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Introduction

Given a bounded open set £ of IRY, N > 2, and a strictly monotone elliptic
operator A in divergence form, we study obstacle problems for the operator A in
with homogeneous Dirichlet boundary conditions on 0§, when the forcing term p is a
measure on ) and the obstacle v is an arbitrary function on 2.

Obstacle problems when the forcing term belongs to the dual of the energy space
have been studied as part of the theory of Variational Inequalities (for which we refer to
well known books such as [38] and [55]). In this frame the problem consists in finding a
function u € I/Vo1 P(Q) (the energy space), which is above the obstacle 1, such that

—u) > - .
E e A 003
For such problems a wide abstract theory has been developed, and we know that, if the
datum F belongs to the dual W‘l'P'(Q) of the energy space, and if there exists at least
a function z € Wy ?(Q) above the obstacle, then there exists one and only one solution.

Moreover, we recall that the solution of (0.0.1) is also characterized as the smallest
function u € Wy'?(Q) such that

{A(u)—-F?_ 0in D'(Q) 0.02)

u > in Q,

or, equivalently, u is the smallest function in Wy (Q), greater than or equal to %, such

that
{A(u)—FzA in

U = 0 on aﬂ, (00.3)

for some nonnegative measure A of w12 (Q).

Trying to extend this theory to problems where the forcing term is a measure various
difficulties arise.

We recall that, already in the case of equations, the term (u,u) has not always a
meaning when p is a measure and u € Wy "(Q), g < N. Moreover, simple examples
show that the solution of equations with measure data cannot be expected to belong
to the energy space I/VO1 P(Q) determined by the growth assumptions on the operator.
When N > 2, indeed, the solution of the Laplace equation in a ball with the Dirac mass
at the center as datum, does not belong to HZ(Q), but only to Wy'4(Q), with ¢ < -N—N_-T .

Hence the classical formulation (0.0.1) of the variational inequality fails.
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Also the use of the characterization (0.0.2) to define the obstacle problem with
measure data is not possible because another problem arises: an example by J. Serrin
(see [52] and, for more details, [51]) shows that, when A is a particular linear elliptic
operator with discontinuous coefficients, the homogeneous equation

{Au =0 inD'(Q)
u=0 ondQ
has a nontrivial solution v which does not belong to H}(Q2). The function u = 0 is
obviously the unique solution in Hj(Q2).

‘S0 (0.0.2) in general does not determine the solution of the obstacle problem: indeed,
with such A and v, if we choose ¥ = —co, and if u were the minimal supersolution,
then we would have u < u +tv a.e. in , for any ¢ in IR, which implies v = O, ie. a
contradiction.

To overcome these difficulties, when the forcing term is a measure, we introduce a
formulation for obstacle problems, based on a suitable notion of solution to equations
with measure data, which ensures existence and uniqueness results.

We briefly recall that, in the linear case, i.e. A(u) = —div(A(z)Vu), where A is a
uniformly elliptic matrix with L°(Q) coeflicients, the problem of finding a solution of

' { Au=p inQ

u=20 on 012, (0.0.4)

when y is a bounded Radon measure on {2, was investigated by G. Stampacchia, who
introduced and studied in [53] a notion of solution using duality and regularity arguments.
This allowed him to prove both existence and uniqueness results.

Stampacchia’s framework, which heavily relies on a duality argument, cannot be
extended to the general nonlinear case, except in the case p = 2, where Stampacchia’s
ideas continue to work if the operator is strongly monotone and Lipschitz continuous.
In this setting, indeed, we can use the notion of solution, namely the reachable solution,
considered by F. Murat in [48] to solve (uniquely) the Dirichlet problem (0.0.4), when p
is a bounded Radon measure.

In the general nonlinear monotone case, when p is a bounded Radon measure van-
ishing on all sets of p-capacity zero (the capacity defined starting from W, "*(Q): see
Section 1.1), we may use the notion of entropy solution introduced in [3] and [10], which
ensures us that (0.0.4) has a unique entropy solution.

Using these types of solutions we give a definition for unilateral problems with mea-

sure data quite similar to the characterization given by (0.0.3) in the classical setting.
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We say that a function u solves the Obstacle Problem when the forcing term g is
a bounded Radon measure and the obstacle 1 is an arbitrary function on €2, if u is
the smallest function with the following properties: u > v in Q and u is the unique
solution, in an appropriate sense, of a problem of the form

{A(u)z,u—k)\ in Q

U = 0 on 5’@, (005)

for some bounded Radon measure A > 0. More precisely, if A is linear, we assume that u
is the solution of (0.0.5) in the sense of Stampacchia; if p = 2 and A is strongly monotone
and Lipschitz continuous, we assume that u is the reachable solution of (0.0.5); finally,
when A is a general nonlinear strictly monotone operator, and x, A are bounded Radon
measure which vanish on sets of p-capacity zero, then u is the entropy solution.

The measure A which corresponds to the solution u of the unilateral problem relative
to A, u, and 1, is called the obstacle reaction associated with .

From now on we will call Obstacle Problems the ones with measure data, according
to the previous definition, and Variational Inequalities these with data in the dual of the

energy space, solved in the variational sense.
The outline of the thesis is as follows.

After giving the definition and some preliminary results on p-capacity and on mea-
sures, we study in Chapter 1 the various notions of solutions to equations with measure

data, making a slight reelaboration of known results.

In Chapter 2 (which contains the results of [23]) we prove existence and uniqueness
of solutions of obstacle problems with measure data when A is a linear differential op-
erator. The only restriction required on the choice of the obstacle is that there exists
a nonnegative bounded Radon measure p such that the solution (of Stampacchia) of
equation (0.0.4) with datum p is above the obstacle. This condition is similar to the
one needed for the variational case, but it is not comparable to that. In Section 2.5 we
will discuss these conditions in deeper details, after proving that the variational solution
to the obstacle problem (problem (0.0.1)) coincides with the new one (Definition 2.1.1)
when both make sense. In other words we will show that the new formulation of the
Obstacle Problem is consistent with the classical one.

In Section 2.4 we will give some stability results. Section 2.6 provides a character-
ization of the solution in terms of approximating sequences of Variational Inequalities,
and in Section 2.7 we study some properties of the solution of the Obstacle Problem for

the class of bounded Radon measures, that do not charge the sets of capacity zero.
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Chapter 3 (containing the results of [39]) is devoted to the study of the Obstacle
Problem for a strictly monotone operator A(u) = —div(a(z, Vu)) acting on Wy'?(Q),
p > 1, when the forcing term is a bounded Radon measure p vanishing on all sets of
p-capacity zero. We obtain existence and uniqueness results, and consistency with the
classical theofy of Variational Inequalities.

We study also some properties of the obstacle reactions associated with the solutions
of the Obstacle Problems, obtaining the Lewy-Stampacchia inequality: the measure A

corresponding to the Obstacle Problem relative to A, p, and 1, satisfies

A< (p—A)7,

when A(¢) is a bounded Radon measure vanishing on all sets of p-capacity zero.
Furthermore, as in the classical framework, in Section 3.4 we will show that the
solution found can be characterized by the complementarity system. More precisely,
Theorem 3.1.7 shows that the solution u of the Obstacle Problem relative to A, u, and
t is the only entropy solution of (0.0.5) such that v = ¢ A-almost everywhere in Q,
and v > % in . We also find a more technical characterization of the solution of the
Obstacle Problem, which in the case of 1 C}-quasi upper bounded in 2 (see Section
1.1) turns out to be similar to (0.0.1). In this framework we recover the definitions given
by L. Boccardo and T. Gallouét in [8] and by L. Boccardo and G.R.. Cirmi in [5]-[6] when
p = f e LY Q), and by P. Oppezzi and A. M. Rossi in [49]-[50] in a more general case.

At this point we would like to extend the theory of Chapter 3 to an arbitrary bounded
Radon measure u, dropping the assumption that p vanishes on all sets of p-capacity
Z€ero.

The main difficulty is that, in our approach to obstacle problems when the data
do not belong to the dual of the energy space, we need a suitable notion of solution to
equations with measure data, which ensures existence and uniqueness results. This is
still an open problem in the case p # 2, and it is solved by F. Murat in [48] when p = 2:
he proved that, if A is strongly monotone and Lipschitz continuous, then there exists a
unique reachable solution of (0.0.4) (see Theorem 1.5.3 and Theorem 1.5.13).

Thus, in Chapter 4 (which contains the results of [40]) we deal with the Obstacle
Problem for a strongly monotone and Lipschitz continuous operator A, when p = 2
and the forcing term is a bounded Radon measure. We obtain existence and uniqueness
results, and consistency with the theory of Chapter 3; hence, with the classical theory of

Variational Inequalities.



Introduction 5

Also in this case we obtain the Lewy-Stampacchia inequality.

Finally we investigate the interaction between obstacles and data, and in particular
the complementarity conditions. If the negative part pu~ of the datum p vanishes on
sets of capacity zero, so does the obstacle reaction, provided that there exists a bounded
Radon measure p absolutely continuous with respect to capacity, such that the solution of
(0.0.4) relative to p is greater than or equal to ¢. By Theorem 3.1.7 we will deduce that
in this case the obstacle reaction is concentrated on the contact set {u = 9}, whenever
the obstacle v is quasi upper semicontinuous (see Section 1.1). So we concentrate our
attention on the case where u; # 0. We recall (see Proposition 1.2.1) that every bounded
Radon measure 4 can be decomposed in a unique way as p = ,ué + ps, where pg
is absolutely continuous with respect to capacity and ps is concentrated on a set of
capacity zero, and ps = uf — p; . When the obstacle is controlled from above and from
below in an appropriate way, we will prove (see Theorem 4.1.5) that the solution u of the
Obstacle Problem relative to A, p, and % does not depend on p; , while the obstacle
reaction has the form X = A1 + g5, where A; is a nonnegative measure, absolutely

continuous with respect to capacity, which is concentrated on the contact set {u = ¢}.

Finally Chapter 5 (containing the results of [41]) develops the theme of continuous
dependence with respect to data.

In the context of Chapter 3 we study the convergence properties of the solutions
of the Obstacle Problem, under simultaneous perturbation of the operator, the forcing
term, and the obstacle.

In [11], [26], and [12] the authors proved some results on the convergence of Varia-
tional Inequalities for strictly monotone operators of the form A(u) = —div(a(z, Vu)),
when both the operator and the obstacle are perturbed. For Fj, F € W”I’P’(Q), and
for ¥, ¥ : @ — IR, they considered a sequence of Variational Inequalities

up € Wy (Q),un = ¥a,
(=div(an(z, Vup)),v — up) > (Fr,v — up), (0.0.6)
Yo € Wy'P(2),v > ¥,

and the corresponding convex sets
Ky, = {2 € Wy?(Q) : 2 > ¢y, Cp-q.e. in Q},

Ky:={2€Wy?(Q):2>¢ Cp-qe. in Q},
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assuming that (see Definition 5.2.1 and Definition 4.3.1)
F}, converges to F' strongly in Wy ? (Q)

?

ap G-converges to a,

Ky, converges to Ky in the sense of Mosco.
Theorem 3.1 of [26] shows that

up — u weakly in Wy P (Q),
an(z, Vup) — a(z, Vu) weakly in LP' (Q)V,
/'ah(x,Vuh)Vuh dr — / a(z, Vu)Vudz,
Q Q

where u is the solution of the Variational Inequality relative to A, F, and ¢ (A(u) =
—div(a(z, Vu))).

In this chapter we extend the stability result stated above to the case when the
forcing term p is a bounded Radon measure which vanishes on all sets of p-capacity
zZero. |

We will adopt the notion of solution considered in Chapter 3 to solve uniquely the
obstacle problem (denoted by OPy(A,, %)) relative to A, p, and .

We consider a sequence of obstacle problems OFPy(Ax, pr,¥n), when the measures
pn vanish on sets of p-capacity zero, and we assume that

pr(B) — p(B), for every Borel set B C 2,
ap G-converges to a, ’
Ky, converge to Ky in the sense of Mosco.
Denoting the solutions of OP, (An, pr,ton) and OPs(A, p, ) by up and u, respectively,
we will prove in Theorem 5.4.1 that
T (uz) = Tj(u) weakly in W, P(Q), for every j >0,

N

an(z, Vup) = a(z, Vu) weakly in LI(Q)V, for every ¢ < N1

/ah(ﬂf,vuh)VTj(uh)dﬂ? — / a(z, Vu)VT;(uv) dz, for every j >0,
Q Q

where T}(-) is the truncation function at level j.
In the special case where a; = a, for every h, we obtain also that T)j(us) converges
to Tj(u) strongly in W2P(Q), for every j > 0.

The content of the Chapters 2, 3, 4, and 5 corresponds to the papers [23] with
P. Dall’Aglio, [39], [40], and [41].



Chapter 1
Equations with measure data

1.1. Capacity

Let © be a bounded open set of RY, N > 2, and K be a compact subset of Q.
For p > 1, the p-capacity of K with respect to Q is defined as:

Cp(K) = inf{/ |VolPde : ¢ € CZ(2),u > XK} ,
Q

where xx is the characteristic function of K. This definition can be extended to any

open subset A of Q in the following way:
Cp(A) = sup{Cp(K) : K compact, K & A}.
Finally, it is bossible to define the pv—capacity of any set £ C () as:
Cp(E) = inf{Cy(A) : A open, E C A}.

We say that a property P(z) holds Cjp-quasi everywhere (Cp-q.e.) inaset E C Q,if it
holds for all z € E except for a subset N of E with Cp(N) = 0.

A function v : @ — R is Cp-quasi Borel if there exists a Borel function u: Q = IR
such that v =u Cp-q.e. in . A function v : Q R is said to be Cp-quasi continuous
(resp. Cp-quasi upper semicontinuous) if for every ¢ > 0 there exists a set E C Q,
with Cp(E) < ¢, such that the restriction of v to @\ E is a continuous (resp. upper
semicontinuous) function with values in IR. Thus, every Cp-quasi continuous (resp.
Cp-quasi upper semicontinuous) function v is Cj-quasi Borel.

We recall also that if v and v are Cjp-quasi continuous functions and u < v a.e. in
Q) then also u < v Cp-g.e. in Q.

It is well known that every u € VVO1 'P(Q2) has a Cp-quasi continuous representative,
which is uniquely defined (and finite) up to a set of p-capacity zero. In the sequel we
shall always identify u with its Cp-quasi continuous representative, so that the pointwise

values of a function u € Wy ?(Q) are defined Cp-quasi everywhere.
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With this convention for every subset B of Q we have

C,(B) = inf { /Q ]Vulpd:c} ,

where the infimum is taken over all functions u € W, *?(Q) such that w = 1 Cp-q.e. on
B,and u >0 Cp-q.e. on  (we use the convention inf @ = +00).
* We also have that if u, — u strongly in Wy "?(Q) then there exists a subsequence

which converges Cj-quasi everywhere. .

A set F C Q is said to be Cp-quasi open if for every € > 0 there exists an open set
A such that EC A C Q and Co(A\E) <e.

A set E C Q is said to be Cjp-quasi Borel if there exists a Borel set B, with
E C B CQ, such that Cp(B\ E) =0.

For every j > 0 we define the truncation function 7; : IR — IR by

(y=dt if |t < j
() = {jsign(t) if |t] > 7.

Let us consider the space Tg?(Q) of all functions u :  — IR which are almost ev-
erywhere finite and such that Tj(u) € Wg’p(ﬂ) for every 7 > 0. It is easy to see that
every function u € 761’1” () has a Cp-quasi continuous representative with values in IR,
that will always be identified with the function w. Moreover, for every u € TP (Q)
there exists a measurable function ® : Q ~ IR such that VT;(u) = ®x(ui<s} 2 in
Q (see Lemma 2.1 in [3]). This function @, which is unique up to almost everywhere
equivalence, will be denoted by Vu. It is possible to prove (see [33]) that Vu is the
approximate gradient of u in the sense of Geometric Measure Theory (see Definition
3.1.2 of [34]). Moreover Vu coincides with the distributional gradient of u whenever
we TP NLL (Q) and Vu € LE (@, RY).

In the special case where p = 2, we write capacity and cap(-) to denote, respectively,
p-capacity and Cy(+), and, in general, we omit the prefix C}, to quasi everywhere, quasi

Borel, etc..

1.2. Preliminaries about measures

Let M;y(Q2) the space of Radon measures p on §2 whose total variation || is
bounded on Q, while M} 5(Q) is the special subspace of M;(Q) of all measures, which
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are absolutely continuous with respect to the p-capacity, that is, a measure p € M;(Q)
belongs to Mj () if and only if u(B) = 0 for every Borel set B €  such that
Cp(B) = 0. We denote the positive cones of M;(2) and Mf,o(ﬂ) by M7 (Q) and
Mlg,';' (Q2), respectively. Moreover, for a measure p € My(Q2), T and p~ will be the
positive and negative part of p, respectively.

It is well known that, if & belongs to W‘l’P'(Q) N Mp(§2), then g isin M§,0(9>7 '
every u in W3 P(Q) N L>®(Q) is summable with respect to y and

(pyu) = /Qudu,

where (-,-) denotes the duality pairing between W=7 (Q) and Wy?(Q), while in the
right hand side u denotes the Cp-quasi continuous representative and, consequently, the
pointwise values of u are defined p-almost everywhere.

We recall that for a measure p € M;(Q2), and a Borel set By C 2, the measure
(1l Bo)(B) = u(Bo N B) for any Borel set B C Q. If a measure p € My(Q) is such
that u = ul_ By for a certain Borel set Bp, the measure u is said to be concentrated on
Byg.

The following result is the analogue of the Lebesgue decomposition theorem, and

can be proved in the same way (see Lemma 2.1 of [35]).

Proposition 1.2.1. For every measure u € My(Q) there exists a unique pair of
measures (fia, phs), with pe € M3 () and p, concentrated on a set of p-capacity zero,
and p = g + ps. If @ is nonnegative, so are p, and p.

~The measures p, and ps will be called the absolutely continuous and the singular

part of u with respect to the p-capacity.

Also a decomposition theorem for measures in Mf,o(ﬂ) is known (see Theorem 2.2
of [24]):

Theorem 1.2.2. For every measure i € M ((Q) there ezists a nonnegative measure
v € M;’"(Q)OW’I’P’(Q) and a Borel measurable function g € L*(Q,v) such that u(A) =
(g7)(A) for every Cp-quasi Borel subset A of Q. If yu is nonnegative, so is g.

Starting from this result, it can be proved a further decomposition result.
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Theorem 1.2.3. Let u € M} (Q), then for every € > 0 there ezist f. € L' Q) and
F. € W12 (Q) N My(Q) such that p = f. + F. and

I fellzry < el ma (2 HFEHW—LP'(Q) <e.

Proof. The proof of Theorem 2.1 in [10] shows that if y is an element of Mf’O(Q), then
p can be written as = f + F', where f € L'(Q), F € W‘l’P'(Q), and

I Fllzr @y < llellaty ) | Fll -1 0y < 1.

If we write p as € K and we apply the same result to E, we easily conclude. t
€ , €

By Theorem 1.2.2, if a measure u belongs to ME’O(Q), then every u € W2P(Q) N
L*°(£2) is summable with respect to u.
As concerning the approximation of measures in Mj (@), it is useful to state a

lemma, which is quite simple, but is proved for the sake of completeness.

Lemma 1.2.4. Let y; € Mé’,o(ﬂ) (i =1,2) be such that py < po; then there exists
pr € WP (Q) N My(Q) (i = 1,2) such that u? converges to p; strongly in My(Q)
and pt < pg.

Proof. It suffices to consider the decomposition of 13 —p; in the sense of Theorem 1.2.2:
0 < pe —p1 =97,

where v € W12 (Q) N M7 (Q) and g € L*(Q,7), ¢ > 0. On the other hand,
decomposes as p; = g1, with 11 € w12 ()N M (Q) and g1 € L}(Q,y1). We take
p? i=To(g1)m and pf := Ta(g)y + pf, and we can conclude. ]

Remark 1.2.5. The proof of the previous lemma shows that, if u € M%”g (), then
there exists a nondecreasing sequence i, € W1 (Q) N M (Q) such that u, converges
to u strongly in M;(Q).

As usual, we identify M;(Q) with the dual of the Banach space Cp({2) of continuous
functions that are zero on the boundary; so that the duality is (u,u) = fQ u dpy, for every
u in Co(Q) and the norm is ||u]|a,(2) = |u](2).
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Definition 1.2.6. If up, p € My(Q2), we say that pi converges to p *-weakly in
Mp(Q) if
lim udphzfudu,

Q Q

h—>+oc0

for every u € Co(Q2).

For nonnegative measures we have a characterization of the *-weak convergence in

terms of convergence of sets.

Proposition 1.2.7. Given pn, p € M;(Q), the following conditions are equivalent:
1. Ln converges to p *-weakly in My(Q); |
2. u(d) < %E_ii_rguh(fl), for every A open subset of Q,
p(K) > limsup pun(K), for every K compact subset of §2.
h—+oco

Concerning the weak convergence in M;(Q2), the following result shows that it is

stronger than the *-weak one.

Proposition 1.2.8. Given un,u € My(Q), the following conditions are equivalent:
1. pp converges to p weakly in My(Q);
2. hlil’f pn(B) = p(B), for every Borel set B contained in Q.
—+co

The proof of this proposition (see, e.g., Theorem 6.6 in [2]) relies on the Vitali-Hahn-
Sacks Theorem (see, e.g., Theorem 6.4 in [2]), which is similar to the Banach-Steinhaus
uniform boundedness theorem and gives a useful condition for the equiintegrability of a

sequence of summable functions.

Theorem 1.2.9. Let v be a measure in My(2), let gn be a sequence in L*(Q,v) and
set pup = grv. Assume that, for every Borel set B C Q, the limp—tc0 n(B) ezists and

is finite; then gp 1s equiintegrable.

Remark 1.2.10. Notice that in general it is not possible to approximate any measure
p € My(Q) by means of measures in Mp(§2) N W—LP' (Q) with respect to the weak
topology of M;(£2). Indeed the weak closure of My(22) N W—LP'(Q) is MG o (82).

In the last part of this section we give a weak notion of convergence in capacity,

similar to that one considered in [16], and some properties related to it.
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Definition 1.2.11. Let uj, u: Q — IR be C}p-quasi Borel functions. We say that u;
converges to u weakly in capacity if, for every measure p € M} ’g— (Q), uj converges to

u In g-measure, i.e.,
jli&loou({x € Q:|uj(z) —u(z)| >e}) =0, (1.2.1)
for every ¢ > 0.

Remark 1.2.12. Actually, Definition 1.2.11 is not equivalent to Definition 3.1 of
[16], where the measures p are positive elements of W—1P' (), hence positive Radon
measures (not bounded), and the convergence in p-measure is only local. However, it

is easy to check that (1.2.1) turns out to be equivalent to the condition considered in
Definition 3.1 of [16], when p € M{(2) N WL ().

The following proposition (see Proposition 3.5 in [16]) shows the relationship between

. 1 . .
weak convergence in W;'*(Q2) and weak convergence in capacity.

Proposition 1.2.13. Let uj, u € Wy P(Q) be such that u; converges to u weakly in

W2YP(Q). Then u.; converges to u weakly in capacity.
o \ J Y

Proof. First of all, we note that |u; — u| converges to 0 weakly in Wy? (). Thus, if
p € MF Q)N WP (Q), we have

M o d — 1 s — pred

i [ uy = uldu= lim oy =) =0

J—+oo

which implies that u; converges to u in p-measure.
Let now p € Mg::(ﬂ); by Theorem 1.2.2, we may decompose p as p = g, where
v EMF(Q)N W12 (Q) and g € L*(Q,7), with g > 0.

Hence, u; converges to u in ~y-measure, and, for every ¢ > 0,

p{lu; —ul >1}) = /nguuj._upt} dv,

which tends to zero as j goes to infinity, by the Lebesgue dominated convergence theorem.

O

Finally, the next result follows immediately from the dual definition of the capacity
(see Proposition 2.2 in [16] and Theorem 2.6.12 in [56]).
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Proposition 1.2.14. For every Cp-quast Borel set E C Q with positive capacity, there
ezists a measure p € M; ()N W12 (Q) such that u(E) =1 and p(Q\ E)=0.

Next lemma will be used several times in the following.

Lemma 1.2.15. Let pp,p € Mjo(Q) be such that pp converges to p weakly in
Mp(Q). Let @3, P € Wol’p(Q) NL*®(§2) be such that supy, ||®r|peo(q) 15 bounded and Py
converges to ® weakly in Wg'P(Q). Then

lim @hdyh:/@dp.
Q

h—>-+oo Q

e
28 | (9)
absolutely continuous with respect to . This implies that ,uh = gnv, with g» € L}(Q,v);
on the other hand, thanks to Proposition 1.2.8, we have that px(B) tends to u(B), for
every Borel set B C . Applying Theorem 1.2.9 we deduce that the sequence g is

Proof. We define the measure v € M}’ Q) as v = Z —17 so that |un| is

equiintegrable, and, in conclusion, it converges to a function g weakly in L'(f,v), with
p=gv.

Now, we can prove that [, ®4 dus tends to [, ® du, when &5, ® belong to Wy (2)N
L°(Q), with supy ||®s]l1=(q) < +00, and @} converges to @ weakly in W, ?(Q). By
Proposition 1.2.13, indeed, the convergence of ®; to @ is, in particular, in v-measure.
At this point, it is easy to obtain that
lim @ dup = lim / Bpgpdv = / Sgdv. = / & du.

Q h—os Jo Q Q

h—+o0

U
Actually, we can extend Definition 1.2.11 to the case where u; and u are arbitrari-

ness functions with real extended values.

Definition 1.2.16. Let uj, u : Q — IR be arbitrary functions. We say that u;j
converges to u weakly in capacity if, for every measure p € M? ’+(Q), u; converges to
u in p*-measure, where p* is the outer measure associated with p. It means that, for

every € >0,
lim p*({z € Q:|2(uj(z)) — ®(u(z))| >¢}) =0, (1.2.2)

J—r+co

where ® : IR — [0,1] is an increasing and continuous function.
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Remark 1.2.17. Let us point out that the above definition does not depend on @.

Remark 1.2.18. It is easy to check that Definition 1.2.16 turns out to be equivalent

to Definition 1.2.11, when u; and u are Cp-quasi Borel functions with real values.

1.3. Assumptions on the operator

Let p and p' two real numbers, with p > 1, p’ > 1 and %—% —37 = 1. Let a:
Q x RY — IRY be a Carathéodory function such that for almost every z in Q and for

every €, in RY (£#1n):

|a(z,€)] < colko(z) + [€1P7], (1.3.1)
a(z, )€ > c1lé|P — k1 (z), (1.3.2)
(a(e, &) — a(z,m))(§ —n) >0, (1.3.3)
a(z,0) =0, (1.3.4)

where ¢y and ¢ are two positive real constants, kg is a nonnegative function in LP'(Q)
and k; is a nonnegative function in L(Q).

If ¢,n € RV, we denote the scalar product in RY between ¢ and n by én, while
the tensorial product £ ® n7 is defined as £ @ n = (§im5)i,j=1,...N -

Thanks to hypotheses (1.3.1)—(1.3.4) the operator A : u + —div(a(z, Vu)) maps

Wy P(Q) into its dual W12 (Q) and for every F € W‘lvp/(Q) there exists a unique
function u € W, ?(Q) such that

Aluy)=F inQ
{u =0 on 01, (135)
in the weak sense, that means
/ a(:c,Vu)Vv dz = (F,v), (1.3.6)
Q

for every v € W3 F(Q) (see, e.g., [45)).
In order to study the elliptic problem

Alu)=p inQ ”
{u =0 on 012, (1.3.7)
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when 4 is a bounded Radon measure, we can not use the variational formulation (1.3.6),
since, in general, the term (p,v) has not always meaning when p is a measure and
v E T/VO1 "(2), with r < N. Moreover, simple examples show that the solution cannot be
expected to belong to the energy space Wi?(£2) determined by the growth conditions
on the operator. When N > 2, indeed, the solution of the Laplace equation in a ball,
with g the Dirac mass at the center, does not belong to HZ(Q) but only to Wy ¢(Q),
with ¢ < 'NN:T Thus, it is necessary to change the functional setting in order to prove
existence result.

Notice that, if p > N, then the Sobolev embedding theorem implies that M;(2)
is contained in W~1?(Q), so that (1.3.7) is a particular case of (1.3.5). Therefore, we
shall always assume that 1 <p < N.

1.4. The linear case

In the linear case, i.e., if p = 2 and a(d:,Vu) = A(z)Vu, where A isan N x N

matrix such that
|A(2)é| < eolé] and A(z)E€ > e1|é]?, VEERY, forae. z €Q, (1.4.1)

with ¢o and ¢; two positive real constants, problem (1.3.7) was studied by G. Stampac-

chia, who introduced and studied in [53] a notion of solution defined by duality.

Definition 1.4.1. A function u, € L*(Q) is a solution in the sense of Stampacchia

(also called solution by duality) of the equation

Auy =p in Q
{ u, =0  on 09, (14.2)
if
/u#g dr = /u; du, Vg€ L™(Q), (1.4.3)

Q Q

where u; is the solution of

and A* is the adjoint of A.

For this theory we need to assume that the boundary 9 has the following property,
which is satisfied in particular when 0 is Lipschitz.
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Definition 1.4.2. We say that a bounded open subset of RY is regular if there
exist two positive constants § € (0,1) and R such that, for every zo € 962 and for all
R < Ry, we have

|Br(zo) \ £ > 6 |Br(zo)l,

where Bpr(zo) denotes the ball of center zo and radius R, and || the Lebesgue measure
in RV, k

Actually, the theory of Stampacchia works under slightly weaker but more compli-
cated assumptions as said in [53] (see Definition 6.2).
_“The notion of solution by duality relies on the following regularity results due to G.
Stampacchia (see [53]) and to E. De Giorgi (see [31]).
Before stating these theorems we recall that, for v € (0, 1),

co(Q) = {u €C(Q): zslle];)ﬂ l}_‘%ﬂ_ﬂ < —i—oo} ,

is the space of v-Holder continuous functions on €, with the norm

u(z) = u(y)|

el gor @y = llullew) + cvee |z —y|7

Ty

Theorem 1.4.3. Let Q be a regular (in the sense of Definition 1.4.2) subset of RV,
A satisfy (1.4.1), g € L™(2), with m > —12!, and ug be the (weak) solution in HE(Q) of
the Dirichlet problem
{Au =g in{l
u=0 on 0f.

Then u € C%7(Q), and

|lug(z) — ug(y)]

x-vfﬂ |z —yl|7

< Cllgllzme),
where the constants C and ~ depend on 2, N, co, ¢; and m.

Theorem 1.4.4. Let Q be a bounded open set of RY , A satisfy (1.4.1), g € L™(Q),
with m > &, and u, be the (weak) solution in Hy(Q) of the Dirichlet problem
{ Au=g¢g mQ
u=0  on 0f.
Then

lugllze(@y < Cllgllzm(ay),

where the constant C depends on ||, N, ¢, c1, and m.
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Corollary 1.4.5. Let Q be a regular (in the sense of Definition 1.4.2) subset of RY,
A satisfy (1.4.1), g € L™(2), with m > %’—, and ugy be the (weak) solution in HE(S) of

the Dairichlet problem
{Au =g n{)
u=0 ondQ.

Then u, € Co(Q) N COY(Q) and
lullgon @y < Clllgllzme), (1.4.4)

where the constants C and ~ depend on , N, ¢y, ¢1, and m.

‘Thanks to Corollary 1.4.5 we can, first of all, notice that Definition 1.4.1 makes sense.
In the first term of (1.4.3) g € L=(2) and u, € L'(Q2), in the second one u} € Cp(Q).

The next theorem regards the existence and uniqueness of u,, .

Theorem 1.4.6. Let Q be a regular subset of RY, and let p € My(Q). Then, for
every q, with 1 < ¢ < J—VL\_%, there ezists a unique u, € Wy'?(Q) solution of (1.4.2) in
the sense of Definition 1.4.1.

The solution u, satisfles in particular
/ A(z)Vu, Ve dr = / wdu, forevery ¢ € C(Q), (1.4.5)
Q Q

Le., uy is a solution of (1.4.2) which belongs to Wai(Q) for every g < -, and satisfies
the equation in the distributional sense. Let us emphasize that (1.4.5) is not enough to
characterize the (unique) solution in the sense of Definition 1.4.1 when the coefficients
of the matrix A are discontinuous (see [52]). |

Tt is worth to notice that the theory of Stampacchia is consistent with the variational
one. More precisely, if the datum p belongs to M3(Q2) N H~'(Q), then the solution
obtained by duality coincides with the variational one (which satisfies (1.4.2) in the weak
sense).

From now on we will use the following notation: wu, denotes the solution of the
equation '

{ Aup=p inQ
u, =0  ondQ,

when 4 is a measure in M(2) or an element of H~1(Q). In the former case we refer
to Definition 1.4.1, in the latter to the usual variational one.

Another important fact is the continuous dependence with respect to data converging

in the *-weak topology of M;(£2).
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Theorem 1.4.7. Let Q be a regular subset of RY . Let Ln, € Mp(S2) be such that
Lin converges to pu *-weakly in My(Q2), then u,, tends to u, strongly in We(Q), for
every q < ﬁ%, and, for every 7 >0, Tj(uyu,) tends to Tj(u,) weakly in H}(Q).

Remark 1.4.8. By the previous theorem we deduce that, when g € My(Q), u, is
the unique solution in the sense of distributions of the equation Au = p (u, satisfies
(1.4.5)) which can be obtained as limit of solutions u., to the problem
{ Aty = frn in Q
Up =0 on 09,
where f, is a sequence of smooth functions (e.g., in C¢°()) converging to u in the

*-weak topology of measures.

1.5. Reachable Solutions

Following these ideas, in the nonlinear case, the first attempt to solve problem (1.3.7)
was done by L. Boccardo and T. Gallouét, who proved in [7] and [9], under the hypothesis
p > 2 — %, the existence of a solution of (1.3.7) which satisfies

{u e W3 (Q), Vs < Xzl
Jqa(z, Vu)Vedz = Jq @ du, for every ¢ € Cg°(Q).

Note that this framework coincides with the framework given by (1.4.5) if p =2. In

(1.5.1) the exponent EI%P{—IQ is sharp. Hence, the restriction on p is motivated by the
fact that, if p <2 — J—{[— , then N]E,p__—ll) < 1: in order to obtain the existence of a solution

(1.5.1)

for p close to 1, it is necessary to go out of the framework of classical Sobolev spaces.

Definition 1.5.1. Let p € My(Q) and F € W-1#'(Q). We say that a function
u € 761’1’ (©) is a reachable solution of the problem
{A(u)z,u—l—F in Q
u=20 on 02
if there exist two sequences pn and u, such that

(i) pn € Myp(Q)NW 12 (Q) and pn converges to u in the *-weak topology of M;(Q);
(i) un € Wa?(Q2), and u, solves the Dirichlet problem

Alup) =pn+F inQ
Up =0 on 011,

(1.5.2)

(1.5.3)

in the weak sense;

(iii) up converges to u a.e. in .
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Remark 1.5.2. The notion of reachable solution was introduced in [28] (see Definition
2.3) considering smooth approximations u, and F, of p and F' such that

(1) pn € C(Q) and p, converges to p in the *-weak topology of My(Q2),

(i)’ F, € C°(Q) and F;, converges to F strongly in w1 (Q);

while u, is the solution of

Alup) =pn + F, inQ
un € Wa'?(Q).

Thanks to Proposition 3.4 of [28], Definition 1.5.1 turns out to be equivalent to Definition
2.3 of [28], when F = 0.

Theorem 1.5.3. Let uy € My(Q) and F € W"l’p'(Q) ; under hypotheses (1.3.1),
(1.8.2), (1.8.8), and (1.3.4), there ezist a reachable solution u of (1.5.2). Moreover,
assuming (1)—(i11), |Vua[P™ is bounded in LY(Q) for every ¢ < w25, Tj(un) converges
to T;(u) weakly in W3 P(Q) for every 5 > 0, Vu, converges to Vu a.e. in £, and
a(z, Vuy) converges to a(z,Vu) strongly in LY(Q)N for every q < 7\71“\1‘1‘

Before proving Theorem 1.5.3, we state two results (see Lemma 4.1 and Lemma 4.2
of [3]), in which you control the measure of the level sets of a function u € 75?(Q2) and

of its gradient Vu, when Tj(u) is bounded in Wy ?(f2) in an appropriate way.
Lemma 1.5.4. Let u € Ty P(Q) be such that
/ Vul do < (j + )M, (1.5.4)
{lu]<s}

for every 3 > 0. If 1 <p< N, there ezists C' = C(N,p) > 0 such that

{lul > h} < CM ¥ ?{}T Vh> 1, (1.5.5)

where p; = M If p= N, for every r > 1, there ezists C = C(N,r) > 0 such
p

N —
that

Vh > 1. (1.5.6)

{lu| >r} < CM NT) 2
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Lemma 1.5.5. Let u € 75 P(Q) satisfy (1.5.4) for every 5 >0. If 1 <p < N, then,
for every h > 1,

, 1
{IVul > h}| < OV, p)M ™= -, (1.5.7)
_Np-1) ., _ .
where pg = ~ 1 If p= N, then, for every I, with N —1 <[l < N, and for every
h>1,
1
{|Vu| > A} < C(N, l)MNl-lm. (1.5.8)

Moreover in the proof of Theorem 1.5.3, we will need the following standard lemma of

measure theory.

Lemma 1.5.6. Let (X, M,m) a measurable space such that m(X) < +oco. Let
v : X — [0,4+00] a measurable function such that m({z : v(z) = 0}) = 0. Then for any
e > 0, there exists 8. > 0 such that

/ v(z)dm < 6. = m(E) <.
E

Proof of Theorem 1.5.3. Let pn be in M;y(2) N W12 (Q), converging to u in the
x-weak topology of M(Q), and let u, be the solution of (1.5.3). If we take v = Tj(un)
in the variational formulation (1.3.6) satisfied by u,, applying in the first term (1.3.2)

and in the last one Young’s inequality, we get:
. ' c
Cl/ﬂ!VTj(un)lp dz < jllpnllmoie) + 1Rallzr @) + el FllG o ) + %/QIVTJ'(%)!” dz,

and then :
/ VT (un)P de < (G + 1)M, (1.5.9)
Q

for every j > 0. Let us prove that u, — v in measure. To begin with, we observe that

for t,e > 0 we have
{|tn = tm| >t} C {Junl > h} U {Jum| > h} U {|Th(un) — Tr(um)| > t}. (1.5.10)
Thanks to Lemma 1.5.4, we choose h large enough such that

H{lun| > b} <e, forallneN.

Moreover, since Tj(un) is bounded in WP (Q) for all j > 0 we can assume that Tj(ux)

is a Cauchy sequence in measure. By (1.5.10), this proves that u, — u in measure.
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We now prove that Vu, converges to some function v in measure, and, therefore,
after passing to a suitable subsequence, we can always assume that the convergence is
a.e. in Q. To prove this we show that Vu, is a Cauchy sequence in measure. Let again
t and € > 0. Then

{|Vtn = Vum| >t} C {|Vun| > B} U {|Vun| > B} U {|un — um| > j}
U {Jtn — tm| < 5,1Vtin| < B, |Vum| < B, |[Vun — Vun| > t}.

We first choose B large enough in order to have

HIVun| > B} <e, forallnelN

(this is possible by Lemma 1.5.5).
Since a(z,-) is continuous for almost every z € Q, assumption (1.3.3) implies that

there exists a real valued function «(z) such that [{z :v(z) = 0}| =0 and

(a(z,€) — a(z,m))(§ —n) = v(z), qo.in Q and V¢, n € K(¢,n),

where K(¢,7) = {¢,n € RY : €], |n] < B, |¢ —’n| >t} is a compact set. Hence

/ v(z)
K(Vun, Vum)O{|ur—um|<i}

<

/ (a(z, Vup) — alz, Vum))(Vug — Vig) dz
K(Vun, Vumn)N{|un—um|<5}

/ (a(z, Vun) — a(z, Vum))VTj(un — um) dz.
K(Vun,Vum){|ta—2m|<5}
If we use Tj(un — um) in (1.3.6) we can say that the last integral is less than or equal to
27 M , where M > ||pinl|m, (), for every n € IN.

Let now §. given from Lemma 1.5.6. We choose j such that j < 2554 , then
| K (Vtn, Vi) N {|us —um| < 7} <.

Finally, thanks to the fact that u, is a Cauchy sequence in measure, we obtain the

desired compactness result.
In conclusion, since T;(un) is bounded in Wy?(Q), we have established the following

facts:

u e TP (),
Uy, converges to u a.e. in {2,
T;(un) converges to Tj(u) weakly in I/Vo1 P(Q2), for every 5 > 0,

Vuy converges to Vu a.e. in (2.
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To obtain the boundedness of |Vun [P~ in LI(Q), for every g, with 1 < ¢ < 355, we
observe that, by (1.5.7) of Lemma 1.5.5, we have

+oo
| 9 do = (0] + o 1) [ eV >
Q

since %‘”—_’112 —q(p—1)+1>1 for every ¢ < 5. Thus
|Vun|P~! is bounded in L4(R), for every ¢ < 5. (1.5.11)

If p= N we obtain again (1.5.11) using (1.5.8) instead of (1.5.7); to derive it we proceed
as before: the only change consists in observing that, once 1 < ¢ < -NNfl is fixed, it is
then possible to choose N —1 <1 < N such that [ > ¢(N — 1), so that

“+co
/ a(N=-1-1° dt<+oo
1

Then also a(z,Vun) is bounded in Lq(Q)N, thanks to (1.3.1). On the other hand
the almost everywhere convergence of Vu, to Vu implies that a(z, Vup) converges to

a(z,Vu) a.e. in Q. At this point it is easy to prove that
a(z, Vu,) converges to a(z, Vu) strongly in LI(Q)N | for every g < -Nf{—l-,
which concludes the proof. Ol

Remark 1.5.7. Let us note that, thanks to (1.5.9), the reachable solutions of (1.5.2) sat-
isfy (1.5.4), with M greater than or equal to ¢3(||pnll at,0) V (|51l 22 () + ||F|]€V_1,p, (Q))) ,
where c3 depends only on p and ¢;. Moreover, by standard arguments of capacity theory,

(1.5.4) implies

Cy(dlul > 71 < LU,

that is, if u is a reachable solution of (1.5.2), then (the C,-quasi continuous representative

(1.5.12)

of) u is finite up to a set of p-capacity zero.

Remark 1.5.8. Usihg the convergence of a(z,Vu,) to a(z, Vu) we can prove for u

the distributional formulation
/ a(z, Vu)Ve dz = / wdp + (F,), for every ¢ € C(Q), (1.5.13)
Q Q

starting from the same equality satisfied by u, and taking the limit as n tends to +oo.
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Remark 1.5.9. We note that if p > 2 — &, then M—L) > 1, so that, taking into

account that NIEIP L o N pl),

u e Wy*(Q), for every s < N(p

by Lemma 1.5.4 and Lemma 1.5.5 we easily deduce that

) . Moreover, u, converges to u strongly in Wy ().

Remark 1.5.10. Let p € My(Q) and F = 0. If u is a reachable solution of (1.3.7)
and we assume (i)-(iii) of Definition 1.5.1, we can not expect the strong convergence in
WP (Q) of Tj(un) to Tj(u) (see [13] for a counterexample). On the other hand, thanks
to the next proposition (see [14]), for every reachable solution u of (1.3.7) there exist
two sequences pn, € Mp(£2) N W12 (Q) and u, satisfying (i)-(iii) of Definition 1.5.1,
such that T;(u,) converges to Tj(u) strongly in Wy P(Q), for every j > 0.

Proposition 1.5.11. Let u € My(Q) and u be a reachable solution of (1.5.7). Under
hypotheses (1.8.1), (1.8.2), (1.8.8), (1.3.4), we have

A(To(u)) € Mp(Q) NW7'(Q),

A(Tn(u)) = p *-weakly in My(2).

Remark 1.5.12. By Remark 1.4.8 we have that, in the linear case, the reachable
solution coincides with that obtained by duality by Stampacchia. Thus, in particular, it

is unique.

On the other hand we just noted that (1.5.13) is not enough to ensure uniqueness.
Indeed, in the linear case, Stampacchia’s definition, which implies uniqueness requires
stronger conditions on the solutions, namely that the equation is satisfied for a larger
space of test functions. ,

As a matter of fact, for a general monotone operator A the uniqueness of the reach-
able solution is still an open problem, except in the case p = 2, where Stampacchia’s
ideas continue to work if A is strongly monotone and Lipschitz continuous. In this special
case, indeed, F. Murat (in [48]) proved also the uniqueness of the reachable solution.

Let us consider this particular setting.

We assume that  is a regular (in the sense of Definition (1.4.2)) subset of R,
and we consider a : @ x RY — RY a Carathéodory function such that for every ¢, n
in RY (¢ +#n), and for almost every z in €,

la(2, &) — a(e,n)| < col€ =7, (1.5.14)
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(a(z,€) — alz,m))(& —n) > e1|€ —nf?, (1.5.15)
a(z,0) =0, (1.5.16)

where ¢g and ¢; are two positive real constants.

Theorem 1.5.13. Assuming (1.5.14), (1.5.15), and (1.5.16), for every p € My(Q2)
and for every F € H™1(Q) there ezists a unique reachable solution of problem (1.5.2).

Proof. Let us consider two sequences fin, fin, € Mp(Q)NH1(Q), and the corresponding
solutions u, and 4, of (1.5.3), such that :

pn = p and fin — p *-weakly in M;(Q)

Up — u and U, — @ a.e. in Q.

* By Theorem 1.5.3 and Remark 1.5.9 we also know that, for every ¢ < 'N]%I and for every
J>0,

un — u strongly in Wy'¥(Q) and Tj(u,) — Tj(u) weakly in Hi(R),
as well as
fin — 0 strongly in Wy'?(Q) and Tj(i,) — T;(4) weakly in HZ(S).

We consider the equations (1.3.6) satisfied by u, and 4, respectively; they give:

/Q (alz, Vitn) — a(z, Vi)V do = (ttn — fin; o), (15.17)

for every ¢ € HE ().

We will use the following lemma.

Lemma 1.5.14. Let a satisfy conditions (1.5.14), (1.5.15), and (1.5.16); then, for
almost every z € Q and for every &1, & € IRN, there exists a N X N matriz M =
M(z,&1,€2) such that

|Mn| < Coln| and Mnn > Cilnl?, (1.5.18)

a(z,&1) — a(z,£2) = M(é1 — &), (1.5.19)

where Cy and Cy are two positive constants that depend only on co and ¢



Equations with measure data 25

Let us define the measurable function M,(z) 1= M(z, Vun(z), Vi (z)), with M
as in the previous lemma. Thanks to (1.5.18) the operator Mpu = —div(Mn(z)Vu) is
a (linear) uniformly (with respect to n) bounded and elliptic operator from Hy(f2) into
its dual H1(Q).

Thus, we can rewrite (1.5.17) as

fa Mo (2)V (= ) Vg da = (1 — fimy ), (1.5.20)

for every o € H}(Q).

‘Now we choose as ¢ the solution wh, of the Dirichlet problem

Miw, =g in
Wn € H(% (‘Q')a

where g is a function in L*(Q).
We can apply Corollary 1.4.5 to w,, and deduce by the Ascoli-Arzelad Theorem that
w, converges (up to a subsequence, still denoted by wn) to a function w € Co(f2)

uniformly in Q. Rewriting the equation (1.5.20) with ¢ = wy, we obtain

Q

/Q 9(ttn — i) dz = / wn d{jin — fin),

and, passing to the limit

/g(u—ﬁ)dac:O.
Q

For the arbitrarity of the function g € L>=({2), we conclude that v = 4. , Ll
We will prove now the important Lemma 1.5.14.

Proof of Lemma 1.5.14. Let us denote by A and v the vectors A := {; — &, and
v:=a(z,£) — a(z,£2). Thanks to (1.5.14) and (1.5.15) we have

vA > |\ and |v| < colAl

Define the matrix M := CoZ + (sA+tv)® (sA+tv), with T the identity N x N matrix,
and Cp, s, t to be determined, and check that M satisfies (1.5.19), i.e.,

v = Coh + (A + 1) @ (s + tv)X = CoX + (sA + tv)(s|A]* + tv]),
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which holds if
1—t(s|]A]> +#vA) =0 and Cp+ s(s|\]> +tvA) =0.

If we assume that v\ — Co|A|* > 0, which is true if Cy < ¢;, the choice of t and s will

be
1 Co

, 8= .
o= Gl NN

t==

Thus M will be

1

M = Col + P EANG] Gl

(CoX— 1) ® (Cod — v).

It can be easily proved that M satisfies the ellipticity condition with 0 < Co(< ¢1), and
C3 + c? ‘ 0

the boundedness estimate with Cy = Cp + ———~.
, c1—Co

Remark 1.5.15. If we assume that the function a is of class C! with respect to the
variable £, we can find M in a more direct way.

Indeed, we can write the difference a(z,&1) — a(z,€2) as

1
d
olo 1) —afo,2) = [ (oo +ter — &)

-([ a2 4161 — @) dt) (61 - ),

from which we can define M = M(z,£1,&2) = fol ag(z, & + (&1 — €2)) dt.
Moreover, M satisfies the ellipticity condition with the constant ¢; and the bound-

edness estimate with ¢g.

The same tools used to prove the uniqueness of the reachable solution can be easily

applied to obtain a stability result for problem (1.3.7).

Theorem 1.5.16. Assume (1.5.14), (1.5.15), and (1.5.16). Let F € H™'(Q) and u,
p € My(2) be such that ‘
pr — p *-weakly i My(Q),

and let uy and u be the reachable solutions with data pg + F and p+ F. Then

up — u strongly in W3'9(Q), for every q < 2,
0 Y4 N —1
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Ti(ug) = Tj(u) weakly in HI(Q), for every j > 0.

Proof. Let us consider two sequences py, u™ € My(Q)NH~1(£2), and the corresponding
solutions uf and u™ of (1.5.3), such that

= pr and p" — p s-weakly in Mp(Q2)

uf — ug and u” —u a.e. in Q.

By Theorem 1.5.3 and Remark 1.5.9, we also know that, for every ¢ < N’N-”—T and for

every j >0,
u® — uy strongly in Wy ¥(Q) and Tj(uf) — T;(ux) weakly in Hj(Q),
as well as
u™ — u strongly in W3'4(Q) and Tj(u™) — Tj(u) weakly in Hg ().

We consider the equations (1.3.6) satisfled by u} and u™, respectively; they give:

[ (6l u3) = ale, Tum) e = [ o —um,
Q
for every ¢ € H}(2) N L*°(R2). The previous equation can be written as
l&wﬂ@vmz-uwvwﬁniéwdmz—uﬂ, (1.5.21)

where M7 (z) = M(z, Vu}(z), Vu™(z)) is given by Lemma 1.5.14. Now we choose as gp
the solution of the Dirichlet problem

MPrwp =g inQ
wi € Hg(9),

where ¢ is a function in L*°(£2).

We can apply Corollary 1.4.5 to w} to deduce by the Ascoli-Arzela theorem that wy
converges (up to subsequences) to a function wy € Co(2) uniformly in Q. On the other
hand, thanks to this convergence, also wy, satisfies (1.4.4), and, by the same arguments,
wy, converges (up to subsequences) to w € Co(Q) uniformly in . Thus, rewriting the

equation (1.5.21) with ¢ = wy, we obtain

/ o(ul —u™)do = / W d(uf — ),
Q Q
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and, passing to the limit, first as n — +o00, then as kK — +oo, we have

kgrfoo A g(ug —u)dz = 0.
On the other hand, for every j > 0, Tj(ux) satisfies (1.5.4) (see Remark 1.5.7). Hence,
by Lemma 1.5.4 and Lemma 1.5.5 (see also Remark 1.5.9), we get

N

up — u strongly in Wy (), for every ¢ < T )

T;(ug) — Tj(u) weakly in HJ (), for every j > 0

(the result is true for the whole sequence uy by the uniqueness of the limit function ).

U
Finally, we state a comparison principle concerning the reachable solutions.

Theorem 1.5.17. Assume (1.5.14), (1.5.15), and (1.5.16). For i = 1,2, let u; be
the reachable solution of (1.8.7) relative to p; € My(Q). Suppose that py < ps, then

u; < ug almost everywhere in .

Proof. The result is well known when p; € My(Q) N H~1(Q).

Approximate, in the *-weak topology of My(f), pe — puy and p; with u, €
MF(Q) N EYQ) and ph € My(Q) N H7(Q), respectively. Moreover, define pu? =
in + pl, which is greater than or equal to ul. Thanks to Theorem 1.5.16 we can
conclude. [

1.6. Entropy Solutions

In the nonlinear case, when p is a bounded Radon measure vanishing on all sets
of p-capacity zero, other types of solution of (1.3.7) have been proposed. The notion of
entropy solution, of SOLA, and of renormalized solution were introduced respectively
in [3], [20], and [46].

These three frameworks, which are actually equivalent, are successful since they
allow one to prove existence, uniqueness and continuity of the solutions with respect to

the datum w.
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Definition 1.6.1. Let p € M} (). We say that a function u € TP (), satisfying
(1.5.4) for every j > 0, is an entropy solution of (1.3.7) if

/ oz, Vu)V(T(u — @Yo + ) dz = / (T(u — @Yo + &) dp, (1.6.1)
Q Q

where ® € Wol’ql(ﬂ), for every ¢ < 7\7]}’_—5,_ w e CYQ), ¢ € WP (Q) N L*2(R), and
T:1R — IR is a bounded Lipschitz function such that

T(0) =0 and T'(t) =0 if [¢{| > k for some &k > 0.

Remark 1.6.2. Notice that both integrals in (1.6.1) are well defined. First of all,
we remark that, if ¢ < 'N‘A{T’ then ¢’ > N, so that, by Sobolev embedding theorems,
Wol’q,(Q) C C(R). Moreover VI(u —¢) = 0 ae. where |u| > k + ||¢||r=(a). Hence,
remembering that v € 75 ?(Q), the second member offers no difficulty since T'(u—@)w+
3 e WHP(Q)N L(Q) and p € M3 (). As to the first member we observe that

a(z, Vu)VT(u —p)w = a(z, VTkHw”Lco(n)(u.))VT(u —)we LYY,

thanks to (1.3.1). On the other hand, by Lemma 1.5.5, for every ¢ < 'N‘N:Tv |VulP~1 g
L4(Q), so that, by (1.3.1), a(z,Vu) € LY(Q)V, and

a(z, Vu)VwT(u — ¢) + a(z, Vu)V@ e QY.

Remark 1.6.3. Starting from equation (1.6.1) we have, for every j > 0 and for every
o € WIP(@) N I=(9),

/ a(z, Vu)VTj(u —¢)dz = / Ti(uv — @) du, (1.6.2)
Q Q

Moreover, it holds:
/ ale, Vi)V do = / 8 dy, (16.3)
Q Q

for every ¢ < w7 and for every @ € Wi (Q).

Remark 1.6.4. If F e W=1?'(Q) (F =divf, with f € L? (Q)") we can consider as
data also p + F, the definition of entropy solution being

/Q a(z, Vu)V(T(u—p)w+@)dz = /Q(T(u —Q)w+®)du+(F,T(u — p)w + @). (1.6.4)
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Theorem 1.6.5. Let p € Mj((Q) and F € W12 (Q); under assumptions (1.5.1),
(1.8.2), (1.8.3), and (1.8.4), there ezists at least an entropy solution u of (1.8.7) relative
to p+ F.

Proof. Following the “classical” procedure, our first step consists in approximating the
measure p with a sequence pun, € My(Q) N W—I’P'(Q}, converging to 4 in the weak
topology of My() (which is stronger than the * weak convergence). Then, it is well
known that there exists a weak solution u, € W,?(Q) of

—div(a(z, Vuyg)) = pn + F. ' (1.6.5)

By Theorem 1.5.3, we know that a subsequence of u, (still denoted by uy,) satisfy:

un converges to u a.e. in §2,
T;(un) converges to Tj(u) weakly in W, ?(Q),

Vuy, converges to Vu ae. in Q,
a(x, Vun) converges to a(z, Vu) strongly in LI(Q)V, for every ¢ < 5.
" Moreover, by Remark 1.5.7, u satisfies (1.5.12), and so (the Cp-quasi continuous repre-
sentative of) u is finite up to a set of p-capacity zero.
Now we prove that Tj(un) strongly converges to T;(u) in Wy ?(R), for every j > 0.
Let h > j and let us take wp = To;(un — Ta(un) + Tj(un) — Tj(u)) as test function in
(1.6.5). Then, if we set [ = 45 4+ h, it is easy to see that Vw, = 0 where |u,| > I;
therefore, thanks to hypothesis (1.3.4), we can write

/ a(z, VIi(up))Vwy, dz = / W Ay, + (F,wy).
Q Q

Splitting the integral in the left hand side on the sets where |u,| < j and where |u,| > 7
we get (remember that a(z,£)¢ > 0):

L a(z, VT1(un)) VT2 (tn — Th(un) + Tj(un) — Tj(u)) dz

> [ afe, VT, () V(Ti(wn) ~ T de = [ fole, VI )|V (w)] do
Q {len|>5}
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and then from the equation it follows:

/Q (a2, VT (4n)) — alz, VT3 () V(T (un) = Tj(u)) da

</ _Na(e, VTi(un))|[ VT (u)] dz + / Toj(un — Ta(un) + Tj(un) — Tj(u)) dun
{lun|>s} Q

T = Taln) 4 Ty0) = T50) [ ale, VI ) (T () — Ty) .
(1.6.6)
Now, if we take Ty;(un — Th(un)) in (1.6.5) we can proceed as in the beginning of the

proof of Theorem 1.5.3 in order to have
/Q [Vs5(un = Ta(un))P d < (2 + )Mz,
where M, is a positive constant that does not depend on h and n. Since
Tpj(un — Th(un)) = Toj(u — Th(u)) weakly in WEP(Q),
we get :
|1V = Tu@)l de < (25 4+ 108,

from which we can deduce:

(F, T (4 — Ta(w)) < M, /{ o e

where M, depends on j but not on A. Therefore by the absolute continuity of integral
we get:

lim (F,Ty;(u— Th(w))) = 0.

h—+o0

Since (1.5.12) implies also

ym A Toj(u — Th(u)) dp =0,

we can fix a positive real number A, sufficiently large to have

| Toslo = Ton (W) dis + (B Dyl — T ) <



32 Chapter 1

Now we take h = h. in formula (1.6.6) (then I = I.), and observe that |a(z, VTi(u,))]
is bounded in L?'(Q) while X{lun|>j} | VTj(u)| converges strongly to zero in LP(Q2) as n
tends to infinity; this allows us to write

n—lil-}r-loo dolos) Ia(:v,VTz(un))HVTj(u)] dz = 0. (1.6.7)

Furthermore, it is easy to see that, as n tends to infinity,
Toj(un — Ta(un) + Tj(un) — Tj(u)) = Toj(u — Th(u)) weakly in Wy P(Q),
so that, passing to the limit in (1.6.6), by means of (1.6.7) and Lemma 1.2.15, we deduce

lim | (a(z,VTj(un)) — al(z, VI;(u))V(Tj(ur) — Tj(u)) dz

n—++oo Q
< [ oy = T ) d o+ (P, Ty = T, () < o,
Q
that is to say, since ¢ is arbitrary small,

lim / (a(a, VT;(un)) - alz, VI3 ())V (T un) — Ty(w)) dz = 0.
Q

n=y+oco
In conclusion (see [44]), we have that, for every j > 0, Tj(un) converges to Tj(u)
strongly in W3 '?(€). We point out that this convergence implies that, for every j > 0,
a(z, VT;(u,)) converges to a(z, VTj(u)) strongly in L?' (Q)N.

Now we show that u is an entropy solution. In order to prove equality (1.6.4) we
take a bounded Lipschitz function T' : IR —+ IR such that 7'(0) = 0 and T'(¢t) = 0
when |¢| > k; we also choose a smooth function w € CY(Q), ¢ € Wy P(Q) N L®(Q),
¢ e Wol’q’(Q), for every ¢ < 'N‘]'ET’ and apply the test function T'(up — ¢)w + @ to
equation (1.6.5) to get

/ a(z, Vur)\V(T(un — @)w + @) dz = /(T(un —@)w + @) dun + (F,T(un — p)w + 3),
Q Q

which can be rewritten as

/ a(z, VT (un))VT (un — @) wdz + / a(z, Vup ) VT (up — @) dz
Q Q

-I—/ a(z, Vu,)Vede = / (T(tn — @)w + @) dun + (F, T(un — p)w + B).
Q Q

where L =k + ||¢| () -
Taking into account the convergence results previously obtained and Lemma 1.2.15,
we can easily pass to the limit as n tends to infinity, proving that w is an entropy

solution. 0
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Now we settle the question of uniqueness. The main tool of the uniqueness proof
is an estimate on the decay of the energy of the entropy solution on the sets where it is
large. v

Let p € MPo(Q), F e Whr'(Q) (F =divf, with f € LP' ()N, and u be an
entropy solution of (1.3.7) relative to p -+ F'. As we noticed in Remark 1.6.3, for every
3 > 0 and for every ¢ € Wy P(Q) NL*®(Q), u satisfies

/ a(z, Vu)VTj(u — @) dz = / Ti(u—@)dp+ (F,Tj(u — @)). (1.6.8)
Q Q _

Thus, choosing ¢ = Ti(u), for i > 0, and observing that VTj(u — Ti(u)) = Vu where

i < |u| <i+ 7, and is zero elsewhere, we can write

/ a(z, Vu)Vudz < jlp|({|lu] > i}) + / fVudz.
{i<|u|<i+i} {i<]ul<i+j}

Using (1.3.2) (in the left hand side), and Young’s inequality (in the right hand side), we
get, setting B; ; = {i < |[u| <145} and A; = {Ju| >},

61/
B

Hence, in particular, we have

Vul? de < jlul(As) + / Jhalda +c /

i:j B‘;J B{,

fIP dz + 62—1/ Vul? dz.
i Bi

lim |VulPdz = 0, (1.6.9)

]

since p vanishes on all sets of p-capacity zero, and we can apply (1.5.12). As a matter
of fact, (1.6.9) is true only if the datum p belongs to Mf’o(ﬂ), and not for a general
reachable solution relative to p € M;y(£2).

Theorem 1.6.6. Let u € M{yO(Q), FeW1(Q), u and v two entropy solutions
of the equation
—dw(a(z,Vu)) = u+ F,

under assumptions (1.8.1), (1.3.2), (1.8.8), and (1.8.4). Then u =v.

Proof. Choose Tj(u—Ti(v)) as test function in (1.6.8) (Written for u) and Tj(v—T;(u))
as test function in (1.6.8) (written for v). Add the equations, so that

/(a(w,Vu) — IVTi(u — T;(v)) dz + / (a(z,Vv) = /)VT;(v — T;(u)) dz
Q Q
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= [ @~ T@) + To - Tiw) dp.

The right hand side of the preceding relation tends to zero as i tends to infinity, since
T;(+) is odd. For the left hand side, let us define (we have omitted the dependence on
z € §) for the sake of brevity)

Eo = {lu—v| <j,]u|l <4, |v| <1},
By = {u— @) € 3.lol > i, s = {lu— ()| < g, lol i Jul > )
By = (o - Tiw)] < lul >}, B = {lo - Tu(u)| < 4 lul < isJol >,
so that QU {ju — T3(v)| > j} U{|lv = Ti(u)| > j} = By UE, U Ey = Eg U E{ U Ej. First

of all, note that V7Tj(u — Ti(v)) = 0 almost everywhere on {|u — T3(v)| > 7}, as well as
VTi(v—Ti(v)) =0 on {|Jv — Ti(u)| > j}. On Ey the left hand side is equal to

/ (a(z,Vu) — a(z, Vv))V(u — v) dz.
Eo
On E; (and on Ei with u exchanged with v), recalling that a(z,£)¢ > 0, we have

/El(a(:c,Vu) _ P\Vuds > — /é FVu ds.

By Holder inequality and thanks to the inclusion Ey C B;_;2;, we have

1 L
5 ) 0
fVudzs < | fllpe gy~ (/ |Vul? dﬂf) < e gy~ (/ [VulP dl‘) ,
B Ey Bi—j,2j

which tends to zero as i goes to infinity, thanks to (1.6.9), that is what we wanted to

prove; hence

lim sup (Ll(a(m,Vu) — f)Vudz + /Ei(a(x,v"u) - f)Vu dm) > 0.

1—>-F00

Analogously, on E, (and the same estimate can be done on Ej ), we have,

/ (a(z,Vu) — f)V(v —v)dz > ——/ a(z, Vu)Vvdz — fV(u—v)dz.
Es E, Es

Reasoning as before, the second term tends to zero as + tends to infinity since Fy C B; j,
as well as By C {i — j < |v| < ¢}. For the first term we use (1.3.1), obtaining

1
/ a(z, Vu)Vu de < co (/ (/ |[Vul? d:z:) ,
E, B {i—i<|v|<i}

L
7

(VP + kol dm)

J
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and the right hand side tends to zero thanks to (1.6.9). Summing up the results obtained
for Eo, El, E{, EQ, Eé, we have

lim (a(z, Vu) — a(z, Vo))V (u — v)dz = 0,

1—r—+co Eo

that is
/ (a(z, Vat) — a(e, Vo)) V(u — v) de = 0,
{fu=vl<s}

for every 7 > 0. Thus, by (1.3.3), Vu = Vv ae. in Q. Now we consider, for every
i > 0, the function Tj(Tj(u) — Ti(v)), which belongs to Wy?(Q). Since Vu = Vv a.e.
in Q, it is easy to prove that, for i > 7,

| / VT (Ti(w) — Ty(v))[? dz < / IVul? dz +/ IVol? de.
Q (i—j<|ul<i} (i—j<v]<i}
By (1.6.9) the right hand side of the previous inequality tends to zero as : goes to
infinity; in particular, it is bounded uniformly with respect to ¢. Therefore the function
T;(Ti(u)—T;i(v)) is bounded in Wy P(Q) uniformly with respect to 7. Since this function
converges to Tj(u — v) almost everywhere in 2 as i tends to infinity, we conclude that
T;(u — v) belongs to W, ?(Q) and that

/ |[VT;(u —v)|Pdz = 0.
Q
Hence, Tj(u —v) =0 a.e. in Q, for every j > 0, and, in conclusion, v = v. 1

Remark 1.6.7. As a matter of fact, the proof of Theorem 1.6.6 shows that formulation

(1.6.2) relative to p + F characterizes uniquely the function u.

Regarding the stability of the entropy solutions with respect to the datum u 4 F,
we have the following result, which slightly improves Theorem 1.2 of [42]. We remark
that in this framework the “natural” continuous dependence concerns not the solutions

themselves, but their truncations.
Theorem 1.6.8. Let ux € M} (Q) and Fy € W12 (Q) be such that

pr — p weakly in My(Q),

, (1.6.10)
Fy — F strongly in W™ (Q);
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let ug be the entropy solutions of (1.8.7) relative to py + Fy, and let u be the entropy
solution of (1.8.7) relative to p+ F. Then

lim Tj(ug) = T;(u) strongly in WS'P(Q),

k—roco

for every 3 > 0.

Proof. By Remark 1.6.3 we have, for every 7 >0 and every ¢ € Wol’p(Q) NL=(Q),

| /Qa(sc,Vuk)VTj(uk——ga) dz = /QTj(uk—cp) dpk + (Fr, Tj(uk — 9))- (1.6.11)

Taking ¢ = 0 we can reason as in Theorem 1.5.3 and get
/ VT (ur)? do < (j + 1)M. (1.6.12)
Q

As we have already seen in the proof of Theorem 1.5.3, it implies that there exist a
subsequence, still denoted by ux, and a function w* such that
u* € T 7(9),
uy converges to u™ a.e. in {},
_ N (1.6.13)
T;(ux) converges to T;(u*) weakly in Wy**(Q2), for every j > 0,
Vuy converges to Vu* a.e. in 2,
with u* satisfying (1.6.12).
Let us now take ¢y = Th(ug) — Tn(ur) + Tn(u*), h > n, and j = 2n in (1.6.11) in

order to have:
fQ (a(z, Vir) — )V Ton(ur — Ta(u) + To(ug) — Tu(u*)) de
_ /Q Ty (i — T (u) + Ta(ur) — Ta(u®)) dus.

Henceforth, thanks to (1.6.13), we can repeat the proof of Theorem 1.6.5 with uj instead

of un; thus we find, in the same way, that, for every 7 > 0,
T (ur) — Tj(u*) strongly in W, ().

Moreover, this convergence allows us to deduce that

a(z,VTj(ug)) = a(z, VT;(u)) strongly in L7 ()N
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therefore, if we observe that

/ﬂ CL(:C, Vuk)VTj(uk -_— (p) d:z: = L a(w, VTJ'_,_“@HLOQ(Q)(uk))VTj(uk - L,O) Cl:l:,

we can pass to the limit in (1.6.11) as k tends to infinity and get:

/ a(z, Vu*)VTj(u* — p)dz = / Ti(u* — ) du + (F, Tj(u* ~ 9)),
Q Q

for every ¢ € Wol’p(Q) N L=(§)) and every 7 > 0; this means that u* = u, thanks to
Remark 1.6.7; this implies that the whole sequence Tj(u;) (and not only a subsequence)

converge to Tj(u). _ v U

Remark 1.6.9. By the previous theorem we deduce that the entropy solution u of
(1.3.7) is the unique solution of the equation (1.6.3) which can be obtained as limit of

solutions u, to the problem
Aup = frn in Q
Up =0 on 0f2,

where f, is a sequence of smooth functions (e.g., in C°(2)) converging to p in the
weak topology of M;(£2). Hence, when p = 2 and the operator is Lipschitz continuous

and strongly monotone, u coincides with the unique reachable solution.

Furthermore, we have the following comparison principle about the entropy solu-

tions.

Theorem 1.6.10. Assume (1.8.1), (1.3.2), (1.3.8), and (1.8.4). For i = 1,2, let u;
be the entropy solution of (1.8.7) relative to p; € Mg,o(ﬂ)- Suppose that py < o, then

uy < ug almost everywhere in ).

Proof. The result is well known when p; € W™1#(Q) N My(Q). Using Lemma 1.2.4

and Theorem 1.6.8 we can conclude. 1

Finally, we have to say that the notion of renormalized solution (see [46]) was extend-
ed in [29] to the case of a general measure p € Mp(2). In that paper the authors proved
the existence of such a solution, and introduced other equivalent definitions, which show
that all the renormalized solutions are constructed by approximating, in'an appropriate
way, the measure p (with respect to the *-weak convergence of measures), so that they
are reachable solutions. In particular, when p = 2 and the operator is Lipschitz contin-
uous and strongly monotone, this implies that the renormalized solution is unique and

coincides with the unique reachable solution.
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Definition 1.6.11. Assume that a satisfies (1.3.1), (1.3.2), (1.3.3), (1.3.4), and let u
be a measure in M;(Q). We say that a function u € 75 P(Q), satisfying (1.5.4) for every

J > 0, is a renormalized solution of problem (1.3.7) if
/ a(z, Vu)V(h(u)p) dz = / h(u)e dpg +h(+oo)/ © d/,a;"—fh(—oo)/ wduy, (1.6.14)
Q /o Q Q

where @ € T/Vol’q’ (Q, for every ¢ < &5, h € WH*(IR) such that A’ has compact support
in R. Here h(+o0) and h(—oo) are the limits of h(s) at +oo and —oo respectively
(note that h is constant for |s| large).

Remark 1.6.12. Asin (1.6.1), every term in (1.6.14) is well defined.



Chapter 2
Linear obstacle problems with measure data

2.1. Definition of the problem

In this chapter we consider the obstacle problem with measure data for a linear
differential operator A, for which we prove existence and uniqueness of solutions together
with some stability results. '

Consider first the objects that won’t change throughout the chapter.

Let Q be a regular subset of IRY (for the notion of regularity see Definition 1.4.2).

Let Au = —div(A(z)Vu) be a linear elliptic operator with coefficients in L*°(02),
that is A(z) is an N x N matrix satisfying (1.4.1).

Consider a function % : £ — IR, and define the sets

Jy:={z € T2 2> ¢ qe inQ}, Ky:={z¢ H;(Q): z>1 qe. inQ}.

We recall that, for any datum F € H~!(Q) the Variational Inequality with obstacle ¢

u € Ky,
(Au,v —u) > (F,v — u), (2.1.1)
Yo € Ky

is denoted by VI(F,1), and makes sense whenever the set Ky is nonempty.

We want to arrive to a suitable definition of obstacle problems with measure data.
As we have seen, we can not use the variational formulation (2.1.1), because the term
(14,v — u) may not be defined. Also the use of the characterization (0.0.2) is not possible
because this, in general, does not determine the solution of the obstacle problem.

To avoid these problemé we give the following definition, in which, roughly speaking,
we choose the minimum element among those functions v, above the obstacle, such that
Av — 1 is not only nonnegative in the sense of distributions but is actually a nonnegative
bounded Radon measure, and the equation is solved in the sense of Stampacchia.

We shall use the notations of Section 1.4. Hence, in the sequel we shall shortly say
that u, is a solution of the equation Au = u or that u, is a solution of the problem

Au=p inQ
u=0 on 09,

when p is a measure in M3(Q2) or an element of H™1(£).
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Definition 2.1.1. We say that u € Jy is a solution of the Obstacle Problem with

datum p and obstacle 9 if
1. there exists a nonnegative bounded Radon measure A € M;(Q) such that

U= Uy + U
2. for any v € M} (Q), such that v =u, +u, belongs to Jy, we have
u<wv g.e. in .

‘The positive measure A, which is uniquely defined, will be called the obstacle reac-
tion relative to w. This problem will be shortly indicated by OP(u,)..

To show that for any datum g there exists one and only one solution, we introduce
the set v
Fop):={vety: e MF(Q)st.v=u,+u,}.

We will prove that Fy(u) has a minimum element, that is a function u € Fy(u) such
that u < v qe. in for any other function v € Fy(u). This is clearly the solution
of the Obstacle Problem according to the Definition 2.1.1. If this solution exists it is
obviously unique. ' '

To ensure that Fy(i) is nonempty, we require that

dp € Mp(Q) : u, > ge. in (2.1.2)

thus, for every p € My(£2), the set Fy(u) contains the function v+ +u,.

The proof of existence will be first worked out for the case of a nonpositive obstacle
(Section 2.2): this is based on an approximation technique. The obstacle reactions
associated with the solutions for regular data are shown to satisfy an estimate on the
masses, which allows to pass to the limit and obtain the solution in the general case.

Then the proof is easily extended to the case of general obstacle (Section 2.3)

2.2. Nonpositive obstacles

Throughout this chapter we assume the obstacle to be nonpositive. In this frame

both Jy and Ky are nonempty.
We begin with a preparatory result which will be proved in two steps.
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Lemma 2.2.1. Let ¥ <0 an let p € Myp(Q) N H1(Q) such that u* and p~ belong
to H™1(Q). Let u be the solution of VI(u,) and X the obstacle reaction associated
with w. Then

M) S e 1o

Proof. Observe that the function u,+ is nonnegative and hence greater than or equal
to 1, belongs to H(£2), and

Auge —p >0 inD(Q).

By (0.0.2) we have
u=uy +ux <uyt+ qe in Q,

and, by linearity,
‘ ux Suy- qe in Q. (2.2.1)

We will prove that this implies
A@) < () (2.2.2)

which is equivalent to the thesis.
To prove (2.2.2) we note that, thanks to (2.2.1)

/wd/_f = (A"w,u,-) > (A*w,uy) = /wd)\, (2.2.3)
Q Q

for every w € HE(Q) N L*®(£), such that A*w >0 in D'(Q).
It is now easy to find a sequence w, in H(Q) N L*°(R) such that w, /1 q.e.
in Q, and A*w, >0 in D'(Q). For instance, one can choose as w, the A*-capacitary

potential (see [36], chapter 9) of Jn,, where J, is an invading family of compact subsets

of Q.
Passing to the limit in (2.2.3), as n — co, we obtain (2.2.2). 1

Theorem 2.2.2. Let ¢ <0 and p € My(Q) N H™Y(Q). Let u be the solution of
VI(u,) and let X be the obstacle reaction relative to u. Then

M Ata) < 17 o )- (2.2.4)
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Proof. Thanks to Lemma 3.3 in [28] there exists a sequence of smooth functions f, such
that

1
[|fn = pllz-1(0) < ~ and || fallzi@) < Hullam@)-
Thanks to the next Lemma, the sequence f, satisfies
FE = uF #-weakly in My(Q) and |[£5][11(0) = 1185 |l mu@)-

Let u, and u be the solutions of VI(f,,®) and VI(u,), respectively. We know
from the general theory (see, for instance, [38]) that un, — u in Hj(Q2). So the measures

An and )\ associated with u, and u, respectively, satisfy
A = X in H7H(Q),

HAnllmoc) < 1 Fn 121
So A\p = A x-weakly in M,(§2), and we get the inequality (2.2.4). L]

The following lemma is quite simple, but is proved here for the sake of completeness.
Lemma 2.2.3. Let pn, and p be measures in My(Q2) such that

pn — p *-weakly in My(Q) and ||pnll amoc0) = 4l Mmee)

then
/‘Li — ,J,+ and p, — p= x-weakly in Mb(Q),

and

il

e a2y = 18T o) and llug lawe) = 167 T moc)- (2.2.5)

Proof. Observe that
HIL’['?:?!,:HMb(Q) < HH"HMb(Q)‘

so, up to a subsequence,
pt = aand p, — B *-weakly in My(Q);
where a — # = u. Hence, we can compute
el my ) + 11BN oy < Hminf ||l || s, o) + Uminf || | a0

< liminf || pn || amy2) = [l Ma(2);
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from which we easily deduce that o = pu*, 8 = p~. Therefore the whole sequences [Tny
and p converge to u* and p~ respectively. Moreover, as

, N e -
1;:3) sup [l ooy + Limnf [l gy ()

< nEI_f_loo”l’&n”Mb(Q) = |lellmae) = 1T T + 127 Tat(e)

we obtain easily the first relation in (2.2.5). The second one is obtained in a similar way.

O

' 'In order to proceed we need to prove that when both the classical formulation for
the obstacle problem and the new one, given in Definition 2.1.1, make sense then the
solutions, when they exist, are the same. At present we prove it for a nonpositive obstacle,

and we will prove it in the general case in Section 1.3.

Lemma 2.2.4. Let u be an element of My(Q)NH™1(Q) and ¢ a nonpositive function;
then the solution of VI(u,) coincides with the solution of OP(u,¢).

Proof. Let u be the solution of VI(u,1%) and X be the corresponding obstacle reaction.
Thanks to Theorem 2.2.2 it is an element of M(Q); so u € Fy(p). Take v an element
in Fy(u), then v=u, +u,, with v € MF(Q),and v > ¢ ge in Q.

Consider the approximation of v, given by ATy(u,) =: vx. This is such that
vp — v *-weakly in My(Q) and vy € M (Q) N H™1(Q) (see Proposition 1.5.11). Set
vk = Uy + Uy, = v, + Tr(u,). Since trivially Tr(uy) S uy gee. in , we have

vg v g in Q.
Denote now the solutions of VI(u,¥x) by uk, where ¢ are the functions defined by

Yr 1=t A vg.

From ¥ < trs1 g.e. in Q it easily follows that up < ugy1 g.e. in Q. Then there exists
a function u* such that ux 2 u* q.e. in . '
So, passing to the limit in ux > ¥% q.e. in  we obtain u* > ¢ q.e. in Q.
Moreover it is easy to see that |luk|/g1(q) < €. So, thanks to Lemma 1.2 in [27] we

get that u* is a quasi continuous function of H}(Q) such that

up — u* weakly in Hj ().
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Moreover it can be easily proved that u* satisfles the variational formulation 2.1.1; thus,
u* =u q.e. in Q.

Naturally, from the minimality of uj, we deduce
up < v q.e. in Q.

so, passing to the limit as & — 400 we conclude that u < v q.e. in . Since this is
true for every v € Fy(p), the function u is the minimum in Fy(p), i.e. the solution of

OP(u, ). - L

We are now in position to prove that, for every p € My(Q) and for every ¢ < 0,

there exists a solution to the Obstacle Problem according to Definition 2.1.1.
Theorem 2.2.5. Let ¢ <0 and u € My(Q). Then there ezists a solution of OP(u, ).
Proof. Consider the function u, and define
ATk(up) =t p.
We know from Proposition 1.5.11 that
pr — p *x-weakly in Mp(§2)

and px € H71(Q).
Let u; be the solution of VI(ug,?) and denote

Auk — HE = )\k,
which we know from Theorem 2.2.2 to be a measure in M; () such that

Akl Moy < 1 I M) - (2.2.6)

Up to a subsequence Ay — A x-weakly in M;(Q), and, thanks to Theorem 1.4.7,
ur — u strongly in W&’Q(Q), with v = u, + uy, and also Th(ug) — Th(u) weakly in
HZ(Q), for all & > 0.

Now the set

Kryp) ={v € H3(Q) : v>Tu(y) qe. in Q}
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is closed and convex in H(f), so it is also weakly closed. Since, clearly, Th(ux) =
Th(1) q.e. in Q, passing to the limit as k& — +oo we get that also Th(u) € Ky,
hence Th(u) > Th(¥) q.e. in Q for all A > 0. Passing to the limit as h — 400 we get
uw>1 ge in Q. In conclusion we deduce u € Fy(u).

To show that u is minimal, take v € Fy(u) so that v > ¢ and v =u, + uy.

Let v = u,, + U, so that vp = Tr(u,) +uy and vx — v strongly in Wa ().

Since 1 < 0, we have that vy > % qe. in Q. As uy is the minimum of Fy(pr),
by Lemma 2.2.4, we obtain ux < v a.e. in  and in the limit v <v a.e. in 2. Hence

u solves OP(u,). _ tl

From formula (2.2.6) we see that to extend (2.2.4) to the case of u € M;(2) we just
need to show that

N ey = e llas (s

this is proved in the following Proposition.

Proposition 2.2.6. Let 1 <0 and p € My(Q). Let u be the solution of OP(u, 1)

and )\ the corresponding obstacle reaction. Then

A M) < T M)

Proof. What we need is implicit in [14]; we recall the main steps of that proof, having
a closer look to the constants involved. ;

Let f, be a smooth approximation of u in the *-weak topology of M;((2), such
that ||[fallzrce) < llella(e), and let u, be the solutions of

{Aun = fn in HY(Q)
un, € H ().

Consider, for § > 0, the Lipschitz continuous functions hs defined by

hs(s)
hs(s)

Pl=2  EE<|s|<h+S,

1 if |s| < &
0 if |s| >k+46

I
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and S5 defined by

Ss(s) = if [s| <k
Ss(s) =sign(s) if|s|>k+48
St(s) = - k< |s| <kt

s
Using the equation, we can see that —div(hs(un)A(z)Vuy,) belongs to L'(Q) and
that

/ | — div(hg(un)A(m)Vu‘n)] dz
< [ 1l () + 5§ () + 5 (un) d
Q

- / Fuldo < il iy (-
Q

This implies
luellamsey < Hellma),

(recall that ur = ATk (u,)) and we conclude thanks to Lemma 2.2.3. L]

2.3. The general existence theorem

We come now to prove the existence and uniqueness of the solution to the Obstacle
Problem, without the technical assumption that the obstacle be nonpositive. From now
on the only hypothesis will be (2.1.2).

Theorem 2.3.1. Let ¢ satisfy (2.1.2) and let p € My(Q). Then there ezists a (unique)
solution of OP(u,). Moreover, the corresponding obstacle reaction X\ satisfies

M) < 1B =) [l Mmy(0)- (2.3.1)

Proof. 1t is enough to show that we can refer to the case ¢ < 0. Indeed define

(JD:ZQL_U'FH
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which is, obviously, nonpositive.

By Theorem 2.2.5 there exists v minimum in F,(u — p), and we prove that the
function u := v + u, is the minimum of Fy(u).

Trivially u > % and, denoted the nonnegative obstacle reaction associated to v by
\, we have u = v 4+ u, = u, + ux, which shows that u is an element of Fy(u). Let us
~ observe also that A satisfies (2.2.1), which means

M o) < 11 = )7 [las)-

Consider now a function w € Fy(u). By similar computations we deduce that w — u,
belo'hgs to F,(u— p) and, by the minimality of v, v < w— u,, so that we conclude

u<w qe. in,and A is the obstacle reaction associated to u. Ul

2.4. Some stability results

In this section we want to show some results of continuous dependence of the solu-
tions on the data.
The following proposition concerns the problem of stability with respect to the ob-

stacle, which, however, is not true in general (see Remark 2.7.2).

Proposition 2.4.1. Let 9, :Q — R be obstacles such that

Yp <% and Y, — Y g in§),

¥ satisfies (2.1.2), and let u, and u be the solutions of OP(u,v¥n) and OP(u,v),
respectively. Then
Up — U strongly in Wol’q(Q).

We also obtain that un, — u g.e. in Q and that Ty(un) = Te(u) weakly in H3(Q), for
all k>0.

Proof. Since u is trivially in Fy, (#) for any n we have

up <u g in (2.4.1)

To every minimum u, there corresponds a nonnegative obstacle reaction A, , satis-
fying inequality (2.3.1), so we obtain that, up to a subsequence,
Ap — A x-weakly in Mp(§2)
Un = @ strongly in W5 '4(Q)
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and

uzu#+u5\.

Hence, from (2.4.1), & < u a.e. in Q, and also q.e. in 2. On the other side, we have to
prove that @ > q.e. in , in order to obtain 4 € Fy(u), and so u <4 g.e. in .

First consider the case when ¥, < ¥p4+1 q.e. in Q. ‘

From this fact it follows that up < upt1 qe. in Q, and then Tr(un) < Tr(unt1)
g.e. in Q, for all k > 0. Hence this sequence has a quasi everywhere limit. On the other
hand, the fact that g+ Ap — g+ X *-weakly in M,(Q). implies that Tk(un) — Ti(4)
weakly in H}(Q) and then, by Lemma 1.2 of [27], Tx(un) — Tx(4) q.e. in 2. Since this
holds for all k& > 0 we get also

Up — U q.e. in £,

since u, and 4 are finite up to sets of capacity zero (see Chapter 1). Then, passing to
the limit in u, > ¥, qe. in Q) weget & > qe in Q.

p— jnf ,zb :3 4 .
SL n - > k) ( . 2)

so that ¢, /¢ q.e in§ and ¢, < ¥p qe in Q. If @, is the solution of OP(u,¢,)
it is easy to see, using Definition 2.1.1, that @, < u, <u q.e. in 2. Applying the first
case to U, and passing to the limit we get u, — u q.e. in Q.

By the uniqueness of the function u, the whole sequence u,, converges to u. L]

As for stability with respect to the right-hand side, we will show later that in general

it is not true that if

fn — p *-weakly in M;(Q)

then

un, — u strongly in Wy*?(Q),

where u, and u are the solutions relative to u, and p with the fixed obstacle 9.

However we can give now the following stability result.
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Proposition 2.4.2. Let pn and p be measures in My(Q2) such that
pn — p strongly in Mp(82),

then
Upn — u strongly in W3(Q)

where u, and u are the solutions of OP(un,v) and of OP(u,%), respectively.
Proof. Let A, be the obstacle reactions associated to u,, then

[Anllre) < (s = £) " a0

so, up to a subsequence,
An = X x-weakly in M,(Q)

and
Un — @ strongly in Wy 4(Q)
Tr(un) = Tr(2) weakly in H3(Q), Vk >0
where @ = u, + uj.

As Ti(un) > Tx(¥) q.e. in Q for every k > 0, and for every n, we have Ty (i) >
Ti () q.e. in 2 for every k> 0.

Passing to the limit as k — 400 we obtain that @ belongs to Fy(u).

Let v € Fy(u), with v the associated measure. Consider now v, the Stampacchia
solution relative to (n := pin + (tn — )~ +v. Since (, — p+ v strongly in M;(Q2), the
sequence v, converges strongly in W3 4(Q) to v.

Moreover v, > v > % q.e. in £; hence v, € Fy(pn), then up < vy qee. in 2, and,
in the limit,

@ <wv a.e in,

and hence also q.e. in 2.
By the uniqueness of the function limit, the whole sequence u, convergesto u. [l

Remark 2.4.3. Thanks to this last result we can say that the solutions obtained in
this paper coincide with those given by L. Boccardo and G.R. Cirmi in [5]-[6] when the

data are L'(Q) functions.

As said above we give now the counterexample showing that in general there is not

stability with respect to *-weakly convergent data.
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Example 2.4.4 Let © = (0,1)" with N >3, A=—A and ¢ =0.
The construction follows the one made by D. Cioranescu and F. Murat in [18].

For each n € IN, divide the whole of © into small cubes of side E . In the centre of
n

N
1\ ¥=2
2n
In each cube define w, to be the capacitary potential of B, with respect to B L

each of them take two balls: B L, inscribed in the cube, and B,., of ray rn, =

extended by zero in the rest of the cube.

Hence

" Aw, = pin,
with

tn — 0 both weakly in H ™' (Q2) and #-weakly in M;(Q).

(see [18]). Thus wy, — 0 weakly in Hg(Q).

Let u, be the solution of VI(un,0). Using w, as test function in the Variational
Inequality we get ||un||g1(q) < €. By contradiction assume that its H(Q)-weak limit
1s zero.

Consider the function z, := u, + w, which must then converge to zero weakly in
HL(Q). Obviously zn, > wy q.e. in Q and then z, > 1 on |J By, . Hence if we define

the obstacles
1 in UBrn

0 elsewhere,

Y 1=

we have z, > t,. Call v, the function realizing

min |Vo|? dz
Uzwn ‘
vGHé(Q) Q

(vy, solves VI(0,v,)). A simple computation yields
Az, = —Au, — Aw, > 0.
Then z, > vy > 0, so that
v, = 0 weakly in H}(Q).

But this is not possible because a I'-convergence result contained in [15] says that there

exists a constant ¢ > 0 such that v, tends to the minimum point of
min / (Vo2 dz + c/ |(v — 1) 2 dz
UEH_é(Q) Q Q

which is not zero.
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2.5. Comparison with the classical solutions

As announced, in this section, we want to show that the new formulation of Obstacle
Problem is consistent with the classical one.

To talk about the equivalence of the two formulations it is necessary that both make
sense. So we will work under the hypothesis that p € My(Q) N H~1(Q) and that the
obstacle 1 satisfies

Jdz € HY(Q) st 2> qge. in Q, (2.5.1)
3pe MF(Q) st u, >0 qe. in Q, . (2.5.2)

which ensure that K, and Jy are nonempty.

Later on we will discuss these conditions in deeper details. Actually, in the next
lemma we will consider a stronger hypothesis on the obstacle, but we will see in Remark
4.4.1 that it turns out to be equivalent to (2.5.1) and (2.5.2).

Lemma 2.5.1. If there ezists a measure o € My(Q) N H71(Q) such that u, >
Y g.e. in Q, then the solutions of VI(u,) and of OP(u,v) coincide.

Proof. Let u be the solution of VI(u,). Subtracting u, to it, and with the same
technique as in the proof of Theorem 2.3.1, we return to the case of negative obstacle

and we can use Lemma 2.2.4. U

Theorem 2.5.2. Under the hypotheses (2.5.1) and (2.5.2), the solutions of VI(u,)
and of OP(u,v) coincide.

Proof. As a first step consider the case of an obstacle bounded from above by a constant
M. The measure pys = ATy (u,) isin My(Q) N H™1(Q) and Ty (up) > ¢ so that we
are in the hypotheses of the previous lemma.

If, instead, % is not bounded, we consider ¥ A k, and, with respect to this new
obstacle, conditions (2.5.1) and (2.5.2) are satisfled by the function Tk (u,).

Hence we can apply the first step and say that uy, solution of VI(u, Tk (%)), is also
the solution of OP(u, Ti(%)).

On the other hand, from the classical theory we know that the sequence u; tends
in H3(Q) to the solution of VI(u,%), while from Proposition 2.4.1 uj converges in
Wy9(Q) to the solution of OP(u,). O
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Remark 2.5.3. Let us assume that ¢ satisfles (2.5.1) and (2.5.2). Then we can
consider the solution w of VI(0,%), and the corresponding obstacle reaction o, which
is a nonnegative element of H ~1(Q), hence a nonnegative Radon measure. Thanks to
Theorem 2.5.2, w is also the solution of OP(0,%), and by (2.3.1), o € M;(2). Thus,
condition (2.5.2) is satisfied by p =0 € Mp(Q) N HHQ).

A little attention is required in treating conditions (2.5.1) and (2.5.2). Each one
is necessary for the corresponding problem to be nonempty, but together they can be
somewhat weakened.

“First of all we underline that no one of the two conditions is implied by the other.-

This is seen with the following examples.

Example 2.5.4. Let Q@ =(—1,1) CIR and let A= —A = —u". Take ) € Hi(-1,1)
such that —t" is an unbounded positive Radon measure. For instance we may take
b = (1 Jal)(1 — log(1 ~ a]).

Now (2.5.1) is trivially true, and the solution of VI(0,%) is ¢ itself. If also (2.5.2)
were true, then 3 would be also the solution of OP(0,%). But this is not possible,

because, being —i" an unbounded measure, we can not write it as ux for some A €

M (@),

Example 2.5.5. Let N >3, A=-A and p = §,,, the Dirac delta in a fixed point
zo € (2. :

Take 1) = us,, , the Green function with pole at zg. Then (2.5.2) holds, but if also
(2.5.1) held we would have ¢ € L2"(Q) which is not true.

On the other side we already saw in the proof of Theorem 2.5.2 that if we add to
condition (2.5.2) the assumption that the obstacle be bounded, this is enough for (2.5.1)
too to hold.

Moreover, if (2.5.1) is satisfied and we assume that the obstacle is “controlled near
the boundary” also condition (2.5.2) is true:

Assume that (2.5.1) holds and there exists a compact J C £, such that ¢ <0 in
Q\ J. Then also (2.5.2) holds. Indeed just take as p the obstacle reaction corresponding
to u, the solution of VI(0,%). Then

suppp C J,

and p € M (Q).
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A finer condition expressing the “control near the boundary” is

(2") 3J compact C Q and 37 € ME@Q)NHHQ) & ur > in Q\ J.

In conclusion we want to remark that, in general, in classical Variational Inequalities,
the obstacle reaction associated to the solution is indeed a Radon measure, but it is not
always bounded, as Example 2.5.4 shows.

On the other side, in the new setting, the minimum of Fy(u) is not, in general, an
element of H3(Q).

Hence the two formulations do not overlap completely and no one is included in the

other.

2.6. Approximation properties

As we have seen so far, if we have a sequence p, *-weakly convergent to u, we can

not deduce convergence of solutions, but, from (2.3.1) we have

HArll M) S H(n — 2) 7 M@)o

where the )\, are the obstacle reactions relative to the solutions u,. So, up to a subse-

quence,

An = A x-weakly in M()

and

Up — @ =u, +u; strongly in Wg’q(ﬂ).

With the same argument used in the proof of Theorem 2.2.5 we can show that 4 >
Y qe. in . Hence @ > u, the minimum of Fy(u).

On the other hand, in Theorem 2.3.1 we have obtained the solution of OP(u,v)
as a limit of the solutions to OP(AT,(uu—p) + p,¢). We remark that if p belongs to
Myp(Q) N HE(Q) then the approximating problems are actually Variational Inequalities.

Thanks to these two facts, when p € My(Q) N H~1(Q2), we can characterize the
solution u of OP(u,%) by approximation with solutions of Variational Inequalities with
data in V: ‘

1. For every sequence n in My(Q), with p, — p *-weakly in My(2), we have

s- W) - lim w2 w.
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2. There exists a sequence i, € V', with g, — p *-weakly in M;(Q) such that

s-Wd(Q) - lim up, =u

n—rco
In other words:

n—-+oo

u = min{s-Wé’q(Q) - lim un}

where the minimum is taken over all u,, solutions of VI(un,?), with g, € Mp(2) N
H™Y(Q), pn converging to 4 in the x-weak topology of M;(R).

2.7. Measures vanishing on sets of capacity zero

We show now an example (suggested by L. Orsina and A. Prignet) in which the so-
lution of the Obstacle Problem with right-hand side measure does not touch the obstacle,

though it is not the solution of the equation.

Example 2.7.1. Let N > 2, Q be the ball B;(0), and A = —A. Take the datum x a
negative measure concentrated on a set of capacity zero and the obstacle 1) negative and
bounded below by a constant —h. Let u be the solution of OP(u, ), then u = u,+uy.
We want to show that A = —pu.

First observe that, for minimality, v < 0; on the other hand v > —h, so that u =
Tr(u) and hence u € H3 (). This implies that the measure g+ is in My (Q)NH (),
which is contained in M, o(€2), the measures which are zero on the sets of capacity zero.
In other words A = —u + X, with A a measure in My 0(82), and so positive, since A
is positive. Then u > 0, and finally v = 0. Thus the solution can be far above the

obstacle, but the obstacle reaction is nonzero, and is exactly —u.

Remark 2.7.2. This example shows also that in general there is no continuous depen-
dence on the obstacles. Indeed, if A — 400, then the solution of OP(u, —h) is identically

zero for each h, while the solution of OP(u,—00) is u,.

In the next chapter we will see that, if © € M;o(Q), then the above phenomenon
is avoided.
Consider, as datum, a measure in My o(§2). In this case we can use Theorem 1.2.3:

for any such measure u there exists a function f in L'(2) and a functional F' in
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M(Q)NH1(Q), such that 4 = f+ F. If, in addition p > 0, then also f can be taken
to be nonnegative.

We want to show that also the obstacle reaction A belongs to M o(f2) and that in
this particular case we can write our Obstacle Problem in a variational way, that is with
and “entropy formulation”. A

We begin by considering the case of a nonpbsitive obstacle.

Lemma 2.7.3. Let ¢ < 0 and let p1, ua € Mp(Q) N HYQ). Let A\ and X2 be
the reactions of the obstacle corresponding to the solutions u; and uz of »VI-(,ul,z,b) and
VI(ua,1), respectively. '

If pp < pa then Ay 2> A2

Proof. This proof is inspired by Lemma 2.5 in [30]. We easily have that u; < us.
Take now a function ¢ € D(Q), ¢ > 0, and set ‘

pe =9 A (uz —u1) € Hy(Q).
Now, using the hypothesis that p; < p2 and monotonicity of A, compute
(M,e0 — @) = (Aur, 60 — @c) — (U2,60 — ©.)
= (Auy — Aug,e0 — @e) + (A2, 80 — @e)
> & [ A@) (01 = )V + e0ayp) = (o, 00)
{ua—u1<ep}

Now, using u1 as a test function in VI(ug,%) and the fact that uy —u; > ¢ > 0 we
easily get (Ag,p.) = 0.
Since, also, —(A1,p.) < 0 we obtain

O,g) > / A@)V (11 — u2) Vo + (A, 0).
{uz—u1<ep}
Passing to the limit as € — 0 and observing that
/A(w)V(ul —u3)Veo — /A(m)V(ul —u)Ve =0,
{uz—ui<ep} {va=us}

we get the thesis. Cl
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Let us see now what can we say more if u € My (), still in the case of nonpositive

obstacle.

Lemma 2.7.4. Let ¢ <0 and let p € Myo(Q) then the obstacle reaction relative to
the solution of OP(u,%) is also in My o(Q2).

Proof. 1t is not restrictive to assume p to be negative. Indeed, if p = pt —p~, then also
pt and p~ are in My (). Hence the minimum of Fy(u) can be written as u,+ +v
with v minimum in Fy-u (—p7), and the same obstacle reaction A; and so we are in
the case of a negative measure.

Consider now the decomposition p = f + F with f < 0. And let pg :=T%(f) + F
so that pr — g strongly in Mp(Q).

Let u; be the solution of OP(uk,?). It is also the solution of VI(ug,%) so that
A € Mb,o(ﬂ) .

Thanks to Proposition 2.4.2 we have that ur — u = u, + ux strongly in Wg’q(Q)
and that A\r — )\ #-weakly in My(Q).

From the fact that gy > pr+1 and from Lemma 2.7.3 we obtain that Ax < Apgq.

Hence if we define

AMB) := lim A\g(B) VB Borel set in {2,

k—roo

we know from classical measure theory that it is a bounded Radon measure, it is in
My o(Q), since all A are, and necessarily coincides with A. So A € Mpo(£2). Ul

In order to pass to a signed obstacle observe first that the minimal hypothesis (2.1.2)

becomes necessarily

do € Myo(Q) @ us > 9. (2.7.1)

Once we have noticed this, it is easy to use the result for a negative obstacle, as we did
in the proof of Theorem 2.3.1 and obtain the following result.

Theorem 2.7.5. Let v satisfy hypothesis (2.7.1), and let p be in My o(Q2). Then the
obstacle reaction relative to the solution of OP(u,v) belongs to My o(2) as well.
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Remark 2.7.6. In the previous chapter we saw that, if u € M;o(Q), then u,
coincides with the unique entropy solution of Au = . Hence, by Theorem 2.7.5, we can

‘characterize the solution u of OP(A, ) as the minimum element of the set
{v € Jy : v entropy solution of Au = u+ v, with v € MIO(Q) 1.

Thanks to this fact, the theory developed in the next chapter is consistent with this one
just treated.






Chapter 3
Nonlinear obstacle problems

with special measure data

3.1. Assumptions and main results

In this chapter we consider the obstacle problem with measure data associated with
a nonlinear elliptic differential operator A of monotone type, mapping WaP(Q), p> 1,
into its dual W"l’p'(Q). .

As we just observed, the first difficulty in order to study obstacle problems when the
forcing term is a measure consists in giving a notion of solution to the obstacle problem,
which must be based on a suitable notion of solution to equations with measure data.

In Chapter 1 (see Section 1.6) we studied the notion of entropy solution for the

problem

Alu)=p inQ
{ u=0 on 0%, (3.1.1)

when A is a nonlinear elliptic operator of monotone type, and p is a measure vanishing

on all sets of p-capacity zero.
In this chapter  will be a bounded, open subset of RY, N > 2, p and p' two

1 1
real numbers, with 1 < p < N and I_J + 1—97 =1,and a: QxR — IRY a Carathéodory
function satisfying (1.3.1), (1.3.2), (1.3.3) and (1.3.4).

Finally, we consider a function % : Q + IR such that:
Y <u, Cp-qe. in Q, (3.1.2)

where p is an element of W12 (Q) N My(Q) and u p is the variational solution of

{A(u)::p in Q
u=20 on 99Q.

Moreover, we define the convex set
Ky:={z€Wy?(Q):2>¢ Cp-qe. in Q}.

Without loss of generality we may suppose that ¢ is Cp-quasi upper semicontinuous

thanks to the following Proposition (see Proposition 1.5 in [25]).



60 Chapter 3

Proposition 3.1.1. Let % : Q +— R satisfying

3z € Wi P(Q) such that z > 1 Cp-g.e. in Q. (3.1.3)

Then there exists a Cp-quast upper semicontinuous function J; : Q= R such that:
1. P> Cp-g.e. in Q;
2. if o: Q= IR is Cp-quast upper semicontinuous and ¢ > ¥ Cp-g.e. in Q, then
o > P Cp-g.e. in §2.

-Thus, in particular, Ky = K
We recall that, for any datum F e W-12'(Q) the umlateral problem relative to A,
F', and the obstacle ¥ (denoted by VI(A,u,1)) is the problem of finding a function u

such that
ue K s

(A(u),v —u) > (F,v —u), (3.1.4)
Yv € Ky.
This problem has a unique solution whenever Ky is nonempty.
Characterization 1. The solution u can be characterized (see, e.g., chapters II and III in
[38]) as the smallest function in Wy P(Q), greater than or equal to %, such that

{A(u) —F=X inQ (3.1.5)

u=20 on 09,

for some nonnegative element \ of W12 (Q).
Characterization 2. Finally, when the obstacle 1 is Cp-quasi upper semicontinuous u is

also characterized (see, e.g., Theorem 3.2 in [1]) by the complementarity system

u € Ky,
Alu) = F+ ),
AeWLP(Q), A >0,
AM{uv—9¢>0})=0,

(3.1.6)

where the pointwise values of u are defined C}-quasi everywhere. Since A is a nonneg-
ative element of W~ (), by the Riesz Representation Theorem, it is a nonnegative
Radon measure; this explains the meaning of the last line of (3.1.6), which can be written
also as u =¥ A-almost everywhere in (.

Using the notion of entropy solution we introduce a definition for unilateral problems

with measure data quite similar to Characterization 1.
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Definition 3.1.2. We say that u is the solution of the Obstacle Problem with datum .
p € Mj () and obstacle ¢ (denoted by OFo(4, u,4)) if

1. there exists a measure A € M%’”; (€2) such that u is the entropy solution of (3.1.1)
relative to u + A, and u > ¢ Cp-quasi everywhere in .

2. for any v € M{:;(Q) such that the entropy solution v of (3.1.1) relative to u+ v

satisfies v > ¢ Cp-quasi everywhere in 2, we have u <v Cp- g.e. in Q.

By definition, it is clear that, if such a solution exists, it is unique.

The nonnegative measure A, which is uniquely defined, will be called the obstacle
reaction relative to u, or the measure associated with it.

Observe that assumption (3.1.2) is satisfied if (3.1.3) holds, and there exists a com-
pact J C § such that ¥ < 0 in Q\ J. Indeed, we take as p the obstacle reac-
tion corresponding to the solution of VI(A4,0,%). Then, by (3.1.6) suppp C J, and
p € WP (Q) N My(Q). On the other hand, Example 2.5.4 shows that, in generél,
(3.1.3) does not imply (3.1.2).

In Definition 3.1.2 we have specified the formulation of obstacle problems we will
adopt in this chapter. Let us note, however, that in this definition, since v and v are
Cp-quasi continuous, it is enough to prove u < v a.e. in § to obtain also the inequality
Cp-q.e. in €.

In Section 3.3, by an apprdximation technique, we will prove the following existence

theorem.

Theorem 3.1.3. Let ¢ satisfy (5.1.2) and let p € M} (). Then there ezists a unique
solution of OPo(A,u,v). Moreover the corresponding obstacle reaction A satisfies

M Moy < (= 2) 7 | Mo (e)- (3.1.7)

In Section 3.4 we will prove also the following theorem about continuous dependence

on data.

Theorem 3.1.4. Let ¢ satisfy hypothesis (8.1.2), let pn, p € M%”O(Q) and A\, and \
the measures associated to the solution u, and u of OPo(A, pin, %) and OPy(A, p,),
respectively. If pn — p strongly in My(Q), then A\, — X strongly in My(Q). Moreover,
for every k >0, Ti(un) converges to Ty(u) strongly in WaP ().
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Remark 3.1.5. Under slightly stronger hypotheses on the obstacle, when the data
are L'() functions, the solutions considered in this chapter coincide, for uniqueness
reasons, with those given by L. Boccardo and T. Gallouét in [8] and by L. Boccardo and
C.R. Cirmi in [6]. Indeed, these solutions are obtained as limit of solutions of variational
obstacle problems, whose data are smooth and converge strongly in M3(£2). By Theorem
3.1.4 these solutions satisfy Definition 3.1.2.

Our setting allows us to prove the Lewy-Stampacchia inequality: first proved in [43]
it has been extended by various authors to different cases. It has become a powerful tool

for proving existence and regularity results.

Theorem 3.1.6. Let g € Mio(Q) and u be the solution of OPo(A, p,u,) (u, defined
in (8.1.2)). If we denote by X the obstacle reaction associated with u, it holds

A<(p—p)". (3.1.8)

Finally we will show that the solution found can be characterized by the complementarity

system.

Theorem 3.1.7. Let u be in Mf(Q) and ¢ satisfy (8.1.2); then the following

statements are equivalent: ‘

(1) w s the solution of OPo(A,p,9) and X is the associated obstacle reaction;

(2) u>v Cp-ge in, AE M:Z”J_(Q), u 1s the entropy solution of (3.1.1) relative to
L+ A, and

{fQ Ti(u =) dA < fo Ti(v — @) dA (3.1.9)

Yo € WgP(Q)N L=(R), Yv e T5P(Q),v > ¢;

(8) u>v Cp-ge inQ, A€ MJZ”J(Q), u 1is the entropy solution of (8.1.1) relative to
p+ A, and

u=1 A a.e. Q. (3.1.10)

Remark 3.1.8. Observe that if ¥ is Cp-q.e. upper bounded, we can consider in (3.1.9)
@ € Wol’p(ﬂ) NL®(Q), ¢ > Cp-qe. in & and v = @, so that, taking into account
that u is the entropy solution of (3.1.1) relative to p+ A, for every k > 0, u satisfies

/ o2, Vu)VTk(u — 0) do < / Te(u — @) du, (3.1.11)
Q Q



Nonlinear obstacle problems with special measure data ‘ 63

which is quite similar to the usual variational formulation (3.1.4). Formula (3.1.11) was
just obtained in [6] when the datum g is a function in L(Q2). This is an alternative
proof of the fact that a solution of OFy(A, u,) coincides with that given by L. Boccardo
and T. Gallouét in [8], and by L. Boccardo and M. R. Cirmi in [6].

At the end of Section 3.4 we will show that a solution of OFy(A4,u,9) is also a

renormalized solution of the obstacle problem, according to the definition of [49]-[50].

3.2. Preparatory results

We give a result concerning the solutions of obstacle problems in the variational

framework.

Theorem 3.2.1. Let ¢ satisfy hypothesis (3.1.2) and let u in W'l’p’(Q) N M(£2).
Let u be the solution of VI(A, %) and X be the obstacle reaction relative to u. Then
A satisfies (8.1.7).

Proof. We observe that we can consider, without loss of generality, the case of a nonpos-
itive obstacle. Suppose that we have proved inequality (3.1.7) in this case (with p =0).
Now, if ¢ is a general obstacle satisfying hypothesis (3.1.2), we consider the new obstacle
¥ —u,, which is nonpositive, and the operator B(v) = —div(a(z, Vo+Vu,)—a(z, Vu,)),
which is of the same type of A. The measure A\ associated with the solution v of
VI(B,u — p,% — u,) satisfies the inequality (3.1.7). Now it is easy to check that the
function u = v+ u, is the solution of VI(A,y,¥) and A is the measure associated with
u.

Moreover, by an approximation argument we may suppose that u* and p~ belong
to W12 () (as in Theorem 2.2.2).

The proof of (3.1.7) for a nonpositive obstacle (p = 0) consists of two steps.
Step 1. Suppose that there exists a positive number § such that ¢ < —¢ Cp-g.e. in Q.

Observe that the function u,+, solution of

{A(uw) =uT inf

Uy+ =0 on 012,
is nonnegative and hence greater than or equal to 1, belongs to Wy ?(), and

Aluy+) —p=p" in Q.



64 Chapter 3

So u < u,+ (by Characterization 1). For € > 0 let us consider the truncated function
To(up+ —u) = (uy+ — u) A €; it is nonnegative and less than or equal to €.

Let us compute (A, Te(u,+ —u)), where (-,-) is the duality pairing between WP (Q)
and W, ?(Q):

<>‘>T€(uu+ — u)) ;
= (A(u), Te(up+ — u)) — (1, Te(up+ — u))
Alu) — A+ ), Te(uyr —u)) + (07, Te(upr —u))

=
< (/-1'—7T5(u#+ - u)>7

where in the last inequality we used the monotonicity of A. Then, using the C}-quasi-

. . . . 1 .
continuous representatives of functions in Wy™*(Q), we can write

/Ts(uu-n- —u)dA < / To(uy+ —u)dy™.
Q Q

- By the positivity of the measures A and 1~ and the properties of the truncated function,
we deduce that

Myt —u > £}) < 4 (9).

When ¢ tends to 0, the previous formula becomes
AH{up+ —u > 0}) < p™(Q).

Now, if we prove that A({u,+ = u}) = 0 we get the result. It suflices to observe that
A{uy+ =u}) < A({u > 0}) < M{u > 9}), which is zero thanks to (3.1.6).
Step 2. Suppose only that ¢ <0 Cp-q.e. in Q.

Let us define, for all § > 0, the sequence of functions s := % — ¢, and consider
the solutions us of VI(A, u,v¥s). If we call A\s the measures associated with ug, by the
previous step we get As(Q2) < u7 ().

As § tends to zero the solution us tends to u strongly in Wy ?(Q), hence \s tends
to A strongly in W~1%(Q), and this implies M(Q) < p=(9). O

We compare now the two problems VI(4,p,¢) and OPy(A,u, %) when the forcing
term p is an element of WL (Q) N My(Q).
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Proposition 3.2.2. Let u be an element of W“l’p'(Q) N Mp(2) and let o satisfy
(8.1.2); then the solution of VI(A,u,) is the solution of OPo(A, 1, ).

Proof. Let u be the solution of VI(A, u,%) and X be the corresponding obstacle reaction,
which is a nonnegative element of W12 (Q). Thanks to Theorem 3.2.1 it belongs to
Mp(£2), hence to M%’,’J(Q). Thus u is the entropy solution of (3.1.1) relative to 1+ A.
Take v > ¢ Cp-g.e. in , v the entropy solution of (3.1.1) corresponding to u + v,
where v belongs to Mf”g' (©). We want to prove that u < v almost everywhere in (.

Consider v an approximation of v (see Lemma 1.2.4 and Remark 1.2.5):
vy € WP (Q) N My(Q), vk 20, v /v sfrongly in My(Q);

and vy, the solution of (3.1.1) corresponding to u + vg. Thanks to Theorem 1.6.10 the
sequence vy is nondecreasing and tends to v in the sense of Theorem 1.5.16. Thus, in
particular, vz tends to v Cp-q.e. in Q. Let ¢y = ¢ A v; and denote the solutions of
VI(A,p, %) by ug. Naturally, from the minimality of ug (see Characterization 1), we

deduce

ur < v a.e. in .

Since up < ugt1 Cp-qee. in 2, ug converges to a function u* Cp-q.e. in . Thus,
u* > ¢ Cp-qe. in Q. It is easy to check that w; is bounded in Wg’p(Q); thanks
to Lemma 1.2 in [27], u* is (the Cp-quasi continuous representative of) a function of
WEP(Q) and uy converges to u* weakly in Wy'?(Q). Moreover, it can be easily proved
that u* satisfies the variational formulation (3.1.4) and, consequently, u* coincides with

u. Hence, passing to the limit, we conclude that v < v a.e. in Q. ]

Remaining in the variational framework we state a result that generalizes Lemma
2.7.3 to the nonlinear operator A. We omit the proof, because we may use the same
tools as in the linear case. In the next section we will extend it to general measures in

MEo(0).

Lemma 3.2.3. Let ¢ satisfy (9.1.2) and let py, pa € WHP(Q) N My(Q). Let
A1 and Ay be the reactions of the obstacle corresponding to the solutions ui and uy of

VI(A, p1,%) and VI(A,ug,), respectively. If py < pa, then Ay 2 Ag.
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3.3. Proof of the existence theorem

In this section we will prove Theorem 3.1.3; to simplify the exposition, it is convenient

to divide the proof into various lemmas.

Lemma 3.3.1. Let ¥ satisfy (8.1.2) and let p, € Mﬁjo(ﬂ) be a nondecreasing sequence
of measures converging to p strongly in My(2); suppose that, for every n, problem
OPo(A, pin,¥) has a solution un and let A, be the measure associated with it. If A\,
converges to X\ strongly in My(S2), then there ezists a solution u of OPo(A, ), and

\ 1is the obstacle reaction relative to u.

Proof. First we observe that y and A belong to MF ((2), by the strong convergence of
prn and A, in M;(Q). Now we can use Theorem 1.5.16 about continuous dependence
of entropy solutions: for every k > 0, the sequence Tj(u,) converges to Tx(u) in the
strong topology of Wa?(Q), u being the entropy solution of (3.1.1) relative to u + A.
The strong convergence in WaP(Q) implies that, up to a subsequence, still denoted by
Un, Tk(un) converges to Ti(u) Cp-q.e. in ; thus Te(u) > Tr(¥) Cp-q.e. in Q, and,
letting k tend to infinity, u > ¢ Cp-q.e. in Q. Let us take now the entropy solution v
of (3.1.1) relative to p + v, with v in Mé’:g’(ﬂ), and assume that v > ¢ Cp-q.e. in Q.
Since p > pp we can write pt+v = pin + vn, with v, in Mé’”;—(Q). As u,, is the solution
of OFy(A, in,¥), we obtain that u, < v a.e. in Q, and, passing to the limit, v < v

a.e. in Q. In conclusion, u is the solution of OFy(A, i, ), according to Definition 3.1.2.
[

Lemma 3.3.2. Let ¢ satisfy (5.1.2) and let pin € M3 o(Q) be a nonincreasing sequence
of measures converging to p strongly in My(Q); suppose that, for every n, problem
OPy(A, pin,¥) has a solution un and let A, be the measure associated with it. If A,
converges to A strongly in My(S2), then there ezists a solution u of OPy(A,u, ), and

A 1s the obstacle reaction relative to u.

Proof. As in the previous lemma, for every k > 0, Tx(u,) converges to Tk(u) in the
strong topology of W3 (), u being the entropy solution of (3.1.1) relative to u + A;
moreover u > 1 Cp-q.e. in Q. Let us take the entropy solution v of (3.1.1) relative to
g+ v, with v in Mf";'(Q), and assume that v > ¢ Cp-q.e. in . Define the sequence
v, as the entropy solution of (3.1.1) relative to p, +v. Since p, > u, by the comparison
principle of entropy solutions (see Theorem 1.6.10), we obtain v, > v > ¢, and, thanks
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to Theorem 1.5.16, v, converges to v a.e in {. By the definition of Obstacle Problems
(Definition 3.1.2) we have that up < v, ae. in 2, and, passing to the limit, v < v a.e.
in ©. Thus u is the solution of OFy(A, i, ). O

Lemma 3.3.3. Let ¢ satisfy (3.1.2) and let p € M} ((Q) with p~ € WP (Q) N
My(Q). Then there ezists a solution of OPy(A,p,v), and the corresponding obstacle
reaction satisfies (3.1.7).

Proof. Since pt is a nonnegative measure in M'Z,O(Q), thanks to Remark 1.2.5, there
exists a nondecreasing sequence p; € w1 (Q) N M (Q), converging to pt in the
strong topology of M;(Q). Let us define i := pf —pu™, so that p, € WL (Q)NM,(Q)
and L is a nondecreasing sequence converging to p strongly in M;(§2). By Proposition
3.2.2 the solution un of VI(A, tin, ) is a solution of OPy(A, in,%). Thanks to Theorem

3.2.1 the corresponding obstacle reaction A, satisfies

[Anllrte(e) S Npn = 2) 7 I muce)- (3.3.1)
As pin < fin+1, by Lemma 3.2.3, we have that A, > A\,41. Hence, if we define
AB) := li_)m An(B) for every B Borel set in {2,

we know from measure theory that A is a nonnegative Borel measure, it is bounded
because )\, is nonincreasing, and it is in Mf’O(Q), since all A\, are. Besides, A, converges
to \ strongly in My(Q2). By Lemma 3.3.1, there exists u solution of OFy(4,y,?), and
) is the measure associated with it. Moreover, passing to the limit in (3.3.1), we obtain

(3.1.7). ' | O

Lemma 3.3.4. Let v satisfy (8.1.2) and let pq, pa € Mé”o(Q), with py, W, €
W12 (Q) N My(Q). Let Ay and Ao be the reactions of the obstacles corresponding to
the solutions u; and us of OPo(A,pu1,%) and OPo(A,ua,%), respectively. If py < g,
then A\ > Ao,

Proof. Since .‘ui" and ps — yy are nonnegative measures in Mé’,o (), thanks to Remark
1.2.5 there exist two nondecreasing sequences u'f:n, pin, € WL (Q)NMF (Q), converging
strongly in M(Q2) to pi and po — py1, respectively. Let us define p , := ,uf"n — By
and p2 p 1= pin + p1,n; thus, for i = 1,2, y; , belongs to WP (Q) N My(Q), and i p

is a nondecreasing sequence converging to p; strongly in M3(Q). For ¢ = 1,2, consider
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the solution u;n of VI(A,in,®) and the corresponding obstacle reaction A, . Since
pin < pho,n, by Lemma 3.2.3, we have that Ay n > Ay n. Using the same arguments of

the proof of Lemma 3.3.3, we obtain that, for ¢ = 1,2, X; , converges to \; strongly in

M;(2). Thus we get the resuls. |

Proof of Theorem 8.1.8. Consider p~ and approximate it in the strong topology of
M;(2) with a nondecreasing sequence p, € WL (Q) N MF(Q) (see Remark 1.2.5).
Defining pin := p+—uy, , by Lemma 3.3.3 we can consider the solutions u, of OFy(A, pin, )

and the measures A\, associated with them. By Lemma 3.3.3 we know that A, satisfies

1Al a2y S H(En = 2) 7 Nl as(e)- (3.3.2)

Since py is nonincreasing, by Lemma 3.3.4, A, is nondecreasing. Thus, defining

A(B) := nli)rréo An(B) for every B Borel set in (2,
we know from measure theory that A is a nonnegative Borel measure, it is bounded be-
cause A, satisfles (3.3.2), and it is in M} ;(2), since all A, are. Moreover, A, converges
to A strongly in M3(£2). By Lemma 3.3.2, there exists u solution of OFy (A, u,v), and
)\ is the corresponding obstacle reaction. Moreover, passing to the limit in (3.3.2) we
obtain (3.1.7). O

Corollary 3.3.5. Let ¢ satisfy (3.1.2) and let py, pa € Mfyo(ﬂ). Let A1 and Xy be
the reactions of the obstacle corresponding to the solutions uy and uz of OFs(A, p1,v)
and OPy(A4, us2,v), respectively. If py < po then Ay > Ag.

Proof. It suffices to consider p; and approximate it in the strong topology of M;(Q)
with a nondecreasing sequence py ,, € WL (Q) NM; (Q) (see Remark 1.2.5). Defining
Hin = ,uf — Mg and pon = p1,a + p2 — p1, for © = 1,2, we have that y;, is a
nonincreasing sequence converging to p; strongly in Mp(£2). Moreover, p1,n < piz,n. We
consider the solutions u;n, of OPs(A, i n,%) and the corresponding obstacle reactions
Ai n, which are nondecreasing in n and satisfy A1 , > Ay n (by Lemma 3.3.4). Using the

same tools of the proof of Theorem 3.1.3, we obtain that \;, converges to A; strongly
in M(Q). In conclusion A; > As. [
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At this point we are able to check the validity of the Lewy-Stampacchia inequality.

Proof of Theorem 8.1.6. Consider the solution v of OFy(4,p — (4 — p)”,u,) and its
obstacle reaction M. It is easy to check that v = u,, so that A = (u — p)”. On the
other hand we have that g4 > p — (¢ — p)~, and, by the previous corollary, A < X, so
that the Lewy-Stampacchia inequality (3.1.8) is proved. O

3.4. Proof of the stability result and of the complementarity conditions
In this section we will prove Theorem 3.1.4 and Theorem 3.1.7. -

Proof of Theorem 8.1.4. Since pn converges to p strongly in M;(), there exists a

- subsequence fin; of pin such that

+o0
Z [tn; = pll a0y < +oo.
=1

Let us define pj := p — Z:’;’(um —u)” and pf ==p+ E?‘-_—o;(#n; — p)T; it is easy to

check that
pi S, g N\ postrongly in My(Q)

and

B S piny S 4G

For every j > 1, let u} and uj be the solutions of OFy(4,u},¢) and OF (A, pj, %),
respectively, and let A} and A} be the corresponding associated measures. Reasoning as
in the proof of Theorem 3.1.3, we obtain that u} and u/ converge to u (in the sense of
Theorem 1.5.16), while A} and A} converge to A in the strong topology of Mp({2). On
the other hand, thanks to Corollary 3.3.5, we have A} < A,; < A}, sothat An; converges
to A strongly in M;(Q). Finally, since the result does not depend on the subsequence
all A, converges to A strongly in My(Q).

We can apply Theorem 1.5.16 to obtain the convergence of Tj(un) to Tg(u) in the
strong topology of Wa?(Q), for every k > 0. O
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Proof of Theorem 8.1.7. We will divide the proof in three steps.
Step 1. (1) = (2). .

It suffices to prove (3.1.9). We proceed by an approximation argument. Let p, €
W=7 (Q)N M, (Q) be such that pn, converges to u in the strong topology of M;(Q). If
we consider the solution u, of VI(A, tin,%) and the measure A, associated to it, thanks
to (3.1.4) we have '

{ (An,w —un) >0 (3.4.1)

Yw € I(¢.

We choose as test function in (3.4.1) w = up — Tk(un — @) + Tk(v — @), where ¢ €

WyP(Q)NL®(Q) and v € ToP(R), with v > Cp-q.e. in Q, and we obtain
(An Ti(un = ¢)) < (An, Ti(v — #))-

By Theorem 3.1.4 we know that A, converges to A strongly in My(2); hence, thanks
to Lemma 1.2.15, we can pass to the limit and we get the result.
Step 2. (2) = (3).

Let t be a positive real number. Observe that the set {u —v > t} is C}-quasi open,
because u is Cp-quasi continuous and 1 is Cp-quasi upper semicontinuous. Thanks to
Lemma 1.5 in [24] there exists an increasing sequence v, of nonnegative functions in
W3 () which converges to X{u—y>1} Cp-q.. in Q. The function v — tv, € Ty '?(R) is
greater than or equal to 1, thus we can apply (3.1.9) with v = u — tv,; observing that

u —tv, <u and )\ is a nonnegative measure, we get

/ To(u— ) dA = / To(u — tun — @) dA,
Q Q

for every  in WyP(Q) N L*=(Q).

Passing to the limit as n goes to infinity, we get

/ Te(u— ) d) = Ty(u—t — ) dX. (3.4.2)
{u—y>t} {u—9p>1}
Now we choose ¢ = Th(u) in (3.4.2). Let us estimate the left hand side of (3.4.2):

| Tie(u = Tu(w)) dA | < kA({|u] > R}),
{w—v>1}

which tends to zero if h tends to infinity (recall that u is finite up to a set of p-capacity

zero and \ vanishes on the sets of p-capacity zero).
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In the same way we can split the integral in the right hand side into two parts:

Tk(-—t) dA + / Te(u —t = Th(u)) dX;

/{u—w>t}n{lursh} {u—p>t}n{|u|>h}

as before, the second integral tends to zero if A goes to infinity.

In conclusion, we obtain T%(t) A({u — % > t}) = 0, from which A({u — ¥ > ¢}) =0,
for every t > 0. Letting ¢ tend to zero, we get the result.
Step 8. (3) = (1).

We have to prove that, for any v in Mf,’; (Q) such that the entropy solution v
relative to p + v is greater than or equal to ¥, we have v < v almost everywhere in Q.

By Definition 1.6.1, for every k& > 0, u satisfles (in particular)

/ a(w,Vu)VTk‘(u — )" dz — / Ti(u— @)t du = / Ti(u — )T dA, (3.4.3)
Q Q Q

for every ¢ in Wy'P(Q) N L®(Q).

Similarly, for every k > 0, v satisfies
—/ a(z, Vo)VTi(v — @) dz + f Th(v—p) du = —/ Ti(v — @) dv. (3.4.4)
Q . Q Q

We choose ¢ = Th(v) in (3.4.3) and ¢ = Tx(u) in (3.4.4), and we add the two equations.
For the left hand side we can use the same tools of the proof of uniqueness of entropy

solutions (see Theorem 1.6.6); thus we obtain

/ (a(z, V) — a(z, Vo))V (u — v)do
{o<u=v<E, [u|<h, [v]<h} (3.4.5)

ka(h)+/S2Tk(u—Th(v))+d/\—/§2Tk(v-Th(u))_d1/,

where wi(h) tends to zero if h goes to infinity.

Since v is a nonnegative measure we can rewrite (3.4.5) as

/ (a(z, V) — az, Vo))V (4 — v)dz < wi(h) + / Ti(u— Ta(v)) T dA:
{o<umvsk, lul<h, ol <h) | 2

now we let A tend to infinity, so that

/ (a(z, V) — a(z, Vo))V (u — v)dz < / T (u — o)+ d).
{o<u—v<k} . Q-
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Observing that {u —v >0} C {u—1 > 0}, since v > 1, the term in the right hand side
is zero, by hypothesis (3.1.10). In conclusion

/ (a(z, Vu) - a(z, Vo))V (u — v)de < 0,
{0<u—v<k}

for every k > 0; by (1.3.3) this implieé V(u—v)T =0 almost everywhere in Q. Now we
consider, for every i > 0, the function Tj(T;(u) — T;(v))*, which belongs to Wol’p(Q),
Since V(u —v)*T =0 a.e. in {, it is easy to prove that, for 1 > 7,

,— /Q VT(T(w) — To())* P do < /

Vul? de +/ IVol? dz.
{i—j<|u|<i}

{i—j<v|<i}

By (1.6.9) the right hand side of the previous inequality tends to zero as ¢ goes to
infinity; in particular, it is bounded uniformly with respect to ¢. Therefore the function
T;(Ti(u)—T;(v))* is bounded in W3 P(Q) uniformly with respect to 4. Since this function
converges to Tj(u —v)" almost everywhere in  as ¢ tends to infinity, we conclude that

Ti(u — v)™ belongs to W ?(Q) and that

/ |VT;(u —v)T|Pdz = 0.
Q

Hence, Tj(u —v)T =0 a.e. in Q, for every j > 0, and, in conclusion, u < v. H

Remark 3.4.1. If ¢ is Cp-q.e. upper bounded, we point out that the solution u of
OPy(A, p, 1) satisfies

/ a(z, Vu)V(h(u)(u — ¢))dz < / h(u)(u — @) du, (3.4.6)
Q Q

for every ¢ € Wy P(Q) N L*®(Q), ¢ =9 Cp-q.e. in Q, and for every h € C3(IR), h >0
in IR. Indeed, working as in the proof of the first step of Theorem 3.1.7, we choose in
(3.4.1) w = up—ah(un)(un—¢), with h and ¢ as before and a a positive constant such
that o|/hlle < 1. Passing to the limit we obtain (3.4.6). Thus u is also a renormalized
solution of the obstacle problem according to the definition of [49]-[50].



Chapter 4
On a class of nonlinear obstacle

problems with measure data

4.1. Assumptions and main results

We have observed that, if we want to study, in a nonlinear framework, unilateral
problems when the forcing term is a general bounded Radon measure, we fall into the

context considered by F. Murat in [48] to solve uniquely the Dirichlet problem

Alu)=p inQ
{u—;O on 09, | (4.1.1)

when p is a bounded Radon measure.

Actually, in Section 1.5 we have seen that, if A is strongly monotone and Lipschitz
continuous, there exists a unique reachable solution of (4.1.1) (see Theorem 1.5.3 and
Theorem 1.5.13).

We recall that, in the general nonlinear context of Chapter 3, the uniqueness of a
reachable solution still remains an open problem.

Let us make our assumptions more precise. We will consider a regular (in the sense
of Definition 1.4.2) subset of RY , N > 2, and an operator A of the form

A(u) = —div(a(z, Vu)),
with a : Q x RY — IRY a Carathéodory function satisfying (1.5.14), (1.5.15), and
(1.5.16).

Moreover, ¥ :  — IR is an arbitrary function such that

Y <wu,qee in §, (4.1.2)
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where p € M(2) and u, is the reachable solution of

{A(u)=p in
u=20 on ON).

Definition 4.1.1. We say that u is the solution of the Obstacle Problem with datum
t € My(Q) and obstacle ¢ (denoted by OP(A,u,v)) if

1. there exists a measure A € M; () such that u is the reachable solution of (4.1.1)
relative to p + A, and u > % quasi everywhere in ).

2. for any v € M () such that the reachable solution v of (4.1.1) relative to p + v

satisfles v > ¢ q.e. in 2, we have u < v a.e. in .

By definition, it is clear that, if such a solution exists, it is unique.

Since v and v are quasi continuous, the inequality v < v a.e. in {2 is equivalent to
u<v qe in .

The nonnegative measure A, which is uniquely defined, will be called the obstacle
reaction relative to u, or the measure associated with it.

To show that for any datum p there exists one and only one solution, we introduce

the set
-7:121(#) = {v > ¢ q.e.,v reachable sol. of (4.1.1) relative to p + v,v € MF(Q)}.

We will prove that F; (1) has a minimum element, i.e., a function u € Fi(p) such that
v < v ae. in Q for any other function v € ff(,u). This is clearly the solution of the
Obstacle Problem according to Definition 4.1.1.

Observe that, thanks to (4.1.2), Fﬁ(u) is nonempty, because it contains the reach-
able solution of (4.1.1) relative to u* + p (see Theorem 1.5.17).

In Section 4.3 we will prove the following theorem.

Theorem 4.1.2. Let ¢ satisfy (4.1.2) and let u € My(2). Then there exists a unique
solution of OP(A,u,v).

We emphasize that, when A is a linear operator, Definition 3.1.2 turns out to be
equivalent to Definition 2.1.1. As a matter of fact, proving Theorem 4.1.2 we give also
an alternative proof to Theorem 2.3.1.

Without loss of generality we may suppose that ¢ is quasi upper semicontinuous

thanks to the following Proposition (it is a consequence of Proposition 3.1.1).
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Proposition 4.1.3. Let ¥ : Q+ IR. Then there ezists a quasi upper semicontinuous
function P : QIR such that:
1. Y > ge in Q;
2. if ¢ :Q = TR is quast upper semicontinuous and @ > g.e. in Q, then ¢ 2> P q.e.
wn §2.

Our setting allows us to prove also the Lewy-Stampacchia inequality.

Theorem 4.1.4. Let p € My(Q) and u the solution of OP(A,u,u,) (u, defined in
(4.1.2)). If we denote by X the obstacle reaction associated with u, 1t holds

A< (u=p)7 (4.1.3)

In Section 4.4 we will show that the solution to the Obstacle Problem considered in
the prévious chapter (see Definition 3.1.2) coincides with the new one (Definition 4.1.1)
when both make sense. ’ 4

Finally, Section 4.5 is devoted to the study of the interaction between obstacles and
data. The aim is to obtain the complementarity conditions, but we will see that this is
not possible in general. An important role in this problem is played by the space My o(£2)
of all bounded Radon measures on §2 which vanish on the sets of capacity zero. If the
negative part p~ of the datum p belongs to My o(£2), so does the obstacle reaction,
provided that there exists a measure p € My () such that the solution of (4.1.1) relative
to p is greater than or equal to 9. In this case the obstacle reaction is concentrated
on the contact set {u = ¥}, whenever the obstacle 1 is quasi upper semicontinuous
(Theorem 4.5.1). So we concentrate our attention on the case p~ ¢ Mjpo(2). In this
case i can be decomposed in a unique way as u = g + s, Where pg € Mpo(£2) and
ps is concentrated on a set of capacity zero, and p, = pf — p7, with p7 # 0. We prove
the following theorem, dealing with the case where the obstacle is controlled from above

and from below.

Theorem 4.1.5. Let u € My(Q) and let ¢ : @ — IR be quasi ﬁpper semicontinuous
satisfying
u? _ <9 <ud, (4.1.4)

—p—T =

where p € Myo(Q) and T € My(Q), with T L uy (here u?,_, and u# are the reachable
solutions of (4.1.1) relative to —p—7 and p, respectively). Let u and uy be the solutions
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of OP(A,pu,¢) and OP(A, po +u7, ), respectively, and Mand A1 be the corresponding

obstacle reactions. Then u=1u1 a.e mQ, X=X\ +u;, and u=1% Ai-ae in Q.

This shows that, under these assumptions, the solution u of OP(A, u,v) does not
depend on ], while the obstacle reaction has the form A; + p7 .

In [22] this theorem was proved in the linear case, investigating the behaviour of the
potential of two mutually singular measures near their singular points (Lemma 3.3 and
Lemma 3.4). Actually we extend this result to our (nonlinear) context giving alternative

proofs.

4.2. Preliminary results

We need some results about the reachable solutions.
If a(z,£) satisfies hypotheses (1.5.14), (1.5.15), (1.5.16), and U is a measurable
function from § into IRY , define the function b: Q x RY 5 RY as

b(z,€) = a(z, & +U(z)) — a(z,U(z)),

for almost every z € (2 and for every £ € R, It is easy to check that b(z,¢) satisfies
(1.5.14), (1.5.15), (1.5.16) too. Hence the operator B defined as B(u) = —div(b(z, Vu))
is of the same kind of A.

We can prove now the following resuls.

Proposition 4.2.1. Let y and v be two measures in My(Q2), u and v the correspond-
ing reachable solutions. Consider the function b(z,€) = a(z,& + Vu(z)) — a(z, Vu(z))

and the associated operator B. Then w =u — v s the reachable solution of

{B(w):u—l/ in

w=0 on OS2. (4.2.1)

Proof. For every j > 0, define
pj o= A(T;(u)) and v; = A(Tj(v)).
We know from Proposition 1.5.11 that

pj — pand v; = v *-weakly in M;(§2);
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moreover ;, v; € H1(Q). For j, n > 0 let us consider w? the variational solution of
His ¥j n

{B(wf;) = l; —vp in §

wi € HE (). (4.22)

It means that

/Q(ar,(:v,wa2 + Vo) —a(z,Vv))Ve dz

=/a(:c,VTj(u))thda:——/ a(z, VT, (v))Vedz,
Q Q

for every o € HL(). Splitting © into the sets where |v| < n and where |v] > n we get
(remember that a(z,0) =0):

/ (a(z, Vwl, + Vv) — a(z, VT;(u)))Ve dz
Nuign) | | (4.2.3)
+ / (a(, Vil + Vo) — alz, Vv) — a(z, VTj(u)))Vip dz = 0.
{ol>n)

For i > 0, let us use ¢ = Ti(wl, + Tn(v) — Tj(u)) as function test in (4.2.3). Noting that
VTi(wi + Tp(v) — Tj(u)) = 0 where |w), + Tp(v) — Tj(u)| > i, and using (1.5.15), we

have:
o / VTi(wl + Ta(v) — Tj(w))] da
(Ivl<n}
n / | (a(z, Vi + Vo) — a(z, Vo)) V(wi, — T;(u)) dz
{ol>n}a{lwh+Ta(v) =Ty (w)]<i}

-/ | a(z, VT;(w))) ¥ (w), — Ty(w)) dz < 0;
{lv|>n}n{|wh +Tn(v)=T;(u) <}

‘and then, thanks again to the hypothesis of strong monotonicity (1.5.15), it follows:
o [ VT + To) i) de
{lv|<n}

—I—cl/ ‘ |Vw? |2 dx
{lv|>n}n{|wh +Tn(v) = Tj(u)|<i}

+a / _ IVTJ'(U,)[Q dz
' {|v|>n}{|wh+Tn(v) =T (u) | <i}

— / _ (a(z, Vw! + Vv) — a(z, Vv))VT;(u) dz
{lv|>n}n{|wh+Tn(v)=T;(u)|<i}

- / ; a(z,VT;(u)))Vwi dz < 0.
{lo]>n}n{|wh +Tn(v) =T (u)|<i}
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Now, if we apply the hypothesis (1.5.14) and then the Young inequality on the last two
integrals (denoted by I + I ), we deduce

I +1 > — coe/ ' |Vw£|2 dz
{lw{>n}n{|w], +Tn (v)—T;(u) | <i}
_ L ' |V T;(u)|? dz,
€ J{lv|>nIn{|wl+Tn(v)~T; () |<i}
with € > 0 such that ¢; — ¢ge > 0. In conclusion we have
o [ ITTwh+ Ta(o) = Tw) da
{|v|<n}
Co 2
<(2-e [ | VI, (w)? de,
€ {lv|>n}n{|wh +Tn (v)—Tj(u)|<i}

being o ¢; > 0. Passing to the limit as n tends to infinity we have:
€

liminf/ IVTi(wl + Tn(v) — Tj(w))|? dz < 0.
nee J{jv|<n}

Thanks to Theorem 1.5.16, for every ¢ < 7=, w] converges to w’ strongly in W),
w? being the reachable solution of (4.2.1) relative to u; — v, as well as w’ tends to w;

thus, by Fatou Lemma,

/ V(w9 + v — Ty(w) do = 0,
{lwd +o-Ty () <3}

for every i > 0. We conclude that, for every 7 >0, w?/ +v — T;(u) = 0 a.e. in Q, and,
finally, letting j tend to infinity, w +v —u =0 a.e. in Q. U

In the next lemma we shall use the notation uf} to indicate the reachable solution

relative to an operator A of

Awd)=p inQ
uf} =0 on 09,

where p € My(£2).
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Lemma 4.2.2. Let p, v be in My(Q) and uf, uf be the corresponding reachable
solutions. Assume also that uf} > u#; then, for every o € My(Q) there ezists a function
b(z, &) satisfying (1.5.14), (1.5.15), (1.5.16), such that uf_,_a >ub ., uf+a and uZ, .
being the reachable solutions relative to the operator B (associated to b(z,£)) and the

measures p+ o and v+ o, respectively.

Proof. Let us define the function o’ : @ x RY — RY as d/(z,£) = a(z, £ + Vui(z)) —
a'(z,Vu(z)), and consider the associated operator A’. By the previous proposition
we have that uf} —ud = uf}',,,. By the same proposition we deduce also that, if we

consider the reachable solution u4,__ and the function b(z, &) = ad'(z,{+ Vud,_ (z))—

U . . P ' ;
d'(z,Vu?,__(z)), the operator B associated with it is such that uZ, = ug —u?,_ =
' 1] / 1’ . . .
u?,__ and uf_w = uf__,, —uf,_ = uf —uft —u?,__, from which we obtain uf+a >
B
uv-l-a' . D

In the sequel we shall use often a simple fact, that is worth stating on its own.

Lemma 4.2.3. Let p, v € My(Q). Then u is the solution of OP(A, u,v) if and only
if u—u? is the solution ofAOP(B,,u — v, — u;jl), where B 1s the operator associated
with the function b(z,€) = a(z,& + Vui(z)) — a(z, Vu(z)). Moreover, the obstacle

reaction 1s the same.

Proof. Let u be the solution of OP(A, u,v%) and A be the obstacle reaction associated
with it. Of course, the function u — u? is greater than or equal to ¢ — u?, and, by
Proposition 4.2.1, we have that uf-v.+>\ =u—ul. So,. u—u? belongs to ff——uf (u—v).
If we take v € .7-'5__“5 (u—v), it is easy to check (using again Proposition 4.2.1) that
v+ud € Tf(u), and, by the minimality of u, we get u < v +uf, ie, u—uf < v;
so that u — u? solves OP(B,u — v,¢ — u2). For the same reasons, the converse is also

true. L]
Moreover, we have the following lemma.

Lemma 4.2.4. Let vy and vy the reachable solutions of (4.1.1) relative to p + 14
and p + vg, respectively, with p € My(Q) and vy, v € MF(Q). Then there exists
v € Mf(Q) such that vi A vy is the reachable solution of (4.1.1) relative to p+ v.

Moreover, for 1 =1,2,

[l Moy < vl moie)- (4.2.4)
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Proof. We approximate the measures p and v; (i = 1,2) by some sequences fin €
Mp(Q)NHHQ), v} e MF(Q) N H™(Q) such that pn, v converge to u, v;, respec-
tively, in the %-weak topology of Mp(Q), and |[vP|| am,(q) converges to [|vil| m, (o). Given
such approximations, for ¢ = 1,2, let v} the unique solution of the following problem
{A(v?) = pn+ v in
v € Hi(Q).

From the general theory, we know that v Avg is the solution of the variational inequality
VI(A, pn,v™ Avl), so that there exists a nonnegative Radon measure v, (in H™1(Q))
- such that A(v} AvY) = pn+vn (see Characterization 1 in Section 3.1). Moreover, thanks
to Theorem 3.2.1, we obtain (i = 1,2):

lvall o) S 193 M) (4.2.5)

from which v, converges, up to a subsequence (still denoted by v, ), to a measure
v € Mf(Q), and, by Theorem 1.5.16, v{' A vy’ converges to v, the reachable solution
of (4.1.1) relative to p + v, so that v; Avy = v. Passing to the limit in (4.2.5) we get
(4.2.4), using the *-weak lower semicontinuity of || - || s,(q) for the left-hand side. L]

4.3. Existence and uniqueness for the Obstacle Problem
In this section we will prove Theorem 4.1.2 and Theorem 4.1.4.

Proof of Theorem 4.1.2. As announced we will prove that the set f,ﬁ(u) (defined in
Section 4.1) has a minimum element. We already observed (in Section 4.1) that, thanks
to hypothesis (4.1.2), this set is nonempty. Noting that Fiw) C Wy(8), for any q,
1 < g < 55, we take a sequence vn € .7-'{;‘(#) dense with respect to the topology of
Wy4(Q). Let us define up := v1A....Avy; by Lemma 4.2.4 there exists An € M (Q) such
that u, is the reachable solution of (4.1.1) relative to p+ A, and A,(Q) is equibounded
(with respect to n), thanks to (4.2.4). Hence A, converges, up to a subsequence still
denoted by Ay, to some A € M () in the *-weak topology of Mp(£2) and, by Theorem
1.5.16, u, converges to u, the reachable solution of (4.1.1) relative to p+ A, in the sense
that, for every j > 0, Tj(us) tends to Tj(u) weakly in Hg(f2). On the other hand,
Un > qe. in . Now the set

Krypy ={v € H3(Q) : v>Ti(%) qe inQ}
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is convex and closed in H3 (), so it is also weakly closed. Since, clearly, Tj(un) > T;(¢)
g.e. in Q, passing to the limit as n — +oo we get that also Tj(u) € Kr,(y), hence
Ti(w) > T;(¥) qe. in§ for all j > 0. Passing to the limit as j — +oo we get
w > qe. in. Hence u is in .7-"{2‘(/.5). By construction, for every ¢ < n, u, < v;
a.e. in Q, and as n goes to infinity, u < v;, for every i > 1. Now, if v € Fj(u), by
density, there exists a sequence %; such that v;, converges to v strongly in W5 (Q);

then we deduce easily that © < v a.e. in 2. : O]

Now we want to prove that the obstacle reaction A associated to the solution u of
OP(A,p,1) satisfies inequality

M) < 18— 2)7 [T atp(0)- (4.3.1)

To do this we need a proposition, which has an intrinsic interest, concerning the approx-
imation properties of the Obstacle Problem.
But first we have to recall the definition given by U. Mosco in [47] about a conver-

gence of sets.

Definition 4.3.1. Let K, be a sequence of subsets of a Banach space X . The strong
lower limit

s-liminf K,
n—+oo

of the sequence K, is the set of all v € X such that there exists a sequence v, converging
to v strongly in X, with v, € Ky, for n large.
The weak upper limit

w-limsup K,
n—>+oo

of the sequence K, is the set of all v € X such that there exists a sequence v; converging
to v weakly in X and a sequence of integers nj converging to +oco, such that v € Ky, .

The sequence K, converges to the set K in the sense of Mosco, shortly K. 2K , if

s-liminf K, = w-limsup K,, = K.
n—+00 n—++00

For every ¥ :  — IR, let us define the convex set

Ky={z¢ HY(Q):z2>1% qe. in Q}.
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Proposition 4.3.2. Let ¢ <0 and let u be the solution of OP(A,p,%), with p €
Mb(Q) For every sequence ur € My(Q) N H™Y(Q) converging to p in the *-weak
topology of My(Q), there ezists a sequence Yy < 3, with I{¢k—M>K¢, such that the
solution uy of VI(A,uk,¥r) satisfies

up — u strongly in Wa (), for every g < ,
0 Ya<s Ny -1

T;(ur) — Tj(u) weakly in Hy(R), for every j > 0.

Proof. First of all we observe that i satisfies (4.1.2) with p = 0. Let A be the obstacle
reaction associated with u, and approximate it, in the *-weak topology of M(2), by a
sequence A, € MF(Q)NH1(2). Let wy be the variational solution of (4.1.1) relative to
ik +An, so that wy converges to u in the sense of Theorem 1.5.16. Defining ¥r = ¢ Awg,
the measure \j associated to the solution uy of VI(A, uk,vx) satisfies the inequality

| Ae | Mo 2) < Ntk Lo - (4.3.2)

thanks to Theorem 3.2.1. Then A converges, up to a subsequence (still denoted by
Ak) to a measure A € M (Q) in the *-weak topology of M;(Q); by Theorem 1.5.16
uy tends to the reachable solution u’ of (4.1.1) relative to p + A in the sense that
T;(ux) converges to Tj(u') weakly in H}(Q), for every j > 0. Thanks to the next two
lemmas we have that Ky, —%sz, and by results of [25], Kn(,,,k)%KTj(w too. Then
T;(u') > T;(¥) q.e. in Q, for every j > 0, and finally u’ >4 q.e. in . By definition
of OP(A,u,%), v’ > u a.ein 2. On the other hand, by Characterization 1 in Section
3.1, ux < wy and, passing to the limit, v’ < u so that u =’ a.e. in Q. Let us observe

that by the uniqueness of u, the whole sequence u; tends to u. O

The following two lemmas are quite simple, but are proved here for the sake of

completeness.

Lemma 4.3.3. Let ¢ : Q@ — IR an arbitrary function; let v € My(Q) and v be the
reachable solution of (4.1.1) relative to v. Assume also that v > gq.e. in . For every
vk € My(Q) converging to v in the *-weak topology of My(S2), let vy be the reachable
solution of (4.1.1) relative to v, and Vg = Avi. Then, 1y converges to ¢ weakly in
capacity, in the sense of Definition 1.2.16.

Proof. We know, by Theorem 1.5.16, that, for every j > 0, T;(vg) converges to T;(v)
weakly in H}(Q), and by Proposition 1.2.13 weakly in capacity. Since (the quasi con-
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tinuous representative of) vy and v are quasi Borel functions, thanks to (1.5.12) it is
easy to check that, for every u € M;‘:O(Q), v converges to v in pg-measure; hence 1

converges to ¢ in p*-measure, i.e., weakly in capacity, in the sense of Definition 1.2.16.

a

Lemma 4.3.4. Let ¢ satisfy
3¢ € H3 (Q) such that ¢ > ge. in (4.3.3)

and i : @ — R such that Yr < ¥ g.e. in Q, and 9 converges to v weakly in capacity,
in the sense of Definition 1.2.16. Then I{¢k£I{¢.

Proof. First of all we observe that

Ky Cs- likn_l)ir;f Ky, € w- hiisolip Ky,
since ¢ < 1. It remains to prove that w-limsup,_, ., Ky, € Ky . Consider a function
z € HY(Q) such that there exists a sequence z, converging to z weakly in Hg(()
and a sequence of integers kj converging to +oo such that 2, € Ky, . Then 2z, >
Yr, q.e in Q, which implies that zp > ¢, p-a.e. in , for every p € MIO(Q). By
Proposition 1.2.13 we know that zj converge weakly in capacity to z, as well as, by
hypothesis, 1, converge to 1. Let us point out that, if a sequence converges weakly in
capacity, then a subsequence converges p*-a.e. in . So we obtain that z > ¢ p-a.e.

in Q, which, by Proposition 1.2.14, implies z > ¢ q.e. in Q,ie. z € Ky. Ll

Remark 4.3.5. If, in Proposition 4.3.2, we choose py such that |[pg ||a, (@) converges

to ||~ lmuay (such an approximation exists), passing to the limit in (4.3.2) we obtain

M atoc2) < ™l atu) (4.3.4)

using the *-weak lower semicontinuity of || - |[4,(q) for the left-hand side.

We shall prove now the inequality (3.1.7), without the technical assumption that

the obstacle be nonpositive.
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Proposition 4.3.6. Let o satisfy (4.1.2) and let u € My(Q). Then the obstacle
reaction X\ associated with the solution u of OP(A, u,) satisfies ({.3.1).

Proof. We can refer to the case 1 < 0. Indeed define ¢ := ¢ — u,, which is obviously
negative, and consider the operator B associated with the function b(z,¢) := a(z, € +
Vu,(z)) - a(z, Vu,(z)). By Theorem 4.1.2 we can consider the solution v of OP(B, u—
P, —u,) and, by Lemma 4.2.3 we have that v = u—u,, and A is the measure associated
with it. On the other hand, thanks to (4.3.4), A satisfies

M ams) S (= 0) "l muce)-

Ul
Now we state a simple consequence of Proposition 4.3.2: we shall use it to prove an
important result concerning the solutions to Obstacle Problems with measure data, that

is the Lewy-Stampacchia inequality.

Corollary 4.3.7. Let ¥ <0 and let p € My(Q), and pr € Mp(Q) N HL(Q), con-
verging to u in the *-weak topology of My(§2). Consider the sequence by of Proposition
4.8.2 and any o < Pi, with K%ﬁ]{% and let wy and u the solutions of VI(A, pk,¢k)
and OP(A, p, ), respectively, with Ay and X the corresponding obstacle reactions. Then

wi — u strongly in Wa'U(Q), for every q < N1’

Ti(ug) = Tj(u) weakly in H&(Q), for every j >0,

and M\ converges to A in the *-weak topology of measures.

Proof. As in Proposition 4.3.2 denote by u} the solution of VI(A, uk,¥r). Since wi <
V1, we easily get (see Characterization Iin Section 3.1) that wi < ux g.e. in . On the
other hand, thanks to (3.1.7) the obstacle reaction Ay associated with wy is equibounded
(with respect to k). Up to a subsequence (still denoted by Az ), Ax converges to a measure
N k-weakly in Mp(2), and wi tends to the reachable solution w of (4.1.1) relative to
i+ A, in the sense of Theorem 1.5.16. As in the proof of Proposition 4.3.2 we deduce
that w > q.e. in Q, so that we can compare w with u getting w > u. Finally, passing
to the limit in wi < ux, we obtain the result. Hence we have that A\’ = )\, and, by the

uniqueness of u, the whole sequence Ax converges to A *-weakly in My(Q2). Cl



On a class of nonlinear obstacle problems with measure data 85

We prove now a result that extends the variational setting of Lemma 3.2.3 to the

general case of measures in M;(£).

Proposition 4.3.8. Let ¢ satisfy (4.1.2) and let p1, py € Mp(Q). Let Ay and Ay be
the reactions of the obstacle corresponding to the solutions ui and uz of OP(A,p1,¢)
and OP(A, p2,v), respectively. If p1 < pa, then Ay > Ag.

Proof. First of all we observe that, by Lemma 4.2.3 it is enough to consider the case
¥ <0 qg.e. in 2.

-Since pg — p1 > 0, we consider a sequence g € MF(Q) N H () and a sequence
pk € Mp(Q) N H1(Q) approximating ps — py and i, respectively, in the x-weak
topology of measures. Defining pk = np + p¥, we have uf > uf. Let us consider the
sequences ¥ and ¥ of Proposition 4.3.2 and the solutions u® and uf of VI(A,u¥, kA
¥) and VI(A, uk,bEApE), respectively. Concerning the reactions Af and Ak associated

with u¥ and u¥, respectively, we have that
A >, (4.3.5)

thanks to Lemma 3.2.3. By Lemma 4.3.3 we have that ¢f A ¢ converges to 1 weakly
in capacity (in the sense of Definition 1.2.16), and by Lemma 4.3.4 we deduce that
K’tﬁ’f Ak Mk . Hence the previous corollary shows that u¥ and u¥ converge to u; and
ug, as well as A\¥ and A5 converge to A; and Ay #-weakly in M;(2). Passing to the
limit in (4.3.5) we get the result. O

At this point we are able to check the validity of the Lewy-Stampacchia inequality.

Proof of Theorem 4.1.4. Consider the solution v of OP(A,p — (4 — p)”,u,) and its
obstacle reaction A'. It is easy to check that u, € J’-‘;i (p—(u—p)”), so that v < u,.
Hence v = u, and N = (x—p)~ . On the other hand we have that 4 > p—(z—p)~, and,
by the previous proposition, A < X, so that the Lewy-Stampacchia inequality (4.1.3) is
proved. ]

4.4. Comparison with the classical solutions

In this section we want to show that the new formulation of Obstacle Problem is

consistent with that one given in Chapter 3.
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To speak about the equivalence of the two formulations it is necessary that both
make sense. So we will work under the hypotheses that p € M;(2) and that the
obstacle 1 satisfies (4.1.2), with p € M o(£).

| Actually in the previous chapter the hypothesis on the obstacle is slightly more
restrictive, in the sense that the measure p in (4.1.2) is assumed to be in M;(Q) N
H71(Q). Since, now, the operator satisfies the stronger hypotheses (1.5.14), (1.5.15),
(1.5.16), we can extend the results of Chapter 3 to the case p € My o(R2), arguing as in
Lemma 4.2.3.

In Theorem 4.1.2 we proved that the problem OPy(A4,p,%) has a unique solution
u. We will show that u solves OP(A4, u, 1), so that the obstacle reaction \ associated
with the solution of OP(A,u,%) is in MZO(Q). Moreover u can be characterized by
the complementarity system (Theorem 3.1.7).

Theorem 4.4.1. Let p be an element of Mpo(Q) and let o satisfy (4.1.2), with
p € My o(Q); then the solution u of OFy(A,p, ) solves OP(A, u, ).

Proof. We denote the operator associated with b(z,¢) = a(z,€ + Vu,(z)) — a(z, Vu,)
by B. Arguing as in Lemma 4.2.3, we easily prove that u — u, is the solution of
OPy(B,p — p,i — u,). We will show that u — u, solves OP(B,p — p,% — u,), and,
finally, by Lemma. 4.2.3 u solves OP(A4,u,v).

By Definition 3.1.2 we know that u — u, is the entropy solution of

{B(v)———u—p+A inQ (4.41)

v=20 on 01,

A being a measure in M;O(Q). Since every entropy solution is a reachable solution, we
have that u — u, € j—"f_up(y — p). Take v an element in Ff_up (4 — p), then v is the
reachable solution of (4.4.1) relative to p—p+v, v € MZ‘(Q), and v > Y —u, g.e. in Q.
Consider v; € M;’(Q) N H~1(Q) an approximation of v in the *-weak topology of
measures, and vy the entropy solution of (4.4.1) corresponding to p — p + v ; so that vy
tends to v in the sense of Theorem 1.5.16. Let 9 = (¢ — u,) A vy and denote by wy
the solution of OPy(B, i — p, ). Naturally, by the minimality of wy we deduce

wr < vg a.e. in . (4.4.2)

In Lemnma 4.3.4 (see also Lemma 4.3.3) we proved that Ky, l"_{](w_up ; on the other hand,

in Corollary 5.4.6 it is proved that, under this hypothesis, wy converges to u — u,, in
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particular in the sense of Theorem 1.5.16. So, passing to the limit in (4.4.2) we obtain
u—u, <v ae. in Q. Since this is true for every v € .7:5_% (u— p), the function u —u,

is the minimum in .7:5__%(,& — p), i.e. the solution of OP(B,p — p,% —up). Ll

Remark 4.4.2. By Theorem 4.4.1 and Theorem 3.2.2 we deduce also that, when
p € My(Q) N H1(Q) and ¢ satisfles (4.1.2) with p € M,y(Q) N H1(Q), then the
solution of VI(A,u,%) is the solution of OP(A4,u,1).

4.5. Interactions between obstacles and data
Thanks to Theorem 4.4.1, we can restate Theorem 3.1.7:

Theorem 4.5.1. Let p € My o(Q) and 9 be a quasi upper semicontinuous function
which satisfies (4.1.2) with p € My o(Q). Then the following facts are equivalent:
1. u is the solution of OP(A,u,¥) and X is the corresponding reaction;
2. Ne M;',O(Q)', u is the reachable solution of (4.1.1) relative to p+X, u > ¥ g in Q,
and u = A-g.e. in 2.

Nevertheless, this fact is no longer true when we pass to consider general data in
My(Q): in Example 2.7.2 the solution of the obstacle problem with right-hand side

measure does not touch the obstacle, though it is not the solution of the equation.

Remark 4.5.2. Actually, thanks to Lemma 4.2.3, Theorem 4.5.1 is true even if just
the negative part u~ of u belongs to M o(9).

Therefore we have to concentrate our attention on the case =~ ¢ M3 0(2). Then
i can be decomposed in a unique way as pu = pg + fs, with p, € Mpo(R2) and p;,
concentrated on a set of capacity zero (see Lemma 1.2.1), and us = uf — p, with
By # 0.

In all this section we shall use the notation of Lemma 4.2.2.

The proof of Theorem 4.1.5 relies on the following lemma, which has an intrinsic

interest.
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Lemma 4.5.3. Let p € My(Q) and p € My o(Q) such that uff < u‘;} a.e. 1 §); then
Wt € Myo(Q).

Proof. We recall that p = pf + v — py — py. We consider the solution v of
OP(A,/,&a,uﬁ‘) and its obstacle reaction A;: by Theorem 4.5.1 we know that X\; €
My o(Q). On the other hand by Lewy-Stampacchia inequality (4.1.3) we have that
M < (o — pa — Hy +p37)” = pf. These two facts imply that Ay = 0, so that
v = uf}a > uf}. Lemma 4.2.2 allows us to find an operator B such that 0 = v > ufs .
Let us prove that this implies 4 = 0. We note indeed (see Chapter 1) that the function

ufa is a renormalized solution of the equation

B(u)=ps inQ
{ u=0 on 041, (4.5.1)

that means (see Definition 4.5.1)

/ﬂ bz, VuB JV(h(u? )p) do

(4.5.2)
= h(+00)/ ¢ duy —h(~00)/ eduy

Q Q
for every p € C(Q) and for every h € WH>(IR) such that A’ has compact support in
IR (here h(+co) and h(—oo) are the limits of h(t) at +co and —co respectively). At
this point, choosing in (4.5.2) two admissible functions hy and hg, with hi(t) = hy(2)
for every t < 0, we do not change the left-hand side of (4.5.2), since ufi < 0, and,

consequently

h1(+00)/ @dy] =hz(+°0)/ @dud.
Q Q

Since this equality holds for every ¢ € C°(Q) and for every such pair hy, hy, we obtain
that u7 =0. U

Corollary 4.5.4. Let p, 7 € My(Q), 7 L u™, and p € Mpo(R) such that u:} <
uf_,_r a.e. in Q; then ut € My o(Q).

Proof. First of all we observe that the measure 7 can be assumed to be positive, replacing

it with its positive part. By Lemma 4.2.2 there exists an operator B such that uf_, <

uf a.e. in Q, so that (u —7)% € Myo(Q), thanks to the previous result. On the other

hand (u —7)t = ut, since 7 L pt. [
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Proof of Theorem 4.1.5. We can apply Theorem 4.5.1 to u; (see Remark 4.5.2), so that
M € Mpo(R) and vy =7 Ar-ae. in Q.

Since p < pg + pt, by Proposition 4.3.8, we get A > Ay, that is A = Ay + Ag,
with Ay € M;"(Q) On the other hand, by the minimality of u it is easy to check that

. A A . .
u < uy a.e. in {2, that means U a4 At < Ul b Lemma 4.2.2 implies
the existence of an operator B such that ui_#_ <0 a.e. in Q. Then, by Lemma 4.5.3,

(A2 — 7)™ € Mao(). |

Thanks to hypothesis (4.1.4) we have u > ¢ > ufp__,_, which implies, by Lemma
4.2.2, ufu+“;,_+)\l+p+T 2 ufs__l\z a.e. in 2, for some operator C' of the same kind of A.
Now (uF +7) L (u5 — A2)F, since pf L uy, 7 L py and A2 > 0. So (p — )t e
My o(Q), by Corollary 4.5.4.

As (7 —X2)™ = (A2 — )T € My (), we conclude that Ay — uy € Mso(R2).
Therefore Ay = o + p;, with o € MIO(Q), and v = u” Thus u >

Y et pt+rt0”
u; a.e. in §, that implies v = u;, and what we had to prove. Ll






Chapter 5
Stability with respect to data

'5.1. Assumptions and notations

The problem we deal with in this chapter regards the behaviour of the Obstacle
Problem in the sense of Definition 3.1.2 under perturbation of the operator, of the forcing

term, and of the obstacle.

Let ©Q be a bounded, open subset of IRY, N > 2. Let p be a real constant,

. 1 1
1< p< N, and let p’ its dual exponent, — + — =1
p

Given two constants cg, ¢1 > 0 and two constants o and §, with 0 < o <
1A(p—1) and pV2 < f < +oo, we consider the family L(co,c1,e, ) of Carathéodory
functions a(z,£) :  x RY — RY such that:

la(z, €) = alz,n)| < el +[¢] + In))P17%|¢ = nl*, (5.1.1)
(a(z,€) — a(z,m)(E —n) = cr(1+ €] + [n))P~7I¢ = nlf, (5.1.2)
a(z,0) = 0, (5.1.3)

for almost every z € 2, for every {,n € RY. .

We note that, if a € L(co,c1,, ), conditions (1.3.1), (1.3.2), (1.3.3), and (1.3.4)
are satisfied, with ko and k; replaced by positive real constants depending on cqg, ¢1 ,‘
a, and (.

Remark 5.1.1. For a particular choice of the constants o and 3, i.e. if 1 <p <2,
a=p—1, and § = 2, the inequalities (5.1.1) and (5.1.2) become

|CL(Z‘,§) - a(x’ﬂ)l < colé — 77[?—19

(a(z, &) = a(z,))(€ —n) = er(1 + [¢] + [nl)P (€ — nl*.
Moreover, if 2 < p < +c0, @ =1, and § = p, the continuity and monotonicity assump-
tions (5.1.1) and (5.1.2) for the function a take the form

la(z, €) — a(z,n)| < co(1 + €] + [n)P721E —nl,
(a(z,€) — a(z,n))(€ —n) > e1]€ — .



92 Chapter 5

5.2. G-convergence and Mosco-convergence

The study of the properties of the solutions to the obstacle problems under pertur-
bations of the operator a is based on a notion of convergence in L(co,c1,, ), called

G -convergence.

Definition 5.2.1. We say that a sequence of functions a (-, -) belonging to L(co, ¢1, o, )
G-converges to a function a(-,-) satisfying the same hypotheses (possibly with different
constants &, 1, 5[,,@) if for any F € W_l’p'(ﬂ), the solution up of

Ah(uh) =F in Q 9
{ u=20 on 0F (5:2.1)
satisfies
up = u weakly in Wy ?(Q) (5.2.2)
and
an(z, Vup) = a(z, Vu) weakly in L? (Q)V, (5.2.3)
where u is the unique solution of
Alu)=F inQ
{u =0 on 0%. (5:2.4)

The following theorem justifies the definition of G-convergence.

Theorem 5.2.2. Any sequence ap(z,€) of functions belonging to L(co,c1, o, 3) admits
a subsequence which G-converges to a function a(z,€) € L(&, ¢, ﬁ—f—a,,@), where &y, &,

depend only on N,p,,B,co,C1

This compactness theorem was obtained by L. Tartar (see [54] and Theorem 1.1
of [32]) in the case of nonlinear monotone operators defined from Hg(Q2) into H~1(Q),
when p = 2 and the functions ay € L(co,¢1,1,2), and then extended in the version of
Theorem 5.2.2 in [17] (see Theorem 4.1).

The investigation of the properties of obstacle problems when the obstacle varies
relies on a notion of convergence for sequences of convex sets introduced by U. Mosco in
[47] (see Definition 4.3.1 in the previous chapter).

Mosco proved that this type of convergence is the right one for the stability of

Variational Inequalities with respect to obstacles. This is the main theorem of his theory.
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Theorém 5.2.3. Let Ky, and Ky be nonempty. Then
Ky, B K,
if and only if, for any F e W12 (Q),
up — u strongly in Wo?(Q),
where up and u are the solutions of VI(A, F,y) and VI(A, F,4), respectively.

‘Several stability results can be proved as corollaries of this theorem by Mosco. In

particular, the strong convergence
Wr — @ strongly in Wy ?(0Q)

easily implies the convergence of Ky, to K, in the sense of Mosco, but the weak con-

vergence

Pp — 9 weakly in WHT(Q), r > p,

also implies the same result (see [11], [1]). Moreover, if
Yr < Cp-qe. in Q, oy — ¢ Cp-q.e. in Q,

then K, cbnverges to Ky in the sense of Mosco.

A necessary and sufficient condition for the convergence of Ky, , expressed in terms
of the convergence of the p-capacity of the level sets {z € Q : ¢5(z) > t} has been given
in [25].

Remark 5.2.4. It has been proved in [25] that if K, converges to Ky in the sense
of Mosco, then also Kr,(y,) converges to Kr,y) in the sense of Mosco, for every i > 0.

5.3. Preliminary results

Under assumptions (1.3.1), (1.3.2), (1.3.3), and (1.3.4), we recall (see Chapter 1)

that, if u is the entropy solution of the equation

Alu)=p+F inQ,
{u =0 on 02, (5.3.1)
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when p € Mj () and F' € W=12'(Q), then, for every j > 0, we have the following
estimate:

/ﬂ VT, (w)[P dz < M(j + 1), (5.3.2)

where the constant M depends on |[ullmy(), 1Fllw-15'(@)s P+ €0, €1, [[Kollze (), and
k1]l r2(q) . Moreover, it holds:

lim |Vul? de = 0, (5.3.3)
i=too Jliclul<itj)
for every 7 > 0.
Finally, for every j > 0, (5.3.2) implies

MG +1)

Cp({lul > 1) = —F (5.3.4)

Proposition 5.3.1. Assume (1.3.1), (1.8.2), (1.8.5), (1.8.4). Let p€ M} ((Q), F €
W=1P'(Q), and let u be the entropy solution of (5.8.1). Then, for every z € Wy?(Q)

the function u — z belongs to 761”’((2) ; more precisely, for every 7 >0, we have:
175w = 2)yam ) < MG +1), (5.3.5)

where the constant M depends only on ||u|| pm,(0) }|]+"||W_l,pf(9)J “ZHWOI,p(Q), p, €o, €1,
kol o () » and Ie1llzr o) -

Proof. Let us consider a sequénce pn € WEP(Q)NM,4(Q) such that p, converges to p
strongly in M3(Q2). Denoting the variational solution of the problem (5.3.1) relative to
fin+F by un, we know that u, tends to u in the sense of Theorem 1.6.8. If z € WiP(Q),
define the operator B(v) = —div(a(z, Vv+Vz)—a(z, Vz)), which is of the same type of
A, satisfying (1.3.2), (1.3.1), (1.3.3), and (1.3.4) with different coercitivity and growth
parameters depending by co, ¢1, ko, k1, p, and z. Let v, be the solution of

{B(v)z,un+F—A(z) in

D=0 on 50; (5.3.6)

that is
(B(vn),w) = (pn + F — A(z),w),

or, equivalently

/ a(z, Vv, + Vz)Vwdr = (un + F,w),
Q
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for every w € Wy'*(Q). By the uniqueness of the solution of (5.3.6), it follows that
U, = v, + z, and, since v, tends to the entropy solution v of the problem (5.3.6)
relative to p + F — A(z) (see Theorem 1.6.8) we obtain that u =v + 2.

At this point, the result follows by (5.3.2). C

Remark 5.3.2. By the previous proposition we deduce also that if zn, z € WyP(Q),
with z, converging to z weakly in WaP(Q), then, for every j > 0, Tj(u— zn) converges
to T;(u — z) weakly in Wg P(Q), where u is the entropy solution of (5.3.1) relative to
€ Mio(9).

5.4. Convergénce results

We consider a sequence ap of functions in L(co,c1,, ), a sequence of measures

pr € My(2) N W—LP'(Q), and the variational solution uﬁ: of

{Ah(uﬁhh) = pp in
ulh € Wy (Q).

We assume that

sup lerllmyia) < +oo (5.4.1)
and that the function 1y satisfies:
by < ufhh Cp-q.e. in . (5.4.2)
Moreover we suppose that
Y <0 Cp-qe. in Q. (5.4.3)

We can now state the main result of this section.

Theorem 5.4.1. Let an be a sequence in L(co,c1,a,B), which G-converges to a
function a, and let A and A be the operators associated to ap and a, respectively.
Let us assume (5.4.1), (5.4.2), and (5.4.8), with Ky, converging to Ky in the sense
of Mosco. Finally, consider pp, p € M%’,D(Q), with pp converging to u weakly in
My(Q). Then the solutions up and u of the obstacle problems OPo(Ap,pn,%r) and
OPo(A, p,1b), respectively, satisfy

Tj(up) = Tj(u) weakly in WaP(Q), for every j >0, - (5.4.4)
an(z, Vuy) — a(z, Vu) weakly in LYQ)N, for every ¢ < i (5.4.5)

/ an(z, Vur)VTj(ur) dz ——>/ a(z,Vu)VT;(u) dz, for every j > 0. (5.4.6)
Q ‘ Q
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Remark 5.4.2. By formal modifications we can prove Theorem 5.4.1 replacing (5.4.3)
with (3.1.2) and
Y <M Cp-q.e. in Q,

where M is a positive constant.

Proof of Theorem 5.4.1. To simplify the exposition, it is convenient to divide the proof

into various steps.
Step 1. We will prove (5.4.4).

Proof of Step 1. Let us recall that the solution up, of the obstacle problem OFo(Ax, pin, ¥s)
is the entropy solution of the equation (5.2.1) relative to p + A, i.e., in particular, for
every o € Wp'P(Q) N L>=(Q) and for every j > 0, uy satisfies:

/Qah(:c,Vuh)VTj(uh-—go)d:c:/

A Tj(un — @) dun + / Tj(un —@)dAn,  (5:4.7)
Q

where the obstacle reaction Ap € MJZ”;'(Q) satisfies (3.1.7), i.e.

Arllaecey < l(er = 2r) ™ Mo e)-

Combining the previous estimate with (5.4.1) and (5.3.2), we obtain that, for every 7 > 0,
/ |VT;(up)|P dz < M7y, (5.4.8)
Q

where the constant M does not depend on j and A. Working as in the proof of Theorem
1.5.3 we have that there exists a subsequence of up, (still denoted by up) and a function
u* € 761”’(9) such that up converges to u* a.e. in Q and, for every j > 0, Tj(us)
converges to Tj(u*) weakly in W,y (). Since also K1;(y,) converges to Kr;(y) in the
sense of Mosco (see Remark 5.2.4), by the weakly convergence in Wy P(Q) of Ti(up) to
T;(u*) we deduce that Tj(u*) > Tj(¥) Cp-qee. in Q, for every j > 0, so that u* > ¢
Cp-q.e. in Q. Furthermore, by the weak convergence in WaP(Q) of Tj(ug) to Tj(u*)
we obtain that also Tj(u*) satisfies (5.4.8), which implies (5.3.4) for u*.

Let us consider a function ® € W, ?(Q), with & > v, and the solution wy of the
variational inequality VI(An, A(®),¥r). By Theorem 3.1 of [26], wy, satisfies:

wp, — w weakly in W, P (Q),
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ap(z, Vwy) — a(z, Vw) weakly in r ()",
(an(z, V), wn) = (a(z, Vw), w),

where w is the solution of VI(A, A(®),¢); so that w = ® (see Characterization I of
Section 3.1).

Moreover, wy, satisfies

/ ap(z, Vwp)V(wp —v) dz < (A(P), wn — v)
@ » (5.4.9)
= /Qa(x,V‘i))V(wh - v),

for every v € WyP(Q), with v > ¥5. Now, using the monotonicity of the operator Aj,

we can rewrite (5.4.7) as

/ an(z,V)VTj(up — p)dr < / Ti(un — @) dun + / Ti(un — @) dAp, (5.4.10)
Q Q Q

for every ¢ € WaP(Q) N L°(Q). We would like to use wy in (5.4.10), but, a priori,
we do not know that wp is a bounded function. Let us note, nevertheless, that if a
function ¢ isin Wg’p(Q), for every 1 > 0, we can use T;(¢) .as function test in (5.4.10).
Observe now that, letting ¢ tend to infinity, T;(¢) converges to ¢ strongly in W, (),
so that, on one hand ax(z, VT;(p)) tends to ap(z, Vi) strongly in L? ()Y, on the other
T;(un —Ti(¢)) converges to Tj(ur—¢) weakly in Wy (), as observed in Remark 5.3.2.
Now we can rewrite (5.4.10) for every ¢ € Wy'?(Q2), and, in particular, choosing wy, as

function test we obtain

/ah(m,th)VTj(uh —wp)dz S/
Q Q

S/Tj(uh—wh)duh,
Q

Tj(uh — wh) d/.zh -+ / Tj(uh — wh) dAp,
& (5.4.11)

where the last inequality follows by the complementarity system (3.1.10) and by the fact
that wp > 5 Cp-g.e. in Q.
The choice of the function v = v := wj — Tj(wp —us) as test in (5.4.9) is admissible

and gives:

/ an(z, Vwp)VTj(ws — up)dz < / a(z, V®)VT;(wy — ur) dz, (5.4.12)
Q Q
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which, with (5.4.11), implies
/ a(z,V&®)VTj(up —wp) dz < / Ti(up — wn) dptn- (5.4.13)
Q Q
By the estimate (5.3.5), it is easy to prove that T;(up — wy) converges to Tj(u — @)
weakly in Wy'?(Q), and, thanks to Lemma 1.2.15 we easily pass to the limit in (5.4.13).

In conclusion, we obtain

/ oz, VO)VT;(u* — ®) dz < / T, (u* — &) dy, (5.4.14)
Q Q

for every ® € W3'?(Q), ® > ¢ Cp-qe. in Q.

Thanks to the next lemma, we have the following fact:

/ a(z, Vu*)VTj(u* —¢)de < / Ti(u* — ) du,
Q Q

for every @ € Wy P(Q)NL®(Q), ¢ =2 ¢ Cp-qe. in Q. As observed in Remark 3.1.8,
the previous formulation characterizes uniquely the function u*. Thus, having denoted
the solution of OPy(4, p,v) by u, we have u* = u; this implies that the whole sequence
Tj(up) (and not only a subsequence) converge to Tj(u).

Hence, to conclude, we have to prove the following lemma, which is inspired by

Lemma 1.2 of [4]. We give here the proof for the sake of completeness.

Lemma 5.4.3. Assume p be in My () and ¢ satisfy (5.4.8). Under hypotheses
(1.8.1), (1.8.2), (1.3.8), and (1.8.4), a solution of
ueTy?(2),u >, ,
Jqa(z,V®)VTj(u~@)dz < [, Tj(u — @) dy, (5.4.15)
Vi > 0,Y® € W, P(R),d >,

satisfying (1.5.4), is also a solution of
{ u € 761,1](9)7“ >,

Jo (2, Vu)VTi(u — ) dz < [, Ti(u — @) du, (5.4.16)
VE > 0,V € WaP(Q) N L=(Q), 0 > 9.

The converse 1s also true.

Proof. Let u be a solution of (5.4.15) and ¢ € WP ()N L®(RQ), ¢ > . The choice
of ® =tT;(u) + (1 —t)e, with >0 and ¢ € (0,1), in (5.4.15) is admissible and gives

I < J;
{ Ii = [ a(z,tVTi(u) + (1 = t)Ve)VTj(u — tTi(u) — (1 — t)p) dx (5.4.17)
Ji = fQ T](u - tTi U) - (1 - t)tp) d,u.
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Now,
I = / a(z,1u + (1 — ) Vo) VT3((1 — t)(u — ) de
(Jul<i)

+ [ a(z, (1 — ) Ve)V(u — (1 — t)p) de,
{le|>i}n{lu—tTi(u)—(1-1)p|<s}

since VTj(u — tTy(u) — (1 — t)p) = 0 where |u — tT3(u) — (1 — tYo| > 7. The set
{lu] > 1} N {ju — tTi(u) — (1 — t)p| < j} is empty if we choose 1 > lloll Lo () and
0<j < (1=t~ llollze()); hence

I = / . a(z,tVu + (1 = t)Ve)VTi((1 — t)(u — ¢)) dz.
{lu]<}

Let us consider J;:

Ji = Alu‘Si} Ti((1—t)(u— ©))dp + /;[ubi} Tj(u — tTi_(u) — (1 —=1t)p)dp

< [ T o) dut (el > D)
{u]<1}

Now we pass to the limit as ¢ tends to +oo in (5.4.17); taking into account (5.3.4), we

obtain, by the previous remarks about I; and J; that

I'= lim I;= /Q a(z,tVu + (1 = t)Ve)VT;((1 = t)(u — v)) dz

1—+4o0

< lim J; = [ T((1—t)(u—))dp = J,
Q .

1—r00

for every 7 > 0. Let us write I as
I=(1- t)/ a2, 4 + (1 — ) V)V (u — o) de,
{(1=t)|u—w|<5}

while

J=(1~f)/ (u—so)du+/ jdwr/ (—7) dp.
{(1-1)|u—pl<3) {1~ (u=0) >} {(1~8) (u=p) <~}

Let £ > 0 and j such that j = k(1 — %), so that J < J implies
(1— t)/ oz, 8V + (1 — 1) V)V Te(u — ) dz < (1 - t)/ To(u — ) dy
Q Q

Dividing by (1 —#) and passing to the limit with respect to ¢ — 17, we obtain (5.4.16).

The converse is just the monotonicity of the operator A. Let us note that, if u
solves (5.4.16), then u satisfies (1.5.4), since we can choose ¢ =0 as test in (5.4.16) and
use (1.3.2). U
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Step 2. Denoting the obstacle reactions of u, and u by Ay and A, respectively, we will
prove that

lim QpdAp = / ®dA, (5.4.18)
Q Q

h—-+co

for every @ € Y/Vg’q, (), with ¢ < &5, and for every @ € WyP(Q) N L>=(Q), with
supy, || ®r||zee(a) < o0, converging to ® strongly in Wol’p(Q).

Proof of Step 2. For every 1 > 0 and for every t € IR, t # 0, we consider the solution vy
of the variational inequality VI(Ax, A(Ti(u) +t®4),¥n +1tPs) and the obstacle reaction
Ny associated with it. Observing that A(T;(u)+t®) converges to A(T;i(u)+t®) strongly

in W‘l’P'(Q) , and that Ky, +:¢, convergesto Kyiss in the sense of Mosco, we can apply
Theorem 3.1 of [26] to deduce:

vy, = v weakly in Wy P(Q),

np — n weakly in W_l’p’(Q),

where v is the solution of VI(A, A(T;(u) +t®),¥ +t®) and 7 is the obstacle reaction
associated with it. On the other hand, thanks to (5.4.3), for every ¢ > 0, we have that
Ti(u) > ¢ Cp-qe. in Q, so that v = T;(u) +1® and n = 0 (see Characterization 1 of
Section 3.1).

Consider now, for every [ > 0 and for every j > 0, the inequality

/Q(ah(:c, Vup) — an(z, VI (vp)))VTj(up — Ti(ve) dz > 0,

which follows by the monotonicity of ap. If we use the entropy formulation (v1.6.2) of up

in the previous inequality we obtain

/Q Tj(up—Ti(vn)) dAn +/

QTj(uh—Tl(vh))d,LLh2/ah(m,VTl(vh))VTj(uh-—Tl(vh))d:c;

Q
(5.4.19)
passing to the limit as [ tends to +oo thanks to Proposition 5.3.1 (see also Remark
5.3.2), and using the variational formulation (3.1.5) satisfied by v, we rewrite (5.4.19)

as

I + 11y > 111, + IV

I, = fQ Tj(uh —vp)dAp

IIn = Jo Tj(un — va) dun (5.4.20)
III, = fQ a(z, V(Ti(u) + t@h))VTj(uh — o) dz

IVh == <77h,Tj(uh - vh)).
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By the complementarity system (3.1.6), we have that
IV, = / Ti(un — n —t®s) dnp > / Tj(—t®4) dnn = {na, Tj(=1@n)),
Q Q
which tends to 0 as h goes to +c0, i.e.

llmmfIVh > 0. : (5.4.21)

h—r+toco

Moreover, by (5.3.5), it is easy to check that T;(up —vi) converges to Tj(u—Ti(u) —t@)
weakly in Wg P(Q), so that we can apply Lemma 1.2.15 to deduce that

lim Il = / Ti(u — Ti(u) — t@) du. (5.4.22)
Q

h—r+o00

Since, thanks to (5.1.1), a(z, V(Ti(u) +t®4)) converges to a(z, V(Ti(u) + t®)) strongly
in L? (Q)", we pass to the limit also in III, obtaining

lim IIT; = / oz, V(Ti(w) +$8)) VT (u — Ti(u) — £®) da. (5.4.23)
Q

h—-+4oco

Combining (5.4.21), (5.4.22) and (5.4.23) we have

Lim inf QTj(Uh*vh)dkh+/QTj(u—'Ti(U)—t@)du

(5.4.24)
> / o, V(Ti(w) +18)) VT (u — Ti(u) — @) da
Q
‘which can be written also as
liminfl, — It > IT*
h.—)-l-oo
I'= fﬂ Ti(u— Ti(u) —t®) dA (5.4.25)

1T = |, (a(z, V(Ti(u) + t®)) — a(z, Vu))VT;(u — Ti(u) — t®@) dz,

using the entropy formulation satisfied by u. By the complementarity system (3.1.10),

we have that

liminf Iy = hmmf/ Ti(n — vn) dAn;
h—r+ Q :

h—r-+o00

on the other hand, since vy > ¥ + t®5 we obtain by the previous equality that

liminf I, <lim mf/ Tj(—t®4) dAp. (5.4.26)
Q

h—+oc0 h—++oc0
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On the other hand, thanks to (5.3.4) it is easy to check that

lim I'= / T;(—t®) dA. (5.4.27)
Q

1—+oo

Finally, in II* we split the integral into the sets where |u| <4 and where [u| > 1, getting
= / (a2, V(u + &) — a(z, Va))VTj(—8) da
{lul<}

+ / (a(z,V(t®)) — a(z, Vu))V(u — t®) dz,
{lu|>i}n{lu—Ti(v)-t2|<5}

since VTj(u — Ti(u) — t®) = 0 where |u — Ti(u) — t®| > j. Let us observe that {|u —
Ti(u)—1®] < 5} C {|u] <i+7+t][|@][z=(a)}, so that, by the growth conditions assumed
on a and by (5.3.3), it is easy to prove that

lim . (a(z,V(t®)) — a(z,Vu))V(u —t®)dx =0, (5.4.28)
im0 J{ju|>i}n{|u—Ti(v) -t®| <5}
as well as :
lim (a(z, V(u + 1)) — a(z, Vu))VT;(~t®) dz
’”)’+°°. {lu]<d}

(5.4.29)
= /Q(a(:c,V(u +t®)) — a(z, Vu))VT;(—t®) dz,

since a(z, V(u+t®))—a(z, Vu) € L1(Q)" and, by hypothesis, & € Wol’ql(Q). Combining
(5.4.26), (5.4.27), (5.4.28) and (5.4.29) we have

lim inf /Q Ty(—t5) dhs — /Q T,(—1d) dA

> / (a(z, V(u + 18)) — alz, V) VT;(—t®) da,
Q
and, for j > |t|(|®allze (@) V [@llze(2))

liminf/ —t®p dAp —i—t/ ®d)\ > —t/(a(:c,V(u +1®)) —a(z, Vu))Ve dz.
Q Q Q

h—+oco

At this point, dividing by |t| and passing to the limit with respect to ¢ — 0, we obtain
(5.4.18). '

Step 8. We will prove (5.4.5).
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Proof of Step 8. We recall that up, satisfies (1.6.3), i.e.,
/ ah(x,Vuh)V@ dz :/ @d/.l,h +/ D dAp, (5.4:.30)
Q Q Q

for every @ € Wg’q,(Q), with 1 < ¢ < 525. We just observed that W&""(Q} C C(),
so that, thanks to Lemma 1.2.15 and (5.4.18), we can pass to the limit as h goes to +o0
in the last two terms of (5.4.30), obtaining

lim ap(z,Vup)Vedz = /

<I>du+/@d/\

=/a(a:,Vu)V@cl:1:,
Q

where the last equality follows by the equation (1.6.3) satisfied by u. In other words, we
proved that

N
N-1

—div(ap(z, Vup)) = —div(ae(z, Vu)) weakly in W14(Q), for every g <

On the other hand, ax(z,Vup) is equibounded (with respect to h) in the L?-norm,
thanks to Lemma 1.5.5. By this fact we easily deduce that

ap(z,Vug) — o weakly in LI()Y, (5.4.31)

where div(a(z, Vu) — o) = 0. As we will see later, to prove (5.4.5), it is enough to show,
by Minty’s trick, that

lim ah(m,Vuh)VCI*wdz::/a(:c,Vu)V@wdw, (5.4.32)
h—+co 0 Q

for every @ € WOI’QI(Q) and for every w € C1(Q).
With minor changes with respect to the proof of Step 2, we will prove (5.4.32). Let
& € Wh? (Q) and t € R, with t # 0; then the solution vy, of VI(As, A(Ti(u)+12), vn+

t®) and the obstacle reaction 7, associated with it are such that
vp — Ti(u) +t® weakly in T/Vol’P(Q),

an(z, Vop) = a(z, V(Ti(u) +t®)) weakly in ),

n, — 0 weakly in W'l’p'(Q),
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since T;(u) + t® is the solution of VI(A, A(T;(u) 4+ t®),¢ + t®). By the monotonicity

assumption on ap(z,:) we have, for every [,5 >0
/(ah(a:,Vuh) — an(z, VTi(ve))VTj(up — Ti(vs))wdz > 0,
Q ,

where w € C’l(ﬁ), with w > 0. For convenience we write the previous inequality in the

form

L(ah(x, Vur) — an(z, VIi(vp))V(T; (up — T[(vh))w) dz

> /(ah(m,Vuh) — ah(a:, VT[('Uh))Vw Tj(uh — T[(vh)) da:,
Q

which gives, using the entropy formulation (1.6.1) of up and letting ! tend to +oco, as

in the proof of Step 2,

In + 11y + 111, 2 IVy + V)
Ih = fQ Tj(uh - Uh)w d)\h
< II; = fQ Ti(up — vp)w dup

IIIh = — fQ ah(x,Vuh)Vw Tj(uh - Uh) dzx
IVi = [ an(z, Vor)V(Tj(up — vp)w) dz
Vy=— fﬂ ap(z, Vop)Vw Tj(up — vp) dz.

The same tools used to deduce (5.4.26) give:
I, < / Tj(—-t@)w dAp;
A Q
choosing j > |t|||®]|z(q) and using the formulation (1.6.3) satisfied by up, we have:

Iy < -t/Qah(x,th)V(@w)d:c —{—t/gfj[)w duin. (5.4.33)
Thanks to the variational formulation satisfied by v, we write IV} as
IVy = /Q'a(:c,V(Ti(u) +18)) V(T (un — vi)w) dz + (ma, Tj (up — vi)w)
and we obtain that

limnf IV 2 /Q a(z, V(Ti(u) + t8))V(T;(u — Ti(u) — t®)w) dz, (5.4.34)

since we can work as in the proof of (5.4.21) and (5.4.23). Analogously, as we prove
(5.4.22), we have also that

lim I7, = / Ty(u — Ti(u) — £8)w dy. (5.4.35)
Q

h—>+to0
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On the other hand, it is easy to check that

lim III, =t lim ap(z, Vup)Vw @ dz + / oVw(—t® — Tj(u — Ti(u) — t®)) dz,
(5.4.36)
as well as
hlir}} Vh = — / a(z, V(T;(u) + @) Vw Tj(u — T;(u) — t@) dz. (5.4.37)
—-co Q

Combining (5.4.33), (5.4.34), (5.4.35), (5.4.36), and (5.4.37) we obtain

liminf—t/ aﬁ(x,Vuh}V@wdm—i—t/ dwdu
Q Q

h—++c0
+ fg Ti(u — Ti(u) —t®)wdy + /Q oVw(—t® — Tj(u — Ti(u) — t®)) dz
> / a(z, V(T;(uv) + t®))VTj(u — Ti(u) — t@) wdz,

Q

which gives, letting ¢ — 400

liminf—tf an(z,Vup)Vowdr > —-t/ a(z,V(u +1®))Vewds.

Finally, dividing by |t| and passing to the limit with respect to ¢ — 0, we obtain (5.4.32).
Combining (5.4.32) and (5.4.31), we have

/ (¢ —a(z,Vu))Vewdz =0, (5.4.38)
Q
for every @ € Wol’ql(ﬂ), with ¢ < ]—V;J\é—f, and for every w € C*(Q).

Let ¢ € RY, with £ # 0, and let { € C°(£2); then the choice of ®(z) =&z ((z) in
(5.4.38) is admissible, and gives

/ (¢ —a(z,Vu))é (wdz =0,
Q
since ézw(z) € CH(Q). Now we let ¢ tend to 1, obtaining
: / (¢ —a(z,Vu))éwdz =0,
Q

for every w € C1(), and, finally, (o(z) — a(z, Vu(z)))§ = 0, for every £ € RY and for
almost every z € , so that (5.4.5) is proved.
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Step 4. We will prove the lower semicontinuity of the “energy”, that is

/ a(z, Vu)VTj(u)dz < liminf [ ap(z, Vup)VTj(us) dz, (5.4.39)
Q h—r+o0 Q

for every 7 > 0.

Proof of Step 4. To prove (5.4.39) we need an approximation result for the G-convergence
(see Lemma 2.3 of [26]).

Lemma 5.4.4. Let ap be a sequence in L(co,c1,c,08) G-converging to a function
a, and let A, and A be the operators associated to ap and a, respectively. Let v €
WaP(Q) N L®(Q) and vy, the solution of (5.2.1) relative to A(v). Then there exist a
decreasing sequence €5 converging to 0 and a sequence wy, € Wy P (Q)NL>®(Q) such that

wy, = v weakly in Wy (Q), (5.4.40)
(an(z,Vwn) — an(z, Voy)) — 0 strongly in P (Q)V, (5.4.41)
lwr(z) —v(z)| <ep Cp-g.e. n Q. (5.4.42)

Let v, wy € WaP(Q)NL=(Q) as in Lemma 5.4.4. By the monotonicity assumption

on ap(z,-) we have, for every j > 0:

/Q(ah(w,vlﬂh) — an(z, Vwy))VT;(up — wp) dz > 0.

We use the entropy formulation of uj to obtain

/ Tj(uh — wh)d/\h +/ Tj(Uh - wh) dup —/ ah(:c,th)VTj(uh — wh) dz > 0.
Q Q Q

Let us rewrite the previous inequality as

Ip + 11y + 111, >0

In = [o Tj(un — wn) dAs

Iy = Jo Tj(un — wr) dpa

IIIh = — fQ ah(m,th)VTj(uh - wh) dm,

and the term 111, as
Il = /(ah(:c,vvh) —ap(z, Vwy))VTj(up — wy) de
Q

—-/ an(z, Vor)VT(up — wy) dz.
Q
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By (5.3.5), Tj(up — wy) is uniformly bounded (with respect to k) in Wy P(Q), so that
Tj{up — wy) converges weakly in Wy'P(Q) to Tj(u —v). Thanks to this fact and to
(5.4.41), it is easy to pass to the limit in the first term of II1I,. For the second one it
is sufficient to use the definition of v and, again, the weak convergence in T/VO1 P(Q) of
Tj(uh - wh), so that

hli)rfoo III, = — /Q a(z, Vv)VT;(u — v) dz. (5.4.43)
Analogously we have
hlii{{loo Il = L T;(u —v)dp, (5.4.44)

since we can apply Lemma 1.2.15. Finally, thanks to (5.4.42) and by the lipschitzianity
of the truncated function, we have:

liminf I = liminf/ Tj(up —v) dAp- (5.4.45)
Q .

h—r-+o0 h—+oc0

Combining (5.4.43), (5.4.44), and (5.4.45) we obtain

liminf [ Tj(up —v)dAn + / Ti(u—v)du > / a(z, Vo)VTj(u —v)de,  (5.4.46)

h—+4oo Jo Q Q
for every v € Wy'P(Q) N L=(R2).

Let t € (0,1); for i > 0, we use v = tT;(u) as function test in (5.4.46). Since
tTi(u) > tTi(3) Cp-q.e. in @ and since K1, (yp) converges to Rir(y) in the sense of
Mosco (see Remark 5.2.4), there exist k € IN and a sequence zp converging to t7;(u)
strongly in We'P(€) such that zx € Kypy(y,), for every h > k. We consider the function
&y = Ti(z1) — tT;(u), which belongs to WaP(R) N L*(Q) and tends to 0 strongly in
WaP(Q); so we can use (5.4.18) and the lipschitzianity of the truncated function to
deduce that

l}i—_m)_kl_xg‘/ﬂ Ti(up — tTi(u)) dAn = lhlr—]:)l-}l-rolf A Ti(up — Ti(zn)) dAp- (5.4.47)
Moreover, since, for every h > k, Ti(zn) > tTi(¥n) Cp-q.e. in 2, we estimate the right
hand side of (5.4.47) as

. ) — Tz < limi ) _ . .
%gil;{f; QTJ(uh T( h)) d/\h _%E_*x_rg/QTj(uh T (‘l,[)h)) d)\h

=1iminf/ Tj(uh — tT5(ur)) dAp,
Q

h—-+oc0
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where the last equality follows by the complementarity system (3.1.10). Finally, using
the entropy formulation (1.6.2) of uj, we get

liminf/ Tj(uh - Ti(zh)) d/\h
Q

h—+o0

<liminf (/ ap(z, Vur)VT(up — tTi(un)) dz ——/
Q

Tj (uh - tTi(uh)) d/.bh) (5.4.48)
h—4o00 2

—liminf ah(x,Vuh)VTj(uh—~tT,~(uh))da:—/Tj(u—tTi(u))du,
h—+o0 Q Q

since Tj(un —tTi(un)) coﬁverges to Tj(u—tTy(u)) weakly in W ?(Q) and we can apply
Lemma 1.2.15.
Hence, using in (5.4.46) v = tTj(u) and combining (5.4.47) and (5.4.48), we obtain

lim inff ap(z, Vup)VTj(up — tTi(up)) dz > / a(z,tVT;(u))VTj(u — tT5(u)) dz.
Q Q

h—-+oco0
(5.4.49)
We denote [, an(z, Vur)VTj(ur —tTi(ur)) dz by Ji, and we split Q into the sets where
lup| <4 and where |up| > i, so that

Jp :/ . ah’(m,Vuh)VTj((l —t)(up)) dz
{lun|<i} :

—i—/ an(z, Vup)Vuy dz.
{lun]>i}0{|un —tTi(un)|<5}

Observing that {|ur — tTi(un)| < 5} € {Jun] < j+1ti}, if we choose j < (1—1t)i, we have
that {|ug| > 1} N {|ur — tTi(ur)| < 5} is empty, and

J":/{, " ah(m,Vuh)VTj((l—t)(uh))dmS/Qah(:c,Vuh)VTj((l-t)(uh))d:c,
il
since the integrand is nonnegative. Analogously

/Q o, 8V T3 (w)) VT (u — T5(u)) do = /{ oy B VR)VT (1~ ) b
50 that (5.4.49) becomes

Eﬂg/s)ah(m,vuh)vzﬂj((l — t)(up)) de > /{Mﬁ} o(z, (VT3 (W) V(1 — £)u) da.
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Letting ¢ tend to +oo, we rewrite the previous inequality as

fmint [ oa(e, Vun) VI{(1 () do 2 /Q oz, tVu)VT (1 = t)u) de

or, equivalently,

(1—1) 1iminf/ an(z,Vup)Vupdz > (1 — t)/ a(z,tVu)Vudz
h=r+e0 J{(1-1)|unl <5} {(1-1)|u]|<5}
(5.4.50)

for every 7 > 0. Let n >0 and j = (1 — t)n; then we can rewrite (5.4.50) as

liminf/ ah(m,Vuh)VTn(uh)dmZ/a(m,tVu)VTn(u)dm.
Q Q .

h—-+oc0

Finally, letting ¢ tend to 17, we obtain (5.4.39).
Step 5. We will prove (5.4.6).

Proof of Step 5. The proof is quite similar to that of Step 2, so we will often refer to it.

Let ¢ > 0; then, for every k > 0, we have that tTg(u) > tTk(eb) Cp-q.e. in 2. Since
Ky (gy,) converges to Kigy(y) in the sense of Mosco (see Remark 5.2.4), there exist
n € IN and a sequence &) converging to tT;(u) strongly in W3 P(Q) such that &, €
K1, (y,) for every h 2 n. For 1 > 0 we consider the solution vy of VI(An, A(Ti(u) +
tTh(u)), ¥n + ®5) and the obstacle reaction 7y, associated with it; as in the proof of Step
2, we deduce by Theorem 3.1 of [26] that

vp = Ti(uw) + tTe(u) weakly in W, 2 (Q),
, nn — 0 weakly in WL (©),
since Ti(u) + tT(u) is the solution of VI(A, A(Ti(u) + tTx(u)), ¢ + tTk(u)). We have
also, by (5.4.24), that

liminf | T;(usn — vg) dAp + / Ti(u — T;(u) — tTe(u)) dp
Q Q

h—+oco

(5.4.51)
> / o,V (T3(w) + £T4(w) VT (u — Ti(u) — T (w)) do.
Q
On the other hand, by (5.4.26), we have that
%g-il—lg T (uh — ’Uh) dip < hm.,\l.ilf ’(—-—@h) dAp,
<l’%r_1;11nf/ T;(—tT% (¥r)) dAn ' (5.4.52)

= liminf/ Tj(—-tTk(uh)) dApn,

h—+o00 Q
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where the last inequalities follow, on one hand, by the fact that ®; € K, (n)» for A
large enough, on the other, by the complementarity system (3.1.10). Thanks to (5.4.52)

we rewrite (5.4.51) as

fiminf [ Ti(-Telun)) D+ [ Tiu — Ti(w) — ¢Taw)) du
e . (5.4.53)

> / a,‘(a:‘, V(Ti(u) + 1Tk (u))VTj(u — Tl(u) — tTx(u)) de.
Q

Let us choose j > tk and ¢ > k; if we split the integral in the right hand side of (5.4.53)
into-the sets where.|u| < 7 and where |u| > ¢ we obtain, by (5.1.3):

s / o,V (4 + Tk (w)) VT () do = —t / oz, V(Th(u)(1 + 1)) VT (u) de.
{ Q

lul<d} -
(5.4.54)
As in the proof of Step 2, we let 1 tend to +oo in (5.4.53), so that, using (5.4.54), we
easily get

—tlimsup/QTk(uh)d/\h——t/QTk(u)d,u > —-tfna(m,V(Tk(u)(l + )V Ty (1) da,

h—+o00

or, equivalently, using the entropy formulation of uy

— tlim sup (/ ah(:c,Vuh)VTk(uh)da:—/Tk(uh)d,uh> —t/ Tr(u)dp
h—4oc0 Q Q Q

| . (5.4.55)
>t [ alo, VT + ) VIk(w) de,

for every k > 0. On the other hand, Lemma 1.2.15 implies that

h-—>+co

Q Q
so that (5.4.55) becomes

—tlimsup/ﬂah(x,Vuh)VTk(uh)dx > ~t/ﬂa(a:,V(Tk(u)(l—}—t)))VTk(u) dz.

h—+oco

Finally, dividing by ¢ and passing to the limit as ¢ — 01, we have, for every k > 0

limsupfah(:v,Vuh)VTk(uh)dm S/a(:r,Vu)VTk(u) dz,
Q : Q

h—r+co

which, combined with (5.4.39) gives (5.4.6). O
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Remark 5.4.5. If we choose in Theorem 5.4.1 as obstacles ¢ = % = —oo, we recover
Theorem 3.2 of [4], which concerns the continuous dependence of the entropy solutions

under perturbations of the operator A.

Corollary 5.4.6. Let a be a sequence in L(co,c1,,3) and A be the operator associated
with it. Let us assume (5.4.1), (5.4.2) (with Ay = A, for every h > 0), and (5.4.3),
with Ky, converging to Ky in the sense of Mosco. Finally, consider pn, p € My (),
with pp converging to p weakly in My(Q). Then the solutions up and u of the obstacle
problems OPo(A, pn,¥n) and OPo(A,p, ), respectively, satisfy

T;(up) = Tj(u) strongly in Wé’P(Q), for every 7 > 0. (5.4.56)

Proof. By Theorem 5.4.1 (with ap = a, for every h > 0) we have that Tj(up) converges
to Tj(u) weakly in WyP(Q), and

/ a(z, Vup)VT;(ur)dz — / a(z, Vu)VTj(u)dz, for every 7 > 0. (5.4.57)
Q Q

On the other hand, if the function a is fixed, working as in the proof of Theorem 1.5.3,
it can be proved that Vu, converges to Vu almost everywhere in Q. Since a(z,-) is a
Carathéodory function, also a(z, VTj(up)) tends to a(z, VT;(u)) almost everywhere in
Q. ‘

Moreover, thanks to (5.1.1), a(z, VT};(ur)) is uniformly (with respect to h) bounded
in LP' ()Y ; so we deduce that

a(z, VTj(up)) = a(z, VTj(uv)) weakly in LP'(Q)N. (5.4.58)
Combining (5.4.57) and (5.4.58), we have:

i (oo, VT3 un)) — afe, VT ()9 () = T5(w) do =0,

h—+co

which implies that T;(us) converges to Tj{(u) strongly in WaP(Q). t

Remark 5.4.7. Other results in the case ap = a, under different hypotheses on up
and 3, can be found in [19].
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Remark 5.4.8. We just noted (see Remark 2.7.2) that, if the datum p is a general
measure of M3(Q), there is no continuous dependence with respect to the convergence
of the obstacles in the sense of Mosco.

Actually, in [21], it is showed, in the linear framework of Chapter 2, how the con-
tinuous dependence on the obstacles is influenced by the behaviour of solutions due to
the singular components of the forcing term u, that we have studied in Chapter 4. In
particular (see Theorem 3.14 of [21}), for u € M;(Q), calling up and u the solutions of

OP(u,) and OP(u,), respectively (see Definition 2.1.1), the Mosco convergence of
e i - M .- . . :
Ky, to Ky (Ky,—Ky ) implies:

if u= € Mpo(S2), then, for every ¢ < 7\7‘7—\[_—;, up, — u strongly in Wy'9(Q).

Other results in this sense can be found in [21].
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