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Introduction

In the theory of discrete groups a particular role is played by reflection groups: in order of com-
plexity the first to be studied are finite reflection groups or Cozeter groups. They include the Weyl
groups of simple Lie algebras and some exceptional groups which do not correspond to any Lie
algebra. All of them can be realized as a group of linear reflections of a finite dimensional metric
affine space Vi over the field of real numbers: their fundamental chamber is a dihedral cone.
Next there are affine Weyl groups, which are obtained by addition of an extra reflection w.r.t. an
affine hyperplane: their fundamental chamber is a simplex.

The action of both these groups can be extended on Vg = C ® R, where the fundamental domain
of affine Weyl groups is not anymore compact. :

If we require compactness we go to the next level, represented by Complez Crystallographic Cozeter
groups (CCC): by definition they are reflection groups acting on V¢ such that the fundamental
chamber is compact and such that the linear part is real (namely there exist a basis in which
the matrices representing them are real). Such groups were considered extensively and classified
in [BS86], where the authors show that they are labelled by a (irreducible) reduced root system
(hence a Dynkin diagram) and a complex parameter 7 in the Poincaré upper half plane.!

All these classes of groups preserve a nondegenerate (positive definite in the real case) second

rank symmetric tensor, namely they are group of (possibly complex) isometries: we will refer to
this tensor as the intersection form.
If we give up the requirement of nondegenerateness of the tensor then the problem of classification
gets rapidly more and more involved: Saito has studied the class of reflection groups generated by
marked eztended affine root systems [Sa85, Sa90]. They are generalized root systems of affine type
which preserve a semidefinite positive bilinear pairing with two-dimensional kernel: the “marked”
refers to a choice of a sublattice of rank one in the kernel, in order to extend the metric to a
preserved hyperbolic metric (nondegenerate and indefinite). They generalize CCC groups and
hence have a generalized Dynkin diagrammatics.

Already Looijenga noticed that these reflection groups carry a natural SL(2,Z)-action (in the
case of CCC groups) and hence one can define a semidirect product which we denote by J (g) and
call Jacobi group of type g (the Lie algebra associated to the Dynkin diagram).

They can be made to act in space preserving a nondegenerate symmetric tensor up to conformal
invariance? (or they could be made to preserve a corank 2 symmetric tensor in the sense of Saito).

1More generally one may study the discrete reflection groups acting on spaces of constant curvature.
2 Again, this tensor is referred to as the “intersection form”.
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Since they extend CCC groups, they are classified as well by Dynkin diagrams.

The basic problem which is related to the study of discrete groups is to formulate a convenient
invariant theory, namely the theory of functions which are invariant in some sense under the action
of the group (the class of function depending on the particular setting).

Finite reflection groups have a well established invariant theory: it was proved by Chevalley [Ch55]
that the algebra of invariant polynomials is a graded polynomial algebra freely generated by [
invariant polynomials y1, ...,y; (I being the rank of the group or equivalently the real dimension of
Wr).

The degrees of such generators are uniquely fixed and can be read off the spectrum of the so—called
“Coxeter element” ¢ of the group: by definition c is (any element of the conjugacy class of) the
product of all fundamental reflections which generate the group.

The corresponding theory for affine Weyl group proves similarly that the algebra of invariant
functions is freely generated by —again— [ generators Y7,...,Y]: in view of the invariance under the
lattice of translations of the group, they are Fourier polynomials in the coordinates of V. The
algebra of such Fourier polynomials is not naturally graded, contrarily to the previous case.

For CCC groups the invariant theory can be traced in the works by Looijenga [Lo80] and

Bernstein-Schwarzman [BS86]: now, however, we cannot look anymore for invariant functions be-
cause the quotient space is a multidimensional complex torus and hence any holomorphic function
on it is a constant. Instead one has to lift the action of the CCC group on V¢ to a suitable line
bundle (corresponding to the choice of a 1-cocycle with values in O*(V¢)) and seek invariant sec-
tions in the (graded) temsor algebra of this bundle.
The result is that the algebra is freely generated by [ + 1 “theta functions” O, ...,0; and has a
natural N-grading called indez (in the context of Affine Lie Algebras (Kac-Moody) it is called the
level): the degrees of the generators are then related to the labels of the Dynkin diagram (they
correspond to the labels in the simply laced cases). This algebra is often called Theta algebra.

As for Jacobi groups the invariant theory has been introduced by Eichler and Zagier [EZ] (who
firstly introduced the name) for the case A; and generalized to other cases by Wirthmiiller [Wi92].
Now we are looking for invariant section in the tensor algebra of the line bundle obtained by
tensoring the “theta” line bundle with the canonical bundle of #, the Poincaré upper half plane.
This amounts to searching for invariant functions of the Theta algebra tensored with the graded
algebra of modular forms®. The result is a bigraded algebra J.(f’.) (g denotes the Lie algebra corre-
sponding to the Dynkin diagram), where the two gradations are the N-gradation of the index and
the Z-gradation of the weight, defined as customary for modular forms.

This algebra? is a freely generated polynomial algebra over the graded ring M, of modular func-
tions: there are [ + 1 such generators ¢y, ..., o; whose bigrades can be specified and are the same
indices of the previous case and weights which are zero and minus the degrees of the invariant
polynomials yi, ..., 4; of the corresponding Weyl group. The algebra J.(?.) is called the algebra of
Jacobi forms (the name being given firstly by Eichler and Zagier in loc.cit.).

In Chapter 2 we explicitly construct the generators of the algebra of Jacobi forms in some cases.

3Certain conditions of boundedness when the modular parameter tends to a cusp must be added.
4This has been proven in [Wi92] for Dynkin diagrams except Es
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The first case is the series A;: we can define a generating (elliptic) function in one auxiliary variable
v, where the coefficients of the Laurent tail at the pole v = 0 provide the desired generators.
This generating function is essential to compute the “intersection elements” 91; ;: they are the
quantities equivalent to the matrix elements of the Killing form <,> on the basis of invariant
polynomials. The result is a formula giving an elliptic deformation of a formula computed by
Saito, Yano and Sekiguchi in [SYS80] for the case of polynomial invariants.
Moreover we can compute the expressions for the components of the (contravariant) connection
in the basis of Jacobi invariants with the aid of the generating function: this computation is use-
ful in the application of Frobenius manifolds to the dispersionless limit of integrable hierarchies.
Indeed, although conceptually straightforward, such a computation would involve nontrivial Fay’s
identities for theta functions and in any case it would not be viable in closed form for any rank of
Ay :
The series B; can be treated with similar devices and also the corresponding intersection elements
can be expressed in terms of a generating function: again this gives an elliptic deformation of the
corresponding polynomial case in [SYS80].
Unfortunately we did not find any generating function for the remaining two classical series, the
main obstacle being that the generators have different indices while in the cases A; and B; they
are all of index one. However some specific cases can be solved, namely the C3, Cy, D4 ones.
The case Cj is especially easy because the algebra Jffa) is a subalgebra of J.(ﬁs) due to the fact
that the finite Weyl group W(Cs) is a Zj extension of W(4s),
The case Dy (from which the case Cy follows easily) requires heavy (but straightforward) computa-
tions in order to analyze the modular properties of the classical Theta functions (the construction
is a “brute force” computation).

Among the exceptional Lie algebras the case G is the easiest because (similarly to Cj) J.(%) C
J.(f?) due to the fact that W{C2) is a Zo—extension of W(A2),
We remark that Cs, D4, Go are all codimension—one cases in the theory of Saito, namely among
the generators of the algebra of theta functions there exist only one generator of maximal index.
This is relevant in the application of Jacobi forms to Frobenius manifolds (see later).

Beside the theory of (generalized) root systems, there exists a second context where Jacobi
groups arise analogously to Weyl groups, namely singularity theory: this is historically the first
occurrence.

We recall that Weyl groups of the A — D — E type arise in the study of miniversal deformations
of simple hypersurface singularities. For example, in the case of the A; series, such hypersurface is
defined by F : C2 — C, F(z,y) = z'' +9% = 0, and the Weyl group of type A; appears as follows:
consider the miniversal deformation Fy(z,y) = 2! + a1zt~ + ... + aj_12 + a; + 4% =: Py(z) + 32
and a basis in the homology H; of the regular level surface V, := F;1(0) (in a neighborhood of
the origin). Now, for generic a’s , V; is regular and it becomes singular on the discriminant A. In
this case the discriminant is the set of a’s for which the polynomial P,(z) has non-simple zeroes.
As the parameters a’s undergo a loop which avoids the discriminant A, the basis gets reshuffled.
The fundamental group of C'\ A is isomorphically mapped into GL(H1,Z) and one can check that
this is exactly the action of the Weyl group of type A;.

In a similar way, the Jacobi group of type Eg arises in the study of the miniversal deformation of
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the simple elliptic singularity specified by the function F' : C* — C, F(z,y,2) = 2° +y3+23 + A zyz
[SaT4].
There exists still another parallel between ordinary Weyl groups and Jacobi groups: indeed in

Chapter 1 we prove that one can define an infinite dimensional Lie algebra Z{(g\) in such a way

that Jacobi groups naturally appear as “Weyl” groups of a suitable Cartan subalgebra $ in T'(g).
This is obtained by considering a (nontrivial) central extension of the algebra of smooth g—valued
functions over a complex torus of modular parameter 7 and adding a derivation § w.r.t. the
antiholomorphic vector field of the torus, in the same spirit of Kac-Moody algebras (the aforemen-
tioned central extension is a modification of the one considered by Etingof and Frenkel in [EF94]).
In fl/’(-g\) there exists an obvious CSA $ which is spanned by the derivation 4, the central element

——

and the CSA § of g: the result is that the group of automorphisms of T'(g) which leave £ (modulo
the centralizer of §) invariant is proved to be isomorphic with the Jacobi group J(g).

This realization of J(g) is deeply related with the moduli theory of flat unitary vector bundles
over the elliptic curve E, and Jacobi forms are hereby interpreted as section of a line bundle over
such moduli space (Chapt. 2) (this is also related to geometric quantization of Hitchin systems
[GaTra98]).

Along these lines we provide the first effective application of the theory of Jacobi forms to the
Wess—Zumino-Novikov—Witten model on the torus (Chapt. 4). Indeed, following the works of
Falceto and Gawedzki [FaGa96, FaGa95, FaGa92] we can express Chern—Simons states with no
insertions (the chiral part of the partition function of such models) as Jacobi forms: this allows
us to decompose the space of such states into subspaces of definite weight under the action of
the modular group. The spectrum of these weights can be expressed at any level by means of a
generating function. With the same function we can compute the dimensions of the vector spaces
of such states for any level s (corresponding to the index) and any group (except Eg) in the case
of “zero insertions”: this approach is of different origin w.r.t. the celebrated Verlinde’s formula for
the dimension of Chern—Simons states [Ve88].

The case with insertions is more difficult because involves “ vector—valued Jacobi forms” carrying
a representation of the (finite) Weyl group. Nonetheless we are able to reduce it to the study of
ordinary Jacobi forms which are not invariant under the finite Weyl subgroup of the Jacobi group.

The theory of polynomial invariants for finite reflection groups has found a relevant application
to a recent topic of mathematical physics: indeed it is known from [Du92] that the spectrum of
these algebras (i.e. the underlying manifold structure of the quotient space) can be endowed with
a very rich geometric structure called “Frobenius manifold” [Du93]; Frobenius manifolds arise in
a different, —physical-, context as intrinsic formulation of the Witten—Dijkgraaf-Verlinde—Verlinde
(WDVV) equations of associativity for a two dimensional topological field theory.

Since there are many points of contact between the polynomial case (i.e. Coxeter groups) and the
elliptic one (i.e. Jacobi groups), it is natural to work out an analogous structure in the context of
Jacobi forms.

A generalization to the case of “extended” affine Weyl groups was already made in [DZ98]; the
authors considered a particular extension of the affine Weyl groups of simple Lie algebras which
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endows the algebra of invariants with a grading operator analogous to the usual grading of Coxeter—
invariant polynomials.

In Chapter 5 we go in the same direction by constructing a Frobenius structure on (a suitable
covering of) the orbit space of the Jacobi group of type 4;, B, VI = 1..., G2 and Cs.

In the case of the two series, this provides a series of solution of WDVV which are polynomials
in the variables %1, ..., %, tz-}-lv t14+1 and depend on #y via modular functions (here ¢; are flat coordi-
nates of the invariant metric of the Frobenius structure). Having a singularity at t = 0 (due to
the presence of the modular functions of #y and a pole in %,y 1), these solutions to the associativity
equations do not saytisfy the “good analyticity properties” in the sense of [Du93], Appendix A,
but do provide interesting examples of twisted structure.

Notice moreover that the flat coordinates £y, %1, ..., t;+1 are flat theta invariants on a suitable cov-
ering of the orbit space of the complex crystallographic affine Weyl group (though not precisely in
the sense of [Sa90]). The explicit computations enable us to carry out the corresponding formulae
for the generators and the intersection form in the case C3 and G3. As we have remarked these
two cases lie in the class of “codimension—one cases” studied by Saito in [Sa90]: this implies that
there exists a natural pencil of flat structures (this implies a Frobenius structure) on the spectrum
of the invariant algebra as described in [Sa90]. On the other hand, however, the study of the
Ao, A3 cases show that there exist different and independent flat structures, which are described
in example 5.3.2 and Sections 5.5, 5.6: these structures come from the fact that the algebras J.(,(SQ)
and J.(,C.je') are embedded into J.(ﬁ“) as a consequence of the fact that the respective Jacobi groups
are in the reversed inclusion.

We did not work out explicitly the case D4 but a simple reasoning shows that again there
are two independent flat structures: the Saito’s one and the corresponding prepotential has been
computed by Satake in [Sat98], the other comes from the relation with the Jacobi algebra of type
By (of which the algebra of Dy is an extension).

The occurrence of multiple pencils of flat structures sharing a base point is not peculiar of these
examples. In fact we have found a very simple example of this phenomenon in the polynomial case
of type B; (in Appendix B): in this particular instance there are ! pencils of flat metrics having as
common basepoint the intersection form.

The layout of the thesis is the following.
In Chapter 1, Section 1.1 we recall the construction of Jacobi groups and their usual represen-

tation.
In Section 1.2 we provide the details of the realization of Jacobi groups as groups of authomor-
phisms of a current algebra which preserve a Cartan subalgebra.

~ In Chapter 2, Section 2.1 we recall the invariant theory for Jacobi groups and give their in-
terpretation (Sec. 2.2.1) as sections of a line bundle over moduli space of flat G-bundles over an

elliptic curve.
In Chapter 3 we provide the explicit expressions of the generators of Jacobi forms of type

A;, By, Gg, C3 and Dy (C4). In the cases G2 and C3 we also give expressions of the particular
set of theta functions which are flat coordinates for Saito’s metric (since these two cases are of
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“codimension one”).

In Chapter 4 we briefly recall the setting of the Wess—Zumino-Witten model over a curve
and then specialize to the case of interest to us, namely the elliptic one. We describe Chern—
Simons states reducing the general problem to the study of non-Weyl-invariant J acobi forms. In
Section 4.1.2 we give the formulae for the dimension of the space of Chern-Simons states with zero
insertions and arbitrary level.

In Chapter 5 we relate Jacobi forms to Frobenius manifolds as told before.

Finally in the Appendices we provide the formulae for elliptic functions and classical theta
functions which have been used in the body of the work. Moreover (App. B) as we said, we give
the example of multiple pencils of flat metrics in the polynomial B; case.
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Chapter 1
Jacobi groups

In this chapter we introduce one of the main objects of the thesis: Jacobi groups. Jacobi groups
are extensions of complex crystallographic groups [BS86] namely discrete groups acting on a vector
space in such a way that the quotient is compact. The extension is with the full modular group
SL(2,7) in a rather natural way. This extension was pointed out by Looijenga in [Lo76, Lo80]
and then studied in the context of invariant theory by Wirthmiiller in [Wi92].

Historically they are related to the study of the period mapping for the miniversal unfolding of
the simple elliptic singularity of the function [Sa74]

F(X,Y,2)=X3+Y3+ 23+ )XY Z,

which corresponds to the Jacobi group J(Es) in the following notation. The generalization to
other Lie algebras is straightforward, however it does not correspond to a period mapping of a
hypersurface singularity but, possibly to singularity of subvarieties of higher codimension.
Deeply related to these groups is the study of marked extended affine root systems, carried out by
K. Saito [Sa85, Sa90, Sa98].

For our purposes these groups are rather easily described and each of them is associated to one
of the finite dimensional simple Lie algebras.

In the first section we give the definition of Jacobi groups J(g) for any simple, finite dimensional
complex Lie algebra g and also provide the standard faithful representation as an action over a
suitable cone.

In the second section we introduce a different description of these groups as “Weyl” groups of a
suitable current algebra on the torus. To be more precise, we build an infinite dimensional current
algebra which is very close to Kac-Moody’s algebras: then we pick up a natural Cartan subalgebra
$ and show that the automorphisms of the algebra which preserve §) (modulo the action of the
centralizer) form exactly the Jacobi group J(g). This enforces the parallel between the invariant
theory of these groups (to be recalled in the next chapter) and the invariant theory of Weyl groups,
which leads to the study of invariant polynomials. Moreover this introduces the application to be
developed in Ch. 4 to the elliptic Chern-Simons states and Wess—Zumino-Novikov-Witten models

on the torus.
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1.1 The group J(g)

In this section all the objects we will refer to (Weyl groups, root lattices, etc.) are the objects
corresponding to a complex finite dimensional simple Lie algebra g of rank [.

Let W be the Weyl group, @ the root lattice (as an abelian group).

Let Hg be the Heisenberg group obtained as a central extension of @ x @ by Z using the cocycle
defined by the invariant Killing form <,> normalized to 2 for the short roots, (this implies that
YA EQ, <\ )\ >€2Z).

This group is obtained by definition of the product in @ x @ X Z as

YA k), W,u E)e@xQxZ
k) - (Vo p B = A+ Nop+p k+ K+ <p, X >)

Since the Killing form <, > is Weyl invariant and the Weyl group W of g acts on @2, we can take
the semidirect product W x Hg: this way we obtain an (infinite) discrete group which we denote
by W where the semidirect product is specified by the multiplication rule

W =W x Hg, st Yw,w' € Wt =\, u, k), t' = (N, k') € Hg
(w,t) - (W', t') = (ww',w XN+ Nw-p' +p,k+k+<p,2>).

This group is rather well known and its invariants are theta functions, as we will explain in due
course.
We now can give the definition of Jacobi group

Definition 1.1.1 The Jacobi group J (= J(g)) is the semidirect product W x SL(2,Z). The
action of SL(2,7) on the group W x Hp is defined by

Ady(w) ==w
bd
Ad,(t) := <a>\- by, —cA +dp, k + % <MNA> —be< A\ u> +? < py >> , (1.1)
forweW, t=(\u,k) € Hg, v= “ Z ,€ SL(2,Z). Then the multiplication rule is defined

by (V(w,t,7), (W,t',7) €W x Hp x SL(2,Z))

(w,t,7) - (W', t,9) == (w-w,t- Ady(wt'),y-7') .

1.1.1 Faithful representation of J

Let us consider the cone Q:=C® @ H 3 (u,x,7), where b is the complex Cartan subalgebra of
g and # denotes the Poincaré upper half plane.
In the literature it is often called the Tits cone [Lo80] and it is the union of all the images under
W of the closure of a fundamental chamber C; therefore it is an invariant cone for the action of
the group W (and of J as well).

Let us consider 7 € H; we have an embedding of Q X Q in § as the complex crystallographic
lattice Q + 7Q and we can define the action as in the following
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Proposition 1.1.1 The Jacobi group J is represented on 2 by definition of the action of w € W,
t € Hr and v € SL(2,Z) as

w(u,x,7) = (u,wx,7)
,
t(u,x,7) = <u+k—— <X, U > —5 < oy b >,x+/\+'r,u,'r)
c< X, x> x at+b
2(ct+d) et +d et +d

y(u,x,7) = <u +

The proof is straightforward although rather long, and it is left to the reader.

Remark 1.1.1 The action of the Jacobi group is non linear, but it could be made such by realizing it as
a discrete subgroup of the conformal group: in fact, as we will see, its action is a conformal action for the
metric du @ dr +dr @ du+ < dx ® dx >.

1.2 Jacobi group as Weyl group of a current algebra

In this part of the chapter we provide an interpretation of Jacobi groups which is completely
unrelated to singularity theory. This will realize Jacobi groups as the group of automorphisms
preserving the Cartan subalgebra of a suitable algebra.
The algebra which we are going to define is an extension of a variation of the well~<known current
algebra considered in [EF94] (but see also [PrSe]), hence it is an infinite dimensional algebra. More
precisely it is the result of adjoining a derivation to a specific central extension of a current algebra,
much in the same spirit of Kac-Moody’s algebras, except for the fact that S is here substituted
by a complex torus.
Inside this algebra we find a natural Cartan subalgebra and study the action of the group of internal
and external automorphisms leaving it invariant (modulo the centralizer of the subalgebra): this
is the analog in the present context of the Weyl group for semisimple Lie algebras. We will see
that this group is exactly the Jacobi group J(g).
In order to fix the notation and recall the necessary objects and definitions we preliminarily report
some well-known facts.

Let 3 be a smooth compact surface of genus g, G a simple, simply connected Lie group,
g = Lie(G), <,> an invariant bilinear form on g: for us this will be the Killing form with the
same normalization as before, namely < o, a >= 2 for short roots.
Let T(G) be the Lie group of all smooth maps from ¥ to G, T(g) be the corresponding Lie algebra
of smooth maps ¥ — g.
When fixing a complex structure on X, we will denote the surface by C; let He be the complex
vector space of abelian differentials of the first kind (i.e. holomorphic).

We will first shortly account for the construction of a particular central extension of the current
group T(G) given in [EF94] of which we will need a rather straightforward modification.
Let © denote the identity element in He ® H} and define a central extension of T(g) with values
in H} by means of the 2-cocycle Q (see [EF94])

(e, n) :=/E<1>/\<«£,dn>, Vé,n € T(g) .
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—

This defines a g-dimensional central extension T(g) which can be obtained from the so-called
universal central eztension by means of a quotient; indeed we have that

Proposition 1.2.1 [[PrSe] Section 4.2] The universal central extension Ug® is an extension of
T(g) by means of the infinite-dimensional space 4 := Q1(%)/d0°() of complex—valued one-forms
on % modulo exact forms. This extension if defined by the a-valued cocycle

u(,n) =< &dn > moddQ’(X),  V&neT(g) -

Notice that the cocycle is skew—symmetric only up to an exact form: the homomorphism which
maps UT(g) to T(g) is the factorization by the abelian subgroup of the universal center a of all
w € a such that

/ wA®=0¢€ Hg .
c
Now, we have the following results.

Proposition 1.2.2 [[EF94] Proposition 1.2] (i) Let C1, C3 be two Riemann surfaces with complex
structure: the Lie algebras f(]?),T/g(]T) are isomorphic iff C; and Cy are conformally equivalent
(i.e. biholomorphically isomorphic).

(ii) Any automorphism f of T(g) can be uniquely represented as a composition f = ho ¢, where h
is a conjugation by an element of T (Aut(g)) and ¢, is the direct image map induced by a conformal
diffeomorphism ¢ : & — X.

This means that the group of the outer automorphisms of T(g) is induced by the holomorphic
automorphisms of C. _

This construction at the level of Lie algebras can be integrated at the level of Lie groups, as
the following theorems show us.

T

Theorem 1.2.1 [[EF94], Thm. 2.2] There exists a central extension T(G) of the current group
T(G) by means of the Jacobian variety J of C; the Lie algebra of this central extension is exactly

T(g).
A similar result holds for the universal central extension.

Theorem 1.2.2 [[PrSe] Section 4.10] (i) The universal central extension of UT(G) of the group
T(G) is an extension of the universal covering group T(G) of T(G) by means of the infinite-
dimensional abelian group A of complex-valued one—forms on ¥ modulo closed one-forms with
integer periods.

(ii) 1 (UT(G)) ® R =0 for n < 3;

(iii) the group A is homotopy equivalent to a 2g-dimensional real torus. The natural map
m2(T(G)) — m1(A) associated to the fiber bundle UT(G) — T(G) is an isomorphism up to torsion.

Proposition 1.2.3 [[EF94] Prop. 2.4] The universal central extension UT(G) is homotopy equiv-
alent to T(G).
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In the following we slightly modify the cocycle €2; the result is homotopy equivalent to the previous
in view of Thm. 1.2.3.

Let H¢ be the complex vector space of purely antiholomorphic differentials; it is obtained by
taking the complex conjugate of the abelian differentials.
The two spaces He and H¢ are naturally paired by

B(w, ) :=/Eww,

and this is a nondegenerate pairing. The new central extension will be with values in ﬁz ~ He;
indeed, let ® be the identity element in He @ H, Z and redefine the cocycle by

Q(&1, &) == /z: < 01,6 > N .

Again it is a straightforward computation to check the cocycle properties.

1.2.1 Extension of the algebra and its automorphisms
We are going to define an extension f(j?) of rI/‘(g\)
This algebra will not be the Lie algebra of any Lie group (exactly in the same way as Virasoro’s

algebra) but has the property that it supports in a natural way (an extension of) the coadjoint
representation of T(G). In addition any automorphism of T(g) extends to an automorphism of

'I/‘-(g\); we will realize explicitly this action and see that the subgroup of automorphisms preserving
a Cartan subalgebra is isomorphic to the represented Jacobi group J(g).

For the sake of completeness we recall the basics of the coadjoint representation for current
groups.
This representation acts over the infinite dimensional complex vector space A of all connections over
the trivial g—bundle on C. Such connections can be realized as operators of the form D = wa‘% +&,
where w € C and £ € T(g). Any such D defines thus a complex structure for a trivial G—vector
bundle V over C in the usual manner by decreeing that holomorphic sections are those annihilated
by D. As a holomorphic vector bundle we will denote it by B(D) and in general it will not be a
trivial holomorphic vector bundle.

1.2.1.1 Extension of the natural coadjoint representation of T(G) for elliptic curves

We now perform the extension which was anticipated at the beginning of the previous section: the
action of T(@) on the space of connections A := {D = w8 +£dz} ~ C5 & T(g), will be extended in
a natural way to a larger space which is naturally identified with an extension of the Lie algebra
T(g): here we denote with & the derivation %.

In [EF94] the vector space A is naturally realized as the dual of the algebra ’?(g\) under the invariant
pairing

B(D,n) :=wy+/dz/\d2’<f,n>, with D :=wd +&dZ , T=y@"  +7,
by ,
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@" being the unique (in genus g = 1) central element belonging to H, ~ Hc'.

Consider now the extended vector space T(g) := C§ @ T(g). We introduce coordinates on it of the
form (w, ¢,z) € Cx T(g) x C and identify naturally with the pairs (D,u) = (w(% +&,u) e AxC.
We define the commutation relations (extending the previous ones) [PrSe]

[(D1,U1):(D2,v2)} = ([51;52] +w1-(%§2 _w2%€179(£1752)) = ([D1, D2}, (&1, &2))

where we recall the form of the cocycle

Q(&1,80) := /2 <§1,58;§2>dz/\d2.

The adjoint action can be computed by straightforward calculations adapting those for ordinary
Kac-Moody’s algebras.

Proposition 1.2.4 [See Prop. 4.9.4 in [PrSe]] If 7 := exp({) belongs to the identity component

of T(G), then the adjoint action of v on the extended algebra T(g) is given by

e d 1 0
AdrY(D,‘U) = ’UJBE +Adry?7 + wry '5%'7 )

_/ _10v w _/ 40y _{0v
1 1 1
v+/zdz/\dz<'y —Bz,n>+~2LdzAdZ<v 327 —az>) .

——

Remark 1.2.1 The extended algebra T(g) fails to be integrated to a Lie group because of the presence
of the derivation 5.

/:\

The extended algebra T(g) contains the obvious Cartan subalgebra

d
H:=60how’ = {(D,v) = (w——: +2i7r—x;,v>} ,
0z T—T
where § is the abelian subalgebra of constant maps with values in a fixed Cartan subalgebra of
g. In this definition we consider w as coordinate along the derivation ¢ = 5% and v as coordinate
%

along the central element @". The normalization T is for later convenience.

We now consider the group of automorphisms in Aut(’I/‘(g\) ) which leave invariant $ (modulo the
centralizer).
First of all we prove

—— JE———

Lemma 1.2.1 Any automorphism of T(g) is the lift of an automorphism of T(g) .

1 This explains why the dual space of the central extended Lie algebra T(g) is taken as the space of connections
of the form D = wZ + &; this is the space that naturally carries the co-adjoint action of T(G) induced by B(D,7)
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Proof.
U — A

We must check that any automorphism F € Aut | T(g) | leaves invariant T(g) < T(g). Indeed, if

p1 is the projection onto the abelian subalgebra spanned by the derivation ¢ we have, for any two

elements a,b € T(g)
0 = p1([Fa, Fb]) = p1 o Fla,b] .

e — - e — e — ——

But T(g) = ’ﬂg\),T(g)], hence p; o F' = 0; this implies that FT(g) C T(g).

Therefore the automorphisms of the extended algebra are a subgroup of the automorphisms of

———

’?(g\) . but again, any automorphism of T/(g\) can be lifted to T(g) acting as the identity on the
coordinate w. Q.E.D

Therefore we pass to consider all automorphisms of rI/‘(g\) which stabilize 6; we know that any
automorphism of the extended algebra must be an extension of an automorphism of the algebra
f(g\). In view of Prop. (1.2.2), the latter are the composition of an inner automorphism and an
automorphism of the underlying complex curve.
To understand the action of the group of automorphisms of the complex curve on the extended
algebra it is convenient to introduce a fibration; the base space will be the Poincaré upper half
plane # := {7, §(7) > 0} while the fibers will be the extended algebras just defined

T(g)
g .= o

H
This fibration is acted upon by the group SL(2,Z), namely the group of complex isomorphisms of
elliptic curves; here it appears the full group SL(2,Z) and not only PSL(2, Z) because the action
of the isomorphism of complex curves on the derivation can distinguish between plus or minus the
identity in SL(2,Z).
We introduce coordinates on G (D', v,7) by adjoining the modulus of the elliptic curve 7.

——— e

As far as the action of T(G) on T(g) is concerned we can regard 7 as a parameter.

1.2.1.2 Analysis of the Weyl group

We are to analyze the automorphisms fixing our Cartan subalgebra, namely the Weyl group of

o —

T(g)-
The obvious ones are the element of the Weyl group of § considered as constant elements of the

———

gauge group T(G) . The action of such an element w is given by

0 .S 0 L WX
wlw—+2ir——,v, 7| = | W=+ 2iT—"2,0,T | .
0z T—T 0z T—T

Along with these we should also consider the action of the outer automorphisms of g, namely those
corresponding to the symmetries of the Dynkin diagram.
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Another class of automorphisms are those deriving by nonconstant gauge transformations. We
have

Lemma 1.2.2 Any non-constant gauge transformation F(z,%) € T(G) leaving invariant §) is of the form

F(z,%) := woexp {Ziﬂ'pz — fz] ,

with w an element of the Weyl group of h and p=A+ 7€ Q& 1Q = h.

Remark 1.2.2 The embedding of the root lattice @ in § via our bilinear form <, >, coincides with the
usual coroot lattice in h: this is due to the unconventional normalization of the Killing form < o, >= 2
for short roots. This has the effect that exp(2iw)) equals the identity of the group G iff A belongs to our
root lattice.

Proof. Any such transformation F(z,Z) must satisfy AdpH + F~18;F = K(H) = const € § for
any H belonging to . The operator K (H) is clearly affine w.r.t. H and its linear part must be an
inner automorphism of G preserving h because K (H) € ), VH € b Therefore there exists some
w € W and a p € CSA such that

KH)=w-H+p.
There follows that F' is of the form wFy(z,%) with Fy a exp(h)-valued function. Plugging into the
equation we have

Fil'o:Fo=peh.

The conditions of periodicity force p = 2im(A+ 7u) with A and p belonging to the (co)root lattice.
QED

The action of an element of the above form (with w = idy) on $ is the following

( ; - )
w— + 2i7w —. U )
0z T—T
0 . A 2i7)>2
r—>( X+ w +’LU7'/,LU+(’L7T)

TT
w%+2m pp= , p—— ( H,uH2+fr<u,x>+—|[/\Hz+<>\x>)> ,
so that we obtain that the action on our Cartan subalgebra is

2
O (Tl 47 < > + 21+ < 2> )

plw,x,v,7) = <w X + wA + wrp, v+

Finally we compute the action of the change of complex structure of the torus to an isomorphic one;

. , . . b
this amounts to study the action of the transformations 7 — 7/ = ‘C‘:Ig, with <Z d) € SL(2,Z).

We focus on the action of the two generators 7 — 7+ 1 and 7 — —%. It is easy to see that their
action is

0 ) 0
T T74+1: —_—_+2mr———x__,'u,'r + 28 —— X UT+1
0z T—7F 9z T —

> : 6)-+—2’m'r x , U, 6+2 E !
T T 0z 77 0z’ m'r—?”v’ )
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where, in the second line 2’ is the holomorphic coordinate on the complex torus of parameter
7= ——%. We summarize these formulae in the following

Proposition 1.2.5 The action of the group of automorphisms of 'I/‘(g\) preserving the Cartan
subalgebra $ = {(D,v) = (w% + 2i'rr—7{—;r-.,v)} ~ CS @ h & CwV is generated by the following
transformations

(’LU,X,’U,T) = (w,w ' X,’U,T)

2im)? (T
w0, = (wt A s+ CEL (Frull? 47 < x> 45N+ < x> ) 17
b
(w’ x? U7 T) I—> w, x 7v) CLT+
cr+d Cer+d

The abstract group underlying this action is exactly the Jacobi group J(g): the action is clearly
different from the one considered in Section 1.1.1 but can be made equal by a (nonlinear) change
of coordinates. Indeed we introduce the coordinate

_v g Il

2 2(r—7)

One can check that the same action in with this coordinate is exactly the same as in Section 1.1.1
if we set the level w equal to 1 (this is not a problem, since the underlying group is independent
of w which is left invariant). We have thus proved the

Theorem 1.2.3 The Jacobi group J (g) is isomorphic to the Weyl group of '?(g\), namely the

———

group of automorphisms of T(g) which preserve the Cartan subalgebra $ modulo its centralizer.



Chapter 2

Invariant theory for Jacobi groups

In this chapter we review the results on the invariant theory of Jacobi groups. This is the analogue
of the invariant theory of Coxeter (or, more specifically, Weyl) groups. They are usually realized as
groups of reflections of a linear space preserving a positive definite bilinear form (the “intersection
form”). The study of invariant theory amounts to the study of the algebra of invariant functions
over this linear space.

In the case of Coxeter groups one studies the algebra of invariant polynomials and the main result,
due to Chevalley [Ch55] is that this algebra is a free polynomial algebra in | generators y1, ...y, {
being the rank of the linear space. These generators are not uniquely determined but their degrees
dy,...,d; are.

More precisely the degrees are obtained from the exponents of the so—called Coxeter element [Bo].
In the present context of Jacobi groups a similar theorem holds (Thm. 2.1.2, [Wi92]) for all groups
except the one associated to the exceptional Lie algebra Es.

Here we recall such theory and definition of the proper functional space (this is necessary since
the group is infinite) where to look for the invariant functions. Moreover in the spirit of Chapter 4

—

and following the realization of Jacobi groups as “Weyl” groups of the algebra T(g) as in Chapt.
1, we give an interpretation of Jacobi forms as sections of a line-bundle over the moduli space of
flat G-bundles over an elliptic curve E, (Section 2.2.1).

2.1 Jacobi forms

Since we want to consider the orbit space Q/J(g), it is necessary to study the algebra of invariant
functions; this is the analog of the study of polynomials over a vector space which are invariant
under the action of a Coxeter group ( which gives the orbit space a structure of weighted projective
space!). In this case one studies better the SL(2, Z)-equivariant functions for the Jacobi group; it
means that they are invariant under the action of the normal subgroup W, and transform under
some representation of the metaplectic group (as in Definition 2.1.3); in more geometrical terms

1Recall that a weighted projective space Prg,n,,..,n, With weights no,...,7u € N is the quotient space of cH+t /{0}
with respect to the C*-action determined by the formula p(t)(20, ..., 21) = (t" 20, ..., t™ z1).

11



Jacobi forms 12

one studies the invariant sections of a suitable line-bundle over the orbit space.
We will come back to this picture later, but for now we give the definitions and the results of the
theory.

Following [Wi92] we will consider holomorphic functions on € with the further property that
they are locally bounded (in u,x) as §(7) — +o0; this is natural since 7 is interpreted as modular
parameter of an elliptic curve and the Jacobi forms will realize the holomorphic sections of a certain
line bundle over it, which one wants to extend at the cusps of SL(2,Z).

To be more definite, we will study the invariant modular forms, Jacobi forms, of weight k, F(u,x, 7)
(dr)*/2?, which have the following definition

Definition 2.1.1 ([Wi92]) The Jacobi forms of weight k and index m are holomorphic func-
tions on the Tits cone Q =C @ h B H > (u,x,T) which satisfy

1
E(p(U,X, T) = %’ u(,D(‘U,,X,T) = ’ITLQO(U,X, T)

(P(quaT) = p(u,w -X,T) )

o(u,x,T) =<,0(u—- <t,x > —% <t,t >,x+7t+)\,'r) ;
c< X, X > x ar-+b

2(er + d) ’c¢+d’c7‘+d> ’

o, %,7) = (er +d) (u .

and are locally bounded functions of x as (1) — 4o00.
The space of Jacobi forms of weight k and index m is denoted by Jgm.

This means that the Jacobi forms are the invariants of the group W = W x Hp and transform as
dr%/2 under the modular group SL(2,Z), being also eigenfunctions of the Euler vector E = Eg-au
with eigenvalue m.

Remark 2.1.1 Instead of thinking in terms of line-bundles, we could define equivalently a truly invariant
algebra by adjoining to  a coordinate of the line~bundle as follows; consider the trivial line bundle ¥ :=
C x Q with coordinates (v,u,x, 7). Then define the action of the Jacobi group on Y as

v c<X,Xx> X ar+b>

(v, %,7) = <c7+d’u+ 2(cr +d) "er+d’ er+d

and in the obvious way (leaving v unchanged) for the elements of W.
It follows that we can associate to any Jacobi form ¢ € Ji r, an invariant function on Y as

@(’U7 /u'J X’ T) = ’Uk(p(ui x7 T)

and hence define a second grading vector K := ”59_1, which could be called the weighting operator.

Digression 1 The action of the group W is the well known action in the theory of theta functions, namely,
the invariance under W = W x Hp can be rephrased by saying that the Jacobi forms of index m are in
particular theta functions of “level m” for the affine Weyl group in consideration. We recall briefly some
basic facts (but for a complete reference, see [KP84]). Adapting the notion to our seiting and notations, if
P is the lattice of weights (i.e. < P,Q >=17),



Jacobi forms 13

Definition 2.1.2 (Section III in [KP84]) Let m € N be fized. The space of theta functions The, is
defined as the set of holomorphic functions of (u,x,T) which are invariant under Hr and of degree m for
the Euler field E.

The theta functions of characteristic p € P and degree m € N for p in P modm Q) are defined by

—2i ; 2o
@p’m(u,x’,r) .= 2T MU 5 : ezmTrTHA[[ 2imr <A x>

AEQ+%P

The C linear span of them inside ﬁm is denoted by Thy,.
It can be shown that
Prbposz'tion 2.1.1 [Lemma 3.12 and Prop. 3.13 in [KP84]] For m € Z we have

(a) Tho = O(H) (where O(#) denotes the holomorphic functions of 7);

(b) Thy, = {0} for m < 0;

(c) the space Them is a (O(H) module over Thy, and hence the (graded) ring The := Dmen Thy, is a free

module over O(H) with basis {@pm, m €N, m >0, p € PmodmQ} U {1}.

—W
Let us denote by Th, the Weyl-invariant part of this ring (which is clearly also an algebra); regarding its
structure we have

— W
Theorem 2.1.1 [Thm 2.7 in [Lo76]] The algebra T'h, is a (graded) polynomial O(H)-algebra freely gen-
erated by [ + 1 W-invariant theta functions 6y, ..., 8;. These generators are given by

9]' =W. @pj,m,' )

here W - © denotes the symmetrization w.r.t. the action of the (finite) Weyl group, p; are the fundamental
weights (we have set po := 0) and m; are the integers appearing in the decomposition of the dual of the

—~—\ —~V
highest coroot oV in the basis of roots, namely oV = 23:1 mja;, (setting for brevity mg := 1).

We now go back to the Jacobi forms.

The set of Jacobi forms of any weight and index has a natural structure of bi-graded algebra
where the two gradings are the weight and the indez; the following theorem is the the analog of
Chevalley’s theorem for invariant polynomials of a Coxeter group

Theorem 2.1.2 [Thm. (3.6) in [Wi92]] Given the Jacobi group associated to any finite dimen-
sional simple lie algebra g (possibly except Fjg)

1. the bigraded algebra of Jacobi forms Ju e := D, ,, Jkm is freely generated by I-+1 fundamental
Jacobi forms {¢q, .., ¢} over the graded ring of modular forms €, My

Joo = M, [(P07 "7(70l] ) (22)

2. The generator ¢; has weight —k; < 0 and index m; > 0 (for j = 0...l); the indices m; are
the integers appearing in

l
..V__ . v
a’ = E mjo;
J=1

oV Y being the dual of the highest coroot av.
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3. the weights are ko = 0, and k; are the Coxeter exponents plus one namely, if ¢ is the product

—2im(ky—1 —2im(k—1 .
2”(:1 o “r%kl )} are its

of the fundamental reflections of the Weyl group, then {
eigenvalues: notice that k;, 7 = 1..[, equal the degrees of the invariant polynomials that
generate the invariant algebra Cve]™.

Remark 2.1.2 The second statement of Thm. 2.1.2 about the indices of the generators is not surprising
if we recall that the bigraded algebra J, . is a subalgebra of the Weyl-invariant part of the (graded) O(#H)

algebra of theta functions The.

This means that the generators are graded-linear (w.r.t. the grading induced by the index) combinations
of the generators 8y, ...,0;, with coefficients which depend holomorphically on 7 only. This dependence is
forced because the generators 8; transform as a multiplet of modular forms under SL(2,Z). There is only
one case in which a theta function is also a Jacobi form: it happens for the theta function of characteristic
zero in the simply-laced cases for which the lattice of (co)roots is self dual, namely Q = QY = P. This
occurs only for Fyg, for which the theorem has not been proved.

The index zero subspace Joo C Jo.e is the graded algebra of modular forms M,. To show this
we observe that J, o is spanned —by definition— by Jacobi forms independent of v and hence they
cannot depend on x either; indeed they are (for 7 fixed) bounded functions on b/ (Q + 7Q), which
is compact, and hence they are constant w.r.t. x.

Before going on, it is useful to remind some definitions and facts on the modular group and
forms.

Definition 2.1.3 (see [KP84]) The metaplectic group Mp(2,R) is defined as the set
Mp(2,R) = {(4,54) € SL(2,R) x {f : H = C} s.t. ja(7)’ = cT +d}
endowed with the multiplication rule

(AajA) ’ (B7JB) = (A ’ BajA(BT)jB(T))

~ Clearly we can consider the discrete subgroup Mp(2,Z) and give the following
Definition 2.1.4 Let T be a finite index subgroup of Mp(2,Z) and a group homomorphism x :

T — S': a function f : # — C is called o modular form of weight k and multiplier system

x for T if it is holomorphic and for any A = (CCL Z) €I we have

FAT) = x(A, ja)(er + d)F f(7) .

An important example of modular form with multiplier system is the Dedekind’s 1 function
(which we will use in the following)

n(r) = e'Ts H (1—e*mmy . (2.3)
1
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It has the following transformations properties under the metaplectic group;

n(r + 1) = efin(r) ;
1 (-1) = Ve,

T

where the determination of the square-root is in the right half plane [Ba]: notice that the n

function is a modular form of weight 1/2 with multiplier system such that x ( L1 ) = ¢i™/12 and

01
0 =1\ _ —ir/a
X(l 0)“6 '

We finally recall a fundamental theorem for modular forms which can be found in [Se].

Theorem 2.1.3 [Corollary 2, Ch. VII in [Se]] The algebra of holomorphic modular forms M, is
a free graded algebra over C generated by the two Eisenstein series

1 1
GQ(T) = Z —— € M4 ) Gg(T) = Z m & MG y
m2+n27#£0

of weights, respectively, 4 and 6.
Consequently the subspace of modular forms of weight & is spanned by the monomials G4GY with
4a + 6b = k, namely

My, ;= C [G;Gg, Va,b,€ N s.t. da + 6b = k] .

Tt will be useful to introduce the following special notations

7)

!

3

gi(1) = ) ; g2(7) 1= 60G2(T); g3(7) := 140G3(7)
Pir)= L QU= gt R = ggos(r) (2.4

The g; function (and so P(7)) is not a modular function as it has the transformation rules

a(r+1) =g (1), g1 (~%) =729, (1) + % .

There is a natural connection V, on modular forms given in the following theorem-definition.

Theorem 2.1.4 Given a modular function F of weight k, (F' € M), the modular connection
V. is defined by the formula
d

(Vo F) (1) =n"(r)—

— (7 *()F(r)) € My,

and maps My, in Mg,o.
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Example 2.1.1 For example, one can compute the following covariant derivatives of the fundamental
Fisenstein series

OP(r) i

PO _ I pr(r) - ()
0Q(r) _ 2iw

20 _ 2T p(r) () - B(r))
D — in(P(r) Blr) - @)

Remark 2.1.3 While the holomorphic modular forms are of positive weight and are generated by modular
forms of degrees 4, 6, the Jacobi forms can be of negative weight and are generated by Jacobi forms of negative
weight.

As a corollary to the previous Thm. 2.1.2 and Thm. 2.1.3 we immediately find

Corollary 2.1.1 The dimensions j ,,, := dim (Ji,,) are obtained from the generating function

14 o'}
— _ : k
HXY) = (1— X9)( 1—X4 11 ij ..ymj) =D jemX*Y™.
J:O m=0k€Z

2.2 Geometric interpretation

Jacobi forms are holomorphic sections of a certain line bundle over the quotient space Q/J; care
should be taken in considering the orbifold points and cusps for the action of SL(2,7Z), but here
we shall be slightly cavalier over these (important) details.
We now describe the line-bundle by displaying the transition functions.

Let h be the Cartan subalgebra of the lie algebra g and consider the fibration (over 7{) of
complex crystallographic lattices Q + 7Q C §.
Consider the quotient E! := h/ (Q + 7Q): it is isomorphic to a product of  copies of elliptic curves
of modular parameter 7 (consider the coordinates of b induced by the fundamental roots). We
regard EL naturally as a fibration of elliptic curves over .

Now a linear fractional transformation of 7 with integer coefficients induces an isomorphism on
the fibers of this fibration: namely if 7 = “Tig with (CCL 2) € SL(2,Z) then the fibers E. and

E,lr, are isomorphic. The explicit isomorphism is given by

@‘T,T’ : b/ (Q + TQ) — b/ (Q + T/Q)

p’s
D, (%) = .
X Or.pr(x) et +d
B,
The group SL(2,Z) acts as a discrete group on the fiber bundle £ := | . Over this space we
H

consider the family of line bundles Ly, ,, indexed by (k,m) € Z x N, whose transition functions are
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described hereafter.

This line bundle is defined over the fibration £ previously introduced. The open cover on which the
transition functions are defined is constructed as follows; let C, be the usual fundamental domain
of the action of PSL(2,Z) on H, namely Ce := {7 € H : || > 1, —1 < R(r) < 1}, and let
g 1= 1, Pe = ¢™/3 and pl = e27/3 the orbifold points at the boundary of Ce: let us denote, for
any v € SL(2,7Z) the transformed fundamental region by C,, (where the point 400 is mapped either
in itself or on some rational), and accordingly the boundary orbifold points by ¢4, py, pfy.

Let Ago(7) be the fundamental poly-mesh of h/(Q + 7Q) namely

Ago(r):={xeb :Vj=1.1 <x,p; >€ fundamental mesh of C/(Z + 7Z)} ,

where the fundamental mesh is defined as containing the segments [0, 1) and [0, 7). We consequently
define the translated fundamental poly-meshes as A ,(7) := A+ 7 + Ao,o(7). The trivializing
charts of the line bundle Ly ,, are the sets

U’y,/\,u =T (X7T) € U A/\,u(T) )
TEC,

where 7 : h & H — (h @ H) /J(g) is the canonical projection. We define the transition functions
for the line bundle Ly ,, between the two charts of the orbit space corresponding to (1) := (e,0,0)

and (2) := (v, A, p) by

2
gé’f)’%)) (x,7) = (eT + d)_lc exp (m% —m < [,z > ~—m:;—]|p,|]2> .
Notice that they are tensor products of an appropriate power of the pull-back of the canonical
bundle of H and of the line-bundle of classical theta functions over the fiber bundle £ previously
introduced.

Now one realizes that there is a one-to—one correspondence between the W—invariant sections
of this bi—graded family of line bundles and the Jacobi forms of the corresponding index and weight:
the correspondence is given simply taking a Jacobi form ¢ € Jgm and setting u = 0. Indeed it
follows from the definitions of Jacobi forms and of the above line bundles that if ¢ € Ji 4, then
©0(0,%x,7) € T'(Lkm)-

2.2.1 Interpretation as sections over moduli of flat G-bundles

As we saw in Section 1.2, Jacobi groups are “Weyl” groups of Kac-Moody type algebra ’I/‘(g\) : this
will enable us to interpret the line bundle in the previous section as a line bundle over the moduli
space of flat, unitary holomorphic G-bundles over the elliptic curve E-.

Indeed the vector space A of connections D = w% + £(2,%) is in one—to—one correspondence
with the complex structures on the trivial g bundle on E;. Orbits of a generic connection D under
the gauge group T(G) corresponds to isomorphism classes of holomorphic principal G-bundles (we
should restrict to the semistable ones which, however, constitute a Zariski open set). In the present
case it is known (here we swap the role of @ and QV in view of Remark 1.2.2) (see [EF94]), that
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Proposition 2.2.1 [[EF94] Prop. 4.1] The space of equivalence classes of flat and unitary holo-
morphic G-bundles over the complex torus is isomorphic to §/ (W x (Q & 7Q)).

We recall that a G-bundle is called flat if it is associated to a G-representation of the fundamental
group, and it is unitary if this representation lands on a fixed maximal compact subgroup. We
now describe the above isomorphism.

Let, as before D = w% + £, If the bundle B(D) is flat (which happens for generic £) then the
equation D = 0 on a G-valued smooth function v will have a solution ¥(z,Zz) with the properties

o~ - o~ -~

¢(Z+1y7+1)=¢(Z7E)K1 3 ¢(2+T7§+7:) =¢(za§)KT 3

with K7, K, in the maximal compact subgroup of G. Since m;1(X) = Z2 is abelian, then K; K,
K71 K71 = idg. If t € g is any element such that exp(¥) = Kj, then the function t(z,%) :=

1 (z,%) exp(—Ez) is another solution and satisfies
Pz +1,Z2+1) =(2,2), p(z+7,2+7) = 9(2,2)A

where A is given by exp(—7%) K, (and does not belong anymore to the compact subgroup but to
its complexification). Under genericity assumptions A will be semisimple, hence we can assume
that it belongs to a fixed complex maximal torus Tg « G.

Let § be the corresponding abelian Lie algebra (which is a Cartan subalgebra).

The element A completely determines B(D); indeed, if x € § satisfies A = exp(2inx), setting

T—T

F(2) = 9(2) exp (—-22’7er - E)

we obtain a smooth doubly periodic G-valued function, i.e. F € T(G). Its action on the connection

D then gives
FoD:,\<E_—2m x )

0z T—7

However, different x may correspond to the same bundle B(D). Indeed, if x4 belongs to the root
lattice @, then exp (2iwu) = idg; now, the previous solution can be changed to P = 1hexp (2imzp)
so that x € b is equivalent to x + 7(}; conjugation by an element of the Weyl group W of T¢ does
lead to isomorphic bundles as well.

Since now T¢ =~ §/@Q, then the equivalence classes of bundles are indeed labelled by elements in

h/W = (Qe1Q).

Remark 2.2.1 The situation is here very much the same as in the case of finite dimensional simple Lie
algebras: indeed in this latter context the above theorem says that the generic element of g is semisimple,
namely is Adg—equivalent to an element in an arbitrarily fixed Cartan subalgebra b. Here it is the same,

except for the fact that D is in the dual space to the Lie algebra T'(G).
Recall that the linear space of connections A was extended to the Lie algebra f('?) by adjoining
a central element. We now consider the connection D as the projection of the element D & vV
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(which we denote also (D,v)). Then, using the formulae in Section 1.2 we see that in the same
orbit under the (co)adjoint action of the gauge group T(G) for generic element we have

™G
wé + € +vw” '(:)w5+(2z'7rw X )+f¢7w\’,
T—T

where ¥ is given by

oF w oF oF
~ — -1 - — —1 -1
u_ru+/2dz/\dz<F = >+2/Edz/\dz<F 5o F az>’

and F € T(G) is the inner automorphism realizing the gauge equivalence.
Now x is not uniquely determined, for we can consider the further gauge equivalence

~

F(2,Z) := F(2,Z) exp [Ziwpz _f)_z} ,

T—T

where p = A+ 7p € Q@ & 7Q — b. This new gauge brings the element into

w6 + & + 1w > wé + 2imw (w>+

T T
1 (7T 1
+ [5 + (2i7r)2w7—_—% (-Tzilmn2 +7 < p,x > +§H>\H2+ <A x >>] w’

Taking the quotient of these transformations we obtain a C*-bundle over h/(Q + 7Q): this line
bundle is holomorphically equivalent to a theta bundle. To see that it is sufficient to change
the holomorphic transition functions (w.r.t. the coordinates in the Cartan subalgebra b); indeed,
holomorphic sections of this line bundle over §/(Q+7Q) may be realized as holomorphic functions
©(x) over h with the property (we rescale for commodity, u := 5%-)

1
P(x + A+ TplT) = exp 2iw L —

T 1
(TP 47 < > g P+ < 2> )| el

If we change the transition functions by exp ( 3”7) ||x||2) (which is a holomorphic function of x)

we obtain a line bundle £ whose transition functions force section to behave like

plx|r) i= &~ T o)
o(x -+ A 7uf7) = exp (ZlIul>+ < % > ) plxir)

Taking quotient by the Weyl group W of G imposes the further constraint
ow-x|7) = p(x|7) , YweW.

If we consider also the SL(2,7Z) action, then we must take further quotient; then the line bundle
imposes the following relation

a7 + b) _ e2(iz_7r+cd)” ” (XiT) -

_x
v cr +dler +d
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By tensoring with appropriate power of the canonical bundle of H, we thus obtain the same line
bundle considered in Section 2.2, where now sections of this line bundle are really to be considered
as gauge invariant functions on the space of connections over the elliptic curve E,. We will return
on this interpretation in Chapter 4, where this very line bundle will be interpreted as the geometric
quantization of an Hitchin system [GaTra98] and sections as gauge invariant states for the Wess—
Zumino-Novikov—Witten model on the torus.



Chapter 3

Explicit form of the generators

In this chapter we provide explicit formulae expressing the generators of the algebra of Jacobi
forms in the case of the two series A;, and B; and for the cases Cs, Cy Dy, Gp. As for the
series we provide a closed formula for a generating function of the fundamental forms. In these
cases the generators g, ..., ; belong to the index 1 subspace, hence the generating functions is a
(meromorphic) function of an auxiliary variable v with values in this subspace.

The construction of the Jacobi forms for the series A; allows us to find the Jacobi forms for Ga and
Cs as will be explained in the corresponding sections. The remaining two cases Cy and Dy actually
amount to the same computation since the Jacobi forms of Cy form a subalgebra of the Jacobi
forms of Dy (this holds true for any rank /). We are not able to produce a generating function for
the remaining two series (one would suffice), hence the construction of the J acobi forms for Dy is
accomplished directly by studying the ring of theta functions.

3.1 The generators of the algebra of Jacobi forms for J(4;) and
J(B1)

We are going to build some explicit analytic form of the generators of the algebra of Jacobi forms
for the series 4; and B;, but some preliminary formulae do apply for general Lie algebras g.
Contrarily to what happens in the study of polynomial invariants for Coxeter groups, the gener-
ators we are to build will be essentially unique up to weighted linear transformations; this is a
feature only of the Jacobi forms of type A; and B; due to the fact that the generators are all of
index 1.
During the construction in the A; case it will appear a natural extension of the representation
cone to a larger one, ' D £, and a natural vector field Z on TQ which will realize a recur-
sive construction of the remaining generators starting from the lightest: this has to do with the
weighting operator of Rem. 2.1.1. In both cases A4;, B, the Jacobi forms will be given by a gener-
ating function which has some notably resemblances with the generating function of the invariant
polynomials.

First of all, in the algebra of Jacobi forms there can be defined two natural operators, one

21
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linear ® : Jo o —+ Jo,o and the other bilinear M : Jo ¢ ® Joo = Jo o We need some preliminary
definitions

Definition 3.1.1 The intersection form is the covariant second-rank tensor J obtained by in-
version of the contravariant tensor J* given by

= =0, 00, — 0, R0+ <0x®0x > =T :=—-du®dr —dr @du+ < dxQ@dx > ;

its associated Laplace—Beltrami operator is denoted by
A= —-20,0, + Ax
where Ay is the Laplacian associated to the positive definite metric <,> (proportional to the Killing
form of §).
The intersection form J is conformally invariant under the Jacobi group J, namely
7.J* = (er + d)?7* .

The Laplacian A is not conformally invariant (contrary to what stated in [KP84] on page 190) but
enjoys the property shown in next lemma.

Lemma 3.1.1 Let p(u,x,7) be any (holomorphic) function: we have

afrte(u-BEE D) —rrtag (- BEE D)

2r "7 07T T T

Proof. It is a straightforward computation. Q.E.D
This lemma can be used to define an operator on sections of the line bundles Ly, ,,; we do this
hereafter.

Definition 3.1.2 Let ¢ € J_gm and 3 € J_p 4, then we define
D(p) :=n"*"AM* ) € Topiom ;
M0, ) =122 (d (n%) ,d (n™)) € Jp-nizmin -

We will call the matriz elements 9(p;, @;), for two arbitrary generators (whose ezistence and
properties are stated in Thm. 2.1.2), the intersection elements.

In this way we have defined two C-linear maps ©,9 of bi-graded modules which are both of
bi—grading (2, 0), i.e.

S Jk,m — Jk+2,m

M Tem O Jhn H Jethto,min -

We have still to check that the definition is well posed, namely that we have not added any
singularity;
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Proposition 3.1.1 For any ¢ € Jgm, ¥ € Jhn, we have D(p) € Jpqom and M(p, ) €
Jh+k+2,m+n-

Proof. We must check that the results of the application of the two operators are still invariant
Jacobi forms; invariance is obvious and follows from invariance of the intersection form an of the
Laplacian. Also the bigradings of the resulting functions are obvious and follow from Lemma 3.1.1.
We must check that D () and 90t(p, 9) are still locally bounded functions of x as §(7) — -+o00; now
the Dedekind’s 17 has neither zeroes nor poles in H and vanishes as g /?* at g = 0 (where ¢ = €%™7).
. Hence, A (n‘%cp) is holomorphic and goes like qi% as T — 100, so that finally n~2kA (nzknp) is well
defined and holomorphic also as 7 — ico: this proves that D (¢) is still locally bounded. A similar
reasoning also holds for 901 '
In passing we notice that D(p) & M.,[y], namely it is never proportional to itself for the reason
that My = {0}; for the same reason (i, ) & M.[py]. QE.D

The function 7 and the generators of the algebra J, ., being algebraically independent, form
a set of coordinates {¢—1 = 7,91, ..., 91+1} in a neighborhood of the generic point of the Tits
cone ; they play a similar role to that of invariant polynomials of Coxeter groups. In the case of
Coxeter invariants, the contravariant intersection form can be expressed in the local coordinates
given by the invariant polynomials and we want to perform a similar computation in the context of
Jacobi groups. To this end, the operator 90t and the intersection elements will be very important;
we stress that the intersection elements are not the entries of the contravariant intersection form
in the coordinates {¢,}u=—1,1,..1+1 nonetheless they are useful to compute them as we show now.
It follows from the definition that

7 (d(n™e), dm™ 05) ) = 525 Mo, 7) -

This formula shows that the intersection elements can be used to compute the intersection form.

It appears convenient to introduce a special notation which will shorten formulae; indeed, from
the above formula we see that it is of advantage to consider the functions nig;, i=1.0+1
as coordinates (indeed, they are still algebraically independent). Therefore we introduce a hat
operator which transforms a Jacobi form of weight k£ into a Jacobi form of weight zero but with
some multiplier system under the metaplectic group; it will be defined by

Definition 3.1.3 For any Jacobi form ¢ € Jy m, its hat—form is defined by ¢ = n~ 2k,

It is clear that the hatted—forms still are section of a line-bundle (since n never vanishes on #)
which now has constant transition functions.
Moreover the hat-operator preserves the index, and it satisfies the identity, 3 = @1, for any

Y, 0 € Jos.

With this notation we can write
09, %) = 7* (d(@),d(B)) -

This means that when we have computed the intersection elements for a set of generators, by
putting hats over every Jacobi forms (including the modular forms), we obtain the tensor J*
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expressed in the coordinates §;, which are locally well-defined on the orbit space; this will shorten
much of the computations we are dealing with.

Remark 3.1.1 The explicit form of the operator D is rather simple: for any ¢ € J_g n we find
D = —~dimm(2k + Dg1p — dimmBrp + Axyp .
We observe that if the lowest—degree homogeneous polynomial in the Taylor expansion (w.r.t. x) of ¢ is

P(x) (possibly depending on 7), then the Taylor expansion of D(y) begins with Ay (P).
Analogously we find for ¢ € J_pm and ¢ € J_g, that

P(p, 1) = —2immp 8- — 2iw f1p Orp — din(km + fn)gro v+ < dxp,dxtp >* .

Again; the leading term in the Taylor expansion w.r.t. x is simply < dyxP,dx@ >, if P,Q are the leading
terms for ¢, 1.

Now suppose that we have the generator of J, o of the minimal weight (the lightest), ¢; € J_, m
whose existence is stated in Thm. 2.1.2: it follows from the above that Dy, € J_g,12.m if not zero;
in this latter case one can prove

Proposition 3.1.2 [Prop. 13.3 in [Ka]] The kernel of the Laplacian A on the space ﬁ;, for
m > 0 is spanned over C by the theta functions ©p ;,, where p € AmodmP.

Therefore if Dp; = 0 then n?kitlp; is a linear combination with constant coefficients of the theta
functions; this could occur because the function n?*i*ly, transforms under the inversion 7 — —%
as a weight [/2 form (with some multiplier system x which doesn’t matter in this context), and all
also the C-linear combinations of theta functions transform as a (multiplet) of weight [/2) Jacobi
forms (for details see [KP84]).

Since the leading order in the Taylor expansion w.r.t. x of a generator (actually, of any Jacobi
form) is an invariant polynomial, then a sufficient condition for D¢; not to vanish is that its leading
term Py, (x) is not a harmonic polynomial. In the analogous context of Coxeter groups, as one
can check directly, for the classical root systems (namely the series A;, By, Cj, D;), all polynomials
obtained by recursive application of the invariant Laplacian Ay are algebraically independent as

these examples show (we will use this information later).

Example 3.1.1 For A; (see [Bo] planche I), we realize the Cartan subalgebra in C™' with coordinates
21, .., 21 such that Zézll z; = 0. The coordinates x are chosen as z1 = T1, 22 = T3 — L1 ...2141 = —Ti, OT
the coefficients of the vector in the root basis. The W-invariant polynomial of maximal degree I + 1 can be

chosen as
I+1
H+1 (X) = I:H Zj:I .
IE z5=0

=1
Applying Ay iteratively we obtain all the polynomials whose degree has the same parity

Pri1-gk(%) := (Ax)* Piy1 (%) -

I+1 5
j=1 32_,'

141
P (x) = [Z II Zk} :
Iz =5=0

=1 ke#j

To obtain the remaining we notice that, applying the operator ), we get the invariant polynomial
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from which we recover all the remaining applying Ax. We remark that an alternative definition of these poly-
nomials which is completely equivalent (up to multiplicative constants) is the following, using a generating
polynomial in an auziliary indeterminate X, as in

I+1
Py(A) = H()\ +2;) = M 4 o ONTE L+ o () Py (x) -
j=1

It is useful for what is coming to rewrite the same polynomial in an equivalent form which better generalizes
to the case of Jucobi forms.

To do this let us remark that the Weyl group of A; is represented as the permutation group of [+ 1 elements
acting on C1 with coordinates z1, .., 2141, restricted to ¥ = {)_ z; = 0}. Now there exist a unique (up to
scalar) holomorphic vector field in CHY which is orthogonal to ¥ and Weyl invariant, namely

1+1
0

J=1

This means that it is a derivation on the algebra of W invariant extended polynomials (namely all symmetric
polynomials in the indeterminates z1..z141). We can recover the invariant polynomials for A; as

1+1
Px(X) == |e*?- sz

=1
Ig=;=0

Notice that 52
5‘/\—27))(()‘) = _(l + I)Axpx(A) ’ (31)

which follows from the fact that A, = Ay + (I + 1)8%: this will hold true, mutatis mutandis, also for the
Jacobi forms.
As for By, Cy ([Bo], planches ILIII), they are realized in C' and the highest degree invariant polynomial can
be chosen as

I
Py(x) == H(Ej)z ,

and the Laplacian is just the usual one in C'. Then it is an easy computation to show that the invariant

polynomials
Py_ak(x) := 27%(A) Py (x)

are non—zere and algebraically independent. Notice that By, C; have the same invariant polynomials because
their Weyl groups are isomorphic and their action actually coincides in this realization; in fact [Bo] both
Weyl groups act by permutation of the z; and independent change of signs and are of order 241,

Again we introduce the generating polynomial in two forms as we did for A,

4
Pe(N) = [[(A+23) = X + BN + ..+ Py 2 (x)A + Pau(x)

1
14

o) | et - (32)

=1

9
—
>
A
1l
®
[23%]
>
L]
~N
8
[
N
S
i
>
I
o5
~
8
L0
p—
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As for D; we have ezactly the same construction as before but starting with the highest polynomial

Py (x) ~ZH z)?

i=1 k#j

and adding the middle degree P = H§'=1 x4, which is invariant because the Weyl group of D, acts by
permutations of the z; and by change of an even number of signs (and hence has order 2!-111). Notice that
Ay P =0, namely it is a harmonic polynomial.

In a completely similar manner we can build the Jacobi forms starting from the lightest generator
(++ highest degree polynomial) as we see hereafter.

3.2 The root system of type A;: fundamental Jacobi forms.

In the case of A;, it follows from Thm. 2.1.2 that the fundamental Jacobi forms g, 3, .., ¥i+1
belong to the spaces (we labelled the forms according to minus their weight) J_;_j45; for k =
I+1,l-1,..0

If we realize the Cartan subalgebra b of sl;+1 as in [Bo], planche I, then Wirthmiiller [Wi92] found
that the lightest generator (which corresponds to a maximal degree generatmg polynomial in the
setting of the corresponding Coxeter group) is given

141

prv1(u, X, T) = G H a(zja T)lZz,:O € ']—-l——l,l )
=1

where the function « is defined by

_ 91('”17_) — 1 01( )
01(0,7) 27 n(r )3

= v+ 0(v?),

61 being the Jacobi theta function. It enjoys the following property (from the properties of ¢, see

e.g- [Ba])

Ora(z, 1) = ~}—8§a(x,’r) —3gq1a(z, 1)

di
a(-v,7) = —a(v,7);  olv+l,7)=—alv,7); alv,7+1)=oa,T1)
alv+71,7) = —e 2o (y, 7) = a(v+nr,T) = (—l)ne'2i”””_i””2a(v,7) ;
v 1 _ 1 ,iﬂ-ﬁ
& (;7_7_) - 7_6 Cl!(’U,T) ) (33)

We can obtain the Jacobi forms of weights [ + 1 — 2k by recursive application of ©. To obtain the
remaining we define the function

I+1

(u,x,7) 1= Za 2k, T Ha(zk,T).

J#k
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It is a straightforward exercise to show that this is a Jacobi form of weight —I.
Therefore we can now build the remaining Jacobi forms for A; of weight —I 4 2k by application of
D* as in
Proposition 3.2.1 A system of generators for the algebra J, , of the Jacobi group J(4,) is given
by

Pr41-2k 3:]?k(‘Pl+1)

Pi-2k = D"(e1) ,

where ;11 and ¢; have been defined above.
Any other set of generators is a weighted linear combination of these with coefficients in M,.

Proof. Since we already saw that these are Jacobi forms belonging to the spaces J_;_142¢,1 and
J_i+25,1 we only have to show that they are algebraically independent: but this is promptly seen
by looking at the lowest term in the Taylor expansion w.r.t. x for

pri1-zk = & (AF (P (%)) + O(Ix]~2))

1zt = 27 (AF (Bi()) + O(Jl 7))
and this suffices to show their algebraic independence.
As for the second assertion, since any other set of generators must have index m = 1 then it

must be at most linear in these generators, and if we want that they have definite weights, the
combination must be actually a weighted one. Q.E.D

Remark 3.2.1 In the setting of Coxeter groups, the set of generators of the algebra of invariant polyno-
mials is uniquely specified up to weighted polynomial transformations; on the other hand, here we can only
perform linear transformations with coefficients in the modular forms.

We can describe these forms much more concisely with the aid of a generating function. In order
to show how to build it, first of all we consider the enlarged space (u,z,7) := (u,21,...2141,T) €
= Co C*! @ H and the following vector field

+1

Z=Z-4ir | > z | a("E,
=1

where, as before, Z := 2?;11 29%-

Lemma 3.2.1 The generators of the algebra J, . are given by

41
Orp1-k (U, X, 7) 1= [Zk (ezmu 11 a(%‘))} :
=1 |22j=0

Followingly, they are the coefficients of the generating function

] 41
@u,x,r(v) = |eZ | ¥ HO&(Zj,T) .
g=1 IE z;=0
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Proof. We extend the action of the Jacobi group J to the enlarged space in such a way that the
complex crystallographic Weyl group acts —exactly as before- by permutation of the coordinates
and translation by the root lattice, while the metaplectic group acts by

c||z||? z at +b
ct+d)’ (ct+d) er+d)

(u,2,7) — (u+ o

where the Killing form has been extended to the obvious ds? = }:?;11 deZ. We realize that the
vector Z is conformally invariant of weight 41 (namely it increases by one the weight of an extended

Jacobi form); this means that if ¢(u,z,7) is an invariant function of the extended Jacobi group,
then (setting p := (I + 1) Zl'l'l = p(z))

fo-segzon) o 42.2.2)-

I+
p p [n'(-1/7)1 1 _
-2 ) ) + (@) —tin 2 [TEHDL - L) () =

[ ) o
+1

One may ask why we put a term proportional to p = (I + 1) > {7 #; since in the end we want to
restrict to p = 0: the reason is that when we apply more than once the operator £ and do not
include the term we get a non J—covariant result as we see in this

Counterexample. Consider the push—forward under the map & of the second iterate of Z:

z (z (tp (u B2 2))) =z (-Loes 0010 L) =

+ LD ) - 22U D 7)) 4 (22000

~

where * stands for the point (u - le;”;, 2, ~—;) and we see that even restricting on p = 0 we get

1E<p(*) .

Z(Z(p (%) = ( o)) — 2’

We see that the vector Z commutes with E, hence preserves the index; we have a natural Jacobi
form on the enlarged space which is simply e Héﬂl a(z;). Since the conformal weight of Z is

+1 we can write alternatively the fundamental Jacobi forms by means of the simpler formula

141
Ori1k(u,x,7) = | ZF | 2 Ha(zj)
. [Z z;=0
We should check that with this definition they are not algebraically dependent, but again this is

obtained by looking at the lowest order in the Taylor expansion w.r.t. x. This proves that the
functions defined in the Lemma are a set of generators.



(Gienerators 29

Next, in analogy with the case of the Weyl-invariant polynomials, it is useful to introduce the
generating function, which obviously has the form

I+1
By x,r(v) 1= e’? H a(zj,T) = @1 + v+ 0o+ e+ 0 g
j=1

|Zzi=0

by €2 we mean the flow generated by Z on the extended cone Q. Q.E.D

We remark that the series does not stop, but, by virtue of the structure of the algebra of
Jacobi forms, the higher terms are polynomial combinations of these with coefficients in M,. We
will re-sum the series afterwards, while now it is useful to write down explicitly the generating
function; to do this we must integrate the flow of Z on 2. We could perform this straightforward
computation in a direct way, but it is interesting to point out that Z is a covariantly flat vector
for a suitable flat metric on 7'(2’) (the tangent bundle). This metric extends the intersection form
of T(2) under the natural embedding © < Q' and it is worked out in the following section. After
finding the flat coordinates of this extended intersection form, we will have also the integration of
the flow of Z by shifting the coordinate along Z.
The extended intersection form will be used later to compute the intersection elements.

3.2.1 Extension of the intersection form

We are to build a metric on T(Q') which extends the intersection form on T'Q; we ask the following
conditions on the extended intersection form:

i) the extended metric must be flat;

ii) it must coincide with the previous one when restricted on the hypersurface Zlﬂ

To this end we introduce the coordinates on Ct1 as

21 =21 +D
Z9g =9 —T1+p

2yl =T +p
In a concise form we have z = Zé:l z;) +p[1,1...,1]: in the following we will often write z;(x, p)
or z;(x) 1= z;(x,0).
In these coordinates the flat metric 3" dz? becomes
di? =< dx,dx > +(1 + 1)dp? .
The most easy form for the extended metric suitable for our purposes is

3 = —du ® dr — d7 ® du + dI? + pB(7)(dp ® dr + dr ® dp) + p* B'(7)dr*
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One can check directly that the curvature vanishes for any choice of the function B(r) (whose

explicit form will be fixed to our convenience later), but it is sufficient to introduce the new
coordinate

s =~ ;p"B(r)

and the metric becomes _
J=—-ds®dr—dr®@ds+d?.

If we choose 9

1

we obtam that the previously introduced vector field Z in the coordinates (s, x,p, 7) now reads

B(r):=—

I+1
Z = Zaz] l-l—l ()pau:ap'

The vector field 7 := 8, of these coordinates reads, in the old ones u,z, T as

2

T=—lil (91(7)) By + 8; (3.4)

and the extended intersection form 3* reads

I+1 a 5

Now we can integrate easily the flow generated by Z 51mp1y shifting p with constant s; after these
computation we can rewrite the generating function of the Jacobi forms as in
Proposition 3.2.2 The generating function can be written as

l+1
@u,x,r('l)) = evZ H C\f(Zj,T) — eQz’vr(u—(l-i—l)y?Hl('r)) H a (Zj(X,’U),T) .

|E z;=0 7=1

It follows from the transformation rules of o that the generating function enjoys the following
properties under the Jacobi group:

2 1
o (u — ———-——”x” , zc—, v, ~~> = T—l_l@(u,X,T’U,T)
2r ' T T

O(u,x,v, 7+ 1) = ®(u,x,v,7)
o (U+ < p,x > +%[[,u]|2,x + T +t77}a7—) = (D(’U:,X,’U,'T)
O(u,x,v+1,7) = (—1)l+1<I>(u,x,v,'r)

O(u,x,v+71,7) = (—e"‘zi’”’"i’”)l_l_1 @ (u,x,v,7) .
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Remark 3.2.2 The function v™!71®, x -(v) is an invariant function of index 1 on the total space of the
line-bundle as in remark (2.1.1); notice that it has a pole of order I + 1 in v as a consequence of the fact
that the spectrum of the weighting operator K on the subspace J,; is -/ —1,-1,...,~2,0,1,....

Tt will be useful later to consider the function A(v) := 0= ()@, x - (v) = a1 (v)e?ime Hzill a (z;(x,v)),
which has the same singular tail (in v) but is also invariant under the complex lattice Z + 7Z.

3.2.2 The generating function for A4;: re-summation of the series.

As we saw, the first [ + 1 coefficients in the Taylor expansion w.r.t. v of the extended Jacobi form

I+1 , 41
, L
B (u,x,v,7) 1= By xr(v) = V2 | gy H oz, T) = AT )T H a(z(x) +v,7)
j=1 k=1

IZZJ':D

provide us with the desired fundamental Jacobi forms. Unlikely to the case of Coxeter invariants,
this generating function is not just a polynomial in the auxiliary variable (in this case v) but a full
series. It is therefore useful to re-sum this series in order also to analyze its coeflicients.

We realize that the generating function is a classical theta function belonging to ThY for the
lattice of A; depending on the parameters v,7. Since we know from Thm. 2.1.2 and 2.1.1, that
the Jacobi forms span Th}¥ we can write the following equality

I+1
B(s,%,v,7) = e~ 2T DFR) 3 Gy (o, 7 pry 1 (5, %, 7)
k=0

and we must find the coefficients Cy(v, 7). If we analyze the modular properties of ®, we promptly
find that the coefficients Cx (v, T) are Jacobi forms of weight —k for the lattice Cmod 2(Z + 7Z),
namely .

Cr(v +1,7) = (=) Cy (v, 7);

Crlv +7,7) = (=1)!HLeZmo—inltlr oy (y, 7);
. o2

Ci (Z)— —l) = T“ke”(lH)TC'k(v,’r) .

?
T T
The formula which describes concisely the generating function is contained in the

Theorem 3.2.1 Up to normalization, the generators of the algebra of Jacobi forms of type A4
already defined recursively in Prop. 3.2.1, are given by the generating function

. . 2 i+1 41 (__1)l—-1-——k
Puxr(v) = SN [ o) —v) = oHw) 3 e T (k) =
j=1 =0 '
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1 pl) k) ... pl D)
1 plzn) @'(z1) ... " Y(z)
det | . : ) .
-1 1 : I‘ (l—.l) I+1
I TR = S I 0] | IR D
1 p(z) '(z2) ... p""2(2) o
det . . . .
1 p(z) ©'z) ... ' I(z)

Proof. We recall a classical formula which can be found in [Du93] pag. 199. If ZZIH z; = 0 then

1 po) @) .. D)
1 p(z) @(z) .. plH(=n)
det . . . H
Ma(@-v) _ Hi“o(lzi—v) _ -1\ p(=) 5’0'((21) P((;";)(Zz)
At (W [T alz) ot () I o(z; I 1 p(e1) p'(21) ... "7 (21)
() [ alz) [I;" o(z) e b p(l"z)(z;)
det . . . N
1 plz) @@ ... o(a)

Expanding the determinant w.r.t. the first row of the determinant in the numerator and rearrang-

ing terms we promptly get

T
o+ [al+1(v)p(v)] 02(x) + oL (v) o (x) =

I+1 _1yi-1 —1)¢-2
eQi'n’uH o (zZ (X) —-—'U) — [(__]L)__al+1(v) p(l“l) (’U):l Yi+1 (x) -+ [L_L'al—i-l (fu) p(l“Q) (’U):i w1 (X)+
1

= Co (V)1 (x) + Cr(v)pr(x) + ... + Ci1(v)ipa(x) + Crya (V) po (%)

\-1-k
Cilw) = (—(Tl}mal“(v)p“*“)(v) (3.7)

In this formula the coefficients of the fundamental Jacobi forms are chosen in such a way that the
leading term in the v expansion in front of the Jacobi form (1 is v*.

In order to be sure that these y are really the Jacobi forms we are looking for, we first notice that
they have no singularities because the LHS in (3.7) is regular and the coefficients C} are linearly
independent.

Moreover since the coefficients Cy do satisfy the transformation rule

v 1

Ch (- ——> = 77%C (v, 7)

3
T T

and the LHS is of weight —[ —1 under themap x — %, v = 2, 7 —%, it follows by counting the
weight that ¢y is of weight —k as well. We now have to check that we exactly re-summed the series
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in Prop. 3.2.2: first of all notice that g(v) = 517 + regular and hence for k£ =0,1,2,...,1 = 1,1 +1
we find

) (v) = (=1) kv ™2 + regular |}

e—2i7r(l+1)v291 C’k(v,'r) — {,U—l—l-i-k + O(l)} (Ul+1 + O(,UH—E)) — ,Ulc + O(,Ul-l—l)

and therefore

[age—Zivr(l+1)nglc'k(U,7—)]l = &g, k=121 —LI+1.

v=0
This proves that we actually gave the re-summation of the previous series and that the above

functions g are indeed the searched Jacobi forms. Q.E.D

Remark 3.2.3 As in the case of the generating function for the invariant polynomials (eq. 3.1) we have
for the “gauge transformed” function P(v) := 2in(1+1)v*91 8 (y)) (see next section)

¢ Pu x 7-( )) = "'(l + 1)®u,x,T’Pu,x,r('U) + dim (l + l)glpu,x,r(v) (38)

where we have put a subscript to the operator D to stress on which variables it acts. This formula follows
from the fact that (recall z = z(x,v))

~

+1 9 41
~ 52 ,
=313 3143 — ; 2imu —
D(P(u,z,7) =7 A (¥ P)) = —din <BT + (31 +3)g1 + ]E:l Bzf) e klzlla(zk) =0,

which is a consequence of the properties of a(z, 7). But now, expressing the Laplacian in the coordinates
X,V we get

2

I+1 aau?> P (u,2(x,0),T) + Dux,r (P (v,2(x,v),7)) ,

0=2D(P(u,z,7)) = < dimgy +

which proves eq. 3.8. The comparison with the formula 3.1 has to be made considering the limit (genus 0
limit)
].1_1’)1’(1) E—H_l (Eq‘3'8)su,ex,r(€’u) = (Eq 31) -

The formula 3.8 can be written in a very concise form; recalling that P(v) = Z;i_lo Cra1—k(v, 7)ok (1, %, 7),

we have
I+1

DP = Z (Ciy1-k) or + Cry1—: D(pr)] »

where we have defined

@(Gk) = —dim 77_2’“'167 (n2k+1C ) + mBZCk

3.2.3 Computation of the intersection form with the generating function

In this paragraph we compute the generating function of the matrix elements of the intersection
form in terms of our fundamental Jacobi forms. This computation is the translation in the present
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setting of the analog formula by Saito, Yano and Sekiguchi for the polynomial invariants in [SYS80].
To simplify the computational steps we will consider the functions

+1
Plu, 21...z141) =™ [ [ a(z) = 21V 01 (7) g ()
1

‘ qyl=1
A®) 1= g0+ 80)22 — 20 W5 + .+ T D)o = oI @)PE) , (39)

with no particular relation between the z;’s. The first one is clearly related to the previous
generating function ® by a gauge transformation

+1
P (u,z(x,v),7) =€ 2 (H1)v? i)(u X,0,T) = eQ”"‘Ha (zi(x,v)) .
i=1

We now prove the

Theorem 3.2.2 The intersection elements M(yg, ¢;) are recovered from the generating function

I+1 Nk |
g;o (% f 1)1!)(j - DI 2 ()09 (o) Mk, 05) =
= 247 (D‘)\(‘U))\(’UI) + )\(’U)D /\(’U’)) _ Z___]};_IAI(U)AI(U/)_I_
L)+ 80 (41— v L
+3 o0) — () (A( )dv,A( )= X( )dv,\( )) , (3.10)

where DI A(v) = Zl—o (—Uﬁjl—)'i]])(go(j ~2))(v)¢p; (see appendix for the definition of D).

In practice, to find the coeflicients M (py, @;) we have to multiply both sides by go(v) — p(v') and
compare the Laurent expansions w.r.t. v,v’ (see example for A, later).

The proof of this short formula involves many steps and lemmata.
Lemma 3.2.2 For the extended intersection operator Mt we have
2D ()R (MRS (v), B(v')) =
= 2im(l + 1)_Vr_a(zi______)_ P)P@') + odv-v) {'P(v)-—fl—’P(v') - P(U')%P(’u)} . (3.11)

alv—1v) a(v-—-v) dv’

Proof. The extended intersection form is given by (see formula (3.5))

41 8 5
=-T®Z - Z®T+E_®37
J

and the extended intersection operator M1 is defined accordingly as

M(D(0), (")) = 7407 (4 (n? 20 (), d (n?+?0())) .
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Since the “gauge-transformed” vectors Z and 7 (the latter being defined in (3.4)) are

I+1
e+2i7r(l+1)v291 Ze—2i7r(l+l)vzg1 — Z _@_ = 0,
T Oz;

e-{-2i7r(l~};1)'u2gl/]-6—21'7T(l+1)’021;'7i =0,
we have that for the function P(v) := P (u,2(x,p +v),T) 1= Pyzr(v) (where we consider the

zj unconstrained, and v a parameter of deformation) the gauge transformed intersection element
reads '

2D+ (DTN (8 (v), B(v')) = —B,P(v)V,P(v') — 8PV )V, P(v li 5e; z‘)
We now compute
Ihs of (3.11) =
= i~ A2 [P(v)aT (nQHZP(v'))—i—P(v')(%( 242Dy )]+l§a 3% P =
— __§< o () | (w“i’))—202233/(%))P(U)P(v’)+4m(l+1)gl7>(v)73(v'),

where z; := zi(x,p+v) and w; := z(x,p+v’). We now must analyze the terms in round brackets:
using the formulae in Prop. A.3.1, the intersection form becomes (recall that z; — w; = v — v,
Vi=1.1+1)

Ibsof (3.11) = , ,
= i+ 1 o [P ) - S [P EP0)-P0) 5P =

a(v—v') a(v—v')
V,a(v =)
a(v—v)
This ends the proof of lemma. Q.E.D
Although very concise, this formula gives the intersection elements of the extended intersection
operator 9: this is insufficient to our purposes since we want to analyze the intersection operator
.
In order to find the intersection elements (5, k), we have the further lemma.

= 2ir(l+1) P)PW) + M {P(U)ip(v') - P(v')ip(v)} )

a(v—1')

Lemma 3.2.3 For the intersection elements of I we have the formula

Z Cr(v)C; (W )MM(Pra1—ks Pr1-5) =

k.g
= 2im(l + 1)-——(——,—1)3—) (W)PE') + %((5—_——:7,5)- {P(U)E%;P(U,) - ’P(U')%P(v)} +
- Zim (Cr U)an(U'))SDZﬂ—k(PHl—j ' (3.12)

k.j
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where C;(v) are defined in (8.7) and we have set for short

M(CL(v), C; ) = —2im (Culo)n ™0, (11C;()) + (Y48, (1P*Cu(w)) + [ ChOICH W)

Proof. From the definitions, by a straightforward rearrangement of terms, we have

20 T3 (1), ZCk (P11 r Pl 1)+
+me Co(®), G5 ) prs1—krir—; »  (3.13)
k.j

where we have set for short (as in the statement of lemma)

M(Cr(v), Gi(v) = —2im (Ch(v)n 48, (C;()) + Cy(' )20, (n*Cu(v) ) ) +

1 (o
RO COR

We can now recast eq. (3.13) using eq. (3.11) into the formula in the statement of the lemma,
which is now proved. Q.E.D
Proof of Theorem 3.2.2 We use the function A(v) defined here below

A(w) = 90 -+ 90}z — 56/ W + o+ I G0V )y = 0L 0)P(0)

P'(0) = o (0) [A'm L+ (( Do >]

Rewriting the formula in Lemma 3.2.2 for this A(v), we have

2D 0 (5 (v), B(v')) _
a1 (v)adtl(v')

= Z,ﬂ_V,a(v —v) d(w-—7) Ta(v) o) DAY
= (l -+ 1){2 a('U — ’U’) a(luv_ ’U’) [O[(’U) a( /) ] }1/\( ))\( )+
0= (1L ) - a) Lage
Tl —v) (’\( Jq ) = A )) : (3.14)
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On the other hand we can compute’, recalling the definition of the modular connection V3 and
the elliptic connection D* defined in Appendix, Prop. A.1,

) M(Cr(v), C;(v'))

al+1(v)ad+1(v') PL1—kPll—j =

k.j
= —2im (VEA@)A(®') + M) VIAW')) — 2im(l + 1) [491 (1) + 8;0157))) + a;?if))’) +
+T+1_1 [/\ () + (1 + 1)2 (Z) }\(v)] [,\’(u') + 1+ 1)3&22%@/)] -
= —2ir (VIA(W)AW') + A(0) ViAW) +
=-Q by means of eq. (A.2)
(+1) [sml + 2im < o(v) )')> O;ZEZI;Z'&)] A@)A (") +
LTSI, ) / O‘/('”’) N () —
= —2im (VIA@)A(W) + A@)VIA(')) + (1 + 1)QA()A () + l—}_—IA’(v))\'(v')%-
o (v) I, o (v') N (v) =
+ a(0) A(w)N(v') + (o) AN (v)
= —2im [A@)D°A') + AW )D*A()] + (I + 1)Q A(w)A(v') + l—-_ll—‘IX( N (v)+
o(v) () d yo N
+ [5('57 - (v,)] (A(v)a—q—ﬁ)\(v)—)\(v )%A(v)> : (3.15) |

Therefore we finally find (for compactness we define p(=2)(v) := 1 and p(~Y(v) := 0)

- (—-1)k+j k—2 —2) .1
Y g @Rl ) = (3.14) - (3.19) =
k,j=0

= 2im (D*A(W)A(W) + A(w)D°A(W)) +

1We shall use the notation ViA(v) and D*A(v) understanding them as

l+1

ViAW) = Z szT (0972 ) s ;

41

Aw) = Z< D D(p“ ) (w)ps |

namely the modular and elliptic connections are supposed to operate only on the functions depending on v.
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n a’(v - ’U’) _ a’(v) + OZI(’UI) (A(U)-&%—,A(UI) - }\(,U’)i)\(:v)> - —-——)\I( ))\I(’U’) (316)

\a(v o) alv)  al)

 =¢(o—)+¢(0)~¢(v)

From the classical pseudo—addition formula [Ba]
1p'(w) + ' (v
(o =) +¢0) — ) = S L)

we can finally prove the theorem. Q.E.D

Notice the resemblance of eq. 3.11 with the formula worked out in [SYS80] by Saito, Yano and
Sekiguchi in the case of the finite Weyl group A;: in that case they had P(v) = Hll+1 (zi —v) and
the formula was

41 1 d d
no__ nY _ s !
Z Bzz 621 P') = T {P(v )dUP('v) P(v) dU,P(v )} . (3.17)
We can realize that eq. 3.11 is an elliptic deformation of eq. 3.17.

Indeed, under a suitable limit the former formula goes into the latter

lim ¢ 2 [e”ﬂl“)(”””’z)glﬁt (@(v),@(v’))] — RHS of eq. 3.17 .

e—0 (u,2,0,v' ) (cu,ez,ev,ev’)

3.2.4 Connection components

With similar computations we can spell out a formula for the components of the connection in the
coordinates provided by the hatted Jacobi forms. As this is the result of a change of coordinates
from a flat system the connection is a flat one; nonetheless it is useful to know its components
when studying Poisson structures on suitable loop spaces. For further reference and motivation
see [Du93], Lecture 6.

In the case of polynomﬁal invariants, easy computations give the result which we report only
for the sake of comparison:

Proposition 3.2.3 The contravariant connection in the basis of polynomial invariants {y;} ap-
pearing in the generating function

41

P(u):=]] (“ - ZJ'>I = u 4 ya(2)u ™ 4+ ua(2)
> z;=0

i=1
is given by

I+1
> uttTRIy 1995 = VapupdP(v) =
i,j=1
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1
U—v

P'{u)dP'(v)
I+1 7

— @.-_.1-1‘_)5 [P(v)dP(u) - P(u)dP(v)] -

where dy] is the dual vector to dy; under the natural isomorphism established by the intersection
form (which here reads simply ds® = =2 dz;? restricted to 2252 =0).

[P(u)d (P'(v)) — P’(u)dP(v)} —

Now, we will not spell out all the necessary steps in the case of Jacobi invariants: they are much
more involved than those we followed in the computation of the intersection form. We give just
the final result in Thm. 3.2.3.

Theorem 3.2.3 The component of the contravariant connection are given by

u;a (b= Dy —1)! 2 (U)sﬂ(”—2) (v)Vd@ﬁd@ -
- %% [A(u)d)‘l(v)_/\l (u)dk(v)}ﬁ(g”(u — v)—img; (T)) [A(v)dA(u)—A(U)dA(v) +
+2im (D*A(w)dA() + Mw)d (D*A()) ) - r—{l—_l )

G, ()3, Cy (v)3* (dipP, dip”)dr+
+[or (22) o) - 3o - o (SES ) wene)er,

alu —v)

where @(u) := 0~ 2¢C,(u), and d@n stands for the vector dual to the one—form dip, by means of
the intersection form.

1t can be seen by means of a limit process as before, that the formula in Prop. 3.2.3 is a limit
case of the one in Thm. 3.2.3: notice that for the comparison we are also to neglect the part
multiplying the differential dr.

Example 3.2.1 The case of Ay In this ezample we compute ezplzcztly the mtersectzon form and the
corresponding connection in the coordinates p—1 = T, @6 = o, P2 = ntpa, B3 = nbps; this result will be
useful in the computations for Ga.

Using the generating function in Thm. 3.2.1 one can compute ezplicitly the Jacobi forms to be (recall that
we have z; = T1; Z3 = Ty — T1; 23 = —T2)

w3(u,x) = —Zezi““a(zl)a(n)a(zgl); ,
i 2) = P aler)alzr)a(en) 2N TEED — aemea(aale)alz) () + () + ()
wo(u,x) = ezi”"a(zl)a(zz)a(ze,)p(zl)ig g pl((:)) p(22) = ¥z )a(ze)a(z3):

2

L0+ o) + 01+ 5 60m) 4 o)+ G (o) + 6062) + () |

where we have used some classical formulae in dealing with the p functions [WW].
We now compute the elements I; ; := IM(w;, ;) since we are going to use them for G later. Using formula
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(8.10) and seiting 1 = T we find

0 —2impg —2impo —2imp3
—2impy 57927 0a  — 5020002~ 59302”  2gsps® — 5020027 — 59200200
M(pi, p5) = ' s . ) ) (3.18)
— 20mpg 19393° — 3022 592(p3)*~20op2  —3w3ipo
— 2imps — 5920302 —3papo 2(p2)?
The connection is given by
Vedr =0 Vyrdpy = —2indp, ,v=0,2,3
__[(lig’R)? | 11ggaa(n) 1@ Hnam)y,
Vaggt o = [(E T t3 T 8 ™ )77(7') +
T o ~2 .~ 1 2., (o 4 24, o 9
+ (“‘ §<P092(T)<Pz —ip2 a(7) + 1573 §2(7)* ) g1 (r)m(7)" — i G2(7)gr ()" |dr +
_| £ @z 4z - | (Ga0E + 5Eem)n) |46 + | @6 | d
12 2 12 247° o
___[(3ipaga(r) 1 igs ga(r)? 8
Vagzdeo = [(Z ™ i LG
2__o . 3 2. 4 , gt
+ - 5@2 g2(7) + 5903 33(7) ) g1(m)n(7)* — 24imgi (7) " Poipa | dT +
. N . 1 PN . 3 UM R
= [427%71(7')@2] dipo + [4W91(7’)¢0 - gﬂ(T)492(T)902] dipz + {ZTI(T)‘igs(T)SDa]d% ,
[ 5 e in (1) P302d3(T . e
Vagstdo = | — 677(7)492(7)@290391(7) + n(r) "D;(PZ%( ) _ 3627?91(7’)2900803] dr +
IO DU s VOIS DU SONGS IV B
- [4wr91 (T)cps]dcpo - {gn(f)“gz(f)ws]dwz + [427@1 (T)0 — EU(T)492(7)<P2] dips ;
— [ 1 Z-@2§~2(T)2 1 i@%@(ﬂ 8 2__o.. 3_a. 4
Vagzidipz = (-— 2 - + i - )77(7') + (— 3%2 ga(7) + 53 93(7'))91(7')77(7') +

I, NPV DU S VO DO
+ 24@7?91(7')2900902} dr + {4W91(T)<P2] dipg — [4Z7f91(7')</30 + 577(7')492("’)902] dipz +

3 ampm] i~
+ 177(7) g3(r)eps |dips ,

_ 3in(1)23°G3(7) | (2~ P ]~
Vi@ = [— Z”—(—)——?—f-g-a—u A GHGE 4902900)91(7)?7@)4] dr — [77(7’)4902] dipg +
Y U b BN _

- [n('r)‘ltpo] dgs + [—2*<P392(T)77(T)4]d¢3 )
Vg5 = | = 12ims (7533 - O(r) Gogion(r) | ar — [27im(r)! o +
-~ {4i7rg1 (T)@] des + [4z'7rgl (12 — s’an(T)‘*] d(®s) ;

. 1in(r)2o30503 (T 5 ) e . P
Vgt d@s = [Z n(r) W;‘Pzgs( ) _ '677(7)492(T)<P290391(T) +36W91(7”)2<P0‘P3} dr +
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. A 1 | . 1 RPN
+ [tings (53] - [0 BUIB47 — [simn(F + ()53 o
Va7 = (12070075555 — om(r)* G ()] [an(r) ] s + [simon(r)55 | 075 +

; {— 2o (r)* — ding, (7)@] i@ |

(2__ - 4__
Vagsrdps = 530271(7')4] dipz + [gﬂpzzm (T)U(T)ﬂ dr

3.3 Jacobi forms of type G,. Saito’s flat invariants.

The Cartan subalgebra for G is realized in [Bo], planche IX as the subspace of C® such that
21 + 29 + 23 = 0; the root lattice is the same as the one of Ay and the Weyl group is the dihedral
group of order 12. It can be seen that W (G2)/W (Az) = Zs and it is generated by the involution

G : (21,22, 23) = (—23, —22, —21) -
The Jacobi forms we have to build are
o € Jo,1; 2 € Jg1; s € J_g,2 -
They can be built directly as follows:
1. As for @g we can take
B
(PG(U,X,T) = 264”” H ag(zj7 ) - 2 ((PZ(%AQ)) € J—6,2
j=1

namely the square of the lightest Jacobi form for Aj, which is clearly invariant under the
involution & defined above.

2. As for g, one can check that the same Jacobi forms which work for A2 do work for this
case (we only have to check invariance under the extra involution &) in fact we have for

z1+22+ 23 =0,

. S’J(Zl) (22)
— _262mua(zl)a(22)a(23 [C(zl) , (22) +IC(Z3)]
wo(u,x) = e ™a(z)a(z2)a(es) p(21)p (22) — p'(21)p(22) _

p(z2) — p(21)

and since both are product of two anti-invariant functions, they are invariant under &.
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This identification allows us to compute the Jacobi invariant intersection form 91 since it is the
same as for Ay being the Weyl invariant inner product the same [(dz1)? + (dz2)? + (dzg)z]l R
Zl 22 23=
in both cases. Therefore we can easily compute the intersection elements 9(¢p;, ) out of those
computed for Az in eq. (3.18) and find the following expression for the intersection form in the

coordinates T =: $_7, g, P2, Ps (where the hat on the Jacobi forms are given in Def. 3.1.3)

3 (d(@2), d(;)) =

0 —2imipgn 4 —2itpan ™t —dinpgn?

e~ o~ e A~ A~ A~ AN

A — 2mpen 4. 112—92 <P6“%92<P0<P2—%93<P22 %93% - %929022 —%gwwz
— 2impan 5936 — 59202 G206 —2ip0ipa —6p6tpo
— dinpgn ™ ~$ 506> —6060 R

Notice that the matrix is linear in the generator @g: this is obvious when one counts the indices
of the matrix elements and it is connected with the fact that G5 is a “codimension one” case in

the sense of [Sa90].
The matrix ?9‘%3* (which is the tensor J* in Saito’s notation) reads

0 0 0 —4imn~*
5 0 552 353 3505
3 = 774
05 0 35 & —675
—diry™t -3&:@s 6@ 155°

It follows from Saito’s paper [Sa90] that this tensor defines a contravariant metric whose covariant
form is flat; one could now try and look for the flat coordinates of this metric (the “flat theta

invariants”).

We are in a position to give the flat coordinates associated to this second flat metric.

In order to find them we must integrate the geodesic equations; it is a rather muscular though
non completely straightforward exercise for which it is very helpful the paper [Sat93]. Hereafter
we report only the result.

Proposition 3.3.1 The flat coordinates of Saito’s metric are 7,;,1%2,%s, given in the following
system

Py = (2m)227%/3 :7—7; (Fll(’r)tl + FQ'(T)@)

p3 = (2#)22“2/3 n? (Fl (1)t + FQ(T)t2>

g = tg — dimgit1 b2 + T, 1293%0" — 5771392 P02 + 5y 15920352

where the two functions Fi, Fy are given, in terms of the modular invariant

1 [\/—zu IJ o dz /22Tt

#(r) = 5 | Ygre © 5,

dr ~ 2(2m)8 6im
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by,
1 1
B(r)y=F(z(r) =2(1)5;  Fa(r) = Fy(z(7)) = (2(1) —1)3 .
In these coordinates Saito’s metric becomes,
0 0 0 —dirx
" 0 0 -2 0
J*(dt;, dtj) = 0 9 0 0 (3.20)
—4im 0 0 0

The flat coordinates show up a nontrivial monodromy around z(v) = 0,1; these points both
correspond to the elliptic curves where g = 0, namely the symmetric tori.

3.4 The root system of type B;: Jacobi forms

The Jacobi forms for J(B;) can be constructed in a similar but easier way as those for J(4;).
Similar computations leading to the generating function for A;, took us to the following

Theorem 3.4.1 The generating function

l
Plv) = g2imu H alv —z)av+ z;) =
i=1
e D (v) 4 PP (v) 4

@1y ¢ Wealx) e (v)pai—2 (%) + ... + o (v)po (x) =

1 ... @2
1 ... @ 2(z)

i
B T @ () a”(v)_I_IlaQ(xj)z
det(' : . ) J=

1 ... p(Zl—4) (ml)
= @o(x) +v2pa_a(x) + ... + v%pg(x) + OW**?) (3.21)

gives a basis of generators for the algebra of Jacobi forms of type B;.
Any other set of generators is a weighted linear combination of these with coefficients in M,.

Proof. We must show first of all, that the functions defined by the formula have all the properties
of smoothness. This follows from the fact that the ratio of determinants is a holomorphic function
of all its variables without poles.

In order to show the properties of invariance, consider now the elliptic function

1 p) @' ... @ I()

F(v) := det 1 60(;’51) p”(‘zl) @(zl_‘z)(-’fl)

1 pl@) @'(@) ... p@ ()
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Since only even derivatives of the g functions are involved, this is clearly invariant under the
change of sign of any between v, z1,..z;. As a function of v it has a pole at v = 0 of order 2! and
hence it has as many zeroes; it is clear that these are situated at +x1,...,+z;. The same holds
clearly for the variables z; therefore if we express it by means of the function o [WW], considering
the antisymmetry we must have

i-:l o(v —z;)o(v + ;) [icjo(zi — z5)o(z; + ;) .

02 (v) [Tizy 0%(2i)

F(v) «

Therefore we can compute

1 opm) @) ... @ ()
1 plz1) @"(@1) ... @I (zy)
det . . . :
1 @) (@) ... P Ne)/ _ (21 - 1)! i 0w —z)o(v + z)
1 plz) @"(@1) ... P Y(z) () [They 0%(z:)
1 p(za) ©'(z2) ... & (zy)
det | . ) : .
1 p(@) @'@) ... @ H(z)

Expanding the LHS w.r.t. the first row of the determinant in the numerator and multiplying both
sides by /
pZmurt2im L (|lx|*+20%) o) (v) [T} 02 (2;) we obtain exactly the formula (3.21).

As for the second statement, the proof is exactly as in the case 4;. Q.E.D

Notice that, up to a normalization, all the Jacobi forms can be recovered by applying the
operator ® to the lightest one

{
o (u,x,7) = [ [ (25)® + O(Ix*+)

and hence for any b = 1..I the Jacobi forms ¢;_; := D° (¢;) do not vanish identically because their
leading term is A% (H;-ﬂ(wj)z) # 0. This gives the whole basis of fundamental invariant Jacobi
forms; moreover (as in the A; case) any other basis is obtained from this one by a weighted linear

transformation with coefficients in M,.
Proposition 3.4.1 The formula

l

l l
Pv) =™ (v) | ] (go(v)—-p(wj)) I 2(ze) = (0) > (p()) (%)
k=1

J=1 J=0

defines a basis of Jacobi forms which is equivalent to that in formula (3.21).
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Proof. It is clear that, as a function of v, this is the same generating function because it has
the same poles and zeroes, but the fundamental Jacobi forms 1)y; are weighted linear combination
of those defined previously; indeed, expanding the product we obtain the Jacobi forms as the
coefficients in front of powers of g(v) while'in the former formula they were the coeflicients in
front of even derivatives of g (recall that even derivatives of g can be expressed as polynomials in
p). QE.D

Although this is a more compact formula, the previous one is more effective in actual compu-
tations of the intersection elements; indeed in the next paragraph the intersection elements will be
computed only for the first basis of Jacobi forms. However this formula for the generating function
is the closest to the classical one (3.2) as one can compute that

!
P(v) = exp (v*D) H [e*™a?(z;)] ,
j=1
which follows from the formula (coming from the case A;)

2
(—42'7TVT + %%) o?(z) = p(z)?(z) .

Remark 3.4.1 Although the Weyl group of C; is the same as the one of By, the affine Weyl groups
(namely the complex crystallographic lattices) are different: indeed the root lattice of B; is simply 7! while
the one of C; is (21, .., z1) € Z' such that }_ z; € 2Z. There follows in particular that the normalization of the
invariant Killing form to 2 for the shortest roots, is different: in this realization of the Cartan subalgebra
(which follows the corresponding planches in [Bo]) the Killing metrics are ds® = 23 dz;* for B; and
348 =3, dz;* for Ci.

A consequence of this fact is that if o(u,x,7) € J, (B1)

k,m

then ¢(2u,x,T) belongs to J,Ecz"gl This amounts
to saying that the algebra Jg’) of Jacobi form for B; is isomorphic to a subalgebra of Jg‘) and the
isomorphism doubles the index.

Now, from [Wi92], we know that the generators belong to the spaces

o € Joa; w2 € Jo2,1; P4 € J_41; wor € Joak2 , k=3..1L

The isomorphism which injects JfﬁL) < JG* allows us to identify the | — 2 generators of index 2 for the
Jacobi algebra of type C; as the images of the corresponding generators of Bj.

3.4.1 Computation of the intersection form with the generating function: B

As we did in the A; case, we can now exploit the generating function to compute the intersection
elements My;or = M (p25, Pax); again the computational details are quite cumbersome but the
result is a remarkably simple formula which —again— is in deep analogy with the corresponding
formula for the invariant polynomials in [SYS80]. The result will be a generating function in two
variables for the elements ;o and is contained in Thm. 3.4.2.

The intersection form for the Jacobi group of type B; reads

{
J= —du®dT—dT®du+22dmj2,
j=1 '
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where (following [Bo] planche II), we have realized the CSA of B as the vectors x := (21,...,1;) €
C; notice the normalization of the Weyl invariant inner product.

Theorem 3.4.2 The intersection elements 9(ypa;, o) are recovered from the generating function

(26) (") (29 (g ‘
g ) 2 (g m) = 25m OIDA) + WD) +
=0

(v")) {p’(v'))\(v)’—,A(v’) - p’(y))\(v’)%)\(v)} . (3.22)

BICORE:

Proof. We compute
M (P(v), P(v")) = n 7" (d (n4l73(v)> ,d( AP (v ’))) -
= —2imn" [P(0)9, (nPW)) + P9, (1'P())] + 3 }j 5P B_Tz P() =

!

1 Lfa'w—=) o'(w+mz) o'W —z) o0 +z) (v —=z)d (v —z)
) ; < olv — z;) a(v + ;) a(v — x;) a(v' + z;) alv — z;)a(v — z;)

v+ z)d (v +z) dv—z)d (V' + ) o (v+z)d (v - z) .
(v+ z)al +3;)  aw—z)a( +z) o+ z)al — ;) ) P(w)P(v')+

+8imlg1 P(v)P(v') =

_ . Ora(v—1') . Ora(v+)
_2[2271' (v =) +2z7r————-———~—a(v+v,) +

3 (o= + wwe) (s sevan)
% (ng = :/,)) - a'((: : - . ( I(ff,,: ;”j)) + QEZ, jﬁ;)] P)P Q') + 8inlg1 P(v)P(v') =

afv —v') a(v+v

o3 (S22 - 2O PP ) - 3 (ST + S ) PO P 023)

2 \alv—-2) alv+) 2\alv—1) alv+)

DN
ooy [Vra(v =) Vra(v+v') Pl
__2271'1[ + 5 ] P(v)P(v')+
)

Remark 3.4.2 Notice again the resemblance of eq. 3.23 with Saito’s formula [SYS80] in the case of the
finite Weyl group By (here P(v) = [[} ((z:)? — v?))

41 2

d
Z no_ n,2 % !
a 'U ) - (’U’)Z _ (’U)Z {P(U )'U dvp(v) ( )( ) ( )} (324)
We can actually obtain Saito’s formula with the limit

e—+0

lim ™42 [0 (P (0), P(V' Ny x w0 s et,exev e = RES of eq. 3.24
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Again, we can recast equation (3.23) into a more useful form using the function

~ p ()

l
}\(U) = a——21 (U)P('U) = Z (2‘7 _ 1)| WYaj = a—2l ('U) Z Cj (U)(,Oz(l_j) .
=0 ' =0

First of all, since a~%(v) Va2 (v) = V2 + 2ZV&(°;()1’ ) then a straightforward computation gives

l

M(P(v), P(v")) — Z Cr(v")Cj (V)M 2125, P2u-2k) =
7,k=0

= =2ir Y (V,C(')Cj(v) + VCj(v)Cr(v')) pu—zeipar-2; =
k:’j
= —2%ma? (v (v) {[A(v')v;k(v) + A VIAW)] + 2 <V;‘(J‘U(,’;') + V;g)(;’ )) ,\(U')Mu)} .

Using now formula (3.23) for M(P(v), P(v')), we can finally compute

> P\ (v) PR () ont(

(27 — 1)1 (2k — 1)! Pok, P25) =

Jok

+2iml |27 ot 2 T el o) T e o AW)A(v')+
(S s o] s o ]}

v [l t) SR 0 500 5 S + ) i) =
= 2im [A(w)VIAR') + M) VIA(v)] +

vt - St s ) - § | S+ ) 0 =
= 2ir \(0)D"AW) + AW)D*A()] + -;- Z’((;__;’,')) - Z'((:j:g’,')) + 2?8,?] )\(v)zl%;)\(v')—i—

[ S o e =

= 27 [A(W)D* (V') + M0 )D*A(v)] + % [¢(v—2") = C(v+ ") +2¢(v)] )\(U)El% (W')+

o ) + ¢l + ) — 2] A )

To write this in the final form we use the classical formula (see [WW] pag.458, example 18)

(- )+ G =) + ) ¢l = 3 { EWLEW) gl retL

which allows us to complete the proof by substitution. Q.E.D
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3.5 Jacobi forms of type C3. Saito’s flat invariants

Tn a similar way as we did for the case G, we construct the Jacobi forms of type C3 by suitably
embedding the Cartan subalgebra of C3 into that of As. Let z1,z9,z3 be orthogonal coordinates
for the CSA of Cs, h(C3) and 21, z, 23, 22 be the usual realization of the CSA of type As, hlas),

Consider the map @ : h(P3) — p(4s)

1+ To+ T3 Ty —To— T3 —IT1+ T2 — I3 —T1 — T2 + T3
@(221,122,933) = 2 » 2 ) ) ) .

Then this map realizes an isometry also of the corresponding Killing forms
ds%ca) = dz1? + dzo? + dzs? = @*(ds%Aa)).
Moreover, the root lattice of type C3, namely the set
Q:={x€Z3 z1+z2+ 13 € 2L}

is bijectively mapped onto the (co)root lattice of type As.
The Weyl group of type C3 becomes an extension of that of type Az by Zg (notice that 3! x 28 =

2 x 41), where the extra generator is the change of sign z +— —z.
Tt is straightforward to check that the already constructed Jacobi forms for As are invariant up to
sign: in particular, the only one that changes sign is 3, so we will take the following generators

for the Jacobi algebra of type Cs:

2
o= €I o= € IGL pi= o™ e FE v = (¥8) €I

where we recall that

1 pl) @ "W

get | 1 P ©'(z1) ©"(21)

= o 5

(A3) | (As) (As) 1 (As) _ng \ ” 1 gp(z3) @'(23) (23
o5 + o5V p(v) + o5 V' (v) + i " (v) iI;[la( 1) L otm) o)
det [ 1 gp(z2) g'(22)
1 gp(z3) @(23)

We can easily compute the intersection form in these generators and the (Saito’s) contravariant
metric obtained by derivation along s (we use the P, Q, R notation defined in formula 2.4)

-0 0 0 0 —4iT T
0 B 3 0 1070 4§ xR
7=l 0 B i 0 S35 — 6y
0 0 0 ' n*te
| gin -0 BTUR SUGEGrtyg iy, dntys’ + PITEC — 16n" et |
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Again it is straightforward although rather cumbersome to find the flat coordinates of this metric,
therefore we omit the computations and just give the result: we find (we use the variables 1);
instead of the hatted forms)

Proposition 3.5.1 The flat coordinates of Saito’s flat metric J* are given by 7 and, setting

— _1 1V/3R 1
Z =g 2R+ 3

o = \/nggmz 21/8) (¢, Z2/9) 445 (7 — 1))

Wy = W% 2 2609 (7 — /3 1, 4 2009 ),

1iv3v2tyn?
= —7

4 T
1 1,4 4 1 Q%o 1 Q¥°R 1 %’R
=t —igt =t q T 576 384
e 6+P(12 2ty 4>+3¢4¢2 576 ninl® | 3456 mZn® | 334 o2

and the contravariant tensor J* in the flat coordinates tg = 7,1, t2, t4, ts reads

0 0 0 0 —4iw
0 0 ~87? 0 0
J*(dti,dtj) = 0 —8 72 0 0 0
0 0 0 —2 72 0
—4iw 0 0 0 0

As in the Gg case, the flat coordinates show a nontrivial monodromy around the orbifold points
Z = 0,1 which corresponds to tori with extra symmetries.

3.6 Root system of type Dy: fundamental Jacobi forms

The construction of Jacobi forms for the classical series A; and B; does not generalize unfortunately
to the remaining series D; and Cj. As we remarked, the Jacobi forms of type B; are also Jacobi
forms of type C; and D; under the suitable identifications: in particular their index is doubled.
Therefore we should look for the generators of index 1 in the rational extension of the algebra.
The most straightforward example is the Jacobi form for D; of index 1 and weight —! of the form
1 = exp(2imu) H§‘=1 a(z;|7), which is exactly the square root of the lightest Jacobi form of type
B.

We already know the only fundamental Jacobi form of index 2 and weight —6 which is inherited
from By and is given by

s 1= o (x1)? (z2) 0’ (z5) e’ (4) ) po(z5) -
j=1

We need to construct the remaining four fundamental Jacobi forms of index 1 and weights, 0, -2,
—4, —4, respectively, one of which is of the aforementioned form. They are certain linear combi-
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nations of the theta functions of level 1 which are expressed by

A i || A2 — 2 <x,A>
0= 3 el ,
AEQ+w;

where wp := 0 and

111 1 1111
Wi = (1,0,0,0), w3 = (Ea "2"35’_'2_) ; Wy == ('2", "2'a 57 5) .

(Recall that the theta function corresponding to wy has level 2.)
Now it is also easy to check that, Yw € W, ww; = wjmod @, hence these theta functions are

already Weyl invariant.
Under the action of the modular group they transform as

®O(x77— + 1) = @O(X: T) 9 61(}(,7 + 1) = —_91(:’(’7)
O3(x, 7+ 1) = —-03(x,7) , Ou(x, 7+ 1) = —O4(x,7) ,

since we have |jw;||? = 1 for j = 1,3,4. Under the other generator of the modular group we find
the transformation

o, (; _%> = 2L {0, 7) + 0105, 7) + Oy, 7) + Ol )}
o, (; _%> = _7261'”““’%'3% {0¢(x,7) + O1(x,7) — O3(x,7) — Ou(x,7)}
o, (.’TE _%) = 7275 (@, 7) — O1(x,7) + Os x,7) ~ Bulx,7)}
0, <§, _%> - _Tzeiwu’f;'ﬁ% {B0(x,7) — ©1(x,7) — O3(x,7) + Ou(x,7)}

We immediately notice that the linear combinations
Pp:=03-0s, @:=0;-04

transform as

(p(X,T + 1) = —QD(X,T) ’ ® (§7 _:}_’) = '—Tzem”—xrﬂzgp(x,’r)
s =—ven), o (5-1) ==t

Moreover, as 7 — oo we have, _
e=0(q) =9, g:=e""
therefore @4 1= ™ 12(7)p, P4 1= N7 2(7)y are Jacobi forms of index 1 and weight —4
Lemma 3.6.1 Setting 6;(r) := ©;(0,7) we have
61(7) = O3(7) = 04(7) -
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Proof. This is not completely trivial; The equivalence 83 = 8, follows immediately
63 = > esp{int [(n+1/2)" + (na +1/2)* + (n3 + 1/2)* + (ng — 1/2)%] } =
n€Z2y n;€27
= > emp{inT [(m+1/2)* + (n2 +1/2)* + (3 + 1/2)° + (—na — 1/2)*] } = 64 .
neZ?y n; €27
The second comes from the change of basis in the lattice according to the unitary transformation

1 1 1 1
11 1 -1 -1
211 -1 1 -1

1 -1 -1 1

U:=

which maps wy into w;. Q.E.D

Remark 3.6.1 In the case of D;, we have, for the four theta function of level 1,
Oo(x, 7+ 1) = Og(x,7)
O:1(x,7 +1) = =01(x,7)
O _1(x,7+1)= ei“éG)l_l(x, 7)
Ox,7+1)= ei"%@l(x,r)
x 1

. x 2 1
0 <_ .__) = e”JLrL(——z'T)%—é {00+ 01 +0,_1+ 0}

’
T T

1 el 1
0, <§, _;> = emﬂ—fL(——iT)fi {@o + 01— 01 — Gl}

1 . =)® 1 . -
O (E, —-~—) =e' . "" (~—ZT)é§ {@0 -0 + 6”%@1_1 + 6”5_2_2@[}

T T

. 1 - X
O, (——,——> =" - (—ir)%—{@0—61+e"'1“2—2®l~1 +6m%@l} .
T 2
Hence we have that ¢ := ©;_; — ©, transforms as

Y(x,7+1) = €T EP(x,7)
x 1 e el
(] <'T‘7 *;) =e T

and therefore o := 73 (7) is (the) a Jacobi form of weight —I (notice the regularity at 7 — ico).

€59 (x, 7)

Definition 3.6.1 The theta constants are the functions of T only obtained from
8;(r) :== ©,(0,7) .

Studying the k-linear combinations of these four theta constants of “level” 1 we can find automor-
phic forms. Namely we consider

k
2[]9(7—) = Z 07:17-"77:}0 H 97‘.7
j=1

11,0000 =0,1
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where we have used the fact that 8; = 03 = 6, and enforce the identities
A(r + 1) = AA(7)
1
A <——) =72k A(r) ,
T .

thus obtaining a linear system for the coeflicients of the polynomial. We have to take into account
the behavior at 7 — ico given by

90—-)1, 01=O(q).
Proposition 3.6.1 The following identities hold true

002 + 36,2 = Ey4
01002 — 61° = 0™
0% — 9660+ = F

Proof. The proof is a straightforward (and very long) computation. Q.E.D

We now look for the remaining two generators of weights —2 and 0 respectively.
First of all, a similar computation as before shows

Proposition 3.6.2 The following identity hold true

00 {O1(x,7) + O3(x,7) + Ou(x, 7)} = 3610¢(x,7) = n'2pa(x,7) , with po € J1 2
(2 9190@0(){, T) -+ (912 + 902) @1(}{,7') - 2912 (@3()(, ’7’) + @4(3(,7‘))) = 7712(,00 with ©o &« JLQ

Notice that the defined Jacobi forms have the properties, as x — 0

pa(x,7) = O(lIx[I*)

pa(x,m) = O(x[|*)

pa(x,7) = O(|IxII*)
po(x,7) = O(1)

In particular they are algebraically independent because the theta functions are. We thus have
Theorem 3.6.1 The Jacobi forms of type Dy are given by

wo = n " (2 616000(x,7) + (912 + 902) O1(x,7) — 26, (©3(x,7) + 64(}{’7)))
@2 =122 (00 {O1(x,7) + O3(x,7) + O4(x,7)} — 36100(x, 7))

_o-2(g _lg. 1
P4 =1 (@1 293 294
Yy =112 (03 — O4)
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These Jacobi forms could be used to compute the intersection elements: the easiest way to do
so is to embed them into the algebra of Jacobi forms of type By. Indeed we could extend the
crystallographic group of type Dy to that of type By: the extra generators clearly do not leave
invariant the Jacobi forms of type Dy and index 1 but act with a nontrivial representation. Knowing
that, we can look for invariants in the bilinear products of the form Jo,1Je,1. One can check that,
indeed, there are exactly four invariants corresponding to the forms ga(()B4), goéB4), go,(lB“), cpr‘*).
With the knowledge of this relation one could finally compute the intersection elements by change
of coordinates from the intersection elements of type Bj.

Since this case too falls in the codimension-one cases studied by Saito, one could also look for
Saito’s flat invariants and express them in terms of Jacobi forms.

A partial result in this direction is the work [Sat98], where Saito’s flat invariants are expressed
in terms of Theta functions and the prepotential (“free energy” in the jargon of chapter 5) is
computed.

Moreover, in the study of the prepotential there appears a system of ODEs which is recast in
Halphen’s system [Hal881]: this is a property that could show up in all these systems in a way to
generalize said system, possibly in the direction of [Har99].



Chapter 4

Jacobi forms, WZW models and
elliptic Chern—Simons states

In this chapter we provide an application of the theory of Jacobi forms to the Wess—Zumino-
Novikov-Witten model on the torus. For an thorough introduction to the subject for novices we
recommend [Tra98, Ga89, Ga99].

The basics have already been established in Section 2.2.1 and will be used here in a slightly different
context. We first briefly recall the definition and properties of WZNW’s model and then follow the
works [FaGa96, FaGa95, GaTra98] where this model is related to elliptic Chern—Simons’s theory.
In particular at any level » (which corresponds to the “index” in the context of Jacobi forms)
we can rather easily find the dimension of the space of Chern-Simons states without insertions,
namely give a generating function for such dimensions.

This, jointly with the results in Ch. 3, enables to write explicitly all these states in terms of
Jacobi forms for the cases A;, By, Cs, D4, G2 (namely the cases where we have explicit formulae
for the Jacobi forms). In perspective, thus, the study of Jacobi invariants looks quite promising as
for this application: unfortunately we manage to reduce the study of Chern-Simons’s states with
insertions to the study of Jacobi forms which are not (generically) Weyl invariant.

4.1 WZW model on the torus

We begin with a cursory general description of the model in general and later on we specialize to
the case of the torus.

Let ¥ be a compact smooth Riemann surface of genus g and G a compact, simple, simply
connected Lie group with Lie algebra g; the WZW model is the quantum theory over the functional
space GF of G—valued functions over 3; we will assume that we are given a complex structure on
¥, by means of which the Riemann surface becomes thus a complex curve C; the (chiral part of
the) theory is defined by the action

.t 15, -1 i IR TR Y AN I TSN PR | -1
S(g,€) == 47r/>:<g Bg,g‘ 39>+27T/E(93(9 ), € 12#/;:(1 ([¢g7dg,97*dg] ,g7 dg) .
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Here ¢ stands for an antiholomorphic connection on the trivial G-bundle over and has to be
thought of as a source for the action. '
The action defines the partition function which is formally written as

2(¢) = [ 500 [ agt)

z€C

1 over the

where [], .. dg(z) is a formal expression to mean the product of Haar invariant measures
functional space G*.
One may also consider the (unnormalized) correlation functions for fields @1,..., @, carrying a

representation p, : G — GL(V;), of the gauge group G: this correlation function takes value in
N
Qp=1 GL(Vn) |

N
W) o= (B1(2) - el = [ ) paloza)le™ 508 T do(2)
G n=1

zeC

For the sake of brevity we will use the notation g(ny := pn(g), for any g € G.

Following [FaGa96, Ga99], the resulting Chern—Simons states U are holomorphic functionals with
values in V := ®7]:r:1 End(V;,) over the space A of antiholomorphic connections A, depending also
on the position of the “insertions”. These states satisfy the chiral Ward identity

N
V(E%z) = e 5(9:8) R glan) U (€,2) , €9 = Adyt + gBg ™"
n=1

In the case & an elliptic curve E, we saw in Section 2.2.1 that the generic connection ¢ is gauge
equivalent to a constant connection with values in

2imx
g¥ 2 ¢~ ——dz, xebc.
By means of the gauge covariance of the Chern—Simons states we can reconstruct them once we
know their value at any point of the orbit of £ under GZ%; clearly, since they are quantum states,
the invariance has to be understood in the quantum sense, namely projectively. Let us denote by

U(x,2z) the value of the state at the constant connection ?r’f;‘ dz. Next define the function ¢p(x,z)
by means of the equation

T (x|z) =: exp (inx I ”2 )®exp (2’m )(n) o(x|z) ,

where ||x||? :=< x,x >. Recall that there is a remnant ambiguity in the definition of x € b,
which should really be thought as belonging to /(W x @ x Q). The element realizing the gauge
equivalence between x and X + A+ 7u is

—~TZ
Z) = 21 . 4.1
hyu(2,%) exp( ’L7T7_ /\+2z7r —= u) (4.1)

!Rigorously speaking such a measure does not exist, nevertheless this formal expression is used in the physical
literature to evince mathematical features of the correlation functions.
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Let us now compute the gauged WZW action for the transformations of h of the form in eq.
(4.1). This is a map from the complex torus ¥ to a 51 inside a maximal torus T into G, therefore
the Wess—Zumino term I'(h) is zero. The remaining gives (recall that the area of the torus is

_ T—T
Area = -

21 A A+T, A+T
zm_c_) =2i1r< + T, +7‘u>+2m< + T, x > .
T—7

2(r —7) T—T

5 (b

Therefore

T—T

N - e
\y(x + )‘ + T/.L!Z,T) — e%S(h,X) ®6Xp (2:]171-@) \.Ij(xlz, 'r) —
n=1 {n)

N - _
=3 ® exp (2z'7rz" — inx + 2inw) o(x|z,T) .
4 (n)

T—T

_ ezS(h,x)-}-Zinz

n=1

On the other hand, by definition

N
. <xHAFT X F AT > . zp—E
T(x+ A+ T/,LIZ, 7_) — eme 2(5—;) k ® (6217\'—”:_? ‘(X+A+Tll)>( ) <P(X + X+ Tulz, 7-) .
n

n=1
By comparison we compute the scalar exponential
<x,x_> __22,7W<x+>\+7'y,x_+>\+ru > _
T—F 2(r —7)
A+T A+T
< A4 TH, ;I— TH > + 2z'7rx< + T/ﬁx > +2i7r%< x,x_>
2(r —7) T—T T—7
<x+A+Tp,x+A+TH>
2(r —7)

%S (h,x) + 2173

= i +-

~2i73c =2i7r%{z2——<u,y>+<u,x>} .

We now turn the attention to the outer automorphisms of the holomorphic vector bundle associated
to the connection D := 0 + £dZ, namely those coming from the automorphisms of the underlying

surface.
Let C, := C/(Z + 7Z) and C» := C/(Z + 7'Z) be two isomorphic tori; the two moduli must be

related by
S L (‘CL b> € SL(2,7).

cr+d’ d
We will consider the case 7/ = ——%; the explicit isomorphism between the two curves is given by
¢, L e ]
z: — 2Z=fz)==.
T

Now, under the (co-)adjoint action of the gauge group, the generic connection ¢ is equivalent to

2im—%=. Under the isomorphism ¢ corresponding to the inversion 7 — 7/ = ——i— it is easy to show
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that x — ¥; indeed, the if D' := w0 +£d7 is the connection on Cyv, then the pull-back connection
is

D = f*(D") =w5+;§d‘z‘.

If v(2',7) is the gauge which puts D’ into canonical form, then it acts on D = f*(D) recasting it

into
X

1 1
“loDoy=wd+2in=——x =wd + 2ir .
Tl —7 T—TT

Since this is not a gauge transformation and the WZW action is conformally invariant, the Chern—
Simons states must be projectively? invariant under the automorphism group of C, hence

B(f*E) = gy(r) ¥(E)

where the proportionality factor may depend on the moduli of the curve.

Since the dimension of the space of states does not depend on the moduli 7 of the curve, such
a function must be nowhere vanishing for 7 € #; moreover the consistency implies that it is a
cocycle for SL(2,Z) with values in O(#), hence of the form j,(7) = j(cr + d).

It can be proved then (e.g. [Gu]) that j,(7) = (cr + d)* for some constant k.

Passing to the moduli space of connections, the above reads

z_ L
o)
Again, comparing the two sides we find
2
LHS = exp (2z'7rx I ” ) ®exp (Qzﬂ ) o(x|z,T)
(n)

— (y-k : || 112 —TZn X X
RHS - (T) €Xp <2Zﬂ-%2 ® eXp 2Z7T T—T T (n) 4 T

(x|z,7) = (1)7Fw (T

z 1 _
o)
z 1

v or)

I S

By comparison we find

(1) <5

T

z 1 L=l
;,_;> 2””‘ ®exp (Zzwzn )(n)lp(xlzaT)

We summarize the transformation properties (cf. [FaGa96, FaGa95, GaTra98]): to the previous
ones one must add a regularity requirement in order that the states do extend also on the singular
orbits of the gauge group. We do not enter the details which can be found in loc. cit., but only
report the relevant formulae in the following

2This is a very common feature of symimetries in QFT, namely a classical invariance -upon quantization- goes
over to a projective invariance.
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Proposition 4.1.1 The normalized Chern-Simons states ¢(x|z, 7) satisfy the following properties
of invariance:

N

SD(X + }\ + ’Tlilz, 7,) — 62i7rx<lﬁyx>+i7rxT||lL||2 ®exp(2ttﬂ-znu)(n)sa(xlz,7-) , V/.L,A e Q;
n=1

o(w - x|z, T) ®w(n)<p x|z,7) , Yw e W;

x z ar +b k imoeg cljx(|? ‘ <
d (er+d) =
4 (c7’+d c¢+d’c7—|—d> (em +d)%e 1exp 2mznc7'—|—d (n)SO(Xlsz) )
v (‘Z 2) € SL(2,2).

To the above we must add the regularity condition

N p
(Z 2 (ea)<n)) o(x +ep¥lz,7) 20 O)
n=1

for any simple root o and weight p with < p,a >=1 and for < x,a >=r +s7, 1,5 € Z.
Moreover, as the theory is well defined also on degenerate tori, the states must be bounded as
7 — 0 or, which is the same by virtue of conformal invariance, 7 — +i003.

In order to match with the previous notation we introduce the coordinate u, and multiply the
functions by exp(2imscu): therefore we will re-denote ¢?(u,x, ) := €™ p(x|z, 7). Accordingly,
the previous formulae become

N
T .
©* (U~ < py %X > —§Hu||2,x + A+ T/m) = Q) expQRinzap)mye®(u, x,7) , YA€ Q;
=1
N n
‘pz(uv w- X, T) = ® w(n)(pz(u,x, T) ’ Yw e W;
n—=1

N

cl|x||? x ar+ b) & _ x .

o* (u — , , = (er + d) ® exp | 2imz, *(u,x,7T) .
2(ct+d) et +d er+d = cT+d)

Let Q:= {(u,x,7) e Cx h xH} and let V := ®TJX_~1 Vn; consider the trivial vector bundle Q x V
and take its quotient by the action above. What we get is a vector bundle over Q/J(g), where
J(g) denotes the Jacobi group associated to the lie algebra g.

The spectrum of weights (namely the possible exponents k appearing in the modular transfor-
mations) are a priori unrestricted so far.
However, with the theory of Jacobi forms, we can show that in the case of no insertions, such
exponents are related in a simple way to the spectrum of weights of the fundamental Jacobi forms.

3In other terms, as functions of 7 they must extend over the cusps of SL(2,Z)
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4.1.1 Space of states

We now explicitly describe the space of states with IV insertions.

The states which have physu:al interpretation [FaGa96, FaGa95] take value in the zero weight
subspace V[0] — = ®n= V,,. Here V,, is a highest weight, finite dimensional irreducible
representation with highest weight A, € Py (P4 is the semigroup generated by positive weights)
and highest-weight-vectors {0,. We set

N l

A= ZA” = ijozj
n;r j=1

Q:= ® Qn,
n=1

where [ is the rank of g and {c;}j=1.1 is a basis of simple positive roots.

Let {f7, e’} be step generators corresponding to the simple roots a;.
We can associate to the sequence of integers {mj,...,m;} a color function [FV95] c on {1,2,. =
y m;} which is the only non—decreasing function

Jj=1
c:{1,..,m}— {1,.,1}

such that [c™1({j})| =m; for all j = 1...1.
Let P(c,N) be the set of sequences

P(e,N) = {1 i= (i1, oy i o) s oily) 2 sf 20, 4% € {10}, {6 = 5} =mj =1cT({GDI}

and then set
F1Q:= fy o J, 01 @ ® fre fir Q.

Notice that they span V[0] and are eigenvectors of Hyy) for all H € h with eigenvalue An(H) —

E}in:l agn (H).

By the very definition, we find that

N N
®exp (2im2np)(ny 182 = exp (Ziﬂ <,u, Z ZnA£)>> frév,

n=1 n=1

where we have set s
n
I ._
An = An—Zai}: .
k=1

Therefore we have that the states are expressible as

o(x|z,7) = Z Or (x———Zzn . >fIQ.

IeP(c,N)

Let us see which properties for the functions ©; are implied by Prop. 4.1.1: the easiest is the
transformation law under the action of W % (Q x Q).
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The behavior under the translations by Q x @ tells us that they are theta functions of level s.
We now analyze the action of the Weyl group. First of all let us define the natural action of W
over P(c,N) as follows

FuwrQi=w- f1Q .
The covariance under the Weyl group is then translated into

@I(x) = @w.]('w . x) .

SN
|
S =
SN

As for the modular properties, let us study the behavior under the map (x|z,7) (27{

After a straightforward computation we find

(2152

)-
-—exp( Il ”2 2m<x2zn >>@,<x—%ézﬂx{“¢>.

A small manipulation will give a better transformatxon; namely, consider the new function

L

Z AI @j (X—;ZznA{uT> 3
n=1

where n(7) is the Dedekind’s eta function; setting g;(7) := %(ﬁ—)) we find that
1N
Fr (T x— = >zl
n=1
Therefore we find that F; are Jacobi forms of index s* and some (unspecified) weight

N
1
Fr(x|z,7) = ¢r <X - lenAﬁ,T) :
n=

2w
Fr:=exp il T' ™)

7_

2

1 )
z __) = (et —!—d)"c exp g Fr(x|z,7) .

T T

‘We therefore have

Proposition 4.1.2 The Chern—Simons states with NV insertions are given by

2 N
1
E EA\ o1 <X~ p E ZnAylmT> &,
n=1

where or(x,7) are generically non Weyl-invariant Jacobi forms of index .

247
o(x|z,T) = Z exp ——91
IeP(c,N)

We are thus lead to the study of the algebra of non Weyl invariant Jacobi forms of weight %k (in
general) and index s¢; unfortunately this algebra has not been studied, except in the case of Weyl-
invarient Jacobi forms.

Note that this mathematical description must be supplemented by other requirements to match
the regularity condition. We are not going any further in this direction in this thesis.

“In the conmtext of Jacobi forms, the level is called index
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4.1.2 States with zero insertions

In the case of zero insertions, Chern—Simons states are in correspondence with Weyl-invariant
Theta functions of index .

We know that the linear span of Weyl-invariant Theta functions coincides with the O(#)-linear
span of Jacobi forms. Moreover we have already seen (Thm. 2.1.1) that the algebra of Weyl-

invariant Theta functions ﬂzv is freely generated by [ + 1 Theta functions.

It appears that the basis of fundamental Jacobi forms is simply a more convenient although equiv-
alent basis of generators for this algebra, inasmuch they have well-definite properties of modular
invariance.

It is known [Ve88] that the Chern-Simons states on the elliptic curve Er belong to the linear
span of the characters xp,s of the irreducible extremal (highest-weight) unitary representations
of Kac—Moody’s algebra. Such characters are labelled by (dominant) weights p € P mod 5@ and
are invariant under the finite Weyl group, therefore they belong to the O(#)-linear span of Weyl
invariant Theta function of index .

Such characters are not invariant under the modular group, but transform according to a unitary
representation: in particular, under the inversion & (i.e. 7+ —%) they transform according to

Xp,» = Z Sp,p! Xp' 5 -
pl

The unitary matrix Spp can be computed explicitly [KP84].

The dimension of the space of Chern-Simons states is independent of the complex structure, hence,
as a function of x, they never identically vanish as 7 varies in H. The same is true for the
fundamental Jacobi forms {g, ..., } and for any their polynomial with constant coefficients.
Therefore, in particular, the basis of T'h,, provided by monomials in the fundamental Jacobi forms
of total level (+» index) s is a basis of projectively invariant Chern-Simons states. s
This basis gives the space Th,, a natural (non-positive) grading provided by the weight: Th,, =
O(H) Dy Thsr We argue that any other projectively invariant basis gives the same gradation.
Indeed, any other such basis is obtained by a linear (quasi-homogeneous) transformation with
coefficients in M, : since this is a positively graded ring, such a transformation is “upper triangular”.
If the determinant of the whole change of basis is a modular form of strictly positive weight, then
it vanishes for some 7 in H, which we cannot allow® because the dimension of the space of Chern-
Simons states is independent of the conformal class of the torus.

Therefore the change of basis in Th, is given by an invertible matrix with constant coefficients
plus a linear (quasi-homogeneous) map with coeflicients in M, from the subspaces of weight less

5Tn fact for any modular function Gk one has the following formula for the number of zeroes (or poles) in a
fundamental domain [Se]

1 1 . K
Voo + ZUF IV D V=g
pEH/T
where v, denotes the order of the function at the point p, p := e , and the star on the symbol of summation means
a summation over the points of #/T" distinct from the classes of ¢ and p. This formula implies that there are always
zeroes in a fundamental domain.
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than k into Th,. .
Therefore the dimensions of these subspaces are preserved. We have proved

Proposition 4.1.3 The space of modular projectively invariant Chern-Simons states of level s
with zero insertions can be identified with the subspace of polynomials with constant coefficients
of index s in the fundamental generators {¢y,...,¢;} of the algebra of Jacobi forms.

This basis is not canonical but the grading induced by the weight is.

We pass to the computation of the dimensions. We can build a generating function

l 1 o0
F(y) = miy dy”
jI:IO(l-y 7) ,;3

for the dimensions d,, of the space of Chern Simons states with zero insertions®.

Moreover we are able to compute explicitly the spectrum of the weights of the corresponding
projectively invariant Chern-Simons states. Indeed, since we are considering C polynomials in
the fundamental Jacobi forms, we can decompose as before the space of Chern-Simons states at
level 3¢ into subspaces of weight —% (with & nonnegative). The spectrum and dimensions of such
subspaces are then read out of the generating function

l o0 00

F(z,y) =] I_:y?%ra::_’%_ =3 > vz F

=0

It is an interesting question whether we can associate to this spectrum of weights a physically

relevant operator, and which is its interpretation.
This subject will not be presently pursued any further but left to subsequent publications.

SIn fact this formula is nothing but the character formula for the dimensions of the space of level s« Weyl-invariant
Theta functions as follows from [Lo80].



Chapter 5

Relation between Jacobi groups and
Frobenius structures on Hurwitz
spaces

In this chapter we identify the Jacobi group of type A;, B and Gy with the monodromy of
a suitable Frobenius structure; the identification will be based on the explicit formula for the
generating function of the Jacobi forms.

In order to be self-contained as far as it is possible, we recall the due definitions of the objects
we are going to use, namely Frobenius manifolds on one hand, Hurwitz spaces on the other and
explain how it is possible to give Hurwitz space a structure of Frobenius manifold, following [Du93].
The main result of this part can be expressed as follows:
the quotient space ©/J(A;) is naturally isomorphic to the moduli space of elliptic functions of
degree I + 1 with only one pole.

This identification will appear explicitly and allows us to build a structure of Frobenius manifold
over a suitable covering of this space; this covering branches around a divisor in 1/ J defined by
the zero locus of the lightest Jacobi form.

Before entering the detail we give an account of the necessary mathematical objects.

5.1 Frobenius manifolds
We recall the basic definitions and properties of a Frobenius manifold.

Definition 5.1.1 A Frobenius algebra A is a unital, commutative, associative (C) algebra
endowed with ¢ invariant nondegenerate bilinear pairing n(o,0) : A® A — C, in the sense that

7(A-B,C)=n(A,B-C) VAB,CeA.

Tt follows that n(,) is symmetric, for n(4,B) =n(1,A-B) =n(1,B - 4) = n(B, A).
The notion of Frobenius manifold is now the following

63
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Definition 5.1.2 A Frobenius manifold M is a smooth manifold which is endowed with a
structure of Frobenius algebra in the tangent space at each point (and henceforth a nondegenerate
symmetric tensor 1(,) of type (0,2) and a (0,3) (symmetric) tensor of the structure constants
9(X,Y,Z) :=n(X,Y - Z)) and the following properties hold:

1. the Levi-Clivita connection defined by the metric n(o,0) is flat;
2. the unit vector field 1 is parallel, namely Vx1 = 0;
3. the (0,4) tensor of its (covariant) derivatives (Vxg)(Y,Z, W) is completely symmetric;

4. there ezist a vector field E (the Euler vector) which is covariantly linear (VV)xyE = 0,
VX,Y € I(TM), and

(0) [E,1] =

(b) (Len)(X, Y) =En(X,Y) —n([B, X],Y) = n(X,[B,Y]) = 2 - d)n(X,Y) ;

(c) (['Eg)(X YZ) = (g(vaZ)) —g([E,X],Y,Z) _g(X7 [EaYLZ) _g(X,Ya [E7ZD =
B —-d)g(X,Y, Z);

namely the E generates conformal rescalings of the metric and of the Frobenius structure.
5. The (4,0)-tensor (Vg) is totally symmetric, or equivalently
(v.g)(X) Y, Z, W) = (ng)(Xa Y, Z) = (ng)(VV, Y, Z) :

Observe that since E is a conformal Killing vector field it must satisfy also div(E) = —%Q;
moreover it follows from the above axioms that
EX-Y]-[EX] - Y-X [EY]|=X-Y. (5.1)

On the spectrum of E we have

Lemma 5.1.1 If the grading operator Q := VE is diagonalizable, then the Euler vector can be represented
by

n
E=> ((1-a)ti+7:)8 (5.2)
1
for suitable constants q;,r; and suitable flat coordinates t;.

Notice that, up to a translation in the flat coordinates, we can then recast the Euler vector in the

E= Z(l—qztﬁ—i— Zr,

ilgi=1

form

Remark 5.1.1 The flat coordinates t;’s which diagonalize the grading operator VE are unique up to
linear transformations which do not mix coordinates with different scaling dimension.

Moreover notice that 1 is an isotropic vector for n except in the case d = 0; indeed (2 — d)n(1,1) =
(Len) (1,1) = En(1,1) - 2n(£el,1) = 2(1,1).
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We now define the scaling exponents as

Definition 5.1.3 A function @ : M — C is said to be quasi-homogeneous of scaling exponent
dy, if it is an eigenfunction of the Euler vector,

E(p) = dyyp .

This means that the coordinate functions ¢; defined before are quasihomogeneous with scaling
dimensions d; = (1 — gi)-
We now give the

Proposition 5.1.1 The structure constants tensor g(X,Y, Z ) is the third covariant derivative of
a locally well defined function F' (called Free energy),

Moreover this function is almost-quasihomogeneous of degree dp = 3—d, namely quasihomogeneous
up to a function in the kernel of VVV (ie. a function which is at most quadratic in local flat
coordinates)

Proof. Since Vg is completely symmetric, the proof of existence of the local function F' follows
easily in flat coordinates.

From (Lgg) = (3 — d)g it follows (using Lg o V =V o Lg) that
VVV(3—-d)F —E(F))=0.
The proof is thus complete. Q.E.D

5.1.1 Intersection form

Since the invariant metric 7 gives a isomorphism between the tangent and cotangent bundle, we
can define a Frobenius structure on the cotangent bundle as well, which we will indicate again as
w - a, for w,a € T(T*M).

Definition 5.1.4 The intersection form is the bilinear pairing in T*M defined by
(w,0)" = (w-a) ().
N —
€r(T* M)

One can prove that it is almost everywhere nondegenerate, hence it defines a new “metric” (denoted
by J(,) as its associated (2,0) tensor) on the tangent bundle: one can show that [Du93]

Proposition 5.1.2 The metric J(, ) is flat and YA € C, the contravariant metric G*(A) := n*(,) +
AJ*(,) is flat as well and the contravariant connection 60\) on forms is given by €7(A) =V 4
A%CJ), where V™ and V) denote the contravariant connections (acting on one—forms) of the
metrics n and J respectively' The family of metrics G*(\) as X varies, is called a flat pencil of

metrics.

1By contravariant connection on one—forms of a metric g over a manifold M we mean the map

V: T*MTT M)—T(T" M)
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Properties and relations. There are some differential relation between the two metrics, as it
is shown hereafter; these relation allow to reconstruct the invariant metric 7 and the free energy
from the knowledge of the intersection form and the unit vector field as we will see.

Lemma 5.1.2 We have L19 = V19 =0.
Proof. For any X,Y,Z € T'(TM) and from the definitions (recalling that V1 = 0) we find

(['lg)(X Y Z) =1 (g(X,sz)) '"g([]'?X]vYa Z) _g(Xv [15Y]7Z) _g(X7Y7 [1aZ]) =
(Vlg)(Xay Z) (VZQ)(X’ Y:]-) = (VZT})(Xay) =0.

QED
Hence we find

Lemma 5.1.3 We have, for any z,y € T(T*M),
n*(z,y) = (L17%)(z,y) .

Proof. Let X,Y denote the dual vectors to z,y (which are co-vectors) (explicitly z(e) =: n(X,)),
we find (recall 3*(z,y) = 9(X,Y,E))
=V1X V1Y
" N N
(L17%)(z,y) = 1 (g(X, Y, B)) — (1, X], Y, B) — g(X,= [, Y].E) =

(V19)(X, Y, E) + g(X,Y, V1E) = n(X,Y) =: n"(2,y) -
N — \T
=0 =

Q.ED
Lemma 5.1.4 The functions G¥ := J*(dt;,dt;) are homogeneous of degree dij = (1+d) — g; — g;.

Proof. Recalling that [E, 2 3% = (@i — 1)—5‘% we find
E ((d4;, dt;)*) = B ( ((dt N, (dt)* E)) (Lrg) ( 1:)%, (dt;)* E)
+o ([B, (@:)#), (@), B) + g ((@t)#, [B, (d))*], B) = (++) .
We now recall that (from Lg(n™1) = (d — 2)n~!) we have, for an arbitrary w € I'(T*M),
[B,0#] = (d—2)w* + (Le(@))* |

and hence [E, (dt;)#] = (d — 2+ 1 — ¢;)(dt;)*. Therefore we can complete the chain of equation
(+x) as follows

(#) = [3—d+ (d— 1 — ) + (d — 1~ g;)] T*(dt;, dt;) = (1+d— g — g5)3"(dt;, dt;) .
Q.ED

E@a— Vya,

where V is the Levi-Civita connection and £ is the vector associated to ¢ by means of the isomorphism given by
the metric.
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Lemma 5.1.5 We have

J*(dts, dt;) = (1+d—qi — Qj)v(dti)#v(dt]-)#F .

Proof. Recalling that
J* (dti,dtj) = (VVVF)(dti)#(dtj)#E

and that [Lg, V] = 0 we find (for brevity we denote (dt;)*, (dt;)* by I,J respectively)

(VVVF)gr; = VEVVJF = E(V;V;F) = Lg(V/VF)+ V[E’I]VJF -+ VIV[E’J]F =
=Lg(VIV;F)+(d—-1-¢g+d—-1~— q]')VIVJF =(1+d—gq— qj)v(dti)#v(dtj)#F .

=(3-d)ViV,F

Q.ED

5.1.2 Reconstruction

Let us suppose we are given a Frobenius manifold M and we know only the scaling dimensions
d,q1, ..., qn, the Euler vector field E, the unit vector field 1 and the intersection form J(, ); then,
from the previous lemmas we have as a corollary that we can uniquely reconstruct the full Frobenius

structure by setting
77—1 = Ly (3*)

and finding the flat coordinates of 1 as homogeneous functions and then find the structure constants
by imposing that
(1+d— g — ) H((dt:)¥, (dt5)*) = 7" (dts, dt;) (5.4)

Of course this procedure goes through if g; +¢; # d+1, Vi, j = 1..n, otherwise there may be some
obstruction or ambiguity in the construction of the free energy F'; this is the only effective way to
find the free energy in many actual examples as we shall do for G2 later.

5.1.3 Monodromy group of a Frobenius manifold

Both metrics 7(X,Y) and J(X,Y’) are flat and it is natural to study their mutual relations.
Since J comes from the inversion of almost everywhere nondegenerate bilinear pairing of the cotan-
gent bundle, it is defined almost everywhere, namely outside the locus A where the determinant
of 3* : T*M — TM vanishes.

Now the flat complex manifold, (M/A,J) is not simply connected and hence we have a nontrivial
holonomy group at any point, which is a discrete subgroup of O(n, C).

To be more specific let y1, ..., yn be the flat normal coordinates at po € M (fixed and outside A)
of the intersection form J, and express them as functions of the flat coordinates t1,...,%, of the
invariant metric 7; since J degenerates on A, its Christoffel symbols (which enter in the equa-
tion defining the flat coordinates y;) have singularities on A. As a result, the germs of functions
yi(t1, ..., tn) will be in general multivalued for loops around the discriminant. This implies that the
result of a non-contractible loop < around the discriminant will be a linear affine transformation
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of the y;’s whose linear part is clearly an J-orthogonal transformation: it is also clear that the
correspondence which associates to each non-contractible loop v € m1(po; M/A) this linear affine
transformation of the coordinates y; is a group homomorphism. This map

M :m(pyy;M/A) — Aff(3,n)
vy = M,y ,

is a group homomorphism from the fundamental group of M/A onto a (discrete) subgroup of
the affine transformations of the functions y;’s: the image under M of the fundamental group
71 (po;-M/A) is called the monodromy group of the Frobenius manifold.

Vice-versa one could ask to solve the inverse problem, namely that of finding a Frobenius
manifold whose monodromy group is a given discrete group of affine transformations preserving a
(nondegenerate) bilinear form J: this is actually the problem that motivated this study.

5.2 Hurwitz spaces and Frobenius structures

In this section we rephrase the contents of [Du93], Lecture 5, and adapt the notation to the present
purposes.

Hurwitz spaces are moduli spaces of certain meromorphic functions on algebraic smooth curves
of fixed genus. Hereafter we give a short account of their structure and definitions and later we
explain how there can be defined Frobenius structures.

Let C be a compact Riemann surface of genus g and let A : C — CP! of degree N; we
moreover fix the type of ramification over the point at infinity co € CP! assuming that A~!(c0) =
{c0p, 001, ..., 00m € C} and that the respective degrees at these points be ng +1,n1+1,...,nm + 1.
These data (namely the genus g, the number of sheets and the ramification at infinity) fix uniquely
the total number of ramification points in C, say { Py, .., Py, g, .., 00m }; by means of the Riemann—
Roch theorem we find (notice that we must have N =m +14+ng + ... + 1)

=2¢—2 =2 =n-+ng+..+nm
—— Y ummafe
deg(Kc) = Ndeg(Kcpr)+ deg(B) =n=2g+no+. +ny+2m.

Therefore the smooth (i.e. non-orbifold) part of the moduli space My . (n,} of these data has

dimension n.
As parameters for the point in this space we can take (u1,...,up) 1= (A(P1), ..., A\(Fp)) € (CP!)*™;
Summarizing

Definition 5.2.1 The Hurwitz space My mn,,. . n.. 5 the moduli space of curves C of genus g
endowed with a N branched covering X of CPY, X\ : C — CP! with m + 1 branching points over

oo € CP! of branching degree n, + 1, v = 0..m.

In this kind of spaces the usual notion of equivalence involves also the quotient by the automorphism
group of the target space (here CP') [Na84], but for the present purposes we will consider the
(trivial) principal bundle with structure group the automorphisms of CPl which fix one point (the
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infinity); this simply means that in the kind of spaces we are considering the notion of equivalence
involves only the automorphism group of C and moreover the affine group C* x C acts on the
functions ) as a\ + b, for a € C* and b € C. For the sake of clarity we specify the relevant notion
of equivalence:

Definition 5.2.2 Two pairs (C, A) and (5,}:\) are Hurwitz—equivalent if there exists an analytic
isomorphisms ¥ : C — C such that Aod = A.

In the following we will use a covering of the Hurwitz spaces which we now describe.

First of all notice that, since we are actually considering curves of genus g with m + 1 marked
points, for 29 +m+1 > 3 the curve C is stable, that is the group of automorphisms is discrete; for
g > 1 the covering of their moduli space is accomplished considering a symplectic basis of cycles
in the homology of the curve?.

We have also to consider the points co,, v = 0..m: therefore, for each of them, oo, we fix a local
uniformizing function, namely a function w, such that w,™*! = X in a neighborhood of ocoy.

Summarizing

Definition 5.2.3 The covering space M\,m;no...nm is defined as the sets of genus g curves with
m + 1 marked points endowed with a symplectic basis in the homology and a N-sheeted covering A
of CP! with a fization of local uniformizing coordinates {wy},

——

My ming..nm 2= {(C, AW, ey Wiy {@1..Gg, b1.., 09 1)} .

5.2.1 Frobenius structures on Mg m.ng..nm

Over the space My ming..n, W€ consider the coordinates u1, ..., Un as spanning a semisimple com-
mutative, associative, graded and unital algebra in the tangent space, with {u; = A(F;) | dA(F;)}
as local coordinates. Explicitly the algebra structure is as follows (setting 0; := Biu,-)

1. Multiplication: 0; - Bj = 51-3-8,-;
2. Unity: 1:=>70;
3. Euler field E := Y 7 u;0;.

In order to obtain a Frobenius structure we must define an invariant inner product such that the
resulting metric is flat and satisfies all the axioms of Frobenius manifold.
For any one form Q € I'(T*M) we can define an invariant inner product as

<X,Y >q=0Q(XY)

which is nondegenerate provided that € nowhere vanishes. There is a natural way to build one
forms on the Hurwitz space starting from a representative as follows. Let @ be a quadratic

2We recall that this amounts to choosing 2g cycles {a1, .., ag,b1,..,bg} which have intersection number a; - a; =
bi - bj =0 and a; - b; = di;:



Jacobi, Frobenius, Hurwitz 70
differential on C (i.e. Q € '(T*C ® T*C)) and set
n
Q
Qo = du; —
R

‘Notice that this definition of the one form g is independent of the representative and also invariant
under the structure group (here simply the affine transformations of the plane): in fact, if 9 : C —
Cand A =a)\+b, then u; :=ado?d+b=au; + b, Q =9*Q, therefore

' ~ n
-~ Q .9
le du; T}gis 5 ; du; T]%S e

and hence the definition is well posed.

It is clear that if the differential () is dA—divisible, namely if it has the form ¢ ® d\ and ¢ is
holomorphic on the zeroes of dA, then the corresponding differential on the Hurwitz space is zero;
this allows for an enlargement of the class of quadratic differential that we can use. In fact we can
consider the larger class of quadratic differentials on the universal covering of the curve C which
have the property that their continuation along a closed curve v C C' is changed by a d\—divisible
differential, namely

Q '7 Q+qgy®dr.

One can consider quadratic forms ¢ which are squares of a differential ¢ of certain type, namely
Q = ¢®¢: these differentials ¢ are called primary differentials. The types that lead to Frobenius
structures are listed below

1. An Abelian differential of the second kind?® with poles only at the poles of )\, 0oy, ..., 00m,
with orders less than n, (in such a way that é{% has no residues there) and such that

j[qb:O, i=1.g.
aj

(Such differentials are said normalized)

2. An Abelian differential of the second kind of the form

¢ = Dyby
k=1

where 6 are normalized Abelian differentials of the second kind with only one pole at ooy

0, = —dX + regular terms near coy, .

30n a curve C the Abelian differentials (namely the analytic one forms) are said to be of the first kind if it is
holomorphic everywhere, of the second kind if it has only poles without residues and of the third kind of there
are poles with residues.
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3. An Abelian differential of the third kind

m
= Z Dypy
k=1

where py are normalized Abelian differentials of the third kind and simple poles at ocox and
oog of residues +1 and —1 respectively.

4. A multivalued normalized differential (namely a differential on the universal cover of C) with
increment along one of the b—cycle, say the j-th, of the form

¢?¢+(57;jd>\ .

5. Any differential of the first kind, which can be written for convenience as

g
=2 Ciws
j=1
where the holomorphic differentials w; are the Poincare’ duals to the b-—cycles, namely

$o, Wi = G-

In [Du93] it was showed that any quadratic form @Q = ¢ ® ¢ where ¢ is one of the above primary
differentials gives rise to a Frobenius structure, namely to a flat invariant metric n along the lines
we drew before, namely

e 0y, (2 ) g, 280
Buz Bu] im1 )\ Bu, 8’!1,]' Mi_ F; d\ '

=1

In order to build the super;potential of this Frobenius structure we take A considered as a function
on the universal covering C' (namely a multivalued function) by considering it as depending on the
multivalued coordinate P
o) = [ 4,
oo

where the principal value prescription (if necessary) is understood in this integral. The necessity
to consider A as a function of v is that we need to make differentiations of A along the moduli
space and it must be clear which is the (local) coordinate w.r.t. make the differentiation. We cite
the Theorem to be found in [Du93] and which we will use later.

Theorem 5.2.1 For any primary differential ¢ the corresponding invariant metric ng along with
the canonical multiplication rules in the coordinates u;, endows the Hurwitz space M 0. T
with a structure of Frobenius manifold.

The flat coordinates of the invariant Frobenius metric 1 are the n = 2g +2m +ng + ... + 1y
coordinates

tya = res(wy)?vd; v=>0.m, a=1.n,;
oy
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oo oy
U, = /dv=/¢; V,,:——:—C.gs)\dv::—gs)\qﬁ; v=1.m;

o0 o]y
B; = jl{d ; Cj = }g)\ dv; j=1l.g,
bj aj

and the nonzero entries of 7 in these coordinates read

1
Ntviartpp = n—H5uu5a+b,nu+1
v
1
Tl T T
1
"7Bj,Ck = 2—?"7—1_‘5]]6 .

In order to identify the remaining objects in the framework of Frobenius manifolds, we notice that

Proposition 5.2.1 [Remark 5.3 in [Du93]] The intersection form associated to the Frobenius
structure specified in Theorem 5.2.1 is given by

dv ® dv
— 2
J= E (du;) rlgs( SN ) .

dA(P;)=0 '

The flat coordinates of this metric are the described by the same formulae as above with the
substitution A ~— log()\) and with the ¢,,, changed into the

Z; = 'U(QZ) , s.t. }\(QZ) =0.

Remark 5.2.1 If we have any other set of Hurwitz moduli and we consider derivations w.r.t. these ones,

we find
" OAdy ® O Ady S res 8 (log(A)) dv ® &' (log(\)) dv
T L dx=o d (log(N\)) '

Proposition 5.2.2 Scaling dimensions The scaling dimensions of the flat invariants of 7 are

LA,
0,0 = Zd’,;\e-_fo XdA

given by
ny,+1-—a
E(ty,q) = _u'l—z,,—i-—ltu;u , v=0,...,m; a=1,..,m ;
E(w)=0, BEW) =V, ; v=1,..,m;

E(Bj) =0, E(Cj) = Cj ; i=1..,9.

Proof. The proof is immediate considering the expressions of the invariant and noticing that the
Euler vector field is a rescaling in the variable A, leaving unchanged the primary differential dv.
Q.ED

In the following section we apply this general theorems to the case of genus 1.
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5.3 The space M, as orbit space of J(4;)

In this section we build a Frobenius structure over the Hurwitz space M g, (or better its covering
M\l,o;z); now C is a torus and the superpotential A has only one pole cog of degree [ + 1.
Applying the general theory we shall identify the flat coordinates of the intersection form and find
the monodromy group of the resulting Frobenius manifold: it will turn out that this is the Jacobi
group of type A4;, J(A;) and that the moduli of the superpotential -when expressed as functions
of the flat coordinates of the intersection form-, are the generators of the algebra of Jacobi forms
Ju o (see formula 3.7).

We call 7 the modular parameter of the torus C and we think of it as C/(Z + 7Z). It is useful
to use the Weierstrass uniformization, realizing the torus C(7) as the affine curve?

Y? =4X° — ga(71) X — ga(7)
X = p(v) ; Y =¢'(v) .

The point oog can be chosen (modulo the automorphisms of the torus) as the point v = 0 of
C/(Z + 7). Since A must be a meromorphic elliptic function with a pole of order [ + 1 at
v = 0modZ + 7Z, it follows that the most generic form is (using a convenient normalization of
the moduli)

I+1 I4+1—j
-1 Y 1 1 1 1
Av) = L(‘ll:'j)",—ﬁo(l D (w)pr41-j = TPl T T o et e o(1)
J=0 '
0 (DR ey

where we numbered the coefficients ¢y, according to the order of the pole and we have set, for
notational brevity, p(~1(v) =0, =D (v) = 1.

From the modular properties of g it follows that the parameters ¢y transform as modular forms
of weight —k under SL(2,Z): indeed by assumption the superpotential has to be independent of
the isomorphism class of the torus namely,

v laT+b a b —k
A|T) = A (M‘m—kd) ) v <c d> € SL(2,Z) =>kaT:>T,(c7'+d) Ok -

We observe that the moduli ¢;,’s are equivariant and we anticipate here that they will be identified
with the fundamental Jacobi forms. At this stage they are simply some parameters which play

4In this section we use a slightly different definition for the Weierstrass functions, namely

—2inv2gy (7) ! ('U,T) _ e—2i7rv2g1 (T)CY('U[T)

50,7
((vlr) = 3= log (o(0]7)

d 1 1 1
plulr) = ~d_vC(UIT) = + Z ((v + m + n7)? - (m+m-)2>

o(v|t) =e

m24n2:0
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the same role as the Jacobi forms in formula (3.9), but the identification will be complete in Thm.
5.3.1. In view of this identification we shall occasionally call them “Jacobi forms” by an abuse of
language.

The primary differential we will use is simply the holomorphic differential ¢ = dv and hence A
will be the superpotential of our Frobenius manifold as a function of the multivalued coordinate v
on the torus (hence as a function on the Jacobian of the torus).

Let us analyze the structure:

1. The parameters g, ©2, ..., 0;+1 and the modular parameter 7 =: ¢_; are local coordinates
of the Frobenius manifold M := M; o; and the invariant metric n(,) is given by °

0 Oun, Bun dv AiA(v)9\(v) dv
<Bsoz 8%) A,(Z) , 90i Do veva N (V) =27 X (v) ’
i,§=—1,0,2,..,04+1.

.. . (i-2) (5-2) .. .
For 4,7 = 0.. + 1 the functions £ : (;\}')(T))J 2@ are elliptic functions (recall that we have

set (2 =1 ;- = 0) and hence the sum of all residues in a fundamental mesh is zero:
therefore we can compute the residues at the points defined by ' = 0 by computing the
residue at v = 0 with opposite sign, (we suppress the v dependence to shorten the formulae)

8:)\ 8\ dv
(30) =225

A different problem is to compute the matrix elements where i = —1 ( w1 := 7) for in this
case the function 8, is not an elliptic function, but we can compute the residues for

1 a’(v) as 1 o(v)
D*A(v) = ViAW) = 5—— ) N(v) = 0-A(v) — -77—223 U2 (v)p; — 2 mx(v) =
j=0

=: 8 \(v) + 2(v) + (V)N (v)

(which is elliptic: notice that 3 is elliptic). Hence if F'(v) is any elliptic function with a pole
only at the origin, we find

AT do (D°r—=) Fdv

re§ ——— = res =
N=0 N AN=0 N

5The formula follows from the Jacobian of the parameters u; in terms of the moduli ¢4 as follows: the defining
equation of the u’s are
{ ui () = A(Ps; )
N(P;;0) =0

and upon differentiation w.r.t. @x we get

Bu;
{8“’(:) Bor (P ) + X(Pa)5ih = 5 (Pig)
dA(Pz)_‘ﬁ)——O
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(p°r-=) Fav ANF du
—— = — itk
R | (B ) +rFe]

The computational advantage is that we have converted a sum over residues which we do
not know where are situated, into a single evaluation at a fixed pole. Along these lines we

can compute
0
77(8_1, Bk) = —res [(M> + YO dv] =
v=0 N

=res {Makx(v) dv] :

2ima(v)

where, in the last equality, the term with <(97->\(’U)3k>\<’l))> /N () o (8 A(0) =D (v)) /N (v)

has disappeared because it is regular at v =0 for k = 2..l + 1.

In order to compute 7 (8_1, 8_1> we use a similar trick

o By () 2
e { (aT/\+7A/> E\?ﬁd—%\')dv} I {@%&@ 2 dy 4 ,\,dv} _
= —528{(287A+7A')7dv} .

2. The multiplication is defined as

8;) D) B dv
n <3i7 9; - 3k) =2_7e Y :

Again, if all indices are nonnegative we can evaluate the residue at zero changing sign; as for
the remaining cases we get, after computations similar to those of before,

(005 04) = - reg (222G )

nl8-1,0; Bj) = —res {%T,/l O; A 0;hdv + v 9; A Bj/\dv}

(
n(a_l, a1 - ai) = —res {(zaTA +7A’) 8\ dv}
(

n(8_1,8_1 - a_l) = —res {37 (8:-0)%dv + 392 8- A X dv + 3 (\)? dv} .
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Applying Theorem 5.2.1 we find

Proposition 5.3.1 The flat coordinates of the invariant Frobenius metric 7 are (the principal
values prescriptions are understood in the integrations)

T
tg = ](dv=/dv='r
b 0

1 -1 (_1)H—1~k e
o= 7{ A(w)dv = / Aw)dv = o + | D ¢ B )y 4| =
b . I — k)
k=0 O+e
= (g + dimg1p2;
te = res (U,\—?ISU)dA(U)); a=2.1+1;
v=0
(1) ﬁ 0O 0---0 O
T 0 0 0---0 (1)
n(0;, 05) = 0 0 0 00 1
: : . 0
1
0 o 0--0 0

While the flat (local) coordinates of the intersection form are the zeroes of A(v), 7 and u :=
ﬁ 4, log(A)dv.

Notice that the second Jacobi form (9 is always a quadratic polynomial in the flat coordinates
tg, ..., 141 and the lightest Jacobi form ¢y, is a power of the coordinate ¢;;; as we now prove.

Corollary 5.3.1 The second Jacobi form (g satisfies

I+1

1 1
P2 =g D Mttt = gy D bitiees
7‘:.7#1’0 ]:2

while for the lightest one ;11 we find
prr1 = (=1 = 1)~ g

Proof. The second statement is easily proven by computing the residue

l oL
ty = res (Uz\"l‘ﬁd)x) = res (v (%il— + ) l+1 ((——1)l+1(l + 1)% + )) =

v=0

S | =

v=0

= res <(—1)l+1(l + 1)‘Pl+1l—}g + O(l)> :

As for the first statement, we introduce the local coordinate z = ()\)'T%T (choosing one branch of
the root), and hence find (A = z,—frl—)

t; = res (v)\%d}\) =—(l+1)res (v A3 dz) , j=2,.,0l+1,
v=0 z=0 s
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where we implicitly solve the equation A(v) = ;,%;T for v as a function of z; in other words the flat
coordinates tg, .., 141 are the coefficients in the expansion of v

-1
’U(Z) = m (tH.l z+ tl 22 T tgzl -+ O(Zl+2)> y
in which the term in 2! vanishes because reg(vdA) = 0. We now compute
v=

-1

1 (1 + 1% (2)dz 9
D L e
J:

and this ends the proof. Q.E.D
From this corollary it follows that

!/
. N
= (pg + 21w — Z Nttty -
1,j70,1
In order to complete the description of the Frobenius structure it is important to express the two
vector fields 1 and E in these coordinates.
Recall that the unity vector field 1 in the coordinates u; = A\(F;) Where P; are the critical points,

read 1 = Eif? aa , while the Euler vector field is given by }:ﬁi Us pe- au ‘We now prove that

Proposition 5.3.2 The unity vector field 1 and the Euler vector field E in the coordinates
to, "7tl+1 read,

k:

141
0 [+2— k 0
; E=
Z [+1 Otk

Proof. The effect of these two vectors on A are of shifting or dilating it, hence they read 1 = 6‘9)\

and B = A2 #x; now, from Corollary 5.3.1 it follows that the vector 6 exactly shifts A, while the
expression for the Euler vector field comes from the degrees of the ﬂat coordinates as stated in
Proposition 5.2.2. Q.E.D

Since the superpotential is invariant under the group SL(2,Z), it follows easily that

Z) € SL(2,7Z), the

flat coordinates transform as follows : they are invariant under the map corresponding to 7 — 7+1

Proposition 5.3.3 Under a transformation of the modular group with (Z

. 1
and under the inversion <g 0) we find
1
to — th=——
0 0= %
I+1
hom =t ir Zt] tr43—
_7_2
;1 )
tj 3 tjz——tj, j=2...l+1
to

namely, the flat coordinates t3, ..., ti+1 behave like modular forms of weight —1.
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Proof. The transformation rule for ty = 7 is obvious since it is the modular parameter of the
torus; the one for ¢; follows immediately once expressing it in terms of the Jacobi form g and 9
and from the modular properties of the Dedekind n—function. As for the transformation rule for
the remaining, this is a consequence of their definition as residues w.r.t. a weight —1 form which
is v A* d) (recall that under the inversion the coordinate v on the universal covering of the torus
is mapped to 2). Q.E.D

5.3.0.1 Twisted Frobenius structure

The Frobenius structure which has been constructed is well defined on M, o;; only locally, because
the automorphism group of the curve C' (SL(2,Z) in this case, full modular group) acts in a non-
trivial way by means of a symmetry (see [Du93] for details on symmetries of Frobenius structures).
This picture can be interpreted in two ways; we can consider that the invariant metric n takes
values in a suitable line bundle L over M = M o,; namely we consider the Frobenius structure to
be well-defined on L ® TM rather that on T'M itself.
Equivalently we can consider the covering space M = Mj g, and then we get a bona fide equivariant
Frobenius structure on TM.

Notice that the coordinates t;’s have to be thought of as coordinates on M in view of the
branching around the surface ¢;4; = 0: in fact in the definition of M , the fixation of the branching
of the root around the infinities makes ;1 a one valued function.

5.3.1 Free energy

To complete this study we must give the structure constants of the bundle of Frobenius algebras
on the tangent bundle of the manifold; in principle this could be done by changing coordinates
from the ¢;’s to the t;’s, since the structure constants form a tensor, but it is more useful and
satisfactory to express the free energy in terms of the flat coordinates.

To achieve this goal we compute free energy F by means of the particular bilinear pairing of forms
which is described in Appendix A.5; it is proven it [Du93] that the free energy for the Frobenius
structure we have build is given by

F = ——% <wvdhvdl > .

where we use, in the notation of the cited appendix, ® = ¥ = vd). In order to find all the due
constants we first notice that no logarithmic polydromy is present in this differential; hence we are
to find the coefficients ¢ (= ce in the notation of the appendix): we already know the first I,
which are (up to a constant) the flat coordinates s, ...,t;. In order to find the remaining we have to
write the expansion of the differential around the infinity point cog in terms of the local coordinate

1
z := (A\)” ™ and therefore we must expand v as a function of z by means of the inversion formula

1 1
= Z—H-_—I = U= v(z) = —— (tH—lz + tlzz + ..+ t2Zl+ Cozl+2+ e+ Cl_122l+1+ 0 (Zzl+2)) ,

Aw) I+ 1
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where we have numbered the coefficients in a convenient way for the following application.
Plugging into the formula we find

vd\ = 'u(z)d( ~t- 1) (I +1) f&d -

= [tl+1z—l—1 otz b btz 2 o 20y o+ 12T+ O (zl)] dz .

where we notice that c_; = 0 because the differential v d\ has no residue. As for the polydromy
we compute

vdA — vdd—d\ = A=A

U-vU--a

vd\ — vd\—7d\ = B(\)=TA\.

u—v+b
Finally we can write the pairing

-1
1 1 T 1
__E L —_ d d\ — — el )
< vdA, vdA > k:Ockk 1(: k 2-}—22,71_}{1) )\?gv A ZiwjiAvdA-}—%'frjé)\vd)\

To compute the periods in the formula we recall that we have to realize the cycles a,b as paths
with base—point a zero of A; in the specific we can think of them as the segments a = [z,z + 1]
and b = [z,z + 7] in the complex v plane (which realizes the universal covering of the torus; here
2 is a zero of )\ in a fundamental mesh) and hence compute

j[ vdh = —?{Advz —t1, ?{/\dv: o + dimgripe =: 1
a(z) a a

7[ vdA = —jl{)\dv = —tot1 — 2wy,
b(x) b

7{)\ dv = Ty + 4iTTg1pg + 2impy = Tt + 2impy =t tot1 + 2impa

b
(% v d)\) (7{ v dA) = to(tl)Z + Ziﬁtlcpz .
a(z) b(z)

The other periods give

7( B\ vd\ = Tj[ vAd) = ~—j§A2 dv
© a(c)

Novd) = f vAdA = __?{v dv
(c)

AN vdr— @ B(N)vdr = «?{/\de— lj[vdu =
b(c) a(c) 2 /o 2 Jp

= -—% <7€—T j{) 2 (v)dv = —imres (v X2 (v) dv) .
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where we notice that the differential A? dv has only one pole at v = 0 and no residue®: we have
then used formula (A.3) so that finally (recall that 7 = o)

Proposition 5.3.4 The Free energy of the Frobenius structure associated to the primary differ-
ential dv is

F = ———;—<vd>\,vd)\ >=

-1
1 1

=l Cogfp—Cf — =~ /vd)\/ 'ud/\—T/ vAd)\—I—/ v AdA| =
e k+17 dm | Jow)  Ja(w) Ja(a) (=)
-1
1 1 1 s 1 1 )

:_E g ——tq(t) = = ul =
2k_oc’“k+1c k-2 = tolta)” — ghiea + g res (v X (v) )
-1
1 1 1 , 1 1 )

== tows — —to(t1)? — =t = .
2k—06kk+1 k2 T o(t1) 5 1p2 + 1res (v (v) dv)

We will give an explicit example in the case of As later.

5.3.2 TFlat coordinates of the intersection form

We now analyze the structure of the flat coordinates of the intersection form. This enables to
identify this Frobenius manifold as a suitable covering of the orbit space of the Jacobi group of
type A;.

In particular it will become clear in which sense the moduli ¢4 are Jacobi forms; the point is
that as functions of the flat' coordinates of the intersection form, they are exactly the previously
studied generators of the algebra Jo ..

From Thm. 5.2.1 we know that the flat coordinates of the intersection form are the functions
v(Q;) with Q; a zero of the superpotential A, and $,dv =7 and u= 5= §, log(N)dv.

To begin with, the number of zeroes of A(v) is I+ 1 because A is an elliptic function with a pole
of order [ + 1 at the origin; they are linearly related since the divisor of zeroes must be congruent
to the divisor of poles. Therefore we have leﬂ z; = 0mod (Z + 7Z).

We already know how to express the parameters g, ¥2, ..., Pi+1 in terms of the zeroes of A(v);

this follows from the explicit construction of the Jacobi forms for A;, which is accomplished in

eq. (3.7). This clearly leaves an arbitrariness, since the knowledge of the divisor of zeroes fixes a

function modulo multiplication by a nonzero number; this multiplicative coefficient will be denoted

by eZiﬂ's_

The explicit formula which expresses the superpotential as a function of its zeroes zi...z41 (s.t.
l1+1 z = 0), of 7 and s is thus

-+

I+1
)\(’U) — e2i7rs+2i7rg1||z”2 Hl g (zi — U) —

ott1l(v)

6This follows from the fact that A% is an elliptic function with only one pole, and from the general fact that the
sum of residues in a fundamental mesh of an elliptic function is zero
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(Loel) ) . el ()
1 plz) p'(z1) ... e D(z)
det | . . : :
» P : :
__—_ J2ims 1 p(z) @) ... (=)
Hazj 1 plz) @'(z) ... " I(z)
N — . 1 p(zn) p'z) ... e (z)
=P det : : : :
1 p(a) @@ ... (=)

In order to identify completely the flat coordinates of the intersection form with the coordinates
we used in constructing the Jacobi forms of 4; in formula (3.7) we have to compute explicitly the
. flat coordinate u; to this end we give the

Lemma 5.3.1 The flat coordinate u = 5 ¢ dv log()) equals ezactly s.

217r

Proof. We have

1 I+1
U= L dv log(A) = 2'}71' /0 dv log(}) = s + g1|z]|” + h/ v log (Bﬁl) |

i

Considering this function depending on z; we have

I+1

sz dv Zlog< U(U ) =/01dv§(v-zk)=

— log (5%%5@) = (—4‘i7r%2k> = —szrgl oo lall’) -

Since for z = 0 the integral is obviously zero we have finally

I+1 ,
/dv Zlog( ) =—2z'7r%||z||2,

and therefore s = u. Q.E.D

From this explicit formula we recognize that the Hurwitz moduli ¢_1, ¢g, 2, ..., 141 —as func-
tions of the flat coordinates of the intersection form, 7, u, z1, ..., z;— are exactly the invariant Jacobi
forms constructed in 3.7 for the Jacobi group J(A4;); we have thus proven

Theorem 5.3.1 The Hurwitz moduli ¢_; = 7, ¢, @2, ..., p;+1 as functions of the flat coordinates
of the intersection form u, 21, ..., 2141, 7 (where Y z; = 0), are the Jacobi forms for the Jacobi group
of type A;.
Moreover the intersection form in Proposition 5.2.1 coincides with the intersection form in Defini-
tion 3.1.1.
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5.3.3 Monodromy

By means of the identification in Thm. 5.3.1 between the moduli (g, @2, ..., @14+1,7) on the space
Mj o, and the Jacobi forms for the Jacobi group associated to Al, we have therefore constructed a

Frobenius structure on a suitable covering of the orbit space CEBCZ @%  From the above formu-
lae expressing the flat coordinates in terms of the Jacobi forms it is clear that the multivaluedness

of this covering comes uniquely from the ¢, = —(I + 1)(<pl+1)l_}rT coordinate; looking at the explicit
form (defining z;41 = 0 =: o)

+
i1 (21, T H i = Ti-1)

we realize that the zeroes are situated at the walls (recall that o are the coroots spanning over Z
the lattice Q of A4; in C+1)
o) (x) =0mod Z + 7Z .

namely at the walls of the alcove for the complex crystallographic group
A:={xeh]| a}/(x) € Ao}

where Ap is the fundamental mesh of C/(Z + 7Z).

In other words for fixed T the quotient of h ~ C! by the complex crystallographic group is a torus
T which is simply the product of identical tori of modular parameter 7; our Frobenius structure
lives on a [ + 1 sheeted covering of this torus with branching divisor Y := {¢;41 = 0}.

Example 5.3.1 The case A; This ezample was worked out ezplicitly also in [Du98] but it is useful to
use the present formalism. The superpotential is

A(v) = p(v)p2 + o ,
and the Jacobi forms read
pa(u,2,7) = =¥’ (2) 5 po(u,z,7) = —¥TP (2)p(a) -
The flat coordinates of the invariant metric n are

to:=1; 1 1= o + 4imgieps ; ty 1= —2./p2 = —2a(z)

0 o 1

The free energy is found to be (the dependence of P on T is understood)

1 1
(A1) ._ 2, 1 2,
F : ——41,7Tt0(t1) + 4t1(t2)

96

Notice that these flat coordinates live on a double covering of the quotient space C® C & H/J, inasmuch
the coordinate ty changes sign under the action of the Weyl group (in this case the Weyl group is simply Zo
acting as x +— —x); this comes from the fact that t5 is a square-root of the truly invariant lightest Jacobi
form o, and this is what happens in the general case.
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Example 5.3.2 The case Ay We have the superpotential

Mo) = — 56/ W)gs + p(0)e2 + o

where the numbers 3,2, po in terms of the zeroes of the superpotential read (we set z1 = x1,22 = T3 —
T1,23 = —I3)

o) = 2 Talamata)
. p2imu P (z1)— (T2 —21)
pa(u,x) = e a(a1)a(z2)afes) p(ﬁi) T P(ﬂ::— z11) ’/
o1, %) = 70z, )z )a(zg) EELE @2 —21) — @/ (@)p(@s —21)

p(z2 — z1) — p(z1)
The flat coordinates of n and its entries are

2 1
L t3 = —3(p3)3;

to = T; tg = —
. dim 217r7)
it = Adv = o + dingips = o + ?glfgtg Yo+ —4— Zt titi—j;
a

4
wog =t1 — ‘3‘Z7T91t2t3

1 1,
P2 = gtztm p3 = —27(733) ;
0 F bl
Tist; = 267" 0 0 %
0o 0 L0
and the free energy reads
1 1 1t 1
(2) .= o112 + S tatat -2 ty? —
F g gkl T e 43740Q

These computations can be handled algorithmically by a computer, we list the next free energies of the series
A (for the definitions of P,Q, R, see Egs. (2.4))

FlAs) = Z:—tht12+(itot4+%t3 )t1+%ti+ ( ; Z + 916 t‘;f) t5?
Gg*’ %%15—32‘ + 46080 ) t36 3;4 Pvff 1841132 ta” 14" Qu*

+mt48W6R

FlA) = —%“‘;“2 +(ét2t5+%t3t4)t1+ (%i—i—%g +T;“6t_55§2£> 2
+ (—%53—2 + (t“ + 715 ts;t‘*) ts — ; ?4 + 28125 ts Qmt t4> ty — % %:i;- + % tit:a
+ (’“% e 1;0 P7f§ ” 37200 t54Q’T4> ts*
+ (i% 2_: - 56;507553 Qrtit? — @gls—gﬁtﬁm) 3 — -2—12 %—Z— - ﬁdQﬂ‘ltsztﬁ
+ t 8 m° R ! £510 78 Q2

6328125 10546875000
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5.4 The space MZ 51 @s orbit space of J(B;)

In this section we build a Frobenius structure over the Hurwitz space Mlzé , (or better its covering
]\//I\IZ0 ;); now the superpotential A has only one pole oog of degree 2! and the Zg group acts on the
torus by means of the involution v — —v € C/(Z + 7Z).
Applying the general theory we shall identify the flat coordinates of the intersection form and find
the monodromy group of the resulting Frobenius manifold: it will turn out that this is the Jacobi
group of type By, J(B;) and that the moduli of the superpotential -when expressed as functions
of the flat coordinates of the intersection form-, are the generators of the algebra of Jacobi forms
Jo,o (see formula 3.21).

The point cog, being the only marked point, must be left fixed by the involution and hence is
the point v = 0 of C/(Z + 7Z). Since A must be a meromorphic even elliptic function with a pole
of order [ + 1 at v = 0mod Z + 7Z, it follows that the most generic form is

)

1 9]—27 -2 1 1 1
Av) = 72: m—,@( 12 ()i = P gl et et O(1)
oA 1
_ (24,

where we numbered the coefficients ¢, according to the order of the pole and we have set, for
notational brevity, (=% (v) = 0, pAw) =1

As for the case of A; the parameters ¢ transform as modular forms of weight —2k under
SL(2,7): again they are to be identified with the fundamental Jacobi forms. The primary differ-
ential we will use is the holomorphic differential ¢ = dv: hence A will be the superpotential of our
Frobenius manifold as an even function of the multivalued coordinate v on the torus .
The structure is analyzed by similar means: since the problems and computation are essentially
the same as in the case of A;, we report only the results.

1. The parameters g, 1, ..., and the modular parameter 7 =: ¢_; are local coordinates of
the Frobenius manifold M := Mlz,g;m and the invariant metric 7(,) is given by

o} Ouy, Oup, dv 1 BiA(v)@; A (v) dv
res ==Y res )
(‘990 8(PJ) ,\f(z): 0 Op; Opj v=uvn N(v) 2 ZA’=0 N(v)

ij=—1,0,2,..,0+1.

The factor % 5 takes into account the double counting of poles due to the symmetry of \.

(2i—2) (25
In the case i, = 0..I the functions e (;}')(2) 0 (w) are elliptic functions (recall that we

have set p(“z) =1; p(“l) = 0) and hence the sum of all residues in a fundamental mesh is
zero: therefore we can compute the residues at the points defined by A’ = 0 by computing the
residue at v = 0 with opposite sign, (we suppress the v dependence to shorten the formulae)

1 8;A 0\ dv
(0085) =51 25
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As for the matrix elements where 1 = —1 ( ¢_1 := 7), the same trick used in for A; applies,

so that we find
1 o (v)
(a 1,ak) Sres [mm(v)a@,\(v)dv} .

Along the same lines one finds

n (3_1, 6_1> = —-;— res {(QBTA + '7)\’)7dv} .

2. The multiplication is defined as

s 1 9iX ;) B\ dv
(0005 0:) =5 X0 gy 2L

Again, if all indices are nonnegative we can evaluate the residue at zero changing sign; as for
the remaining cases we get, after computations similar to those of before,

n(ai7 8; ak> — _%Zi% (BM aki\:ak/\ dv)

n(a_l,ai . 9;) = _%Zi {ax’\ DA B \dv + B\ D, Adv}

n(a_l, 81 - ai) - —% res { (2aTA + fyA') 8\ dv}

n(6_1,6_1 3_1) - %‘3}23 {37 (0,0 dv + 372 9, AN dv + 3 (,\')de} .

Applying Theorem 5.2.1 we find

Proposition 5.4.1 The flat coordinates of the invariant Frobenius metric 7 are (the principal
values prescriptions are understood in the integrations)

T
tg = %dvz/dva
b 0

1 -1 1+4€
t = ?{)\(’U)dv =/0 A(v)dv = o + [Z 2l — 2k)! C(Ql"%_l)(v)w—k} =
a k=0

O+e

= o + diTg101;

ta = res (v)\“za273v)d)\(v)); a=2.10+1;
0 3= 0 040 0
2 0 0 000
(8¢, B¢) 0 0 0 00 g

o
B - -
o
o
o o
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While the flat (local) coordinates of the intersection form are the zeroes of A(v) (modulo the
involution v ++ —v), 7 and u := 5 §, log(A

Similarly to the A; case we find

Corollary 5.4.1 The second Jacobi form ¢; satisfies
+1

Z ntht i .7 4l Zt tl+3-—] 3

,J#l 0
while for the lightest one ¢; we find

= (21)_21tl+12l .

Proof. Essentially the same. Q.E.D
From this corollary it follows that

!
t1= o+ 2 Sy tits .
1,570,1
In order to complete the description of the Frobenius structure it is important to express the two
vector fields 1 and E in these coordinates.
A straightforward computation gives

Proposition 5.4.2 The unity vector field 1 and the Euler vector field E in the coordinates

to, ..., t1+1 read,
+1
P +

[+2— a
1:———-‘ E .
' Z l+1 k Oty

5.4.1 Free energy

In order to compute the free energy we have similar techniques as before and hence we only report
the results.

Proposition 5.4.3 The Free energy (prepotential) of the Frobenius structure associated to the
primary differential dv is

F .= —% <vdA\vdA >=

13 1 1
= - C_9-L Ck — & / vdA ’Ud)\—’l'/ ’U)\d)\‘*‘/ vAdA| =
2 —0 k+1 dim b(z) a(z) a(z) b(z)
-1
1 1 1 1 1
=32 % k2~ gptolta)” = Stiey + Fres (vA%(v) dv) =
k=0

1 1 1 1 ,
Qchk+1tk+2 it o(t1)? — gtier + g res (v A2 (v) dv) .

We will give an explicit example in the case of By and Bj later.



Jacobi, Frobenius, Hurwitz 87

5.4.2 Flat coordinates of the intersection form

The flat coordinates of the intersection form enable us to interpret the superpotential as the
generating function of the Jacobi forms of type By; this allows to identify this Frobenius manifold
as a suitable covering of the orbit space of the Jacobi group of type B;.

The arguments are essentially the same as before except for the obvious changes.

A(w) = 2mrs+217rg1||z1|2 Hl o (3 —v) o (3 +v))

0'26( )

1 p) '@ ... pP ()
1 p(z1) @'(@) ... P (x)

det : . : . .

l : : : :
_ L o oins 2. . 1 pl@) @"@) ... @ (z)
= (21)! € Ea (CCJ) 1 P(-’El) p”(xl) p(gt_4)(m1)
N - . 1 p(z2) "(z2) ... @ (z2)

=41 det . . . .
1 p() @@ ... %Y@

In particular some changes are needed for the computation of the flat coordinate u but the result is
the same. From this explicit formula we recognize that the Hurwitz moduli v_1, 0, ¥1,...,01 —as
functions of the flat coordinates of the intersection form, 7,u, 1, ..., z;— are exactly the invariant
Jacobi forms constructed in 3.21 for the Jacobi group J(B;); we have thus proven

Theorem 5.4.1 The Hurwitz moduli ¢_; = 7, g, ®1, ..., as functions of the flat coordinates
of the intersection form u, z1, ..., T, T, are the Jacobi forms for the Jacobi group of type B;.
Moreover the intersection form in Proposition 5.2.1 coincides with the intersection form in Defini-
tion 3.1.1.

5.4.3 Monodromy
By means of the identification in Thm. 5.4.1 between the moduli (o, 1,1, T 7) on the space
MIZS , and the Jacobi forms for the Jacobi group associated to Bj, we have therefore constructed a

Frobenius structure on a suitable covering of the orbit space J C@C ©%  From the above formu-
lae expressing the flat coordinates in terms of the J acobl1 forms it is clear that the multivaluedness
of this covering comes uniquely from the ¢; = —(2[)(¢;)? coordinate; looking at the explicit form

3717 R Ha xz

we realize that the zeroes are situated at the walls (recall that o are the coroots spanning over Z
the lattice Q of A4; in C1)
a}/(x) =0modZ + 77 .

namely at the walls of the alcove for the complex crystallographic group

A= {xeh | a)(x) €A
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where A is the fundamental mesh of C/(Z + 7Z).

In other words for fixed 7 the quotient of h ~ C' by the complex crystallographic group is a torus
T which is simply the product of identical tori of modular parameter 7; our Frobenius structure
lives on a [ sheeted covering of this torus with branching divisor ¥ := {y; = 0}.

Example 5.4.1 The case By

1 1
{ po=t —Imgi(r)tats, 1 = tz t3¢s = 256 —tt, T = to}

1Tt 1 1% 1 1
(Bz2) . _ - 1%0° tr to 1 2 - 2 2 5
F : i +4 172 3+6 s SItg 7w g1{T) ta +6144Ot3 g2(to) 1o
1 8
e f, t
+ 5505004 3 9s(to)

Example 5.4.2 The case Bj

1
{T=to, $o =11 “§IW91(T) (2t2t4 +t5%) |

1 1
b1 = = t32 + Ztoty, g3 =

1 ¢y = Lo
12 6 46656 ta®, 2 = 216 >

1 1 t3% s

— —TIt? ty? — =

gl TNt~ 3
1 t3°

4 to)t

493(0)2+10t3

1225
6 2 2
ts” g3 (to) t3 ‘l"-————%g%2 ta® ga(to)? 8

1Ttt2 1 1 1 t3ty?
(Ba) . _Z207L Sttty + =
FY7s0 1 . tglabtit gttt T

ta* ga(to) tats +

1
—~———It47{'gl(7‘)t32t2+

1
18 39191040

1
77760

t4a® go(to) t33 +

1 1
155520 3732480

t4*2 G5 (to)

1
— ﬁIng(T)t34+
T
1209323520

Example 5.4.3 The case B,

1 1
{¢o=t1—Efﬁgl(T)(tzts-*-tds) ¢1 = —t4t3+8t2t5,

3 1 1 1
——— 42152 + ——= 13t tats®, py = ———— 158, 7=
g = 415"+ sts®, ¢3 = 4157, ¢4 o726 5 0 T to}

1024 512 32768
(B4)::_ Ztetoty — — Jte2 52 13" lg 4.6 PRV
F 8t4t3t1+8 stali = 551t w g1(T) ta +2 i +36700160 55 g3 (t0) ta ta
1 3 . 2 525 2 1 t4 12 1 4
ta" by + oo ¢ ts? golto) tat
+ 163840t5 ga(to) t4” t2 + 3383608 t5° g2(t0) 2+4 P + 545760 15 ga(to) tata
1 tltsty | 1tty  1tgts® 3 "
—— tataty — s _2 1L () ¢
1 e mar(T)tatsta % T2 2 1,2 | 2147483648 s(to) ts
! 3 5 2 20925 4 3,5t
to) ts2 ta® ty + ———— t to) a2t ¢ t0)2 tats — —
+ Toaaap %2(fo) s B4 ts + Tgamrngp s 98lto) e’ bs + gagerngts” 9af 0)? tats 16T
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! 1 6 2 1 7 t4° t3?

- ﬁIvrgl(itau) ts® 13’ + 55090096 5 g3(to) ta* + 545760 t5° ga (to) ta® ta + 5 50
33 13 297 10 )

T TCEI T Oy to) ba 4+ —rl

+ SrasTroneord s Celte) bt Srmreseiegts Calto)te
429 6 147 3 11025

+ SasTozatedsrane ® O7(0) 35 15 + ngagaras o) ts" b + gagayay to 92(t0) e
_ }_ Ttgty?

4 7

5.5 The Frobenius structures of the orbit space of J(Gy)

The exceptional root system G displays an interesting and unexpected double Frobenius structure
in the sense we are going to explain. We have seen in section 3.3 that the Jacobi algebra J.( .2)

is naturally embedded as a subalgebra of J.(,.Z), hence, the flat structure on Spec(J.(,. )) can be

interpreted as a flat structure also on the (suitable covering of the) orbit space of the Jacobi group
J(Gs). Indeed, recall that the Jacobi forms of G2 are given by

) 1 2
I 0 R C S A : (ngz))

and therefore the flat coordinates associated to the invariant metric n*(,) = £_a_J*(,) are exactly

3

the same as those computed in example 5.3.2, namely °
Ga) _, _ 4 . (@) _ 1, . . G) _ 1 6.
o =1, — gmm(T)tﬂz, py = 3tats; 0y = 5572 (t3)”;

therefore we have a Frobenius structure inherited from the one of Aj, where the free energy is
. t4 .
given by F(G2) = Fl42) .= Lt, 1,2 4 Ltptsty — o5 Pl 2im 13245291 (to) — 5r3e5 £3° g2(t0)-
On the other hand G, falls also into the category of “codimension one cases” [Sa90], and

hence it has another natural flat structure which we have computed in Prop. 3.3.1. An easy

computation of indices shows that Saito’s tensor J* := L o J* form a linear pencil of flat metric
865
with the intersection form, J* + AJ*. As a consequence there exists a unique associated Frobenius

structure whose free energy can be recovered by application of the formulae described in section
5.1.2. In order to find it, we only have to find the scaling dimensions g; and the Euler vector.
Now, since the unit vector must have scaling dimension —1, and is given by 1 := 5%, then we
must take as HEuler vector
1 1 0 10 ta 0 0 o 0 p2 O
=-E=-—0,=t e b e = (g ;
E=3B= i %6ts +5 28t1 25t P0ps T 2 Bey 2 B

from this expression we read off the the scaling degrees, ¢; = 1, 1 = @2 = —é—, gs = 0 (namely,
dr =0,dy =do = %,dﬁ = 1) and the scaling of the metric of equation (3.20), namely £yJ = J.
The free energy of this Frobenius—Saito structure is found to be
©) ._ 1 1 in’/3 (22)1/3 (

F —'rts + = t5t1t2+

4 3 4
(Sqito) = Qi 36 t1 — 21y ‘151)’17 +




Jacobi, Frobenius, Hurwitz 90

. in2/3
—img1 (to)t2"t® + %6 2(z — 1))1/3 (to* — 262t:%) n* |

where we recall the definition z(1) = 1 l’—(‘—'g-vz;??'g/},(’)') + 1]. Again this expression follows from a

straightforward but quite long computation which we spare. Notice that this free energy is well-
behaved in t1,ts, %5 and has singularities only in 7 coming from the Dedekind’s eta function and
from the branching around the divisor 2(7) = 0 and z(7) = 1, which both correspond to the
Zs-symmetric torus with go(7) = 0.

Summarizing, we have two Frobenius structures in which the Euler and unit vectors are

1. B = @08y + 020,, + 2060, and 1 = 8, for the Frobenius structure inherited from the one
of As;

2. E = 3000, + 50204, + 060y, and 1 = 9, for the Frobenius structure associated with
Saito’s flat structure.

The situation is that we have a two—dimensional linear pencil of flat metrics; by this we mean that
the (contravariant) metric

G =T 4+an*+bJ",
is flat for any choice of the constants a,b € C with ab = 0 and the (contravariant) Levi-Civita
connection is the same linear combination of the corresponding connections.

The fact that J* is linear in g is not predictable from the counting of bi—grades; in fact one

could expect a priori the occurrence of a term proportional to po? in 90w, w2) € Jégz), which is
not the case —as a matter of fact— as we saw in the explicit computation.
In the picture of [Sa90] the flat structure we have constructed in the case of A;, and ~as a by-product
— in the case of G9 is unexpected; it essentially comes from the additional structure provided by
the modular properties of the Jacobi forms, which are “unseen” in the framework of the theta
invariants studied in loc. cit.

There are hints at the possibility that a similar double Frobenius structure could be found also
in the other exceptional cases Fy, Eg, By (the latter two corresponding, in Saito’s notation, to the
“simple—elliptic cases” E’;, E;). In another feasible case we find a similar structure: this happens
for '3 in next section.

We notice that the occurrence of multiple structures is not peculiar of Jacobi groups: indeed it
occurs in the polynomial (Coxeter) case as well as we will show in Appendix B.

5.6 The Frobenius structures of the orbit space of J(C3)

As in the G5 case, we saw in section 3.5 that the Jacobi algebra J£g3) is naturally embedded as a

subalgebra of J.(fe'); hence, the flat structure on Spec( .(fz)) can be interpreted as a flat structure
also on the (suitable covering of the) orbit space of the Jacobi group J(C3). The Jacobi forms of
Cj5 are given by

2
A
G R A O goéCs)=<(pgA3)> _
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As before we have a Frobenius structure inherited from the one of Ag, where the free energy is given
by the same free energy F(43) listed in Example 5.3.2. However Cj falls also into the category of
“codimension one cases”, and hence it has another natural flat structure which we have computed
in Prop. 3.5.1. An easy computation of indices shows that Saito’s tensor J* := L 5%6 J* form

a linear pencil of flat metric with the intersection form, J* + AJ*. Again, there exists a unique
associated Frobenius structure whose free energy can be recovered by application of the formulae
described in section 5.1.2. The scaling dimensions g; and the Euler vector of this new structure

are
1 1 9 ‘P03+9025.(P4i_

dps 2 0po 2 Bpz | 2 s’

from this expression we read off the the scaling degrees, ¢ =1, 1 =2 =qu = %, g = 0 (namely,
dr = 0,dy = dy = d3 = 3,dg = 1) and the scaling of the metric of equation (3.20), namely
L1J = J. The free energy for this Frobenius structure is given by

1, 1
irte? (g8 Tgliie 1 (@u2+5u)’P

g 1 _ _ L
(Saito) 8 2 192 2
1 iv/320/3) (—12824:2 + 265 113 — ty* — 16843 ) n* 2(1/3)
— +
576 72
1 1 \/52(1/3) (t14 —2 tl t23 + 16 tl t43 +12 t42 t22) 7)4 (z - 1)(1/3)
576 2
oy 1 |/=27 ~ . . .
where we recall the definition z(7) = 3 [@—;r)—ﬁgg(fr) + 1]. Again this expression follows from a

straightforward but quite long computation which we spare. As in the G case this free energy is
well-behaved in t1, t3, t4, tg and has singularities only in 7 coming from the Dedekind’s eta function
and from the branching around the divisor z(7) = 0 and z(7) = 1, which both correspond to the
Z3-symmetric torus with go(7) = 0.



Appendix A

Formulae

In these appendix we list and derive all formulae involving the elliptic functions that are used in
the previous sections, and we explain the pairing of forms used in the context of Hurwitz spaces.

A.1 Normalized elliptic functions

In the text we have always used the normalized elliptic functions.
In order to match with the more common formulae we give here the table of conversion.

Here normalized means that the periods are 1 and 7 while usually the half periods are wi,ws,
where 7 = g% We define the Weierstrass eta functions by means of the quasi—periodicity of the

unnormalized Welerstrass zeta function

((z +2w1) = ((2) + 2m
(2 + 2w2) = ((2) + 272
m=Cwi);  m2=((w2)

17T

771w2—772w1=—2--

If n(r) is the Dedekind’s eta function we have the following relation

2wimy = —2imgy(T)
2wing = —2in T g1(T) —im

and hence the quasi-periodicity of the normalized zeta function (here —and only here— we put a
subscript y to mean the normalized function)

(v (v) = 2wi((z)
(v +1) = (v (v) — dingy (7)
(N(w+T)=Cnv(v) —dimTg1(7) — 207 .

In the previous sections we have always used normalized elliptic functions.

92
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A.2 The elliptic connection D*

Proposition A.2.1 Let F(v|7) be an elliptic function of weight &k, namely

F (;”r-j - %) = EF(ul7) | (A1)
then the function
- (MBF)(o|r) = V,F(olr) - —————2;2’(;} T)T) F'(u]r) =00, (17 F(vlr)) - —-—--—2:‘7r'§’(’v T)T) F'(v]7)

is an elliptic function of weight k + 2.

Proof. Differentiating both members of eq. (A.1) w.r.t. 7 we get
1
(0-F) (;‘ - ;) = 7529 F(v|7) + kr* T F (v]7r) + 7530 F (v]7);

(8- F)(v + 7|1) = 8, F(v|1) — F'(v|7); (6:F)(v + 1|1) = 6-F(v|7) ,

and in particular we find

1
(V) <E| - ‘) = H12V, Fulr) + 748 0P (o) ;

T T

(V-F)(v +7|7) = V. F(v|r) — F'(v|7) .

Recall now that

yolr) = g1 ) — g )+ S0
v(Y-2) =i e A =16 <15 a2 =0)
Therefore we finally have
(D*) Y (;1 - %) =2 DEFwr) ;.  DPF)(u|r +1) = DR F(v]|r)
O®F)w +7r) = DB F(ulr) ;  OWF)(w+1|7r) =D®F(v|7) .

This ends the proof. Q.E.D
In order to interpret this operator we consider the universal torus, namely the fibration over
(C?), = {(w,w’) s.t. %/ € H} whose fiber is the unnormalized torus C/(2wZ + 2w'Z), or better

Ep
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where L is the set of all lattices A := 2wZ + 2uW'Z.

Cursorily speaking we can take (2;w,w’) as local coordinates over M (which can be seen also as a
smooth principal fiber bundle with structure group S x S?).

The analytic sections of this bundle are the (unnormalized) elliptic functions with periods 2w, 2w'.
Over this fiber bundle we have three natural vector fields [Du93]

3] 0
_ ., 9 1 O o
Dy _“’a +w3w’+zaz
0
Dy : 5

0

0 0
D3 :=m o +m +C"5£

ow ow’
where the ¢ function is the unnormalized one.
Consider now the projection over the universal elliptic curve £ defined as
II: M —
(Zyw, ') = (v)7r) = (ﬁ; %)
and the push—forward of the above three vectors. It appears that Dy is the vertical vector field and
II realizes the universal torus M as a trivial C*-principal fibre~bundle over the universal elliptic

curve; the other two vectors are horizontal and hence they induce a natural connection over this

fibration IT: M — £.
The sections of the associated line bundle is the sheaf S of homogeneous elliptic functions

fleziew,ew’) = cFf(z;w,0') € S®F
f(z 4+ 2mw + 2nw';w,w') = f(z;w,w') ,
and the horizontal connection D induced by the vectors Dy, D3 is
9
ov 5
D, = D(k) — 2k ¥ -2k
T T ’r’ 87'77

.Dz =
o (vlr) 8

- 2ima(v|r) Ov

It follows that the elliptic connection D) js just the horizontal vector D, acting on section of the

sheaf S®*. Since we also have a natural structure of graded algebra, we see that we can define the

connection on the whole algebra by
o=
D = DD® .
§=0

A.3 Pseudo addition formulae

Proposition A.3.1 The following formula holds

o(x) a'y) _e(@elw)\ __,. Salz-y) d@-y) (o) o)
<a<z> T 2a<m>a(y>) T —) “a(w—y){ } '
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2im L g2
_36 7.7rna:

Proof. Recall first that a(z) = =7
Recall also the standard notation

o(z) where o is the Weierstrass sigma function.

d d
= —1 ; = = s .
¢i=—log(o);  p:=—-C=——5log(o)
Thus we can compute® (putting A4 := 2i7rﬂni)

(a”(z) R0 2a’<m)a’<y>> _

a(z)  aly) a(z)e(y)
o’(x)o(y) + o (y)o(z) — 20" (z)o' ()

= 4A + 4A%(z — y)? + 4A(z — y) (C(z) — () +
o(z)o(y)

and the long fraction involving the sigma functions can be rewritten as
o(y)o"(z) + o(z)a"(y) — 20 (z)o’(y) _
o(z)o(y)

We now need the following pseudo—addition theorem for the ¢ function

Theorem A.3.1 [see [WW), pag 446] If z + y + z = 0 then
[C(2) + <) + ¢ = ple) + p(y) + p(2)
Applying this formula with the substitution y + —y we can write
((z) - CW)I? - p(z) — p(y) = p(2) — (*(2) — 2((2) [¢(2) ~ ¢ ()]

and hence, expanding and rearranging terms we obtain

(a"(m) LW 2a'(m)a’(y>> -

a(z)  aly)  o(z)ely)

ey @ey) @) (@) dw)) _

= 12T = Ty ”a<m—y){a<m> a<y>}

_ g drele—y) | oz —y) [d(z) oY)

=T =) T2 e =) o) a(y)} (4-2)

This ends the proof. Q.E.D

Corollary A.3.1 From the previous it follows

_ [Vea(z)  Vealy) o (z)d(y) . Vea(z—y)
4”[ w@ o) | le@ely) - az-y) | olz—y)

1We use the straightforward formulae
o (z) = e’ (2zdo(z) + o' (2)) ; o' (z) = e’ (42 A%0(z) + 4z Ac’ (z) + 240(2) + 0" (2)) ,

with A := 2i7r17’_ll.
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Proof. It follows from the proposition recalling the definition V,a(z) := 0;a(z) + 2g1a(z) , and

the equation )
bra(z) = Ea"(m) —3g1(m)a(z) .

QED.
A.4 Periods of elliptic functions
Let ®(v) be a meromorphic elliptic differential of the second kind (i.e. without residues), namely

®(v) = f(v) dv, with f(v) meromorphic elliptic function.
For the sake of simplicity assume that ¢ has only one pole at, say, v = 0; if the principal part is

0
f) =) Cw*+0(w)  C.=0,
-N

then the periods of the differential ¢ are computed by expressing f(v) in terms of the ¢ function

X (-1 (k-1)
f(U)=Co—Z(k_1)!CkC (v) -

k=2

Then we promptly find

c+1
7[@ = / fw)dv = Cy + 4ing1C_g = res [ﬂ?ﬂ + dirgiv f('u)dv:]

c47 . i f(’U)d’U . .
7!@ = / fw)dv = 7 Cy + 4in (T g1 + 2im) C_y = res ['r—-;—— + (dinTgy + 2im) v f(v)dv
b c v=

j{@ — ’/"i@ = 2i7 res (v f(v)dv) . ' (A.3)

A.5 The pairing of forms.

Let M := M, mino,...nm D€ the covering of the Hurwitz space Mg m:n,,...,n, introduced in Def. 5.2.3;
this means that its points are the set of data (C, A, {a1, ..., ag; b1, ..., by}, ko, K1, ..., km) where

i) C is a smooth curve of genus g with m + 1 marked points cog, ..., 00m;

ii) Aisamap A: C — CP! with poles at the marked points and of branching degree respectively

T80y «evy oy
iii) {a1,...,ag;b1,..., by} is a symplectic basis in the homology of the curve C;

iv) ko, k1, ..., km are some fixed branches of the roots of A at the marked points (infinities),

namely L
ky = (A)mFl v=0,.,m.
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Let C be the universal covering of the punctured curve C'\ {c0g, ..., 00r, } with canonical projection
II
I1:C— C\ {o0g,...,00m}

and let ®, ¥ be two holomorphic differentials on this covering (namely with poles possibly only
at the poles of \). We moreover assume that their polydromy is fixed and independent of
the moduli ui,...,un of the Hurwitz space. Explicitly we work in the following hypotheses: let
{a1,...,ag;b1,...,bg} be a symplectic basis of cycles on the curve C realized by paths which avoid
the infinities, with basepoint Py € C such that A(P) = 0; let sg, ..., Sm be pairwise nonintersecting
paths joining Py to the infinities and g, ..., Ym small loops around the infinities in counterclockwise

orientation.

Let C be a simply connected domain in the universal covering C constructed as follows: we lift
the cycle a1 to C and hence obtain a segment from Qg to Q1 such that II{(Qo) = II(Q1) = Fo. We
then lift the cycles al,bl,al_l, bl_l,ag, b2, ..., by, ag“l, bg_1 in this order and consequently obtain 4g
points Qg, @1, ..., Q4 on the covering. Now we lift the paths sg, o, 551, 51,71,31_1, cevy Sty Yims S
and at the end, by definition of universal covering, we have come back to the initial point Q¢ and
hence have a boundary ac.

We now make the following assumptions on the differentials ®, ¥;

1. Polydromy we assume that the two differentials are d\-multivalued, namely there exist
suitable analytic functions A%, B}, A%, B, on the complex plane such that for any cycles
a;, b we have the following properties

d

B(P + a;) = O(P) + dA%(\) = ®(P) + ﬁAg(A)dA
&(P +b;) = ®(P) + dBL()) = ®(P) + %Bg(,\)d,\ ,

and similar formulae for ¥; we stress that the cycles are to be meant such that their lift to
the universal covering lies inside the simply connected domain C C C defined above.

We further ask that the branching around the infinities is at most dA-logarithmic, namely
there exist suitable analytic functions Fg(X), F§(A), p = 0,1,...,m such that, near ooy, the
polydromy is the same of the differential d (Fh(}) log(})).

All these polydromy data are assumed to be independent of the moduli.

2. Periods We assume that the a—periods are independent of the moduli.

3. Poles We assume that the singular part (up to the polydromy described above) does not

depend on the moduli, namely, near an infinity co,, in the fized local coordinate? Zy = é =

1
ETRET5N
[o0]
O(P) = ch 2hdz, + d (Fh (M) log(N)) ,
-N
and the singular part, namely the numbers cg,_ N cg _, are all independent on the moduli.

2This is to stress that the coefficients are to be defined w.r.t. the Laurent expansion w.r.t. these variables
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We remark that we have used the fixed branches k, of the roots of A at the infinities co, which
is a datum of the Hurwitz space.

Definition A.5.1 The pairing is defined by means of

m u P oop Ay
<<1>,x11>:=—;) 1{2;0 k2k+1+c@_1'¢)p/ \If—l-vp./PDF@()\)\Il &

g Po+aj P0+b
_1_2{ Ba(\)T + A \If+/ /\If}
2 Po

Jj=1

The expression is rather cumbersome, though it is important to notice that the dependence of the
moduli enters only through W.

Consider the tautological fiber bundle over the Hurwitz space such that the fiber is the punc-
tured curve C; onto this fiber bundle we define a lift of the vectors —6—%

Definition A.5.2 We define the connection on the locally trivial fiber-bundle

1C
M

defined implicitly by the formula
V:A=0.

This means that all derivatives w.r.t. the moduli have to be done at A constant; this implies that
if we realize the curves C,, as locally identical curves, the connection defines some vector fields on
this curve by means of the formula (in a local coordinate w on the curve)

ow 1 O (w; u)
du;  N(wyu) Oug

Notice that if w; is a local coordinate in the neighborhood of the point P; we have that
ow; 1 OA(wy;u)

Bui Y (wj; u) 8’11.5

is a function with a simple pole only if ¢ = j and regular otherwise.
We have the following

Lemma A.5.1 [Lemma 5.1 in [Du98]] Let u; := A(P;), s.t. dA\(P;) = 0 be the moduli of the Hurwitz

space, then we have Vi = 1..n -
BT >)=—res—— .
(< >) res ==

Bul

Corollary A.5.1 The pairing is symmetric up to a constant independent of the moduli.
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Multilinear pencils of flat metrics: a
simple example

We have encountered an unexpected issue: the occurrence of two different, compatible Frobenius
structures on the orbit space of the Jacobi group of type G5 and Cs. In that case we saw that there
exist a plane of flat metrics and not only a pencil. Correspondingly, at the level of the semiclassical
dispersionless integrable hierarchy, we obtain a triple of Poisson structures.

One might think that this oddity is a sort of accident occurring only in this isolated case. However,
after some research we found a very simple example which diplays this feature at the extremum.
Indeed, we can find a flat metric over C' which admits exactly [ different Frobenius structures.
The example starts on the orbit space of the Coxeter group of type B;. We compute here the
intersection form (which is common to all structures) and the different invariant metrics, which
correspond to the choice of a unit vector. We prove that each choice proides a flat pencil of metrics
and compute the free energy associated to each of them.

B.1 Intersection form

Consider the case of the Weyl group of B; acting on the orthogonal coordinates z1,...,z; and the
generating function for the invariant polynomials

l
P() = [[0? —23) = o2y, yo =1

l
j=1 j=0
Then we have

Proposition B.1.1 The coefficients of the intersection form in the y coordinates are to be read
of the equation

2

2(1—7),,2(1-k) __ =
S < dy; dyy, > 2D =< dP(u),dP(v) >—(u—2—:v—2)(

Jok

vP'(v)P(u) — uP'(u)P(v)) .
They are at most linear in each of the y coordinates.

99
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Proof. We have

< dP(u),dP(v) >= P(u)P Z o Ik‘l””kuQ — -

— T — T

4 'u2 u? 2 , ;
= P(u)P(v) ; =) <02 Rl 2) = ) (vP'(v)P(u) — uP'(u)P(v)) .
Now to show linearity it suffices to spell out the RHS

2

l
m ('UP’('U)P('U,). - uP'(u)P(v)) = @%—;i_)_ Z (j — k)UZ(l—j)uz(z—k)yj Yk -

J,k=0

This ends the proof. Q.E.D

Proposition B.1.2 The components of the contravariant connection are to be read off the formula
Z u2(l‘i)v2(l“j)‘7dyiudyj = VypudP(v) =

- [P(u)dP(v) - P(v)dP(u)] + u22~—_—5§ [P(u)v P! (v) — uP’(u)dP(v)] .

(W =+7)
They are linear in all the y coordinates.
Proof. We have

VapupdP @) = > 8P(u)040,P(v) dz, =

Tk
-2z —26, 1—0,1)2k T
= P(u)P(v) Z 02— xkkz [uz _ 3:;2 + 4(u2 (_ $k2)k(3)2k_ mrz)} dzr =
k,r
T2 Ty
_ E‘Tg—{ﬁ (P(v)dP(u) - P(u)dP(v)) —8P)P) Y Ea—— (U2k_ ey
k#r

Now we have

Tk _ 1 Tk Tk
(02 — zz2) (w2 — zx2) (w2 —v?) [U'Z —z2 Ul - azkz]
TE1T, _ 1 T, v2 u?
(u? — z52) (v? — z52) (v2 — z,.2) T2 — 9292 — z,2 [ 2 ]

v2— 2 w2 — 32

so that the second addend
o2 T

PP ) ) — e )
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SRS | e [
- ZL2_§_5§1:'(u)u dP'(v) = ———uP'()dP(v) - “)_P 5;’ s m:’f“; —7 =
= o P(u)y dP (o) — ———uP (u)dP(o) ~ @24__1"9;)3_)5 <P(v)dP(u) _ P(u)dp(u)> _
- o (Papdr o) - P ey ) - (Prap ~ Pejire))

Var(#dP(o) = — 2 ~ (P(v)dP(u) _ P(u)dP(v)) +

. ’U,2
b <P(u)v 4P (v) — uP'(u)dP(v)) - (—U;Z—U-Q-)-Z- <P(v)dP(u) - P(u)dP(u)) -
'U2
= @‘2‘”2‘_‘“@? (P(“)dp(’u) - P(v)dP(u)> + E%ﬁ <P(u)v dP'(v) — uP'(u)dP(v)) .

To show linearity it is sufficient to notice that the formula is linear in P(u), P(v). Q.E.D

B.2 Frobenius structure

The Frobenius structures arising from the different choices of unit vector field are recovered from
the superpotential

W Yi—1 2 2%k—2 2% __ P(v)
Q(k,l)(v) T p2(l—k) + p2(i—k)—2 Tt T Yk T Y1V + L Y1V +v = 20—k

The flat coordinates are
1 2i-1

b= g e Qep@) ™ , =1Lk
2j—1 i
tivk 7= 57— 158 (Qup®) = , j=11-k,
and the corresponding free energies are
I—k— 0
Fiy(t) == (Zk Ck+1 + Z chi)l _ (20 = Zk)Q lt cin)+1

where the coefficients c% o) c,(g) are defined as

1 L
"’—Z+Ztﬂ 21 21+ Z Ci-k 21 23 =) O(Z2k+l) 2 1= Qe (v) 2 — 00

j=k+1
I—k 2(l—k)

, ; 1
271 2j—1 2A—2k+1 -
V= E tg4-52 I E Cj—l+kZ T= 4+ 0 (z + ) , 2= Q(k,l) ('u) 20—k — (.
j=1 je=l—k+1
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The flat contravariant invariant metric of this Frobenius structure is block diagonal with diagonal
blocks of dimension & and [ — k respectively and both blocks with # and Tll—‘k‘j on the principal
antidiagonal and zero elsewhere

0 = 0 0 0
0 0 0 0 0 0
o - 0 ¢ 0 0 0
T 0 0 o )
30—F)
Po0 0 0 0
P o - 0 i
0 0 0 o7y 0 -+ 0

B.3 The case Bj

Notice that in the case Bs we have three relevant structures: the three corresponding freee energies
are

6
Fygi=—t17 + 611%6% + (18132 + 612°) t1 + 1842°¢3

35
4
Fipi= 12 £1° — 2112132 + 8 11t2” + 4 tot3”
8 t;°

2 1
Fypi= St 4+ 8titats — oto? — = = .
3,17 gl 1oty — glz” = g o
Notice that the usual case is F3 3 and is, of course polynomial. But then also F3 is polynomial
and corresponds to D3 (which is the same as Aj3: this is clear and holds true in the general case,
namely Fj;_; is always the free energy of D;.
The third free energy is not polynomial.
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