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Introduction 1

Introduction

1. Homoclinics, heteroclinics and dynamical systems

Let us consider a Hamiltonian system in R*¥ given by
(H) z=JV H(t,z) teR

where J = (‘}“OI) is the symplectic matrix, H € C*R x R*¥,R) is the
Hamiltonian function, periodic in time with period 1, that is H(t + 1,2) =
H(t,z) for any (¢,z) € R x R~

Let 2(¢) be a periodic orbit to (H), with period T € N. Denoted by M(2)

the fundamental matrix solution of the linearized system, defined by

LM = JH"(t,3(t)M
{ M(0) =1,

we say that the periodic orbit Z(t) is hyperbolic if M(T) has no eigenvalue
on the unit circle.

A solution 2(t) to the Hamiltonian system (H) is called homoclinic orbit
to z(t) if 2(t) # 2(t) and |2(t) — 2(t)] = 0 as t — F+oo.

Given two distinct periodic orbits z_(t) and z, (), a solution z(t) to the
system (H) such that |z(¢) — z_(t)] = 0 as t — —co and |2(t) — z4(¢)] — 0
as t — +oo is called heteroclinic orbit between z_(t) and z4(t).

Let us consider the special case in which the system (H) admits an equi-
librium at 0, i.e., V,H(¢,0) =0 for every ¢t € R. Denoting by ¢! the flow of
the system (H), defined by

{ 509'(:) = T V:H(t,¢'(2))
#(z) =z
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we set

We(0) = {z e R?N : ¢*(z) » 0 as t — +oo}
W) = {z e R* : ¢'(z) > 0as t — —o0}.

We remark that a solution z(t) to (H) is a homoclinic orbit to 0 if and only
if z(0) € W*(0) nW*(0) \ {0}.

If 0 is a hyperbolic equilibrium, that is M(1) has no eigenvalue on the
unit circle, then W*(0) and W*(0) are two immersed manifolds of dimension
N, called respectively stable and unstable manifolds for ¢ at 0.

When 0 is a hyperbolic equilibrium and there is a homoclinic orbit z(t)
to 0 such that the intersection of W*(0) and W*(0) at 2(0) is transversal,
Le., T,0)W?*(0) ® T;0)W*°(0) = R*¥, we say that the homoclinic orbit z(t)
is transversal and that z(0) is a transversal homoclinic point to 0 for the
time-one map ¢! associated to (H). Similar definitions can be given in the
case of heteroclinic orbit between two distinct equilibria.

For an autonomous system z = JVH(z), 0 is a hyperbolic equilibrium
if and only if VH(0) = 0 and JH"(0) has no eigenvalue on the imagi-
nary axis. Moreover, if z(¢) is a homoclinic orbit to 0, it is not tranver-
sal. Indeed the Hamiltonian H does not depend on time and then 2(0) €
T,(0yW*(0) N T.(0yW*(0) whenever z(0) € W*(0) N W*(0). In particular, in
the two-dimensional case, this implies that W?*(0) = W*(0).

The existence of a transversal homoclinic orbit to a hyperbolic equilibrium
gives rise to a very complicated dynamics. In fact, assuming that 0 is a
hyperbolic equilibrium for (H), if there is one point zo € W*(0)NW*(0)\ {0},
then, since ¢™(zp) — 0 as n — oo also ¢"(zo) are homoclinic points.

Moreover, since the map ¢! preserves orientation, the two homoclinic
points zp and ¢(zg) must be separated by at least one further point Zp €
T We(0)NnWx(0) \ {0} that does not belong to the orbit of z.

In addition, assuming transversal intersection between W*(0) and W*(0),
the fact that the time—one map ¢! is area preserving produces a violent wind-
ing of the stable and unstable manifolds W*(0) and W*(0) in a neighborhood
of 0. This leads to a sensitive dependence of orbits ¢*(z) on the initial con-
dition z for z belonging to a Cantor-like set near 0 and z(0). Hence the

presence of homoclinic transversal orbits is responsible for a chaotic behavior
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for the system (H).

This important fact was first noticed by Poincaré [P] in his studies of the
restricted three body problem. Then Birkhoff, Smale and others continued
Poincaré’s studies giving a more precise description of the chaotic behavior
near a transversal intersection and relating the dynamics of a map with a
transversal homoclinic point to the dynamics of the Bernoulli shift (for a
review of these results see [GH], [KS], [Mo], [W]). |

The problem of detecting transversal homoclinic and heteroclinc points
can be tackled using perturbation techniques. The main idea behind this ap-
proach is developped in a seminal work by Melnikov [Me].. As a first step,
one considers a two—dimensional autonomous Hamiltonian system, as for in-
stance the unperturbed Duffing equation § = g — ag®, having a hyperbolic
equilibrium connected to itself by a homoclinic orbit. Such a system turns
out to be completely integrable. Then, adding a time periodic perturbation,
the hyperbolic equilibrium becomes a hyperbolic periodic orbit whose stable
and unstable manifolds split. A computable formula for the distance between
these manifolds can be found and used to show the existence of a transversal
homoclinic point for the Poincaré map associated to the equation.

This result relies heavily on the two—dimensional geometry of the phase
portrait of the unperturbed system. However, using a more functional ana-
lytic approach based on the notion of exponential dichotomy [Co], Melnikov
type techniques have been developed for time periodic perturbations of N -
dimensional autonomous systems having a hyperbolic equilibrium and a cor-

responding homoclinic orbit (see [Pa)).

2. The variational approach

In recent years, starting with [Bo], [CZES], [R], [BG], [HW], variational
methods have been successfully applied to study the existence and the mul-
tiplicity of homoclinic solutions to Hamiltonian systems having a hyperbolic
equilibrium.

The variational approach has the advantage of providing global conditions
on the Hamiltonian for the existence of homoclinic orbits and their multiplic-

ity. It also gives criteria to detect a chaotic behavior, which are different from
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the transversality condition, and actually more general.
A first existence result of homoclinic solutions of (H) was established by

Coti Zelati, Ekeland and Séré [CZES], for a Hamiltonian
H(t,2) = 3z - Az+ R(t,2), (t,2) € Rx R

being A a symmetric constant matrix such that J A is hyperbolic (i.e., has
no imaginary eigenvalue) and R(t,z) = o(|z]*) as z — 0, uniformly in ¢,
so that 0 is a hyperbolic equilibrium for (H). Assuming R positive, convex
with respect to z, 1-periodic in ¢ and globally superquadratic (i.e. satisfying
V.R(t,z) -z > aR(t,z) for all (t,2) € R x R*™, with a > 2), in [CZES] a
homoclinic solution is obtained as critical point of the dual action functional,
using the mountain-pass lemma [AR]. The lack of compactness due to the
invariance of the functional under the non compact translation group Z is
overcome by the concentration—compactness principle by P.L. Lions [L].

Then Hofer and Wysocki [HW] dropped the convexity assumption and
found a homoclinic orbit applying an infinite dimensional linking theorem
(firsty stated by Benci and Rabinowitz to deal with periodic problems [BR])
to the direct action functional defined on H'*(R,R*").

The same result was achieved by Tanaka [T] who obtained a homoclinic
orbit as limit in the C_ topology of n-periodic solutions of (H) as n —
co. This method was introduced by Rabinowitz [R] to study a second order
Hamiltonian system in R¥

(HS) §=L(t)g -V, V(t,q)

being L(t) a positive definite symmetric matrix, continuous and 1-periodic

with respect to ¢, and V positive, globally superquadratic in ¢ and 1-periodic

" in t.

A similar approach, already introduced in [DN], and consisting in solving
a sequence of Dirichelet problems on [—n,n] and passing to the limit n — oo,
has been subsequently used in [GIT] to find a homoclinic solution for second
order Hamiltonian systems on a non—compact Riemannian manifold with a
potential having a non degenerate local maximum and satisfying a weaker

condition than the global superquadraticity.
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In the autonomous case the existence of a homoclinic orbit can be proved
under less restrictive assumptions on the Hamiltonian function.

In the framework of conservative systems the first work using variational
methods to detect this kind of solutions is due to Bolotin [Bo]. In particular he
considered a second order system constrained on a compact non contractible
Riemannian manifold and, solving suitable approximating minimizing prob-
lems, with a limit process, he found a solution homoclinic to a point which is
assumed to be the unique maximum point for the potential.

Independently, Benci and Giannoni [BG] studied the same problem and
obtained a homoclinic, applying a Maupertuis variational principle and using
Lyusternik Schnirelman category theory.

Then, Ambrosetti and Bertotti [AB] and Rabinowitz and Tanaka [RT],
with different techniques, proved the existence of a homoclinic solution for
a second order Hamiltonian system § = —VU(q) in RM without the su-
perquadraticity condition, but assuming that the component Q of {g e R":
U(g) < 0}U{0} containing 0 is bounded and VU(q) # 0 for any g € 0. Pre-
cisely in [RT] the solution is found as a minimum of the Lagrangian functional
in the class of functions connecting 0 to 8Q, while in [AB] the homoclinic is
obtained as a limit of solutions of approximating Dirichelet problems. For
a further different approach, using a refined version of the mountain—pass
Lemma due to Ghoussoub and Preiss [GP], see [C2].

Some extensions to the case of unbounded domain ) have been subse-
quently developed in [C1] and then in [J], where it is also allowed VU to be
0 on 98, with a suitable behavior of U(g) as dist (g, 90) — 0.

The argument followed in [AB] was later adapted to study a similar au-
tonomous system on a compact Riemannian manifold [B].

The existence of homoclinics for first order systems 2 = J VH(z) in R*¥
was proved by Séré [S3], supposing that the zero-energy surface {z € R*" :
H(z) =0, z # 0} is compact and of restricted contact type.

Concerning the question of multiplicify of homoclinic solutions, we firstly
mention again [CZES], where, in addition to the homoclinic orbit z; (t) ob-
tained as mountain—pass critical point, introducing another minimax class,

the authors found a second homoclinic z2(t) which is geometrically distinct
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from z;(t), in the sense that zy(t) # z1(t + n) for every n € Z.

Actually the pioneering works about multiplicity of homoclinics for peri-
odic Hamiltonian systems are to ascribe to Séré, [S1] and [S2].

In [S1], under the same assumptions of [CZES], infinitely many geometri-
cally distinct homoclinic solutions to (H) were found, without any transversa-
lity-like hypothesis. This paper inspired a later work [CZR1] by Coti Zelati
and Rabinowitz, who proved an analogous result for second order Hamiltonian
systems (HS) possessing superquadratic potentials, as in [R].

" In [S2] a more precise description of the set of homoclinic solutions to (H)
was given. Precisely it was shown that if this set is countable then there is
a primary homoclinic orbit z(t) with the following property: for every € > 0
there is M(e) € N such that for any finite sequence of integers p = (p1,. .., Pk)
with £ > 2 and pjy1 —pj = M(e) (j =1,...,k—1) there is a homoclinic

orbit z; with

3
|z5(t) — Zz(t —pj)| <€ foranyteR.
1=1
These homoclinic orbits z5(t) are called k—bump solutions because they fol-
low k times suitable translations of the primary homoclinic z(t). The value
M (€) represents the minimal distance at which two consecutive bumps can
be arranged.

Any k-bump solution z;(t) corresponds to a critical point of the dual
action functional, belonging to an e-neighborhood B, ; of Zle u(- —pj) in
the variational space, being u the mountain—pass critical point corresponding
to the primary solution z(¢). A homological argument reduces the topology
of the functional in B, ; to k one-dimensional local minimax classes, for any
"k > 2, each of them corresponding to the mountain-pass topology near u.
For this reason, the value M (e) does not depend on k. Then one can consider
the limit & — oo and get solutions to (H) with infinitely many bumps, which
clearly are not homoclinics any more.

As a consequence, the system (H) exhibits sensitive dependence on ini-
tal conditions and the dynamics of the time-one map ¢' associated to (H) is

chaotic, in the precise sense that it has positive topological entropy. This does
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not occur in the autonomous case, where indeed the assumption of countabil-
ity of the critical set is never verified, because of the invariance under the
translation group R.

Hence, in [S2] the variational condition regarding the cardinality of the set
of homoclinics plays essentially the same role of the assumption of transversal
intersection between the stable and unstable manifolds W*(0) and w*(0),
but it is weaker than the transversality one. (About the problem of weakening
the tranversality condition we also mention a work by Bessi [Bel], concerning
a second order Hamiltonian system of the type § = —D,(Vi(q) + €V2(t,q))
with ¢ € S, being S the unit circle in R2.)

We remark that already in [CZR1] k-bump homoclinic solutions were
detected for second order systems like (HS), but the limit k¥ — oo could not be
taken, because the minimax argument used in [CZR1] to get k—bump solutions
depends on % and then the minimal distance between two consecutive bumps
also depends on k and becomes larger and larger as k — co. -

Multiplicity theorems in the same spirit of [S1] and [CZR1] has been later
obtained in different situations: by Giannoni and Rabinowitz [GR] for a class
of second order Hamiltonian systems on a Riemannian manifold (possibly
non compact) with a time-periodic potential having a global maximum; by
Cielibak and Séré [CS1] for a class of first order time-periodic Hamiltonian
systems on a compact Riemannian manifold, having a hyperbolic equilibrium.

The results given in [S2] about multibump solutions and chaotic dynam-
ics for first order systems were extended in [CM] to the case of time periodic
second order Hamiltonian systems in R¥ of the form (HS) where the su-
perquadratic term V(¢,q) is allowed to change sign. Here the construction
of multibump solutions is obtained as in [S2] starting from a mountain—pass
~ critical point of the Lagrangian functional associated to (HS), under the as-
sumption that the critical set is countable.

We also mention a recent paper [CS2] which continues and completes
the results of [CS1), getting multibump solutions for first order systems on a
compact Riemannian manifold.

In [M1] Montecchiari studied a second order system in R¥ like (HS), glob-

ally superqadratic in ¢ and with an asymptotically periodic time dependence,
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and proved the existence of multibump solutions for it, assuming that the pe-
riodic system at infinity admits a finite set (up to translations) of homoclinic
orbits.

Then, the same result was obtained under weaker conditions in [ACM],
where the system (HS) is merely assumed to have a hyperbolic equilibrium at
the origin, uniformly in ¢, and it is asymptotic as t — oo to two possibly
distinct time periodic systems § = L, (t)g — V V. (t,q). If the systems at
infinity admit a countable set of homoclinic solutions, then also (HS) has
infinitely many homoclinic orbits, and actually multibump solutions, which
are generated, as in [S2], by the primary homoclinics g, (t) of the periodic
systems ¢ = L, (t)g — V4V, (t,9).

In a subsequent paper [CMN], for the same system considered in [ACM],
always assuming countability conditions for the periodic systems at infinity,
the authors showed that there is an uncountable set of solutions to (HS) which
are asymptotic to ¢, (t) as t — *oo.

These results [CM], [ACM] and [CMN] are the content of the second
chapter of this thesis and will be presented in a more detailed form in the
next section.

Second order Hamiltonian systems in R" with other time dependence,
more general than the periodic one, were studied, too. In particular we men-
tion [MN] where a perturbation with arbitrary time dependence of a time
periodic potential was treated. In [STT] and [CZMN] almost periodically
second order Hamiltonian systems possessing superquadratic potentials were
considered. Concerning other Hamiltonian systems almost periodic in time,
see also [BB1], [BB2], [R4] and [R5].

We point out that the construction of multibump solutions was done by

~ Bessi in [Be2] and [Be3] for a class of second order damped systems in R" of
the form ¢+ €¢ = ¢ — V4V(t,q) with € > 0 small enough.

All the above mentioned multiplicity results rely on the key assumption
that the set of homoclinic solutions is countable. Since this condition fails
when the Hamiltonian is independent of time, in this case the multibump
construction is not possible any more and, to get multiple homoclinic orbits,

a different approach strictly related to the shape of the Hamiltonian has to be
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followed.

The multiplicity problem for conservative systems was firstly studied by
Ambrosetti and Coti Zelati in [ACZ], and by Tanaka in [T2]. In both these
works two geometrically distinct homoclinics (i.e., that cannot be obtained
one from the other by time translation or reflection) were found for a second
order Hamiltonian system in R™ when the potential is a perturbation of a
radially symmetric function.

Other multiplicity results for the autonomous case concern a class of
second order Hamiltonian systems in R™ ruled by a potential V with an
absolute maximum point at 0 and a singularity at some point ¢ # 0, i.e.,
V(g) = —c0 as ¢ — €.

Assuming the sfrong—force condition at the singularity and other condi-
tions about the behavior of V' near the origin and at infinity, Tanaka [T1]
proved the existence of a first homoclinic solution to 0, through a minimax
argument exploiting the non trivial topology of the sublevel sets of the La-
grangian functional, due to the singularity. Then, assuming a pinching condi-
tion on the potential V', Bessi [Be] was able to find N —1 distinct homoclinics.

In the case N = 2, Rabinowitz [R1] proved that a first homoclinic solution
can be characterized as minimizer of the Lagrangian functional with respect
to the curves starting and ending at the origin and winding once around the
singularity. Then, supposing an additional condition about the ratio between
the cost to wind the singularity passing or not through the origin, he showed
the existence of a second homoclinic with a winding number sufficiently large.

This work inspired a study of these planar singular systems, with the
aim of finding homoclinics with an arbitrary winding number. In fact, in
[CN] the authors proved that when the potential satisfies further simmetry
~ conditions then the above fact holds true and infinitely many geometrically
distinct homoclinics are found.

A deeper analysis of this situation was subsequently developed in [CJ]. In
particular it was proved that the condition introduced by Rabinowitz in [R1]
to get a second homoclinic is actually sufficient to guarantee the existence of
infinitely many homoclinic orbits with any winding number sufficiently large.

This result, as well as [CN], will be proved in the first chapter of this thesis.
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We notice that in a recent work by Buffoni and Séré [BS] multibump
solutions were detected also for an autonomous four—dimensional Hamiltonian
system having a saddle-focus equilibrium (see also [Bu]).

Other multiplicity results were obtained for autonomous systems on man-
ifolds having a large enough fundamental group = ([CS1] and [BJ]).

We conclude this section giving some references about the study of hete-
roclinic orbits via variational methods.

The first results are due to Rabinowitz, [R2] and [R3], who found hetero-
clinic solutions between absolute isolated maxima of an autonomous smooth
potential, periodic in the space variable, using a minimization procedure.

This result was generalized by Felmer [F] for first order spatially periodic
Hamiltonian systems. In a first step, approximated solutions joining two dif-
ferent equilibria in a finite time 7' were obtained using the Rabinowitz saddle
point theorem. Then, getting suitable estimates independent of T, a limit
process as T — oo can be carried out to get a heteroclinic solution.

In a later work [R6] Rabinowitz studied a class of second order Hamilto-
nian systems in RY with a smooth potential of the type V(t,q) = W(t,q) +
f(t) - ¢ where W is periodic both in ¢ and in ¢, f is periodic with the
same time-period T of W and satisfies foT f =0 and V is time reversible,
ie., V(t,q) = V(—t,q). Firstly, T-periodic solutions are determinated as
global minima of the Lagrangian functional associated to the periodic prob-
lem. Then, assuming that these minima are isolated, connecting orbits be-
tween two of them were found. See also [R7] for complementary results.

In this thesis we will prove the existence of a heteroclinic orbit between an
unstable equilibrium point and a periodic solution of a planar singular system
like that one considered in [R2].

Even if this result will be discussed in a more detailed way in the next
section, we just point out that, differently from [R6] and [R7], in our setting

we do not make any requirement of isolateness about the periodic orbit.

3. About this thesis

This thesis deals with existence and multiplicity of homoclinic and het-

eroclinic orbits for some classes of second order Hamiltonian systems in R¥
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having an unstable equilibrium at the origin.

We consider both time dependent potentials and autonomous potentials.
As explained in the previous section, different techniques are developed to
study these two cases. Therefore we will present our results in two distin-

guished subsections.

3A. Conservative singular second order Hamiltonian systems in R?

We consider an autonomous second order Hamiltonian system in R? of

the type
(3.1) §+VV(g)=0

where the potential V' has a strict global maximum at the origin and a sin-

gularity at some point ¢ # 0. More precisely on V we assume that

(V1) V e CHY(R?\ {¢},R) with € € R?\ {0};

(V2) V(0)=0> V(q) for every ¢ € R2\ {0,¢};

(V3) limy—¢ V(g) = —co and there is a neighborhood N¢ of ¢ and a function
U € C'(Ne\{€},R) such that limy—¢ |U(g)| = co and V(q) < —|VU(q)?
for every g € N¢ \ {¢};

(V4) limjg|— |¢]*V(2) = —o0.

Assumptions (V3) and (V4) regard the local behavior of V' respectively
near the singularity and at infinity. In particular (V3) is the strong force
condition introduced by Gordon [G] and governs the rate at which V(q) —
—o0 as ¢ — £. It is satisfied for instance if V(g) < —alg— €|~ for ¢ in a
neighborhood of ¢, @ > 0 and « > 2. The same role is played by (V4) as

lg| — 0.

Let us introduce the Lagrangian functional associated to (3.1)
o) = [ il - Viw)
defined on the set

A={u€H(R,R) : u(t)#EVEER, lim u(t)=0}.
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Any function u € A describes a closed curve in R? which starts and ends
at the origin without entering the singularity. Hence we can associate to u an
integer, denoted ind¢ u, giving the winding number of u around ¢.

Then, for every k € Z we set

Ar={ueA : indeu=k},
Ar =1inf{p(u) : v € Ax}

and we study the problem of existence of a minimizer for ¢ in Ax. If there
exists v € Ay such that ¢(v) = A\x then v is a homoclinic solution of (3.1).

By the translational invariance under the action of the non compact group
R, a lack of compactness may occur at the levels Ay with |k| > 1. More
precisely, according to the concentration—compactness principle [L], the min-
imizing sequences in Ay may exhibit a dichotomy behavior.

This fact was already observed by Rabinowitz in [R1] who studied the
system (3.1) under the same assumptions (V1)—~(V4) and proposed a condition
(labelled by (%) in Theorem 3.1 below) which implies compactness (up to
translations) of the minimizing sequences at least at one level Ay with k >1
sufficiently large. |

We can improve this result showing that (x) is actually a sufficient con-
dition to get infinitely many geometrically distinct homoclinics. Precisely we

state the following result.

Theorem 3.1. Let V : R?2\ {{} — R satisfy (V1)-(V4). Assume that:

(x) there is T € (0,00) and u € H([0,T],R?) such that u(0) = u(T),
u(t) # € for any t € [0,T], indeu =1 and ff(%\a{? —V(u))dt < Ar.

Then there is k € N such that for every k > k there ezists vx € Ax for which

o(vi) = Ag. Moreover v is a homoclinic solution of (3.1).

As next step, we point out that any homoclinic v given by Theorem 3.1
admits a subloop uj, defined as restriction of vy to some compact interval
[sk,tx], such that the sequence (up), up to translations, converges in the C*
topology to a periodic solution @ with energy zero and winding once about the

singularity. This observation suggests to look for heteroclinic orbits between
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0 and u, i.e., solutions to (HS) whose a-limit set (in the phase space) is 0
and whose w-limit set is {(a(t),u(t)) : t € R}.
In fact the following result holds.

Theorem 3.2. Let V : R?\ {¢£} — R satisfy (V1)-(V4). Assume also that
(*) holds. Let (vi)psi C A be a sequence of homoclinics such that vi € A
and @(vr) = Ak, as given by Theorem 3.1. Then there are: |

e Tc (0,00) and o T -periodic orbit @ with energy 0 and indg @ =1;

o a subsequence (vi;) of (vi) and a corresponding sequence of intervals
[sk;>tk;] C R such that tx, — s, — T and |uj — tllcr(po, 17y — 0, where
u;(t) = vkj(tkj%skj t—sk;) for t €[0,T] and j €N;

e a heteroclinic orbit v between 0 and @ such that vi; (-—Tk; ) — T strongly
in G (R,R?) for a suitable sequence (1x,) C R.

Finally we give a geometric condition on the system (3.1) which guaran-
tees that (*) holds true and k = 1.

Theorem 3.3. Let V : R*\ {¢} — R satisfy (V1)-(V4) . Suppose also
that
(V5) limsup, ., —V(z)|z|™? =a < 0o and liminf, o —V(z)|z|
(V6) there ezists vy € Ay such that o(v1) = A, and

-2

-:b>0;

lim inf 22(8) . 01(®) b

s== oi(s)] |oa(2)] a

Then () holds and for any k € N there is a homoclinic solution vy € Ay
such that o(vr) = A

We point out that (V6) is a condition regarding the angle 6; formed by

~ the directions at which a homoclinic orbit v; € Ay at level A1 leaves and

enters the origin. In particular, if V(z) ~ —alz|? as z — 0 for some a > 0
then in (V6) we ask that 6; € [0, ).

Theorems 3.1 and 3.2 are contained in a forthcoming paper in collabora-

tion with L. Jeanjean. These results improve and generalize a previous joint

work with M. Nolasco [CN], containing a first version of Theorem 3.3.
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3B. Asymptotically periodic Duffing—-like systems in R"

We study a second order Hamiltonian system in RY
(32) §=q—-V4V(tq)

where V : R x RY — R satisfies:
(V1) VecC HRxRY,R) with V,V(t,-) locally Lipschitz continuous, uniformly

with respect to t € R;

(V2) V,V(t,q)/lg| — 0 as ¢ — 0 uniformly with respect to ¢t € R.

The assumption (V2) implies that the origin is a hyperbolic equilibrium
for the system (3.2), uniformly in time. The regularity (V1) and the hyper-
bolicity condition (V2) are the only properties assumed on the potential at
finite times.

Then we put conditions on the shape of V' with respect to to the space
variable only asymptotically, as ¢t — +oo. In particular we require that there
are two functions V3 : R x RY — R satysfying (V1), (V2),

(V3) there are T4 > 0 such that Vi(t,q) = Va(t + T4, q) for every (t,q);
(V4) (i) there is (t+,q+) € R x R" such that Vi(ts,q+) > 3qx|?;
(ii) there are two pairs of constants S+ > 2 and a4 < %i- — 1 such that:
BxVi(t,q) = VVi(t, q) - ¢ < axlq]® for every (t,q).

The assumption (V4) is a generalized version of the global superquadratic-
ity, allowing Vi to change sign.

Moreover (V4) is satisfied by functions which are a-homogeneous in ¢
with a > 2. Therefore the systems that we study include for instance the
forced Duffing equation § = ¢ — (1 + ea(t))¢® with a forcing depending on
time in an asymptotically periodic way.

The functions Vi give the asymptotic behavior of V as t — oo accord-
ing to the following condition:

(V) V,V(t,q) — V4Va(t,qg) — 0 as t — *oo uniformly on the compact sets
of R¥.

Therefore the dynamics of (3.2) will be related to the dynamics of the

periodic systems at infinity:

(3.3) d=q-VyVi(t,9).
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In general the fact that the systems (3.3) admit homoclinic solutions
does not imply necessarily that the same holds true for (3.2). This can be
seen considering the following example. Let us take V(¢,q) = a(t)|q|*, where
a(t) is a smooth bounded monotone positive function. The systems at infinity
correspond to Vi(t,q) = axlg*, where ax = limy—.1o0a(t) > 0. If ¢(¢) is
a solution to (3.2) satisfving ¢(t) — 0 and g(t) — 0 as t — £oo then,
setting H(t) = 3d(t)P - Ha(®)? + La(la@l* we get 0 = f LH(5)dt =
Jg 3a(t)]q(?)|* dt and then ¢(t) = 0.

Hence, differently from the periodic case, defined by one of the systems
(3.3), in which a homoclinic orbit always exists, the asymptotically peridic
case can exhibit situations with no homoclinic solution.

We prove that if the set of homoclinics of (3.3) is countable, then the
asymptotically periodic system (3.2) itself admits infinitely many homoclinic
solutions. More precisely if the construction of multibump solutions for (3.3)
can be done, then this kind of solutions persists also for the system (3.2).

This result is obtained using variational techniques. In fact the homoclinic
solutions of (3.2) are exactly the critical points in H!(R,R") of the functional

olu) = Hulp ~ [ Vi)
i
Since Vi satisfies (V1)-(V4), the functionals ¢4 associated to (3.3) verify
the geometrical properties of the mountain pass lemma.
Let us denote by c4 the corresponding minimax levels and by K4 the
sets of critical points of .

Now we can state a first result.

Theorem 3.4. Let V,V: satisfy (V1)-(V3). Let us assume that the sets
KinN{px <ch} are countable, for some ¢t > cx.

Then there are vy homoclinic solutions of (8.3) having the following property:
for any r > 0 there are m(r),m1(r) > 0 such that for every buinfinite sequence
(pi)jez with (p;)j>0 C Py = T,Z and (pj)j<o C P- = T_7Z satisfying
P2 ma(r), por € —ma(r), pjsr—p; = m(r) (G € Z) and for cvery
sequence o = (0;)jez € {0,1}* there is a solution v, to (3.2) such that

lve = o504 (- = pi)llcr; mvy S+ for any j >0

lve = ojv-(- = pi)llcr;rvy ST for any j <0
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Pj—1+p;
2

where I; = [ pj+§i+1].

I

In addition, if o; =0 for all j > jo (respectively j < jo ) then the solution v,

also satisfies v,(t) — 0 and v,(t) — 0 as t — +oo (respectively t — —c0 ).

We remark that Theorem 3.4 can be read as a shadowing lemma for
an asymptotically periodic system. The value m(r) represents the minimal
distance at which two consecutive bumps can be arranged. This value m(r),
as well as mi(r), becomes larger and larger as r — 0. According to this
remark, instead of fixing r > 0, it is possible to take a sequence (r;) C (0, 00)
such that r; — 0. Thus we get the following result, concerning connecting
orbits between 0 and the basic homoclinics v+ of (3.3).

Theorem 3.5. Under the same assumptions of Theorem 8.4, the system (3.2)
admits an uncountable set of multibump solutions whose a-limit set is 0 or
{(v=(t),9-(t)) : t e R}U {0} and whose w-limit set is 0 or {(vy(t),04(t)) :
t e R}u{0}.

If we specialize Theorem 3.5 to the case V periodic in time, we get
the existence of a homoclinic solution v of (3.2) and an uncountable set of
connecting orbits between 0 and v and between v and itself.

Theorem 3.4 has been proved firstly in the periodic case in a joint work
with P. Montecchiari [CM]. Its generalization to an asymptotically periodic
system and related results have been developed in collaboration with S. Abenda
and P. Montecchiari [ACM]. Finally Theorem 3.5 is a result obtained with
P. Montecchiari and M. Nolasco [CMN].
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Chapter 1

Homoclinics and heteroclinics for a class of conservative
singular Hamiltonian systems in R?

1. Introduction

In this chapter we describe some features of the dynamics of an au-

tonomous second order Hamiltonian system in R? of the type
(HS) E+VV(z)=0

ruled by a potential V' with a strict global maximum at the origin and a
singularity at some point € # 0. More precisely on V we assume that

(V1) Ve CVHR?\ {¢},R) with £ e R?\ {0};

(V2) V(0)=0>V(z) for every z € R?\ {0,¢};

(V3) lim; ¢ V(z) = —co and there is a neighborhood N¢ of ¢ and a func-
tion U € C'(Ne \ {¢},R) such that lim,_—¢|U(z)| = oo and V(z) <
—|VU(z)|? for every z € N¢ \ {¢};

(V4) limj;|—o |2]*V(2) = —c0.

Assumptions (V3) and (V4) concern the local behavior of the poten-
tial respectively at the singularity and at infinity. In particular (V3) is the
strong force condition, introduced by Gordon [G]. It governs the rate at
which V(z) — —oo as z — ¢ and it is satisfied for instance in the case

 limsup, |z — {|*V(z) < 0 for some o > 2. Similarly (V4) says that V(z)

can go to 0 as |z| — oo but not too fast.

By (V2) the origin is an unstable equilibrium but we note that no hy-

pothesis is made on the behavior of the potential in a neighborhood of 0.

In the first part of this chapter we study the problem of multiplicity of

homoclinics, namely solutions to (HS) doubly asymptotic to the origin, i.e.,
such that z(t) — 0 and #(¢) — 0 as t — Foo.
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In particular, given an integer k # 0, we look for a homoclinic orbit which
turns k times around the singularity £. This is done using a minimization
argument, similar to [R1]. Precisely we introduce the Lagrangian functional

associated to (HS), given by

o) = [ Gl - Vi)

defined on the Hilbert space

E={ue H. (R,R? : / |u|? dt < oo}
R
endowed with the norm

]l = Ju(0)[2 + /R (a2 dt.

We notice that E C C(R,R?) and, by (V2), ¢(u) € [0,+00] for u € E.

Then we consider the set
A={ueE : u(t)ZEVteER, tlirin u(t) =0}.

Any function v € A describes a closed curve in R? which starts and ends at
the origin and never touches the point {. Hence we can associate to u an
integer, denoted ind¢ u, giving the winding number of u about £.

For every k € Z we set

Ar={ueA : indeu=~F},
Ar =inf{e(u) : u € Ay}

and we study the problem of existence of a minimizer for ¢ in Ag. In fact,
as we will see in the sequel, if there exists v € Ay such that ¢(v) = Ag then
v is a homoclinic solution of (HS) (Lemma 4.4).

We remark that, since the potential V is time independent, o(u(-+s)) =
p(u_) = @(u) for any u € E and s € R, being u_(¢) = u(—t). This implies
that Ay = A_x and if v € A satisfles p(v) = A, then v— € A_; and

¢(v=) = A_. Therefore we can restrict ourselves to consider k € N.



Conservative singular Hamiltonian systems 19

The main result concerning multiple homoclinic solutions is the following.

Theorem 1.1. Let V : R2\ {£} — R satisfy (V1)-(V4) and let k =
sup{k €N : A\ =kA; }. Then:
(i) k< co if and only if
() there is T € (0,00) and v € HY([0,T],R?) such that u(0) = u(T),
u(t) # € for any t € [0,T], indgu = 1 and fOT(%|iL!2~—V(u)) dt < Ap.

(z2) If k < co then for any k > k there ezists vy € Ay for which o(vk) = Ak
Moreover v 1s a homoclinic solution of (HS).

(132) If k > 2 then for 1 < k < k the value A is never achieved in Ay, i.e.,
©(u) > A for any u € Ag.

As we will see in the next sections, Theorem 1.1 holds true under some-
what weaker assumptions. In particular, instead of (V4), we can assume the

following more general condition:

(V4)’ there are R > 0 and Uy € C*(R?\ By, R) such that limj;|—eo [Uso(z)] =
oo and V(z) < —|VUu(z)|* for every z € R?\ By, being By = {z°€
R?: |z] < R}.

We note that, contrary to (V4), condition (V4)’ is satisfied also when

lim sup|;|_q [2]?V(2) < co.

Moreover the local Lipschitz continuity of VV', which guarantees the unique-
ness of solution to the Cauchy problem associated to (HS), is used only to
prove Part (i77) (see Lemma 4.6). Whereas, Parts (¢z) and (é¢) hold true
more generally assuming V € C*(R?\ {¢},R) instead of (V1).

In [R1], under the same assumptions of Theorem 1.1, Rabinowitz shows
that the value A\; corresponds to a minimum for ¢ in Aj, namely there exists
a homoclinic solution v; € A; of (HS) such that ¢(v1) = A;. Moreover in
[R1] condition (x) is introduced to prove that if (%) holds then, in addition to
the solution v;, there is a second homoclinic orbit v € A found as minimizer
for ¢ with respect to Az, ;.

Part (44¢) in the statement of Theorem 1.1 says that for 1 < k < k there
is no precompact minimizing sequence for ¢ in Ar. As we will see in Lemma

3.3, all the minimizing sequences at these levels A\; (1 < k < k) exhibit
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a dichotomy behavior. Instead, for k = k, we can say nothing about the
existence of a minimizer for ¢ in Az. Theorem 1.1 constitues a remarkable
improvement of this result presented in [R1]. Indeed it states that (x) is

actually a sufficient condition to get infinitely many geometrically distinct

homodclinics.

The proof of Theorem 1.1 relies on a careful analysis of the minimizing
sequences (Section 3). We start in Section 2 by studying more generally the
sequences contained in the sublevel sets of the functional ¢. In particular in
Lemma 2.4 it is shown that a sequence (un) C E such that sup¢(u,) < oo
can exhibit at the same time both vanishing and dichotomy behavior. In fact,
only finite dichotomies can occur for the minimizing sequences for ¢ with
respect to some class Ay (see Lemma 3.3) and, thanks to (), for £ € N
sufficiently large (and precisely for k£ > k), actually compactness holds, up to
translations (Lemmas 4.1 and 4.2).

As auxiliary result, we also get that for £ > k any trajectory vx given
by Theorem 1.1 contains a subloop u; winding once about ¢ and, up to a
subsequence, uj converges in the C'-norm to a periodic solution @ with
energy zero. '

This remark suggests to look for connecting orbits between 0 and #,
1.e., solutions to (HS) whose a-limit set (in the phase space) is 0 and whose
w-limit set is {(a(t),u(t)) : t € R}.

We recall that the a-limit set and the w-limit set of a solution v to (HS)
are defined respectively by '

Lo(v) = {C €R* : 3(tn) C Rsut. tp — —co and (v(tn), 9(tn)) — ¢}
Lo(v) ={¢€R*: 3(tn) CRs.t. tp — +oo and (v(tn),v(tn)) — ¢ }.

Hence, the second part of this chapter is devoted to investigate the ex-
istence of these trajectories, asymptotic to two different unstable orbits and
known as heteroclinic solutions.

Precisely, we look for heteroclinics as limit in the CJ_—topology of the
sequence of homoclinic solutions v; found in Theorem 1.1. Therefore, to
guarantee the existence of these homoclinics vk as well as the existence of the

periodic orbit @, hereinafter we assume that condition (*) holds.
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Before stating Theorem 1.2, concerning the existence of a heteroclinic

orbit, we introduce some notation. For T € (0,00) let

Er ={ue H'([0,T),R?) : u(0)=u(T)}
Mr={uv€Er : u(t)#(Vte[0,T], indeu=1}

T

goT(u):/ (314)* = V(u))dt for u € Er
0

A=inf{o,(v) : T€(0,00), u€Ayr}.

We point out that condition (*) is equivalent to say X < ).

Theorem 1.2. Let V : R?\ {¢} — R satisfy (V1)~(V4). Assume also that
(*) holds. Let (vi)psi C A be a sequence of homoclinics such that vy € Ag
and @(vi) = Ak, as given by Theorem 1.1. Then there are:

e Te (0,00) and a T -periodic orbit @ € A, 1 with energy 0 and such that
995:("7) = 5‘;

o a subsequence (vi;) of (vr) and a corresponding sequence of intervals
[sk;stk;] CR such that ty, —sg; — T and |juj — tllcrqo,y) — 0, where
uji(t) = vkj(tkj -;k" t—sy;) for t €[0,T] and j € N;

® a heteroclinic orbit ¥ between 0 and U such that Vg (- —T; ) = D strongly
in ClL (R, R?) for a suitable sequence (1x,) C R.

Remark 1.3. Since the system (HS) is conservative, the function @_(t) =
u(—t) is a T-periodic orbit and _(t) = #(—t) is a solution such that
Lo(v_) = {(a_(t),u_(t)) : t € R} and L,(3_) = 0. Moreover, consid-
ering the sequence (v_r)isz C A, we also get that, up to a subsequence, it
converges strongly in Cj (R, R?) to a solution ¢ to (HS) such that L (%) =0
and L,(0) = {(z_(¢),u_(t)) : t € R}.

The proof of Theorem 1.2 consists in three main steps. In the first one,
given a sequence (vx) C A of homoclinics according to Theorem 1.1, we
consider the restriction of vy to a suitable interval I} such that vi|;, draws
a closed curve winding once the singularity and we prove that the limit curve
defines a periodic orbit @ which is a minimizer for A (Section 5). In the

second step (Section 6) we get uniform estimates on the sequence (v;). With
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an application of Ascoli-Arzeld Theorem, this allows us to find a solution to
(HS) that, in Section 7, is proved to be a heteroclinic orbit between 0 and .
We point out that in our setting, unlike [R6]-[R7], we do not make any

requirement of isolateness about the periodic orbit .

In the last section of this chapter we discuss the assumption (*) and
we exhibit a condition which guarantees that (%) holds and in particular
that £ = 1. This condition involves an estimate on the angle formed by the
directions at which a homoclinic orbit v; € A; at level A; leaves and enters
the origin (Theorem 8.2). Then, in Theorems 8.4 and 8.6 some examples of

systems satisfying this property are presented.

2. Preliminary results

First of all we point out that no LP space is contained in E for any
p € [1,00]. On the other hand the space E can be characterized as the com-
pletion of C°(R,R?) endowed with the norm (g |4|? dt)¥?, usually denoted
D12(R,R?).

Moreover any bounded sequence of F admits a subsequence which con-
verges weakly in E and strongly in L (R,R?) = L to some u € E.

This plainly implies that the functional ¢ is weakly lower sequentially
semicontinuous on E (briefly w.l.s.s.). Indeed if (u,) C E converges weakly
in E to some u € E then [p|a>dt < liminf [p [un|® dt. Moreover, up to
a subsequence, u, — u uniformly on compact sets and then, fixed T >
0, [T —V(u)dt = lim [T —V(us)dt. Hence ! folal?dt — [T V(u)dt < .
liminf ¢(u,) and, by the arbitrariness of T > 0, we conclude that ¢(u) <
liminf p(u,).

We notice that > is not continuous. In fact for any sequence (an) C
R, we can easily construct a sequence (un) C E such that ||us|| — 0 and

¢(un) =ap for any n € N.

Remark 2.1. We point out that if one makes the further assumption that
V is twice differentiable at 0 and V"(0) is negative definite (i.e., the origin
is a non degenerate strict maximum for V'), then the homoclinic solutions of
(HS) belong to H!(R,R?) (see Chapter 2, Lemma 2.3). Therefore in this case
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H'(R,R?) is the more natural variational space for the considered problem.
In addition, the functional ¢ turns out to be of class C! on H(R,R?), the
notion of differential is now meaningful and the homoclinic orbits are exactly
the critical points of ¢ (see Chapter 2, Lemmas 2.1 and 2.3). But under the
only hypotheses (V1)-(V2), we have not such a regularity and we have to

proceed more carefully.

To study the minimizing sequences or more generally the sublevel sets of
© we will often apply the next key lemma, that we state in a quite general
form, using the following notation.

We denote by Z the class of all intervals of R. If I,J € Z, I C J, and

H, (J,R?), we write u|; to mean the restriction of u to I and we set
(‘OI(U) = ¢(ulr) = [;(3|u]* = V(u))dt. For 6§ > 0 and u € HL _(I,R?) we
set Ss(u) = {t € I : |u(t)] > &}. Moreover, given u € HL ([t1,t2],R?) such
that u(t) # ¢ for any t € [t1,%2] and u(t;) = u(t2) we denote by inde u the
winding number of the curve defined by u about . We recall that if u;,us €
Hi ([t1,t2), R?) satisfy ui(t) # € forany t € [t1,t2], wi(t1) = wi(tz) (1 =1,2)
and |ui(t) — uz(t)| < Jui(t) — &| for every t € [t1,1s], then inde u; = ind¢ us.
Finally, given a measurable set A C R we denote by | 4] the Lebesgue measure
of A.

From now on, in all this Section, as well as in Sections 3 and 4, we assume

(V1)~(V3) and (V4)'.

Lemma 2.2. Given a,b> 0 let X, = {u € HL (I,R?) : I € T, ¢s(u) <
a, 3t € Is.t. |u(t)<b}. Then:

(¢) there is R = R(a,b) > 0 such that |jullee < R for any u € X, ;

(i) thereis p = p(a,b) >0 such that dist (£, rangeu) > p for any u € X, ;

(217) for any & > O there is 75 = 75(a,b) > 0 such that |Ss(uw)| < 75 for all
u € Xa,b .

Proof. (i) By the contrary, assume that |Ju,||f= — co holds for some sequence
(un) C X, 5. Since by assumption for any n € N there are t, € I,, = domu,,
such that |un(t,)| < b, there exists N € N such that for any n > N there

are t,, s, € I, (without restriction we can assume that #, < sn ) such that
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|un(fn)| = 7 for a suitable ¥ > R, |un(sn)| — oo and |un(t)] > 7 for t €
(fn,8n), where R is given by (V4)’. Then (V4)’ yields

Unitn(s)] £ Uns(inE)] + [ VUt - ]

Sn 1/2 Sn 1/2
< !mla}g |Uoo(z)| + </ —V(un)dt> (/ [tin|? dt)
z|=T in in

S max [Uso(2)] + 20(tn).

But |Uso(un(sn))| — oo, while ¢(uy,) is bounded. Thus we get a contradic-
tion.

A similar argument can be followed to prove (iz), using (V3).

(73:) Fixed § > 0, we set Bs = Inf {|V(2)| : |zt —¢| > p, 6§ < |z| £ R}
where R > 0 and p > 0 are given by (z) and (it) respectively. Then for any
u € X, it holds that

Bs |Ss(u)| < / ~V(u)dt < pr(u) < a

Ss(u)

O

Remark 2.3. By Lemma 2.2, if I € 7 and u € HL _(I,R?) is such
that ¢r(u) < oo then dist(§,rangeu) > 0. Moreover if I = (—o0,T),
with T € R and ¢r(u) < co then lim;_._u(t) = 0. This is easily ob-
tained using the fact that for any compact J C I we have that ¢s(u) >
(2 infie s [V (u(t))] )12 [, |i| dt (see [R2, Lemma 3.6]). An analogous result
holdsif I = (T, +o0). Therefore, in particular, if u € E is such that ¢(u) < co
then u € A.

The sequences (un) C E such that supg(un) < co can exhibit different
behaviors. For instance it may happen that [; [4n|*dt — a > 0, ©(un) —
b>a but ||un||L= — 0. Nonetheless, if we assume that limsup |jun|/L= > 0,
then we can better describe these sequences, giving a characterization in the

spirit of the concentration—compactness principle by P.L. Lions [L].

Lemma 2.4. Let (up) C E be such that p(un) — a > 0 and limsup ||un||pe
=6y > 0. Then for any & € (0,60) there are a subsequence of (urn), denoted
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again by (un), functions wi,...,w; € A, with Ss(w;) # @ for any i =
1,...,1, and corresponding sequences (t1),...,(t\) CR such that:

(2.1) lim (t5 —¢)) =0 for any i=1,...,1— 1;
n— 00
(2.2)
lim u,(-+ t;) = w; weakly in E and strongly in LY. for any i =1,...,1;

!
(2:3) D elw) <a

for any € € (0,6) there ezists n. € N such that for n > n,:

! !
(2.4) U Ss+e(wi- = 1.)) € Ss(un) C U Ss—e(wi(- — t4))

=1

Ss—e(wi(- —13)) N Ss—c(wj(- = 1)) =@  for i # ;.
Moreover 1 <1< 15, with ls,, € N independent of the sequence (tn).

Remark 2.5. Property (2.4) says that, up to a subsequence, the §-support
of un, given by Ss(u,), decomposes asymptotically in a finite union of §-
supports Ss(wi(- —t4)) (i = 1,...,1) which are bounded sets whose distance

becomes larger and larger as n — co.

Remark 2.6. To better illustrate Lemma 2.4 we consider the following
example. Let (yn) C E be a sequence such that ||y,||z= — 0, ¢(y.) — $>0
and suppy, C (—o0,0) for any n € N. Let (wj) C E be a sequence such
that Y52, ¢(wj) = %, suppw; € [0,1] and [wjlze > fwjssllzm > 0 for
any j € N. For n > 1 set u, = y, + ij__l w;(- —n’). Then the sequence
(un) satisfies the hypotheses of Lemma 2.4. In fact for any § > 0 sufficiently
small there is Is € N such that Ss(w;) # @ if and only if 1 < j < Is and
clearly Z;‘f__l @(wj) < a. We point out that Is — co as § — 0 and even if we
take all the w;’s the strict inequality E;‘;l ¢(w;) < a persists.
This example shows that in general a sequence (u,) C E such that sup p(u,) <

oo can exhibit at the same time both vanishing and dichotomy behavior with
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possibly infinitely many dichotomies. We recall that in the more regular case
mentioned in Remark 2.1, a similar characterization holds for the Palais Smale
sequences of ¢ (see Chapter 2, Lemma 3.3). But in that case the vanishing

behavior cannot occur and the dycothomies are always finite.

Proof. Let (u,) C E be such that ¢(un) — a € (0,00) and limsup ||un|/ze =
8o > 0. Firstly we observe that by Lemma 2.2 and Remark 2.3 (un) C A.
Fixed § € (0,60), passing to a subsequence if necessary, for any n € N there
is t1 € R such that |u,(t})] = & and |un(t)] < § for ¢t < t,. Setting
ul = up(- +tL) for any n € N, we have that (ul) C A, ¢(up) — @ and
(—0,0] N Ss(ul) = {0}. In particular for any n € N

(2.5) Ss(un) N (—o00,th) = @.

Since in addition the sequence (u}) is bounded in E, up to a subsequence,

it converges weakly in F and strongly in L{? to some w; € E. Since ¢ is
? w.ls.s., we get that ¢(w;) < a and then, by remark 1.5, w; € A. Moreover
lwi(0)] = &, so that Ss(w;1) # @. Since Ss(wi) is bounded, u}, — w;
uniformly on Ss(w;) and then, fixed e € (0,6) there exists n} € N such
that for any n > n! Ssie(wi) C Ss(ul). Moreover, there is t; = t1(€) > 0
such that |wi(t1)| = § — € and |wi(t)] < é§ — € for t > t;. Hence, again by
the uniform convergence on the compact sets, there is m! € N such that for
n>ml Ss(ul)N0,t1] C Ss—e(w1), that is

(2.6) Ss(un) N[th, 1L + 1] C Ss—c(wi(- —th)).

Now we distinguish two alternative cases.

Case A1 : For n € N sufficiently large Ss(ul) N (t1,+00) = 0.

~ Case By: For a subsequence of (ul), denoted again by (ul), Ss(uh) N
(t1,4+00) # O for any n € N.

If case A; occurs then there is n. > max{n!,m!} such that for n > n.
Ssre(wy) C Ss(ul) C Ss—c(wy). Therefore Ssipe(wi(- —tL)) € Ss(un) C
Ss—e(wi(- — t1)) and the lemma is proved with [ =1.

Suppose now that case B; holds. Then, up to a subsequence, there exists
(s1) C R such that s} >#;, |ul(s})] =6 and |ul(t)] < § for t € (t1,s)). In
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this case we get that for n € N sufficiently large

(2.7) Ss(un) N (t + 11,1 + 1) = 0.
Moreover s}, — oo holds. Otherwise, up to a subsequence, s — s € [t;, +00)

and then

| lwa(s)] = 8| < Jwi(s) —up(sp)]
< fwi(s) —wilsn)l + lwi(sy,) — un(sa)l

< lwi(s) —wi(sy)l + sup |wi(t) — ulk(?)|
It <s+1

which implies that |wi(s)| = é§ contrary to the fact that s > t; = sup {¢ €
R : |wi(t)|=86—¢€}.

For any n € N set t2 =t} + s} and u? = ul(- + sL) = un(- +t2). Then
(ur) C A, o(u2) — a, [u2(0)] = 6 for any n € N, (u2) is bounded in E and,

up to a subsequence, it converges weakly in E and strongly in LX to some

wz € E. As before, we get that ¢(wz) < a, wy € A, |wz(0)] = § and, for the

same € € (0,6) fixed above, there is n? > n! such that for n > n?

(2.8) . Ss4e(ws) C Ss(ul)

and then Uz?zl Sse(wi(-—1%)) C Ss(un). Moreover, since 55~;(wi) is bounded

and ¢} — ], = s}, — o0, we can choose n? € N so large that for any n > n?
(2.9) Ss—e(wi(- —13)) N Ss_e(wa(- —2)) = 0.

Now we prove that 2?21 ¢o(w;) < a. Fixing T > 0 and setting ¢; =
inf Ss(w;) and ¢ = sup Ss(w;) we have that, for (2.9), for n € N large

. enough

(2.10) > /tt:;T —V (un(t + 1)) dt < /R —V (un) dt.

Moreover we also have

(2.11) /Rmn]? it > é\zj(Q/Ran(urt;)w,-(t)dt—/Rm,-li'dt).
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Thus, from (2.10)-(2.11) we get

(2.12)
; ( /R ﬁn(t+ti)w,~(t)gt——;- A s |2 dt — /t;-:r’—" V(un(t+1)) dt) < o(un).

Since un(- + t}) = u!, — w; weakly in E and strongly in L{%., from (2.12)
we infer that

tH+T

| i (%/mlwilz dt — /t__T V(un(t+ti,))dt) <a

= i

and then, for the arbitrariness of T' > 0 we obtain

Z p(w;) < a.

Let now to = ta(€) > 0 be such that |wa(tz)] = § — € and |wy(t)] < 6 — ¢
for t > ty. Since u% — w, uniformly on [0,%2] we have that for n € N large
enough Ss(u2) N [0,t2] C Ss—c(ws) that is

(2.13) Ss(un) N [t2,12 + 9] C Ss—c(wa(- — t2)).

Thus we arrive to the same alternative as before with (u2), ws and t; instead
of (uy), w1 and t, respectively. Therefore, either:

Case A, : For n € N sufficiently large S5(u2) N (t2,4+00) = 0.

or

Case By: For a subsequence of (u2), denoted again by (uZ), Ss(u2) N
(t2,+00) # O for any n € N.

- If case Ao occurs then

(2.14) Ss(un) N (12 + 12, +00) =D

for n € N large enough. Consequently, from (2.5)-(2.9) and (2.13)—(2.14), it

follows that Ss(un) C U?=1 Ss—e(wi(- — t')) and the lemma is proved with
l=2. :

Otherwise Case B2 holds and we repeat the same argument as before.



Conservative singular Hamiltonian systems 29

Finally we point out that this procedure must end in a finite number of steps.
Indeed, after I steps we have wy,...,w; € A with Ss(w;))# 0 (i =1,...,1)
and sequences (t}),...,(t}) C R such that for any n € N large enough
Uizt Ss/a(wi(- =15)) € Ss(un) and Ssyo(wi(- — 1)) N Ssyaw;(- — ) = @ i
t# j. Then

! l
(2.15) |55(un)| 2 Z [Ss/2(wi(- = )| = Z |55 /2(wi)|

On one hand we have that

2
F ([ ) < Supal [ fl < 200 1Saun)
Ssy2(wsi) Ssp2(wi) »
and thus
62 82
. | > > —.
(216) ol 2 5 2 &

On the other hand, by Lemma 2.2, there is 75 = 75(a) > 0 such that
(2.17) |Ss(un)] < 75 for any n € N.

Therefore, from (2.15)-(2.17), we infer that [ < 2a75672 = l5,0- L]

3. Minimizing sequences

To study the minimizing sequences of ¢ in Ay, being k € N fixed, it is

convenient to introduce the sets

Kk:{uEA cindeu >k}
and the corresponding values

Nk =inf{o(u) : ue A}

We notice that A\ > ’):k > 0 for any k € N.
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Lemma 3.1. Let k € N, (u,) € Ar and u € E\{0} be such that p(un) — Py
and u, — u weakly in E. Then u € A, indgu > 0 and ¢(u) = ,):ko where
ko =ind¢ u.

Proof. Without loss of generality we can assume that u, — u weakly in E
and strongly in L{° . Since ¢ is w.ls.s., we have p(u) < \r and then, by
Remark 2.3, u € A. Hence for any § € (0,|€|) there is Ts > 0 such that
|u(?)] < é for |t| > Ts. We set

un(t) for |t| > Ts +1

0 for |t| < T
(t—Tg)un(Ta—{-l) for Ts <t <Ts+1
(—t — Tg)un(—Tg — 1) for -T5—-1<t< —Ts

va(t) =

and we evaluate

(3.1) o(vn) = 9(tn) = @1, () + P 1= (vn) + @5 (vn)

where I = [~T5 —1,Ts +1], Iy = [~Ts —1,~T5] and I} = [T5,Ts +1]. For
the pointwise convergence, we have |u,(|Ts + 1|)| < é. Hence

(3.2) Pr; (vn) + cpI;;-(vn) < 6% + Ms

where Ms = 2 max|;<s |V (z)|. In addition, since u, — u weakly in E and

strongly in LS we also have

33) ¢1,(u) < liminf o7, (un).

Then (3.1)—(3.3) imply

(3.4) limsup p(vn) < Ap + 62 + M5 — o, (u).

"~ By (V1)-(V2) and since u # 0, taking ¢ € (0,[¢]) sufficiently small, we can
insure that 6% + M; — ¢r,(u) < 0 and thus

(3.5) lim sup o(vs) < Ag.

If it were ind¢ u < 0, then, for § > 0 small we would have ind¢ v, = ind¢ up, >
k, that is v, € Kk, which, together with (3.5) leads to a contradiction with
the definition of ;\\k. Therefore ind¢ u = ko > 0.
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To prove that ¢(u) = Xko we argue by contradiction assuming that ¢(u) >
Xk, . Then there is v € Ak, such that suppv C [—R, R] for some R > 0
and o(v) < A, + 5 where € = ¢(u) — /’\\ko- We choose § = §(e) such
that 6> + Ms < £ and T5 > R such that |u(t)] < & for |t| > Ts and
fg\“(%"‘:"lz — V(u))dt < £. Setting yn = v, + v, we have that y, € A and

(yn) = ©(vn) + () < o(va) + @(u) — g_

which, together with (3.4) and by the choice of § and T gives

lim sup ¢(y) < Ag — 2,

contrary to the definition of Aj. O

Now we recall a result, already proved by Rabinowitz [R1, Proposition
3.41].

Lemma 3.2. Let k€N and v € Kk such that o(v) = Xk. If v(3) = v(?)
for some 5,1 € R with 5 <%, then there are s,t € R such that 5 < s <t <7,
v(s) = v(t) and inde v g = 1.

In particular, for any k € N\ {1} and v € At such that @(v) = g there ezist
s,t €R such that s <t, v(s) = v(t) and indg v}, 4 = 1.

In the next lemma we give the characterization of the minimizing se-

quences for ¢ with respect to Kk.

Lemma 3.3. Let k € N and (u,) C Kk such that ©(u,) — Xk. Then there

are a subsequence of (uyn), denoted again by (uy,), functions wy,...,w; € A
and corresponding sequences (t1),...,(t4) C R with limp_oo(t5H — 1) = oo
forany i =1,...,1—1, such that:

(3.6)

Lim un(-+t) = w; weakly in E and strongly in Ly, for any i=1,...,;
n—ouoo

(3.7) inde w; = k; € {1,...,k} and o(w;) = Xk,. for anyi=1,...,1;
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1

(3.8) Zinde wi = k;

=1

' l
(3.9) Z(,a(wg) = Ak

Proof. Let k € N and (un) C Ay such that o(un) — k. Noting that
limsup ||unze > |¢] and fixing 6 = 3|¢|, by Lemma 2.4, there are a subse-
quence of (uy), denoted again by (u,), functions wy,...,w; € A\ {0} and
sequences (t1),...,(t,) C R satisfying (2.1)~(2.4). By Lemma 3.1 ind¢ w; =
ki > 0 and o(w;) = in for any i = 1,...,l. Taking € = 1|¢| in (2.4), we
get that for n € N large enough Zi-:l inde w; = ind¢ u,. Moreover, defining
Yn = Zi’:l w;(-—1), by (2.1), we can easily check that ¢(yn) — Ei’:l e(w;)
and indgy, = Zi'=1ind5 w; = ind¢ un. Hence (yn) C Ar and thus A\p <
Zizl o(w;). By (2.3) we infer that Ax = Y i_; @(w;).

If we suppose that Zi-:l inde w; > k then either indg w; > 1 for some j €

{1,...,1}, or ind¢ w; = 1 for every ¢ = 1,...,l. In the first case, we set
o Jwi(?) fort <'s;
w;(t) = {wj(t—3j+tj) fort > s;

where s;j,t; € R are given by applying Lemma 3.2 to w;. Then, for any
n € N we put §n = yn — wj(- — t}) + w;(- — t1), getting a contradiction
because ind¢ §n, = indey, —1 > k and

l l
limp(Fn) = D o(ws) +9(5) = o(w;) < Y p(wi) = Ae.

In the second case we consider the sequence g, = Zi;i w;(- — %) which lies
in Ay but satisfies Lim o(7,) = Zi;i o(w;) < Ak, contrary to the definition
of Ap. U
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Remark 3.4. In the proof of Lemma 3.3 we have seen that indgu, =
Z£=1 ind¢ w; = k, that is, for n € N sufficiently large u, € Ar. Since
B\\k < Ax and o(u,) — :\\k, we get Xk = M. Hence any minimizing sequence
(un) for ¢ with respect to Ay is also minimizing with respect to Kk and then
(3.6)~(3.9) hold for (uy,), with A instead of A.

Remark 3.5. As immediate consequence of Lemma 3.3, we get that there
exists v; € Ay such that p(v1) = A;. Moreover, fixed k € N, setting u, =
Zle v1(-—jn), we have that for n € N large enough u € Ay and lim ¢(u,) =
kXi. Therefore A\ < kX;. In addition, since Ay = A; we also have that
Ak < Ag41 for every k € N.

4. Proof of Theorem 1.1

To begin, we state a sufficient condition for the existence of a mimimizer

for ¢ in Aj.

Lemma 4.1. Let k € N\ {1}. If Mg < A\, +--- + Ag, whenever | > 1
and ky,..., ki € N satisfy ky +---+k; =k, then there is v € A such that
p(v) = Ak.

Proof. Let k € N\{1} and let (u,) € Ay be a sequence such that @(u,) — Ax.
Then by Lemma 3.3 and Remark 3.4, there are a subsequence of (uy), de-
noted always (un), functions ws,...,w; € A and corresponding sequences
(th)s---,(tL) C R satisfying (3.6)~(3.9). If I > 1, then by (3.7)~(3.9),
Z:‘=1 ki = k and Z:zl Ak; = Mg, contradicting the hypothesis. Therefore
I'=1 and thus, using (3.8)—(3.9), we get that w; € Ay with p(w;) = A\p. [

Firstly we prove Part (ii) of Theorem 1.1. By Remark 3.5, we know
that Ax < kA; for any & € N. As we shall see in the next lemma, the value
E=sup{keN : )\ = kA1 } plays an important role in the problem of

existence of a minimum point for ¢ in Aj.

Lemma 4.2. Suppose k < oc. Then for any k > k:

(i)k Mkl < )\k—l(k - 1)—1 < Ar;
(1) there is vy € A such that ¢(vi) = Ag;
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(172)r there are sk,tx € R such that sg < tx, vi(sx) = vi(tx), indg Ukl[ak,tk] =1
and M1 — Ak < @(Vkl[sr, 1)) < Ak — Ak

Proof. Since k < oo the value k¢ = inf {keN : A <kA;} is well defined.
We will prove (7)g—(7¢)x by inductionon k€ N, k> ko.

Let us start with k¥ = ko. Firstly (¢)g, is true by definition of ky. Sec-
ondly, (%t)k, follows from Lemma 4.1. Indeed if I > 1 and ky,...,kt € N
satisfy ky + --- + ki = ko, then k; < ko for any ¢ = 1,...,] and hence
Z£=1 Ak, = Z:'=1 kA1 = koA1 > Ag,. Therefore, by Lemma 4.1, there is
Uk, € Ak, satisfying ¢(vr,) = Ak,. To prove (ii2)r, we apply Lemma 3.2 to
vk, . Thus there exist sk,,tr, € R such that sk, < kg, Vio(Ske) = Vko(tko)

and indg vi, || 1 = 1. Then, setting

3koatk0
| g, (1) for t < s
4.1 —1(t) =4 .
( ) Uk, 1(t) {vko(t — Sk, -+ tko) for t > Sko
and y
IER0) for t < tg,
uko+1(8) = { vi(t + ske — tk,) Tor t > tg,

we have that ug,+1 € Agyx1 and, by (¢)x,,

Akox1 < p(Ukex1) = @(vk,) £ ‘to(vkol[sko,tkol) = Ak, T 99(vk0|[3k0,tk0])

that is (222)k, -

Now let us assume that (7)r—(i77)x hold and let us prove (2)r4+1—(222)k4+1. By
(13)x there is vr € Ay such that ¢(vg) = Ax. Then, let sg,tx € R be given
by (11¢)x . Setting

° _ _ Jue(®) for t < tg
(4.2) uk+1(t) { vp(t + sk —tx) fort >t
we have that ugy1 € Ax41 and then, by (2)r and (222)x

A
Aet1 S @(urg1) = @(vk) + @(Vklisg,0e) < Ak + Ak — Ap—1) < Ap + —ki’

that is Ag+1(k +1)71 < Agk~!. Consequently we also have

Ako—1 _ Ak Ak+1
43 A e 0T o .. X
(4.3) ! bo—1" ke~ T k41
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To prove (22)r4+1 we use again Lemma 4.1. Indeedlet I > 1 and ky,..., ki € N
such that ky+---4+k =k+1. Since k; < k+1 forany i =1,...,[, by (4.3)
Z:'=1 A, > Z:‘=1 ,ﬁ%hﬂ = Ak41. Therefore Lemma 4.1 applies, giving the
existence of vgy1 € Agg1 such that ¢(ve41) = Ag+1. The proof of (442)g41 is
the same as for (4ii)x,. Finally we point out that, by (4.3), ko = k+ 1 and
then the lemma is proved. [

Lemma 4.3. Suppose k < co. If k> k, I >1 and ky,...,k € N satisfy
ky+4+---+ ki =k, then

B A§
Apw oo Apy = Ap > Ay — —tL
kT + Ak E2 A1 Fol

Proof. For any k > k let v € Ay and si,t; € R be given according to Lemma
4.2 (44)r—(4i1)x . Always by (#17)r we remark that

(4:4) Llo(vk+1|[3k+1,tk+1]) S @(vk![sk,t;@]) for a'ny k > E

For k > k, by (4.4) we have

k k

(4.5) > eilig) = D eklsn)) = (k= B) 9(vil[s, 1,0)-

j=E+1 j=k+1

On the other hand, by Lemma 4.2 (izi); we get

k k
(4.6) Y il € D (= Ajm) == Ap = Ak — EAs
=kt j=kt1

Now (4.5)-(4.6) and Lemma 4.2 imply
(k = k) o(vklpse,0) < Mk = A= (k= DA < A = A1 = (k = 1) 0(vklfo 101)
and then

(4.7) Ak > Ar (k= 1) @(vk (s t))-
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Taking now k, k' € N such that k < k' < k, by (4.4) we have
(45)
k k

> el <YL POk ln) = (k= E) @0k |0y 107)-

j=k'+1 j=k+1

In addition, by Lemma 4.2 (u12)

k k
(4.9) Yo i) = D, (g = Ajm) =M= Aw
j=k'+1 J=k+1

Hence (4.8) and (4.9) give
(4.10) A = Aw < (k= K) o(0r |[a,0,0001)-

Let now £ >k, I > 1 and kq,...,k € N such that k; + --- + k; = k. Since
Ak; +Ak; 2 Aki4k; , it is sufficient to prove the thesis for [ = 2. We can assume
that k; > ky. If ky < k then, by Lemma 4.2 on

M F My = Ak 2 Bt ko da = A = ke (M= 3) > ko (A — EEE) > My — 28

Let us assume now k; > ko > k so that, by (4.4),

Ak
(4.11) O(Vky sk ,t2,]) < P(Vks (51, t4,]) S ﬁ
Then, applying (4.7) with k¥ = ka, (4.10) with k¥’ = k;, and using (4.11) we
get

. }\_
/\k1 + )\k2 — Ak > A — 99(vk2|[8k2,fk2]) 2\ = 7:]:-;_

0O

- Lemma 4.4. If v € A satisfies ¢(v) = Ax then v is ¢ homoclinic solution

of (HS).

Proof. Standard arguments apply to show that the function v is a classical
solution to (HS) (see for instance [R1] or [R2]). Moreover v(t) — 0 as t — %00
because v € A. Finally, since the system (HS) is autonomous, i.e. V does
not depend on ¢, the energy h = $|0(t)|* + V(v(t)) is constant and then, by
(V2), |9(¢)|]> — 2h as t — +oo. Since v € E, we get h =0. 0
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Now we prove Part (7) of Theorem 1.1.

Lemma 4.5. The value k is finite if and only if the following condition holds:
(%) there ezist T € (0,00) and u € HY([0,T],R?) such that u(0) = u(T),
u(t) # € for any t € [0,7], indgu =1 and foT(-IZ—hlIz —V(u))dt < A;.

Proof. If k is finite, then, taking an integer k > k, we consider the function
vk € Ay and the values si,tx € R given by Lemma4.2. We set T = ¢ —s; and
u(t) = vi(t — sz) for ¢ € [0,T]. Then, by (4ii)x, inde u = ind, Vk sy, te] = 1
and [T (2[u]? = V() dt = p(vkljer.0]) < Ak~ < Ay, that is (%).
Conversely, let us assume (*). We can always suppose that fu(0) # ¢ for
every 6 € [0,1]. Defining for any k£ € N

0 fort < —1and¢> kT +1
wi(t) = (1+1t)u(0) for -1 <t<0
M=) e —5T) for (j—1)T<t<jTandj=1,...,k

(kT +1—-t)u(0) for kT <t<kT+1
we have that up € Ar and @(up) = ¢+ kopo,77(u) where ¢ is a positive

constant independent from k. Since ¢y 77(u) < A1, for k € N large enough
¢+ k(pp,m7(u) — A1) <0 and then A\p < p(ug) < kAp, thatis k < co. [

The proof of Theorem 1.1 is completed with the following result.

Lemma 4.6. If k> 2, then, for 1<k <k, o(u) > Ag for every u € Ay.

Proof. By contradiction, let £k € NN {2,...,k — 1} be such that o(ve) = Ak
for some vi € Ay. Then, by Remark 3.4 and Lemma 3.2, there are si, 2 € R
such that sp < tx, vi(sk) = vi(tx) and inde vil[s,,e,] = 1. Let ugqr € Aggs
be defined by (4.2) and ur_; € Ar_; be given by (4.1) with k instead of k.
If it were @(ug—1) = Ap—1, then, by Lemma 4.4, ux_; would be a solution
- of (HS) and in particular v(sk) = ox(ts). Then v(- — s;) and v(- — t;)
are two distinct solutions to the Cauchy problem defined by (HS) with initial
data z(0) = vr(sx), #(0) = vx(sk), contradicting the uniqueness of solution,
given by the locally Lipschitz continuity of VV. Then ¢(uz—1) > Ar_; and
O(Vkl(sr,e]) = ©(vk) — @(ur—1) < At — Ax_1 = A1, because k < k. But now
we get Akt1 < @(ur+1) = @(vr) +0(Vk|s,,4,]) < (F+1)A; and then k+1 > k,
a contradiction. U



38 Paolo Caldiroli

5. Construction of a periodic orbit at level X

With this Section we tackle the problem of the existence of heteroclinic
solutions to (HS). Here and in the following Sections 6 and 7 we assume that
the potential V satisfies (V1)-(V4) and that condition (*) holds.

Lemma 5.1. lim Ak~ ! = inf Ak~ =,

k—oo k>k

Proof. By Lemma 4.2 (i) and (4ii), there exists lim Ak~ = inf A\pk™! > .
Fixed ¢ > 0 let T € (0,00) and u € A;  be such that ¢, (u) < A+ € and,
for k € N, let up € Ax be defined as in the proof of Lemma 4.5. Then for
any k € N A\; < o(ug) = c+ kpp(u) < c+ k(X +¢€) being ¢ > 0 a constant
independent of k. Then limM\zk™! < ) + €. Since € > 0 is arbitrary, we
conclude that Lm Agk™! = A. J

~ By Lemmas 4.1 to 4.5, there is E € N such that for any k > k there are a
homoclinic solution to (HS) vx € Ax and a pair s, tx € R satisfying o(vi) =
ey sk < tr, vk(sk) = vk(tk) inde vilps, 0] = 1 and ©(Vkl[; 1)) < 2t For
any k > k let Ty =ty — s and Iy = [sk,tk]-

Lemma 5.2. (i) There ezist R,p > 0 such that for any k > k and t € Iy
lok(t) = €| 2 p and |vi(t)] < R. ‘
(7¢) 0 <infTx <supTj < .

Proof. For any k > k let & = infier, |vr(t)]. We claim that supgszéx < 0.
Indeed, by (V4), for any j € N there is r; > 0 such that —V(z) > jlz|™2
for |z| > rj. If, by contradiction, supys 6k = oo, there is kj > k such that
6k; > rj and then

tkj
(%li)k,‘ iz + jlvkj |_2) dt

o(vi; |1, ) 2 /

Sk;

Tkj

>inf{ [ QP+ Jlul )bt s e Aany, Jult)] 2 85 Vi€ [0,T4])
0

= 2772p§Tk_jl —i—jp;szj

> 277\/53.'.
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(We remark that the infimum in the above estimate is attained by the function
uj(t) = (pjcoswjt, pjsinw;t), with w; = 2x/Ty; and a suitable p; > &, ).
For j — oo we get p(vg; !ij) — 00, contrary to the fact that ¢(vk|r,) < A
for every k > k. Therefore the claim is proved and we can apply Lemma 2.2

getting (¢). Hence we obtain

1/2
21p < | |ow|dt < \/Tk(/ 6% |2 dt_) < VMTx
I I

which implies inf T} > 0.

To prove that supTi < oo, firstly we verify that infyey, |vk(t)| > § for some
6 > 0 independent from %. Indeed, if not, then, up to a subsequence, for any
k € N there is 73 € I} such that vi(7x) — 0. Then, setting

0 fort<7mp—landt>7+Tr+1
(t— 7+ 1) vk(me) formp—1<t< g

ur(t) = ¢ vi(t) for T <t < tg
Uk(t—Tk) > fortp <t <7+ T}

(t—me =T+ 1)vg(r) forme+Tr <t <7 +Tp+1

we easily check that ur € Ay and ¢(ur) = ex + p(vi|r,) with ex — 0. Hence,
taking the limit k — oo, we get \; < X, contrary to (*). Therefore, by
(V2) and since |lvk||pe(1,) < R, we also have infiey, |V (vk(2))] > b for some

constant b > 0 independent from k. Consequently
M > ooiln) = 2/ IV (vg)| dt > 2T
I

which gives sup T} < co. [

Remark 5.3. A careful analysis of the proof of Lemma 5.2 shows that

9

P4

_ instead of (V4) it is enough to assume that limsup |z]|*V(z) < ~5
s

|z|—o0
By Lemma 5.2, passing to a subsequence if necessary, we can assume that

(5.1) ' kﬁm T, =T
for some T € (0,00). For any k > k we define 6 = TkT—l and

ur(t) = vr (6t — sz), t € [0, T).
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We point out that for any k > k uj € Ay 50 C?*([0,T),R?) and uj solves
1 2 2 . =
(5.2) iy + 62 VV(ur) =0 and -élakr + 67 V(ux) =0 in (0,T).

Lemma 5.4. There is & € A; 5N C'([0,T],R?) and a subsequence of (ux),
denoted again by (ux), such that ||ux —a||c1(o,77) — 0. Moreover o (7) = A

and @ is a T —periodic solution to (HS) with zero energy.

Proof. For any k > k it holds that

min {8k, 05 '} o(velr,) < o (ur) < max {6k, 6" } o(vklL)-

Then, by Lemma 5.1 and (5.1), limc,o_T_(uk) = ). Therefore, in particular,
A=inf{¢_(u) : v €A, 7} and thus (ux) is a minimizing sequence for ¢_ in
Al,T‘ Since (uk) is bounded in E, it admits a subsequence which converges
weakly in Ez and uniformly on [0,T] tosome u € A, 5 satisfying L,O}_(’L_L) =\
By standard arguments @ turns out to be a T-periodic solution to (HS).
Moreover, by Lemma 5.2 (z) and by (5.1)~(5.2), supisz |ukllczqo,m) < o0
Then, by Ascoli-Arzela Theorem, up to a subsequence |ur — (|5 (o7 0
and z|u|?> +V(2) =0.

6. Uniform properties of the homoclinics

Let us introduce the sets

Kper = {u €A : T€E(0,00), pp(u)= 2}

Kir={veAr : o(v)=X} (k€EN)

Khom = U K.

keN

From Sections 3 and 4, we know that K; # @ and Ky # @ for k > k.
Moreover, by Lemma 5.4, Kper # @ and Kper consists of periodic solutions
with energy 0. This last property can be easily proved noting that given any
u € Kper defines a peridic solution to (HS) with a period T' € (0,00) and
an energy h = 3|u|* + V(u). Moreover, setting u,(t) = u(%) for ¢ € (0,57
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and s > 0, it holds that u, € A; 7 and the map s — ¢,.(u;) attains
its minimum at s = 1. Since ¢, (us) = fOT(%s‘lltllz — sV (u))dt, we get
0= Lo, (us)lomr = — [ (]2 + V(u)) dt = —hT and then h = 0.

Lemma 6.1. For any v € Kyom and any u € Kper it holds that rangev N
rangeu = .

Proof. By contradiction, let us assume that there are k € N, v € K, T €
(0,00) and u € Kyer N A7 such that v(tg) = u(0) for some ¢, € R. Then
the function

v(t) for t <t

9(t) = u(t—tg) for tg<t<to+T

v(t—T) for t>tg+T
lies in Agy1 and @(3) = Mg + X. In particular Apyq < (k+1)A; and thus k& >
k. Then there are Vkt1 € Kk+‘1 and sipy1,tr41 € R satisfying sg41 < trt1,
Uk+1(5k+1) = vk+1(tk+1) and ind5 Uk+1|[sk+1,tk+1] =1. Setting

ui(t) = {vk+1(t) for t < sg41

Vi1(t — Sk41 +tky1) for ¢ > spqy
we have that ur € Ay and Aiy1 = @(vit1) = p(ur) + O(Vk+1l[spp1,tx01]) =
Ax + . Therefore © € K41 and, by Lemma 4.4, ¢ is a solution to (HS).
This implies in particular that 9(¢9) = %(0). Hence v and % are two different
solutions to the same Cauchy problem defined by (HS) with initial conditions
z(to) = u(0) and (¢p) = u(0), contradicting the uniqueness of solution due
to the locally Lipschitz continuity of VV . ' Ll

We point out that, since A < A1, 0 ¢ rangeu for any u € Kper. Fixed

u € Kper let C(0) be the component of R?\rangeu containing 0. By Lemma,

. 6.1, it holds that

(6.1) rangev C Cy(0) for every v € Khom and u € Kpe,.

Moreover, always by Lemma 6.1, fixing v; € K; and u € Kper, rangeu is

contained in a component C,,(u) of R?\ rangev;.

Lemma 6.2. Let v; € K; and u € Kper. If v € Kyom @8 such that rangev N
Cu.(u) # D, then rangev C Cy, (u).
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The proof of Lemma 6.2 relies on the following observations.

Remark 6.3. If v € Khom and there are o,7,0',7' € R such that ¢ < 7,
o' <7, v(o) = v(r), v(c") = v(r') and ind¢ v|,-] = ind¢ v|jpr,») =1 then
(o,7)N (o', 7") £ O.

Indeed, otherwise, assuming for instance that 7 < o', we consider the func-

tions:
v(t) fort <7
u(t) = v(t—7+0) forr<t<t—0+0'
vit—7T+o—0 +7') fort>7—0+0
v(t) fort<o
(@)= vt—o+T) foro<t<o—-71+7

vt—oc+1—7"+0") fort>0c—7+7".
Then u,u’ € A, indgu = indg v’ = inde v, p(u) = p(v) + ¢1(v) — ¢r(v) and
e(u') = o(v) — or(v) + ¢ (v) where I = [o,7] and I' = [¢',7']. Therefore,
since ¢(u) > ¢(v) and p(u') > ¢(v), we get ¢r(v) = ¢ (v) and consequently
¢(u) = ¢(u') = ¢(v). Then, by 5, u and u' are homoclinics orbits. In
particular u and u' are different solutions to (HS) coinciding on (—oc, o).

This contradicts the uniqueness property of the Cauchy problem, given by
(V1).

Remark 6.4. If v € Kpom, v1 € K; and there is s € R such that v(s) €
rangev; and v(t) ¢ rangev; for every t € (—o0,s) (respectively for ¢ €
(s,+00)), then there are 0,7 € (—o0,s] (respectively o,7 € [s,400)) such
that ¢ < 7 and v(o) = v(7).

The proof is by contradiction. Let us assume that v|_o 4 is 1-1. Since
v(s) € rangewv; thereis s; € R such that v(s) = vi(s1). Setting I = (—co, ],
I_ = (~00,81], I+ = [s1,+c0), T = {o(t) : t € I}, T_ = {vi(t) : t € I}
" and 'y = {v1(t) : t € I}, there are uq,u_ € A such that ui(t) = v(t) fot
t € I, rangeuy = TUTL and ¢(usx) = ¢1(v) + @1, (v1). Moreover either
lind¢ut| = 1 and indeu— = 0, or |ind¢u_| =1 and ind¢uy = 0. Let us
assume that the first case holds (in the other case the same argument applies).
Since p(us) > A1 = p(v1) we get that ¢r(v) > ¢r_(v1). Then, setting

_Ju_(2s—t) fort<s
u(t) = {v(t) fort>s
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we have that {u(t) : t < s} =T_, u € A, indgu = inde¢v and p(u) =
@1_(v1) —r(v) + ¢(v). Then o(u) > ¢(v), that is ¢1(v) < ¢71_(v1). There-
fore @r(v) = wr_(v1) and thus ¢(u) = ¢(v). Hence u € Kpom and, by
Lemma 4.4, is a solution to (HS) different from v but coinciding with v in

(s,+00). This is in contrast to the uniqueness of solution, due to (V1).

Proof of Lemma 6.2. Arguing by contradicﬁion, let us assume that v(¢) &
C, (u) for some ty € R. Thus the values

t_=inf{t € R : v(t) € rangev; }
ty =sup{t €R : v(t) € rangev; }

are well defined. If t_ = —o0, then, fixed § € (0, |£]) there are s,s; € R such
that v(s) = vi(s1), |v(t)] < 6 for any ¢t < s and one of the following cases
occurs: either |v(t)] <6 for t < s1 or [v1(¢)] < 6 for t > s1. If the first case
holds, we define

o Jui(t—s+s1) fort<s
v(t)—{v(t) fort > s

and ( ) s
_ _Ju(t—s1+s ort < s
0i(t) = {vl(t) for t > s;.

Instead, in the second case we set

oy Jui(—=t+s+s) fort<s
v(t)w{v(t) fort>s

and
Bu(t) = {v(t) for t < 4
vi(—t+s+s) fort>s.
In both the cases v,,9 € A, ind¢%; = 1 and ind¢ ¥ = ind¢v. From ¢(5) >
~ p(v) and ¢(01) > ¢(v1) it follows that ¢(v) = ¢r,(v1) where I = (—co,s)
and I; = (—c0,s1) in the first case, while I} = (s1,+00) in the second case.
In both the cases we get that ¢(?1) = ¢(v1) and consequently o; € K is
a solution to (HS) different from v; but coinciding with vy in I, contrary
to the uniqueness of the solution to the Cauchy problem for (HS). Thus we
have proved that ¢_ € R. Analogously we can check that t; € R. Hence
v(t+) € rangev; and v(t) ¢ rangev; for t < t_ and for ¢ > t,. Using
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Remark 6.4 we deduce that there are o+,7+ € R such that o <7 <t_,
ty < o4 <74 and v(o4) = v(r+). By Lemma 3.2 we can also assume that
ind¢ v|[py,ry] = 1. Since t_ < t4 we have that (¢—,7-) N (04,74) = D, in
contradiction with Remark 6.3. This concludes the proof. ]

Lemma 6.5. For any € € (0,|£]) there 1s 6. € (O,ej such that for every
v € Khom \ K1, if [v(7)| = 8¢ then |v(t)| <€ for any t <7 orany t 2> 7.

Proof. By contradiction, let us suppose that there is € € (0,|£|) such that
for any § € (0,€) there exist vs € Khom \ K1 and t;,'rg,tj € R such that
ty <75 <tf and |vs(tF)| > € and |vs(rs)| = §. We define

vs(t for t <75
”;(t)z{(’l'a—l-l-t)vg('ra) for s <t<1s+1
0 for t>715+1

0 for t<m5—1
v;(t) = (t—75+ 1) vs(rs) for 7 —1 <t <75
vs(t) for t > 15.
Clearly vy ,v§ € A and since |vs(t5)] > € we get that
(6.2) ¢(vs) = pe and o(vs) 2 pe

for some pe > 0 independent of §. Setting k; = ind;v; and k;” = indg v;"
we have

ky >0, kf >0 and k; + ki = ks.
Now standard estimates show that
(6.3) 0 < p(vy) + (vF) — plvs) = w(8) = 0

as § — 0. Since ¢(vs) = Ak, , combining (6.2)-(6.3) we see that for ¢ > 0
sufficiently small both k5 > 1 and k;" > 1. Indeed if we assume for example
~ that k5 = 0 then kf = ks and, by (6.2), we have

e(vf) = @(vs) — vy ) +w(8) < p(vs) = Ak,

for § > 0 sufficiently small, contradicting the definition of Ag,. On the other
hand (6.3) implies that

)\'k; + /\k;" — )‘ko < w(é)

Since w(é) — 0 we get a contradiction with Lemma 4.3. O
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7. Limit process and conclusion of the proof of Theorem 1.2

Let (vx) C A be the sequence of homoclinics given by Theorem 1.1. Let
us fix € € (0, min{dist (0, range @), |¢|) and for any k > k let us put

7 =Inf {t € R : |vg(t)] = €}.
By the translational invariance of (HS), we can assume that 7 =0, i.e.,
(7.1) lve(0)] = € and |vi(t)] < € for any ¢t < 0.

Let % € Kper be given by Lemma 5.4. According to the same lemma, up to
a subsequence, dist (range vg,range @) — 0. Thus rangevi N C,y, (2) # @ and
by Lemma 6.2, this implies that rangevi C C,,(@). Taking into account (6.1)
we get

(7.2) rangevr C Cy, () N Cy(0).

In particular (7.2) implies that there are p, R > 0 such that

(7.3) lok(t) — €| = p and |vk(t)] < R, for any t € R.

Now combining (7.3), (HS) and the energy conservation
$10k(®))? + V(vi(t)) =0 forany t€R

we get that supy |lvk|lc2r) < 0. An application of Ascoli-Arzela Theorem
shows that, there is ¥ € C}(R,R?) and a subsequence of (v}), still denoted
by (vk), such that

- (7.4) v — ¥ in the CL_—topology.

We note that by (7.2) and (7.4)

(7.5) range v C Cy, (%) N Cy(0)
and by (7.3) and (7.4)

(7.6) dist (range©,€) > p and ||t||z < R.
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Lemma 7.1. The function © is a non zero classical solution to (HS) with

energy zero and such that v(t) — 0 and ¥(t) - 0 as t — —co.

Proof. Standard arguments show that 7 is a classical solution of (HS) with
energy zero. By (7.1) and (7.4), |5(0)] = € and thus v # 0. Defining

0 for t < -1
ur(t) =< (t+1)ve(0) for —1 <t <0
ve (1) for t >0
we see that ur € Ay and then ¢|r_(vi) < ¢|r_ (ux) < %Ez—kmaxmsg V()| =
Ce. By (7.4) we get that for any T < 0

/T(%m? — V(o)) dt = klingo/T (L[5x% = V(vr))dt < Ce

and then ¢|r_(?) < oo. By Remark 2.3, this implies that #(t) — 0 as
t — —oo and, since

(7.7) 0@+ V(5(t)) =0 for any t € R
also 9(t) — 0 as t — —oo. O

To conclude the proof of Theorem 1.2 it remains to check that L, (3) =T
where T' = {(u(t),4(t)) : t € R}.

By (7.6) and (7.7), ||7||c1(g) < oo and then, by well known theorems on
the w-limit set (see, e.g. [BhS]) L,(?) is a non empty, compact, connected,

positively invariant subset of R*.

Lemma 7.2. There is § > 0 such that |5(t)] > & for any t > 0.

Proof. Let § = 8¢ > 0 be given by Lemma 6.5. Since € € (0, |¢]) and ind¢ vi =
k, any homoclinic v must turn k¥ — 1 times around ¢ without coming closer
- than é to the origin. Then, defining #x = inf {t > 0 : |vx(t)] = §} and

taking into account (7.3), we have

T Tz
(k= 1)mp g/ |~z;k|dt=/ VIV or) dt < Ex M
0

0
where M = max{+/2|V(z)| : |z —¢] > p, |z] £ R} < oo. Hence #; — oc.
Therefore for any t > 0 there is k; > k such that vk ()] > & for every k > k;.
By (7.4), we conclude that |5(t)| > 6. Ul
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By (7.5) and Lemma 7.2 we infer that

(7.8) 9(t) € D = Cy, () N Cx(0) \ B5(0) for any t > 0.

By the positively invariance of L, (%), it is enough to prove that L, () C

I'. From now on we assume by contradiction there is ¢ = (z,y) € L,(%) \T.

Lemma 7.3. If ( =(z,y) € Lo()\T then z ¢ range.

Proof. By contradiction, let ¢ = (z,y) € L,(7) \ T’ such that z = u(ty) for
some tg € R. Then y # u(tp). Since ¢ € L (?), there is a sequence (¢,) C R
such that t, — +c0, %(tn) — z and v(¢,) — y. By (7.4), (7.7) and (7.8)
ly> = —2V(z) > 0. Hence for n € N sufficiently large, there is ¢, > 0
such that rangeﬁ][tn_fmtn+en] crosses transversally range@. Observing that
ranged C 8D, we get a contradiction with (7.8). d

Let now € = 3 min{ [z—¢|, dist (z,range @) } and My = (2max{ |V (") :
|z’ — z| < €})'/2. Let (t,) C R be such that tpqq —t, > 1 for every n € N
and 9(tn,) — z. Set I, = [tn,tnt1].

Fixed € € (0, min{eg, \/4My}) there is n. € N such that

(7.9) |5(tn) — z| < € for any n > n..

For n > n. we define

u (t) . ’i;(t) for i, <t< tn+1
" (tn1 +1 =) 0(tns1) + (E = tny1)0(tn) for tpnyy <t <tpyq+1

and v, =ind¢ u,.

Then, by (7.4), for every n > n. there is k., > k such that
(7.10) lvr(t) — 0(t)] < e for any k > ke, and for any t € I,.

For n > n, and k > k., we set

vr(t) fort <t,

th +0pn—t t—1n
uk,n(t) = ——"“6_;_’““‘_ Uk(tn) + ":S’k":“ Uk(tn-}—l) for tn <t _<_ tn + 6k,n

b

Uk(t + ,tn-i-l - tn + 6k,n) for ¢ >tn + 61:,11
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with suitable 8k, > 0. It holds that urn, € A, indg ug,n = k —v, and
(7.11) o(ur,n) = p(vr) = @r1,(vk) + @1, o (Uk,n)

where It n = [tn,tn + 0k,n]. We can estimate

(7.12) o1, (ukn) < T

vk (tn+1) = vk (Ea)|* + 6k,n W3 [V (z")| = wk,n.
z'—z|<eg

To guarantee that lim lim wg, = 0 we take 8k n = |[Vk(tnt1) — ve(tn)l/Mo

n—oc k—oo

so that, by (7.9) and (7.10)
(7.13) Wk = [vk(tnt1) — vi(ta)| Mo < 4eMo < A

Then, by (7.11)—(7.13), we get that ¢(ux,n) < Ax + ). Since Xk+1 = Apy1 >
Ak + X we obtain that v, > 0 for any n > n.. Therefore, by (4.3), Ax <

Ak—v, + Vn '\k"::: , that, together with (7.11)-(7.12), implies -

Ak—
(7.14) or, (k) < vp kk— :/" + Wk, n-

n

As k — oo in (7.14), by Lemma 5.1, (7.4), and by the definition of wg n, we
infer that for any n > n.

(7.15) ©1,(0) < vad +wp

where wy, = |0(tn+1) — 9(tn)| Mo . Since wp, — 0 we get a contradiction if we
prove that there is 7 > 0 independent of n such that ¢ (7) > vp) + 1 for
n > n. sufficiently large. v

To this aim we introduce the following values. For any v € NU {0} and
T >1 we set

M(Tyz,€) =inf{pp(u) : v € A, 7(z,€)}

where A, 7(z,€) = {u € H([0,T],R?) : u(t) € DVt e [0,T], |u(0) —z| <
e, |u(T) — z| < e, indeu = v}. Here ind¢ u denotes the winding number of
the closed curve defined by u and by the segment line connecting u(T") to
u(0).
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Lemma 7.4. There are €; € (0,60) and n >0 such that for any € € (0,¢;),
v € NU{0} and T > 1 it holds that A\, (T,z,€) > v +1.

Proof. Let A,(z,€e) = infryy Ay(T,z,€). Firstly we show that A, (z) is at-
tained. Indeed let (7j) C [1,c0) and u; € A, 1;(z,€) such that @, (uj) =
Av(z,€). Since rangeuj C D and infyep |[V(2')| = o > 0, by Lemma 2.2,
there are Ry > 0 and Ty > 1 such that “'Uj”Loo(Ij) <Ry and 1 <Tj; < Ty for
any j € N, where I; = [0,7}]. Thus, passing to a subsequence if necessary, we
have that T; — T € [1,00). Setting u;(t) = u;(tT;/T) for t € [0,T], we get
that the sequence (4;) C A,(T,z,¢€) is bounded in H'([0,T],R?) and, up to
a subsequence, converges weakly in H([0,T],R?) and strongly in L*([0, T])
to some u € A, (T, z,€). Then ¢ (u) = A, (z,¢).

Now, if v = 0 we remark that Ao(z,€) > no. If v > 1 and u € A, (T, z,¢€) is
such that ¢, (u) = A,(z,€), then, by a result similar to Lemma 3.2, there are
s,t € [0,T] such that s <, u(s) = u(t) and ind; ul, 4 = 1. Then

Ml(@,€) = (1) = Aot (,€) + (ulpsg) = Ma(z,€) + X

and, by recurrence
(7.16) M(z,€) > Mz, e) + (v — 1A

Since the function e — A;(z,€) is continuous at € = 0, it is enough to prove
that A;(z,0) > ). Because of the variational characterization of A we clearly
have A1(z,0) > A. Assume that A\;(z,0) = X. Since A\;(z,0) is attained,
there is a ug € Kpe; such that z € rangeuo and rangeuy C D. By Lemma
7.3 z ¢ ranget and then, by Lemma 5.4, there is k > & such that vg crosses
rangeup and this is in contradiction with Lemma 6.1. Hence, setting 7; =
 3(A1(=,0)=X), we get that 7, > 0 and, by (7.16), for € > 0 sufficiently small
Av(z,€) > vA + 1 for any v € N.

Then the conclusion follows taking n = min{no,n:}. Ul

Now we can conclude the proof of Theorem 1.2 observing that, since
tht1 —tp, > 1, by Lemma 7.4,

01,(0) > Ay, (tng1 — tny T, €) > VA + 19
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in contradiction with (7.15).

8. About Condition ()

In this section we discuss the assumption (*). We recall that (*) is
equivalent to the strict inequality A < A;, whose meaning is clearly explained
by the following result.

Proposition 8.1. Let V : R?\ {¢} — R satisfy (V1)-(V4) and for any
T € (0,00) let \(T) =inf{p,(v) : w €Ay 7}. Then:
(7) the function T + A\ (T) is continuous on (0,00);
() X =infreo(T);
(312) limp—o M (T) = +0
(2v) Imr—yoo M(T) =X

Proof. If (u,) C A;r is a minimizing sequence for ¢, in A; 7, then, by
Lemma 2.2, (u,) is bounded in E7 and then admits a subsequence converging
weakly in E7 and uniformly on [0, 7] to some u, € A1 1 satisfying ¢,.(u,) =
A1(T). Such a function u, can be extended periodically on R, with period
T, to a solution to (HS), still denoted by u,..

(z) Taking any 11,7 € (0,00) let ur € A1y and u,, € Ay, be such that
or. (ug,) = M(Ty) (1 =1,2). Weset ui(t) = uTZ(%t) for t € [0,T1]. Then

T, ) T; Ty Ty
or (u1) = T /0 1 !Urle dt — ?’1’ ; V(uT )dt < max {—T—:—, E}@TZ(UTZ)

and consequently

/\1(T1 {Tl T
A (To) - T, Ty
Changing T; with T we get
S BBy NE) T
T2 T1 - /\1(T2) - T Tl

that implies the continuity of the mapping T+ A1(T).
The part (¢i) is nothing but the definition of X.
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(vii) Let pp = mingepo 1y |up(t)—€| where uy € Ay 7 satisfies ¢, (up) = A1 7.
Then 27p, < fOT [t |dt < (2T (up )*/?. If there is a sequence T, — 0 such
that supy, (u,, ) < oo, then p, — 0 and in particular there is b > 0 such
that dist (rangeu, ,0) < b for any n € N. Thus, by Lemma 2.2, there is
p > 0 such that p, > p, a contradiction. Hence A(T) = ¢ (uy) — +00 as
T—0.

(2v) Let v € Ay be such that ¢(v) = ;. For any € > 0 there are § > 0 such
that [V(z)| < e for |z| < 6 and T > 0 such that |v(t)| < e for [t| > T.. For
any T > 2T, + 2 we define
to(— T) for0<t<1
oo (1) = | V(= Te=1) for 1<t< 2T, +1
(‘7T —I—2—t)v(T) for 2T +1 <t < 27T + 2
for 2T, +2<t<T

Then v, € A; 7 and gaT(vT) < A1 +we with we — 0 as € — 0. Hence
(8.1) limsup A:(T') < Az
T—co

For any T > 1 let u, € Aj 7 be such that ¢, (u,) = M (T). By (8.1),
there is a > 0 such that ¢, (u,) < a for every T > 1. Moreover with an
argument similar to the proof of Lemma 5.2, we also get that there is b > 0
such that dist (0,rangeu,) < b for any T > 1. Then, by Lemma 2.2, for any
6 > 0 thereis 75 > 0 such that |Ss(u,)| < 75 for every T' > 1. This means
that dist(0,rangeu,) — 0 as T — oo. Let z, € rangeu, be such that
|z7| = dist (0,rangeu, ) and let @, € A; be obtained by extending u, on R
“in order to connect rangeu, to 0, following the segment line that joins 0 to
. Then A\ < a,/( r) S M(T) + er with er — 0 as T — oo. Consequently

)\1 < liminfr—.eo A1 (T), that, together with (8.1), implies (iv). U

Now we present a condition which assures that (*) holds, with k = 1.

Theorem 8.2. Let V' : R*\ {¢} — R satisfy (V1)-(V3) and (V4).
Suppose also that

(V5) limsup, o —V(z)|z|™? = a < 00 and liminf, o —V(z)|z|~2 = b > 0;
(V6) there ezists vy € Ay such that p(v1) = \; and

vi(s)  n(t) - _b
P Gl o)V e

t—
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Then (x) holds and for any k € N there is a homoclinic solution vi € Ag
such that o(vi) = Ak.

Remark 8.3. We point out that (V6) is a condition regarding the angle
6; formed by the directions at which a homoclinic orbit v; € A; at level Ay
leaves and enters the origin. In particular, if V(z) ~ —alz|? as ¢ — 0 for
some a > 0 then in (V6) we ask that 6, € [0, F).

Proof. Proving that Ay < 2\; we get £ =1 and then the thesis, by Theorem
1.1. We will construct a function u € Ay in this way. Let vy € A; satisfying
(V6). Fixing § > 0 sufficiently small, let ss,ts € R such that [vi(ss)| =
|vi(ts)| = 6 and |v1(t)] < 6 for t < ss and t > t5. Choosing a suitable 7' > 0
let u € Ay be such that '

u(t) = v(t+T+1ts) fort<-—T
= vi(t =T +ss) fort>T.

Then @(u) = 21 — ¢ (v1) = ¢7+(v1) + ¢-1,7)(u), Where I = (—00,s5)
and I} = (ts,00). We have to fix § > 0 and T > 0 and to define u €
HY([~T,T);R?) in such a way that u(T) = v1(ss), u(=T) = vi(ts), |u(t)] < 6
for [t| < T and ¢p_r,7(u) < ¢r- (v1) +g9_,:.(v1). To this extent we introduce
the following values. For r,T,7 > 0 and z_,z4 € R? with |z_| = |z4| <r
let

Pr(z_,z4)={u € HY[-T,T;R?) : w(£T) =z4, ||lu|z= <1}

T
ma(a-, o) =int{ [ (P - V@) dt : ue Pr(amzs)

T .
mrriam,a) =int{ [ QIR+ ) dt 5 ue Pr(as,o0))
-T
Meo(T—,T4) = liqgninfmT(:E_, Ty)
Meo(v;z-,24) = li:,rwn'inf mr(y;z-,T+).

One can easily calculate that

VT (Pt les? 2a oy
mr(v;T—,24) = ~—— S
(5.2) (7 +)= ( tanh 2, /7T sth\ﬁT)
g 9 9
meo(737,24) = Lo + [z ).
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By (V5), for any € € (0,1) there is r, € (0, |£]) such that
—a(l+€)|z]> < V(z) < =b(1 —¢€)|z|? for |z| < re.
Let us set a. = 2a(1+4¢€) and b, = 2b(1—¢). Then, by (8.2) forany T € (0, 0)
and for any z_,z4 € R? with |z_| = |z4| < r. it holds that
(8.3)
mp(z-,z4) <meo(z—,24)

26%\/ac [be .
m ( o sinh2\/aT — cosh 2\/a.T + cos 9)

where |z_| = |z4| =6 and z_ - z4 = §* cos§. Observing that for ¢ € (0,1)
sup;sq (csinht — cosht) = —v/1 — ¢? is attained at some t > 0, we infer that
there is T, € (0,00) such that

/o [oc . b

— sinh 2/a.T. — cosh 2 /a.T. = sup ( — sinht — cosh t) =—4/1— =,

Ge >0 Qe F
Then (8.3) becomes:

262 be
_——\/E——(:v_-x_;_—ﬁz 1———)
sinh 2,/a.T, Qe
for any z_,z4 € R? with |z_| = |z4| =6 < 7.

By (V6) there are 3,f. € R such that |v;(¢)] < re for any ¢t < 5. and t > £,

and

(84) mTe($—3$+) < moo(:v_,:z:+) -

vi(s)  v1(¥) _ _
R . > L < ,E t > tf
(8.5) o] T )] > a1 —e forany s <5, and t>

— limi 2ls) - ()
where a; = hrnlnfi:;gg [vi(s)] oD

Moreover, for any é € (0,r] there are s5 € (—o0,3,] and t5 € [t., +o0) such
that |v1(ss)| = |vi(ts)] = 6.
" Then, using (8.4)—(8.5), we get:

(8.6)
mr. (v1(ts), v1(35)) < mw(vl(ta),vx(ss))—éﬂ?h%% (aamemsty 1= )

By (V6) we can fix € € (0,1) such that

. b
e+w1—-——<a1.
Q¢
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Then we fix § € (0,7¢], so that, by (8.6)

mr, (v1(ts), v1(ss)) < Mmoo(v1(ts), v1(ss)) — 2C

for some C = C(¢,6) > 0. Finally, taking u € Pr,(vi(ts),v1(ss)) such that
-7, 1.](%) < mr,(v1(ts),v1(ss)) + C we get that

P1-T., 1) (1) < Moo(v1(ts),v1(s5)) = C < o= (v1) + ¢ p2(v1),

as we wanted. J

Finally we give some examples of systems for which (V6) holds.

Theorem 8.4. Let V : R?\ {¢} — R satisfy (V1)-(V3), (V4),
(V8) VV(z) = —az +o(z) as z — 0, for some a >0,
and one of the following conditions: either
(V6) V(z) =Vo(lz|)+ Vs(z) where
Vo € CYHR4,R);
V, € CHHR?\ {¢},R) and lim;_¢ Vi(z) = —oc0
supp Vs C span+{:c1,:c2} for some z1,z9 € R* with =1 -2 > 0;

orT

(V6)" there are z1,z2 € R? with z; - 22 > 0 such that £ € span, {z1,22} and
V(p(z)) > V(z) for every z € R?\ {¢}.
Then (x) holds true and for any k € N there ezists a homoclinic solution
vk € A such that (vr) = M. (We denote span, {z1,z2} = {\1z1 + Aoz -
A1,X2 >0} and p the projection on span, {z1,z2}).

 Proof. Let vy € Ay be a homoclinic orbit such that ¢(v;) = A;. Then, by
(V5),|v1(t)] ~ Ce7ltl and lziggl A 1318] — 0 as t — +oo, being C > 0
a constant. This implies that there exists lim¢— 1o I:iggl = z4. Proving
that z+ € span, {z;,z2} we get the thesis. Arguing by contradiction, let us
suppose that z_ ¢ span, {z;,z2}. Then there is T € R such that vi(t) &
span {z1,z2} for any t < T. If (V6) holds, since V(z) = Vo(|z]) for

z € R?\span, {1, 22}, by the conservation of the angular momentum and of
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the energy we infer that v;(t) = |vi(t)|z— for any ¢ € R, contrary to the fact
that v; € A.

If (V6)” holds, then, setting v1(t) = p(v1(t)), we get that o1 € Ay, ¢(01) = A1
and range®; C span, {z1,z2}. Hence (V6) is satisfied by ;. U

Remark 8.5. All the theorems of this chapter can be stated also when
the singularity is a compact non empty set S C R?\ {0}. In this case the
hypotheses (V1)—-(V3) have to be modified in an obvious way, substituting
S to €. In particular the presence of a discrete rotational symmetry can be

treated and exploited, as stated in the following result.

Theorem 8.6. Let V : R?2\ {&,...,&m} — R satisfy (V1)-(V3), (V4),
(V8) (with {&1,...,€m} instead of £) and

(V7)) V(Rz) =V(z) for every z € R*\ S, where R is the rotation around the
origin of an angle 27 /m with m > 5.

Then for any k € N and for any 1 = 1,...,m there ezists a homoclinic

solution vy such that indgvp = k.

Proof. By Remark 3.5, there is v € A such that indgv = 1 and ¢(v) =
inf{p(u) : v € A, indgu = 1}. Let C, be the unbounded component of
R?\rangev. We claim that range Rv C C, where Ru(t) = R(v(t)). Otherwise
there are at least two intervals I = (s1,t1) and J = (s2,%2) with —o0 < s; <
t; < 400, such that the closure of {v(t) : t € J} U {Rv(t) : t € I} defines
a closed curve in R?\ C, and [,(3|Rv|> — V(Rv))dt > [,(3]9* — V(v))dt.
We consider the function w € A defined by
v(t —t; +t2—s2+s1) fort <ty —ta+ 82

w(t) = ¢ R7u(t —t1 +t2) fort;j —ta+sa <t <ty
v(t) for t > t;.

We note that w is obtained substituting R™!v|s to v|;, up to reparametriza-
tions of the time. By the definition of Rv, fR\J(%h}lz——V(v)) dt > fl(%lR'v[Q——
V(Rv))dt and it holds that w € A;(§) and ¢(w) < ¢(v), a contradiction.

Then ,
lim inf o(s) . —1—)—(—%)—
s=—o0 Jo(s)] [o(2)]

that, for m > 5, implies (V6). O

> cos(2n/m)
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Chapter 2

Multibump solutions for asymptotically periodic
Duffing-like systems

1. Introduction

This chapter is devoted to the study of a class of periodic and asymptot-
ically periodic Hamiltonian systems.
To present our results we start by describing them in a very particular

case which we think interesting in its own. We consider the following Duffing-

like equation:
(1.1) i =g - alt)(1 + ccos(w(®)t)) ¢°

where € € R, a(t) and w(t) are smooth real functions. The dynamics of the
equation (1.1) is well known in the periodic case, i.e., when a(t) = ag > 0
and w(t) = wg # 0, and can be exhaustively described using a perturbative
approach based on the Melnikov theory and on the Smale-Birkhoff homoclinic
theorem (see [GH], [Me], [W]).

The results contained in this chapter apply in the asymptotically periodic
case, when a(t) is bounded and a(t) — a4+ > 0, w(t) > wy # 0 as t — +co.
In particular we get existence of infinitely many homoclinic orbits of (1.1),

~ namely non zero classical solutions to (1.1) satisfying the further conditions
(1.2) . gq(t)—0 and ¢(t)—0 as t— Foo.

Indeed we prove the following result.

Theorem 1.1. Let a € C(R,R) be a bounded function such that . li+m a(t) =
- —+00
ar >0 and let w € CY(R,R) be such that . liin w(t) =wy # 0. Then there
— 00
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exists g > 0 such that for any € € (0,€) there 1s a homoclinic orbit vy for

the system at infinity:

(1.3) § = g — ar(1+ ccos(wst)) @

for which the following holds: for any r > 0 there are m(r),mi(r) € R such
that for every sequence (p;) C {27k /wy : k € Z} satisfying p1 > mi(r) and
pi+1 —p; =2 m(r) (j € N), and for every sequence o = (0j)jen € {0,1}N
there is a solution v, to (1.1) such that

lve —ojo+(- = pi)llcr; mvy <7 for any j €N

where I; = [pj“12+pj , pj+2pj+1] and pp = —o0o. In addition any v, also satisfies
V(1) = 0 and v,(¢t) — 0 as t — —oo and it is actually a homoclinic orbit if

o; =0 definitively.

The solutions given by Theorem 1.1 are known as multibump solutions
because they behave in this way: they remain in a small neighbourhood of the
origin for a suitable large time and then leave it a finite or infinite number of
times staying near translates of the basic homoclinic vy of (1.3).

The value m(r) represents the minimal distance at which two consecutive
bumps can be arranged. This value m(r), as well as m;(r), becomes larger
and larger as 7 — 0. According to this remark, instead of fixing r > 0, it is
possible to take a sequence (r;) C (0, 00) such that r; — 0. Thus the following

result concerning connecting orbits between 0 and the basic homoclinic vy of

(1.3) holds true.

Theorem 1.2. Under the same assumptions of Theorem 1.1, there ezists
€0 > 0 such that for any e € (0,€) there 1s a homoclinic orbit vy for the
system (1.3) and an uncountable set of multibump solutions to (1.1) whose
a-limit is 0 and whose w-limit set is {(v4+(2),0+(¢)) : t € R}U {0}. (We
recall that the w ~limit set of a solution v to (1.1) is defined by:

{(2,9) €R™ : 3(t;) CR st £ — +o0, (u(t3),5(t5) — (5,1) )

Remark 1.3. In the case ¢ = 0 and a(t) smooth, bounded and strictly

monotone, the equation (1.1) does not have non zero homoclinic orbits. In fact
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if g(t) satisfies (1.1) and (1.2) and H(q(t)) = 31d(t)|* — 2a(®)|* + Fa(®)|q(t)|*
denotes the energy of ¢(t), then

_ dH(Q(f)) lq|*
0= /R dt = / (o)L ai

and this implies ¢(¢) = 0. We also see that for € = 0 the stable and unstable
manifolds for (1.3) coincide and so their intersection is uncountable. As we
will see in the sequel, this is the reason for which the argument used to prove

Theorem 1.1 fails in this case.

The class of systems studied here is shaped on (1.1). In fact we deal with

second order Hamiltonian systems in R¥
(HS) §=-U'(t,9)

where U'(t,q) denotes the gradient with respect to ¢ of a smooth potential
U : R xRY — R having a non degenerate local maximum at the origin.

Precisely we assume:

(Ul) U € C*(R x RY,R) with U'(¢,-) locally Lipschitz continuous, uniformly
with respect to t € R; :

(U2) U(¢,0) =0 and U'(¢,q) = L(t)g+0o(|q]) as ¢ — 0 uniformly with respect
to t € R where L(t) is a symmetric matrix such that Lg|q|* < ¢-L(t)g <
Liq|? for any (t,q) € R x RY with 0 < Ly < L; < co.

Condition (U2) implies that in the phase space the origin is a hyperbolic
equilibrium for the system (HS). We look for homoclinic orbits to (HS) as

critical points of the Lagrangian functional
o) = [ Glif - Ut )
defined on X = H'(R,R¥) and of class C*, by (U1)-(U2) (see Lemmas 2.1

and 2.3).

Here, as pointed out with the model case, we consider asymptotically
periodic potentials. By this we mean that there is a function Uy(t,¢) =
—1q-Li(t)q+ Vi(t,q) satisfying (U1), (U2) and
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(U3) thereis T > 0 suchthat Uy(t,q) = U+ (t+T4, ¢) forany (¢,q) € RxRY;
(U4) (i) there is (t4,9+) € R x R such that Uy (t4,q4) > 0;
(i1) there are two constants f4 > 2 and a4 < %’t — 1 such that:
B+Vi(t,q) = Vi(t,q) ¢ < apq- Ly(t)g for all (t,9) € R x RY;
(Us) U'(t,q)—UL(t,q) — 0 as t — +oo uniformly on the compact sets of R¥ .
As we have seen in Remark 1.3, these assumptions are not sufficient in
order that (HS) admits homoclinic solutions. In that example the potential

U, is time independent and hence the corresponding functional

eau) = [ Gl - Uit w)as

and ||¢!, (u)|| are invariant under the action of the translations group R. In
particular, if u is a non zero critical point of ¢4 (which always exists, as
proved in Section 3) then also u(- —t) is a critical point of ¢y for any t € R.
" Therefore the set of critical points of ¢4 1s uncountable.

To avoid this situation, we make an assumption on the cardinality of the
critical set of ¢ .

As we will see in Section 3, the functional ¢ satisfies the geometrical
properties of the mountain pass lemma. Denoting by c; the mountain pass
level of oy and Ky ={u€ X : u#0, ¢/ (v) =0}, we assume that
(*) there exists ¢} > ci such that the set Ky N{u € X : py(u) <ch}is

countable.

On one hand, as seen above, condition (*) excludes the class of asymp-
totically autonomous systems.

On the other hand, (*) holds when the system at infinity exhibits count-
able intersection between the stable and unstable manifolds relative to the

. origin and then is a weaker condition than the transversality one, as noted
in [S2].

The condition (%) is a key to find a local mountain pass critical point
for ¢4 and to develop a minimax argument as in [S2]. The local character
of such a procedure allows us to show existence of critical points also for the
functional ¢.

We can now state a first general result.
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Theorem 1.4. Let U and Uy satisfy (U1)-(U5) and assume that (%) holds.
Then (HS) admits infinitely many homoclinic solutions.

Precisely there is vy € Ky with the following property: for any r > 0 there
are m(r), mi(r) € R such that for every k € N and (p1,...,pr) € Py = T.Z
with p1 > my(r) and pjp1 —p;j > m(r), for j =1,...,k — 1, there ezists a

homoclinic solution v of (HS) which verifies

lv—vs( = piller;mry ST for any j=1,....k

Pi—-1+p; Pjtpit1
)

where Ij:[ 5 5 ], Po = —o0 and Pk+1 = +00.

An immediate consequence of Theorem 1.4 is the existence of infinitely
many geometrically distinct homoclinic solutions for the periodic system (HS)+
(we say that two solutions v; and ve to (HS). are geometrically distinct if

v1 # v2(-+nT4) for every n € Z). Precisely we get the following alternative.
Corollary 1.5. Let Uy satisfy (U1)-(U4). Then (HS). admits infinitely

many homoclinic solutions. In particular either the set of homoclinics is un-
countable or there is vy € Ky with the following property: for any r > 0
there is m(r) > 0 such that for every k € N and (P1,---ypr) E Py =T, Z

with pj+1—p; > m(r), for 3 =1,...,k—1, there ezists a homoclinic solution
v of (HS)y which verifies

lv — vy (- —Piller;mvy S for any j=1,...k

where I; = [pj‘12+pj JRiERiL) p = oo and Pr+1 = +00.

Fixing k = 1, for any r > 0 Theorem 1.4 assures the existence of a
value m;(r) € N and of a sequence v; of homoclinic solutions of (HS) each of
~ them belongs to an r-neighborhood of vy(-—(m1+7)T4) in CYR,RY). In
general, unlike the periodic case, these solutions are geometrically distinct.

For an integer k > 1 Theorem 1.4 provides homoclinic orbits of (HS)
having k& bumps, whose positions are defined by the values py, ..., pr € Py.
More precisely, for any j = 1,...,k there is an interval I ; centered on p;
where the k-bump solution v of (HS) is not farther from v, (- — p;) than r
in the norm of C*(I;,R¥). The value §; = Pj+1 — p;j represents the distance
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between the corresponding bumps. Fixed r, we can find a solution of this
kind for any choice of k¥ € N and of the sequence pi,...,pr provided that
p1 is sufficiently large, depending on r, and that the distances §; are greater
than a certain value m(r) > 0.

As noticed in [S2], since the number m(r) does not depend on k, one
can consider the C_—closure of the set of the multibump homoclinic orbits,
which contains solutions with possibly infinitely many bumps. Thus, by Ascoli

Arzeld Theorem, the previous result can be generalized in the following way.

Theorem 1.6. Under the same assumptions of Theorem 1.4, it holds that for
any r > 0 there are m(r),m1(r) € R such that for every sequence (p;)jen C
P, = T,N satisfying p1 > mi(r) and pj41 —p; > m(r) (J € N), and for
every sequence o = (0j)jen € {0,1}N there is a solution v, to (HS) such that

lve — ojo4(- — pi)llcrz; gy ST for any j €N

where I; = [Pj‘12+pj,p’+§5+1], po = —co and vy € Ky is the same of The-
orem 1.4. In addition any v, also satisfies vy(t) — 0 and ¥,(t) — 0 as

t — —oo and it is actually a homoclinic orbit of o; = 0 definitively.

We can use the classical results on equation (1.3), and in particular the
Melnikov theorem, to deduce Theorem 1.1 from Theorem 1.6.The Melnikov
function of (1.3) is given by

M(s) = sin{w4s) /R 2+ cos(w4t)|go(t)]* dt = sin(wys) Cuy

where qo(t) = (2/a4)?(cosht)™! is a homoclinic orbit of the unperturbed
system § = ¢—a4q® and C., € (0,00) for any wy # 0 (see [GH], [Me], [W]).
" Since the zeros of M(s) are simple, by the Melnikov Theorem [Me], for € # 0
small enough, the stable and unstable manifolds of the perturbed system (1.3)

intersect transversally and so countably. Thus (%) is verified.

We notice that Theorem 1.6 can be seen as a version of the shadowing
lemma (see [L]). In addition the correspondence ¢ + v, permits to define an
approximate Bernoulli shift for the system (HS) (see [S2]). The presence of

this structure implies sensitive dependence on initial data.
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We point out that in the previous Theorems 1.4 and 1.6 no assumption is
made on the behaviour of U as t — —o0, but the regularity and hyperbolicity
hypotheses (U1l) and (U2).

If the system (HS) is doubly asymptotic as ¢ — oo to two, possibly
different, periodic systems

(HS). §=-Us(t,q)

then, by Theorem 1.6, we have two different sets of multibump solutions, that,
at *oo are near to solutions of (HS)+. Here and in the sequel, with (HS)_
we denote a system ruled by a potential U_(t,q) = —3q-L_(t)g+V_(t,9)
satisfying (U1)-(U4).

In fact, we prove that there are also multibump solutions of (HS) of mixed

type, as said in the following theorem.

Theorem 1.7. Let U, Uy and U_ satisfy (U1)-(U5) and assume that (*)
holds both for (HS)y and (HS)-. Then there are vy and v_ homoclinic
solutions respectively of (HS); and (HS)_ having the following property: for
any r > 0 there are m(r),mi(r) > 0 such that for every biinfinite sequence
(pj)jez with (pj)j>0 C Py = T.Z and (pj)jco C P- = T 7Z satisfying
p1 2 mi(r), p-1 < —my(r), pj+1 —p;j > m(r) (j € Z) and for every
sequence o = (0;)jez € {0,1}% there is a solution v, to (HS) such that

lve — ojvi(c = pilllcr; mvy <7 for any j >0

lve — ojv-(- “‘Pﬂ”Cl(I,-,RN) Sr for any j <0

. — [Pi-1tP; pitpi41
where [j = [R=7hi PiTRiti]

In eddition, if o; =0 for all j > jo (respectively j < Jo ) then the solution v,

- also satisfies v (t) = 0 and v,(t) — 0 as t — 4-co (respectively ¢t — —00 ).

Clearly, in the previous statement, when we say that U, Uy and U_
satisfy (U5) we mean that U'(t,q) — Ul (¢,¢) = 0 as t — +co and U'(t,q) —
UL(t,q) = 0 as t — —co uniformly on the compact sets of R¥. '

Finally, as for the model case discussed at the beginning, taking a se-

quence (r;) C (0,00) with r; — 0, one can also get existence of connecting
orbits between the primary homoclinics vy of (HS)+.
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Theorem 1.8. Under the same assumptions of Theorem 1.7, the system (HS)
admits an uncountable set of multibump solutions whose a-limit set 1s 0 or
{(v=(t),5_(t)) : t € R}U{0} and whose w-limit set is 0 or {(v4(t),94+(2)) :
te R}uU{0}.

Coming back to the model equation (1.1) with a(t) bounded and strictly
increasing we see that while for € = 0 the system has no homoclinic solutions,
there exists € > 0 such that () is satisfied for 0 < |e] < € and so, by
Theorem 1.4, the equation (1.1) has infinitely many homoclinic orbits. Ge-
ometrically this means that while the stable and unstable manifolds in the
extended phase space do not intersect when € = 0 (apart from in the origin),
as soon as € # 0 they intersect in an infinite set. This suggests that the stable

and unstable manifolds for (1.1) accumulate one on the other for ¢ — +oo.

2. Preliminary results

In this section we introduce the variational setting for the homoclinic
problem and we discuss some basic general facts which depend only on the
hyperbolicity assumption and therefore are true both for the periodic and
the asymptotically periodic case. Hence during this section we assume only
(U1)-(U2), without any hypothesis on the time dependence of the potential.

We denote by X the Sobolev space H*(R,R") endowed with the in-
ner product (u,v) = [p(& -9 + u - L(t)v)dt, whose corresponding norm
llul| = (u,u)? is equivalent to the standard H'-norm. We recall that X
is continuously imbedded in the space of continuous functions converging to 0
at infinity. Moreover any bounded sequence (u,) C X admits a subsequence
which converges weakly in X and strongly in L3 (R,RY) = Lf;, to some
ueX.

Then, for any measurableset A C R we put (u,v)4 = [,(4-0+u-L(t)v)dt
and |ju]|a = (u,u)Y? for every u,v € X.

Then we set

o(u) = '/I;(%M[? ~U(t,u))dt = %Hu”z - /RV(t,u) dt

for any u € X, where U(t,q) = —3¢- L(t)g + V(t,q) for (t,9) € R x R™.
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Lemma 2.1. ¢ € CY(X,R) and ¢'(u)h = (u,h) — JgV'(t,u) - hdt for any
u,h e X.

Proof. The functional u +— |[u]|? is of class C* on X and the Frechet
differential of ||lu||*> at u € X is the functional 2(u,-).

The functional u +— [, V(t,u)dt = ¢(u) is well defined on X . Indeed, by
(U2), thereis 6; > 0 such that |V (t,q)| < |¢|* and [V'(t,q)| < |q| for |q| < 6;.
Then, given any u € X there is T, > 0 such that |u(¢)] < 6; for |t] > T,.
Hence |V (t,u(t))] < Mylu(?)]?* for any t € R, where M, = max{1, %=}
and my = max{|V(t,¢)| : ¢t € R, |g| < ||lull=}. Hence 1(u) < My||ul)3. <
11\:/1: llull?. Similarly |V'(t,u)] < M. |u(t)| for any t € R, for a suitable constant
M, > 0. Then given u,h € X

_[RIV'(t,u) ~h|dt < Ly (/R lV'(t,U)Iz‘dt)% 12l

which implies that the linear operator h JgV'(t,u) - hdt is continuous.
Moreover, fixed s € [-1,1], for any t € R, by the mean value Theorem, there
is 6(t) € [0,1] such that

|2V (2, w(t) + sh(2)) - V¢, u(t) = V(¢ u(t)) - h(2)]
= V'(t,u(t) + sB)A(E)) - h(t) = V'(t, u(t)) - h(2)|
< Cu s8R [A(E)] < Cupls] [

where Cy  is a positive constant independent of ¢ € R. Since h € L?, we

can apply the Lebesgue dominated convergence theorem to conclude that
gi_r% L(P(u + sh) —b(u)) = /RV'(t,u) - hdt.
Hence the functional 1 is Gateaux—differentiable at u and
d_ib(u)h = /Rv'(t,u) hdt (heX).

'To conclude the proof of Lemma, it is enough to show that the mapping u
ds(u) is continuous. Fixed u € X let (u,) C X such that u, — u in X.
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Then the sequence (u,) is bounded in X and, by the continuous imbedding of
X into L, there exists R > 0 such that |un(t)—u(t)] < R for any t € R and
n € N. Since V' is locally Lipschitz continuous with respect to ¢ uniformly in
t € R, there is C,, > 0 such that |[V'(t,u.(t)) — V'(t,u(t))] < Cplun(t) —u(t)|
for any t € R and n € N and then

(g (un) — dgb(u))h] < /R Coltin — ul Bl dt < CpLy?||un — ull 4]
Thus ||dg9(un) — dgi(u)|] — 0. This completes the proof. 1

Remark 2.2. The functional ¢ sends bounded sets into bounded sets.
Indeed in the proof of Lemma 2.1 we have seen that ¢(u) < 2||ul®>+ M,|jul|%.
where M, depends only on ||u||L . Hence, by the continuous imbedding of X
into L? and L*> we get that if ||u]| <7 then |p(u)| < C, for some C, > 0.

Lemma 2.3. 4 function u : R — RY s a homoclinic solution to (HS) if and
only if u € X and ¢'(u) = 0. Moreover, in this case, there are tg,a > 0 such
that Ju(t)] < |u(to)|e® o=t for |t| > to.

Proof. Let u € C*(R,R") be a homoclinic solution to (HS). By (U2), since
u(t) — 0 as t — zoo, there is tg > 0 such that |V'(¢,u(t))] < Lolu(t)|
for |t| > to. Hence, setting r(t) = [|u(t)|?, by (HS), we get that 7(t) >
Lor(t) for |t| > to. Let us define h(t) = r(to)eYLo(to=Ith — r(¢) and f(t) =
#(t) — Lor(t). For |t| > to we have that —h + Loh = f(t) and then, by
the maximum principle, k(t) > 0 that is |u(t)] < |u(to)le® (=1 | with a =
3v/Lo. Moreover |i(t)] < (L1 + Lo)lu(t)| < Age® (o=t for |t| >ty and, by
a standard interpolation inequality, a similar estimate holds true for |u(t)].
Therefore, in particular, a homoclinic solution to (HS) belongs to H%(R,R")
- and, given any h € Cl(R,R¥), with an integration by parts, we get that
¢'(u)h = 0. By a density argument we conclude that ¢'(u) = 0.

Conversely, if u € X is such that ¢'(u) = 0 then u(¢) — 0 as t — Foo (any
element of X verifies this property), by standard arguments u is a classical
solution to (HS) and [, |i[*dt < [o(L1lul® + V'(t,u) - u)dt < oo, that is
u € H*(R,R"). Hence u € H(R,R"), that implies u(t) — 0 as ¢t — +o0.

Lemma 2.4. () = {lull? + of[[ul]?) and o'(x) = {u, ) + of|jul) as u — 0.
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Proof. Let C' > 0 be the imbedding constant of X in L*. By (U2), for
any € > 0 thereis ¢ > 0 such that if |¢| < §C then |V (t,q)| < eLo|q|? and
[V'(t,q)| < eLolq] for every t € R. Hence for any v € X with lul] < 6 it
holds that |u(t)] < 6C for every ¢ € R and consequently SV u)|dt <
€ Jg Lolul? dt < el|u|?, that is o(u) = Hlull® +o(]jul?) for ||lul]| — 0. In a sim-
ilar way, fixed h € X, |¢'(u)h—(u, k)| < [, |V'(t,u)-h|dt < € fz Lolul |h]dt <
elfull 1Bl that is /() — {u, )] — 0 as [u] - 0. =

Remark 2.5. We recall that given an interval I of R, the imbedding con-
stant C; of H'(I,R~) into L>°(I,R") depends on I like 1+ l—_lﬂ- Therefore,
repeating the proof of Lemma 2.4, we get the following property.

For every € > 0 there exists § > 0 such that for any given interval I C R, with
[7] > 1 and for any u € X with ||ul|; < § it holds that L V(tu)dt < ellu))?
and [; V'(¢,u) - hdt < e||u||f||h||1, for every h € X.

Lemma 2.6. (i) There 1s § > 0 such that if (un) C-X satisfies ©'(up) — 0
and ||ug||pe < 6 then |jug|| — 0. (i) There is p > 0 such that if (up) C X
satisfies ©'(un) — 0 and limsup [lun|| > 0 then limsup |ju.|| > 2p.

Proof. Part (z) plainly follows from the fact that, by (U2), there is § > 0
such that |V'(t,q) - q| < 3 Lo|g|? for |g| < & and for any ¢ € R. Therefore, if
u € X is such that [jul|ze < 6 then fo V'(t,u)-udt < 1Lo [ [ul?dt < 1lu))?
and consequently ¢'(u)u = |jul]? — RV'(#u) udt > 2llu||?, that implies
Jull < 20w

Part (i¢) follows from () and from the continuous imbedding of X into L.

O

- Remark 2.7. There is p > 0 such that ||u]| > 2p for any u € K, where
K={ueX:¢@u)=0, u#0}.

Now we give some properties of the Palais Smale (briefly PS) sequences
of ¢, namely sequences (un) C X such that (p(u,)) is bounded in R and
©'(un) — 0. In general (U1)-(U2) are not sufficient to guarantee the bound-
edness of these sequences. Anyhow we state the following results, concerning
the bounded PS sequences. |
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Lemma 2.8. Let (u,) C X be a PS sequence at the level b (namely p(un) — b
and ||¢'(un)|| — 0) weakly converging to some u € X. Then
6) ¥'(w)=0;
(i1) (un —u) 1s @ PS sequence at the level b— o(u);
(Zi1) un, — u strongly in H} _(R,RY);
(iv) either u, — u strongly in X, or there is a subsequence (un,) and a corre-
sponding sequence (tx) C R such that [tx]| — oo and limsup |un, (tx)] > 6
where 6 > 0 15 given by Lemma 2.6.

Proof. (1) Without loss of generality we can take a sequence (u,) C X which

converges weakly in X and strongly in LS to some u € X. Then, for any

h e CE(R,RY) we have:

99,(u)h’ = (u3 h) - fsupp hV,(t7 u) ' h dt
= lim(un, h) — lim LupphV'(t,yn) -hdt
= lim ¢'(uyn)h.

Therefore, since ¢'(un) — 0, ¢'(u) = 0 follows.
(:2) For any h € X and for any T > 0:

0" (un — w)h — @' (un)h] = | fo(V'(tyun — w) = V' (t,un) + V' (t,0)) - hd|
< lfltlgT(V'(t’“" —u) = V'(t,un) + V'(t,u)) - hdt]
+ flsrlV (G un = u) = V(¢ un)l Bl dt + [V (8 w)] 2] dt
< 6a(T) (fryerlhl? di)® + [0 Crlul bl dt

1

+ sV w)? )2 (fiy5 7l kI )

1
2

where:

60(T) = (JiyealV' (b — u) = VV(t,ua) + V' (1, 0)|2 dt) ¥
Cr=sup {|[V'(t,q) = V'(t,D|/la—al : t€R, |g|,]ad| <R, ¢#7}

and R > 0 is such that [un(t)] + |u(t)] < R for any t € R and » € N. We
- note that R < co because (uy) is bounded in X and soin L*°(R,R"). Then,
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by (Ul), Cr < oo too. Hence we get:
| (un—u)h — @' (un)h| < 8a(T) (Jlhl? dt)*
1 1 b a1 1
+ CR(f|t]>Tlu|2dt) ? (fm|h|2 dt) * 4+ (f|t|>T|Vl(t7u)|d dt) : (f]RIh!Z dt)

which implies:
L3¢ (n =)= ' ()l < 8a(T)+ Cr(fypo pluldt)E + ( [s plV/(t )P ).
Now, for any € > 0 we can choose T > 0 such that

CR(flthluPdt)% + (Jysr! V'@ W) dt)'lf <eLf.

By the Lebesgue dominated convergence Theorem, §,(T) — 0 as n — oo.
Therefore limsup ||¢'(un — u)|| < € and, for the arbitrariness of € > 0, we get
that lim ||¢'(u, — u)|| = 0.

Now we prove that if b = lim ¢(u,) then ¢(u,—u) — b—p(u). Taking R > 0
as before and setting

Cr=sup{|V'(t,)l/la] : t€R, |g <R, g#0},

by the mean value Theorem we get that for any ¢ € R:

[Vt un(®) = u(®)) = V(ua®)] = [V'(t, ua(t) - 6u(t)) - u(t)|
< Crlun(t) = u(®) Ju(t)] < Crlua(®)] [u(t)] + Crlu(t))?

where 6 = 6(t) € [0,1] and then

16(un — u) = §(un) + $(w)] < [ [|u)* = (un, u)]
+ fMSTIV(t,un —u) — V(t,u,) + V(¢,u)|dt
+ s rlV(E un —u) = V(t,un)| dt + SV (¢t u)l dt
< [l = (un, )
+ fltlngv(t’u" —u) — V(t,un) + V(¢,u)] dt
+ C;if]tpT[u"I |u| dt + C}ZfltpTlu]?dt + fltl>T|V(t’ u)| dt.
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Fixing € > 0 we can find T > 0 independent of n € N such that

Cj‘zflt|>Tlunl |u|dt + C;Zflﬂ>T|u|2dt + f1t|>T[V(t7u)| dt < e.

Since fItIST [V(t,un —u) = V(t,un)+ V(¢,u)|dt = 0 as n — oo and u, — u
weakly, we infer that limsup |o(u, — v) — ¢(un) + ¢(u)| < € which implies
that limo(u, —u) = b— p(u).

(7it) Fixed T > 0 let

1 for |t| < T
x(t)=< =t|+T+1 for T<t|<T+1
0 for |t| > T + 1.

For any u € X it holds that

JERal? + ff?) dt < (u, xu)ms + Hu(=T = D2 + 3u(T + 1))
o' (u)xu = (u, xu) — fo V'(t,u) - xudt
{u, xu) g1 < Cofu, xu)

where Cy = max{1,L;'}. Then

JE(al? + Jul?) dt <Colle!(w)] lxull + Co / VIt ) - xu dt
(2.1) R

1 . 1
+ 5 (=T = DI + 5lu(T + D"

Hence, applying (2.1) to up,—u, noting that the function u ~ yu is a bounded
- linear operator in X and using the fact that ||¢'(u, —u)|| — 0 and up, — u

uniformly on the compact sets we get that |un — ul|gr(j—7,77) = 0.

(2v) To prove the alternative, we point out that if ||u, — ul|p= < §, then,
since ||¢'(un — u)|| — 0, by Lemma 2.6, u, — u strongly in X. Otherwise
|un, —ul|zee > & for a subsequence (un,). Let tx € R be such that |un, (tr)—
u(tr)| = ||un, — ullz. It holds that |tg| — oo because of (:iz), and, since
lu(tx)] — 0 limsup |un, (tx)] > 6. 0
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Lemma 2.9. Let (u,) C X be such that ¢'(u,) — 0 and let p > 0 be given

according to Remark 2.7.

(2) If imsup |[un||p>7 < p for some T > 0, then there is u € K U{0} such
that u, — u.

(22) If diam{un} < p, then (u,) admits a subsequence strongly converging to
some u € K U {0}.

Proof. (i) Fix R > 0 such that |jull|y>r < 3p. Putting M = max{R,T},
by Lemma 2.8, we have that |lu, — ul|jj<pr — 0. Therefore [ju, —u||? =
o(1) + [l = ulfys g < 0(1) + 202+ p ltnll > a1 + linlly 1> From which we
get limsup |lu, —ul| < 2p. Since ¢'(u, —u) — 0 we infer by Lemma 2.6 (217)
that v, — u strongly in X .

Let 6 < p—diam {us} and T > 0 such that [lu;lljj>7 < 6. Then [lun||p>7 <
lun — willpg>r + 6 < diam {u,} + 6 = 5 < p. Hence limsup ||unjg>7 < p

and the conclusion follows from (7). L]

3. A mountain pass—type critical point for the periodic functional

Here we firstly state some properties satisfied by the functional
palu) = [ (Glaf = Ustt,u))dt

by the periodicity and superquadraticity assumptions (U3) and (U4). Then,
using the hypothesis (x), we get further compactness properties which, to-
gether with Lemma 2.9, give the existence of a local mountain pass-type crit-

ical point for ¢ .

Lemma 3.1. If (un) C X i4s a sequence such that lim¢! (un) = 0 and
- limsuppy(u,) < +oo, then (un) is bounded in X and liminf ¢, (u,) > 0.
In particular any PS sequence for ¢y 1s bounded in X .

Proof. Setting ||ul|Z = [p(|%f* +u- Li(t)u)dt, by (U4)-(it), we have that for
sy u € X (3=l = o ) fy Vi () dim ol (s 2 o VA (110
w < or(w)+ 2l )l fuls + 2% fyu- Ly (2 di and so

(3.1) L -~ 2l — Al @)l s < o).



72 Paolo Caldiroli

Now, given a sequence (u,) C X such that ¢!, (u,) — 0 and limsup ¢4 (u,) <
+00, since ||¢!, (us)|| and ¢4 (un) are bounded from above, from (3.1) we get
that |jun|| < C for all n € N, C being a positive constant. Consequently we
have that ¢4 (un) > —C/||¢'(un)|| and this implies that liminf¢yy(u,) > 0.
U

Remark 3.2. By Remark 2.7 and by (3.1) we get that there is ¢y > 0 such
that ¢4 (u) > ¢ for any v € Ky where KL = {u€ X : ¢/ (u) =0, u # 0}.

The following result presents a characterization of the PS sequences for

¢+, in the spirit of the concentration-compactness principle [L].

Lemma 3.3. Let (un) C X be a PS sequence for o4 at the level b. Then
there are vo € K41 U {0}, vi,...,vx € K4, a subsequence of (un), denoted

again (un), and corresponding sequences (pl),...,(p%) € Py such that, as
‘n—oo:

|[un—-(v0+'rp}‘vl +...+Tpﬁvk)l| — 0
P4(vo) + -+ + o4 (vk) = b
p{fl——p{;—)—l—oo (GJ=1,...,k=1)

where we denote T,u(t) = u(t —s).

Proof. Let (up) C X be such that ¢ (un) — b and ¢/, (un) — 0. By
Lemma 3.1, b > 0 and (u,) is bounded in X and so, up to a subsequence,
converges weakly to some vo € K U {0}. By (3.1), if b = 0 then u, — 0.
Let us suppose now b > 0. By (U3) there is a sequence (pl) C Py such
that |luallre = max,epo 7,]lun(t — pL)| and the sequence (ul), given by
Cul = TpilUn, is a PS sequence for ¢4 at level b and — up to a subsequence -
converges to some v; € K, weakly in E and uniformly on compact subsets of
R. Then we define u% = ul, — v;. By Lemma 2.8 (u2) is a PS sequence for
¢+ at level b = b — (v1). Thus, if b = 0 then, as proved before, u? — 0
and the thesis holds with £ = 1. If by > 0 then we are in the above case
b > 0 and we repeat the argument. By Remark 3.2, this process must end in

at most [b/co] steps. U
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The hypothesis (U4) gives information about the behaviour of the poten-
tial at infinity with respect to ¢ along the direction of ¢y in a neighborhood
of ;. In fact, from (U4), one can infer that

(32) V+(t,3q+) Z 58ﬂ+ V-S Z 1 5 Vt € [t+ —_ 6,t+ + 6]

where § = 2(Vi(t4,9+) — 57559+ - L+(t4+)g+) > 0 and e > 0 small enough.

Hence, choosing a function x € C(R,R*) with suppy = [t4 — €,24+ + €],

and setting uo(t) = x(t)g4+ we have that ¢4 (sug) = —c0 as s — co.
Together with Lemma 2.4, this says that the functional ¢, verifies the

geometrical hypotheses of the mountain pass theorem [AR].

Then, if we define

I“:{’YE C([O,l],X) : 7(0)207 §0+(7(1)) <O}

and

ct = inf Joax, ©+(7(s))

we infer that, by Lemma 2.4, c¢; > 0 and there is a PS sequence for ¢ at the
level c;. Hence, by Lemma 3.3, we get that K, # @, and thus, by Lemma

2.3, there is a non zero homoclinic solution to (HS). .

As said in the Introduction, we need a non zero critical point of (4 that
is well characterized from a variational viewpoint.

To this extent we recall here the definition of mountain pass—type critical
point given firstly by Hofer in [H], and then stated by Pucci and Serrin [PS]

in a slightly different formulation, more useful in our context.

- Definition 3.4. Let f be a functional of class C' on a Banach space X and
let {2 be a non empty open subset of X. Two points ug,u; €  are said
connectible in A C  if there is a path v € C([0,1], X) joining ue and u;j,
with raﬁge v CA.

A critical point % € X for f is called of local mountain pass—type for f on
if u € © and for any neighborhood A of @ subset of Q the set {u : f(u) <
f(@)} NN contains two points not connectible in QN {u : f(u) < f(@)}.
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To prove the existence of a local mountain pass—type critical point for
w4 it is useful to introduce the following sets.
Given b > 0 and letting

Sps(p+) ={(un) C X : lim¢(us) =0, limsupp(un) < b}
we define
&% = {1 €R : I(un) € S8 (p+) such that oy (uz) — 1}
the set of the asymptotic critical values lower than b and
DY ={r eR: I(un), (@) € SE(p+) such that |ju, — n|| — r}

the set of the asymptotic distances between two PS sequences for ¢4 under b.

Lemma 3.5. For b >0, @g_ and DE’*_ are closed subsets of R.

Proof. Argﬁing by contradiction, we assume that there is r € R\ Di and a
sequence 1, € (r — %,r + %) N Df’,_. Then there exist u,,4, € X such that
ey (un)ll < &, lloly @l < 2, oo(un), o4(@n) < b+ and ||fun — @al -
rn] < L. Then (un),(tin) € S (¢4+) and |jup —@n| = r,ie. r € D}, a

contradiction. In a similar and simpler way one proves that @l’l_ is closed. [

We introduce the following notation. Given b >0 we set K = {u € X :
ol (u) =0, pi(u) <b}. For v € X and r > 0 we denote B.(v) ={ue€ X :
lu—w|| <r}. For r > >0 and S C X we put B,(S)={Br(u) : ue S}
and Ay (S) = J{Br(u)\ Br(u) : ue S}.

Next result is a straight consequence of Lemma 3.5.

~ Lemma 3.6. (i) For any v € R*\ D%, there ezists dr >0 such that

inf {0, ()] : 4 € Ar—sa, rrst, ()N {ips <8} > 0.
(¢¢) For any interval [a1,a2) C Ry \ @4 it holds that
inf (], ()]l - a1 < g (u) Saz} >0 .

By Lemma 3.3, the sets @3_ and DE’*_ can be characterized by means of
the set K.
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Lemma 3.7. & = {Z?:ﬁﬁ—{—(vj) :keN, v; e K;}N[0,0].

DY = {(Thaalles = I + k€ N,wp,5; € Ky U {0}, Diipe(vy) <
b) Zj=190+(5j) < b}

Proof. If r € DY then there are two sequences (uy), (i) € S’ (¢+) such that
|tin—n|| — r. By Lemma 3.3 we can assume that u, = vo+2f vj(-—t}) and
Up = ZZif vi(-— 1) 4+ vpyry1 where b,k >0, |t1| — oo and |t} — )| — oo
forn -0 ifl<i<j<kork+1<i<j<k+h. We point out that for
any label j € {1,...,k} there is at most one label I = {(j) € {k+1,...,k+h}
such that sup, |[t], — .| < co. If this is the case, we pass to a subsequence
(that we write with the same labels) so that 7 — 9 = const = ¢ and we set
v; = v; and v} = vy;). Otherwise we put I(j) = —1, v} = v;, v} =0 and
tJ = 0. Now it is clear that for all labels 7 € {k+1,...,k+h}\{l(1),...,I(k)}
it holds that [t} —#J| — oo if i € {1,...,k+ A} \ {j}. For these j’s we set
v} = 0 and and v? = v;. For the remaining labels j € {k+1,...,k+ R} N
{1(1),...,1(k)} we define v = v} = 0. Moreover we call v5 = vo and v§ =
Vh+k+1- Therefore Z 0 a,,_;_(vl) 20 wi(vj) = limpy(un) € [0,8] and
Zfi’é‘ o+ (v) = Zf:f_tll w+(v;) =limeyy(a,) € [0,8]. In addition up, — 4, =
3 —v? +2k+h[ 1-(-—t{;——tj)—vj2-(-—t3;)] . Using the fact that, given u,v € X,
if (tn) C R is such that |t,]| — oo then [|u(- —t,) —v||* = ||u|]* + ||v|?, w
deduce that r? = lim [|un — Za||2 = 520 [Jo} — v2||2.
The inverse inclusion is easier to prove. In fact if r = (Ef lv; — 9;]]2)*/?
we define u, = ZI; vj(+ — jn) and @, = Zf vj(- — gn). We observe that
(un), (tin) € 8L (¢+). Moreover, by the previous remark, ||un — @n) — r. OJ

Now we remark that under the assumption (%), by Lemma 3.7, both
the sets D} = DSt + and @1 = <I>+ are countable. This fact, together with
Lemma 3.5 plainly implies the following.

Corollary 3.8. (¢) [0,ci]\ @3 is open and dense in [0,c%].
(22) There is a sequence (r,) C RT\ D% such that r, — 0.

Therefore, by Lemma 3.6 and Corollary 3.8, near any level set {p4 = [}
at a critical value I € (0,c%) there is a sequence of slices {I} < ¢4 <2} with

IZ — 1} smaller and smaller on which there are neither critical points or Palais
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*

Smale sequences for ¢, . Analogously, around any critical point u € K:_'*
there is a sequence of annuli of radii smaller and smaller (independently of )
on which, as above, there are neither critical points or Palais Smale sequences.

As first step to get a critical point of local mountain pass type for ¢4,
we will construct a flow, defined as solution of a Cauchy problem ruled by a

suitable vector field.

Lemma 3.9. Under the assumption (x), if F : X - X isa loccilly Lipschitz
continuous function such that ! (u)F(u) < 0 for all u € X, ||F(u)] <
m for all w € X\ (K4 U{0}) and F(v) =0 for every v € K%, with
b < c*, then the Cauchy problem

{ 1(s,u) = F(n(s,u))

n(0,u) =u

admits a unique solution n(-,u) for any v € X, depending continuously on
u and defined on RY for all u € {4+ < b}. Moreover the function s >

w+(n(s,u)) 1s nonincreasing.

Proof. The existence, uniqueness and continuity in u of the solution n(-,u)
of the Cauchy problem is a standard result obtained using the local Lipschitz
continuity of F'. The function s — ¢4(n(s,u)) is non increasing because
f;cp.{.(n(s,u)) = ¢! (n(s,u))F(n(s,u)) < 0. Now, we have to show that for
u € {o4 < b} the solution n(-,u) is globally defined. We argue by contra-
diction, assuming that for some u € {¢4+ < b} the maximal righf domain of
n(-,u) is [0,5), with 5 < co. Then there is an increasing sequence (s,) C [0, 5)
such that s, — 5 and ||F(n(sn,u))|| — co. We set up, = n(sp,u) and we
observe that, by the properties of F', ¢/, (u) — 0 and, since 0 < s < Sp41,
o (tng1) < op(un) < ¢4 (u). Therefore (un) € S (¢4). But (un) can-
not admit any Cauchy subsequence because, otherwise it should have a limit
point v € {u € X : py(u) < b, ¢\ (u) = 0}, where, by hypothesis,
F(v) = 0, contradicting the fact that ||F(un)]] — oo. Then there are
6 > 0 and two sequences (i),(jn) C N such that i, < j, < ¢,4; and
|lui, —uj,|| = 6 for all n € N. Hence, by the assumption (*), there is an
interval [r;,m2] € RT\ Dg_ with 0 < r; < 72 < § and, consequently, there
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are two sequences (o;,),(0j,) C [0,3) with s;, < oi, < 0j, <sj, such that
I7(oin,u) = will = 11, In(0).,u) — wi |l = r2 and n(s,u) € Ar,r,(ui,)
for any s € (0i,,0j,). Then, for any n € N, it holds that ry — r; <
Joor I (n(s, w)ll ds = (05, — 93, )| F(n(3n,w))|| for a suitable 5, € [03,,,].

O'in

Now we call @, = n(3,,u) and we notice that ||F(@,)|| > ;}Lz-:_—'ﬁ— Since
si, — § and sj, — 5 we obtain that ||F(@,)|| — co and so (@,) € Spg and
r1 < ||@n — un|| < ro, that implies [ry,m2] N D® # @, a contradiction. U

Let us fix b € [¢,c*). For any r € R* \ D% let d. € (0,r) be given by
Lemma 3.6. Let

pir = i ([l ()] 2 v € Ar—aa, rraa, (K2) N {ips < €33} >0

and h, = idr,ur. Moreover we define h = min {c* —b,h,}.

Lemma 3.10. For any h € (0, iz) there ezists a continuous function 7 :
{p+ <b+h} = {o4 < b+ h} such that:

(m) @+(n(w)) < @4(u) for all u € {p4 <b+h};

(m2) e+(n(w)) <b—rh if n(u) € B-(K4 N{b—h <oy <b+h});

(13) p+(n(w)) <b—hr if n(u) € Ar—d, rta, (K4 N{b—h < oy <b+h}).

Proof. Let us set By = B(K; N{b—h < oy < b+ h}) and A ., =
Ar (K N{b—h < oy < b+ h})N{py < ct}. By definition of p,,

lo! (w)|| > pr for every u € A,_34, r43a, .- Then we can build a vector field
F on X with the properties of Lemma 3.9 and such that

(3.3) ¢4 (u)F(u) < ~1 for u € ({b=h < oy < b+h}\Brozg, )UAr—24, rt2d, -

~ By Lemma 3.9, there is a continuous function 7 : R¥ x {o. < b+ h} —
{¢+ < b+ h} solving the Cauchy problem corresponding to F. By abuse of
notation, we define n(u) = n(3h,,u) for all v € {4y < b+ h}. Again by
Lemma 3.9, ¢4(n(u)) < ¢4(u) for any u € {p4 < b+ h}.
To prove that 7 verifies the property (72 ), we argue by contradiction, assum-
-ing that there is some u € {p+ < b+ h} such that n(u) € {4+ > b— h}\B,.

We distinguish two alternative cases:
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(a) n(s,u) & Br_2q, for all s € [0,3R] ;
(b) there is 5 € [0, 3h,] such that n(5,u) € Br_24, .

If (a) holds, then, by (3.3), ¢4 (1(x) —¢+(u) = [i"" ¢!, (n)F(n) < —3h, and
so @4+(u) > oi(n(u)) + 3h, > b—h+ 3h > b+ h whereas ¢4 (u) < b+ h.
If (b) occurs, for n(u) ¢ B,, there exist 0 < s; < sz < 3h, such that
n(sl,u) € 0Br—_24,, n(s2,u) € 0B, and n(s,u) € Ay_2q,  for all s € (s1,52).
Hence, we have that

S2

24, < |ln(s2,) —n(s1, )] < / |F(n)ll ds < / TR TEERR CEE

that is so — s3 > 4h,, in contrast with the fact that [s1,s2] C [0, 3h,].

Let us prove (n3). By contradiction, we suppose that (ns) fails, i.e., there
exists u € {p4 < b+ h} such that n(u) € Ar—a, r+a, N {p+ > b—h,}. Then
we distinguish the two following cases:

(a’) n(s,u) € Ar_24, r424, for all s € [0,3h,];

(b’) there is some 3 € [0, 3h,] for which n(5,u) & Ar_24, ri24, -

If (a’) occurs, since n(s,u) € {b—h < ¢4 < b+ h} for any s € [0,3h,],
thanks to (3.3), we infer that ¢4 (n(u)) = cp+(u)-|—f03h' ol (MF(n) < pi(u)—
3hr and then ¢i(u) > wi(n(u)) + 3hr 2 b — hy + 3h, > b+ h, whereas
w4(u) < b+ h. If (b’) holds, then there are 0 < s; < sy < 3h, such that
In(s2,u) —n(s1,u)|| = dr and n(s,u) € Ar—24, r424, for all s € [s1,s2]. Since

S2

2 2
”77(52:'“) - 77(517u)| < / T ds < —-(32 - 51>7
R A R
we get s3—s1 > 2hy. Then, by (3.3), ¢+ (n(v)) < v4+(n(s2,u)) = v4(n(s1,u))
[ (MFM) S @r(u) — (s2 — 1) and so 4 (u) 2 b— hy 42k, > b+ h,
in contrast with the fact that ¢ (u) < b+ h. O

Corollary 3.11. For any h € (O,iz) there ezists a path v € T' and a finite
set of critical points vy,...,vx € Ky N{c—h < o4 < c+ h}, depending on
h and ~, such that:

(11) max, ey <c+h;

(12) i p4(2()) 2 e = h, then 7(s) € Uy Brlvy) ;
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() if v(s) € Uy Aredy,rta, (v5) then o4 (4(5)) < e — by

Proof. Taken v € T' such that max,py < ¢y + h we define ¥ = npo~,
n being given by Lemma 3.10 with b = ¢. Clearly 4 € I' and ¥ satisfies
(71 ), because of (n1). Moreover, if p4(5(s)) > ¢y — h, then, by (n2), 3(s) €
B (KiN{c+—h <@y <cy+h}). But thefamily { B.(v) : ve KinN{c4—h <
¢4+ < cy + h}} is an open cover of the compact set rangey N {¢4+ > ¢ — h}.
Hence there are vi,...,vx € Ky N{ey — h < o4 < ¢y + h} such that
rangey N {¢o+ < ¢y — h} C U?:l B;(v;) and so (72) follows. Finally, if
(s) € Uj=y Ar—d,,r+a,(v5) then, by (ns), ¢4+(3(5)) < ¢ = by O

We fix 7 € (0,p) \ D4 and h € (0,1 min{hsc} —cy}). By Corollary
3.11, there is a path 7 € T' and some critical points vy,...,vx € KyN{c—h <
¢+ < c+ h} satisfying (71 )~(z ) with k instead of h. Then, by definition of
¢y, there must be o € {v1,...,vx} and [sg,s1] C [0, 1] such that ¥(s) € Bz(?v)
for s € (s1,52) and F(so) and (s;) lie on 0Bx(?) and are not connectible
in {¢4+ < c4}. Moreover, by (7v3), ¥(s0), 7(s1) € {¥+ < cy — hs}. Hence
we put ug = ¥(so), us = J(s1) and we consider the class of paths I' = {y €
C([0,1], X) : ¥(0) = uo, (1) = w1, rangey C Bx(3) U {p+ < ct — 5hs}.
Since T' # @ we can define the corresponding minimax value ¢ = infg SUp., ¢+

that satisfies: ¢4 <é<cy +h < c.

Lemma 3.12. For any r € (0, %d;)\Di and for any h € (0,c+h —€) there
ezist vrp € Br(0) N Ky N{c—h <oy <4 h}, u)y,uy, € Bi(0) and a
path vrn € C([0,1], X) joining u), with uy, such that:
(2) ug,h,u},’h € OBrya, (vrn) N{py ST—hr};
(46) ul, and ul, are not connectible in Bx(7) N {p4 < &};
- (444) rangev,h C Brga, (vrn) N {py <+ A}
(iv) range¥rh N Ar—d,,rid,(vrn) C {p4 < €= h,}.

Proof. We can take 6 € (0,d7) such that Bs(ug)UBs(uy) C {99.;. <ecy — $hs}
and we consider a cut-off function x € C}(X,R) such that 0 < x < 1,
x(u) = 0 if u € Bsja(uo) UBsyo(u1) and x(u) =1 if u & Bs(ug) U Bs(u1).
Now, given r € (0, $dz)\ D} and h € (0,c+h—&) we can build a vector field
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Fyn on X such that ¢/, (u)Fra(u) <0 forall u € X, ||[Fra(u)]] < Wf(‘i)“u‘
for all u € X \ (K4 U{0}), Fyn(v) =0 for any v € K{** and

@ (u)Frp(u) < —1foru€ ({e—h <oy <2+ h}\Brzg,)

(3.4)
UAr—2d,,r+24.)U ({4 < €+ R} N Ar2d,,7424,.(0))

where B, = B, (K;N{c—h <y <¢+h}) and A, = Ar, n(KenN{c—-h <
or <E+h})N{py <E+A}. |
Then we consider the function G, » = x Fr» and we observe that G, is again
a vector field on X satisfying the properties of Lemma 3.9. Therefore there is
a continuous function 7,5 : R x {p4 <€+ h} — {p4+ < &+ h} solving the
Cauchy problem corresponding to Gy . Thus, we set § = max {3h, 3hz} and
Mrn(2) = 7r,1(5,u). Since B < k < 1hz, we have that (Bs(uo) U Bs(u1)) N
{p+ > c—h} = @ and then G, r(u) = Frr(u) for any u € {c—h < py <
¢ — h}. Moreover, since ug,u; € 0B#(7) and § < d7, we have that Bs(uo) U
Bs(u1) C Ai_a, 7+4,(0). In addition, since K} N Ar_34, 7434,(0) = @ and
r + 2d, < dr, it follows that Bryoa, (K}) N Ar_24, 7424.(0) = @. Then
(Bs(uo) U Bs(u1)) N Ar—z4, r24,(KS ) = @ and so G p(u) = Fyp(u) for any
u € Ar—24, r4+24, - Then we are in the same situation of the proof of Lemma
3.10, where G, satisfies the condition (3.3), with ¢ instead of b. Hence
we deduce that 7, is a continuous function on {p4 < ¢+ h} verifying
the properties (71 )-(n3), always with b = ¢. Now we take a path v € T
such that max,py < ¢+ h and we put .5 = nrn 0. We claim that
Yrn € T and ~,) satisfies the properties (71 )—(7s) of Corollary 3.11, but
with ¢ instead of cy. Then, assuming the claim, by definition of ¢, there
is at least one critical point v, € Ky N{c—h < ¢4 < ¢+ h} and an
interval [fg,6;] C [0,1] such that v, 4(68) € Brya,(vrr) for 6 € (61,62) and
. Y1 (00), 7rn(61) € OBryq,(vrn) are not connectible in Bx(7) N {p4+ < }.
Moreover, by (73 ), rangeyrh N Ar—d, r+d.(vrn) C {4+ <€—h,}.
We conclude the proof showing the previous claims. First, we prove that .5 €
T. Clearly, v.» € C([0,1],X), rangevrr C {¢+ < €+ h} and v, r(0) =
nrh(uo) = ug because Grp(ug) = 0. For the same reason v,r(1) = u3. Now
we show that rangev,n C B#(9) U {p4+ < cy — 3hz}. Fixed 6 € [0,1] we
call u = 4(6) and @ = ¥r4(8). I @i(v) < cqy — hr then, by (71), also
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©4+(@) < ¢y — 3hs. Let us suppose that u € Bx(%) N {¢4 > ¢y — 2h+} and
i ¢ Bx(v). We have to deduce that ¢4 (i) < cq — Fhs. Infact, if nrn(s,u) €
Bs(uo) U Bs(uy) for some s € [0, 3], then ¢4(@) < o4(nra(s,v)) < ey — Lhs,
because Bs(ug) U Bs(u1) C {p+ < ¢y — -ll;h,—-}. Alternatively 7, 1(s,u) ¢
Bs(uo) U Bs(uy) for any s € [0,3]. We distinguish two cases:

(a) nrn(s,u) € Ar_24, 74+24,(0) for any s € [0, 3];

(b) there is some s € [0, 3] for which 0, x(s,u) & Ar_24, 7+24.(D).

In the case (a), with calculations similar to those of case (a’) in the proof of
Lemma 3.10, we get that ¢4 (@) < p4(u) =35 < €4 h — 3hs < cy — Zhs.
Instead, the case (b) is similar to the part (b’) in the proof of Lemma 3.10.
Indeed we see that the trajectory n,n(:,u) crosses an annulus of thickness
d7. Then, there is [s1, s2] C [0, 3] such that dr = |[p,a(s2,u) — 7rn(s1,u)|| <
fsslz IGrill < f: W%:-m < ﬁ(sz —s1) and so sp — §1 > -;—,u,—rd,—. = 2h;.
On the other hand ¢1(%) < 4+ (1rh(s2,u)) = P4+ (Mra(s1,u)) + [7 @ Grp <
@+(u) — (s2 — s1), because of (3.4). Then ¢4(t) < c4 +h—2hz < cy — Lhs.
Finally the properties (71 )~(73 ) can be proved as in Corollary 3.11. O

In the following lemma we construct a convergent sequence of critical
points v, such that ¢4 (v,) = ¢. This gives the topological structure of a

local mountain pass.

Lemma 3.13. The functional ¢4 admits a critical point of mountain pass
type in By(v). In particular given a sequence (rn) C (0,7) \ Di such that
rn — 0, there is a convergent sequence (vn,) C K4, such that for any n € N
o+(va) = €, Br,(vn) C B#(0), and for any h > 0 there is a path v €
C([0,1],X), depending on n and h, satisfying the following properties:

(1) 7(0),7(1) € 8Br,(vn) N{p4 < &~ Fhr};

(22) 4(0) and (1) are not connectible in Bx(v) N {py < &};
(i¢i) rangey C By, (va)N{py <+ h};

(iv) ranger N A, g, . (00) C {p4 S 0= bhi, )

(v) suppv(6) C [~Rn,R,] for any 6 € [0,1], being R, a positive constant

independent of 6.

Proof. Fixed r € (0, 3d7) \ D%, we take a sequence (h,) C (0,c+ h — ) such
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that h, — 0. Let vrn, € Ky N{C+hn < oy < E4hn}, udy ,ur, €
OBrya, (vrn,) N {p+ < €— h,} and yr4, € C([0,1],X) be given by Lemma
3.12. We notice that (vra,)n C B(v) is a PS sequence for ¢4 at level ¢
and diam {v,n,} < 2F < p, so that, by Lemma 2.9, up to a subsequence,
Vrh, — Ur € Ky N B:(0) and ¢4(0) = ¢. Taken h > 0, we choose n large
enough so that Ar—g-d,,r+§d,(vr,hn) D A,._%d”,._,_%dr(v,.) and h, < h. Now
for R > 0 we define a function x, € C(R,R) by setting

1 for | < R—1
xap)={ R—]t| for R—1<|t|<R
0 for |t| > R.

Then we put ¥y h, = Xz7rh, and we observe that for R > 0 sufficiently large,
Yr,h, is a path in X such that

Frhn (0)s ¥rha (1) € Ary2a rpsa, (Vrh,) N {ps S €= Fhr, b,

rangeyrh, C Br(0)N{o+ <€+ hy}

range¥r,h, N Ar_24, r424,(Vr,hn) C {4 < €= Fhe}.
We also notice that the two points ¥4, (0), ¥4, (1) are not connectible in
B:(9)N{¢ < ¢}, because otherwise, since max{y4(u) : v € [Frn, (1), Yrr, (1))}
< ¢ (1=0,1), we contradict the property () of Lemma 3.12. Finally we re-
mark that there is a component of range¥,p, N E’r(vr) whose extreme points
are not connectible in Bz(0) N {y4+ < ¢}. If we reparametrize this part of
Fr.h,, We obtain a path satisfying the properties (¢)-(v). To conclude we
have to show that for a sequence (r,) convergent to 0, vr, — voo. This fol-
lows immediately from the fact that v, € Bz(v) for any r and from Lemma

2.9. O

Remark 3.14. Since D} and DI are countable closed subsets of R*, also
- D% N D% is so. Therefore Lemma 3.13 holds true at the same time both for
4 and for ¢_, provided that we take a sequence (r,) C (0,7) \ (D3 N D).

4. Construction of a pseudogradient vector field

From now on, we study the system (HS) governed by a potential U
asymptotic to periodic potentials Uy, as ¢t — +o00, according to the assump-

tions (U1)-(U5) given in the introduction. Moreover, as in the statement of
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Theorem 1.7, we assume that the condition (%) holds true both for ¢, and
for p_.

We start by introducing some notation. Given h,k € N and M,py > 0
we set

- PM(M,po) ={(p-n,.-.,p-1) €P* 1p_1 <—M —po,
Piv1 —pj 2 M (R <5 <-2)}
PH(M,po) = {(p1,...,p) € P} :py>M+po,
Pit1—pi2M(1<j<k-1)}
P™H(M,po) = (P*(M, po) x P}(M,py)) U P*(M, po) U P} (M, po)

To any finite sequence (p_p,...,p—1,p1,...,Pr) € PM¥(M,py) we associate
a family of intervals {I_4,...,I_1,I;,...,It} defined by

I = [5(p; +pj-1), 5(pj + pjr1)] for —h<j<k, j#0,-1
Iy =[3(p-1+p-2), 2(p-1 — po)]
Iy = [3(p—1 — Po), 3(Po + p1)]

where p_p_; = —c0 and pg41 = +co. We define an other family of intervals
given by

Mj =[pj+m(m+1),pj41 —m(m+1)] (1<j<E),
Mj =[pj—1 +m(m+1),p; —m(m+1)] (~h<j<-1),
My =[p_1 +m(m +1),p1 — m(m + 1))
J=M_,U---UM;

= for some m > 0 such that M > 2m? + 3m.

Moreover we introduce a corresponding family of functionals ¢; : X — R

(—h <j <k, j#0) defined by

o) = [ Gl -U-(w)d (~h<s<-)

030 = [ GlaP - Vs de (155 <),
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We notice that ¢; € C'(X,R) and for any u,h € X ¢j(u)h = fIJ_(tl ‘h4u-
L4i(t)h — Vi(t,u) - h)dt according to the sign of j.
Given (p_p,...,p—1) € P*(M,py), r > 0 and v € X we set

Br(vip—hy.-spm1) ={u€X : lu—mpvl; <r (-R<j< -1}
Similarly, for (p1,...,pk) € Pf(M, po) we put
B (v;p1,..,pk)={uveX : lu—mpvl; <r(1<7<k)}

More generally, given p = (p—h,-.-,P—1,P1,---,Pk) € PP¥(M,po), r > 0 and
v7,vt € X we set

Br(v™,v%;p) = Br(v73p—hs--»0-1) N B N Br(v™5p1, .-, Pk)
where BY = {u € X : |lu|l, <r}. Finally we set
Ye={uveX :|lulf; <e (-h<j<k)}.

Let po > 0 such that for any interval I C R with |I| > 1 and for any
u € X with |Jul|r < po it holds that |V'(¢,u(t))|, |VL(t,u(?))] < 3Lolu(t)| for
every t € R.

Now we state the main result of this section.

Lemma 4.1. Let (r,) C RY, (vi) C K4, vy € Ky be given by Lemma 3.18
for the functionals ¢x. Then for any rn € (0,%po) there is v = v(ry) >0
such that for any a_,ay,b_,by € R and § >0 with

[a— —8,a_ +26] C (0,e-)\ &% [b- — 6,b_ +26] C (c—,c*)\ @~

c
4D la4 = §,a +28] C(0,4)\ @ [by — 6,04 +26] C (C4,¢3)\ 2%

and for any ry,7m9,73 with T, —d,, <71y <719 <713 < 7T, there ezist pg > 1
and €; > 0 for which the following holds:

for any € € (0,€1) there is m > 2 such that for every h,k € N and p €
PME(2m? 4 3m,pg) there ezists a locally Lipschitz continuous vector field V :
X — X satisfying:

V1) @' WV(@)>0 YueX, V) <1 YueX,
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V() =0 Vue X\ By,(v;,v;p);
(V2) #j(u)V(u) 2 v Vu € N{p; < be} N Bry(vy,vi;p) such that ry <
[l — 7o, 03]l < 725
(Vs) @i(u)V(u) >0 Vue{ar <pj<ax+6}U{br <op; <bx+ 6}
(Va) (u,V(u))a; 20 VYue X \Y, Vj=—h,... k.
Moreover, if B (v;,v};p)NK =@ then there is v' > 0 such that
(Vs) ¢'(u)V(u) > for any u € B, (v, ,vi;p).

Proof. We set v = v, r = r,. According to Lemma 3.6, there are d, €
(0,%r), #r >0 and X > 0 such that

(42) ()l > g for u € Arsa, rtsa, (vF) N {2 < ci}

(4.3) lel(u)ll 2 X for u € {as <oz <@L IU{be < @u < B}

where a4+ = ax — 6, @ = ax + 26, by =by —6, Zli =0by +26. Let N, €N
be such that, fixed h,k € N, whenever p € PM*(M, py) with M = 2m? +3m,
m > N, and pg > 1, then Yu € B (v™,v";p) and Vi € {—h,...,k} there
exists j € {1,...,M} such that

(4.4)

2
lullm<iimpil<(tnym < T

Let ju,; the smallest index in {1,...,m} which verifies (4.4).
For any € € (0,r) there exists N, € N, N, > N, such that

— r2
(4.5) max{||v “?t|>N6 ) |lvq}‘“]2t[>NE ’ éﬁj} <15
So if m > N, and p € P**(M,py), then Yu € B.(v™,vt;p) and Vi €
{1,...,k} we get that

(4.6) ”u”?u,imslt—_l’ils(ju,i"‘l)m < 1_66 :

Now, for any u € B.(v™,vT;p) we define the following subsets of R:
Auwi=1[pi+ (ui +Dm, piv1 — (Juit1 + 1)m] (1 <i<k)
Auo = [p-1+ (Ju,—1 + 1)m, p1 — (Ju1 + 1)m]
Aui = [pic1 + (Juyi-1 + 1)m, pi — (Ju,i + 1)m]  (=h <i < -1)
By;={teR /dist(t, A,;)<m} (-h<i<k)
Auv=Uie_p Aui, Bu=UL_, Bus
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with the agreement that Ju,~h—1 = ju,k+1 — 0. With this notation (4.6)

becomes

"u“:};n(Bu\Au) < 5% Yu€ B,-(v—,v"';p), Vi€ {—-h,...,k}.

Moreover
il an, S €2V u € B w¥ip) Vi€ (hiokh

We remark that, by construction, we always have that M; C Au,i, SO that
|Au il = M| 2 m, Vi e {—h,...,k}, Vv € B(v~,v";p). Moreover |\I; N
(By \ Au)| =2m and |Bu,i \ Au,il =2m.

For : € {—h,..., k}, we define piecewise linear cut—off functions Bu,i : R —
[0,1] such that Bui(t)=1for t € A, and Bui(t) =0 for t ¢ Bu,i. Then,
for i € {—h,...,k}, we set:

- 0 t¢ L
ﬂu,i(t) = {1 — ﬁu,i—l(t) — ﬁu’;(t) te I;.

We note that if 8 = Bu,i oF B = Bu,i and if A is a measurable subset of
R we have ||Bull% < 3lluly, Yu € X . Moreover, if u € B.(v—,vT;p) and
i€ {—h,...,k}, weget '

(4.7) (u, Buu) = llulls,; — 36¢€

Now we define, for i € {—h,..-, k}, the functions

fi(u) = {11 lulli, = £

=i otherwise

and finally, we set Wy = Z’f‘ hf,-(u)ﬁu,lu .

1=

Lemma 4.2. Let € € (0,r?). Then for any u € B.(v=,vT;p) and for any
JE {=h,..., k} we have

k k
GWa 2 3 filw)llulla: —3) e (W)W 2 %_Z fiw)(lellF;nan, — 5)-

i=—h 1=—h
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Proof. By construction ||u]|4,; < 4r < po and |ju|lp, ;4. < po. Therefore,
by the choice of py and (4.6), we get

@' (W)Wy >
k 2 € ! ! U
S, 55— [ Viewwa- [ viewsua >

u,t u,f

Sieafiw)Glulh,, — fre— 559 2 FTL Al - £)-

The computation is exactly the same for ©5. Ul

Remark 4.3. We remark that, by Lemma 4.2, we always have

¢ (u)Wu 2 53, lull?, ‘.<e/4}fi(“)(”“”34u,.- -5

and analogously

for all w € B.(v™,v*;p).
Moreover if ||u||7,,4., > € for some pair of indices (3,1), then W, indicates
an increasing direction both for ¢ and ¢;. Indeed, if for instance 7 > 0, by

lemma 4.2, we get

o' (W)W, > %(”Ulleu,;_l + HUHZAU. —5)— 52{1;“1‘"3 :<§}fl(u)

> 5lulina, = 9= § s, <50 2 Slulfnn, - ¥

(4.8)

and analogously

(4.9) @i(w)Wu = Fllullrna, — ¥

Let r,73 > 0 be such that r —d, < r; <r3 <r. We put & = idr,
52 = min{51/2,p0}, 6;/2 = %min{ﬁl,fg,#r,)\,ﬁi}. Let us fix € € (0,61),
m > N,.

By (4.8) and (4.9) if £ € {&1,&2}, we have:
(4.10)

2 2

it u € Bry(v7, 0% p) and [ullina, 2 € then /W)W, > S and o) > &
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We now study the case in which ||u||r;na, < ¢ for some ¢ € {—h,... k}.
To this aim we state a result which is a consequence of the asymptoticity

assumption (U5).
Lemma 4.4. For any € > 0 and C > 0 there ezists T > 0 such that every
u € X with ||ul| < C wverifies:
l¢'(u) — oL (w)ll < € i suppu C (—o0,-T),
o' (u) — @y (u)ll < € if suppu C (T, +00).
Proof. For any u,h € X and 6 > 0 it holds that:
(! () (DAl = | ot~ (E(E) — Lo (8 — (V! () = V(1)) - B)
< JlE®) = Lol ful ] dt + [yl V'(t,0) = V()] Bl
+ flu(t)]S5|V’(t,u)| |h|dt + flu(t)lsélV_’F(t,u)l |h|dt
< Ly * (supiequpp ol L(2) — Lo (0)] 1
t gl V't ) = Vit w)? di) ®

' 1 1
+ Juqyies V' @07 d8)* + (Jlug <ol Vi & 0)1” d2) ) A1)
Then, taking v € X with |ju|| < C and fixing e > 0, by (U2) we can find
6 > 0 such that |V'(¢,q)| < ;5l¢| and |V{(t,¢)| £ ;&l¢| for any t € R and
lg] < §. Therefore '
L L
(.f[u(t)lsénﬂ(t’u)lzdt) 2 + (Jiu(t)lsé!v-;-(tvu)|2dt) 2 S ';'

Moreover we have that:

UruopsslV/(E0) = VAW ) < & sup [V/(tu) = V(t,w)l” fylul? dt

tEsupp u

2
S oswp |Vt = Viol
t€suppu, |g|<R

AN

' for a suitable R > 0. Finally, by (U2) and (U5) we can take T > 0 so large
that, if suppu C (T, +00), then

_1
Ly?C sup |L(t)—Ly(@®)|+$( sup  |V'(t9) = Vit o))
tEsupp u tEsuppu, |g|<R

e

<s

Then |¢'(u) — ¢ (u)]] £ e. Changing ¢4,L4 and Vi respectively with
w—,L_ and V_ and considering the case suppu C (—o0,—T') for a possibly
larger T > 0 we get the same estimate for ||¢'(u) — ¢’ (uv)]]. O
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Let us state first a consequence of property (4.2).

Lemma 4.5. There ezists p = p(r) > 0 and po > 1 such that if u €
B, (v7,vtp) N {ei < et — ha} with p € PMY(M,po), ||ullnina, < & and
lu—vE(-=pi)llr; =1, for some i € {~h,...,k}, then there ezists Wy i € X,
Wil £ 1 such that

(1) @i(wWu,i 2 p;
(1) @' (WWa,i 2 p;
(121) supp Wy C I;\ J.

Proof. Let p, be given by (4.2). Let u € By, (v™,vt;p) N {p; < i — ha}
and |lu — v+(- — pi)llr; = r1, for some ¢ € {—h,...,k}. If ||lu|r.na, < & we
claim that 8, U € Ar_dr’,+d (v2(- = pi)) N {ox < ci}. First of all, since
lv*=(- - Pz)nlt—p,pm < 15, using (4.7) , we get

1Byt — vE(- = p)|I* > |u —_vi(' —-p)l7.\5.
> Jlu— o= = p)lI7, — (¢ = pi)llnnB, + lull 5. + ullnna,)?
> 02 (L4 6)2 > (r—d,)?

where we set J, ; = I; N (By \ A4). Moreover

1B, u—vE( = p)lI® < 1Buiu —vEC =P + 5
< 1By v —ullr + llu = vE(¢ = p)lln)? + <
(4.11) < (1Buivllr +73) + 5
< (Jullna, + 1Buiull.: +13)° + 5
@+ G+ 5 <@+ +r)<(rrd).

Finally we note that since ||u|lrnp, < %pg, by the choice of py we have
that 3l|ull}np, = [1np, V(t,u)dt >0 and f‘,w, V(t, B, u)dt < ilBuiull?, .

"therefore

o2(Bum) = plBu) S i) = Glullinn, = [ V(b

+ 3118 ul3, < @iu) + 75 < ks
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By (4.2), there exists Z, ; € X, || Z4,i]] <1, such that
1R _ (A Br
0i(Buiu)Zu,i = 9By u)Zui 2 5 -
Let po = T being T > 1 given by Lemma 4.4 with C = |Jv¥|| + po and
€= i‘#r- Then

— ,U‘T
@:(ﬁu,iu)zu,i > 7

By the choice of pg, using (4.7) we get

l0i(By i) Zuyi — ©i(u)By i Zuil = By iths Fui)du; — (U, By iZui) i+

- [ 0B = V6B ) st =

| / B (s — o) dt — / (V'(t, Baste) = V' (8, 0)B i) Zu ] <
Ju,i Ju,i

< 2ull s + full s, < e < B

The same argument gives also
3 vl H
¢/ (B )i = ' (0Bl <

We put W, ; = %—B—u’iZu,i, observing that min{p;(u)Wa,i, ¢'(u)Wu,i} > &

The lemma fqllows setting p = £=. ]

If u € Bry(v™,v";p) does not satisfy the assumptions of lemma 4.5 we
set W, ; =0.

Now we state a consequence of the property (4.3).

~ Lemma 4.6. There exist v > 0 and po > 1 such that if u € B,(v™,vT;p)
with p € PP*(M,po), lullrina, < & and v € {ax < ;i <ax +6}U {bs <
wi < by+6}, for some i € {—h,...,k}, then there ezists V, i € X, ||Vu,il| <1
such that
() @V 2 v;
(56) @(@)Vas 2 v;

(1i) supp Vo C L\ J.
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Proof. Let u € Br,(v™,vT;p) N ({ax < i <ax +8}U{by < ; < by +6)}),
for some ¢ € {~h,...,k} and [lul|r,na, < & . We claim that 8, ;u € {a+ <
px <al}U{by <pi <L}

Indeed, we observe that

lullz, = 18w ullf < lulfna, +3lul?,; < lullfna, +5<E+5

and that
JICOR AL

= [ vewd [ 06w -ve,F. )
I;NA, Ju,i
< Hulldna, + Hiullh,, < 3E +o).

Then, we have
li(u) — @i(B 1)
= Bl = Bl = [ (V(00) = V(B el <€ +e <,

which implies Eu,iu €{ar <px <@l }U{by <ps< b}

Therefore by property (4.3), there exists Z, ; € X, ||Z4,i]| <1, such that
Lp'(—ﬂ—u,,—u)Zu,i = wg(‘ﬁ‘u,iu)Zuyi > 2. Let o = T being T > 1 given by Lemma
4.4 with C = |jv%|| + po and e = . Then

— A
sol(ﬁu,iu)ZU,i 2 Z .
As in lemma 4.5 we have |cp'(,_'3u’,-u)Zu,,- - gp'(u)ﬁu)iZu,il <er < 2 and that
- ey 1
[i(Bu,it) Zui — @i(W)By i Zuil < €2 < §.
Therefore Lp'(u)Bu’iZu,,- > % and cpg(u)ﬁuﬂ-Zu’i > %. We put V,; =
3Bu.i%u,i and setting v = & the lemma follows. 1
If u € By,(v™,v";p) does not satisfies the assumptions of lemma 4.6 we
set Vy;=0.

Now, collecting the results obtained above we can complete the proof of

Lemma 4.1.
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Given u € B, (v~ ,v";p) we define
I, = {Z € {—hr .o 1k} : “u - vi(° "Pi)”I; 271, ‘Igi(u) < C; - Ei}’

Iy={t€{~h,...,k} : bp <i(u) <by +6orax < ¢i(u) < ax +6}.
Now let us consider the case Z; =7, = @.

We distinguish the two following subcases:

2 2
> €.
Joax |lullyy <e or max flufly, > €

In the first case, by lemma 2.9, we obtain that if XN B,,(v™,v";p) = @ then

there exists Z, € X, ||Z4|| £ 1 and there exists fi, > 0, independent of u,
such that ¢'(u)Z, > %ﬁ

In the other case if we have |lu||a;, = max_n<i<k |ull};, > €, we get by
(4.8) that

¢ (WWa 2 5llulll, - ¥ 2 5
We set
W = Zy if 7y = Tp = @ and maxo<i<k [Jullf, <e
* %(T’Vu + Ziél'l Wu,i + Ziefzv":i) otherwise

where W, ; is given by lemma 4.5 and V, ; by lemma 4.6.
Then we note that

IWallz < max{||Zu|lz, SUIWullr; + Wa,illz: + [Vuill)} < 1.

Moreover by using lemmas 4.5, 4.6, remark 4.3, (4.8) and (4.9) we have the
following properties:

1) if maxo<i<k [lul|3s, > € then

(u, Wa)aa = 3w, Wadw, > s el
and

@' (W)W, 2 20" ()W, > o3

i) if 1 € 7y and ||u|5;na, < & then

@' (WWa > 20" (W)W, + o' (WWa,i >

B_ e s n.
3 24 — 6
SOZ(U)Wu 2> %?:(u)Wu + %‘?;(u)wﬂ,i 2 % - §€Z 2 ‘E‘?
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i) if : € 73 and ||u|lf,na, > & then

P (W 2 Lo ()W, 2 & — 2> &
W, > Lol(w)W, > & — 2 > &,
1 U 3Y1 U g 24 — 127
iv) if 2 € Zo and ||u|;,na, < & then
@Z(U)W % (U)W + 35 (u)Vu, >E-52> %
v) if i € I, and ||ul|r,na, > & then
2 2
Py > S/ (W, > £ — 2> &
2 2
PUu)Wu 2 Lol (W)W, > & - 3 > &,

vi) if 7y = I, = @ and maxo<i<k ||ul|}y, < € then

' (WWy = ¢'(u)2, > L.

By (i)-(vi), the lemma follows with a classical pseudogradient construc-
tion setting fi, = min{& 51> 15} and pp = min{f,, 5, gi, 5t td

5. Multibump solutions to (HS)

This final section is devoted to prove the theorems presented in the in-
troduction.

We start with the following result concerning homoclinic solutions of
multibump type for a doubly asymptotic potential.

~ Theorem 5.1. Let U, U_ and Uy wverify (U1)-(U5). Assume that the
condition (x) holds for the functionals ¢_ and 4. Let 5_ € K_ and o4 €
K be the mountain pass critical points for ¢_ and ¢4 given by Lemma 8.18.
Then for any r > 0 there are M,py > 1 such that B (v-,04;p)NK # @ for
every p € Uh’keNPh’k(M,po).

Proof. Let 7+ € (0,p), (rn) C RY\(D2UDY), v 54 € K4 asin Lemma 4.1.
Arguing by contradiction, suppose that the conclusion of the theorem is false.
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Then there exists ro > 0 such that for any M,py > 1 there are h,k € N and

D= (DPhy-rr,D=1,P1,---,Pk) € PP¥(M, po) for which B, (v—,94;p) N K =
.

Let us fix n € N in order that |[vf — 91| < £, r, < min{2,re} and
Bar,(vE) C Bz, (9+). We note that By, (v, ,v};p) C B,(v-,04;p) for any
P € Un ren P™E(M,py) and for any M,py > 1. Let v = v(r,) > 0 be given
by Lemma 4.1 with ry = r,, — %dr,, , Tg = T'p —
Thanks to Lemma 3.6, we can choose ay > ¢i — min{hn,ilzudrn}, by <

min{c},c+ + 57vdr,} and § > 0 satisfying (4.1).

5 _ 1
ﬁdrn and r3 = r, — 3d,,.

Then Lemma 4.1 assigns two values pg > 1 and €; > 0. Now let us take
€2 > 0 such that for any interval I C R with |I| > 1 and for any v € X with
lull7 < ez it holds that [, |Vi(t,u)|dt < ||ul|} (see Remark 2.5). Then we fix
e € (0,min{e, €2, 3(c4 —ay), 3(e— —a_), 372, 3d% }). By Lemma 4.1 there
exists mgo € N such that for any p € P(2m2 + 3mq, po) there is a vector field
Vp : X — X satisfying (V1)-(V5). Now we apply Lemma 3.13 fixing h =
min{b_ — ¢_,by —¢;} and finding two paths v with supp vZ(s) C [~R, R]
for any s € [0,1], where R > 0 depends only on n. Moreover, enlarging
R if necessary, we can always assume that “vf:i:“lztl?. g < €. Then we choose
m > max{mg, R,T-!,T{'} and we use the contradiction assumption, for
which there is p = (p—h,.-.,P-1,P1,---,Pk) € P(2m? 4+ 3m,py) such that
B, (vy,vl;p) N K = Q. Consequently, there is a vector field V, =V : X —
X that satisfies (V1)-(Vs).

Finally, for any s > 0 we define a continuous function G, : [0,1]**F — X
given by

Go(0) = Z Tp; Tn (65) + Z ij’)’:(g])
—h<<-1 1<k

G,(8) =n(s,Go(6))

where 6 = (6_p,...,0-1,61,...,60r) € [0,1]*** and 7 is the flow generated
by —V.

Lemma 5.2. () For any s >0 G, = Gy on the boundary of [0, 1]A+F.
(zz) For any s > 0 rangeG; C Y..
(121) There ezists § >0 such that rangeGs C J,;{pj < ax}.
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Before proving Lemma 5.2 we continue the proof of the theorem showing that:

( 5.1) there is an index j € {=h,....,-1,1,...,k} and a path £ : [0,1] —
[0,1]*+*) such that £(0) € {6; =0}, £(1) € {8; = 1} and ¢;(Gs(6)) <
a+ + € for any 6 € range€.

Indeed, if (5.1) were false, for any i € {—h,...,—1,1,...,k} the set
D; ={0 € [0,1]*F* : ©;(G5(8)) > ax + ¢} should separate the faces {6; = 0}
and {6; = 1}. Then, from a Miranda fixed point theorem ([Mi]), it follows
that (), D; # @, that is there exists 8 € [0, 1]*T* such that ¢;(G5()) > ar+e

for any ¢, in contrast with Lemma 5.2 (417).

From now on, let j be the index for which (5.1) holds. Let us assume
that j > 0. Clearly the same argument works if j < 0. Let x : R — [0,1]
be a piecewise linear, cut—off function such that x(r) =1 if r € I;\ J and
x(r) =0 if r € R\ I;. Notice that, since m > 2, for any u € X

(5:2)  xullfns < 2ulfas and (1= x)ullfas < 2lulfag
and for any s € [0,1]
(5.3) supp 7p;7a (s) € [pj — R,pj + R S I; \ J.
Then we define a path v : [0,1] — X by setting
7(8) = 7-p;xGs(E(s)) (s €[0,1]).
By Lemma 5.2 and by (5.3), we have that
(5.4) 7(0) =74 (0) and (1) =5 (1).
~ Now we will prove that
(5.5) rangey C Br, (94).
Indeed, if we set u = G3(£(s)) we have that

(5:6) lv(s) = v I = llxu — 7,07 |1®

= ||y, v:”ffl)a\f,» + llu =7, v:”%i\-] +llxu = 707 170
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By (5.2) and (5.3) it holds that |7 vf IR, < o7 1Ifj>& < € and analogously
we also get [|(1 — x) 7p; v |7,n7 < 2llo |[fy>r < 2¢. Consequently from (5.6)
we infer that

(5.7) l7(s) = v I* < 3e+ 3Jlu — 7, v 117, -

Since, by (V1), B, _14,, (v ,v¥;p) is positively invariant for n and, by
Lemma 3.13, rangey] C B, (v}), we deduce that |[u — 7,0} |l;; < 7a.
Thus, from (5.7), we get that ||y(s) — v} ||> < 4rZ, because e < 372 and,
since Bar, (vi) C Bz, (74), (5.5) follows.

Now, we show that for any s € [0,1]

(5.8) o+(7(s)) < 4.
As before, we set u = G5(£(s)). It holds that

o+(7(s)) = p+(xv) = pj(xu)
= QOj('U-) + %“X u”%jnJ - %!lull_zf,nj + ijnJ(V—l"(tu u) - V+(t$Xu)) dt.

By Lemma 5.2 (3iz), we know that ¢j(u) < a4 . Using again Lemma 5.2 (2:2)
and (5.1) we estimate %qu”%nj < ”u”%,-nJ < € and ijnJIV_;_(t,u)ldt <
Hu[l%jnj, for € < 1e;. Hence ¢4 (7(s)) < aq + 4e and (5.8) follows, because
€< 34 —ay).

In conclusion, from (5.4), (5.5) and (5.8), v is a path joining 7;7(0) with
7+ (1) inside Br, (v4) N {4+ < ¢4} and, keeping into account Lemma 3.13,

this gives the contradiction and concludes the proof of the theorem. U

Before proving Lemma 5.2, we state the following auxiliary result.

" Lemma 5.3. (?) For any j = —h,...,—1 the sets {¢; <a_-} and {p; <b_}
are positively invariant with respect to the flow 71, v.e., if ¢;(u) < a_ then
wi(n(s,u)) < a_ for every s > 0 and if ¢;(u) < b then pj(n(s,u)) < b_
for every s > 0. Similarly, for any j = 1,...,k the sets {¢; < a4} and
{¢; < by} are positively invariant with respect to 7.

(it) For any u € Y. and for any s > 0 n(s,u) € Y, namely also the set Y,

18 posttively invariant with respect to 7.



~ Asymptotically periodic Duffing-like systems 97

Proof. (z) Let us fix j € {—h,...,—1}. If, by contradiction, n(5,u) & {¢; <
a_} for some u € {¢; < a_} and for some 5 > 0, then there is an interval
[s1,82] C [0,3] such that ¢j(n(s1,u)) = a—, ¢i(n(s2,u)) € (a=,a— +§) and
a— < pji(n(s,u)) <a_+é forany s € (s1,2). Then, by (V1) and (V3), we get
that ¢;(n(s2,u)) —a_ = —f:lz @i (n(s,u))V(n(s,u))ds < 0, a contradiction.
The same argument works for the sets {p; < a4} and {¢; < byi}.

(17) By the contrary, let us suppose that there exist u € Y;, an interval (s1,s2)

and an index j € {—h,...,—1,1,...,k} for which ]|77(51,u)||%4j = ¢ and
lIn(s,u)ll3s, > € for any s € (s1,52). Then gds—”n(s,u)”?wj = —2(V(n(s,u)),
(s, u))a; - By (Va), we obtain that |[n(ss,w)ll3; < lln(s,u)ll}y, = ¢, a
contradiction. O

Proof of Lemma 5.2. (i) If 6 belongs to the boundary of [0,1]*** then 6; =0

or 6; =1 for some ¢ € {—h,...,—1,1,...,k}. Let us suppose for instance
that 7 > 0 and 6; = 0. From (5.3) and Lemma 3.13 (i), we:deduce that
1Go(8) — 708117, = 177 (0) — v I* = Ipvf Rz = 72 — € = 7 because

e < 3r2. Then Go(f) € X\ B
(s, Go(8)) = Go(0).

2, (vn ,vF;p) and consequently, by (V1),

1
Th—3%

(¢¢) By (5.3), we have that ||Go(f)||a; = 0 for any j and so Go(f) € Y.
Hence, by Lemma 5.3 (it), n(s,Go(8)) € Y. for all § € [0,1]+* and for all
s>0.

(iii) Let us fix 6 € [0,1]**F. If Go() ¢ B
an index 1, for example positive, for which [|Go(8) — 7,07} ||1; > rn — 2d
But, using (5.3) and Lemma 3.13 (7i¢), we have also [|Go(8) — mp,v] || <
v (8:) — vi|| < rn. Therefore 7 (8;) € A, _14, r.(vF) and, by Lemma
- 3.13 (i), ¢4+(7;F(6:)) < €4 — hy,. Thus, since ax > &4 — h, we have that

Go(0) € {¢i < ayt}, and, by Lemma 5.3 (i), also G5(6) € {p; < ax}.

Suppose now that Gy(6) € B, 14, - First, we notice that, by (5.3), Lemma
3.13 (#7) and by the definition of ¢; and the choice of h, Go(8) € (N, {p: <

d,. (v;,vF;p) then there is

1
rn"i

T *

b+}. Hence, on one hand, by Lemma 5.3 (1), all the positive trajectory s —
G5(0) remains in (),{w; < b+}. On the other hand, we claim that as s > 0

increases, the curve s — G4(8) must go out from B, _ 54, in afinite time
n 1 ™
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3 > 0 independent of 8, that is:
(5.9)
thereis 5 > 0 such that Gs(6) ¢ B 54, (vy,v};p) for any 8 € [0,1]"F.

T'n“"T

During this amount of time 35, G4() crosses the annular region {u € B :
rn— 2dr, < lu—1pvE]| < — Sdr, 3N (;{vi < b+}. In fact, there exists
an index 1, let us say positive, such that ||Gs,(8) — 7, v} |1, = rn — 3d
”Gs;(e) - TP:’”#”L’ = Tn — iéz‘drn and rp, — %drn < “GS(G) - Tpivi”h <
rn—15dr, for s € (sg,sy). Then, by (V2), ¢}V > v along the curve described
by Gs(0) as s goes from sg to s}, and consequently, ¢;(Gs(6)) decreases.
Precisely ¢i(Gqr(9)) < ¢i(Gs,(0)) —v(sy — s¢). But, using (V1) it holds
that &dr, < Gy (0) — Gy (B)] < [ IV(0(s, Go(O)))lds < s — 50 and so
¢i(Gy, (0)) < by — 35dr, v < &4 — 57dr, v < ay. Then Lemma 5.3 (¢) implies
that ¢;(Gs(0)) < a4.

Now, it remains to prove the claim (5.9). Arguing by contradiction, if (5.9) is
false, then there are sequences (s;) C Ry and (6;) C [0,1]*+* such that s; —
400, 6; — 0 and, forany 1 € N, G,(6;) € Brn_%dr“(v;{,vj;p) for s € [0, s,].
Then, from (Vs5) ¢(Gs,(6:)) < ©(Go(6;)) — siv' and thus (G5, (6;)) — —co.
This is in contrast with the fact that, by Remark 2.2, 9”<Brn—%drn (vy,v7;p)
is bounded. O

Tn 3

Remark 5.4. The k-bump homoclinic solutions v found by Theorem 5.1
lie in H!-neighborhoods of Tp; U+, and then in C _neighborhoods. By the
equation (HS) we recover similar estimates for the second derivatives and, by

standard interpolation inequalities, for the first derivatives, too, as stated in
Theorem 1.4.



99

References

[ACM] S. ABENDA, P. CaLDIROLI & P. MONTECCHIARI, Multibump solutions for Duffing-like
systems, Preprint SISSA, (1994).

[AL] S. ALaMa & Y.Y. L1, On “Multibump” Bound States for Certain Semilinear Elliptic
Equations, Research Report No. 92-NA-012. Carnegie Mellon University, (1992).

[AT] S. ALaMa & G. TARANTELLO, On semilinear elliptic equations with indefinite nonlin-
earities, Calc. Var., 1 (1993), 439-475.

[A] A. AMBROSETTI, Critical points and nonlinear variational problems, Bul. Soc. Math.
France, 120, 1992.

[AB] A. AMBROSETTI & M.L. BERTOTTI, Homoclinics for second order conservative systems,
in Partial Differential Equations and Related Subjects, ed. M. Miranda, Pitman Research
Notes in Math. Ser. (London, Pitman Press), (1992).

[ACZ] A. AMBROSETTI & V. CoTi ZELATI, Multiple Homoclinic Orbits for a Class of Con-
servative Systems, Rend. Sem. Mai. Univ. Padova, 89 (1993), 177-194.

[AR] A. AMBROSETTI & P.H. RABINOWITZ, Dual Variational Methods in Critical Point °
Theory and Applications, J. Funct. Anal., 14 (1973), 349-381.

[An] S. ANGENENT, The Shadowing Lemma for Elliptic PDE , Dynamics of Infinite Dimen-
sional Systems, (S.N. Chow and J.K. Hale eds.) , F37, 1987.

[BC] A. Bauri & J.M. CoroN, On a Nonlinear Elliptic Equation involving the critical
Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.,
41 (1988), 253-294.

[BG] V. BENcI & F. GiaNNONI, Homoclinic orbits on compact manifolds, J. Math. Anal.
Appl., 157 (1991), 568-576.

[BR] V. Benci & P.H. RaBIiNowITZ, Critical point theorems for indefinite functionals, In-
vent. Math., 52 (1979), 241-273.

[B] M.L. BERTOTTI, Homoclinics for Lagrangian Systems on Riemannian manifolds, Dyn.
Syst. and Appl, 1 (1992), 341-368.

[BB1] M.L. BERTOTTI & S. BoLOTIN, Homoclinic Solutions of Quasiperiodic Lagrangian
Systems, Preprint, (1994).

[BB2] M.L. BerTtoTTI & S. BOLOTIN, A variational approach for homoclinics in almost pe-
riodic Hamiltonian systems, Preprint, (1995).

[BJ] M.L. BErTOTTI & L. JEANJEAN, Multiplicity of homoclinic solutions for singular sec-
ond order conservative systems, Preprint, (1995).

[Be] U. Bessi, Multiple homoclinic orbits for autonomous singular potentials, Proc. Roy.
Soc. Edinburgh Sect. A, 124 (1994), 785-802.



100

[Bel] U. BEssI, A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal., 20 (1993),
1303-1318.

[Be2] U. BEessi, Global Homoclinic Bifurcation for Damped Systems, Math. Zeit., to appear.

[Be3] U. Bessi, Homoclinic and Period-doubling Bifurcations for Damped Systems, Preprint,
(1993).

[BhS] N.P. BHATIA & G.P. SzeG0, Dynamical Systems: Stability Theory and Applications,
Lecture Notes in Mathematics 35, Springer—Verlag, 1967.

[Bo] S.V. BoLoTIN, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat.
Mekh., 6 (1980), 98-103.

[BrC] H. Brezis & J.M. CoroN, Large solutions for harmonic maps in two dimensions,
Comm. Math. Phys., 92 (1983), 203-215.

[Bu] B. BurronI, Infinitely many large amplitude homoclinic orbits for a class of autonomous
Hamiltonian systems, J. Diff. Eq., to appear.

[BS] B. Burroni & E. SERE, A global condition for quasi random behavior in a class of
conservative systems, Preprint, (1995).

[C1] P. CaLpiroLl, Existence and multiplicity of homoclinic orbits for potentials on un-
bounded domains, Proc. Roy. Soc. Edinburgh, 124A (1994), 317-339.

[C2] P. CaLpirROLI, A new proof of the existence of homoclinic orbits for a class of au-
tonomous second order Hamiltonian systems in R”?, Math. Nackr., to appear.

[CJ] P. CaLpiroLl & L. JEANIJEAN, Homoclinics and heteroclinics for a class of conservative
singular Hamiltonian systems, in preparation, (1995).
[CM] P. CaLpiroLl & P. MoNTECCHIARI, Homoclinic orbits for second order Hamiltonian

systems with potential changing sign, Comm. Applied Nonlinear Analysis, 1 (1994),
97-129.

[CMN] P. CaLpIROLI, P. MONTECCHIARI & M. NoLasco, Asymptotic behaviour for a class
of multibump solutions to Duffing-like systems, Proc. of the Workshop on Variational
and Local Methods in the study of Hamiltonian systems, (1995), World Scientific.

[CN] P. CaLpiroLl & M. NoLasco, Multiple homoclinic solutions for a class of autonomous
singular systems in R?, Preprint S.I.5.S.A., (1995).

.. [CS1] K. CieLIEBAK & E. SERE, Pseudo-holomorphic curves and multiplicity of homoclinic
orbits, Preprint, (1993).

[CS2] K. CiELIEBAK & E. SERE, Pseudo-holomorphic curves and the shadowing Lemma,
Preprint, (1995).
[Co] W.A. CorPEL, Dichotomies in Stability Theory, Lecture Notes in Mathematics 629,
Springer—Verlag, 1978.

[CZES] V. CoTi ZELATI, 1. EKELAND & E. SERE, A Variational approach to homoclinic orbits
in Hamiltonian systems, Math. Ann., 288 (1990), 133-160.



101

[CZMN] V. CoT1 ZELATI, P. MONTECCHIARI & M. NoLAsco, Multibump homoclinic solutions
for a class of second order, almost periodic Hamiltonian systems, Preprint S.1.S.S.A.,
(1995).
[CZR1] V. CoTI ZELATI & P.H. RaBiNowiTz, Homoclinic orbits for second order Hamiltonian
systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727.
[CZR2] V. CoTi ZELATI & P.H. RABINOWITZ, Multibump periodic solutions of a family of
Hamiltonian systems, Top. Meth. in Nonlinear Analysis, 3 (1994), .
[DN] W.Y. DiNG & W.M. NI, On the existence of positive entire solutions of a semilinear
elliptic equation, Arch. Rai. Mech. Anal., 91 (1986), 283-308.
[F] P.L. FELMER, Heteroclinic orbits for spatially periodic Hamiltonian systems, Ann. Inst.
H. Poincaré, Anal. Non Linéaire, 8 (1991), 477-497.
[GP] N. GHoussouB & D. PREIsS, A general mountain pass principle for locating and clas-
sifying critical points, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989), 321-330.
[GIT] F. GiannonI, L. JEANJEAN & K. TaNaka, Homoclinic orbits on non-compact Rie-
mannian manifolds for second order Hamiltonian systems, Preprint S.N.S., (1993).
[GR] F. GianNonI & P.H. RaBiNowITZ, On the multiplicity of homoclinic orbits on Rie-
mannian manifolds for a class of Hamiltonian systems, Nonlinear Diff. Eq. Appl., 1
(1994), 1-46.
[GM] M. GIRARDI & M. MATZEU, Existence and Multiplicity results for periodic solutions of
superquadratic Hamiltonian systems where the potential changes sign, Preprint, (1993).
[GY] M. GirarDI & D. YANHENG, Periodic and homoclinic solutions to a class of Hamilto-
nian systems with the potential changing sign, Dyn. Syst. and Appl., 2 (1993), 131-145.
[G] W.B. GorpoN, Conservative dynamical systems involving strong forces, Trans. Amer.
Math. Soc., 204 (1975), 113-135.
[GH] J. GUCKENEIMER & P. HOLMES, Nonlinear oscillations, dynamical systems and bifur-
calions of vector fields, Springer—Verlag, 42, 1983.
[H] H.HOFER, A geometric description of the neighbourhood of a critical point given by the
mountain-pass theorem, J. London Math. Soc., 31 (1985), 566-570.
[HW] H. Horer & K. Wysockl, First order elliptic systems and the existence of homoclinic
orbits in Hamiltonian systems, Math. Ann., 288 (1990), 483-503.

-~ [J] L. JEANJEAN, Existence of connecting orbits in a potential well, Dyn. Sys. Appl., 3
(1994), 537-562.

[KS] U. KIRCHGRABER & D. STOFFER, Chaotic behavior in simple dynamical systems, SIA M
Review, 32 (1990), 424-452.

[La] L. LassoUED, Periodic solution of a second order superquadratic system with change
of sign of potential, J. Diff. Eq., 93 (1991), 1-18.

[L] P.L. Lions, The concentration—compactness principle in the calculus of variations, Rev.
Mat. Iberoamericana, 1 (1985), 145-201.



102

[Me] V.K. MELNIKOV, On the stability of the center for periodic perturbations, Trans.
Moscow Math. Soc., 12 (1963), 1-57.

[Mi] C. MiraNDA, Un’osservazione su un teorema di Brouwer, Boll. Unione Mat. Iial., 3
(1940), 5-7.

[M1] P. MONTECCHIARI, Existence and multiplicity of homoclinic solutions for a class of

asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV),
168 (1995), 317-354.

[M2] P. MONTECCHIARI, Multiplicity results for a class of semilinear elliptic equations on
R™, Rend. Sem. Mat. Univ. Padova, to appear.

[MN] P. MoNTECCHIARI & M. Norasco, Multibump solutions for perturbations of periodic
second order Hamiltonian systems, Nonlinear Anal., to appear.

[Mo] J. MosER, Stable and Random Motions in Dynamical Systems, Princeton University
Press, Princeton, 1973.

[Pa] K.J. PALMER, Exponential dichotomies and transversal homoclinic points, J. Diff. Eq.,
55 (1984), 225-256.

[P] H. POINCARE, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier—Villars, Paris,
1897-1899. :

[PS] P. Pucct & J. SERRIN, The structure of the critical set in the mountain pass theorem,
Tran. Am. Math. Soc., 299 (1987), 115-132.

[R] P.H. RaBiNowITZ, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy.
Soc. Edinburgh, 114 A (1990), 33-38.

[R1] P.H. RaBINOWITZ, Homoclinics for a singular Hamiltonian system, to appear in Geo-
metric Analysis and the Calculus of Variations, (J. Jost ed.), (International Press).

[R2] P.H. RABINOWITZ, Periodic and heteroclinic orbits for a periodic Hamiltonian system,
Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989), 331-346.

[R3] P.H. RABINOWITZ, A variational approach to heteroclinic orbits for a class of Hamilto-
nian systems, Frontiers in Pure and Applied Math. (R. Dautray, ed.), 267-278, (1991).

[R4] P.H. RaBINOWITZ, Homoclinics for an almost periodically forced Hamiltonian system,
Top. Methods in Nonlinear Analysis, to appear.

. [R5] P.H. RaBINOWITZ, Multibump solutions for an almost periodically forced singular
Hamiltonian system, Preprint, (1995).

[R6] P.H. RABINOWITZ, Heteroclinics for a reversible Hamiltonian system, Ergodic Theory
and Dynamical systems, 14 (1994), 817-829.

[R7] P.H. RABINOWITZ, Heteroclinics for a reversible Hamiltonian system, 2, Differential
and Integral Equations, 7 (1994), 1557-1572.

[RT] P.H. RaBiNowiTZ & K. TANAKA, Some results on connecting orbits for a class of
Hamiltonian systems, Math. Z., 206 (1991), 473-479.



103

[S1] E. SERE, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math.
Z.,209 (1992), 27-42.

[S2] E. SERE, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire,
10 (1993), 561-590.

[S3] E. SERE, Homoclinic orbits on compact hypersurfaces in R?N | of restricted contact type,
Preprint, (1992).

[STT] E. SERRA, M. TARALLO & S. TERRACINI, On the existence of homoclinic solutions for
almost periodic second order systems, Preprint, (1994).

[T] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system:
Convergence of subharmonic orbits, J. Diff. Eq., 94 (1991), 315-339.

[T1] K. TaNaKA, Homoclinic orbits for a singular second order Hamiltonian system, Ann.
Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), 427-438.

[T2] K. TANAKA, A note on the existence of multiple homoclinic orbits for a perturbed radial
potential, Nonlinear Diff. Eq. Appl., 1 (1994), 149-162.

[W] S. WiGGins, Global bifurcations and chaos, Applied Mathematical Sciences, Springer—
Verlag, 73, 1988.






