, 22) (1.35)

and Q; = Q- oy. We will call the corresponding models respectively Z4
and Z¥ models. As we saw in last section, each fixed point of the orbifold
can be considered as an orientifold plane and then in general it will require

the presence of suitable D-branes to cancel its R-R flux. It has been found

81t is amazing that several years ago in a complete different approach, based on more
abstract CFT constructions, many of the properties of these models were already discov-

ered by [39, 40].
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Model | Neutral hypermultiplets | Tensor multiplets
Z 20 1
74 11 10
Z: 16 5
74 14 7
7B 12 9
z8 11 10

Table 1.1: Massless closed string spectrum for the various orientifold models.

in [37] that for the A-models we always need 32 (D)-9 branes and 32 (D)-5
branes, excluding the case of ZZ where we do not have (D)-5 branes. On
the other hand, the Z? model does not have open sectors at all, while the
Z§ has only 32 (D)-5 branes. These (D)5-branes are fixed on the orbifold,
so their world-volumes span all the six-dimensional space-time. Note that
we are not counting the number of independent dynamical D-branes in the
various models, but the total number of them, including all the images un-
der the discrete group. The total gauge group of these models depends on
the location of the (D)5-branes; analogously to what seen in last section,
the maximum gauge group is achieved when all the (D)5-branes coincide at
a fixed point. When the gauge group involves U(1) factors, however, there
can be further anomalies in the theory due to the presence of new terms in
the anomaly polynomial. They are cancelled [41] by a generalization of the
Green-Schwarz mechanism that make these U(1) gauge fields massive, simi-

larly to a mechanism cancelling U(1) anomalies in four-dimensional models



[42]. Let us consider now the massless string spectra of these models in this

particular enhancement point. In the open sector, strings whose ends lie on

Model Gauge group Charged hypermultiplets
99: U(16) 99: 2x 120
Z 55: U(16) 55: 2x 120
59+495: (16,16)
74 99: U(8) ® SO(16) 99: (28,1); (8,16)
99: U(8) ® U(8) 99: (28,1); (1,28); (8,8)
Z4 55: U(8) ® U(8) 55: (28,1); (1,28); (8,8)

59495: (8,1;8,1); (1,8;1,8)

99: U(4) ® U(4) ® U(8) 99: (6,1,1;); (1,6,1)
(4,1,8); (1,4,8)
55: U(4) @ U(4) @ U(8) 55: (6,1,1;); (1,6,1)
z4 (4,1,8); (1,4,8)
59+4-95: (4,1,1;4,1,1)

(1,4,1;1,4,1);
(1,1,8;1,1,8)
7B - -
ZB 55: U(8) @ SO(16) 55: (28,1); (8,186)

Table 1.2: Massless open string spectrum for the various orientifold models.

9-branes and 5-branes only (9-9 and 5-5 strings) give rise to the vectormulti-

plets and charged hypermultiplets of the corresponding gauge groups, while

strings lying between 9- and 5-branes (5-9 and 9-5 strings) produce additional
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hypermultiplets, charged under both the gauge groups of 9- and 5-branes. In
the closed sector we always obtain the states filling one N = 1 gravitational
and tensormultiplet, plus neutral hypermultiplets and further tensormulti-
plets. We report in tables 1.1 and 1.2 the massless closed and open string
spectra for each model; you can easily verify that the anomaly-free condition
(1.3) is always satisfied. As already noted previously, the appearance of more
tensormultiplets is the clearest indication that these type I vacua are really
different from the usual K'3 compactifications where we always have only one

tensormultiplet °.

All the four dimensional models we want to consider are obtained by a
further compactification on a 72 torus. The charged hypermultiplets and the
vectormultiplets in 6d give rise to their equivalents in 4d, while the reduction
of the N =1 gravitational multiplet and of the ny tensormultiplets down to
four dimensions give the N = 2 gravitational multiplet plus ny + 3 further

vectormultiplets.

®See [43] for a discussion of the relation between these orientifold models and more

standard type I compactifications.
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Chapter 2

Higher derivative FgW29

couplings in string theory

Every string theory that presents space-time supersymmetry is well approx-
imated at low-energies by an effective supergravity quantum field theory.
These theories are in general full of bad UV divergencies, that do not repre-
sent a real problem if one consider these models as describing only physics at
distances bigger than the string length, fixed approximately by v/a’. On the
contrary, string theories are believed to be finite theories at all scales and so
the common belief is that the “correct” sugra theories describing the inter-
actions of the massless string states are given by an infinite series of terms
of higher dimensions, that arise from integrating out of the spectrum all the
tower of massive string states. Altough the control of these terms is very dif-
ficult, they are crucial to establish results in string theory that are not valid
only at the level of the low-energy effective sugra field theories. There are,

however, a class of these higher derivative terms that have been discovered
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in four dimensional N = 2 models arising from compactifying type II theo-
ries on Calaby-Yau manifolds [44, 7, 45]. They are chiral F-terms involving
the gravitational N = 2 multiplet W, and they are commonly denoted, in
superspace language, Fy(X)W?? where X denotes generically chiral vector
superfields of the theory. Aim of this chapter is to review the main properties
of this class of higher derivative couplings, pointing out the important role
they played in testing string dualities in four dimensions. In section one we
consider them from the type II string point of view, where they were origi-
nally found, and then in the second section we present these couplings in the
heterotic string. For a particular class of heterotic vacua, we will show in
some detail a one-loop string computation involving the F,’s that has been
used to test the 4d N = 2 type II-heterotic duality [5] and that is very useful
to establish also a test of type I-heterotic duality, as we will see in detail in

chapter three.

2.1 Fy’s couplings in type II string theory

Type II (A and B indefferently) string theories have N = 2 susy in ten di-
mensions, that is 32 supercharges; in order to construct a model with N = 2
in four dimensions, we need to compactify these theories in six-dimensional
Kahler manifolds with SU(3)-holonomy, the so called Calabi-Yau manifolds.
It is a well-known result that the two-dimensional world-sheet field theory
corresponding to such compactiﬁcatio.ns is a N = (2,2) superconformal field
theory (SCFT); by introducing a suitable background gauge field coupled to

the U(1) N = 2 current, that is twisting the theory, one can obtain a topolog-
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ical field theory, i.e. a theory whose correlation functions do not depend on
the details of the target space M, but only on its topology. The F,; couplings
were then originally defined in [44, 7] to be simply the partition function at
genus g of this twisted Calabi-Yau o-model. The N = 2 algebra, moreover,
constraints the F, to be the sum of a holomorphic and anti-holomorphic
functions of the moduli of the SCFT; due to anomalies, arising from the
boundaries of the moduli space of genug g-surfaces, however, these parti-
tion functions acquire also non-holomorphic pieces and it has been shown
in detail in [7] that this holomorphic anomaly allows to write a very useful
recursion relation for the F,’s. The interpretation of these topological parti-
tion functions as higher derivative F-terms appearing in the four-dimensional
N = 2 effective action was performed in [45], where it was found that they
correspond to moduli-dependent couplings associated to chiral terms of the

form

I, = F,(X)W? (2.1)
where W is the Weyl superfield
W;.‘Z/ = F:[L - R/.w/\p gia,/\pgj + ... (22)

that is anti-self-dual in its Lorentz indices and antisymmetric in the indices
i,j labeling the two supersymmetries; W? = e,-jekﬂ'if'li{;W‘ff,. R,.», is the anti-
self-dual Riemann tensor, while F is the (anti-self-dual) graviphoton field

strength. F,(X) is an analytic function of the N = 2 chiral superfields X':
ae 1a o
X=Xy §F§pe,-je'%91 +..., (2.3)

where X!, F i, are the scalar components and the anti-self-dual vector field

strengths of X. We are following here the formalism of [46] in which N = 2
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Poincare supergravity is constructed strarting from a superconformal theory
and then imposing gauge fixing constraints. In particular a weight w is

associated to any chiral superfield ®, according to the transformation
(2, 0) — e B4, e~ i=1,2 (2.4)

where z# = z# + §'4#0; and ( = (w + 1C4 with {w, (4 the parameters of the
dilatations and chiral transformations, respectively. The chiral superfields
W and X have both w = 1. The uncostrained physical scalars of the vector
multiplets are given by Z4 = X#/X° where X is given, in the string frame,
by

X0 = L eKP2 (2.5)

gs

where K(Z, Z) is the Kahler potential of the theory. According to the con-
formal transformation of the f-parameters given by (2.4), we argue that any
chiral F-term in the action, being integrated on only half superspace, has to
have w = 2. Since in a product of two or more chiral superfields, the corre-
sponding weights add up, it then follows that Fg is a homogenous function

of XP’s of degree w = 2 — 2g. Tts lowest component can then be written as
Fy(X) = (X°)F,(2) = (gs) 9K Fy(2) (2.6)

In type II Calabi-Yau compactifications the dilaton belongs to a hypermulti-
plet, and it is a well-known result that there are no gauge neutral interactions
between hyper and vectormultiplets in N = 2 sugra; it then follows that the
string coupling constant-dependence given in (2.6) is exact. This means that
the Fy’s in type II are determined at genug ¢ and should not receive any fur-

ther perturbative or non-perturbative corrections!. This was indeed explicitly

'Note that Fo(Z) coincides with the prepotential of the N = 2 theory.
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confirmed at the perturbative-level in [45] by a direct genus-g computation
on Calabi-Yau orbifolds, involving 2g — 2 graviphotons and 2 gravitons.

The holomorphic anomalies found in [7] correspond then to non-local inter-
actions caused by massless particles, whose infrared singular contributions
may lead to singular D-terms in the action, that look like chiral F-terms.
There are also very interesting connections [47] between the F|’s near a sin-
gular Calabi-Yau manifold and the free partition function of the ¢ = 1 string
compactified on the self-dual radius R = v/o’, that will not be discussed in

the present thesis.

2.2 F,’s couplings in heterotic string theory

Analogously to the case of type I string theory, 4d N = 2 models arising from
compactifications of the heterotic string require the compact six-manifold
to be K3 x T%. We will consider a particular class of these models, that
give rise in four dimensions generically to an abelian gauge group U(1)™v !
with ny vectormultiplets plus the graviphoton gauge field. The only thing
we need to know for what follows about such compactifications is that the
ny complex scalars parametrizing the vector moduli space are the complex
dilaton S = a + ie72? (a is the axion field), the Kahler class and complex
structure of the torus T,U and ny — 3 Wilson lines y,. We will see that
we do not need to know the details of the hypermultiplet spectrum. Since
the dilaton belongs to a vectormultiplet, the vector moduli space is subject
now to quantum corrections. This modifies substantially the string-coupling

dependence of the F,’s given in (2.6). In particular the Kahler potential is
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now ~ In g%, implying that
Fy(X) ~ Fy(2) (2.7)
The Peccei-Quinn symmetry
a(z) — a(z) + constant. . (2.8)

and holomorphicity uniquely fix the F,’s to be gs-independent, with the
exception of the prepotential Fy and Fj, the gravitational R? coupling 2.
They both have a linear dependence on the field S at tree-level that is allowed,
giving a total derivative under the P-Q transformation (2.8). We then expect
to find in the heterotic theory all the F,’s already at one-loop. Consider
theg the amplitude involving two gravitons and (29 — 2) graviphotons. The
relevant terms in the action are obtained by expanding F,W?9 in terms of

component fields with the result:
Sers = gFo(R*)(F?) + 2g(g — 1) F,(RF)*(F?)*~2 (2.9)

with R? = Ry, Ryuvpes F? = F,,F,, and (RF)? = (Ruvpo Foo) (R Fyr),
and where again R,,,, and F| wv Tepresent the anti-self-dual parts of the Rie-
mann tensor and graviphoton field strengths respectively. We want then to
compute a 2g-point one-loop string amplitude, involving two graviton and
29 — 2 graviphoton vertex operators. In the following we will closely follow
the computation reported in [5] and its generalization performed in [6]. The

graviphoton vertex operator V, can be obtained starting from the graviton

*Note that Fy should be evaluated by a three point function [12] but, as showed by
[6], the computation we will summarize here gives the right result even for this case. The

same will happen in Type I theory.
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operator V, and applying two supersymmetries; in this way one obtains:

Vy(p) = £ (p) (90X, + ip - 1) OX, €7 X
Vy(p) = €u(p) (X +ip- pU*) 0X, ¥ (2.10)
where X, 1, are the world-sheet scalar and fermion fields associated to the
euclidean four-dimensional directions g = 1,2,3,4, while X, ¥ are the com-
plex fields
Xt = (X°4+iX%/V2, Ut =(U°+i0%/v2 (2.11)
associated to the internal T-torus. The anti-self duality conditions are easily
solved in the gauge in which €4 = €,4 = €4, = 0 and in complex coordinates
where
ZE = (X*+iX%/V2  ZF=(X'+iXY)/V2 (2.12)
and similarly for the left moving fermions

XE= @ Ei®)/V2 xF =@ Eip?)/V2 (2.13)

and for the four-momentum p*. In the kinematical configuration where pf =

p; = 0, it is easy to see that the anti-self duality and trasversality condition

1
€uPy] = 56#1/;)06;’?07 e-p=0 (2.14)
imply that ¢f = ¢; = 0 for the graviphoton polarization and analogously

¢f = ¢f = 0 when pf = pf = 0. The polarizations of the gravitons can be

easily recovered from those of the graviphoton by chosing &;; = €;¢;, where
¢,7 = 1,2,3. In this kinematical configuration the vertex operators are then

the following;:
V,(pE) = (0ZF +ipExTxTF)0ZF P&

V,(p¥) = (BX* +ipExTUt)ZF P A (2.15)
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Consider now an amplitude Ay, involving one graviton and (g — 1) gravipho-
tons with p3 = pJ = 0,p} # 0 and the remaining graviton and (g — 1)
graviphotons with pf = pt = 0,p; # 0. This amplitude gets contribution
from both the terms in eq.(2.9) and it is easy to show that

Ay = (V Pl)HV +()V(P1_(i))>

= )plfﬂp*“ (91)2F,. (2.16)

In genefal this amplitude receives contribution from all the spin structures
and one must sum over all the spin structures weighted by a factor half as-
sociated to GSO projection. However one can show that the sum over even
spin structures gives the same contribution as the odd one. Thus the full
amplitude can be evaluated in the odd spin structure without the factor of
half. In the odd spin structure one of the vertex operators must be inserted
n (—1)-ghost picture due to the presence of a Killing spinor on the world
sheet torus, and one must also insert a picture changing operator to take care
of the world-sheet gravitino zero mode. It is convenient to take one of the
graviphoton vertices in the (—1)-ghost picture which comes with a fermion
U+, Recalling that in the odd-spin structure the space-time fermions X:ﬁg as
well as the internal fermions U# associated with the torus 72 have one zero-
mode each, one concludes that the only contribution of the picture changing
operator comes from the term e?U~dX*. Moreover the space-time fermion
zero modes are soaked by the fermionic part of the graviton vertices. From
the remaining (29 — 3) graviphoton vertices in the (0)-ghost picture only
the terms involving X+ survive. Together with the dX* appearing in the

picture changing operator they provide a total of (29 — 2) X*’s which con-
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tribute only through their zero modes. Finally we are left with the correlation
functions of space-time bosons. The structure of the terms in the action (2.9)
imply that every graviphoton contributes with one power of momentum; it

. . . ()+ ( )+
then follows that in the contraction of the exponentials < ePi” 1 e SEIS

the relevant term is that linear in both momenta p( )+, pgj )=, In this way the
momentum structure of this amplitude matches with that of eq.(2.16) and

F,’s are given by the following expression:

(41_\’7:)9-1 ' d2/ 2 g 2 — Jr7—
Fo- - P2 725073 (z)) d*y; 27 0Z; (y;))
g e (g!)Z/ 3 / ];_[1/ i1 Ve \Yj
> Ce(r) % (eKQﬂPL) gl et (217)
c (P,Pr)elc

2miT and

where 7 is the Teichmiller parameter of the world-sheet torus, ¢ is e
1/7* accounts for the partition function of the two space-time and torus right
moving bosons in light-cone. The normalization constant has been fixed as
n [5]. Ko is the Kéhler potential modded out of the dilaton dependence and
comes from the change of variables performed in (2.6), P, and Pg are the left
and right moving momenta sitting in the n + 2 real dimensional lattice T',.
Since this lattice is not in general self-dual, world sheet modular invariance
implies that the vectors in the dual lattice must also appear in the spectrum.
This dual lattice splits into several conjugacy classes labelled by T'.. Each
of these classes are coupled to different blocks of the remaining conformal
field theory (¢ = 6,¢ = 22 — n) where C,(7) = Trc(—l)FqL°“°/24le°“5/24 is 7-
independent, as has been argued in [5]. In order to evaluate these correlation
functions it is convenient to introduce the generating function

(oo}

GO, 7) = Z( 7 )29<H [ [ &2 Z*aZ’f(x.)H [ [ ;27925 (w3)
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= i NG (7,7) (2.18)

g=1
whose coefficients G, times 759 appear in the expression (2.17) for the Fy’s.
In this way we can exponentiate the bosonic correlators in (2.17) reducing
the amplitude to the computation of a determinant of a A-twisted free field

action. The result is:

G\ 7, 7) = (;j’(ijﬁ)):‘% (2.19)

where O1(z, 7) is the odd theta-function

O1(z,7) =2 ] (1 = ¢") sinwz JJ(1 — 2¢" cos 27z + ") (2.20)

n=1 n=1
We can write the result of the computation in a closed way for all the F,’s
by defining an analogous generating function:
o0

F(X)=> ¢°\¥F, (2.21)

It is then not difficult to show that:

Az 2_1 2
F(\) = Z Co(q Z qglPLl PRI
7'2./ T 77 (PLyPH)GFC
2 53\ 2
1d (27_”{77 (Q)) 5 (2.22)
2d\? 01(\, 7)

where \ = eXo/2P; 7, \. For the particular model with ny = 2, i.e. two only
vector moduli, S and T, [5] showed that derivating (2.22) with respect to T,
one obtains recursive holomorphic anomaly equations for the F,’s that agree
exactly to those found in the conjectured type II dual model, after having
taken the appropriate type II limit corresponding to the heterotic S — co

limit (weak coupling limit).
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As we will see in greater detail in next chapters, the topological origin of
these higher derivative couplings in type II string theory is manifested in the
heterotic theory in the fact that the amplitude (2.22) actually depends on
the internal six-dimensional manifold only through a supersymmetric index
[9]. Tt then follows [13] that these effective higher dimensional couplings
do not depend on the form of the whole massive string spectrum, but they
receive contributions only from the N = 2 BPS-saturated states of the theory.
Before concluding this brief survey about the F,’s, I would like to mention
that these couplings have been also crucial in establishing important checks
on the description and interpretation of certain singularities in Calabi-Yau
moduli spaces, known as conifold singularities. In particular the one-loop
computation of [5] reported before, led to a check of the conjecture that
the physics near the conifold is governed by the c=1 string at the self-dual
radius, while the one-loop computation performed in [48] provided a check
of the description of the conifold in terms of intersecting D-branes [49]. Both
works, moreover, can be considered as a check of the Strominger proposal for

the resolution of the conifold singularity [50].
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Chapter 3

Type I-heterotic duality

We already noted in the first chapter that the ten-dimensional N = 1 sugra
with gauge group SO(32) admit two string constructions, in terms of het-
erotic and type I strings. This fact can be considered a first hint of a possi’ble
equivalence of these two string theories. However, the equivalence should not
simply relate the perturbative regimes of the two theories, because, altough
the low-energy effective theories match up, this is not the case for all the per-
turbative massive string spectrum. The heterotic gauge group is not properly
S0O(32), but Spin(32)/Z, that admits also states transforming as spinors of
50(32), absent in the type I string spectrum. It has been argued in [51] that
the two low-energy effective theories are related by a strong-weak duality,
inverting their string coupling constants. Consider, indeed, the form of the
ten-dimensional heterotic effective action, in the string frame and without

taking care of numerical coefficients:

To ~ / &2\ /ge (R + (04)? + F? + (dB)?] + ... (3.1)
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where ¢, R, F' and B are respectively the dilaton, the scalar curvature, the
vector field strengths and the antisymmetric tensor field. Since the terms
given in eq.(3.1) come from a tree-level sphere computation, they are all
proportional to e”?¢. Consider now the form of the ten-dimensional type I

effective action, again in the string frame:
T ~ / 2. /7{e R+ (08)Y] + e *F2 + (dB)’} +...  (32)

with the same fields as before. The dilaton dependence is now given by the
sphere, as in (3.1), for both R and ¢ and by a disk computation for the vector
field strengths, belonging to the open string spectrum. The scaling of the
R-R antisymmetric tensor field B is a bit more subtle; being a closed string
state, it should naively scale with e~?% but it was shown by [35] that the
R-R field strengths satisfying in general the Bianchi identities and Maxwell
equations derive from the rescaled p-potentials C, — €?C,. In this way,
the R-R kinetic term (dB)? scales trivially with ¢. Since two terms in both
actions have already the same ¢-dependence, it is clear that if we want to
match up (3.1) with (3.2), we have to rescale also the ten-dimensional metrics,
or in other words, the measure of lenghts in the theories. It is then very easy

to see that after the identifications
¢r=—¢u, g =e"gl) (3:3)

the two actions exactly match up. The first relation in (3.3) states that if
the two string theories are actually equivalent, they are strong-weak dual, in
the sense that the strong coupling behaviour of one of the two is described
by the weak coupling of the other. Due to the second relation in (3.3), it

is not excluded, however, that after having compactified the two theories on
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compact manifolds of suitable sizes, the purely strong-weak duality in 10d
could appear as a perturbative weak-weak duality in lower dimensions.

This up to now rather weak evidence for type I-heterotic duality was strongly
reinforced in [3]. In this reference, the implications of heterotic T-duality in
type I theory were studied and it was found that possible inconsistencies
of the dual map (3.3) are avoided in a very non-trivial way. As further
check, they found that the (D)1-brane of type I string theory has the same
world-sheet structure as the heterotic string. This is an important statement,
because when the type I string coupling constant is very large, the (D)1-brane
becomes a light state and, according to (3.3), should be dual to an elementary

perturbative heterotic string.

The study of the four dimensional consequences of type I-heterotic dual-
ity has been started only recently in ref.[11], where it has been shown that
indeed there exist type I and heterotic models that are weak-weak dual in
four dimensions, once compactified in suitable manifolds. They studied the
1-loop corrections to the prepotential for the Z3' model considered in chapter
one and in particular they showed that the perturbative prepotential for a
rank four model that admits type I, type II and heterotic descriptions, agree.
Aim of this chapter is to present an other test [4] of the aforementioned dual- |
ity that involves the higher derivative F,-terms analyzed in chapter two. We
compute them at 1-loop for the Z2' model, that is the only orientifold model,
among those we analyzed, having one tensormultiplet in six-dimensions and

then admitting a perturbative heterotic dual ! and then compare to the het-

!The computation does not really depend on the details of the various models, and

indeed we will generalize it to all the orientifolds in next chapter.
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erotic couplings (2.22) computed for the corresponding dual model. In this
way we show the complete agreement of the moduli-dependence of the F,’s
in both models, providing a further check for the given duality. This study
has been generalized in [52] where, among other things, it has been shown
the agreement of the F};’s of the same type I model with that of an heterotic
orbifold dual model, in the Coulomb phase with the insertion of arbitrary
Wilson lines.

In section one we construct the pair of heterotic and type I models dual to
each other and consider in detail the structure of the dual map. In section
two, starting from the results obtained in last chapter for the heterotic F,’s
couplings and according with the dual map found, we perform the limit in
which duality predicts that both couplings have to agree. Finally, in section
three, we compute in detail the F},’s couplings in the type I dual model show-
ing that they are in complete agreement with the heterotic one’s, providing

an other important test of the conjectured type I-heterotic duality.

3.1 The dual pair

It is known that N = 2 models deriving from heterotic theory require the
internal six-manifold to be K3 x T2, Analogously to the type I case discussed
in the first chapter, in order to construct a consistent model we have to satisfy
the topological condition (1.2). Consider the Eg x Eg heterotic theory on
K3xT? if we solve the condition (1.2) by putting 12 instantons on an SU(2)
subgroup of each Es, by using index theorems it is not difficult to see [53]

that the resulting four-dimensional massless spectrum contains, among the
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N = 2 gravitational superfield, 266+3 vectormultiplets forming the adjoint
representation of the unbroken gauge group E; x E; x U(1)3, 62 neutral
(1,1,1) and 4 charged (1,56,1) 4+ (56,1,1) hypermultiplets. We can now
give non-vanishing vacuum expectation values to the charged hypermultiplets
higgsing the gauge group and leaving unbroken the abelian U (1) factor only.
In this way we obtain 112 x 4 — 266 = 182 further neutral hypermultiplets,
for a total of 62 + 182 = 244 hypers and three vectors. The vector moduli

space is then parametrized by three complex scalars S — T — U, where
Sy =a+1e ", Ty = B+ i\/é, U = (Gss + i\/é)/Gu (3.4)

denote the complex dilaton, the Kahler and complex structure of the torus,

respectively 2.

As already mentioned before, the type I dual is constructed starting from
the six-dimensional model on the K3 orbifold 7%/Z>. The maximal gauge
group of this model is (see table 1.2) U(16)®U(16), when all the (D)5-branes
with their images are overlapped together on one of the 16 fixed points. This
model presents also U(1) gauge anomalies that are non-vanishing even when
relation (1.2) is satisfied. It has been shown by [41] that they are cancelled
adding a counterterm to the langrangian that induces an anomalous U(1)
charge to neutral scalar fields, corresponding to R-R twisted closed string
states. In this way, the would-be anomalous U(1) gauge fields become mas-
sive, through an Higgs mechanism, eating the R-R twisted states; because of
supersymmetry, that remains unbroken, the whole vectormultiplet, contain-

ing the U(1) gauge field and the whole hypermultiplet, containing the R-R

2From now on a subscript H or I refers to heterotic and type I quantities.
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scalars become massive and disappear from the low-energy effective action.
It has also been shown in [41] that in a generic (D)5-brane configuration with
16 or fewer U(1)’s, all of them are broken, while if there are more than 16,
exactly 16 are broken. Put now two (D)5-branes at each fixed point of the
T*/Zz orbifold. The gauge group should be then U(16), coming from the 9-9
strings, times U(1)'® from the 5-branes, but according to the previous analy-
sis, it is reduced to SU(16) ® U(1). In the closed string spectrum, moreover,
we are left with only four neutral hypermultiplets. By giving non-vanishing
vacuum expectation values to scalars belonging to charged hypermultiplets,
it is possible [11] to break completely the gauge group, remaining only with
244 N =1 hypermultiplets, 4 of which coming from the closed string sector
and the remaining 240 from the open string sector. After the further com-
pactification on 72, the massless spectrum consists of 4 U(1)’s, 3 complex

scalars and the 244 N = 2 hypermultiplets, of course.

Let us analyze the dual map between the states of both theories, accord-
ing to the conjectured duality. We will mainly focus here on the precise
1dentifications of the heterotic and type I string coupling constants, showing
how a perturbative duality can arise in four dimensions. For this purpose
it will be sufficient in the following to write only the R and kinetic energy
terms of gauge fields of both heterotic and type I effective actions. Compact-
ification of the heterotic action (3.1) on a generic 10-d dimensional manifold
gives simply

0§ ~ [dize2 (Ry+ F? 4 ..) (3.5)
with

(d) ,
e~ %5 = ¢ 2%x Vio-d (3.6)
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and where Vjg_4 represent the volume of the internal manifold. The type I
ten-dimensional action (3.2) gets modified, in presence of (D)5-branes, for
additional terms living on the 5-brane world-volume. Schematically we have

now, for the R and kinetic gauge terms:

Fglo) ~ /dlox [e—2¢(110)(R10 +..)+ e"¢SIO)F2 + e—¢(110) (F/)25(4)($) + ]
(3.7)

that under compactification on K3 gives
r(® / &z [e—w(f’(Rﬁ b e R? g L (R ] (3.8)

due to eq.(3.6), valid also for type I, where we have denoted with w? the
volume of the K3 orbifold. The ten-dimensional relations (3.3) imply that

in six-dimensions

_o4(8) —94(6)
e 2% 1 e = wi (3.9)

Note in particular that in 6d the heterotic dilaton qﬁg), as well as the Kahler
modulus wj in type I, belong to a tensormultiplet, while on the other hand
the type I dilaton 4536) and the heterotic Kahler modulus wj, are part of an
hypermultiplet. From eqgs.(3.8) and (3.9) it follows that the gauge fields aris-
ing from the 5-branes in type I are non-perturbative in the heterotic string,
where it is believed they arise from small instantons [54, 41]. Compactifying

further eq.(3.8) down to four dimensions, we obtain

O~ fat [ (Rat )+ e ud GYAF? 4 e GYAPY 4 ]
(3.10)

where /Gy is the volume of the type I torus. If we denote respectively

with Im S7,Im 57 the gauge coupling constants of the F, F’ field strenghts,
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relations (3.3) and (3.9) imply that in 4d

(1) (4)

ImSyg = e %8 =% w%G}/‘i:ImSI

ImTy = +/Gg = e““sgm)\/Gz = e”¢(f4)w1“2 G}“ =ImS; (8.11)
Weakly coupled type I theory, corresponding to the limit of large Im Sz, Im S7,
is then equivalent to weakly coupled heterotic theory, provided that the vol-

ume of the heterotic T2 torus is large. It is not difficult to show that the

entire duality mapping in 4d for the vector moduli space is [11]
Sy=958, ITu=S;, Ug=Us (3.12)
where

Sr=a+ie *GMW? Sy = By +ie GV, Uy = (Gys + iVG) /G
(3.13)
omitting a subscript I to all quantities. While the four-dimensional heterotic
dilaton ¢§;‘) belongs entirely to a vectormultiplet, the type I dilaton ¢S~4) is a

combination of fields appearing in hyper and vectormultiplets:
e = ¢ (Im § Im §)!/? (3.14)

This implies that in general vector and hyper-moduli spaces can both re-
ceive quantum corrections in these type I 4d vacua. On the other hand the
type I low-energy effective action is invariant under the two Peccei-Quinn

symmetries

a(z) — a(z) + const.

Bis(z) —  Bas(z) + const. (3.15)
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since the scalar field Bys comes from the R-R closed string sector. This im-
plies the perturbative independence of chiral amplitudes from Sy and S% 2.
The heterotic effective action presents instead only the usual P-Q symme-
try (2.8). Given the relations (3.12), it then follows that for every chiral
amplitude A:

lim A(T,U) = Ad(U)ls,>s; (3.16)

where T5 = Im 7T and the same for S,S’. The restriction Sy > Sj is due to
the fact that in the heterotic theory we take first the perturbative large S,
limit, and then the large T35 limit. It simply means in type I to take a K3
volume bigger than 1, in ¢ units. Since the tree-level type I Kahler potential
is ~ In g% like the corresponding heterotic one, from relation (3.16) we expect
that

lim F,7°"(T,U) = F}7°*(U) (3.17)

Tyrso ™~ 9
This is indeed true for g > 2, but F; has also a tree-level contribution that
is [52]

Ff}'}e =475, (3.18)

for the heterotic model and
f’fe =47 (S, + 55) (3.19)
for the type I model. This means that, according to duality,

Fig°®(T,U) = 4xTy + F1 7°°(U) (3.20)

lim
Tr—00

where the first term is mapped to the corresponding tree-level type I coupling.

3With the exception of a linear dependence in S, S’ for Fy and Fj, as already seen in

_ chapter two.
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3.2 Heterotic F, couplings in the T, — oo
limit

Given the relation (3.16) found above, in this section we will simply consider
the heterotic F; couplings (2.22) reported in last chapter, and take their T, —
oo limit. For the particular heterotic model under consideration, eq.(2.22)

assumes the following form:

Ao dro 1 vpe upel @ | (200737 2
Fg(\T,)U) = — [ — Cl(q 2Pl g3lPRIP 2 (—_—;———— e ™
B0 = G [Tt & et (%7
(3.21)
where

1 _ - S

P = _\/ﬁ(nl+n2U+mlT+m2TU)

1 _ _
PR = —————--(nl—l—an-l—mlT—{-mgTU) (3.22)

V20,
)= Pr7o0 /215U, and we fixed the overall normalization in order to repro-
duce the tree-level heterotic coupling (3.18). Since the lattice of momenta is
self-dual for this model, there are no conformal blocks and C (g) is actually
the partition function of K'3 in the odd spin structure. In particular, C(9)

has the following expansion [5]:
C(q)=q (1 —2447+..) (3.23)

where the first factor accounts for the tachyon and 244 is the number of

massless hypermultiplets of the model. In order to show more explicitly the

T dependence of Fy()) rescale

T2 — Tp12/2 (3.24)
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It is now evident that all the lattice momenta with m;,my # 0 are expo-
nentially suppressed with T5. After the rescaling (3.24), the integration on
the fundamental domain F of the torus becomes the strip —1/2 < 7 <
1/2, 0 < 7 < oo; bringing the limit inside the integral and expanding in g,

the non-vanishing result will be given by the g° coefficient of the expansion:

AZ oo dTZ _ﬂr')IP|2 d2 A7t_
. A —_ / —_— 2U; 4 - Y l ?
T£1_1330 Fa()T,0) 1672 Jo T n§z ’ lr Od’\2 (sin A) o

(3.25)
where P = ny + nyU and A = ArryP/4U,. The second term in square
brackets comes from the tachyon contribution together with the linear term
in ¢ deriving from the expansion of the eta and theta-function and gives
a contribution only to Fy. From eq.(3.25) it is evident that all the F are
convergent, with the exception of the gravitational coupling F; that presents
both IR and UV divergencies. This last one comes from the large T3 limit
and can be regulated going back to eq.(3.21) and picking up the divergence
piece of F;. The total Fy contribution is obviously given by taking the A°

coefficient in the expansion of the square bracket in (3.21); it is given by [52]

1 &Pr 1 11p 12 2 (27
F T IPL! 1|Pg| (____ . )
11T, U) = 765 ) C(9) n;; q? — —8ind; In77(q)
my,m2

(3.26) -
We can now perform a Poisson resummation of the lattice sum in nq,no,

putting m; = m, = 0:

Z e—%lm-&-nzm? =T, Z e‘%%zilx-—lzmz (3.27)

n1,n2 11,12

The remaining integral on the fundamental domain F can be explicitly per-

formed; the ending result for the divergent piece of Fj is then just [52]:

Fi = 4xTy (3.28)
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reproducing the tree-level type I coupling. We can rewrite eq.(3.25) more

appropriately as

A2 peor d _rrplp? & ()’
Jim Fy(A,T,U) = 4r 0Tyt / 2y [740—— (-—-’f—> +16W2J

1672 Jo d)\? \sin \

T2 ni,n2

(3.29)
where the prime in the integral indicates the subtraction of the UV divergent
piece. The IR Fj-divergence, on the other hand, is present before the large
T? limit and is the result of the one-loop renormalization of the gravitational
coupling constant due to massless particles. We will see in next section how

this amplitude is reproduced in type I

3.3 Computation of F, in the type I model

We compute the Fy couplings in the type I model by considering the same
amplitude taken into account in section 2.2, involving two gravitons and

2g — 2 graviphotons; the graviton vertex operator is the usual
v _ . vV : vy _ip- X
Ve (p) = (OX* +1p - yp*)(0XY +ip - 9p)e™ (3.30)

The graviphoton vertex operator is obtained applying the two supersymmet-

ric charges to V:

Vi(p) = (@ + Q%)@ + Qv (p) (3.31)

The explicit form of QS{QR) can be obtained starting from the free orbifold
case, using eq.(1.27). They are given by
Q(L)+Q(R) — fd,ce 25 Ze 2<z)+fdz _g i %5‘()

QI+Ql = fdeisneT(z)+ fazet5.56F(2) (3.32)
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i Hs
)

where € e

—%7 are the bosonization of the superghosts and of the complex
fermion associated to the internal torus respectively, S, is the four dimen-
sional space-time spin field operator and ¥ and its complex conjugate are the
K3 internal spin field operators; they can be explicitly written by reminding
that the conformal field theory associated to K3 is a N = (4,4) SCFT, that
presents an SU(2) current algebra. Bosonizing the U(1) Cartan current of
the SU(2) algebra as J; = iv/2H, ¥ can then be expressed as & = ¢ FH

The same of course for the right-moving sector. We choose exactly the same

kinematic configuration taken in section 2.2 to compute the heterotic F,’s.

The 1-loop amplitude involves now a sum over the torus, Klein bottle,
annulus and Mobius strip surfaces. Since the 2g — 2 graviphoton vertex op-
erators so constructed are in the (-1)-ghost picture, we need to include in
the correlation function 2¢g — 2 picture changing vertex operators. The non-
vanishing contribution of the picture changing operators will come only from
the part (e?e™*9ZF + right-moving)?, where Z is the complex scalar as-
sociated to the torus direction, that cancels the +1 charge carried by V, in
the torus direction. The 29 —2 8Z5 and 0ZZF cannot contract with anything
in the correlation function, so that only their zero modes part give a non-
vanishing contribution. We can use the method of images, as described in
[55], in order to compute the boson and fermion propagators on all the sur-
faces starting from those on the torus. We take into account of the different
N-N, D-D, N-D, D-N boundary conditions according to the expansions given
in eqs.(1.6),(1.8),(1.24) valid for the strip. The only relevant thing, due to

4The discussion done here and in what follows also applies to the torus contribution to

the amplitude, reminding that in this case left and right sectors are unrelated, of course.
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eq.(1.24), is that all the propagators in the D-N and N-D directions, those
corresponding to the K3 orbifold, are Z,-twisted. Bosonizing fermions and
superghosts, we can then compute each term using the results of [56]. The
important point to note is that we have always a cancellation between the
contributions of the superghosts and the fermions of the torus direction. We
are left in this way with a sum over the spin structures for the remaining
eight directions. Given the structure of the graviton and graviphoton vertex
operators, the spin structure dependent part of each term contributing to
the amplitude is always of the form, for generic arguments ay, as:

Sy e |g) @[50 @370 @) (339

91,92=0,-1/2 a,6=0,1/2

where

0 [g] (2) =6 {g} (z;7) = g:zeiW(n+5)-r+2:i(n+a)(z+ﬁ) (3.34)
The first sum is over the twisted sectors of the orbifold, the second is over

the spin structures, the first two theta functions refer to the space-time co-
ordinates and the remaining two to the internal K3 directions. For the open
string sector, g; = 0 for N-N and D-D directions and g; = —1/2 for N-D
and D-N. We can now perform the spin structure sum using the Riemann
identity:

Y e g o[58 @6 [3 2 9] (@) =

91,92=0,~1/2 ,=0,1/2
1/2] 1 g [1/2] 5 0g 12 = 01 (1 [1/2 = 91
>, ¢ [ ] (d1)0 [ ] (a2)0 [ ] (0)0 [ ] (0) (3.35)
91,92=0,~1/2 1/2 1/2 1/2 —go 1/2 — g,
where @, = a;4+a,. We can reinterpret the result (3.35) of the spin-structure

sum as the amplitude in the odd spin structure of new vertex operators

obtained from the original one through the SO(8) triality rotation defined
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by the Riemann identity. As shown in [48], the graviton vertices are left

invariant by the map while the graviphoton operators are transformed to:

V,(oF) — [0+ 0)Z5 +ipF (v — 0F) (0F — )] P17 (3.36)

The remarkable fact is that the correlation functions now depend only on the
space-time coordinates, the internal K3 part entering through its partition
function in the odd spin structure. After having extracted the terms linear
in the momentum of each graviphoton, the Fj couplings are given by the

following amplitude in the odd spin structure:

1 __w[t}[P[Q P g—1lg-1
F,i((U) = ——— dM], Cu([t U VG Y22 V+V
) = e X JiamlaCulie) 3= &8 () 111

[/dzm(z+a+a>z+ + (b — ) (F — %H/d"’yj > (0+0)Z7 +(¥7 — z/;l")(l/){—d;{)])‘a

where
Vi = [Ea(2E078 + 0025075 + R (33T)

[dM], denotes the measure of the moduli integration for each surface o with
[t] the corresponding coordinate, Cy([t]) is the partition function in the odd
spin structure of the internal sector and P = n; + n,U are the discrete
momenta corresponding to the 7% torus. Again, the normalization of the
amplitude has been fixed according to eq.(3.19). Define now, analogously to
eq.(2.21):

(0 U) = S ¢ NSE, (1) (3.38)

g=1

Exponentiating we obtain

22 _ =P < _
FOD =55 3 1Ml Ca(t)) 3 ¢ "B (eSS, (3.30)
a=1, n1,n2
M,A
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where \ = A P[\2U,GY*, Sy is the free action for the space-time bosons

and fermions and

S = / fl?[zf(%é)zjﬁ—(d)f — ) (F =3 )+ 25 (0+0) 27 +(%7 =5 ) (5 —%37)]

(3.40)
Because of the four zero modes ¥f = ¥ =const., & = ¥ =const. of the
new action, it is easy to check that
- 2 P <
(e HSYHY =), = —iﬁ(e"%“s)a (3.41)

The amplitude is then reduced to the evaluation of determinants of space-
time bosons and fermions; before computing them, however, note that C (Ith
is actually an index on all the surfaces. In order to see this, it is better
to go to the operatorial formalism. For the torus and annulus, C(t) coin-
cides with the Witten index [57] Trp_g(—)F2+FRrglogle and Trg(—)FgLo. For
the Mobius strip and Klein bottle, C,(t) is respectively TrrQ(—)F g% and
Trr_rS) qL"(jEO. It is easy to see that these are still indices. In the M&bius
strip {2 will act simply by multiplying each multiplet by a common eigenvalue,
while in the Klein bottle it is possible to check that each multiplet entering
in the evaluation of the trace has equal number of states with opposite eigen- .
values of ). Since the C,([t]) are all indices, their values are invariant for
small perturbations of the theory and then it is possible to compute them
directly from the spectrum of the free theory summarized in tables 1.1 and
1.2 and from its stringy origin [36]. By a simple counting in the closed string
spectrum, we easily derive that Cx = 0 and Ct = 8 3. Since in the torus the

fermion and boson determinants cancel, leaving a A-independent constant,

®Note that the twisted closed states in the orbifold limit are all massive [41].
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we have a non-vanishing contribution only for the coupling Fy ; coming from
the odd-odd and even-even spin structures [52]. It can be shown that the
sum of the two contributions can be extracted by the odd-odd part in the

limit v/G — oo [52]. Its contribution is:

1r7'«)|P|2 '
Rl = 55 / PrCr Y & WA (VI (3.42)

n1,N2

The only non-vanishing result comes when we take all the eight fermions of
the two graviton vertex operators to soak up the eight zero-modes present in

the odd-odd spin structure of the torus. The result gives simply:

7r?r;!P|2

FilogaZods = 8 / ﬁ_—CT > e , (3.43)
N n1,n2 )
Rescaling 7, — +/G 72 /2, we obtain, for VG — co:
7 - mnlPP
e [T R (3.49)

T2

The remaining contribution for the F,’s comes from the annulus and
Mobius strip surfaces. The corresponding determinants can be simply Com;
puted using the corresponding mode expka,nsions of the fields reported in
Appendix A. For n # 0, boson and fermion determinants always cancel. .For
n =0, in the annulus and M&bius strip the A-dependent term in the fermion

part of the action drops out, while the bosonic contribution reduce to:

(e=So+35), — (e=5o+3S) = =71 H ( X )—2 = %3( _:\7{ )2 (3.45)

sin Aw

Looking to the open massless string spectrum [36], it turns out that Cy +

Cm = 322 —2-32 = 4-240. Putting everything together and rescaling
t — /G t/2, we finally obtain:

dt & [ I \° \

2U — — _ ]

Fi(), 1672/ S e [240W(_ A) + 16

n1,m2

| (3.46)
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where A = ArtP/4U,. Eq.(3.46) reproduces, according to the type I-heterotic
duality, the one-loop part of the generating function (3.29). As in the het-
“erotic case, all the F, with ¢ > 2 are convergent whereas F} presents both an
IR, and an apparent UV divergence that disappears when the contributions
of the different surfaces are appropriately regularized [10]. On the other
hand, as can be seen comparing eqgs.(3.29) and (3.46), the IR divergences
match up. Moreover, both amplitudes receive contributions only from the
N = 2 BPS-saturated states, property that will be studied in greater detail

in next chapter.
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Chapter 4

BPS states and the

supersymmetric index

During the recent developments achieved in string and quantum field theo-
ries with extended supersymmetry, it has become evident that a prominent
role in governing the dynamics is played by BPS saturated states. These
special states provide important clues in the exploration of the strong cou-
pling regimes of the corresponding theories. This is due to the fact that
their properties are usually fixed exactly at tree level, since supersymmetry
protects them to receive quantum corrections. The appeareance of solitonic
massless BPS states in /N = 2 supersymmetric Yang-Mills theories [58], the
prediction of U-duality in type II string theories of the existence of BPS
states carrying Ramond-Ramond charges [59], subsequently identified with
D-branes [22], and the resolution of the conifold singularity via a solitonic
charged BPS state [50] are only few examples of the vast number of results

supporting their importance.
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An interesting connection between BPS states and generalized Kac-Moody
currents has been found in [13]. In this reference the authors study threshold
and gravitational corrections in N = 2 four-dimensional compactifications of
the heterotic string. These corrections can be written in terms of the N = 2
supersymmtric index defined in [9] and are determined’purely in terms of
BPS states. In particular the index is shown to count the difference between
the number of vector- and hyper- multiplets in the effective four-dimensional
theory. The scope of this chapter is to show that an analogous result holds
in N = 2 type I string compactifications. The N = 2 supersymmetric index
is realized in type I compactifications and then related to the corresponding
threshold and gravitational corrections. For a generic compactification we
compute this index as a function of the BPS spectrum, finding again that
BPS contributions enter only through the difference between vector- and

hyper-multiplets®.

We then extend these results to the orientifold models discussed in the
first chapter, generalizing the one-loop computation of the Fy’s couplings
performed in last chapter for the Z# model and showing explicitly the BPS
dependence of these amplitudes. This index encodes the compactification
model-dependence of these couplings, while an universal part coming from

the spacetime correlations complete its structure.

In section one we review the definition and the main properties of the
supersymmetric index [9], as well as those of the Witten index [57], pointing

out their differences. In section two we realize the supersymmetric index in

1Strictly speaking this is not the case for the Fi-coupling, see below.
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N = 2 type I compactifications, by reporting two simple examples of one loop
amplitudes whose expressions are given by it. We show in section three how
for a generic K3x T? type I string compactifications, this index is determined
purely as a function of the BPS spectrum of the four dimensional theory. In
last section we finally extend the computation of the F,’s to all the orientifold

models reviewed in chapter one.

4.1 The Witten and supersymmetric indices

In this section we briefly report the most important properties of the Witten

and supersymmetric indices, starting from the former one.

For any supersymmetric field theory defined on a compact space of ar-
bitrary dimension that does not break supersymmetry itself, the quantity
Tr (—)F [57], where (—)F is the operator whose eigenvlues are +1 on the
bosons and -1 on the fermions is an index, in the sense that its value is
invariant for finite perturbations of the theory. Consider, indeed, a generic
bosonic state |b) with a non-vanishing energy E. If supersymmetry is unbro-

ken, for each of these states, there exists the supersymmetric partner

1 v
ﬁle) (4.1)

with the same energy but opposite fermion number, since {(—)F,Q} = 0.
This means that the index above, called the Witten index, depends only on
states with vanishing energy, i.e. the vacua of the theory; in particular it is

equal to
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where n5=0 nE=0 are respectively the bosonic and fermionic states with

vanishing energy. The important observation is that this difference cannot
change if we vary the parameters of our theory, because if states with £ #£0
are driven to £ = 0 or viceversa, it always has to happen for pairs |6}, |1)-
Altough the net number of nE=0 n£=0 states can change, their difference
is then invariant. It is natural that whenever the Witten index is different
from zero, éupersymmetry is unbroken, whereas it is not valid the contrary.
The property of being invariant for finite perturbations of the theory makes
the Witten index an important tool to study supersymmetry breaking, since
it often allows to do an exact prediction on SBS by a simple perturbative
computation. For two dimensional supesymmetric non-linear o-model with
target space M, it has also been shown in [57] that the Witten index equals
the Euler characteristic of the manifold M. It is now straightforward to
extend the previous results for more general cases. Whenever we have a
conserved operator K that commute with supersymmetry, the combination
Tr K (—)¥ is again invariant for finite perturbations of the theory and define
new topological indices. Note that the indices discussed in section (3.3) are

precisely of this kind with A" = §, the world-sheet parity operator.

Let us now turn to the supersymmetric index [9]. Contrary to the case of
the Witten index, this new index is defined only for two dimensional theories
with at least N = 2 supersymmetry. It is given by Tr F' (—)F where F is the
fermion number charge, associated to the U(1) current present in the N = 2
algebra. It has been shown in [9] that the quantity Tr F (=)F is invariant
for any finite perturbation of the two dimensional theory that can be written

as a D-term, i.e. a term that in superspace language is integrated on the



whole superspace d*f, whereas it depends in general on F-deformations of
the model. This means that strictly speaking Tr F' (=) is not a topological
index, a pure number, but really a function of the moduli of the theory
that parametrize the F-deformations of the model. The abuse of language is
due to the fact that in most of the practical cases, D-deformations represent
almost all the possible deformations. It is also interesting to understand
which states contribute to the supersymmetric index. This can be easily
done for compact spaces, where we do not have to deal with a continous
spectrum and with density of states. Since a two dimensional N = 2 theory
presents four supercharges, we can have either non-reduced multiplets with
four states or BPS-saturated states ? with two states, in addition to the
trivial representation of the vacua, of course. If we split the supercharges
in creation and annihilation operators @7, and Qb respectively, a generic

non-reduced multiplet will be composed as follows:

@), Qile), Q7le), QTQ7la) (+3)

where |a) is a generic state, eigenvector of the operator F with eigenvalue

fa- A BPS saturated state will be instead given by:

@), Q7|e) (4.4)

with @~ a given combination of Q7 and Q5. It follows from the definition of
the index that the contribution of any non-reduced multiplet is proportional
to fo = 2(fa +1) 4 (fo+2) =0, so that only the short multiplets (4.4) give

a non-vanishing contribution. It has been shown in [9] that in this case the

2These BPS states of the N = 2 two dimensional theory should not be confused with

those of the 4d space-time effective action, that we will consider later.
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ground states of the theory, that determine completely the Witten index, do

not play any role for the supersymmetric index.

4.2 One-loop corrections in Type I string

compactifications

We consider here two relevant examples of one-loop amplitudes that are re-
lated to a realization of the supersymmetric index discussed above. The
analysis will be restricted to the main features of the involved one-loop cor-
rections in order to allow a straightforward generalization to a wider class of
terms. The important point in the considered amplitudes is that the internal
theory, entering simply through an index, receive contributions only from its
ground states. As we have seen in last chapter, the space-time part of the
correlation function can be reduced to a supersymmetric partition function in
the odd-odd spin structure, where a cancellation between fermion and boson
determinants holds and again only ground states give a non-vanishing result.

In this way we reduce the amplitude to a sum of BPS states contributions.

One loop amplitudes in type I compactifications involve a sum over the
spin structures carried by the involved surfaces. Using the Riemann identity
we can relate the sum over spin structures to an odd-odd spin structure
correlation of new operators obtained by a triality rotation of the original

ones, as performed in last chapter in order to compute the Fy’s couplings.

Let us now briefly work it out two simple examples of relevant odd-odd

spin structure correlations in K3 x T2 type I compactifications, in order to
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understand better the general structure of the kind of amplitudes involved

in our discussion.
a) Fy gravitational coupling

In this first example we discuss an amplitude, relevant to find the moduli
dependence of Fj. This coupling can be extracted [12] from the on-shell
three-point function of two gravitons and a generic modulus field, or directly
from the computation of the F, we performed, that is valid also for g = 1
(see footnote of p.35). We follow here the first way. It is convenient to
treat separately the torus contribution to the amplitude from those coming
from the other one-loop surfaces, Klein bottle, annulus and Mobius strip,
that we will denote respectively by a superscript T, K, A, M. Indicating with
T the modulus field and with Ar the derivative of the odd-odd part of F}
with respect to T, the torus contribution can be written, once extracted

appropriately the kinematical structure, as

Ar~ | ‘d‘—/ .ﬁd%fﬂ’mpl,zl)V:ﬁ(pz,z»xv%‘l"”(ps,zs)TF(s)TF(s»odd
- (4.5)

where 7 = 71 + 17, is the modular parameter of the world-sheet torus. T its

fundamental domain and 1,}-1,—1) is the vertex operator in the (—1, —1) left-

right ghost picture of the closed string state, associated with the T-modulus:
Vi (p) =m0, (2, 2) P (4.6)

U(z,Z2) being a primary field of dimension (1/2,1/2). The (—1,—1) ghost
picture takes into account the left-right Killing spinors on the world-sheet

torus while the picture changing operators Tr(z) and Tr(Z) soak the grav-
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itino zero modes. The Vj’s are the usual graviton vertex operators given in
eq.(3.30). The analysis of this amplitude is just a left-right symmetric version
of that performed in [12]. The OPE of the N = 2 internal superconformal

algebras are given by

TE(@0)TF (w)Us(z,2) = FJ(0)J (w)Pu(z, 2) + .. (4.7)

where J,J are the U(1) currents associated to the N = 2 superconformal
algebras, ®. is the upper component of W, with dimension (1,1) and ...
represent contour integrals that give vanishing contribution to the ampli-
tude. Since @4 are the fields associated to the marginal deformations of the
T-modulus, we can write explicitly AT as the T-derivative of the odd-odd

component of F}, coming form the torus contribution:

AL = 107 F | odd—oda
with
. dPr
Filodd—odd = —Z/—CT (1.8)
' T
and
Cr = Trpp(—1)7F® Fp P 28 (4.9)

where ¢ = €*™7, the trace is restricted to the Ramond-Ramond sector and
contains the momenta lattice sum in the torus direction, and A is the con-
formal dimension of the state propagating around the loop. Fi, Fg are the
fermionic numbers, i.e. the zero modes of the U(1) currents Jr, Jr, which
soak the four zero modes of the free fermions associated to the torus direction
and then are necessary to get a non-vanishing result. The space-time part
contributes only trough the eight zero modes needed in the torus for the odd-

odd spin structure. We already noticed in last chapter how the total moduli
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dependence of Fy, given also by the even-even spin structure, can actually be
extracted from eq.(4.8) by taking the limit of infinite volume for the compact-
ification torus. In the last section we will consider in detail the whole tower
of Fy; couplings, which include, beside the two gravitons, an additional bunch
of (29 — 2) spacetime operators, obtained from the graviphotons through a
triality rotation induced by the spin-structure sum. The internal structure
is therefore untouched and only the space-time part of the amplitude will be
modified. In this section we will concentrate in this internal part Cr (and
similar quantities for the rest of the surfaces) which realize the N = 2 su-
persymmetric index. The contributions given by the other surfaces can be
analyzed in an analogous way. Proceeding along the same lines followed for
the torus, we relate the amplitudes to an integration in the corresponding
worldsheet moduli of a spacetime correlation and an internal contribution

through an index written as:

Fr + F, A
Cx = Tran TEEIR) (yrsre g gagh

Ca = Trr(-1)f F¢®g® (4.10)

Cum TI‘R(—I)FFQQAQA

Again the F' insertions provide the correct number of zero modes (two in this
case) that we need to soak in order to get a non-vanishing result. The next
section is devoted to the study of these quantities; as we will see they are
indices in the sense that they cannot be changed by small deformations of

the parameters of the theory.

b) Threshold corrections to gauge couplings
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The second example refers to moduli dependence of one-loop threshold
corrections to gauge couplings. More general corrections of this kind have
been studied in [10]. We restrict ourselves to show the connection of these
amplitudes with the considered index. We consider here the CP-odd theta
angle of a generic term of the form F'A ', whose moduli dependence can again
be extracted from a three-point function where now, instead of gravitons, we

insert the gauge field vertex operators:
Vit (p,2) = (8- X* +ip, - h*)e?¥r® (4.11)

with a an index in the adjoint of the gauge group and A® the corresponding

Chan-Paton matrix. The relevant amplitude is then given by

dt 2
"M p1Apa, 8% OFM = /T/Hdti d*z
=1
Vi (o) VP (02 12) Vi 2 (pn, o) Tr(z))og (412)

where V1! is the vertex operator of the closed string state associated to the

T modulus:
ViV (p) = (670 (2, 2) + 73 (2, )X (4.13)
and U, ¥ are respectively the components of dimensions (1/2,1) and (1.1/2)

of an N = 2 superfield and T = T + Tr is the left-right symmetric picture

changing operator.

The four spacetime zero modes required in the odd spin structure come
from the fermion part of the gauge field vertices reproducing the correct
kinematic factor in (4.12). As before the N = 2 OPE allows us to write

the internal contribution as a derivative with respect to 7' of a trace in the
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Ramond sector

04 = i0rAt
with
dt
a ., [ 4.1
A /tCA (4.14)
and
C4 = Trp(=1)FF ¢® > (4.13)

The Mobius strip contribution on the other hand is just given by an  in-
sertion in this trace. We recognize again the indices found in the previous
example. In this way we have expressed some one-loop corrections to four-
dimensional effective actions arising from compactifications of type I strings,

in terms of a realization of the N = 2 supersymmetric index in these theories.

4.3 BPS states and N =2 Supersymmetric

indices

In the beginning of last section we argued that the quantities (4.9,4.10) can
be written as a sum over BPS contributions. Aim of the present section
is to determine them in terms of this spectrum for generic K3 x T? type
I compactifications. Threshold and gravitational one-loop corrections for
analogous compactifications of the heterotic string are also written in terms of
this N = 2 supersymmetricindex. Exploiting the representation properties of
the internal superconformal algebra for these compactifications, Harvey and
Moore [13] found that the index counts the difference between the number of

BPS vector- and hyper-multiplets at each level of mass. We will follow the
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lines of this reference to find similar results for the relevant indices involved
in type I compactifications. In order to maintain the analysis performed as
easy as possible, we will consider in the following type I compactifications in
which no Wilson lines on the 72 torus are turned on. Our considerations are
however general, and the modifications brought by Wilson lines inclusions

will be briefly pointed out.

The internal superconformal theory associated to K3 x T compactifica-
tions of type I theory is a sum of two pieces, corresponding to the open and
closed string sectors. The open sector is realized with a (¢ = 3, N = 2)®(c=
6, N = 4) Super Conformal Field Theory (SCFT) while the closed sector is
associated to the conformal theory that arises after an {)-projection of the
[(c=3,N=2)®(c=6N=4).0[(é=3,N =2)®(¢=6,N = 4)]5 SCFT,
where ) is the world-sheet parity operator. In order to relate (4.9,4.10) to
a counting of four-dimensional BPS states let us review the structure and

superconformal content of these states in type I compactifications.

String states in the open sector satisfy the mass condition (in the Neveu-
Schwarz sector):
1 1

i
SME = 5"+ (N = 5) o+ hing (4.16)

with IV the oscillator number associated to the space-time and torus direc-
tions, hin¢ the conformal weight in the N = 4 SCFT and p the Kaluza-Klein
momentum coming from the torus. By considering the four dimensional
N = 2 action as the reduction on 72 of the N = 1 6d theory, it is easily
seen that the Kaluza Klein momentum is effectively the central charge of

the 4d N = 2 algebra. The BPS bound M? = Z2? is then simply replaced
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by M? = p?, that is satisfied only by the six-dimensional massless Neveu-
Schwarz states (N = 1/2, hin: = 0) and (N = 0, hins = 1/2), which after a
further torus compactification generate all the four dimensional vector- and
hyper- BPS multiplets. Note that this is not what happens in IV = 2 heterotic

models where the BPS condition (in the Neveu-Schwarz sector) reads

1 1 1 _
gMz = -Q-p; = §pi +(h—1) (4.17)

where pr,pr include now winding and Kaluza-Klein modes on the torus
direction, and A is the conformal weight of the states in the ¢ = 26 CFT. In
this case, the number of BPS states depends on the level of mass, since for a
fixed p% each point in the lattice p% — p? = 2nm > 0 defines additional BPS

states with h = nm + 1 besides the six-dimensional massless one A = 1.

The structure of the type I open Ramond sector is simply obtained by
that of the two massless Neveu-Schwarz representations seen before by spec-
tral flow. We remind that in IV = 2 SCA there is a free continous parameter.
whose value fix the different boundary conditions of the supercharges. All
this family of N = 2 algebras are however isomorphic, being related by a
unitary operator, whose action is usually called spectral flow. The conformal

content is displayed in the present table:

Sector Vectormultiplets Hypermultiplets
Ramond (1/8,£1/2) ® (1/4,1/2) 2 x (1/8,£1/2) @ (1/4,0)

where, following the notation of [13], we denote with (h,q) ® (h/,I) a state

with conformal weight » and U(1) charge ¢ of the ¢ = 3, N = 2 theory and

71



weight A’ and representation I of the SU(2) current of the ¢ = 6,N = 4
theory. We are now ready to compute the indices (4.10) associated to the

open string sector.

The fermionic numbers decompose as F = F; + Fy, F} and F, being the
fermionic currents associated to the U(1) currents J; and J, of the N = 2
and N = 4 superconformal algebras respectively (J; = 2J3, where J? is the
Cartan element of the N' = 4 SU(2) current). Since in SU(2) representations

the eigenvalues of J° come always in pairs,
Try=g Fy (—)2¢2¢% =0 (4.18)

leaving as the only non-vanishing contribution to the indices the F1 insertion.
This can be easily understood from the examples of last section; in order to
have a non-vanishing contribution to our amplitudes, we needed to soak the
zero modes of the free fermions associated to the T2 torus, that means to

insert a fermionic F; current. We are then left with the trace
Ca 4+ Cr = 2Trnes Fy (=) Tryey (—)2 ¢4, (4.19)

where the trace now runs over the Q-invariant states 2, including the Chan-
Paton degrees of freedom. As can be seen from the table above, the N = 2
conformal content of both vector and hypermultiplet states is equal, while
the NV =4 SCA enters only through the Witten index. This important fact
allows us to conclude that our amplitudes are completely independent of any

deformation performed on the internal N = 4 SCA, including deformations

3Note that the Q-projection in the open string sector gives constraints only on the

Chan-Paton degrees of freedom.



that can be written as F-terms. Following ref.[60], the only N = 4 multiplets

whose Witten index is different from zero are:
Traja0(—)? = 1
Tl‘(1/4,1/2)(—)F2 = =2 (4-20)

We can then finally write

1 .z 1 s 2
Cat+lm = 2 Z(”Q‘GZE - '2‘3—15)(7[‘1‘1:0(‘“)}?2 + Trrmgya(—)) e 0 =
pel
= 4i(nFT —nPFT) S erthl (4.21)

pel’

where I represents the lattice momenta sum and n{f*", n%*" are respectively

the number of massless four dimensional vector and hypermultiplets in the
open string sector. We have extracted the overall factor (n7™" — ni¥*"), cor-
responding to the common degeneration to all levels of mass of the BPS
number, as was already discussed before. More general backgrounds includ-
ing Wilson lines on the torus can be analyzed. In this case, the 7% momenta
lattice will be shifted by the included gauge field expectation values, and a
given number of massless vector- and hyper- multiplets will get masses. All

the previous considerations are however left invariant, and eq.(4.21) continue

to be valid, with the aforementioned modifications.

Let us now turn to the closed string spectrum. The bosonic BPS content
in this sector arise from a tensor product of the NS-NS (R-R) massless repre-
sentations symmetrized (antisymmetrized) under Q. Let us first notice that
for each R-R ground state in the N = 4 SCFT we can construct four states,
taking into account the multiplicities coming from the N = 2 space-time and

torus algebra representations. The {2-even contribution to this trace takes



into account the spectral flown NS-NS states kept by the Q-projection. In
this way we are then really counting all the BPS multiplets even if the trace
is performed only in the R-R sector. The counting of R-R ground states in
the N = 4 theory is simply given by the geometrical structure of K3: 20
states (1/4,0) ® (1/4,0), corresponding to the 2! = 20 cohomologically dis-
tinct (1,1) differential forms on K3 and one multiplet (1/4,1/2) ® (1/4, 1/2)
counting the four forms given by A%° h2° h%2 h22. As is clear, there are no
states (1/4,1/2) ® (1/4,0) or viceversa because A® = p0! = p21 = p1.2 = (.

The index associated to the torus can then be easily computed to be:

CT — Tr]}\{g%BNzilFLFR(_)FL-FFRq — _(n?/losed + ngosed) Z e—-’ﬁTg’pI?
pel
(4.22)
where nglosed néesed are the 24 massless four dimensional vector- and hyper-
. . . . (L), (R)
multiplets *, corresponding to the Witten index [57] Trga(—)F +F =

x(K3), the Euler characteristic of K3. The N = 2 part enters only through

the lattice sum and an overall (—1) factor.

The last involved quantity is the index related to the Klein Bottle. If we
call in¢ the worldsheet parity operator restricted to the K3 part, we can
observe that vectors, being constructed from left-right symmmetric space-
time-torus combinations of states, are counted by Qns with a minus sign in

the RR sector. This observation allows us to write finally:

—omn—s L + F A
CK — Tr%fEQGBN—él L _; R(_)FL-l-FR 0 qA+A — Z(ng}osed _ n%osed) Z e—mf[p[2

pel
(4.23)

where again the overall factor (i) comes from the N = 2 superconformal

*We include in this counting the gravitational multiplet as a vectormultiplet.
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content of the multiplets.

We achieved the final goal of this section. The contributions associated to
the Klein bottle, annulus and Mé&bius strip depend only on the difference be-
tween the number of hyper and vector BPS states of a given compactification.
As noted in [13], this dependence ensures the smoothness of amplitudes in the
moduli space, since chaotic BPS states in N = 2 theories always appear and
disappear in hypermultiplet-vectormultiplet pairs. Notice, however, that Cp
enters in a different way, but being associated to corrections in NV = 4 super-
symmetric theories, it does not contribute in general. Among the couplings
we analyzed, it gives a non-trivial contribution only to the gravitational cou-
pling F1, as has been shown in [61] to happen in four dimensional string

compactifications with N = 4 supersymmetry.

4.4 I, terms on K3 orientifolds

In last section we gave a general argument to establish that all one-loop
corrections to gauge and gravitational couplings which are related to the su-
persymmetric index receive contributions only from the BPS-saturated states
of the four dimensional effective action. Our result, however, is valid for 4d
models arising from K3 x T? geometric Type I string compactifications, since
1t was based on a analysis of the Super Conformal Algebra underlying this
kind of compactifications. We discuss now the case of the orientifold mod-
els treated in chapter one, by generalizing the one-loop computation of the
gravitational couplings Fy, performed for the Z4 model in last chapter. As

we already noted, these amplitudes are actually proportional to the super-
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symmetric index and then, if the considerations of last section apply to the
orientifolds as well, they have to receive a non-vanishing contributions only
from BPS states and in the by now familiar combination given by the dif-
ference between the numbers of hyper and vectormultiplet BPS states. We
will see that our computation displays exactly this purely BPS dependence.
strongly supporting the generalization of the consideration of last chapter to

this wider class of four dimensional vacua.

All these orientifold models, having in general abelian subgroups, have
potentially dangerous U(1) anomalies, that, exactly as for the 74 case, are
removed by a Higgs mechanism that give mass to the corresponding U(1)
gauge field. These amplitudes, however, do not depend on this Higgs mecha-
nism that give mass to an hyper-vector multiplet pair, being proportional, as
we wll see, to the difference of hyper and vector BPS states. In the following

we will then simply ignore these potential U/(1) anomalies.

The generalization of the F, computation performed in section 3.3 is
easily done since all the considerations of last chapter are equally valid nov.
In particular, after the spin structure sum we get again eq.(3.35), where ¢;. g,
run over the twisted sectors of the corresponding orbidolf, of course, and still
the K'3 part enters simply through its partition function in the odd spin
structure. The only difference among the various models is entirely encoded
in the indices Cy(t). The Klein bottle contribution is now in general non-
vanishing, so that we need now to compute the Klein bottle determinant,
in addition to those of the annulus and Mébius strip, already considered in
section 3.3 and given by eq.(3.45). For the Klein bottle, besides the bosonic

contribution there is also, for n = 0, a fermionic contribution for m =odd
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leading to:

- 4 o 5\2 -2 oo 4_:\2 2
—So+AS — . .
( “‘tﬁ[@(l ) HH(l i)

where the factor four between the contribution of the Klein bottle with that

. 2
= i )\75 ) COS2 :\71'
13 \sin A7

(4.24)

of the annulus and Md&bius strip is due to the different modular parameter of
the covering tori (see Appendix A). Note that the space-time contribution to
the amplitude for all the surfaces is given by the string states with n = 0, i.e.
with oscillation number zero. This observation, together with the analysis
performed in last section for the internal part, allows us to conclude that only
BPS states are contributing to the considered correlation functions. Putting
all the results together, we finally have:

dt — e | (CO+C© 2 [ X\
= e K oy E:\_(A) +2ACE - G

PEF
(4.25)

where C©) represent the A3 part of the indices and the rest of notation
follows that of section 3.3. Comparing the open and closed massless spectrum
reported in tables 1.1 and 1.2 with the values of C'(%) for the various surfaces,
given in Appendix B (table B.1), we can explicitly check that this index
reproduces separately for all the sectors the difference between the number

of four-dimensional hyper- and vector-multiplets:

ey + off

. Mo C(-O) — ntﬁtal _ n%ﬁvtal (4.26)
whereas
C’%O) _ C}({O) — 27?,‘{/[08&1 (427)

This gives strong evidence to the suggestion that the results of last section are

equally valid for these models. These are, of course, particular free models

7



with no background fields; in general we will have a mixing between the
sectors, but such that the total contribution (Ca + Cy)/4 + Ck will always

count the number of BPS (hypers-vectors).

It is worth while to point out that the results obtained here for the C (0)
are not in contradiction with what found in chapter three for the Z# model.
The values obtained before, that is C’%O) = 8§, C}(f) =0, Cf(xo) + 0193) =4-240
take into account the U(1) anomalies that give masses to 16 hypermultiplets

in the closed string spectrum and 16 vectormultiplets to the open one.
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Conclusions

In the present thesis some results concerning N = 2 type I string compact-
ifications in four dimensions have been presented. Our main points regard
a test of the conjectured type I-heterotic duality and the realization that a
class of amplitudes in these type I compactifications is related to some in-
dices, whose values are determined by the BPS-saturated states of the 4d
theory. Both these results are in accordance with the general belief that all
the perturbative string theories, including eleven-dimensional supergravity,
or better, M-theory, are really a single unified theory whose properties are
up to now almost completely unknown. Particular limits of this underlying
non-perturbative theory, corners in its moduli space, are sometimes accessi-
ble perturbatively and reveals a given string theory or 11d sugra. It is certain
that BPS-saturated states play a very important role in trying to understand
the strongly coupled region of a given theory, at least when enough super-
symmetry is left unbroken. In particular, our result about the analogous role
that BPS states play in different string theories, like heterotic and type I,
suggest perhaps that there is a geometrical structure underlying these states,
in the same spirit of the analysis of ref.[13]. The BPS dependence found in

last chapter for the F};’s in orientifold models is a significative example of



this phenomenon. Altough most of them cannot have a weak heterotic dual
pair, the structure of the amplitudes computed is analogous to that found
for more standard type I and heterotic compactifications. As last remark,
I would like to remind the importance of the study of the higher derivative
F-terms in general, as a clear distinction between results valid in full string
theory in contrast to low-energy supergravity effects, and in particular of
the Fy’s couplings that have been used constantly in the present work and

already revealed their relevance in string theory in previous works [7, 45, 5].
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Appendix

Appendix A

Mode expansions

We present here the mode expansions of the bosonic and fermionic fields
in the annulus, Mobius strip and Klein bottle surfaces, needed to evaluate the
corresponding determinants. We take as fundamental region of each surface
0 <7 <40 <0 <1, where ¢t is the corresponding modulus. Following
Burgess and Morris [55], we can consider each surface as a torus with points
identified under a given projection; in this way we can solve the boundary or
crosscap conditions by considering suitable identifications of the bosonic and
fermionic fields that take values on the covering torus 3. The mode expansion
for the fields in the annulus are then given by:

+o00

za(T,0) = Z am,ne%"’mcosvrna
m=ree
oo . )

Ya(r,o) = Z Ay €27 1T (A.1)
m,n=-oo

SNote that since we need to compute determinants in the odd spin structure, we will

consider in the following fermionic fields on this spin structure only.
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~ +m . .
”QZ/'A(T, O‘) — Z dm’neZzwm're-—wrna

m,n=-—00

after having extended the fields to the torus 0 < 7 < t,0 < ¢ < 2 and
identified
33(7‘, U) = ‘7"(77 2 - U)s 7:/)(7_7 U) = @2(77 2 — U) (AQ)

For the Md&bius strip we extend the field to the torus 0 < 7 < 2¢,0 < ¢ < 2

by identifying

z(r,0) = z(l4+7,1-0), z(r,0)=2(1,2-0)

Y(r,0) = 1_7(1 +7,1—-0), Y(r,0)= 12’(7',2 —0) (A.3)

Then the mode expansion is:

+oo
am(r,0) = Z e cosTnoe m +n = even

m=-—2o0
n>0

Ym(m,0) = Y. ™™ m4n = cven (A4)

mn=—co

+0co
v, o) = Z €™ e m 4+ n = even

mn=—co

The bosonic and fermionic mode expansion in the Klein bottle are:

1 i : : .
IEK(T,O') = = Z amynezrrm'r(emrna + (_)me—Qwrna)
2 m=—o0
n>0
+0o0 ) )
¢K(T, 0.) — Z dmvnez‘frm’re?mno‘ (A5)
m,n=-—00
- o0 | ,
’tpK(T, 0’) — Z dm'n(__)memmfe-—%ﬂ'no’
m,n=-—00

resulting from the identification

z(r,o)=a(l+7,1—0), Y(r,0) = 15(1—{-7‘,1 — o) (A.6)



on the torus 0 < 7 < 2¢,0 < ¢ < 1. Note that the modular parameter of
the covering tori for the three surfaces with the aforementioned projections
is respectively 7 = it/2,1t,2:t. The factor of two between the annulus and
Mébius strip parameters is due to the fact that the corresponding tori cover

two times the annulus and four the Mobius surface.

Appendix B

Cq for K3 orientifolds

In this appendix we report the value of the indices C{%), i.e. of the indices
(4.9,4.10) restricted to the K3 part, for the orientifold models considered
in chapter one. In order to avoid an heavy notation, we will omit in the
following the superscript (0) in C{°).

Ct = Trrp (—)"2 R is the Witten index [57], whose value gives the Euler
characteristic of K3, that is +24, independently of the model®. The value of

Ck = Trrr Q (=)Fr+FR7 can be written for any A-model as

1=l
Cx(Z% :~——Z4sm

Quﬂ‘

where the first factor is due to the untwisted sector while nx Ny is the
contribution of the sector twisted by a%ﬂ (when it exists, i.e. for N # 3)
and equals the number of fixed points invariant under ay present in that

sector. The other twisted sectors give a vanishing contribution because of the

From now on it will be understood that the trace is performed on the ap-invariant

states on all the sectors, twisted and untwisted.
"Note that due to the world-sheet parity operator Q, F; = Fg so that (=)FrtFR ig

completely irrelevant.



world-sheet parity operator Q. For the B-models Cx = Trrg Q o (—)Fr+FR

and its value is

o N2 or(2k—1
C :——Z i —7'{—(——]-\}—)+n(%7;2v_ (B.2)

where n yy 1s again the contribution of the a%/ *_twisted sector, but it now

counts the number of fixed points invariant under o, weighted by their
eigenvalues under ay 8

Let us now turn our attention to the open string indices Cy = Trg(—)F
and Oy = Trp Q (—)¥, considering separately the 99, 55 and 95+59 sectors.
Taking into account the results of [37] for the open massless spectrum, we

can write for all the A-models in the 99 sector:

1 Nl o Tk

CR(Z4) = N kz;) 4 sin® W(Tr'yk 9)?
| 1 N-1 wk
Cav(Z3) = +N Z 4sin’ “N‘Tf(’mk 97Qk 9) (B.3)

following the same notation of [37], where the minus sign in C is due to the
fermionic charges of the two spin fields in the Ramond sector. The B-models

do not have D9 branes at all. In the 55 sector

CSS(ZA) 1 N2148I1 ﬂ‘k(T ) '
= —— —(Lrvg 5
A N N = 1 N Tk,
55(r7 A 1= Tk 1t

v (Zy) = +N Z 4 cos? "]VTT(’VS;,‘,S’YQ,C,S) (B.4)
where, since Q5 Q™1 = —2* in the 5-sector, we have sin? — cos? in Cu-
For the ZEZ model

is(Zf) = Y Z 4 sin? ——'(Tr’)'zk 5)

8Remember that in these models there are only the sectors twisted by an even number

of an’s, so that ey Ny = 0 for the Z? model.
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Model | (Cs +Cm)/4 | Ck
99: -16
Z3 55: -16 +16
95-+59: +256
Zi 99: -28 -2
99: -8
Zi 55: -8 +38
59+95: +128
99: -20
Z 55: -20 +38
59-+95: +48
5 - 0
z5 55: -28 -2

Table B.1: Values of the indices Cy for the various surfaces in the open and

closed string sectors.

(2k —
i) = 5 yaeor Enea a0 e

Finally, in the 95459 sector:
2 N-1 »
CXT(Zy) =+ 2 (Tryee)(Tryes) (B.6)
N k=0
Given the solution for the matrices 4’s representing the orientifold group [37],

we can explicitly compute the values of these indices for all the models, that

are reported in table B.1.
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