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INTRODUCTION

. In many problems of the Calculus of Variations involving competing bulk and
surface energies we encounter functionals of the.form

1 S(u K) / f(muVu)dm-{-/'&a:u V)d (n1

where & C R™ is a ﬁxed bounded open subset of R™ K is a (sufficiently

smooth) unknown closed hypersurface with normal v, #"~* indicating the (n —

1)-dimensional Hausdorff measure, and the unknown function u belongs to a class

of (sufficiently smooth) functions defined in 0\ K with traces u* on both sides
of K. As K can be interpreted as the set of discontinuity points of u problems

of this kind are usually labelled as “free-discontinuity problems”, according to a

terminology introduced by De Giorgi. Examples of energies of the form (1) arise
from problems in Computer Vision, Fracture Mechanics, the theory of Liquid
Crystals, Minimal Surfaces (see for example [39], [11], the Introduction of [23]).

Among them, we recall the functional introduced by Mumford and Shah in [57]
to study the problem of i image reconstruction in computer vision,

-(2) E(u,K) :/ }Vu|2 dz + oy H (K) +CQ/ [u-—g]2 dz .
, Q\K , QK -

In this case 0 C R? parameterizes the input picture taken from a camera, g
is interpreted as the grey level of the input picture and ¢; and ¢y are contrast
parameters. If (u, K) minimizes E, then u provides a piecewise-smooth appro-
ximation of g, while K is expected to detect the relevant contoir of the objects
in the picture. :

Another important apphcatlon comes from the study of fracture mechanics
in hyperelastic and brittle media. In this case Q C R?3 is the reference conﬁgura—
tion of a body, K is the crack surface, and u represents the deformation in the
unfractured part of the body. In the framework of Griffith’s theory of brittle frac-
ture, the energy necessary to produce the fracture is proportional to the crack
surface and, in the general non-isotropic case, may depend on the orientation of
the crack. If the deformation outside the fracture can be modeled by an elastic
energy density independent of the crack, then we are led to study energies of the
form

® fn W (Vu) di + AH2(K)

if the body is isotropic, or more in géneral of the férm A
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fW(vU) do + /i{ o) 2,

W being an elasti¢ bulk energy density.
- The treatment of minimum problems involving functionals as in (1) followmg
the direct methods of the calculus of variations present many difficulties; as no
topology on closed sets is available that provides compactness for sequen'ce of
pairs (uj, K;) under the condition sup; £(uj, K;) < +oo. It is therefore neces-
sary to formilate a weak version of this kind of problems. This purpose has led
De Glorgl and Ambrosio to introduce the space of special functions of bounded
variation (see [39], [14]). A function u € L1(Q) belongs to SBV(Q) if and only
if its distributional derivative Du is a bounded measure that can be split into a
_bulk and a surface term. This definition can be further specified: if u € SBV(Q) .
"and S, stands. for the complement of the set of the Lebesgue points for u then
a measure—theoretlcal normal v, to Sy can be defined H" !-a.e. on Sy, together
with the traces u¥ on both sides of S,; moreover, the approxnnate grad1ent Vu
eusts a.e. on Q, and we have

Du=Vul™+(u" —u ), H”“l LS, .

In SBV(Q) we can thus consider a weak version of the energies (1), formally'
substituting K by Sy, so that £ becomes

(45 . /f(xuVu)da:—!—/ I(z,ut ;/u)d?{”"

An 1mportant and extenswely studied model case is gwen by the Mumford-Shah
functlonal

IR E(u>=a/|w|2dw+m“(5>,

_which corresponds to the “leading term” in (2). Under some suitable growth and
convexity assumptions on f and 1 in (4), lower semicontinuous and compactness -
results by Ambrosio assure the existence of solutions to problems involving this
kind of energies (see [7]-[10]). Various regularity results show that for a wide
* class of problems the weak solution  in SBV () provides a solution to the
original free-discontinuity problem, taking K = S(u) (see [40], [33], [13], [19],
j42)).

If the ex1stence theory developed in SBV-spaces allows to solve free-disconti-
nuity problems from a theoretical point of view, new difficulties arise when we
look for explicit solutions to these problems or try to provide numerical algo-
_ rithms to approximate such solutions. Indeed, the detection of the unknown dis-
continuity hypersurface by applying the usual numerical méthods has revealed
to be a non-trivial task. Moreover, in the study of evolution problems related
to free discontinuity energies, one clashes with the impossibility of flowing such
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energies, since they are not differentiable in ary reasonablé norm. To bypass
these difficulties, an object of recent research has been to provide variational
approximations of functionals as in (4), and in particular of the Mumford-Shah
functional, by differentiable energies defined on spaces of smooth functions, eas-
ier to be handled numerically. The natural notion of convergence for these types
of problems has turned out to be that of De Giorgi’s I'-convergence (see [41],
[37], [28]). Indeed, this notion guarantees that, under suitable equicoerciveness
assumptions, minima and minimizers of the approximating functionals converge
' t6 the corresponding minima and minimizers of the limit functional. -
Purpose of this thesis is to present some recent results on this subject in an
organic way and to link them with the existing literature. The proof of most of
these results relies on a general scheme, illustrated in Chapter 2, which allows
to reduce the n-dimensional problems to a 1-dimensional analysis, by slicirig and
_density techniques. This procedure will be followed in the n-dimensional proofs
of the approximation results of Chapter 3 and 4. To treat more general vector
problems, it -is necessary to develop different arguments, ‘an example of which
will be described in Chapter 5.
- The first approximation we mention is that suggested by Modica and Mor-
tola [55] to approximate the perimeter functional via elliptic functionals . The
-approximating functionals have the form

R@- [ (B servup) o

for u € HY(Q), where W : R — [0,+c0) is a continuous function siich that
W(z) = 0 if and only if z. € {0,1}. Under this assumption, F, I'-converges as
£ — 0+ with respect to the L'(Q2)-topology to the functional .

) {cﬂn—a(su) =cPerg({u=1}) ifue SBV(Q) ue {0,1} ae.

+00 v ~otherwise,

where ¢ is a suitable constant depending on W. This mode] has been extensively
studied, mostly.in connection with phase transition problems. This result has
been generalized in many ways; in particular we mention a recent paper by
Fonseca and Mantegazza, who show that, if in F, (u) the penalization term g|Vu|?
is replaced by €3|V2u|? for u € H?(Q), the resulting limit functional is of the
same form as F(u) above (see [47]). High-order singular-perturbation are used
also in the approximation of more general free-discontinuity energies (see below).
- Following the idea developed by Modica and Mortola, Ambrosm and Tor-
torelli provided in [15] and [16] a first approximation via I-convergence of the
Mumford-Shah functional, by introducing an additional function variable which
in the limit approaches 1—xs, . In [16] they proved that the family of functionals

i

©  Gelwn)= [ FVuldetg [ (Vi -op) =,
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defined for u € H? Q) and v € HY(Q),0<v <1, P-converges as € — 0+ with
Tespect to the (L*(Q))2-topology to the functlonal ‘

| G(u,v) = {E(U) ifo=1ae

+o00 . otherwise,

. which is equivalent to E, as far as ndinimum problems are concerned. This con-
struction has been .recently extended by Focardi to the vectorial case (see [46]),
obtaining in the limit functionals of the more general form. . :

/ f(m,u,Vu)da:—I— / cp(u@)d%”fl,
Q N Su

where f is quasiconvex in the gradient variable and satisfies superlinear growth
condition and ¢ is a norm. Neverthless, the adaptation of the Ambrosio and
Tortorelli approximation to obtain as limits more complex surface energies, de-
pending also on the traces u,u™, does not seem to follow easily from their
approach. In Chapter'4, we study a variant of the Ambrosio Tertorelli construc-
. tion by considering functionals of the form '

) Gg(u;'u) = Avf’wm dz +/ (E\Vv|2 l (1 —v) )

Even though the form of the functionals in (7) is quite similar to that in (6), the
domain of the limiting functional will be different. Indeed, as we have G¢(u, 1) <
Jo, V], it is clear that the limit of these functionals will be finite if u € BV(Q).In
~ fact we prove (Theorem 4.1 and Example 4.6) that G, converge to the functional

Jut - u|

G(u,v) = IDul(Q\Su) +_/£ md% Tt ifu=1ae.

+00 ’ o ‘ oﬁherWise

where |Du|(A) denotes the total variation on A of Du. This approach can be
pushed further to construct a variational approximation for a wide class of non-
convex functionals defined on spaces of generalized functions of bounded varia-
tion. In particular, we extend this procedure to limiting functionals of the more
" general form :

G) = [ F0Vu)dz + ND*u(@\ S N [ 9t~ are,

with f of linear growth, where [D*u| denotes the singular part of |Du| with re-
spect to the Lebesgue measure. These functionals provide a wealk formulation for
problems in fracture mechanics involving crack initiation energies of Barenblatt
type, i.e. depending on the size of the crack opening (see [11], [17], [54]), and are
~used to explain softening and fracture phenomena (see-[27], where they are also
derived from an atomic model). ,
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An alternative approach to approximation, suggested by heuristic arguments,
is the use of functionals of the form

}(8) / F (el Vup?) d,

with f satisfying the conditions . -
| L) = Chm ) =
O . f(@=aand lim f()=

 with 0 < @, 8 < +co. Unfortunately, the use of local integral functionals of the
form (8) as approximate energies is forbidden in the framework of I'-convergence,
as. easy convexity arguments show. Neverthless, non-convex integrands of this
‘type can be exploited, provided we slightly modify the functionals in (8). In
Chapter 3, we remove the convexity constraint in Vu by a singular perturbation
" approach, by considering energies of the form ' N

(10) Fo(u) = é /Q F(EIVuP?) do + &7 /Q \Hul? de,

where H u denotes the Hessian matrix of u. Sections 3.1.1 and 3.1.2 deal with
the 1-dimensional case. In Section 3.1.1 we show that if f satisfies conditions (9)
then the I'-limit of F. as € = 0 can be expressed on S’BV(Q) as

P :oz/ W ds+ ¢S v/t —u]
Ja 8., -

when v = 3 (the other cases giving trivial limits), with ¢ explicitly computable
from B. In Section -3.1.2, we recover in the limit the Mumford-Shah functional,
by replacing f by more complex fe in (10). This approach has been generalized
by Bouchitté, Dubs and Seppecher (see [22]). In Section 3.2 we carry on this
study to the hlgher-dlmensmnal case, when the I'-limit takes the form '

-—a/qu|2dm+c/ \/Iu‘*‘—u d’H”"l

The extension of the 1-dimensional case is not obvious, and requires some non-
trivial improvements of previous techniques. While a lower bound for the I-limit
can be obtained by reducing to the 1-dimensional case through standard slicing
procedures, the proof of the upper bound requires some extra care to show that
the presence of second derivatives of u .does not introduce a dependence on
the curvature of S, in the surface part of the limit energy. To this end, we
use a density theorem of functions with polyhedral jump set S, in SBV(2) by
Cortesani and Toader ([36]). For functions of this class the possible effect of Hu
is restricted to a neighbourhood of a set of Hausdorﬁ' dimension n — 2 which can
be then more easily taken care of.
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A different approach can be followed by considering non-local functionals.
In [26] Braides and Dal Maso provided an approxnnatlon of the Mumford-Shah
functional by functmnal of the form :

| _Ee(u) = E/Q f(s]is@m IVu(ly)P dy) dm,, |

defined for u € H'(Q), where f is a suitable non-decreasing continuous function
" satisfying the limit conditions (9). These functionals are non-local in the sense
that their -energy density at a point z € depends on the behaviour of u in
the whole set B.(z) N Q. This method is also suitable for the approximation of
more general surface energies (see [29] and [35]). Even though we do not include
functionals of this type in this presentation, we point out that some techniques
for [26] are very close in the spirit to those used in Chapter 5.

Another type of non-local approximation of the Mumford-Shah functional is
that, proposed by de Giorgi and studied by Gobbino in [50], by “ﬁmte difference”
functlona.ls of the form

/n/n . Eng“(w)l )o(€) dz dE,

where f satisfies conditions (9) p is a simmetric convolution kernel and Déu(z)
denotes the difference quot1ent (u(z +&€) — u(z)). The introduction of the con-
volution kernel p has been proposed by De Giorgi to overcome the anisotropy

“ that obviously results if we take difference quotients only in the coordinate direc-
tions (see e.g. [34], [30]). As in the previous case, this procedure can be adapted '
to approximate more general functionals (see [51]). ' '

In Chapter 5, we push further this approach to provide an apprommamon of.

functionals as in (3), when W (V) is a linear elasticity density of type p|€u|* +
2|divu|?, where Eu = 5(Vu+V'u) denotes the symmetric part of the gradient of
u foru € C* (Q\K R”) and p; A represent in the applications the Lamé constant
of the material under consideration. In this case W is-degenerate as a quadratic
form with respect to Vu, and the framework of SBV functions is not suitable.
A weak formulation of free-discontinuity problems related to this kind of bulk"
energy density is obtained by replacing SBV () by the space of special functions
of bounded deformation (see [12], [18], [60]). A function u € L*(Q; R™) belongs to
SBD() if its symmetrized distributional derivative Eu is a boundéd measure
whose singular part with respect to the Lebesgue measure is concentrated on an
(n — 1)-dimensional set Jy. As in the SBV case, for u € SBD(Q) we can define
vy, ut,u” H" l-ae. on Jy; moreover the approximate gradient Vu exists a.e.
on ) and we have :

u :*'E(Vu + Vtu)L” + @t —uT)o v H L,

where @ denotes the symmetric tensor product. For such func’mons Eu and divu
are defined in an approximate sense.
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Then, the weak '_formulation'of functionals as in (3) in the n-dimensional case
for bulk energy density as described above is provided by functionals of the type

(11) : flé'u[ d:c-l'}\/ ldwu(zc){z d:c—i—'y?{“—l(Ju)

for u € SBD Q).
In order to approximate (11) one may try to “symmetrize” the effect of the
difference quotient by consuiermg the family of functionals

// 7 (el(Dsu(z), ) ) (&) dz de.

In this case, roughly speaki\ng, (Dﬁu(m) &) approaches (Eu(z)¢; &) ase — Oin the
~ region where v is smooth. Analogous computations as those in [50] show that we
obtain as I-limit energies of type (11). The main drawback of this approximation
is that the two coefficients p, A of the lumt functlonal are related by a fixed ratio, '
depending only on n.
In Chapter 5, dealing with the 2-dimensional case we introduce in the model
a suitable discretization of the dlvergence call it d1v u, and consider functlonals
of the form

// DEu(m) 31k %Hldivgu(x)|2)) o(€) dz dt, .

with 0 a strictly positive parameter (for more precise definitions see Section 5.1).
We prove that with suitable choices of f,p and 8 we can -approximate all the
functionals of type (11).
, The main technical issue of Chapter 5 is that in the proof we cannot reduce
to the 1-dimensional case by an integral-geometric approach as in [50], due to
the presence of the divergence term. Instead we directly use a discretization
argument, that leads us to study the limiting behaviour of families of discrete
functionals of the form

FE(u) = Z ef (5 (((Dgu(a),gn? + 9|divge(a)|2)) :

aceZ?

We then recover the limiting behaviour of F; by an mtegratlon argument which
leads to (11).

The content of Chapters 3, 4 and 5 is published in the papers [3], [6], [4], [5]
and is the result of a research activity carried on by the Author during his
graduate studies at the International School for Advanced Studies in Trieste, in
collaboration with A. Braides, M.S. Gelli, M. Focardi and J.Shah.






1
PRELIMINARIES

This chapter is devoted to the main results about I'-convergence, BV and SBV
functions, BD and SBD functions, which provides the necessary background to
deal with the apprommatlon problems treated in the following chapters

1.1 T-convergence and relaxation

In this section we introduce the notions of I'-convergence and relaxation and .
state their.main properties. In what follows X = (X, d) is a metric space. For a
comprehensive introduction to I'- -convergence we refer to Dal Maso [37] (see also
Part 11 of [28]).. .

'Deﬁmtxon 1.1 We say that a sequence Fj : X — [—oo +0o0] F—converges to
F:X = [—00,+00] (as j = +o0) if for alluEX we have :

(i) (lower limit inequality) for every sequence (u;) converging to u

F(u) < liminf Fj(u;);
j

(ii) (existence of a recovery sequence) for anyn > 0 there exists a sequence (u;)
converging to u such that :

Fu)+n> limeup Fi(uy).

The functzon F is called the T-limit of (F) (with respect to d ), and we write
F =T-lim; Fj. If (F;) is a family of functionals indeged by > 0, then we. say
that F, D-converges to F as € — 07 if K = I‘-hmJF for all (g;) convergmg to
0.

~ The reason for the introduction of this notlon is explamed by the following
fundamental theorem

Theorem 1. 2 LetF = I“-hmJ F;, and let a compact set K C X exist such that
inf x F me F; for all 7. Then

3 m}énF = hm mf F

. Moreover if (uj) is a converging sequence such that lim; Fj(u;) = lim; infx Fj
then its limit is o minimum pomt for F.
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The definition of I‘-éonv,e'rgence can be gi{fen pointwise on X . Tt is convenient
to introduce also the notion of I'-lower and upper limit, as follows.

Definition 1.3 Let F, : X = [~00,400] and u € X. We deﬁne

! A 1 . ': N . . : . . ‘
F (w) =T lﬂéﬁfFE(f“) Amf{lfﬂéﬂf Fe(ue) : ue = ul; |

F”(u) = I'-lim sup F; (u) = inf{limsup Fy (u,) : ue —u}.

g0t - B ’s—>0+

IfF liminf, o+ Fi(u) = I-limsup,_,q+ Fe(u) then the common value is called |
the T-limit of (F¢) at u, and is denoted by I'-lim,_o+ Fr(u). Note that this
definition is in accord with the previous one, and that F. I'-converges to F if
and only if F(u) = T-lim, o+ Fe(u) at all points u € X.

Remark 1.4 The following propertles of I'-convergence are easﬂy derived from
its definition:

(a) if F =T-lim; F; and G is a continuous function then
F+G= I‘—limj (FJ -+ G) ;

(b) the I'-lower and upper limits define lower semicontinuous functions.

(c) if (X,d) is a topological vector space and F I‘ -lim; Fy, with F; convex
for all j, then F' is convex. .

We recall also the notion of rela:ced functional.
Definition 1.5 Let F' : X — [~00,+00]. Then the relaxed functional F of F,

or relaxation of F, is the greatest lower semicontinuous functional less than or
equal to' F, i.e., : :
CF(u) = sup{G u) : G is lower semicontinuous and G 5 F}.
Remark 1.6 (i) If F; = F for all j € N, then we get tl;»at
- | ClimF, = F. - .' (L1
This in particﬁlar imp’li‘es that F can be deécribed as follows
| F(u) = inf{liminf; Fj(u;) : u; — u};
(i) the V~AI‘—1'ower and upper limits enjoy the following property.
T-lim inf; Fj (u) = T-lim inf ;7 (u),

T-lim sup; Fj (v) = T-lim sup, F; (u).
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- Finally, from (1.1) and Theorem 1. 2 one immediately deduced the followmg
Well—known Weiestrass Theorem. .

Theorem 1.7 Let K C X bea compact set,éuch that infx F = infg F' . Then

3 mm F = mf F

Moreover the minimum pomts for F are ezactly all the lzmzts of converging
sequences (u;) such that lim; F(uj) = infx F.

1.2 Measure theory. Basic notation

Let Q be an open subset of R"™: We derote by A( ) -and B(Q) the families of
open and Borel subsets of (2, respectively. The set of all measures p:BQ) - RN
is denoted by M(Q;RY). If N =1 we simply write M () instead of M(Q;R)
and we denote by M () the set of all measures taking values in [0, 4+c0). If
B € B(Q), then the measure pulB is defined as ul. B(A) = u(A N B). For,any
€ M(Q;RY) we will mdlcate by | u| the total variation of p, that is the measure
in M_,_(Q) deﬁned by-

I/,I,! B)-sup{Z]uB)I B; dlSJomt B = UB}

i€EN

for any B € B(Q). M(Q; RN ) is. a Banach spa.c:e when equipped with the norm
lpll := |u(Q) and it is the dual of Co(Q; RY), closure with respect to the uni- -
form convergence of the space Co(€; RY) of continuous finctions with compact
- support in Q. By virtue of the duality above, a notion of weak* convergence
“on M(;RY) can be introduced: we say that a sequence (u;) C M(Q;RN)
converges weakly to p (and we write p; — ,u) 1f for any ¢ € Co(8; RN ) :

| d .
J_gg{loofrﬁug /¢d#

Note that by the lower sem1cont1nu1ty of the dual norm W1th respect to weak*
convergence we have that p — [u[(Q) is weakly lower semicontinuous; i.e.,
|ul(9) < liminf; |u](Q) if py — p. :
Finally we mclude the following proposition on the supremum of a family of
measures which will be useful in the sequel and that can be easﬂy deduced from
the regularity properties of positive measures.

Proposition 1.8 Let p.: A(Q) — [0, +00) be an open- éetﬁmctwn super-additive
on open sets with disjoint compact closures (i.e., p(AU B) > u(A) + p(B) for
all A,B € A(Q) with ANB =0, AUB cC Q), let A € M4 (Q), let ¢; be
positive Borel functions such that p(A) >. f YidX for all A € A(Q) and let

¥(z) = sup;, w,,( ). Then p(A) > [, ¥ dX for all A € A(). :
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1.3 Discontinuity pomts, _]ump points and approximate differentia-
bility

"We denote by (-, ) the scalar product in R™; B, (z) is the open ball with center &

and radius p > 0. The boundary of the unit ball B;(0) is denoted by S™~!. The

‘Lebesgue measure and the k-dimensional Hausdorff measure in R™ are denoted

by L™ and H*, respectively. If B C R™ is a Borel set, we will also use the notation
|B| for £*(B). The notation a.e. stands for almost everywhere with respect to
the Lebesgue measure, unless otherw1se specified. We use standard notation for
Lebesgue and Sobolev spaces.

" Let u € L, (€ R™). The complement of the Lebesgue set of u Wlll be called
the discontinuity set of u and denoted by Sy, i. e., z ¢ S, if and only if

limp‘”/ u(y) —zldy =0
i) Bp(m)‘ ) —2ldy=0
for some z € R. If z exists then it is unique and we denote it by @(z). By the
Lebesgue Differentiation Theorem, the set S’ is Lebesgue—neghglble and 4 is a
Borel function equal to u- a.e.

Moreover, we say that = € {2 is a jump point of u, and we denote by J, the
set of all such points for u, if there exist a,b € R and v € S*~! such that-a # b
and | | |
lim ;"/ uly) —a|dy =0, lim p;"/ u(y) — bldy =0, (1.2

Y NCORL LY O (12)

. p—0

. where BE(z,v) :={y € By(z) : =(y —z,v(z)) > 0}.

The trlplet (a,b,v), umquely determined by (1.2) up to a permutatlon of.
(a,b) and a change of sign of v, will be denoted by (u*(z),u™ (z), vu(z)). Notice

that J, is a Borel subset of Sy.

- We say that u is approzimately dzﬁerentmble at a Lebesgue pomt z if there
exists & m-x n ‘matrix L such that

lim p‘””'._"1 / |u(y) —ii(z) — Ly — z)|dz = 0. (1.3) .
B,(z) o )

p——)O

- If u is approximately differentiable at :1:~ then L, uniquely determined by (1.3),

will be called the approzzmate gmdzent of u at z and denoted by Vu(z).

1.4 BV functlons

~ For the general theory of functions of bounded variation we refer to [14] [44],[49].

In this section and in the followmg one we just recall some definitions and results
we will use in the sequel.
- From now on we will suppose that 2 is a bounded open set of R™.

Definition 1.9 Letu € L*(Q). We say thatu is a function of bounded variation-

on §) if its distributional derivative is a measure; i.e., there eTists p € M(Q;R™)
such that :
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/'quﬁdx::—-/qbd,u.

for all $ € C(Q). The measure p will be denoted by Du. The space of all
" functions of bounded variation on Q will be’ denoted by BV (Q). -

If w € BV(Q), then u is approximately dlﬁerentlablg a.e. in 2 and S, turns-
out to be countably H™ *-rectifiable, or, briefly, rectifiable, i.e.,

S.=Nu | K, : (1.4)
iEN E s

where H"* (N) = 0 and each Kisa compact subset of a C* (n—1) dimensional
manifold I';. Moreover H™1(S, \ Ju) =0 and the vector v, is normal to Sy, in
the sense that, if S, is represented as in (1.4), then u, (m) is normal to I'; for
H ' lae z € K
If we define : , .
A lullzv@y := llull 22e) + 1 Dul (),
then BV(Q) turns out to be a Banach space. The next theorem shovvs that its
embedding in L' (Q2) is compact.

Theorem 1.10 If (u;) C BV(Q) and supj (”UJHLZL(Q) + ]Dugl(ﬂ)) < +oo theh-
~ there exists a subsequence converging in LY () to some u € BV (9Q). ‘
» We say that aset E C R™is a set ofﬁmjfe pemmeter inQif xg € BV (). The
“quantity |[Dxg|(() is called the perimeter of E in . We will set 6*E = S(xr),
- the reduced boundary of u in Q, and vg = v, .
We recall that if u € BV(Q) then for a.e. t € R. the set {u > t} is.of finite
perimeter in Q, and the co-area formula holds:
4 | — . |
IDu|(Q) = / HP (6 u > 1) N Q) dt. (19

-0

We recall also the Fleming and Rishel co-area formula: let u. be a Lipschitz
function; then for every v € BV ({2) we have that

+o0 , v : '
/leu[dmz/ dt/ TdH™L. (1.6)
- *{u>t} ‘ .

7 Now we descrlbe the structure of the distributional denvatlve of BV functions.
By using the Radon-Nykodym Theorem we may write

‘ DuzD“u-{—Ds

" where D“u is the absolutely continuous part with respect to L™ and D5y is ,
the singular one. The density of D%u with respect to L™ coincides a.e. with the
approximate grachent Vu of u, ie.
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D% = Vul"™.
We may further decompose the smgular part D%y into two. mutually singular

measures as
Diu= Diu+ D,

where we have set
Diy:= DSuLSu ; Doui= Dl (Q\ S.); -

Dy and Dcu are called respectlvely the jump part and the- C'antor part of Du.

" Moreover we-can characterize Diu as

Diu= (ur—u ), HP LS, . (1)
and the following property for D°u holds |
A |Du|(B) = 0 for any B € B(Q) with H"(B) < +co.

Let g : Q@ — S such that Du = g|Du|. Since. all parts of derivative of u are
mutually singular, we have '

D®u = g|D°u|, - Du = g|Du|, " Du = glD%ul.
In 'i)articula'r, by (1.7), we have, up to a change of sign,
g(z) = vy(z) for ’H””l—a.e. T € Sy.

For this reason, witha shght abuse of notation, we w1ll set g = vy,

Let us see how BV functions can be charactenzed through their one d1—
mensional sections. We first introduce some notation. Let ¢ € S™ ! and let
I := {y € R™: (y,&) = 0} be the linear hyperplane orthogonal to ¢&. If y € I,
and EC R" we.set. :

Bey ={teR:y+itcE}. - a8
Moreover, if u : E - R we define the function 'ué’y : EEQ —+ R by
ugy(t) =u(y + t€). ' ©(1.9)

Theorem 1.11 (a) Let u € BV(®). Then, for all € € 5™V the function ey
belongs to- BV (e ) for H* t-a.0. y € I and

[ 1Dueal(Qe) a4 @) = (D, 1(9) < +co.

e

-Moreover
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(D%@LQ:ﬁMW%M&@ﬁP*@L - (110)
A . .
for any B.€ B(Q) and k‘ =a,j orc; for HM 1 -ge y € Il

(Vuly -+ 6),6) =ul () for aet € Qey,

@)o—ﬁeRy+ﬁeS}

) “Ey
UE y(t) =uF(y + 1) Vt € Sue.,

for an appropriate choice of Vug,,; for all Borel funptwns g

/“ ) dH " (y) = ‘/ g(z)|(va, EY|dH™ L.
e tes,, Sy _
(b) C’onversely, ifu € LI(Q) and for all E € {ey,.. ,en} and for H" 1-a.e.
Yy Hg Ug,y € BV(QE y) and - .

/H |Dug |(Q%,4) dH™(y) < +o00,
13

" thenu € BV(Q).
Remark 1.12 From (1.10) one-can deduce also that

(D", €)1(B) = [ D*uey|(Bey) a7 )
e

* for any B € B(2) and k = a,j or c.

We will consider also the larger space of generahzed functlons of bounded
variation defined as follows.
" Definition 1.13 4 functwn u € LY(Q) is a generahzed function of bounded
variation if for each T > 0 the truncated function up = (—=T") V (T' A u) belongs
to BV (). The space of these functions will be denoted by GBV ().

The generalized functions of bounded variation inherit most of the main
features of BV functions. Namely, if © € GBV(Q)), then u is approximately
differentiable a.e. in © and S, turns out to be countably %" !-rectifiable. Note
that Vur = Vu a.e. on {u= uT} and Vur =0 a.e. on {u # ur} = {|Ju| > T}.
Moreover, S(u) = |J S(ur) and u® coincide with the limit of the corresponding
"quantltles for up as T — co.

Finally we define the cantor part of the derivative of a function u € GBV(9)

as the measure |D°ul : B(Q2) — [0, +oo] defined by

10%(8) = 3y D0l =l |DurlB)
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fue BV(Q) then |DCu| coincides with the usual notion of total variation of .
Deu | | : ,

1.5 SBV functipns_

Definition 1.14 We say that v € BV (Q) is a special function of bounded vari-
ation if its distributional derivative has no Cantor part, i.e., D°u = 0. The space
of special functions of bounded variation on ( is denoted by SBV (). -

It turns out that for any u € SBV(Q) we have

. Du= D“u 4+ Diy= Vul + (ut —u )z/u’H“"l LSy,

“and, in particular, the total variation.of u is given by

|Dul = [VulL® + Jut — ™ [H*1LS,

The main projaert‘y of SBV functions is the follo\&ing compactness, theorem

due to Ambrosio (see [7],[9]).

Theorem 1.15 Let ¢ : [0,+00) — [0,400], 8§ : (0,4+00) — (0,+oo] be lower

" semicontinuous increasing functions and assume that

) 6 ' o
tlg{loo = +o0, - %1_{’% - = +00. (1.11)
Let (ug) C SBV(Q) such that

"sgp ”’Uk,”BV(Q)< +oc0 (1.12)

and

sup { /Q ¢(|'Vjuk1)dx‘+ [5 %,H(Iu‘;:'— u;l)d}{”‘ll}{ +oo, . (L13)

" Then we. may extract a subsequence (not relabelléd) (ug) which converges in

LY (Q) to someu € SBV(Q). Moreover Vuyg. weakly converges to Vu in LY (Q; R™)

. and

' hm_ll-nf qS quk[ dm>/¢ |Vul) d

if ¢ is convez;

S S i ‘ + _ - d n—-1> § +_'.—. n—1
mint [ ollut — D __/Sueuu Wt

if 8 is concave.
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Remark 1.16 In the theorem above condition (1.12) can be replaced by the
condition: supy, ||uglle < +oco. Indeed, one can easily check that if this last
- assumption is satisfied and (1.11) and (1 13) hold, then [jux||zv(q) is uniformly .

. bounded.

For any p>1 we will consider also the auxﬂlary space
SBVP(Q) = {u € SBV(Q): Vu e LP(Q; R”), H™ 1(Su) < +oo}

which replace in the framework of -special functions of bounded variation the
‘Sobolev space WP(Q2). The subspace of u € SBV*®(Q) such that Vu = 0
“a.e.in Q is denoted by SBV, ().

In analogy with the strong density results of smooth funcmons in WI'P (),
functions in SBV?(Q) can be apprommatec{ in a “strong -sense” by functions
‘which have a “regular” jump set and are smooth outside. This can be formally

“expressed as follows. : : :

Definition 1.17 We call W() the space of all functions w € SBV(Q) satisfy-
ing the followmg properties:

(i) H™ (Sw \ Sw) = 0;

(i) _; is the intersection of () with the union of a finite number of (n —1)-

dimensional simplezes;

(iif) w € Whe (Q\Sy) for everykEN
The following density result of W(Q) in SBVP(Q) is due to Cortesani and Toader
[36] (see also [25]). ,

" Theorem 1.18 Assume that 89 is Lipschitz and let u € SBVP(Q2) N L*™(Q).
Then there ezists a sequence (wy) in W(Q) such that

wp = U strongly. in Ll(Q), (1.14)
Yy, — Vu strongly in LP(Q), ' - (1.15)
lim sup [lwaleo < [Julles S (1.16).
h—r+oc0 . , .

and

lim sup d(wi, wy, v, ) AH™E _<_/ qﬁ(u*’,u_,uu)d%""-l (1.17)
. . Sy ) »

R—y-40c0 S"'h
- for every upper s"emz'cbniz’nuous function ¢:RxR xS — [0, +00) such that
$(a,b,v) = ¢(b,a,-v),

for every a,b € R and v € S"“l.
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Remark 1.19 Under the additional assumption that 1 < p < 2 the structure of
the jump set of the functions wy given by Theorem 1.18 can be further improved .
by using a capacitary argument. In partlcular it is.possible to obtain that Sy,
is the intersection of Q with the union of a finite number of pa1rw1se disjoint
simplexes.

_ We recall also a relaxation result in BV () of isotropic functionals with
_ domain in SBV?(Q) and that is a particular case of a theorem by Bouchitté,
Braides and Buttazzo [20].

Theorem 1.20 Let g: R — [0, +00] be a lower semicontinuous function with

and such that the map t - g(|t]) is subadditive and locally bounded. Let F
BV(Q) = [O +o0] be defined by A

. : uldx + ut -y~ vn—l i ’Ll,’ 9, Joo
Flu) = /Q|V Id +/5ag(| D dH f ue SBVXQ)NL (Q)..

| +oo - : - otherwise in BV(Q).

Then the relazation of F wzth respect to the L*(Q)- topology is gzven on BV (Q)
by the functzonal

F(u) = /s; |Vu| dz +/S g(lut —u™)) dH + [ D ul(£2).

- As in the BV setting, we generalize the' definition of 'SB‘-V:quI_lctions as follows.

Definition 1.21 A4 function u'€ L*(Q) is a generalized special function of
bounded variation if for each T > 0 the truncated function ur = (=T)V (' Au)
belongs to SBV (), i.e., if u € GBV(Q) and |D®u|(Q) = 0. The space of these
functions will be denaied by GSBV(Q).

‘ The following closure and lower semicontinuous theorem in GSBV(Q) can
. be deduced from Theorem 1.15, by applying a truncation argument and taking
into account Remark 1.16. ‘

" Theorem 1.22 Let ¢ : [O +00) = [0,+00], 8 : (0,+00) — (0,+00] be lower
semicontinuous increasing functions verifying (1 11) Let (ug) C G’SBV(Q) be
such that

sup { [ @vud + glusl) do+ [ (ui -7 dH’?;l} < oo,
k Q Sy,

Ifup, = u in L), then u € GSBV(Q) and Vuy weakly }:ohverges to Vu in
LY R™). Moreover '
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Jimm inf / (Ve ]) dz > / 8(|Vul) do
k=40 Jo Q
rif ¢ is convex;

liminf/ O(luf — vy ) dH™ ! Z/ 9([u+ —u”|)dH™ !
. k=t Sup . S )

if 8.is concave. _ ,
The following theorem describes the properties of 1-dimensional sections of
' GSBV(Q)-functions and can be easily deduced from Theorem 1.11.

Theorem 1.23 (a) Let u € GSBV(Q). Then, for all € € S™! the fﬁnctz’on Ug,y
belongs to GSBV(ng) for H™ 1-a.a. y € Ilg. Moreover for such y we have

ug () = (Vuly + ), £) for a.a. t € QEJ,
Sue, = {teR:y +t§.e Su}7

u, () = v (y + 18

for anﬁpproprz'ate choice of vy, and for all Borel functions g "

n—1 .'1: v n—1
/Hzgucm W)= [ o)l olan

¢ tES Su

(b) C’onversely, ifu € L(Q) and for all € € {e1,...,en} and for.a.a. y € Il;
Ugy € SBV(Q&,) and :

/ | Dugy| dH™ 7 (y) < '+o0; .

N I-IE ‘
then u € SBV(Q).
We underline that Theorems 1.11 and 1.23 play a key role when we want to
reduce some variational problems in n-dimensional domains to one- dlmensmnal

‘problems. This fact will be highlighted in the following chapters.
Finally we introduce the space GSBV?(Q)) by setting

GSBVP(Q) := {u € GSBV(Q) : Vu € LP(Q;R™), H""1(S,) < +o0}.

1.6 BD and SBD functions

We recall some definitions and basic results on functions with bouhded de-
formation. For a general treatment of this subject we refer to [12] (see also
[18], [431,60)). :



20 Preliminaries

Definition 1.24 Tet'u € LJ(Q R"™). We say that u is P functlon of bounded
. deformation on Q if its symmetric distributional derivative Eu := % (Du + Dtu),

is a n X n matriz-valued measure on Q0. The space of all functwns of bounded-
deformatzon will be denoted by BD(%). ‘

For every £ € R", let D¢ be the chstrlbutlonal derivative in the direction &
defined by Dev = (Do, €). For every function u :  — R™ let us define the
function uf : Q — R by ué(z) 1= (u(z), ). :

Theorem 1.25 Ifu € BD(), then DEuE é M(Q) and S
Deut = (Eut, &)

Conversely, let &, .. ,En be a basis of R™ and let u € L R”), then u €
BD(fY) if Deut € M(Q) for every & of the form & +¢;, 1,5 =1,.

If u'e BD(Q), then u is approximately dlﬂerenmable a.e. in  and J, turns
out to be countably H™ !-rectifiable, but it is not known whether H"~ LS\
Jy) = 0 or not.

As in the BV case, we can decompose Eu as’

Bu = E°u+ Eu+ E°y,

where E%uy is the absolutely contmuous part of Eu with respect to E“ with
den51ty

fum L (Vutvi);

t\DIi—-k

. Efu and E°u are respectively the Jump part and the cantor part of Eu and are
defined by

Fiui=EulJ,, Eu:= E'ul(Q\J),

wheré E°u is the singular part of Eu with respect to L™, Moreover, we can
characterize Flu as

Eiu= (uF - 7)) @ vH LTy,

where ® is the symmetric tensor product defined by a ©@ b:= 1 (a®b +b®a),
a ® b denoting the matrix whose entries are a;b;. ’ T

- Definition 1.26 We say that v € BD({) z"sAa. special function of bounded -
~deformation in Q, and we write u € SBD(Q), if E°u = 0.

In analogy with the BV functions, we may characterize the spaces BD (1) and '
SBD((1) by means of suitable one-dimensional sections, for which we introduce
an approprlate notation. Given y, f eR™ €#0, ECR"™ let II,:, E¢, be deﬁned
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as before Theorem 1.11. If u: B R” we. define the function uE’y Egy — R
by
ub¥(t) = (u (y +1£), ).

Moreover, if u € BD(Q) we set . ,
Jﬁbzlz"{':vEJu (u +(m)——u (z),£) #0}.

Note that, since H™ 1 ({{f e st (u+(a:) —u~(z),€) =">O}) = 0 for every z €.
Ju, by Fubini’s Theorem we have ‘ '

yn-t (T \JE)—o for H* l-ae. £ € SL

Theorem 1.27 (a) Let u € BD(Q) and let £ € R", £ # 0. Then u*? €
BV(ng) for H* 1-a.e. y € I,

/ |DuE|(Bey) a3 (3) = D] (B) < +o0 (118)

oe . S ‘

fof eu‘ery‘B € B(Q), and |

| () = (Euly + 1) €,)
J'u,5 v = (J’LEL

)fy

for H™ 1-ae y € Il andforae t € Qgy. * C o
(b) Conversely, let u € L*(Q;R™) and let {¢&;,...,&,} be a basis of R™. If
for every £ of the form & +&;, '

WiV € BV(Qg,) for H' eace. y € I,
/ | Dub¥| (Qgy) dH™ () < +o0,
J11g o -

then u E BD(Q). :
Moreover, if u € BD(R), then u € SBD( ) if and only if uE Ve SBV(QEy)‘
for every £ of the form & + & and for H™" '-a.e. y € Ig.

The following compactness result in SBD(Q) is due to Bellettini, Coscia
and Dal Maso (see [18]) and its proof is based on slicing techniques and on the
characterization of SBD(f2) provided by Theorem 1.27.

‘Theorem 1.28 Let (uz) C SBD(Q) be such that

sup ( [ Vsl ds+ 3 ) + nuknw)‘ < +o0.
k Q - <)
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Then there exist a subsequence (not relabelled) (uy) converging in L (Q;R™) to
a function u € SBD(Q). Moreover Euy, weakly converges to Eu in Lz(Q;R”Z)

S n-—1 . n—1 »
lim inf HP () 2 HP ().

~ We state now a lower semicontinuity result in SBD that can be proved ‘by '
following the same ideas and strategy of the proof of Theorem 1.28.

Theorem 1.29 Let uj,u € SBD(R) be such that u; — u in L1(Q; R™) and

csw [ En@ef dot [ 10, 8laH <roo (19)

JSJ

for £ € R™\ {0}. Then (Eu;(z)E,€) = (Eul(x)é, ) weakly in L2 (Q) and

. JE . ' /e 3

i

In particular, if (1.19) holds for every & € {&;.. .,§n‘} orthogonal basis in R™,

then divu; — divu wéakly in L*(Q).

Finally, we introduce the following subspace of SBD(Q).
SBD?*(Q) := {u € SBD(Q) : / [Eu(z)|? de +H““1(Ju). < +QO} )
o o

This space is the domain of the free-discontinuity energies we will consider in
Chapter 5. ' : :
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A GENERAL APPROACH TO APPROXIMATION

2.1 The method

In thls section we describe a general method Wthh has been successfully used to-
prove the approximations.via I'-convergence of functionals in GBV and GSBV
~ we will present. This method allows to reduce the n-dxmensmnal problems to a
~ 1-dimensional analysis. |

As a model case, we study the I'- convergence of a famﬂy of functionals F.:
L1(Q) — [0, +00]. Then, according to the definition given in Section 1.1, we deal
with lower and upper- inequality for F” and F"| respectively.

2.1.1 A lower inequality by slzczng

The procedure we follow to give an estimate from below of the T'- hmmf of F. is
based on slicing techniques and can be summarized as follows.

1. We “localize” the functionals F. highlighting their dependence on the set
of integration, defining functionals F; (-, A) for all open subsets A C Q;

_ 2. For all £ € §™ 1 and for all y € TI, we find functionals F&¥(v, ), de-
fined for I ¢ R and v € L!(I), such-that, using the notation 1ntroduced before
Theorem 1.11 and setting

Fé(u, A) = /H FE¥(ug,y, Aey) dHP (1),
13 .

we have Fg (u, A) > FE(u A).
3. We compute the I'- lim mfs_m FEV(y,I) = R 'y(v I) and define

Fé(u, A) = [ Fg"y(u&y,Agy) dH ().
£ o .

-~ 4. From Fatou’s Lemma we have, if u, — u,

lim inf F (ue, A) > hm 1nf Ft (uE,A)

e-—)O

—-hmmf/ Fé’y((us)gy,Agy) dHn1 (v)

2 lim inf F¢ y((“ﬁ)ﬁ»wAEy) dH™ " (y)

Il e—0t
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> | Py, Agy) dH T (y)
ST ‘
= F&(u, A4).
Hence, we deduce that

I-liminf 7, (u, A) > Fé(u, A),
e—0t

forall £ € Sn=1

5. From estimates from below on F& Y, and Theorem 1. 23(b) or Theorem .

1.11(b), we deduce that if u € Le(Q) then T-liminf, g+ F.(u, A) is finite only
‘if w € -SBV(A) or u € BV(A), according to the cases. By an approx:lmatlon
argument we see that if w € LY(Q) only this holds if v € GSBV( (u €
- GBV(A)); ‘

6. We prove the existence of Borel functions f¢,g¢, h‘f such that settmg
| ' FE(t,5,2) = Py + 16,5,2),
oV (t, v, w) = gt (y + t€,v,w),
RSV (t, s, 2) = hE(y + &, s, z)

we have

F&Y(u,I) '
C

2 [ v'>dt+>:g e [ (15,2 i) 1P

and by Theorem 1.23 or Theqrem 1.11 we deduce that

Fé(u,A) /A £ (@,u, (Vu, &) do + /S ot u) v, Dl

u

ifue GSBV(Q)(u € GBV(Q))
7. We check that if u € GSBV(Q) (v € GBV(Q)) then the set functlon

u(A) =T- hm mf F.(u, A)

is superaddltlve on open sets Wlth dlSjOlnt compact closures. Take u such that
w(Q) < +oo Using Proposition 1.8 we conclude that

‘e—0Tt

- hmmfF (u, A /f z,u, Vu) da:-l—/ - gz, ut uT, v ) dHT!
S.n4 .
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[ (e oo

| ifue GSBV(Q)(U € GBV(Q)), where
f(ma S, Z) - Sup f& (9:> 8 <Z: 52'))7

glz,v,w,v) = sup 9& ("I")'U:w)l(yz &l
i LI ’

= . : 3 . ()j, gz) |
h(z,u,v) = sup h¥ (x,u, —= ) (v, &)1,
(@) = wgap ) 180
and (&;) is a fixed sequencein S™~. By varying (&;) we can optimize the estimate.
If the domain of the limit functional is GSBV/(Q2), we have h® = 0.

2.1.2  An upper inequality by density

*'While it is usually difficult to prove directly a meaningful upper mequahty for
* F"(u) on the whole L*(Q), a recovery sequence can often be easily constructed
if the target function u has some special structure. In order to give an upper
estimate of F" by some functional F : L'(Q) — [0,4c0] it is therefore useful to
proceed as follows.

Step 1. Define a subset D of Ll(Q) dense in {F < 4o} (the domain of F'),
such that for each v € L'(f) such that F(u) < 4o we can find a sequence
(u;) C D such that u; — u in L*(Q), and F(u) = lim; F(u;); -

Step 2. Prove that we have F"(u) < F(u) for each u € D.

' By the lower ~s’emicon’sinu-ii‘:y of F" we then conclude that

‘. F'"(u) < liminf; F"(uj) < liij(uj) = F(u)

if F(u) < 400, so that F' < F on .L! (Q)

~ Finally we underline that the construction of recovery sequences in the 1- .
dimensional case suggests the correspondmg construction in higher dlmensmn
for any u € D, as we will see in the sequel

2.2 Examples of approxxmatlon ,

In this section we will illustrate some examples of approximation of free discon-
tinuity problems whose proof can be recovered, up to slight modifications, by
following the procedure described in the previous section. We will not enter into
the details of the proofs, but in each example we will show how thxs procedure .
can be applied.

2.2.1 Approa:z’matz’on' of the perimeter by elliptic functionals

The first approximation we address is that of the perimeter. Since sets of finite

perimeter in {) may be identified with their characteristic functions as a subset
of SBV(Q), we can define the perimeter functional as follows: ‘
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{ |Du|(Q) = H*(S,) if u € FSB'V(Q) and v e {0,1} a.e.
P(u) = ‘

+co - otherwise in Z1(Q).

The functional P : L'(Q) — [0, +co] is lower semlcontlnuous with respect to the
-LY()-convergence.
The following result is due to Modica and Mortola (see [55] and [23]).

Theorem 2.1 Let Q be a bounded open set with Lipschitz boundary Let W :
R — [0,+00) be a continuous function such that W (z) = 0 if and only if z €
{0,1}, and let F, : L' () — [0, +co] be defined by :

' 1
1 w)d | 9 . L
Fg(u)z{E/QW(U) SE’I-E/QIV'U,‘ dz ifueW (Q)

+

00 otherwise.

Then F, T'-converges to cy P wzth respect to the L (Q)-convergence, where ey =

S 2 [0/ W(s)ds.

For the proof following the steps outhned in Section 2.1.1, one can choose

12 1,2
- Feie) - { /W(v)dt-&—e/]vl dt - if u e Wh2(I)
o 00 ~ otherwise |

(independent of y). We then ha{fe, by Fubini’s Theorém,

Fé(uA { /W(u dw+€/[Du§|2dx1 (&, Du) <<:£n-
tooo : otherw1se

Note that, since |(v, £)| < [1/] for all v € R™, £ € S™ !, we-have that Fg < F..
_ Then one computes Fé Y(v,I) =T hmE_,O F&Y(v,I) and obtalns

cw#(Sy) ifve{0,1} ae. on I,
‘Fg’y(v,I) = {

.00 otherwise.

Thus, if u € SBV(A) and u € {0,1} a.e., from Theérem 1.23 we have
et =ew [ i),

For what concern the upper iriequality, one can prove, under the hypothesis 8Q
Lipschitz, that the set D of all characteristic functions of subsets of {} which are
restrictions of sets of class C™ in a neighbourhood of 2 is dense in the domain
of P in the sense specified in Section 2.1.2. Then, if u € D, one can construct a
recovery sequence ve (z) letting it depend.-on dist (:c Su)-
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More precisely, one proves in the 1-dimensional case that, if u = X[0,+00)s &
recovery sequence is given by

wo=( KT

where v € W1 2(=T,T) and T > 0 are such that
o .
/ (W) +v'|?) dt < 2cy +7
_T .

and v(=T) = 0, v(T) = 1. The existence of v and T satisfying the condition
above for any n > 0 is deduced, once proved that

. +oo. ' ‘
2cw = min {/_ (W (u) + [’ | %) dt, u e W,lof(R), u(—00) = 0, u(+00) = 1} :

Then, in higher dimension, if u = xg € D, a recovery sequence is gi{rén by
Ve(z) = us(d({n)):

" where u, is deﬁnea by (2.1) and d(:r) = dist (z,Q \ E) — dist (z, E) is the signed
distance function to 0E. :

2.2.2 Approzimation of the Mumford-Shah functional by e'llz'ptic'v functz’o-nals
Pushmg further the idea of the previous approximation and introducing an aux-

1hary variable to take care of the surface part, one obtains the following approx-
imation of the Mumford-Shah functional (see [16] and [23]).

Theorem 2.2 Let Q be a bounded open set with Lipschitz boundary. LetV :
R — [0, +00) be a continuous function such that V() = 0 if and only if z = 1,
let 1 : [0,1] — [0, +00) be a lower semicontinuous and increasing function, with -
¥(z) =0 4f and only if z =0 and w(l) = 1. Let G, : L} (Q) x L*(Q) — [0, +0o0]
be defined by
- 1
,‘ / ($@IVuP + V() + Vo) deifu,v € WH3(0)
Ge(u,v) = - Cand0<v <1 (2.2)

\ 400 . otherwise,

and let G : L' () x L*(Q2) — [0,+ca] be deﬁned by

/ |Vul> dz +dcyH"(Sy) ifue GSBV(Q) andv =1 a.e.
G’(u v) ,
+oo ' ‘ otherwise,

where ¢y = [} \/V(s)ds. Then we have T-lim, o+ G (u,v) = G(u,v).
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- In this case, following again the strategy described in Section 2.1.1, one.simply
chooses .

) -1 .
./(1,0(1})]11"[2 + EV(’U) + elv’l2> dt if u,v e WH(I)
CGEV(uw, ) = . Cand0<wv<1
;i—oql - : ' otherwise

' (independe_nt of y) We-then ’have, by Fubini’s Theorem,

[ [ (penmmer+ e )+EI(\7uf|)
G4 (u,v, A) = : if (¢, Du) << L, (€, Dv) << Ly, 0 <v<l1
+oo o S , | othérwise. :

Then one computes G*¥(u,v,I) = F—'lime_m G&Y(u,v, I) and obtain

/|u'|2 dt +dey#(Su N 1) if u € SBV(I)
G'Ey(uvf) o ‘ . andv—lae onl,"

+00 otherwise.
Thus, if u € GSBV(A) andv=1a.e., from Theorem 1.23(a) we have
G A) = [ (Tu, P dotdoy [ e vl
JA ) AnS. :

By applying a truncation argument it suffices to prove the upper inequality
for w € SBV?(Q) N L®(Q) and v =1 a.e. Then , by virtue of Theorem 1.18, a
. dense family in' SBV?(Q)N L (Q) in the sense speciﬁed in Section 2.1.2 is given
“by the set. D = W(Q).

Let us show how to construct a recovery sequence in the 1 dimensional case.
By simplicity, take u € SBV (), v'-€ L*(Q) and S, = {0}. Then, fixed & = o(e),.
a recovery sequence is given by the pair (u.,v.), with u, € W 2(9), ue (t) = u(t)
if ¢ > &, and vg defined by

Ve (t) = v(l—ﬂ%{s—) if& < |t| <& +eT

where v € W*2(0,T) and T > 0 are such that
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T o .
/ (V) + W'?) dt < 2ev 4+,
i :

and v(0) =0, v»(T) = 1.

© In higher dimension, for u € D, a recovery sequence can be constructed by
proceeding as above, lettmg Ve depend on dist (m Su), analogously to the previous
example. : '

2.2.3 Fz'm'te difference appfomimatz'on of the Mumford-Shah fun'ctz'onal
In this example we illustrate the approximation of the Mumford-Shah functional
by a family of non-local functionals depending on mea,surable functions through
some difference quotient (see [50] and [23]). .

Let p: R™ — [0, +00) be a symmetric mollifier (i.e. p(:c) le)), and let
f:[0,400) — [0, +00) be a Borel function with f(0) = O such that for all ¢ > 0
inf{f(t): ¢t > ¢} >0, a,b > 0 exist with

lm'm:a, lim f(r) =

t—0+ T t—roo

‘and f@) < mm{at b}. R p
- We define the functionals F Li,.(R™) = [0, +00) as

F(u) D[ (Ol g e

Theorem 2. 3 The functzondls F, T- conberge as € — 0T with respect to the
IOC(R )-convergence to the Mumford-Shah functzonal F deﬁned by

o {A / Vul? dz + BHP1(S,) if u € GSBVio(R™)
+0co | otherwise,

where A, B are defined by
- C +oo : +o0
A =aw, / "L (t) dt, B = 2bw,_; / ") (t) dt
: 0 , o

(where 2(6) = (IE)).

In this case one does not follow exactly the steps outlined in Sectlon 2.1.1,
but apphes the same argument based on slicing techniques. Indeed one has

rw=[ [ Rortwegd, 0.

. where
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"1 1/ v(t-l—e) u(t))? )dt

'(mdependent of £ and y).
Then one proves that (F2) I‘~converges to the Mumford-Shah functional F
whose value on SBV(R) is

H(v) za/_lv’l2df+b#(5u). |

By applying Fatou’s Lemma and Theorem 1.23, one obtains that I'-lim inf F (u)
e->0+
is finite ‘only if u € GSBV,.(R™) and

I“-ligggfﬁ’s(u) 2 / n /H 5 |E1F (ug y)dH™ " (y) p(€) dé

- / ( [ avugPas+s / 1(uu,£)].d%”"l)p(§) dt

Easy computations show that the last term in the inequality -above is equal to:

F(u).
For what concern the upper inequality, we" underline that in this case any
density result is needed, since one proves that

Fo(w) < F(u)

A for any € > 0 and u € L},.(R™). To this end one can reduce once more to the
- 1-dimensional case. In fact, by (2.3) it suffices to verify that

Fiv) £ P

for any v € SBV(R).



APPROXIMATIONS BY HIGH-ORDER PERTURBATIONS

In this chapter we provide an approximation of functionals in GSBYV, and the
Mumford-Shah functional in particular in the 1-dimensional case, by local func-
tionals with a high-order singular perturbation. It is clear that approximation
with local integral functionals depending only on first derivatives is not possible.
In fact, from standard convex analysis arguments, the relaxation w1th respect to
the L (Q) -convergence of functionals of the form

.FE(U)_ = /Qfs(Vu) dz U e whi(Q)

is given by ’ '
F.(u) = / X(Vu)dz - we whi(Q).
Q

where fX* denotes the lower semicontinuous and convex envelope of f.. Hence,

by Remark 1.6(ii) and Remark 1.4(c) the I-limit of functionals as above must -
_be convex, and it can be easily checked that functionals on GSBV () cannot be

' convex.

The convex1ty in the gradient variable can be overcome cons1der1ng higher-
order derivatives. Since high derivatives do not appear in the limit, they may be
introduced as a singular perturbation. .

The next section is devoted to the 1-dimensional results. An. extensmn to
higher dimension will be treated in Section 3.2.

The results of this chapter are contamed in [3] and [6]:

3.1 The 1- dlmensmnal case .
3.1.1 Surface energies generated.by high-order 5iﬁgular perturbation

Theorem 3.1 Let p > 1, and let f : [0,+00) —= [0, +00) be a lower semicontin-
uous increasing function, such that o, € R ezist wzth ‘

‘o= lim 12, ﬁ-——‘ lim Ft).

t—0+ 1 t—-+00

Let I be a bounded open subsét of R, and let F. : L*(I) - [0, +00] be defined by

1 12 2p—1 / "y o
- %) dt + e Pdt W2e(I
FE('LL) = € ~/If(ElUl ) ¢ I |u I zfu E . ( )

+c0. . otherwise.
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Then there exists the I'- limit F-hms_%0+ F,(u) = F(u) with respect to the. Ll( I)-
convergence, where

/Iu |2dm+m(ﬁ)2\/ ut —u—| zfueSBV(I)

CF(u) =
+00 : ‘  otherwise,
and
T : :
s) mm mm{2sT + / lo" P dt: o(£TY = £1/2,¢ (£T) = O} ‘
-T -
for all s> 0.

- Remark 3.2 The chou:e of the power g2P~! follows from the scaling argument -
leading to the definition of m(b), Wthh will be clear in the proofs (see also -
* Corollary 3.11).

Remark 3.3 Forall z € R and s > 0 let
. _ ’ . ‘- np 2’p__—
m(s, z) rnn>1{)1mm{25n+/ |v Pdi: v € W (=n,n),
o(En) = 2, v'(n) = 0}.
If we set
- ¢, = min O"|Pdt o € WHP(=1,1), p(£1) = il, "(£1) =0},
P L v 5 14
. then the substitution v(t) = z¢(¢/n). gives
.m(s,z) = min{2773 + |z|i’n1‘2pcp}
, >0 L - .
zs(zp*1)/2p\/E(22p—1c (213—1))1/21]-(1‘-}- 1 )
F cp(2p — 1)
= s~V (1)1/|2] = m(s)V/]z|.

If p 2 then co is easily computed, noticing that the solution ¢ is the
third order polynomial satisfying the given boundary condltlons In this case,

s)*s4(2\/—+\/~)

" The proof of Theorem 3.1 will be obtained as a consequence of some simpler
propositions which deal with lower and upper I- 11m1ts separately. Before stat-
ing and proving them, we define a “localized version” of our functlonals which
highlights their behav1our as set. functions, by setting -
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\ »E/f@m%a+£V{/W?mvﬁaewmu)
Fe(u,I) =< €J1" T I . (3.1)
L 400 . . . otherwise,
and . : : . :
» /}u'lzdx—l—m Z\/[zﬂ'-—u 1fu€S'BV()
Flu = (3.2)
+00 : "otherwise,

for all u € L}OC(R)‘;md I C R bounded open set. t

Proposition 3.4 Let f(t) = in'in{'ai-, b} and let us € W2P(I). Then there exists
SBV(I) such that

v 2 u'l 2 & ’ )

/| Pt = /If(ep By, 6y

. - FE(UE) L
/s,,e,“”?"”s’d#"? me) e

”’Us - Uél[Ll(I) S/EC(FE(UE))s'

~and
Proof :Sefv .
' ' D.={tel: eul|?>b/a}).

Since D. is open, we can write. D, = -UkeN Ie’“ as the union of disjoint -open
intervals I¥ = (af,b%). It is not restrictive to suppose that [a 5, b¥.c I for all koo
Note that :

1 : ‘
ZIDefb < € 1= Fifuwe).

Consider v, deﬁned by

(1) | . v ifteI\D, 4 ,
welt) = {Ze(ak)—{—us(a )(t——a’“) ifte _fk\ . (3.5)

~ As |v[|> = b/ea on DE, we have
b, _- 1/
/|v512dt_a/ ,uélzdt-*-ngel:g/'f(SIU;lz)dtSC;
= I

-, (3.3).
If t € I* we get, usmg Holder’s mequahty,

t 3 . : ,.
®) - w8l = / ol ] ds < / [ wldras
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< ([ wip)” [ = atyorim gs
NIE ‘cc5 E
b mp\ P k@)
=5 1(/1 1) (e~ by e

hence, 1ntegratmg on Ik,
. " \ l/p k1{3p—1
_ / IUE —usldt < c(/ lug [1’) |1F| o1/,
Ik : ' Ik :

We eventually obtain

Hue = vellzrny =/D [ve ueldt<cz / |u“|p Ukl(Bp 1)/p

. keN
p—1/p
’_<_c(/ | ) "(X 1z ee/-n)
. D keN :
CHe apet | V
< CMIDEI( p—1)/p S!CC'SE

as required.
The function Ve i8 dlscontmuous only at the pomts bk Set’

zlevs (bg)—vs (bé)la We = Ug — Ve -
Since ul = w” on Ié Wé have v ' ‘
1/ Fle|ull )dt+e2p"1/ |u”|p dt —-|I’°| + g1 / lw!|P dt
>mm{“|f'°l+52p— / " dt : soEWg”"(I’“) plat) = 0, p(of) =
o (@) = o' (¢) = 0)
_ , . .
> minmin{2nb‘+ / WP dt: € WHP(—n,m), h(n) = 2= ,w (ﬂ:n) B 0}'
7>0 - -7
m(b)

 the last equahty bemg shown in Remark 3 3. Hence,

R o< S o (36)

By (3.3) and (3.6) we get that v, € SBV(I), Sy, = (5¥)s, and (3.4) holds, so
. that the proof is complete. o o
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Proposition 3.5 Let f(t mm{at b}. Let (uc) be a bounded famzly in Ll(I)
satisfying sup,s,o Fe(ue) < +oo and let ve be defined as in (3:5). Then for every

* sequence of positive numbers (€5) converging to O there ezists a subseguence (not
relabeled) and o function u € SBV(I) such that ve, — u in Ll(I)

v, = weakly in Lz(I) _ " (3.7)

€j

.. /m u\/Iu+—u d#<hm1nf / \/]vgj v |d#. (3.8)

Proof By (3.3) and (3.4) we get that sup; ||ve, HBV(I < 400 and

sup /]vE |2 dt + Z v — v53)<+oo

InS

Then the thesis follows. from Theorem 1.15, applied with ¢(t) = £2. and 6(t)
VItl. -

Prop051t10n 8.6 If f(¢) = min{at, b} then for all u € L]oc(R)‘ we have

ool

F(u, < I‘-limﬂinf F.(u, I) ,

for all bounded open sets I C R, where Fy is defined in (3.1) and F in (3.2),
- with a, b in place of o, 8.

Proof Tt is not restrictive to suppose that I-liminf, o+ F.(u,I) < +oo. Let
(¢7) be a sequence of positive numbers converging to 0 and let u.; — u be a
sequence in LL.(R) such that the limit lim; F,, ; (ue;, I) exists and equals the
C-liminf,_ g+ Fe(u,I). -

Let vg; be defined by (3.5). Note that v, — w in L} (R). With ﬁxed § €
(0,1), by (3.3) and (3.4) (applied with b in place of b) we obtain

. \ . 1 Ll 12
FEj (UE,-:I) > (1 ~ 6)5 /I f(EJ luejl ) dt
'+53- / f(ej;u;.ﬁ)dtmﬁb—l' / 1P dt

>(1—— /|vE |2dt+m (8b) Z VA

INS,,

By (3.7) and (3.8) we deduce that

liminf F. (us ,I) > (1=9) /]u [* dt 4+ m(3b) Z \/|u+—u

—0+
& INS.,

v
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Then, we can apply Proposition 1.8 with

(1) = D-liminf F.(u, T),
] e—0t ‘

A=Li+ Yy lut —u[s,

teSy
and, if (6;) = QO (0,1),
o ((1-8)alu'@P ae onT\ S,
Yi(z) = o » S
m(6;b) = 5§2p_1)/2pm(b). on Sy,

obtammg the thesis.  * . : N
Prop051t10n 3.7 Under the hypotheses of Theorem 3. 1 we have

T-liminf Fu(u,I) > F(u,I)
e—0t ‘ o

for all u € Li,.(R), and for all bounded open sets I C R..

Proof Let (a;) (b) be sequences of positive numbers such that supLaz = a,
sup; b; = B, and :

fi(t) = maX{azt b; } < f(t) forallt > 0.

~ From- Propos1t10n 3.6 we have that T- hm 1nf5_+0+ F, (u I)is ﬁmte only if F(u I )
" is finite, and that : :

I‘hmlan(uI >a1/|u’|2dt+mb)2\/|u+-u
' . INnS.
Tﬁe thesis follo-vifs' as in the -prqof of Proposition 3.6 taking now
- (al(z)]? ae.onI\S, .-
Yi(z) = ’ :
, m(b;) on Sy
in Proposition 1.8. o o o

In the sequel u(t:l:) and u’ (t£) denote the right- hand s1de and left-hand side
limits of v and u' at ¢, respectively.

Propos1t10n 3.8 Let u € SBV(I) satisfy #(Sy) < 400, u € W“’(I\'S ), and
u'(t) = 0 on S,. Then there ezists a family (ue) converging to u in LY (I) such
that lim sup,_,o+ Fe (ue) < F(u).
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Proof Since the construction of u, will modify u only in a small neighbourhood
of Sy, we cansuppose that [ = (—1,1) and S, = {0}. Moreover, by a translation
argument we can suppose also that u¥(0) +u7(0) = 0. Let z = w*(0) —u™(0),
and let 7 and v be the minimizing pair in the definition of m(B,z). If we set
ve(z) = v(z/e) then we have v (£en) = £2/2, v (+en) =0, and-

F.(ve, (—em,en)) < mpB + €71 /n lug [P dt = m(B, 2).

S
- We then define

u(z +en) ifz<—en
u(z —en) ifz>en,

" A va(x)v if z € (—en,en)
Ue(m)

so that u. € W22(I), ue — u in LY(I), and
Fu) < T [ fel)at+ e [ e e+ m(s,2)
’ s I T :

- Note that f(e|u/|?)/e < K|u'|* for some constant K, and that f(e|u'[*)/e —
a|u’|? a.e. on I; hence, after applying Lebesgue’s Dominated Convergence The-
orem, we obtain

lim sup F¢ (ue) <a/]u’[2 dt-}-m(,B, ) = F(u),

e—0t

and the. thesis. . . o

Proposition 3.9 Let u € SBV(I) satisfy #.( Su)-< +00 and u' € L2(I). Then
there exists a sequence (uj) in SBV(I) such that Sy; C Sy, u; € W2P(I'\ Su),
wi(tx) =0 on Sy, uj — u in L=(I), u; — o' in Lz(I) and u;(t+) —+ u(t:i:) on

u-

Proof Tt is not restrictive to suppose I = (a, b). Let S, = {z3,... ,,IBN'}, with
T; < Tie1, and set o = a, Tn41 = b. Let (v;) be a sequence of functions in
C*°(I\ S,) converging strongly to u in H'(z;, ;1) for all i € {0,1,...,N}. For
allj € N,and i € {0,1,..., N}, let u} be the solution to the minimum problem

Tis1 Tyl . - .
‘ min{/ | Iv'lzdt-rm?'/ =P di: v e Bz |
e zi '

Note that u‘7 is also a classical solution of the Euler equation v" =-j(v — v;)
with the Neumann conditions v'(z;) = v "(ziy1) = 0. The function u; defined
by u; = uj on (zi,z:+1) satisfies the required conditions. Note that u; — u in
W2(I\ 8,), and then also in L(I). In particular u;(t+) — u(t£) on S,

o -

The following proposition concludes the proof of Theorem 3.1.
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: Prop031t1on 3.10 We have T-lim sup F. (ue) < F(u) for all u € SBV(I).

e—0T1
- Proof We use the notation F'- = T-lim SUD, 0+ FE, and we suppose without
loss of generality that I = (a,b).- ' ’ '
If u € SBV(I) with #(S.) < +oco and v’ € L*(I), let (u;) be given by
. Proposition 3.9. By Proposition 3.8 we have that F" (u;) < F(uy) for all j.
Moreover, by Proposition 3.9 hmJ F(u;) = F( ). By the lower semlcontmulty of
F” we then obtam : ‘

| F(u) < liminf; P (ug) < liminf; Fug) = F(0). (3.9)

Let now u e SBV(I) satlsfy F(u) < 400 and #( ) =. +co. If Sy =
{z1,22,...}, 56t z; = u T(z;) — u™ (zi) a.nd :

: . > -
Up = U= Z ZiX (z:,b)-
. J=kL
We have u}, = v/, Su, = {71, ,ﬁck}.uk (z:) — ug (z:i) = 2z on Sy, and
limy, F(ug) = Fu ) By (3.9) we have F"(uy) < F(ug). Using the lower semicon-
* tinuity of F"' again, we obtain the required 1nequahty 0

'We show now that the T-limit in Theorem 3. 1 is trivial if we replace the
exponent 2p — 1 by a d1fferent omne.

. Corollary 3.11 Let f satisfy the hypotheses of Theorem 3.1 and let v > 0, -
. p>1.LetIbea bounded open subset ofR and let EY : L*(I) — [0, +0c0] be
defined by '

F(u) { /f(du’] dt+5"l/|u”]pdt lf’UEWQ»P([)
: +

0 ‘ otherwzse

_ Then there exists ‘the T-limit T-lim. 01 FY(u) = F7(u) with respect to the L1 (I)-
convergence, where F7(u) = 0 for allu e L) ifvy > 2p -1, FY = F gsin
Theorem 31lify=2p—-1, and

F(u { /ledm ifue HYI) (3.10)
: +co - otherwise, . B

if v <2p—1.

. Proof The case v = 2p — 1 is dealt with in Theorem 3.1. leed v > 2p - 1
take g > 0 for all pos1t1ve £ < gg-we have

Frw) <77 / £2P71 f (el P) dt + €2 / P di)
‘ ‘ eJr B I A
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- We can apply Theorem 3.1 w1th 62” 1=7 ¢ in the place of f to obtain for all
u € SBV(I) : ‘ =

[-limsup FY(u) S o N
Ce—04+ ' .

TaaCan “a [P d+ e ) [V Tala)
Su
ma [P ) [/
T I . : ' Su
* Letting £ — 0+ we have

I- hmsupF'Y(u <oz/|u’|2 dt

e—04

for allu € SBV(I ) in partlcular for every piecewise constant function v we have
I-limsup, o, F7 (v ) = 0. By a density argument and by the 1ovver semicontinuity
-of T-lim sup,_,q F_' we deduce that F7 =0 -

" Let now v < 2p— 1. Arguing as above we deduce that

F—hrgé{lFng(u) tooifue LY(I) \SBV(I)
and for all go >0

- I hm mf F"’(u > a/ lu'|? dt + 5(7”2”“)/2? (B) / V]ut —u-

if u e SBV(I). Letting Eo - 0+ we ,have then that
TI- 122‘315 Eg(u) = +oo ifue€ L'(I) \ HYI)
I-liminf F) (u) > a/ |u'|2dt if ue HY(I).
E‘——)O-{‘ o I .
~ On the other hand, if u € WQ'P,(I) we have -

I-lim sup-F7 (u) < < hmsup F2( u) = a/ '] dt.
e—0-

By a density argument and by the lower semlcontmmty of I‘-hm sup5_+0+ F we
deduce (3.10). _ , o

Finally an appli’cation to the convergence of minimum problems is derived.-

Corollary 3.12 Let g € L*(I) and X > 0 be fized. Then for all e > 0 there
erists a mzmmum point ue for the problem
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-min{% /Lif'(al'v'IQ);.dt+s?f"’_1 /Ilv”[p dt+ A \/I‘!’l)—glz dt v e Wz’p(I)}, (3.11)

" and for every sequence (e5) of positive numbers converging to O there ezists a
.subsequence {not relabeled) such that ue; converges in L*(I) to a function u €
- SBV(I), which minimizes - ' . . '

| mm{a/{v'l? +m(B) / S o d /_\/ jo—gitdt: ve SBV(D)}.
' I S Js, , I :

: o o . ©(3.12)
Moreover, the minimum values (3.11) converge to (3.12).

Proof The existence of minimum points for 3.11 is assured by an application of
the direct methods of the calculus of variations. In fact, the functional in (3.11)is
coercive in W2P(I) and lower semicontinuous (see e.g. [53]). Note that the value
in (3.11) is less than or equal to A [ |g}? dt. Hence, we have sup,o Fe (ue) <'+o0
and sup,sq |[uellL2(r) < 4o Hence by Proposition 3.4-from every sequence (&)
of positive numbers converging to 0+ we'can extract a further subsequence (not
relabeled) such that u.; converges in LY(I) to some 1 '€ SBV (I). The minimality
of u and the convergence of minimum values follow from Theorem 1.2. a

3.1.2 Approzimation of the Mumford-Shah functional by high-order perturba-
tions ' . : o v
~ In this section we show that it is possible to ‘approximate the Mumford-Shah
functional using the singular perturbation method introduced in the previous
section. : : , : : .
For all € > 0 let a. > 1 with

lim. @ = +00 and  lim ga. =0.
e—0+ e—0+

With fixed K > 0 set X

4.fcas -

C. =

and

z ifz<1
. fe(Z) = Qe fl<z < (1 _i_C’E)Z‘
: Lo isz(l-FC$)2,

Theorem 3.13 Let I be a bounded open subset of R. The functionals F : b
LYI) = [0, +oc0] given by ' :

.:_l. [2 3 ~/,2AA A ‘2\ ‘
() = E/Ife(,slu‘lv)dt'-{—'e_/flu [* dt zf'u‘eH {I)

+00 otherwise



The' l-diménsio‘nal c‘ase . . 41

' TD-converge in the Ll(I) tapology as € = 0t to the functzonal F o LYI) —
[0, +o0] given by '

. ‘ fIU’P dt + K#(S.) ifue SBV(I)
Fu) =< Jr : ' ' _ :
o +00 - otherwise.

Proof We first prove the lower semlcontmulty inequality. Let ui —u in Lt (I )
w1th Sup,~g Fe (ue, I)< +00, and let |

De={euP>1}= ] I}
: - keN
m the notation of Pr0p051t10n 3. 6 Agam it is not restrictive to suppose that
TF ¢ I for all k. Note that for all I¥ we have the estimate

L 7ky2 / '
— <
4\/5(15) — If [uE[das S C,

so that (I’“) < c¢y/E.
We divide D, into two families:

Dl =| J{IFc D.: el <(1+Cc) on1¥),  D?=D.\DL.L

If I¥ ¢ D? we have

/f luE[)dt+s / Wa (3.13)

>2m113m1n{1na€+5 / ]u"|2dt u'(0) = 0, u(n) C’E/\/—}

Such a minimum can be easily computed after remarkmg that it is equlvalent
' to

: o
‘ mi{)lmi'n nae + / lu”|?dt : w'(0) =0, u'(n) = Ce \/—é}

n>

) n
— migmin{na, + [ dt :w(0) =0, w(n) = C.vE}

7>

a.nd see, by our chome of C., that the mmlmmng pall‘ in (3. 13) is

€K u(a;) — \/E’; 2

T
4a5 22" 7

" (up to an additive constant for u) which gives
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= f (Elull?) dt+s/|u |2dt>K

ThlS shows that #({k : I¥ C D?}) is equibounded. We can suppose that #({k:

.IF c D?}) =N, mdependent of &. Since |I¥| — 0 as ¢ — 0%, we can suppose
also that D? shrmks to a finite set H. Of course, #(H) < N. .

For allt >0let [ ={zel: dlst(z H) > t} For j € N, we define

jray— )8 1fs§1
f(s) {j if s> 1

and F7 as in (3 1) W1th fJ in place of f; then, for fixed t and j, we have for €
small enough F(ue,It) > Fi(ue,It). By applymg Proposition 3.7 we get that
Cu€ SBV(It) and .

liminf Fy (ue, I;) > / [u'|2+m(3,1) Z Vut —u|

-0t
A LS.

* By the arbitrariness of j we then have that u € H* (I‘t) for all £ > 0, and

limianE(us,It)z lu']2. . (3.14)
. B I : ' )

By the arbitrariness of ¢ we obtain that u € SBV(I ) and S, C H. On the other
- hand, we clearly have, for fixed ¢,

hmmuu%J\gpnmmﬁFmﬂD)ZKNEK#w@.' (3.15)"
| By (3.14) (3. 15), and the arb1trar1ness of t we get

hmmfF uE,I) > /[u'[th+K#(S)

Now, it suffices to construct a recovery sequence in the case u € SBV(—1,1)
with S, = {0}, v € H%((-1,1)\ {0}) and v/(0+) = 0.. The general case follows
from Propositions 3.9 and 3:10.

We suppose w1thout loss of generality that u™ (0) > u~(0). Let z = —u+(0). -
u (O) and let »

, _ z/E + (14 C:)evE
~mfzu+@) SN

For ¢ small enough the following functlon is well-defined and belongs to the
space H 2( 1,1):
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{ u(z +ne) g ifz < -—n.

—(O)+ \2/-:";;(:1:“"775)2 . 1’f 776 <m< T]E"' gl‘{"Cs)E
C. |
wla) = | VO R » |
B +1i;fgi(w+n - ﬁ——————“f/j‘_)s.é\/g) if |2| < 7 (1+05):«/E
w0 - @) i — i-li”%li<:c<ns
xu(m—ns) ' . 1f$l3>')7,s

The function u. is obtained “filling the gap of u” with two minimizers for the
minimum problem in (3.13) joined by a steep affine function, with slope (1 +
C:)/+/ so that it g1ves no contrlbutlon to the integrals. A dlrect computation
gives

hmsupF ug)—/[u’lzdt-%-K F(u),

e—0t
and the proof is concluded. ' A A 0

Corollary 3.14 Let g € L*(I), A > 0, and let (g;) be a sequence of positive
numbers-converging to 0. Prove that, for every sequence (uj) of minimizers of
the problems : :

min{ = /fsj (6510 ) dt + €2 / | dt + ,\/ u—gdt: ueH())
g5 J1 . I I .
there ezists a subsequence converging in L*(I) to a-minimizer of the problem
min{/ |u'|? dt + #(Su) + /\»/ lu—gl?dt: ue SBV(I)},.
I - I . .
and we have :also convergence of the minimum values.

Proof Since we have sup ||u; — gl|z2(z) < +0o the sequence (u;) is bounded in
L*(I). Repeating the reasoning of the first part of the proof of Theorem 3.13 we
get that up to subsequences u; converges in L*(I) to some u € SBV(I). The
minimality of u and the convergence of minimum values follow from Theorem
1.2, . e o

3.2 The n-dimensional casé

~ In this section we provide an extension to higher dimension of the result stated

in Theorem 3.1. To this end, in the singular perturbation term we replace |u"|
by ||Hu||, where Hu denotes the Hessian matrix of 4 and || - || is the norm on’
the space M™*™ of n x n real matrices defined by [|M]| = supj¢j=; [(ME, ). The
use of a d1fferent norm will be discussed in Section 3.2.2.
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3.2.1 The main result
Theorem 3.15 Let f satisfy the hypotheses of Theorem 3. 1 for some o and f

in R. Let ) be a bounded open subset of R™ wzth Lipschitz boundary and let
F. : L*(Q) ~ [0, +00] be defined by
' /stVuI )d:c+8 / | Hu||? dz zquH’(Q)
CFe(u) =
. 40 : otherwzse

Then for any u € GSBV? (Q)ﬁL2 (Q) there exists the D-limit I‘-hms_%o.k F.(u) =
F(u) with respect to the L?()-topology, where - A

/qul%l.’n-%—m ﬁ)/ md’;’{“_ |

if u € GSBV(Q) N L2(Q)

400 - otherwise

Aand m(f) = ﬂ% (2\/—5 + \/5_3)

‘Remark 3.16 Note that in Theorem 3.1 F.,F = 400 on LY(I) \ L*(I) and
(F.) T-converges to F" also with respect to the L2(I )-topology. '

The proof of Theorem 3.15 will be a consequence of the propositions in the
_ rest of the chapter, Whlch deal with lower and upper I‘ limits separately. -

Remark 3.17 Note that we do not recover the I-limit of F; on the whole L*().
The result would be complete if we showed that for all u € GSBV(Q) N L*(Q)
- there exists a sequence u; € GSBV? (Q) N L?(Q) such that u; — v and F(uj) =

F(u). The corresponding result for the Mumford-Shah functional relies on reg-
ularity results which are not extensible to our case. However the lower semicon-
* tinuity inequality holds for any u'€ L2(2), as stated in Proposition 3.18.

"We define also a “locahzed versmn” of our functionals by setting

. . 2 2
rod) { / felvof ) dt + & / \HulPdt ifue H @
+o0 0therw1se, )
and -
| /qu] dx+mﬂ)/ \/[u‘*‘—-u =t
Flu, 4) = if u € GSBV(4) N L*(A)

\ +o0 o ' : ~otherwise,
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(3.17)

for all u € L2(2) and A C (2 open set.
Proposition 3.18 We have

F(u, 4) < T-liminf F(u, 4),

for all u € L2(Q) and for.all A€ A(Q) .

. Proof We recover now the thesis from the 1-dimensional case, by using the
method described in Section 2.1.1. ' : - :
Fix £ € S*1, A€ A(), v € H*(Q) and let Agy, vey be defined as in (1.8)
and (1.9). Since : : :

(t) = (Vou(y + t§), 5) and vy, (t) = ((Hu(y + t£)) £,€),
we have, by Fubini’s Theorem,
Ewd
= [ [ Grevswop + e + o) aae),

2 [ ] Crlenuly+ .0 + Sl + )6 OF ) dran )
g JAgy
= /H FEU(vg y, Aey) dHP (1), |

where F5¥(g, I ) (mdependent of £ and y) is defined as in (3.1) in the case p=2
for all g € LE ,(R) and I C R bounded open set. Notice that, according to the
notation of Section 2.1.1, we have in this case

v, 4) = /f(a (7,1 + ¢ /I«Hv )€, 6)[2 da.

Let ue — u in LQ(Q) be such that lim mfs_ﬁ\o F, (uE, A) < +c0. Then, by Fubini’s
Theorem and Fatou’s Lemma, (ue)ey — Ugy in L2(Agy) for H™™ 1—a a. y € Ilg.

Hence, by Proposition 3.7 and again by Fatou’s Lemma, we have that Ug,y €
SBV (Agy) for #" *-aia. y € Il and

limint F(ue, 4)

> hmlanEy((uE)gy,Agy) dH™ 1 (y)
¢

Z/HE (a/AEy [ug,ypdt.—i-m S g, -l )Cmn Ly).

ug, nA4 Ey
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(3.18)
Let T > 0 and set ur = (—T) V(v A T). By (3.18) we deduce that .

/s |D(ur)e yl(Aey) dH™ " (y) < Foo

for every f € S" ! andforae. y € HE Then by Theorem 1. 23(b) ur € SBV(A),b '
ie. u € GSBV(A).
- Moreover, by (3. 18) and Theorem 1. 23(&) we get
I- hm mfF (w, A)
za [ 1(vuoF dm+m(ﬂ / Mot (s O )

- (3.19)

For a , fixed u € GSBV(Q) consider the superadd1t1ve increasing functlon L
defined on A(Q) by

— T liminf 7

,u‘(A) r Eﬁ%ﬁf Fy(u, A)
and the rﬁeasure ‘ ; o
A= L L Q4+ /|ut —u 1T LSu.

Fixed a sequence (éi‘)z‘EN;» de;ns’e in 8™ we have, ‘by (3.19),

142 [ w@ar vieN,

" where

(Vu,&)[? Hzed\S,
i = . |
'(Vuafzﬂ ifre Su
Hence, by épf)lying Proposition 1.8, we get
F(u,A) > I'-lim inf Fo(u,A) > / éup ¥i(z) dA
e—0+ R A i

=o [ [VuPdo+m(@) [ VRFmwlan)
A ' S

w0

as desired. ' » . _ ' ‘ . : O
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The rest of the section is devoted to the proof of the upper inequality for the
I-limit.

Proposition 3.19 Let ' be a bounded open set such that ) CC Q’ and let E
be such that E = E' N, where E' is a set of finite perzmeter in Q such that
GE'NQ isa smooth (n—1)- mamfold Then

I-lim sup Fx (2x5, 4) < m(8)y/[z[H" (9B N 4)

e—0+

for all z € R, for all A € A(f).

Proof Let }
d(z) = d(z, R"\ ') — d(z,E'), =z €R™

Under our hypotheses there exists § > 0 such that d € C*°(Bs; N ), where
={z e R": |d(z)| < d}.
‘Moreover |Vd| =1 on Bs.
Consider the recovery sequence v : R — R defined by
z ift>en
v (t) = { (t) +2 ifte (~en,en)
0 ift < —en,
where (n,v) is the minimizing pair in the definition of m(g, z) for p = 2 (see
Remark 3.3). Note that lime 04 Fe(ve, (—9,6)) = m(8)+/|| | (see Proposition
3.8).

Define
e (z) = ve(d(z)), z € Q.

We have 7. € H2(Q) and T, — zxg in L*(Q). Indeed
/ 7 (z) — 2l de < 202 L™(Bye) — 0.
Ja :
Using the co-area formula (1.6), we get
Ro)=1 [ fendvdp)d
€ JANB,. : ,
&8 f ol (d)(Vd ® Vd) + v, (d) Hd|> da
ANBne

7€
<! / "t / F (el ()]2) =
€ J—ne {z€A:d(z)=t}
ne
s [Catf (WO + ot (O | HIZ,) dHm
—ne {z€A:d(z)=t}
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= [ CrerioP) + L1t OP ) (o € 4 d(a) = 1)

—ne e , | !
+e /_ W CIPIHAL A (o € A: d(@) = )t

< sup AH({m € A d(z) = t]) Felve, (—me,me)) + o(e);

a te(—ﬂ“:»ne)
(3.20)
hence, since
lim H"  ({z € A:d(z) =t}) = H" 1 (BEN A),
t—0+ .
we have .
lim sup F; (e, 4) <m(B)/|z] H* Y (BE N A)
e—0 .
~for all A € A(Q) and for all z € R. 0

Proposition 3.20 Letu = Zle zixE; with E; closed polyhedra and ]33‘1- N Z%j =
@ if 15 j. Then

[-limsup F;(u, A) < F(u, A)
e—0+

for all A € A(Q).

Proof Up to further subdivide the family (E;), it is not restrictive to suppose
that each E; is convex. Set

k
Ek+l = Q\ U Eia
i=1
To={(,5) 14,4 € {1, b+ 1}i < j,H"L(B; N E;) # 0}
For r > 0, let

Kk
B :={z € Q:d(z, U OF;) <r}

i=1
and, for (4,5) € Z, let
B ={zeQ:d(z,E;NE;) <r}.
Then, for a fixed & > 0, we can find gij € C3°(R™) such that
gij = 1 on B?;, gi; =0 on Q\ B,

c

. [+
IVgiilleo < 55 1 Hgiilleo < 55
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for any (i,7) € Z, with ¢ independent of 6,7 and j. Define

hij :—gu( > oam+ ] (1—gzm)> ,

(L,m)eT (I,m)eZ
_ | | .
ho:= [] (- glm)( Yo oam+ J[ (- gzm))
(L,m)eZ (I,m)ez (I,m)ez
Note that '
Z h” +ho =1,
(i,4)€T
hiy=1 onBi\ |J BE, ho=1 onQ\B¥.
: (1,m)#(i,4) A

Moreover, an easy computation shows that

c ' ¢
I9hislles < 3 VR0l < 3,
[ . C

”thJHOO = 59» ”HhO”oo S 3“

Let v; € H?*(Q) be the recovery sequence, constructed as in Proposition 3.19,

related to
Zi—z; on S
Uij =

0 on S;,

where S;; is the hyperplane containing E;N.Ej, that is uniquely determined since
E;, E; are convex and belong to Z, and

St={zeQ:z=y+try, y€ Sy, te R},

where v;; is the internal normal to E; in E; N E;. We can now choose d =ne
with 77 as in Proposition 3.19 and set

Z Rij (V5 + 2;) + hou
(i,4)€T

We have that v, € H2(Q) and v, — u in L*(Q2). Indeed
[ 1oe =l do < L7 (5*7) = O).
Q

Moreover,

Fu,A) S Y Fe(gyvf+ - g (BTN U B nA)

(z,y)EI (I,m)#(4,5)
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1
+e +é? sup {]|th!|2 + || HvS

(i5)2(m) ¥ BE TNBIANA <E (.d)€
Rl + uvm-jniolenio}) da

< > F(uf,Bf N4

'LJHOO

(i,5)eT
1 11 1
e 2, (“ e’ (T‘Z o T )) LMBF* N B
GmyRGig) net - etntet et
=0() + > mB)/lzi— 2| (EiNE; N A).
(3,.5)ET

Note that ﬁ”(B?J?75 N B = O(?) if (i,5) # (I,m), due to the fact that
HP2(E; N E; N Ey N E) < +00. 0

Remark 3.21 By using a density argument and the previous proposition, it can
be easily seen that if u € L%°(Q) and u = E 1 2iXE;, with E; closed polyhedra,

J%,— N Ec:’j =@ and H""1(S,) < +oo, then

\ F'(u,4) < E m(ﬁ)\/ |z; — Zjern—l(Ei NE;NA)
i<j
for all A € A(Q).

From now on, if A’, A € A(Q2) are such that A’ C A and dist (4',Q\ 4) >0,
by a cut-off function between A’ and A we mean a function ¢ € C®°(Q) with
0<¢<1andsuchthat ¢ =1on A" and ¢ =00n O\ A.

Proposition 3.22 Let A', A, B € A(Q) be such that A' C A and dist (4',Q\
A) > 0 and let ¢ be a cut-off function between A" and A. Then for allu,v € L*(Q)
and for all ue, ve € H?(Q) such that ue = u, ve = v in L2(Q) and

F'(u,A) = 11151+ F(ue, 4), F'(v,B) = hm F,(ve, B),
E—

‘the following estimate holds

F'(¢u+(1 — ¢)v, A’ UB)

S F'"(u, A) + F" (v, B) + c||V|%, |lu — v”iz((A\Zf)mB)

+climsup (Fe(ue, (A \ A) N B) + Fe (ve , (AN AN B)).

e—0

Proof. Set
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. S=(A\4)NB.
Then, using the convexity of | - |2, || - ||, and the monotonicity of f, we have
F.(¢uc + (1 — ¢)ve, A’ UB)
:FE(UE)A,’) +‘FE(UE)B\A) ]
42 [ Flel(ue =) T6 + 6V + (L= VoLl do
s

+€° / 12Ve ® V(u. — Uej + (e — ve) (H) + ¢(Hue — Hue)||* dz
S .
< Fs(usaA) + Fs(”EaB)
+-El- /S F(2e|(ue — v:) V| + 26| Vue|® + 26(1 — )| Ve |?) dz

bee® [(V4PITue = Toul? + fue e[ HIP + || e = Hoel) do
5
< Fe(ue, 4) +FE>(’UE,B)
+2 [ (7(del(e = 0)V9P) + 1 (4elVucl) + 5 el Turl)) do

reet [(V9PITue — Toul” + lue = vl 2HP + | Fuel + [ H o)

By our hypotheses on f, it can be easily proved that for all & > 0

flat) < eof(t) VE>0.
Thus we have

Fe(¢ue + (1 — ¢)ve, A" U B)
S FE(UE)A) +FE(UEaB)

+c(F5(u5,S) +FE(U575>) + C%/Sf(EIqu!zluE - 7)5'2) dz

foc? /S (1782 Vue = Voel? + lue - ve | Ho|?) da
S'FE(U’E:A) +VFE(UE)B)“ I
te(Faue,S) + Fulus,S)) +e / VeI*lue — vel* dz
- JS

+c53 /S(qumeus - V'UEP + |’U,5 _ UE!ZHH(IBH,‘Z) da. (3.21)

Note that, by Gagliardo-Nirenberg inequality (see [32]), the equiboundness of
the family ' ‘

[

(”Us — Vellz2(s) + €%l Hue — HUE“%P(S))
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implies that
lim &3 / [Vue — Ve | do = 0
S

e—0t
The thesis follows passing to the limit as € — 07 in (3.21). O

Corollary 3.23 Let A, A, B € A() be as in Proposition 3.22. Then for any
u, v € L2(Q), N € N there ezists a cut-off function ¢y between A' and A, such
that

F'(¢pnu+ (1 = én)v, A’ UB)

2

N 2
[l —

. S 2 .
dist (A7, 0\ A) ULz anaynm)-

(3.22)

<1+ %) (F"(u, A) + F" (v, B)) +

Proof We will use a standard argument by De Giorgi. Let IV € N be fixed and

- set d = dist (4,2 \ A). Then for k € {0,..., N} consider the set

AN = {:c € A:dist(z,4) < k%} ,

For any k € {0,...,N—1} we can find a cut-off function ¢ between A} and
AF | such that :

1V oo < 2%. (3.23)

- Si _ (4 \ &) nB.

~ Then, by (3.21) and taking into account (3.23), we get

F. (¢ ue + (1 - ¢Y )ve, A'UB)
< Fe(ue, A) + FE('UE:B)
) N2
—{—cl(FE(uE, SNy + F.(ve, S,ﬁv)) +c— |ue — ve|? da

2
d S}Ig\(

teed /N (Ivdgfc"ﬁwua — Ve |? + Jue — ve|2”H¢§cV“2) dz.
N :

Thus, there exists ky € {0,...,N—1} such that

Fe(¢ ue + (1~ ¢4 Jve, A'U B)
. 1 N-1
< 5 2 Fe(di/ue + (1= ¢ )ve, A'UB)
k=0 ’
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< (1+ %) (Felue, 4) + Feloe, B))

+c—]§7 / lue — ve|® dz + c(N)e® / (IVue = Vo |* + |ue — v|?) da.
s

The thesis follows taking ¢n = ¢kNN and letting £ tend to 0F. a

Remark 3.24 Note that for any A € A(Q) and v € L?(Q) such that ulg €
H(A) we have

- F'(u, A) Sa/ |Vu|? dz. | (3.24)
A .

Indeed, if ulsa € H2(A) it suffices to choose u. = u as the recovery sequence,
while in the general case (3.24) follows by the density of H?(A) in H'(A) and
the lower semicontinuity of F"'.

Proposition 3.25 Let u € SBV?(Q). Then

F" (u, Q) <a/|Vu]2d:z:+m(ﬁ /\/|u+——u d’H” L

Proof Step 1. Suppose that u € W(Q). In particular, for any h € N the sets

By = {meﬂ 2 d(z, Su) < %}

satisfy
c

h

Then, fixed a sed_uence (pr) decreasing to 0, we can find (vy) C SBV,(Q2) satis-
fying the hypotheses of Proposition 3.20 such that

Lr (Bh)

ot = valloo < pry HPH((Sun N BR)\ Su) < i/ Vu| dz + O().
' Pn J B,

(3.25)
Indeed by the co-area formula (1.5) we have
(7+1)pn
Du|(Bx \ Su) = / Vuldz =3 / HAL O u > £} N (By \ Su)) dt
’ » jeIn JPh

where I, =.{j € Z : |j] £ u%hb—'i + 2}. Hence, by the Mean Value Theorem, for
every j € Z we can find £} € (jpn, (j + 1)pn) such that -

ph%“-l(a*{pti}m(zeh\su))g /B V| da. (3.26)
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Let P,Z be a polyhedron such that
Bun{u> (j+1)pn} € B C Bun {u> jou) (327)
and
HP1(BPI N By) < HHO {u >t} 1 By) + pn2= b, (3.28)
Then we can define vy, € SBVy(By) by setting
wn(z) = (j + 1)pn on PI\ YUY,

. Taking info account (3.26)—(3.28), it is not difficult to verify that vy satisfies
(3.25).

By Corollary 3.23 we can find for any N € N a cut-off function ¢}, between
Bsy and By, such that (3.22) holds with A = By, A’ = Bop, B = Q\ Bsp, ie.

F(ghon + (1 - ¢ @) < (14 ) (P (0, 2\ 5) + F"(vn, By)
' + ¢N?h2p2 L™(By, \ Bay). (3.29)

By Proposition 3.20,

F"(un, Br) < m(B) /B bk v

< 2|ulleem(B)H" ™ (Sy, N Ba) \ Su) + O(1)

+m(B) /S ViF e (3.30)

Choose
ph = h—%(/ |Vul? dz) %,
By

Then, by (3.25) and (3.30), limsup, F"'(va, Br) < m(B) [y +/Jut —u=[dH " .
Letting A — 4co in (3.29), by the lower semicontinuity of F", we get the thesis
by the arbitrariness of V.

Step 2. Suppose now that u € SBVZ(Q) N L*®(Q2). By Theorem 1.18 there
exists (wp) € W(Q) such that (1.14)-(1.17) hold with #(a,b,v) = +/|a — b|.
Then we get

F'"(u,Q) < liminf B (wp, )
T h—4o0 .

. 2 + — n—1
< hgrfoo (a/QIth] da:—{-m(ﬁ)/suh \|wy —wy | dH )
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= F(u, ).

Step 8. We recover the general case by a truncation argument. Let u €
GSBV?(Q) and let up = (—h) V u A h. By the Monotone Convergence The-
~orem we have

lim Flun, Q) = Fu, Q).

h—-+oo
Since up — u in L?(Q), by Step 2 we get the thesis. O

3.2.2 Some generalizations

- The choice of the norm || - || that occurs in the definition of F; in the singular
* perturbation term is justified by the technical fact that such norm seems the most
natural to recover the lower semicontinuity inequality in the n-dimensional case
from the 1-dimensional one, by applying a slicing technique. From a numerical
point of view, it is easier to deal with other norms, like the euclidean one. In this
section we replace || - || by a generic norm and give a sufficient condition in order
to have a generalization of the previous results.

Let ¢ : M™7" — R* be a norm and let F2,F¢ : L*(Q) — R* be the
functionals defined by

F¥(u) = { %/Qf(E]Vu[?)dx+53/Q<p2(Hu)d:c if u e H2(Q)

+co otherwise,

.a/ |VU|2 dz + m(ﬂ)/ \/tp(uu ® vy) \/|u+ _ u;‘{ dHn—1
Q Sy
Feu) =4 if u e GSBV(Q)NL*(Q)

00 otherwise,

where f and m(f) are as in Theorem 3.15. A localized version of the functionals
F¥, F? is obtained by extending in a natural way the definitions (3.16) and
(3.17). ,

Proposition 3.26 Let the norm ¢ satisfy the following property: for any M e
Mnxn

(M) > [(MEE)p(E®E)  forall £€R", ¢ =1. (3.31)

Then, for any u € GSBV2(Q)NL?(R) there ezists the [-limit T-lim, 04 F¢ (u) =
F©(u) with respect to the L*(Q)-topology.

Remark 3.27 It can be easily verified that condition (3.31) is satisfied, in par-
ticular, by the euclidean norm. In this case the limit functional F'¥ coincides
with the functional F' defined in the previous section.
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Proposition 3.28 Under the hypotheses of Proposition 3.26 we have

F?(u, A) < T-liminf F (u, A)
e—0+

for alluw € L2(Q) and for all A € A(Q).

Proof Proceeding as in the proof _of Proposition 3.18, taking into account
(3.31), we get

I‘—hmmfF‘p (u,A) > a/ (Vu, £)]? dz

mB) [ N ol€® O~ u I, ] a7 ),
SuNA

Since, again by (3.31), supj¢j=1 /(£ ® E)[(vu, &) = /io(vy ® 1) , we get the
thesis using Proposition 1.8. a

We state now the analogue of Proposition 3.19.
Proposition 3.29 Let E C Q) satisfy the hypotheses of Proposition 3.19. Then

T-liminf F.(zxEg, 4) < m(ﬂ)\/lzl/ Vel ®uvg)dH !
e300+ - ANBE

for all A € A(Q). _
Proof Let U be as in the proof of Proposition 3.19. Arguing as in (3.20), we

- get

F. (5., 4) = % /A  fleitd)vap de

4 /  PW(d)(Vd® Vd) + vl (d) Hd) dz
ANBie

e |
<2 [Caf Felol(8)?) drn?
€ Jne ‘ {z€A:d(z)=t}

ne
+e3/ dt/{ ettty e ()P e* (Vd @ Vd) dH™ + ofe) .
. zCAd(z)=
(3.32)

By the uniform continuity of the functions f,(z) = ¢*(Vd(z) ® Vd(z)), fa(z) =
Vo(Vd(z) ® Vd(z)), for any fixed v > 0, we can find § > 0 such that

|21 — 23] <8 = |filw)) — filwa)| <v i=1,2.

Let (M. k) k=1,...,n be a finite family of measurable, pairwise disjoint sets such that

QC Uk 1Mk and diam (M}) < 6 and let ¢, € M} be fixed. Then, by (3.32),
we obtain
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" ARt @P) + £l ()P (e (Pry) ® vs(Pa) ) di

k=1 "TE .
x sup H"'{z e MpnA:d@x)=t}) + yc + o(e),
t€(—ne.ne)

where by Pz, we denote the projection of z; on 8E. Hence, letting & — +oo we
get

lim sup F; (vz, A)
e—0-+

< m(f) Z\/E/ Ve(ve(Pzy) ® (Py)) dH™™" + oy

MiNOENA

<ey+ m(ﬁ)\/M/AnaE Volve @ ve) dH L.

The thesis follows by the arbitrariness of 7. s
Proposition 3.30 Under the.hypotheses of Proposition 3.26 we hove -

g—0t

C-limsup F¥ (u, Q) < oz/Q |Vul? dz + m(B) /Q V(v ® v/ jut — u"‘l dH™ L.

for u € GSBV2(Q) N L2(Q).

Proof First we note that the analogues of Propositions 3.20, 3.22 and Corollary
3.23 hold, since the argument used in the proofs is not affected by the particular
choice of the norm in the definition of F?. Hence the thesis follows proceeding
as in the proof of Proposmon 3.25, noticing that, in this case, we apply Theorem
1.18 taking in (1.17) ¢(a,b,v) = \/t,a(v ®v \/Ia - ). o







4

APPROXIMATION BY FUNCTIONALS INVOLVING THE
L'-NORM OF THE GRADIENT

In this chapter we provide an approximation of free-discontinuity energies by -
using a variant of the Ambrosio-Tortorelli construction we described in Section
2.9.2. In the next section the approximating functionals are obtained just by
replacing |Vu|? by |Vu| in (2.2). In Section 4.2 we push this approach further to
construct an approximation for a wide class of functionals on GBV and GSBV
by a double limit procedure.

The results of this chapter are contained in [4].

4.1 The main result

Theorem 4.1 Let W : [0,1] = [0,4+00) be a continuous function such that
W (z) =0 if and only if z =1, and let ¢ : [0,1] — [0,1] be an increasing lower
semicontinuous function with (0) = 0, ¥(1) = 1, and ¥(t) > 0 if t # 0. Let
Ge : L) x LM () — [0, +00) be defined by :

1
/ (¢(v)qu| + -&:W(v) + E[Vv[2> dz if u,v € HY(Q)
o \"
Ge(u,v) = and 0 <v <1 ae
+0co otherwise.
Then there exists the ['-lime o4 Ge(u,v) = G(u,v) with respect to the L'(Q) x
L} (§))-convergence, where
/ V| do + / glut —u|) dH™ + | D°u|(Q) if u € GBV(Q)
Q Su
G(u,v) = » and v =1 a.e.
+0c0 : otherwise,

and

g(2) := min {.v,b(t)z +2ew(t): 0<t <1}, (4.1)
with ew (t) 1= 2 ftl VW (s)ds.

The proof of the theorem above will be a consequence of the propositions in
the rest of the section. Before entering into the details of the proof, we define
also a ‘localized version’ of our functionals as follows:



60 Approximaﬁion by functionals involving the L*-norm of the gradient

/ (¢(v)1vU1 +§W(v) +81V’u|2) dz i wu,ve HY(Q)
Ge(u,v,A) = 4 _ and 0 <v <1ae.

-+co ‘ . , otherwise.

and

/ IVUI dz + / g(lut —u™ ) dH™* + | Duj(A)
A S.nA

G(u,v, A) = ifue GBV(Q) andv =1 a.e.
+00 otherwise,

for any A C Q bounded open set.

Remark 4.2 By the assumptions on ¢ and W, it can be easily proved that g
satisfies the following properties

(i) g is increasing, g(0) = 0 and

z—-to0

1
lim g(z) = 2ew(0) = 4/ v W(s) ds;
0
(ii) g is subadditive, i.e. '
g(z1 + 22) < glz) +9(z2) Va1, 22 €RT;

(iii) g is Lipschitz-continuous with Lipschitz constant 1;
(iv) g(z) < z for all z € RT and '

lim g@ =1
z—0t 2

(v) for any T > 0 there exists a constant cy > 0 such that z < cr g(z) for all
z € [0,T].

Proposition 4.3 Let n = 1. Then G(u,v) < T-liminf, o+ Ge(u,v) for all
u,v € L (Q). :

PROOF. It suffices to consider the case in which the right-hand side is finite.
Let €; — 0%, u; — w and v; — v in L*(Q) be such that lim;Ge, (uj,v;) =
I-liminf,_ o+ G:(u,v). Up to passing to subsequences we may suppose

u; — u, and v; = v a.e. (4.2)

We have
/ W (v;) dz < cej;
Q
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hence, by the continuity of W, for any 1 > 0 L' ({z € Q : W(v(z)) > n}) =
lim; £ ({z € Q : W(v;(z)) > n}) = 0. We conclude that W(v) = 0 a.e., ie.
v =1 a.e.

We now use a discretization argument. By simplicity, we suppose that ) =
(a,b) (otherwise we split () into its connected components). Let N € N and
consider the intervals

Eo_ (k- 1) — _k_ -
Ik = (a+ (- a),at (b a)), ke{1,.,N}.
Up to passing to subsequences we may suppose that

lim; inf v;

Iy

exists for all N € N and k € {1,..,N}. Let z € (0,1) be fixed and consider the
set
Tz = {k € {1,.., N} : lim infv; < 2},

Note that for any (e, 8) interval in R and for any w € H'(«,8) we have, by
Young’s inequality,

/ﬁ(éW(w) + e[w'lz) dz > 2/6 VW) w'|dz > 2

[ ":“: WNegor|

" From this inequality we deduce, following an argument as in [16], that

(2 /1 /W (s) ds)#Jﬁ, < lim;Ge; (uj,v5) < +c0.

Then
#Igx <C
with C independent of N. Hence, up to a subsequence, we may suppose

Jie =k, kLY

with L independent of N, and up to a further subsequence that there exist
S = {t1,.,t1} C [a,b] such that

N
lim -~ = ti
) N—+o0
for any i € {1,.., L}. For every n > 0 we have
1% C Sy =S+ [-nmn
for all k € J% and for N large enough. Then

lim inijej (u, ‘l)j) > lim inijEJ. (ﬂj, Vg, N\ S"?)
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+lim inf; ZG uj,vj,(t -t + 1))

=1

> liminf ;1) (2) / |uy| dt
a\

n
L .
+ Z liminf; G, (uj,vs, (6 —,ti +1)).  (4.3)
i=1 '

With fixed i € {1,..., L}, we focus our attention on the term G¢; (uj,v;, (t; —

n,t;i +n)). By definition and by (4.2), we have that for any § > 0 there exist
Ty, oo € (t; —n,t; +n) such that

limju;(z1) = u(z1) < ?ss— inf u+4,

ti—mn,ti-+n)
limju; (z2) = u(z2) > ess-sup u -4,

(ti—n,ti+n) .
lim;v; (1) = limjv;(z2) = 1. (4.4)

Let z% € [z1, 2] be such that vj(z}) = inffy, 4,) v;. Then we obtain the following
estimate: .

Ge, (uj, vy, (i =1 ti + 1)) 2 GEJ@,,%, (1,22))

> P(vj(z I/ uda:l—}-fl/ W (v;)|v;| d

> (s (%)) uj (22) — uj(z1)]

vj(z1) vi(z2)

) VW(s)ds+2 W {(s)ds
vj(z? vj(z:
> it {w(t)luy'(fvz) — uj(a1)|
v;(z1) vj (z2)
-}—2(/ VW (s)ds + VW (s) ds)}.

(4.5)
Letting j — 400 and taking into account (4.4), we get
lim inf 'GE. (’U,j,’l)j, (fi - ’I],ti -+ 7]))

> inf {v,[;(t)‘ess- sup u — ess-inf u——25| —}—4‘/1 \/ﬁ/@ds}.
¢

te[0,1] (t:—m,ti+n) (ti—ntit+n)

Thus, by the arbitrariness of § > 0,

liminf;Ge, (uj,vj, (ti =7, ti + 1)) 2 g(e(is- SI;IE- )u - ?tss 7’11t1f+n)u) | (4.6)
=1t i
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Now we turn back to the estimate (4.3). Since sup; Ge, (u;,v;) < +00, by (4. 3)
we get the equiboundness of fn\s |u’| dt. Hence u € BV (9 \ S;) and, by (4.3)

_and (4.6),

lim inf;Ge, (uj,v;) > ¥(2)|Dul(Q2\ 5y) + ess- sup u— ess-inf w). (4.7
;(u3,v5) 2 9(2)| Dul(Q\ 5,) Zlg(@, sp u—gse-inf u). (47)

By the arbitrariness of 7, we deduce that u € BV(Q\ S), i.e., since S is finite,
u € BV (Q). Then, letting n — 0 in (4.7), we get

. ‘
lim inf;Ge, (ug, v5) > $()|Dul(Q\ ) + Y g(ju™ — w7 |(8:))

i=1

> P()IDu@\ S + Y (olut —w @) Ap@lt —uTI(®). (48)

teS.

Finally, letting z — 1 in (4.8) we obtain the required inequality, since g(t) < ¢
. .

We recover, now, the n-dimensional analogue of the previous inequality, by
using the method described in Section 2.1.1.

Proposition 4.4 Let n € N. Then G(u,v) < I'- hmlnfs_}m Ge(u,v) for all
u,v € L*(€).

Proof In the following we will use the notation introduced before Theorem
1.11, and we set as usual G' = I-lim inf, o+ Ge.

Let ¢ € S"~! be fixed. For any u,v € H'(Q), 0 < v < 1, we have, by Fubini’s
Theorem,

Ge(u,v, A)
- / (v(oly + 1) Vuly +£6)|
e AEy .
Py + 1) + el Voly + 1)) di 4" )

Z / (@b(ve,y(t))lug,yl + 'i‘W(’UE,y(t)) + Elvé,y(t)lz) dt dH™ ()
Oe / Agy

= GEY (ug,y, ve.y, Aey) dH™ " (y), (4.9)
¢

where G&¥ (independent of § and y) is defined by

/ (1/)(v)|u'} + éW(v) +e1v”|2) dt  ifu,we H(I)
G&Y(u,v,I) = ! ~and0<wv<1

+oo otherwise,
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for any u,v € L*(I) and I C R open and bounded. Notice that, according to
the notation of Section 2.1.1, we have in this case

Gitu v, ) = [ (BOI(Tu,+ S () +el(T0,6) do

Let u, ~— u, ve — v in L} () be such that
h?ijélf Ge (ue, ve) < +o00. (4.10)

Then, as in the proof of Proposition 4.3, v = 1 a.e. Moreover, by Fubini’s Theo-
rem, (ue)e,y — Uey, (Ve)ey — 1 in L1 (Qgy) for HM L-aa. y € T,

Thus by Proposition 4.3 and by Fatou’s Lemma we get that u¢ , € BV (A¢y)
for H"1-a.a. y € Il and

1im inf Ge(ue,ve, A)

/ hmlnfgg((us)gy;(Us)ﬁ,y:Aéy) dH" (y)

fnf (1, st | ym;éygﬂ%,y ~ug, ) ) )

£,

+f. (ID uesl(Agy)) ).
(4.11)
Let T'> 0 and set
up = (=T)V(uAT).

Since g is increasing, it is clear that we decrease the last term in (4.11) if we
substitute u by ur. Moreover, since ur € L®(Q), with ||Jur|le < T, by Remark
4.2(v), we have

uf — ug| S cr 9(juz ~ uzl)
for a suitable constant ¢z depending only on T'. Then, by (4.10) and (4.11), we
have

/ |Dur|(Aey) dH™(y) < +oo.
IIe

Thus, applying Theorem 1.11, we get that uz € BV (Q2) and, by the arbitrariness
of (ue) and(ve),

G'(u,1,4)
> [UVur,@lds+ [ gl ~ i, O 4 +(Dour, (4
A S.NA . ‘ .
(4.12)

for all A € A(Q) and £ € S™71.
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Consider the superadditi\}e increasing function defined on A(Q) by
u(A) = G (u, 1, 4)
and the measure
A= L Q+ g(JuF - upYH L Sup + |Dcu§~|.

Fixed a sequence (&;)ien, dense in S™1, we have, by (4.12),

Mmzﬁwa

for all 7 € N, where

[(Vur(z), &) L™ ae.on Q
¥i(z) = < [{vu(z), &) |DCur| ae. on Q\ Sy,
|{(vu(z), &) H™ 1 ae. on Sy,

Hence, applying Proposition 1.8, we get

G'(u,1,4) > /A \Vur|do + /S gju — ug]) dH™ 1 + |Doug|(4)  (4.13)

N

for all A € A(Q). In particular

G'(u,1,n)z/glvuﬂd¢+/ g(jut —uz) dH™ ' + |Dur|(Q). (4.14)

T

Finally, by the arbitrariness of T > 0, u € GBV(Q) and the thesis follows letting
T — 4oo in (4.14). - o

Proposition 4.5 We have

[-limsup G (u,v) < G(u,v)
e—0+
for all u,v € L* (). .

Proof It suffices to prove the inequality for v = 1 a.e. Since we will use density

and relaxation arguments, we divide the proof into five steps, passing from a
particular choice of u to the general one. In the following we will use the notation

G" =T-limsup,_,o+ Ge.

Step 1. Suppose that u € W(Q) and
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Su=0NnK

with K a (n—1)-dimensional simplex. Up to a translation and rotation argument,
we can suppose that K is contained in the hyperplane II := {z, = 0}. Set

Ay) =ut (@) —u" (), yeE S

By our hypotheses on u, h is regular on S.; hence, fixed § > 0, we can find a
triangulation {T;}}Y, of S, such that

C |A) — R <6 iy e T
Let hs : Sy — R be defined as
hs(y) =2z y €T,

where z; := min{h(y) : y € T;}. Since ||h — hs||ec < &, by Remark 4.2 (iii), we
have that

[ atbsnarr < [ gt a4 s S,

S

Let z,, realize the minimum in (4.1) for z = z;. Fixed n > 0, there exists T'(n) > 0
such that ‘

min {/OT(IU'P +W () di v € HO,T), 0(0) = 22, (1) = 1} < ewlz=) +1

: (4.15)
for all T > T(n) and for any 4 = 1,..,N. Let v(z;,-) realize the minimum in
(4.15).

Forr > 0,e >0and i€ {1,..,N},set -

B, := {(y,t) eN:yeS, ltI< r} and Ty := {y eT;: cl(y;BTi) > s},

and let ¢! : R(™1) — R be a cut-off function between T7 and T; such that
[Véilleo .< Ce™*. Fix a sequence (&) such that lim. oy 5;— = 0, set T, :=
T(n)e + &, and define

(1 if (y,t) € Q\ Br,
Give(®) + (1 —i(y)) if yeTy, |t<Te,

where

Tz . if lt] <&
vi(t) =
{u(ziﬂi) it £ <t < T
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We have that (v.) € H*(Q) and v; — 1 in L'(Q) as € — 0+. Hence, we get

[ (evee + 2w @)) do

S [ [P Lo B e S et

+Z/ / |V )Pz — 1P + = T/V('Us(y5 ))) dt dH™ 1y )

i=1
+2AWJ“@wmwwﬁmgﬂ—$
O A DL T
+z [ [ et maar)

T\TE

< i/s 2/ <|v'(z,~,i§)|2 + W('u(zi,t))) dt dH™ 1 (y)

+e §€Hn— (S )-I—C Zan-—l(T \TE)

g=1

N |
<02 [ ewlea) )+ 2mHP (S, + 06,
i=1 T

We now construct a recovery sequence u.. Let

Z]‘L —TE < t < —gg

fie(21,20,1) = § 2+ 6)+a ] <&

and set :
u(y,t) It| > T¢
UE(ya t) = '
U (u(y, —Ts),u(y,TE),t) It < T, .

Tt can be easily verified that ue € H*(Q) and ue — u in L'(Q2) as e — 0T.

Moreover, we have

67

(4.16)

/ “ﬁ”v“f‘d“zf / : zgﬂ%)lw: )~ uly, ~T2)| dt dHP ()
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. / Vul dz + cH 1 (T3 \ T) + O(e)
Q\B:,

/ [Vuldo + Z R e R R C!
(4.17)
Letting, now, ¢ tend to 0F, we obtain, by (4.16) and (4.17),

G"(u,1) < limsup Ge (ue, ve)

e—0t

N .
</ Vulde + 3 / (I = ) + 2o () H @) + e

N
< /Q lV'u]dm-{—; /T (eab(a) + 20w (22)) dH @) + ol +6)
- / Vul do + / a(hs(w)) dH™ () + c(n + )
Q S.

< [ 19ulaz+ [ o~ @) 6) el ).

Letting n and & tend to 0, we obtain the required inequality.
In order to use the same construction as above in the case S, = On

(Ui___l Ki), with M > 1, we now show that we can replace (u.) by a new

sequence (4. ) such that d¢ # u only in a small neighbourhood of K. To this end
‘we again use a cut-off argument. Set

K. ={yell:dly,K)<e}

and let ¢ : R"™ — R be a cut-off function between K and K. with |Ve|oo <
~1. Define

Ge(y,t) = ¢ @Wue (v, 1) + (1= Se())uly,t)  (y,8) € Q.
We have '

e (y,t) = u=(y,t) if (y,?) € Br,,
Ue(y,t) =uly,t) i (v,1) € Q\ Ko x (-1, Te). (4.18)

. Then

/ |va51dmg/ V| dz
Q\BT,; Q\K;x(—TS)TE)

+/Qn(K£\K) /_i <1V¢s(y)l_|us(y,t) - “(y»t)l) gt ™ (o)
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T.
+ /Q ) /_ - (rﬁe(y)qus(y,t)l
(1= 6: () Vuly, D] ) dt " ()

E /leu[dﬂc%%”-l(m \ K) + 0(e).

Thus

limsup/ |Vie| dz = / |Vu| dz,
e—0t Q\BTS Q
and, by (4.18), we still have

lim sup Ge (e, ve) < G(u,1) + c(n + ).

e—0+t

Step 2. T u € W(Q) with 5, = 0 (U, K:) and Ky N K; = if i # j, we
can generalize in a very natural way the construction of the recovery sequences
‘@i and v, in Step 1, since this construction modifies u and v only in a small
neighbourhood of each sets Kj. -
Step 3. Let u € SBV?(Q) N L*®(Q). Then, applying Theorem 1.18 with
#(a,b,v) = g(|a—b]) and taking into account Remark 1.19, there exists a sequence
(wj) as in Step 2 such that

w; — win L*(R), and limsup;G(w;,1) < G(u,1).
Then, by the previous steps and by the lower semicontinuity of G”.
G"(u,1) < liminf;G" (w;,1) < liminf;G(w;,1) < G(u, 1).

Step 4. Since g satisfies the hypotheses of Theorem 1.20, the relaxation with
respect to L!(Q)-topology of the functional

G(u,1) if ue€ SBV?(Q)NLe(Q)
F(u) =
+00 otherwise in BV (2)

is given by
Flu) = G(u,1)

for all u € BV (2). Then by the previous steps and by the lower semicontinuity
of G we get
G"(u,1) < F(u) = G(u,1)

for any u € BV (Q).
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Step 5. We recover the general case by a truncation argument. Let u €
GBV(Q) and let u; = (—j) V (u A j). Then

liij(Uj, 1) = G’(u, 1)

Since u; — u in L'(Q) we get the thesis by the lower semicontinuity of G".
a

Example 4.6 We illustrate with a few simple examples the behaviour of the
function g, given by (4.1), with different choices of 1.

Let W(v) = (1 —v)?/4, so that cw(¢) = (1 — ¢)?/2. We then have

(a) if 9(v) = v* then g(2) = |2[/(1 + |2]);

(b) if ¥(v) = v then g(z) = { llzl - (=*/4) g tzi § g;
0 ifv=20

(c) if zp('v) = {1 otherwise,

We see that the ‘bulk term’ and of the ‘surface term’ (i.e. the first and the
second term in (4.1)) play different roles in these examples. Note that in (a) we
always have interaction between these two terms i.e. both terms contribute to
the value g(z) contrary to what happens in the Ambrosio Tortorelli case. The
interaction also occurs in (b) for |z| < 2. Note moreover that in the third case
the minimal ¢ in the definition of g(z) does not vary with continuity at z = 1.

then g(z) = min{|z|,1}.

4.2 Approximation of general functionals

In this section we show how Theorem 4.1 can be used to obtain an approximation
of general (isotropic) energies defined on GSBV and GBV by a double limit. The
set { will be a bounded open subset of R™ with Lipschitz boundary.

Proposition 4.7 Let W and ¢ be defined as in Theorem 4.1, let f : [0, +c0) —
[0,+00) be a convex and increasing function satisfying

im L8 1 (4.19)
t—r+oc0 T

and let G : L}(Q) x L}(R) = [0, +00) be defined by
1
| (#2096 + ZW @) +elVoE) do iFuv € HL(O)
Ge(u,v) = Q and 0<v <1 ae
+c0 | otherwise.

Then there ezists the I'-lim. o4 Ge(u,v) = G(u,v) with respect to the L*(Q) X
LY (Q)-convergence, where '
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/ F(Vul)dz + / g(jut —uT)aH™ ! + | Du|(Q)

I Sy

Glu,v) = ifue GBV(Q) andv =1 a.e.
+oo otherwise,

and g is defined in (4.1).
Proof The estimate for the T-liminf can be performed as in Proposition 4.3,

noting that in (4.5) we obtain, by Jensen’s inequality,

u(zg) — u(:c.l))

GEj ('U'j’fuﬁ (tz =1t + 77)) 2 w(UJ(m;))‘mz - 1731‘f( T2 — I3

@2
+2/ W (v)|v;| dz,
1 .

from which the lower bound can be easily obtained taking into account (4.19).
The rest of the proof can be obtained following Propositions 4.4 and 4.5. o

Remark 4.8 Let K > 0and N > 2, let
O=ao<a1<---<aN=1, v0=bN<bN_1-"<bo=K,

and let f and W be as in the previous proposition. Then there exists 9 satisfying
the hypotheses in Theorem 4.1 such that, if G, : L}(Q) x L*(Q) — [0, +0c0) is
defined by

_ / (@b(v)f(IVuD + —?W(v) + EK}V’U‘?‘) de if wu,v € HY(Q)
Ge(u,v) = ? - and 0 <v <1 ae.

+co ’ otherwise,

then the thesis of the previous proposition holds with g : [0, +o0) — [0, +00)
given by
g(z) = min{a;z + b;}.

In fact, in this case the formula for g can be easily inverted, obtaining % as the
piecewise constant function given by ¥(0) = 0 and

W) =ai i (e /2) < € < GRIbi/2),

where cw is defined in Theorem 4.1.

Proposition 4.9 Let W be as in Theorem 4.1. Let ¢, 9 : [0, +00) — [0, +00) be
functions satisfying
(i) ¢ is convez and increasing, im; oo (t)/t = +00;
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(ii) ¥ is concave, lim; o+ U(t)/t = +o0. _
Then there ezist two increasing sequences of functions (p;) and (;), and
a sequences of positive real numbers (k;), converging to supd, such that if we

define

/ﬂ(%‘ ()p; (IVul) + k?jW(U) + kjEIVv|2) dr ifu,v € HY(Q)
GI(u,v) = ’ and 0 <v <1 ae

+00 otherwise,
(4.20)
then for every j € N there exist the limits

T- lim Gi(u,v) =: G7(u,v)
e—0t

T- lim G(u,v) = lim GY(u,v) = G(u,v)

j—r+co Jj—r+o0

with respect to the L*(Q) x L! (Q)-co.nvergence, where

[otvuas+ [ a(ut —uar=t ifu e osBV@)
Q Su

Glu,v) = ‘ andv =1 a.e

+00 ' otherwise.

Proof Let 9, : [0,+00) — [0,-+00) be functions of the form
9,(z) = min{4lz + B!},

with 0 = A% << A; = j converging increasingly to 1, and let ¢; : [0, +00) —
[0, +00) be convex increasing functions with

(T
lim (10.7() :j,
t—+oo 't

converging increasingly to ¢. Let k; = maxd;.

Set g; = 9;/4, K; = k;/j and f; = ¢;/j. By the previous remark, ap-
plied with g = g;, f = f; and K = Kj;, we can find ¢ =: ; such that if we
let G4 1 LY(Q) x L*(Q) — [0,400) be defined by (4.20) then there exists the
T-lim.—y0r GI(u,v) = G (u,v) with respect to the L*(Q) x L' (Q)-convergence,
where

[ osvuds+ [ 0,0 —upar= +0%I(@)
& (u,v) = ’ if u € GBV (1) and v=1 a.e.

+00 otherwise.
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Since the functionals GY converge increasingly to G, they also I'-converge to G

as j — +o0. O

Remark 4.10 If ¢ is convex and even, ¥ is concave and even, and

fm 28 gy 20 M,
t—+co T t—ot 1

then there exist (o;), (¥;) and (k;) such that the functionals G7 defined above
T-converge with respect to the L' (Q) x L'(Q)-convergence to "

[ pvuias + [ oGt~ + MiDeu(e) |

Q Sy

G(u,v) = ifue GBV(Q) andv=1ae. °
+oo ‘ otherwise.

The proof can be obtained directly from Remark 4.8, using the approximation
argument of Proposition 4.9. :






5

FINITE DIFFERENCE APPROXIMATIONS IN SBD

In this chapter we provide a variational approximation in dimension 2 of func-
tionals of the type

9 | A . . )
u [ 1Eu) e+ 5 /ﬂ v alo)f da 4470 (5.1

defined on the space SBD(R), where O C R? is a bounded open set.

To this end, we push further the approach outlined in Section 2.2.3, by “sym-
metrizing” the effect of the difference quotient and introducing in the model a
suitable discretization of the divergence. In the proof of the I-liminf inequality,
we cannot apply the method described in Chapter 2, due to the presence of
the divergence term. Instead we use a discretization argument, that leads us to
study the limiting behaviour of families of discrete functionals. The proof of the
I-limsup inequality will be consequence of a pointwise convergence result.

The results of this chapter are contained in [5].

5.1 The main result

We introduce first a discretization of the divergence. If £ = (£1,£2) € R?, we
denote by ¢+ the vector in R? orthogonal to ¢ defined by &+ := (—¢2,¢%). Fix
£,¢ € R?\ {0}; for € > 0 and for any u: R?* — R? define

Diu(z) = (u(z + €€) — u(z), &),
divéCu(z) := Déu(z) + Diu(z), ‘
|De gu(z)® := | Diu(w)f? + D7 u(z)P?, (5.2)
IDive cu(@)]? = |divE u(z)? + |divd ™ () ?
+ Jdivy S u(a)? + div S u(z) .
We underline that this is only one possible definition of discretized divergence

that seems to agree with mechanical models of neighbouring a,tomlc interactions.
We can give also the followmg alternative definition

Déu(e) = (u(w + &€) - uls — &), 8,
IDe gu(z)l? = 3IDEu@)] (53)
IDiv,,:,yfu(a;)|2 = |Déu(z) + D¢ u(z) .
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This second definition can be motivated by the fact that from a numerical point
of view it gives better approximations of the divergence as € — 0.

In the definition of the approximating functionals in the sequel we will im-
plicitly mean that one among definitions (5.2) and (5.3) is used. We remark that
the choice of one or the other definition does not affect the convergence results.

Let Q) be a bounded open set of R? and let f : [0, +00) —+ [0, +00) be an
increasing function, such that a,b > 0 exist with

a:= lim =2, b:= lim f(¢) (5.4)

and f(t) < (at) Ab for any t > 0. Moreover, for any ¢ € R? let p(£) = ¥(|¢]),
where 1 : [0, -+00) — [0, +00) is such that for some M > 0 ess-infjyj<ar ¥(t) >0

and [I7*° t59(t) dt < +oo.
For £ > 0, define F; : L} (; R?) — [0, +o0] as

Rw= [ R W,

where

Fw=z [ f (-3; ([DE,gu(mn?+9|Div5,£u(m~)12)> iz (55)

with 6 > 0 and
Qf={zeR?:[z—efr+efUls—ett o +et] C O},

where we denote by [z,y] the segment between z and y.

Theorem 5.1 F. I'-converges on L™= (€; R?) with respect to the L* (2; R?)-con-
vergence to the functional F': L®°(Q;R?) — [0, +o0] given by '

b fq |Eu(@)? dz + X [ |divu(z)|® de 4+ yH' (Ju)
F(u) = | if u € SBD(Q)

+00 otherwise,

where
pima [ o) (vl = tutd) .
A= a/R2 p(y) (48ly|* + 27v3) dy,

=2 /R o) (1l [y2) dy.



The main result 77

Moreover, F. converges to F pointwise on L= (Q; R?).

The proof of the theorem above will be consequence of propositions in Sections
5.3 and 5.4.

Remark 5.2 Notice that = a [ga p(¥) (y? — y2)2 dy, so that p, A and 7 are all
positive. Moreover, the summablhty assumption on ¥ easily yields the finiteness
of such constants.

Remark 5.3 Notice that the domain of F" is L= (9;R?) N SBD?(N).

Remark 5.4 We underline that for any positive coefficients x, A and fy, we can
‘choose f,p and 6 such that the limit functional has the form

5 /Q Eu(@)P dz + A /Q div u(e) 2 dz + vH ().

By dropping the divergence term in (5.5)(i.e. § = 0), one can consider the se-
quence of functionals G, : L*(Q;R?) — [0, +c0] defined by

Gutw) = [ ol6); / (ID e m>l2) it

with QE = {:c € R?:[z—ef,z+€€] C 1} and p as above. By following the same
procedure summarized in Section 2.2.3 to prove Theorem 2.3, it can be proved
the following result.

‘Theorem 5.5 G, I'- converges on L*®(Q; R?) with respect to the L*(Q; R?)-con-
vergence to the functional G : L®(Q; R?) — [0, +o0] given by

W folEu(@)? dz + X [ |divu(z)? dz + v'H (Ju)
G(u) = ifue SBD(Q)
“+co otherwise,

where
o= a/ p() (lyl* - dyiv3) dy,
Moo= 2a/ p(y)viv; dy,
R2
Rz

Remark 5.6 Notice that, although the definition of G, corresponds in some
sense to taking = 0 in (5.5), its [-limit G is not equal to F' for 8 = 0.
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Remark 5.7 The restriction to L% ({2; R?) in Theorems 5.1 and 5.5 is technical
in order to characterize the I-limit. For a function w in L' (Q; R?)\ L>=(Q; R?),
by following the procedure of the proof of Proposition 5.10 below, one can deduce
from the finiteness of the I'-limits that the one dimensional sections of u belong
to SBV(Q¢,). Anyway, since condition (1.18) is not in general satisfied, one
cannot conclude that v € SBD(). On the other hand this condition is satisfied
if u € BD(Q), so that Theorems 5.1 and 5.5 still hold if we replace L>®({}; R?)
by BD(Q).

5.2 Preliminary Lemmas

In this section we state and prove some preliminary results, that will be used in
the sequel. : .

Let B = {£1,...,&} an orthogonal basis of R™. Then for any measurable
function u : R® — R™ and y € R™ define '

Tj’Bu(m) =u (éy +e€ E]B)

"
— (zrfi .
where [z = > [ Ak ] &
: n
Notice that Tg’Bu is constant on each cell a + eQp, a € € @ &7Z, where
i=1
Qs = {z € R": 0 < (z,&) < |&[*}. The following result generalizes Lemma
3.36 in [23].

" Lemma 5.8 Let u. — u in LL_(R™R"), then Tg’BuE — u in L} (R™R")
for a.e. y € Qp . ,

Proof For the sake of simplicity we assume B = {ej,...,en}. It suffices to
prove that for any compact set K of R™

lim/ /
=0 Jeo,1)r JK

Then fix K and call I, the double integral in (5.6). By Fubini’s Theorem and
the change of variable ey + ¢ [2], = y we get

L=l
K J(o,1)"

1
< / 1 / e (3) — u(a)| dy da
K € Jzte(o,)™

1 .
= /K en -/a;-i—E(O.l)“ (uly) = el el =l e d%c.

U, (ey te [Es] B) _ u(:c)[ dz dy = 0, (5.6)

Ue (ay +e [g]ﬁ) — u(m)l dy dz

The further change of variable ¥y — z + €y and Fubini’s Theorem yield
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I. < '/(o,l)n /K |ue(z + €y) — ue(z)| dz dy + /K |ue(z) — u(z)| dz,

thus the conclusion follows by the uniform continuity of the translation operator
for strongly converging sequences in L}, (R™; R™). O

For £ € R?\ {0} and B = {£; ¢4}, we will denote the operatorsb TP and [-]5
by T;’é and [ ‘], respectively.
Lemma 5.9 Let J be a countably H™ -rectifiable set and define

JS = {xER”::ﬁ=y+t§ with ¢ € (—¢,€) and y € J} (5.7)
for £ € R™ and | .
JE&,..,&- :=4U JEEi ' (5.8)
i=1

for &, ..., & € R™, 7 being a positive integer. Then, if H" 1(J) < +o0

ﬁn JElvwgr'
timsup -5 < [ suwltmgalanet, (5.9)
J 1

e—0

where v(z) is the unitary normal vector to J at z.

Proof First note that by Fubini’s Theorem and the Generalized Coarea For-
© mula (see [14])

Lr (Jf) < 28/

II¢

# (), ) = 2 [ (@)l ann,
hence
L (JEedr) < 25/ Z v, &) dH™ ! < 2resupl§i|%”‘1(;.]). 4 (5.10)
7= | i

By the very definition of rectifiability there exist countably many compact sub-
sets K; of C! graphs such that .

#t (I J K| =0,
i>1
and H"1(K; N K;) = 0 for ¢ # j. Thus, by (5.10) for any M € N we have

n 51,'-7457' . £’I1 Kz Ei:~-)£r

€ 1<i<M 1<i<M
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hence, first letting € — 0 and then M — 4-c0 it follows

£ (g )

n JEl:--yET‘
lim sup E—(*—EE————)— < Zlim sup

e—0 .

Thus, it suffices to prove (5.9) for J compact subset of a C' graph. Up to an
outer approximation with open sets we may assume J open. Furtherly, splitting
J into its connected components, we can reduce ourselves to prove the inequality
for J connected. For such a J (5.9) follows by an easy computation. |

5.3 Estimate from below

We “localize” the functionals F¢ as

fg(u,A) (= %\/As f <-§ (IDE;EU(:E)IQ -+ GIDIVE,EU(;I:)IQ)) dZJ,

for any u € L'(Q;R?), 4 € A(Q), with
AL ={zeR?:[z—ef,z+ef]Ulz —elt,z+eé] C A}
Proposition 5.10 For any u € L%(Q; R?),

I- 1i£ri)%1f Fe(u) > F(u).

Proof We assume for the proof that definitions (5.2) hold. A simple adaptation
of the argument we are going to use can be applied to recover the proof in the
case that definitions (5.3) hold. 7

Step 1 Let us first assume f(t) = (at) A b. Let g; — 0, u; € L}(Q;R?),
u € L*®(;R?) be such that u; — w in L'((;R?) and liminf; F;, (u;) =
lim; F;, (u;) < +oo. In particular for a.e. £ € R? such that p(€) # 0 we have
that lim inf; F¢, (u;) < +oco. Fix such a § € R? and A € A(Q). Up to passing to
a subsequence we may assume that lim inf jfs‘gj (uj, A) = liijE‘fj (uj, 4) < 4o0.
We now adapt to our case a “discretization” argument used in the proof of
Proposition 3.38 of [23]. If we define

£ (% (1Dey cul@)? +0[Dive, cu@))) i o € 4,
gj(:n) = .
0 , otherwise in R?,

we can write

1 1 |
Fapa) =2 [ g@d=2 Y [ _g@a
7R 7 aee;(ze@zet) T oI %k
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L
LY [ seras= [ 4@
I wee;(zemzeL) Y63k Qe

where
b;(z) = Z g59;(e;T + @),
a€e; (ZEDZEL) -
Qe = {z € R?: 0 < (z,6) < [¢%,0 < (z,61) < |4}

Fix 1 > 0 and set
C’f;’g = {:c € @5 e, (z) < ]—"fj(uj,A) +,7} .

Then | e (s, 4)
= j o - 7\
Qe \ C; ¢l < Ié] m
Consider now u; and u extended to 0 outside 2 and apply Lemma 5.8. By
Egoroff’s Theorem, there exists a measurable set B in @5 with |B| < 1‘5—122—_5 such
that 75 %u; — u in L}(Q; R?) uniformly with respect to = € Q¢ \ B. Thus for
any j-€ N we can choose z; € C) . \ B such that

<c<|¢P.

T:j’EUj — u in LI(Q;RZ) (5.11)
‘and
FE (ui, A) + 1 > €124 (x)

1 .
> e’ Y, f <; (1De; eu(@ + €jz;)|* + 6|Dive; cula + 5j$j)|2)> :
acej(zeazel) J
aEASj—eJ-n:j

(5.12)

We can suppose for the sake of notation that z; = 0 for all j. Notice, now, that
we can split the lattice Z& @ Z&+ into an union of disjoint sub-lattices as

Z6® 264 = ZU (2 + ) U (25 + €1 U (26 + (£ +€1))
where Z¢ := 27Z¢ @ 2Z£6+. We confine, then, our attention to the sequence
) 1 ' )
F@= 5 ef (2 (Doenf@l +0Dive, cus(e)P))

£
a€Z;(A) 7

where Z;(A) := A, Ne;Z°. Set
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- N ) b
I = {a € e; (ZE® ZEY) +|De; euj(@) + 0|Dive; cuji(a)® > 561}

and let (v;) be the sequence in SBV(Q;R?), whose components are piecewise
affine, uniquely determined by

((ujla —€;5€),€) 2 € (a+e;Q¢) N
a€e;Z8NI;

(u5(6),€) + DS us(@) (@ — 0,€) o€ (a+e;Qes) N0
(Uj(m):f) = ﬁ . o € ngE \_Z'.7

(uj(@), &) + g Dfu(@)(z - 0,8) 7€ (a+eQ-)NA
a€e; 75\ I

((uj(a—ei€),€5)
€ (a+e;Qer)NQ
a€e;Z8NI;

(uj(e), €4) + |g|2D ug(aa)(cc -, )

. Ly .— T € (a+ejQer +)NE
('UJ(ZL’),f > < aEEjZf\JIjE *

(u3(0), €5) + o D “u (a)(:z: —a,¢h)
‘ T € (a+ejQer,)NA
a €zt \ Ij,

where

Qe :={z e R* : |{z,6)| <€, [z, )] < €%}

Qe+ = {z € Q¢ : £(z,£) > 0}.
In order to clarify this construction, we note that, in the case £ = e;, v; = (vJ ,v?
is the sequence whose component vjr is piecewise affine along the direction e; and
piecewise constant along the orthogonal direction, for i =1, 2.
It is easy to check that, by (5.11), v; still converges to u in L'(Q; R?). Let us
fix r > 0 and consider 4, := {z € A : dist(z,R? \ A) > r}. Note that, by
construction, for j large we have

3" (1Dej cui(@)* +6|Dive; gus(@)f?)
«€Z; (ANI;

1 , . 2
> EI—E—IE/AT{(Evj(z)g,f)P ¢x+9[§|2 /Ar |divv,(z)|* dz
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and
Ej#{Z' A) n I'}

V. 1 v L 1
= 2{€l2 max{/]ﬁjnA,. ‘( vy (y)7£>ld7‘[ (y),fjfLﬂA, |( vj (y),€ )‘d% (y)} ‘

Then, for j large and for any fixed 6 € [0,1],

Fi(A) > > a(lDeeui(@)P + 0Dive; cuj(a))?)
w€Z; (ANI;

+be;#{Z;(A) N I;} |
zﬁ; / |(Ev; (@)E,€)* da + abéP /A |div v, ()2 de

™

w i, o N 00,0107 )

nglz )/ |<Vv; (1), &5 dH* (y). (5.13)

‘In particular by applying a slicing argument and taking into account the notation
used in Theorem 1.27, by Fatou’s Lemma, we get

+00 > liminf; F;(A)

1
2 2}512 HEhmmf < /(A

Note that, taking into account also the divergence term and the second surface
term in (5.13), we can obtain an analog of the inequality (5.14) for £+. By
Theorem 1.22 and since u € L®(;R?), we deduce that u$¥ € SBV ((4,),,)

for H"t-a.e. y € II; and

|66 dt + bt '(J (@W))) dH (y).

(5.14)

Ty

[ D ((47),,) a4 ) | (5.15)

for ¢ = ¢, 61, Moreover, by the assumption on p we can choose ¢ such that that
p(€) # 0,p(€ + £1) # 0, thus we can repeat all the argument by replacing ¢ by
£ + £+ and obtain that (5.15) holds in particular for ¢ = £,6+, € + &€+, Then
by Theorem 1.27, we get that uw € SBD(A,) for any r > 0. Moreover, since the
estimate in (5.15) is uniform with respect to r, we conclude that v € SBD(A).
Going back to (5.13), by applying Theorem 1.29 and then letting r» — 0, we
get :
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liminf; F;(A) > /Ic‘fu(m)f )2 dcc+a0|£|2/ |div u(z | dz

- 2]612
b

%215‘2 <5/JSnA|<Vm§>[dH +(1-9) /JSLHAI(VU,g )| dH > ,

for any 6 € [0,1]. :

Note that, using the inequality above with 4 = Q and taking into account
that an analogous inequality holds by replacing ¢ by ¢ + £+, it can be easily
checked that Eu € L?(Q;R?*?%) and H!(J,) < +o0. Then, by Proposition 1.8
" applied with ' ’ ‘

- p(A) = iminf;F;(A),

b
. 2 Q 1
A= 2l€l2£ L +2l€|2H L Ju,
¢ ([(Eu(@)E, )1 + 06 |divu(@)?) on Q\ J,
Sh| (Vs £))] on JE\ J§
Ya(z) = < )
(1 = 8n)|(vu, €)] on J§\ J§
Ol (v, ]+ (1= 0p) (v, €5 on JENJS,

with 6, € QN [0,1], we get

liminf; F;(Q) > 2[E|2 / [{Eule §§)|2dm+a9{§|2/ |div u(z)|* dz

— vy, €)d 1 s 1 1
+2|€l‘2(/J5\J5LI<, Sl +-/~75J'\J5|<y Sl
vy, " L 1y
+/JWEL [(vu, OV [(vu, € )]d’H)

U w

Finally, since the argument above is not affected by the choice of the sub-lattices
in which Z¢ @ Z£+ has been split and taking into account (5.12), we obtain

liminf; 72 (u;) > 2a / l(Eu()E, €)|? dz + 4ab|e|* / |div u(z)|? dz
Q . Q

+2b( /J -

u

v v L 1
A RN SIS )

u u

I(vu,c’)ld%lJF/ L, €S ar?
JET\IE

Recalling that for a.e. £ € R2 H(J, \ J§) = 0, by integrating with respect to &
and by Fatou’s Lemma we get

limin; B, (u5) > | p(©)limink, 7S (u) dé
RZ
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> [ o0 ([ 2elteutie, o + satleivuta) s a
i 206 ([ 1081V 17 )

= [ ([ Colientere, o + sariifavuia)?) i) s
o [ ([, 2ot vion 1) ar

The expressions for u, A,y follow after a simple computation.

Step 2 If f is any increasing positive function satisfying (5.4), we can find
two sequences of positive numbers (a;) and (b;) such that sup; a; = a, sup; b; = b
and f(t) > (ast) A b; for any t > 0. By Step 1, I-liminf, .o F;(u) is finite only
if F(u) is finite and .

T-liminf F(u) > p / |Eu(z)? dz + X\ / |divu(z)|? dz + % H (J)
e—0 : Q Q
with sup; p; = p, sup; A; = A and sup; ; = . The thesis follows using once more
Proposition 1.8. ) o

5.4 FEstimate from above
Set, for u € SBD? () N L*° (Q, R?),

Fo(w) = 20 [ |(Eul@)e, OF do + 408l | fdivu(e)]® do
‘ vV, 1 ) L 1
4—21>(/J£\J5l | (v, )] dH +/J5¢\J5 |(va, €1)] dH
Vu, vy, &L 1y
+/JENSL [ 1V (v, €5} )

The following proposition will be crucial for the proof of the I'-limsup in-
equality.

Proposition 5.11 Let u € SBD? (Q) N L™ (Q,R?), then

lim sup F¢ (u) < Fé(u).

e—0

Proof As in the proof of Proposition 5.10 we will assume that definitions 5.2
hold, but the argument we use can be easily adapted to the other case.
Using the notation of Lemma 5.9, set

U= (Jg \ Jg*)j U (Jg* \ Jﬁ)j U <J5 N Jﬁ*)e’gl .

£
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Since f(t) < b, by Lemma 5.9 there follows

. ¢ . ‘ ¢ £\ 7€ . L2 (Je)
lim sup F&(u) < limsup ¢ (u, Q5 \ JZ) + blim sup ———%~

e—0 e—0 e—0 £

< limsup F¢ (u, Q8 \ J5)

e—0

Va, " ya 1
+2b </J5\J5* (v, &) dH* + /JS*\JS v, E5)| dH
[ 8V e ).
JENJS
Let us prove that for a.e. £ € Q¢ \ JS and for ¢ € {£¢, +£1}
Dgu(:r) = (u(z +&¢) — u(z),() = /s(Eu(m + 80)¢, ¢) ds. (5.16)

Let, for instance, ¢ = £, then using the notation of Theorem 1.27 if z € Q8 \ J¢
and z =y + t£, with y € Il¢, we get ~

(u(e +e8) —u(z), &) =ub¥(t +e) —ub¥(D).

Since u € SBD (Q), for H'-a.e. y € Il we have that ué¥ € SBV((QE)@),
SV (t) = (Euly + t6)€, &) for LY ae. t € (Qg)gy and Jyey = (']E)Ey' Thus ’

uSY(t +e) — ue’i’(t)
t+e + —
- /t (Euly+5968ds+ 3 (85" ()~ () (s)

sE(JE)Ey '

and, since (Jﬁ)gy N[t t+e] =0, (5.16) follows.
Moreover, Jensen’s inequality, Fubini’s Theorem and (5.16) yield

1 ' 2, - 1[5,z 2
= ¢ dr = il
e Jag\ e [Deu(a)] d= /QE\JE, &2 /o (Eulw+s0)6,¢) ds| du
< [ a0 as, (517)
2 ‘
for ¢ = *¢£.
Let us also prove that
lim sup — |divi4 w2 dz < IE]“/ |div u(z)|? dz. (5.18)
e—0 €7 Jaf\Jg Ja
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Setting
= |€*div u(z)

and _
1 o6et
g:(2) .:= Edlva’ u(m)Xni\Jﬁ (),
(5.18) follows if we prove pfove that
llg — gellz2q) = O. (5.19)

Notetha§
() (Eu(@)E, €) + (Eulz)Et, ),

and that by (5.16) on Qf \ JS we have

divet u(z) = /E(fu(x +5€)€, &) + (Eulz + sE1)ET, €5 ds

0

Thus, by absolute continuity and Jensen’s inequality we get
v | o
llg — 96“%2(9) < o(1) +2[¢* /Qs P /0 lgu(g: + 5€) — Eu(z)|? ds da
1 £
+2I€14/ .—/ |Eu(z + s€1) ~ Eu(z)|? ds da.
f € Jo
Applying Fubini’s Theorem and then extending £u to 0 outside Q yield

o~ gell3aqay < (1) +21el* / / Eu( + 5) — Eu(z)[? do ds

+alerl //|5u(m+sgl) Eu(w)|? dz ds,

and so (5.19) follows by the continuity of the translation operator in L?(); R2%?).
Of course, using the same argument, we can claim that the analogous inequal-
ities of (5.18), obtained by replacing (£,£*) by one among the pairs (¢, —¢h),

(——fi f—L)) ("E; “‘f'L), hold true.
Eventually, since f(t) < at, by (5.17) and (5.18) we get

limsup 7§ (u, Qf\ JZ) < 2a/ [(Eu(z)€, €))? dw+4a9!§]4/ |div u(z)|? da

e—0

and the conclusion follows. . : O
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Remark 5.12 Arguing as in the proof of Proposition 5.11 we infer that the
functionals defined by A

)= [ 9 (FPegutall) a

13

where g(t) := (at) A b, satisfy the estimate
GE(u) < 20 / (Eu(@)€, &) dz + 2b / o, O],
Q JL

for any u € SBD(Q2).

Moreover, by the subadditivity of g and since f(¢) < g(¢) by hypothesis, there
holds K '
Fiw) < e (GEw) + 05 () < eF(w).

Let us now prove the I'-limsup inequality which easily follows by Proposition
5.11 and Remark 5.12. _
Proposition 5.13 For any u € L®(;R?),

C-limsup F. (u) < F(u).

e—0

Proof We can reduce ourselves to prove the inequality for v € SBD?((2). For
. such a u the recovery sequence is provided by the function itself. Indeed, by
Proposition 5.11, Remark 5.12 and Fatou’s Lemma, we get

lim sup Fe(u) < / p(€) lim sup FE (u) d¢
R? e—0

e—0

< / p(€)FE (u) dE = F(w).
R2
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