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Introduction

Sturmian theory deals with the qualitative properties of higher order linear differential
equations and systems, related to the asymptotic behavior of solutions. More precisely, it
treats oscillation, separation and comparison of solutions.

If u(z) and v(z) are nontrivial solutions of

—'U:”‘l—p'u/—_-o
—v" +qu=0

for constant p and q, then

(i) g < p = successive zeros of u(z) are separated by a zero of v(z).

(ii) p >0 = u(z) has at most one zero on any interval [z, o).

(iii) ¢ < p = v(z) has a zero on every interval [z, o).

These observations constitute the simplest examples of separation , nonoscillation, and
oscillation theorems, respectively. They are also the motivation for a large and growing
body of mathematical literature.

The theory originated in the last century with the famous paper by Sturm [16] dealing
with oscillation and comparison theorems for linear second order scalar equations. Closely
associated to Sturm’s work was that of Liouville [8] studying the asymptotic form of so-
lutions to second-order linear ODEs in a characteristic parameter, ensuing a BVP known
now as the Sturm-Liouville problem. A great emphasis on this topic was given by Bocheg¥
thesis [3] written under the direction of F.Klein. In his research on problems in potential
theory, Klein was led to the question of when certain linear homogeneous second-order
ODEs involving two parameters had for two given non-overlapping intervals in R a pair
of solutions which possessed on the respective intervals a prescribed number of zeros. The
basic work [6] of Hilbert in the first decade of the twentieth century was fundamental for
the study of BVPs associated with self-adjoint differential systems, both with regard to the
development of the theory of integral equations and in connection with the interrelations
between the Calculus of Variations and the characterization of eigenvalues and eigensolu-
tions of these systems. Moreover, in subsequent years the significance of the calculus of
variations for such BVPs was emphasized by G.A.Bliss and M.Morse. In particular, Morse
showed in his basic 1930 paper that [9] that variational principles provided an appropriate
environment for the extension to selfadjoint differential systems of the classical Surmian
theory.

Morse [9] was the first to extend the theory to systems of ordinary differential equa-
tions, treating exclusively selfadjoint systems. For a panorama of the results and literature
on scalar equations or selfadjoint systems, confront the books by Coppel [4], Morse [10]
and Reid [14], [15]. Recently, Ahmad-Lazer [2] initiated the extension of the theory to
nonselfadjoint systems. Again, various papers appeared on the nonselfadjoint case, cf.
Ahmad [1] for a comprehensive bibliography.

It should also be mentioned that Sturmian theory generated the development of some
new mathematical fields. Of these, the most popular is the study of the Riccati equation,
that is useful also in numerical analysis. Less popular is transformation theory, one of the
key tools in oscillation theory, e.g. Goff-St.Mary [5] for a recent account of the literature
and the introduction of the Bohl transformation of a pair of Hermitian matrices by the use
of the matrix analogues of the sine and cosine functions.




The purpose of this thesis is to present some results about the Sturmian theory of
second-order systems

(1) 2" + A(t)e =0

where A(t) is a given continuous n X n matrix function. We are mainly interested in the
case that A(t) is not symmetric, so that neither the spectral theory of self-adjoint operators
nor the methods of the Calculus of Variations are applicable.

In connection with oscillation theory, whose goal is to detect the distribution and
the multiplicity of zeros of the solutions, the notion of conjugate and focal points are of
fundamental importance because they provide a link between oscillation and BVPs. We
recall their definition. Let a,b be real numbers. We say that b is a conjugate point of a
if there exists a nontrivial solution z(¢) of (1) such that z(a) = 0 = =(b). We say that b
is a focal point of a if b > a and there exists a nontrivial solution z(¢) of (1) such that
2'(a) = 0 = z(b). In other words, conjugate points correspond to the Picard BVP, while
focal points correspond to the Nicoletti BVP.

Another concept of great importance is the matrix analogue of (1), i.e. the equation

(2) X"+ A)X =0
where the solution X (¢) is an n X n matrix for each ¢. In this connection, we denote by
Xa(t,7) and Ya(t,7)

the solutions to (2) that satisfy the following initial conditions:

{XA(T,T)

n

=0
X'(r,m)=1Iy

and

Y i(r,7) =04
Y'(r,7)=0n

respectively. The interest in these special solutions lies on the following well-known result:

Theorem (Reid [15]): b is a conjugate point to a iff detX 4(a,b) =0 and b, a < b, is a
focal point of a iff det Yi(a,b) = 0.

This thesis is divided into three chapters, each corresponding to one of the three
papers Pertotti [11], [12] and Pertotti-Geaman [13].

The starting point of our research is a deep study of the "elementary” algebraic
properties of X4 and Y.y and their interelationships. Perhaps it is worth while remarking
that the dimension of the vector space of n X n matrices is n? ,so that the dimension of
the space of solutions to (2) is 2n?. This means that, in the matrix case, X4 and Y, do
not constitute a basis for the space of solution, contrarily to the scalar case.

These properties of X4 and Y, are used in connection with ordered Banach space
techniques (not only the Krein-Rutman theory!) in the proofs of the main results. These
are the following:
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- in ch.I, we provide a partial answer to a conjecture of Ahmad [1] as well as conditions
for the existence of solutions whose components have a prescribed sign;

- in ch.2, we characterize the existence of symmetric matrix solutions to (2). This is
of interest in the oscillation theory and in the construction of the Bohl transformation, cf.
Goff-St.Mary [5];

- in ch.3, we reduce the question of the existence of conjugate and focal points to the
analysis of a scalar equation, in analogy with the Liouville theorem about the Wronskian
of a matrix solution.
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Note on the references

Since each chapter is a reproduction of a distinct paper, references to the equations
as well as to the literature listed in the bibliography apply to each chapter separately.




Chapter 1

On the existence of
conjugate points

This chapter provides two contributions to the Sturmian theory for nonselfadjoint
systems. In §1 we prove some technical properties of solutions to linear ordinary differential
equations in space of n X n matrices and we apply them to get a partial answer to the
open problem raised by Ahmad [1],[2]. In §2 we use some properties of disconjugacy to
obtain solutions, whose components have a prescribed sign, to nonhomogeneous systems
satisfying suitable sign assumptions.

We recall a well-known concept that is used in this chapter. A second-order system

" + A(t)e =0

is said to be disconjugate on an interval I if every non-trivial solution vanishes at most
once on 1. For example, z'/ = 0 is disconjugate on any interval.




§1: A Theorem about the set of conjugate points

In this section we study some general properties of conjugate points in the nonselfad-
joint case. To every continuous n X n matrix function 4 on R and to every a € R we
associate the following Cauchy’s matrix problems:

(1) X" 4 ADX = 0,, X(a) =0n, X'(a)=1In,

(2) V" 4 AQ)Y =0n, Y(a)=1I, Y'(a)=0,

and we shall denote by X 4(¢) and Y4(t) their unique solutions. It is well known (cf. Reid
[9],[10]) that b is a conjugate point of a with respect to the system z" + A(t)z = 0if and
only if det X 4(b) = 0. If this is the case then the multiplicity of b is, by definition, equal
to dim Ker X 4(b).

Theorem 1  For the matrices just iniroduced and for every t € R the following
equations hold:

(a) X'yr(t)TXa(t) = Xar(8)T X4 () = On
(6) Yur(t)7X(t) - Yir ()" Xa(t) = In
(c) Xa(t)Yyr ()T —Ya(t)Xar(t)T =0x
(d) X4(t)Yar ()T = Vi) Xar ()T = In

il

Proof. Consider the following Cauchy’s matrix problem:

7= o) 2@=1

and let Z(t) be the solution. An easy calculation shows that

Yai(t) Xa(t
20 (39 %)

Consider now the following Cauchy’s matrix problem:

n In
W' = W (_Z(t) on> . W(a) = Inn

and let W(t) be its unique solution. An easy calculation shows that

X'\ )T X ()"
w(t) = (;1,,((%1" Y_u(t()% >
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It is easy to prove that the derivative of W(t)Z(t) is zero everywhere. In fact,
wezewy - weze +wazo=-we () ) 20+

Wi(t) <_.?4n(t) g:) Z(t) = Osn.

From this it follows that W(t)Z(t) = W(a)Z(a) = Iz» and so Z(t)W(t) = In. Therefore

X ()" X7 (Ya(t) Xa(t)) _
(_Yflu'(t)T YA:(t)T ) <Y{1(t) X.’A(t)> = Ion

leads us to the first two equations and

Ya(t) Xa(t) LT X (T
(50 50 (ot o) o

leads us to the last two equations. Q.E.D.

Theorem 2  The following relations hold for every t € R:

(a) X'(t) Ker Xa(t) = Ker Xz (t)7;
(b)  the restriction Q; of the linear operator X', () on Ker X 4(1) 15 injective;
(¢) dim Ker X4(t) = dim Ker X 47 (1)

Proof. (a) Let h € X',(¢t) Ker X.(t). Then there exists n € Ker X 4(t) such
that h = X/, (t)n. If we multiply equation (a) of Theorem 1 from the right by n then we
obtain that X 4 (¢)Th = 0 because X 4(t)n = 0 by hypothesis. From this it follows that
h € Ker X,4r(t)T. Let k € Ker X,z (t)7. If we multiply equation (d) in Theorem 1
from the right by k then we obtain that k = X', (¢)Y47(t)Tk because X 47 ()Tk = 0 by
hypothesis. We must check that Yy (¢)Tk € Ker X 4(t). By hypothesis k € Ker X 4r(t)T
and so, if we multiply equation (c) in Theorem 1 from the right by k& we obtain that
X.4(t)Y4r(t)Tk = 0. The relation (a) is therefore proved.

(b) Let n1,m2 € Ker X .4(t) and suppose Q¢(m1) = Q:(n2). Then X' (t)n = X! (t)n2. From
this it follows that
m —n2 € Ker Xi(1)

and, obviously, n; — 72 € Ker X 4(t). Now, if we multiply equation (b) in Theorem 1 from
the right by 71 — 72 then we obtain that 0 =71 — 72 and so 11 = 7z.

(c) Tt follows from (b) that

dim X', (t) Ker X.4(t) = dim Ker X 4(2)
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and so, from (a) it follows that
dim Ker X 4(t) = dim Ker X7 () = dim Ker X 47 (2).

Q.E.D.

Remark Condition (c) in Theorem 2 implies a simple, direct proof of Proposition

1 in Ahmad-Lazer [4].

Now we apply the above technical results to prove a theorem that answers partially a
question raised by Ahmad [1}, [2].

Theorem 3 Let A be a continuous n X n matriz function on R and consider the
system:

(3) 2" + A(t)e = 0.

Let a be a real number and define C, as the set of conjugate points of a with respect to (3)
that have multiplicity strictly greater than n/2. Then C, is discrete.

Proof.  Suppose, by contradiction, that b is an accumulation point of C,: there
exists a sequence (s;) in C, such that lim; .o si = b. Without loss of generality we
may assume that dim Ker Xi(s:) := m > n/2 for every i = 1,2,3,.... Define K; =
Ker X 4(s;) and L; = Ker X 4r(s;). From the Theorem 2 (a) it follows that

" (si)K; = Ker X 4r(s:)7.
If we replace A with A7 in the previous formula then we obtain that

X'\r(si)L:i = Ker XA(si)T.

From (c) of Theorem 2 or, alternatively, from Proposition 1 of Ahmad-Lazer [4] we have
dim L; = dim K; = m and so

dim X',z (s;)L; = dim X'y(s;)Ki = m.
By hypothesis m > n/2. Therefore
(X'yr (s:)Li) N (Xy(s:) Ki) # {0}

for i = 1,2,3,.... For every i we can therefore select from this intersection an element
p; with norm equal to 1. Now, (p:) is a sequence in the unit sphere of R™, we can
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therefore find a convergent subsequence (p;,). Put p = lim,— oo pi,. Obviously ||pl| = 1.
From the definition of p; there exists n; € K; and nj € L; such that p; = X' (si)n: and
pi = X';r(si)nf. We claim that the sequences (7;,) and (7}, ) are convergent. To see, for
example, that the sequence (7;,) is convergent we proceed as follows. We let ¢ = s;, in
the equation (b) of the Theorem 1 and multiply it from the right by 7;,. We obtain that
ni. = Yyr(s;. )T p;, and this tends to Yy7 (6)Tp for r — co. It follows that the sequence
(n:,) is convergent. In the same way we prove that also the sequence (ni)is convergent.
Set 7 = limy—c0 74, 7° = limM;—oo7f, - From

Xa(si)mi, =0 VreN

and
Xyr(si)mi. =0 Vre N

it follows that
X 4(b)n = 0 and X 4r(b)n* = 0.

Son € Ker X4(b) and n* € Ker Xyr (b). From
' (si )i, =pi, VP EN

and
X',z (si,)mi, = pi, VreEN

it follows that

(4) p=X3(b)n
and
(5) p=Xr(b)n"

Since n* € Ker X 4r(b), from (5) and
X'z (b) Ker X 4r(b) = Ker X407

it follows that p € Ker X 4(b)T and so p € (Range X.a(b)*t.
Now, (p, X 4(si, )ni,) =0 and {p, X 4(b)ni,) = 0 because p € (Range X.4(b))*. Set

¢ := min{s;,, b}, := max{s;,,b}

and for every t € [c,d] define
Fr(t) := (p,X_.;(t)T]ir).

Then F,(t) is a real valued, differentiable function, defined on the interval [c,d] and such
that F.(c) = Fy(d) = 0. From Rolle’s Theorem there exists ¢ < t, < d such that F/(¢;) =0
ie. (p, X' (t-)n:,) = 0. Obviously, lim;ooti = b and so, passing to the limit in the last
equation, we obtain that (p, X;(b)n) = 0. From (4) we have that (p,p) =0 and so p = 0.
But this contradicts the fact that ||p]| = 1. Q.E.D.




§2: Existence of solutions with prescribed sign

By appealing on the properties of disconjugacy, we study in this section the existence
of solutions to nonhomogenous equations with components having a prescribed sign.

Theorem 4  Let A(t) = {a;j(t)} be a continuous n X n matric on R and let f :
R — R™ be continuous. Consider the system:

6) 2"+ A(t)z = F(t).
Let a, b be two real numbers with a < b. Suppose that the system
(3) ' + A(t)z =0

is disconjugate om [a,b]; suppose further that a; j(t) > 0 fort € [a,b], 1 < 4,5 <n and
fi(t) €0 fort € [a,b], 1 <@ < m. Then there ecists a unique solution z(1) of (6) such that
z(a) = z(b) = 0 and z;(t) >0 fort € [a,8], 1 <1< n.

Proof. Let C° be the Banach space of continuous functions ¢ : [a,b] — R" and let
P = {¢ € C°¢; >0 on [a,b] for all i}. It is well-known that P is a total (i.e. generating
according to Krasnoselski [6] ) conein C 0 that makes C° an ordered Banach space. Define
the following operator: for ¢ € C° put ‘

b
L0 = [ Gt )Al)s)ds

where G is the Green function for the two-point boundary value problem. We know that
L is a linear, continuous and compact operator. From the hypoteses it follows that Lisa
positive operator. Define

F(t) = —/ G(t,s)f(s)ds.

From the assumptions it follows that Fy(t) = 0 for t € [a,b] and 4 = 1,2,...,7; hence
F € P. Consider now the equation

(7) ¢=L(¢) + I

Notice that ¢ solves (7) if and only if ¢ solves (6) on [a,b]. Let r be the spectral radius of
L. Recall that = is larger than the absolute value of every eigenvalue of L. If r =0, from
Theorem 2.16 of Krasnoselski [6], it follows that there exists a unique solution ¢ € P of
(7). In this case the Theorem 4 is proved.



Suppose now that » > 0. By the famous Krein-Rutman theorem there exists ¢ € P — {0}
such that r¢ = L(4). We claim that r < 1. Suppose, by contradiction, » > 1 and set
b;j =7 aij, B(t) = {bi;(t)}. From

)
r¢ = L(¢) = / G(t,3)A(s)¢(s)ds

it follows that )
8= [ 6(t,5)B(e)0(e)ds.
This shows that ¢ is a non trivial solution of the following problem:
y" + B(t)y =0, y(a)=1y(b)=0.

From r > 1 it follows that b; ;(t) < a;;(t) for ¢ € [a,b] and 1 < 4,5 < 7. By Theorem
1 of Ahmad-Lazer [3] there exists a conjugate point ¢ of a with respect to (3) such that
@ < ¢ < b, but this contradicts the disconjugacy of (3) on [a,b]. Therefore 7 <1 and
from the Theorem 2.16 of Krasnoselski [6] there exists a unique solution ¢ € P of (6).
Q.E.D.

Theorem 5 Let A(t) = {a; ;(t)} be a continuous n x n mairizc on R and let f :
R — R™ be continuous. Consider the system: "

(6) " + A(t)z = f(1).
Let a, b be real numbers, a < b. Suppose that the system
(3) " + A(t)z =0

is disconjugate on [a,b]. Suppose further that there ezist two sets I and J such that
TuJ={1,...,n}, INnJ =0 and for every t € [a,b] a;;(t) = 0 if (1,7) e I xITUJ x J,
a;j(t) <0 if (4,5) € Ix JUJ x I, fi(t) 0 ifi €I and fi(t) > 0 ifi € J. Then there
exists a unique solution z(t) of (6) such that z(a) = 2(b) = 0, for every t € [a,b] zi(t) <0
ifi € J and z;(t) > 0 if i € I.

Proof. Put, by definition, forz =1,2,...,n

1 4f iel
“TN -1 if el

C = diag(cy,...,cCn)-
Then CT = C = C~1. Let B(t) = CA(t)C. If B(t) = {b;,j(t)} we have

B Cfaii(t) if (f)eIxIUTxJ _
“ﬂ”““”%ﬂﬂ—{—éﬂﬂ if @ﬂeIxJquI‘mw@”
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and then all the entries of B(t) are non negative. An easy calculation shows that
Xp(t) = Xcac(t) = CX4(t)C.
So det Xp(t) = det X 4(t) #O0fora <t < b. From this it follows that the system
2"+ B(t)z=0

is disconjugate on [a,b].

Put now f*(t) = Cf(t). We have
sy =en={ 750,17 = -
for every t € [a,b]. Then the system
(8) 2"+ B(t)z = f7(t)

satisfies the condition of Theorem 4 and so there exists a solution z(t) of (8) such that
z(a) = 2(b) = 0, z;(t) > O for t € [a,b] and i =1,2,...,n. If we multiply the equation (8)
from the left by C then we obtain:

(C2)" + A(t)(Cz) = f(1).

So g = Cz satisfies (6), g(a) = g(b) = 0 and an easy calculation shows that for every
t€la,b) gi(t) <0ifi€ J and gi(t) 2 0if s € I. Q.E.D.

Mutatis mutandi in the proofs of Theorems 4 and 5 respectively, we can prove the
following results:

Theorem 6 Let A(t) = {a;;(t)} be a continuous n X n matriz on R and let f :
R — R™ be continuous. Consider the system:

(6) " + A@t)z = f(1).
Let a, b be two real numbers with a < b. Suppose that the system
(3) ' + A(t)z =0

is disfocal on [a,b]; suppose further that a; j(t) = 0 for t € [a,8], 1 < 4,7 < n and
fi(t) <0 for t € [a,b], 1 <i < n. Then there ezists a unique solution z(t) of (6) such that
Z'(a) = z(b) = 0 and z;(t) > 0 for t € [a,b] and 1 <z < n.

Theorem 7  Let A(t) = {a;;(t)} be a continuous n X n matriz on R and let f :
R — R™ be continuous. Consider the system

(6) 2" + A(t)e = f.

9



Let a, b be real number, a < b. Suppose that the system
(3) '+ A(t)z =0

is disfocal on [a,b]. Suppose further that there ezist two sets I and J such that TUJ =
{1,--+,n}, INJ =0 and for every t € [a,B] a; ;(t) > 04f (4,7) € IxIUJxJ,a;jt)<0
if (1,7) e Ix JUJ x I, fit) <0ifiel and f;(t) > 0ifi € J. Then there exists a unique
solution z(t) of (6) such that z'(a) = z(b) = 0, for every t € [a, b zi(t) <0 ifi€J and
zi(t) >0 ifi € L.
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Chapter 2

Characterization of the existence
of symmetric solutions

§1. Introduction

In recent years there has been considerable interest in the existence of symmet-
ric solutions to second-order matrix equations, partly due to their link to oscillation
theory (e.g., Goff-St.Mary [1], Reid [2], Shreve [3] and literature cited there in).

The aim of this chapter is to characterize the existence of symmetric solutions
to the second- order linear matrix equation

X"+ AX =0

when A is a given constant matrix. The characterization is obtained in the case of
Cauchy problems as well as in the case of two-point boundary value problems. It
seems a remarkable fact that the matrix A is not assumed to be symmetric in the
Cauchy problem.

The proofs appeal to a direct argument based on an explicit description of two
fundamental solutions as well as to ordered Banach space techniques.
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§2. The Cauchy problem

In this section we are interested in the existence of symmetric solutions to
Cauchy matrix problems

(1) X"+ AX =0,

(2) X(r)=R, X'(r)=S5

where 4, S and R are given n X matrices.
A solution X to (1) is called symmetric if X(t) is a symmetric matrix, i.e.
X(t) = X(t)T, for all £ € R.
We shall denote by
Xa(t,7) and Ya(t,7)

the unique solution to (1) satisfying the initial conditions
Xa(r,7)=0, X'(r,7)=1 and

YA(T,T) =1, YA(T,T) =0

respectively, I being the identity matrix.
We start with a property of these solutions:

Lemma 1. For everya, b, t € R we have that

(a) LT (t,b)TXA(t, a) — Xar (t,b)TXfA(i, a) = X (b, a),

(b) Va(t,b)T Xlyr (t,0) — Ya(t, B)T X 4r(t,a) = Xz (b, a)-
In particular, we have Ya(a,b) = ' (b, a)T and Xyr(a,b)= —Xa(b,a).

Proof. Call f(t) the left hand side of (a). Then for every t € R we have
that
F1(8) = X'z (6, 0)T X alt,a) + Xiyr (t,0)T X'y (t,a)—

X! (1, B)T Xy (8, 0) — Xar (8,0)7 X4(t,0) =
X7 (t,b)T AX a(t,a) + Xar (t,0)T AX 4(t,a) = 0.

Therefore f(t) = f(b) = Xa(b,a). This proves (a). The proof of (b) is analogous.
The last assertion follows by taking ¢ = a. QED

Now we analize two special cases of (1), whose solutions play a fundamental
role in the proof of the wanted characterization.
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Lemma 2. Let A be an arbitrary n x n matriz. The solution of the Cauchy
matriz problem

X"+ 4X =0
X(ry=0
X'(T)::S

15 a symmetric solution if and only if
(i) S is symmetric, and
(ii) SAT = AS.
Proof. We have
Xa(t, )T = Xalt — 7,007 = =X a(r — 1,007 = —X 4(r,2)".
From Lemma 1 it follows that —X4(7,t)T = X 47 (¢,7). Therefore,
(3) .XA(t,T)T = Xyr(t, 7).

Moreover, X 4(t,7)S is the unique solution of the given Cauchy problem.
Assume first that conditions (i) and (7#) hold. If we multiply the equation
Nr(t,T) + ATX ,r(t,7) = 0 from the left by S, then we obtain

(SX 47 (t,7))" + (SAT)X 4o (t,7) = 0.
By virtue of (ii), SAT = AS and hence
(SXAT (t,7))" + A(SX a7 (¢,7)) = 0.

Moreover, SX 4r(7,7) = 0 and SX/,z(7,7) = §. This means that SX 4z (t,7)is a

solution of the given Cauchy problem. By uniqueness we have
SXar(t,7) = Xalt,7)5.
From this, (¢) and (3) we obtain that
(Xa(t, 7)) = STXa(t,7)T = SX 42 (t,7) = X4(t,7)S.

This means that the solution X 4(¢,7)S is symmetric.

Conversely, suppose that the solution X 4(¢,7)S is symmetric. Then X' (¢,7)5
is also a symmetric matrix for every ¢. From § = Xy(7,7)5 it follows that 5 = ST,
This proves (7). From

SXa(t,7)T = (Xa(t,7)S)T = X4(t,7)S for every ¢

it follows that
.S'Xl'(t,'r)T = X"'(¢,7)8.

Thus by differentiating the given equation (1) we get
—SX',(t,7)T AT = —AX,(t,7)S.
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Taking ¢ = 7 we obtain SAT = AS. This proves (i1). QED

Lemma 3. Let A be an arbitrary n X n matriz. The solution of the Cauchy
matric problem ‘

X"+ AY =0

X(r)=R

X'(r)=0

is a symmetric solution if and only if
(i) R is symmetric, and

(ii) RAT = AR.

Proof. From Lemma 1 we derive that Y4(t,7) = X' 7 (7,%)T. For each ¢ we
have that o
Lt = X (= 7,0)T = X (7, 8)7,

hence

Ya(t,7)R = X',z (t,7)TR.

Moreover, Y4(t,7)R is the unique solution of the given Cauchy problem.
Therefore Y4(t,7)R is symmetric for each ¢ if and only if X', - (2, 7)TR is sym-
metric for each ¢. From

1
X o (t,7)TR = ( f X2 (o, 7)Tdo) R

it follows that X7 (¢,7)TR is symmetric for each ¢ if and only if X 4r (t,7)TR is
symmetric for each ¢. But X 47 (t,7)TR = X4(¢,7)R by (3). According to Lemma
2 this can happen if and only if R is symmetric and RAT = AR. QED

Now we are ready to prove the main result of this section:

Theorem 1. Let A be an arbitrary n X n matriz. The solution of the Cauchy
matriz problem (1), (2) is a symmetric solution if and only if
(i) R and S are symmetric matrices, and

(i) RAT = AR and SAT = AS.

Proof.  The solution of (1), (2) is given by the formula
X(t) =Xa(t,7)S +Ya(t,7)R.

So, if conditions (z) and () hold, then Lemma 2 and Lemma 3 imply that X(¢) is
symmetric.

Suppose now that X(t) is symmetric. Then the matrix R = X (7) is symmetric.
From X (t) = X(t)T we get X"(¢) = (X(¢)")T. Hence —AX(t) = —X(t)T AT for
each t. If we put ¢ = 7 then we obtain AR = RTAT = RAT. By Lemma 3,
Y4(t,7)R is a symmetric solution of (1). From X 4(¢,7)S = X(¢) — Ya(t,7)R we
obtain that X 4(¢,7)S is a symmetric solution of (1). Lemma 2 now implies that S
is a symmetric matrix and that A4S = SAT. QED
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Now we derive two interesting consequences:

Corollary 1. X is a symmetric solution to (1) if and only if X is locally
symmetric, i.e. X(t) is symmetric for all t.in an open interval.

Proof. We need only to show that if X(¢) is symmetric for a < ¢ < b, then
X () is symmetric for every ¢. Fix a < 7 < b and set R = X(7), § = X'(7).
The matrices R and § are symmetric because X (¢) is. From X (t) = X (¢)T we get
X"(t) = (X(¢)T)". Hence

—AX(t) = —X ()T AT (a < t<b).
Differentiating both sides, we obtain that
AX'(t) = X'(t)T 4T (a <t <b).
Choosing t = 7 in these two relations, we get
AR =RAT and AS =547

respectively (R and S being symmetric). At this point Theorem 1 can be applied
to get the desired conclusion. QED

Corollary 2.  Let A be an arbitrary n x n matriz. The matric problem (1) has
at least 2n linearly indipendent symmetric solutions.

Proof. Let V be the vector space of all symmetric n X n matrices and let W
be the vector space of all skew-symmetric n X n matrices. Let L be the linear map
from V xV to W x W defined in the following way: L(z,y) = (Az—zAT, Ay—yAT).
Let X(t) be a solution of (1). By Theorem 1, X(¢) is a symmetric solution of (1) if
and only if L(X(0),X’'(0)) = 0. We know from Linear Algebra that

dim (V x V) = dim Ker (L) + dim L(V x V),

dim V =n(n+1)/2, dim W =n(n-1)/2.

Combining these relations, we obtain the conclusion of the Corollary since L(V x
V)CW xW.
QED

Now we assume that A is symmetric and we deduce from Theorera 1 a result
of interest in Sturmian theory (cf. Reid [2]):

Theorem 2. Let A be a symmetric matriz and a < b be real numbers such
that the interval |a,b] contains no focal points of a with respect to the system

(4) z" 4+ Az = 0.
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Then there ezists a symmetric solution X(t) of (1) such that:
(a) X(a)#0 and X'(a) =0;
(b) X (a) is positive semidefinite;
(c) X(b)=AX(a) for a suitable A > 0.

-

Proof. Let V be the vector space of all symmetric matrices and let P be
the cone of all positive semidefinite matrices. We denote by < the order induced on
V by P. Let V4 be the vector subspace of V consisting of all symmetric matrices

S commuting with A: AS = SA. Let Py =VaNnP.
By Lemma 3, Y4(t,a) is symmetric for every t. We prove that

(5) Ya(b,a) > 0.

Suppose, by contradiction, that Ya(b,a) ¢ P. From Yu(a,a) = I € P°, from
the fact that Y4(b,a) belongs to the open set V\P, and from the continuity of the
function Y4(t,a) on the connected set ]a, b[, it follows that there exists v, a < v < b,
such that Y4(v,a) is an element of the boundary of P. Therefore detYa(v,a) =
0. This implies that v is a focal point of a with respect to (4), contradicing the
assumption. '

We prove next that if § € V4 then YA(b,a)S € Vi. If S € V4 then ST =58
and AS — SA = SAT. By Lemma 3, Ya(t,a)S is a symimetric solution of (1). By
uniqueness, this implies that the solution of the following matrix Cauchy problem

X"+ AX =0
X(b) = Ya(b,a)S
X'(b) = YA(b,(L)S

is symmetric. Then (44) of Theorem 1 implies that Y4 (b,a)S € Va.

Define a linear operator I as follows: for S € Va put L(S) = Ya(b,a)S. We
have just shown that L maps V. in V4. From (5) it follows that f R€ Vand R>0
then Y4(b,a)R > 0, which shows that L is a positive operator.

IfL=0on Py, then L =0 on V4 since P4 has non-empty interior because
I € Pyandlisan interior point of P. In this case the conclusion of the theorem
follows trivially.

Tf L # 0 on Py, then thereis Z € P4 such that L(Z) > 0. Define then a

sequence of non-linear operators

L(X ++2)
L0 =z x v 1)

This is a good definition since L(X + 17) > LL(Z) > 0. L, maps continuously
the closed and convex set

K ={X e Pa||X|| =1}

into itself. By Brouwer fixed point theorem, for every n there is X, € K such that
L(Xn) = Xa- This means

(6) [+ - 2)[Xn = L(Xn + %Z).
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By the compactness of K, there is a convergent subsequence Xn, — Xo with
| Xoo|| = 1. Passing to the limit in (6) with n = n;, we obtain

AXoo = L(Xoo)
for a suitable A > 0. Define X(¢) := K4(t,a)Xoo. From Xo € V4 and from Lemfna
3 we have that X (t) is a symmetric solution such that X(a) = Ya(a, a) X =
Xoo #0, X'(a) =0 and X(b) = Ya(b,0)Xeo = L(X o) = AX o = AX(a). QED

§3. The two-point boundary value problem

In this section we are interested in knowing when the two-point matrix bound-
ary value problem

X"+ AX =0, X(0)=0=X(1)

has a symmetric, non-trivial solution X: X (t) must be symmetric for every 0 <¢ <
1. By Corollary 1 of Theorem 1, this implies that X (t) is symmetric for every real
t.

It is a consequence of Theorem 3 below that this problem is solvable if and
only if A = 1 is an eigenvalue of the two-point boundary value for the associated
system in R"™:

y' 4+ Ay =0, y(0)=0=y(1)

and y(t) € R™.
In order to achieve this result we shall compare the following eigenvalue prob-
lems ‘

" { X"+ AAX =0, X(0)=0=X(1),

X@t)=X@®)T 0<t<1;

) {y" + 2y =0, y(0)=0=y(1)

y@)eR™ 0<t< 1.

In this context, we need to assume the symmetry of A. The main result is the
following:

Theorem 3. Let A be a symmetric n X n matriz. The real number X is an
eigenvalue of (7) if and only if X is an eigenvalue of (8).

In order to prove Theorem 3 we first prove two lemmas that are consequences

of the results in §2.

Lemma 4. Let A be a symmetric n X n matriz. A positive real number A > 0 s
an eigenvalue of (8) if and only if detX 4(A1/2,0) = 0.
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Proof. Necessity: A direct calculation shows that X 4(A!/2£,0) is the solution

of
(X" XX =0
X(0)=0
X'(0) = AY2T.

If A is an eigenvalue for (8), then there exists a non-trivial solution z(¢) of (8). From
uniqueness, z(t) = A7Y/2X 4(A1/2¢,0)2'(0). The condition z(1) = 0 then imply that
ATH2X 4 (AY2,0)2'(0) = 0 and so det X 4(A1/2,0) = 0.
Sufficiency: If detX 4(A*/2,0) = 0 then there exists a non-null zy € R™ such
that : '
X 4(AY2,0)z = 0.

From this it follows that XA(/\I/zt, 0)zo is a non-trivial solution of (8). QED
In the same way we can prove the following:

Lemma 5. Let A be a n xn symmetric matric. A negative real number X < 0 is

an eigenvalue of (8) if and only if detX_4((—A)*/2,0) = 0.

Proof of Theorem 3. Necessity: Let A be an eigenvalue of (6) and X a
corresponding symmetric eigenfunction. Since X is non-trivial, there exist z € R”™
and 0 < 7 < 1, such that X(7)z # 0. Then y(¢) = X(¢)z is 2 non-trivial solution
to (7) for the same A.

Sufficiency: We confine the proof to the case A > 0, since the case A < 0 is
similar.

Suppose that A > 0 is an eigenvalue for (8). From Lemma 4, detX 4(A*/2,0) =
0. Applying Lemma 2 with S = I we see that the solution X (¢) of the following
matrix Cauchy problem

X"+ AX =0
X(0)=0
X'(0)=1I

is symmetric. By definition, X (¢) = X 4(¢,0). Put X, := X(A'/?). Then detX, =
detX 4(A1/2,0) = 0. Obviously, X () is the unique solution of the following problem:
Y'+A4Y =0
Y(Al/Z) — X(A]‘/z)
YI()\I/Z) — X,(A1/2).
But X () is also a symmetric solution of this problem. We can therefore apply
Theorem 1 and obtain that Xép = Xy and AXy = XoA”. By induction it is easy

to see that for every integer k, AXF = XfAT (remember that, by assumption,
AT = A). Obviously, (XF)T = XE. If Q is a linear combination of the type

k
Q:ZGUX[I;; ay,...,ar €ER
v=0
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then it is easily seen that Q7 = @ and AQ = QAT.

Let p(z) be the minimal polynomial of X,. Then p(z) has the form p(z) =
lezo a,¢”. From the fact that detX, = 0 it follows that ap = 0. So p(z) = zpi(z),
where pi(z) = Ei:l ayz’~!. Put Qi :=pi(Xy). Then, from the properties of
the minimal polynomial it follows that @; # 0 and X,Q; = 0. From the above
argument we have Q7 = Q; and AQ; = Q1 AT, Put Y(t) := X .4(A1/?¢,0)Q:. From
Lemma 2 we have Y ()7 = Y (¢) for every t. From Y'(0) = AL/2Q; # 0 it follows
that Y'(¢) is non-trivial. Finally, Y(1) = X¢Q1 = 0 and Y(0) = 0. Thus Y(t)is a
symmetric, non-trivial solution of (7). QED
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Chapter 3

On the existence of conjugate
and focal points

This chapter provides a contribution to the Sturmian theory for systems
(1) 2+ A(f)z =0

where A(%) is a 2x 2 matrix depending continuously on ¢. Purposely, A(t) is not assumed
symmetric, so that neither the spectral theory of self-adjoint operators nor the methods
of the Calculus of Variation are applicable.

Sturmian theory deals with oscillation, separation and comparison of solution. Its
goal is to detect the distribution and the multiplicity of zeros of solutions. In this
connections, the concepts of conjugate and of focal points play a fundamental role. The
major contribution of this chapter is the reduction of the question of the existence of
conjugate and of focal points of

(1) 2 + A(t)z =0

to the analysis of a scalar equation- in a deep analogy with Liouville theorem about the
Wronskian of matrix solution. OQur argument works only for 2 x 2 matrices A(t), hence
the origin of our restriction in the dimension [the extension to n X n matrices A(t) is
an open problem]. From the scalar equation we derive a variety of information about
conjugate and focal points of (1).
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§2 Terminology, notations and
preliminary results

In what follows, we shall denote by
Xa(t,7) and Yu(t,7)
the unique matrix solution to (1) such that
Xa(r,7)=0, Xy(r,7)=1I1 and Yu(r,7)=1, Yu(r,7)=0

respectively.

Let a and b be real numbers. We say that b is a conjugate point of a if there exists
a nontrivial solution z(t) of (1) such that z(a) = z(b) = 0. We say that b is a focal poini
of a if b > a and there exists a nontrivial solution y(¢) of (1) such that y'(a) = y(b) = 0.
It is well-known that b is a conjugate point of a if and only if detX ,(b,a) = 0and b > a
is a focal point of a if and only if detY,(b,a) = 0 (see [3]).

We prove now some elementary properties concerning the matrices X 4 and Y.

Consider the following Cauchy matrix problem:

(2) 7 = (—j& ) g:) 7, Z(a)=Ln

and let Z(¢) be the solution. An easy calculation shows that

Y,(t,a) X, (i,a)
Z(t) - <ngt7a’% X.’j(ta a)) .

Consider now the following Cauchy matrix problem:

W= (g o) W=k

and let W(t) be its unique solution. An easy calculation shows that

- ,.ILT (t’a)T Y:.1‘T (, a)T
We prove that the derivative of W(t)Z(t) is zero everywhere. In fact,
(W()Z(t)) = W'(t)2(t) + W()Z'(t) =

_W() (_2{2 ) g"> Z(8) + W (1) (—2112 ) g) Z(t) = 0.

From this it follows that W(t)Z(t) = W(a)Z(a) = I, and so Z(t)W(t) = Ion. If we

rewrite the last equation in explicit form then we obtain:

Xlir(t,a)T =X r(t,0)T (Yy(t,a) X4(tia) ) _
) (e ) (g x26g) =mm
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We require now the following result from Linear Algebra, (cf. [2], section 0.8.4.)

Theorem A Let

_( Myy M
Mﬂ(Mz,l Mz,z)

be a non singular 2n X 2n matrix and suppose that all the blocks M; j are nXn matrices.

Put .
N
M-t = 1,1 1,2)
<N2,1 No o

where all the blocks N; ; are n X n matrices. Then
|det Ny 5| = |(detM) ™" det My 1], |det Ny 1| = |(detM) ™ det Mz,

IdetNl,zl = I(detM)_ldetMLz‘, |detN1’1| = l(de‘“\/.f)_ldet]\([z,zI°

If we apply Theorem A to the relation (3), then we obtain the following result:

Theorem 1. For every a, t € R we have that
ldetYAT (ta a’)‘ = ldetYA(ta a’)l7

el 4 (1, a)| = |4t X4 (1),
|det X'+ (t,a)| = |det X (2, a)|-

Theorem 2. For every a,b,t € R we have that

(a) X' (t,0)T X s (t,a) — Xyr (t,0)T X'y (t,a) = X 4(b, ),
(b) Ve (2,0)T X (t,a) — 2 (8, 0)T X 4 (8, a) = X[ (b, a).

In particular, we have Yr(a,b)T = X/i(b,a), X 4r(a,b) = =X a(b, a)T.
Proof. Call f(t) the left hand side of (a). Then for every ? € R we have that
f,(t) = X,—QT (ta b)TXA (t') a’) + XfiT (tv b)TX.,;l(n a’)—

_X.,-iT (t’ b)TX.IA(t’ CL) - X—AT (ta b)TXI-,i (t7 (L) =
~X 2 (t,0)T A X 4 (t,a) + X 4r (2,0)T A1) X 4 (2,0) = 0.

Therefore f(t) = f(b) = X 4(b,a). This proves (a). The proof of (b) is analogous. The
last assertion follows by taking t =a. QED
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§3 Existence of focal points for 2 X 2 systems

In the scalar case ( A(t) is a real valued function), the existence of a ¢ €)a, b] such
that b is a focal point of ¢ follows from Rolle’s theorem. We prove the same result for
two-dimensional systems (1) under suitable conditions on the matrix A(t), cf. Theorems
4 and 5 below. In order to reach this goal we need to state some technical results. Of
these, the following one plays, in our context, a similar role as Liouville theorem on the
Wronskian since it helps to reduce the analysis of a system to the analysis of a scalar
equation.

Theorem 3. For every continuous 2 x 2 matriz A(t) and every matriz solution X(t)
of (1), the following scalar equation

(detX (t))" = —Tr(A(t))det X (¢) + 2det X'(t)

is satisfied.
Proof. Let

xo= (28 ) 0= (30 S6)
Then
detX (t) = 211 (t)@22(t) — 212(t)z21 (1),
(detX(£)) = oly (£)eaz(t) + 211 (t)2hs (1) — @ha(t)z21(t) — 212()22: (1),
(det X (1)) = 2, (t)aa2(t) — 25 (£)ear (t) + 211 (D)5 () — 212 ()an (4)+
+w’u(t)?c’zz (t) — 5o ()ahy (1) + 4 (1) 2o (2) — 212(t)22: (2)-
From the relation

(59 0) = (28 o) (225 260)
it follows that
2y (t) = —[a11(t)z11(2) + ar2(t)z21 (1)),
2y (1) = —[a11(t)212(t) + a12()z22 (1)),
2l () = —[aa1 (t)e11(t) + aze(t)z21(4)],
2y (t) = —[as1(t)12(t) + a2z (t)z22(t)]:
If we replace the corresponding quantity in the relation written before, then we obtain:
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(det X (£))" = —ap1(t)z11 (£)222(t) — ar2(t)zar (B)ea(t) + ans(t)zaz(t)ean (B)+
12 ()22 (8221 () — az1(t)e12 (t)e11(t) — aza(t)z22(¢)z1a (t)+

+a21(£)z11 (H)212(2) + aza(t)ean (t)e12(t) + 2[2h; (H)2ha (8) — 21a(t) 22 (1)) =
—a11(t)[e11 (t)222(t) — 12(t) 221 ()] — aza(8)[za1 (B)e22(t) — @12 (t)z2n ()] +
+2detX'(¢) = —Trace(A(t))det X (¢) + 2detX'(t). QED

Corollary.  Let A(t) be a continuous 2 X 2 matriz. Then a is a point of strict relative
minimum for detX 4(¢,a) as a function of t. In particular, for every a there ezisis a

neighbourhood I of a such that detX 4(t,a) # 0 for every t € I and ¢ # a.

Proof. Put

t) z12(?)

Xa(tya) = (i) = :

_—l( ,CL) <w21(t) $22(t)

By definition X 4(a,a) = 0, and so the first derivative of the function detX 4(t,a)
evaluated at the point ¢ = a is equal to

2'(a)11392(a) + z11(a)zhy (a) — z)y(a)zai(a) — z12(a)zy; (a) = 0

From Theorem 3 and from X'((a,a) = I it follows that the second derivative of the
function detX 4(t,a) evaluated at the point ¢ = a is equal to 2. Thus a is a point of
minimum for detX 4(.,a). QED

Theorem 4. Between any pair a < b of conjugate points for (1) there is a focal point
for (1) provided A(t) is symmetric and positive semi-definite for every a <t < b.

Proof. Assume, for contradiction, that there exists no number ¢, a < ¢ < b such that
b is a focal point of ¢ for (1). This implies that detYy(b,t) # 0 for a <t < b. From
Theorem 2 we have that detX’ (¢,b) # 0 for @ < ¢ < b. Without loss of generality
we may assume that a is the first conjugate point of b. We therefore assume that

detX 4(¢,b) # 0 for a < t < b. Define Z(t) = X', (¢,6)X 1 (t,b) for a <t < b. We have
Z'(t) = XU§(,)X 7 (1,0) — X3 (6, 5)X T (6, )X (1, D)X (16) = —A(t) = Z°(2).

This implies that Z(t) is a solution of the following differential equation:

(4) Z'(t) = —A(t) — Z%(t).

Note that Z(t) is a non-extendable solution of (4). In fact: suppose that Hm,_ .+ Z(t)

exists and call this limit Z,. Then we have that Z,X 4(a,b) = X';(a,b). By assumption

X', (a,b) is non-singular and so X 4(a,b) must be non-singular. But this contradicts the

fact that a is a conjugate point of b. In the same way we see that Z(t) is non- extendable

at the point b.
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From the global existence theorem it follows that

(5) Jim (| 7(1)] = oo,
(6) Tim |1Z()] = oo.

It is well-known, [see 3], that
XM 0)T X (8,0)T = Xy(8,0)X 17 (8,0)

for @ < t < b. This implies that Z7(t) = Z(t) for a <t < b.
In what follows, we denote by S the space of 2 X 2 symmetric matrices endowed
with the order defined by the cone P of positive semi-definite matrices:

U <V & V — U positive semi — definite & V —U € P.

From the fact that 0 < A(t) and 0 < Z%(¢) for a < t < b it follows that for @ < #; <
ity < b

2(ta) ~ 2(t5) = [ 2(0)dle) == [ (A(0) + ZH(e))dl) <0,

ty

so that
(7) Z(t2) < Z(t1).

From detX 4(b,b) = 0 and from the Corollary of Theorem 3, we get the existence of a
neighbourhood I of b such that detX 4(¢,0) > 0 for ¢ € I, ¢ # b. From detX/;(,0) =1
and from the assumption that detX 4(¢,5) # 0 and detX',(¢,b) # 0 for a < ¢ < b it-
follows that detZ(t) > 0 for a < ¢t < b. This implies that the eigenvalues of Z(t) have
the same sign for a < ¢ < b and from this it follows that Z(¢) < 0 for every a <1 <
or Z(t) > 0 for every a < t < b. Suppose first that Z(t) > 0 for every @ < ¢ < b. Then,
for a < t; < t2 < b we deduce from (7) that

(8) 0< Z(t2) < Z(t4).
On the ordered Banach space (S, P) we take the following norm:
Ul = suplui |
for every matrix U = (u; ;). This norm turns out to be monotone, i.e.
U<V=|U| <Vl
Applying this result to (8) we get
1Z(t2)|| < [1Z(t1)]]

which contradicts (6) when 5 T b. Suppose now that Z(¢) < 0 for a <t < b If
a < t; <ty < b then we obtain from (7) that Z(¢2) < Z(¢1) <0 and so

(9) 0 < —Z(t1) < —Z(ts).
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The monotonicity of the norm of (5, P) implies that ||Z(1)]| < I|1Z(t2]| and from this
we obtain a contradiction of (5) when ¢; | a. QED

In case A(t) is not symmetric, we have the following

Theorem 5. Between any pair a < b of conjugate points for (1) there is a focal point
for (1) provided Tr A(t) is negative semi-definite.

Proof. Without loss of generality we may assume that a is the first conjugate point
of b. Assume, for contradiction, that detY4(b,t) # 0 for @ <t < b. Theorem 2 implies
that detX' r(¢,0) # 0 for a < ¢ < b. From Theorem 1 and detX’,(b,b) = 1 we obtain
detX’,(¢,b) > 0 for a <t < b. The Corollary of Theorem 3 implies that detX 4(¢,b) > 0
for a < t < b. From this and from the fact that detX 4(b,b) = 0 = detX 4(a,b) it
follows that there exists ¢, a < ¢ < b, such that ¢ is a point of relative maximum for the
function detX 4(¢,b). Since TrA(t) is assumed negative semi-definite, Theorem 3 implies
therefore that ¢ is a point of strict relative minimum for the function detX 4(¢,b). A
contradiction. QED

§4 Convergent sequences of conjugate points for 2 x 2 systems.

In this section we assume that A(t) is a continuous 2 X 2 matrix and that there exists
a convergent sequences (b;); of conjugate points of a with respect to (1). We list some
consequences of this assumption. Obviously, if we put b := lim; oo b;, then b is a
conjugate point of a. ;

(i) The function detX 4(%,a) vanishes in every neighbourhood of b at a point dis-.
tinct from b. So b cannot be a point of strict minimum or maximum for the function
detX s(¢,a). This implies, by Theorem 3, that detX;(b,a) = 0.

In particular, if b < a, then a is a focal point of b.

(i) RankX4(b,a) = RankX';(b,a) = 1. In fact from the assumption and from (i)
we have that RankX 4(b,a) < 2 and RankX',(b,a) < 2. If RankX 4(b,a) = 0 or
RankX',(b,a) = 0, then detZ(b) = 0 where Z(t) is the the solution of (2). But this
cannot hold because Z(a) = I.

(iii) RangeX.i(b,a) = RangeX'(b,a).

Proof. Let o be a non-null vector orthogonal to RangeX y(b,a). Then (i)
implies that for every o € R?, a € RangeX 4(b,a) if and only if & L .

For every natural number i let p; be a unit vector in KerX 4(b;,a). Without loss
of generality we may assume that the sequence (p:) is convergent. Put p := lim;cc pi-

Obviously, p € KerX 4(b,a) and |p| = 1. Define
filt) o= (X gz (8,8)T X4 (2, a)pilo) (i=1)

Then f;(t) is a continuously differentiable real valued function. From X 4r(b,b) = 0 we
have that f;(b) = 0. From Theorem 2, relation (a), and from X 4(bi,a)p; = 0, we have
that

Fi(bi) = (X a7 (b1, 0)T Xy (bi, a)pilo) =
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(X (b, B)T Xy (bi, a)ps — Xy (b3, 0) " X a(bi, a)pilo) =
—(Xa(b,a)pilo) = 0.

By Rolle’s theorem there exists ¢; € (min{b,b;},maz{b,b;}) such that f{(c;} = 0. This
means that

—(X 47 (ci,0)T A(ei) X a(ci, a)pilor) + (Xyr (e, b)T X'y(ci, a)pilo) = 0.

Obviously, lim;_eo ¢; = b, and so, passing to the limit in the last relation, we obtain
that (X' (b,a)p|o) = 0, by virtue of X 4r(b,b) = 0 and X',z (b,b) = I. So X,(b, a)p €
RangeX 4(b,a). The vector X', (b, a)p must be different from zero because X i(t,a)pis a
non-trivial solution of (1) vanishing for ¢ = b. From (ii) it follows that RangeX',(b,a) =
RangeX 4(b,a). QED
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