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Chapter 1
Introduction

There was a young lady named Bright
Whose speed was faster than light;

She set out one day

In a relative way

And returned home the previous night.
(A. Buller, Punch, 19th December 1923)

In this thesis we will describe some of the most recent results of 1 + 1 dimensional
Quantum Field Theory. The historical developments of this field can be essentially traced
back to the pioneering work of Belavin, Polyakov and Zamolodchikov [1]. In this paper
the authors have been able to provide the main tools for solving i.e. computing all the
correlation functions, and classifying certain (called minimal) two-dimensional Euclidean
field theories which are (at least) conformal invariant. The Conformal Field Theories
(CFT) that in general are interacting theories from the particle physics point of view, are
believed to describe [1, 2] all the possible 2nd order phase transitions in two dimensions.
Many examples can be given such as the Ising model, the Tricritical Ising and Tricritical
3-states Potts models, the phase transition of the Lee-Yang singularity and many others
that is impossible to list here. Moreover quite famous application have been provided in
connection with the Kondo effect, the Fractional Quantum Hall effect and phase transi-
tions on surfaces and of systems with impurities. We have also to mention the relevance
of these results, and of their extension to the case with boundary (about which we will
talk at the beginning of chapter 6), for the string theory. Their importance extends also
outside particle physics and statistical mechanics. Indeed the algebraic description of the

field contents of the CFT has stimulated a quite deep interchange of informations between
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physics and mathematics in fields like for instance the infinite dimensional representations
of Kat-Moody and Virasoro algebras, W algebras, modular groups and classification of
modular invariant partition functions, graph theory, braid groups and quantum groups...

The possibility to completely solve the CFT is due to the fact that in two dimensions
the conformal group is infinite dimensional. This means that the theories are characterized
by an infinite dimensional internal symmetry. Indeed the whole field content is given by
representations of two independent Virasoro algebras V(c) ® V(c) whose generators L and
L satisfy the commutation relations

[Ln-, Lm] = (7’72. - TL) Lm+n + _l%_m(mz - 1)5m+n,0 1

Z

where cis the central charge, a number which uniquely characterizes the CFT. The highest

weight of each representation is a field which has the lowest Ly eigenvalue
LO ¢ = A¢ ¢ )

where Ay and A, are the conformal dimensions of the so—called primary field o. The con-
formal dimensions encode the properties of transformation of the field under a conformal
mapping and are thus related to the scaling dimension d and Lorentz spin s of any field

as

d=A4+A and s=A-A,

where for spinless operators, d enters into the two point connected correlation function as

(¢(z)(0))e = |=]|7*.

The exact knowledge of the conformal dimensions now leads easily to the exact compu-
tations of all the critical indices characterizing the critical systems. Moreover the fields

satisfy an associative algebra under their Operator Product Expansion (OPE) [3]

where [A] is a symbolic notation to mean the field A and its descendents under the
action of the operators L_,. The minimal models are precisely those CFT in which the
operator algebra closes with a finite number of conformal families i.e. there are only a
finite number of primary fields. The minimality condition imposes further restrictions on
the field contents of any Virasoro representation. Indeed it leads to the so—called null

vectors 1.e. certain descendents are actually linear combinations of others, which provide



differential equations through which it is possible at least in principle to compute all the
correlation functions. In other words we can completely solve the theory.

Although they may have been considered as sort of toy models, the number and quality
of the results both in the particle physics and in the statistical mechanics framework have
put the CFT among the most advanced and fruitful results in theoretical physics. The
" same attitude should also be taken with one of its closest development namely the one
concerning the Integrable Quantum Field Theory (IQFT). These kind of theories are
obtained as suitable perturbation of the CFT: the perturbation should be chosen in order
to still have an infinite number of conserved charges [4]. Actually, since most of the results
will be obtained by means of non-perturbative methods, instead of perturbation we will
often use the term deformation. deserving the word perturbation to those circumstances
in which a perturbative development for small coupling constants is performed. This
distinction, that may sound academic has instead its own rights and can be justified by
looking at the procedures used to study these systems. Indeed, the perturbative approach
has been very useful in understanding the existence of non-trivial conserved charges (and
computing their Lorentz spins) with certain perturbations [4] and to see that any IQFT
interpolates between two CFT [5]. However with the non—perturbative techniques. by
exploiting the kinematic constraints coming from the infinite conserved currents it has
been possible to describe also the non-trivial dynamics in a way which is independent of
the strength of the coupling constant.

In this sense the term into the action responsible for breaking the conformal invariance
is no more considered as small and it is no longer a perturbation. Thanks to the fact that
the conserved charges have non-trivial spin, the scattering theory in the simplified two-
dimensional dynamics takes a factorized form, namely the scattering among n particles
may be described as the product of ﬁ”{—ll independent two—particle scattering [6]. Another
important consequence is moreover given by the stability of the particles i.e. the spectrum
of the theory is stable.

Among the integrable theories considered here we will treat unitary as well as non-
unitary cases. They are basically distinguished for the fact that in the unitary case the

Hamiltonian is hermitian while in the non-unitary case it should satisfy the relation
H' = CHC,

where the operator C is diagonal on the n—particle states [7]. The main consequence is

that “left” n—particle states (n;| are not the conjugated of the “right” states |n;) but
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satisfy
(ni] = (n,] e,

where ¢, the eigenvalue of C. is a phase factor. Although non-unitarity does not affect
the unitarity relation of the S—matrix, which simply states the completeness of IN and
OUT states. it will result in wrong signs of the on-shell coupling constants. Moreover a
particular care will be taken when dealing with Form Factors, as will be explained in the
relative chapter.

Depending on the kind of deformation, the spectrum may be made of massive or
massless excitations. While in this last case the theory usually interpolates between two
non-trivial CFT, in the massive case, about which we will discuss until the end of the
thesis, the IR fixed point is given by the trivial CFT with central charge ¢ = 0. Thus
a number of fully developed S-—matrix theories have been obtained and bv means of
the bootstrap approach it has been possible to read off all the masses of the particles
[8]. Thus now differently from the algebraic approach of the CFT, we will deal with
sets of in—coming and out-going particles which are related by the S-matrix and which
form what we will call a complete set of asymptotic particles states. Methods like for
instance the Thermodynamic Bethe Ansatz (TBA), allow one to extract from the S-
matrix informations concerning the ultraviolet CFT and the conformal dimension of the
deforming field [9].

The Integrable Quantum Field Theories while being very interesting examples of com-
pletely solved massive or massless models, have found their best application to statistical
mechanics. Indeed in that context these are interpreted as off-critical systems in the
scaling region i.e. near criticality and the most interesting objects to compute are the
correlation functions. By using the Form Factors (FF) technique [10, 11] many progresses
have been made recently on this direction and many relevant problems have found an
analytic solution as for instance the two point correlation function of the magnetization
and energy operators of the Ising model in a magnetic field at 7' = 7. [12] and those of the
energy operators in the high temperature Tricritical Ising and Tricritical 3-states Potts
models [13]. just to mention a few examples.

The FI" approach can be considered the most effective method up to now available to
compute them. It is essentially based on the computation of the matrix elements of the
fields on the asymptotic particle states. Through the solution of a set of monodromy and
residue equations they are given as complex functions of the momenta of the particles.

Easily integrated, they can give informations with any required accuracy. We will show,
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for certain class of integrable theories without internal symmetries, how to obtain the
FF of the scaling fields and to compute through the so-called sum rules what are the
corresponding conformal dimensions and central charge in the ultraviolet limit.

As we shall see the sum-rules connect off—critical data to parameters of the critical
CFT through integrals over all length scales of two—point connected correlation functions
[14, 15]. With the insertion of a complete set of asymptotic states in between the fields,
the integral turns then to an infinite sum of integrals of the FF. Thus, the knowledge of
the exact value of e.g. the central charge provide a test to evaluate the truncation of the
sum to the first few coefficients i.e. to the first form factors. All the tests made so far
have led to the same picture of a very fast convergent behavior [12, 13, 16].

The form factors provide also the better tool for studying the case of non-integrable
systems [17, 16]. Indeed, adding to the CFT action two independent deformations, both of
them leading separately to integrability, gives instead a non-integrable system. Thus one
may take the attitude of considering one of the terms as a deformation and the other as
a small perturbation that lead to a soft breaking of integrability. Looking at the system
from this frame of reference the unperturbed theory is now an integrable (massive in
our case) one. Perturbative expansion allows us then to compute corrections to the S-
matrix and to the masses and vacuum energy by using the FF of the unperturbed model.
The comparison of the theoretical results with the numerical ones obtained by using the
Truncated Conformal Space Approach (TCSA) [18] may then be used as a further way
to identify the form factors of the perturbing field.

In this thesis we will not enter into a detailed discussion of the conformal field theories
taking the attitude of explaining certain results only when needed. We will instead try to
give a brief review of the main properties of the massive IQFT taking the most “pedagogi-
cal” way as possible. Indeed we will try to explain mainly through detailed examples how
to find and utilize the form factors. In Chapter 2 we will look at the sum-rules (14, 15]
and their derivation together with a brief description of the theory of factorized S—matrix
(6] and the method of the TBA to extract informations from it [9]. In Chapter 3 we will
then proceed entering into the analysis of the general equations for the determination of
the Form Factors [10. 11]: we will study the analyticity requirements, the bound-state
and kinematic recursive relations and the cluster hypothesis. In the same chapter we will
show a few problems among the simplest ones that can help in seeing all the features
of integrable systems and the way to find the FF. Chapter 4 is instead devoted to more
involved systems such as the thermal Tricritical Ising and Potts models [13]. Moreover

an analytic re-derivation of the Form Factors of the models M3 9n+1 + 13 1n the light of
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the recent results concerning the cluster limit is also given. Chapter 5 is dedicated to the
two non-integrable perturbations [33] of the integrable model M, g + 13 [16] by using the
results of the previous chapter for its Form Factors. Finally in Chapter 6 we will show
how to extend the formalism of IQFT to the case with boundary [19, 20]. Through the
example of the free massive boson we will find the boundary S-matrix and apply it to

the case of the Random Walk with a boundary and attractive potential [21, 22].
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Chapter 2

General Properties of Integrable

Quantum Field Theories

In this chapter we will set up the general framework that will accompany us until the end
of this thesis. We will explain here some general features of the integrable deformations of
minimal models [1, 2]. The aim is that of providing all the basic informations that will be
useful when dealing with the Form Factors. In particular we will explain how to obtain
some sum-rules, that provide a connection between properties of the deformed theory
and the underlying Conformal Field Theory (CFT). Moreover a section is dedicated to
the properties of the S—matrix which completely characterizes the IQFT and one more
section to the TBA. In this last we will show how to obtain the ultraviolet central charge

and the vacuum bulk energy from the scattering amplitude.

2.1 Integrable Deformation

A deformation is given formally from the action density

Agse = A+ g /dQ:E(to, (2.1.1)

where A is the action that describes the CFT we are starting from, and ¢ is the
unspecified relevant field that breaks conformal invariance. In general we should allow
also for more than one field in the rhs of (2.1.1), but we can keep general enough also
with only one perturbing field. Concrete examples with two deforming fields will be given
in the sections discussing the features of non-integrable deformation.

The field theory described by the action (2.1.1) is in general non-integrable. However

if the CFT belongs to the minimal series it is always possible to choose a field in the Kat
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table of the CFT that leave the theory integrable [4]. In particular if the field » appearing

in (2.1.1) is given by one of the following

Y12 P13, Y21 (2.1.2)

the theory possesses an infinite number of conserved charges with spins higher than one.
The conserved charges P, (and P, = P_,, for parity invariant theories), where s denotes
the Lorentz spin, are deformations of the charges in the CFT case. Indeed for ¢ = 0.

there are infinite conserved charges given by integrals like

dz _ .
P, = f_‘)“—‘.TsH(z:z) (2.1.3)
ZTY
where T,y are descendent of the unit operator ¢33 = 1 at level s + 1. In particular
for s = 1 we have the stress-energy tensor. Since the deformation breaks conformal

invariance, the trace © of the stress—energy tensor and the traces over two indices of all
the other remaining tensors ©,_; become different from zero. However, in order to have
still a conserved charge of generic spin s, the trace ©,_; must satisfy the conservation
equation (see Appendix A for the conventions used in deriving the conservation equation

for the stress—energy tensor)
; 1
0T5+1+1393_1 — 0 - (214)

While for the stress—energy tensor (2.1.4) always hold, for currents with higher spin it can
be given only in the case of the minimal models perturbed by one of the fields in (2.1.2)
in which case one can use the null-vector equations [4]. The form of © = T/ in terms
of the fields in the CFT can be given by looking at the variation of the action under an

infinitesimal scale transformation and reads [14]
O =4drg(l-A,)p, (2.1.5)

where ¢ is the perturbing field and A. is its conformal dimension. As we shall see the

relation (2.1.5) will play a crucial role in the following sections.

2.2 The sum rules

Here we will derive three sum rules that will allow us to connect off—critical data with
properties at the conformal point. To understand them deeply it is worth recalling the

whole philosophy behind. Indeed, as we shall mention briefly, several results like for

12
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instance the Zamolodchikov c~theorem [5]. show that an integrable deformation of a min-
imal model may be understood as a theory interpolating between two CFT. In particular
if the integrable model possesses massless excitations then both the UV and the IR limits
will be some non-trivial theory in the minimal series. Instead, in those cases in which
the theory is massive the IR conformal field theory is the trivial one characterized by its
central charge ¢ = 0. Although in this work we will be interested only in the massive case,
we will try to keep general enough as to include also the massless case. With this remark,
it is clear the importance of having a tool that tells us what CFT we are interpolating.
Actually, since the integrable theory is completely determined once the S-matrix and the
spectrum are known, a tool that provides as well the information on the central charge
(which encodes all the informations on the CFT) is also given by the Thermodynamic
Bethe Ansatz (TBA) procedure. However, the sum rules involve integrals over all length
scale of the two-point connected correlation functions of some fields. Thus they become
an unavoidable tool for checking and finding the matrix elements over the Integrable
Quantum Field Theory (IQFT) Hilbert space of the fields involved. For their relevance,
it is worth describing them in detail.

The first sum-rule gives the value of the central charge of the CFT from the connected
two point correlation function of the trace of the stress—energy tensor. It can be derived
from the well known Zamolodchikov’s c~theorem [5]. The starting point comes from the

observation that the conservation equations (2.1.4) applied to the following correlation

functions v
F(r
(7(.2)7(0.0)) = £
G(r ,
(T(2,2)0(0,0)) = ~gg) (2.2.6)
_ H(r)
(6(z,2)0(0.,0) ) = 232 0
where 7 = log(m? zZ) and m is a mass scale, lead to the differential equation
. 3 o
C = —ZH(T), (2.2.7)

where ('(7) = 2F — G — 3H/8 and the differentiation is along 7. Actually, since e are
deforming the theory according to eq. (2.1.1) the function C depends also on the coupling

constant ¢

¢ = C(rg), (2.2.

[ SV
18V
Co
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and reduces to the central charge ¢ of the ultraviolet CFT when ¢ = 0. The above
mentioned theorem proceeds then showing that eq. (2.2.7) can be re-interpreted by using
the Callan-Symanzik equation as the variation of the function C along the renormalization
flow. In particular. for unitary theories the function H is always non-negative and this
implies that along the renormalization flow the central charge can only decrease. Equation
(2.2.7) is however also the starting point for our first sum rule obtained by Cardy in ref.
[14]. Indeed at fixed value of the coupling constant, eq. (2.2.7) can be integrated over
all length scales. From this point of view, we can think at the function C' as the one
that reaches the values of the UV and IR central charges as far as R — 0 or B — o

respectively. Taking into account now that

dC R dC
— - == 2.2
d&r ~ 2 dR’ (2.2.9)
one gets the following equation
Cuw — Cir = _43T /d%ﬁ(@(p[)@(@))c, (2.2.10)

where || is the direction of the Euclidean time.

The second sum-rule we are interested in provides the bulk vacuum energy & that can
also be obtained by means of the TBA technique, as we shall see in section (2.4). This
sum-rule comes from the fact that the singular part of the free energyv per correlation
volume, f,£* goes to a universal constant as far as ¢ — 0 [14, 23]. It is useful to rewrite

the behavior of the free energy as follows
fo v =Umi(g), (2.2.11)

where m, is the lowest massive excitation of the theory whose value depends on the

coupling constant. By simple dimensional arguments it is possible to see that
g x mi, (2.2.12)

where y = 2 — 2A, and A, is the conformal dimension of the perturbing field. The
proportionality constant in (2.2.12) can be determined in many different ways [24, 9].
the exact value of which will interest us only later. Consider now the singular part of
the specific heat (or susceptibility) per unit volume. Since it can be obtained from the
second derivative with respect to g of the free energy and as zero moment of the connected

correlation function of the perturbing field (o, we have the following identity

& fs 2 5o -
agj; = —/d z{p(z)p(0)). . (2.2.13)

14



By using eqgs. (2.1.5), (2.2.11) and (2.2.12) we finally get

SR lfyu%mmwp (2.2.14)

16, #2m?
. 1

Notice that although the appearance of a mass into eq. (2.2.14), both sides are dimen-
sionless. This can be proved by taking the massless limit ¢ — 0 and observing that all
the dimensionful constants cancel.

The third and newest sum rule concerns instead the conformal dimensions of the
primary fields in the CFT and it has been derived in [15]. Although its derivation for the
perturbing field can be given by using some algebra on the previous sum-rule (we will
present this derivation at the end of section (2.4)), it is worth reproducing here the whole
argument presented in the above cited paper. Consider indeed the following two—point

connected correlation functions for a generic primary field o

A M(7
(T(z,2)0(0.0)). = 7(2 )
(2.2.15)
N(r
(0(,5)0(0.0)), = 2.
where 7 = log(m?zZ), and m is a mass scale. Plugging them into the conservation
equation (2.1.4), one gets the differential equation
: N(r ‘ :
D = —i—l, (2.2.16)

where D = M 4 N/4. For a fixed value of the coupling constant ¢, one can look at
the conformal limits of eq. (2.2.15). This limit heavily depends on the form of the OPE
between the perturbing field and ®. Indeed in the perturbative framework around the
conformal fixed point we require that the correlation functions between ¢ and any other

combination of fields be finite at any order in the coupling constant g. Thus if the OPE

o
SV
Ju—y
-1
e

QO(:IZ)é(O) — Z Cié |xl2(Ak—A¢-A¢,) Ak ( 9
k

leads to ultraviolet divergences this means that the definition of ¢ near the conformal
point needs counterterms to cure them. If this does not happen i.e. if the field ¢ does not

mix under renormalization, then we have the following UV limits

as R — 0,

—
[\
[\]
—
o

~—

M = Ag(0)
N =0



where () is the vacuum expectation value of the field ¢ on the Hilbert space of the
integrable theory. Its value, that will interest us also later, is different from zero if there
are no internal symmetries that constraint it to vanish and for dimensional reasons it is

expected to hbehave as

(8) = vgmi?. (2.2.19)

Of course, a similar result should hold also in the IR limit R — 0. Thus, provided that
the Operator Product Expansion (OPE) between ¢ and ¢ behave smoothly as R — 0. we

can integrate over all length scales eq. (2.2.16) finally giving [15]

P g 1 ~7 n .
NN [ @z e(ihs(0)). 22,20
@ —\o 47[_<¢> T( ([’EI)O( )>» ( )
However if the OPE (2.2.17) leads to divergences the second of eqs. (2.2.18) does not hold
and as a consequence also the first is incorrect. In this case then also eq. (2.2.20) cannot

be used. As mentioned at the beginning of this section, the sum rules provide checks for
the exactness of the matrix elements of the operators involved. However, this last one
(2.2.20) gives something more. Indeed once a general solution for the matrix elements of
a generic field is known, it is not always easy to identify what is the corresponding field
in the Ka¢ table (only for the perturbing field the task is trivial, thanks to eq. (2.1.5)).
Instead, eq. (2.2.20) allows us to uniquely identifv the ultraviolet and infrared fields to the
matrix elements in the IQFT case. The nature and properties of these matrix elements
will be described in the chapters relative to the Form Factors.

To end this section let us make some more comments on the vacuum expectation
values (2.2.19). Indeed consider two fields e.g. 01 and ¢, which are proportional (here,
as will be stressed often in this thesis, for proportionality we mean in the sense of their

matrix elements on a given Hilbert space)

Qsl = A O?. ’
where A is the proportionality constant. We would like to determine A. This can be
easily done by taking the vacuum expectation value of both sides thus giving

(o)
A=)

Let us apply this reasoning to our case in considering the relation (2.1.5). Indeed according

to (2.2.21) we have also




thus leading to the identity

drg(l—A.) = @ (2.2.23)
(#)
This relation will allows to determine the vacuum expectation value (2.2.19) of the per-

turbing field ¢ once (©) is known, as we shall see in section (2.4).

2.3 Factorized S—matrices

One of the main consequences of integrability is the existence of factorized S—matrices [6].
The factorization relies on the possibility to express multi-particle scattering as products

of two-particle ones. If the 2-momenta is parameterized according to
(E,p) = (mcoshf, msinh @), (2.3.24)
the two-particle S—matrix is defined as
|AL(02) AJ(6))owe = S5H(8a5) |AL(0) AL(02))in (2.3.25)

However it is more convenient to think at the S-matrix to as a braiding operator be-
tween creation and annihilation operators. This formalism is known under the name of
Faddeev-Zamolodchikov algebra. Let —11 (6,) be the operator that creates a particle with
rapidity 0; and internal degrees of freedom labeled by ;. If A*1(6;) is the corresponding

annihilation operator, then they are supposed to satisfy the following algebra

A% (0,) A%2(02) = S5i52(612) A7(02) A7 (6:)

AL (B) ALL(6) = 52 (61) AL (6,) A, (61) (2.3.26)

[a3 e 3]

A% (61) AL (02) = S251(02) A] L(03) AP (01) + 6226(612)

where for brevity we have written 0, = 93 — B.

The validity of this algebra goes bevond the case of the massive theory. Indeed the
S-matrix can be considered from the abstract point of view as that operator that governs
the algebra of creation and annihilation operators also in the massless case.

The factorization equation we are going to impose on our S-matrix, can be pictorially
drawn in a graph in Figure (2.1).

It gives rise to the following equation [6. 23]
S0 (012) S (015) STE (B2) = S22 (635)S2% (613) P2 (1) (2.3.27)
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Figure 2.1: Diagrammatic representation of the Yang-Baxter equation for a scattering process.

which is known as the Yang-Baxter equation. The general solution of this equation is
unknown, but for those theories we will discuss here things simplifies. Indeed. we will
consider only theories with massive diagonal scattering, in which case the particles can
be completely distinguished. However also in these cases there are general analyticity
requirements that must be satisfied. Since in the following we will discuss only this kind
of theories, all the equations will be specified only for this case. While the Yang-Baxter
equation is trivially satisfied, the two main monodromy equations left are given by the

requirements of crossing symmetry and unitarity expressed respectively by

Sa5(9> = L-ab(g) = Sab(’iﬂ‘—e)

(2.3.28)
Sap(0)Sap(—0) = 1.
These two equations constraint the S—matrix to be a 277 periodic phase
Sap(8) = eParl®) (2.3.29)
where 6,4(0) = —6,4(—0). The general solution of (2.3.28) can be given in terms of product
of functions . b 10+ ina)
' smh (0 + 7o ;
Sor 9) = N : ; 5 2.3
sa(9) sinh (0 — i7a) (2:3.30)
or, in those cases in which the particles are all self-conjugated, in terms of
tanh 1(0 + ix
fu(0) = b0t ima) (2.3.31)

~ tanh (0 —i7a)
The function s, shows a simple pole at § = ixra. Corresponding to this pole we may have

a bound state in Sq5(0) whose mass is given by

mg = mZ + mg + 2mgmyp cos Tar . (2.3.32)
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in the s channel. In this case we should call ira = iug,. For what concerns the functions
fa, they instead show a simple pole in i7a and at the crossed position i7(1 — «).

The general form of the two—particle S—matrices is then given by

Sw = [[ f=(9), (2.3.33)
ae“’h}.b
or
S =[] s2°(9), (2.3.34)
OE"‘lab

depending on whether the spectrum of the theory is made only of self-conjugated particles
or not. In the last equations we have denoted as A, the set of rational numbers that label
the position of the poles in the scattering amplitude, while p, denotes the multiplicity of
the corresponding pole. The sets A,, moreover satisfy the following relation that will be

useful in section (2.4)

sinTa m -
Loesy, SIOTA M (2.3.35)
YA, SINTQ me
thus leading to the equation
Z sinTa = Mg Z sinTa, (2.3.36)
OfEAQb C!EAU
where 1M, = my/my. The S-matrices depend on the Mandelstam variable
s = mZ + mZ‘ + 2mymy cosh 8
and possesses two cuts, such that the physical strip is given by
(Mg —my)? < s < (m, +my)?.
In the rapidity parameterization the physical strip is realized for

0<f<ar. (2.3.37)

into which we may find the poles. When a pole corresponds to a bound state it gives
rise to an equation that provides the mass of the bound state, given by eq. (2.3.32) and
depicted in Figure (2.2). In the case of a simple pole that gives a bound state, we can
compute the on-shell three—particle coupling

(TS,)* = —i lim (8 —iuS,) Sa(6) . (2.3.33)

70 C
g s,

The important point to mention here is that a sort of ‘nuclear democracy’ applies. This

means, we promote all the bound states to be also asymptotic or fundamental particles.
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a b

Figure 2.2: Diagrammatic interpretation of the process responsible for a single-pole in the

S-matrix.

Thus the particle ¢ that appears as bound state of @ and b will also appear as one of the
fundamental particles.

The construction of the whole set of two—particle amplitudes relies on a bootstrap
procedure. By starting with only one amplitude, let say S;;(f), one can in principle
proceed in deriving the whole set of two—particle S—-matrices. As a consequence one
obtains also the whole spectra of the theory. One has to say however that this procedure
is not always trivial, indeed there is at least one intriguing example, the model Ms 5+ 2 5,
in which the amplitude S7; is known but it has not yet been possible to derive the other
matrix elements (for a complete account of results as well as properties of the functions
(2.3.30) and (2.3.31) and a description of the bootstrap procedure see the review article
[8]).

After, and during, the derivation of the complete set of consistent two—particle am-
plitudes, one faces the problem of interpreting the higher order poles appearing in S
Indeed, as we shall see in concrete examples, there may be a quite rich zoology of poles
and zeroes.

There is a basic principle that must be used in understanding what these poles really
mean. In integrable theories which are deformations of minimal models their spectra is

completely known and is given by the asymptotic particles. The general pattern, obeyed
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by unitary theories with self-conjugated particles, is that as far as the multiplicity of the
pole is odd, the pole corresponds to a single particle channel process (see Figure (2.3) for a

possible third order pole) while even—order poles do not show such single particle channel

a b

Figure 2.3: Diagrammatic interpretation of the process responsible for a third-order—pole in

the S—matrix.

(Figure (2.4)). If the unitary theory has particles which are not all self-conjugated, as
for instance the model Fg, then some poles may occur that correspond to poles in the
t—channel. We shall see this feature more in detail in the section in which we will discuss
this model. A little bit more complicated may be the situation in the non-unitary case.
Let us consider only theories with all self-conjugated particles. If the two-particle S-
matrices show zeroes, there may be simple (or odd) order poles that do not correspond
to any single particle channel. This is due to the fact that these poles are actually even
order poles, like the one in Figure (2.4). where in the internal lines there is a zero because
Sce(7) = 0. Thus, in order to show that a simple pole does not correspond to a bound
state one has to find a graph in which these poles appear as being e.g. of second order

but coupled to a zero. Graphs and poles of this kind have been discussed for instance in
[16].



a b

Figure 2.4: Diagrammatic interpretation of the process responsible for a double-pole in the

S—matrix.
2.4 Thermodynamic Bethe Ansatz

To give support to the conjectured S-matrices discussed in the previous section we need a
method to extract informations on the UV and IR limits from it. The method is provided
by the Thermodynamic Bethe Ansatz (TBA), introduced in the relativistic quantum field
theory in ref. [9], suitably modifving the non-relativistic version presented for the first
time in [26]. This method can also provide non-perturbative informations on the ground
state of the theory along the whole renormalization flow, as we shall see!. Let us consider
the system as placed in a periodic cylinder of circumferences R and L. Since in Euclidean
field theory both directions .can be considered as Euclidean time, the system may be

described by both the following partition functions
Z(R,L) = Tre LtHr (2.4.39)

or

Z(R,L) = Tre FHe (2.4.40)

'For more recent developments on the analytic study of the excited states and connections with

quantum group symmetries see [27, 28].
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where Hg and Hy are the Hamiltonian for the system quantized along the axis R and L
respectively (see Appendix A for a derivation of (2.4.39) and (2.4.40)).

In the limit L — oo eq. (2.4.39) is dominated by the ground state Fg(R) of Hr and
reads

Z(R,L) ~ e LEo(R), (2.4.41)

The same limit in (2.4.40) has the meaning of a thermodynamic limit on a one dimensional
quantum system defined to live on the circumference L. at temperature 1/R. The partition

function (2.4.40) can then be rewritten as
Z(R.L) ~ e LRIR) (2.4.42)

where f(R) is the free energy per unit volume of the system at temperature 1/R. The
above mentioned symmetry under the exchange of the axes (or modular invariance) can

be fixed comparing egs. (2.4.41) and (2.4.42) into the following relation

Eo(R) = Rf(R). (2.4.43)

Denoting by m; the lowest mass of the theory, one defines the a-dimensional variable
r = m; R in terms of which one can parameterize the ground state energy according to

_mér)

Eo(R) = 6R

(2.4.44)

where ¢ is called the finite size scaling function. Since 1/m; is the natural correlation
length of the theory, the limit r — 0 corresponds to the UV limit. This means that ¢(0)
is nothing but the finite size scaling function of the corresponding CFT. However in this
limit the finite size ground state energy takes the value
2% - c
Eo(R) = ’E(Amin + Amin — E) - (2.4.45)

This implies that é(r) results to satisfy
&(0) = ¢ — 24A i (2.4.46)

where A, is the conformal dimension of the most relevant field of the theory (i.e. that
field with the lowest conformal dimensions). Notice that if the theory is unitary the most
relevant field is the unit operator, which has conformal dimensions zero. Thus in this case
we get exactly

&(0) = c (2.4.47)
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where ¢ is the central charge and ¢ is called the effective central charge. The task we have
in mind now is the following. We want to find a method to compute the central charge
of a certain integrable field theory given the S—matrix two-particle elements. In order to
obtain this information we have to specify the variables and the physical quantities we are
dealing with. In particular we have to define what is the relativistic Bethe wave function.

Let us suppose that the theory possesses n different particles with masses given by
mg for @ = 1,---,n. Moreover let us suppose that the scattering is purely elastic and
the S—-matrix is of the kind described in the previous section. We define an IN-coming
asymptotic state as the one in which the distances between the particles are much bigger
than the correlation length |o; — x;| > &. In configuration space there are n! such regions
into which the interactions are absent. The interaction process, when a particle reach
the others is mediated by the S—matrix. After all the particles have interacted the state
belongs to some other of the n! regions. While in one of these non-interacting domains.
the particle positions can be given as z;, < z;, < --- € zj,, and the system may be

described by the plane wave function
U(zy,...,20) =[] 7™ (2.4.48)
1=1

In order to obtain now the quantization conditions for the momentum, we have to take
into account that at every diffusion process the wave function must be multiplied by the
corresponding diffusion matrix according to the Fateev—Zamolodchikov algebra (2.3.26).
By imposing periodic boundary conditions on the wave functions we get the quantization

condition

6ipiLHS(9i—9j)—_—1 i=1,...,72, (2_}_}:()’]

JFt

that can be set into the following form by taking the logarithm of both sides

mi‘L sinh (9,' + Z 52']'(91' ad 9]) = 27qi (2450)
J#

where we have used the identity (2.3.24). Once the set of all the ¢; has been fixed we can

solve eq. (2.4.50) with respect to the rapidities, thus obtaining the Bethe Ansatz states
191,015 92,025 - - .5 G On) (2.4.51)
and giving the total energy and momentum the following values

E-—-Zmicoshﬁi p-:ZmisinhG,-. (2.

1=1 =1

(A
M
It
[§)
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Moreover, since we will only consider theories in which the particles are bosons and their
statistic is of fermionic type S,,(0) = —1. the numbers ¢; in the rhs of (2.4.50) will be
only integers. In particular since the lhs of eq. (2.4.50) increases with 6;, the values of
¢; for a given kind of particles must increase strictly if the particles are bosons. In other
words, two identical bosons cannot have the same rapidity.

Now, we would like to take the thermodynamic limit. This means that we let the
size of the system L — oo while keeping the density of particles fixed. Thus the total
number N of particles in the IN or OUT states must also go to infinity. In this limit, we
are interested in seeing what distribution of quantum numbers in (2.4.51) dominates the
system.

Let now be n® the number of particles of type a. These numbers of course satisfy
N =3, n®. Moreover let ¢? the subset of all the ¢;’s, that correspond to the n? particles.
On the light of the above mentioned exclusion principle, also the ¢% must increase strictly
with ¢. One can rephrase this conclusion by saying that not all the possible sets of ¢¢
correspond to physical states. Once a physical set of g7 has been fixed, the solutions #?
will be called roots. Solutions corresponding instead to some unphysical set will be called
holes.

In the continuum (thermodynamic) limit, the number of roots and holes in the interval
[0,0 + 66] will be denoted respectively by p2(8) and p$(8). In this limit then we have the
TBA equation

Mg cosh 6 + (o4 * p°)(0) = 27p*(0) (2.4.53)

b=1

where p* = p? 4+ p%. In eq. (2.4.53) we have also used the convolution
(Bus = )0 = [ d0'6(0 — 0)4(0), (2.4.54)
where
$ap(0) = aé—ggﬁ, (2.4.55)
and 6,5 has been defined in (2.3.29). The total energy of the system can be rewritten as

T +D:
E=1 Z/ df mp?(6) cosh 8 (2.4.56)

and the entropy of the system is given instead by taking into account that we are dealing

with particles obeying a fermionic statistic

n +oo
Slp,pl = L I/ df [p*log p* — pi log pr — (p* — pi)log(p® — p2)] . (2.4.57)
a=1" "
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Finally, we can come to the equilibrium distributions. We have to find the distributions
pr and p; that minimize the free energy

1. X

Lflpspr] = Elpl = 55lp, o] (2.4.58)

of the system at finite temperature 7' = %. By using now (2.4.56) and (2.4.57) together

with the condition (2.4.53), one can derive (2.4.58) with respect to p, thus obtaining

maRcoshd = €,(8) + (0ap * Ly) () . (2.4.39)

In eq. (2.4.59) we have used the fact that ¢,, = 01, and that unitarity of the S—matrix
implies ¢op(—0) = ¢45(8). Moreover we have also used the following definitions

p*(0) — p5(0) — e%(0)
~(0) -
g (2.4.60)
L,(0) =log(1+ e‘fﬂw)) ,

where ¢, is called the pseudo—energy. Once the minimum condition has been computed.

it is easy to get the free-energy (2.4.61) at the thermodynamic equilibrium

f(R) = -3 RZ/ dfdm, L,(8)cosh @ (2.4.61)
o
and, thanks to eqs. (2.4.43) and (2.4.44), the corresponding value for the effective central
charge
3 & +oo
ér) == fnar/ df L,(0)cosh @, (2.4.62)
A a=1 -

where m, = m,/m;.
The next step will concern the conformal limit r — 0 of (2.4.62). Observe that for
r — 0 the derivative of the pseudo—energies €,(6) goes to zero as far as # — 0. This means

that €,(6) are nearly constant in the following interval
—log(2/r) <« 6 < log(2/r). (2.4.63)

It is then easy to determine the value of these constants ¢, by using eq. (2.4.59). Indeed

for  — 0 and 8 satisfying (2.4.63) we have the transcendental equation
= Ny log(l+¢€7%), (2.4.64)

where

+co
N,y = .-/_ bs(0)d0. (2.4.65)
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We have now to perform the UV limit by letting # ~ log 2. This limit transforms eq.

(2.4.59) into an equation that provides the so—called kink solution

'ﬁzaee

l =

i (gm « L ) (2.4.66)

@ b=1

N

where the functions &,(f) and L,(6), are called kink functions [9]. These functions take
constant values according to eq. (2.4.64) for § — —oo, while for § — oc it shows that &,(#)
grows exponentially. Finally one can see what happens to the effective central charge.

Indeed eq. (2.4.62) get transformed into

_era/ RO (2.4.67)

that can be solved by using (2.4.66) [9]. giving

) "6 1 )

a=1

where L(z) is the Rogers dilogarithm defined as

N logt  log(l —1t) o
ﬁ(r)——sfo dt [1_t+ ; } . (2.4.69)

<

To summarize, the computation of the UV effective central charge reduces to solve the
transcendental equation (2.4.64) and put this solution into eq. (2.4.68).

Among the other relevant quantities that can be computed by means of the TBA,
there are the vacuum expectation value of the trace of the stress—energy tensor and the
universal amplitude &. Let us begin with the first one, since the second can be obtained

from it. As shown in Appendix A, the trace satisfies the following equation

_ o, dBE(R)) "

where Ey(R) is given by eqs. (2.4.43) and (2.4.61) and reads

Eo(R) = — 2= /°° d6 cosh 8 L, (8) . (2.4.71)
7 Jo
Let us define the functions
1 Oe 1
e _ 2t
miR 90 ~ 2 (da v )
(2.4.72)
1 Oe, IV
= — /—
o oE = 3 W)



with ¥ 1 (8) = v; (—0) and satisfving

. ) 1 oC P e—eb(ﬁ) . _
l/)ai(g) = maeié + 5; ‘/_m d,j (Dab(@ - ﬁ)md?(ﬁ) . (24( 3)
With these functions eq. (2.4.70) can be rewritten as
4o e—ea(ﬁ) + 0 -8 5 -
<@> = my ;ma [-w dgmd‘a( )e s (-—l(—l—)

where now we have to evaluate the rhs in the UV limit »r — 0. The key observation is
that in this limit the function v} satisfies the same equation as the derivative of the kink

pseudo—energy, namely

bt — ‘9060 . (2.4.75)
Thus our vacuum expectation value can be evaluated as
(©) = —mi > m,T,, (2.4.76)
where .
T, = /_t a9 aajg‘ = (2.4.77)

The sum in the lhs of (2.4.76) is finally given by expanding for § — —oco the convolution

1 / 40" g0 — 0)14(8) = 2 Y(Y sinwa) Ty + Oe) =

._5_:
LT ™ b a€Ag

2
= Zef i, ( Z sin o) Z myTy + O(esg) ,

'/T a€A; b

where s > 1. In deriving the second equality we have also used eqs. (2.3.35) and (2.3.36).
However the same convolution appears as first term in the expansion for § — —oc of

the derivative of the kink pseudo-energy. Since numerical calculations show that [9, 29]

(2.4.79)

a_é ~ e(z—zAﬂﬁ)e

dé e1=2¢)%  non-unitary theories
unitary theories

6

as a consequence the coeflicients of the terms behaving as €’ must vanish. This finally

implies that
Tm} R

2Y sea, Sinma

Now we are ready to compute the amplitude U appearing in eq. (2.2.11). Indeed for

thermodynamic reasons we expect that the ground state energy behaves as [9]

Eo(R) ~ —%_SOR as g — 0, R — oo, (2.4

N
e
0
—

o
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where & = —Um?2. The determination of I/ is now easy. Observe indeed that by putting

the expansion (2.4.81) into the definition (2.4.70) one obtains the relation

Ty = ——lﬁgo, ( O

SV
e
o0
1O

from which we finally get

2
m
S = —Um? = —— L ) (2.4.
82 ae4y, SINTQ

[04]

3)

Let us go back now to the sum rules. First of all let us show that in the case of the

deforming field, the sum rules (2.2.14) and (2.2.20) are actually the same. Indeed taking
into account eq. (2.2.22) the sum rule for the bulk energy becomes
U= To /d’-’:c (O(z)e(0)) (2.4.84)
T 1672mIAL(p) e o

where ¢ is the deforming field. Inserting now the fact that

Ty

U= 2.4.85

4zm?’ ( )

we get the expected eq. (2.2.20). One can notice that there is an apparent “wrong” sign
in (2.4.84) with respect to (2.2.20) which however does not matter when dealing with the

deforming field. However a particular care must be taken when turning from cylinder to

plane: indeed as we shall see in the models M5 2,41 + 013 in which (2.2.20) is used for all
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Chapter 3
Form Factors

In the previous chapter we have seen three sum rules that allows us to connect data in
the off—critical integrable theory to parameters corresponding to the ultraviolet CFT. In
particular this connection is made through the correlation functions. Thus we need a
method to compute them and this is provided by the Form Factors (FF). Indeed while
in the CFT the fields belong to some infinite dimensional representation of the Virasoro
algebra and constitute also the Hilbert space, in the Integrable models the Hilbert space
is made of asymptotic particle space. Thus in order to represent the fields of the theory
we need their matrix elements on the IN or OUT states of the Hilbert space. This matrix
elements are precisely the Form Factors. However we have to stress that the fields in the
deformed theory are not the same as in the CFT but are in one-to-one correspondence
when the perturbing coupling constant goes to zero. For this reason, with a certain abuse
of language, we will often refer to the fields in the IQFT with their names in the CFT i.e.

we will call primary fields those fields that reduce to the primaries in the conformal limit.

3.1 General properties of the Form Factors

Suppose we want to compute the following correlation function

(0]¢s(z,t)$:(0,0)[0) , (3.1.1)

where ¢, and ¢. are certain scalar and mutually local fields of the IQFT. This can be

done by inserting in between the fields a complete set of asymptotic particle states
Z ln>in m(n] =1= Z |n>out out(nl (312)
T ()
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as to give

. d"f - i , \
016y (z,)6.(0,0)[0) = / S PR (g Fe(d), (3.1.3)
Oles(e 000.0000 = 22 o so @ © Fran D@

where éi =17 — f; and we have inserted the Form Factors defined as

F}anlOry-0) = (0]65(0,0)[61....,0,),

(3.1.4)
(B1,...,0,]05(0.0)[0) = F? . (i —01,... i1 — 6,).

Notice that for non-unitary theories the second equation of (3.1.4) is not the complex
conjugate of the first. This is the reason why we have inserted both into the spectral
representation (3.1.3). The matrix element (3.1.4) is intended to be on an IN asymptotic
state i.e. on a state in which the rapidities are ordered as #; > --- > #,. This order-
ing influences also the integration paths in eq. (3.1.3) that must be taken accordingly.
However, as we are going to show, any integration in (3.1.3) can be safely taken over
all the real plane. Moreover, we have to note that the fields entering into the spectral
expansion (3.1.3) are understood to be in Heisenberg representation, from which come
the exponential factor. In the following we will often abandon the relativistic notation for
the Euclidean one (as for instance in the sum-rules). This will result in a change in eq.

(3.1.3), where instead of the exponential written we will have
exp (—[z|E) = exp(—|z| ) mscoshby), (3.1.5)
k

according to the representation of the energy in terms of rapidity.

Relativistic invariance imposes that the FF (3.1.4) for scalar operators depend only on
the rapidity differences. If the field possesses instead Lorentz spin s, its matrix elements
should also show the same property under Lorentz transformations thus leading to the

general following behavior

a1,-,n

FpanB+ A, 0+ A) = e (0,..,6,), (3.1.6)

for any s. Since in this thesis we will consider only fields which are scalar ones all the
following formula will be given for this specific case in order to render more manageable
their use. Moreover one should take them carefully if ¢, in (3.1.4) is not local with
respect to the field that creates the asymptotic particles (as it happens for instance in the
thermal Ising between the order or disorder operators and the fermion). Indeed in those

cases some of the monodromy equations discussed below may not hold (on the issue of
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mutual locality and form factors see [30]). The FF satisfy the so-called Watson equations

[31], given by
Faﬁ,...,al.a,g,...,an(91* cey 009,000, 0,) =

= Sa,-,a;.;.l(&i - Hi—i—l) Fag:i (917 .. '79~i+179i- .- --,Gn) .

..... Qi41,844---210

Fg oo (00 +272,05,...,0,) = F7 a (O, 0n,01).
The first of (3.1.7) is a direct consequence of the Faddeev-Zamolodchikov algebra (2.3.26)
and allows us, thanks to the unitarity equation (2.3.28), to extend the integration paths in
(3.1.3) to all the n—dimensional real space. The general solution of eqs. (3.1.7) constitutes
a mathematical problem of formidable complexity if one considers also non-diagonal S-
matrices like for instance in the Sine-Gordon soliton FF [10, 11]. However in the two-
particle case it is always possible [10] to find a solution which is power bounded for F,
as

Fa(0) = K(6) F™(8), (3.1.8)
where :g"" is the minimal solution which has no poles and zeroes in the physical strip *
Im0;; € (0,27) and satisfies eq. (3.1.7) while K(6) contains all the informations on the
poles and satisfy

K(0) = K(—-0) = K(2rt+0). (3.1.9)
This result allows us to express also the n—particle minimal solution in terms of products of
the two—particle ones for diagonal scattering. Indeed, by using the factorization properties
of the underlying scattering theory, the minimal solution associated to a generic n—particle
FF may be easily expressed in terms of the minimal two-particle FF F2*"(8) by
o an(00,05,.,0:) =TT Fam(6:—6;) . (3.1.10)
1<i<j<n

where the explicit expressions of F[3"(8) are given for theories with degenerate mass

spectrum by

‘Sa,b
() = (—isinh g) 1] Ra(8)=, (3.1.11)
= o‘€~Aab
while for theories with non-degenerate mass spectrum by
. 0\ b
) = (—i sinh —) I ga(6)%= . (3.1.12)
2 Q’efd‘ab

1A zero in 6 = 0 is necessary if S;,(0) = —1.

32



The definition and the properties of the functions k,(8) and g,(8) are collected in Ap-
pendix B. Note that the exponents p, are the order of the poles as given in the corre-
sponding two-particle S—matrices (2.3.33-2.3.34). As mentioned at the end of section
(2.3) there might also be zeroes. These zeroes then appear into the S-matrix and into
the minimal FF as carrying a negative multiplicity i.e. p, = —n where n is the order of
the corresponding zero.

The minimal expression of the FF does not carry any dependence on the specific
operator we are considering, as it must be, since the monodromy properties derive from
the S-matrix alone. To characterize the different operators and to take into account
the dynamical pattern of bound states of the theory. let us consider in more detail the
analytic structure of the FF, starting our discussion from the occurrence of their poles.
Their pattern may be very complicated for the multi-scattering processes of the theory.
There are however two classes of simple order poles in the FF which have a simple and
natural origin [11]. The first class is that of kinematic poles relative to particle-antiparticle

singularities at the relative rapidity § = i with the corresponding residue given by

~iBm (0 — ) Fag . nn(0+i7,0,04,...,0,) = (3.1.13)
6—0

- (1 — T Saas(6 - 9i)) Faoan(61,...,02) .
1

The second class of simple order poles of the FF which admit a simple explanation is
that associated to bound state singularities. Namely, whenever 4,(6,) and A4,(6;) form a
bound state A.(f) for the value 8,5 = iuS, of their relative rapidity, then all the matrix
(02,05,01,....0,) involving the two particles A,(,) and Ay(6,) will

have as well a simple order pole at the same position, with the residue ruled by the

o
elements F/, |

on-shell three-point coupling constant I'¢,, i.e. (see Figure (3.1))

—1 Hubli—"%zb(gab —tugy) Fly oo (0a,00,01,..,0,) = TS, Fio o an0e,01,..,0,) .« (3.1.14)
In addition to the above classes of simple poles, the FF may present poles of higher order
relative to the underlying multi-scattering processes [12, 13]. The above two equations
(3.1.13) and (3.1.14) form the basis for recursive relations that allow us to completely
determine the FF. Moreover, as will be explained in the next subsection, in those the-
ories without internal symmetries one can also apply the cluster equations that will be
extremely useful in selecting out the FF of all the primary fields.

A key point to understand the rich analytic structure of the matrix elements is to
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Figure 3.1: Diagrammatic interpretation of the process responsible for a single-pole in a Form

Factor.

initially? analyze the two-particle FF. Following the analysis of [12] (see also [13. 32]),

the two—particle FF can be conveniently written as

F5(0) = Qs 0 20

“eb A (3.1.15
Das(6) )

where D,; takes into account its poles structure and @7, is a polynomial in cosh # which
carries the dependence on the operator ¢.

The polynomials Dy(8) are determined from the poles of the S—matrix. The analysis
of ref. [12] gives the following simple rules for determining them in the case of non-

degenerate theories:

Day(0) = I (Pal0))” (Pr-al8))” (3.1.16)
C”efla,l:v
o = L, o = 3 if o« =2 1 3
T RE Ly Jamno B Pe=in (3.1.17)
o =N , Jo=mn , if Do = 21,
where A,y and p, are defined in egs. (2.3.33) and (2.3.34). The functions
cos Ta — cosh 8 . N

2

give a suitable parameterization of the pole at § = iwra. The above prescription can be

also generalized to degenerate theories [13]. In fact, referring to equation (B.1.19). one

2The reason is that, by factorization, FF with higher number of particles inherit their pole structure
from the analytic structure of the two—particle channels. Moreover, the two—particle FF play an important

role in the theory since they provide the “initial conditions” needed for solving the recursive functional
equations (3.1.13) and (3.1.14).
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can write

D(8) = TI (Pa(6))" | (3.1.19)
a€Agp

1 s—channel pole;
1 t—channel pole; (3.1.20)

s =7

o =T , if Pa =21 .

where it is convenient to distinguish between poles associated to the direct s—channel and
those relative to the crossed t—channel. Moreover, in addition to the rules (3.1.16) and
(3.1.19) we have to discuss the case of the anomalous poles. Indeed these poles appear
in the S-matrix as poles with the wrong multiplicity. This effect is due to the presence
of zeroes. Indeed, corresponding to any pole one can try to draw a graph in which the
internal lines are given by some suitably chosen asymptotic particles (see Figures (2.2-

3.3)).  Thus, it may happen that these particles meet at certain rapidity differences

Figure 3.2: Diagrammatic interpretation of the process responsible for a double—pole in a Form

Factor.

corresponding to a zero as for instance in Figure (2.4) if S..(¢7) = 0. This occurrence of
course change the overall multiplicity of the pole that appears then lowered. In order to
translate these poles into the FF, one has however to find their corresponding rule which
in the case of simple (anomalous) poles is given by (3.1.16) as for “true” simple poles.
Moreover they also give rise to equations obtained by cutting the diagrams as in Figures

(3.1-3.3) and discussed below [16].

Let us quote at this point the equations which will be often employed in the next

sections. Those are: (a) the residue equations at a simple order pole that corresponds to
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Figure 3.3: Diagrammatic interpretation of the process responsible for a triple—pole in a Form

Factor (here ¢ = uib).

a bound state

—i lim (0 —iu,)F5(0) = TS, F7 (3.1.21)

f—iug,
(see Figure (3.1)); (b) the residue equations relative to a simple order pole induced by a
double pole in the S—matrix

—1 hm (Qab——in)Fab(eab) = F;"dr}che(i"/) . (3.1.22)

gab—‘“r"

where v = 7 — ul, — ug—g (see Figure (3.2)) and finally, (c) the residue equations relative
to a double order pole induced by a third order pole in the corresponding S—matrix (see
Figure (3.3) where ¢ = u/})
Hm (0 — iwly)?Fup(0as) = iT8,05; lim (e — iul,)Fre(6ee) =
eab——‘viua Oce—iuc,
’ (3.1.23)
= —To 5Tl Fy .

After haviﬁg considered the pole structure of the two-particle FF. let us concentrate our
attention on the polynomial Q%,(#) in the numerator of (3.1.15). In contrast to Dgy,(4).
which is only fixed by the S—matrix singularities, the polynomials Q3,(8) depend, on the
contrary, on the operator ¢(z) and may be used to characterize it. An upper bound on

the maximal degree of the polynomials Q7,(6) has been derived in [12]. Let us describe
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it in detail. Consider the theory in the Euclidean continuation 7t = y, the p-moment of

the two point correlation function of a given field ® has to satisfy
M, = /df"‘rl;rlp(@(]xl)@(O))c < oo, (3.1.24)
for those p which are compatible with the ultraviolet behavior
(®(|z])®(0)) ~ |z|7%* as |z| — 0, (3.1.25)

where a is the scale dimension o = 2.\ of the field ®. This sets a lower bound for the

possible values of p to be
p > max(—1, 4A = 2), (3.1.26)

which for A < 1/2, which fills all the cases considered here, restricts the choice to p > 0.
Let us take then the “worst” case and insert the spectral expansion (3.1.3) into equation
(3.1.24) for p = 0. This gives the following equation

d"o Fq’ (O FS (é) ‘
2 can Q1 4eenyn ' 3197
T Z Z/1> >€n 2? n (Z?:l m; COSh 91:)2 < o0 (3 l)

n=1 a;

The convergence of the series is of course guaranteed by egs. (3.1.24) and (3.1.26). What
remains to be fixed is the convergence of any single integral in (3.1.27). Denoting by ys
the real quantity defined by

m F2 | (01,...,00) ~ evelél (3.1.28)

16:|—o0 Qjeeene

we have [12]
yo < 1. (3.1.29)

Taking into account the degree of the factor F3™/D,s(6) in the two-particle FF (3.1.15)
by also using eq. (B.1.11), it is easy to translate the inequality (3.1.29) into an upper
bound on the degree of the polynomial Q% (9).

3.1.1 The Form Factors of the Stress Tensor

In what follows we will often consider the FF of the trace O(z) of the stress—energy tensor,
thus it is worth making a brief digression on the properties that they must satisfy. In this
case indeed we have additional constraints for the corresponding polynomial Qa(9). Aswe
shall see, the conservation law 9,7#(z) satisfied by the stress—energy tensor implies that

the FF of the trace ©(z) must contain the kinematic polynomial P? = (p;+---+p,)?, with
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the exception of the FF with two identical particles and must also satisfy a normalization

condition. Let us consider the operator P° defined as

1

P = — [daT™(), (3.1.30)

and let us take its expectation value (3|P°|#) where for simplicity we will consider a

theory with only one particle of mass m. Taking into account that
P°0) = mcoshf|f) and P'|#) = msinhd|d), (3.1.31)
we have as first result that
(8]T°°(0)|0) = 27 m® cosh®4. (3.1.32)

Since ©® = 7% — 7! we have now to compute the same matrix element for 7'* that can

be done by evaluating (3]0, 7**(0)|8). A simple algebra based on the substitutions
Pp — —i[P° o] and d'¢ — —i[P,¢], (3.1.33)
leads then to the following relation between the two-particle Form Factors

mcosh 8 — mcosh 8

(BITI(0)]6) = ( ) (BIT™(0)]6) (3.134)

msinh 8 — msinh §

Taking the limit # — 6 of the last relation finally gives the normalization condition

FC(ir) = 2mm?, (3.1.35)

a

where we have generalized it to the case with more particles and the second of (3.1.4) has

been used. The same procedure can be applied to compute the matrix element

(010, 7+(0)|01,...,0,), (3.1.36)
thus leading to the relation -
017°(0)]6 0,) = En - Pn 0/6(0)|6 g 3.1.37
<l ()l Iy---> n>———E_2—:—p—2(| ()l IEREER 77-)? (‘3'1-3‘)
where we have used the short notations
E, = Z m;coshf; and p, = Z m; sinh 6; . (3.1.38)

Imposing that all the components of T#” have the same pole structure means that the FF
of © factorized the polynomial
E?2—p2 = P?, (3.1.39)
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where P? is the total energy associated to the state |01,...,0,). Notice however that this
factorization does not hold for two-particle FF with the same particle. Indeed in that case
the polynomial in the rhs of (3.1.37) is never singular because the zero in the denominator
is canceled by a zero at the same rapidity configuration 8; = ix — 65 in the numerator. For
this last case of two-particles FF. the factorization property can be expressed by means

of the following equation

2 2\ 1-%ap
[C] _ . \ m, +mb :
»(0) = (co:h@—,— — ) Pu(0) (3.1.40)
where
No
Pu(0) = 5 a¥,coshf 6, (3.1.41)
k=0

The degree Ny in (3.1.41) may be determined by implementing the inequality (3.1.29).
In this way, the problem is reduced to determine the coefficients a¥, of the polynomials
Fap. This goal can be achieved by applyving the residue equations together with the
normalization condition (3.1.35). The above conditions prove in general sufficient or even
redundant in number, to fix all the coefficients of the polynomial F.4(6). Once the FF of
the stress energy tensor have been computed one can verify their exactness by plugging
them into the sum rules (2.2.10) and (2.2.14). They can also be considered as a test for
the convergence of the truncated series. Indeed the sum rules can be verified inserting into
the integrals the spectral series (3.1.3). Since it is an infinite series we need to truncate
it at some point, thus we need a method that tells how good the truncation is. In this
sense the two sum-rules (2.2.10) and (2.2.14) provide a quite effective way to measure the
relevance of any single added term. As a matter of fact, in all the models considered here.
the first few FI ordered according to their total energy conspire in fulfilling the numerical

values with a very high precision.

3.2 The cluster limit

One interesting question concerning the recursive relations (3.1.13) and (3.1.14), is that
relative to the space of their solution. As shown in many papers [54, 55, 11], the recursive
relations admit solutions that should correspond to all the possible fields of the theory.
However a deep problem remains that of the identification. of the fields corresponding
to a given solution. An help in this direction has been given recently in [15], where a

new light into the so—called cluster limit has been put. As has been observed many times
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[55, 35], certain solutions of the recursive relations with asymptotic behavior characterized

by y, = 0 in eq. (3.1.28), were known to satisfy the following factorization

lm FP o (0 + A, 0+ A, 0i41,..,0,) =

A—no 22
(3.2.42)
1 ‘
:mﬂi,_”%(e, NS w0551, 000)

where the Form Factors in both sides of the equation belong to the same field. However
the above equation (3.2.42) does not hold in general. It is indeed strictly true only for
the relevant fields in systems without internal symmetries while for theories with some
internal symmetry its generalization is still an open problem [15].

Now, in a reversed logic, one can use eq. (3.2.42) together with the recursive relations
to select out certain solutions. Before entering into this, let us sketch here the heuristic
proof of the above equation following ref. [15]. Let us consider a theory without internal
symmetries (in order to avoid vanishing of FF for symmetry reasons) and FF of operators
with asymptotic behavior with ys = 0. Observe that the limit in eq. (3.2.42) can be

rewritten, by using Lorentz invariance as

Jim FS o o014+ A, 04+ A 0541, ..,0,) =

a

A A A A
= lim F¢ (01-}-"‘ 0 +7)-,0j+1—;,..,0n ))

A—oco 2 2z
(3.2.43)

which is the way in which one can obtain the massless Form Factors [33]. In the massless

l\D

case we have a decoupling of the particles into left and right movers, according to the

following limits for the Faddeev-Zamolodchikov operators [34]

A
Al6) = lim AT(9+1)
(3.2.44)
At = g atp N
AL = Jim_ At 3,

where in the lhs we have the creation operators of right or left mover particles respectively.
In order now to handle the conformal limit of the FF, we have to avoid trivial vanishing.
To this aim let us consider the rescaled (dimensionless) operator ¢ = ¢/m?2. The last
limit in eq. (3.2.43) thus becomes

A A A
].lm F¢ (61—|- 6'{“20],*.1—“‘

A—oco %1r 2 ’

A

= Rfl,..,aj(elw- 0; )Lé (9]'_;,.1,..,9,1),

Q341,400
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where R and L are the massless FF of ¢ on right and left movers respectively. On the
other hand, one can perform the massless limit by shifting all the rapidities (since the FF
does depend only on differences there will not remain memory of the shifting parameter)

as e.g.

F2 (01,05 = RS, (6,..,6;) L3, (3.2.46)

and similar for the left movers. It is also clear from this last equation that Rf;’ : é’ = (o).
Thus, substituting (3.2.46) into (3.2.45) and back to (3.2.43) one gets the cluster limit
(3.2.42) for the rescaled operator. Restoring the old dimensions gives then eq. (3.2.42).
As mentioned at the beginning, the cluster equation used together with the recur-
sive relations selects a subclass of solutions. These solutions are believed (and actual
computations show the exactness of this hypothesis) to correspond to the relevant pri-
mary operators of the ultraviolet CFT. In particular, as will be shown in many examples.
the application of it results in a system of linear and non-linear coupled equations for
the one-particle I'F. The solution of these equations will be given for F°/vy thus fixing
the ratio over the vacuum expectation value (2.2.19) and leaving the correct dimensions
in mass ®. In the cases studied here there are always a finite number of solutions, the
number of which exactly corresponds to the number of relevant primary operators of the
perturbed CFT. Finally, the sum-rule (2.2.20) allows us to associate each solution to its

own operator.

3.3 Examples

In this section we will apply the theoretical framework outlined in the two preceding chap-
ters. In particular, through some examples, we will show how to compute the correlation
functions with the Form Factors technique. Going through these examples, one should
also realize the effectiveness of this method: the tests on the sum rules indeed give a quite
strong support to the fact that they can be safely confronted with the best approaches
borrowed from statistical mechanics. Indeed, for example in the case of the Ising model
with magnetic field at 7' = T this test has gone until the comparison of the analvtic
solutions provided by the FF with the most accredited simulations on the lattice [12].
The models shown here are among the simplest one could find and can be seen as a sort

of warm up for the more technically involved models of the next chapter.

This statement will be often referred to as putting ve = FP =1.
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3.3.1 The Free Massive Boson

Consider the 14+1 dimensional free massive boson, with a diffusivity coefficient . described

by the relativistic action
- 1/, f2 2 a9 -
Selp] = QWﬁ/dr dt 3 ((L;@“go —m c,o‘) \ (3.3.47)

where the mass of the boson has been rescaled as

(98]

m° = —. (3.3.43)
The 27 factor is conventional and has been introduced only to give the usual result for

the stress-energy tensor, as we shall see. The action (3.3.47) is minimized by the following

condition on the field

(0.0 +m?) ¢ =0, (3.3.49)
while the Green’s function
G(x — xo,t — to) = (0|T ¢(z, t)(z0, 10)[0) (3.3.50)
satisfies the equation
(0.0 + m?) G(z,1) = .—-25(35 — 20)8(t — o) (3.3.51)

together with the constraint that it has to vanish at infinity.
Instead of solving directly the differential equation (3.3.51), we will compute the
Green’s functions by using Form Factors technique. Let us insert into the correlation

functions, a complete set of asymptotic particles states defined as
|61 - - 0n) = AT(6;)--- AT(6,)]0) (3.3.52)
where creation and annihilation operators satisfy the usual bosonic commutation relations
- [A(0), AT(B)] = 275(6 - B), (3.3.53)

and f is the rapidity defined through eq. (2.3.24). By using the set of states defined in
eq. (3.3.52), the two-points time-ordered product

G?(z — zo,t —t0) = (0|7 ¢(z,1)$(20,0)|0) , (3.3.54)

of some field ¢ of the theory, can be expanded according to the spectral series (3.1.3) with
the use of the Form Factors (3.1.4). Let us now discuss briefly those few basic properties

sufficient to treat in a complete way the model under exam.
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Since for the free massive boson the two-particle S-matrix reads
S(0;)=1, (3.3.55)

we see that there is only one kind of particles and no bound-state pole. Thus all the
equations relative to the FF will be specified in this simplest case. Moreover, putting
(3.3.55) into eqs. (3.1.7), it implies that F,(f,,..,0,) must be even and 27 periodic in the
rapidity differences 0;;, i.e. it can be any function of cosh §;;. The absence of poles in the
S-matrix implies that also the FF do not have dynamical poles, i.e. eq. (3.1.14) does not
exist. For what concerns the kinematic poles, equation (3.3.55) implies that the rhs of
(3.1.13) is identically zero and these poles are also absent. The conclusion is that the FF
of this theory do not have poles (as expected, since it a free theory). All these conditions

restrict the form of F,(01,..,6,) to a polynomial

N m
Fo(by,...,6,) = Z o, (Z cosh 95]-) (3.3.56)
m=0

i<j
with the unknowns a, and N. The determination of these constants depends on the
specific operator ¢ we would like to study. We can now determine an upper bound for the
degree N, by applying eq. (3.1.27). For instance when ¢ = , the scale dimension in eq.
(3.1.25) is @ = 0 and the two—points correlation function has a logarithmic divergence,
thus the zero-moment My in (3.1.24) should converge. By inserting now the spectral
expansion (3.1.3) into equation (3.1.24) for p = 0, one obtains

S SR (N[N
- =t (2m)" (i cosh 6;)

< 0. (3.3.57)

This equation immediately fixes to zero the degree of the polynomial (3.3.56): this means
that all the Form Factors of the field ¢ are constants. However by inserting the spectral
expansion into equation (3.3.51), one sees that it can be satisfied only if the two-particle
FF reads

1 (3.3.58)

F;:\/;)_; and FY,=0.

With this result the solution of the Klein—-Gordon equation (3.3.49) can be written as

1 dé " , o .
L,O(l,t) — /7_— [A(H)e—zm(tcoshﬂ—rsth) +AT(9)6xm(;cosh9——zsmh0)] , (3359)

and the Green’s function (3.3.50) can be given the following expression -

1 < df 1T si —1im|t] cos. 1 ;oA 9 ¢
(01T p(z,1)(0,0)]0) = = | S—eMramiemieoh? = —— Ko(R), (3.3.60)

i
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where we have expressed it with the Bessel function K in terms of the Euclidean distance
R. Together with the field ¢ we can study also the Form Factors of the components of
the stress—energy tensor 7,,. With the diffusion term they read
T =T =27k : %00 -
(3.3.61)
O=Ty 2rm? 1?1,

]

where the products of fields are understood to be normal ordered®. Notice that the stress—
energy tensor of this model could have been defined differently, by adding a charge at
infinity, without changing the equations of motion (3.3.49), as shown in the last reference
n [35]. In this paper however we will not consider the effects of such deformations and
will work out the consequences of the definition given above.

Since the scale dimension on the space variable of © is zero, also for this field the zero-
moment (3.1.24) should exist®. This implies that all the Form Factors F® are constants
and can be determined by using eq. (3.3.58). Indeed one can see that the only FF different
from zero is given by

(016(0,0)]010) = 272, (3.3.62)
according to the normalization condition for this field (3.1.35).

The two-point Green’s function (3.3.54) with ® = ©, can now be computed and is

given by
(0]70(z,t)0(0,0)|0) = 2m* KZ(7mR). (3.3.63)

The component 7% of the stress-energy tensor is not a scalar under Lorentz trans-
formations. Thus we expect for this field a dependence on the rapidities that takes into
account the Lorentz spin, i.e. it should depend not only on the differences. The result
(3.3.58) together with the definition (3.3.61) will allow us very easily to compute its Form

Factors as

FSI(Ol, B ,(971) ==

d 1 d q
= —2ms Y o [ P00 (A, ] B o) B, ] 02,
" (3.3.64)

“From now on, however, we will drop out the normal ordering “” symbols.

®The scale dimension of any scalar component @,,; of a conserved current with spin s + 1 is s + 1.
Since for the trace of the stress-energy tensor (3.3.61) these dimensions are taken into account by the
multiplicative mass term, the spatial dependence of G® in eq. (3.3.54) as |z| — 0, can only be of

logarithmic type.



where the substitutions (3.1.33) between quantum operators have been done. Thus the

only Form Factor different from zero in (3.3.64) is that with n = 2, given by

Tm?

F24(0,,60,) = (sinh(26;) + sinh(265)) . (3.3.65)

F

This result agrees with the quantum expectation value between two asymptotic one-

particle states of the identity

p(t) = -Qlj/__w dz Tz, 1), (3.3.66)

0

where p(t) is the momentum operator that satisfies
p(0)]0) = msinh 4|0} . (3.3.67)
The two points Green’s function of this field is then given by

(0|7 T°(z,4)T°}(0,0)[0) =

(3.3.68)

1 / dé,dé,
) (27)?

where F{(61,0;) is given in eq. (3.3.65). By using the same methods together with

|F201(91’ 92)‘2 6irh:c(sinh91+sinh€2)6—i7h]t|(cosh91+cosh b2) ,

the conservation equation one can also compute the FF of the other components of the
stress—energy tensor.

With the aid of eqs. (3.3.63) and (3.3.60) we can check out the sum-rule (2.2.10).
Indeed an easy computation shows that it gives exactly the expected value ¢ = 1 i.e. this
theory has as its ultraviolet limit the CFT with central charge ¢ = 1. Since this theory is
not minimal, it is expected to have an infinite number of primary fields, as the discussion
at the end of this section will outline. From equation (3.3.58) one can compute the Form

Factors of the vertex operator e*?. Indeed by using Wick theorem one sees that

k
(0]0%(0)]64,...,6,) = k! (\/%) Ok s (3.3.69)

thus giving

(0]e*|6,,....8,) = (\/Oz‘_h)n , (3.3.70)

while for the correlation function one has

(0]e** (z, 1)?2(0,0)]0) = exp | = (3.3.71)

TN
S
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As we shall see all these FF will be useful when dealing with the same model with
boundaries and its applications to statistical mechanics. To end, let us note that because
of eq. (3.3.58), the FF of the fundamental field o do not satisfy the cluster equation. while
those of the vertex operators (3.3.70) do indeed. This shows that the cluster equation
for this model has an infinite number of solutions, all corresponding to the infinite vertex

operators of the ultraviolet CFT.

3.3.2 The Model M; 5+ ¢12.

The aim of this subsection is to illustrate a simple but non-trivial example of an integrable
field theory in which all the features described in the previous chapter may be seen without
too much effort. The CFT M, 5 is known to describe the universality class of the Lee-Yang
singularity of the Ising model in a pure imaginary magnetic field [36, 37].

The conformal field theory is characterized by central charge

(3.3.72)

c=—25—2 and ¢ =

(I[N}

and only one conformal family (other than that of the unit operator) of the primary field

¥ = P12 = @13, (3.3.73)

with conformal dimensions A = —1/5.

The integrable quantum field theory corresponding to the deformation through the
field ¢ is a massive, non—unitary, QFT in which the two-particle scattering amplitude is
given by [7]

S(0) = foya(0), (3.3.74)
where f, is defined in eq. (2.3.31). This S-matrix, which is self-consistent under boot-
strap, shows that there is only one kind of particle with the property of being bound state
of itself. Indeed (3.3.74) has a pole at 6 = 271/3, and if m is the mass of the particle, the
bound state (2.3.32) has the same mass. From the residue at this pole one can read the

on-shell three particle coupling given by eq. (2.3.38) as
I =i\/2V3. (3.3.75)

From the TBA one can easily verify that the field theory with S-matrix (3.3.74) has as
ultraviolet limit the model M, 5. Indeed, eq. (2.4.64) gives [9]

o Vol

= 2 5

(3.3.76)
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that put into equation (2.4.68) gives the effective central charge ¢ shown in (3.3.72).
Now we are ready to compute some Form Factors [35. 33]. Since we have only one field
we would like to determine its FF. To this purpose we could use more different strategies:
in the following we will indeed show all of them just to make comparisons and examples of
the possible techniques. The last one will make use of a combination of the cluster limit
and recursion relations. The reason we show it here is due to the fact that it will be used
extensively when dealing with the integrable deformations of the class of models M5 5,11.
The first strategy consists in considering the FF of the trace © = T} of the stress-energy
tensor, to obtain also those of ¢ by means of eq. (2.1.5) or (2.2.23). Let us parameterize
the n—particle for a generic field ¢ as
Ff = H, 0™ Q% (1, .., ) ﬁ Fmnif; )

iz (@it zi) (@ — wry) (2 —wtay)

(3.3.77)

where w = e27/3

. The above parameterization requires some comment. One can easily
see that it is like the one in (3.1.15) but the polynomials encoding the bound state poles
are different from those shown in (3.1.18). Indeed in eq. (3.3.77) we have substituted

equivalently o)
(i —wzj)(z; — ™z

Pa(0i;) = — : (3.3.7

[0}

)

dz;x; cos?(TH)

where w = €™ and z; = . The kinematic poles (3.1.13) are instead taken into account
by the terms z; + z; in the denominator of eq. (3.3.77). By using this parameteriza-
tion it is possible to rewrite everything in terms of elementary symmetric polynomials

oz, ..., z,) generated by [39]

n n

[HeE+z)=> :c”_kai(cn)(:cl, cey Tn) . (3.3.79)
1=1 k=0

The last remark concerns the degree of Q%. Indeed taking into account eq. (3.1.12). the
asymptotic behavior (B.1.11), the limit ys = 0 in (3.1.28) and Lorentz invariance we get
for the total degree ¢ and the partial degree p in any variable

n(n —1)
2

F4

t = and p=n-1. (3.3.80)

Taking into account all the above observations we get that for any field such that its
asymptotic behavior in (3.1.28) is given by y4; = 0, the two-particle FF reads
sz'n(g)

F2(0) = H .

(3.3.81)
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According to our first strategy, we put ¢ = ©. For this field we have three equations:

the normalization condition (3.1.35) that gives Hy; = —27m?, the bound-state relation
(3.1.14) that provides the one-particle FF
2 27 im? 2T\
Foy? - _2mm (me z'_.) , 3.3.82
and the cluster limit (3.2.42) that gives the vacuum expectation value of the trace®
am? (F™n (127 /3))? 7m?
@ puung = — 3 ?)?)83
according to (2.4.80), where in the last equality we have used the relation
. me(e) 1 min 27 ? 29 Q
N = gh_ngo 7 -3 <F (z—g«)) : (3.3.84)

Thus the matrix elements of the perturbing field ¢ can be given now by simply applying
eq. (2.1.5). Indeed, putting F5 = 1 we have

(;1‘1 - w.’lfg)(l'l — Lu‘_lil'g)

F5(0) = 2v3 0y

—_—
(V]
(N
o8]
Ot

N

() = -2 (Pe)

As mentioned, we can present a second strategy that will be often exploited in the following
sections. In the present case, the equivalence of these strategies is somewhat trivial. but
in order to illustrate in a simple way how it works, it is worth describing it shortly. Let us
consider the general case (3.3.81) and let us see where we can go. We have at our disposal

two equations: the cluster limit (3.2.42) that tells us that
(Ff) = Hu N, (3.3.36)
where N has been defined in (3.3.84), and the bound-state residue (3.1.14) that gives

s\ 2 H < i 2T >2 5 :
—_ i len o X 3.3,
(Fl) 6v/3 (i 3 ) (33

Equating the rhs of both equations we get two solutions. The first one is Hy; = 0 that

(o4]

7)

must be put in correspondence with the FF of the scaling unit operator. The second is
instead Hy; = 2v/3: it can be readily seen that it leads to the FF of the perturbing field
(3.3.85). Thus, this second method not only gives the FF of the previous one, but is

6Notice that this result fixes without ambiguity the sign of (©).
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expected to provide also the solutions corresponding to all the primary fields of the CFT.
One could now continue trying to obtain the FF with more particles by using the cluster
and bound-state equations already seen and the kinematic one given in eq. (3.1.13) if
needed. Before entering into this last strategy, let us check the results thus obtained
against the sum rules (2.2.10) and (2.2.20). Indeed only with the first two contributions
we get
A = —0.199971 vs A = —-0.2
(3.3.88)
c= —439999 vs ¢ = —14,

where the numbers in the column on the left are computed with the sum rules, while
those on the right are the exact values. Although the sums are made of contributions
with different signs due to the non-unitarity of the model. one can see the good precision
reached even with so few contributions. As we shall see this is a quite general pattern in
all the models that will be examined here.

Let us consider the bound-state residue equation (3.1.14) and let us put inside it
the general form factor (3.3.77). A few simple algebraic passages will soon lead to the
following recursive relations

HS,, = (———?———) (-1)"T H?, (3.3.89)

92/3(2%)

for the overall normalization constant, and

n

Qi-{-l(l’lwl/?, $1w_1/27 T2, . In) = I H(xl + -TJ) Qi(zb =0y wn) H (3390)

=2

for the characteristic polynomial. We need starting values that are provided by all” the

solutions obtained before (3.3.85) with the cluster limit i.e.

, . IV3 27
Hy = FY =i 792/3(2 3 )

Putting H; into (3.3.89) gives then H, = Hj; as shown in (3.3.85) and so on with all the
other constants. Putting instead Q1 = 1 into eq. (3.3.90) and taking into account the

degree as determined in (3.3.80) it is easy to see that the first few polynomials are given

"The cluster limit selects out all the solutions corresponding to the relevant primary fields (if there

are not internal symmetries). In this model we have seen that there is only one non—trivial solution.
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Qz = 01
Qs = 0102

Q4 = 010203

(3.3.91)

In relation to this solution, it has been shown in [38] that the polynomial @), can be

written as an (n — 1) @ (n — 1) determinant
Qn = |]V[2](.ZC)I , for k=1 (3.3.92)

where the matrix elements are defined as

sin((2 —7 + ko)
sin (ko) ’

JLJ(L) = O9;—j (3.3.93)

and o = 27 /3.
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Chapter 4
Form Factors and Applications

This chapter is devoted to the explicit solution of three integrable models. We shall
use the techniques seen in the previous chapter applied to more involved computations.
The first two cases correspond to the thermal deformation of the Tricritical Ising and
Tricritical 3-states Potts models respectively. Since they have some internal symmetry
the method used goes through the form factors of the trace © of the stress tensor: we will
then compute those of the perturbing field and together with a check of the sum rules
(2.2.10) and (2.2.14) we provide also a plot of their correlation functions. The third class
of models considered in this chapter is the ;3 deformation of the non—unitary minimal
models M3 9411. Since an exact solution for the FF on the lightest particle exists, we can
compute analytic solutions for certain matrix elements, that will be useful in the next
chapter, of all the relevant primaries. Moreover we shall also see the behavior of the sum

rules in the limit ¢ — oo.

4.1 Form Factors of the Energy Operator for the
Thermal Perturbation of the Tricritical Ising Model

The Tricritical Ising model is the second model in the minimal unitary conformal series
with central charge ¢ = 7/10 and four relevant fields [1, 2]. The microscopic formulation
of the model, its conformal properties and its scaling region nearby the critical point
have been discussed in several papers (see, for instance (40, 41, 42, 43, 44, 45]). In the
following we give a short review of the features of the TIM which are most relevant to the

FF approach to integrable massive models.
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4.1.1 Generalities of the TIM

The Tricritical Ising model may be regarded as the universality class of the Landau-

Ginzburg ®°-theory
L = (V®) + gs®° + gus@* + g3 + 92 0* + 1@ (4.1.1)

at its critical point g; = g = g3 = g4 = 0 [46]. This Lagrangian describes the continuum
limit of microscopic models with a tricritical point, among them the Ising model with

annealed vacancies. with an Hamiltonian given by [42, 43]

H= -3 oiojtit;—py ti. (1.1.2)
<ig> i
3 is the inverse temperature, u the chemical potential, o; = £1 the Ising spins and

t; = 0,1 is the vacancy variable. The model has a tricritical point (J5. o) related to
the spontaneous symmetry breaking of the Z; symmetry. At the critical point (3. so).

the TIM can be described by the following scaling fields: the energy density e(z.%) with

167 16

operator t(z,%) with (A,A) = (%,g), the irrelevant field € with (A, A) = (2.2). the
3

magnetization field (or order-parameter) o(z,z) with (A, A) = (&, 3

anomalous dimensions (A, A) = ( ), the vacancy operator or sub-leading energy

), and the so—called

sub-leading magnetization operator a(z,z) with anomalous dimensions (TTE’ TT') With
respect to the Z symmetry of the spin model, the spin operators are odd while the
energy operator, the vacancy operator and the irrelevant field €¢” are even.

A peculiar feature of the TIM is the presence of another infinite dimensional symmetry
in addition to the Virasoro algebra, i.e. a hidden W-algebra based on the E7 root system.
This is related to the equivalent construction of the TIM in terms of the coset model
(Er)y @ (B7)1/(E-)s. Let us briefly recall the coset formulation at the critical point [47].
From the theory of Kac—Moody algebras, the central charge of a CFT constructed on an
affine Lie algebra G at level k is given by

k|G
6= T

(4.1.3)

where | G | is the dimension of the algebra and hg the dual Coxeter number. The unitarity

condition for the CFT restricts the highest weight representations | A) which can appear

at the level k. Denoting with w the highest root, the allowed representations | A) at the
level & must satisfv
2w - A
=<k, (4.1.4)
w



and their dimension is given by

Cy/w?
k+ hg
where () is the quadratic Casimir in the representation {\}. Using a subgroup H C G.

Ay = (4.1.5)

bl

one can construct a CFT on the coset group G/H, with a central charge equal to

ke |G| kg | H |
ke +he kg +hy

CG/H = Cc — CH = (416)

Its representations ¢ are simply obtained by the decomposition of the Hilbert space

I CG"\G> = Tk [ 1 CG/H;"Z’?;/H)@ ‘ CH-,’\?I> ] : (417)

In the case of the TIM. h = 18 and eq. (4.1.6) gives ¢ = . At level k = 1, the possible
representations are the identity 1 and the representation Il with scaling dimension 0 and
% respectively

(E-h —  {L,I} ={0,3} . (4.1.8)
Their components (n;.n,--+,n7) (n; integer) with respect to the simple roots of E- are

given by [48]
1 — (0,0,0,0,0,0,0)

4.1.9)
IIs — (0,0,0,0,0,1,0) . (
At the level k = 2, the representations are given by

(E7)2 = {LIL, T, 105, 106} = {0, . 2,2 213 | (4.1.10)

with the corresponding fundamental weights

m, — (1,0,0,0,0,0,0) ,
M, — (0,1,0,0,0,0,0) , (4.1.11)
M; — (0,0,0,0,1,0,0) .

II; is the adjoint representation. Using eq. (4.1.7), the scaling dimensions of the TIM are

recovered by the decomposition

01 x (01 = [(O)rr @ (0)2] + [(F5)rrm @ (Th)o] + [(Z)71m © (Is)]
= [(5)7rm ® (M2)s] + [(55)rrm ® (Ts)2] (4.1.12)
= (27w ®(0),

—_
o
S
ot
X
~~
—
—

BN [PV (V)
~—
—

(?1)1 x (

The off-critical perturbation considered here is the one given by the leading energy

operator €(z,%) of conformal weights (10, 10) Note that this operator is associated to the
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adjoint of F7. According to the analysis of [51], this leads to a structure of the off—critical
system deeply related to the root system of E7, as we briefly recall in the following.
First of all, the off-critical massive model shares the same grading of conserved currents
as the Affine Toda Field Theory constructed on the root system of E7. i.e. the spins of
the higher conserved currents are equal to the exponents of the Er algebra modulo its

Coxeter number h = 13, i.e.
s=1.5,7,9,11.13,17 (mod 18) . (4.1.13)

The presence of these higher conserved currents implies the elasticity of the scattering
processes of the massive excitations. To compute the mass spectrum and the scattering
amplitudes, it is important to observe that, according to the sign of the coupling constant
g in (2.1.1), this perturbation drives the system either in its high-temperature phase or in
its low—temperature phase. While in the latter phase we have a spontaneously symmetry
breaking of the Z, symmetry of the underlying microscopic spin system, in the former
phase the Z, symmetry is a good quantum number and therefore can be used to label the
states. In the low-temperature phase, the massive excitations are given by kink states
and bound state thereof, in the high-temperature phase we have instead ordinary particle
excitations. The two phases are related by a duality transformation and therefore we can
restrict our attention to only one of them, which we choose to be the high-temperature
phase. In this phase, the massive excitations are given by seven self-conjugated particles

Ay, ..., A; with mass

my = M(g),

T
1

<)

{

my = 2m;cos 5= (1.28557..)m; .

ms = 2m Cosg = (1.87938..) m; .

my "= 2mqcos % = (1.96961..) m; .

ms = 2mycos fg = (2.53208..) m; . (4.1.14)
27

me = 2m3cCos 5= (2.87938..) m; .

™

mr = 4ms cos—l—g = (3.70166..) m; .

The dependence of the mass scale M on the coupling constant ¢ has been computed in
[24]
M(g) = C g8, (4.1.15)
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where

18 = 3.745372836.. ., (4.1.16)

where y(z) = 1“{1(1) . The mass ratios are proportional to the components of the Perron—

Frobenius eigenvector of the Cartan matrix of the exceptional algebra F: [49] (Figure

(4.1)) and therefore the particles A; may be put in correspondence with the following

]

Mo Ms M7 e My 1M

Figure 4.1: Dynkin diagram of F; and assignment of the masses to the corresponding dots.

representations of £; (here identified by their dimensions)

A — 56,

A, — 133,

As — 912,

Ay — 1539, (4.1.17)
As — 8645 ,

As — 27664

A7 — 365750 .
The exact S-matrix of the model is given by the minimal S—matrix of the Affine Toda
Field Theory based on the root system of E;. It has been calculated in [40, 41] and is
listed for convenience in Table 2. The structure of the bound states may be written in a

concise way by grouping the particle states into two triplets and one singlet states [41]

(Q1,Q2,Q3) = (As, A3, 41) ,
(K1, K2, K3) = (Ay, Ay, A7), (4.1.18)
(V) = (4) .
The first triplet consists of the Z, odd particles whereas the other triplet and the singlet
are made of Z; even particles. The “bootstrap fusions” involving [N] and [NV, K;] form
closed subsets
N-N = N, N-Ky = K +Ky,+Ks,

; } i (4.1.19)
Ky- ]i_4+1 = Ko+ N s Ky - K, = ﬁA + I{A+1 + N . '
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Including the first triplet, we obtain the following algebra

Ky Q4 = Quas1, Ki-Quapyn = Q1 +Q2+ Q3.
Ki- Qa1 = Qi1+ Qatr, Qa-Qa = Ny 1+ HK4. (4.1.20)
Qa-Qay1 = RKNa+Koq1+N, N-Qa = Qi1+ Qas1.

It has been observed that these bootstrap fusions are a subset of the tensor product

decomposition of the associate representations of Er [49].

4.1.2 Form Factors of the TIM

After the discussion on the general features of the model. let us consider now the problem
of computing the FF of the operator ¢(z) or. equivalently. of the trace O(x) of the stress—
energy tensor. To this aim, the Z, parity of the model is extremely helpful. In fact,
because of the even parity of the energy operator, we can immediately conclude that its
FF with a Z;-odd (multi-particle) state must vanish. In particular, the one—particle FF
of © for the odd particles are all zero.

To start with the bootstrap procedure, let us consider the two-particle FF relative to

the fundamental excitation A;

FR(0) = %%? Q) (4.1.21)
where
FI1™(0) = —isinh(6/2) gs/s(8) g1/0(0) (4.1.22)
and
D11 (8) = Psyo(8) Prys(9) . (4.1.23)

By using the bound (3.1.29), we see that the polynomial Q%,(#) reduces just to a constant,
which can be easily determined by means of the normalization condition (3.1.35), i.e.
al; = 2rm3. Thus Fy1(0) is now completely determined and its expression can be used to
derive the one—particle FF F; and Fy. Indeed, the particles A; and A4 appear as bound
state of the particle A; with itself, the coupling I'}; and I'}; being easily determined by
the residue equation (2.3.38). By using then the equation for the bound state poles of the
Form Factors (3.1.21), one gets the desired result (see Table 4).

To proceed further, it is convenient to list the Z; even states (the only ones giving non-
vanishing FI' of the stress—energy tensor) in order of increasing energy, as in Table 3. After

computing Fiy , FY and F$, which are obtained by means of the same technique, (i.e.
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fixing the unknown coefficients of FF by using the simple pole residue equations). a more
interesting computation is represented by the two-particle FF Fy4(#). The corresponding

S-matrix element displays a double pole and therefore, according to eq. (3.1.16), we have

F3im(0)

F(0) = Do) Qn(0) (4.1.24)
where
FJE™(8) = g9(0) ga/0(6) g5 5(6) (4.1.25)
and
Day(0) = Prjo(0) Paye(8) Prys(0) Paya(f) (4.1.26)

Taking into account the asymptotic behavior of the FF and eqs. (3.1.40) and (3.1.41). we
conclude that in this case the polynomial P,y has degree Noy = 1 and therefore Q,4(#)

reads .
m3 + m?

2mamy

Q9,(6) = [coshd + a9 + a3, cosh f). (4.1.27)
24 24 4

To determine the constants aJ, and aj,. we need at least two linearly independent equa-

tions, which are provided by eq. (3.1.21) on the fusions

v}

(Ag . ;44) - .:42 and (AQ, A4) — A5 . (412 )
Both F, and Fj are known, of course, from previous computations. In this case, the

double pole in the S-matrix provides a non-trivial check for the computation. In fact. we

have the process drawn in Figure (3.2). with the identification

a=2 b =4, d=e=1,
and respectively
c=1 w =27 /3, vy=x/3,
or
c=3. w=x/3, y=x/9 .

These processes give rise to the corresponding residue equations
~i lim (0~ i2r/3)FS(6) = Ty} Fin/3)

—2 dim (60— i7[3)F3(0) = T3, T Fa(in/9)
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which are indeed fulfilled. This example clearly shows the over—determined nature of the
bootstrap equations and their internal consistency.

The next FI in order of increasing value of the energy of the asymptotic state is given
by the lightest Z; even three-particle state | A;A; A2 ). The FF may be parameterized in

the following way

Fmin(@ab) Fn;in(aac) Fmin(@bc) (C] , o
F2.,(6,.6,0.) = -1 12 12 112 . 4.1.30
11-( T ) Dll(gab) D12(9ac) Dl?(gbc) COSh 9ac + COSh 06c ' ( )
where F77'" and DT4" are given by equations (4.1.22) and (4.1.23), while
F3™0) = G13/18(0) g7/18(9) (4.1.31)
and
D1(0) = Praj1s(0) Prjis(f) - (4.1.32)

We have introduced into (4.1.30) the term
1
cosh 8, + cosh 8. ’

to take into account the kinematic pole of this FF at 8, = 8, + ix. The polynomial Q5

in the numerator can be further decomposed as
Q%12(0a, 06,0.) = P? P, (4.1.33)
where P? is the kinematic polynomial expressed by
P* =2m?+ m3 + 2m? cosh 0, + 2myma(cosh 8, + cosh 8. ) . (4.1.34)

The degree of P, can be computed by means of the asymptotic behavior in the three

variables 0,4 . separately. This gives the following results for @ ~ exp [z;0;]:
T,=ap=1 and z.=2. (4.1.35)
Hence, a useful parameteriza;cion of the polynomial P15 is given by
PSZ(GG, 0y,0.) = po+ p1 cosh 0,5 + pa(cosh b, + cosh By.) + ps cosh 0, cosh . , (4.1.36)

where four unknown constants have to be determined through the poles of Fi2,. By using

the kinematic pole at 8,;, = i¢x and the bound state poles at 8,, = 'i%‘", 15 and 0, =

137 {2 one obtains a redundant but nevertheless consistent system of five equations in

TS

the four unknown p; whose solution is given by

m:—m:%:—wﬂ%nwu, p2 = —198.2424080... (1.1.37)

P4
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The other FF which we have computed correspond to the states listed in Table 3. The
values of the one-particle FF are collected in Table 4, while the results concerning the two-
particle computations are encoded in Table 5 via the coefficients a¥, of the polynomials

P (8).

4.1.3 Recursive Equations of Form Factors in the TIM

For sake of completeness, we now illustrate an efficient technique to compute multi-particle
FF. This is based on recursive identities which relate FF of the type Fi 4,1 with different
(even) numbers of fundamental particles. Once these FF are known, those relative to Z,
even multi-particle state involving heavier particles may be obtained through bootstrap
procedure. In general this way of proceeding is the simplest one as far as FF with three
or more particles are concerned. In order to write down these recursive equations. we can

adopt the following parameterization for the 2n-particles FF F1 1, 1:

HynQon(xy, ..., Ton Frin(g., 1
Fia1(01,...,05,) = Fou(61,...,0,,) = = Qan(21 Tan) 11" ()

oo ion Dn(Ou) x4+ 2
(4.1.38)
Here and in the following o4(z1, . .., 73,) represents the symmetric polynomials of degree

k in the variables z; = e defined through their generating function
HE+z)=> 2™ 0i(z1,...,2m) . (4.1.39)
k=1 =0

F1y and Dy are defined by (4.1.22) and (4.1.23) while H, is an overall multiplicative
constant and (), is a symmetric polynomial in its variables. The factors (z; 4+ ax)7* give
a suitable parameterization of the kinematic poles, while the dynamical poles are taken
into account by the functions Di;’s.

The polynomial @3, in the numerator can be factorized as

QQn(xb Tt ‘TZTL) = O-IO'ZH—IPZn(xla T 7‘7:277.) ’ (4140)

since the FF will be proportional to the kinematic term P? relative to the total momentum
which can be conveniently written as
5 01 O2p
P?=m? 22t (4.1.41)
Oon
The Lorentz invariance of the FF requires P,, to be an homogeneous polynomial with

respect to all the z;’s of total degree

deg Py, = 4n? — 5n | (4.1.42)
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while the condition (3.1.29), knowing that A, = 1/10, imposes an upper bound to the

degree in a single z;, given by
deg, Py, < 4n —22/5 . (4.1.43)

Writing down the most general expression of P, as a symmetrical polynomial in the
basis of the o}’s and taking into account the above conditions. one can determine the
relative coefficients by means of the recursive equations. A first set of recursive relations
is obtained by plugging the parameterization of F3, into the equation of kinematic poles

(3.1.13); the polynomial @, are then solution of the recursive equation

an_'_g(—‘l', T, T1.... ,.’L’Qn) = — an(l'l, ey l’gn) L—Qn(l'|l'i). (41-’;—1)

where the polynomial Us, is given by

kel

Usn(z]zi) = H H (z + e—i“"xi)(x — e ) + (4.1.45)
=1 a€Aq
=TI II (2= e ™)z + ™).
=1 a€Ay;

The overall constants H,, have been fixed to be
(4.1.46)

with Hy, = 27m32. Given Qan. eq.(4.1.44) restricts the form of the polynomial Q5.

although these equations cannot determine uniquely all its coefficients. In fact, polyno-

mials containing the kernel factor H?,’;ﬂ(i’?i + ;) can be added to a given solution @Q9,1-
with an arbitrary multiplicative factor, without affecting the validity of eq.(4.1.44). In
order to have a more restrictive set of equations for the coefficients of the polynomials
®2n, we employ the recursive equations (3.1.21). To relate Fany2 and Fi,, we consider

two successive fusions A;A; — A; and A;A; — A, obtaining the following equations
Qant2(—0T, 2,02, 29, ..., T97) = én M (I7)? 2° Qon(z, 20, ..., 295) Ponlz|zs) (4.1.47)

where

M =4 cos(57/18) cos(87/18),
6 = (—1)" exp(—ir(10n + 1)/18),
o = exp(—idr/9),
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and
n

Pon(z|z;) = H(a‘ — eiSF/gzci)(a: — %)) (z 4 €™ 3z)(z + zi) . (4.1.48)
1=2

As an application of the above equations, let us consider the determination of the FF
Fs. Taking into account egs. (4.1.42) and (4.1.43), we can write the following general

parameterization for Py as
Py(z1,...,24) = 1 01204 4 ¢y 0204 + €3 010903 + ¢4 032 + cs ag : (1.1.49)
From (4.1.44), knowing Q- = oy, one gets a first set of equations on the ¢;’s

¢z = 4 (2 sin(m/9) + sin(x/3) + 2 sin(47/9) ),
cs = —4 (sin('fr/g) + sin(-hr/g)),
Cy = Cq, (4150)

C3 = €5 — 3.

The residual freedom in the parameters reflects the presence of kernels of eq. (4.1.44).

Given any solution ()3, the space of solutions is spanned by
4
Qf =Qi+aoios [] (z: +1;), a€eC (4.1.51)
1,7=1
Eq. (4.1.47) solves this ambiguity giving the last needed equation

o= 9 4 cos(m/18) — 11 cos(w/6) + 12 cos(57/18) — 8 cos(Tr/18)
e 3 + 5 cos(57/9) + cos(w/3) — 3 cos(7/9)

(4.1.52)

Finally one directly computes Hy from (4.1.46).

The knowledge of F, = Fj;1; allows us to compute through successive applications
of (3.1.21) almost all the FF we needed in order to reach the required precision of the
FF expansion of the correlation function. We have used the obtained FF to compute the
two-point correlation function of © by means of the truncated spectral representation
(3.1.3). A plot of (©(z)©(0)) as a function of |z| is drawn in Figure (4.2). To control
the accuracy of this result we have tested the fast convergence of the spectral series on
the checks relative to the first two moments of the correlation function eqs. (2.2.14) and
(2.2.10); the single contributions of each multi-particle state in the two series are listed in
Table 3 and the partial sum is compared to the exact known values of the central charge
¢ and of the free energy amplitude U. A fast convergence behavior of the spectral sum is

indeed observed and therefore the leading dominant role of the first multi-particle states
in eq.(3.1.3) is established.
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Figure 4.2: Plot of the correlation function ( ©(z)©(0) )/m{ versus the scaling variable ni; || in
the TIM. The spectral series (3.1.3) includes the FF contributions relative to the multi-particle
states in Table 3.

4.2 Form Factors of the Energy Operator in the Ther-
mal Deformed Tricritical Potts Model

In this section we will consider the FF computation for the Quantum Field Theory defined
by the leading thermal deformation of the Tricritical 3-state Potts Model (TPM). Our
strategy will resemble the one already applied to the TIM, with suitable generalizations

in order to deal with this theory of degenerate mass spectrum.

4.2.1 Generalities of the TPM

The 3-state Potts Model at its tricritical point may be identified with the universality
class of a subset of the minimal conformal model Mg [1]. Its central charge is ¢ = 6/7.
The model is invariant under the permutation group S;. The group S; is the semi-direct
product of the two Abelian groups Z; and Zs, where the Z, group may be regarded as
a charge conjugation symmetry implemented by the generator C. For the generator (1 of
the Zs symmetry, we have 0% = 1 and QC = —CQ. The irreducible representations of
S3 could be either singlets, invariant with respect to Q (C even or C odd) or Z3 charged
doublets.

The off-critical model we are interested in, is obtained by perturbing the fixed point
action by means of the leading thermal operator e(z) with conformal dimension A =

1/7. This is a singlet field under both symmetries, C and Q. Hence, the discrete S;
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symmetry of the fixed point is still preserved away from criticality and correspondingly
the particle states organize into singlets or doublets. The scattering amplitudes of the
massive excitations produced by the thermal deformation of the Tricritical Potts Model
are nothing but the minimal S—matrix elements of the Affine Toda Field Theory based on
the root system of Eg (they have been determined and discussed in references [40, 50] and
can be found in Table 7). Poles occur at values iar with o a multiple of 1/12, 12 being
the Coxeter number of the algebra Es. The reason of the Eg structure in the massive
model is due both to the equivalent realization of the critical model in terms of the coset
(Es)1 @ (Es)1/(Es)2 and to the fact that the leading energy operator €(z) is associated to
the adjoint representation in the decomposition of the fields [47]. Then, once again. one
may apply the argument of references [51] to conclude that the massive theory inherits

the Es symmetry of the fixed point.

The exact mass spectrum consists in two doublets (A;. A7) and (A, A7), together with

two singlet particle states Az and Agy [40, 50]. Their mass ratios are given by

mr = 2mycos i~ (1.41421..)my, (4.2.53)
my = my = 2mcos % = (1.93185..) my,
my = 2mp cos{% = (2.73205..)my ,

where the mass scale depends on g as [24]

M(g) = Cg™, (4.2.54)
and
, 5 % 2T(HT(:3)
C= [4r’ (D)) 7)™ 4120 — 3746559718 . . . 4.2.55)
| D1 s 25

The above values of the masses are proportional to the components of the Perron—
Frobenius eigenvector of the Cartan matrix of the exceptional algebra Eg and therefore the

particles may be associated to the dots of the Dynkin diagram (see Figure (4.3)). Hence,

they may be put in correspondence with the following representations of Eg (identified by
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my

m; mp mg mg mg

Figure 4.3: Dynkin diagram of Fg¢ and assignment of the masses to the corresponding dots.

their dimensions)

Ay
Ag

By introducing the alternative notation

A
Ap
Ap
Ay
Ag
Am

L

Ll

—

B27

the bootstrap fusions of this model can be written in the following compact way [3]

-

;X A
X A
x A;
X —A—i+1
x B;
x B;
X Bi1
x B;

X Bi—l—-l

-, -

-,

- -

SIESIE SIS

-~

=

AL+ A,
A+ A,
B;

B, + B,
A+ A,
A+ A,
A

B, + B,

B+ B .

It is easy to check that the above fusion rules are a subset of the tensor product decom-

positions of the above representations of Eg [49].
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4.2.2 Form Factors of the TPM

After a brief description of the model, let us turn our attention to the determination of
the matrix elements of the leading energy operator €(z). Our strategy will be similar to
that employed in the case of the TIM. For the TPM, however, we have a more stringent
selection rule coming from the Z3 symmetry. Given the even parity of the operator €(z)
and its neutrality under the Z; symmetry, the only matrix elements which are different
from zero are those of singlet (multi-particle) states and they are the only contributions
which enter the spectral representation series (3.1.3). For convenience, the first such states
ordered according to the increasing value of the s-variable are listed in Table 8. Because
of the selection rules, one very soon encounters three— and four—particle states among
the first contributions, and therefore, the computation of FF becomes in general quite
involved.

Let us briefly illustrate the most interesting FF computations of this model. As far as
one- and two-particles FF are concerned, we just quote the result of the computations
since they are quite straightforward and can be obtained by following the same strat-
egyv already adopted for the TIM; the one-particle FF are given in Table 9, while the
coefficients af, of the polynomials P,y(6) of eq.(3.1.41) are listed in Table 10. The need
to compute several three-particle FF suggests however to adopt a more systematic tech-
nique based on the recursive structure of the FF. The lowest neutral mass state is given
in this model by a doublet of conjugated particles [ and I. Hence, in order to build useful
“fundamental” singlet multi-particle FF we have to consider recursive equations relating
FF of the kind Fauty = Fi1j7 1, with an arbitrary number of particle-antiparticle pairs.
From the knowledge of F};,; obtained as solutions of the recursive equations, we can next
derive (by bootstrap fusion) all the three-particle FF we need in our determination of the

correlation function. To write these recursive equations, let us parameterize the FF as

Fra1ty(Br By - -, Bn, By) = Qn(?;’ :i—'b)'n.—.l’ O]
( 11 i (Bar) F}T?m(_gzk)) ( ‘ F/fm(ﬂr"ﬁs) )

1<i<k<Ln D”(ﬂik) Dﬁ(/,gzk) r,s=1 (:Er + Es) D[Z(,Br - ;B;)

(4.2.58)

where
[ ErB-B) ifrss,
Frm(8, — B,)

il

(4.2.59)
Fmn(B, — B,)  otherwise .

In these expressions z; = e’ and o,, is the symmetrical polynomial of degree m in the z;’s
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(the quantities T; and 7, are analogously defined in terms of the 3;’s). The two-particle

minimal FF are given by (see egs. (3.1.11) and (3.1.19))
Fn(8) _ Ff™(8) _ —isinh(8/2) hijo(8) hayal3) hjal(3)

Du(8) — Du(8) p1/6(B) p2ys(3) ’ (42.60)
FF(8) _ ﬂ?zn(ﬂ) hsys(8) haja(B) haya(5) (4.2.61)
Dﬁ(ﬂ) Du(B) P1/2(ﬁ)

In (4.2.58), H, is just a multiplicative overall factor and @, is a polynomial in its ar-
guments. The latter is the only unknown quantity which can be computed through the
recursive equations. The function (), must be a symmetrical polynomial both in the z;’s
and in the Z;’s separately. Furthermore, it must be symmetric under charge conjugation,
i.e. under the simultaneous exchange z; « Z; (Vi = 1...n). Hence, it can be parame-
terized in terms of products of o’s and &’s with suitable coefficients in order to guarantee
the self-conjugacy. The factor P? for this set of particles takes the form
(Tr10pn + 0100 (01 + 1)

P?= m; (4.2.62)

OnOp

and, correspondingly @, will be factorized as
Qn(21,T1, ..., 20, Tp) = (Tn10n + One10n)(01 + T1) Pu(21,T1, - -y T0y T ) - (4.2.63)

The Lorentz invariance of the FF requires P, to be an homogeneous polynomial with

respect to all the z’s and T's of total degree
deg P, = 3n? —4n , (4.2.64)

while the condition (3.1.29), knowing that A, = 1/7, imposes the following upper bound

for the degree in a single z; (7;)
deg, P, < 3n —T74/21 . (4.2.65)

These conditions drastically restrict the possible form of the polynomials @,,.
Let us write down the form assumed by the kinematic recursive equations by using

the parameterization (4.2.53)
Qn+1(_xv T,%1,T1,- .. 733717—1—'11) =1z Un(l'[a:i’ ) Qn(wl’fh Tt "Tn?fn) ’ (4266)

where (here A;; = {1/6,2/3,1/2})

n

Un(zlziz) = J] ] (&= €e™T)(z — ™ 7%a;) — (1.2.67)
=1 a€A,
H T —e — i )(CB . e—m(l—a)l_i).
i=1a€Ap,;
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The overall constant is explicitly given by:

_n(n—l)

H, =27m] (Qta.ng(r/()')tang(.iﬁ/l?) 11 ga(O)sin(ﬁa)) : (4.2.6

(o)

)

€A
However. the equations (4.2.66) are not in general sufficient to fix all the coefficients of
(n+1- A more stringent constraint is obtained by using twice eq. (3.1.21) in relation with

the processes [/ — [ and 11 — [. The final equations take a very simple form:

Qn-f-l(nyanyvﬁg?ﬁytl‘%:f?--"7~Tn:l_7n) = (4269)

where 7 = /3 and

II"n(xh:—E—l?""mnufn) - (—1270)

izt -7t pid) —~mi

5 ICl)(El - 6.—‘5;171)(171 — 673}1)(5}_1 —€ 2 1?1) .

=(214+71)(T1 —¢

. H(”fl +z;)(z +7:)(7T) — es—g—if,’)(fl — ehzﬂfi)(ml - e%xi)(xl —e

=2

=5t

€ x;) .

Let us now illustrate how this procedure works in the case of ]:2(,7). Let us start from
Fi3; using eq. (3.1.35) we easily obtain Q1 = 1 and H; = 27 m?. From eqs. (4.2.64) and

(4.2.63). the general parameterization for P, is given by

PQ(.T},IZ_Yl, Ig,fg) = (0':22 -+ Eg) + Cy (0'10'2-51 + 51520'1) -+ (4271)

tc3 (072 + Tr0q) + €4 0252 + ¢5027 .
Equation (4.2.66) gives four equations for the five parameters

cs = —(3+/3),
e —cs = —3(24/3),
¢ — ¢y = 3+2V3, (4.2.72)
2¢) +cs = —18 — 10V/3,

while eq. (4.2.69) solve the residual freedom yielding
9458
‘) 7

P

C; =
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_ 3(+3V3)
2 — 2 ’
cs = —M, (4.2.73)

2
cs=cs=—(3+3).
Once we have determined H; and P, we can obtain Fuiy from egs. (4.2.58) and (4.2.63).
From this four-particles FF it is also easy to obtain the three—particles FF F};,. Fip Fun
applying the residue equation (3.1.14) at the fusion angles u%;, u{‘j and u% respectively.
The explicit expressions of these three—particle FF are given in Appendix B.

The FF calculated for the TPM can be used to estimate the two-point function of the

stress—energy tensor whose plot is shown in Figure (4.4). The convergence of the series

0.5 1 1.5 2 2.5 3

Figure 4.4: Plot of the correlation function { ©(z)@(0))/m{ versus the scaling variable m; |z| in
the TPM. The spectral series (3.1.3) includes the FF contributions relative to the multi-particle
states in Table 8.

may be checked through the sum-rule tests: the contributions of each multi-particle state
are listed in Table 8 where the exact and computed values of ¢ and U are compared.
A very fast convergence behavior is indeed observed which supports the validity of the

spectral approach to correlations functions in integrable massive models.

4.3 The Models M3 ,41 + ¢13.

In this section we will present some computations concerning the whole class of models

M3 2441 perturbed by their field ;3 The aim of this section is threefold. First of all we
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would like to describe a set of models in which lot of results can be given at once for any
element belonging to it, thanks simply to a generalization of the solutions given in section
(3.3.2). The second reason, connected to the first, is that we can show the behavior of
certain sum rules as ¢ — oc and third because we will apply these results in the next
section to computations related to non-integrable deformations.

The CFT’s Mj 2,41 have central charges given by

2(6¢% — T 2(q —
c=— (64" —Tg +1) and E:M (4.3.74)
2¢ + 1 2g +1
and possesses ¢ primary fields
w1,; for 7=1,...,¢ (4.3.75)
whose conformal dimensions are given by
(U —1)(2g —7) -
A= — ) 4.3.76
b 2(2q + 1) (4.3.76)

from which one can read off the conformal dimensions of the most relevant field is ¢q 4 by

q(q —1) -
A, = —— 2t 4.3.
1,9 2(2q n 1) ( / l)
Any of these models when perturbed by the field ¢13 is integrable, non—unitary and

massive. It has ¢ — 1 particles with masses given by

., T
My = sm(a/T) for a=1,---,9g—1, (4.3.78)
where a = 2/(2¢ — 1). The two-particle S—matrices of this model are given by [52]

min(a,b)—1

Sab(0) = fla=sjas2(8) Fatnyas2(8) 1 (f(]a—b|+2j)a/2(9)>2 ) (4.3.79)

J=1
where f,(8) = (a) has been defined in (2.3.31). That these amplitudes actually lead to

the models Mj 2,41 in the ultraviolet limit has been proved by means of the TBA in [53]
and the first few of them are listed below

(
(2a) (4.3.80)
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We have to observe that for ¢ = 2 we get back the model M, 5 + ¢19 discussed in section
(3.3.2). Moreover observe that there is a periodicity in the values of the masses and the
primary fields

Mg = Magq-1 and Y1 = ©1,2g—j+1 - (4381)

In the following we will often use this periodicity indeed making reference to a mass that
in some model may be absent but its “reflected” is instead in the spectrum. In certain
cases we will also consider negative values of a in their labels i.e. we will take m, as a
sort of abbreviation to write sin(awc/2). The Form Factors on the fundamental particle

for these models have been obtained in [55] for any of the operators
Gramn for k=1,...q. (4.3.82)

The general form of them is given by eq. (3.3.77) where w = exp(iza), and the index
n means that we are looking at FF with n fundamental particles. The polynomials Q*
are given in terms of a determinant (3.3.92) where £ now labels the fields as in (4.3.82).
This solution can be obtained as in section (3.3.2). Indeed (3.3.92) solves, for any k, the
kinematic recursive relations and is then restricted to the values of k& shown in (4.3.82) by
the bound state equation. Notice however that for ¢ > 2 the bound state equation does
not connect form factors of the fundamental particle in a single step. We need indeed two
“bunching”

Flmlll — F1-~~12 — Fl...l,

to relate the n 4+ 2 to the n particle FF. The normalization constants H* can then be
given by simply imposing e.g. the cluster equations with Fjy = 1. Moreover one gets also
the FF for the other particles 2,3,... through the fusion procedure implied by the form
of the S—matrix.

Before coming to the explicit expressions of some form factors, we prefer to express
the matrix elements in (3.3.92) in a way more closely related to the order of the fields as

in (4.3.75). A brief look at eqs. (4.3.75) and (4.3.82) will lead to

Q) = M, (4.3.83)
where M gb is given by
M2a—2b+5—1 j odd
‘ Mmj-1
M, = 09,4 , (4.3.84)
ab
M2b-2a+j-1 j even
m;-1
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where the upper index j refers to ¢ ;. Notice that the matrix M, for ;7 odd is the
transpose of the one for j even. Since the determinant is invariant under transposition
one can safely take only the definition for j odd and use it also for j even. With the

determinant (4.3.83) the first characteristic polynomials read for instance

Q11 = o1
j Mj+17M5-3 -
Q111 = 0102 — 03 Y (4.3.85)
7—1

where it is worth recalling that all the constants depend also on a. Let us list here the
form of those polynomials and normalization constants that will be useful later. Let us

begin with the FF on the lightest particle

N sin(ra)

Fil =2%— "~ ‘", ), (4.3.86)
my
where ) )
) Frm .
_— —Le ) 4.3.87
Nap 91-1-% ( exp(8) ) ( )

Then we have the normalization constant for the two-particle F7,
2
mi_y

mi

H{1=4

sin wa, (4.3.88)

where one can notice the extremely simplified solution with respect to the cumbersome one
that can be found in [55]. From these results we can indeed get a nice recursive relation
from the cluster limit (3.2.42). Observing that the polynomials involving n particles of
the same kind obey

J

lim Q(zy,..,z,) = 2 QL _1(z2, .., 2,), (4.3.89)

61 —co

where p is the maximal partial degree of Q,,, the recursive solution for the normalization
constants is

_ n{n—-2)

i = (2-@ in (m))n (N )~ 252 (4.3.90)
my
where one can see that for the scaling Lee-Yang model one recovers the values shown in
eq. (3.3.85).
By using now the fusions it is possible to get the one-particle matrix elements involving

heavier particles. However as we shall see, for the two—particle FF a more efficient method

can be exploited which does not require the use of the residue equation (3.1.14). For our

71



purposes, and for reasons that will be clear later, we have computed only a view of them
listed in the following. The first computation concerns the one-particle FF
Ja (27a) {/sin (27a)

i 2 (4.3.91
2 mims m]_l )

and next the two-particle Form Factor Fj3. The parameterization for the FF with n

particles of type 2 is given by

. Fm(6:5)

Flo o= H o2 DQl (zy,..,,) , (1.3.92)
" @ 2w | z'<1;.[—-1 (z: + 25) Daa(6:5) |
where the normalization constants satisfy the relation
(ira) fsin (27a) , \"  _snn
: go2Tma) /SIn (2T __nin-1)
Hi = |- mi | Ny ° (4.3.93)
(n ™My Mo I '

and the polynomial Dy, is given following the rule (3.1.16) and reads
Do (65) = (7 —wla;) (2 —w™2z;) (2 —wz;) (2 —w ™ le;) (i Fewr;) (@ +w ™ hay) . (4.3.94)
The characteristic polynomial has degrees

t =3n(n—-1)/2 and p=3n-1), (4.3.95)

and satisfies the same factorization (4.3.89). Thus for n = 2 we have

J

by = (0] + alyon)on (4.3.96)

and the constant a}, can be determined as follows from the determinant (4.3.83). Indeed

consider the characteristic polynomial Qi given by

mj—3
01 —_—mJ—l 0
J — mi+1 m;—3 (] rd
WIES]
o4 o
0 L i 3

where we have written the matrix elements in (4.3.83) for 5 odd. To obtain now QJ, we
should apply the residue equations (3.1.14) twice as shown pictorially in the following
equation

F1111($1,..,:E4) - lel(I,I3,$4) - Fgg(w,y), (-1398)
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where the residue must be taken for # = i7ma. However we shall show that this is not neces-
sary. Indeed it will suffice to follow the transformation of each element in the determinant

as far as
Ty = awt? 29 = 2w”Y?  and x5 = yw'/?, 2y = g2, (4.3.99)

where we consider the transformations as following one the other. The matrix elements

in (4.3.97) then become

mo
gy — ™ g1

—_ 2 ma\2
72 = o+ (53) o2 (4.3.100)

s M2
g3 —* i 0109

gy — 0'%,

and substituted into (4.3.97) lead to a determinant for Q,. Actually we should expect the
polynomial Q2, multiplied by some function that may have been canceled in the process
of taking the residue. What is important is the possibility to actually determine a3, which
is indeed given by

T2y _ Tt izs o (4.3.101)
j-1
Since we know exactly the form of Hgg it will be possible to derive also Fy by using the
residue equations. Before that, we can apply this mechanism to compute the coeflicient

aj,. Consider indeed the following two—particle FF

1y 02 Qly(z1, 22) FI3"(0)

Fiy(0) = 1.3.102
12(0) (21 + wl229) (21 + w™V225) (21 — w322, (2; — w=3/22,) ( )
where
, m3 2Ny1 cos (7a)
Hiy = —2i 2 g, (in ' 4.3.10:
12 Z - ga(imer) o (4.3.103)
with Nz defined in (4.3.87) and the characteristic polynomial is given by
L, =0c+dl,0. (4.3.104)

By using the determinant for QJ,, given by the 2 x 2 minor in (4.3.97) and using the

analogous of (4.3.100) one gets

N 2 , )
o, = ™ (.’ZL) SO LN A (1.3.105)
mo mq mi_q my .

One could now proceed on the same path computing other two particle FF (we have

listed a few of them in Table 13 for the model Myg + ©13). However a few comments
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are in order. Indeed the above two-particle FF could have been obtained in a different
way by using the equation (3.1.14) but the equivalent results would have been written in
a quite cumbersome form, instead of as ratios of sines as for a9 and a;5. The way we
actually followed to obtain them however already contains the information on the bound
state poles, although it refers to the fundamental particle only, but expressed in a simpler
compact form. For later uses we compute now the one-particle matrix elements Fg and
F]. They can easily obtained from Fl'j:, and FJ, respectively and are given by
3ira

o HfQ (4 cos?*(3ma/4) + CL{Q) Frin )
2mamyl'3, 1 2

Fi =
(4.3.106)

ng (4 cos?*(max) + at;r_,)

4 — r
8mymaomel's,

FIm(2iza) .

where we have used the definition of I' as in eq (2.3.38). A closer look at the one—particle
form factors computed so far reveals a nice behavior that is worth describing here. Indeed
1t is possible to see that the dependence on j is contained in the single mass term m;_,
to some power which depends on the asymptotic particle. By suitably using the cluster

limit one can guess that they have a general form as

—2 A¢(12) m?—l a even y s -
S 1) . (4.3.107)
A, mji_1 aodd

where the coefficients depends only on the ultraviolet model i.e. on the parameter ¢.

In the next section we will compute the contributions to the sum rules for the central
charge and the conformal dimensions of the fields ¢;; in the limit ¢ — =c. To this
aim, we will write here the (truncated) sum rules in which we explicitly show only those
contributions actually computed.

Let us begin with the conformal dimension. The one-particle FF contribute as

A(oz‘ie—Partl) _ m% (F13 Flj + F23 F2] + - ) ,

I "~ 4sin(ra) \ m? m3

(4.3.108)

where the coefficient in front of the sum comes from the vacuum normalization (2.4.80)
of the trace of the stress—energy tensor. The contributions from the two-particle FF

considered here are instead given by

A(ll) _ 1 dgldgz F51(912)F{1(921)
1 16 sin(ra) 21 (cosh By + cosh 6,)
(4.3.109)
A2 _ m} df;do; F5(012) Fio(01) .
b 8sin(7wa) 21 (my cosh B; 4+ my cosh 6,)°
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The three—particle Form Factor Fii; gives instead

Al _ 77 /c191d92d93 F3.(01,0,.05)F}1, (04,0, 65)

AL - . (4.3.110)
! (27)*  (cosh 8; + cosh 6, + cosh 65)°

~ 24sin(7a)
As we shall see also for the central charge of the UV theory the sum rule gives interesting
results. For reasons that will be clarified later let us write here the contribution coming
from the FF F; and Fj;. With an obvious notation they are given by

3

2
M 2 (T ) g3y 1.3.111
¢ 4 (23in(7ra)> S ( !

where both integration over x and the rapidity have been done, and

= 3 <_I__>E/ a9, dp, —Fl0r) Fry(02) (4.3.112)
dr \2sin(ra) ) = (cosh(f;) + cosh(6,))* '

4.3.1 The limit ¢ — cc.

Before evaluating with the aid of the form factors the sum rules (4.3.108-4.3.112), let
us write down what are the expected values for the central charge and the conformal

dimensions. Indeed expanding eqs (4.3.74-4.3.77) we get the limiting values as ¢ — oc

c~ —6¢g+104+0(1/q)
Ay~ —(j—1)/2+0(1/q) (4.3.113)
Arg ~ —q/4+3/8+ O(1/q)

As we shall see there is a general criteria that will allows us to determine what FF
contribute and with which power of n. Before explaining this general rule it is worth
showing the leading behavior for ¢ — oo of the one-particle FF considered in the previous
section and, as a beginning, their contribution to the conformal dimension of ¢, ,. Since
in the computation of A;, enter the FF of the fields ¢y 3 and ¢ ,, we will consider the
aforementioned limit for the label ; = 3 and j = ¢ respectively. These are given by (in

this limit we have also a ~ 1/¢ — 0 which is always considered in the following equations)

F? ~ 2i\/ma

4.3.114
Fi ~ 2i/v/Ta, ( )

where the limit

Ny — —1/4
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has been taken into account. By plugging these two values of F} into the sum rule for the

conformal dimension (4.3.108) we obtain the first contribution

NG (4.3.115)

A

Let us consider now the one-particle FF Fy in this limit. The leading behaviors are

FP o~ =22 (xa)/?

(4.3.116)
Ff ~ =22/ \/7a.
The contribution in the sum rule is thus given by
2 1 I
Al =5 (£.3.117)

It is also possible to compute the contribution of the one-particle F3 that reads

F? = —i—=(7a)%?, 1.3.118
3 7 (ma) ( )
while for the most relevant field one get
8§ 1
Fl = -i—4—. 4.3.119
These two limiting values lead then to the conclusion that
AP — 0. (4.3.120)

A few comments are in order now. First of all note that there is a regular behavior for

these one-particle FF, i.e. they follow the general pattern

1
F?} ~ (ra)¥?, FI ~ —— | (4.3.121)

T

Second, let us note that the one particle FF F}? allows us for constant term contribution

to the sum rule. Indeed the expansion for large ¢ reads
F} ~ 2ira— = (ra)*/?, (4.3.122)

in such a way that the matching with FY in eq.(4.3.114) exactly cancel the 1/a term in
the sum-rule. These FF are now sufficient to predict what are the other Form Factors

that contribute and whether their leading contribution® is proportional to ¢ or constant or

'As we have seen in the case of the one-particle contribution, those terms contributing with a term

proportional to n give also a constant contribution.
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zero. The criteria comes from the observation that the cluster limit and the limit ¢ — oc
must commute. This means that the leading term(s) for §; — > in the polynomials @
must coincide with the most singular term(s) in the limit ¢ — 2c. It is a trivial matter
now to apply this rule to see that all the FF involving only the particle 1 contribute to
the sum rule for A, , with leading terms proportional to ¢. Instead the FF with only
one particle 2 and all the other of type 1 gives constants contributions while all the other
contributions vanish in this limit. To show how this works, let us apply this rule to few

simple cases.

e [3; has leading contribution proportional to g.
Indeed by looking at the cluster limit according to the above criteria we get
Fiy = () ~ (7a)
(4.3.123)
1
qul - (F1q>2N PN
TQ
so that their product cancel the dependence on ¢. A look now at the first of eq.

(4.3.109) reveals that A&f;) ~ ¢q. It is easy to see that the same applies for all the

FF of type Fi.... Their exact contributions must however be computed directly and

give for example

(11) q
(4.3.124)
A(111) ~ __¢Z~.
l.g 67(—
Putting all the contributions together gives finally
1 1 1
A (__ 11 ) 1.3.125
be ™ A\ T + 72 67 + ' (1:3.125)
in which we can recognize the first three terms in the expansion of
1 ) 1 .
g(z) = = arcsin®(27z) — — arcsin(2xz) (4.3.126)
72 s

around z = 0 computed in z = 1/2x, which gives exactly the wanted value —1/4 in

eq (4.3.113).

e [, has leading contribution constant.

The cluster limit give
FY — FRF} ~ (ra)?

(4.3.127)
Ffy — FFj ~ L

T

3
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thus their product is proportional to «, whence Agl:) ~ const. The same reasoning
leads then to the conclusion that all the FF like Fj..;5 have leading contribution
constant. In this case there is no reason to worry about these constants, because
also all the FF containing only particles of type 1 give constant contributions and

thelr sum is no more under control.

The contributions from Fj, with a > 3 and from all the other FF go to zero.

When at least one of the particles is of type 3 it is easy to see, applyving the above
reasoning on the result shown in eq. (4.3.121), that these FF give vanishing contri-
butions for ¢ — oo. Moreover by simply using the one-particle FF just discussed

one can also prove that all the others go to zero.

The limit for the generic field ¢ ;.

In the case we want to see how things go for any other field, whose position remains
fixed while doing the limit, things simplify. Indeed in the case of the field o ;
the conformal dimensions in the limit ¢ — oc are given by (4.3.113). For this
computation we need, as before, the behavior of the one-particle FF. They can be

easily computed and are given by?

FleZ. w0 4.3.128
Fi ~ —(z/n)¥2(j — 1)/3/2. (4.3.128)

Plugging now this limits into equation (4.3.108), one sees that the one-particle

contribution of the particle 1 gives

J—1 -
AY ~ e (4.3.129)

thus fulfilling the limit (4.3.113). For what concerns the contribution of particle 2.
1t is easy to see that its contribution goes instead to zero. Moreover. applying the
same reasoning as in the case of A;, one readily sees that all the two particle FF

give a contribution that goes to zero.

As last application let us show how all this applies to the case of the central charge. By

looking at the corresponding sum rule and at the limit values for the one-particle FF,

one can see that only Fy and Fi; give non-vanishing contributions. In particular one can

readily see that F; alone must give the term proportional to ¢ plus a constant, and that

20ne should take care of whether j is odd or even. However one can readily see that the corresponding

limit is the one shown here in both cases.
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Fi; gives another constant. The term proportional to ¢ must match the analogous term
in the expansion (4.3.74), while the two constants must provide the constant in the same
expansion. These contributions can be computed analytically from eq. (4.3.111) and
(4.3.112) and give
M~ —6g 4+ 64 0(1/q)
(4.3.130)
M~ 4+ 0(1/g).

Their sum then gives
c=cW 4o = 6410+ 0(1/q), (4.3.131)

as in the expansion (4.3.113).

4.4 Application to non—integrable deformation

In the previous chapters we have seen applications of the Form Factors techniques to
theories deformed as in (2.1.1) which remain integrable. An open and interesting problem
would be that one concerning theories which are deformed along non-integrable direction.
Being this general problem in large part beyvond the present possibilities let us look at all
the possible ways we have to get in touch with it. This will allow us to understand whether
there is some problem that can be treated with the present knowledges. There are basically
two situations that can lead to some non-integrable system. The first and more obvious
is the one in which into the action (2.1.1) there is a field ¢ which is not among those
in (2.1.2) or in other words such that the only conserved current in (2.1.4) is the stress—
energy tensor. This case is up to now among those that can be considered only through
some numerical investigation [56] and (or) standard conformal perturbation theory and as
such will not be considered here. The second possible path to non-integrability consists in
considering instead of the action density'(2.1.1) the one in which there are two deforming
fields both of them leading separately to some integrable theory. Indeed this approach
leads then to consider the non-integrability as a breaking of integrability. In other words
we consider an integrable theory and add to the action density a small perturbation that

breaks it as in the following equation
Agrt = Aine — e/d% ®(z), (4.4.132)

where A;,; is the action density for the integrable theory and e is the small coupling

constant. With this small perturbation we will consider first—order corrections that we
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will be able to compute by using the form factors of the integrable theory we are starting
from. The following section is dedicated to this problem: we will describe briefly the
main consequences of this approach following ref. [17] and then we will pursue an explicit

computation on the model M, g + o153 and its two possible non—integrable deformation.

4.4.1 First order corrections

Suppose to take the field theory formallv defined by the action density (4.4.132} and let us
make the hypothesis that the perturbation is turned off at ¢ — foc. Thus the asvmptotic

states are those of the integrable theory
P1 - pa) T = Jpy, L ) (4.4.133)

where the index 0 in the lhs refers to the integrable theory. The S-matrix of the theory
is instead modified due to the presence of the perturbation and is given by the product
S(s) = So(s)S1(s) where Sy is the (known) scattering amplitude of the integrable theory
while St encodes the dependence on the perturbing field and can be formally written as
Si(s) = T (e7J?) (4.4.134)

The S—matrix is then defined as
out<

Qh--;f]mlph--apn)in - Ogt@l--meiT <e_iﬁf®) lp1’7p”>6n =

(4.4.135)

= (_ie)k 2 2 out in
= Sy @ e T (D(0).0(00) [ )
k=0 :

where by inserting now a complete set of asymptotic states in between the fields and
using the known FF of the field ® one could in principle compute all the contributions
order by order. Note that in the non-integrable theory features like inelastic collisions
and decay of particles are no longer forbidden and for this reason the S-matrix cannot
be factorized into the produ.ct of two-particle amplitudes. Moreover as shown in ref.
[17] counterterms must be added to the action in order to take properly into aécount
the correct normalization of states. Indeed while the new interaction changes both the
vacuum energy & and the masses of the particles at the same time we require that the
vacuum be normalized as

(0'0) = 0(0'0)0 =1 . (4.4.136)

and the one-particle states obey
“glp)™ = glp)™ = 2 E6(q" —p'). (4.4.137)
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Thus the needed counterterms can be obtained with the prescription of adding to the
action their appropriate operators. We can formally take this into account by means of

the following substitution into equation (4.4.135)

e®(0) — ¢ ®(0) — %5m2 0(0) - 6&, (4.4.133)
where O is an operator defined in terms of its unperturbed Form Factors as

EZY = 5010 (0)]ps. s P}’ = 6ns. (4.4.139)

and 6& is the variation of the vacuum energy under the perturbation. With these defini-
tions one can compute the corrections by imposing (4.4.136) and (4.4.137) order by order.

In particular it is easy to see that the first order corrections are given by

§mg = 2€- o(pa] ®(0)[a)o

(4.4.140)
550 = €- <(I))0,

where we have generalized them to the case with many particles and the Form Factors
are those of the unperturbed theory. Equation (4.4.140) can be rewritten in a coupling—

independent way by taking the ratios over the variations thus leading to [17]

dmy, ms F‘I’(m)

57’7’&(, B Zs)

(4.4.141)
(550 . mgy <(D 0

= A
dmy, F2(ix

where all the masses and FF are taken in the unperturbed theory. Notice that eqs.
(4.4.141) possesses a double interest. Indeed one may want now to check their behavior
on some model versus for instance numerical perturbative computations. On the other
hand instead can be interpreted as a way to identify the form factors of the perturbing
field entering in the lhs of them.

Many examples could be made to this purpose (see for instance the original reference
[17] and [16] where some models have been solved) and in the following we will choose
two of them from this last reference, namely the non-integrable models (Mag + ¢y3) + €@
where @ are the fields ¢12 and ¢y4, just because we have their analytic solution in section
(4.3). For these models the identification of the fields has been already obtained through
the sum rule (2.2.20) and in the following we will then show the validity of eqs. (4.4.141)
comparing the predictions with a numerical computation. In tables (11-13) we have

listed the two-particle S—matrices, one-particle FF and the coefficients entering into the
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definitions of the two—particle FF for this model. The numerical study will be performed
by using the Truncated Conformal Space Approach (TCSA) developed in ref. [18]. By
using eqs. (4.3.88.4.3.92) we can indeed obtain the theoretical values to plug into egs.
(4.4.141) that can be compared with the numerical ones as shown in Table (14). One may
notice that the values are in quite good agreement. To the purpose of better illustrating

this result we have also plotted various values of the ratios taken at different values of the

non-integrable coupling in Figures (4.5-4.8).

‘ -0.0005 ~0.0004 -0.0003 -0.0002 -0.0001

-0.00005 -

-0.0001

-0.00015

-0.0002 t+

Figure 4.5: Numerical TCSA estimates of émy versus éms for different values of the “non—
integrable” coupling in the model (Mg + ¢13) + ¢12. The continuous line represents the theo-

retical prediction.
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-0.0002 -0.00013 -0.0001 -0.00005

Figure 4.6: Numerical TCSA estimates of §&y versus my6m; for different values of the “non—
integrable™ coupling in the model (Ma9 + ¢13) + v12. The continuous line represents the theo-

retical prediction.
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0.00003 0.0001 0.00015 0.0002 0.00025 0.0003

Figure 4.7: Numerical TCSA estimates of §m; versus §m, for different values of the “non-
integrable™ coupling in the model (Mg + ¢13) + 14. The continuous line represents the theo-

retical prediction.
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Figure 4.8: Numerical TCSA estimates of §&y versus miémy for different values of the “non—
integrable” coupling in the model (Mag + ©13) + ¢14. The continuous line represents the theo-

retical prediction.
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Chapter 5

The free massive boson with

boundary

As discussed in the Introduction, we have seen that at the critical point, conformal invari-
ance of the fixed point action implies that the correlation functions transform covariantly
under any conformal map. While this condition in d = 2 allows to classify the operators
of the theory according to the infinite dimensional Virasoro algebra [1, 2] at the same time
it provides a powerful method to compare results at criticality obtained from different ge-
ometries. For instance, the results on the plane can be compared to those on the strip (or
the cylinder), easier to obtain by using numerical computations. By means of a suitable
conformal transformation one can also map the half-plane onto any possible geometry
with boundary such as for example a “semi-infinite” cylinder cut on a circle with given
boundary conditions [57]. Once the geometry of the system is restricted to half plane one
can ask what happens to the Virasoro algebra and the classification of the fields and what
are the possible boundary conditions that do not break the conformal invariance. The
first question has been answered in [58] by showing that thanks to the conformal covari-
ance of the correlation functions and by imposing that there is no flow of energy through
the boundary, “half” of the Virasoro algebra survives. This result is obtained by consid-
ering the system as mirrored in the prohibited half-plane. This means that the n-point
correlation functions at the bulk critical point satisfy a differential equation like that of
the 2n-point correlation functions in the bulk, but with appropriate boundary conditions.
Thus a theory with a conformal boundary retains its infinite dimensional symmetry and
the consequent classification of the fields according to the irreducible representations of
the Virasoro algebra.

The other question, concerning what kind of boundary fields one can add without
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breaking conformal invariance. has been answered in [59]. By translating into operato-
rial language the absence of flow of energy through the boundary it is possible to show
that there is a one-to-one correspondence between the allowed boundary states and the
Verma module of the irreducible representations of the Virasoro algebra. However the
physical boundary states are obtained by taking advantage of the possibility to express
in two different pictures the physics on the strip with two boundary conditions on the
opposite edges. Namely. in a cylinder with boundary conditions « and 3 on the oppo-
site edges. one can either consider the “time” direction aloné the cylinder with the time
evolution governed by the boundary Hamiltonian H,g, or across the cylinder. with the
bulk Hamiltonian H as evolution operator from the state |@) to the state |). These two
pictures should describe the same physics, but in the first case the Hilbert space is made
of boundary states while in the second case it is the bulk one. By equating the modular
transformed partition function of the first case to the partition function of the second
case, one obtains a relation that provides the physical boundary states.

Non—critical theories with boundaries are then obtained by deforming the CFT with
conformal boundary conditions by adding a term that drives the theory outside criticality.
Among the various deformation, of particular interest are those that leave the theory
integrable i.e. allow the existence of an infinite number of conserved charges. The reason
for this interest is due to the possibility to apply the methods of factorized scattering
theory [6]. In the following we will consider only those deformations that lead to models
with massive excitations.

For the theory with boundary outside criticality, one has to add a boundary term
that does not break integrability. Although a general answer to the problem of classifying
all the integrable boundary conditions has not yet been furnished (for a discussion see
for example [60]), the methods developed in [19, 20] allow to translate and solve the
problem in terms of boundarv scattering theory. Starting from the Euclidean theory in
the half-plane, one can go to the relativistic model with the boundary placed parallel
to the time direction and compute the amplitude R, that depends on the momentum of
the incoming particle, for the boundary—particle scattering (see Figure (5.1)). The bulk
bootstrap and the factorization property are sufficient to fix a set of functional equations
for the amplitude R. In this picture however one has to deal with the Hilbert space of the
theory defined on a half-line and this clearly introduces big difficulties when one deals
with the correlation functions. On the other hand, one could consider the boundary as
placed in the time direction i.e. it becomes an initial state |B) at ¢t = 0 that takes the

place of the vacuum in the correlation functions (see Figure (5.2)). Since the particles
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R(6)

Figure 5.1: The particle hits the boundary coming from the right. R(6) is the boundary—particle

scattering amplitude.

K(0)

Figure 5.2: In the time direction the boundary is made of couples of particles emitted with

opposite rapidities.

can move on the whole space axis, the Hilbert space is the same as in the bulk and the
computation of the correlation functions is not more difficult than in absence of boundary.
The only difficulty remains then the determination of the state |B). As we shall see the

knowledge of R together with the constraint
p|B) =0, (5.0.1)

where p is the momentum operator, can solve the problem. Thus, once the correlation
functions have been computed in this way, a simple Wick rotation gives also the solution
for the Euclidean case.

All the same reasoning apply also when we have two boundaries, so that the Euclidean
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system is closed between two parallel walls at say, ¢ = 0 and = = «. With the boundary
placed in the time direction then, the correlation functions become nothing more than

the expectation value between the states |Bp) and (B,| (see Figure (5.3)). In this paper

|B.>

|B,>
Figure 5.3: The case with two boundaries placed along the time direction.

we will review some physics systems that may be described as high-temperature Landau-
Ginzburg models with boundaries. We will show how the Form Factors method can be

used to provide some of the most relevant quantities.

5.1 Inserting the boundary

All the Green’s functions computed in section (3.3.1) can be given also in the Euclidean
case: it is sufficient to continue analytically to imaginary time ¢t = y. After this rotation
the coordinates are at all effects equivalent. We introduce then a boundary line. in the
sense that we will restrict the system to half-plane and introduce into the Euclidean

action a boundary operator such that it becomes
. oo 1 ~ 5 .
SE[p] = ’27&/ dy/ d:c§ ((\—’cp)2 +mi? + hé(x)go‘) ; (5.1.2)
0

where h is the strength of the external field coupled to (? through a §-function potential.
The constants have been rescaled as in eq. (3.3.48) and as & = h/&. The boundary line
is now parallel to the y axis, thus restricting the system to live in the half~plane = > 0.
When one goes back to the Minkowsky space, one can freely decide which of the two
directions will be the time. Thus the boundary can either be a true boundary in space or
a sort of initial condition. This interpretation will allow us to solve the problem by using

the powerful methods of boundary S-matrix [19, 20].
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Let us suppose that the boundary is along the space direction so that the particles
can only move in the half-line z > 0 while —co < t < co i.e. we consider the y axis as the
Buclidean time in the action (5.1.2) (Figure (5.2)). The main consequence of this choice
is that the Hilbert space of states is different from the bulk case. Indeed. the Hamiltonian

operator now is the integral over half space
p_ L[ b =
i = —-/ de T (2, 1), (5.1.3)
2r Jo
where Tﬁv is the stress-energy tensor of the theory with boundary, given by

l 4 Y
Tsy(x, t) =T, (z.t) + 5 G (27h) §(z)p?(z, ), (5.1.4)

where T),,(z,t) is the bulk tensor. This means that the boson is no longer free and that
the expansion (3.3.59) cannot be used. The same conclusion could have been inferred by

deriving the equations that minimize the relativistic action, given by

(0.0 +m?) @ =0

az%-ol.r:O = il@lx:O 3

and verifying that the field (3.3.59) is not a solution of these equations.

Even if the Hamiltonian picture tells us that the Hilbert space of states and the vacuum
|0)s is changed with respect to the bulk, we can solve the problem by using scattering
theory. Indeed the creation operators of the asymptotic particle defined in (3.3.52), can

be used to define the incoming state
1), = AT(0)]0), with 6 <0 (5.1.6)

of a particle moving towards the boundary in the negative direction of the z axis'. For
an integrable theory with only one kind of self-conjugated particle, the scattering with

the boundary is governed by the amplitude R(#) defined by
B AY(—0) = B R(§)At(6), (5.1.7)

where at the rhs we find the particle moving outwards the boundary. The symbol 5
stands for the boundary operator that project into the boundary Hilbert space

|0), = BJ0). (

(&1}

o

0
e

"This is the reason for the negative sign of the rapidity.
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Integrability implies also the factorization of the multi-particles boundary scattering am-
plitude into products of two-particles ones defined in eq. (5.1.7). This factorization can
be expressed by means of the Yang-Baxter equation, that involves the bulk S-matrix.
However in this case, since the bulk theory is free, the factorization condition is triv-
1ally satisfied. The amplitude R(#) has to satisfy the unitarity condition that come from
applying eq. (5.1.7) twice

R(O)R(-0) =1. (5.1.9)

With the vacuum defined as in (5.1.8) the Green’s functions are given by

! _ 5(01®(z,1)2(0.0)[0), .
Gb(:l?,t) = b<0!0>b . (0‘1.10)

Let us suppose now that the boundary line is placed in such a way that it becomes a
sort of initial condition in the Minkowsky space: we choose the z axis of the action (5.1.2)
as the Fuclidean time (see Figure (5.3)). This means that the Hamiltonian is given by
the integral over all space of T%(z,¢). Thus the Hilbert space of states and the vacuum
are the same as in the bulk theory. The initial boundary condition is given by applying
an operator B to the vacuum, such that the Green’s function in this picture is given by
(0]®(z,t)®(0,0)|B)

(01B) ’

G(z,t) = (5.1.11)

where

|B) = BJ0). (5.1.12)

Into (5.1.11) it is now possible to use the Form Factors computed for the bulk case, the only
difficulty being the determination of the operator B. The properties that this operator
has to satisfy in order to preserve integrability of the system have been determined in
[19, 20] and will be reviewed here briefly following the notation of the last reference.
Since the state (5.1.12) belongs to the bulk Hilbert space, it should be expressed by
means of a superposition of the states defined in eq. (3.3.52), the coefficient of such a
superposition being certain functions K,(6,,...,60,). We have now to translate into the
operatorial language the requirement that there cannot be flow of momentum through

the boundary. This condition can indeed be expressed as
p|B) =0, (5.1.13)

where the momentum operator is defined in eq. (3.3.66). This constraint together with

the action of p on the particle state defined in eq. (3.3.67). imply that the superposition
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that gives rise to the boundary state should be made of couples of identical particles with

opposite rapidities
IB) x Z/d&l---d()n Ko(01,...,60,) AT(6:)AN(=0,) - - ANB)AT(=6.)[0),  (5.1.14)
n=1

where the fact that the bulk theory is free has been used in the ordering of the creation
operators. The trivial factorization properties of this theory implies also that K, can
be written as products of two (identical) particles amplitudes A (). The relation be-
tween R(#) and K(0) is finally given by relating the two pictures with time and space

interchanged. In terms of the rapidity this is equivalent to the transformation
9—>z'-f;-—0, (5.1.15)
thus leading to the following identity
K(0)=R(:-—90). (5.1.16)
The boundary state can finally be written as

|B) = exp [-1-/_“ %K(@)AT(—H)AT(@) |0), (5.1.17)

2 :0271—

provided that the boundary cross—unitary condition [20]
K(8) = K(-9), (5.1.18)

is satisfied.
The amplitude R(f) is given by inserting eq. (3.3.59) into the second of (5.1.5) and
comparing with (5.1.7). The solution reads [21]
i sinh 0 + h ‘
R(p) = SR I (5.1.19)
imsinh § — h

It satisfies the unitarity condition (5.1.9) and through (5.1.16) gives

K(g) = Teosho=h (5.1.20)
mcosh 8+ h

thus defining completely the state (5.1.17).
We can analyze now the analytic structure of R(#). In the following we will actually

analyze only the pole structure, the positions of the zeros being determined by means of

eq. (5.1.9). For iz/ﬁz > 1 this function shows two single poles outside the physical strip
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for Im(#) = —i7/2 and Re(0) = B4, B- where 0 < B+ < 2 and —oo < G- < 0 are real
numbers. The equality 8, = 3_ = 0 comes for iz/ m = 1 in which case R(f) has only one
single pole at § = —ix /2. For h/r — 0% the poles move on the imaginary axis towards
—im and 0. If =% < h < 0 we have poles on the physical strip 0 < 6 < 77, for § = iv and
at the crossing symmetric position § = tx — v = 0. The values of v and v are the two

solutions of the following equation
sina = |h/m|, (5.1.21)

thus giving rise to the residue equation

- I, -
— e ; 22
291%3(9) 59 (5.1.22)
where g is given by
2 4[h|

v/ m? — h?

This pole corresponds to a boundary bound state in the direct channel (see Figure (5.4)),

the energy of which is given by

-iv

Figure 5.4: For # = iv there is a boundary bound state. The constant g is the boundary-particle
coupling.

ey = eg+ 1M cosv, (5.1.24)
where eg is the energy of the vacuum, determined by

ﬁbm)b = 60[0)5, ( 20

Ut
—
o
Ut

Nl
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where H? is given by eq. (5.1.3). The “boundary—particle coupling” is instead given by
g. One can notice that as far as h goes to zero the coupling (5.1.23) becomes smaller and
vanish for h = 0 whereas the energy (5.1.24) is maximized to e; = g + . For h — —rm+
instead the coupling in eq. (5.1.23) diverges while the energy of the bound state becomes
equal to that of the boundary ground state. Finally, for A < —# the poles leave the
physical strip moving on the axis Im(8) = ix/2. One can notice however that for A < —
we have a divergence also in the amplitude K(f) in eq. (5.1.20) for real values of the
rapidity, thus spoiling the stability of the bound state (5.1.17). As first noticed in [61].
this values of A have to be considered as unphysical for this model. We will see in the
next section the meaning of this limit in various statistical mechanical contexts.

Before going on with the computation of the correlation functions, let us introduce a
second boundary at = a. The Euclidean action that we are going to consider, is given

by

A

@ 1 2 2 7 2 -
SE[2] = 27k / dy /0 des (Vo) + 2 + hob(2)¢? + hab(a —2)¢?) . (5.1.26)
We have now to solve the equations

Boplem0 = hoPlezo  Bo AT(—8) = By Ro(6) A'(6)

Ouplema = —ha9lema AN(0)B, = R,(0)Al(—6)B, .

The solution of the first of (5.1.27) is given by (5.1.19) and (5.1.20) with & substituted by

iLg. The second of eq. (5.1.27), can be given by using the same method and reads

i sinh + hu. 2tma sinh 8

R.(0) = = 5.1.28

I (5:1:29)
It satisfies the unitarity condition (5.1.9) and through (5.1.16) gives then

ncosh® —h, _,. . ,

Ky(0) = TR0 = Ra ainacosho (5.1.29)

m cosh 8 + lAza

thus defining completely the state (5.1.17) at it = a (see Figure (5.3)). Once the states
(5.1.17) at ot = 0 and it = a have been computed, one can proceed to the computation of
the correlation functions with one and two boundaries. Consider for the time being the

two—points correlation function of the field ¢ with one boundary

Go(e — 0,1 — tg) = T 9”(:”’(3)[";&”;0’ fo)1Bo) | (5.1.30)
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By inserting the form factors computed before into the expansion (3.1.3)
Go =< 0|o|1 >< 1|p]0 >< 0] By > + < 0lp|l >< 1]o|2 >< 2|By >,
where a simplified notations has been used, one obtains [21]

d9 .
GQ(.’C — zo,t — tO) __/ - m(z—zg)sinhd ( —irn|t—ig|cosh +
K Jo 7?

a

+F(7’7’L, h07 8) e—iﬁz(t—}-to)coshQ) ,
where A
F(ﬁz iz 0) _ ThCOShH—hO
o i cosh 8 + hy '
The case with two boundaries

(Bal|T ¢(,t)p(zo, to)| Bo)
<Ba[BO>

Gg(;r — Io,t — to) -

(5.1.31)

(5.1.33)

(5.1.34)

requires a little more work. The use of the Form Factors allows us to expand it in a

infinite sum that can be written as G§ = Gy, + Gpa, where (using a simplified notation as

before)

Gru( — 20,1 — o) =< B,|0 >< 0]p|l >< 1|p]|0 >< 0| By >=
— __'/r\0 tm(z—xz¢)sinhf ——zm[t to| coshd

is nothing but the bdulk correlation function, and

Gra = 200 < Ba2n >< 2nfp|2n — 1 >< 2n — 1|p|2n — 2 >< 2n — 2|By > +
+ < B.|]2n >< 2n|o|2n — 1 >< 2n — 1|¢|2n >< 2n|By > +
+ < Bo|2n >< 2nlp|2n + 1 >< 2n + 1|p|2n >< 2n|By > +
+ < Bi|2n — 2 >< 2n = 2|p|2n — 1 >< 2n — 1]p|2n >< 2n|By > .

This last can be easily computed and gives [22]

Z/ dg zm(a: zg)sinh [ —im(t+to) coshGI(n fn+1 + ezm(t+tg)cosh91'n+11\ +
0

+ (eim(t—to)coshe 4+ eim(to—t) cosh@) IX/;L+1[{61+1]

bl

(5.1.36)

(5.1.37)

such that G is given by the sum of (5.1.35) and (5.1.37). A few remarks about this result

are in order. First of all one has to say that the two-boundary correlation function G¢ in
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the Euclidean continuation, has to satisfy the differential equations

9:G(0,y) = ho G(0,y). and 8,G(a,y) = —h, G(0,y),

and 1t does indeed, as can be verified by direct calculation.

The second remark concerns the appearance of terms proportional to products of §(0)
in the contraction (5.1.36). This feature has been noticed also in [28]. where the TBA
equations for massive theories with two boundaries have been determined. In that case
however. the theory was defined on a finite cylinder with the boundaries at the ends and
the authors have been able to regularize the §(0)’s. In fact, the interpretation in [23] was
that they were coming from the infinite volume definition of the boundary state (3.1.17).
In our case instead we have found that the solution G computed above. satisfy (5.1.38)
if one throws away all the terms containing the §(0)’s. The direct computation seems to
suggest that they come when particles entering the FF expansion do not actually interact

with the inserted field. This happens for example in presence of terms like

(01...0,]0181 ... BuBsr) ~ (0] Bust) - (B1...0u1B1 ... Bo), (5.1.39)

where the particles 1,...,n behave as if the field was absent. This kinematic feature
induces a direct interaction between the boundaries which is responsible for the §’s. How-
ever, we have noticed from the direct derivation that a re-summation takes place. In other
words, attached to each of the terms in the sum (5.1.36), the final computation shows the
multiplicative factor (B,|By). Thus, the presence of the denominator in the definition of
G§ cancels out this term together with all the §(0) and gives the claimed results (5.1.33)
and (5.1.37).

To end this section we give the FF with a boundary of the trace @ and of the vertex
operator €*?. They can be given once the bulk FF (3.3.62) and (3.3.70) are known. For

the trace we get
(010(z, t)|By) = 277 / T S Ko(f) e Rimteoshs (5.1.40)
0

where K(0) is defined in eq. (5.1.20), and for the vertex operator one gets instead

2 o0 . A
(0]e**(z,t)| Bo) = exp (9— 9 Ko(8) e“mm“‘”“) . (5.1.41)

2k Jo 27
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5.2 Applications

In this section we would like to show how these computations turn out to be useful in some
context. In the following we will briefly illustrate two problems of mathematical physics
in d = 2: conduction of heat in a uniform solid with radiation boundary conditions and
the Random Walk in presence of a boundary line with a potential. Finally we will discuss

the Landau—-Ginzburg approach to surface phase transitions.

5.2.1 Conduction of Heat in a Uniform Solid

Consider a two-dimensional sample of uniform conducting material with diffusivity «
without boundaries. At time ¢ = 0 we have an instantaneous source of heat at the point
ro. Let v(r,t) be the temperature of the sample at point r at time ¢, this function is

solution of the equation

(—kAr + 0) v(r,re:t) =0 (5.2.42)
with the additional condition
v(r,ro;t =0) = é(r —ro). (5.2.43)
The Laplace transform of the temperature
t(r,ro:m?) = /Ooo dt e ™ (r, ro; 1) (5.2.44)
satisfies instead the equation
(—#Ar+m?) 5= 8(r —xo) (5.2.45)

with the constraint that it has to vanish at infinity. This condition is nothing but the
BEuclidean version of eq. (3.3.51): this means that the problem of conduction of heat in

the bulk can be solved by using the Euclidean field theory
SElel = n/ d:cdyél— (V)2 +m%?) (5.2.46)

with ©(z,t) given by the Euclidean continuation it = y of equation (3.3.60) and 722 given
by (3.3.48).

Let us put now a boundary surface at the point z = 0 so that the sample is placed in
the half plane = > 0. The boundary conditions are chosen as follows: in the half plane
z < 0 we suppose to have some other material at temperature vg into which our sample

loses energy. This condition is expressed by the equation

a:rvixzo = il (U - UO)‘J’ZO )

A
ot
o
e
~1

S
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which is called radiation boundary condition®. This is a gradient of temperature which
is proportional to the difference of temperature between the surface and the surrounding
medium. The proportionality constant is kA : for o = 0 the gradient is zero and this
means that there is no flow of energy, while for A — oo the surface is taken at constant
temperature v = vg.

Suppose now that vg = 0. The above boundary equation (5.2.47) has to be satisfied
also by the Laplace transform o which is solution of eq. (5.1.38). The solution is indeed

given by eqgs. (5.1.32, 5.1.33), where the change of coordinates

(0]

r—y and it —<x (5.2.48)

is required.

Notice that the range h < 0, the one for which the boundary amplitude R(f) in eq.
(5.1.19) shows a bound state pole. is unphysical in this context. Indeed it would mean
that the boundary is radiating inside the sample, as if it would be excited [62].

Let us introduce now a second boundary parallel to the first in the position z = a.
The sample is confined in the strip 0 < z < a with radiation boundary conditions on both
surfaces. This conditions are encoded into the Euclidean action (5.1.26) and equations
(5.1.27).

The Laplace transform of the temperature

(Bale(z,y)e(zo,y0)| Bo)
(BaIBO> ’

= (5.2.49)
is then given by © = @ + @, where @ is given by Gy, (y — yo.i(z — 20)) computed in eq.
(5.1.35) and w is given by Gra(y —yo,:(z —z0)), the Euclidean continuation of eq. (5.1.37).
This general solution gives all the other possible solutions in the limits ho = A, = 0 (free
boundary conditions) or hg, b, — oo (fixed boundary conditions) or by taking ¢ — oc

[62].

5.2.2 Ideal Polymer with a Boundary Line

Ideal polymers are chains without self-avoidance, in other words they can be considered
as the configuration of a random walk paths of a certain length N. The problem of ideal
polymers near a surface in two dimensions has been treated extensively in [63, 64] and

the application of the Form Factor formalism to this problem can be found in [21].

2For a detailed discussion see chap. 1 of [62]



Let us consider the two—dimensional random walk in the bulk with diffusion coefficient

# = 1. Its paths are possible ideal chains configurations described by the partition function

Z(r,ro, N), (5.2.50)
solution of the equation
(0 — Ar) Z(r,ro, N) =0 (5.2.51)
together with the boundaryv condition
Z(r,10,0) = 6@(r —ry). (5.2.52)

In fact this is the sum over all the configurations of a chain of length N starting at r
and ending at ro. The Laplace transform G(r,ro,m?) of Z is solution of (3.3.51) in the
Euclidean continuation.

Suppose now to put a boundary line that constraints the walker into the half-plane
z > 0. An elementary study of the configurations of the polymer, can show that the most
probable ending point of a chain starting at the boundary is far from it: this means that
the configurations near boundary are dominated by the entropic behavior. In order then to
compensate it, we can put an attractive potential near the surface. One sees then that once
the form of the potential has been fixed, the only remaining variable is the temperature:
there exists a critical temperature 7, such that for T < T, we have the adsorbed phase,
for T > T. we have the non-adsorbed phase. At the critical temperature the energetic
attraction and the entropic repulsion compensate, this is called the compensation point.

The potential can be chosen as

oo Hz<0
W=4¢ <0 if0<az<b (5.2.53)
0 ifz>0

and independent from the coordinate parallel to the boundary line, say y. The Green’s

function will be solution of the following equation
(=Ar +m? + W(z)) G(r,ro;m?) = 8(r — o), (5.2.54)

with the additional constraint that it has to vanish at infinity, in the allowed half-plane.
If one concentrates on the solution of (5.2.54) near the compensation point, for z, 25 > b
and then let b — 0, it can be cast in the universal form given by eq. (5.1.32. 5.1.33),

where £ = 1 and the change (5.2.48) has been done.
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The limit b — 0 means that this solution does not take into account the microscopic
analysis of the interaction, much like in the spirit of S-matrix approach for the particle
models.

The form of the potential and the dependence on the temperature is now described
by the function F of eq. (5.1.33). In particular the coupling ho is proportional to the
temperature deviation from 7T.: for h — oo we describe the non-adsorbed phase while for
h = 0 we are at the compensation point.

The regime h < 0 describes instead the adsorption phase, where the potential is deep
enough to win the entropic repulsion of the hard-wall. However, we must have h > —m
in order to ensure the validity of the result. This can be explained starting from the direct
computation of the limits into which the result of (5.2.54) can be cast in the universal

form (5.1.32). These limits are indeed given by —m < h < oo [63, 64].

5.2.3 Landau—Ginzburg approach to surface phase transitions

The LG approach to phase transitions in presence of surfaces has been developed in the
early 70’s by the authors in ref. [66]. Here we will review a few aspects of the theory
in order to establish a connection with the features described in the previous section. In
particular we will see the meaning of the “coupling” h attached to the boundary and what
happens when h = —m.

Let us begin with the bulk system described by the Euclidean action

C A B -5 ==
Slel = [ dedy |50 + 567 + 791 (5.2.53)

where the constants A, B, C' are phenomenological constants with A depending linearly

on the temperature as

T —T.
1.
and T, is the bulk critical temperature. In presence of a constant external magnetic field

A=At where t=

(5.2.56)

H one has to add the term — H inside the integral. Let us put now a boundary parallel
to the y axis at = 0, with an external boundary magnetic field H;. From the molecular-
field theory, the appropriate boundary conditions on the filed ¢ have been found by D.L.
Mills [66] and are given by

H o
ax‘fo!a:zo = /\_llﬂz:o - _1'7 (52‘3()
C
where one makes the hypothesis that the field ¢ at equilibrium does not depend on .

The constant A, which has dimension of a length, is called the extrapolation length: this
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name comes from the observation that for A > 0 and ¢ — 0% the magnetization profile »
vanishes at a distance off the boundary given by A. At criticality however one can consider
the magnetization as vanishing on the boundary since A << &, where & = \/’Cﬁ is the
bulk correlation length that diverges for ¢ — 0.

The system with boundary is then described by the action

/dy/“dx[ R 15(@(&—%)}7

(5.2.58)

where one can notice that the integration over z is extended only to the positive half-line.

The above action is minimized by the solution of the following equations

—CAp+Av+Bo®=H

Ocplr=0 = /\*l@lrr-O - % .

Before describing briefly the solution of the above system, one has to notice that it is
the Euclidean version of the system (3.3.49), in presence of external fields H and H;.
However their presence will not disturb us very much because they will be used only in
the derivation of the singular behavior of the susceptibilities and then put equal to zero.

Let us discuss the different kind of solutions, near criticality. For ¢ > 0 we are in the
disordered phase. Even if H = 0 but small, we can drop out the ¢*® term in the first
equation of (5.2.59) while holding the same boundary condition. Moreover. thanks to the
hypothesis that the solution of (5.2.59) does not depend on y, we can substitute A — 9.

Let us consider first the case A > 0. For ¢+ — 0% one gets the so—called ordinary tran-
sition, in which the bulk orders while the magnetization profile vanishes off the boundary.

This phase transition induces the following behavior on the susceptibilities

aLPb -1
ot
Xb aH b
8901 -1
o« AtTYV?
= H
Doy 5
X11 = oH, (751/ ),

where ¢, is the magnetization in the bulk, while ¢; is its value on the boundary.
If A < 0 instead one can observe a new feature: the susceptibilities show a divergence

for a temperature higher than the bulk critical temperature. Indeed one gets
X1, xu ~ (&= AT, (5.2.60)
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where &, = \/m is the bulk correlation length and its inverse can be thought of as the
mass of the lighter particle (in our case the only particle) of the relativistic theory. It is
clear that for a certain finite temperature there is a divergence in (5.2.60), this divergence
signals the appearance of the surface transition i.e. the boundary orders at a temperature
higher than 7.. However one can read this relation from another point of view: after
having fixed the bulk temperature and as a consequence the value of the mass of the
boson, one sees that for A™! = —m we are in presence of an ordered surface, a situation
for which the action (5.1.2) is not adequate. By comparing eq. (5.1.5) with (5.2.59) one

can recognize that we have recovered the limit A > —m shown before.
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Conclusions

Going through many models we have shown in this thesis the powerful method of the Form
Factors for the computation of the correlation functions applied to massive Integrable
Quantum Field Theories. We have been able to show that although the off-shell physics is
extremely complicated all the relevant informations can be given with very high accuracy
and with a relatively easy computational effort. Indeed we have shown that the moment
of the correlation functions (i.e. the sum-rules) can be safely truncated to the first few
contributions by comparing the reached values with the exact ones when known. Moreover
we have also written recursive relations that would allows us to compute anyv n—particle
Form Factors and thus to reach any required precision in the computations. In particular
in those integrable models without internal symmetries with the use of the cluster property
together with the bound state equations we have been able to compute the Form Factors
of all the relevant primary fields. These have then been checked in computing first order
corrections of non-integrable perturbations.

The results shown in this thesis are also quite interesting in the statistical mechanics
framework. Indeed we have computed the two point correlation function of the trace of
the stress—energy tensor for the thermal deformation of the Tricritical Ising and Tricritical
3-states Potts models, re-derived the Form Factors of the series of non—unitary models
M; 2041 + @13 showing a few limit cases and we have applied them to the same models
with a soft breaking of integrability.

Moreover we have described how to apply the same technique to integrable massive
models with boundaries. In this context we have described the connection with the
Landau-Ginzburg theory for surface phase transition and shown, as an application. how to
derive the Green’s function of the Random Walk with boundary and attractive potential.

Through the problems solved while writing this thesis, we have seen many others that
seem suited for future investigations. Among them, quite relevant is the one connected
to the extension of the Form Factors technique to integrable models with massless exci-

tations. In this case indeed it is possible to circumvent the obvious difficulties in defining
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a consistent scattering theory by continuing analytically the massive Form Factors [67].
However this is not the most general case since it needs a massive theory to start from
and for this reason it is still an open interesting problem as is shown by a recent result of
P. Mejeal and F.A. Smirnov on the WZNW model [68].
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Appendix A
Notations and conventions

In this appendix we will collect some of the most common and useful notations and
conventions used throughout the thesis. It is worth writing them here because they
usually require a lot of time when needed. It will be divided into two parts. In the
first part we will set the notations for the transformations from Minkowsky space to the
Fuclidean and to the complex space. In the second we will derive in some detail the
transformations that lead to the partition functions on the cylinder used in the TBA

section.

A.1 Minkowsky, Euclidean and complex spaces

In this thesis we consider the Euclidean metric tensor is given by

1 0
1224 E ‘
—_ — v (.%.11
9k ( 0 1 ) gu )

and stress—energy tensor components defined as

: Tl T2
TE =TE = | "2 "8 ) (A.1.2)
Ty TE
thus showing that © = % = TZ' + T**. The complex coordinates are defined as
z = gt +i2? z = gl —i2?. (A.1.3)

In terms of these the transformation matrix reads

dzf I e
= v == . AA&. .
dof - (1 —i) (A1)




In this case we compute the metric tensors and the stress—energy tensor. For the metric

4 2
g = ( ) , (A.1.5)

0
c _ (0 12 AL16
g‘“’—<1/2 0)' (216

tensors we have

O

and

The stress—energy tensor reads instead

T== T TE — TEFE + %TL TH+ T
Téll.l/ — — . (;%.1-7)
T= T% T 4+ T2 TR —TE - uTE
and
T.. T.: TE - TE - 2TE TE +TE
Tf;j = = - ; (A.1.8)
T.: Tss TE +TE TE —TE + 2TE
thus now
O=TE+TE =4T.-
(A.1.9)
T — zz T==
Finally we give the conservation equation in complex coordinates
(A.1.10)
A.2 The system on a cylinder
The Euclidean two-momentum reads
1
H, = 5 /dax Tz, y)
(A.2.11)
P, = ;_— [ et (z,y),

where H, evolves the system along the positive y direction and P, is responsible for

translations in the positive z direction. However one could rotate the frame and consider
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x as the Euclidean time, in which case the direction of y would be reversed leading to a
sign change in the momentum as
H, = L /dyTT‘)(r )
I 27{' E \%e
(A.2.12)
1
P, = /dyTég(fE,y)-

o

Let us compactify the space and consider the z direction as a circle of length L and the y
direction a circle of length R. With an obvious notation the partition functions are given
by
Z, = try e HvF _, o~RLS(R)
(A.2.13)
Z, = try e el e E(RIL
where we have written their form in the thermodynamic limit. This limit then lead to the
equation (2.4.43). We are now going to derive an equation for the vacuum expectation

value of the trace of the stress—energy tensor. Indeed observe that

2r d dE(R)
1y _ 5T o7 ox

(Tg") = T 1R log Z, — 27 iR
(A.2.14)

5 27 d E(R

that glue together give

d(RE(R)) 5 1%
(0) =2 =iE (A.2.15)
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Appendix B

Building Minimal Form Factors

In this appendix we collect some different explicit representations of the functions g¢. (8]

and h,(0) together with some useful functional relations.

B.1 The functions g,(f) and h,(6)

Let us start by considering the non-degenerate field theories. In this case, the basic

functions g, needed to build the minimal form factors are obtained as solution of the

equations
9a(0) = —fu(0) g2 (—0) ,
(B.1.1)
galim +0) = ga(iz = 0) ,
where
£a(0) = tanh 1 (6 + irc) (B.1.2)

~ tanh 10 —ira)
They are called minimal solutions because they do not present neither poles nor zeros in
the strip Im6 € (0,27). They admit several equivalent representations. The first is the

integral representation given by

5 [ dtcosh[(a—1/2)t] . ,, A _
o« = €exp |2 —— 0t/27)| B.1.5
Jo = 5P [ /0 t cosht/2sinht sin(6t/27) ( ’)

where § = ix—0. Equation (B.1.3) can be obtained as follows [10]. Consider the derivative
of the logarithm of f, as

_Ldfa(th) _ . [T 6t
T = z/_x dt L(t)e'® (B.1.4)
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where we want to determine L(¢). It can be done by inverse Fourier transform giving

cosh[rt(l — 2a)/2]

= B.15
L) cosh Z ( ¢
thus letting the function (B.1.2) takes the following form
+ee dt cosh[t(1 — 2a)/2] ., 0t '
Jalf) e\p[ ./0 t cosht/2 S (iﬁ) ( )

Inserting this last result into (B.1.1) gives then (B.1.3). The analytic continuation of the
(B.1.3) is provided by the infinite product representation

(0= 1 (@) || ()

- 2 N 2
= 6/2r , 6/2x=
=0 | [ () o+ ()

which explicitly shows the position of the infinite number of poles outside the strip

k+1

(B.1.7)

Im# € (0,27). Another useful representation particularly suitable for deriving functional
equations is the following:
o T2 (L+k+ 82 (1+k-9)

9’&(9):grz(%+[;~%)P2(l+k+%>

T(1+k+g+il)T(2+k-
F(1tk—5+ig)T (5+k+:

_|_.
=

w

R w2

~ . o~
SR ':‘l"]cn.
P N
)

(B.1.8)
where we have used the notation
IT(a +if/2x)| =T(a+ib/27) T(a — if/2r). (B.1.9)

A representation that is particularly suitable for numerical evaluations is the mixed one

) ‘ , ) o7 7 k+1
N-1 [1 T (k:-/lif%) } [1 N <ki/;:%) J
ga(g) g H N o 9 . 2 X
k=0 {1 + (Zf—.%_—%—> ] [1 + (_kfa;j%> } (B.1.10)

[ fe d¢ cosh {%(1 — Qa)]
2 [7 =

ot
X ex : —
P t coshisinht 27

(N +1— Ne #)emNtgip?

In this formula /V is an arbitrary integer number which may be adopted to obtain a fast
convergence of the integral.
Using the integral representation (B.1.3), it is easy to establish the asymptotic behavior
of ga
9o (0) ~ elfl/? for f — 0. (B.1.11)
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The function g, is normalized according to

galim)=1, (B.1.12)
and satisfies
gcz(@) = gl~a(9) s (Bllg)
with
go(0) = ¢:(0) = —z‘sinhg : (B.1.14)

<

The above functions satisfy the following set of functional equations

a0+ im)ga(0) = -2 (Gin g+ isinra) (B.1.15)
SIN7TCQ
- oy o [ 92(i77)ga(—1y) ~
Ga(6 + i77)ga(0 — im7) = ( PG ) )ga+~.(9)ga-_.<0> , (B.1.16)
9a(0) 9-a(8) = Pa(9) . (B.1.17)

Let us turn our attention to the field theories with a degenerate mass spectrum. In
complete analogy with the previous case, we start our analysis from the minimal solutions

of the equations

(B.1.18)
ho(im 4+ 0) = ho(im — 0),
where
sinh 1 (6 + ira)
sinh 1 (0 — iwar)

sa(0) = (B.1.19)

The function A, (@) is explicitly given in terms of the following equivalent representations

s dt sinh[(1 — @)t]
t sinh?¢

ha(8) = exp [2/0 sinz(ét/‘Zﬂ')] ) (B.1.20)

k=0 1 + (71-{-;“"2
2 2

h (e)zﬁrg(k+%+%)r(k+1_%"";—f\:)r(k—}—:?_%_{_%)
T o DTk - Tk +1+5+2)

109



The mixed representation is in this case

é 2\ k+1
N+1 1+< >
ha(0) = T] LEAR P
(o)
2
X exp [2/
0

and the asymptotic behavior depends on the value of «

12 OIQ_

H.IQ—- "’l

(¥ 1= ey o SR )]

ha(8) ~ "5 for 6 = .

The function h, is normalized according to

and satisfies the following functional equations

ha(2mi — 0) = ha(6),

ho(0) = —1sinh(8/2),

hi+a(0) = hiZ4(9),

The basic “composition rules” for products of h,’s are

ha(0) h-oa(8) = Pal(0),

_ ha(imy) ho(—imy)
= Tharnl0) hay(0) TP e (0)

ho(0 + imy) holf —imy)

ho(8 + i) hy_o(f) = hi-a(0)

s (zm ] cosh

where the polynomial P is defined in (3.1.18) of Section 2

ra

2

Finally, since f,(8) = s4(6)s1-o(8), the function g, can be obtained from the A,
simply through:
9a(0) = ha(0) hy—a(0). (B.1.23)
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: 200t /25
sinh? ¢ sin” (6t/27)

B.1.23)



Appendix C

Tricritical Potts Model

In this appendix we briefly report the results of the three—particle FF relevant for our

computation in the TPM.

C.1 Three—particle Form Factors

These FF have been derived by applying the residue equations (3.1.14) to the four-

particles FF FIGZ)IZ’ as explained in section 4.2. In writing their final form, we have ex-

tensively used the formulas reported in Appendix A. The two-particle minimal FF F/7}"
appearing in the expressions which follow are defined by eq. (3.1.11) while the D, factors
parameterizing the dynamical poles are defined by eq. (3.1.19).

The FF Fg, is obtained from Fﬁ” = 2w /3

through the residue equation at u%i

Fmin 0{_

F21(61,62,85) = 1I Fi(0:) 3mi +2m] Y cosh(;;) | af); - (C.1.1)

< Du(:;) >
1<g 1<

In this expression one immediately recognizes the “minimal” part, the dynamical poles

and the P? polynomial, while the only remaining polynomial in the cosh(8;;)’s allowed by

eq. (3.1.29) is simply a constant given by
ady; = —102.3375342. .. .

The FF FI?L, is obtained from Fz(?zi by using eq.(3.1.14), with uiLz = 17 /2. Its final

expression is given by

(91 92‘ 93) = Fﬁ‘i”(ﬂm) F[’Ef”(@w) F{Zi”w%) .

F°
Dy1(6012) Dy (613) Dj 1 (623)

L
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2m} + m3} + 2m} cosh(f12) + 2mymg (cosh(@lg) + cosh(923)>
cosh(fy3) + cosh(fa3) .

(C.1.2)

.<a?7L (1 — cosh(f12) + 2 cosh(f;3) cosh(Ggg)) + a};L(cosh(ﬁlg) + COSh(@gg))) )

This expression also exhibits a kinematic pole due to the presence of a particle-antipar-

ticle pair I1. Moreover there is a nontrivial polynomial in the cosh(6;;)’s with coefficients

given by
a%L = —70.50661963. .. ,
aj;, = —235.9197474... .
) ho_

Finally, applying eq.(3.1.14) to F}5,; at uj; = i7/6 one obtains

FiFn(012) Fi3™(013) FI7™(023)

Fe 0,05.03) = ’
llh( 1, %2, 3) D”(ng)D[h((gle.)Dlh(g’ZE-)

(C.1.3)

-(’2 m? 4+ m?2 + 2m? cosh(f15) + 2m;my, (cosh(913) + cosh(923})) .

'(a?zh +aly, (cosh(@lg) + cosh(()zg)) + a}y, cosh(f12) + aby, cosh(6:3) cosh(923)>
where the coefficients af,, are given by

aly, = 72661.45729 ... ,
ajy, = 31793.68905. .. ,

ajy, = 43430.98692. .. .
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particle | mass/my | Z3 charge
Aq 1.00000 -1
A, 1.28558 1
As 1.87939 —1
Ay 1.96962 1
As 2.53209 1
Asg 2.87939 -1
Ar 3.70167 1
Table 1
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a b Sap

11 ~(10) (2)
12 (13) (7)
13| — (14)(10) (6)
14| (1N E) )
15| ()E) 67
16| —(16)(12)(4) (10
LT (13 @R
2 2 (12) (3) (2

2 3| (511 6) ©)
2 4| (19 67

2 5| 1MIHE) (0 0)

[SV]

35| (16)(10)° (4)2(6)2
36| — (16)(12)° (S)° (4)?
37| (17)(13)° (32 (7)* (9)?

Table 2 (Continued)
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a b Sap

11| 1)aopd) ep

45| (5 PEP ()

46| (IMAD BF 6F 7
47| (16) (10 (6)* (3)*

5 5| (12)° (22 (2 (8)

5 6 (116)(121)3 (6)* (8)*

5 7] (1) (15° (11 (3 (9)°
6 6| — (14)°(10)° (12)* (16)°
6 7| (1T (15 (13)° (5 (9)°
77| (162 (1) (127 (8)°

Table 2 (Continuation)




state s/m? c-series | U-series
A 1.28558 | 0.6450605 | 0.0706975
Ay 1.96962 | 0.0256997 | 0.0066115
A Ay > 2.00000 | 0.0182735 | 0.0071135
As 2.53209 | 0.0032417 | 0.0013783
A, Ay | > 257115 | 0.0032549 | 0.0025194
Ay As | > 2.87939 | 0.0012782 | 0.0020630
Ay Ay > 3.25519 | 0.0003010 | 0.0007277
Ay Ay A, | > 3.28558 | 0.0007139 | 0.001184
Az 3.70167 | 0.0000316 | 0.0000287
As As | > 3.73877 | 0.0000700 | 0.0001173
A; As | > 3.81766 | 0.0000860 | 0.0001581
partial sum 0.6980109 | 0.0914150
exact value 0.7000000 | 0.0942097
Table 3

0.9604936853

—0.4500141924

0.2641467199

—0.0556906385

Table 4
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6.283185307

30.70767637

15.09207695
4.707833688

79.32168252

.
al, | 16.15028004
al; | 295.3281130
als | 396.9648559
a2, | 123.8295119
a5 | 3534.798444
al. | 4062.255130
a?, | 556.5589101
Table 5
particle | mass/m; | Z3 charge
A 1.00000 e2mi/3
Ar 1.00000 | e~%/3
Ap 1.41421 1
Ap 1.93185 e?mi/3
Ay 1.93185 | e7%mi/3
Ap 2.73205 1
Table 6
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a b Sab

L 51 15) 2

1 8] ) 2

11 —[10] [Ié] [4]
'’ 9) [7) 51 13
11| pmEB
a9 BP0
LR | [0 [ BrB Y
LR | ) P B0

L | 9 0es B

L H | 0] SRR PR
T | ) e e
LoL | —0ol ) 62 2
L b | (0] SRR
L |10 Eeee e
LB | (] B [P PP
boh | 0L [ 42
R | (0[P 6P [P
h B | (0P[R 6P (PR
poH | 1P [T EP
FH | DIBP (e P )
H OH | = 0P P [6° [ 2

Table 7
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I

1.261353947

0.292037405

Table 9

126

state s/m? c—series u—series
Ar 1.41421 | 0.7596531 | 0.0705265
A Ay > 2.00000 | 0.0844238 | 0.0229507
Ay 2.73205 | 0.0029236 | 0.001013
Ap Ar > 2.82843 | 0.0024419 | 0.0019380
A Ay > 2.93185 | 0.0023884 | 0.0016745
Ar Ay > 2.93185 | 0.0023884 | 0.0016745
A Ar A | > 3.00000 | 0.0004215 | 0.0004925
A7 A7 Ay | > 3.00000 | 0.0004215 | 0.0004925
A A7 A | > 3.41421 | 0.00159 0.000251
A Ap > 3.86370 | 0.0000504 | 0.0001476
A A Ay | > 3.93185 | 0.000089 | 0.0002015
Ar A7 Ay | > 3.93185 | 0.000089 | 0.0002015
Ap A7 Ap Ay | > 4.00000 | 0.0000959 | 0.000381
partial sum 0.8569765 | 0.1019449
exact value - 0.8571429 | 0.1056624
Table 8




Table 11: S-Matrix and mass ratios of the [M(2/9)]( 3) model.

o 559237
aj | 9.199221756
a?z 25.22648264
agz 414.1182423
aiﬁ 565.6960386
aig 175.0269632
Table 10
2
Su(f) = (%)
13
s = (56
2 3
Sis(0) = (2) (3)
3
Saa(0) = (%) (%)2
12 )
Su(0) = (%) (3) (3)
1 2
Sa(0) = (3) (3) (3)
sin 2=
Mg = sini‘:‘— my a=1,2,3

$1,2 $1,3 O14
FP 0.8020765730 2 1.445292044 2 1.802249700 2
FP | —0.3139111350 —1.019263053 | —1.584911372
FP | —0.1373692458 1 | —0.5561967212 1 | —1.002231860 :

Table 12
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0 01,2 P13 P14
Hi, 3.127325930 10.15436351 15.78961011
Hy, | 1.430685375 ¢ | 8.370732785 ¢ | 16.23085987 :
a12 1.603875472 | 0.3568958679 | 0.1588336037
Hi3 | —0.6754444788 | —4.927973308 | —11.07305551
aq3 2.493959207 | 0.6920214716 | 0.2469796037
Hj, 2.936562411 30.95981497 74.85757540
ao2 5.740933811 1.246979604 | 0.5331878680

Table 13
57721 55vac
oma m\%6m,
deformation numerical (£3%) | theoretical | numerical (+3%) | theoretical
[(M(2,9)] 13 + 01,2 0.390 | 0.391396 —1.04 | —1.03826
[M(2,9)] (15 + 2614 0.811 | 0.834681 —0.205 | —0.203640
Table 14
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