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1 General Introduction

Essentially all semiconductor surfaces are reconstructed. As is well known, this can
be traced back to the strong covalency of their bulk band structure, where valence
electronic states s and p hybridize to form sp® filled bonding states and empty anti-
bonding states with a large energy gap in between. ‘At surfaces, hybridized sp® bonds
are cut, and become dangling bonds. The corresponding dangling-bond electronic
surface states fall in the bulk energy gap, and are only half filled. As a result, ideal
semiconductor surfaces should be strongly metallic and possess a very high surface
energy. The uniqueness of covalent systems, as opposed to, for example, regular
metals, is that bulk covalent bonding is very directional and relatively inflexible.
Consequently, it generally costs too much energy to locally rearrange the electron
wave functions at the surface as required by the presence of dangling bonds, with-
out major lattice readjustments. Reconstructions represent in this sense a useful
compromise, in that they are able to eliminate dangling bonds as much as possible.

Often, reconstructions include a partial electron-charge-transfer mechanism, of-
ten without a major disturbance to the deeper layers. This artificial surface ionicity

is controlled by surface atomic displacements, e.g. buckling, and represents one
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example of Anderson’s “negative U”[1]. This kind of surface ionic phenomena in
a system which is purely covalent in the bulk is less pronounced for lower atomic
numbers. Valence p states are more localized in C than in Si, Ge and Sn, and
are more and more extended with increasing atomic number. Correspondingly, the
intra-atomic Coulomb repulsion decreases with increasing atomic number.

The reconstructions of semiconductor surfaces tend to preserve the surface bond
lengths close to the bulk value as much as possible. Let us consider a second-order
expansion of the total energy §E in terms of atomic displacements with respect to

a set of stable points[2],
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where dry; is the change of the bond length between nearest neighbors ¢ and j
(bond stretching), df;;; denotes the change of the angle between the pairs ¢ and
jk (bond bending) controlled by the radial and angular force constants, k. and ky
respectively, and r is the equilibrium distance between the nearest neighbors. For
Si, the bond stretching force constant k, is about 8.7 eV/A while the bond bending
force constant kg is only 0.29 eV/ A [3]. Since k, >> kg, the surface bond length
will try to remain close to the bulk value. In practice, when we have no better
information, we can begin to build reconstruction models with initial bond lengths
equal to the bulk value.

Of course, a surface reconstruction is a balance between several factors of satu-
rating dangling bonds, electron charge transfer, ionic energy and so on. Because of
the complexity of this balance, a semiconductor surface may have several local free

energy mimima corresponding to different reconstructions. In real life, the observed



surface reconstruction will be the lowest free energy structure kinetically accessi-
ble under the given preparation conditions. For example, the cleaved Si(111) and
Ge(111) structures are the 2 x 1 r-bonded chain reconstruction, whereas annealing
to high temperatures produces the Si(111)-(7 x 7)-DAS (Dimer-Adatom-Stacking-
Fault) and Ge(111)-¢(2 x 8) adatom reconstructions, respectively. The latter can be
proven to represent, at 7' = 0, the ground states of Si(111)and Ge(111), respectively.
The 2 x 1 states are the lowest energy states which can be built without adatoms.
which come about only after annealing. Finally, we address the role of temperature.
Starting with a kinetically constructed phase, temperature will generally convert
irreversibly the surface into a lower free energy, genuine equilibrium reconstruction.
So, for example, Ge and Si(111) surfaces switch irreversibly from the 2 x 1 7-bonded
chain to the adatom reconstructions. At higher temperatures, reconstructed sur-
faces deconstruct, which usually implies a loss of the extra periodicities, and the

recovery of a 1 x 1 unit cell.

Existing work on group IV semiconductor surfaces focuses on Si, Ge and C. After
C, Si and Ge, Sn is the last group IV element with a diamond structure, i.e.. a-
Sn (grey tin). It has a lattice parameter of 6.483 A (at 90 K) [4], and shows a
semimetal character (i.e., zero-band-gap semiconductor.). Sn is thus the sort of a
brigde element in group IV semiconductors from insulator, semiconductor to metal.
When the temperature is raised to 286 K at atmospheric pressure or pressure is
raised to 5 Kbar at zero temperature, a-Sn transforms into the fully metallic 3-
Sn (white tin) phase. (-Sn has a double body-centered tetragonal structure of its
own, with lattice parameters a=5.8317 A and ¢=3.1813 A at 298 K, and its space
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Figure 1.1: The phase diagram of Sn

group is I4;/amd. The melting temperature of §-Sn is 505 K. Upon increasing the
pressure to 9.4 GPa at room temperature, 3-Sn further tranforms into v-Sn. The
structure of v-Sn is body-centered tetragonal with lattice parameters a = 3.814 ,
¢ = 3484 at 3.9 GPa and 587 K, and its space group is [4/mmm. The overall

phase diagram(5] of tin is shown in Fig.1.1

While a large number of experiments and calculations have clarified the na-
ture of bulk Sn, the situation is different for Sn surfaces, where only recently some
groups(6, 7] have been successful in growing a-Sn(111) and a-Sn(100) on InSb(111)
and InSb(100) using molecular beam expitaxy (MBE) (single crystals of a-Sn appear
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Table 1.1: Summary of different reconstruction mechanisms for (111) semiconductor surfaces.

C Si Ge
2 x 1 w-bonded chain dimerized (x) (7) buckled more buckled
adatom/ rest atom not found 7 x 7DAS(*) | c(2 x 8) adatom (%)
2 x 1 buckled not found saddle-point saddle-point
metallic graphitic T > 2700K (?7) | T > 1500K (?) T > 1050K

(*) Stable structure at 7' = 0.
(?7) Pending confirmation.

difficult to obtain). These data indicate for @-Sn(111) a metastable 3 x 3 structure
turning to 2 x 2 upon annealing[7], and for a-Sn(100) p(2 x 2) and ¢(4 x 4) structures
appear, respectively, when grown a-Sn is 500-1000 A and 1000-2500 A thick[6].
At the moment of writing no theoretical calculations (apart from those printed in
this thesis) are available for o-Sn surfaces. It is expected that the interest in a-Sn
surfaces will rapidly grow in the near future due to the potential applications of
some of these surfaces, and to the availability of fine experimental techniques, such
as, STM, XPS, which can be used on the thin epitaxial films.

This thesis is, therefore, devoted to the first theoretical study of &-Sn (111) and
(100) surfaces. In particular, since there are no conclusive structural data avail-
able, ab initio calculations are crucial in comparing various possible reconstruction
mechanisms, and understanding the trends relative to the other semiconductors.

Systematic investigation of Diamond, Si and Ge (111) and (100) surfaces, both
theoretically and experimentally, indicate that a variety of different reconstruction

mechanisms are realized. A summary is presented in Tables 1.1 and 1.2.

As seen in Table 1.1 and 1.2, essentially all (111) surfaces possess a 7-bonded
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Table 1.2: Summary of differen reconstructions for (100) semiconductor surfaces.

C Si Ge

2 x 1- dimer reconstruction | symmetric buckled more buckled
high order reconstruction | not found | p(2 x 2), ¢(4 x 2) | p(2 x 2), c(4 x 2)

chain 2 x 1 reconstructed state. As a true ground state, however, m-bonded chains
only prevail in diamond, either reflecting the difficulty of obtaining well annealed

adatoms on this surface or the high energetic cost of ionic adatoms in carbon.

Finally, Table 1.1 considers, as further types of reconstruction, either simple
buckling or the possible transformation of a thin surface layer from semiconduct-
ing to metallic. Simple buckling, the so-called Haneman model, never really pre-
vails, and is considered for completeness, and for its simplicity. The possibility of
surface metallization is suggested by the bulk phase diagrams of Si, Ge and Sn,
where fully metallic phases completely surround the semiconducting phases, under
any combination of either high pressure or temperature. There is considerable ev-
idence that surface metallization does in fact play a relevant role on Ge(111), at
high temperatures[8], and there is a prediction that it should prevail at 7" = 0 on
Ga(001)[9]. It might perhaps be relevant to a-Sn, due to the bulk metallic 3-Sn

phase being very close to a-Sn in energy, as is the case of Ga[9].

The second surface to be considered in this thesis is @-Sn(100). In the (100)
surfaces, well-known 2 x 1 dimer reconstructed structures are stable in C, Si and
Ge. Simple 2 x 1 structure prevails in Diamond, while the ground state for both
Si (100) and Ge (100) surface is c¢(4 x 2) or p(2 x 2) reconstruction, which are

almost degenerate. These c¢(4 X 2) and p(2 x 2) reconstructed states consist also of



dimers, which constitute the basic building blocks. Recent ab initio calculations[10]
suggest a symmetric 2 X 1 dimer reconstruction of Diamond(100). On Si(100) and
Ge(100) surfaces, the symmetric dimer structure is metallic and energetically higher
than the asymmetric dimer structure with 0.4 A and 0.8A buckling on Si and Ce,
respectively, as shown by experiments[11, 12] and confirmed by both tight binding
[13] and ab initio calculations[10, 14, 15]. Experiments and calculations indicate that

the ¢(4 x 2) and p(2 x 2) reconstructions consist of asymmetric dimer structures.

By extrapolating the trends of Table 1.1 and 1.2 we are led to expect the follow-
ing: for a-Sn (111), (i) the 2 x 1 7-bonded chain reconstruction should be present,
with an even larger buckling than in Ge;

(ii) This reconstruction will be in energetic competition with some adatom/restatom
reconstructions, the latter being likely to prevail;

(iii) A surface metallization mechanism might be possible because of the closeness
of the metallic 5-Sn in energy.

For a-Sn (100), we expect that

(1) the 2 x 1 dimer reconstruction will probably also take place in a-Sn(100), with a
larger buckling than in Si and Ge. As in Si and Ge, the symmetric dimer structure
should be metallic and energetically higher than the asymmetric dimer structure:
(ii) as on Si and Ge (100) surfaces[16], several high order reconstructions, for in-
stance c(4 x 2) and p(2 x 2), will compete for the ground state structure, which

consists of asymmetric dimers with large bucklings.

In this work we shall find that (apart from metallization, which turns out to

be a harder problem) these trends are generally well borne out by our ab initio
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calculations.

For the a-Sn(111) surface, a 2 x 1 w-bonded chain reconstruction prevails in
the absence of adatoms, and a ¢(4 x 2) or (2 x 2) basic adatom-restatom unit
reconstruction does otherwise, and accompanying surface bucklings or relaxations
are in both cases larger than in Si and Ge, with consequently large ionic charge
transfers predicted. The annealed 2x2 phase could be explained by a simple adatom-
restatom reconstruction. As for the metastable (3x3) reconstruction observed in
experiment|7]. our calculation places them energetically much higher than the (2x2)
adatom-restatom model. There are two further possibilities: either we did not
optimize the best (3 x 3) structure, or we did it and the reason it still appears at
low growth temperatures is an out-of-equilibrium phenomenon.

For a-Sn(100) surface, the expected 2x1 asymmetric dimer structure was con-
firmed to possess a much lower energy than that of symmetric dimer structure as
in 51 and Ge and unlike diamond. The asymmetric dimer buckling is large (about
1 A) compared with 0.4 A and 0.74 A in Si and Ge (100) surfaces[11, 12], respec-
tively. This reconstruction is the basic building block for high-order reconstructions
in which p(2 x 2) and ¢(4 x 2) reconstructions are best among all considered possi-
bilities.

This thesis is organized as follows. In the next chapter I will briefly describe the
computational methods, and some key technical points related to our calculations.
In chapter III and IV, the calculated results for Sn(111) and (100) will be described,
respectively. Finally, [ will summarize the results and further discuss them in chapter

V.



2 Computational Method, Bulk

Properties of o and 3 Sn

2.1 Computational Method

In the present ab initio calculations for a-Sn (bulk and surface) and 8-Sn (bulk),
we use the first-principles pseudopotential plane-wave self-consistent calculation
method[17] which is based on the density functional theory (DFT) within the local
density approximation (LDA)[18, 19].

Based on the Born-Oppenheimer, or adiabatic approximation we are able to
decouple the electronic and ionic degrees of freedom of a solid. Futhermore, we can
regard the ions as classical particles, due to their huge mass, while the electrons are
regarded as a quantum many-body system. For any given set of ionic positions. the

Hamiltonian describing the quantum system of the electrons is
H=T+U+‘/ezt; (21)

where T is the electronic kinetic energy, U is the electron-electron interaction, and
Vest 1s the external potential due to the ions or other possible external sources such

as electric fields.

11
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Hohenberg and Kohn[18] proved that as for as the ground state of Hamiltonian
(2.1) is considered the electron charge density n(7) uniquely determines the external
potential, the ground state wavefunction |¥ > and all other electronic properties
of the system. Thus the ground state wavefunction |¥ > is a function of n(7), the

expectation value of Hamiltonian (2.1) in the ground state can be written as:

< UIH|E >= Ei[n(7)] = Fln(M)] + [ diVeze(7)n(7),
Fln(7) =< O[T + U > .

As proposed by Kohn and Sham[19], the above many-body system can be mapped

onto a single-particle noninteracting system whose density is equal to n(7).

Introducing the single-particle orbitals ¢;(7), the density is written as
= e, (23)
and the density functional F[n(7)] as (in atomic units):

Fln :~-Z<¢ (FV]6:(F) > += /drdr——————~+EIc[n]. (2.4)

Eq. (2.4) defines the new quantity E..[n], known as the exchange-correlation func-
tional. Now the variation of the total energy Eo¢[n] with respect to the density n(r),
combined with the constraint [n(7)d7F = N (N is the total number of electrons).
results in the following set of single-particle equations (Kohn-Sham equations):
Hisdil7) = (=7 + [ ZELd + Voo ) $i(7) = el 7),
n(7) = T 0(e — ep)|$i(M,

where the exchange-correlation potential is the functional derivative

—~~
O]
[$1}

S
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and ef is the Fermi energy.

Since the exact functional form of E,.[n]is unknown, various different approxima-
tions have been proposed, the most common being the local density approximation
(LDA). LDA assumes that the density n() is slowly varying in space so that the
uniform-electron gas approximation holds locally, and E,.[n] can be expressed in

the form:
- / dFess(n(7))n(7), (2.6)

where €,.(n) is the exchange and correlation energy per electron of a uniform electron
gas of density n. In our calculations, we adopted the Ceperley-Alder exchange and
correlation potential functional with the parameterization of Perdew and Zunger[20].

We use a plane-wave basis set to expand the single-particle Kohn-Sham (KS)

orbitals. Having the Bloch form, the KS orbitals can be expanded as:

—

6,27 = e 1 (7) = Ze e 2(3), (2.7)
where u_p(7) is a periodic Bloch function, G is a reciprocal lattice vector, k is a
vector belonging to the first Brillouin Zone of the crystal, and n denotes the band
index. The use of a plane-wave basis set has invaluable numerical advantages such
as the simple form of the kinetic energy in the Kohn-Sham Hamiltonian, and in
the use of Fast-Fourier-transformations (FFT) to deal with real-space terms such
as the exchange and correlation potential. Also, the use of a plane-wave basis set
is completely independent of the structure of the considered system so that results

obtained for different structures can be directly compared with each other. The
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plane wave basis set is determined. for each value of g, by
£+ G < Bew, (2.8)

where E.,; 1s a fixed kinetic energy cutoff. A rough estimate of the number of plane

waves is given by
dr
gz

wiw

(Beut)?, (2.9)

Npy =~

where Qg7 is the volume of the Brillouin Zone.

In order to avoid the huge number of plane waves required to describe strongly
localized core electrons and the rapid oscillations of the valence wavefunctions in
the core region, the electron-ion interaction is modeled by pseudopotentials. Since
the physics of bonding in solids is dominated by the valence electrons, the main idea
underlying the use of pseudopotential is to map the all-electron system onto an equiv-
alent system including only the valence electrons, where “pseudo”-wavefunctions are
made smooth in the core regions. Widely used first-principles pseudopotentials are
the ab initio norm-conserving Hamann, Schluter, and Chiang (HSC) pseudopotentials[21,
22]. The main features of these pseudopotentials are: (i) real and pseudo valence
eigenvalues are the same for a chosen all-electron atomic configuration; (ii) real
and pseudo valence atomic wavefunctions agree beyond a chosen “core radius” r;
(iii)integrals from 0 to r of the real and pseudo wavefunctions are equal for 7 > r.
for each valence state (norm conservation); (iv) the logarithmic derivatives of the
real and pseudo wavefunctions and their first energy derivatives are equal beyond
core radius r.. Properties (iii) and (iv) guarantee the pseudopotentials to have the

optimum transferability to different chemical environments. However, to take these
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Table 2.1: Coefficients of the pseudopotential of Sn in the Kleinman-Bylander form from Ref.[24]
with notation of Ref.[22].

L ay o Qs c Co c3 Cq Cs Cs
core || 2.00 | 0.80 5.1824 | -4.1824

0 1.47 | 1.86 | 2.93 || -6.8310 | 0.4151 | 0.1260 | 0.2234 | 0.0285 | -0.0176

1 1.30 | 1.63 | 2.01 || -5.6815 | 0.5008 |-0.0901 | 0.1155 | 0.0710 | 0.0124

2 1.11 | 1.36 | 1.45 || -5.7003 | 0.1856 | -0.2167 | -0.0772 | -0.0653 | -0.0191

norm conservation rules into account the pseudopotentials are forced to be nonlocal,
i.e. angular momentum dependent, which is computationally very costly. Kleinman
and Bylander[23] showed that a significant reduction of the computational effort can
be acheived by transforming the original semi-local (i.e. non-local in angular coor-
dinates but local in radial coordinates) HSC pseudopotential into a fully non-local
form[23].

We use, in our calculations, an ab-initio norm-conserving pseudopotential[24]
in the Kleinman-Bylander form([23]. This pseudopotential is constructed by fitting
its pseudo eigenvalues and eigenfunctions to a relativistic all-electron self-consistent
calculation where spin averaging is performed to produce the l-components of the
pseudopotentials.

The parameters of this pseudopotential, with the notation of Bachelet, Hamann
and Schluter[22], are listed in the Table 2.1.

The surface properties of a-Sn have been studied by standard slab calculations.
Periodic boundary conditions are in fact unavoidable in plane-wave calculations,
and surfaces have to be dealt with using periodically repeated slabs of finite height,

separated by a vacuum layer that has to be sufficiently thick to avoid spurious
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interactions between the slabs. In almost all calculations presented, the slab contains
twelve atomic layers plus a vacuum layer of 11 A . We checked convergence using ten
atomic layers and 9 A vacuum to compute the surface energies of the 2 x 2 adatom-
restatom reconstruction on Sn(111) and the 2x 1 symmetric-dimer reconstruction on
Sn(100). The surface energies changed by less than 4 meV/(1 x 1 cell). The detailed

geometries for the different surfaces will be illustrated in the respective chapters.

Tests on the convergence of the results with respect to the kinetic energy cutoff
are described in the next section, and show that for our choice of the pseudopotential,

12 Ryd is the proper energy cutoff for both bulk and surface calculations.

Most of the reconstructed surfaces we deal with require the use of large su-
percells. In order to perform large-scale electronic structure calculations, we em-
ployed the powerful block Davidson’s iterative scheme[25] to solve the single-particle
Kohn-Sham Hamiltonian, and the modified Broyden scheme[26] to accelerate con-
vergence in the iterative procedure for the self-consistent solution. We optimized (re-
laxed) the considered surface structures by moving atoms according to the calculated
Hellmann-Feynman forces by means of the Broyden-Fletcher-Goldfarb-Shannon algorithm[27].
Surface structures are considered optimized when the residual Hellmann-Feynman

forces on atoms are less than 5 meV/A.

Surface Brillouin Zone (SBZ) integration is a delicate issue, particularly when
comparing the surface energies of different reconstructed surface calculations. We
adopted the following strategy: we first computed the surface energy for the ideal
surface and test its convergence with respect to k-point summation. We then consid-

ered the ideal surface as the reference state, and performed a variety of reconstructed
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surface calculations using a k-point sampling equivalent to that of the ideal case,
i.e. obtained by refolding the set of k-points of the ideal surface onto the SBZ of the
reconstructed surfaces under consideration. This equivalence would however lead
in some cases, as, for instance, in the a-Sn(111) 3x3 reconstruction to an untreat-
able number of k-points. In these cases, we repeated the ideal surface calculations
using a different and more appropriate k-point sampling, and carefully testing the
k-summation independence of the results. When we met metallic surfaces, we also
used a Gaussian broadening of 0.001 Ryd and first order approximation for the
Fermi distribution function[28]. This procedure allows a safe comparison of surface
energies for different surfaces, with an overall resolution in surface energy differences
of 5 meV/(1 x 1 cell). The detailed SBZ k-point sampling will be illustrated in the

following chapters.

In the next part of this section, we illustrate how we compute the surface elec-
tronic band structure, the surface work function, and the layer-projected density
of states, that are all the physical quantities relevant to the interpretation of our

results.

Surface Electronic Band Structure: When the Kohn-Sham equations are self-
consistently solved on the finite grid of k-points specified above, one obtains the
self-consistent electronic charge density. Using this self-consistent density we solve
the Kohn-Sham equation along the chosen high-symmetry axes of the irreducible
part of the Surface Brillouin Zone (ISBZ), and construct the slab electronic band
structure. In order to resolve contributions due to surface states we also calculate

the surface projected bulk electronic bands. The surface bands thus clearly show up
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in the projected bulk gap regions.

Surface Work function: The surface work function is one of the most typical
electronic properties of a surface, and can be directly measured in experiments. The
surface work function ¢ is defined as ¢ = Vi (vacuum) — EF, where Ef is the Fermi
energy and Vy(7) is the macroscopic average of the Hartree potential V(7). The

Hartree potential V() satisfies Poisson’s equation
V3VE(F) = 4xp(7) (2.10)

and can easily be obtained from the self-consistent electronic charge density. Fol-
lowing the approach proposed by Baldereschi, Baroni and Resta[29], we compute
Vi using

_ z+a/2
VH(z):—l—/ ds [ dedyVi(z,y,s), (2.11)

aJz—aj2 S
where Sy is the surface unit area, a is the a-Sn bulk lattice parameter, and z is
the coordinate normal to the surface. Physically, V(z) should be constant in the
vacuum and central region of the slab.
Layer-projected Density of States (LDOS): In real space, at position 7, the local
density of states p(7, E') of the slab is defined as

B) =2 [ 1Y

where n is the band index, (") and E,, are the eigenstate and eigenvalue of th nth

P)|26(E — En(k)), (2.12)

band, respectively. Integration over the whole slab yields the total density of states
p(E) of the slab which contains contributions from both the surface and the bulk.

If the slab has no vacuum region or if the number of atomic layers of the slab goes



2.2. Bulk Properties 19

to infinity, p(E) becomes the exact bulk density of states. p(7, E) can be projected

onto the different atom layers in the slab as:

Zm+A[2

p(m.E) = %:/SBZ dk [ dzdy dz[0(a,y, 2)P6(E — E(F), (2.13)

Zm—A[2

where 2, denotes the mth atom-layer position, and A is the distance between two
nearest neighbor atom-layers. This LDOS will resemble the bulk density of states
p(E) in the central atom-layer of the slab. By comparison, the LDOS in the surface
layer or the second layer will display the distribution of the surface states. The LDOS
1s a relevant quantity and can be used to interpret angular integrated photoemission
spectroscopy experiments. In our practical calculation, due to the finite resolution
of our k-point sampling, we replaced the §-function in formula (2.13) by a Gaussian

function with a broadening of 25 meV.

2.2 Bulk Properties

We have first calculated the bulk properties of @ and £ Sn, in order to check the
pseudopotential choice and the calculation scheme, and also to determine the energy
cutoff to be used in the surface calculations.

The zero temperature structure of bulk Sn is the « phase with a diamond lattice
[32] of lattice spacing 6.483 A (at 90 K) [4]. If the temperature is raised to 286
K at atmospheric pressure, semimetallic a-Sn transforms into the fully metallic 5-
Sn phase[33]. Under pressure, this transformation occurs at lower temperatures.
Extrapolating the experimental data to T=0 K[33, 34] indicates a transformation

pressure of 0.5 GPa. This differs from Si and Ge which instead maintain the diamond
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Table 2.2: Calculated lattice parameter, bulk moduli (Ko) and its pressure derivative (DKo),
and bulk energy (Epuix) for bulk a-Sn phase are listed, respectively, for different energy cutoffs
E.yu:. Corresponding experimental values are also listed in the last line. RT denotes the room

temperature.

Eeut Qg Ko DKy Eyuix

Ryd A GPa Ryd/atom
35 6.442 43.80 4.330 | -7.12031
30 6.442 43.80 4.330 | -7.12014
25 6.441 43.80 4.341 | -7.11900
20 6.441 44.20 4.318 | -T7.11599
15 6.442 44.35 4.273 | -T7.11337
12 6.446 4421 4.311 | -7.11119
10 6.476 43.83 3.819 | -7.10060
Exp. | 6.491[RT]* | 53[90 K]°

“Reference [30]
*Reference [31]
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structure up to more than 8 GPa. Although a-Sn and -Sn are energetically very
close, they differ completely in their atomic structure and electronic properties. a-Sn
is a zero-band-gap semiconductor with diamond structure, while 4-Sn is a complete

metal with double-bct (body center tetregonal) structure.

It is well known that relativistic effects play an important role in heavy ele-
ment systems. In particular, the zero-band-gap semiconducting property of a-Sn is
primarily attributed to relativistic effects[35, 17]. The ab initio total energy LDA
calculations of J.L. Corkill et al.[34] included scalar-relativistic effects and confirmed
that at zero temperature and zero pressure the 8 phase is energetically very close to
the o phase, their energy difference being 44 meV/atom, with a transition pressure
to the 3 phase of 0.8 GPa. Were the relativistic effects not included[36], a worse
agreement with experiments would be obtained. In the present ab-initio calcula-
tions for a-Sn and (3-Sn, we do consider relativistic effects in our pseudopotential,

including only scalar effects, as described above.

Although o-Sn is a zero-band gap semiconductor, its band structure in whole
Brillouin Zone has a gap except at the I' point. For the a-Sn bulk calculation, we
thus used 10 special k-points[38] to sample the Irreducible Brillouin Zone (IBZ) of
the diamond phase. For the metallic 8 phase, instead, we find that 160 k-points
are needed to describe accurately the IBZ summations, with an additional Gaussian
broadening of 0.14 eV [28]. We have tested that increasing the k-point integration to
24 special k-points and 200 k-points in the IBZ of a-Sn and -Sn phases, respectively,
alters these results only within ~5 meV. For simplicity, we fixed the c/a ratio of

B-Sn to the experimental value of 0.546.
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Table 2.3: Calculated lattice parameter, bulk moduli (Kg) and its pressure derivative (DKj), and
bulk energy (Esyuix) for the bulk 3-Sn phase are listed, respectively, for different energy cutoffs

Ecyi. Corresponding experimental values are also listed in the last line. RT denotes the room

temperature.

Eeut ao Ko DKy Epuik

Ryd A GPa Ryd/atom
35 5.765 54.21 4.736 | -7.11875
30 5.765 54.15 4.737 | -7.11855
25 5.765 54.16 4.733 | -7.11735
20 5.763 54.31 4.755 | -7.11410
15 5.762 54.50 4.772 | -7.11140
12 5.764 54.87 4.775 | -7.10950
10 5.778 55.37 4.613 | -7.09985

Exp. | 5.820[RT]* | 54.9[RT]°

“Reference [30]
*Reference [37]
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Table 2.4: The energy difference AE between bulk 8-Sn and bulk a-Sn and the pressure inducing
structural phase transition from alpha-Sn to [(-Sn are listed, respectively, for different energy

cutoffs E.y:, The last line lists the known experimental value.

Eew AFE P
Ryd | meV/atom GPa
35 21.2 0.50
30 21.6 0.50
25 224 0.50
20 25.7 0.50
15 26.8 0.50
12 23.0 0.50
10 10.2 0.30
Exp. 0.5(0 K)* )

“reference [39]

We have also checked the dependence of plane-wave expansion of various physical
properties of both o and $-Sn on the cutoff, ranging from 35 Ryd to 10 Ryd. The
dependence of the energy difference between a-Sn and (-Sn and their transition

pressure on the cutoff were also checked.

Results for lattice parameter ag, bulk moduli Ky and its pressure derivative DR,
total energy, and energy difference between the two phases are reported in Table
2.2(a-Sn), Table 2.3(8-Sn) and Table 2.4. As can be seen, for any energy cutoff
higher than 12 Ryd, the S-phase is disfavored with respect to the a-phase by the
same energy (23.0 meV/atom) within our accuracy. Also, the @ — [ transition

pressure of 0.50 GPa is in exact agreement with experiments. On the contrary, if
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the energy cutoff is lower than 12 Ry, the transition pressure becomes 0.30 GPa (at
10 Ryd) and the energy difference drops to 10.2 meV/atom. Thus, 12 Ryd cutoff
can be considered to reproduce accurately enough the experimental results, and will
be adopted for all the surface calculations.

The electronic band structure of a-Sn is reported in Fig. 2.1 and that of 3-Sn[40]
in Fig. 2.2. As can be seen, in particular, the semimetallic character of the a-phase
(zero gap only at I') and the fully metallic character of the B-phase are correctly
borne out in our calculations. This is at variance with the calculation by J.L.Corkill
et. al.[17] where the first conduction band dips below the top valence band at T
point, i.e. their calculated band gap is negative. This fact was artificially attributed
by the authors to the local density approximation and the neglect of spin-orbit
effects.

The excellent success of our LDA calculations in predicting these extremely deli-
cate energy differences in bulk phases provides confidence in extending this approach

towards exploring surface properties.
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Figure 2.1: Electronic structure of bulk a-Sn. The zero in energy corresponds to the Fermi level.
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3 The o-Sn (111) Surfaces

This chapter is organized as follows. First of all, in Sect. 3.1 we deal with the ideal.
unreconstructed a-Sn (111) surface, whose properties we study without and with
surface relaxation. We find partly filled dangling bond states in the ideal surface
electronic structure, which as usual suggest that this is not a stable surface. This
is confirmed in next section—Sect. 3.2, where a simple 2 X 1 buckled (Haneman)
reconstruction is shown to lower the surface energy without energy barriers. The
more interesting m-bonded chain reconstruction is considered in Sect. 3.3. It is
found that a very strongly buckled 2 x 1 7-bonded chain state exists for a-Sn (111).
its energy being lower than that of the Haneman state. Sect. 3.4 is devoted to
the alternative possibility of adatom/restatom reconstructions. We find this latter
possibility to be energetically most favourable, both in the (2 x 2) and in the ¢(4 x 2)
local geometry. This therefore suggests that the stable annealed (2 x 2) surface
structure observed in experiment(7] is of the adatom-restatom type. The (3 x 3)
reconstructions suggested by experiment[7] are considered in Sect. 3.5. We consider
two models, a Dimer-Adatom-Stacking-Fault (DAS) model and a distorted v/3 x v/3

model. It is found that their surface energies are higher than that of the 2 x 2

27
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Alpha-Sn(111)

eV/(1x1 cell)

(837 mJ/m’) 0940 —————— (Ix1)-ideal
0.933 (1x1)-fully relaxed

0.7 32\ (2x1)- buckled chain
0.7090——— (3x3)-DAS

0.697— ————— (2x1)- pi-bonded chain
0.6967 (2x2)-adatom(H3)

0.694 (3x3)-‘CDW’(root-3-square)

. 0.626 ——— (2x2)-adatom(T4)
(543 mJ/m’) 0.610 — c(4x2)-adatom(T4)

Figure 3.1: The calculated surface energies for a-Sn(111) surfaces

adatom-restatom model, which is at best compatible with metastability of this kind
of 3x3 structures. In Sect. 3.6 we briefly describe an attempt to find a stable metallic
reconstructed surface ground state, which however turns out to be inconclusive. Our
calculated surface energies are schematically and tabularly reported in Fig. 3.1 and

Table 3.7, respectively.

3.1 The Relaxed, Unreconstructed «-Sn (111) Surface

We study the surface properties of a-Sn (111) by a standard slab calculation, as
described in Chapter 2. One of the two surfaces of the slab is frozen in its ideal
geometry, together with the first three adjacent layers (a total of two rigid bilayers).
The atoms belonging to the remaining layers are allowed to fully relax guided by

the corresponding Hellmann-Feynman forces. Convergence is assumed when forces
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are less than 5 meV/A . The number of atomic layers in the slab is fixed in this
case to a total of 12 layers (not including the adatom layer when present). Each
layer consists of either one, two, or four Sn atoms, in correspondence to choosing
1x1,2x1,and 2 x 2 [or c(4 x 2)] surface cells, respectively. The number of
“vacuum layers” is fixed to 6 (vacuum thickness ~ 11 A ), and the number of k
points in the Irreducible Surface BZ (ISBZ) is chosen according to the size of the
surface cell and its geometry, as described case by case. The initial atomic positions
are chosen according to the calculated equilibrium bulk lattice spacing (a, = 6.446
A ). This guarantees that the forces on the atoms of the central layers are smaller

than 4 meV/ A for all the surfaces studied. In all cases, surface energies E,,,; are

ideal
surfo

given as Esyp = Esap — NEyur — E where Fgq, is the total energy of the
slab, Eyi is the energy per atom of bulk a-Sn as computed in Sect. 2.2 [Epyr=-
96.753 eV/atom][41], N is the total number of atoms in the slab. Furthermore,
Eidel = [Eier! — NEyu]/2 is the energy of the frozen ideal surface. Here et
is the total energy of a slab with both surfaces rigid and ideal, computed using
the same supercell geometry and k-point set as Fy,;. We therefore have to repeat
ideal surface calculations several times in different supercells and k-point sets cor-
responding to different surface reconstruction slab calculations in order to compare
different reconstructed surface energies. The convergence of our results with respect
to the k-points sampling has been tested for each surface by increasing the k-point
number after the atomic relaxation. Accordingly, we can estimate our overall en-

ergy resolution to be better than 10 meV/(1 x 1 cell). We have also calculated the

full electronic band structure of the relaxed surfaces. This was done by using the
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Kohn-Sham eigenvalues of a 10-layer slab, obtained by removing the seven bottom
layers of the simulation slab and replacing them by the inverted image of the top-
most five relaxed layers. The reason for this procedure is threefold. First, we get
rid of the undesired states related to the bottom rigid ideal surface. Second, we
increase the effective symmetry of the supercell, thus decreasing the computational
effort of the band structure calculation. Third, although the interaction of identical
surface states belonging to opposite surfaces generally lifts their degeneracy (again
an undesired effect), their average energy still corresponds, to second order in their

coupling, to the noninteracting value in the ideal case of an infinite slab.

As a first case we have considered the (1 x 1) unreconstructed surface. Six special
k-points in the hexagonal ISBZ have been used [42]. The electronic band structure
of the ideal (1 x 1) surface is reported in Fig. 3.2. There are various surface states
lying in the projected gaps. The surface states crossing the Fermi level inside the
fundamental gap are clearly related to the presence of unsaturated surface dangling
bonds. This feature is common to all group IV insulators and semiconductors, and is
responsible for the high grade of instability of the ideal (111) surface, as mentioned
in Chapter 1. The electron density corresponding to the surface state is analysed
in Fig. 3.3, and reveals a high degree of surface localization as well as a clear

dangling-bond character.

As a next step, we allowed the surface, i.e. all atoms in the eight topmost surface
layers, to relax, according to the Hellmann-Feynman forces, so as to reduce the
surface energy. Despite the presence of unsaturated dangling bonds, the result of this

energy minimization shows that surface atoms do not relax significantly (see Table
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Figure 3.2: Surface electronic structure of the ideal «-Sn(111) surface reported along
high-symmetry lines of the (1 x 1) hexagonal irreducible Brillouin zone. Shaded areas correspond
to surface-projected bulk states, while thicker lines correspond to surface states. The surface Bril-
louin zone is given in the inset. Note that the dangling bond surface state crosses the fermi level

Ep.
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Figure 3.3: Electron density contour of the highest occupied state of the ideal a-Sn(111)-(1 x 1)
surface at K, on the (110) plane passing through top atoms. Full circles correspond to Sn atoms,
and thicker straight lines to bonds among Sn atoms. Contour lines are separated by 0.0005 (a.u.).

Note the dangling bond character of this state.
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3.7), with a surprisingly small surface energy gain of only 7 meV /(1 x 1)cell, and
a downward relaxation of the top layer of 0.02 A . We also checked that increasing

the k-point number from six to eighteen changed none of the above results.

3.2 Haneman (2 x 1) “Buckled Atom” Reconstruction

In the preceding calculation, relaxation was allowed, but reconstruction was forbid-
den by symmetry. If the symmetry constraints imposed by the choice of a (1 x 1)
cell are relaxed, the ideal surface is provided with a simple mechanism for the par-
tial saturation of the dangling bonds. Such a mechanism, first proposed by Hane-
"man [43], consists of a simple in-out buckling of the topmost layer, resulting in a
(2 x 1) displacive reconstruction. The inward motion of one surface atom implies
an sp® — sp® rehybridization, and a p,-like dangling bond for that atom. The out-
ward motion of the other atom, by contrast, causes dehybridization, and an s-like
dangling bond. Since in the atom E; << E,_, electrons will flow from the inward to
the outward relaxed atom. This charge transfer empties and saturates respectively
the two dangling bonds and therefore removes partly filled surface states from the
gap, stabilizing the surface. This buckled (2 x 1) reconstruction, although actually
never observed, has been recently suggested to play the role of a transition state, a
kind of “stepping stone”, in the dynamical process leading from an unreconstructed
state towards, e.g., a (2x 1) 7-bonded chain state[44]. In order to study the possible
occurence of such a buckled atom reconstruction on a-Sn (111), we have repeated
our calculation in a (2 x 1) surface cell, using 4 special k-points in the rectangular

(2 x 1) ISBZ[42]. We find, indeed, that the surface spontaneously buckles as in
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the Haneman distortion just described, against which the ideal surface is therefore
unstable, very much as Ge (111)[44]. The energy gain from the ideal to the optimal
buckled geometry (Table 3.7), is about 0.22 eV/(1 x 1)cell, measured relative to the
energy of the ideal surface computed using the same (2 x 1) supercell and k-point
set. The buckling of the top layer is found to be enormous, namely 1.23 A . The

final atomic coordinates of the relaxed top five atomic layers are given in Table 3.1.

3.3 (2x1) m-Bonded Chain Reconstruction

The instability of the ideal (111) surface against (2 x 1) buckling is interesting,
but probably academic, except possibly in dynamics, or in some local region where
it can be rehybridized by a defect. In our pursuit of the true (111) ground state
surface structure, we consider next the surface reconstruction geometries which are
experimentally observed in the other group-1V insulator and semiconductors. Here
we consider the (111) 2 x 1 7-bonded chain reconstruction. In the lack of any
experimental and theoretical data, we arranged the surface atoms in the structure
proposed by Pandey [45]. Pandey’s structure can be obtained by simultaneously
suppressing one surface atom into the second layer and correspondingly raising one
second layer atom, so that i) the number of dangling bonds per surface atom is
the same as before; ii) all bond lengths are set to the bulk value. The atomic
coordinates in Pandey’s structure are given in Table 3.3. Subsequently, we allowed
the atomic positions to relax according to ab-initio forces, using the same supercell

and same k-point sampling as in the previous section. At convergence, we find that
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Table 3.1: Ideal, and optimized atomic positions of the a-Sn (111) (2 x 1) buckled (Haneman) sur-
face. In the rectangular supercell, coordinates are given by r = c1a; + caaz + czas, where a; is de-
fined in the conventional cubic coordinate system as a; = (ao/2)(—1,2,-1), as = (ao/2)(-1,0, 1),
ag = ao(1.1,1) and ao (=6.446 A ) is the lattice parameter.

Atom Ideal Optimal

no. C1 Co C3 (4] C2 C3

buckled-layer
1 .000 .000 .000 .009 .000 -.048

2 500 500 .000 485 .500 062
2nd-layer

3 167 .500 .083 .132 500 077

4 667 .000 .083 .692 .000 077
3rd-layer

5 167 500 .333 169 .500 .330

6 667 .000 .333 .667 .000 332
4th-layer

7 333 .000 417 334 .000 415

8 833 .500 417 .836 .500 A17
Sth-layer

9 333 .000 .667 .334 .000 .665
10 .833 .500 .667 .833 500 667
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Table 3.2: The magnitude of buckling, the bond length, and the buckling angle of the 7-bonded
chain in C, Si, Ge, and a-Sn (111) surfaces.

buckling length  bond length buckling angle

(A) (A)
ce 0 1.44 0°
Si® 0.4 2.25 10°
Ge® 0.8 2.42 19°
a-Sn? 1.15 2.80 24.25°

*Reference [17] (calculated value).
*Reference [11] (measured value).
‘Referenec [44] (measured value).

4This work.

the energy gain of this 2 x 1 reconstruction, with respect to the ideal surface, is
0.24 eV/(1 x 1)cell (Table 3.7), i.e., slightly larger than that of the buckled 2 x 1
reconstruction. The optimal atomic coordinates of the top five atomic layers are
given in Table 3.3. The bond lengths within the m-bonded chain are 2.80 A , only
0.4 % longer with respect to the ideal bulk bond length (2.79 A ). The chain buckling
(1.15 A ) is however very large if compared with that of Si or Ge (0.4 A [46, 11], and
0.8 A [44], respectively), fully confirming the trends discussed in Section I and listed
in Table 1.1. The m-bonded chain of a-Sn thus forms an angle of § = 24.25° with
the (111)-plane, (0 is defined as: sin § = chain buckling length/chain bond length).
This value is again very large if compared with that of Si and Ge, and in the trend

from C to Si. to Ge, and to a-Sn (see Table 3.2). The magnitude of this buckling
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Figure 3.4: Electron density contours of the highest occupied state ( panel (a) ) and of the lowest

unoccupied state ( panel (b) ) in the a-Sn(111) (2 x 1) m-bonded chain reconstruction at J, on the

(110) plane passing through the up (down) atom. In panel (b) atoms are labelled according to the

optimal positions of Table 3.3. Contour lines are separated by 0.0005 (a.u.).

is so large, that the whole 7-bonded chain is now lying onto an essentially vertical

plane (see Fig. 3.4). The large chain buckling is accompanied by a large electron

transfer from the lowered to the raised chain atom, which again tends to saturate the

raised atom dangling bond, and empty the lowered one. This is clearly seen in Fig.

3.4, where the charge distributions of the highest occupied (panel (a)) and lowest

unoccupied states (panel (b)) are shown. This charge rearrangement is accompanied

by the opening of a large gap in the dangling bond surface state, as seen in the

electronic structure of Fig. 3.5. Here the highest occupied (lowest unoccupied)
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Figure 3.5: Surface electronic structure of the «-Sn(111) (2 x 1) m-bonded chain reconstructed
surface reported in the (2 x 1) rectangular irreducible Brillouin zone (see inset). Shaded areas
correspond to surface-projected bulk states, while thicker lines correspond to surface states. The
dangling bond band is now split into two bands. The splitting of the original dangling bond state

is evident.
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surface states correspond to raised (lowered) atom dangling bonds, respectively.
Finally, since the alternative possibility of a dimerization of the chain was excluded
in our cell due to symmetry constraints, we tried slightly dimerizing the initial,
unbuckled 7-bonded chain, and also the final, fully buckled one (thereby doubling
the number of k-points in the ISBZ). However, we found these configurations to be

energetically disfavored with respect to the undimerized chain.

3.4 Adatom-Restatom Reconstructions

As the next likely candidate for the reconstruction of a-Sn (111), we now consider
an adatom-restatom reconstruction, known to be the stable mechanism for both Si
and Ge. Although this reconstruction shows up with rather more complex surface
unit cells, such as the (7 x 7) DAS model in Si[48] and the ¢(2 x 8) in Ge[49], the
building block of this class of reconstructions is simple. It is based on the presence of
one adatom every four (1 x 1) first-layer atoms. The adatom sits in a threefold site,
saturating three first-layer atoms, leaving one (the restatom) unsaturated[50]. Of
the two available threefold sites, namely Ty (on top of a second-layer atom), and H3
(hollow site), the adatoms prefer, at least in Si and Ge[50, 51], the T} site. Moreover,
the T} site adatoms may still be arranged in a (2 x 2) or ¢(4 x 2) geometry. For
instance in Ge (111) ¢(2 x 8), they are stacked in alternating (2 x 2) and c(4 x 2)
cells. Here we assume the pure (2x 2) [or pure (4 x 2)] Ty structure as the prototype
adatom-restatom reconstruction, restricting for simplicity our analysis to this case
only.

As was the case for the m-bonded chain reconstruction, we have no data to guide
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Table 3.3: Initial (Pandey’s), and optimized atomic positions of the a-Sn (111) (2 x 1) 7-bonded
surface. In the rectangular supercell, coordinates are given by r = c1a; +caaz+caag, where a; is de-
fined in the conventional cubic coordinate system as a; = (ao/2)(—1,2, —1), as = (ao/2)(-1,0,1),
az = ag(1,1,1) and ao (= 6.446 A ) is the lattice parameter.

Atom Pandey’s® Optimal

no. C1 Ca C3 (553 Ca C3

7-bonded layer
1 -.148 .000 023 -.167 .000 .060

2 -.019 .500 023 -.020 .500 -.043
2nd-layer

3 315 500 106 .278 .500 .100

4 519 .000 106 484 .000 077
3rd-layer

5 167 500 333 178 .500 341

6 .667 .000 333 .657 .000 317
4th-layer

7 333 .000 A17T 336 .000 431

8 .833 500 417 831 .500 400
Sth-layer

9 333 .000 667 337 .000 678
10 .833 .500 667 .834 .500 654

*For corresponding bulk-like positions, see the ideal case of Table 3.1.
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Figure 3.6: Geometry, and electron density contour of the a-Sn(111) (2 x 2) adatom / restatom
reconstruction, on the plane passing through the adatom and the rest atom. Contour lines are
separated by 0.005 (a.u.). Note the strong outward relaxation of the restatom, and the strong

inward relaxation of the second and third layer atoms beneath the adatom. (R: restatom, A:

adatom)
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us. We start with an ideal Ty position for the adatom (see Table 3.4) such that
the lengths of the adatom bonds with the three first-layer atoms are equal to the
bulk bond-length. The relative positions of atoms are initially chosen according to
the (2 x 2) [or ¢(4 x 2)] case of Table 3.4 [or Table 3.5]. The k-point sampling
of this larger supercell is restricted to a single special point (mean-value point) of
the hexagonal (2 x 2) ISBZ[42]. We then calculate Hellmann-Feynman forces, and
let the atoms relax to the equilibrium positions. We also find that increasing the
number of special k-points of the relaxed surface to three and six does not change
the surface energy within 5 meV/(1 x 1)cell. As before we must also repeat the
rigid ideal slab calculation using this larger supercell and k-point sampling. As
shown in Table 3.7, the energy of the relaxed adatom-reconstructed surface turns
out to be lower than all previous reconstructions by as much as 0.09 eV /(1 x 1)cell.
This indicates that the adatom-restatom reconstruction is the most efficient way of
saturating the highly unstable dangling bonds of the clean (111) surface of a-Sn.
The alternative choice of a ¢(4 x 2) adatom-restatom geometry (using the two k-
points obtained from the refolding in the c(4 x 2) ISBZ of the four ones used in the
above (2 x 1) reconstruction calculations) confirms this result, yielding an energy
16 meV/(1 x 1)cell lower than the (2 x 2) choice. This energy difference is however
comparable with our overall energy resolution. Similarly, our calculation does not
rule out the existence of more complex surface reconstructions. It does however
suggest that, if this is the case, then the adatom-rest atom mechanism is very likely
to constitute the basic building block, as is the case in Si [48] and Ge [49]. Moreover,

the advantage over the 7-bonded chain reconstruction is larger in a-Sn, confirming
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Figure 3.7: Electron density contours of the highest occupied state ( panel (a) ) and of the lowest
unoccupied state ( panel (b) ) in the a-Sn(111) (2 x 2) adatom / restatom reconstruction at X, on
~ the same plane as in Fig. 3.6. In panel (b) atoms are labelled according to the optimal positions
of Table 3.4. Contour lines are separated by 0.0004 (a.u.). Note the strong restatom / adatom

characters, with a larger penetration of the adatom empty state.

the Si-Ge trend.

In Table 3.4 we report the relaxed atomic coordinates of the (2 x 2) adatom-
restatom reconstructed surface. Due to the symmetry constraint, the adatom and
restatom only relax in the z direction. The in-plane distance between the rest atom
and its three neighbors has shrunk by about 10 % with respect to the ideal bulk
value. The rest atom moves outward from its initial bulk-like position by 0.8 A again
a very large relaxation if compared with values in Si (0.3 A ), and in Ge (0.55 A ).
Due to this relaxation, the rest atom forms bond angles of 94.0°, a value closer to
total s, p dehybridization (90°) than to the original sp® one (109°), and bond lengths
of 2.84 A (bulk bond length is 2.79 A ). In turn, the adatom bond lengths with the
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three neighboring first-layer atoms are 2.97 A | larger by 7 % than the bulk bond
length, and the adatom bond angles are 93.4°, quite similar to the rest atom. The
second-layer atom beneath the adatom prevents further downward relaxation of the
adatom, and is itself pushed downward. Although its final distance from the adatom
(2.99 A ) is comparable with the other adatom bond lengths, there is no bond-like
accumulation of electronic charge between them, as can be seen in the total charge
density reported in Fig. 3.6. Rather, most of the adatom charge is transferred to
the restatom dangling bond. This charge transfer is not directly visible in the total
charge density of Fig. 3.6, but shows up clearly in the band structure of Fig. 3.8.
The half filled surface-localized band typical of unsaturated dangling bonds (see Fig.
3.2), is here split into a lower filled band with prevailing rest-atom character, and an
upper empty band mainly related to the adatom. This charge transfer is believed
to constitute the fundamental mechanism for the stabilization of the adatom-rest
atom reconstruction in Si and Ge [30, 51], and does appear to do so in Sn, as well.
A glance at the charge density associated with the lower and upper surface bands
(see Fig. 3.7) confirms this expectation. The charge associated with the lower band,
shown in panel (a) of Fig. 3.7, has a strong rest-atom character and extends very
little into the bulk, thus conﬁrmihg its picture of saturated dangling bond. On the
contrary, the upper unoccupied band (panel (b) of Fig. 3.7) has a strong adatom
character, but extends largely below the adatom, and might therefore be thought
to as a band of so called “floating bonds” [52] associated with both the adatom and

the five-fold coordinated atom immediately underneath.

The optimal atomic positions and electronic band structure of the c(4 x 2)
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Figure 3.8: Surface electronic structure of the a-Sn(111)-(2 x 2) adatom-restatom reconstructed
surface reported in the (2 x 2) hexagonal irreducible Brillouin zone (see inset). Shaded areas
correspond to surface-projected bulk states, thicker lines correspond to surface states, dotted lines
to surface resonances. The ~ 1 eV splitting of the surface state reflects the adatom-restatom

electron transfer.
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Figure 3.9: Surface electronic structure of the @-Sn(111)-¢(4 x 2) adatom-restatom reconstructed
surface reported in the c(4 x 2) rectangular irreducible Brillouin zone (see inset). Shaded areas
correspond to surface-projected bulk states, thicker lines correspond to surface states, dotted lines

to surface resonances.
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adatom-restatom reconstruction are given in Table 3.5 and Fig. 3.9. Differences
in the atomic relaxations and charge densities are negligible with respect to the

(2 x 2) case, and will not be re-discussed.

We have verified that the Hj site for the adatom is not energetically favored, the
surface energy of this surface being higher than the one with adatoms in T sites by

about 70 meV /(1 x 1)cell. Its optimal atomic coordinates are given in Table 3.6.

We have also calculated the bridge site configuration for the adatom, where the
adatom sits in the middle of the 7} site and Hj site. It turned out that an energy
barrier of 0.70 eV is for the adatom diffusion between Ty and H; sites on a-Sn(111).
in analogy with Si(111) (a barrier of 1.1 eV[53]) and Ge(111) (a barrier of 0.8 eV[534]).

The adatom-restatom mechanism has just been shown to be the most efficient
known mechanism to lower the surface energy of a-Sn(111) as of Si(111) and Ge(111).
The true ground states of Si(111) and Ge(11l) are respectively dimer-adatom-
stacking-fault (DAS) (7x 7) and ¢(2 x 8) adatom reconstructions, where the adatom-
restatom structure is the basic unit. Thus, it is reasonable to expect that also the
true ground state of o-Sn(111) will have the adatom-restatom structure as basic

unit, as Si(111) and Ge(111).

Recent data on a-Sn surfaces have been obtained by epitaxial growth of a-Sn on
other semiconductor surfaces. Recently a Japanese experimental group has grown
a-Sn epitaxially on InSb(111) up to a thickness of about 30 monolayers (roughly 100
A) at room temperature[7]. They found the Sb-free a-Sn(111) surface (more than
four monolayers) to have a (3 x 3) reconstruction when grown at lower temperature,

and “irreversibly” changing to a (2 x 2) structure upon annealing at high tempera-
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tures. Finally the structure turns to 1 x 1 when the underlying Sb diffuses out. This
experiment thus seems to suggest that the (2 x 2) reconstruction could be the ground
state of a-Sn(111) surface, with the (3 X 3) reconstruction as a strong metastable
state. Our calculations so far suggest therefore that the stable (2 x 2) structure ob-
tained by high-temperature annealing could be the adatom-restatom reconstruction

just described. We are presently planning further vibrational calculations in order

to make more detailed predictions for future experiments.

3.5 (3x3) Reconstructions

In this section we analyze possible candidates for the (3x3) reconstructions observed
in experiment[7]. Since we have no direct clues, a 3 X 3 DAS model is a natural
candidate. On the other hand, the so-called a-phase of Pb/Ge(111) has recently
been found to transform from a basic /3 x /3 adatom structure into a 3 x 3 Charge-
Density-Wave (CDW)[55, 56] at low temperature. The basic electronic structure of a
V3% +/3 Sn adatom overlayer on a-Sn(111) would be very similar. Hence, we restrict
ourselves to consider the above two structures. The possible (3 x 3) reconstructions
we consider are therefore the (3x3) DAS structure and a V3 x+/3 overlayer enlarged
to 3 x 3 (here called \/52) There are several possibilities for “enlarging”the V3x+/3
structure, depending on the number of adatoms (one, two, or three, in the latter
case combined with a CDW) present on the 3 x 3 cell. The configuration with three

adatoms should be favored since the number of dangling bonds is the smallest.
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Table 3.4: Initial, and optimized atomic positions of the a-Sn (111) (2 x 2) adatom / restatom
(T4 configuration) reconstructed surface. In the hexagonal supercell, coordinates are given by
r = cia; + cpas + czag, where a; is defined in the conventional cubic coordinate system as
a; = (ao/2)(~1,2,-1), a2 = (ag/2)(-1,0,1), ag = (ao/3)(1,1,1) and ao (= 6.446 A ) is the

lattice parameter.

Atom Initial Optimal
no. a 2 s a o s
adatom 1 .000 .000 2.375 .000 .000 2.509
Ist-layer
2 -.167 500  2.125 -.158 AT5 2.077
3 333 .000 2.125 317 .000 2.077
4 -.167  -500 2125 -.158  -.475  2.077
rest atom 5 333 -1.000 2.125 .333  -1.000  2.343
2nd-layer
6 .000 .000 1.875 .000 .000 1.705
7 H00 500 1.875 485 544 1.935
8 000 -1.000 1.875 .030 -1.000 1.935
9 500 -.500 1.875 485 -.544  1.935
3rd-layer
10 .000  .000 1.125 .000 .000 .963
11 500 500 1.125  .500 501 1.175
12 .000 -1.000 1.125 .000  -1.000 1.175
13 500 -.500  1.125  .500 -.501 1.175
4th-layer
14 167 500 875 .175 525 .864
15 .667  .000 .875 .667 .000 .926
16 67 -.500 875 175 -.525 .864
17 .667 -1.000 .875 .650  -1.000  .864
5th-layer

18 67 500 125 170 510 110
19 667  .000 .125  .667 .000 A75
20 167 -.500 .125 (170 -.510 110
21 667 -1.000 .125 .660  -1.000 110




50 §3. The «-Sn (111) Surfaces

Table 3.5: Initial, and optimized atomic positions of the a-Sn (111) ¢(4 x 2) adatom / restatom
(T4 configuration) reconstructed surface. In the rectangular supercell, coordinates are given by
r = cia; + caas + c3az, where a; is defined in the conventional cubic coordinate system as
a; = (ag/2)(-1,2,-1), ég = (a0/2)(—1,0,1), azg = (ao/3)(1,1,1) and ag (:6.446A ) is the lattice

parameter.

Atom Initial Optimal
no. c1 Co c3 €1 C2 €3
adatom 1 .000 000  2.375 .004 .000 2.527
Ist-layer
2 167 500 2,125 158 469  2.083
3 -333  .000 2125 @ -.313 000 2.102
4 167  -.500 2.125 158 -.469  2.083
rest atom 5 -.333 -1.000 2.125  -.341  -1.000 2.325
2nd-layer
6 .000 .000 1.875  -.006 .000 1.716
7 -500 .500 1.875  -.489 525 1.941
8 .000 -1.000 1.875  -.027  -1.000 1.945
9 -500 -.500 1.875 @ -.489 -.525  1.941
3rd-layer
10 .000 000 1.125 .001 000 .975
11 -500 .500 1.125  -.501 501 1.178
12 .000 -1.000 1.125 .005 -1.000 1.182
13 -.500  -.500 1.125  -.501 -.501  1.178
4th-layer
14 -.167 .500  .875 -.174 525 880
15 -.667 .000 .875 -.650 000 .874
16 -.167 -.500 .875 -.174 -.525  .880
17 -.667 -1.000 .875 -.665  -1.000 .907
Sth-layer

18 -.167  .500 125 -.169 509 127
19 -667 .000 .125 -.661 000 .123
20 -.167 -.500  .125 -.169 -.509 127
21 -.667 -1.000 .125 -.668  -1.000 .149
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Table 3.6: Initial, and optimized atomic positions of the a-Sn(111) (2 x 2) adatom / restatom
(Hs configuration) reconstructed surface. In the hexagonal supercell, coordinates are given by
r = cya; + csay + czaz, where a; is defined in the conventional cubic coordinate system as
ar = (ag/2)(~1,2,-1), a2 = (ao/2)(—=1,0,1), a3 = (ao/3)(1,1,1) and ao (= 6.446 A ) is the

lattice parameter.

Atom Initial Optimal
no. o) 2 c3 1 ¢y c3
adatom 1 167 0 .500  2.375 167 .500 2.525
1st-layer
2 -.167  .500  2.125 -.142 .500 2.090
3 333 .000 2.125 .321 037 2.090
rest atom 4 -.167  -.500 2.125 -.167 -.500 2.271
5 333 -1.000 2.125 .321  -1.037  2.090
2nd-layer
6 .000 .000 1.875 -.015  -.046 1.848
7 500 500 1.875 531 .500 1.848
8 .000 -1.000 1.875 -.015  -.954  1.843
9 500 -.500  1.875  .500 -.500 1.984
3rd-layer
10 .000 .000 1.125 .000  -.001 1.102
11 500 500 1.125  .501 - .500 1.102
12 .000 -1.000 1.125 .000 -.999 1.102
13 500 -.500  1.125  .500 -.500 1.199
4th-layer
14 167 .500  .875  .167 .500 861
15 .667  .000 .875 .663 -.012 .883
16 167 0 -.500 875 175 -.500 .883
17 .667 -1.000 .875 .663 -.988 .883
5th-layer

18 167 500 125 167 500 105
19 .667  .000 .125  .665 -.006 133
20 67 -.500 125 171 -.500 133
21 667 -1.000 .125 .665 -.994 133
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3.5.1 DAS Reconstruction

We first consider the DAS (3 X 3) reconstruction. In the DAS structure the top
three layers are reconstructed and have defects, while the layers below are com-
plete. The arrangement of atoms in the DAS structure can be obtained by the
stacking of triangular lattices in the order of either ... AABBCCAAB + adatoms
or ... AABBCCAAC + adatoms, where A, B, C denote the three inequivalent
stacking arrangements along the [111] direction of bulk a-Sn. The adatom layer is
formed by adatoms sitting in Ty sites (2 x 2-like arrangement) on triangular sites
of the first layer. Here, half the atoms occupy a site B (cubic diamond site) and
the other half a site C' (hexagonal diamond site). There is therefore a stacking fault
below C' but not below B, with an antiphase boundary between the two triangular
B and C regions. The second layer is entirely A, but one atom is missing. Further-
more, the second-layer atoms at the antiphase border between the B and C regions

are dimerized.

In detail, in the DAS (7 x 7) reconstruction of Si(111) surface each 7 x 7 unit
cell consists of (i) twelve adatoms in the adatom layer, (ii) forty-two atoms in the
first layer, six of which being restatoms, (iii)forty-eight atoms in the second layer
with a single vacancy at the triangular apex, and nine dimers along the antiphase
boundary. Thus there are nineteen dangling bonds in each unit cell. By contrast,
a DAS (3 x 3) reconstruction consists of (i) two adatoms in the adatom layer, (ii)
six atoms in the first layer, none of them being a rest atom, (iii) eight atoms in the
third layer, one vacancy at the triangular vertex, and three dimers formed along

the antiphase boundary. With this type of reconstruction, the dangling bonds are
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reduced from nine to three in each 3x 3 unit cell. The absence of restatoms represents

a qualitative difference between the DAS (7 x 7) and (3 x 3).

As in the other surfaces also in this DAS-(3 x 3) reconstruction we have no data
available to guide us to construct the details of this complicated reconstruction.
We modeled the DAS (3 x 3) surface structure using a periodically repeated slab
of twelve Sn monolayers (including one adatom layer on both sides) with inversion
symmetry through the center of the slab, separated by a vacuum layer of 11 A
. We stack the three relevant layers containing two T adatoms, one corner hole.
and one half stacking fault. Starting the third layer and below we have the ideal
a-Sn structure. We initially set the lengths of all bonds equal to that of the bulk
bond (2.79 A) without any dimerizations. The detailed initial atomic coordinates
are given in Table 3.8, and Fig. 3.10 schematically shows what our initial atomic
configuration looks like. Qur slab is very large, containing eighty-six Sn atoms plus
the vacuum region, we maintain the energy cutoff of 12 Ryd. We use one special
k-point in the 3 x 3 ISBZ integration, which is equivalent to nine k-points in the
(1 x 1) ISBZ. For the non-reconstructed reference surface we repeated the ideal a-
Sn(111) surface calculation in the (1 x 1) unit cell, using the nine k-point set in the

(1 x 1) ISBZ.

In our slab calculation for the DAS-(3 x 3) reconstruction, we have frozen the
two innermost layers in the slab, and allowed all atoms in other layers to relax ac-
cording to the calculated Hellmann-Feynman forces. The full relaxation was slow.
and needed a very large amount of computation. The final surface energy of the

optimized DAS (3 X 3) reconstruction on -Sn(111) is 0.709 eV/(1 x 1 cell), sub-
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Figure 3.10: Top view of the initial atomic configuration for the DAS-(3 x 3) reconstruction on
-Sn(111). The numbers labeled on atoms correspond to those in Table 3.8. Please compare it
with Fig. 3.11.
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stantially higher ( about 90 meV/(1 x 1 cell)) than that of (2 x 2) adatom-restatom
reconstruction(see Table 3.7). The relaxed atomic coordinates of the top six layers
are reported in Table 3.8, and Fig. 3.11 schematically depicts the optimized DAS
(3 x 3) reconstruction. We see that the atoms at the border between the two regions
(type B and (') have indeed spontaneously dimerized. The three atoms in the first
layer below the adatom move slightly closer to the adatom. The atoms beneath the
adatoms are strongly pushed down, as in the (2 x 2) adatom-restatom reconstruc-
tion. The initial mirror symmetry between the two adatoms is lifted with a buckling
of roughly 0.11 A. After optimization, we also tested that increasing the number of
k-points from one to six (equivalent to fifty-four k-points in the (1 x 1) ISBZ) does

not modify the results.

3.5.2 The \/§2 Reconstruction

We now consider the \/§2 reconstruction. Unlike the DAS-(3 x 3) reconstruction, the
\/52 reconstruction is readily built. In one 3 x 3 unit cell, we can place one, or two, or
three adatoms. Here we only consider the three adatoms case. Our calculation slab
contains twelve layers (including two adatom-layers) with inversion symmetry across
the slab center, as in the DAS-(3 x 3) case. The total number of atoms in the slab
is ninety-six with 11 A vacuum. The k-points sampling and energy-cutoff are the
same as that of the DAS-(3x3) calculation. In order to remove the original V3x3
symmetry constraint, the starting atomic configuration was set by moving the three
adatoms in slightly non-equivalent manner relative to each other. Then we relaxed

the slab, following the calculated Hellmann-Feynman forces. The inequivalence of
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the three adatoms is increased by relaxation. If, on the contrary, the three adatoms
had become identical, an adatom /3 x v/3 reconstruction (rest atom free) would be

recovered.

After a long relaxation, the atomic configuration reached the equilibrium. The
calculated surface energy turned out to be 0.694 eV /(1 x 1 cell), still quite higher
(roughly 75 meV /(1 x 1 cell)) than that of the 2 x 2 adatom-restatom reéonstruction.;
but somewhat lower (15 meV/(1 %1 cell) than that of the DAS-(3x 3) reconstruction.
Looking at Table 3.7, we see that the \/§2 reconstruction is roughly degenerate with
the 2 x 1 w-bonded chain reconstruction. The optimized atomic coordinates of the
top six layers are reported in Table 3.9. The final inequivalence among the three
“adatoms consists in a height difference, or buckling, of 0.16 A and 0.32 A . Of
the three adatoms a, b and ¢, b is 0.16 A higher than «, and ¢ 0.16 A higher
than b. The atoms in the first layer neighboring the adatoms are pushed slightly
outwards, contrary to the 2 x 2 adatom-restatom reconstruction, whereas atoms in
the second layer beneath the adatoms are pushed down as usual. On the whole, this

reconstruction is so compact that the atoms have hardly any space to move.

This 3 x 3 structure can be seen as a Charge-Density-Wave (CDW) distortion
over the bare v/3 x /3 adatom structure, very much like in the low-temperature
state of a-Pb/Ge(111)[57]. Since the driving force for the v/3 x /3 — 3x3 distortion
is most likely the 2-dimensional (adatom dangling bond) Fermi surface, it is clear
that a much more accurate k-point sampling than the one adopted here should have
been required. After relaxation, we increased the number of k-points from one to

six. It turned out that the surface energy changed less than 9 meV/(1x1cell).
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3.5.3 Discussion

Our (3 x 3) adatom-only reconstruction models are energetically higher than the

theoretical adatom-restatom ground state of the a-Sn(111) surface.

The adatom reconstruction that adsorbs the maximum number of dangling bonds
on (111) surfaces is the (/3 x v/3) adatom reconstruction without rest atoms, which
reduces the dangling bonds from three to one in each unit cell, while in the (2 x 2)
adatom-restatom reconstruction the dangling bonds are reduced from four to two
in each unit cell. However, the 2 x 2 adatom-restatom reconstruction is lower in
energy. The reason appears to be that for the 2 x 2 adatom-restatom reconstruction
there is an energy gap in the surface state bands around the Fermi level due to the
electron charge transfer from the adatom to the rest atom, causing the surface to
become insulating. In particular, the charge transfer mechanism plays an even more
important role for the reconstructions on a-Sn surfaces than on Si and Ge surfaces.
For v/3 x /3 adatom reconstruction, there is no restatom, and no charge transfer.
Furthermore, there is always one dangling bond per unit cell, thus the surface is
metallic. Similarly, no matter how we arrange or reconstruct the adatoms and
atoms in (3 x 3) a-Sn(111) surface cell, there is always an odd number of dangling
bonds left, and the surface is metallic, at least within a band picture. Moreover there
are no restatoms in the DAS-(3 x 3) and in the \/?72 reconstructions. Of course, if
we had only one or two adatoms instead of three in the 3 x 3 unit cell, then there

would be rest atoms, but seemingly too many dangling bonds would remain.

In our calculations for the (3 x 3) reconstructions, we did not consider spin-

polarization effects, which might possibly be important, since there are unpaired
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electrons. However, it is unlikely that inclusion of spin-polarization could bring
about the 80 meV/(1x1 cell) energy gain necessary to make the 3x 3 reconstructions
energetically lower than the 2 x 2 adatom-restatom reconstruction. Finally, there

could still be other models for 3 x 3 structures which we failed to guess.

3.6 Metallic Overlayers

The presence of a metallic phase (-Sn) energetically very close to the « phase.
suggests the additional possibility that, at least in principle, an insulator-to-metal
transition might take place at the surfaces of a-Sn, for example, through the for-
mation of a thin £-Sn metallic overlayer. This was proposed to be the case, e.g.. in
gallium[9] where, based on calculations similar to those presented here, a metallic
bilayer of Ga-1II was predicted to stabilize the surface of a-Ga better than any other
reconstruction. In our case, however, we encounter the problem, that no low-index
B-Sn plane appears to match epitaxially, not even approximately, the a-Sn (111)
lattice. Tentatively, we have calculated the surface energy of several structures ob-
tained by covering the a-Sn(111) surface with strained epitaxial (100), (110), (111).
and (221) planes of 8-Sn. None of these surfaces gave a surface energy comparable.
let alone lower, than the ideal (111) surface, all our results being higher with respect
to the (2 x 2) adatom / restatom reconstruction by more than 0.45 eV/(1 x 1)cell.
This negative result cannot of course be taken as a guarantee that metallic overlayers
do not form at the a-Sn surface, since other more complex configurations, beyond
our present fantasy, might have to be considered. The situation with respect to

metallization remains therefore open.
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An indirect indication against metallization is nonetheless provided by surface
energies. One can expect metallization to be favored, in fact, in cases where the
metal has a much lower surface free energy. In our case, however, the T=0 K
calculated surface energy of reconstructed a-Sn (111), Esyry & 540 mJ/m?, is sub-
stantially lower than even the room temperature free energy measured for 5-Sn[58],
namely 670 m.J/m?2. This suggests that metallization has no reason to take place in
the ground state. However, it could still be attained close to the a-Sn to 3-Sn bulk

transformation temperature.
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Table 3.7: Calculated surface energies, absolute and relative, of different optimized reconstructions

for a-Sn (111) surface.

Structure Esurs AF vert. relax. or buckl.®
[eV/(1x1 cell)] | [mJ/m?] | [eV/(1x1 cell)] (A)

ideal 0.940 837 0.000 0

fully relaxed 0.933 831 -0.007 0.02

2 x 1 buckled 0.732 652 -0.217 1.23

(3 x 3)-DAS 0.709 631 -0.231 0.11°

2 x 1 w-bonded chain 0.697 621 -0.243 1.15

2x2-adatom (Hj) 0.696 620 -0.244 0.54 (restatom)

3 x 3-CDW’ (v/3") 0.694 618 -0.246 0.16°

2x2-adatom (Ty) 0.626 558 -0.314 0.81 (restatom)

c(4x2)-adatom (Ty) 0.610 543 -0.330 0.74 (restatom)

metallized > 1.06 944 > 0.121

“Vertical relaxation is relative to initial bulk-like positions, and buckling is difference

between relaxation of two atoms.

*The buckling between the two adatoms in one unit cell.

“In one chosen unit cell three adatoms a, b and ¢ can be alternatively higher 0.16 A,
namely b 0.16 A higher than a, then ¢ 0.16 A higher than b.
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Table 3.8: Initial, and optimized atomic positions of  the a-Sn
(111) 3 x 3 dimer-adatom-stacking-fault (DAS) reconstructed surface. In the hexagonal super-
cell, coordinates are given by r = cja; + coas + czaz, where a; is defined in the conventional cubic
coordinate system as a; = (ao/2)(=1,2,—1), a» = (ag/2)(—1,0,1), az = (ag/3)(1,1,1) and ao (=
6.446 A ) is the lattice parameter.The unit cell has three dimers A, B, and C.

Atom Initial Optimal
no. c1 Ca C3 C1 Ca C3

adatom 1 500 1.500 2375 .500 1.500  2.574
adatom 2 1.000 3.000 2.375 1.000 3.000  2.544
1st-layer

3 333 1.000 2.125 .342 1.026  2.154

4 833  1.500 2.125 .816 1.500  2.154

5 333 2.000 2.125 .342 1.974  2.154

6 1.167 2.500 2.125 1.156 2531  2.115

7 667  3.000 2.125 .687 3.000 2.115

8 1.167 3.500 2.125 1.156  3.469  2.115
2nd-layer

dimer-A 9 500 500 1.875 587 .593 1.879
dimer-A 10 1.000 1.000 1.875 .910 916 1.879
dimer-B 11 .000 1.000 1.875 .003 1177 1.879
dimer-B 12 .000 2.000 1.875 .003 1.823  1.879
dimer-C 13 1.000 2.000 1.875 .910 2.084  1.879
dimer-C 14 500 2.500 1.875 .587 2407  1.879

15 500 1.500 1.875 .500 1.500  1.765

16  1.000 3.000 1.875 1.000 3.000  1.734
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3rd-layer

4th-layer

5th-layer

26

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

.000
500
.000
1.000
.500
.000
1.000
500
1.000

.333

.833

.333
1.333
.833

.333

1.333
.833

1.333

.833
333
1.333
.833
.333
1.333
833
1.333

.000
.500
1.000
1.000
1.500
2.000
2.000
2.500
3.000

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000

1.125
1.125
1.125
1.125
1.125
1.125
1.125
1.125
1.125

875
875
875
875
875
875
875
875
875

125
125
125

.000
.500
-.005
1.005
.500
-.005
1.005
.500
1.000

327
845
327
1.344
827
311
1.347
827
1.344

333
.833
333
1.333
.833
1.333
.833
1.333

.000
4389
995
995
1.500
2.005
2.005
2.511
3.000

982
1.500
2.018
1.967
2.480
3.000
3.000
3.520
4.033

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000
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Table 3.9: Initial, and optimized atomic positions of the a-Sn(111) 3x 3 ‘CDW’ (\/52) reconstructed
surface. In the hexagonal supercell, coordinates are given by r = ¢1a; +csaz+c3as, where a; is de-
fined in the conventional cubic coordinate system as a; = (ao/2)(—1,2, —1), as = (ao/2)(—1,0, 1),
ag = (ao/3)(1,1,1) and ap (= 6.446 A ) is the lattice parameter.

Atom Initial Optimal
no. C1 Co C3 (5] Cy C3
adatom 1 .000 .000 2.375 .000 .000 2.673

adatom 2 1.000 3.000 2.375 1.000 3.000  2.628

adatom 3 500 1.500  2.375  .500 1.500  2.585

Ist-layver
4 167 0 500 2.125  .148 444 2.166
5 667  1.000 2.125 .654 1.039  2.127
6 167 0 1.500  2.125  .192 1.500  2.127
7 1.167 1.500 2.125 1.204 1.500  2.166
8 667  2.000 2.125 .654 1.961  2.127
9 167 0 2500 2.125 .148 2.556  2.166
10 1.167 2.500 2.125 1.151  2.546  2.148
11 667  3.000 2.125 .697 3.000 2.148
12 1.167 3.500 2.125 1.151  3.454  2.143

2nd-layer

13 .000  .000 1.875 .000 .000 1.749
14 500 300 1.875 495 494 1.954
15 .000 1.000 1.875 .000 .989 1.954
16  1.000 1.000 1.875 1.005 1.005  1.954
17 500 1.500 1.875 .500 1.500  1.743
18 .000 2.000 1.875 .000 2.011 1.954
19 1.000 2.000 1.875 1.005 1.995  1.954
20 500 2,500  1.875 .495 2.506  1.954
21 1.000 3.000 1.875 1.000 3.000 1.751
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3rd-layer

dth-layer

Sth-layer

31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48

.000
500
.000
1.000
500
.000
1.000
500
1.000

333
833
1.333
833
1.333
.833

.833
1.333
.833
1.333
.833
1.333

.000
.500
1.000
1.000
1.500
2.000
2.000
2.500
3.000

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000

1.125
1.125
1.125
1.125
1.125
1.125
1.125
1.125
1.125

875
875
875
875
875
875
875
875
875

125
125
125
125
125
125
125
125
125

.000
.500
.000
1.001
.500
.000
1.001
.500
1.000

327
847
327
1.328
827
344
1.345
827
1.328

333
.833
333
1.333
.833
333
1.333
833
1.333

.000

499

999

1.000
1.500
2.001
2.000
2.501
3.000

980
1.500
2.020
2.016
2.482
3.000
3.000
3.518
3.984

1.000
1.500
2.000
2.000
2.500
3.000
3.000
3.500
4.000

1.015
1.181
1.181
1.181
1.000
1.181
1.181
1.181
1.012




4 The o-Sn (100) Surfaces

4.1 Introduction

Epitaxial growth of a-Sn on InSb has been reported very recently by several ex-
perimental groups [539, 6], with a-Sn film thicknesses as high as 2500 A for a-
Sn/InSb(100), and 100 A for a-Sn/InSb(111). LEED and RHEED data show that
a-Sn(100) displays a variety of reconstructions, in particular a two-domain (2x 1), a
p(2 x 2), and a c(4 x 4), which prevail successively for increasing film thicknesses on
the InSb(100) substrate. The same, or very similar, reconstructions are also present
in Si and Ge (100). In fact, it is now universally accepted that the reconstructions
of these two surfaces fundamentally arise from the formation of surface dimers. In
particular, asymmetric-dimers are considered as building blocks for the observed
reconstructions such as 2 x 1, ¢(4 x 2), p(2 x 2) and so on. The similarity in the
reconstruction periodicities observed on @-Sn(100) to those of Si(100) and Ge(100)
suggests that dimer-based reconstructions should play a fundamental role also on a-
Sn(100). However, no direct evidence for the existence of dimers has been produced

so far for a-Sn(100), nor has any quantitative hint been provided of their geome-

66
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try, of the magnitude of the buckling (if any), and of the electronic and vibrational
properties which would substantiate the dimer hypothesis.

We have therefore carried out a first study of the atomic and electronic structure
of a-5n(100) in order to provide a sounder basis for further experimental investiga-
tions. Our conclusion is that dimers are indeed formed and stable on this surface.
The main unexpected feature which we find is the giant magnitude of the asymmet-
ric buckling, predicted to be as large as 1 A | a factor of about 2.5 larger than that
measured in Si(100) [11]. As a consequence, the electronic charge transfer within the
dimer is also large. A well-defined dimer related surface resonance is also predicted
in the surface vibrational spectrum. As for the true ground state periodicity, among
the possible high order reconstructions p(4 x 1), p(2 x 2), ¢(2 x 2), ¢(4 x 2) and
c(4 x 4), we find that the best are indeed ¢(4 x 2) and p(2 x 2) which are almost
degenerate. Generally, the energy spread among these possibilities is anyway small.

As usual in supercell calculations, (unless otherwise specified in the following)
we have modeled the surface using a periodically repeated slab of 12 Sn monolayvers
with inversion symmetry through the center of the slab, with a vacuum layer of 11 A
. The initial atomic positions are chosen according to the calculated equilibrium bulk
lattice spacing (a, = 6.446 A ). We freeze the two innermost middle layers, and allow
all other layer atoms to relax according to the calculated Hellmann-Feynman forces.
The relaxation lasts until the forces are less than 5meV/A. From the construction

of our slab, the surface energies E;,, s are defined as usual
Esurs = (Estab — NEwuir)/2 (4.1)

where Eg. is the total energy of the slab, Fy, is the energy per atom of bulk a-Sn
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as computed in section I of Chapter Il [Ejyx=-96.753 eV /atom], and N is the total
number of atoms in the slab. The factor 1/2 accounts for two identical surfaces
as required by the inversion symmetry in our slab. For (1 x 1), (2 x 1), p(4 x 1),
(2 x 2), ¢(2 x 2), ¢(4 x 2) and c(4 x 4) surfaces, we used slabs with 1 atom per
layer, 2 atoms per layer, 4 atoms per layer, 4 atoms per layer, 2 atoms per layer, 4

atoms per laver, and 8 atoms per layer, respectively.

K-point sampling: A set of four special k-points is chosen to sample the (2 x 1)
rectangular ISBZ [42] for the (2 x 1) symmetric dimer structure, which is equivalent
to a set of eight k-points in the (1 x 1) square ISBZ. For our surface calculations
of the 2 x 1 asymmetric dimer structure, p(4 x 1), p(2 X 2), ¢(2 x 2) and ¢(4 x 4)
reconstructions, we take the k-point set equivalent to the set of four special k-points
in the 2 x 1 ISBZ, respectively. For instance, in the 2x1 asymmetric dimer case, the
equivalent k-point set is eight k-points due to lower symmetry operation in the 2 x 1
Surface Brillouin Zone. In order to check the effect of the k-point sampling in our
surface calculations, we increased the k-point set to one equivalent to a set of sixteen
special k-points in the 2 x 1 ISBZ for every one of the mentioned structures. No
meaningful changes took place. On the other hand, among all considered structures
there is one exception, namely, the ¢(4 x 2) reconstruction. It is impossible to find
a k-point set in the ¢(4 x 2) oblique ISBZ which is exactly equivalent to the set of
four k-points in the 2 x 1 rectangular ISBZ. In this case, we sampled four special
k-points in the ¢(4 x 2) oblique ISBZ. We had also to repeat the ideal Sn(100)
surface calculation using a ¢(4 x 2)-geometry-like slab, which was considered as a

reference state. We then performed the ¢(4 X 2) reconstruction calculation. After
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relaxation, we also checked that increasing the k-point number from four to sixteen
in ¢(4 x 2) oblique ISBZ changed little of the calculated results. We are thereby able

to compare the different reconstructed surface energies with each other.

4.2 The Unreconstructed a-Sn (100) Surface

We started by considering the ideal a-Sn (100) surface since the details of its atomic
and electronic structure will show the basic driving forces towards more stable re-
constructions, and as a reference state for all reconstructions. The calculated a-Sn
ideal (100) surface energy turns out to be 1.405 eV/(1x1 cell) (Table 4.3). The
corresponding ideal surface electronic band structure is reported in Fig.4.1.

It is seen that several surface bands cross the gap regions of the projected bulk
energy bands. In particular, since on the ideal &-Sn (100) surface, each surface
atom has two dangling bonds, the latter give rise to two surface state bands in
the fundamental gap region. The splitting between these two surface state bands
indicates that a non-negligible interaction exists between the two dangling bonds.
which lifts their original degeneracy. This is also reflected by electron charge density
in Fig.4.3 left and right panels, which respectively corresponds to surface states S,
and Sy at K in the ISBZ. Since the original sp® orbitals of the surface atom are
partially dehybridized back to their s— and p—components, the surface states in
fundamental gap are correspondingly split into prevalently s-like states (so-called
dangling bond states, see Fig. 4.3 left panel) and prevalently p-like states, and the
two p-type orbitals of neighbor surface atoms slightly overlap (so-called bridge bond
states, see Fig.4.3 right panel). The total charge distribution (Fig.4.2) however,
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Figure 4.1: Surface electronic band structure of the ideal «-Sn(100) surface reported along

high-symmetry lines of the (1 x 1) square irreducible Brillouin zone. The Fermi level is set to

zero. Shaded areas correspond to surface-projected bulk states, while thicker lines correspond to

surface states, dotted lines to surface resonances. The irreducible surface Brillouin zone is given in

the inset. Note the quite large dispersion of surface bands Sy and S». The surface bands 51 and

So do not cross.
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Figure 4.2: Geometry, and total electron density contour of the ideal (1 x 1) surface, on the (110)
plane passing through the Sn atoms represented by full circles, empty circles indicate the out-plane
Sn atoms, and thicker straight lines indicate bonds between Sn atoms. Contour lines are separated
by 0.005 (a.u.). Note the electrons localized on top atoms, and no bonds formed between the top

atoms.

shows that in the ideal surface there is no bond among neighboring surface atoms.
and the electrons are highly localized around them. The protrusive character of
such electronic states suggests that the work function of the ideal a-Sn(100) surface
should be rathe‘a;fwhigl}". We computed the planar and macroscopic averages of the
Hartree potential, reported in Fig.4.5(a), and obtained a value for the work function
of 4.68 eV’ (Table 4.1). We also calculated the important LDOS, which is reported
in Fig.4.4. The two surface bands (shown as shaded regions in Fig. 4.4 (a)), are
clearly seen to be located at the two sides of the Fermi level, and they are clearly

related to the surface layer and to the second layer only. Therefore, even though
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Figure 4.3: Electron density contours of the surface S eigenstate (left panel, dangling bond state
D) and surface S» eigenstate (right panel, bridge bond state Br) of the ideal (1x 1) surface at K, on
the (110) plane passing through the Sn atoms represented by full circles, empty circles indicate the
out-plane Sn atoms, and thicker straight lines indicate bonds between Sn atoms. Contour lines are
separated by 0.002 (a.u.). Note in the left panel a much high degree of electron charge localization
on top atoms, and in the right panel a very weak correlation exists between two neighbor top

atoms.

the Fermi level crosses the surface bands in the fundamental gap (see Fig.4.1), the
ideal a-Sn (100) surface displays an almost negligible den"sit”y of states at the Fermi
level, like the ideal Si(100)[60] surface, due to the large dispersion of the surface
bands in the fundamental gap. Nevertheless, the very high value of the surface
energy, as well as the presence of surface states with a high degree of electron charge
localization, all suggest that this ideal surface should be unstable towards relaxation

and/or reconstruction, as on Si and Ge(100).

The atomic positions in the slab were therefore allowed to relax according to
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Figure 4.4: Layer-projected density of states (LDOS) for the 1x1 ideal a-Sn (100) surface (12-layers

slab calculation). The Fermi level is set to zero. In panel (a), (b), (c) and (d) the solid curves are,

respectively, the density of states (DOS) projected on the surface layer, the second layer, the third
layer and the center layer (sixth layer) whereas the DOS projected on the center layer produced a

good bulk DOS. The LDOS of panel (c) very similar to that of panel (d) indicates that the surface

states are primarily related to the surface layer and second layer structure. Shaded areas indicate

the surface states. Note the zero-gap semiconducting feature of LDOS in panel (a).
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Figure 4.5: Planar averaged Hartree potential along the [001] direction (dash-dotted line), and its
macroscopic average Vy defined in eq.(2.11) (solid line). The Fermi level is set to zero. The distance
along the [001] direction is in units of a = 8.613(a.u.). Panels (a), (b) and (c) are, respectively,

for 2 x 1 asymmetric dimer reconstructed a-Sn surface, 2 x 1 symmetric dimer reconstructed a-Sn

surface, and 1 x 1 ideal a-Sn surface. Note in each panel the minimum value points of dash-dotted

line correspond to the layer atom positions along [001] direction.
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4.3. The 2 x 1 Dimer Reconstructions

Table 4.1: Calculated work functions @, respectively, for the 2 x 1 asymmetric dimer reconstructed,

the 2 x 1 symmetric dimer reconstructed and the ideal unreconstructed a-Sn (100) surfaces

Structure | Asymmetric dimer | Symmetric dimer | Ideal
P (eV) 4.43 4.42 4.68

the calculated Hellmann-Feyman forces. We first relaxed the positions preserving
the (1 x 1) surface periodicity. This leads to a gain in surface energy of only 23
meV/(1x1 cell) and a vertical inward relaxation of only 0.071 A in the surface
atoms, indicating that only proper reconstructions with higher periodicity are likelv
to lower the energy.

In the following sections we consider the possible reconstructions of a-Sn(100)

with larger surface unit cells.

4.3 The 2 x 1 Dimer Reconstructions
4.3.1 The Symmetric Case

We first ignored the subtleties related to higher periodicities and focused on the
understanding of the basic building block of all (100) reconstructions, namely the
formation of surface dimers. Accordingly we first restrict our analysis to a (2 x 1)
surface unit cell. We constructed a trial symmetric dimer structure in which the two
surface atoms are dimerized, and all bond lengths, including the dimerized bond.
are 1nitially set equal to the bulk bond length. We also would like to require the

mirror symmetry along [110] to be preserved in our slab. However, it is impossible
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to have a mirror symmetry in a slab of twelve layers with inversion symmetry, while
this can be done with ten or fourteen layers. In the present calculation, we chose a
slab of fourteen layers with inversion symmetry, plus the required mirror symmetry
along [110]. In this case we froze the four innermost layers, and relaxed all other

layers.

Full relaxation of the atomic positions in the (2x1) symmetric dimer reconstruc-
tion leads, as expected, to a dramatic lowering of surface energy to 0.906 eV/(1x1
cell), 0.499 e\V'/(1x1 cell) lower than the ideal surface(see Table 4.3). This lowering
is related to the formation of the Sn-Sn surface dimers which reduce the number of
the dangling bonds to one per atom. It can also be traced back to the opening of
a gap between the bonding and antibonding states of the dimer, indicated by the
surface bands Sy and S5 in the surface band structure calculated at the converged
2 x 1 geometry (Fig. 4.6). The total electron charge density in Fig. 4.7 confirms
that a strong bond forms in the surface dimer. The LDOS (Fig. 4.9) however
shows that the surface is still metallic, as the symmetric dimer 5i(100) and Ge(100)
surfaces[10. 14, 15, 61], due to the presence of two half-filled bands of almost degen-
erate surface states related to the left dangling bonds of the outermost surface atoms
(now each surface atom has only one dangling bond left). This is clearly reflected
by the charge density distributions of the surface states S; and S, at K reported
in Fig. 4.8 upper and lower panels. respectively.> The mirror symmetry between
the two remaining dangling bonds in the dimer is clearly seen. Besides the surface
bands S; and S,, there are other surface bands S3, S4 and S5 in fundamental gap

region, which will similarly appear in the following asymmetric dimer case and will
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4.3. The 2 x 1 Dimer Reconstructions

be discussed there. The final relaxed atomic coordinates for the symmetric dimer
calculation are given in Table 4.4. The dimer bond length is 2.90 A (bulk bond
length is 2.79 A). Looking at the charge density maps of Fig. 4.3 and Fig. 4.8, we
note that the electrons are more delocalized around the top surface atoms than on
the ideal -Sn(100) surface. We thus expected that in this case the surface work
function should be lower than that of the ideal a-Sn(100) surface. We have com-
puted the planar and macroscopic averages of the Hartree potential, and reported
them in Fig. 4.5(b). The surface work function turns out to be 4.42 eV, in the
symmetric dimer case indeed smaller than that of the ideal a-Sn(100) surface (see
Table 4.1).

Finally, the presence of half-filled dangling bonds and of metallic surface bands
in the fundamental gap suggests that the symmetric dimer reconstruction should
still be unstable towards any distortion that may lift the residual near-degeneracy

of the surface states S; and Ss.

4.3.2 The Asymmetric Case

We now allow the two surface atoms to be slightly non-equivalent, thereby breaking
the [110] mirror symmetry. We then calculate the Hellmann-Feyman forces to guide
the relaxation of atomic structure. Even though the inequivalence of the surface
atoms is initially minute, it grows to a considerable buckling immediately after

relaxation.

The surface energy is much lowered by allowing the dimers to become asym-

metric. Full relaxation of the atomic positions in the (2x1) asymmetric dimer
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Figure 4.6: Surface electronic band structure of the (2 x 1) symmetric dimer reconstructed surface
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reported along high-symmetry lines of the (2 x 1) rectangular irreducible Brillouin zone. The Fermi
level is set to zero. Shaded areas correspond to surface-projected bulk states, while thicker lines
correspond to surface states. The irreducible surface Brillouin zone is given in the inset. Note the
quasi-degenerate surface bands S; and S» primarily distributed nearby the Fermi level, and its

metallic feature.
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Figure 4.7: Geometry, and total electron density contour of the (2 x 1) symmetric dimer recon-
structed surface, on the (110) plane passing through the Sn atoms represented by full circles, empty
circles indicate the out-plane Sn atoms, and thicker straight lines indicate bonds between Sn atoms.

Contour lines are separated by 0.005 (a.u.). Note a strong covalent bond formed in the dimer.

reconstruction leads in fact to a final surface energy of 0.787 eV/(1x1 cell), 0.119
eV/(1x1 cell) lower that the symmetric case. The atomic coordinates of the fully
relaxed asymmetric dimer reconstruction are reported in Table 4.5. This very large
energy gain is accompanied by a giant buckling of the dimer (b= 1.01 A, w = 21.01°,

see inset of Fig. 4.12).

The surface electronic band structure of the asymmetric dimer structure is re-
ported in Fig. 4.10. As expected, the large buckling of the surface dimer leads to
the opening of a large surface energy gap between surface bands S; and S, com-
pared with the symmetric dimer case (see Fig.4.10 and 4.6). The Fermi level lies
in this gap, and the asymmetric dimer reconstruction is insulating. The buckling of

the surface dimer causes the sp® covalent orbitals of the surface atoms to partially
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Figure 4.8: Electron density contours of the surface Sy eigenstate (the upper panel, 7 state) and of
the surface S, eigenstate (the lower panel, 7~ state) in the (2 x 1) symmetric dimer reconstruction
at K, on the (110) plane passing throﬁgh the Sn atoms represented by full circles, empty circles
indicate the out-plane Sn atoms, and thicker straight lines to bonds among Sn atoms. Contour

lines are separated by 0.0005 (a.u.). Note the mirror symmetry between the two dimer atoms.
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Figure 4.9: Layer-projected density of states (LDOS) for the 2 x 1 symmetric dimer reconstructed
a-Sn (100) surface (14-layers slab calculation). The Fermi level is set to zero. In panel (a), (b), (c)
and (d) the solid curves are, respectively, the density of states (DOS) projected on the surface layer,
the second layer, the third layer and the center layer (seventh layer) whereas the DOS projected
on the center layer produced a good bulk DOS. The LDOS of panel (c) very similar to that of
panel (d) indicates that the surface states are primarily related to the surface layer and second
layer reconstructure. Shaded areas indicate the surface states. Note the “good” metallic feature
of LDOS in panel (a).
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dehybridize. The dangling bonds on the outward and inward surface atoms are
becoming prevalently s-like and p-like, respectively. According to the usual mech-
anism. an electronic charge transfer from the inward atom to the outward atom
takes place. The completely filled surface states labeled with S; in the surface band
structure of Fig. 4.10 are mainly localized on the outward surface atom with mostly
s-like character (Fig.4.13 upper panel), and the empty surface states labelled with
S, are mainly localized on the inward surface atom with mostly p-like character
(Fig. 4.13 lower panel). These behaviors are very similar to those of Si(100) and
Ge(100) surfaces[62]. We can now analyze the other surface bands Ss, S; and Ss
present in the fundamental gap region. The electron charge density distributions of
Fig. 4.14 upper panels show that the filled surface states S3 and the empty surface
states Sy are ‘back bond’ surface states related to the second surface layer atoms.
The surface band S5 is closely related to the bond formed in the asymmetric buckled
dimer (Fig. 4.14 lower panel). The total charge density distribution, reported in Fig.
4.12, shows the total charge accumulation in the bonding region of the asymmetric

dimer.

The calculated LDOS for the asymmetric dimer surface is reported in Fig. 4.11.
If we compare it with Fig. 4.9, we see that the surface states around the Fermi level
in Fig. 4.9 are here split into two components, and are pushed at the two sides of
the Fermi level in Fig. 4.11. Both the LDOS and the surface band structure of Fig.
4.10 show that a gap of about 1.2 eV separates the two surface bands. It is therefore
predicted that a surface optical obsorption peak should be observed with surface-

sensitive techniques such as infrared reflectivity, electron-energy loss spectroscopy
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(EELS). or photoemission, due to excitations across this gap.

The electron transfer connected with the formation of such a highly distorted
surface dimer is relatively large, and should give rise to an observable shift in the
core level position of the dimer atoms. A calculation of this shift is planned for the

near future.

Moreover, the electron transfer connected with the dimer buckling will be strongly
modulated by that particular surface vibration, or “rocking mode” [63], which mod-
ulates the buckling. We have extracted an approximation to the eigenvector of this
mode by examining the coordinate evolution in the last few steepest descent iter-
ations during relaxation, from zero buckling to the final large buckling geometry.
Using this approximate eigenvector we have calculated the frozen-phonon frequency
(vy) of the “rocking mode” at & = 0, and found a value of v, = 4.8 THz. The bulk
Raman phonon frequency (1) of a-Sn is calculated to be, in our approximations.
vy = 5.97 THz (the experimental value is v, = 6.0 THz [64]). The dipole-active
rocking mode is therefore predicted to resonate with bulk vibrations, falling how-
ever in a region of relatively low bulk density of phonon states (see Fig. 4.15), and
should be visible in high-resolution EELS. It is of interest to notice that the same
rocking mode is predicted to lie, in the asymmetric buckled structure of Si(100)[63].
at v, ~ 6 THz, well below the bulk zone-center Raman phonon (v, ~ 16 THz).
This difference is attributable to the stronger buckling of the a-Sn dimer. We then
calculated the effective charge corresponding to this dipole-active “rocking mode™.
Starting with the optimized atomic configuration (Table 4.5) of the 2 x 1 asymmet-

ric dimer reconstruction, we shrunk slightly (0.1 A) the surface asymmetric dimers
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Figure 4.10: Surface electronic band structure of the @-Sn(100) (2 x 1) asymmetric dimer recon-
structed surface reported along high-symmetry lines of the (2 x 1) rectangular irreducible Brillouin
zone. The Fermi level is set to zero. Shaded areas correspond to surface-projected bulk states,
while thicker lines correspond to surface states. The irreducible surface Brillouin zone is given in
the inset. Note the surface bands S; and S; well separated in energy due to the large buckling

tetween the dimer atoms, and the Fermi level in between them.
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Figure 4.11: Layer-projected density of states (LDOS) for the 2 x 1 asymmetric dimer reconstructed
@-Sn (100) surface (12-layers slab calculation). The Fermi level is set to zero. In panel (a), (b), (c)
and (d) the solid curves are, respectively, the density of states (DOS) projected on the surface layer,
the second layer, the third layer and the center layer (sixth layer) whereas the DOS projected on
the center layer produced a good bulk DOS. The LDOS of panel (c) very similar to that of panel
(d) indicates that the surface states are primarily related to the surface layer and second layer
reconstructure. Shaded areas indicate the surface states. Note the insulating feature of LDOS in

panel (a).
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Figure 4.12: Geometry, and total electron density contour of the (2 X 1) asymmetric dimer re-
constructed surface, on the (110) plane passing through the Sn atoms represented by full circles,
empty circles indicate the out-plane Sn atoms, and thicker straight lines to bonds among Sn atoms.
Contour lines are separated by 0.005 (a.u.). Note a giant buckling between the two dimer atoms,

and a strong covalent bond formed in the dimer.

along the [001] direction. The effective charge was calculated by means of the King-
Smith-Vanderbilt formula[65], and turned out to be 0.8e. This large vibrating dipole

should make the rocking mode observation feasible.

The large charge transfer from the down atom to the up atom of the asymmetric
dimer should, if screening effects are ignored, induce an increase of the surface

work function relative to that of the symmetric dimer case. We computed, as in the
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Figure 4.13: Electron density contours of the filled surface S eigenstate (the upper panel, filled up
state Dyp) and of the empty surface S, eigenstate (the lower panel, empty down state Djown) in
the (2x 1) asymmetric dimer reconstruction at X, on the (110) plane passing through the Sn atoms
represented by full circles, empty circles indicate the out-plane Sn atoms, and thicker straight lines
to bonds among Sn atoms. Contour lines are separated by 0.0005 (a.u.). Note the strong s-like

state feature in the upper panel and the strong p-like state feature in the lower panel.
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Figure 4.14: Electron density contours of the filled surface Ss eigenstate (upper left panel), of
the empty surface Sy eigenstate (upper right panel), and of the filled surface Ss eigenstate (lower
panel) in the (2 x 1) asymmetric dimer reconstruction at K, on the (110) plane passing through
the Sn atoms represented by full circles, empty circles indicate the out-plane Sn atoms, and thicker
straight lines to bonds among Sn atoms. Contour lines are separated by 0.0005 (a.u.). Note in
the upper left and right panels the back-bond surface states S3 and Sj related to the first layer

atoms whereas the electrons localized, and in the lower panel surface state S5 corresponding to the
formation of bonding in the dimer.
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Figure 4.15: The phonon spectrum for a-Sn. From Ref. [64]. Note there is a gap around 4.4 THz.

symmetric dimer case, the planar and macroscopic averages of the Hartree potential.
reported in Fig.4.5(c), and found that the surface work function is instead 4.43 eV,
very much the same as that of the symmetric dimer surface (Table 4.1). Hence, we
concluded that the screening effects are very strong, which is reasonable as Sn is a
semimetal. Therefore the measurement of the surface work function can not make a
distinction bewteen the asymmetric dimer reconstruction and the symmetric dimer

reconstruction. The fundamental difference between them lies in the electronic band
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structure, as mentioned above, the former being insulating, with a 1.2 eV energy

gap in the surface bands, the latter being metallic.

4.4 Reconstructions Based on Asymmetric Dimers

4.4.1 Brief Review

In Si(100) and Ge(100) surfaces, a series of reconstructions are observed in exper-
iments [66. 67, 68, 69, 70], such as (2 x 1), c(4 x 2), p(2 x 2), ¢(2 x 2), c(4 x 4),
and (2 x n) where 6 < n < 10. Several of the above reconstructions commonly
coexist on those surfaces. The 2 x 1 reconstruction is a room temperature phase.
The (2 x n) reconstructions (6 < n < 10) are instead obtained by rapid quenching
from high temperatures, they are metastable, and decay with first-order kinetics[67].
Exposing (2 x 1) surfaces to a hydrogen dosage, and annealing at 570-690°C’, induces
the formation of a ¢(4 x 4) reconstruction on Si(100)[71, 72]. Finally, the c(4 x 2),
p(2 x 2), and ¢(2 x 2) reconstructions predominate at low temperatures. As for the
groud state, theoretical calculations[16, 15, 61] and experiments[68, 70] confirm that
the c(4 x 2) or p(2 X 2) are nearly degenerate.

Pandey|[73] proposed a “missing dimer defect” model to account for the observed
complicated reconstructions on (100) surfaces. However, ab initio calculation by
Roberts and Needs[61] showed the missing dimer defect model to be energetically
higher than the 2 x 1 asymmetric dimer model. Currently, only the metastable
reconstructions (2 X n) (6 < n < 10) and c(4 x 4) reconstruction are explained in
terms of the missing dimer defect model: the former as the ordering of excess missing

dimer defects[67], the latter as an ordered structure with missing dimer defects
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formed on the basic 2 x 1 structure[72]. The stable reconstructions 2 x 1, ¢(4 x 2),
p(2 % 2) and ¢(2 x 2) are instead believed to be formed by different arrangements of

two non-equivalent asymmetric dimers (see Fig. 4.16).

Generally speaking, the reconstructions based on asymmetric dimers as building
blocks can be classified, according to the group theoretical argument[74, 73], in three
families, namely, a “2 x 1” family with a (2 x 1) backbone, a “2 x 2” family with a
(2 x 2) backbone, and a “c(2 x 2)” family with a ¢(2 x 2) backbone. Among them,
the reconstructions belonging to the “2 x 2” family have only one half of the surface
atoms dimerized in their unit cells, and they are never observed in experiments. The
typical reconstruction geometries of the “2 x 17 and “c(2 x 2)” families are instead

schematically shown in Fig. 4.16.

The surface energies of reconstructions belonging to the same family are very
similar, and their structures are connected by transformation paths that do not in-
volve breaking of bonds among the surface and bulk. Thus, structural transitions
within each family can readily take place. The surface energies of the “c(2x 2)” fam-
ily are higher than those of the “2 x 1” family, for Si(100) and Ge(100) surfaces[16].
Moreover, structural transitions from the “c(2 x 2)” family to the “2 x 1 family are
hindered, since a huge amount of energy is needed to break and displace the strong
dimer bonds and the bonds related to the domain walls when these two families
of reconstructions coexist on the surfaces. In practice, the realization of a given
reconstruction strongly depends upon the surface-preparation conditions. In some
special conditions, both “2 x 17 and “c(2 x 2)” families can be created on the same

surface with stable domain walls among them|[76, 68].
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Figure 4.16: Arrangements of asymmetric buckled dimers on -Sn(100) for the “2 x 1” family (a),
and “c(2 x 2)” family (b). Side views of the oppositely oriented asymmetric dimers are shown in
the inset. Coupling constants corresponding to the mapped Ising-Hamiltonian (4.2) are indicated

for the “2 x 1”7 family (a).
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The recent RHEED experiment by Yuen et a[6] discovered reconstructions such
as two-domain 2 X 1, ¢(2 x 2), p(2 x 2), and ¢(4 x 4) also on @-5n(100) surfaces. It
is tempting to assign these reconstructions on Sn(100) to the same mechanisms pro-
posed for Si(100) and Ge(100), asymmetric dimers being the basic building blocks,
and perhaps missing dimer defects being involved. However, we have to remind /
ourselves that in the experiment[6] the Sn(100) surface is obtained by molecular
beam epitaxy onto InSb(100), and the role of the misfit strain energy could be very
important[77] J,aas indicated by successive transformations as a function of epitaxial
layer thickness[6].

We therefore carried out a series of surface energy calculations for some of the pos-
sible higher-order reconstructions, in order to clarify their hierarchy on «-Sn(100).
Our calculated surface energies for the considered reconstructions are schematically

shown in Fig.4.17, and Table 4.3 summarizes our calculated results.

We constructed the atomic configurations starting from the previously calculated
symmetric-dimer and asymmetric-dimer data. We then relaxed the atomic config-
urations guided by the calculated Hellmann-Feynman forces. The computational
method and related aspects such as the energy cutoff and the k-point sampling have

been described in the previous chapter and sections.

4.4.2 ¢(2 x 2) Reconstruction

We here consider the “c(2 x 2)” family of reconstructions (Fig. 4.16(b)). Since it is
known that on Si(100)[16] the basic ¢(2 x 2) reconstruction has the lowest energy

among this family, we chose the ¢(2 X 2) reconstruction as the representative of the
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Alpha-Sn(100)
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1.382 ——— (1x1)-fully relaxed
0.906 —— (2x1)-symmetric dimer
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0.845 —————— SMD-c(4x4)
0.787\ (2x1)-asymmetric dimer
0.782 c(2x2)
0.778 c(4x4)
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Figure 4.17: The calculated surface energies for a-Sn(100) surfaces

“c(2x2)” family on a-Sn(100). We first constructed the atomic configuration using
the symmetric dimer coordinates (Table 4.4), then we relaxed it. The calculated
surface energy is 0.883 eV/(1x 1 cell), slightly lower than that of the 2 x 1 symmetric
dimer reconstruction (Table 4.3), but much higher (0.096 eV /(1 x 1 cell)) than that

of the 2 x 1 asymmetric dimer reconstruction (Table 4.3).

Next, we removed the mirror symmetry between the two dimerized atoms, allow
the dimer to become asymmetric, and let the atomic configuration relax to equilib-
rium. The optimized atomic configuration of the top six layers is reported in Table
4.6. The dimer buckling is 1.03 A, almost identical to that of 2 x 1 asymmetric
dimer reconstruction (Table 4.3). The surface energy is 0.782 eV/(1 x 1 cell), which

is also almost identical to that of the 2 x 1 asymmetric dimer reconstruction (Table



4.4. Reconstructions Based on Asymmetric Dimers 95

4.3). The similarity shown by this calculation between the ¢(2 x 2) reconstructions
of Sn(100) and Si(100), suggests that other “c(2 x 2)” family reconstructions are
also not competitive in the search for low temperature stable phases. We therefore

concentrate our attention on the “2 X 1” family reconstructions.

4.4.3 p(4 x 1) Reconstruction

Within the “2 x 1” family, the p(4 x 1) reconstruction, to our knowledge, has never
been observed in experiments. However, the calculation of the surface energy for
this reconstruction, will provide, combined with other “2 x 1” family reconstructions
calculations, a relevant information about the interaction structure of dimers on
(100) surfaces. This will enable us, in Sect. 4.4.6, to study some finite temperature
properties of a-Sn(100) surfaces.

The initial atomic configuration is constructed using the asymmetric dimer co-
ordinates (Table 4.5), and equilibrium was reached after a short relaxation. Table
4.7 gives the optimized atomic positions of the top six layers. The buckling of the
dimers is 0.964 A, a little smaller if compared with 2 x 1 asymmetric dimers. The
calculated surface energy is 0.784 eV/(1 x 1 cell), almost degenerate with the 2 x 1
asymimnetric dimer reconstruction.

We notice that the mirror symmetry about [110] (the dimer itself is in [110]
direction) between the two dimers and also that between the atoms in layers below
are slightly lifted (see Table 4.7) (also in the following calculations). This is because
the original Cy symmetry about [001] of a semi-infinite surface is absent in the slab,

as in the ab initio calculation for Ge(100) by Needels et. al. [78]. In Ref.[78], it was
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confirmed by recovering this symmetry by hands that this was a negligible effect for

the surface energy.

4.4.4 (4 x 2) Reconstruction

Ab initio calculations[15, 78] have shown that the ¢(4 x 2) reconstruction is the most
favorable in Si(100) and Ge(100), and the large-thickness data for a-Sn grown on
InSb(100) also show a ¢(4 X 2) structure. The ¢(4 X 2) reconstruction is obviously

one of the best candidates for the true ground state of a-Sn(100).

We have constructed the initial atomic configuration using the asymmetric dimer
coordinates (Table 4.5). At variance with the previous cases, here the surface unit
cell is not square or rectangular, but is instead oblique. We carefully dealt with the k-
point sampling, as described in Sect. 4.1. We first relaxed this atomic configuration
to equilibrium with four special k-points in the ¢(4 x 2) ISBZ. We then increased
the number of k-points to sixteen special points, and found the calculated surface
energy to be converged within 3 meV/(1 x 1 cell). The final atomic positions of the
top six layers are reported in Table 4.8. The buckling of the dimer is 1.06 A, a little
larger than in the 2 x 1 asymmetric dimer case. The final surface energy is 0.739
eV/(1 x 1 cell), i.e. 48 meV/(1 x 1 cell) lower than that of the 2 x 1 asymmetric
dimer reconstruction.

We mention here that the reflection symmetry through the (110) plane in the
optimized atomic configuration is a little broken, as also happened in previous ab
initio calculations for the ¢(4 x 2) reconstruction on Ge(100)([78]. This is attributable

to the fact that the k-integration over the ¢(4 x 2) oblique ISBZ cannot be sampled
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exactly to make the electron charge density retain this symmetryin an exact manner.
However, we do not believe that this slight asymmetry has any consequences, and

we ignore it.

4.4.5 p(2 x 2) Reconstruction

The p(2 x 2) reconstruction is the other good candidate for the true ground state
of a-Sn(100). We started our calculation from the atomic configuration constructed
through an appropriate arrangement of asymmetric dimers (Table 4.5), and we re-
laxed the atoms to the optimal positions. We give the optimized atomic positions
of the top six layers in Table 4.9. The buckling of the dimer is here 1.05 A. As
expected, the calculated surface energy of 0.747 eV/(1 x 1 cell) is very close to that
of the c(4 x 2) reconstruction. These two structures are calculated to be almost
degenerate also in Si(100) and Ge(100) surfaces. Experimental data[6] show that
the p(2 x 2) structure prevails when the coverage of a-Sn grown on InSb is between

500 A and 1000 A , while ¢(4 x 2) structure is not seen.

In order to provide a comparison with future experiments, we have calculated the
electronic band structure of the p(2 x 2) reconstruction and reported it in Fig. 4.18.
The main features of the band structure are identical to those observed for the 2 x 1
asymmetric dimer reconstruction, namely, the filled surface band and empty surface
band are separated by a gap of about 1.2 €V and they both lie in the fundamental
gap region of the projected bulk band structure. Also the surface rocking mode
frequency (4.8 THz) and effect charge (0.8 €), as well as the surface work function

(4.43 €V) should be the same, within our accuracy, as those of the 2 x 1 asymmetric
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Figure 4.18: Surface electronic band structure of the @-Sn(100) p(2 x 2) reconstructed surface
reported along high-symmetry lines of the (2 x 2) square irreducible Brillouin zone. The Fermi
level is set to zero. Shaded areas correspond to surface-projected bulk states, while thicker lines
correspond to surface states. The irreducible surface Brillouin zone is given in the inset. Note that

the surface bands in the fundamental gap region are well separated in energy.
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dimer reconstruction.

4.4.6 Interaction between Asymmetric Dimers: Phenomenological

Based on the above results, we can develop a phenomenological model for the inter-
action among asymmetric dimers which are basic building blocks for the reconstruc-
tions on Sn(100). We do this in analogy with the work of Thm et al[16] on Si(100).
Two possible orientations can be assigned to the asymmetric dimers. The dimer
orientations can therefore be represented by the two possible states of an Ising spin-
1/2. In this view, the ¢(4 x 2) reconstruction corresponds to the antiferromagnetic
phase, the p(2 x 2) to the layered-antiferromagnetic phase, and so on. Assuming
that the energy differences between the possible reconstructions with asymmetric
dimers are primarily due to the interaction among the asymmetric dimers, we are
able to map these reconstructions onto an effective two-dimensional Ising model, in
which the energy differences between different reconstructions are translated into a
set of interaction energies of the Ising model. There is an abundance of existing re-
sults and powerful computational tools for the two-dimensional Ising model[79, 80].
Using this mapping, it was originally predicted that in Si(100) and Ge(100) surfaces,
a second-order phase transition takes place from the ordered reconstruction, c(4 x 2)
or p(2x2), to a disordered 2 x 1 structure with a transition temperature in the range
of 200 to 250 K[16]. Even if this model is not rich enough to describe in detail the
true phase transition (seen experimentally around 170 K on Si and Ge (100)[81, 82])

it does set the right temperature scale.

The following is the effective Ising Hamiltonian corresponding to the “2 x 17
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family reconstructions, which includes all interactions up to twice the surface atom
spacing (as illustrated in Fig.4.16(a))[16],

—H = V2ioijoijs1 + H 350500015 + D 25 04500411 (4.9)
+U Ei]‘ 030542 + F'04j0:j0ij410i41;0it1j+1, ‘
where ¢;; is the Ising spin at the lattice site (i) with two possible values 1. In prac-
tice, the couplings U and F' are set to zero since they give the same contribution to
the ground-state energy for all considered reconstructions, and also because we lack
the sufficient informations to determine them (fortunately, they are not the nearest
neighbor couplings). The other coupling constants V, H and D can be extracted
from the energy differences among the calculated “2 x 1” family reconstructions.
Since the potential barrier for flipping dimers is about 120 meV/(1 x 1 cell)(this
value corresponds to the energy difference between asymmetric dimer and symmetric
dimer), a very large barrier if compared with the energy differences between the
considered reconstructions, here the spin wave mechanism in this effective Ising
model is negligible at low temperatures. Thus, considering the configurations 2 x 1,

p(2%2), ¢(4x2) and p(4x 1) leads to the following set of equations for the interaction

energies per dimer:

— Haxr =V + H +2D, (4.3)
— Hyaxa) = =V + H — 2D, (4.4)
— Huxzy = =V — H+2D, (4.5)

— Hyaxry = V — H — 2D. (4.6)

Using the results of Table 4.3, we subtract equation (4.3) from equations (4.4),
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(4.5) and (4.6), respectively, and we obtain,

2(V +2D) = —80 meV/dimer
2(V + H) = —96 meV/dimer (4.7)
2(H +2D) = —6 meV/dimer .

This yields the following values for the coupling constants:
V = —42.5 meV/dimer , H = —5.5 meV/dimer , D = 1.25 meV/dimer . (4.8)

The effective Ising Hamiltonian (4.2) is now completely determined, similarly to the
previous work on Si(100) and Ge(100)[16]. One could, at this point, employ the
renormalization group or Monte Carlo simulations to calculate and predict the ther-
modynamic quantities and critical properties, such as, the second-order phase tran-
sition temperature from ordered phase to disordered phase[16]. Such an approach
is, for the time being, outside the scope of this thesis. Comparing the effective Ising
Hamiltonian (4.2) with that of Si(100)[16], the ratio of the leading terms V' between
them is 42.5/26, ~ 1.63. Thus, roughly speaking, the disordering transition tem-
perature on o-Sn(100) can be obtained from the transition temperature on Si(100)
(about 250 K) as 1.63 x 250K ~ 400K .

An alternatively and more reliable way to compute the transition temperature
is to consider the simpler effective Ising Hamiltonian containing nearest-neighbor
interactions only. This is obtained if the couplings D, U and F in Hamiltonian
(4.2) are set to zero. Physically, the interactions among dimers originate from their
electric dipoles, thus the main contribution to the interaction energies comes from
the nearest neighbor interaction. This is confirmed by the solution (4.8), where the

coupling D is much smaller than the others. In fact, such a simplified effective Ising
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Figure 4.19: Equation (4.9) is numerically solved.

Hamiltonian is a standard Onsager lattice model, for which a complete collection of
well-documented exact results exists[83]. In particular, for a given Onsager lattice,
there is a single critical temperature T, below which the Onsager lattice possesses
a spontaneous magnetization. Above T, a disordered phase prevails. This critical

temperature T, can be obtained[83] as a solution of the following equation:

|z122] + |z1] + |22| = 1, (4.9)

where z; = tanh(8V), z; = tanh(8H) and B = 1/kgT, kp being the Boltzmann’s

constant. The couplings V' and H can be easily derived using the surface energies
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of the ¢(4 x 2), p(2 X 2), and 2 x 1 asymmetric dimer reconstructions as,
V = —40 meV/dimer , H = —8 meV/dvmer . (4.10)

Fig. 4.19 shows the solution of equation (4.9) obtained using the parameters (4.10).
One can see that the phase transition temperature, from the ordered reconstruction,
p(2 % 2) or ¢(4 X 2), to a disordered 2 x 1 phase, for Sn(100) is roughly 530 K. This
temperature is much higher than the transition temperature of bulk a-Sn into 3-Sn
(290 K). Even if a-Sn(100) can be clearly stabilized epitaxially on a substrate, as is
the case on InSb(100), it seems unlikely that this dimer disordering phase transition

might become observable on a-Sn(100).

4.4.7 (4 x4) Reconstruction

A ¢4 x 4) reconstruction was also observed to prevail for larger layer thickness
of @-Sn(100) grown on InSb(100) between 1000 A and 2500 A [6]. Hence this
reconstruction also competes for the true ground state.

In this subsection, we consider the ¢(4 x 4) reconstruction without missing dimer
defects. It is easy to map the c(4 x 4) reconstructions onto the effective Ising Hamil-
tonian (4.2), and analyze its possibility of competing for the ground state. In the
last subsection we have shown that the energy gain of the ordered reconstructed
phase was mainly arising from the ‘antiferromagnetic’ interaction energy —V. Ac-
tually, no matter how we arrange the asymmetric dimers in the ¢(4 x 4) unit cell,
the ‘antiferromagnetic’ interaction energies —V are always balanced by the ‘ferro-
magnetic’ interaction energies V), so that they cancel each other. We can therefore

speculate that the surface energy of the ¢(4 x 4) reconstructions is close to that of
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2 x 1 asymmetric dimer reconstruction, and is thus disfavored for the ground state,

as compared with p(2 x 2) and ¢(4 x 2) reconstructions.

Since this seems at variance with experiment, we decided to evaluate microscop-
ically the surface energy for one of the ¢(4 x 4) reconstructions. Again, its initial
atomic configuration is constructed from the asymmetic dimer coordinates (Table
4.5). This is the most costly calculation we have performed since a total of 96 Sn
atoms are contained in the slab. The final relaxed atomic positions of the top three
layers are listed in Table 4.10. We see that the buckling of dimers is 1.02 A. The
calculated surface energy is 0.778 eV /(1 x 1 cell), very close as actually suggested by
the Ising modeling to the surface energy (0.787 eV /(1 x 1 cell)) of 2 x 1 asymmetric
dimer case. We can thus conclude that our ¢(4 x 4) reconstruction is not competitive

in the form assumed.

4.4.8 Reconstructions Containing Missing Dimer Defects

Upon removal of a dimer from (100) surfaces, the atoms underneath immediately will
form new bonds with an overall reduction of two in the number of dangling bonds,
and some energy gain is introduced. However, this process is also likely to introduce
a considerable amount of strain into the system, and should be largely disfavored
if the fraction of the removed dimers is large. As mentioned in the Introduction,
both ab initio calculations[61] and experiments[67] confirm that reconstructions with
missing dimer defects are very high in energy, and they only appear as metastable
- phases, or high-temperatures phases on Si(100). A similar situation is expected on

Sn(100) surfaces.
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In this subsection we consider two possible missing dimer defect reconstructions,
and we calculate their surface energies as representative of the whole class. First,
we consider the so-called “single missing dimer p(2 x 2) reconstruction” in which
the surface cell is constructed taking the p(2 x 2) cell, and removing one of the
dimers. Such a reconstruction corresponds to a large fraction (1/2) of dimers being
removed. The present calculation is technically similar to that of the previous p(2 x
2) reconstruction. The starting atomic configuration is taken from the previous
optimized p(2 x 2) coordinates (Table 4.9), with removing of a dimer. We have then
fully relaxed it. The final atomic positions of the top six layers are reported in Table
4.11. The buckling of the remaining dimers turns out to be 1.05 A, while the atoms
underneath rearrange substantially giving rise to the formation of new bonds, about
3.40 A long. They thus are very weak bonds (the bulk bond is 2.79 A long). The
optimized surface energy is 0.870 eV/(1 x 1 cell) much higher than that of the 2 x 1
asymmetric dimer reconstruction, as expected. Our calculation indicates that the
strain energy, induced by removal of the dimer and by the subsequent rebonding
of the second-layer atoms, largely overcomes the energy gain brought about by

elimination of the two dangling bonds.

Next we consider the so-called “single missing dimer ¢(4 x 4) reconstruction”,
where, as its name suggests, the surface cell is taken to be the ¢(4x 4) cell, and one of
four dimers is removed. This reconstruction corresponds to a smaller fraction (1/4)
of dimers being removed. Several arrangements of a missing dimer defect are possible
in the ¢(4 x 4) surface cell. However, they are expected to be roughly degenerate

based upon the approach of mapping the dimers onto the Ising-spin Hamiltonian.
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For the microscopic calculation, we have constructed the initial atomic configuration
using the relaxed c(4 x 4) atomic positions (Table 4.10), and removed one dimer.
After a quite long relaxation process, we obtained the equilibrium atomic positions,
listed for the top four layers in Table 4.12. The surface energy of this reconstruction
is 0.845 eV/(1 x 1 cell), which is still substantially higher than that of the 2 x 1

asymmetric dimer reconstruction.

In conclusion, removal of dimers on «-Sn(100) appears to be too costly in all
cases. In particular, it does not provide an explanation for the ¢(4 x 4) structure
observed on a-Sn(100) grown on InSb(100), which remains at this stage an open

problem.

4.4.9 Discussion

If looking at Table 4.3, and Table 4.5 to 4.10, it is found that in all reconstructions
considered, the asymmetric dimers are essentially identical, namely have the same
buckling (about 1 A), buckling angles (about 21°), and bond lengths (about 2.83
A), including the missing dimer defect reconstructions. Except for the ¢(4 x 2) and
p(2 x 2) reconstructions which are lowest, all surface energies are identical within 10
meV /(1 x 1 cell) with respect to that of the 2 x 1 asymmetric dimer reconstruction
(excluding the missing dimer reconstructions, much higher). Moreover the electronic
band structures of the p(2 x 2) and 2 x 1 asymmetric dimer reconstructions are very
similar. All these show that in possible reconstructions of @-Sn(100) the asymmetric
buckled dimers have rigid structures, and the energy gain induced by them are

identical.
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Table 4.2: The magnitude of buckling, the bond length, and the buckling angle of a dimer in C,
Si, Ge, and «-Sn (100) surfaces.

buckling length bond length buckling angle
(4) (A)

Ce 0 1.37 0°
Si® 0.4 2.47 9°
Ge® 0.74 2.46 17.5°
a-Sn? 1.01 2.82 20.99°

¢ Reference [10] (calculated value).
*Reference [11, 84] (measured value).

“Referenec [12] (measured value).
2This work.

Why do the ¢(4 x 2) and p(2 x 2) reconstructions have the lowest surface energy,
at least in the calculations? In Sect. 4.4.6, we have phenomenologically dealt with
this question based upon the mapping of 2 x 1 family reconstructions onto the
effective Ising model, and found that the primary contribution to the energy gain of
the ¢(4 x 2) and p(2 x 2) reconstructions relative to others is the nearest neighbor

antiferromagnetic interaction —V.

Physically, it has been shown for Ge(100) surfaces[78] that the energy gain, of
c(4x2) and p(2 x 2) reconstructions with respect to the 2 x 1 asymmetric dimer one,
comes primarily from the relaxations of the atoms in the layer below the dimers.
In Ref. [78] two calculations were done for the ¢(4 x 2) reconstruction on Ge(100),

in one of which the second-layer atoms were allowed to relax, and in the other
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one the second-layer atoms were fixed to their corresponding bulk positions, and it
was found that the latter was almost degenerate with the 2 x 1 asymmetric dimer
case, and the former brought about an energy gain of 0.05 eV/dimer due to the
relaxation of the second-layer atoms. Here we have also done the similar calculation
for a-Sn(100) p(2 x 2) reconstruction. We fixed the second layer atoms (of course,
including the two innermost layer atoms) in their bulk-like positions, and relaxed all
other atoms. The surface energy turned out to be 0.818 eV /(1 x 1 cell). Looking at
Fig.4.20 and checking Tables 4.8, 4.9 and 4.5, we see that for the ¢(4x 2) and p(2x 2)
reconstructions the atoms in the second layer have free space to move towards the
“up” atom of the dimer and away from the “down” atom along the [110] direction
(note the dimer itself lies in [110] direction). In p(2 x 2) or ¢(4 x 2) they do that,
in order to keep the bond length close to the bulk value. On the other hand, in
the 2 x 1 asymmetric dimer reconstruction they can not do it along [110] for lack of
space due to their two sides being both the up dimer atoms or down dimer atoms.
Moreover, the positions of the second-layer atoms are similar for ¢(4 x 2) and p(2 x 2)
reconstructions, which explains why they are energetically quite close. The surface
energy of the p(4 x 1) reconstruction is a little lower (3 meV/(1 x 1 cell)) than
that of the 2 x 1 asymmetric dimer one, which can again be understood by noting
that atoms in the second layer have more freedom along the [110] direction in the
former. The difference along the [110] direction between the c(4 x 2) and p(2 x 2)
reconstructions is the same as that between the p(4 x 1) and the 2 x 1 asymmetric
dimer reconstructions. It is thus understood why the ¢(4 x 2) reconstruction is a bit

lower (8 meV/(1 x 1 cell)) in energy than the p(2 x 2) one.
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In conclusion, we have found that a basic 2 x 1 asymmetric dimer should be
responsible for the reconstructions of a-Sn(100). The dimer buckling is predicted
to be ~21° or ~1 A , much larger than the corresponding ones for Si and Ge(100),
which is again in the trend from C to Si, to Ge , and to a-Sn (see Table 4.2). The
associated surface state gap should be at least 1.2 eV (LDA calculations only provide
a lower bound). A surface rocking mode resonance having a frequency of 4.8 THz,
is predicted with a large effective charge. It should be visible in the surface phonon
spectrum at k /7 = 0. The lowest energy reconstructions are found to be the c(4 x 2)
and p(2 x 2), which are energetically almost degenerate.

Experimental observations on epitaxially grown films of a-Sn(100) on InSb(100)
reveal, as a function of increasing thickness, the sequence 2x 1 — p(2x2) — c(4x4).
We believe we have a good picture for the first two, while we do not understand the
¢(4 x 4) structure. More work is also needed in order to understand what disfavors
the c(4 x 2) relative to the p(2 x 2), and why the basic 2 x 1 structure prevails for

small thicknesses.
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Figure 4.20: Top view of the optimized 2 x 1 asymmetric dimer (upper left panel), p(4 x 1) (upper
right panel), p(2 x 2) (lower left panel) and c¢(4 x 2) (lower right panel) reconstructions. The
numbers labeled on the atoms correspond to those in Table 4.5, 4.7, 4.9 and 4.8, respectively.
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Table 4.3: Calculated surface energies, absolute E,,,; and relative AFE, dimer buckling b, dimer
buckling angle w, and dimer bond length d of different optimized reconstructions for a-Sn (100)

surface. In the table SMD indicates single missing dimer.

Structure Eoury AE b w d
[eV/(1x1 cell)] | [mJ/m?] | [eV/(1x1 cell)] | (A) (A)
ideal 1.405 1084 0.000
fully relaxed 1.382 1066 -0.023
2 X 1 symmetric 0.906 699 -0.499 0 0° 2.90
SMD-p(2 x 2) 0.870 671 -0.535 1.05 | 21.15° | 2.91
SMD-c(4 x 4) 0.845 652 -0.560 1.09 | 22.29° | 2.87
2 x 1 asymmetric 0.787 607 -0.618 1.01 | 20.99° | 2.82
p(4 x 1) 0.784 605 -0.621 0.964 | 20.06° | 2.81
c(2 x2) 0.782 603 -0.623 1.03 | 20.88° | 2.89
c(4 x 4) 0.778 600 -0.627 1.02 | 20.80° | 2.87
p(2 x 2) 0.747 576 -0.658 1.06 | 21.60° | 2.88
c(4 x 2) 0.739 570 -0.666 1.06 | 21.67° | 2.87
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Table 4.4: Optimized atomic positions of the -Sn(100) symmetric dimer 2 x 1 reconstructed
surface, and the corresponding bulk-like (Ideal) positions. In the rectangular supercell, coordinates
are given by r = c¢ia; +c¢oas +c3as, where a; is defined in the conventional cubic coordinate system
as a1 = (ag/2)(1,1,0), as = (ao/2)(1,~1,0), a3 = ag(0,0,—1) with ag=12.181 a.u.=6.446 A as

«-Sn lattice parameter. The unit cell has one symmetric dimer.

Atom Ideal
no. ¢ Co s

dimer-layer

1 250 -.500 1.375

2 250 500 1.375
2nd-layer

3 -.250 -.500 1.125

4 -.250  .500 1.125

3rd-layer
5 -.250 .000 .875
6 -.250 1.000 .875
4th-layer
7 250 .000 625
8 250  1.000 .625
Sth-layer
9 250 -.500  .375
10 250 500 375
6th-laver

11 -.250 -.500 .125
12 -250 .500 .125

1

250
.250

-.250
-.250

-.250
-.250

Optimized

Ca

-.318
318

-.492
.492

.000
1.000

.000
1.000

-.507
507

-.500
.500

C3

1.349
1.349

1.132
1.132

.869
.893

618
637

378
378

125
125
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Table 4.5: Optimized atomic positions of the @-Sn(100) asymmetric dimer 2 x 1 reconstructed
surface, and the corresponding bulk-like (Ideal) positions. In the rectangular supercell, coordinates
are given by r = cya; +c¢oas +caas, where a; is defined in the conventional cubic coordinate system
as a; = (a0/2)(1,1,0), a3 = (ap/2)(1,-1,0), ag = ao(0,0,—1) with ap=12.181 a.u.=6.446 A as

«-Sn lattice parameter. The unit cell has one asymmetric dimer.

Atom Ideal Optimized
no. c1 Co C3 C1 Ca C3
dimer-layer
dimer-down 1 H00 .250  1.375 .500 .550 1.266

dimer-up 2 500 1.250 1.375 .500 1.128 1.423
2nd-layer

3 .000 .250 1.125 .000 247 1133

4 .000 1.250 1.125 .000 1.208 1.154
3rd-layer

5 .000 .750 .875 .000 755 .859

6 .000 1.750 .875 .000 1.717 .899
4th-layer

7 H00 750 625 .500 740 612

8 500 1.750  .625  .500 1.744 642
Sth-layer

9 500 .250 375 .500 233 376

10 .500 1.250 .375 .500 1.252 37T
6th-layer

11 .000 .250 .125 .000 .250 125
12 .000 1.250 .125 .000 1.250 125
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Table 4.6: Optimized atomic positions of the @-Sn(100) ¢(2 x 2) reconstructed surface, and

the corresponding bulk-like (Ideal) positions. In the square supercell, coordinates are given by

r = cja; + cras + csaz, where a; is defined in the conventional cubic coordinate system as
a; = (a0/2)(1.1,0), as = (ao/2)(1,-1,0), az = ao(0,0,—1) with ag=12.181 a.u.=6.446 A as

«-Sn lattice parameter. The unit cell has one asymmetric dimer.

Atom
no. e
dimer-layer
dimer-up 1 500
dimer-down 2 500
2nd-layer
3 .000
4 .000
Jrd-layer
5 .000
6 .000
4th-layer
7 .500
8 500
Sth-laver
9 .500
10 .500
6th-laver
11 .000

12 .000

Ideal

C2

250
1.250

C3

1.375
1.375

1.125
1.125

875
875

.625
625

375
375

125
125

(5]

.500
.500

.033
-.033

-.031
.031

.500
.500

.500
.500

.000
.000

Optimized

(&)

.409
1.001

264
1.264

157
1.757

758
1.757

272
1.240

.250
1.250

C3

1.414
1.255

1.133
1.133

.876
876

647
.602

375
375

125
125
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Table 4.7: Optimized atomic positions of the a-Sn(100) p(4 x 1) reconstructed surface, and the
corresponding bulk-like (Ideal) positions. In the rectangular supercell, coordinates are given by
r = cia; + caay + cgaa, where a; is defined in the conventional cubic coordinate system as
a; = (ap/2)(1,1,0), az = (ao/2)(1,-1,0), ag = ao(0,0,~1) with ap=12.181 a.u.=6.446 A as

a-Sn lattice parameter. The unit cell has two dimers 4 and B.

Atom Ideal Optimized
no. c1 Co c3 (&1 Ca C3
dimer-layer
dimer- A-down 1 500 .250  1.375  .500 567 1.271
dimer-A-up 2 500 1.250 1.375 500 1.147 1.421
dimer- B-up 3 500 2.250 1.375 .500 2.351 1.419
dimer- B-down 4 500 3.250 1.375 .500 2.932 1.271
2nd-layer
5 000 .250 1.125 .000 .265 1.138
6 .000 1.250 1.125 .000 1.229 1.150
7 .000 2.250 1.125 .000 2.272 1.148
8 .000 3.250 1.125 .000 3.236 1.140
3rd-layer
9 .000 750 875 .000 769 .861
10 .000 1.750 .875 .000 1.749 910
11 .000 2.750 .875 .000 2.734 .860
12 .000 3.750 .875 .000 3.749 .890
4th-layer
13 500 .750  .625 .500 752 613
14 500 1.750 .625 .500 1.751 .650
15 .500 2.750 .625 .500 2.747 612
16 .500 3.750 .625 .500  3.751 .634
Sth-layer .
17 500 .250 .375 .500 .246 375
18 500 1.250 .375 .500 1.265 378
19 500 2.250  .375  .500 2.234 377
20 .500 3.250 .375 .500 3.255 375
6th-layer
21 .000 .250 .125 .000 .250 125
22 .000 1.250 .125 .000 1.250 125

23 .000 2.250 .125 .000 2.250 125
24 .000 3.250 .125 .000 3.250 125
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Table 4.8: Optimized atomic positions of the a-Sn(100) c¢(4 x 2) reconstructed surface, and the
corresponding bulk-like (Ideal) positions. In the oblique supercell {two side lengths of the surface
cell are v/2ag and /2.5 ag, respectively, and the angle of the two sides is 116.57°), coordinates are
given by r = ¢;a; + csas + czas, where a; is defined in the conventional cubic coordinate system as
a; = (ap/2)(1,1,0), a2 = (ao/2)(1,~1,0), az = ao(0,0, —1) with ap=12.181 a.u.=6.446 A as a-Sn

lattice parameter. The unit cell has two dimers A and B.

dimer-layer
dimer-.A-down
dimer- A-up
dimer- B-up
dimer- B-down

2nd-layer

3rd-layer

4th-layer

Sth-layer

6th-layer

Atom
no.

I N

o -1 O Ot

13
14
15
16

17
18
19
20

C1

500
500
1.500
1.500

.000
1.000

.000
1.000

.000
1.000

.000
1.000

.500
1.500
.500
1.500

.500
1.500
500
1.500

.000
1.000
.000
1.000

Ideal

Ca

250
1.250
.250
1.250

C3

1.375
1.375
1.375
1.375

1.125
1.125
1.125
1.125

875
875
875
875

625
.625
625
625

373
375
375
375

125
125
125
125

(8]

501
.509
1.500
1.508

-.042
1.042
050
.966

-.008
993
.002
998

493
1.494
500
1.500

499
1.500
.500
1.500

.000
1.000

.000
1.000

Optimized

C2

.506
1.093
421
1.008

278
278
1.237
1.234

158
156
1.756
1.757

755
748
1.754
1.754

.242
.240
1.265
1.263

.250
.250
1.250
1.250

C3

1.259
1.423
1.424
1.259

1.135
1.134
1.136
1.132

.856
.854
.899
.898

.603
607
.639
.644

37T

125
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Table 4.9: Optimized atomic positions of the a-Sn(100) p(2 x 2) reconstructed surface, and
the corresponding bulk-like (Ideal) positions. In the square supercell, coordinates are given by
r = cja; + coas + czag, where a; is defined in the conventional cubic coordinate system as

a; = (a0/2)(1,1,0), as = (ao/2)(1,~1,0), a3 = ao(0,0,~1) with ap=12.181 a.u.=6.446 A as

«-Sn lattice parameter. The unit cell has two dimers A and B.

dimer-layer
dimer- A-down
dimer- A-up
dimer- B-up
dimer- B-down
2nd-layer

3rd-layer

4th-layer

Sth-layer

6th-layer

Atom
no.

H> W N =

oo 3 O O

13
14
15

16

17
18
19

21
22
23
24

1

500
500
1.500
1.500

.000
1.000
.000
1.000

Ideal

C2

.250
1.250
.250
1.250

.250
.250
1.250
1.250

750
750
1.750
1.750

750
.750
1.750
1.750

.250
.250
1.250
1.250

.250
.250
1.250
1.250

C3

1.375
1.375
1.375
1.375

1.125
1.125
1.125
1.125

875
875
875
875

625
625
625
625

375
375
375
375

125
125
125
125

4]

.500
.500
1.500
1.500

-.044

1.044
.044
956

-.001

1.001
.000

1.000

.500
1.500
.500
1.500

500
1.500

.500
1.500

.000
1.000
.000
1.000

Optimized

C2

505
1.094
423
1.009

279
279
1.236
1.236

1587
157
1.757
1.757

C3

1.267
1.429
1.431
1.266

1.140
1.140
1.139
1.139

.859
.859
.903
903

611
.609
.645
.646
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Table 4.10: Optimized atomic positions of the a-Sn(100) c¢(4 x 4) reconstructed surface, and
the corresponding bulk-like (Ideal) positions. In the square supercell, coordinates are given by
r = cia; + coas + czag, where a; is defined in the conventional cubic coordinate system as
a1 = (ao/2)(1,1,0), a2 = (ag/2)(1,-1,0), az = ag(0,0,—1) with ag=12.181 a.u.=6.446 A as

a-Sn lattice parameter. The unit cell has four dimers A, B, C, and D.

Atom Ideal Optimized

no. C1 Co C3 C1 C2 C3
dimer-layer
dimer- A-up 1 500 250 1.375  .500 409 1.421
dimer- A-down 2 H00 1.250 1.375  .500 998 1.261
dimer- B-down 3 1.500 .250 1.375 1.474 525 1.260
dimer- B-up 4 1.500 1.250 1.375 1.511 1.109 1.420
dimer-C-down 5 D00 2.250 1.375  .500 2.549 1.252
dimer-C-up 6 D00 3.250 1.375  .500 3.126 1.409
dimer-D-down 7 -.500 .250 1.375 -475 525 1.261
dimer- D-up 8 -.500  1.250 1.375 -.512 1.109 1.420
2nd-layer

9 000  .250 1.125 .049 .265 1.130

10 1.000 .250 1.125 .950 .265 1.130

11 -1.000 .250 1.125 -.991 252 1.132

12 000  2.250 1.125 -.009 2.252 1.132

13 000 1.250 1.125 -.043 1.226 1.135

14 1.000 1.250 1.125 1.042 1.226 1.135

15 -1.000 1.250 1.125 -.999 1.217 1.147

16 000 3.250 1.125 -.002 3.218 1.147
3rd-layer

17 .000 .750 875  .001 749 .854

18 1.000 .750 .875 1.000 749 .853

19 -1.000 .750 .875 -.995 759 .858

20 000 2750 .875 -.004 2.759 .858
21 .000 1.750 .875 -.001 1.735 .888
22 1.000 1.750 .875 1.002 1.735 887
23 -1.000 1.750 .875 -1.002 1.734 904
24 .000 3.750 .875  .002 3.734 903
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4th-layer

5th-layer

6th-layer

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47

.750
750
150
2.750
1.750
1.750
1.750
3.750

.250

.250

.250
2.250
1.250
1.250
1.250
3.250

.625
625
625
.625
625
.625
625
625

375
375
375
375
375
375
375
375

125
125
125

.500
1.501
-.500

.500

.500
1.509
-.509

.000

.500
1.499
-.499

.500

.500
1.501
-.001

.500

.000
1.000
-1.000
.000
.000
1.000
-1.000
.000

739
748
749
2.743
1.745
1.752
1.752
3.741

228
.238
238
2.238
1.252
1.260
1.261
3.253

.250
.250
.250
2.250
1.250
1.250
1.250
3.250

.607
.607
607
.614
635
.640
.640
.643

374
373
374
374
374
375
375
376
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Table 4.11: Optimized atomic positions of the @-Sn(100) “single missing dimer” p(2 x 2) re-
constructed surface, and the corresponding bulk-like (Ideal) positions. In the square supercell,
coordinates are given by r = cja; + csas + czas, where a; is defined in the conventional cubic
coordinate system as a; = (ao/2)(1,1,0), a» = (ao/2)(1,-1,0), azg = ao(0,0,—1) with ap=12.181

a.u.=6.446 A as o-Sn lattice parameter. The unit cell has one left dimer A.

Atom Ideal Optimized

no. c cy c3 o o c3
dimer-layer
dimer-A-down 1 500 250 1.375 .500 426 1.213
dimer-A-up 2 500 1.250 1.375 .500 1.021 1.375

3 1.500 .250 1.375 removed removed removed

4 1.500 1.250 1.375 removed removed removed
2nd-layer

5 000 .250 1.125  -.109 271 1.178

6 1.000 .250 1.125  1.109 271 1.178

7 000 1.250 1.125 129 1.251 1.076

8 1.000 1.250 1.125 871 1.251 1.076
3rd-layer

9 .000 .750 .875 -.014 726 .873

10 1.000 .750 .875 1.014 726 873

11 000 1.750 .875 .004 1.801 .893

12 1.000 1.750 .875 996 1.801 .893
4th-layer

13 500 .7TH0 625 500 747 628

14 1.500 .750  .625 1.500 741 .609

15 500 1.750  .625 500 1.760 .633

16  1.500 1.750 .625 1.500 1.734 .642
5th-layer

17 500 250 375 .500 .250 372

18 1.500 .250 .375 1.500 226 377

19 500 1.250  .375 .500 1.254 .382

20  1.500 1.250 .375 1.500 1.252 375
6th-layer

21 .000 .250 .125 .000 .250 125

22 1.000 .250 .125 1.000 .250 125

23 .000 250 125 .000 1.250 125

1.2
24 1.000 1.250 .125 1.000 1.250 125
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Table 4.12: Optimized atomic positions of the a-Sn(100) “single missing dimer” c¢(4 x 4) recon-
structed surface, and the corresponding bulk-like (Ideal) positions. In the square supercell, coordi-
nates are given by r = ¢ja; + chas + czaz, where a; is defined in the conventional cubic coordinate
system as a; = (ap/2)(1,1,0), a2 = (ao/2)(1,-1,0), ag = ao(0,0, —1) with ap=12.181 a.u.=6.446

A as «-Sn lattice parameter. The unit cell has three asymmetric dimers A, B, and C.

Atom Ideal Optimized
no. 1 Co C3 5] Ca C3
dimer-layer
dimer-A-up 1 500 250 1.375 498 415 1.417
dimer- A-down 2 500 1.250 1.375 498 .999 1.250
dimer- B-down 3 1.500 .250 1.375 1.537 491 1.244
dimer- B-up 4 1.500 1.250 1.375  1.483 1.074 1.415
dimer-C-down 5 -.500  .250 1.375  -.540 491 1.247
dimer-C-up 6 -.500 1.250 1.375  -.483 1.075 1.418
7 500 2.250 1.375 removed removed removed
8 D00 3.250 1.375 removed removed removed
2nd-layer
9 .000 .250 1.125 018 274 1.140
10 1.000 .250 1.125 977 273 1.140
11 -1.000 .250 1.125 -1.114 .265 1.169
12 000 2.250 1.125 112 2.263 1.170
13 000 1.250 1.125  -.041 1.242 1.116
14 1.000 1.250 1.125  1.037 1.243 1.118
15 -1.000 1.250 1.125  -.839 1.225 1.093
16 .000 3.250 1.125  -.139 3.224 1.092
3rd-layer
17 .000 .750  .875 -.003 746 .855
18 1.000 .750  .875 1.004 147 .855
19 -1.000 .750 .875  -1.016 723 871
20 000 2.750 .875 .018 2.722 872
21 .000 1.750 .875 -.001 1.780 .899
22 1.000 1.750 .875 1.000 1.779 .899
23 -1.000 1.750 .875 -.989 1.761 .893

24 000 3.750 .875 -.009 3.761 .894
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4th-layer
25 .500 .750 .625 .500  .740 .610
26 1.500 .750 .625 1.514 .755 .617
27 -.500  .750 .625 -.512 754  .616
28 .500 2.750 .625 501  2.742 .606
29 500 1.750 .625 499  1.736 .643
30 1.500 1.750 .625 1.492 1.762 .636
31 -.500 1.750 .625 -.492 1.763 .634
32 .500 3.750 .625 .500 3.737 .644

Sth-layer
33 .00 .250 .375 .500  .229 .378
34 1.500 .250 .375 1.501 .252 .373
35 -.500 .250 .375 -.502 .249 373
36 .500 2.250 .375 .500 2.226 .377
37 .500 1.250 .375 .500 1.252 .376
38 1.500 1.250 .375 1.502 1.264 .378
39 -.500 1.250 .375 -.502 1.263 .378
40  .500 3.250 .375 .500 3.254 .374

6th-layer

41 .000 .250 .125 .000  .250 .125
42 1.000 .250 .125 1.000 .250 .125
43 -1.000 .250 .125 -1.000 .250 .125
44 000 2250 .125 .000 2.250 .125
45 .000 1.250 .125 .000 1.250 .125
46 1.000 1.250 .125 1.000 1.250 .125
47 -1.000 1.250 .125 -1.000 1.250 .125
48 .000 3.250 .125 .000 3.250 .125




5 Summary, and Conclusions

From our ab-initio study of a-Sn(111), we predict that the (111) surface of o-Sn
should be unstable in its unreconstructed form, and can be stabilized by various
types of reconstructions.

Among the reconstructions not involving adatoms, the (2 x 1) w-bonded chain
model is energetically favored, and is predicted to display a gigantic buckling larger
than 1 A in magnitude. This is in line with the trend towards increasing buckling
in going from diamond to Si to Ge (111).

In the presence of adatoms, the adatom-restatom 2 x 2 reconstruction is found
to be optimal energetically, and is thus the strongest candidate for the true ground
state of this surface.

Recent LEED data on o-Sn(111) epitaxially grown on InSb(111)[7] display a
3 x 3 periodicity at low deposition temperatures, irreversibly turning into 2 x 2
at high temperatures. We tentatively explain the stable 2 x 2 structure by our
adatom-restatom reconstruction.

As an attempt at understanding the metastable 3 x 3 phase, we have tried a

DAS model, and also a distorted v/3 x v/3 adatom structure, suggested by the recent

123
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finding of a similar 3 x 3 “Charge-Density-Wave” (CDW) state on a-Pb/Ge(111) [57].
The surface energies of these 3 x 3 structures are substantially higher than that of
the 2 x 2 reconstruction. Among the two models tried, however, the CDW-distorted
3x 3 was found to be lower in energy, even if marginally. We may therefore speculate
that the observed metastable 3 x 3 structure could be a distorted v/3 x v/3 adatom

structure similar to that of the low temperature a-Pb/Ge(111) phase.

Our ab initio calculations of o-Sn(100) indicate that the ideally terminated -
Sn(100) surfaces are also unstable towards reconstructions. The dimerization of the
top layer atoms is, like in diamond, Si and Ge, the fundamental mechanism for
a-Sn(100) reconstructions with dimers as the basic building blocks for all possible
reconstructions. The dimers of a-Sn(100) are buckled with a giant buckling of about
1 A, in agreement with the trend towards increasing buckling from diamond to Si to
Ge (100). The c¢(4 x2) and p(2x 2) “antiferro” dimer reconstructions are found to be
lowest in energy, and should be the ground state phase of the a-Sn(100) surface. A
phase transition from an ordered phase, such as, ¢(4 X 2) or p(2 x 2), to a disordered

phase is excluded below 500 K due to the strong interactions among the dimers.

LEED data on a-Sn(100) epitaxially grown on InSb(100) indicate, as a function
of Sn thickness, first a two-domain 2 x 1 structure, then a p(2 x 2), then a c(4 x 4),
and finally the transition to a 8-Sn film. Although at this stage the precise mecha-
nism through which the substrate influences these changes of surface periodicities is
unknown, it is reasonable to speculate that the phases observed represent switches
from slightly different arrangements of buckled dimers. In particular, the 2 x 1

structure could correspond to the basic dimer cell, while our p(2 x 2) ground state



is probably a good candidate for the intermediate phase. The final appearance of
a c(4 x 4) remains somewhat mysterious, since all our attempts to build a ¢(4 x 4)
arrangement of dimers give a higher energy. However, we note that a similar prob-
lem arises on Si(100). Exposing of Si(100) (2 x 1) surfaces to a hydrogen dosage
higher than 1072 /, then annealing at 570-690°C, induces the formation of a ¢(4 x 4)
reconstruction of this surface[T1, 72].

It is hoped that these results will stimulate further efforts towards a more detailed

understanding of the o-Sn (111) and (100) surfaces.
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