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1 Introduction.

As for any other theory, a wide comprehension of the theory of soliton equa-
tions has been achieved only after the development of different techniques,
which allowed the investigation of its various aspects. The efforts of the peo-
ple involved in such investigations have furthermore produced a deeper under-
standing of many related branches of mathematics. Among the several con-



cepts that have been used, either introduced from scratch or already available,
we can for example cite, to name only a few, the theory of algebraic curves;
the universal (and the Sato) Grassmannian; the Krichever map; pseudo-
differential operators; Lax, Zakharov-Shabat equations and iso-spectral de-
formations; Béacklund—Darboux—Lie transformations; bi-Hamiltonian struc-
tures; Fad di Bruno polynomials, recurrence relations and Riccati equations;
and so on. '

On the other hand, stimulated both by physical research and mathemat-
ical interest, several attempts have been made to extend the theory to the
super-symmetric domain. The first “surprise” in this direction has been the
realization that such an extension is by no means unique. Indeed, two non-
isomorphic super KP theories have been defined up to now: the MRSKP of
Manin and Radul [28] and the JSKP of Mulase and Rabin [33, 37].

While constructing a generalisation of a theory, one has to choose the con-
cepts and features that he considers characterising the theory, and then he has
to develop the new theory trying to keep consistence with these. The start-
ing point of Manin and Radul, in this context, was the pseudo-differential
operator and Lax equation approach. Studying their theory, Mulase and
(independently) Rabin discovered that on the algebraic geometric side that
SKP theory is not good. The reason leading to this conclusion is the fact
that the flows of MRSKP not only move a point in the super Jacobian of a
super curve, but deform the curve itself. In the context of integrable systems
this is surely a discouraging property. In fact, a fundamental requirement for
such a system, that can not be put apart, is to evolve along straight lines on
suitable tori (in this case the super Jacobian).

Mulase and Rabin were mainly interested in the algebraic geometry of
SKP, e.g. in extending the successful (even if not constructive) characterisa-
tion of Jacobians among Abelian varieties to the super-commutative domain,
and so on. It is in studying these issues that they finally came up with their
JSKP, where now only the super line bundle moves along the flows of the
theory.

Having at our disposal a certain number of different (but equivalent)
approaches to the KP hierarchy, it is thus tempting to follow other ways in
defining a super KP theory and look at the corresponding outcomes. The aim
of the present investigation is exactly to provide, in the context of super KP
hierarchies, some of the techniques that have proved to be successful for the
investigation of the KP theory. Therefore, starting from the bi-Hamiltonian
formulation of KP [10, 5], formalised by the Faa di Bruno polynomials and



recurrence relations, we give a new definition of the JSKP hierarchy and
study it by systematically adapting the corresponding methods. This will
hopefully shed new light both on JSKP and on KP.

We have divided the exposition of the subsequent material in two Parts.
In Part I we aim at providing a general but nevertheless accurate view of
the theory, so we give the definitions and present different descriptions of
the Jacobian super KP hierarchy. Section 2 is motivational in character: we
briefly review the KP theory emphasising the role of Faa di Bruno polyno-
mials and the associated conservation equations, which are equivalent to KP.
This allows us to introduce the main characters and to offer our definition
of the JSKP hierarchy in Section 3. Then in Section 4 we provide the link
to the theory of Mulase and Rabin, showing that our JSKP is isomorphic to
their hierarchy. Finally, in Section 5 we give a Lax representation by means
of two super pseudo-differential operators, while in Section 6 we present a
hyper-cohomological interpretation of the theory along the same lines of [15].

Part 1T is devoted to the detailed study of JSKP, a tool of central impor-
tance being the theory of Darboux transformations (Section 7). In Section 8
we explain the connection with the DKP hierarchy introduced in [25] to give
a geometric description of the Darboux transformation, while in Section 9 we
use that technique to linearise the flows on the super universal Grassmannian.
Finally, in Section 10 we move our attention to the problem of reductions,
considering two simple examples. For the convenience of the reader we also
include an Appendix where useful formulae have been collected.

We wish to thank G. Falqui for having proposed to study this interesting
subject and for many useful and enlightening discussions, C. Reina for the
enjoyable and fruitful work we did together during the staying at SISSA for
the Ph.D., and all the people whose help has contributed to the development
of the present work.



Part 1
A panoramic view of JSKP.

2 The KP hierarchy: a brief review.

In this Section we trace the origins of our definition of JSKP, which are rooted
in the bi-Hamiltonian description of KP. As we have said in the Introduction,
there are many different routes to the KP hierarchy [23, 11, 38, 9, 10, 5, 40,
32, 31]. Let us start from a monic ordinary differential operator of order n

n—2
P:=0"+ ij(a:)aj,
j=0

where z is a formal parameter which we can regard, for example, as a co-
ordinate on R and & = 4. Our aim now is to study the spectrum of the

dx
operator P:
Py = M.

Of course, to define a spectrum we need to specify on which class of functions
P acts, e.g. by considering suitable boundary conditions at infinity. For
instance, if we specify the boundary conditions in such a way that P becomes
a bounded operator then its spectrum, if not empty, has necessarily to be
discrete, so it carries no geometric properties. Working instead only on a
formal neighbourhood of the origin of C and acting on the space of power
series in z with complex coefficients, the spectrum of P turns out to be
the entire complex line C. Needless to say, any single eigenspace can be
degenerate, so to completely characterise the spectrum we simply consider
the subalgebra of all ordinary differential operators ) commuting with P.
A lemma of Schur [39] then shows that this is a commutative algebra Ap,
moreover there exists a pseudo-differential operator S =1+3 .., 5;077 such
that A := S - Ap-S~!is a ring of pseudo-differential operators with constant
coefficients. If A is bigger than C then it is the ring of meromorphic functions
on a complete irreducible algebraic curve C whose only poles are situated at
a precise fixed smooth point ps, € C (i.e. it is the coordinate ring of the affine
curve C\{pe }): the spectral curve of the operator P (or, more precisely, of the
commutative algebra Ap). The name is explained as follows. Any common
eigenvector 9 of the differential operators belonging to Ap can be interpreted



as a point of the curve: indeed, it defines a homomorphism ¢ : Ap — C by
sending the operator @ to its eigenvalue Ao (1) associated with 7. Of course,
the curve C covers P! by means of the map which associates to a point ¢ the
eigenvalue Ap(1h). Then Spec Ap =~ Spec A is the pre-image of P' \ {c0}, as
can be easily seen: let us consider a differential operator @) € Ap whose order
is prime with respect to that of P (here we are simplifying things a little bit,
see below the definition of rank of Ap). Then P and @ must necessarily
satisfy a (minimal) polynomial equation p(P,Q) = 0, which corresponds to
a planar model C of our curve C. In fact, C is a normalisation of C. The
points of C are in one to one correspondence with the pairs (Ap (%), Ag(¥)).
Now, the composition of the normalisation map C — C and the projection
map C — P! given by (Ap(1), Ag(¥)) — Ap(¥) is the covering map we were
searching for.

Let us now ask the following simple question: which is the most gen-
eral deformation of P which preserves its spectrum? More formally, we are
looking for a differential operator @ (obviously not in Ap) such that

& =Qu
% =1Q.P

Equivalently, we require that the eigenvalues of P do not change with time,
Ap() (¥(2)) = Ap(eo) (1(to)), which is the concept of iso-spectral deformation.

It turns out that the generic form of such an operator is the linear com-
bination of the basic operators (P#),, where the subscript 4+ means that
we have to take the differential part of the pseudo-differential operator Px.
This formulation of the the solution of the iso-spectral deformation problem
admits a simple generalisation which leads directly to the KP hierarchy: let
L be a monic pseudo-differential operator of the form

Li=0+)Y ud’
§>0
and define the following hierarchy of evolution equations
oL
E

It is an easy exercise to proof the compatibility of these equations, which
form the so called KP hierarchy. Other than being a generalisation, the hier-
archy also allows for the treatment of the iso-spectral deformation problem

="+, L], k>0



in a way independent of the order n of P. Indeed, it can be shown that the
condition P := L™ = (L") for a power of L to be a purely differential oper-
ator is compatible with the KP flows moreover, in such a case, the evolution
equations for P are exactly that of iso-spectral deformation which, there-
fore, can be seen as reductions of the KP hierarchy (the n-GD hierarchies of
Gel'fand and Dickey). On the other hand, the concept of spectral curve (and
others which we introduce presently) extends to KP.

The information contained in the couple (P, Ap) (and more generally in
L) is far richer than the mere concept of spectral curve. To explain this,
we have to introduce the universal Grassmannian. In the following we shall
be interested mainly in the formal algebraic aspects of the theory and not
in the analytical ones, so we shall define only the algebraic version of the
Grassmannian, leaving the aspects of convergence of the involved series to
actual functions to the existing literature (see e.g. [36, 40]).

Let V = C((z™')) be the field of formal Laurent series in the variable z™*
and let V_ := C[[z7!]] - 27! be its subspace of formal power series without
constant term. V has a natural filtration

"'CVj_1CV}CVj+1C"-,

where V; = C[[z7!]] - 27, which defines a natural complete topology on it. We
can regard therefore both V' and V_ as topological vector spaces and define
the universal Grassmannian Gr(V, V_) as the set of close infinite dimensional
vector subspaces W of V which are compatible with V_ in the following
precise sense: W € Gr(V, V_) if and only if the restriction 7y of the canonical
projection m : V. — V/V_ to W is a Fredholm operator, i.e. it has finite
dimensional kernel and cokernel. Denoting by iy the index dim(ker my ) —
dim(coker ) of my, we see that Gr(V,V_) is the disjoint union of the
denumerable set of its components Gr;, j € Z, indexed by iy. Moreover,
each Gr; has a scheme structure by means of projective limits.

Now, to any monic pseudo-differential operator L of order one as above
we can associate a point of the universal Grassmannian by means of the Sato
construction [38, 31], which runs as follows. First of all we notice that there
exists a (not unique) invertible pseudo-differential operator

S=1 + Z sjB_j
§>0
such that L = S8S™!, hence the information encoded in L is completely
characterised by S. Let £ be the ring of pseudo-differential operators with



coefficients in C[[z]], D its subring of differential operators and £_ the sub-
space of the purely pseudo-differential ones. Then, clearly, &€ = D& £_.
Sending O to z we get an isomorphism p between E/FE -z and V, which
transforms the above decomposition of £ into the decomposition Clz] & V_
of V and maps S™'D to an element Wi, € Gry.

Conversely, to any point W of the big cell of Gry one can associate a
monic pseudo-differential operator Ly of order one by means of the Baker-
Akhiezer function [23, 40] ¢w of W. The most important property of the
universal Grassmannian is, it can be shown (see [38, 40]), that the flows of
the KP hierarchy are linear there.

Denote by Ay the subring of V which consists of those functions f for
which f- W c Wy. Like before, if Af is bigger than C, then it corresponds
to an irreducible complete algebraic curve C, of which Spec Ay is an open
affine subset missing exactly one well identified smooth point p.. The extra
information we alluded to is the subspace Wy, C V which, when C exists, is a
finitely generated Az-module. As explained for example in [32, 40], this is the
module of holomorphic sections of a torsion free sheaf F — C over C \ {peo}-
It is possible to associate a rank r to the ring Ayz: it is, by definition [32], the
greatest common divisor of the order of pole at po, of the functions fe A
and turns out to be exactly the rank of F as an Oc- module.

Summarising, the geometric datum we have attached to L consists of
an irreducible complete algebraic curve C, a smooth point po, on it, a local
(formal) coordinate z~! at p, a torsion free sheaf F of rank 7 over C and
a local (formal) trivialisation  of F on the domain where the coordinate is
defined. Conversely, the Krichever map [23, 40, 31] produces a point of Gr
out of any given quintet (C,peo, 2%, F,n) as above by defining W = I'(C \
{pso}, F). When discussing algebraic geometric properties of the hierarchies
under study, later on, we shall assume for simplicity that C is smooth, pe
is not Weierstrass for C and F is an invertible sheaf (equivalently, a line
bundle). We shall not dwell anymore on the discussion of KP along these
lines, preferring instead to introduce the Faa di Bruno polynomials and the
associated formalism.

The Fad di Bruno polynomials naturally arise in the study of the bi-
Hamiltonian properties of KP [10, 5]. In the sequel we closely follow [13].
The technique that plays a prominent role here is the method of Poisson
pencils to construct integrable Hamiltonian systems, where one considers
2 manifold M endowed with two Poisson structures P, and P; which are



compatible in the sense that P, := Fy + AP, is a linear pencil of Poisson
structures, i.e. Py is a Poisson structure for any A. The simplest example is
given by a Poisson manifold (M, {-,-}) together with a vector field X on it
whose task is to deform the Poisson bracket to another one. We denote by

{f,9Y ={X(1), 9} +{f, X(9)} - X({f, 9})

and
{f,g} ={X(f), 9} +{f, X(9)} — X({f.9})

the first two Lie derivatives of the bracket along X and we require that the
second derivative identically vanishes on M. Then the pull-back {f, g}, :=
{fod_xr,g0¢d_x} o, of the Poisson bracket of M with respect to the flow
dy : M — M defined by X is linear in A and defines the above mentioned
pencil. In the situation just described M is called an ezact bi-Hamiltonian
manifold and X its Liouville vector field, underlining the analogy with the
case of exact symplectic manifolds.

The basic idea behind the method is to construct integrable Hamiltonian
systems by means of the Casimir functions of the pencil. In the case of an
odd—dimensional manifold endowed with a Poisson pencil of maximal rank,
{-,-}» has a unique Casimir function H, which, according to Gel’fand and
Zakharevich [16], is a polynomial in A of degree n, where 2n + 1 = dim M,

Hy, = H\"+ H XV 4.+ Hy,

whose leading coefficient Hj is the Casimir function of {-, -}, while the “con-
stant term” H,, is the Casimir of {-,-}. The coeflicients H; satisfy the recur-

rence relations
{'7 Hj+1}, = {'7 Hj}
and therefore are in involution with respect to all the brackets of the pencil:
{H;,Hg}» = 0.

When M is compact, the level surfaces of the H;’s are n-dimensional tori
defining a Lagrangian foliation of M.

We get a completely integrable (in the sense of Liouville) bi-Hamiltonian
system by introducing the vector fields

X)\(f) = {f? H)\}’ = {f7 H;\},\,



where the second Hamiltonian function is H} := X (H)). The integrability
comes by observing that X,(H;) = 0, and the polynomial family of vector
fields

Xy= XA+ XA 4+ X,

is called the canonical hierarchy defined on the exact bi-Hamiltonian manifold
M.

A concrete example of a canonical hierarchy is the KdV theory [13]. Here,
the manifold M is the space of scalar-valued C* functions on the circle S?,
the Liouville vector field is defined by

i=X(u)=1

and the Poisson pencil, given as a one-parameter family of skew-symmetric
maps from the cotangent to the tangent bundle, reads

1
U= (Py)yv = 5 Vsss +2(u + A)vg + ugv,

where z is a coordinate on S', u represents a point of M, v is a covector at
u and the value of v on the tangent vector 4 at u is given by

(v, i) = /S o(z)i(z)ds.

The Casimir function Hy and its derivative H) along X can be written

as integrals
H =2z / hdx
S1

H = / h'dx
g1

h(z) = z+ Z bz~

>0

and

of the local densities

and .
W(z)=1+) hjz™,

. >0
which are Laurent series in z~! = v/A~1. It turns out [13] that if A and A’
are the unique solutions of the Riccati system

hy +h? =u+2°
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—%h; +hh' =2z
admitting the above asymptotic expansion, then their integrals Hy and H}
are respectively the Casimir function of the Poisson pencil of KdV and its
second Hamiltonian function. The canonical hierarchy of M then admits
several representations. The one we are interested in is a consequence of the
complete integrability condition X(H;) = 0 and can be expressed by saying
that the local Hamiltonian density h(z) must obey local conservation laws of
the form '
oh

=9, HY
atj z ’

where the “current densities” H) are given by
H@) = )\
and 1
HO = _L(000). 0 4 h(¥)s,

the subscript + meaning to take the positive part of the expansion in powers
of z. The last equation can also be written as [13]

. . 1 1, 5. ;
B = 2 (~Ju o) + 560 = h(e)-

or
j
| 1
o=, [_ivﬁz,m(zm 1) vy (2 'h)} '
=1

The first of these two expressions shows that HY) = 27 + O(z71), since by
the second Riccati equation above we have z% (—1vg + hv) = 2%, while
the interpretation of the second one needs some more work. We consider the
Faa di Bruno iterates of h(® =1 at h defined by

AU = (8, + h)hY

and denote by W the linear space spanned by them over the ring of C*°
functions on S*. Then, the first Riccati equation above translates into

22 =h® -y,
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showing that z> € W. Moreover, applying the operators (0z+h) to the above
equation we see that 2z2W C W, in particular 2% -1 € W and 2% - h € W,
hence HY € W too, i.e.

J
HO = Z c;;h(k).
k=0

The importance of this result is that the Hamiltonian origin of the cur-
rents HY) is completely encoded into their expansion as a sum of the Faa di
Bruno polynomials hE) | Furthermore, this property does not require h to be
a solution of the Riccati equation, allowing therefore for generalisations of
the KdV hierarchy which now we describe. Since here we are interested only
in algebraic properties, we substitute the circle S! with the formal scheme
X = SpecC[[z]]. '

Definition 2.1 Let h be a monic (formal) Laurent series in z~"

h:=z+ }:hjz‘j,
>0
whose coefficients h; belong to C[[z]], and define as above the Faa di Bruno

polynomials by
B = 9,10 + hA®
{ RO =1

It turns out that these Laurent series can be computed for any £ € Z and,
by definition of Gr(V,V_), it follows that the (formal) family of subspaces
W, C V spanned by the positive iterates A%, k& > 0, constitutes a (formal)
curve in the universal Grassmannian. Denote by Wx such a family, thought
of as a subspace of Vx = V ®c C[[z]], and introduce the “current densities”
H®) by requiring them to be the unique elements of Wx of the form

H® =% 4 ZH;?z_j.
§>0
The KP hierarchy is defined to be the set of “conservation laws”

Oph = 8, H®),

where 0y := ’a%;' Observe that H) = h, so we can identify the first time ¢;

with z.
O
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The link between the present formalism and the previous one, which used
pseudo-differential operators, is given by an analogy with the dynamics of
the rigid body, where one can envisage two equivalent descriptions: that in
the space coordinate system and that in the body coordinate system. Like
there, the Faa di Bruno formalism constitutes a kind of space representation,
while the pseudo-differential operator picture is a body representation [5]. To
obtain the second from the first, one defines [5] the map @ : Vx — ¥DO,
from our space of formal Laurent series in z7*, with formal power series in
as coefficients, to the algebra of formal pseudo-differential operators in z, by

B(h®) = oF

on the Fai di Bruno basis and extending it to the whole of Vx by linearity.
The Lax operator of the KP hierarchy is then

L:=%&(z)=0a <h<1) + Zujmﬁ')) =0+ 07

§>0 5>0
One can show that such an L evolves along the usual KP flows
8L = [(L*)s, L]

The way the hierarchy is constructed (or, alternatively, the compatibility
of its equations) implies that 8; H*) = 8, H), whence the current densities
can be obtained as derivatives of a suitable function, say H®) = 9, log; in
particular, & = 8;logt. The function ¢ = (14 32,5 %;277) exp >, 12",
defined up to multiplication by a constant monic Laurent series of order zero,
is the Baker-Akhiezer function of the hierarchy. Along with that, one can also
define the 7-function, as explained in [5], by taking a “dual” picture in which
dual Faa di Bruno polynomials and dual current densities are introduced.

Another important feature of this formalism is that the operator d) + H®*)
“preserves” Wy, in the sense that (8 + H®) . Wx C Wx. This is the
starting point for the study of reductions of KP. For instance, the n-GD
hierarchy is given by the compatible constraint H™ = 2", Moreover, one can
easily rewrite the conservation laws as equations involving only the current
densities H®), obtaining in this way the so called Central System [6, 5], a
dynamical system generalising KP. Observe that the above flows of KP on
the universal Grassmannian are not the linear ones of [38, 40], however they
can be linearised as in [13].
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In order to not repeat ourselves, we shall explain these and other proper-
ties directly in the super case. In the next Section, motivated by the above
discussion, we shall give a new definition of the Jacobian super KP hierarchy
introducing the super-relatives of A and H (&),

3 Super Faa di Bruno polynomials and JSKP.

We come now to the central object of our investigations: the JSKP hierarchy
[33, 37, 2, 41]. To define it we need to reintroduce some of the concepts
we have briefly discussed in the previous Section. The first is the super
universal Grassmannian. Fix once and for all a Grassmann algebra A over
C: it is needed for several reasons, e.g. at the algebraic geometric level to be
able to consider non-split 1|1 super curves, but most importantly to study
functorial properties of the hierarchy, which we shall not do here. The next
thing to do is to supplement our bosonic coordinates 27! and z with their
fermionic “super-partners”, which we call # and ¢ respectively. We denote
by f the parity of a homogeneous element f, e.g. Z =10, ¢ = 1.

Let V = A((z™})) @ A((z™!)) - 0 be the quotient ring of the ring of
formal power series in z~! and # over A and let V_ = A[[z7",6]] - 27"
As before, we have a natural filtration on V' which makes it and its A-
submodule V_ complete topological spaces. Then, the super Grassmannian
SGry = SGry(V,V.) is the set of closed free A-submodules W of V' which
are compatible with V_ in the sense that the restriction my of the natural
projection 7 : V — V/V_ to W is a Fredholm operator, meaning that its
kernel (respectively cokernel) is a A-submodule (respectively a A-quotient
module) of a finite rank free A-module (compare with [2]). As usual, SGry
acquires a super-scheme structure by means of a projective limit of finite
dimensional super Grassmannians.

The role the circle S* (or its replacement we have utilised above) played in
KP is now performed by the super-space X := Spec B, where B 1= A[[z, ¢]].
Later on, when introducing the multi-times ¢, k¥ > 0, X will in its turn be
substituted by T := Spec By where

Br = B[[tk”k>0 = l}_ElB[[tl’ T >tn”'
Finally, the odd derivation operator § := 0, + @0, takes the place of 0.

The main reason for considering this type of derivation, apart from super-
symmetry, is that its square is 9;, providing a direct connection with KP.
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In the following, however, we shall define the super Central System where
there are neither special super-space coordinates as z, ¢, nor special super-
derivation operators such as 6.

Now it is time to introduce the main character, the principal actor, of the
theory: the super Faa di Bruno polynomial h. It is an odd formal Laurent
series belonging to Vx := V ®, B and of the form

h(z,0;z,0) = v(z;3) + 0a(z; z) + oh(z; ) + ()(z; z),

where Latin letters have been used for even quantities while Greek letters for
odd ones. We specify exactly the content of the components a, h, v and 9
by requiring two things: the first is the existence of suitable “super current
densities” H®) while the second is the possibility of identifying the second
time ty with z (it will be not possible, however, to identify neither ¢; nor
any other odd time with ¢). It turns out that the two requirements can be
satisfied if and only if a is holomorphic with invertible zeroth order coefficient
(which we assume, for simplicity, to be equal to 1)

a(z;z) =1+ Z a;(z)z7,

j>0

h has the usual form (its zeroth order coefficient as been set to zero so as to
give the usual KP hierarchy when reducing to a =1, v =1 = 0)

h(z;z) ==z + Z hj(z)z77,

Jj>0

v has no poles and its zeroth order coefficient is constant (zero, for simplicity)

v(z;z) = z vj(z)z ™7

§>0

and 1 is holomorphic too (again we assume that its zeroth order coefficient
vanishes)
¥(z;x) = Z Yi(z)z.
§>0
Observe that the restriction we have put on some coefficients, just to simplify

the discussion, will be compatible with the equations of the hierarchy (which
will state that the only evolving coefficients are those of negative order). One
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can understand our choice simply as a reduction of a more general hierarchy.
Indeed, accepting to discard the second requirement ¢, ~ z, we could also
work with v having a simple pole and 1 having its zeroth order coefficient
restored. Of course, our results will extend to this case, however all the
formulae will correspondingly become extremely complicated.

To the super Fad di Bruno polynomial h we associate (for k& € N) its

iterates . o
REHD) = (§ + h) - AP

RO =1

Lemma 3.1 Let j:= 6(h) = h— 60+ @0,v — (0)0za. Then, for any k € N

R2E+2) — (8, + [1) - B2k) — (85 + ﬂ)k-{-l 1

RO — (9, + 1) - BOHD = (9, + B
Proof. We have

(6 +h)?> =062+ 6(h) — hé + hé + h? = 6% + 6(h) = 0, + i,

so we get
hEHD = (5 + B)2 - Y = (8, + 1) - h®R) = (6 + B)*? 1= (8, + )F - 1
and
7 (2E+3) (5+B)2_;L(2k+1) = (8, +J) R(2k+1) (5+;L)2k+2,ﬁ _ (a$+ﬂ)k+1'ﬁ.

O

To facilitate computations it is convenient to introduce the following nota-
tion: '
AE0) = B — g 1 pw® — (8p)b®

R2E=1) — k) 4 9a®) 4+ on®) 4 (Gp)x®)
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where the components are Laurent series of the form
k) = Zj>() Uj(k)zk—j—l
hk) = z* 4 250 hg-k)z’“‘j”1
ak) = k-1 4 Zj>0 agk)zk—j—l
P® =37 ¢§k)zk—j—1
n®) = & 4 Zj>0 ngk)zk—j-l
w® = ij uJJ(_k)zk-j»-l
x ) = > is0 ng)zk—j—l
bk = 37 o B F I,

The super Fad di Bruno recurrence relation above then translates into the

following ones:
I/(k"i'l) = (az -+ h/)z/(k)

y(l) =l
REHD) = (9, + h)hE)
RO =1

YE+D) = (8, + h)yp®) + Rk

a(k+1) — (ax _.|-_ h)a(k) _ wy(k)
{ ol =¢q 7

p® =0
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n*+D) = (8, + h)n® 4 (9,v)v®
77(1) =h
wE+) — (8, + h)w(’“) + (Bxu)h(’“)
w® =0 ,
{ XD = (8 + h)x® + gn® + (8,)a® — (80)®)
XM =1

pk+1) — (8, + h) bk — ¢w(k) — (0z AL (k) + (aza)h(k)

@ =

In turn, these equations allow us to compute the coefficients of the various
components of h(*):

¢ V{IH—I) _ yyc)

(k+1) _ Vék) + 3$V§k)

VD = 8 o I by
j>2

RSFY = 1Y + hy + 0;h "

pHD h(k) +h;+0 h(k_)l + Zg;f hj_lwlhgk)

J
§ j>2




(k)

(k+1) _

agkﬂ) = a2 )4 Oz alk) + hy

k k k |
a§+1) ()+6a()1+h31+2 (35105
Jj>2

G+ ) 4 g,

P = ) 4, + 0P

lbyle)

P = o s 4+ 0 + T (hyaaw® + v k)

j>2
D — )

n§k+1) _ nék) + b+ 5x77§k)

0 = B 4y 4 0an®, + 02 (g +

Jj>2
w§k+l) _ wlk) + a vy
wgkﬂ) - wék) =+ amV2 + wag“)

W = B 4 Oy + 0wl + I (hj—l-lwz( &

j>2

ngﬂ) = Xl "‘ (41

ng+1) _ ng) oy + aﬁ&) + By,

ngH) = ng) + 1; + azX 1+ 05 VJ 1

k
+ Y ( X+ ™ + Bavjmim)alt) —

j>2

(3sz—1—1)ka))

+ (3mVj—z—1)hz(k))

(amaj—Z—l)Vz(k)>

18
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.( b§k+1) _ b(lkr) + 8,0

b = b 4 Bpa, + 0,6

LN

b = b 4 8,05 + Oab ),

o+ (hj-z-1b§’“) — jaw”) — (anj-z-m/}l(k) + (5‘zaj—z—1)hl(k)>

L i>2 ,

As we see, the Fa3 di Bruno iterates can be computed by backward recurrence
also for negative k and therefore form a basis of Vx. Let m be the ideal

(z,p) C B, p = Spec B/m = Spec A < X be the (unique) closed A-point of
X and define

Wy = span g {iz(’“), k> 0}

W, = Wx xXp:spanA{ﬁ(k), k> 0}

where the 7%)’s are the reductions mod m of the h*)’s:
A® = A® modm e V = Vx xx p = Vx/mVx.

We can think of W as a family of subspaces of V. In fact, we can prove the
following

Proposition 3.1 Let h, Wx and W, be defined as above. Then W, belongs
to the big cell of the indez O component of the super universal Grassmannian
SGT‘A.

Proof. Clearly, it is enough to show that for any k > O there exists an
element H*) € Wy of the form

H©®F) = zF mod Vx_

H@+1) = g2k mod Vy_
where Vx_ = V_ ®, B. By construction
HO =1

HO = 4O — oh?)

e = j@
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The others can be computed recursively: suppose we have defined HG) for
0<j<k;if k= 2n is even then

n—1 n—1

H® = {6 _ Z (h§n) +o wj(n)) frk-2-2) _ Z ( T/)én) n (pb;n)) AE=2-1),

i=1 _7:

while if £ = 2n — 1 is odd then

J J

H® = ) _ phk+1) Z;':ll <V§n) n gp(n(n) _ h(.”))> Frlk=25-1)
= S (o 0 = i) A
O

Therefore, we can interpret Wy as a (formal) curve inside SGry. We have
prepared thus all the ingredients needed for the following

Definition 3.1 (JSKP) Let h € Vi = V ® Br be defined as above, where
now its components depend also on the times ¢, £ > 0, and compute its Faa
di Bruno iterates A®) and the basis {H®), k > 0} of Wy as explained. The
Jacobian super KP hierarchy is the set of “super conservation laws”

Oh = (~1)FH® k>0,
O

Let us work out some simple consequences of the definition. The evolution
equations are simply the super-commutativity conditions

[6+h,8,+H®] =0

and imply that
(6k + f{(’ﬁ) - We C W

Indeed,

@ﬁgw)m>:(@+m@.@+@51
l
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and by definition H® e Wy, (6 + 71) - Wy C Wy, In turn, this implies
that 0;H® = (—=1)7*9, HY, as the following simple argument shows: let
Vo_ := V_ ®y Br, so Vo = Wr @ Vr_. Then, by the above property, o; H®
is the Vi_-component of —HWH® while 8, HY) is the Vy_-component of
~HA®AFG = —(—1)*FOAF). Finally we obtain the compatibility of the
evolution equations

0,0k = (~1)7k50; H®) = (—1)7F+i+Es0, HU) = (—1)7%0,0;h

and o X
[0, + HD, 8, + H®] = 0.

From the above discussion, we see that it is possible to describe the theory
in terms of the H®)’s only, avoiding the need to introduce the super-space
variables z and ¢ and the super-derivative § which up to now played a special
role. We have

J
W (CONN(COY: (COI & (G D Z ( AR 4 frk g(zj—-zm))
=1

k
+Z ( f{gyl F2k=20) 4 I:Ifjl IfI(2k—2l+1)) 7
=1

J
Oop ET2I+Y) 4 f2R) fr2i+1) - — Fr2a+2k+1) 4 Z ﬁg}; Fr2-2+1)
=1
k . A~ ~ . ~
+Z (HS’JZ-HH(%—ZI) i lefl+1H(2k—2l+1)) 7
=1

A

Dottt @) 4 eI @) . fei+kl) o Zk: Hgyl Fr(2k—2i+1)
; I=1
+3° ( A I g 2k g(za‘—zz+1>) 7
=1
J k
Ook+1 F2i+1) Fr@k+1) fr2i+1) — Z ]:”Ig’l;+l Fr@i-2+n) _ Z I:I(ffé“ H—(zk—2l+1),

I=1 =1
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where we used the following decomposition of the H®s

HO9 = 2 4+ 3, (B9 + A250577)

HOHD = g2k 4 3 ( FIZkH1 56 + ﬁiijQZ“j)

The dynamical system defined by these equations is indeed more general
than JSKP and, borrowing the terminology of [6, 13], we call it the super
Central System (SCS). The properties we have deduced in the previous com-
putations hold also for SCS and will be of key importance in the study of
the two theories. :

4 Identification with the usual hierarchy.

In this Section we show that our hierarchy is indeed isomorphic to that
defined by Mulase and Rabin. Before doing that, however, let us prove the
iso-spectrality property within our formalism.

Definition 4.1 Let W be a point of SGry and Wx C Vx, Wy C Vr be
defined as in the previous Section. Then

Aw = A(f € V| f homogeneous, f-W C W),
Axr = A(f € V| f homogeneous, f - Wx/r C Wx/T),

where homogeneous refers to the Zs-grading of V' and A(---) is the ring
generated over A by the elements inside the angle brackets.
O

The above A-algebras are the would-be coordinate rings of the affine part
C\ {poo} of the “super spectral curves”. While, for special W, Aw can
obviously be bigger than A, and therefore correspond to an effective super
curve, the same could not be said for Wx/r.

First of all we give a criterion for computing Ax (an analogous criterion
works for Ar):

Lemma 4.1 Let b and Wx be defined as above.

i. Let f be a homogeneous element of Vx, then f-Wx C Wx if and only
if, for allk >0, f® .= 6*(f) € Wx.
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ii. Ax is the mazimal homogeneous A-algebra contained in Wx NV, where
the intersection is taken in Vx (of course V' C Vx).

Proof.

i. This follows by induction using the easily verifiable commutation rela-
tions

£ i = S0 | 6 Ry,

720 J
where [];] is the super binomial coefficient (see Appendix A).

ii. By definition 1 € Wy, so if f € Ax then f-1= f € Wx. Conversely,
suppose that f € Wx does not depend on z and . Without loss of
generality we can assume that it is homogeneous. Then f®) = 0 for
k > 0, hence by part i. f-Wx C Wx, i.e. f € Ax.

O

Denote by my the ideal of Br generated by ¢ and all the times £, k£ > 0
(remember that we set z = t5), let pr = Spec Br/mz = Spec A — T' be the
closed A-point of 7" and

W;DT =Wr xXrpr =Wr mod meWr C V.
We have

Theorem 4.1 (Iso-spectrality of JSKP) Let h, Wr and W, € SGry be
defined as above. Then
Ar = Aw,,..

Proof. Obviously Ar C Aw,,_, so let fe Aw,, be homogeneous. Let
HE® = H® mod mp. We can find constants cg, - -+, ¢, € A such that

k
f = Zij{(j).
j=0

Put f = Z?:o ch:I(j), so f = f mod my. If we show that f = f then the
proof follows by using part ii. of Lemma 4.1.
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Let us consider first the dependence of f on z and . We prove by
induction on k that f*) = 0 mod mr for any k > 0. Having showed that, we
get Oy f = 0,f = 0. Now,

fh = fhmod my = ((—1)f“f“> + (1) (6 + ﬁ)f) mod my € W,

but (8 + h)f € Wr whence f() = 0 mod mr (indeed f) € W_). Therefore,
let us proceed by induction assuming that f@) = 0modmy for 0 < j < k.
Then
AP = A% mod mp
k

= (-1 ((a F R  E ys)

+(=1)"5* f) mod mr

E(k+1)

k—1

= (-)¥ ((5 +BYRF > e f9 (—1)"7“;”(’“)) mod my
j=1

= (1) ((5 +R)EF+ (-1 9 mod mp € W,

and since (6 + h)¥f € Wy we get f*) = 0 mod my € W,,. To finish the
proof, we apply the same argument with

HED = (Bk + I’t[(k))l 1eWrp

and its reduction mod my, H (H)) in place of A®) and A% respectively, ob-
taining 8% f = 0 mod mr, i.e. f does not depend on the times t; too.
d

Now we construct the isomorphism with the theory of Mulase and Rabin by
means of the super Baker-Akhiezer function of our hierarchy.

Remember that we have verified that 8; H*) = (—1)7*8, HY), which im-
plies the existence of a (not unique) even function ¥ of the form

U(z,0;0,t) = (1 + > (as(p 6)z77 + Bi(y, t)Oz“j)> e(z,6;9,t),

§>0
where

e(z,0;p,t) = exp (9@ + Z(tzjzj + tzj_19zj”1)> ,

§>0
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such that A
A® = 5, 1logT.

Any such function is called a Baker-Akhiezer function of JSKP. Let now S
be the even, invertible, super pseudo-differential operator

S=1+ si(p,6)67
5>0
such that
(o, t) = S -e(z, 80, t).
Notice that all the information present in the JSKP hierarchy is encoded in

its Baker-Akhiezer function ¥ and hence in S.
Exploiting the commutation relations we have used in the proof of part

i. of Lemma 4.1 we find that
k

k
00 = HOU =9 > phD =T 9;(6 +h) - 1= B T,
§=0 §=0

where By, is a super differential operator of order £ and of degree k mod 2.
On the other hand, however, we have
09U = 0Oop(S-€)=(0wS) e+S5- ZFe
(8365) - €+ S6%* - e
((0axS)S™ + S6%*571) S - e
= ((0S)S™1+ S6%*571) - U = By, - ¥

i

i

and
82k_1‘11 = ng-l(S . 6) = (82k_15) e+ S (9216“16

= (Og-15) e+ S (6%t — 062 - e

= ((6%_15‘)5“1 + S(6%71 — ps*) S - U

= By V.
Since (8;x5)S~ = ((9xS)S~!)- is a purely pseudo-differential operator (i.e.
it has no differential part) we get

BopS = —(S0%*S™H_S = —(SoFs™h)_S
and
Bpp_1S = —(S(6%1 — p6%)S71)_S = — (506,051 571)_5,

which are the equations that Mulase and Rabin defined for JSKP.
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5 Lax description of JSKP.

An important issue to be investigated is the possible existence of a Lax rep-
resentation of JSKP. We know how to recover the Lax operator and the Lax
equations for KP out of the Faa di Bruno polynomials and current densities,
so we apply the same machinery to our situation. We shall see that for JSKP
two Lax operators are needed. Let

0= h® — ph® 4+ ST uhD =3 o,k

720 320

= D+ Y skt = 37 R

920 320

and

be the expressions of f and z in terms of the Faa di Bruno basis of Vx. We
define a map ® : Vx — SUDOx to the algebra of formal super pseudo-
differential operators on X by letting

ARy = s*

and extending it to the whole of Vx by B-linearity. Then, to 6 and z we
associate the two operators

Li=8(0) =6 — 00 + 3 j50ui6 7 = D550 @0°77

Ly=9(z) = 6"+ 2i50vi0 70 = s B;6%7

Let us examine some useful properties of the map &. First of all, by definition
we have

i’ o ’ﬁ'.{. = ﬁ+ o (Ap,
where 7, is the projection Vx — Wx and II is the projection S¥DOx —
SDOx to the subring of super differential operators. Secondly,

Lemma 5.1 With the above notations, we have
B(Hh) = 59 - I}
(02FRD)) = (=1)387 - L, - Ik

Moreover, [L1,1,] = 0 and [Ly, Ly] = 0.
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Proof. The clue comes from the observation that ® sends the operator & + h
to left multiplication by 6. We recall the useful formula

5kf — Z(_l)f(k—l) [l;} f(l)§k_l,
>0

where f is homogeneous and f ) = §'(f), as in the proof of Lemma 4.1. Let
us compute ®(GAF). We proceed by induction. First of all we find

b(ohY) = & ((5 + h)e) = ((5 +2)> ajﬁ@—ﬂ)

jz0
= -9 (Z(—l)&jajﬁ(i’»—j) + 2(5%);}(2—9'))
Jj=>0 §>0
= = (Z(“‘l)&jajég‘_j + Z((Saj)cSQ“j) =4- le.
20 >0

Then, we use the inductive assumption that $(9RY)) = (=1)7¢7 - L for
0<j <k Thus

(6+h)F 19_22 i (k=1—1) [’f l 1:}a§l)ﬁ(k—j—l+l),

j=>0 >0

showing that

B(OR®) = (-1)d ((5+R)*6

(-5 | (5+h) ZZ ) (b=i=1) {’f 7 1] o0 ﬁ(k—;-lm)

( j>0 >0

i

= (-1)*®

3ot | e

j>0 >0

5 k— nr
-+ Z Z(-l)%’(’ﬂ—l—l) [ l 1} a§l+1)h(k—3—l+1)>

§>0 1>0

— (ZZ aJ(k l)—H[ 1} agl)ék-j—l-}-Q %
l

7=>0 1>0
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kE—1 ,
i (k—1— (I+1) ck—j—14+1-
+ E E b [ l }aj §& "'1>

3>0 >0

— (__1)k (Z(_l)k&jaj(sk—j+2

720

R (i B

>0 I>1

_ ZZ i (k— z)[ } (_l)(;lc—j—l+2
@;
§>0 1>0

= (=1)%¢*-L
The other relations can be proved by using the same technique. In particular,
the computation of ®(0z*) can be performed in two ways. The first is by
expressing z* as a series in the Fad di Bruno iterates hU) (to do this it is
better to exploit the formula (z*) = L) and using the formula for ®(9A1)
we have just proved to show that

B(025) = k- I,

while the second is by expressing 0 as a series in the A()’s and using the
formula for ®(z*h()), which yields
Sincefi)(ﬁz’“) does not depend on the method used to compute it, it follows
that L and L, commute. Finally,

~ ~ ~ ~ ay ~ 1 ~ =«
0= -8(6?) = 4 (eazw — ph® ¢ Zujh“”)> =I5 = J{Ly, L)

j20
O

The next step is to compute the image under & of the derivative, with respect
to the time ¢, of h). The easiest way to perform this calculation is to use
the super-commutativity of the operators Jx + H® and § + h. We have

$(9,h0) = @((8k+H(’“))h’)~—H’“h3))

i

& (06 + B9 (3 + hy1 - HER)
= & ((—1)jk(5 FRYA® — ﬁrkhb‘))
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hence, using the expression of H® ag a series in # and z (see the end of
Section 3) and the previous lemma, we find '

(@) = (-1 3 (¥, ] Lt + 19, AR - Ly 3').

>0

We are now ready to compute the time derivative of I and L,. We do it
only for the first operator, since the other calculation is identical: the O
derivative of the expression of # in terms of the h)s yields

Z(@kaj)ﬁ(2_j) = - Z(_l)k(j+1)aj6kh(2—j)

720 j=0
and applying ® we get

Oy = —(OF S (fogs, HEE + oo™, B 1)
>0 1>0
= —(-1)* Z ([fm HE )Ly + [ﬁl»ﬁf,z]ﬁlfél)
>0
Y {m,z@alzgl +fzf,lz1z;l>} |
’ 1

where the last equality comes from the super-commutativity of Ly and L.
The last step to conclude the computation is to observe that

A = B(i () =T1(D(H) = (L§)+
- ’§+Z (BzL;t+ A 51,15

and
BACH) = B(7,(624)) = T (8(827)) = (L1 L5)+
= L+ Y (I + BRI

o~

Thus, we find
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where j = 1,2. Notice that it is not possible to write these equations using
only one operator: another natural operator we could introduce is

fj = f/l + (szz = @(0 + (PZ),

but there are no relations expressing I, and L in terms of L only.

6 A hyper-cohomological interpretation of the
Jacobian super KP hierarchy.

As for the case of KP [15], the JSKP hierarchy admits, in the formalism of
super Faa di Bruno polynomials, a hyper-cohomological interpretation (see
also [32]). The aim of this Section is to explain that issue, which is based
on deformation theory. The discussion will be somewhat technical and will
include a more detailed discussion of super-spaces and sheaves on them. We
shall start from a few central definitions and then exploit them to achieve
the above mentioned result. The interested reader can find more information
in [3, 27, 42, 43].

Definition 6.1 A super-space is a locally ringed space (X, Ox), where Ox
is a sheaf of locally super-commutative rings on a topological space X. A
morphism of super-spaces is a morphism of locally ringed spaces preserving
the grading of the structure sheaves. A super-space whose structure sheaf is
even, i.e. Ox,; = 0 (here Ox ; is the component of degree j = 0, 1), is called
purely even.

O

To a super-space there are always associated two sheaves of ideals: Jx =
Ox,1+ 0%, and NV, which is the subsheaf of nilpotent elements. These ideals
allow us to supplement X with two spaces, its associated graded super-space
GrX := (X,CrOx = ®;»0J%/JL™") and the underlying (reduced) space
Xrea = (X,0x/N), which is purely even. A super-space X is said to be
split if it is isomorphic to GrX. It is well known that in the category of
smooth super-manifolds, all super-spaces are split [27]. Also, in the category
of (smooth, holomorphic or algebraic) super-manifolds X,eq = X4, where
the structure sheaf of the last is Ox/Jx.

To work in the algebraic geometric category, one introduces the concept
of affine super-space, namely the spectrum of a super-commutative ring A,
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whose odd component A, is a finite A¢-module, together with the obvious
structure sheaf. Then, a super-space X is said to be a super-scheme if it has
a covering by (open) affine super-spaces. Its quotient space (X, Oxp) is then
a usual scheme and Ox is a coherent sheaf of Oxo-modules.

A morphism X — Y between two super-schemes can be treated as a
family of super-schemes parametrised by Y. The study of the behaviour
of the fibres of such a morphism near a fixed point of the base brings the
attention to the concept of germs of families. More rigorously, one introduces
the concept of germs of morphism as classes of morphisms under an obvious
equivalence relation. Since in this work we are not concerned with the issue
of actual convergence, we define a germ of a morphism as a morphism to
a one-point formal super-scheme (p, @p) and, in this Section, all the rings
are super-commutative algebras over the formal local ring Op = A[[y, nl]/I,
where y (respectively 7) is a set of even (respectively odd) variables and [ is
a suitable homogeneous ideal.

Another tool needed in the discussion of deformation theory is the concept
of tangent space of a (super-) space at a point. In the algebraic geometric
setting, this is defined in the following way: let Ox be the local ring of a
point z € X and m, its maximal ideal. Then, the (Zariski) tangent space
of X at z is the super-space T,X = Hom (m;/m2,C) and the dimension of
X at z is defined to be the dimension of T, X (X is regular if its dimension
at = equals its dimension at every other point y € X ). The origin of the
definition is obvious: a tangent vector v at z is a C-valued derivation of the
germs of functions at z, i.e. of the elements of Ox . Any such function can
be written as the sum fo + f, where fo € Oxz/m; ~ C-1 = Ox, and
f € m,. Since v is a derivation it must give 0 on fo, so it restricts to a map
m, — C. However, the super Leibniz rule v(fg) = v(f)go + (=1)% fou(g)
implies that it vanishes on the products fg, i.e. on m2.

The best way to exploit the concept of super tangent vectors is to intro-
duce the one-point super-scheme D := ({*},Op = C[e,(]/ (e2,€()), where
£ is an even variable and ¢ an odd one. It is then a standard fact, easy to
show, that.the tangent space of X at z is the set of morphisms D — X whose
image is exactly . The super-scheme D will be used later in connection with
infinitesimal deformations.

We come now to the definition of coherent sheaves on a super-scheme.

Definition 6.2 A sheaf F of Ox-modules on a super-scheme X is said to
be coherent if for each point z € X there exists an affine neighbourhood U of
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z such that F|y is isomorphic to the sheaf associated to a finitely generated
(U, Ox)-module My.
O

As for ordinary algebraic geometry [17], this concept is well behaved only
in the category of Noetherian super-schemes, to which belong all the super-
schemes we shall consider. This sheaves are very important due to their
features, such as the finite dimensionality of their cohomology groups on
compact super-schemes, good functorial properties under a suitable class of
morphisms and so on. The characteristic we need is the existence of Stein
super-spaces and hence of Stein coverings: a super-scheme X is Stein if X4
is a Stein scheme. Thus [42]

Proposition 6.1 Let (X,Ox) be a Stein super-scheme and F a coherent
sheaf of Ox-modules. Then H(X,F) =0 for j > 0. O

Let us now consider the problem of deformation of sheaves on a super-
scheme and of their sections. The general theory can be found in [42], here we
are interested only in invertible sheaves, i.e. super line bundles. Accordingly,
we follow [43]. Recall that an invertible sheaf £ is a locally free evenly
generated Ox-module of rank 1|0. It is the sheaf of sections of a super
line bundle that, abusing notations, we still call £. Any affine open sub-
super-scheme U of X is Stein and can be consequently used to trivialise
L. Therefore, let {U;};es be a covering of X by open affine sub-super-
schemes and let g;; be the transition functions of £ on the intersections
Usx = U;NUy, j,k € J: they are even invertible functions gjx € I'(Ujk, O% 4,)
satisfying the cocycle conditions gjxgx; = 1 and gjxgmg;; = 1. Invertible
sheaves can also be described in terms of super Cartier divisors, which are
collections D = {(Uj, f;)}jes of even non-zero rational functions f; defined,
up to even invertible regular functions, on the open affine subsets of the
given covering and agreeing in the intersections U;; up to an element of
T'(Ujk, O% o). Thus, a super Cartier divisor D on X is a section of the sheaf
M% o/ O% o+ To the divisor D we associate the invertible sheaf £ whose local
sections on U; span the module f;'I'(U;, Ox). It is an obvious consequence
of the definition that these local sheaves. glue together giving an invertible
sheaf on X. The transition functions of £ are therefore g;x = f;/fx. Clearly,
the set of isomorphism classes of invertible sheaves forms an Abelian group
under tensor multiplication. This group is called the Picard group of X and
is denoted by Pic (X). The degree of L is the degree of L,.q.
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Definition 6.3 Let X be a super-scheme, £ an invertible sheaf on X, s =
{(U;, f;)}jes a global section of £ and (Y, Oy,y) a pointed super-scheme.
A Y -family of invertible sheaves on X is an invertible sheaf Ly over X x
Y. A deformation of (L, s) over the pointed super-scheme (Y,y) is a triple
(Ly, o, p) where

i. Ly is a Y-family of invertible sheaves on X,
ii. o is a global section of Ly and

iii. p is an isomorphism p : L — "Ly, where + : X — X x Y is the
embedding identifying X with X x {y}, such that p*1*0 = s.

Two deformations (Ly, o, p) and (Ny,7,§) of (L£,s) over (Y,y) are isomor-
phic if and only if there exists an isomorphism of sheaves n : Ly — Ny
compatible with p and £ (£ = *(n) o p) and such that o = n*7. The line
bundle Ly|xxiy} = £ is sometimes called the central fibre of the deforma-
tion. Finally, an infinitesimal deformation of (L, s) is a deformation over the

one-point super-scheme D we introduced before.
O

Of course, one can define the notion of morphism, making the set of defor-
mations a category. However, here we want only to classify the infinitesimal
deformations of the couple (£, s). '

As before, let {U;};jes be a covering by open affine sub-super-schemes
of X and denote by Uj, ... ;, the intersection ﬂf___l U, by Oj,....j, the super-
commutative ring of sections of Ox over Uy, ..., and by L;, ...j, the O; . ;-
module of sections of £ over Uj; ... ;. Finally, define

Ojl,"',jk [E, C] = Ojl,"',jk ® OD
;le,...,jk [E, C] = ﬁjl,"',jk ® Op

Ujl,"'ajk [E, g]‘i—_— Spec Ojl,'",jk [E, C] = Ujl,"‘:jk x D

Then, {Ujle, (]} is an open affine covering of X XD and the exact sequence
of sheaves

0 — 0 — O;le, ¢1% — 00X — 1

7,ev

f = l+efo+Chi
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where f; and f; are the even and odd components of f, yields an isomorphism
Pic (Ujle, ¢]) ~ Pic (U;). Thus, if Lp is an infinitesimal deformation of £ then

[fl)lUj[s,C] = (EIU]) [67 C]a

so it is described as the gluing of the last modules by means of a suitable
isomorphism
Gir : Likle, (]—Ljxle, ¢,

which in turn is given by the transition matrix

1 00
Gjk=gx | ax 1 0 |,
ﬂjk 01

where we express an element o; € L;[g, (], 0; = §; + €7; + (&; as a column
vector (§j, Tj, fj)t, 847> S Ojk,e'(n ﬂjk € Ojk,odd and ik is the transition function
of £. The cocycle condition for G, implies that {oyx+B;x }jx is a 1-cocycle ¢;
on X with values in Ox. Clearly, if we change g;, and c¢; by coboundaries we
get an isomorphic infinitesimal deformation of the invertible sheaf £. Hence,
the set of isomorphism classes of infinitesimal deformations of £ is isomorphic
to H*(X, Ox). If we have a deformation Ly of £ over (Y,y) andv:D =Y
is a tangent vector to Y at y, then the pull-back of Ly under idx X v is an
infinitesimal deformation of £ and corresponds by the above argument to a
class [¢1] € HY(X, Ox). This defines a map K5 : T,Y — H*(X, Ox) which
is known as the Kodaira-Spencer map of the deformation.

Now we consider the deformation 0 € H*(X x D, Lp) of s € H(X, L).
Let us write the local expression of o as above: o = s; +€7; + (&; (we have
substituted 5; with s; because we know that o is a deformation of s). Then,
the cocycle condition for o to be a global section reads

Tj — GjkTk = QjkSk

& — 9ikék = BikSk
The meaning of the two equations is the following (see e.g. [43] and the
Appendix of [15]): the triple ({U;};, {95 (e + Bje) ks {75 +&;}5) gives rise
to a class v, € HE (X, C’) of the hyper-cohomology of the complex

C: 0— Ox—=L—0
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of sheaves on X. The set of isomorphism classes of infinitesimal deformations
of (L, s) is isomorphic to H(X,C"), and a corresponding Kodaira-Spencer
map can be defined for any deformation.

In the present context we are mostly interested in 1|1 super curves C over
A [2], in invertible sheaves over them and in the associated super Krichever
map. However, not all such super curves are good, because the definition of
the super universal Grassmannian requires a special property for the space
of sections of super line bundles on Creq \ {Poo}, Where ps is the reduced
point associated to an irreducible effective divisor on C: it has to be a free
A-module. A sufficient condition for C to satisfy this constraint is to be a
generic SKP curve:

Definition 6.4 (SKP curve) A A-super curve (C,Oc) is called an SKP
curve [2] if its split structure sheaf OF := O¢ ®a A/m is of the form 0|8,
where m is the maximal ideal of nilpotent elements of A, S is an invertible
Ort-module (a “reduced” line bundle) of degree zero and, following the
notations of [2], -|- denotes a direct sum of free A-modules, with on the left
an evenly generated summand and on the right an odd one. If S # O%*¢ then
C is called a generic SKP curve.

O

The super Krichever map [34, 37] associates a point W of SGT, to the geo-
metric datum (C, D, {z™%,0}, L,n) of

i. a generic SKP curve C,

ii. an irreducible divisor D on C whose reduced support is a smooth point
Pco

iii. formal coordinates 27! and 6 at peo,
iv. an invertible sheaf £ on C and
v. a formal trivialisation n of £ at peo.

Let £(coD) = limy,_,o £(nD) be the sheaf of sections of £ with at most an
arbitrary pole at D, then the point W is n (H°(C, L(coD))).

Theorem 6.1 (Bergvelt,Rabin[2]) The A-module H°(C, L(coD)) is free,
hence W € SGrp. O
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Tt is not clear to us if the condition on C to be a generic SKP curve is also
necessary for W to be a point of SGry. Anyway, in this Section we are
interested only in the inverse of the super Krichever map, when defined.

In Section 4 we have associated a super-commutative ring Az to the
family of points Wr C SGr, defined by JSKP. Here we assume that Az is
bigger than A, allowing us to define a super curve over A and a T-family of
sheaves L over it as in [34]. We let £ be the pull-back of this sheaf on C by
the embedding ¢ : C =~ C x {pr} <> C x T. Furthermore, we suppose that C
is smooth and that Lr is an invertible sheaf on C x T', in particular £ is an
invertible sheaf on C, of degree equal to the genus of C, whose space of global
sections is a free A-module of rank 1|1. We let o be any non-zero even global
section of L7 which does not vanish at pe and call s its pull-back under ..
Clearly enough, we can interpret (Lr,0,idz) as a (formal) deformation of
the couple (£, s) and apply the machinery we have discussed above.

We can use o (respectively s) to trivialise Ly (respectively L) on the
formal neighbourhood Uy x T of pe X T (respectively Us). Next, let oy
be a section of Lr trivialising it on the open affine subset Uy x T whose
support is (C \ {peo}) x T and s, = t*o1, which trivialises £ on U. Since
here we do not prove it, we also assume that, given the transition function
gio of £ associated to the above trivialisation, the trivialisation of L7 can
be constructed in such a way to produce the transition function Gip = g10¥,
where W is the Baker—Akhiezer function of JSKP we computed in Section 4.
As it has been proved in [15], this is possible for the KP hierarchy.

To give the promised hyper-cohomological interpretation of JSKP we ma-
nipulate the cocycle equations for o we have written above. First of all we
change notation substituting € and ¢ with z and ¢ respectively and writing
T = 8,0, € = 0,0, ai = G 0;G and B = G130,G10- Then the cocycle
conditions become

Gfolaxal = &vcro -+ (Gl_olame)ag
Gfolawcrl = a(pa'o + (G;018¢G10)0'0
whence
Gl"oléal = ((5 -+ G—l_()l&Glo) Q-

First of all, we notice that (601, (§+G190G10)-00) is 2 (meromorphic) section
of L1 whose localisation at p, belongs to Wr. Secondly, the above choice
of trivialisation implies that Gi3dGio = h, A% := oo = 1 and the above
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equation is exactly the Fad di Bruno recurrence relation. More generally,
the cocycle conditions on ¢ to be a deformation of s along the times ¢;
are precisely the characterising properties of the vector fields §; of SCS:
(6,- + ﬁ(j)) W C Wr.

Summarising, the JSKP hierarchy can be interpreted as the set of cocycle
conditions for the deformation of the spectral super line bundle and of its
meromorphic sections which, by means of the super Krichever map, define a
point W of the super universal Grassmannian. One can also understand the
above statement as another proof of the iso-spectrality of the Jacobian super

KP hierarchy.

Part II
A detailed study.

7  Darboux transformations.

One of the most important techniques, which has proved to be very effective
in the construction of large classes of explicit solutions of soliton equations,
is the method of Darboux transformations [8, 18]. As it is well known,
the Darboux transformation is a way to connect two systems of differential
equations enabling to produce a solution of the second once a solution of the
first has been supplied. An example of such transformation is provided by the
Miura map in the KdV theory and the associated modified KdV hierarchy
(mKdV) [1, 4, 10, 19, 22, 30, 35].
Suppose that a differential operator L factors as

L =PQ
and consider the operator _
L:=QP.
By the above definition we see that () intertwines L and L, that is
LQ = QL.

Consequently, if ¢ is an eigenfunction of L then 1/7 := @ turns out to be an
eigenfunction of L. For KAV, which is also the case studied by Darboux, L
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is given by
L:=-0%+u.

Assume that Ly = 0, then
L= (=0, — )8, —v),

where v = 0, log ¢. Indeed, by its definition v satisfies the Riccati equation

v + v =,
which is the necessary and sufficient condition for factorising L as above. The
last equation corresponds to the definition of the Miura map, which relates
the KdV equation to the modified KdV one. The new potential is given by
%= u — 2v, and 3
'@ZJ = (aa: - ’U)’(/)

is an eigenfunction of L corresponding to the eigenvalue A whenever 1) sat-
isfies L1 = Mp. The ideas involved in the Darboux method admit several
generalisations, see for instance [29, 20, 21, 24], here we are mostly inter-
ested in the concept of Darboux coverings introduced by Magri, Pedroni and
Zubelli [25, 26].

Consider three vector fields X, Y and Z on three manifolds M, IV and

P, respectively.

Definition 7.1 [25] The vector field Y intertwines X and Z if there exists
a pair of maps (u: N — M,0 : N — P) such that X = p.Y and Z = 0.Y.
Moreover, if X = Z and N is a fibre bundle on M = P, then Y is said to be
a Darbouz covering of X:

N)Y

K

M, X

O

This concept is useful for constructing both solutions and invariant subman-
ifolds of the vector field X: if U is a chart on M with coordinate z and
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V C p Y U) a chart on N adapted to the projection u and with fibred
coordinates (x,a), then the local expression of the above vector fields is

&= X(z)

a=Y(z,a),

where the first equation is that of X on U. Then, any integral curve z(t) of
X can be lifted to an integral curve (z(t),a(t)) of Y by solving the second
equation, which is controlled by z(t). Therefore, we get a new integral curve

of X by setting
#(t) = o(z(t), a(t))-

The last equation can also be interpreted as a “symmetry transformation”
of the dynamical system described by X, depending on a solution of the
auxiliary system, controlled by X itself, for a.

The application of the formalism we have just described to KP leads
directly to the DKP hierarchy, as explained by Magri, Pedroni and Zubelli.

Definition 7.2 Let M be the affine space of (formal) monic Laurent series
in 271 with coefficients in C[[z]] and of the form

h(z,z) = z + Z hj(z)z™
5>0
and let N be the affine space of couples (h,a) where h is as above and a is a
monic Laurent series of the form

a(z,z) =z + Z a;(z)z77.

320
Define two maps u,0 : N = M by
p(h,a) =h
and 9a
o(h,a) =h+ —%—.

Finally, let H® and H® be the current densities associated to h and h,
respectively. The DKP hierarchy is the hierarchy of evolution equations on

N defined by
Oxh = 0, HK®)

dpa = a(H® — HE)
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_ 8
where as usual 0y = 30
O
DKP is a Darboux covering, in the sense of Definition 7.1, of the KP hierarchy

Oph = O, H®.

Indeed, it is clear that u, maps the vector fields 0; of DKP to those of KP.
As for o,, we have

(c‘)za> a0y 0ra — (0,0)(0ka)
Ok | — -
a0y (aH® — a H®)) — a(8,a)(H*) — H®)

a?

— 8,8® 9, H®

and finally
Bkﬁ = Oph + Ok <§gg~> = amﬁ(k).

A result of Magri, Pedroni and Zubelli, the fact that the modified KP hierar-
chy is the reduction of DKP defined by a = h+ ag, shows that this hierarchy
naturally arises in the framework of soliton equations. Instead of continu-
ing the discussion of the properties of DKP, for which we refer the reader
to [26, 25], in the following Sections we shall apply the method of Darboux
coverings to the study of both the linearisation of JSKP (in the formalism of
Fad di Bruno polynomials) and its reductions.

8 JSKP and Darboux transformations.

Before proceeding with the program we outlined at the end of the last Section,
our first concern is to give a remarkable connection between the Jacobian
super KP hierarchy and DKP, which points out the relevance of the JSKP
theory. First of all, we observe that the role a has in DKP does indeed not
depend on the order of its pole, since it appears in a homogeneous way in all
the equations. Hence, we see that the bosonic degrees of freedom of JSKP
are exactly the degrees of freedom of DK P: our a is z™* times the a of DKP.
It is thus tempting to conjecture a relation between the two hierarchies. In
fact, we can prove the following
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Proposition 8.1 Let h and H® be defined as in Section 3.

i. The constraint v = 1 = 0 is compatible with the even flows of the JSKP
hierarchy.

4. The reduction JSKPyos of the even flows of JSKP given by setting v =
¥ = 0 is isomorphic to DKP, i.e. if h is a solution of JSKPys, then
(h,z7a) is a solution of DK P and vice versa.

Proof.

i. Looking at the recurrence relations we introduced in Section 3, we see

that .
B2E-1) = ga®) L op(k)

?

RR) = p(F) — (9)bk)
which implies that

R — k) _ (Ow)K(k),

where H®) is the k-th current density of KP and K*) is some power
series in z~! and z of the form

K(k) (z,2) = Z K¥(z)z™.

>0
The evolution equations for the even flows of JSKP are then

( 62kV =0

82ka = K(k)

S ]
Ogih = O, H®

Y Ooxth =0
showing that the constraint v = 1 = 0 is compatible with them.

ii. In the proof of i. we have established also that h evolves according to
KP. We need only to understand better the evolution of a. We have to
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show that K*)/a + H®) is the k-th current density of KP associated
to
Oza
s
To achieve this result we perform the following “gauge transformation”

h=h+

B s B = (i " 9@0> ),

For instance, we get

RO =—14 (p)-1

moreover

which shows that the fp-component of A(%*) is exactly A, and
K ()

a

-1
(—% + 9(,0) (Bor, + HEH)) (—-2 + 9(p> = Oy, + H® +

which therefore implies, together with the previous result, that

k
g0 K% g
a

O

As explained in the Introduction, the importance of having produced
JSKP out of a formalism based on the Faa di Bruno polynomials and current
densities is that we can apply all the associated machinery to it. As a second
example of this paradigm, after the Lax representation we described in Sec-
tion 5, we can introduce Darboux transformations (and a D-JSKP hierarchy)
for the Jacobian super KP theory. We observe that the equation

5- Z (a; +0B; + oy + (89)8;) 277 = Z (a; + 0b; + pc; + (0)d;) 277

§>0 §>0
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can be solved by

(O = ¢j
0;8 = —dj

j Vi = Gj

(05 = —b;

so, given two Laurent series h and & of the usual form, we can always find a
monic even power series

p=1+p+0C+ e+ (Op)g
Withﬁztj:(),fzf-——land

(p= Ej>0pjz_j

qg= 2j>0 qu“j
¢= Zj>0 Cjz_j
\ 5 = Zj>0 gjz—j
such that 56
b=h+L
Y

Indeed, first of all we solve as explained above the equation ¢ = k—h and
then we put p = expd. Thus, we can safely introduce the

Definition 8.1 (D-JSKP) Let N be the affine space of couples of monic

formal Laurent series (h, ), let
A~ 0D
h=h+ 2
b

and let K®) be the k-th super current density associated to k. The Darbouz—
Jacobian super KP hierarchy is the set of compatible evolution equations

Oh = (1) HF)

O = pK® — H®)
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O

If we let M be the afﬁng space of the monic formal Laurent series h and we
define two maps 1,6 : N — M by

ju(h,p) = h
and
h h/+ PSR
o(h,p) = 5

then the same computations we did for DKP show that D-JSKP is a Darboux
covering of JSKP. The use of D-JSKP, of course, is to provide Darboux trans-
formations in the super-symmetric case, producing new solutions of JSKP
from already computed ones. We shall study more accurately this hierarchy
in Section 10 in connection with reductions of JSKP.

9 Linearisation.

As we have remarked, the evolution equations of the Jacobian super KP
hierarchy we have studied are not linear. To obtain the linearised version we
can exploit Darboux covering techniques as it has been done in [13] for KP.
The idea is to find a Darboux covering which intertwines the super Central
System SCS defined in Section 3 with a new hierarchy whose linearisation is
easier.

To this end, let M be the space of sequences of Laurent series {W(k)}kzo
of the form

W@k — k& o im0 ( Wk, i 4 WZkez—y)

W(2Ic+1)‘: 025 + s (W2k+1 = W2k+192_J)

where W(k) — & mod 2. The third manifold P of Definition 7.1 is just a copy
of M formed by the sequences {H®},~o. Finally, the manifold N is the
cartesian product M x G of M by the group of even 1nvert1ble formal power
series w of the form

=1+ (o277 +1;0277) .
Jj>0
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The next step is to define suitable vector fields z'\:' y and Z on ./\/l N
~and P, respectively. The vector field Z is any vector ﬁeld of SCS, which is
completely characterised by

(8k, + I;[(k)) W C Wy

The flow can be identified by using an index, so we call this vector field Zp.

To define X we introduce the subspace W}W) of Vr spanned over Br by the
WU)s. Then, if k = 2n is even we let X, be the vector field characterised by
the property

(B + 2") - W(W) W(W),

while if k = 2n + 1 we let X be the vector field characterised by
@ + 827 - W c Wi,

As for SCS, we can write down the equations defining X by comparing
coefficients: if & = 2n

AW ) 4 2 1) = W i+en) +z <W’ W20 4 gy e 2l+1>)

=1
whileif k =2n+1
ak WD L gn W (2 = W @i+2n+1) Zl 2JW (2n—21-+1)

O W E+L) 4 g 2+ = — 37 2.7+1W(2n 20+1)
The definition of :)>k is obtained imposing the further condition
B+ 2") -0 e W)

if £k = 2n and
(Bk -+ 92”) W(W)

ifk=2n+1.
Definition 9.1 Following [13], we call super Sato System (SS) the family
of vector fields {Xk}k>o on M and super Darbouz—Sato System (SDS) the

family of vector fields {Jk }x0 on N
U
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The next step is to define the maps f : N — M and 6 : N — P. The first
is as usual the projection

({W(k)}kz()a W) = {W(k)}kzo,
while the second is defined by imposing the intertwining condition
b Wy =W,
which holds if and only if

DA = W) 4 ¥ (ﬁ)o @2 wl’lW(2j~2L+l)>

o~ FT(2541) — TA7(25+1) I (25 =20+1)
wH w + Dty Do W

Definition 9.2 We say that the sequence {H *)}>o is related to the se-
quence {W(k)}kzo by the Darboux transformation generated by w if w-Wr =

W,
O
Then [13]:

Lemma 9.1 The SDS system is a Darbouz covering of SS intertwining it
with SCS. '

Proof. Clearly, we need only to prove that §,(SDS) = SCS. This follows
by observing that the definitions of SDS and ¢ imply

Do + 2P = W H*
bl
Oop1W + 02k = H2k+1

S0 .
w - (8% -+ H(2k)) = (ng + Zk) W
W - (82k+1 + ﬁ(2k+1)) = (8% + sz) - W
Hence, we get |
w'(82k+ﬁ2k)'WT = (ng—l—zk)-u“JWT ‘
= (B +2) - W cwiV)
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and
W - (82k+1 + ﬁ2k+1) Wr = (8%4.1 + 0Zk) - wWr
= (Bopss + 02°) - W Wi,

showing that (9 + fI(k)) - Wp C Wy, 1.e. the SCS.
O

We consider now the map p: M — N defined by
(W Yz = (W8 Y0, WO)
and the corresponding map 6o p: M = P.

Lemma 9.2 The submanifold ﬁ(M) of N is a section of fi invariant under
SDS.

Proof. The previous definitions imply
+ 2 ((’@o,z — WO W2 4 (i — WRZ)W(%—zm))
Bujar (0 — WO) = —027 (0 — W) + L, (o, — W))W =2+

proving the lemma.
a

The above lemma motivates the following

Definition 9.3 The map 60 p : M — P is the super Miura map relating
SS to SCS.
O

We have now to linearise the super Sato system. To achieve the result it is
better to introduce the infinite even matrix W defined by

0
ij = . ) j7 k _>_ 07
Wf[c_;-_l for k odd

W? .., fork even
’ 2
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and the associated matrix W whose entries are
Wik 1= (=1)"# Wy, = (=1)7 W

Then, an easy computation shows that the flows of the SS hierarchy translate
into the following Riccati type evolution equations:

Bon W + WAL™ — AW = WTy, W

7

82n+1W + WAlAén - AlAgW = WF2n+1W

where ' means ordinary transposition (not super transposition), A; is the
odd shift matrix with entries

1—(=1)*
(Al)jk = “"—‘—““(2 ) 5k,j+1,

A, is the even shift matrix with entries

(A2)jk = Ok, j42;
'y, is the even convolution matrix defined by

1— (—1)k+
2

1— (1)

(P2n)jk = 2

Okon—j + Ok,2n—j—2

and finally T'y,41 is the odd convolution matrix given by

1—(=1)*
(Cont1)jk = ——(2-—)—5k,2n—j—1~

Observe that these matrices satisfy the relations
[Ar, Ay] = [Ag, Ag] = [Ag, A5] =0,
Ag]-—‘n - FnAZa
A1F2n - F2nA1

and
A11—‘271,-|—1 = I12’n+1A1 = 07

which imply the compatibility of the above system of matrix Riccati equa-
tions.
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Proposition 9.1 The infinite even matriz YV is a solution of the above ma-
triz Riccati equations if and only if it has the form W = VU™, where U and
Y are infinite even matrices satisfying the constant coefficients linear system

( Byl = AL"U — Ta,V
Oonild = AAS"U — Ton 1V

BgnV - AgV

9 82n+lv = AlAgV
with, of course, U invertible.

Proof. The proof is exactly the same of the commutative case, once we have
observed that for two matrices I/ and V the following relations hold:

Ooke (Z/{V) = (ngU)V -+ Z/[(ang)
B (UV) = (Bol)V +U(BopV) .

U =uv=u-r=u"

Thus, if U/ and V solve the system of linear equations of the statement and
if we let YW = VUL, then

BosW = (Ban VU™ — VU (Do) U™

APVUTY = VUTIAL + VU T, VU!
—WAL" + AW + WTy, W

and

OonsiW = (Bons VVUY = VU (Bpnnl)U™
= AMAVUT = VU A ALY + VU T VU™
= —WAAL" + A AZW + WD W

Therefore, if we look for a solution W of the Riccati matrix equations of
SS with initial condition W(0) = Wy, we have simply to solve the linear
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system above imposing the initial conditions V(0) = Wy and U(0) = I. As
we already noticed, the necessary condition

Font1A1 =0

for the integrability of the linear system holds.
O

Of course, the computations given in the proposition are only formal: to make
sense of them one should also introduce a suitable notion of convergence for
the intervening series in infinite variables. However, notice that the constraint
“W;r = 0 when either j > Jor k > K" is compatible with the evolution
equations for W, allowing us to consider reductions where only the finite
submatrix Wk of W consisting of its first J rows and K columns does not
vanish. Obviously, W,k evolves according to the reduced Riccati equations

O Wik + Wik b gr” — A3 ;o Wok = WirkTon ks Wik

O i Wik + Wik (MA kx — Mg AS ;) Wik = Wik Tont1, ks Wik

yielding “finite type” solutions (i.e. depending only on finitely many times) of
SS and hence of SCS and JSKP. Observe that the compatibility of the reduced
system requires K to be even, in which case (A1A5")xkx = A1 xxAb g

Example 9.1 Just to show an example, we compute the solution of SS as-
sociated to J = 3 and K = 4. To simplify notations let us call W := Wiy,

010 0 01
A1 = A1,33: 0 00 , Ag = A2,33: 0 00 )
000 0 00
0100 /0000
0 00O 0 000
Bi=fu=| g1 | B=hu=|19090|
0000 \0 100
and Cj := 'y 43. The relevant (i.e. different from zero) convolution matrices
are
100 010
010 00O
C=|g00| % |looo]|
0 0O 0 00



51

001 000
000 000
Co=l 100 %=|lo10]
010 000
/000
000
“%=1001
\0 0 0

We see that A2 = 0 and B2 = 0, so the solution of SS (or SCS) will depend
only on the first six times. We solve the Riccati system for W by introducing
the 4 x4 matrix U and the 3 x 4 matrix V which are solutions of the following
linear Cauchy problems:

0oV = AkV O U = BEU — CoV

Oop1V = A1 A5V Ok 11U = By BEU — CopnV
V(0) = W(0) U) =1

and then putting W := VU™!. First of all we find that

' ) ) 1 t1 to
V= exp Z(tQJA‘; -+ tgj_lAlA‘%ﬁl)V(O) = 01 0 W(O)
3>0 0 0 1

Then we solve the system for U by introducing the matrix Uy defined by

U= exp Z(tQng -+ tgj_lBlBg-—l)Uo == (H -+ tlBl -+ tQBQ + (t3 + tth)BlBg)Uo
j>0 .

and evolving as

82ka = —'(H — tlBl — '[Ing - (t3 — t]_t2)B]_BQ)CQkV

Ooks1Up = —(I + 1By — taBa + (t3 — t1t2) B1B2)Cor 1V
The equations for Uy are easily solvable and we get

ts t3 ty + 313
0 to 0

ty — 33 5 —toly t6 — 313
0 ty — 313 0

Up=1-



52

In order to write down an effective solution, we choose simple initial condi-
tions, e.g.

0000
W(@O)=|00 0 1
0000
Then
0 00 t
V=000 1],
0 00O
L a0 ~ts — it
U= 0 1 0 —ta
= t2 t3 + t]_tg 1 tl(l —_ t4 —_ %t%) — t5 — t2t3
Finally, we find
WO —1_ 201120271 4 2t,0272
T T !
~-1 _9
W —g_ 21902 N 20z
T T !
W@ = 2,

W) = fork >1
WD) = 92F  for k > 0,

where 7 = 2 +12 — 2t4. We can thus compute the first super currents of SCS

-1 -2
]:*{(1) _ 9 . 2t292 + 292 ’
T T
~2) 21 (2 — 13 — 2t4)0271  dtyta0z72
HY =z — = — = ,
H® =92

and

FI(4) _ 22 _ 4t1t292_1 . 4t192§_2 .

T2 T2
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As explained in the next section, we obtain a solution of JSKP after substi-
tuting t, and ¢, with z and @+, respectively and putting h = H® + o H®):

(v=0
- 22z 192272
a=1 to?—2ts
h=z
b= —2t (2—z%—2t4)z~  +2z2 72
- 1 (2422 —2t4)2

From the above form of the W()’s it easily follows that the only non-trivial
super currents are HO, H® and H®, in accordance with the fact that the
solution of JSKP we have just computed depends on the times #; and %4 only.
O

10 Reductions.

An important issue in the theory of integrable systems is the study of their
reductions. We have already met one such reduction in Section 7 when dis-
cussing the connections between JSKP and the Darboux transformations
in KP theory through DKP. Another obvious reduction is obtained from
D-JSKP (or, equivalently, DKP) by letting a = 1: it is just KP. In this Sec-
tion we consider more genuine reductions of JSKP, involving all the super-
commuting components of s. Our discussion is based on the reductions of
the SCS hierarchy and parallels those of [6, 14], thus it is important to un-
derstand how to get the Jacobian super KP hierarchy from the super Central
System. Once these reductions are considered in the realm of the JSKP the-
ory, however, we expect some problems to arise, as shown in Example 10.2.
Since the application to reductions, even if very important, is not the cen-
tral theme of the present work, we leave the study of the above mentioned
problems to future investigations.

As before, let H®) k& > 0, be the homogeneous formal Laurent series of
parity k& mod 2 with constant coefficients in A and of the form

HOR = 25 + 3. o (H2% 277 + H%6277)

HOWD — 038 4 5, (S0 4 B 102
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Define W := span ,{H®|k € N} € SGry. Then V = W @& V_ and, calling
7_ the projection onto V_ parallel to W, the super Central System can be
equivalently defined by

H®) — 7(7) (k)
0;H n_(HY' H\%Y),

which implies that 8; H®) = (—1)7*8, H\). Notice in particular that HHD =
0. Now, for k& > 1 we have -

(=1)%(8y + t18,) H® = 8, (HD + 1, H?),

suggesting that in order to get JSKP we should put ¢, = z and t; = ¢.
However, for £ = 1 we get

—(8y + t10:)H® = —t,8, H® £ 0, (AW + ¢, H®),

showing that we can not simply identify ¢; with (. Instead, the right way
to proceed is to substitute z to ¢z, ¢ + 1 to t1, and to define ho=HW 4
@H®. Then, 8, H® = §,H® for any k proving, together with the above
computations, that Bxh = (—1)F6H®), ie. the JSKP hierarchy (observe also
that (8; + HD)Wr C Wr implies ( + Wy C Wr).

The basic tools we need to understand the problem at hand are the equa-
tions we have just recalled and the super-commutativity of the vector fields
Ok, k > 0. The first kind of reduction we consider is the restriction to the
invariant submanifolds of the vector fields of SCS. We observe that the in-
variant submanifold Z; of 8, is defined by

HY = const.
Indeed, the compatibility of the evolution equations of the hierarchy implies
HH™ = (-1 )klakH 0 =,
At this point, the discussion depends on the parity of /.
Proposition 10.1 The manifold Z, is characterised by the condition
| AY . W cw.

Moreover, if | = 2n zs even then 2 can be identified with the space of the
(1 - 1)-tuples {HO}}
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Proof. Since SCS is defined by (9, + ﬁ(l))WT C Wr and Jw = 0, for any
we W, we get HWO.W c W. Conversely, suppose that HO.W c W. Then
QE® = _r (HOE®) =0,

Now, if [ = 2n is even we can use the equations of SCS to write (recur-
sively) H® with k > [ in terms of those with 0 < k <1 —1:

n
D = gOFCD N ( A2 fen=2) _ 2k g(zn—mn)

J=1
k
_ Z ( Az AR _ i H<2k—zg+1)) ,
Jj=1
k
H(2k+l+1) — H(l)H(2k+1) _ Z Hg:;H(zk—zgﬂ)
Jj=1

_ Z ( fjgk_+1 fr(en=25) _ 121121&1 I;[(zn-zjﬂ))
’.7 ’J !
i=1

concluding the proof.
O

In case | = 2n + 1 is odd we can only write H®**1)_ with k > n, in terms of
the even super current densities and the odd ones with k¥ < n. The equations
given by the membership of AW H*+) in W yield odd constraints. For
JSKP, the condition of the proposition is equivalent to §H®O =0 (see Lemma
4.1) and, once we have solved this equation, the above odd constraints are
automatically satisfied. '

Continuing with the case ! even, we can express the operator Jx + H®
as a matrix My, functionally depending on z and 6, acting on the right on
the vectors of the basis {H® =1,.--, Ht-D}. As usual we order the basis
by putting first the even currents and then the odd ones. Thus

®)y . - o
(O + H™) - (vo, v1) = (vo,v1) ( Higo Hi )

where we have collected in vy the even basis vectors, in v; the odd ones and
we have written the matrix in block form. We obtain the following super
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zero curvature (or super Zakharov-Shabat) representation for the restriction
of SCS to Z;:

OHY — (1) H + [Hy, He] = 0,

HO = ( H,00 Hie,01 > .

where
(—1)Hi10 (1) Hin

If we further restrict to Z; N Z; for any given k (either even or odd) we get
the Lax representation

B HI + [H;, Hy) = 0.

From the point of view of the Lax operators we introduced in Section 5
for JSKP, these reductions can be called super n-Gel'fand-Dickey hierarchies,
because they correspond to L2 (respectively L, L%) being a purely differential
operator. While for an even monic super differential operator P of order 2n

in § of the form
2n—2

15 — §2n + Z pjazn—j—z

J=0

both existence and uniqueness of a 2n-th root L need not be true, see [28],
in Appendix A we prove that such an operator has a uniquely defined n-th
root Ly. Hence, the super 2n-GD hierarchy is defined by

; A~

O P = [(P+)+, P]

Oopln = [(15%)4” L]
4 )

~

32/c+113= [(ilp%)JmP]

A

Bor Ly = [(i1P%)+,L1]

\

where [ is, as in Section 5, an odd super pseudo-differential operator of
order 2 of the form

Ly =6 — @&+ zujd“j

j20

such that [Ly, L1] = 0 and super-commuting with P.
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Similarly, we consider a non-monic odd super differential operator of order
2n+ 2

2n
Q = §2n+l _ g052n+2 + qu62n~j’

§=0

such that [Q, Q] = 0, and a monic even super pseudo-differential operator

i2 - 52 + Z ’Ujé—j

320

super-commuting with Q. Then, the super (2n + 1)-GD hierarchy is defined
by

00k Q = [(L5)+, Q)]
Oor Lo = [(£5)+, Lo

BopnQ = [(ng_n)+, Q)

| Boele = [(QLE™)s, Lo

We give now two simple examples of the above reductions for JSKP.
Observe that the condition H® = 0 does not uniquely define the current,
so Z; indeed foliates according to its choice. As for KP, see [5, 6, 14], we
consider currents of the form

f"]—(2n) =

or
ﬁ(2n+1) — 92",

The first example is a restriction to the invariant submanifold of an odd flow.

Example 10.1 We consider the case [ = 1, i.e. 8Wr C We. Since HY =
v + Oa, we see that for JSKP the submanifold 2, is defined by
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Accordingly, we get

REE) = p(B) — goy(k)

h(2=1) = gptk=1) L ohK) L (Gip)yp()
so the super current densities become

HE) = gk _ gyk)
A1) — gt-1)

where H®) is the k-th KP current density and

k-1
¥ = g 3 (Y e 4 A g0
j=1

These computations confirm that H®*+1) = §H(*) as expected. The further
constraints we mentioned above in this case do not appear since we have taken
| = 1, the lowest possible value, and therefore there are no odd currents of
order less than [, while the conditions for those with 2k +1 > [ simply
reduce to the trivial identity 0 = 0. The evolution equations for the reduced
hierarchy thus become

Boh = O, H™)
Ot = B, I
and
Ook+1h =0
Oop1%) = O, HW
We see that h evolves along the flows of KP.
D .

The following example shows which kind of problems can arise in connection
with the reductions we are studying.
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Example 10.2 We take [ = 4. A simple computation shows that

H® = (' +h?—2hy — 2¢yv)
—0(xp’ + 2hp — 211a)
+o(V" + 2hV' — 2v] — 2a1V)
—(0p)(a" + 2ha’ — 2aja),

where ’ indicates the derivative with respect to . Imposing H® = 22 we

get the following recurrence relations

hy = —3h4 + i
7

h, = _%h’;c—l — %Zf;f hk—j——lhj + P vp—1 for k> 2

Yo = —3U) + a1t

3

Yk = —3¥hy = o hejortly + ety fork>2

o 1.0 !
Vy = —51/1 + a1
k-2 ’
A 1,1 - / !
Vi = —3VUh_1 = D yy Be—jrvj taypp—r for k> 2
and )
I n !
al, = —say — S i 1d a1 for k > 2
k— k-1 j=1 *k—j—1%j k—1%1

These equations allow us to compute recursively the coefficients hj, v;, v;
and a; for j > 1 in terms of hy, ¥, v1 and ay by means of quadratures. For

instance, we get
( — Lln 1.7 112 / l
hy = 3hi — ¥ — 3hi — ) + ¥ [ ain

Y3 = 2] — ja19) — hath — @y + U Jma;
< 7

vy = 1 — sahvy — 2 [aiv) - [ vy + [(ay [ afrn)

\a3:}ia’ll——aa1__fa fhla’l—l—f(a'lfalai)
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where integrals such as [ aja} have not been simplified to signal the need of
an integration constant. Thus, the degrees of freedom in this reduction of
JSKP are hq, ai, v1, ¥; and the above mentioned integration constants.

In order to compute the equations for the evolving degrees of freedom we
have only to calculate the coeflicients of order 1 of the super current densities.
More precisely, we write

HE) = (262 or §216/20) + Z (I?[J’f""l + 91{[;’9 +QHM + (9@)1;[;’9‘”) P
3>0
where | y | is the largest integer not greater than y, whence

( Fr 2k,
agkl/]_ = Hl
_ Fr2k,00
agkal = _Hl

82,ch1 = 8zﬁ12k’1

| Ooxt1 = —0s b bl

and

( . r2k+1,0
Ogg41V1 = —H1

 Aok+1,00
Ogkr101 = —H;

Fr2k+1,1
azk+1h1 = axﬂl

32k+1"/)1 =0 ]EI%H’H

In turn, the coefficients HP can be computed using the recurrence relations
we wrote in Section 3, Proposition 3.1, that define H®  After some cumber-
some calculations (hoplng to have not mistaken some signs) we get the first
evolution equations:

( 63V1 =0
830,1 = —I/i
{ )
1 n !
83}7;1 = '2‘V1 — a1
83¢1 5 - a1a1 -+ h/
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85V1 = -—Vll/{
Osa1 = —ajvy — a1

1. 1 / / 1o
§ Oshi = v’ — sa1v) — 2hyv) — by — aqpy

!
+a11/1 v [ara)

O = ‘a’l" a1a1 - —a1 — 2hia} — hlay

L +a} — 2a'la’1 + v + i — a [ a0
and ) "
dov1 = 111" — Laiu] + 3havy
17/} 3 .12 I !
360,1 Zarl - 5&1 - 3h10;1 + 671[}11/1

Osh1 = $h{' — 3hihf — Sy — Sy

[ Osth1 = 11/),1" - "aﬁbl a’1 1 3h17>b1 — 3hyth

We see that the evolution equations for the time tg are a super-symmetric
extension of the KdV equation, which can be retrieved by setting a; = v; =
Yy = 0. Moreover, as could have been anticipated from the form of the
equation H® = 22, this reduction of JSKP involves integral differential
equations for its evolution flows. By contrast, let us compute the reduction
[ = 4 of SCS. Proposition 10.1 says that the degrees of freedom are the
coefficients of the first three super currents H®, H® and H®). Adopting
the usual notation, we find for instance that

HO® = FOHFL _ gll,l HG _ H&,l H® _ H11,2 gL _ H&,z
and R o o o o R
HO® = gOH® _ H12,1H(3) - HS,IH(Q) — H1272H(1) — Hg,z-

To link with the computations for J SKP we observe that, as in the beginning
of the Section, h = HM +pH® so we abuse somehow notations by renaming
the coefficients of the first two super currents as follows:

Hy; =vj, Hi;=aj

HO hj, .ﬁi‘? = _wj'
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Then, making use of the equations 8; H®) = (—1)78, HY) of SCS, we get for

instance )

657/1 = ——81 (1/3 — h,11/1 — alﬂg”l - (121/1)
— 73
Osa; = —0 (a3 + v — o Hyy - al%)

35h1 = 82 (1/3 - h11/1 - alﬂg’l — a21/1)

Osth1 = — 0o (az +uiY —aHY | - ala2)

\
and R
851/]_ = 61 (hg - h% + ¢1Hg71 + ’szl/l)

Osa1 = —04 (¢3 — hitpy — 1/,1];{31, 1- 017102)

Osh1 = 0y (hs — B2+ HS, + ¢2V1>

| ot = 01 (s — huvos — 1 %L1 — vt

Now, an effective comparison with the equations we obtained for JSKP would
require more computations, which we do not perform since this is not the
point we want to make. We observe only that the result we have obtained
for SCS is reasonably in accordance with the JSKP case. What we want
to stress, however, is the fact that the evolution equations for the present
reduction of SCS are all of differential type: in fact, the flows of SCS and
the expressions of the high order super currents in terms of the others are all
given by equations of that type. Accordingly, the mechanism responsible for
the appearance of non local equations is the “spatialisation” of the dynamical
SCS system. Such a phenomenon has already been observed for reductions
of the KP hierarchy [12].

O

Another kind of reductions we can perform is the projection onto the space
of orbits of the vector field §;. We call Q; the space of the solutions of the
I-th flow of SCS. The compatibility of the evolution equations of SCS then
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implies that the vector fields 0y induce super commuting flows on Q,. We
have

Proposition 10.2 Ifl = 2n is even then the quotient space O, can be iden-
tified with the space of the l-tuples {HD},_,

Proof. Using the definition of SCS given at the end of Section 3 we can write
a recurrence relation for the H@)’s with j > I:

J .
e = 5 H®) 4 FOFE) Z(ﬁé’k A2 _ fl g(zj—%ﬂ))
k=1 :

_ Z ( ngk -2k 4 legk ﬂ-(l—2k+1)) ’

J
@i+ = alﬂ(2j+1) + O F@i+) _ Zﬁé kﬂ(2j—2k+1)
k=1

_ Z ( H§Jk+1 Fr-26) o ];T{IZ’J;-l I"{(l—%-{-l)) .
k=1
O

As for the process of reduction by restriction we discussed above, if | = 2n+1
is odd then we can only express the odd super current densities of order
greater than [ by means of the others, obtaining at the same time a set of
odd constraints for these last.

Of course, we can obtain new reductions simply by combining those we
have discussed up to now. Another kind of reduction of JSKP, the last we
consider here, is instead related to the D-JSKP hierarchy we introduced in
Section 8 (see [7, 25] for an analogous discussion in the context of KP and
DKP). Recall that to the couple (h,p) we associated a new Fad di Bruno
polynomial

g
>

~

E:=h+

3|

and the corresponding super currents K. Then
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Proposition 10.3 The submanifold S; of N (see Definition 8.1) charac-
terised by
125
z*pe Wy

for [ even, or by
0z0-D1%p e Wy

- for | odd, is invariant under the flows of the D-JSKP hierarchy.
Consequently, the submanifold

7= (S1)
of M is invariant under JSKP.

Proof. We give the proof only for [ = 2n even, the other proof is the same
up to some obvious change of signs. The condition (k,p) € & implies the

existence of some coefficients a;(z, ), § =0,---,[ such that
I
Znﬁ — Z O[]H(J)
Jj=0

Let Wk := span s K| j > 0}. Then, by definition we have

p(E+k) = (5 +h)p,
hence - o

p(0 + k) = (6 + h)’p,
implying that A

Wk C Wr.
Therefore, A X
(8 + H¥N ' = 2'pK*) € Wy,

ie.

1
2op+ > (1), HHHD € Wi
=0

Using now the property 8, HY) + H® HU) € Wy of JSKP and comparing the
coefficients of 27 and 627 for j =0,---,[, we get

l l
Zlakﬁ — Z(—l)j’“ajﬁk[:f(j) = Z(Bkaj)ﬁ(j),
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i.e. l
ak (Zlﬁ - Zajﬁ(j)) =0
j=0

that is what we had to prove.
O

Obviously, any intersection Sj, ..j, = N1 Sj,, is then invariant under D-
JSKP and, consequently, 75, ...;. = [(S;, . j,) is invariant under the Jaco-
bian super KP hierarchy. As for KP, see [7], we can readily understand this

type of reductions in the Lax formalism of Section 5. Let
f,(Qk) = (i)(zkﬁ)

and A X

Ligks1y = (02"p).
Of course, 2¥p € Wy implies that f/(zk) is purely differential, while 82%p € W
implies that i/(gk.{_]_) is purely differential. Then, using the properties of the
map <i>, we deduce for instance that 7;,1“2” implies

Ligsomy = Ly - L

while ﬁ,k+2n+1 implies
Lkqany = Ly - L1 L3,

in particular ’75,“ is the super n-GD hierarchy. Borrowing the terminology
from KP theory, we say that T xn is a rational reduction of JSKP.

11 Conclusions.

As we said in the introductory Section, any mathematical theory can not be
given the status of a well developed one unless we have a deep understanding
of all its many facets. In this respect, we can say without any worries that the
super KP theory still presents us a long way to be walked before to achieve a
level of comprehension similar to that of its parent, KP. In this investigation,
armed with faith in the adage which says that “anything that can be done can
also be super-done”, we have exploited and adapted the techniques associated
with the Fad di Bruno formalism to study the Jacobian super KP hierarchy.
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The reason why our approach is isomorphic to that of Mulase and Rabin
has its roots in the form of the evolution equations that, as for KP, in the
realm of algebraic geometry admit an interpretation as cocycle conditions
for the deformation of a super line bundle over a super curve and of its
sections holomorphic except at a point. Indeed, this feature, which has been
explained in Section 6, was already used by Rabin in [37] to define JSKP.

In our opinion, the importance of this work is to have extended the for-
malism to the super case, allowing to exploit its power in the study of the
diverse properties of the theory. We have been able in Section 4 to give a
simple proof of the iso-spectrality property but also to give a Lax description
of the hierarchy (Section 5), which was lacking up to now. In Section 8 we
have studied more closely the relations with KP, proving that the even flows
of JSKP are really those of the DKP hierarchy introduced in connection with
the Darboux transformations: this highlights the naturalness of the Jacobian
super KP hierarchy. Moreover, we have also defined super Darboux transfor-
mations and the corresponding super hierarchy (D-JSKP) which, as in the
ordinary case, brings with itself reductions of JSKP. These and other reduc-
tions, such as the super n-GD hierarchies, have been considered in Section
10, where we have also studied two examples, super 1-GD and super 4-GD,
which pointed out some difficulties. Finally, in Section 9 we have shown how
to linearise JSKP and to obtain finite type solutions in an easy way.

We think that the present work really opens the way to more profound
investigations of JSKP, having implemented some of the methods that proved
to be very helpful in the study of the KP hierarchy.

A  Some useful formulae.

In this Appendix we recall the definition and some properties of the super
binomial coefficients, allowing us to define the ring of formal super pseudo-
differential operators and to prove a result about the roots of suitable pseudo-
differential operators. First of all, the ordinary binomial coefficients are de-

fined for 0 < k < n by
ny n!
k) kl(n—k)!

and more generally for any n but ¥ > 0 by

(n) - T(n+1) _nn=1) - (n—k+1)

k E+1DI(n—k+1) k(k—1)---1
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Following [28, 33] we define for any n € Z and k € N the super binomial
coefficient [}] by

0 if0<n<kor(nk)=(0,1) mod 2
n
[k} — ) e -

(t i ) otherwise

where | z | is the largest integer not greater than z. The super binomial

coefficients satisfy
7 n n-+1
-1 k+1 —
R PR R P

k .
iG+D ey [ (=

—1) k) [ ] [ :l = 0.
> (=1) k=7

§=0

and

Let now z and ¢ be an even and an odd variable respectively and define
B := A[[z, ¢]], the ring of formal power series in = and ¢ with coefficients in
a Grassmann algebra A over C. The ring S¥DOx of formal super pseudo-
differential operators over X = Spec B is the space of formal series

Ly:=>» u;o"7,  u;€B,
Jj=0
where § = 0, + ¢8;. We say that the operator L, as above has order n. The
product of two such operators is defined by means of the super Leibniz rule

&k f = Z —J)i:']f(j)ék_j’
j>0

where f € B is a homogeneous element of degree f and f¥) = §/(f). The
properties of the super binomial coefficients can be used to verify the following
adjoint super Leibniz rule

Z( ](J+1)+lcf [ ]5/ﬂ—3f(.7)
7>0 J

We can give a structure of complete topological space to S¥DOx by means
of the natural filtration

.- S\I/DOX,k_l - S\I’DOX,IC C S‘IJDOXJC,H C -y

where SUDOx , is the subspace of operators of order not greater than k.
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Proposition A.1 Let

P=g"4> pioni

>0

be an even monic super pseudo-differential operator of order 2n > 0. Then
there exists a unique even monic operator

I:J = (52 + Z’U/jé_j

Jj>0
such that L™ = P.

Proof. We proceed by induction: suppose that we have proved that there
exists an operator Ly, uniquely defined up to O(6=%~1), such that ﬂ}; =
P+ O(6**%=3). For k = —1 we obviously have L_; = 62 Then we let
f/k+1 =L+ U110 F1 s0

n—1
Fn _ 7n 7Jj —k-17n—j—1
k1= Ly + E Lk 0 LT + Ry,

§=0

where Ry has order at most max;j<p-2{2j — (n—1)(k+1)} =2n -2k -6 <
2n — k — 4, while

n—1 n—1

; : T —k—17n—j—1 § : —k-17n—1 2n—k—4
Liukﬂé Lk I = Uk+1(5 LZ’ + 0(5 n ),

=0 =0

)
AZH = IA/,: -+ nuk+152“_k_3 o 0(62”"'““4)

and we can compute ug4; in such a way that L7 1= P4 082 F1),

O
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