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Chapter 1

Introduction

1.1 MotiVation

The relevance of information theory for neuroscience ultimately derives from the fact that
the nervous system possesses a lot of subsystems that acquire, process and transmit infor-
mation. Therefore many brain structures can be considered as communication channels,
and the more appropriate mathematical framework for the quantitative characterization
of their performance is information theory (Shannon 1948). In particular, quantities like
Shannon’s mutual information and channel capacity provide a powerful tool to quantify
how neurons represent messages from the external world, and how efficiently they do it.

Since it is well known that the signals from the external world are converted by
the nerve cells, already at very early stages in sensory processing, into sequences of
spikes, one may wonder why quantifications of how information is represented by the
firing of single neurons and of populations of neurons, whose activity is recorded in vivo,
have been for a long time performed only episodically (e.g., Eckhorn and Pépel 1975;
Eckhorn et al. 1976). The main reason for this has certainly been the large amount of
data that was required in order to obtain reliable results. A calculation of the Shannon
mutual information requires in fact the evaluation of the probabilities of response of
a neuron to e.g., a set of external stimuli, and limited sampling produces fluctuations
in the estimated probability densities. As a consequence, the resulting estimations of
information from a finite number of examples are intrinsically affected by an upward
systematic error, occasionally as large as the target quantity itself. That the problem
exists can be intuitively understood if one thinks that, even if the response probabilities
of the neuron do not depend on the particular set of stimuli, and thus the cell does not
carry information about that set, finite sampling would tend to produce differences in
the responses to various stimuli, differences that are interpreted in the calculation as
containing genuine information. The situation is further complicated by the fact that,
if the cell response is quantified by a continuous variable, the limited amount of data
requires also a regularization of the neuronal output, e.g., grouping responses into a
finite number of classes or bins. One can think of avoiding the finite data size effects
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2 Chapter 1. Introduction

by using a regularization strong enough to dump the statistical fluctuations. But in
this case the strong regularization reduces the discriminational capacity of the response,
leading to a systematic downward bias in the estimation of the information. Given that
In practice the size of data sets is limited by experimental constraints, it is evident that
one can make effective use of neuronal mutual information measurements only if one is
able to control these systematic errors with opposite effects.

Although many empirical procedures to correct information measures for limited sam-
pling have been introduced in the last few years (Optican et al. 1991, Chee-Orts and Op-
tican 1993, Hertz et al. 1992). the results were not fully satisfactory, as witnessed by the
fact that a number of paper appeared, reporting opposite results (see e.g., the discussion
in Tovée et al. 1993). To shed more light on the problem, we have developed instead
a more fundamental approach to the limited sampling problem, that we present as the
main result contained in the dissertation, based on a direct evaluation and subtraction
of the limited sampling bias {Treves and Panzeri 1995; Panzeri and Treves 1996b). The
idea, which has been conceived as early as 40 years ago (Miller 1933), has been developed
to be applied to neuroscience. in particular adapted to the regularization procedures that
can be used with neuronal data. In our approach, of crucial practical importance is the
fact that the subtraction of the finite sampling upward bias allows the choice of milder
data manipulations, ultimately decreasing also the downward bias related to response
regularization. This lowers the size of the sample required for a given accuracy in the
estimate by about an order of magnitude. However an analytical evaluation of the bias
does not, in itself, make possible reliable measures of information carried by high dimen-
sional codes with a few trials. A part of the thesis is thus devoted to study, mainly with
computer simulations, the range of applicability of the correction and the effectiveness
of various regularization techniques in extracting accurate information measures. The
statistical method that we present in this thesis is mainly designed for the study of infor-
mation processing in the mammalian cortex, were the data collection is really a serious
constraint, and is less relevant when working with insects and considering systems at the
sensory periphery (Bialek et al. 1991; Bialek et al. 1993; de Ruyter van Steveninck and
Laughlin 1996), in which sampling can be extensive. Nevertheless, even in the latter case
the use of a procedure based on the same idea as ours can lead to more accurate and
assumption free information estimates (Strong et al. 1996)."

The lack of a systematic study of the information carried by real neurons has infuenced
also the theoretical work in neuroscience. In fact, the use of information theory in
modelling brain functions has been mainly limited to the sensory periphery, and especially
to the early visual system (retinain Atick and Redlich 1990; LGN in Dong and ‘Atick 1995;
V1 in Olshausen and Field 1996). In this case, the information theoretical analysis has
been not applied to a model of the detailed neuronal circuitry, but the observed properties
of receptive fields of the cells have been directly compared to that predicted by some first
principle of optimization of information transmission. Instead, when detailed models of
neuronal circuitries have been introduced, simpler quantifications of the performance of
the system, without a clear experimental counterpart (e.g., in autoassociative memory ~
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models, the overlap of a retrieved pattern with the stored one), have been often used.

The last part of the thesis is devoted to address this point, discussing the analytical
techniques (essentially derived from statistical mechanics) needed to extract, as a basic
index of performance of the network, the amount of information present in the activity
of the (model) neurons. For this purpose, we choose to study a biologically plausible
model of a part of the hippocampal complex, mainly derived from the previous work of
Treves and Rolls (1992; 1994). We show how to define the probability of response of
model neurons in terms of quantities with an experimental correlate, and how to extract
from it the information carried by the neural network.

The work presented in this thesis, and discussed here, is rather technical. But we want
to stress that it is the developement of these techniques that eventually makes compa-
rable, in their full quantitative import, experimental results and analytical modelling
results, under the unifying framework of information theory.

1.2 Organization of the thesis

In chapter 2, we study the finite sampling problem in measures of information, discussing
previously introduced correction procedures, and describing our own method, based on
the analytical evaluation of the average error and its subtraction form raw estimates.
The analytical evaluation is carried out for different regularizations of the responses, like
pure binning, convolutions with continuous distributions and regularization with neural
networks. The last sections of the chapter report the results of computer simulations.
which shed light on the relative effectiveness and on the range of validity of our and of
other methods.

Chapter 3 is devoted to discuss how to apply information theoretical analyses to neu-
ronal data. In particular two different aspects are considered. The first is the evaluation
of the amount of information contained in the firing rates of single cells. We will discuss
how to use the high precision of information measures from low dimensional codes to
study the contribution of different properties of the neuronal responses, such as noise or
the graded nature of responses, to information processing at different time scales. Fur-
thermore, we discuss the important fact that the initial rate at which a neuron transmits
information depends only 6n the mean firing rates (Skaggs et al. 1993), and is simply
related to the sparseness of the neuronal representation. The second problem considered
is the calculation of information from high dimensional response spaces, as the principal
components of the spike train, or the response vector of a population of simultaneously
recorded neurons. It is shown that the limit of dimensions that can lead to reasonably
accurate direct measures is low, 2-3, whereas changes of variables that transforms the
response space into the stimulus set, by applying a decoding algorithm that reconstructs
a predicted stimulus from the response vector, can give sensible results for higher dimen-
sional codes. This discussion on single cell and multiple cell analysis is corroborated by
computer simulations, and by the detailed presentation of original results on the analysis
of real data: coding of spatial view by cells in the primate hippocampus, and coding of
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simple somatosensory stimulations in the rat SI cortical region.

In chapter 4 we present a quantitative model of information processing within hip-
pocampus. We take into account the entorhinal-CA3-CA1 system, focusing on the role of
the Schaffer collaterals and the direct perforant path connections from entorhinal cortex
to CAL. The model is quantitative in that the relevant details of the biological circuitry
are taken into account, and the parameters characterizing the network can be related to
experimental quantities. The goal of the chapter is to provide an analytical evaluation
of the amount of information present, at the firing rate level, in the model CA1 output
about the firing activity of the cells in entorhinal cortex. For this purpose we use stan-
dard techniques of statistical mechznics, like mean field theory and the replica trick. We

discuss also how to use experimental data to validate some of the building hypotheses of
the model, and to check its quantitative predictions.



Chapter 2

The limited sampling problem in
measures of information.

Quantifying the relation between neuronal responses and the events that have elicited
them is important for understanding the brain. One way to do this in sensory systems
is to treat a neuron as a communication channel (Shannon 1948; Cover and Thomas
1991) and to measure the information conveyed by the neuronal response about a set
of stimuli presented to the animal. In such experiments (e.g., Gawne and Richmond
1993; McClurkin et al. 1991; Tovée et al. 1993) a set of S sensory (e.g., visual) stimuli is
presented to the animal, each stimulus being presented for IV, trials. After the neuronal
response is quantified in one of several ways, e.g., the number of spikes'in a certain time
interval or a descriptor of the temporal course of the spike train, the transmitted infor-
mation (mutual information between stimuli and responses) is estimated. This approach
is useful for investigating issues such as the resolution of spike timing (Heller et al. 1995),
the effectiveness of encoding for stimulus sets (Optican and Richmond 1987; McClurkin
et al. 1991; Rolls et al. 1996¢.d). or the relations between responses of different neurons
(Gawne and Richmond, 1993). Nevertheless, extracting information from real neurons,
whose activity is recorded in vivo, is so ridden with subtleties that in practice important
questions such as the type of neural coding used by different systems in the mammalian
brain, or the speed of information processing, have been most easily approached quali-
tatively from a theoretical point of view, rather than quantitatively from experimental
observations. The main problem in quantifying information carried by neuronal spike
trains is the limited sampling: calculation of mutual information from limited samples
is affected by a systematic upward bias. The bias can be, if the trials available are few,
much larger than the true information values themselves. An intuitive explanation for
this is that fluctuations due to finite sampling tend, on average, to emphasize differences
among distributions corresponding to different stimuli, differences that can be interpreted
in the calculation as carrying genuine information.

To discuss how the limited sampling distorts measures of information, and how to
correct for this systematic error, let us consider a concrete situation in which we wish
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to measure the amount of information, in bits, that some variable r, associated with the
response of one or more neurons, conveys about a stimulus s, presented to the animal.
We take s to belong to the discrete ! set S of S elements. We wish to measure both the
(average) conditional information transmitted when s is presented,

(s) /drP g, /dP ) log, ];(Zli) (2.1)

and its average across stimuli, i.e.. the mutual information

1= pls) [ drPlrls)log, oy
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We assume that only N stimulus-response pairs (s.r) are available, instead of the full
probabilities p(s). P(r) and P(s.r) (the last two are, in general, probability densities
rather than probabilities, and are thus denoted with capital letters). For N — oc,
individual (s,7) pairs are expected to occur with frequencies tending to match the un-
derlying probabilities, but for N finite, use of the experimental frequencies pn(s), Pn(r)
and Py(s,r) directly in the formulae above leads to systematic error. That the prob-
lem exists, can be seen by considering uncorrelated stimuli and responses, such that
P(s,r) = p(s)P(r): a finite-N evaluation of the mutual information, which is zero by
definition, will almost certainly vield a positive result, which therefore indicates a sys-
tematic error. The problem, neglected in the early literature on neuronal information
processing (Optican and Richmond 1987), has been studied during the last years by
several authors.

The first procedure, introduced in the context of neuronal data analysis, to correct for
the error, was suggested by Optican et al. (1991). It follows from considering the case of
uncmrelated pairs: it involves generating a shuffled probability distribution by randomly
pairing stimuli and real responses, calculating the shuffled information contained in the
real responses about the randomly paired pseudostimuli and finally subtracting a fraction
of the shuffled information from the raw value of measured information. This random
shuffling procedure, often called bootstrap because it uses the data to correct the data
themselves, is flawed in several ways. First, and most evidently when responses are
discrete, the shuffled information may be a strong overestimation of the bias, for reasons
to be clarified below, and then it is wrong to subtract from the raw estimate the correction
derived from random shuffling. Furthermore, the shuffling procedure is applicable only
to measures of mutual information (2.2) and not to measures of conditional information

'Here we specialize to the case of discrete sets of stimuli, which is mostly relevant to the case of
experiments in mammalian memory and higher sensory areas. There is, however, a lot of work based
on invertebrates (Bialek 1991; Bialek et al. 1991; de Ruyter van Steveninck and Laughlin 1996; Rieke et
al. 1993; Theunissen et al. 1996), where experimental data is obtained by presenting a stimulus which
is a continuous quantity. This opens up the possibility of using notions such as the linearized limit, the
Gaussian approximation, etc., that do not apply to our situation with a discrete nonmetric set of stimuli,
and which when applicable can further alleviate finite sampling effects.
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(2.1), since the shuffling mixes responses occurring to different stimuli. Finally, when the
responses are regularized before being used to measure information, the regularization
can affect the raw and shuffled measures to different degrees, as will again be clear below.

More sophisticated is the procedure suggested by Hertz et al. (1992), based on strong
regularization of the input-output distribution by means of a neural network used to
estimate the probability of each input s given the output r. The neural network is
trained so as to maximize the probability that a stimulus is correctly recognized, i.e.,
that the stimulus estimated to be most probable is the actual one. This method appears
to have small finite size effects (Kjaer et al. 1994). What appears to be unsatisfactory in
the network regularization is that, while any regularization results in information loss and
information measures relative to that regularization, the regularization produced by the
artificial network is particularly complex and data dependent and it is hard to assess the
relation between the target information and the regularized measure one obtains. This
1s made evident in the paradoxical result of Kjaer et al. (1994) where occasionally codes
that are by definition more rich in information (retaining more principal components of

the responses) appear to carry less information, after they have been squeezed through
the artificial network.

The limited sampling error is a statistical problem common to many different fields,
whenever one tries to estimate, from a finite sample, a function of a full probability
distribution. Several authors have addressed it, outside the domain and the peculiari-
ties of computational neuroscience, e.g., focusing on probabilities given on discrete sets.
Wolpert and Wolf (1995) (see also references therein) propose the calculation of the func-
tion (in our case, e.g., , I) of the true probabilities given the experimental frequencies.
This, which is in fact the original aim (and which is obviously different from calculating
the function of the frequencies, our Iy) is feasible, however, only by making an assump-
tion as to the a priori probability distribution. It is then difficult to see how to use this
conceptual appealing approach in cases, such as ours of stimulus-response pairs, when no
reasonable assumption on the prior is self-evident.

We have developed an alternative, non parametric, approach, based on the analvti-
cal calculation of the average error as an asymptotic expansion in inverse powers of the
sample size. The calculation has been first performed by assuming the response space be
discrete, or at least discretized (Treves and Panzeri 1995), and then extended (Panzeri
and Treves 1996b) to more general regularization procedures of neuronal responses, such
as convolution with continuous distributions, or neural network regularization, which
can be particularly useful when multidimensional codes or multi-cell recording are con-
cerned. We have found that the leading (in 1/N)) contribution to the bias, depending
very smoothly on the underlying probabilities, and easily computable from the data,
yields most of the error and can thus be subtracted to correct raw estimates. Successive
terms of the expansion are of little use: either they are negligible in comparison to the
first term, or when N becomes very small, they explode quickly (see also Strong et al.
1996), signalling that data are so scarce that the expansion is meaningless beyond the
first term. We have also adapted our procedure not only to mutual information but also
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to conditional information (i.e., relative to a given stimulus). Moreover, our direct eval-
uation of the bias allows a better understanding of the role of the shuffled information in
correcting for limited samples, and a more appropriate choice of the data regularization
for a given problem and data size.

An evaluation of the sampling error called Jackknife technique (Efron 1982) was
introduced, in the context of non-parametric statistic. This technique allows unbiased
estimates of generic functions of probabilities by means of recalculating the function
after deleting different data subsets. This method, which was until recently (Theunissen
et al. 1996) neglected in the neuronal data analysis concerned here, is based on the
assumption that only the leading 1/ term of the bias is important, and allows to obtain
unbiased estimates avoiding the problem of direct evaluation of the bias. The jackknife
correction is however less worthwhile for information quantities, where the average error.
easily computable from data, can be calculated using only very weak assumptions on
the underlying probability distributions. Moreover, the jackknife has the disadvantage
that it involves calculation and subtraction of quantities of order N. This latter fact
leads both to computational problems (CPU time and numerical fluctuations) and, when
compared to our method, to a slower convergence with IV towards the unbiased result.

The aim of this chapter is to present and discuss the analytical correction for the
average error that we have performed, and then to use analytical results, as well as
computer simulations, to establish the range of validity and the relative effectiveness of
the various methods described before. The organization of the chapter is as follows: in
the first section we address the finite sampling problem by means of the calculation of
the average error as an asymptotic expansion in inverse powers of the data sample size.
Results are obtained for different regularizations of the responses often used with neural
data. In the second section we report the outcome of a similar analysis for the case
in which stimuli are not drawn at random from a multinomial probability distribution,
but in contrast the experimental frequency of presentation of stimuli does not fluctuate.
The third section is devoted to test, by means of computer simulations, the validitv of
analytical results. In section 4 we summarize the results found and finally, in the last
section, we discuss how the analytical evaluation of the bias can help with the choice of
the best (or most effective) regularization for a given problem and set of data.

2.1 The average error

In this section we present our evaluation of the bias, i.e. the average error, when different
regularization procedures are applied to the raw data. We take the stimuli s to have been
drawn at random (with a multinomial probability distribution) from a discrete set S of
S elements. Note that when the experimental frequency of presentation of stimuli is,
instead, set exactly equal to its probability and does not fluctuate, one finds slightly
different correction terms, as will be discussed separately in section (2 2).

Let us initially consider the more general case in which the (raw) neuronal response is
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a real (possibly multidimensional) variable 2. It is clear from the formula for the mutual
information (2.2), that if one is measuring a continuous output variable, in order to
obtain an estimate of the mutual information from a finite set of N data a regularization
of the raw data is always necessary; otherwise the finite number of responses will almost
certainly be all different from each other, therefore each response will uniquely identify
its stimulus (py(s|r) will be either 1 or 0) and, as a result one will obtain only a measure
of the entropy of the stimulus set, and not of the mutual information. Moreover, the
response space is usually quantized anyway, because one needs to evaluate the expressions
for I and I(s), in practice, by performing a sum rather than an integral. Furthermore.
many authors, for several reasons. prefer to use manipulations of data different from a
pure discretization of the response space.

In the following subsections, we shall consider four important cases of regularization:
pure discretization; convolution with a continuous distribution and discretization; neural
network fitting of the conditional probabilities; without discretization of response space.

We shall report in Appendix A the explicit calculations leading to our expression of
the bias in the second case only; but, for the sake of generality, we shall also discuss how
to retrieve the results presented when the other data manipulations are applied. More
details of the procedure are reported in Panzeri and Treves (1996b).

2.1.1 Pure discretization of the response space

Let us consider in this section the case in which real responses have been binned into R
different intervals ® [m;_;,m;],7 = 1,---, R, by just assigning each response to the inter-
val it falls in. In this case, the binning procedure satisfies an independence condition, i.e.,
the number of times a given bin is occupied depends only on the underlying proba,blht'\
of the given bin, and not on the occupancy of other bins (this condition is violated by
the prior regularization of the responses, as in the cases to follow).

Within this binning procedure, from N experimental trials available, one can obtain
a raw estimate of the information:

ils .
ZPN 22 pN( I ); I]V = Zp]\] IN S . (23)
1ER pN(Z) sES

In (2.3) the py’s are the experimental frequency-of-occupancy tables, e.g., pn(2) =
n(z)/N, or pn(i|s) = n(i|s)/N,, where n(i|s) is the number of times response i occurred
when stimulus s was presented, n(i) the number of times response ¢ occurred across all
stimuli, and IV, is the number of experimental presentations of stimulus s. For large NV

2We write all the formulae in the manner appropriate to a one-dimensional response space, but the
generalization to higher dimensions, as well to the case in which the original response is discrete (e.g.,
the number of spikes in a given time window) is straightforward.

3We stress that R is the total number of response bins, independently of what is the underlying
dimensionality, if any, of the raw response space. If e.g. the raw responses are the firing rates of two
cells, which are then discretized into R; and, respectively, R bins, we set R = Ry x Ra.
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the experimental frequencies px(7) tend to the corresponding probabilities p(:), which
are simply related to the original continuous underlying probability distribution by an
integration over each response bin. Similarly, as N increase, the estimate of transmitted
information tends to the information carried by the discretized probabilities:

1°(s) = Y plils)log, B 1P 2 5 )P (24)
i€R p(&) "~ s€S

By temporarily restricting ourselves to the total transmitted information, it is important
to note that the value of the information obtained affer quantization. or regularization,
is less than the value of information carried by the continuous responses, and in general
information measures are dependent on the binning procedure adopted, and most im-
portantly on the number of bins R. There is no way to estimate the difference between
the unregularized and regularized values of the mutual information from first principles,
but a good strategy to control these discrepancies can be to quantize the responses by
successively increasing the value of R until the finite N measure, after the correction we
are discussing, does not change very much. However. when the size of the data sample
is small, a reasonable choice for R is a compromise between trying to keep the loss of
information due to discretization as small as possible, which would require R large, and
the need to control the finite-size distortion, which, as we shall see below, can require R
small. v

Of course, the difference, or bias. between I and IP fluctuates depending on the
particular outcomes of the N trials performed. We can estimate the average of the
difference, however, by averaging (< ... >) over all possible outcomes of the N trials,
keeping the underlying probability distributions fixed. We have obtained an expression
for the bias as a series expansion in inverse powers of the sample size N\

<I¢>-1P=> (P (2.5)

where (', represents successive contributions to the asymptotic expansion of the bias (the
term C,, is proportional to N~™; see the Appendix A for the details of the calculation).
Here we report just the leading term, whose expression is:

Cf’—()\loﬂ{(ZR) 1}, (2.6)

where R, denotes the number of “relevant” response bins for the trials with stimulus s,
which are the response bins with non-zero probability to be occupied during the pre-
sentation of the stimulus S. In the same way, R is the number of response bins with
non-zero occupancy probability across all stimuli. In the case in which each response
bin 7 has a non-zero probability of being occupied for every stimulus s, we recover the
simpler expression reported in Treves and Panzeri (1995)

_(S-1)(R-1) .
Cy = 2Nlog2 (2.7)
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At the end, to correct for the finite size problem we have to evaluate the correction
term in Eq. (2.6), which depends on the underlying probabilities solely through the R,
parameters, and thus in a much weaker way than the mutual information, which depends
on the full distributions. Therefore, even though the parameters R;, R have to be, in turn.
estimated from the data, this procedure is much more accurate than a direct estimate of
the information.

To understand how one can estimate the number of “relevant” bins, we note that the
number of relevant bins differs from the total number of bins allocated because some bins
may never be occupied by responses to a particular stimulus. As a consequence, if R, is
calculated using for each stimulus the total number of bins R, then the C; term, which is
in this case equal to (2.7), turns out to overestimate the systematic error, whenever there
are stimuli that do not span the full response set. On the other hand, the number of
relevant bins differs also from the number of bins actually occupied, R, for each stimulus
(with few trials), because more trials might have occupied additional bins. Again, it turns
out that using the number of actually occupied bins R, for calculating C; leads, when
few trials are available. to an underestimate of the systematic error (the underestimation
becoming negligible for /N, << 1 because R, tends to coincide with R, for all stimuli).

It is clear that when N, is small, more sophisticated procedures, such as Bayesian
estimation, are needed to evaluate the quantities we are interested in. As mentioned
above, Wolpert and Wolf (1995)* show how to calculate any function of the probabilities
given the experimental frequencies, using Bayes rule. This requires some knowledge. or
some assumption, on the a priori probability distributions of the probabilities. Since
we do not have any knowledge of the prior, we do not see how to use this approach to
estimate the mutual information itself, quantity which depends on the full details of the
probability tables. Nevertheless, a correction to the mutual information depending on a
few parameters, such as R, R is likely to be well estimated also with a crude hypothesis
about the prior probability functions. As an example, in the following we introduce a
very simple procedure, based on the idea of using Bayes’s theorem to reconstruct the true
probabilities, supposing they are non-zero into R; intervals, and then choose an R, such
that the expected number of occupied intervals (which can be calculated as a function of
the Bayes estimates of the probabilities) matches the experimentally observed value.

Let us first recall some terminology from Bayes theory (Wolpert and Wolf 1995). If, for example. we
want to measure a function G({P(r|s)}) of the set of probabilities {P(r|s)}, and we know the prior
probability distribution of the probabilities P({P(r|s)}), then the Bayesian estimate of the function
G({P(r|s)}) has the following expression as a function of the set of experimental data {n{r|s)}:

(3]
on
S~

G({n(r|s)} /(H dp(r S)) PAP(rs) {n(rls)HG({P(r]s)}) (:

where P({P(r|s)}|{n(r|s)}) is the “posterior” conditional probability of the underlying probabilities

“But see also the very recent paper by Bialek et al. (1996).
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given the experimental outcome which is calculated with Bayes theorem:

PHP(r|s)}{n(r|s)}) = p({n(rls)}I{(P](_L”(LI)}));)J({P(TIS)})

where
P({n(rls)}) 2/ (H dP(?’IS)) P({n(rls)}{P(rIs)HP({P(r]$)})
and the ‘likelihood’ probability distribution is binomially distributed:

|3 n(rls)

PU{n(r) HEP(r]9)}) = N, 'H

The procedure we use here to evaluate IA%S, for each stimulus s, is the following:

o We first pick for R, one of the allowed values, R, < R, <R.

(2.9)

(2.10)

(2.11)

o We construct, by using (2.8) the Bayes estimate P(rls) of the true probabilities given the ex-

perimental frequenc1es The prior probablhty function P(-) is chosen constant among the R,
non-empty bins, and for the other R Ry empty bins is a different constant, fixed by requiring
that the probablhty of that bin being empty is h, times larger than the probablhty of being occu-
pied, where h, = —~’- This last requirement simply reflects the fact that when the responses are
concentrated into a few bins (i.e. high —j), the probability in the empty bins should be less than

the probability assigned by a prior function constant on all the Es bins.. We want to emphasize
that we use the constant ansatz for the prior probability distribution only because this is the sim-
plest one. Of course, if, in particular cases, some reasonable assumption on the prior probabilities
is available, this more detailed assumption can be used, and Bayes approach is expected to give
better results

We pick other values for IE, and we finally choose as an estimate for B, the value of R, which
gives the expectation value of the number of occupied bins:

<R,>=>) {1 — (1= P(r|s))™ (2.12)
r
closest to the experimental value of R,.

The procedure is the same for the evaluation of E, the only difference being that the Bayesian
estimate for P(r) should be calculated from N, and not N;, trials.

This estimation, although based on a very simple ansatz on the prior distributions, is sufficient to give,

as we shall see below, good results even up to relatively small values of N;.

The reason of this good estimation, in our opinion, is in the fact that only the pa-

rameters Rs have to be estimated based on the arbitrary ansatz, and the information I
depends on them only in the correction terms.

The observation that the leading bias term (2.6) is, in general, probability dependent

leads to a better understanding of the effectiveness Wlth which the shuffled information
can correct for limited samples. The probability dependency of (2.6) shows that the
leading correction term is different for the true and the shuffled probabilities, and so
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subtracting the bootstrap correction does not cancel the leading 1/N contribution to
the average error. If, for example. we have many zero-probability bins. the shuffling
obviously overestimates the number of occupied bins, which implies that. in this case.
the shuffled information is a (possibly high) overestimation of the bias, whereas the C'P
term (2.6) continues to give a good estimate. Therefore, even when restricting to mutual
information and discrete responses. there is no way, valid for all probability distributions.
of relating the value of shuffled information to the value of the bias, as originally proposed
by Optican et al. (1991) (but see also the discussion in Toveé et al. (1993)).

By considering the conditional information, we can give again an asymptotic expan-
sion for the bias: .

<IRs)> —1P(s) = 3 CP(s) (2.13)
m=1 '

and the leading correction term is now:

ClD(S) = ’2_\";0%—.2/2\5(1);\71(5))[1—P(iis)]
- 2.;\'%oggii{-p(lls)pazp‘(zgs) —p(i|5)} (2.14)

where the hat on the sum over response bins ¢ denotes that only intervals of non-zero
occupancy probability are to be considered, and in calculating explicitly the average of
< p~'(s) > the instances with px{s) = 0 must be excluded. Estimating this expression
(2.14) for the bias directly from real data is likely to lead, as for the CP term, to under-
counting if IV is small. However, the dependence of CP(s) on the probabilities is not as
simple as for CP, and therefore a Bayesian estimate of C'2(s) is more complicated and.
without some knowledge on the prior, is not expected to work as well.

All the analytical results and considerations presented here are fully confirmed by
computer simulations (Treves and Panzeri 1995; Golomb et al. 1996; Panzeri and Treves
1995b; Panzeri and Treves 1996b). The results of the simulations will be presented at
various stages in this dissertation.

2.1.2 Convolution with continuous kernels and discretization

Let us now consider the case in which the regularization of the data is performed by
first convolving the responses with a continuous kernel function and then discretizing
the output space into R intervals [m;_y,m;] ,j = 1,---, R. With this data manipulation.
smoothing (denoted by a tilde) followed by discretization, we obtain, from the IV available

stimulus-response pairs, a raw estimate of the information:

T2(s) = Y (il log, 2XC), gl 5 o7R() |

: (2.15)
IER pN(Z) ) seS

where the pn(-)’s are the experimental frequency tables, obtained by convolving the
actual experimental responses r; with some kernel distribution K(r,7;, o) (e.g., a gaussian
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one) and then integrating out the obtained probability density over the response intervals:

pn(ils) = — Ns ZE(T‘J Pn() = pa(s)bn (i (2.16)

SES

where E;(r;;0) is the integral (over the i-th interval) of the kernel function centered in

Tji

Ei(rj:o) :‘/ ’ drK(r,rj,0). (2.17)
m)_l

The sum over j in (2.16) is performed over all the actual responses to stimulus s and the
function A’ can depend on some parameter ¢ (such as the width in the case of a Gaussian
convolution) which can be a function of the data distribution® itself: o = = o(s,r;). For
large N the raw response distributions approach the underlying ones and thus we can

write:
Blils) = [ drEi(r:o)P(rls)  36) = 2 pls)pils) (2.18)
sES

Similarly, the estimate of the transmitted information tends to the information carried
by the smoothed underlying probabilities:

P(s) =" Blils)log, 51(32125) = 3" p(s)IP(s) . (2.19)

)
1IER ) SES

- Again, information values are in general dependent upon the smoothing and binning
procedure adopted and, most importantly, upon the number of bins R and, now, upon
the smoothing width. It is worth emphasizing that smoothing produces a fulther loss
of information on the top of loss due to discretization alone, and if the rationale for
smoothing is only to better control the finite sampling error, it is important to understand
whether much better control can indeed be achieved.

For the leading terms in the bias

<IB>-IP~CP < I2(s) > —IP(s) ~ CP(s) (2.20)
we now find the expressions ,
AD qzls) ﬂz_)_ T
s 2Nlow{z [(Zsz‘les)) o]~ ) .
5Dy qlils) — p*(dls) , P*(ils)a(ils)
O = g { R (IR
1 q(2)p(zls) — pals)p*(1) | . >

®In the following, in evaluating averages, we assume that the regularization parameters do not fluc-
tuate depending upon the outcome. When data-dependent parameters are used, we suppose that the
fluctuations in information measures due to variations in the parameters are subleadmcr with respect to
those due to fluctuations of Py(-).
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where ¢(-) are evaluated from the underlying probability distributions as follows:

)= [arPUrOBrls) a6 = Da)ills) . (223)

SES

The correction terms (2.21) and (2.22) are now dependent upon both the underlyving
probability and the chosen regularization. The first dependence raises, as in the discrete
case, the problem of how to estimate the corrections (2.21) and (2.22) from the data, and.
in particular, how to avoid undercounting the bins with non-zero probability over which
to take the sums in (2.21) and (2.22). If one convolves the responses with an infinite
range distribution, such as the Gaussian, no interval remains strictly emptyv after the con-
volution, and then the potential underestimation of the correction is less important than
in the discrete case. Even with a Gaussian convolution. however, some undercounting
might occur because of numerical truncation. If we suppose that the typical smoothing
width is small compared with the typical bin length, we can take the smoothing to have
significant effects only in the nearest intervals. In this case, an approximate form of the
averaged underestimation can be worked out ©:

CP— < (CP)y> = A(CP)

= 2N 1Og2{22 [1— 2—1{ ) (iIS)—ﬁ(‘i-i-lls)]N“‘}

SES
1

- m{i[l— p(i —1) = p(i) — (Z+1)]} (229

This approximate form for the underestimation of C'ID captures just the fact that, when
the smoothing width is small with respect to the typical bin length, in a bin the smoothed
probability p(i|s) can be considered null only if we do not have outcomes in the nearest
bins. In this case, A(CD) can be added to C’D to margmally improve the estimation of
the bias.

As for the validity of the bootstrap procedure, the fact that the correction terms
(2.21) and (2.22) are now also regularization dependent, further complicates the analvsis.
If the convolution width is not too large, we can expect that the procedure will tend to
overestimate the response range for some stimulus (due essentially to the same mechanism
which appears in the discrete case) and then to overestimate the bias in the case in which
one observes very different response ranges to different stimuli. Thus, in this situation
the shuffled information might be larger than the bias. On the other hand, when the
convolution width is large and data dependent (for example, determined by the standard
deviation of the responses to each stimulus, as in Optican and Richmond (1987)), or,
in general, when the regularization is data dependent (and then different for the actual

6An expression for / ACP can also be derived for the discrete case (in fact, a simpler and exact
expression). However, in that case, it gives typically large contributions which are themselves difficult
to estimate from the data so that in the discrete case it is much better to use the Bayesian algorithm
to estimate R R, instead.
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and the shuffled responses), the shuffled information might not be an upper bound to the
bias, but it might easily underestimate the bias, when reflecting a stronger regularization.
Thus, in this situations it is not safe to rely on the bootstrap procedure, either to correct
the raw estimate by subtraction, or to conclude, when the shuffled information is very
small, that the average bias itself must be small.

2.1.3 Neural network regularization

In this subsection we briefly review the neural network regularization introduced in Hertz
et al. (1992) and Kjaer et al. (1994), and we discuss how the bias can be calculated in a
similar fashion.

The idea of Hertz and coworkers is to use a two-laver network trained by back-
propagation to classify the neuronal responses according to the stimuli that elicited them.
The network uses sigmoidal activation for the nodes in the hidden layer and exponential
activations for the nodes in the output layer, with the sum of the outputs normalized to
one after each step. The input to the network is the quantified output of the biological
neuron: the spike count, the first n principal components or both. There is one output
unit for each stimulus, and, after training, the value of ‘output unit number ¢ is an
estimate P( |7) of the conditional probability that response r was elicited by stimulus
i. Summing over responses belonging to the same stimulus s, one finally obtains the
-conditional probability that a stimulus s is recognized as the i- th

(3 ZE (rj;w) | pn(i) = ZPN s)pn(is) (2.25)

se8S

where S

. 4
Eiryw) = — 21 Zi(Walli + By (2.26)
> j=1exp [Zi(WyiH + By))
-and the hidden unit activation function is given by:
Q
HI(T‘) = tanh Z WimTm + b (227)
m=1

In (2.26),(2.27), H; depends on Q variables r,,, chosen to describe the raw neuronal
response, whereas W, w, b, B are parameters for the neural network, selected according to
a certain optimization procedure (see below). After this regularization, the output space
becomes an S-dimensional discretized set, equivalent to the stimulus set, which could be
called the set of ‘posited stimuli’, and the conditional probability (z|s) (2.25) can be
interpreted as the conditional probability with which a response elicited by stimulus s
may be attributed to stimulus ;. ,

The parameters of the algorithm are controlled by cross-validation. The data are
divided into training and test sets, and, for each division, the training is stopped when
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the test error, defined as
Zlog2 sHr#), (2.28)

(the negative log-likelihood or crossed-entropy) reaches a minimum. In Eq.. (2.28) the
index x labels the trials in the test set, and s* is the stimulus that actually evoked the
response r* observed in that trial. Since parameters are adjusted on training data, and
information is calculated on test trials only, in the context of evaluating the finite size
bias, the parameter N is the number of test stimulus-response pairs. Without going
further into details of the procedure 7, is is sufficient, for our purposes, to remark that
the form of regularized probability distributions (2.25) is the same as in (2.16), except
that £;(r) is no longer evaluated simply by integrating a continuous kernel over the i-th
bin, but with the more complicated rule (2.26). This does not affect the result for the
bias, which are therefore the same as in subsection 2.1.2, with the only difference that
E;(r) must be computed from (2.26) instead of (2.17).

2.1.4 Convolution with continuous kernels

Finally, let us consider the case in which raw responses are manipulated by convolving
them with a continuous kernel function, as before, but without a subsequent discretization
of the output space. The raw information estimates now read:

Pr(rls). - - ..
/ dr Py (r|s)log, —gm In = s;&m(sﬂw(s), (2.29)

where the Py’s are the experimental distributions, obtained by convolving experimental
responses 7; with a continuous kernel function K(r,r;,o) :

Py(rls) = N_Z K{r,r;,o) Py(i) = Zp,v(s)IB,V{rls) , (2.30)

_7—1 SES

The sum over j in (2.30) is performed over all the actual responses to stimulus s. As N
increases, the raw response distributions approach the underlying ones:

/drl [s) K (7' r,0)  P(r) = S p(s)P(r]s) (2.31)

SES

and the raw estimates of information tend to:

- / drP(r|s) log, P(rls). =% p(si)f(s) . (2.32)

P(T) 7 ) SES

"However, it should be noted that the mutual information defined in Kjaer et al. (1994) (see also

eq. (3.8)) is not, in our opinion, fully equivalent to the mutual information carried by the regularized
probabilities (2. 19) :
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. The expressions we find in this case are:

Nlog 2 2P(rls) P(r]s)
1 Q(r)P(r|s) — P(r|s)P?(r) .
* 2N log 2 /d { ]52(7") } (2.34)
where:
(rls) = /drlP(rl{s)Kz(r, T1,0) @(r) = Zp(s)@(tlo) (2.35)
seS

In the continuous case, the problem of underestimation of the correction terms (2.33)
and (2.34), when calculated form data. is not important, since this problem is intrinsically
related to the discretization of the output space. This continuous case is rather academic
anyway, as in practice one usually performs the required integrals on the computer by
first discretizing and then taking sums. It remains true, however, that one is close to the
continuous limit, and the simple expressions above hold, whenever the discretization is
sufficiently fine with respect to the width of the kernel.

2.2  The bias with fixed number of trials per stim-
ulus

In the previous section we studied the finite size distorsions when the stimuli are drawn
at random from a discrete set. Here we present the result valid when, instead, the exper-
imental frequency of presentation of stimuli does not fluctuate, but it is set exactly to its
probability: py(s) = p(s). The calculation of the bias is very similar to that presented
for the previous case, but with the obvious difference that, in evaluating averages as in
(A.4)-(A.6), one has to average over responses in the same way as detailed in appendix
A, but not, as before, over py(s) with the multinomial distribution.

We report only the results for the case of convolution with a kernel K(r,r;,o) and
discretization into R intervals:

o _ L[S [ (3ls) |, pv@FGS)) .
P = | (S (ﬁ(ils)+ ) - R0 - sf e
Ay - L S [ dls) = Bils) | PGils) — Gils)
= Nl {“’f 25615 20 }

d
2Nlog?2 (1) = p%(1)

+
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where the notations is the same as in section 2.1. The results corresponding to the other
regularizations considered in the previous section can be easily derived by taking the
appropriate limits, as explained in Appendix A.

2.3 Tests of the range of validity of analytical re-
sults

To support these analytical results, and to compare different correction procedures, e
perform explicit numerical simulations. First we study the effects of two regularizations
often used in data analysis, pure discretization and convolution with Gaussians. on both
finite size effects and loss of information due to regularization. In addition, we compare
the effectiveness of subtracting C; terms with that of the bootstrap procedure. At the end
of the section, we use another set of simulated data to compare the jackknife correction
and the analytical subtraction. The neural network regularization will be considered in
next chapter, together with other decoding procedures.

Let us start by choosing as “test” underlying probabilities Poisson distributions, which are fair simple
models of the spontaneous activity of neurons under certain conditions (Abeles et al. 1990; Levine and
Troy 1986; Scobey and Gabor 1989). We generate the distribution of mean firing rates 7(s) corresponding
to each stimulus s by selecting a random variable z from a flat distribution in the interval [0,1), and
then setting
z
2a
The parameter a is, on average, the sparseness (Treves 1990) of the firing rate distribution. The number

of spikes n recorded on each trial over a period ¢ (t = 500 msec. in the present simulations) follow the
Poisson distribution

F:—log(l—— ) if r<2a F=0 if > 2, (2.38)

P(H’S) — [F(S)t]n exp—-[F(s)t] . (239)

n!

To measure, from N trials, the information carried by the firing rates generated in this way, we use
the following regularization procedure: the range of responses is discretized into a preselected number
R of bins, with the bin limits selected so that each bin contains the same number of trials within
+1 (equipopulated bins). A smoothing procedure is applied by convolving the individual values with a
gaussian kernel. The smoothing width has an overall multiplicative parameter v (successively increased in
the simulations to test how different convolution widths influence the finite size effect) and is proportional
to the square root of each value (the proportionality factor is set such that on average the smoothing

widths match yo,, where o, is the standard deviation of the firing rate of each stimulus).

Figures 2.1 and 2.2 show, for different sample sizes, how our correction procedure
‘improves both on raw estimates of mutual information and on the bootstrap proce-
dure of subtracting the shuffled information; moreover, the figures illustrate the effect of
smoothing the responses on the accuracy of information estimates. When no smoothing
is applied (fig. 2.1), the asymptotic value of discretized information (dashed line) is only
a few percent below the “true”, or unregularized, value (the full line). The finite sampling
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bias in raw information estimates becomes of similar size to the loss due to discretization.
and roughly compensates for it, only if as many as 256 trials per stimulus are available.
The bootstrap procedure reduces the bias to similar levels earlier, at roughly 100 trials
per stimulus (but note that the remaining bias is also downward and does not compen-
sate for the regularization loss). Our correction procedure using Bayesian estimates for
R, R allows the same precision already for N, ~ R (in this case, R = 16). In contrast,
using correction terms based on the number of response bins actually occupied, or on
the total number of bins, is not much more effective than the bootstrap or even raw es-
timates. When a weaker (fig. 2.2,top) or stronger (fig. 2.2,bottom) smoothing is applied
before discretizing the responses, the loss of information due to regularization becomes
much larger and more important than finite sampling errors. Nevertheless, the latter
are still controlled effectively by our correction procedures. Although the procedure is
less refined than in the discrete case. convergence to the asymptote is faster ((but the
asymptote is strongly downward biased, particularly in fig. 2.2,bottom). The conclusion
appears to be that smoothing with Gaussians does more damage than good, although
we note that (i) there may be other reasons for smoothing with Gaussians (e.g. avoiding
edge effects), and (ii) when it is known that the smoothing width is small with respect to
the relevant differences in the responses, smoothing may induce much smaller loss than
in our examples, with possibly faster convergence with sample size.

Figure 2.3 shows the value of subtracting the 5’11)(5) term in the case of conditional
information. In this case, no shuffling of the stimulus-response pairs would be applicable,
whereas it is evident that our subtraction yields reasonable results, bringing the corrected
values within the narrow range spanned by the difference between real and regularized
information values.

After having studied the effectiveness of the analytical and bootstrap corrections, let
us look at the jackknife procedure. The jackknife, introduced by Quenouville (1949).
is a non-parametric method which allows estimates of the bias of generic probability
functions. Let us briefly review this technique, by restricting ourselves to the case of
mutual information. For the more general case, and for an overview on non-parametric
estimators, we refer to the excellent review written by Efron (1982).

Quenouville’s method is based on sequentially deleting experimental responses r;.
and recomputing the mutual information I from N — 1, instead of N, data. Denoting by
In-1y(r;) the value of information obtained using all data points but r;, and introducing
the following quantity:

~ - 1 X
Ino = R?Z]N——l;(rj) ) (240)
N3
the Quenouville estimate of the bias has the following expression:
<In>-I=(N-1)(Iya- < In >) (2.41)

It is not difficult to see that the estimate (2.41) is based essentially, like our estimate.
on the assumption that only the 1/N contribution to the bias is important. In fact, on
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Figure 2.1:

Mutual information values for the distribution of stimuli and Poisson responses described in the text
(the sparseness of the mean firing rates is a = 0.4), with S = 16 and R = 16 and different values of \,.
This panel corresponds to pure discretization (v = 0). The full line is the real value of the information
in the distribution and the dashed line is the regularized value, that could be extracted from an infinite
sample of data, after the prescribed regularization of the responses. Compared to these reference values
are, for each N, the raw estimate (o), the estimates corrected by subtracting the C; term calculated
by estimating the relevant bins by counting the number of actually occupied ones (A), estimating the
effective bins with the Bayesian procedure described in the text (0), taking all bins to be relevant
(R = R = 16) (+) and the estimate corrected by the bootstrap method (%). Each value is plotted with

the standard deviation of the mean of 100 measurements. Note that the N, axis is on a logarithmic
scale.
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Figure 2.2:

Mutual information values for the distribution of stimuli and Poisson responses, as in the previous figure.
The two panels correspond now to Gaussian convolution with (top) v = 0.5; (bottom) v = 1.0. The
symbols are the same as in previous figure.
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Figure 2.3:

Values for the information conditional to which of S = 20 (simulated) stimuli was presented, plotted
against the mean rate 7(s) to each stimulus (on arbitrary scale). The firing rates are distributed with
sparseness a = 0.7. Again, the full curve indicates the real and the dashed one the regularized information

values; and the symbols indicate raw and subtracted measures, each with standard deviation of the mean
over 100 measures. Here R = 10, N = 300,~ = 0.33.
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one hand we know that < Iy > can be expanded in powers 1/N, eq. (2.5), and the
coefficients (namely C.,) do not depend on N. On the other hand, Ty_; can be expanded
n the same way (and with the same coefficients) in powers of 1/(./\’ —1). Using the two
expansions, one can easily verify that the quantity obtained by subtracting to < Iy >
the bias estimate (2.41), is biased only O(1/N?), compared to O(1/N) for the naive
estimator.

To test the effectiveness of the jackknife versus the analytical correction, we use
here the ﬁrm«T rate distributions obtained by a model of the response of parvocellular
and magnocellular LGN cells to a set of 32 visual stimuli. This model, introduced by
Golomb et al. (1994), is explained in more detail in section 3.1.1. What is interesting
here is to compare the asymptotic value of the information, carried by the underlying
probabilities, to the value one can obtain from a finite number of samples. Here we
regularize the responses by pure discretization, choosing R ~ N, to be at the limit of
the region where the correction procedure, as we have seen before, is still expected to
work. In this case the downward bias produced by discretization is small, because each
response, quantified as the number of spikes over 250 ms after the stimulus onset, is just
an integer ranging from 0 to the maximal number of spikes (denoted in the following as
NOSmax, and equal to 25 for the parvocellular cell and 34 for the magnocellular cell). If
N > NOSp.y, it is thus enough to fix R equal to 1 + NOSpax. In fig. 2.4 we compare
the true information values to the estimate obtained from limited samples with both our
procedure and the jackknife. We see that the two corrections give similar results, as
expected, but our method converges more rapidly to the asymptotic information value.

The effects of neural network regularization will be separately discussed in next chap-
ter (sec. 3.1), since it is a regularization procedure, and not a correction for finite
sampling.

2.4 Comparison among different correction proce-
dures

In this section we summarize the results we have obtained, with the work presented in
this chapter, about the relative value of various correction procedures.

2.4.1 Bootstrap

This procedure is flawed in several ways:

e Subtracting the bootstrap correction does not cancel the leading 1/N contribution
to the average error, and typically the bootstrap strongly overestimates the bias.

e Data regularization can affect the raw and shuffled information to different degrees.

,
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Figure 2.4:

Mutual information values extracted from the firing rates distributions of LGN magnocellular (top) and
parvocellular (bottom) cells, in response to a set of 32 Walsh pattern. The simulated responses are
generated as explained in section 3.1.1. The full line is the real value of the information contained in the
distributions. Compared to this reference value are, for each N, the estimates corrected by subtracting

the Cy term (0) and the jackknife estimator (A), each with standard deviation of the mean over 100
measures. : : :
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In conclusion, there is no way, valid for generic probability distributions, to relate the
value of the shuffled information to the bias, and we do not recommend the use of this
method anymore.

2.4.2 Neural Network

This method, instead of correcting for finite size effects, squeezes the experimental re-
sponses through an artificial neural network, trained so as to maximize the probability
that a stimulus is correctly recognized. So, this procedure is more properly classifiable
as a “decoding”, or regularization, instead of a “bias correction”, technique. Computer
simulations indicate that the regularization induced by the network is strong enough to
dispose of the finite sampling bias, at the price of underestimating information values,
especially for higher dimensional codes, which are more strongly regularized. This strong
regularization is not necessary with regard to low dimensional and simple codes, like sin-
gle unit firing rates, which can be studied with high precision using a simple “binning and
_correcting” technique. When high dimensional codes are concerned, the network is still
able to control finite size effects, but better estimates can be often achieved with milder
decoding procedures coupled with finite size corrections. These decoding procedures will
be introduced and discussed in the next chapter.

2.4.3 Analytical estimator

When responses are regularized by discretizing into R bins, our corrections works even
down to Ny ~ R. When convolutions with continuous distributions are applied before
discretization, the convergence of the finite sample correction is even faster, at the prize
of a further loss of information due to regularization.

2.4.4 Jackknife

The jackknife is essentially based on the same assumptions leading to our analytical
corrections, and allows estimation of the bias while avoiding the explicit calculation of
the latter. Results obtained with the jackknife seem to be fairly similar to those that can

be obtained by subtracting the C; term. The main problems with the jackknife estimator
are:

e It involves recalculation of N + 1 information quantities. This make the procedure
inapplicable to the study of information carried by large populations of cells. In
fact in this case, due to the large dimensionality of response space, information
has to be extracted through time consuming decoding procedures, and each single
recalculation of information can require a lot of time.

e It involves subtraction of two quantities of order N, and thus it suffers from the
same imprecision of any algorithm that determines a quantity as the result of the
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subtraction of two large and nearly equal terms. This ultimately leads to a slower
converge with NV towards the asymptotic result.

However, this correction, unlike the bootstrap one, is based on meaningful assump-
tions and can lead to unbiased estimates. -

2.5 How best to choose the number of bins?

In previous sections we have discussed the possible problems arising when convolving
data with continuous distributions, and established the range of reliability of our cor-
rection, which in the discrete case works even down to Ny >~ R. Given the effectiveness
of the binning procedure, we recommend limiting the regularization to simple binning.
unleéss motivated by other considerations (e.g., that presented in sec 2.3, or. when the
dimensionality of responses is so big. that it is impossible to distribute, among the various
dimensions, the allowed bins in some meaningful way). The important question, of the

“optimal choice” of the number of bins for an experiment with S stimuli and N, trials per
“stimulus, still remains. A reasonable answer to this question can be to choose R ~ N;. to
be at the limit of the region where the correction procedure is expected to work, and thus
still be able to control finite sampling, while minimizing the downward bias produced by
binning into too few bins . This choice should effectively minimize the combined error
due to regularization and finite sampling. In fig. 2.5 the information estimates obtained
by choosing R = N, are compared, for different values of A;. to the full, unregularized.
value of the information carried by the Poisson distribution of responses introduced in
sec. 2.3. It can be noticed that, in this situation, results appear to be a reasonable
estimate of the full value of the information in the whole N, range explored.

The subtraction procedure based on binning indicates how to work out the minimum
number of trials which should be used in experiments. The analytical correction functions
reasonably up to IV, ~ R, and the minimum number of response bins which may, if the
appropriate code is used, not throw away information, is just the same as the number of
stimuli, R = S. Therefore a minimum of N, = S trials per stimulus is a fair demand to

be made on the design of experiments from which information estimates are going to be
derived.

8The choice of the number of bins in each dimension, for a multidimensional code, remains however
somewhat arbitrary, and particularly subtle when comparison among codes of different dimensionalities
are concerned. This problem will be discussed in next chapter (sec. 3.1)
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Figure 2.5:

Mutual information values for the distribution of stimuli and Poisson responses described in the text.
Here ¢ = 0.4, S = 16 and R = 16 and the response space is purely discretized. The symbols have the
same meaning as in fig. 2.1. Note that for N, = 16, also R = 16 and the result is the same as shown in
fig. 2.1. For higher values of N, results approach the unregularized value of the information, whereas
in fig. 2.1 they approached the value regularized with R = 16 bins.



Chapter 3

Applications of information

theoretical analyses to neuronal
data

In chapter 2 we have studied how to minimize the (downward) bias due to regulariza-
tion in information measures, while being still able to control finite sampling. In this
chapter we wish to discuss, by examples, how to apply our results to information theory
based experiments, involving different types of neuronal codes. The degree of accuracy
to which each problem can be studied will lead us to discuss which kind of questions re-
garding neural codes can be reliably investigated, and to introduce information-theoretic
quantities that can help in understanding the modalities of neuronal representation.

This chapter is organized as follows. In the first section, we discuss, using detailed
simulations of responses of LGN cells to visual stimuli, the degree of accuracy to which
we can quantify the role of temporal modulation of responses in information processing.
The problem is made particularly difficult as it involves comparison of codes of different
dimensionalities (e.g., firing rates versus a few principal components of the spike train).
We find that one dimensional codes can be studied by the simple binning with a verv
high degree of accuracy, whereas higher dimensional codes (like the three first principal
components) can be studied only within 5-10% of the correct values. Raw measures
(Optican et al. 1987), or measures corrected with more empirical procedures (Optican et
al. 1991) give strongly biased (and thus useless) results. The second section is specialized
to the case of information contained in the firing rates of single cells. We will discuss
how to use the high precision of these information measures to study the contribution
of different properties of the neuron, such as noise or the graded nature of responses,
to the information processing at different time scales. Furthermore, we show that the
initial rate at which a neuron transmits information depends only on the mean firing

rates, and is simply related to the sparseness of the neuronal representation. Section
3.3 is devoted to the extraction of information from large population of cells, a problem
which is particularly interesting, since data from simultaneous recording of groups of

29
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neurons are becoming available, and is particularly difficult, due to the large dimension
of the response space. Since in this case the simple binning alone is no more enough. we
introduce, discuss and test different decoding procedures.

In each section we provide examples of how our techniques could be used to analvze
neuronal responses. In particular, we report original results of a study of the neural
coding strategy used by single units, and by populations of neurons, in the primate
hippocampus and in the rat somatosensory cortex.

3.1 Information contained within the spike train of
single cells

One of the most basic questions about the neuronal code is what is the relevant parameter
for information processing at the single cell level. An answer to this question involves
a comparison between the amount of information contained in the firing rates and in
the full temporal structure of the spike train. A complete description of the latter could
be given by dividing the recorded time window into temporal bins smaller than the
refractory period, and assigning a binary value (1 or a 0) to every bin in which there
is, or there is not, a spike. A precise extraction of information from this complete
characterization of the spike train as a binary string has been carried out in studies of the
sensory periphery of the fly nervous system (Strong et al. 1996), but it requires so much
data that it cannot be performed for the mammalian cortex. In the latter case however,
principal component analysis can be used to compress the response space with minimal
information loss (Optican and Richmond 1987). If a few principal components (PCs) are
enough to reconstruct with fidelity the spike train, or at least only a few PCs contribute
significantly to information processing, the experimental study of the role of temporal
modulation in information processing can be performed by comparing the amount of
information carried by firing rates and by those PCs of the spike train. The difference
between these two entities is however difficult to quantify. In fact it involves calculation
of informations which are very differently biased, as they are carried’ by responses with
different dimensionalities. The difficulty of overcoming this problem has led, in the last
few years, to a series of paper reporting opposite results (see e.g., Optican and Richmond
1987; Optican et al. 1991; Tovée et al. 1993; Kjaer et al. 1994).

In this section, we test procedures designed to overcome this problem, to make it clear
which results present in the literature should be considered correct. We perform the test
by comparing mutual information calculations from large data sets with those calculated
from smaller ones. The only way to get such large data sets is through simulations. We
use here the database of artificial spike trains created, by David Golomb, by means of a
model of the response of lateral geniculate nucleus (LGN) neurons (Golomb et al. 19953).
The model is based on experimentally-measured spatiotemporal receptive fields of LGN
neurons (Reid and Shapley 1992). We apply the procedure of binning-and-correcting,
discussed in chapter 2 (here binning means that we regularize the response space by
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pure discretization). We discuss how to perform the discretization when a comparison of
codes of different dimensions is concerned. Furthermore, we use the same set of simulated
data to test also the neural network method of estimating the conditional probabilities
(Heller et al. 1995, Hertz et al. 1992, Kjaer et al. 1994). We find that both methods
vield accurate results for one-dimensional codes, even for a relatively small number of
samples. Moreover, estimates of the extra information carried in three-dimensional codes
are also reasonable, within 0.05-0.1 bits (about 10%) of the correct values, although the
network appears to give results more biased downward than those obtained with a very
simple binning procedure. Raw measures (Optican et al. 1937), or measures corrected
with more empirical procedures (Optican et al. 1991) give instead strongly biased results.

3.1.1 Methods

Producing simulated data

The spike trains are created using a model of the response of parvocellular and magnocellular LGN
cells, as described in Golomb et al. (1994). In brief, the spatiotemporal receptive fields R(7,t) of the
two cells types in response to an impulse in space and time were measured (Reid and Shapley 1992;
data presented in Fig. 1 of Golomb et al. 1994). The set of stimuli {o,},s = 1---5(=32) includes 4 x 4
flashed Walsh figures in space and their contrast reverse:

ou(7, 1) = w (MO() (3.1)

where u,(7) are the spatial Walsh figures and ©(¢) is the Heavyside function (©(¢) = 1 if ¢ > 0 and is 0
otherwise). The ensemble-average response to the sth figures Z, (t) is calculated by centering it on the
receptive field center, convolving it with the spatiotemporal receptive field, adding the constant baseline
Zp corresponding to the spontaneous firing, and rectifying at zero response:

Z;(t) =0 {ZQ +/dF/t dt' R(F,t —t') U(F,t')} (3.2)

The response Z,(t) for Walsh figures is shown in Fig. 5 of Golomb et al. (1994).

Realizations of spike trains are created at random with inhomogeneous Poisson statistics, using the
average response as the instantaneous rate. The probability density of obtaining a spike train As (1),
with k spikes at times t; ...t; during a measurement time 7T, is

P(As (t)|os) = P(ty...tlos(F 1)) = %,—[HZS (ti)} exp (—/0 Z () dt’) . (3.3)

A set of 1024 simulated responses for each of the 32 stimuli is used for testing the information calcula-

tion procedures. The asymptotic estimate of transmitted information is calculated using 10° trials per
stimulus. : ‘

Response representation

The neuronal response to a stimulus as represented by the spike train is quantified by
several variables. One is the number of spikes (NOS) in the response time interval, taken
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here to be 250 ms. The others are the projection of the spike train into the n PCs
(Richmond and Optican 1987; Golomb et al., 1994). We concentrate here on the first
principal component (PC1) and on the first three principal components (PC123).

Information estimation

We describe here briefly the methods that we have used for estimating information from
neuronal responses. We simulate an experiment in which a set of S stimuli is presented
at random. Each stimulus is shown .\, times; here N, is the same for all the stimuli. The
total number of visual stimuli presented is N = SN,. Different methods have been used
to evaluate asymptotic (“true”) results {calculated using 10° trials per stimulus), and to
calculate information from small data samples: ,
Summation over the Poisson distribution. The asymptotic value of the transmitted
information carried by the number of spikes NOS can be calculated directly by summing

over the distribution. For each stimuh~ here, the number of spikes NOS is Poisson dis-
tributed with an average NOS = Jo Z(t)dt. The transmitted information (2.2) becomes

I(S;NOS) = — 3" P(NOS)log, P(NOS) + -]\1[—2 > P(NOS|s)log, P (NOS|s) (3.4)

NOS $ s NOS

This sum is discrete and is calculated using the Poisson probability distribution P (NOS|s). .
The sum over NOS from 1 to oc is replaced by a sum from 1 to NOSp.c = 36; taking
. a higher NOS,,.x has only a negligible effect on the result. Using this method the mu-
tual information can be calculated exactly, but only when the firing rate distribution is
known.

52‘razghtf0rward bznnzng (Golomb €7 al. 1994). This method is used to evaluate asymp-
totic values of information contained in principal components. Since the true underlying
probabilities cannot be written explicitly, as in the NOS case, we perform the calculation
by means of a simulation with a very large number of trials per stimulus (10%). As we
shall discuss, this allows us to keep negligible both the systematic errors due to finite
sampling and regularization. :

The principal components used here are calculated from the covariance matrl\z C(t,t)
formed over all responses in the set under study

C (¢ sw Z Z Aot = A®)] [Asu() - A)] (3.5)

S s=1pu=1

e

where A, () is the uth realization of the response to the sth stimulus and A(t) is the
average response over all the stimuli and realizations

N

Z As,u(t) : ’ » | (36)

s=1 p=1

T 3N,
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The eigenvalues of the matrix C' are labeled according to a decreasing order; the cor-
responding eigenvectors are ®(t), ®2(¢)... The expansion coefficients of the neuronal
response A; ,(t) are given by

T
gpm = % JAEZWE N0 (3.7)

Fach response is then quantified using the coefficients of the first n principal components,
and these are used as the response representation. The number n of coefficients used
for quantifying the response is referred here as the code dimension. The maximal and
minimal values for each component are found, and the interval between the minimum and
the maximum of the mth component is divided into R(m) bins. The mutual information
is calculated from the discrete distribution obtained. The n-dimensional response space
1s therefore divided into R = [[_; R(m) n-dimensional bins. For PC123, we choose
R(1) = 36, R(2) = 20, R(3) = 20. The mutual information carried by the first principal
component only, PCI, is calculated in a similar way with R(1) = 36. The downward
bias due to the finite binning is expected to be small when using such a high number
of bins. For example, with PC1 and our simulated data set, using R(1) = 36 results in
underestimating the mutual information by ~ 0.01 bit in comparison to R(1) = 300.

Binning with finite sampling correction.

Mutual information is calculated from the frequency table and then the bias correction
is subtracted. The method was explained in detail in chapter 2, but we remark a few
facts, just to explain how the technique can be adapted to the problem.

L. I. For each dimension, equipopulated bins are used. For a one-dimensional code (NOS.
PC1), the bin-size varies across the response dimension, with non-equal spacing, so that
each bin gets on average the same number of counts. For a three-dimensional code
(PC123), the equipopulated binning is done for each dimension separately. The use of
equipopulated bins is an attempt to minimize, keeping fixed the number of bins, the
information loss due to discretization. : .

II. The choice of the number of bins RB(m) in each dimension for an experiment with S
stimuli and NV, trials per stimuli remains somewhat arbitrary. Here we choose R ~ N,
to be at the limit of the region where the correction procedure is expected to work,
and thus still be able to control finite sampling, while minimizing the downward bias
produced by binning into too few bins. For the number of spikes, NOS, however, each
response is just an integer ranging from 0 to the maximal number of spikes (NOS .z, 25
for the parvocellular cell and 34 for the magnocellular cell), so even if we allocate more
bins than this maximum, the extra ones will stay empty. For a multi-dimensional code
(e.g., PC123), we allocate a number of bins R(m) in the m-th direction in relation to
the amount of mutual information carried by this principal component alone, as shown
in Table 3.1. When differences between different codes are calculated, we use the same
numbers of bins in the relevant dimension. When PC1 and NOS are compared, we use
the same number, R as for PC1; in this case, many bins for NOS stay empty. For
comparing PC123 and NOS we use the same number of bins for NOS as for the first
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principal component, which is the richest in information among the three (e.g., 8 for
N, =128). In this way we compare quantities calculated in a homogeneous way.

Neural network. (Hertz et al. 1992; Kjaer et al. 1994)

A two-layer network is trained by back-propagation to classify the neuron’s responses
according to the stimuli that elicited them, as explained in more detail in section 2.1.3.
The input to the network is the quantified output of the biological neuron: the spike
count, the first n principal components or both. There is one output unit for each
stimulus, and, after training, the value of output unit number s is an estimate P(s|r) of
the conditional probability P(s|r). The mutual information is then caleulated from these
estimates using the following formula:

I(S;R) = <Z P(s|r) log, [PP((S)D (3.8)

The average over the response distribution in (3.8) is estimated by sampling over ran-
domly chosen data points.

N, 16 32 64 128
R for NOS 16 1 4+ NOSpae |1 4+ NOSpez | 1 + NOS,
R for PC1 16 36 63 128
R(1) x R(2) x R(3) (PC123) |4 x2x2| 6x3x2 Tx3x3 8§ x4 x4

Table 3.1:

Number of bins R used for the various codes and numbers of trials N,.

A.

R=R(1)xR2)xR(3)|Tx6x3|8x4x4|10x4x3[15%x3x%x3
Parvocellular cell 0.145 -0.135 0.125 0.114
Magnocellular cell 0.289 0.289 0.291 0.289

B.
hidden units, learning rate | 6 . 0.0003 | 6, 0.001 | 10, 0.001 | 6 , 0.003
Parvocellular cell 0.121 0.127 0.123 0.113
Magnocellular cell | 0.219 0.201 0.219 0.206
Table 3.2:

Difference in mutual information I (S; PC123) — I (S;NOS) (bits) for N, = 128 and: A. Several binning
schemes; B. Several network schemes. The standard deviations of the difference are about 0.01.
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3.1.2 Results

We calculated the information carried about a set of 32 Walsh patterns by the simu-
lated neuronal response quantified by the number of spikes I (S; NOS), the first principal
component [ (5;PC1), and the first 3 principal components I(S;PC123) (Fig. 3.1)
The arrows at the right side of the panels in Fig. 3.1 represents the asymptotic values
calculated from simple binning using 10° trials per stimulus (for the parvocellular cell:
I(S;NOS) = 0.857, I(S; PC1) = 1.003 and I(S; PC123) = 1.033; for the magnocellular
cell, I{S; NOS) = 0.246, I(S; PC1) = 0.456 and I(S; PC123) = 0.535). These figures
show the estimated transmitted information for N, = 16,32, 64,128, and for two sample
cells: magnocellular and parvocellular. The parvocellular cell has sustained activity over
an interval of 250 ms, whereas the magnocellular cell is active mostly over the first 100
ms. The magnocellular cell has more phasic responses (Golomb et al, 1994). Thus. we
expect the multidimensional codes to capture a larger proportion of the information in
its responses. A simple rate code is more likely to be an acceptable zeroth order descrip-
tion of the parvocellular cell. The results we obtain (compare panels A and C, D and F.
respectively, in Fig. 3.1) bear this expectation out.

All of the calculations show that the first principal component is more informative
about the stimulus than the spike count. As expected, this effect is especially strong for
the magnocellular cell, as the first PC weighting function suppresses contributions from
the spikes after the first 100 ms, which are mainly noise.

Fig. 3.1 shows that the raw binning is strongly biased upward (see above). The
difference between the estimates made with raw and corrected binning almost does not
vary with N, for PC1 and PC123. This is because, as discussed above, the first-order
correction term (Eq. 2.6) is approximately proportional to R/N;, which we choose to
keep roughly constant in our calculation. As mentioned above, for NOS there is no point
choosing R above 1+NOS,,,,, hence the correction term, and with it the raw estimate.
decreases as N, is increased.

Both the corrected binning method and the network method tend to underestimate
the information in PC1 and PC123 (the only counter-example is shown in Fig. 3.1E,
where the binning method overestimated it). This is because both methods involve a reg-
ularization of the responses (explicit in the binning, and done implicitly by the network).
and, as described above, a regularization always decreases the amount of information
present in the raw response. For example, the corrected binning method underestimates
the information whenever the number of bins is too small to capture important features
of the probability distribution of the responses. Therefore, the effect is strong for PC123
when the number of bins in the direction of the first PC is not large enough, and the
bias downward decreases with increasing N, because the number of bins increases too.
The underestimation does not occur with NOS because the maximal number of spikes in
our examples is around 30, and there is no meaning to using finer binning. In general,
the underestimation due to regularization is more prominent for the higher-dimensional
code (PC123) because the effect of adding more bins in each dimension is stronger when
the number of bins is small. ‘
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In Fig. 3.2 we present the differences I (§;PC1)—1(S; NOS) between the information
carried by PC1 and NOS, and 7 (§;PC123) — I (S;NOS), between PC123 and NOS. For
all the cases considered here the network yields a value for the extra information that is
biased downwards. This shows that the network automatically regularizes responses, and

-apparently the regularization is stronger for the higher-dimensional code. The corrected
binning technique, on the other hand, gives both downward- and upward-biased values
for the extra information, in this instance downwards for the parvocellular cell. However,
results obtained with the simple corrected binning procedure appear in general more
accurate, both for lower and higher dimensional codes.

Since the choice of number of bins along each dimension is somewhat arbitrary for

a multi-dimensional code, we checked the effect of using different binning schemes for
Ng = 128. The results are summarized in table 3.2A. The information differences for the
parvocellular cells are in a 30% range; the information differences for the magnocellular
cells are all nearly the same, no matter which method is used. Thus, even in the least
~ favorable case, information differences using different binning schemes remain in the
range of the remaining (downward) systematic error, about 30%. In a similar way, we
varied the parameters of the network: the number of hidden units and the learning rate.
The difference in information varies within 10% for both cells, indicating that changes in
these parameters are less important than the downward bias due to the regularization.
The test error for the various network parameters is quite similar, with differences within
0.4% for both cell types. Thus, it is difficult to determine the best result of the network
- just from this number.

-

3.1.3 Dichssibn

The results of the simulated experiment presented here illustrate well the problems oc-
curring when estimating information from neuronal activity, and in particular they show
that (i) information measures are specific to the stimulus set considered, but also they
are specific to the quantity/ies chosen to quantify neuronal responses; (ii) information
measures are affected by limited sampling, which results typically in an upward bias,
but also, since it is always necessary to regularize continuous responses, they may be
affected by the regularization, which results in a bias downward; (iii) the introduction
of a technique which eliminates (or at least reduces) the finite sampling error leads to a
choice of milder regularizations, and thus also to a decreasing of the relative downward
bias. '

When a simple binning of the responses was used, raw information measures were
strongly biased upward, and thus it was necessary to apply a correction for limited sam-
pling. If one follows this procedure, the only parameter that has to be set is R, the
number of response bins, but results are strongly dependent on the choice of R. If R
is chosen too large, subtracting the term C;, Eq. (2.6). will not be enough to correct
for limited sampling (see also Treves & Panzeri, 1995); while if it is chosen too small,
a strong regularization will be imposed and information will be underestimated. The
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Figure 3.1:
The information about a stimuli set of 32 Walsh figures conveyed by the neuronal response of model
parvocellular (A-C) and magnocellular (D-F) cells, as estimated by various methods. The response
is quantified by the number of spikes (A,D), the first principal components (B,E) and the first three
principal components (C,F). The mutual information is estimated by straightforward equipopulated
binning (dotted lines), equipopulated binning with finite sampling correction (dashed lines) and a neural
network (solid line).. The numbers of bins for each code and N, are shown in Table 3.1. The neural
networks has 6 hidden units and a learning rate of 0.003. The arrows at the right indicate an asymptotic

value (very good approximation for the “true” value) obtained with equi-spaced binning with 36 x 20 x 20
bins and 10° trials per stimulus.
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Figure 3.2:

Differences between measures used for quantifying the response of a parvocellular cell (A,B) and a
magnocellular cell (C,D). We show in A and C the difference between the information carried by the the
. first PC and that carried by the number of spikes, and in B and D the difference between the information
in the first three PC’s and that in the number of spikes. Dashed lines indicate results obtained from
normalized equipopulated binning; solid lines indicate those from the neural network.

In (A,C) the number of bins is 16 for N = 16 and 36 for N > 32. In (B.D) the number of bins in the
first three principal components is as given in Table 3.1, and the number of bins for NOS is equal to
R(1) in that table, i.e., to the number of bins for the first PC (4,6,7 and 3 respectively). The arrows at
the right indicate an asymptotic value obtained with equi-spaced binning with 36 x 20 x 20 bins and 10°
trials per stimulus. .
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present results indicate that it makes sense to set the number of response bins at roughly
the number of trials per stimulus available, R ~ N,. Cj is inversely proportional to the
number of trials available and, roughly speaking, directly proportional to the number of
response bins, and this choice approximately balances the upward bias due to finite sam-
pling with the downward one due to the regularization. Choosing the number of bins for
each of the first three principal components in PC123 was more delicate that for NOS or-
PC1, and tended to yield a stronger downward bias in information values. This suggests
that the use of the binning procedure alone becomes insufficient for higher dimensional
codes, when it could be impossible to distribute among the various dimensions the R al-
lowed bins in a meaningful way. One useful procedure for the computation of information
contained in high dimensional codes is to use decoding to extract the relative probabilities
of the stimuli from the responses and thus to reduce the original set of responses to the
size of the stimulus set (Gochin et al, 1994, Rolls et al, 1996d). Decoding procedures
based on stimulus reconstruction will be discussed in section 3.3.

Wehave shown that the amount of information carried in the firing of a single neuron
during a certain time interval about a set of stimuli, and quantified by a certain code.
can be estimated with a reasonable accuracy (within 10% if the dimensionality of the
code is 1-3), even using a simple binning and correcting procedure. It is evident that the
introduction of an analytical correction for finite sampling makes the predictions more
reliable by about an order of magnitude, when compared with very empirical (Optican
and Richmond 1986; Optican et al. 1991) statistical techniques.

Considering the results obtained with the network, we note that for all the cases
considered, the network underestimated the mutual information, and also the extra infor-
mation in the temporal response in comparison to the number of spikes. This indicates
that the regularization induced by the network is enough to dispose of the finite sampling
bias, at the price of underestimating information values, especially for higher dimensional
codes, which are more strongly regularized. Information values generally increase weakly
with N, which indicates that the regularization induced has decreasing effects as N be-
comes large. Since the underestimation is stronger for 7(S;PC123) than in the case of
unidimensional codes, estimates of the extra information in the second and third prin-
cipal components (Fig. 3.2) are also biased downward. Several parameters need to be
set when the network is used. Some (e.g. the number of iterations) can be set by cross-
validation. Others (e.g. the learning rate) have little effect on the results across a broad
range of values, as indicated in Table 3.2. An interesting aspect of the network proce-
dure is that it effectively incorporates a decoding step, and as such can be immediately
applied to high dimensional, e.g. multiple single-unit, data. Nevertheless, as we shall
see in sec. 3.3, better estimates can be achieved with milder (and more transparent) de-
coding procedures, coupled with finite sampling corrections. These decoding procedures
are expected to give, unlike the neural network, estimates of increasing precision as the
number of cells in the sample increases.

In this section, principal components aré used for quantifying the data with a low-
dimensional code, because the first principal components carry most of the difference
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among the responses to different stimuli (Golomb et al. 1994). However, principal com-
ponent analysis is nonessential to our procedure for handling finite sampling problems:
any kind of n-dimensional response extracted from the neuronal firing patterns can be
used, e.g., PC123s, or the firing rate vector of a population of neurons. Our procedures
of finite-sampling corrections were demonstrated here on stimuli with a sharp onset in
time. They are applicable, however, also to continuously changing stimuli (after a suit-
able discretization), as long as the response to each stimulus is measured during a fixed
time interval 7', and stimuli are either discrete or have been discretized.

The network procedure needs a long computational time. A typical calculation for
N, =128 and 32 stimuli runs for about 7 CPU hours on an SGI-ONYX computer. The
binning-and-correcting technique is much faster, and most of the CPU time is taken up
by sorting responses in order to construct equipopulated bins. For I(S;NOS), which
involves no sorting, a calculation with N; = 128 runs for less than 1.8 seconds on an
HP-Apollo computer.

3.2 The kinetics of the information conveyed by fir-
ing rates

Although temporal modulation can be relevant in certain situations, there is evidence
that the rate at which it emits spikes is, for a neuron, an important way of coding infor-
mation (e.g.. Tovée et al. 1993; Rolls et al. 1996a). Moreover, most of the neural network
models introduced to understand some of the brain functions, are based on firing rates
(Amit 1989). The aim of this section is to discuss how a quantitative experimental anal-
ysis of information contained in the neuronal firing rates, which can be performed very
accurately for single cells, can help in using neural network models at a more quantitative
level. '

A most prominent correlate of the average amount of information in the firing rate
of a neuron is the sparseness of the distribution of mean rates to each of the stimuli
(Skaggs et al. 1992). Sparse firing, with only a small fraction of the stimuli evoking
substantial responses (an example being place-related firing in the rat hippocampus),
carries little information, whereas a more even use of its own firing range allows the neuron
to transmit more information (as e.g. -in the monkey temporal visual cortex, Rolls and
Tovée (1995b)). Relating information and sparseness is made particularly interesting by
the fact that the effects of sparseness have been analyzed in several models, for example
in associative memory networks, in which sparse coding, while reducing the information
content of each stored pattern, increases the storage capacity of the system (Tsodyks and
Feigel’'man 1988; Treves and Rolls 1991). ' »

At fixed sparseness, there are at least two more aspects of the firing which are im-
portant in determining how informative it is. The first is how variable, or noisy, are
responses to the same stimulus. The second is how close the distribution of mean rates
is to being binary or bimodal, or conversely how graded is the response of the cell. Both
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aspects are often neglected in the construction and analysis of theoretical models, mak-
ing the correspondence between such models and real neurons less direct. Many simple
models, and a lot of common sense intuition, are based on noiseless binary variables. De-
viations from this idealized case have opposite effects: noise always reduces information
transmission, whereas a more graded response enhances it. The net effect depends on
the time the neuronal activity is sampled for. Here we discuss how to analyze the firing
of real cells, on different time scales, in these terms. In particular, we introduce a simple
formula for information transmission rates valid for short recording times, and relate it
to the sparseness of the neuronal representation. Further, we provide examples, from
single cells recorded in the rat somatosensory system, in the primate temporal visual
cortex, and in the primate hippocampus, of the role of noise and of the graded nature of
responses in single unit information processing. At the end we discuss how to extrapolate
these results to the multiunit case.

We believe that a systematic analysis of neuronal activity done in these terms could
- provide useful insights for quantitative models.

3.2.1 Time-derivatives of the information.

The neuronal responses considered here are the rates, r, recorded from a cell in corre-
spondence with a given stimulus, s. Rates are measured simply by counting the number
of spikes in a given time window [to,%o + t], and hence are just positive integers, (except
they are divided by ¢ itself). The specific information about each stimulus, and the av-
erage transmitted information, can be written, according to the notations of chapter 2.
as a function of response probabilities and of the recording time ¢:

I(s,t) = >_p(rls)log,lp(r]s)/p(r)]. (3.9)
I(t) = ZZp(s,r)log.zM . (3.10)

SES T . p(s)p(r)

In the case of spike count, which is a discrete response variable, the natural regulariza-
tion, when measuring (3.9,3.10) on the basis of N events, is the discretization into R
response bins. When rates are computed from a time window short enough that the
maximal number of spikes recorded is not too high, the responses are already binned, no
regularization is necessary, and, provided finite sampling effects can be controlled, one
measures in fact the “true” underlying information. In particular, as the window shrinks
to zero, the number of bins eventually reduces to just two (one spike or none), which
implies that a) responses are binary and b) naive estimates can be easily corrected even
with just a few trials per stimulus, subtracting a small C; (2.6) correction.

To study the initial rate at which information accumulates from time to, one can also
consider directly its time-derivatives at ¢,, which can be calculated by approximating
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I(s,t) by the Taylor expansion

I(s,t) =1t Li(s) + g Iy(s) + ... | (3.11)

where [;(s), I1:(s) are the first two time-derivatives of I(s,t) calculated at to. The first
derivative! is universal, i.e. independent of firing statistics, while the second takes a very
simple expression under the assumption that the firing of the cell is purely Poissonian
(note that it can be singular, instead, in other cases). To first order in t, if the spike
train of the cell is a stationary random variable, so that the expected firing rates r(s) are
well defined, the probability p(n|s) of emitting n spikes in the time window is determined
solely by the mean rate r, to each stimulus s. The latter statement is also true to the
second order in ¢, but only with the further assumption of Poisson statistic. To second
order in ¢t we have

p(0]s) ~ 1—trs+(tf;)2
p(lls) =~ try(1—tr,) (3.12)
L ) |
p2ls) = =
p(n > 2|s) =~ 0

Denoting with 7 = Y, p(s)rs the grand mean rate to all stimuli, and with
a=7"/> p(s)r (3.13)

the sparseness (Treves and Rolls 1991) of the rate distribution, we get

T — T,

In2

I(s) = r,log, fr— + (3.14)

and for Poisson statistics

7(2rs —7)(1 — a) .

Pois .
L% (s) = r’log, a + )

(3.15)
It can be easily seen that I;(s) > 0, while I5°*(s) can be positive or negative (but
If** = (*/aln?2)lna + (1 — a)] < 0, implying that for Poisson statistics the rate of
mformatlon transmission always slows down after the first spike).

The simple formulas for I,(s) and IE*(s) are remarkable because they require a
measure of only the mean rates r,, and not of the full distribution of rates to each

!Since only two spiking events (zero or one spike) are relevant to the first order, expressions (3.14,3.16)
are in fact the first derivatives of the information carried by the full spike train, and not only from the
rates.



3.2. The kinetics of the information conveyed by firing rates 43

stimulus p(r|s ) This translates into a clear adva,ntaﬁe for measuring information, when
data is scarce ?

Several interesting relationships should be appreciated (Panzeri et al. 1996a). First of
all, I(s) itself represents, apart from a rescaling by the overall mean rate, a universal U-
shaped curve which gives, whatever the rate distribution, the initial speed of information
acquisition as a function of the rate. In recordings of primate temporal cortical cells, it
was often found that the dependence of I(s,t) on r, for finite ¢ (50 to 500ms) closely
reproduced that predicted at ¢ — 0, i.e. that associated with the time-derivative I,(s)
(Rolls et al. 1996c¢).

Dividing (3.14) by the overall mean rate and taking an average across stimuli one has
® =Y P(s

which has the meaning of mean information per spike. Tt is easy to show that in general.
for any distribution of rates,

, (3.16)

0 < ® <logy(1l/a). (3.17)

and for the distributions of rates that are close to binary, with one of the peaks at zero.
® ~ log,(1/a), while if they are nearly uniform, or strongly unimodal, ® < log,(1/a).

Extensive recordings of rat hippocampal and neocortical cell activity (Skaggs and
McNaughton 1992; Skaggs et al. 1993), indicate that ® and a (or equivalently log,(1/a))
could be used almost interchangeably to characterize firing rates distributions: one pa-
rameter turns out to be an excellent predictor of the other. As an example, we plot in
Fig. 3.3 the information per spike ® carried by a set of 20 different cells, recorded in the
primate hippocampus, in response to a set of 16 different views®, versus the sparseness
of the cell, calculated from firing rates sampled in time windows 25 msec long. It can be
noted that sparseness and information per spike are almost in one-to-one correspondence.
and that, since these cells seldom fire more than one spike in 25 msec, ® ~ log,(1/a).

We note that when S stimuli are presented each with equal frequency, the information
per spike @ is simply related to the breadth of tuning

1 TS r

_ Tsqop o 3.18
H 1og252535f1°°2 S7 (3.18)

(Smith and Travers 1979), which was used to characterize the distribution of responses
e.g. to gustatory stimuli in the monkey (Rolls et al. 1990). In fact

®=(1-H)log, S (3.19)

and when the cell respond to only one stimulus, H = 0 and ® = log, S (extreme selec-
tivity), whereas when it responds equally to all stimuli H = 1 (broad tuning) and ® = 0
(no information).

A small systematic error occurring when calculating (3.14,3.16) from a finite sample is anyway
present, but it can be easily calculated with standard error propagation
3Details of the recording procedure are reported in section 3.3.5
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20 hippocampal cells, 25 ms

T T T
4 =
3.5
2 3r
joR
@
2 25k
&
2
= 2+
w
8 1.5
2
£ 1k
0.5
O ' 1 ]
0.05 0.1 0.2 0.4 0.8
Sparseness
Figure 3.3:

Information per spike (o) versus sparseness, calculated from the mean firing rates (sampled in time
windows 25 msec long) of 20 primate hippocampal cells. The stimulus set consists of 16 different views.
See chapter 3.3.5 for details. The solid line is ® = log,(1/a). The sparseness axis is on a logarithmic
scale.

3.2.2 Real responses and their idealization: the role of noise
and grading

The figures 3.4 and 3.5 provide examples of the way the firing rate of real cells, when
measured over increasing time, conveys information about those stimuli. The information
in the actual rates is compared with the information present in binarized responses, and
with that available from an ideal binary unit (Panzeri et al. 1996a).

Responses are binarized by taking as ‘1’ all responses above a certain threshold, and
as ‘0" all others, with the threshold chosen, in each window, to optimize the amount
of information transmitted. Note that this binarization preserves at least part of the
original trial-to-trial variability, but results in an apparent sparseness different from the
true value.

Ideal binary responses are simply those of a unit operating at the same grand mean
rate and sparseness as the real unit (in each window), but with zero noise, i.e. mean
rates as well as the rates on individual trials are taken to be zero for a fraction (1 —a)
of the stimuli, and 7/a for the remaining fraction a. Thus the information conveyed by
this ideal binary unit is just:

Iig = —alog,(a) — (1 — a)log,(1 — a) (3.20)

In addition, the time-derivative I; is shown, as calculated for actual responses from
the shortest window considered (2 msec for the two cortical cells in Fig. 3.4; 25 msec
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(— - —). The initial slope at o is also indicated (= — — —). (Bottom) Information in the responses
to 20 face stimuli by a cell in the monkey IT cortex, with the same notation.
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Figure 3.5:
Average over population of the information in the number of spikes emitted in response to 16 differ-
ent views ( ) by 20 hippocampal cells, in the binarized responses (- - —) and in the noiseless re-
sponses of an 1deal binary unit (— - —). The initial slope of the information processing is also indicated

(- = =)

for the hippocampal cells in Fig. 3.5)). For binarized responses the derivative is the
same, because for very short windows the responses are already binary; whereas for ideal
binary units the derivative is higher, as it is clear from the figure and Eq. 3.17. Note,
though, that for the cell of Fig. 3.4b the time derivative was almost constant, even when
computed from the distribution of mean rates over longer windows (whereas for that of
Figures 3.4a and 3.5 it progressively decreased).

Figure (3.4, top) refers to a cell in the rat somatosensory cortex, responding to elec-
trical stimulation of 4 different intensities. The information in the actual rates rises
steeply from £ (15 msec post stimulus onset) and then slows down and saturates when
t is of order a few hundred msec. The initial rate of transmission is very high, about 30
bits/sec. Binarized responses convey less information, but even for long windows only by
a factor of about 3/4. An ideal binary unit with the same sparseness would yield almost
instantly all the information it can convey. This levels off around 0.6 bits, which is above
the value for the real cell, thanks to the lack of variability, at short times, ¢ < 100 msec;
but it is inferior for longer times, when the binary output becomes limiting if contrasted
with actual graded output.

Figure (3.4, bottom) refers to a cell in the primate visual cortex, responding to 20
face stimuli. ¢y is 100 msec post stimulus onset, near the peak of the response. The
information in the actual rates accelerates almost instantly from a lower initial slope
I; =~ 10bits/sec, and slows down only later, having reached values twice above those for
the binarized responses. In this case the time-derivative provides a poorer indication of
the information available in the full response. The positive second derivative at to reflects
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a limited trial-to-trial variability in this cell, much less than for Poisson statistics. This
may be related to the operation of recurrent circuits. The ideal binary unit with the
same sparseness would again be more informative at short times, but now the time, after
which the advantages of a graded response take over, is shorter, ¢t &~ 25 msec.

Figure 3.5 refers to the information carried (on average) by a set of 20 primate hip-
pocampal ‘view’ cells (Rolls et al. 1995a), responding in relation to where the monkey
is looking in space. The information about the spatial environment has been quantified
by dividing the space into 16 discrete ‘stimuli’. During recording the monkey was freely
behaving, and data was collected by taking a fixed length of record whenever the eves
were still looking at a given part of the environment (more details are reported in section
3.3.5). In this case thus to is not well defined. We see that for the set of hippocampal
cells under analysis the initial rate of information processing is much lower (& 3 bits/sec)
than that of cortical cells in Fig. 3.4, and the characteristic time scale of information
processing appears also slower. Binarized responses convey less information. but only
by a negligible factor until ¢ ~ 100 msec, and by a factor of about 30% for longer pe-
riods. An ideal binary unit with the same sparseness would yield almost instantly all
the information it can convey, which is much higher than the information carried by real
responses of the cells. It is important to note that these results for the hippocampal cells
could be affected by the crude discretization of the environment into 16 parts. However.
that discretization was the finest one compatible with the size of the data set.

3.2.3 Time scales and the role of grading in the information
conveyed by a network

At this point, an important question is how to generalize these results, valid in the single
cell case, to the information processing in a whole network of neurons. In the latter
case, as it will be clarified in sec. 3.3, it is not possible to experimentally address the
problem with the same degree of precision available in the single cell case. Anyway, a
few considerations can shed light on this issue.

Let us imagine to have an ensemble of C cells, with a mean response population vector
rs during the presentation of a stimulus s (7, is a vector with one element (or component)
for each of the C cells considered: these components are labeled as ry,. ,c = 1,---,C).
and let us suppose that the cells fire independently.

In this case, the only events with non-zero probability to the first order in ¢ are:
p(@;é) = 1-t Z Tsiz
plécls) = trs., (3.21)

where €, is the response vector with one spike in the e-th cell component and zero in
the other ones. From eq. (3.21) we can immediately calculate the first derivative of the
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information carried by the population:

c
=Y Is) (3.22)

c=1

where I{(s) are the time derivative of each of the C single cells, as obtained from eq.
(3.14). -

From eq. (3.22), it appears clear that, to the extent that cells are really independent,
the characteristic time scale for information processing in a population is just C times
smaller than the average time scale for single cells. Therefore we can conclude that,
if the size of the population is big enough, and the correlations among cells are small
enough, most of the information carryed by the network can be already extracted from
time windows so short that response of individual cells are all binary (zero or one spike).

3.3 Information available in the responses of an en-
semble of neurons

The informational properties of single cells are a building block for a quantitative under-
standing of brain functions. Nevertheless, for many functions controlled by the brain or
variables represented in the brain, the relevant unit is the neural population rather than
individual cells (Georgopoulos et al. 1986; Georgopoulos et al. 1993; Abbott et al. 1996;
Rolls et al. 1996d). ‘

In fact, many cells, in a given cortical area, are found to code any given feature, with
relative broad tuning. The way that the network sharpens the tuning curve and reduces
. noise depends crucially on the nature of the neural code. In particular, representational
“capacity is extremely sensitive to how independently messages are distributed across a
population of coding neurons. If each stimulus is represented by the response of a single
unit (“grandmother cell”; Barlow 1961), the number of stimuli that can be represented
grows linearly, and the mfouna,tlon about a given set of stimuli logarithmically, with the
number of coding cells. Whereas, if the mutual information about stimuli is distributed B
across the full network, the number of stimuli that can be represented grows exponentially,
and the information linearly, with the number of codmg neurons. Of course intermediate
~ and redundant strategies are possible. '

The properties of single cell responses are not enough to establish the existence of
truly distributed representations. Distributed coding requires in fact that each neuron
has a distinctive response profile across stimuli (in order to minimize redundancy), and
that the differences in the broadly tuned responses are not masked by their trial-to-trial
variability. Experimental measures of how information that can be extracted from a
population depends on the number of coding neurons are thus necessary to clarify the
nature of neuronal representation.

The problem of extracting information from a large population is difficult because
of the high dimensionality of the response space (at least one dimension per cell). The
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binning procedure alone becomes insufficient for high-dimensional codes. In this case a
decoding procedure can be used to extract the relative probabilities of the stimuli from
the responses, and thus to reduce the original set of responses to the size of the stimulus
set. This is a drastic reduction, but is appropriate because the minimum number of
response bins that may not throw away information, if the appropriate code is used. is
just the same as the number of stimuli, R = S. In addition, one can optimize the choice
of decoding, trying to maximize the extraction of information, or can model the decoding
to neurophysiologically plausible algorithms that can be used by the downstream network
to read off information.
In this section we discuss * how to extract information present in responses of popula-"
~tion of neurons, which can be recorded simultaneously, or sequentially. We introduce also
the quantities relevant for the characterization of the ensemble performance, namely the
percentage of correct decoding and two different information quantities reflecting differ-
ent aspects of the quality of the encoding. In the discussion we address questions at the
level of firing rates, but the procedure is easily generalizable to other codes. The section
is organized as follows. First we review the basic technical steps of decoding: cross-
validation, definition of information in terms of probabilities of correct decoding, and the
algorithms for estimation of response likelihood. Then we test this decoding method by
means of analytical considerations and numerical analysis. Finally, we provide explicit
examples of neuronal data analysis which can be performed in these terms.

3.3.1 Decoding and cross-validation procedures

In estimating the information carried by the responses of several cells the basis of the
analysis discussed here, is the construction of population response vectors 7. occurring.
during the presentation of a stimulus s, in what are labeled as test trials (75 is a vector
with one element (or component) for each of the C cells considered; these components are
denoted as ry.,c = 1,---,C). If the population is recorded simultaneously, the vectors
should be constructed by using measures of cell activities (e.g. discharge rate within a
given time window) recorded at the same time. Otherwise, if the population is recorded
sequentially, only pseudosimultaneous response vectors can be constructed. Each re-
sponse vector is compared to the mean population response vector to each stimulus, as
derived from a different set of training or reference data, in order to estimate, by means
of one of several decoding algorithms, as described below, the relative likelihoods for
each (s) of the possible stimuli to be the current one, p(s'|7,). Summing over different
test trial responses to the same stimulus s, one could extract the probability that by

presenting stimulus s the neuronal response would be interpreted as having been elicited
by stimulus s,

pls'ls) = 2 p(s/ 1) P(Rals) (3.23)

“The procedure we discuss here has been mainly developed by Treves (Treves 1996) and Rolls (Rolls
et al. 1996d).
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and from that one obtains the resulting measures of percent correct identification and
of the information decoded from the responses. Separating the test from the training
data is a frequently used procedure in parametric statistics, called cross-validation, and
is needed to prevent overfitting. In the analysis presented here we have performed cross-
validation as follows. One of the available trials for each stimulus is used for testing, and
the remaining trials for training. The resulting probabilities that s is decoded as s’ are
however averaged over all choices of test trials, thus alleviating finite sampling problems.
This cross-validation procedure is particularly convenient when the number of trials per
stimulus NV is very low. When N, is higher, one could use more than one test trial (e.g.,
a given fraction).

3.3.2 Information extraction from stimulus reconstruction

Having estimated the relative probabilities that the test trial response had been elicited
by any one stimulus, the stimulus s’ = s, for which this likelihood is maximal can be said
to be the stimulus predicted on the basis of the response. In general s, will not coincide
with the true s and the accuracy in the decodmg can be quantified by the percentage
of correct decoding (01 the corresponding fraction f,), or alternatively by the mutual
information in the joint probability table g¢(s, s,),

q(s,sp)

sgé\ 2 (‘S)Q(SP)
where ¢(s,s,) is constructed from the fraction of times an actual stimulus s elicited a
(test) response that led to a predicted (most likely) stimulus s,. Thus I,,; measures the
information in the predictions based on mazimum likelihood, and as such it does not only
reflect, like percent correct, the number of times the decoding is exact, but also, beyond

percent correct, the distribution of wrong decodings. A further quantity is the mutual
information

p(s, ) o=

ssXE:Lp 5,8 ) logy ————— o()p(5) (3.23)
obtained from the probability p(s’|s) of confusing s with s', which is given by averaging
p(s'|7s) over the responses to s, eq (3.23).° This second information measure reflects,
unlike the first, also the degree of certainty with which each single trial has been decoded,
and 1t thus sheds light on a further aspect of the quality attained in decoding. Both
information quantities suffer from limited sampling distortions, but the second much less
than the first, in the sense that, with the limited sampling correction procedures we have

°The difference between the table ¢(s, sp) and p(s, s’) can be appreciated by noting that each vector
comprising a given trial contributes to p a set of numbers (one for each possible s') whose sum is 1,
while to ¢ it contributes a single 1 for s, and zeroes for all other stimuli. (Obviously each contribution
is normalized by dividing, in both cases, by the total number of test trials available.) As a consequence,
Imi must be corrected with the correction term corresponding to the ‘quantized’ case, eq. (2.6), whereas
I, must be corrected with the term derived for the ‘smoothed’ case, eq (2.21).
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developed, I, can be estimated accurately even with few trials per stimulus, while I,
requires more trials.

Several different, and simple, decoding algorithms can be written for estimating from
the recorded response the likelihood of each stimulus. The goal of decoding is to recon-
struct the correct Bayesian probabilities from the data, extracting from the data itself as
much information as is possible. Since the true a priori probabilities are unknown, a good
strategy could be to do an extensive analysis by means of a number of different, and plau-
sible, decoding algorithms, and then choose the “optimal” decoding, which gives, after
ﬁmte sampling corrections, the best estimate of the unregularized values of information
and percent correct. In other words, the strategy consists in finding, among a set of pos-
sible algorithms, the decoding that minimizes the downward bias due to regularization.
Another very interesting approach is based on the idea of emulating the processing that
could be performed by neurons receiving the output of the neuronal population recorded.
thus extracting that portion of the information theoretically available that could be ex-
tracted with simple neulophvswlomcallv plausible operations by receiving neurons (Rolls

et al. 1996d).

3.3.3 Algorithms for likelihood estimation

Now we describe the algorithm that extract p(s’|F;) from an estimate of the probability
P(7s,s") of a stimulus-response pair, by normalizing so that 3, P(s'|F5) = 1. When
neurons in the sample were recorded one at a time, trial to trial fluctuations are unlikely
to be correlated between different neurons, and it is meaningful to write P(7;,5') as a
product of probabilities of individual neurons. In this case, the probability P(7s,s") can
be estimated for this purpose as:

P(7s,s") = p(s") HP (rs.cls’) , (3.26)

and finally, P(rs.|s’) is derived from the responses of cell ¢ in the training trials. Oth-
erwise, when neurons were recorded simultaneously, the independence assumption (3.26)
has to be verified a posteriori by analyzing the data. If the within trial correlations
among different cells are strong, the decoding (3.26) may fail, destroying correlations
and leading to larger systematic errors. Therefore in the case of strong trial to trial
correlation among the cells, we recommend to use decoding for the estimate of P(r. "),
not merely based on single cells probabilities like (3.26) (for example, one can use the
algorithm based on the distance between test and average response vectors, eq. (3.23)).
Different decoding procedures differ in the estimate of P(7,|s"). Here we describe the
algorithms that we have used in the analysis reported in the next subsections.

Gaussian fitting

The single cell probabilities P(r,.|s') are fitted with a Gaussian distribution whose am-
plitude at r,.. gives P(r,.|s'), except when rs.e = 0. In this case, if there are tra,mmg trials
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with zero firing, P(0|s’) is estimated as the fraction of training trials yielding zero firing.
Otherwise, P(0|s) is calculated integrating the negative tail of the Gaussian distribution.
Poisson-like fitting

The probability to have n spikes in a given time window is fitted, for every cell, to the
following formula:

(<1 >gc)"exp(— < T >g)
n!

P(ree =nl|s') = agbpo+ (1 — as) (3.27)
where ag,. and < r >, are, respectively, the fraction of trials with zero firing and the
average number of spikes for a given cell ¢ and stimulus s’. The deviation from the pure
Poisson distribution is introduced because usually the number of trials with zero spikes

was more than that predicted by the Poisson law. (The same applies to the Gaussian fit
described above).

Distance between test and average response vectors

This algorithm computes the probabilities P(7,|s’) by means of the euclidean distance
between the test response vector 7; and the average response training vectors < 7 >
to each stimulus s’. This distance is divided by a measure o of the variability within
responses (e.g., the average, over the population, of the standard deviation of cell’s
responses, as calculated from training trials) and then exponentiated (with negative sign).
The resulting formula is then: A

—b— — , 2 N
P(F,|s') o« exp — (lrs <7y | ) (3.28)

202

The most likely stimulus s’ is that whose mean response vector < 7 >, is closest (in
the euclidean sense) to the actual one. It is important to note that this algorlthm is not
based on the independency assumption (3.26).

Dot product between test and average response vectors

To understand how much of the information present in neuronal responses can be read
off by the brain , it is useful to compare the amount of information extracted with the
‘optimal’ procedure with the information that is extracted by an algorithm that could
be easily implemented by neurons receiving the population’s output.

For this purpose, an algorithm called Dot Product (DP) decoding has been introduced
(Rolls et al. 1996d). The DP algorithm computes the normalized dot products between
the current firing vector 75 on a test trial and each of the mean firing rate response vectors
in the training trials for each stimulus s’. (The normalized dot product is the dot or inner
product of two vectors divided by the product of the length of each vector.) The highest
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dot product indicates the most likely stimulus that was presented, and this is taken as
the best guess for the percentage correct measures.

For the calculation of I, eq. (3.25), it is desirable to have a graded set of probabilities
for which of the different stimuli was shown, and these were obtained from the dot
products as follows. The S dot product values were cut at a threshold equal to their own
mean plus one standard deviation, and the remaining non-zero ones were normalized
to sum to 1. It is clear that in this case each operation could be performed by an
elementary neuronal circuit (the dot product by a weighted sum of excitatory inputs,
the thresholding by activity-dependent inhibitory subtraction, and the normalization by
divisive inhibition). The resulting relative probabilities are cruder estimates than those
obtained with the algorithms designed to optimize information extraction, and a precise
quantitative assessment of the price paid for using a simpler and neurophysiologically
plausible algorithm can be derived from a’ comparison of the amounts of information
obtained in both cases.

3.3.4 Tests of the accuracy of decoding procedures

In this subsection we test the effectiveness of the decoding procedure presented before.
both by using simulated data and by calculating, in the limit of short processing time,
analytical estimations of the information quantities (3.24,3.25).

Simulation results

We use here the response probability distributions obtained by a model of the response of
parvocellular LGN cells to a set of 32 visual stimuli, and discussed in section 3.1.1. What
is interesting here is to compare the asymptotic value of the information, carried by the
underlying probabilities, to the value one can obtain, through the decoding procedure and
after bias subtraction, from a finite number of samples Moreover, we test the accuracy
of information estimation of the two different information quantities that one can define
in terms of the decoded probabilities (3.23): the one extracted from mazimum likelihoods
Ini, €q. (3.24), and the one extracted from probabilities, I, eq. (3.25).

Fig. 3.6 shows, for different sample sizes, how good are the decodmg procedures (after
finite sampling corlectlon) Two different quantlﬁcatlon of the response of parvocellular
unit are chosen: the spike count and the first three principal components® , in order to
test the algorithms with simulated responses of different dimensionalities. Raw estimates
(not shown in the figure) are much more biased for the maximum likelihood information
I, but anyway the finite sampling bias appears to be under control in the whole N range
explored, as one can see from the fact that corrected estimates remain fairly constant
by varying N,. The decoding procedure chosen for this plot is the Gaussian one, even

8Each of three components can be considered, for the purpose of our simulation, as a different ‘cell’.

Notice that these principal components turn out to be only weakly correlated (in fact, linearly, but not
fully, independent).
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if the fit based on ‘distance between test and mean response vectors’, eq. (3.28), gave
slightly better results. One can see that the decoding is efficient, in the sense that I, is
fairly close to the true information values. This means that the efficiency of the decoding
procedure in reconstructing the stimuli yields an information that is fairly close to that
encoded in the true, unregularized probabilities.

The ‘probability’ information I, gives instead poorer estimates of the information
contained in the true distributions. This is not related to an ‘inefficiency’ of the decod-
ing procedure, as explained before, but is more related to the the very definition of I,
which is constructed to reflect also the degree of certainty with which each single trial
has been decoded. Anyway, if one analyzes responses of a set of cells which are really
independent (and thus adding up units to the population leads to a substantial improve-
ment in stimulus discrimination), the two quantities I,,; and I, are generally found to
become closer as the size of the population increases, perhaps because the contribution
to p(s'|s) of wrong decodings becomes less important.

*

Analytical results

There is no way, in general, to estimate analytically the downward bias due to regulariza-
tion occurring when using decoding procedures, as it is strongly dependent on how well
the functional form chosen for P(7|s’) fits the true response probabilities. Nevertheless,
the fact that the first time derivative of the information depends only on the mean firing
rates, and not on all the details of the distributions, allows one to obtain estimates of
how well the decoding algorithm can estimate the rate of information transmission. This
subsection is devoted to the calculation of these estimates.

Let us first consider the case of the information I,, obtained from the probabilities
p(s'|s) of confusing s with s’. It can be easily shown, by using eqs. (3.23) and (3.21)
that, to the first order in ¢ p(s’|s) can be written as:

9

p(s'ls) = p(s') +0(t%), (3.29)

1+tZ(<T>c*<T>ch(ir>c_<T>SI;C)
(o3 c

where < 7 >.= 3" P(s) < r >,.. By substituting eq. (3.29) into the definition of I,
(3.25), it follows that the first derivative of I, is always vanishing:

I(s,t) ~ O(£) . (3.30)

This means that I, cannot estimate information transmission rates, and it gives poor
estimates of information for small times.

In the same way, one can easily calculate the initial rate of transmission of the max-
imum likelihoods information I,,;, and find that it can be a very accurate estimate of
the ‘true’ rate of information transmission. In fact, it is straightforward to show that
the first derivative of I,,; coincides with that calculated from the true probabilities, egs.
(3.14,3.22), if each one of the C' + 1 events with non zero probabilities to first order in ¢,
eq. (3.21), predicts a different stimulus. :
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((Top): Mutual information in the number of spikes emitted in the (simulated) responses to 32 visual
stimuli by a parvocellular unit in the LGN. The full line is the ‘true’ value of the information in the
distribution. Compared to this reference value are, for each N, the mazimum likelihood information I,
(A), calculated after finite sampling corrections, and the probability information I, (O), again corrected
for limited .sampling. The N, axis is on a log scale. (bottom) As before, but the response of the LGN
cell is quantified with the three principal components instead of the spike count.
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3.3.5 An example: information about spatrial view in an en-
semble of primate hippocampal cells

After the detailed discussion of decoding procedures reported above, we present here an
application of information theoretical analysis to the study of the encoding of spatial
views in the primate hippocampus. In particular, we test the idea that the firing rate
(and not the temporal modulation of the spike train) is the relevant variable at the single
cell level. Furthermore, we try to understand how distributed are the messages carried
by the neurons in the (sequentially recorded) population of neurons under analysis.

Spatial view cells in primate hippocampus

Hippocampal function was analyzed by Rolls, Robertson and Georges-Francois (1995a:
1996b) by making recordings from hippocampal pyramidal neurons in monkeys activels
walking in a rich spatial environment (the open laboratory). In this study they were able
to find “spatial view” cells which responded when the monkey looked at one part of the
environment, but not when he looked at another. These responses occurred relatively
independently of where the monkey was in the testing environment, provided that he
was looking towards a particular part of the environment. Eye position recordings with
the monkey stationary confirmed that these neurons fired when the monkey looked at a
particular part of the spatial environment, and not in relation to where it was. It has
been also shown that these neurons respond in relation to where the monkey is looking in _
space, and not to the head direction per se or to eye gaze angle per se. For these reasons
the cells were named by Rolls, Robertson and Georges-Francois (1995a; 1996b) “spatial
view” cells, and not “place cells”, like those in the rat hippocampus. ,

Here we calculate how the information about the spatial environment is represented
by a population of 20 spatial view cells recorded one at time. For this purpose, we
describe the walls of the laboratory as “stimuli”. Because of the limited number of trials,
the spatial environment (i.e., the ‘set of stimuli’) has been discretized into up to 16
different views, each wall of the laboratory being discretized into up to 4 parts. We note
that dividing the walls into 16 ”stimuli” means that the information required to decode
correctly where the monkey is looking at is 4 bits. Provided that this “ceiling” is not
‘reached by the information available from one cell or the ensemble of cells, it is not really
necessary to divide the space into more “stimuli”, in that not much more 1nformat10n
would be measured in the neuronal responses. '

The firing rate is the relevant response characterization for information pro-
cessing in single hippocampal neurons

As explained in section 3.1, to test the idea that the temporal modulation of the spike
train, and not the firing rate, is the relevant parameter for information processing at the
single unit level, one can compare the information carried by the firing rates and by the
first few principal components of the time course of the responses.
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We have performed this analysis on hippocampal view cells. Data was collected by
taking a fixed length record (usually 500 ms long or more) whenever the eyes moved and
then remained still (within 2 degrees) looking at a particular part of the environment.
This data collection procedure has enabled us to define a natural onset in time for the
stimulus, i.e. the part of the environment the monkey is looking at. The time of the
stimulus onset can in fact be taken as the time when the eyes stop moving and remain
still looking at the given part of the space. Then we have calculated both firing rates
and principal components of each response, together with where the monkey was looking
at during the record. The covariance matrix, eq. (3.5), was calculated by discretizing
the sampling time window into 20 intervals. In order to have enough data to perform
a meaningful analysis, we have discretized the environment into just four stimuli (four
walls). In this way we have obtained from 10 to 50 repetitions for each stimulus presen-
tations. Finally, we have calculated the information about this set of views carried by
the different neuronal codes under study, by using the decoding procedure introduced
before. After the decoding, the mutual information was quantified using the mazimum
likelihood information (3.24), which can give fairly good estimates of the unregularized
values. We have chosen to fit the relative likelihoods by means of the algorithm based on
distance between test and average response vectors (3.28), which provided better fits and
(after finite sampling corrections) higher values for both information and percent correct.
In table 3.3 we report our results for the average over the ensemble of single cells of the
mutual information carried by firing rates and the first few principal components when
responses are sampled in 500 ms (starting 100 ms after the stimulus onset) .

Firing Rates | 0.141

PC1 0.145

PC12 0.150

PC123 0.158

Table 3.3:

Information content (averaged over the population) of the firing rates and first three principal components
of the spike train. Details of the calculation reported in the text. '

One can see that the information reflected by the firing rate accounts for most of the
information (89 %) derived from the first three principal components. We have checked
that adding more principal components leads to only negligible further increases. When
one considers time windows shorter than 500 ms, the role of temporal encoding quantified
in this way is even less important. In fact, when the time windows are shorter than 100-

"To check the effectiveness of the decoding procedure in this particular case, we have compared the
estimate of information carried by unidimensional quantities (firing rates, PC1, PC2, PC3) obtained by
the decoding algorithm and by direct estimation from (discretized) responses. The loss of information
due to decoding remains within 10-15 % for each code considered.
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200 ms.we have found not only that the majority of information is contained in the firing
rates, but is already present in the ‘binarized’ firing rates (see fig. 3.5). The latter result
is due to the fact that, for the set of hippocampal pyramidal neurons under analysis, the
mean firing rate are so low that cells only seldom emit more than one spike in 100 ms.

The information available in the responses of single units

Once established that the firing rate contains the majority of the information carried by
the single units, we analyze whether the information about views is carried by responses -
very finely tuned on each view, or instead the encoding is rather distributed.

For the analysis described here, data was collected by taking a fixed length of record
(e.g., 500 ms) whenever the eyes were still looking at a given part of the environment.
The difference with respect to the data collected for the principal component analysis is
that now, since we are interested only in the information conveyed by the firing rates, we
do not need to determine the time onset of the stimulus, and thus we can collect even
more than one trial if the eyes remain still, and the animal alert, for a longer period.
In this way we have obtained enough data for binning each wall into four parts, and
thus calculated the information about a set of 16 spatial views. This is relevant for the
analysis described in the following, in that if we consider poorer discretization (e.g., 4
spatial bins), the information extracted form the population approaches the ceiling (2
bits in the case of 4 bins). At the end we have collected 20 or more trials for each of
the 16 views and for each of the 20 cells in sample. This data collection has been used
also for the calculation of the information contained in the firing rates of a population of
hippocampal neurons presented below.

From this data, we have calculated both the mutual and stimulus specific information,
by using a pure discretization of the response space into 10 bins. For most of the cells,
even for time windows as long as 500 ms, the number of bins was equal or larger than the
maximum number of spikes. Therefore the amounts of information obtained in this way
are expected to be, after the finite sampling correction, unregularized and quite accurate
estimates of the information present in the cell firing rate.

A histogram showing the values of I(S,R) (the average information in the responses
of a cell about the stimulus set within 500 ms periods) for each cell is provided in Fig.
3.7. Most of the neurons had values for I(S,R) in the range 0.15 - 0.55 bits, with the
average across the population of neurons being 0.35 bits (see also Table 3.4). All these
neurons show a reasonable amount of information available in the firing rates in a 500
ms period about spatial views, even though the firing rates of the neurons were low, with
a mean peak response to the most effective spatial location of 13.1 spikes/s (compared
to a spontaneous rate of 0.5 spikes/s). Although I(S,R) may not appear to be high,
it should be remembered that this neuronal information measure is the average, over
stimuli, of the information contained in the responses to the individual stimuli. If many
of the stimuli (walls) evoke a similar neuronal response, then the average information
from the neuronal response about which stimulus was being looked at is low. If e.g., the
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Figure 3.7:
Information in the number of spikes emitted in response to 16 different views by the 20 different hip-
pocampal cells in the sample. The broken line (- — —) indicates the average mutual information across
the population. The responses are recorded over 500 ms.

neuron responded to one of the stimuli (one of the quarter of walls), and not to any other
(grandmother cell encoding), then the stimulus specific information contained when that
effective stimulus was shown would be 4 bits, and, when any of the other stimuli, close

to 0 bits (in fact log,(16/15) = 0.093 bits). In this case the mutual information would
be 0.33 bits. ‘

In order to understand the actual representation of individual stimuli by our set of
individual cells, the information I(s) available in the neuronal response about each of
the stimuli (indexed by s) in the set of stimuli S has been calculated for each unit. The
maximum information values I,,,, of the different neurons about any one stimulus are
reported in Table 3.4, again calculated for 500 ms periods of the neuronal response. The
majority are in the range 0.5 - 1.5 bits. The mean value of I,,,, for the different cells was
1.35 bits. As one can see from table 3.4, in general the neurons have different centers
(“preferred view”) for their view fields, but there is partial overlap among the view fields
of some of the cells. It is evident from this analysis that the encoding is much more
distributed and noisy than that of a set of ideal ‘grandmother’ units, although the total

amount of mutual information is similar in the real and the ideal ‘grand mother cells’
case. ‘

Nevertheless, from this single cell analysis, one cannot establish whether the encoding
is truly distributed or not. As explained before, this point can be better studied by
considering the information extracted from the population response vector.
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Redundancy versus independence across different cells

Evidence on the nature of population encoding and on the representational capacity
in the hippocampus can be obtained by examining the response properties of the pop-
ulation of the 20 view cells. We address the problem at the level of the firing rates
(without considering more complex neuronal codes), because this appears to be the rel-
evant characterization of the responses of single units. We analyze data by calculating
the information about spatial view carried by (randomly chosen) subsets of cells of any
size, from single neurons to the entire set recorded, and then by averaging over subsets
with the same size. In this way we measure how the information scales with the number
of neurons.

To approach the problem of the independence of the messages carried by different
cells, we note that, given a population of C cells, a set of stimuli S, and the relative
values of single cells informations I.,c = 1,---,C, the information that is present in the
population (and in subpopulations) has its range limited from two bounding values:

e If the messages of single cells are fully redundant, then, from each population. one
can extract only an information equal to the maximum single cell information in this
ensemble. The information from C cells obtained in this way is denoted with I7(C).
This quantity I"(C) (the superscript r denotes ‘redundancy’) is the information
that we would obtain in the case of full redundancy among cells. It is important to
note that, when calculating how information grows with the population size. due
to the averaging over different subsamples with the same size, even in this case of
full redundancy, one can obtain an apparent linear increase of information with the
number of neurons (e.g., when only a few cells carry information, see the result of
our analysis of responses of cells in the rat primary somatosensory cortex to painful
stimulations, reported below).

e In the case of full independence of messages, the information extracted from the
ensemble is just the sum of the information carried by single units:

I'(C)=>"1I (3.31)

where I'(c) denotes the information in the case of full independence. In the case
of full independence, the information increase linearly with the number of neurons,
irrespective of the actual values of information carried by single cells.

In real cases, the information carried by the ensemble of cells is in between these two
interesting theoretical bounds.

We calculate both the probability (3.25) and mazimum likelihood (3.24) information.
For comparison, we repeat the analysis for longer (500 ms) and shorter (100 ms) time
windows. In fig. (3.8, top) and (3.9,top), we report the way that the mazimum likelihood
information, defined in (3.24), grows with the population size. For comparison, we plot
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the two theoretical bounds corresponding to full redundancy and full independence, as
calculated from the single cell values (computed as maximum likelihood information
extracted from the same decoding procedure). In Fig. (3.8, bottom) and (3.9, bottom),
we report the results obtained in the same way, but using the probability information
(3.25) instead of the maximum likelihood one.

By looking at figures 3.8 and 3.9, it is evident that the estimate of information via the
decoding algorithm is in the case of small populations not accurate enough, as it can be
seen also from the fact that the information extracted form the population is sometime
higher than the theoretical upper bound derived from the estimates of information carried
by single cells. Since the exact values of upper and lower bounds are strongly dependent
on decoded single unit information values, they should be taken only at a qualitative
level. The problem in decoding the information contained in small populations can be
understood if one examines the average value of information carried by single cells, as
estimated directly from the responses (Table 3.5). The estimates of single cell information
obtained with I, appear much more regularized than those obtained with Lty but the
latter are affected by heavier sampling errors and larger fluctuations (remember that
with 20 trials per stimulus and 16 stimuli our correction procedure is at the limit of its
effectiveness). .

All those problems are much less important at higher number of cells, where the
decoding is more reliable, both fluctuations and sampling errors are smaller, and the two
quantities I.,; and I, become closer. The comparison between I, and I,,; as functions of
the number of neurons is reported in fig. 3.10.

Even if the results are not very clear, and bigger samples of neurons are probably
needed to shed more light on the problem, one can anyway point at two facts:

e We see that in all the cases the information extracted from the population grows
much faster than the “fully redundant” information /7, indicating that the growth
of information with the number of coding neurons in not an artifact due to the

average over subsamples, but is a genuine effect due to population encoding of the
messages.

e Another important point is that at higher number of cells, when decoding is likely
to be more reliable, both I, and I,,; are increasing fairly linearly with the size of the
population. In this sense the results are at least compatible with a distributed rep-
resentation of spatial views in the primate hippocampus, and with a discrimination
capacity exponentially increasing with the number of coding cells.

3.3.6 Another example: redundant coding of somatosensory
stimulations in the rat somatosensory pathway

Among the possible efficiency principles evoked to explain the nature of neuronal sensory
processing, one of the most interesting is the principle of reduction of redundancy (Atick

1992).
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Information from 20 hippocampal cells, 500 ms, gaussian decoding
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Figure 3.8:

(Top): Average mazimum likelithood information about 16 spatial views extracted from subsets of hip-
pocampal cells from a sample of 20 cells ( ). The other lines represent the information that would
be extracted in the case of full redundancy (-~ —-) and full independence (— - —). The size of the time
bin used for counting spikes is 500 ms. (Bottom) The same as the top figure, but for the probability
information. \ ' o
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Maximum likelihood information (bits)

Probability information (bits)

The same as in fig. 3.8, but the size of the time bin used for counting spikes is now 100 ms.
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Figure 3.10:

Average mazimum likelthood information ( ) and probaebility information (- — ) about 16 spatial

views extracted from subsets of hippocampal cells from a sample of 20 cells. Responses are sampled over
500 ms (Top) and 100 ms (Bottom).
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This principle states that the purpose of the first stages of sensory processing is to
minimize the redundancy present into the signals coming from the external environment. |
According to this principle, cells in higher stages of the sensory pathway should represent
~ feautures in a compact form, in other words each cell should carry nearly independent
information. The ‘minimal redundancy’ strategy provides evolutionary advantages, such
as a saving of neuronal dynamical ranges, and cognitive advantages related to learning
of associations (Atick 1992; Barlow 1989). : :

This optimization principle has been successfully used in the study of the early visual
system. In the case of the visual system, one can in fact observe that the typical incoming
signal (i.e., ‘natural’ images) is highly redundant (nearby pixels are highly correlated),
and that the structure of correlations is reproducible among different natural images.
Starting from the properties of natural images, several investigators have argued that
the retinal and LGN systems are designed to reduce redundancy and to code for natural
scenes in a compact form. The observed properties of the receptive fields of retinal
ganglion cells and LGN cells turn out to be compatible with the principle of efficent
coding of natural visual scenes (Atick and Redlich 1990; Dong and Atick 1996).

In this section. we report the results of an attempt to understand if redundancy
reduction is working also in the coding of painful stimulations by the somatosensory
system of the rat. This issue was analyzed recording simultaneously from small sets of
cells in two successive stages of the somatosenéo;}y pathway, VPL thalamic nucleus and
SI cortex, when a set of noxious stimulations was applied to the periphery. Then the
redundancy of the representation of those stimuli in the thalamus and in the SI cortex
was quantified by means of the information theoretical quantities discussed previously.
The main concern in exploring this issue is the lack of a good characterization of a
‘natural’ statistics of this particular kind of stimulations. This fact can render any
analysis of responses from a limited set of stimuli hardly generalizable to the case of a
larger, more ecological, set of stimulations. The situation is further complicated by the
fact that adaptation to the noxious stimuli strongly constraints the number of different
stimulations that one can apply to the animal. Nevertheless, one can argue that, if a
sensible reduction of redundancy of neuronal representation in succesive somatosensory
stages is regularly observed when different sets of noxious stimulations are applied, then
a redundancy reduction mechanism is effectively at work in this particular modality.

Methods

We have analyzed responses of simultaneously recorded cells in different regions of the so-
matosensory pathway. Data was kindly provided by Gabriele Biella and coworkers. In a series
of experiments, they performed extensive and concurrent recordings from the VPL thalamic
nucleus and from the granular zone of the SI cortical region, in anesthetized and curarized rats.
A group of up to five electrodes in a ring configuration (max 500 um of the array diameter,
ad) was placed in the VPL at 25 degrees in the parasagittal plane (~ 5.5~ 6 mm in transverse
distance depth), while a ring of up to seven electrodes (max ad 600 pm) was placed in the cortex
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(0.5-1 mm from bregma). A set of electrical stimulations of a given intensity (from 1.5 to 8
mA), or a set of more “natural” stimulations, like brushing, pinching and thermal stimulations,
were delivered to the periphery (palmar region of the hindpaw). More details on the recording
procedure and on the data analysis performed are reported in Biella et al. (1995) and Panzeri
et al. (1995a).

Results

The goal of this study is to understand which is the typical encoding strategy used by
these brain regions to represent this simple class of painful stimulations, and to under-
stand whether there are significant differences between the neuronal representation in
the two regions.

For this purpose, we start by describing the results of the recording of a relatively large
set of cortiacl cells, whose distribution of messages among different neurons reproduces
well what has been typically found in the various recording sessions. In this experiment,
the activity of 7 cells in SI was simultaneously recorded, during the presentation of a
set of electrical stimulations, 1 sec. long, consisting in a series of very short (less than
1 msec) electrical pulses with the same intensity (3 ma) and with different frequencies
(10,20,40 Hz). Different stimuli were presented in a pseudorandom order. To reduce
adaptation, stimulations were separated by a time interval of 3-10 sec. The spontaneous
activity of the cells (which will be called in the following the “0 Hz stimulation”) was
also recorded. Then the mutual information between stimuli (stimulations of 10,20,40,
and 0 Hz) and responses was calculated, on the basis of 10-15 trials per stimulus.

We report in Tab. 3.6 the average responses to different stimuli of each cell in the
sample, and in Tab. 3.7 the value of the stimulus specific and the average information
carried by firing rate distributions of each cortical cell in the sample. The information is
in this case evaluated from the (discretized) responses. It is important to note that all the
cells show a high degree of selectivity to the painful stimuli, and high information values.
The “preferred stimulus”, i.e., the stimulus that carries the highest stimulus specific
information, and is better predictable from responses, is the same for all the cell in the
sample. In this case the cells discriminate pretty well between noxious and non noxious
stimulations, but are less selective for particular noxious stimulations. Moreover, among
the different noxious stimulations, the most discriminable one is generally the same for
the cells considered. »

From the last observation it is straightforward to conclude that the recorded cells
convey essentially the same information, perhaps only reflecting the intensity of the
responses of pain receptors with the intensity of their single-cell response. This point is
well illustrated by the fact that (fig. 3.10) the information extracted from the population®
1s very close to the information available in the case of full redundancy.

8The information extracted from the population is quantified with the maximum likelihood infor-
mation, which, in this case of strong selectivity, gives good estimations of the single cell information
extracted from the discretized responses (Tab. 3.7)
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We have analyzed not only this particular set of cortical cells responding to this set
of stimulations, but also data from different samples of cortical or thalamic neurons.
responding to ‘more natural’ stimulations, or to electrical stimulations of different inten-
sities, or to electrical stimulations of different frequencies, or to groups of stimuli of these
different classes mixed together. But the behaviour that we have found was always the
same, i.¢., the neurons in the sample which showed selectivity with respect to the stimuli
presented had very correlated response profiles, perhaps reflecting the intensity of the
responses of pain receptors with the intensity of their single-cell response.

No marked differences has been found between the encoding of thalamus and cor-
tex. As an example, we report in Fig. 3.12 the information extracted from the firing
rates of a set of three cells in the cortex and five cells in the thalamus, concurrently
recorded. In this case. the set of stimulations consited of brushing. mechanical pinching.
thermal stimulation with a fixed temperature, and spontaneous activity. Firing rates
were recorded over 500 ms and from the response vector of the population the maximum
likelihood information (3.24) was extracted. Again, it is clear that the information about
the stimuli carried by the two different populations is almost fully redundant, with no
significant differences between thalamus and cortex. It is interesting to note that, in the
case of the cortex (Fig. 3.12, bottom), the linear increase of information with the size
of the population is only an artifact of the average over the possible subsamples with
the same size. and reflects the fact that one of the three cell carried a lot of information
(nearly 1 bit), whereas the other carried small amounts of information.

Discussion

We have found that the coding of simple painful stimulations by two regions of the so-
matosensory system of the rat is very redundant, and there is no evidence of a redundancy
reduction in successive stages. The result of our analysis could be related to the partic-
ularly simple set of painful stimulations used, but anyway it suggests that the nature of
sensory information processing may be very different when considering different modal-
ities and different conditions. Further, it emphasizes the necessity, in order to perform
an analysis of redundancy which can give nontrivial results, of having a system which

discriminates among a large variety of stimuli, and of testing it with an appropriate and
representative subset of those stimuli.



63 Chapter 3. Applications of information theoretical analyses to neuronal data

Information from 7 Sl cells, 1 sec
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Figure 3.11:
Average maximum likelihood information about 4 electrical stimulations of different intensities extracted
from subsets of cells (from a sample of 7) in the rat SI cortex ( ). The broken line (- — —) represent
the information that would be extracted in the case of full redundancy. The number of spikes emitted
by each cell are counted within a time window of 1 sec (during the presentation of the stimulus).
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Cell | I(S,R) | Preferred view | Iae
0 | 0.195 2 0.458
1 | 0.210 7 1.852
2 | 0.481 2 2.881
3 | 0.222 1 0.887
4 | 0171 2 0.668
5 | 0.396 2 0.898
6 | 0.364 10 0.839
7 | 0.330 16 0.668
S | 0.176 12 0.564
9 | 0.185 14 0.943
10 | 0.228 4 0.752
11 | 0.151 2 1.294
12 | 0.224 5 0.499
13 | 0.367 6 1.561
14 | 0.046 10 0.235
15 | 0.227 1 1.129
16 | 1.035 16 3.596
17 | 0.789 13 2.620
18 | 0.952 4 3.709
19 | 0.263 13 0.918

Table 3.4:

Values of the mutual information contained in the firing rates (I(S,R)), the preferred view, and the

maximum value of the stimulus specific information (Imaz) for each of the 20 cells in the sample. The
responses are recorded over 500 ms. ’
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100 ms | 500 ms

I(S,R)| 0.135 | 0.351

L 0.099 | 0.312

I, | 004 | 0.096

Table 3.5: A
Average over the population of 20 hippocampal cells of mutual information extracted form single units
by means of evaluation from discretized responses (I{S.R)), mazimun likelihood information ([;), and
probability information (I, ).

Cell | 10 Hz | 20 Hz | 40 Hz | 0 Hz

0 63.0 | 92.0 | 113.8 | 43.4

1 579 | 832 | 75.0 | 35.8

2 | 481 | 1322 | 1236 | 314
3 | 41.8 | 522 | 428 | 19.8
4 | 61.6 | 71.6 | 65.7 | 42.8

5 | 613 | 93.3 | 91.0 | 418

6 456 | 813 | 784 | 28.6

Table 3.6:
Average firing rate responses to each stimulus for the 7 different cells in the rat SI cortex. Firing rates
are measured over a time period of 1 sec during the stimulus presentation.
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Information from 5 thalamic cells, 500 msec
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Figure 3.12: '
Average maximum likelihood information (——) about 4 ‘natural’ stimulations (brushing, pinching,
thermal stimulation and spontaneous activity) extracted from a sample of 5 cells in the VPL thalamic
nucleus (Top), and 3 cells in the SI cortex of a rat. The broken line (= —~) represent the information

that would be extracted in the case of full redundancy. The number of spikes emitted by each cell are
counted within a time window of 500 msec (during the presentation of the stimulus).
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Cell | [ I(s=10Hz) | I(s =20H:z) | I(s =40Hz) | I(s = 0Hz)
0 |0490|  0.155 0.416 0.416 0.388
1 |0.766|  0.383 0.748 0.348 1.474
> |1085| 0981 | 1113 0.923 1.186
3 10569  0.044 0.505 0.128 1.513
4 0343 0.000 0.169 0.251 0.907
5 1085 |  0.551 0.701 0.647 1.404
6 0956 | 0812 0.838 - 0.578 1.469
Table 3.7:

Mutual information and stimulus specific information carried by the firing rate distributions of the 7
different cells in the rat SI cortex.



Chapter 4

A quantitative model of information
processing within the hippocampus

In the previous chapters, we have discussed how to quantify, by using information theory,
the way in which external correlates are coded in the spike train of single (or multiple)
units. The full power of the quantitative approach based on information theory can nev-
ertheless be achieved only if one is able to relate the behaviour of real brain structures,
as observed by recording the activity of its units, to models that can establish (or pre-
dict) quantitive relations betwen structures and functions (in the sense of information
processing).

A brain region which could be fruitfully studied within this approach is the hippocam-
pal formation. In fact, in the last few years a number of papers (Treves and Rolls 1992,
1994; Rolls 1995; Treves 1995; Treves et al. 1996)) has related, within the theory that de-
scribes the hippocampus as a device for the on-line storage of complex memories, several
anatomical and physiological aspects of the hippocampal organization to the require-
ment of optimizing the functions it performs. The approach reported in these papers is
based on the idea that, from an abstract, information-theoretical level, the function of
the hippocampus as a memory device should be optimized to store and retrieve efficiently
information; in this way, one can study which parts of the hippocampus seem to be de-
signed to perform a task pertaining to such a memory device. By using this approach,
Treves and Rolls were able to show, among other results, that the crucial autoassocia
tive operations are ascribed mainly to the recurrent CA3 network. As shown by Treves
(1995), the Schaffer collateral connections from CA3 to CA1 may still be important, both
in completing information retrieval and in re-expanding, with minimal information loss,
the highly compressed representation retrieved in CA3.

In this chapter we try to extend those results by taking explicitly into account the
contribution to the retrieval given by the other input system to CA1, the direct perforant
path projection from entorhinal cortex. These connections may allow CAl to integrate
the complete but compressed representation retrieved form CA3, with the partial (but
information richer) representation, available in entorhinal cortex, of those elements of

73
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memory that served as a cue. To quantify these effects, we have introduced a suitably
realistic formal model of the relevant circuitry, taking into account explicitly both the
input systems to CA1, and evaluated its performance in the sense of information theory.
Then we have provided, by means of the techniques of statistical mechanics, an analytical
expression for the amount of information present in the model CA1 output, about what
has been presented in the entorhinal cortex. This analytical solution of the problem is
given as a function of saddle point parameters, which are related, through the saddle point
equations, to the parameters characterizing the network. The saddle point equations turn
out to be very difficult to solve, and we have not studied, sofar, a region of the parameter
space big enough to give a full computational account of the functions attibuted to the
perforanth path connections to CAl. Nevertheless, we think that it is worthwile to
report the analytical solution of the model, both because the calculation is non trivial
and because, in the spirit of this dissertation, it is important to develop methods which
can give accurate descriptions of the informational performances of biologically plausible
neural networks. -

This chapter is organized as follows: in the first section we briefly review the basic
facts of the hippocampal organization relevant to our analysis, together with the basic
computational and functional hypotheses contained in the Treves-Rolls model (Treves
and Rolls 1992, 1994) which are the starting point of our analysis. The second section is
devoted to the definition of our model, and to the discussion of the underlying hypothesis.
In the third section we report the analytical evaluation of the information present in the
CA1 output about a pattern presented in the entorhinal cortex, and we discuss how to
find the numerical solutions of the saddle point equations. Finally, in the last section
we conclude by discussing the results, and the possibility of using data available from
simultaneous or sequential recording of hippocampal cells (Wilson and Mc Naugthon
1993, Skaggs et al. 1993, Treves et al. 1996, Rolls et al. 1995a) to validate some of the
building hypothesis of the model, and to check its quantitative predictions.

4.1 The Hippocampal System

The very brief review of the salient features of hippocampal organization, and, the discus-
sion of computational hypotheses for the CA3 and CA1 region that we discuss here, are
not presented to give a new, original view of hippocampal structure, but to emphasize
- which hypotheses we are going to test with our quantitative model.

4.1.1 Hippocampal architecture and plasticity

The hippocampus receives, via the adjacent parahippocampal gyrus and entorhinal cortex, inputs from
virtually all association areas in the neocortex, including those in the parietal, temporal, and frontal lobes
(Squire et al., 1989). Therefore the hippocampus has available highly elaborated multimodal information,
which has already been processed extensively along different sensory pathways. An extensively divergent
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, Figure 4.1:
Forward connections (solid lines) from areas of cerebral assoclation neocortex via the parahippocampal
gyrus and perirhinal cortex, and entorhinal cortex, to the hippocampus; and backprojections (dashed
lines) via the hippocampal CA1 pyramidal cells, subiculum, and parahippocampal gyrus to the neocortex.
There is great convergence in the forward connections down to the single network implemented in the
CA3 pyramidal cells; and great divergence again in the backprojections. Left: block diagram. Right:
more detailed representation of some of the principal excitatory neurons in the pathways. Abbreviations
- D: Deep pyramidal cells. DG: Dentate Granule cells. F: Forward inputs to areas of the association
cortex from preceding cortical areas in the hierarchy. mf: mossy fibres. PHG: parahippocampal gyrus
and perirhinal cortex. pp: perforant path. rc: recurrent collateral of the CA3 hippocampal pyramidal
cells. S: Superficial pyramidal cells. 2: pyramidal cells in layer 2 of the entorhinal cortex. 3: pyramidal

cells in layer 3 of the entorhinal cortex. The thick lines above the cell bodies represent the dendrites.
(From Rolls (1995)).
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system of output projections enables the hippocampus to feed back into most of the areas from which
it receives inputs.

Information is processed within the hippocampus along a distinctly unidirectional path, consisting of
three major stages, as shown in Fig. 4.1 (Amaral and Witter, 1989; Amaral, 1993). Axonal projections
mainly from layer 2 of entorhinal cortex reach the granule cells in the dentate gyrus via the perforant
path (pp), and also proceed to make synapses on the apical dendrites of pyramidal cells in the next

stage, CA3. A different set of fibres projects from entorhinal cortex (mainly layer 3) directly onto the
third processing stage, CA1.

There are about 10° dentate granule cells in the rat, and more than 10 times as many in man (more
detailed anatomical studies are available for the rat) (Amaral et al., 1990; West and Gundersen, 1990).
They project to CA3 cells via the mossy fibres (mf), which form a relatively dilute (low probability of
connection) but possibly powerful synaptic matrix; each fibre makes, in the rat, about 15 synapses onto
the proximal dendrites of CA3 pyramidal cells. As there are some 3 x 10° CA3 pyramidal cells in the
rat (SD strain; 2.3 x 10° in man, Seress, 1988), each of them receives no more than around 50 mossy
synapses. {The connectivity is thus 0.005%.) By contrast, there are many more - possibly weaker -
direct perforant path inputs onto each CA3 cell, in the rat of the order of 4 x 10%. The largest number
of synapses (about 1.2 x 10* in the rat) on the dendrites of CA3 pyramidal cells is, however, provided
by the (recurrent) axon collaterals of CA3 cells themselves (rc). The CA3 system thus provides a single
network, with a connectivity of approximately 4% between the different CA3 neurons. The implication
of this widespread recurrent collateral connectivity is that each CA3 cell can transmit information to
every other CA3 cell within 2-3 synaptic steps. The CA3 system therefore is, far more than either DG
or CA1l, a system in which intrinsic, recurrent excitatory connections are, at least numerically, dominant
with respect to excitatory afferents.

_ In addition, there are also intrinsic connections with a variety of numerically limited and mainly
inhibitory populations of interneurons. Here we assume that such connections perform only the function
of keeping the activity of hippocampal neurons within well-defined bounds, and not of providing signals
specific to the information being processed in the system. '

Extrinsic axonal projections from CA3, the Schaffer collaterals, provide the major input to CAl
pyramidal cells, of which there are about 4 x 10° in the (SD) rat. The CAl pyramidal cells are charac-
teristically smaller than the CA3 ones and, across different species, come in larger numbers. In terms
of cell numbers, therefore, information appears to be funnelled from DG through the CA3 bottleneck,
and then spread out again into CA1l. The output of CA1 returns (directly and via the subiculum) to
the entorhinal cortex, from which it is redistributed to neocortical areas.

Neurophysiological evidence also indicates that many of the synapses within the hippocampus are
modified as a result of experience, iIn a way explicitly related to the types of learning for which the
hippocampus is necessary, as shown in studies (Morris, 1989) in which the blocking of such modifiability
with drugs results in specific learning impairments. '

\

Studies on long-term potentiation (LTP) have shown that some synaptic systems (in DG and CAL,
but probably also pp and rc synapses in CA3) display a ”"Hebbian”, or associative, form of plastic-
ity, whereby presynaptic activity concurrent with strong postsynaptic depolarization can result in a
strengthening of the synaptic efficacy (Brown et al., 1990; I\‘files, 1988). Such strengthening appears to
be associated with the activation of NMDA (N-Methyl-D-Aspartate) receptors (Collingridge and Singer,
1990), and it is possible that the same synapses display also (associative) long-term depression (Levy and
Desmond, 1985; Levy et al, 1990). Also MF synapses are kriown to display long-term activity-dependent

synaptic enhancement, but this form of enhancement appears not to be associative (Brown et al., 1990).
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4.1.2 Computational hypotheses arising from functional con-
straints: a quick review of the Treves-Rolls model

Here we briefly review the functional role suggested for various hippocampal subfields in
the work by Treves and Rolls, by arguments based on a computational analysis. The aim
of the section is not to summarize this interesting model of hippocampal function, or to
present it as an established ‘truth’, but to discuss and emphasize only those hypothesis
that we have taken as starting point of our analysis.

Rolls (1987, 1989) has suggested that the reason why the hippocampus is used for
episodic memory, is that the hippocampus contains one stage, the CA3 stage, which
acts, by means of its extensive network of recurrent collaterals (RC), as an autoassoci-
ation memory. This hypothesis implies that any new event to be memorised is given
a unitary representation as a firing pattern of CA3 pyramidal cells, that the pattern is
stored in associatively modifiable synapses from the recurrent collateral axons, and that
subsequently the extensive recurrent collateral connectivity allows for the retrieval of a
whole representation to be initiated by the activation of some small part of the same
representation (the cue). Computational constraints suggested specific roles for the two
mmput systems to the CA3 network (Treves and Rolls 1992). In particular, the mossy
fibers, and with them the whole dentate network, might be regarded as a device to force
very efficient information storage into CA3, by virtue of their strong (and sparse) influ-
ence on the CA3 cell firing rates. The perforant path connection to CA3, instead, should
help in the process of retrieval from a partial cue, in that this large system of weak
assoclatively modifiable synapses can relay a signal specific enough to initiate retrieval.

The information retrieved within the CA3 autoassociator has to be sent back to
neocortical areas, with minimal waste. In this view, the CA1 network can be considered
(Treves and Rolls 1994) to be both the first step in the relay from CA3 back to neocortex,
and the last stage of the hippocampal associative memory system. One crucial advantage
of having CA1 after the CA3 stage is that the very compressed representation provided
by CA3 pyramidal cells can be reexpanded onto the larger number of CA1l pyramidal
cells, resulting in the same information being coded in a much more robust manner.
Obviously the recoding is effective only if at least it preserves the overall information
content of the representation. Further, CA1 can also contribute to associative retrieval
itself by increasing this information content over and beyond that of the representation
retrieved from CA3. A quantitative assessment of such information (Treves, 1995) shows
that both preservation and increase can occur, depending on the balance of the various
noise parameters in the different subfields, if the CA3-to-CAl connections, the Schaffer
collaterals, are endowed with associative Hebbian modifiability. In particular, there is
an optimal range of the plasticity parameter which is the one that matches the plasticity
of CA3 recurrent connections. This analysis then suggest that the two synaptic systems
(within CA3 and from CA3 to CAl) may be optimally organized if thev share the same
molecular and biophysical mechanism based on NMDA-receptor-dependent potentation.

Another interesting feature of the CA1 network is its double set of afferents, with each
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cell receiving a definite proportion of extrinsic inputs not only from Schaffer collaterals
but also from direct perforant path projections from (mainly) layer 3 of entorhinal cortex.
The existence of this second set of inputs indicates that, in some conditions, there is
need, after the CA3 stage, of some information closely related to the original input
given to the hippocampus. It has been suggested (Treves and Rolls 1994) that the
perforant path projection may serve, during retrieval, to integrate the description of the
full event recalled from CA3, with the information I‘lCh description of only those elements
of the respresentation used as a cue provided by the entorhinal/perforant path signal.
Nevertheless, from this semiqualitative analysis is not clear at all in which region of the
noise parameters the effect of this input could be necessary for the recoding in CA1 with
minimal waste, and when this input could be irrelevant. The aim of the next section is to
extend the analysis, introduced by Treves (1993) to quantify the information relayed by
Schaffer collaterals, to include the direct perforant path projections to CAl. It is hoped
that this work will clarify the contribution of direct entorhinal inputs to the information
content in the hippocampal output, providing indications as of the reason for the relative
abundance of perforant path and Schaffer collateral synapses onto CA1 cells, and making
predictions about the synaptic systems under considerations (within CA3, from CA3 to
CAl, and from entorhinal cortex to CAl).

4.2 The Model

The information content of a ‘CA1’ firing pattern has been evaluated analytically using a
formal model. The model describes, in simplified form, the Schaffer collateral connections
from the N pyramidal cells of CA3 to the M pyramidal cells of CA1l, and the direct
perforant path connections from the L pyramidal cells of the entorhinal cortex (EC)
to CAl. It considers the connections from EC to CA3 in a simplified way, under the -
hypothesis, discussed in the previous chapter, that the mossy fibers and the dentate
‘network are able to force a very efficient information storage in CA3. Morevoer, the model
does not include directly the effect of inhibitory interneurons, but it is asssumed that
they exert a general regulation of pyramidal cells activity, setting up effective thresholds
for the pyramidal cells, such as to produce activity distributions with a given sparseness.
The weak (Amaral and Witter, 19b9) CA1 recurrent collateral system is neglected.

The system works as follow: a given pattern of activity in EC i is presented to the
- hippocampus via the projection systems. Two distinct modes of operation of the hip-
pocampus are envisioned: storage and retrieval. During storage the synaptic efficacies
on both the Schaffer collaterals and perforant path (PP) connections are modified in a
‘Hebbian way reflecting the conjunction of pre- and post-synaptic activity — but the mod-
ification is not immediate and thus does not influence the current CA1 output. During
retrieval, the Schaffer collaterals relay a pattern of activity retrieved from CA3, and the
PP relay the pattern! represented in EC. The synaptic efficacies of these connections,

In fact, only a part of the EC pattern (a cue).
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while not being presently modified, reflect all previous storage events. In this way, five
different patterns of neuronal firing are considered (Table 4.1)

CA3 | CA1 | EC
storage | {m} | {G} | {vs}

retrieval | {Vi} | {U;} | {w}

Table 4.1: The five different firing pattern appearing in the analysis. Each symbol denotes
the firing rate of the cell indexed by the subscript.

o {v} are the firing rates of each cell k of Entorhinal Cortex, which together code for
the information to be stored, and later retrieved, from the hippocampus. The firing
pattern {v;} represent the information received by EC from neocortical association
areas. Statistically, the probability density of finding a given firing pattern is taken
to be a product, for each cells, of a certain “typical” firing rate distribution:

P({v}) = HP,,(Vk)duk (4.1)
;

This assumption means that each cell in EC is taken to code for independent
information, an highly idealized version of the idea that by this stage most of the
redundancy present in earlier representations has been removed. The assumption of
independent input patterns, necessary for our solution of the model, appears to be
reliable for the hippocampal cells, where there is some evidence that each cell code
for nearly independent information 2, but has not been verified for the entorhinal
cortex, where quite possibly the cells might be further from this assumption. Work
Is in progress to provide analytical solution of the model even in presence of symple
types of correlation among EC cells.

o {n;} are the firing rates produced in each cell i of CA3, during the storage of
the EC representation; they are determined by the matrix multiplication of the
pattern {v;} with the synaptic weights I;; (of zero mean, as explained below, and
variance o7) followed by Gaussian distortion, (inhibition-dependent) thresholding
and stepwise rectification:

L
n=Z= (770 + > di Ly + (ZS)

k=1
<In)?>=0}f < (67) >=o0lk (4.2)

“For the rat hippocampus see Treves et al. 1996, whereas for primates see the discussion in thapter
3 of this thesis
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The connections between EC and CA3 are effectively implemented by the Gaussian
connections /;;. As discussed previously, this model does not describe explicitly the
dentate network, but the sparse and information rich representation set up on the
CA3 cells by the dentate network is achieved by tuning the parameters o7, ogs in
such a way that nearly all the information present in EC is stored into the sparse
firing activity of the CA3 cells. The function = has been defined as a step linearwise
function (and not a threshold linear one, like for the other transfer functions) in
order to replace one of the integrals in function A (defined in the Results section,
eq. .(4.20)) with a sum over steps, thus decreasing the complexity of the numerical
solution of the saddle point equations. The function Z(z) has the following form:

1. When —oo <z < 0, then =(z) = 0.

2. When my <o <myp; (my=1Im,),and [ =0, -, . — 2, then the function
= has the value Z(2) = & = (I + L )m..

3' \/Vhen mlmax"l S T < OG’ then E(m) = glma.x"l = (lmax + %)ma

By increasing th{e parameter m,, the number of steps /.. necessary to span a
reasonable range of z decreases. We note that, for the sake of compactness of
notations in the result section, we define also m_; = —oo and £é_; = 0. The
synaptic matrix is sparse as each CA3 cell receives inputs from D cells in EC.

dr €{0,1}, <du>L=D. o (43)

{¢;} are the firing rates produced in each cell j of CAl, during the storage of
the CA3 representation; they are determined by the matrix multiplication of the
pattern {n;} and {v;} respectively with the synaptic weights Ji‘j and K fk followed
by Gaussian distortion, (inhibition-dependent) thresholding and rectification:

N +
Cj = |Co + Z CijJ{?"]i + Z bjk]{ﬁcl/k -+ 6}-9
=1 k
<(J5P>=0% < (K)? >=0k; < () >= 02 (4.4)

(the rectifying function [z]* = z for z > 0, and 0 otherwise, ensures that a firing
rate is a positive quantity). The sparse synaptic matrix is fixed in this way:

<¢;>N=C;" <bp>L=B; (4.5)

The average number B; of PP inputs to the CAl cell j is taken to vary across
different CA1 cells. (The average of B; across cells is denoted as B). Anatomical
studies (Witter 1993) reveal that restricted populations in the EC activate specific
regions of CAl. This is consistent with the hypothesis (Treves and Rolls 1994) that
the PP carries detailed information only on a limited number of elements of the
episode.
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o {Vi} are the firing rates in the pattern retrieved from CA3, and they are taken to
reproduce the {7;} with some Gaussian distortion (noise), followed by rectification:

Vi=[ni+6]"
< (6)* >=0} (4.6)

os can be related e.g. to interference effects due to the loading of other memory
patterns in CA3 (see below and Treves and Rolls, 1991). This and all the other
noise terms are all taken to have zero means.

o {U;} are the firing rates produced in CA1 during retrieval:

.+.
U, = {LO.{_ZCU I+ijkijkvk+e} ,

< (P> = ok (+.7)

It is important to note that. in the present version of the model, the PP connections
contribute to the firing rates in CAl during retrieval, eq (4.7), with the whole
episode presented in the EC during storage. The possibility that only a limited
number of units of the EC pattern are active in the retrieval phase, can be effectively
and easily taken into account by switching off, with a quenched probability, a given

- fraction (e.g., 3/4) of the bj connections in eq. (4.7) that were already switched on
during storage. This latter modification of the model leads only to a sligth as easily
computable modification of the analytical results (4.18). However, we decided to
begin the numerical study of the solutions of the model from the simplest form

(4.7).

The weights of the SC synaptic matrix during retrieval of a specific pattern,

(vs]

JE = cos(0,)75 + 420, H ni, ;) + sin(0,)JY (438)

consist of

1. the original weight during storage Jm damped by a factor cos(6,), where 0 < 6, <
7/2 parametrizes the time elapsed between the storage and retrieval of pattern p

(1 is a shorthand for the pattern pentaplet {vy,n;, Vi, (5, Us} ).

2. the modification due to the storage of u itself, represented by a Hebbian term
H(n;:, ;)  reflecting the association of patterns {7;} and {(;} - also normalized so
that '

( (77 C)) _UJ: (49)

s measures the degree of plasticity, i.e. the mean square contribution of the modi-
fication of the Schaffer collaterals induced by one pattern, over the overall variance,
across time, of the synaptic weight.
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3. the superimposed modifications J" reflecting the successive storage of new inter-
vening patterns, again normalized such that

< (J§) >= a3 (4.10)

In a symilar way, the weights of the PP synaptic matrix during retrieval of a specific
pattern '

K} = cos(0.)K 5, + v2(0,)H (i, ) +sin(0,) KX (4.11)

have a similar structure, with the corresponding Hebbian term and the superimposed
modifications again normalized as:

<Hwu()> = ok (4.12)
<(K))'> = o% (4.13)

in such a way that -, has the meaning of plasticity of the perforant path fibers.

The mean value of each synaptic weight has been collapsed with the threshold term
(an approximation valid when the mean firing levels are strictly regulated by inhibition)
and the gain of the threshold-linear transfer function (see Treves, 1990) has been set

to one by rescaling the weights. It is convenient also to set for the Hebbian terms the
specific form

Hn:.¢;) = g(¢G = Co)(m — o),

h(CJ - CO)(Vk - Vo),
vo = <v>, . (4.14)

=

X

e

vy

<

~—
I

where the parameter g = :/% and h = \/h—;é ensure the normalization given in Eqgs. (4.9,4.12).
Note that the presynaptic ans postsynaptic cell are taken to vary independently across
memeory patterns, because of the extensive convergence of both SC and PP fibers; this
implies that the variance in the synaptic weights is just a sum of terms from each mem-
ory pattern, and justify the interpretation of 1/4, and 1/v, as the effective number of
patterns in storage in the Schaffer collaterals and perforant path to CA1 respectively.
The aim is to calculate how much, on average, of the information present in a given
original pattern {v}'} is still present in the effective output of the system at the time
A is retrieved, i.e. in the pattern {U}}, that is to average the mutual information
i({v2},{U}}) over the quenched® variables ik, bj, cijy L, I3, I, K, K5 . The average
over the quenched variables is necessary, because no meaning could possibly be assigned
to a result specific to certain values of each of the quenched connections. Extensive quan-
tities (i.e., scaling proportionally to the number of units of the system), like the mutual
information, are expected anyway to coincide with their average (Mezard et al. 1987).

3The term quenched in this studv means independent of the specific distribution realized in pattern
Al
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This amount of information has to be compared, for different values of the network
parameters, to other quantities, like the entropy of the pattern presented in EC, and the
information about that pattern that has been stored (or retrieved) in CA3. For the sake
of brevity, we report only the results for the calculation of i({v{}, {U:; 1), which is both
the more difficult and more interesting calculation, but it will be clear from the discussion
how to compute also the information stored or retrieved at intermediate stages of the

network, like CA3.

4.3 Results of the analytical evaluation

In this section we 1epo1t the results of the evaluation of the average mutual information
i({r¢},{U;'}) between the given original EC pattern {v}} and the CA1 output at the time
)\ is retrieved. i.e. the pattern {[J“}. The details of the calculations are only sketched.
pointing out the relevant facts and the techniques used in each step.
The first step of the calculation is the evaluation of the joint probability P({r:}, {U;}).
The latter quantity can be written (simplifying the notation) as

P(v,U) = P(U|v)P ///dVdgan(U]Vg 0. )PV | n,v)
x P(C |, ) (| v)P(v) (4.13)

where the different probability densities in (4.15) implement the model defined above.

The (average) amount of information is evaluated using the replica trick (Nadal and
Parga, 1993; Treves 1995). This trick, often used in the context of the statistical physics
approach to spin glass theory and neural networks (Mezard et al. 1937; Amit 1989), is
based on writing the logarithm as a limit of a power:

zh —1

n

log(z) = lim, o (4.16)
The average of the logarithm of the probabilities is then calculated by introducing n
replicas, performing the average over the quenched variables and taking at the end the
n — 0 limit. In this way one ends up with the expression:

‘ ] 1 P v, U "
<i(y,U) Zdbe, I, JS N KS KN = 71_0131 n < ] wdUPw,U) { [%(V)—):]
B [P(Lr)] } >db,e,I,JS,JN KS KN - (4'17)

where one needs to introduce n+ 1 replicas of the variables 6:, 67, f B 1%, ¢, mi, and, for

the second term in curly brackets only, v;. Then, the integrals in (4 17) are eva,luated
in the limit of infinite number of neurons?, by the saddle point method. In order to find

*The numbers of neurons L, N, M contained respectively in EC, CA3, CA1 are supposed to scale to
infinity with a fixed ratio.
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the saddle points, we then use the ‘replica symmetry ansatz’, which consists in imposing
that both single and double-replica saddle point parameters do not depend on the replica
index. Only at the end, after the large N limit, the n — 0 limit is performed °.

This procedure leads to the following expression:

< Z(Dv, V) > = eXtryA,ﬂA,wA,@A,zA,EA{Z F(yA;wAazAansBja7s>7p)
J

N

-3 (&IAQA + 2w w4 + ZAEA) + N A(Ja, 04, 24, qo)}

— extryp dpumisn WB,2WR,ZB.ZB {Z P(va wB, %8, 4B, ij Vss ’717)

J
N . ~ R .
— E(yByB + 2wpWp + zB3p) — ”Q‘QBQB

co _agt = _apt
+ L/ As<e 72 7WVIBY 5 In<e "2 S\/a’;">,,
- 00

4+ NA(ﬂB,zDB,EB,qB)} @)

where |
<()>,= / P, ()() | (4.19)

and taking the extremum means evaluating each of the two terms, separately, at a saddle-
point over the variables indicated (and dividing by In2 to yield a result in bits). Let us
now explain what are the symbols appearing in our result (4.18). The functionA is given

by:

NGB, 5.q) / dsdrdr . (1 —mo)?
Y, w,2,q) = eXP—Fo o~
(2m)3/2 /(52 — w2)o}Dg 201 Dq
-1
: 1 w S
x FllnF+(s r) Y | (4.20)
w oz T ‘

and [ has the following expression

Imax~1 R
F(r,s,7,5,%,5,q) = ; Mt — 7 ¢ i )
8T8 50 z:z_l {Q (\/0§5+0%D(QO—Q)) ’ (\/O'ESH’?D(‘IO“-’) }
y { ¢‘{&—a§(s+w&)} 1o ra@+g)r

exp ———— o
os\J1+02 | J1+0% - 2y(1 + 03y)
®Problems arising with the replica symmetry ansatz and with the inversion of the two limits n — 0

~ and N — oc are discussed e.g., in Mezard et al. 1995; For the range of validity of the replica symmetry
ansatz in networks of threshold linear units see Treves (1991)
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- 2
+ ¢[ ﬂ exp—'*————[w&_fs] }
os 2y
(75— 0?2) = (s — )2
« exp— [GE— %) (s = gr)] (1.21)
| 25(y% — w?)

and the following notations for the gaussian integration measure and the error function
are introduced: - '

As = (ds/v27)exp —s2/2 (z) = /x As. (4.22)
I' is effectively an entropy term for the CA1 activity distribution, given by
B dsydsy (T | s
Dz Bryow) = [ tmem—(a o)
0 0 ,
x [ | a6y | avew
+ / Z G n G(U)} , (4.23)
0

where
GU) = G(U;s1,52,9,0, 2,4, Bj,¥s, Tp)
(G0 = $2)(Ty + 27T + 7}T2) + (U — Ug + 81 4+ 7582) (T + v, T2)
ST =TT, + 23,70 1+ T.)

1 (U —Us + 51+ 7552)?

= ¢

X exp — 3 4.24
\/QTF(TZJ + 27jTu: + ’)’Jsz) Q(Ty + ijTw + ")/;T;) ( )
+ ¢ — (G0 — 32)Ty — (U = Up + s1 4+ ()T
\/(TyTz - T112/)Ty
I Ry
) exp - Lot 20567 (4.25)
27 2T,
y .

and
T, = ok +05C(y° ~y)+0%Bi(¢° - q)
cos(6)[03C (w” — w) + 0% By(¢" — g)]
T = ol + 050" - 2) + 0} Bi(¢" —q) (4.26)

Ty Ta
I Y w
T, =
Tw Tz
2 2 -
Ty, = 03;Cy+o5Bjq

cos{#)[oc5Cw + 0% Bjq]
7. = 05Cz+0%Biq

&
I

3
|
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are effective noise terms.

75 = Cvi?gz° + By} ?ht (4.27)
Y, w, z, q are saddle-point parameters (conjugated to 7., Z and §), and 2°,y°, w°, z°,¢°, ¢°
are corresponding single-replica parameters fixed, essentially by the normalization of the
probabilities, as

1 lmax—1 m . my —

0 +1 — 7o , [ — "o

T = = < (n —no)V; >= [¢ —¢ P }
N ; 1:2_1 ;. +oiDg \/USS‘FU.%DQO

1 Imax—1 m . mi—7
2 = - 771'2 = [Gﬁ 1 7o — (,9 ! 0 ]62
N ; Z::Z—l \/O'gs_ + O’%qu U‘gs + O'%qu !
9 = <(v—uw)v>,
¢ = <>, (4.28)

4.3.1 Model parameters and experimental quantities

Since the model we are studying is supposed to reproduce the behaviour of a real neural
network, its parameters should be in some way related to experimental quantitities. This
subsection is devoted to a brief discussion of how the parameters can be measured or
fixed in a reasonable way.

Very important parameters included in the model are 7, and ~7,, which represent,
as stated above, the degree of plasticity of the Schaffer and perforant path connections
respectively, expressed as the ratio between the mean square change in synaptic strength
due to the storage of one memory pattern, and the overall variance in synaptic strength.
If such variance is entirely due to memory storage, one can say, inversely, that the memory
system holds of the order of v;* (or ;" )patterns at any one time. This is only a rough
measure, as in fact patterns are not necessarily ever completely effaced in the model,
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but rather their traces may be only gradually overwritten by other intervening patterns,
depending on the chosen dependence of # on real time. as parametrized by the factor
cos(f). One interesting model of the time-dependence of the plasticity parameters could
be the gradual decay of memory traces used in Treves (1995).

The evaluation has been carried out for an arbitrary distribution P,, the only hypoth-
esis being that of independence among different EC cells. For the numerical evaluation
of the saddle point equations, one can choose, for simplicity, a binary form., in which a
cell is firing at a rate v* with probability a, and silent otherwise

P,(v)=(1—-a)b(v)+aé(v—v") (4.29)

where the firing rate of all EC active cells has been set to v*, and « is a sparse coding
parameter (3.13). In alternative, more complex form, e.g., that fit real distributions
observed in EC cells. can be chosen.

Let us now discuss the noise parameters. o5 is measured on the n~ scale (ie., as a
frequency), and is chosen to account both for actual noise in retrieval from CA3 (which
corresponds to the standard deviation in the rates recorded during successive trials of an
already learned task, as e.g. in Rolls et al, 1989; fast noise in thermodynamics jargon),
and for interference (the so-called quenched noise) caused by memory loading (which
would be observable by comparing responses during and after one-shot learning, and
which most theoretical models would predict to grow with the square root of the load;
- Treves, 1990). Moreover, CA1 rates are sensitive to fast noise of s.d. O.s.0.R, again
measured in Hz. Data on trial to trial variability in firing rates in CA3 and CAl are
presently too scarce to allow a systematic analysis; but these model parameters can be
set to reproduce experimental data as it becomes available. In contrast, the noise of s.d.
oss, present in CA3 during st01age is not a parameter with an experimental correlate,
and, as discussed in the previous section, should be chosen to be very small, in order to
store in CA3 as much as possible of the information presented in CA3.

The threshold terms (o, Uy, also measured as frequencies (given the unit gain), are
given negative values such as to produce activity distributions in CAl with a given
sparseness. These parameters, which summarize a variety of effects and have no imme-
diate correlate, can be given appropriate values inferred indirectly from the measured
sparseness (see e.g.. Barnes et al. 1990). The same applies to the parameters character-
izing the n distribution (mainly the function Z(-)).

For the purpose of the numerical study of the saddle point equations, the three vari-
ances of the synaptic efficacies ¢, 0%,0% can be set to the same value. The relative
abundance (or estimated strength) of the SC and PP connections can be tuned by means
of the mean connectivity parameters B, C, with the constraint

02(B+C):1. (4.30)

The latter requirement is just set to be consistent with the gain of the CAl transfer
function being set to 1. The value for the connectivity parameter D for the “fake”
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connections EC-to-CA3 plays a minor role, as far as the ratio between the values of 02D
and ogs is such as to achieve efficient information storage in CA3.

Finally, the ratios M/L and N/L between cells in different regions can be selected
looking at anatomical data. The number L of EC cells is itself irrelevant if one considers

only the amount of information per EC cell; moreover L is considered strictly infinite in
the analytical evaluation.

4.3.2 Numerical solutions of the saddle point equations.

It is self-evident that the numerical study of the saddle point equations introduced in the
last sections is quite hard, and we were not able to study. so far, a region of the parameter
space big enough to get.useful insights on the functions of the perforant path to CAL.
Nevertheless, let us briefly describe the numerical technique that we (i.e., mainly Carlo
Fulvi Mari) are using.

One of the problems in evaluating (4.18) is the large dimensionality of the space in
which one has to find the saddle point (6 dimensions for the first term, and 8 dimensions
for the second saddle point). However, the dimensionality of the saddle point parameter
space can be effectively reduced, for the purpose of the numerical evaluation, by using a
trick that we describe focusing on the first term in (4.18) (that with the A subscripts on
the saddle point variables). We start with an initial guess for the values of (y4,wa,24)
(let us denote the values by (y7%,w?%,2%)). Then we calculate the corresponding values
for the ‘tilde’ parameters (7%, w?, 2%) by evaluating the derivatives of the function I in
(¥4, w%, z%). Then we use (§%,w%,2%) to compute (deriving this time A) the new, more
refined guess for the (y4,wa,z4). The procedure is iterated until we reach the fixed point
for (ya,wa,z4). In this way the effective dimensionality of the saddle point parameters
is reduced by a factor of 2.

Currently, the numerical investigaﬁon of saddle point equations is devoted to the
study of the dependence of information on certain parameters, like the relative abundance
of Schaffer and perforant path connections. In particular, we are studying the way that
information varies with B, that, having fixed the condition (4.30) and certain values for
the noise parameters, parametrizes the relative strength of perforant path versus Schaffer
connections. The comparison between the information relayed by the CA1 cells when B
is very low, and when B is of order of what is found in real hippocampus, can shed light
on the specific contribution of the perforant path projections to the CA1 processing. ’

4.4 Discussion

We conclude by discussing both how the model could be improved and which assump-
tions and results could be tested by experiments, leading to an improvement of our
understanding of the hippocampus from the viewpoint discussed here.
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4.4.1 How good is the model 7

The biological plausibility of the model has been discussed before. Here we point at the
improvements of the model that can be carried out, and are in fact under investigation:

e At the moment we are numerically studying the simplest case in which the average
number of perforant path connections per CA1 cell (B;) is constant along the CA1l
field. It would be interesting to take instead into account the real topographic
organization of the perforant path to CA1 (Witter 1993).

o A similar problem is the study of the effects of taking into account the real struc-
ture of the Schaffer collateral connectivity, and in particular of the fact that the
convergence from CA3 to CAl is not constant along the length of CA1 field. This
1ssue is under investigation by Simon Schultz (Schultz 1996).

o A problem which requires an improvement of the analytical techniques, but is
interesting, is the introduction of spatially correlated input patterns in EC, both to
fit what is found with real data and to understand how the redundancy of messages
varies at different stages of hippocampal information processing.

o The fact that the dentate gyrus is not modelled realistically is in our opinion a
minor point, as the understanding of its function is not the goal of the present
study, and the hypothesis on its role can be studied as a separate issue (Treves and

Rolls 1992).

4.4.2 Relating analytical models to experimental measures

We conclude by discussing how the underlying hypotheses and the predictions of the
model can be tested and related to the behaviour of hippocampus in viro, as observed by
recording the activity of its units. From our viewpoint, the combination of a quantitative
analysis of real data and a realistic model can greatly improve our understanding of the
hippocampus. Most important directions to take:

e The comparison between data recorded from different populations (e.g., Barnes
et al. 1990; Treves et al. 1996) has already been useful, but more systematic and
quantitative analyses of parallel recording are needed to quantify the informational
properties of each stage of the system.

e It would be also insightful to observe if there are systematic differences in the
information content of hippocampal cells in different experimental conditions. If
the variations in external conditions can be related in some way to variations in the
noise parameters of a model like ours é, one can perform severe tests of the model.

6¢.g., in the experiment about view cells in primate hippocampus, chapter 3, one can imagine varying
the noise of retrieval by using curtains in order to present only a partial visual cue and check to which
extent the response is invariant in different parts of hippocampus. This procedure, devised by Rolls,
Robertson and Georges-Francois 1996, is now under experimental study.
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e The above model is fully based on the assumption that information is represented
basically in the firing rate of the cells. Although there is some evidence that in the
rat"hippocampus the temporal modulation can play some role (e.g., O'Keefe and
Recce 1993), this may be not true for the primate hippocampus. The study reported
in chapter 3 is in our opinion an interesting starting point for understanding this
important issue, and is fully consistent with the hypothesis that firing rate describe
well the neuronal representation of the external correlates.



Appendix A

Explicit evaluation of the bias

In this appendix we give the derivation of the results presented in chapter 2. In the
calculation we consider the case in which the data are treated by convolving responses
with a kernel distribution and then by discretizing the response space into R intervals.
Finally, however, we show how to recover the results appropriate to the other data manip-
ulations, namely pure discretization and pure convolution with continuous distributions.
Moreover, we explain why the bias evaluation, given by Carlton (1969), and often quoted
in the literature, is wrong.

We start by calculating the average of the total amount of information (2 15), which can be expressed
as follows:

<I§>=3 >, < px(9)Bw(ils) logs P (ils) > — < > (i) log, B (i) > (A1)
SES
where p(-) is defined in (2.16) and the hat on the sum over response bins in (A.1) denotes that we must
exclude from that sum, for each term of the sum over stimuli, the bins in which 5(i|s) = 0 (in fact, in
those bins, the only permltted outcome is pj\,( ls) = 0 and they trivially dlsapper from the aweraoe)
Now we can use the following series expansion for the logarithm:

~loga(hv () = oy > LA (4.2)
ji=1

This expansion (A.2) is convergent for all values of P (+), since 0 < px () < 1 (note that in our calculation
the configuration px(-) = 0 can be excluded). Ta,king term by term expectations in (A.1) we find:

< ZJ\J > = logz ZZ Z < pn(s)Pn (il 5)(1 pN(Z[S))

sES
1 == (11— ;
+ logQZgj};< N(z)(—“L;V—Q)—>
e R S RSN GO .
B log2seszi;,§ j (k><PN(S_)P5’v“(le)>
- loiQZiZZ( ]) (k) <pfv+l()> (A.3)
© j=1k=0
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where in the last step we used the binomial decomposition for (1 — P(-)y. We can now calculate the
average by the following procedure. First we average over responses (at fixed stimulus s and number of
presentations per stimulus N; = Npx(s)) simply by assuming that the probability of obtaining a raw
response r (given the stimulus s) is given by P(r|s)dr, and by substituting the sum over outcomes with
the corresponding (correctly normalized) integral in the response space. We are then left with an average
over py(s), with a multinomial distribution. Note that, in averaging terms of the form < (Bx(0)* >,
since the parameters specifying the kernel can be stimulus dependent, we must decompose Dy (Z) as
p~(2) = 32, pn(s)Dn (i]s), average first over the responses (at fixed stimulus) and finally over pn(s) with
the multinomial distribution. In this way we obtain the following expressions:

<G> = P+ 5 ()F A ) - P 4o (72 ) ()
PN > = peIFe)+ 5 (5 )20 11 o] + 0 (=) (a9
<HO> = P05 ()0 60 -0+ o (k5 ) (A

where ¢(-) is defined in (2.23). Ignoring the third term in each of the (A.4)-(A.6) and then substituting
{(A.4)-(A.6) into (A.3), we find an exact expression for the bias which is exact up to O(1/N?) terms and
1s a good approximation to the bias if in each bin N,p(i|s) < 1:

<IB> = oYY S LU () [ - Bt
SES j=1

log 2

R

+ gy 009) = 9] LG - 15019 - 2301~ i)

1 =

1 SN =2 [ ~f 12
* log?_zz'; ; ﬁl 0] {p(z) [1—5(3)]
- QL\ [26) = (D] LG — 1B — 251 - ﬁ(i))]}
= oy (A7)

where T? is given in (2.19) and C? is the leading contribution to the bias:

»_ 1 = qls) | _a®)| o
Y = TN log 2 {Z, KZ 5(1'[3)) 5(1)} (s 1)} (A.8)

SES

By going further in the 1/N expansion when' considering the averages (A.4)-(A.6), one can also obtain
the next terms in the 1/NV expansion of the bias by the same procedure. Here we report only the results
for the second term:

~o 1 - < —28(il9)t(ils) + 33 (ils)
b = 12N2log? {gfpﬂsb Zi v P(ils) —1”
1 T —2BOT) + 33°0) '
12N?]og?2 { {Zz 73(3) +1 } (A.9)

where

SES

%’(i|5)g/drp(r|s)E§(i[s) W) = > p(s)ilils) - ' (A.10)
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Higher order terms are reported, for the discrete case, in Treves and Panzeri (1995). In fact (AB) is
derived (as in the leading term in the bias) under the condition that N,5(i]s) > 1 in each interval;
whereas by inspecting the higher order expansion terms, one can, as mentioned in Treves and Panzeri
(1995), expect them to be successively smaller (and negligible with respect to CP), under the less
stringent condition éf) < 1. Therefore, the higher order corretions are, in any case, close to negligible
whenever 5’{'7 is a good approximation for the bias. When this is not the case, because the condition
N,p(ils) > 1 is severely violated, computer simulations indicate that taking higher order corrections
into account (which is itself not easy), does not help; on the contrary, in such a low-N regime in which
6’1D 1s often already too large, the next terms become huge and signal the breakdown of the expansion
procedure (Treves and Panzeri 1995; Strong et al. 1996).

If one is interested in measuring, instead of the averaged transmitted information, the conditional
transmitted information, relative to a given stimulus s, a similar calculation can be performed to obtain

the bias of this quantity. The main technical step which is different is that when calculating < f(s)D >
from (2.15), '

<IR(s) >= /Z\i < Blils) logz P (ils) > —ii < Bv(ils)logs B (i) > (A.11)

after using the expansion (A.2) for the logarithm, one has to calculate the average of < py (i]s)p% (i) >
up to the next-to-leading order:

<PNBD > = aw(Dp @+ 37 (5B ORI 1 o)
LA 1 > \ 1
+ 0= BRI 4o (s (A1)
Our result, again valid when N,p(i]s) > 1 in each interval, is now expressed as:
<IR(s) > 1P (s) ~ CP(s) (A.13)
with |
= _ 1 = - q(ils) = p°(ils) | B°(ls) — q(ils)
5O = Fgra, <o > M P}
1~ [a@)p(ls) - p(i]s)p* (3) g
T TN Ioga { 20) } (4.14)

The discrete case (for which the results are fully reported in section 2.1.1) can be easily derived by
choosing a Gaussian as kernel function and then taking the limit of zero convolution width. In this case,
it is easy to show from (A.8) that the leading bias term takes the form:

ClD = 'ﬁ%g‘i{z/ii[l_p(zts)]_/z\:,[l—p(l)]}
SES

27Nllog2 {ZES —E- (s~ 1)} : (A.15)

SES

It should be noted that in the discrete case the following evaluation of the bias of the nutual information
was derived by Carlton (1969):

Do _71D . _A op 1—p(7) _ 1 e[ — p())(N — 1)]
<101 = 3 o (15 - o R R

DM {log"" <1 ’ 1]\__;})(—(;'§>

SES
_ 1 p(Es)[t - p(ils)(NVs — 1)] ,
2N, log2 (Nyp(ils) + 1 — p(ils))? } (A.16)
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The expansion in 1/ of (A.16), agrees with our expression (2.6) up the 1/N order, but is very different
form the real bias expansion when going to higher orders. This is because the procedure emploved by
Carlton to derive the result (A.16) uses the expansion (A.2) for the logarithm and takes term by term
expectations by truncating averages of powers of p(-) to the next-to-leading order, as in (A.4-(A.6),
but with a trick (valid only in the discrete case) used to obtain (without going further in 1/N in the
evaluation of the averages (A.4-(A.6)) a partial re-summation (to all orders in 1/N) of the complete
bias expression. This partial re-summation, however, is of dubious value from the conceptual point of
view and gives utterly nonsensical results when checked numerically. In fact, for example, by using the
correction term (A.16) in the simulation reported in ﬁgure 2.3 , we have obtained an estimate of the
bias much larger than the raw information in the N, range 8-128.

The continuum limit, results for which are presented in section 2.1. 4, can be reached when R — oo,
as follows. Let us denote some typical size of the response by p (taken here to be uni- dlmen\lonal)
and let us introduce the following succession of infinite discretizations, indexed by n, into intervals Ry;n
(=0,%1.%£2.---labels each interval):

B RS —
Ri;n_—_{ 2np<r< on p}. (A.17)

The discrete probabilities (2.18) have the form:

Palils) = / drP(r) . ‘ (A.18)
By introducing the function
Th(r)= z—p—ﬁn(z) for 7 € Rin (A.19)
we have the identity: _
Po(logs (Z509) = [ Talr)logy Patrlar (+.20)
Ri;n

from which we can derive

pn(s i) ") log n(s )
an Yog, S22 ARG ;/drf (s,7)1 0] (A.21)

Now, with the hypotheses that P(r), P(r|s) are bounded and continuous almost everywhere (Thara
1993), we have that in the n — co limit I'(r|s) — p(r|s) and in the same limit the (infinitely) discretized
information (A.21) tends to the continuous one (2.29), whereas the infinitely discretized term (A.&) tends
to that derived in the continuous case (2.33).
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