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1 Introduction

1.1 Strongly correlated systems

The physics of strongly correlated electrons is at the moment one of the most active field of the
condensed matter physics due to the recent discovery of high-temperature superconducting (HTSC)
materials. The motivations for studving HTSC are coming not only from expectations to find tech-
nologically useful materials but also because the HTSC problem comprise almost all complexities

of strongly correlated systems on the lattice.

The initial motivation to study strongly correlated system derived from the problem of fer-
romagnetism in transition metals. These studies have born out the Hubbard model [2] where
electron-electron repulsion is described by a local on-site term. The Hubbard Hamiltonian became
a paradigmatic model for strongly correlated systems. Later more phenomena demanding an ex-
planation in the framework of strongly correlated electrons were observed. The discovery of heavy
fermion compounds, where electron spectrum is strongly renormalized by electron-electron interac-
tions, rose a substantial interest for better theoretical understanding of the subject. But Bednorz
and Miiller ten years ago [3] initialized an explosion of excitement and interest for strongly correlated
systems discovering that some copper-oxide compounds like Lay_,Ba,CuOQ,4 are superconductors
at a relatively high temperature of 35 K. Since then, superconductivity was found in many other
similar materials with transition temperature rising over 130 K. Besides their exceptionally high su-
perconducting transition temperatures, collected experimental data reveal that copper-oxide based
HTSC materials also have exceptional normal state properties. They have a very rich phase di-
agram: the superconducting transition occurs near an antiferromagnetic as well as a structural
instability, and the metal-insulator transition add new complications to this already complex phase

diversity.

The parent, undoped compounds of the copper-oxide based HTSC materials are antiferromag-
netic Mott insulators. Namely according to the standard band structure theory they should be
metallic but instead they are insulators, indicating that the Coulomb repulsion between electrons
dominates their kinetic energy. These properties present HTSC materials as the most interesting
examples of strongly correlated systems. Another important clue for understanding the problem
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of HTSC is the layered structure of these compounds. The copper-oxide HTSC compounds have
one or more CuQ, planes in the unit cell separated by the layers of other ions. As a result, a
high anisotropy of the electronic and in particular superconducting properties is specific for these
materials. It is probably this quasi-two-dimensional character of HTSC materials involved with
strong interaction which prevents proposed theoretical models to converge to the accepted phys-
ical picture for HTSC. In spite of large number of studies devoted to two-dimensional correlated

electron systems there is still no model able to cope with all main aspects of this problem.

The importance of the low dimensionality in HTSC was not so surprising for the solid state
theoreticians. Though interactions in an electronic system in three or higher dimensions can be
renormalized, leading to the Landau fermi liquid theory, in one dimension the perturbation theory
is not renormalizable. The properties of one-dimensional systems are instead described by the
Luttinger liquid theory. Two-dimensional systems are somehow in between these two concepts.
It is not clear which one of them should be adopted as appropriate framework for describing the
elementary excitations from the ground state. Inclining to one of these theories leads to physical
consequences which cannot be easily harmonized with all observed properties and experimental
data. For example, the Luttinger liquid scheme predicts that the spin and charge degrees of freedom
have different dynamics and Anderson [4] argued that this is in fact the mechanism driving the
unusual behavior of HTSC materials. Therefore a lot of efforts are devoted to understand if it is

possible to realize a Luttinger liquid also in the two-dimensional electron system.

Probably the only achieved consensus was that magnetism has an important role for under-
standing the normal state of HTSC materials and that it could have a part in the interactions
leading to the superconducting state. In the mentioned Anderson hypothesis the superconductivity
appears from the unconventional ground state for the antiferromagnetically coupled spins in the
CuQy planes. Instead of the classical (Néel) ground state he proposed a disordered state in the
form of resonating valence bonds. Anderson suggested that the appropriate model for HTSC is the
two-dimensional one band Hubbard model in the limit of extremely strong repulsion. The consid-
erations of more general models which takes into account the more detailed orbital structure of the
CuQ4 planes [5] yield essentially the same Hamiltonian, the so-called ¢-J model, as the relevant
physical picture of the low-energy excitations in the CuO; planes. The model essentially describes

the antiferromagnetically coupled electrons with the constraint of no doubly occupied sites:

= = 1
HtJ = —t Z (;C?a’cja + c;-ocic,) +J Z (Sz . 5] - annj) y (11)

<i,j>.0 <1,7>
where cfa is the creation operator of an electron of spin ¢ =T, |, S; and n; are the electron spin and
the electron density operator, respectively. At half-filling the ¢-J model reduces to the quantum
spin system described by the Heisenberg Hamiltonian which describes well the spin dynamics of
the undoped copper-oxide materials. The Heisenberg Hamiltonian is a rather old model but HTSC
recently renewed interests for it when it was realized that the understanding of two-dimensional

spin systems, especially when frustrated, is not complete and demands more studies.
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1.2 Quantum antiferromagnets

The physical picture of the spin interactions comes from considering two electrons localized on
energically close orbitals. They are interacting repulsively, but the spin coupling can be ferromag-
netic or antiferromagnetic. If the orbitals are orthogonal but occupy the same region in space then
by the parallel (ferromagnetic) alignment of spins the interaction energy of the system is reduced.
On the other hand, electrons in the spatially separated non-orthogonal orbitals will be antiparallel
(antiferromagnetically) aligned in order to reduce their kinetic energy. Based on this simple picture,
the notion of quantum magnets as a rather elementary model of strongly correlated systems was
conceived. Particularly, quantum antiferromagnets used to be considered a rather well-understood
strongly correlated system. This considerably changed when the HTSC problem appeared and a

proper understanding of the two-dimensional spin system was questioned.

In one dimension the Bethe-ansatz provide an exact solution for the spin 1/2 case and after that
it was shown that the correlation functions in this case follow a power-law decay. However, for
chains of spins S > 1/2 there is no exact solution. Haldane conjectured [6] that the excitation
spectrum of spin chains has an interesting property. He proposed that the excitations of the half-
integer spin chains are gapless with power-law behavior of the spin correlation functions. whereas
in the spectrum of the integer spin chains a finite gap appears, leading to an exponential decay of

correlation functions.

In dimensions higher than one, the exact solution for the infinite lattice problem is not known,
but there are some rigorous proofs regarding the nature of the ground state. Three-dimensional
Heisenberg antiferromagnets have long-range antiferromagnetic order for all spins S > 1/2 whereas
for the two-dimensional case the existence of a broken symmetry state have been proved only for
S > 1. Since the antiferromagnetic coupling in the copper-oxide planes is described by spin-1/2
Heisenberg model, the applicability of the standard spin-wave theory was under suspicions due
to the missing the proof of long-range order. However, many numerical calculations support the
hypothesis that even for § = 1/2 true long-range order exists in the ground state of two-dimensional

Heisenberg model.

When low-dimensional spin systems are frustrated, the already present strong quantum fluctu-
ations are even enhanced leading to new phases. In frustrated spin systems the energy of each
bond cannot be minimized simultaneously and the ground state is often degenerate. The quantum
and thermal fluctuations can then select new ordered phases. The frustration usually can also
modify the nature of the underlying order parameter. From the HTSC problem point of view, the
transition to the quantum disordered phase of two-dimensional quantum antiferromagnets and the
study of its ground state properties is of a particular interest. The motivation is coming from the
mentioned Anderson’s suggestion that such new disordered phases may be the key to explain the
phenomenon of superconductivity in these materials. Namely, the cuprates undergo a transition

to a quantum disordered ground state upon doping with a small concentration of mobile holes. At
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lower doping the holes are localized and a description within the Heisenberg Hamiltonian is ade-
quate, but at higher doping the holes become mobile, requiring the study of quantum-disordered
antiferromagnets in the presence of propagating holes. The new quantum phase rises few important
questions:1) What is the symmetry of the quantum disordered state ?; 2) What is the nature of
the excitations (spinons) above the ground state 7; and 3) Do spinon carry fractional spin quantum
numbers or they are always confined in pairs leading to integer spin excitations? In this respect,

the study of quantum two-dimensional antiferromagnets is of great interest in its own right.

The study of strongly correlated electron models is a difficult problem. There are no well-
developed analytical techniques to treat the models, e. g. the standard many-body perturbation
theory cannot be applied since no small parameters are present, neither in Hubbard Hamiltonian
nor Heisenberg one. Theories that start with the same Hamiltonian may arrive to completely dif-
ferent descriptions of their properties. With regards to expansion of computer resources. numerical
methods start providing important tool to judge the models and to close the gap between differ-
ent approaches and mean-field solutions. The numerical calculations can also indicate directions
in which new approaches should be developed. A review of computational studies of models of

correlated electronic system can be found in Ref. [7].

1.3 Variational calculation

Variational theory is one of the most powerful methods for understanding strongly correlated elec-
tron system. The properly chosen variational wavefunction gives an insight into the dominant
physical processes. Variational approach fills the gap between the analytical and numerical calcu-
lation providing a test for qualitatively developed physical pictures and giving quantitative values
to be compared with other models and experimental results. Thus, the variational method links
the simplified view of the system to other numerical methods which consider the model without

approximations as the exact diagonalization and Quantum Monte Carlo techniques.

Although results obtained by exact diagonalization techniques are unbiased, they are limited to
study small systems. Dimension of Hilbert space is growing exponentially with system size, and the
upper limits of computer memory and of reasonable time needed for computations, are reached by
relatively small systems. The Quantum Monte Carlo methods, see e. g. [8], on the other hand. can
treat systems of bigger size, but the algorithm for the case of interacting electrons on the lattice
mainly suffers from the negative sign problem. The average of some physical quantity obtained
by any quantum Monte Carlo distribution should be normalized by average sign of configuration
weights. The average sign could be very small quantity significantly affecting the final results. With
an accurate trial wavefunction obtained from variational calculation one can be quite close to the
exact ground state so that convergence can be reached before the sign becomes a problem. In order
to use some variational wavefunction as the trial state, one requires that it includes all important

interactions in a simplified way which is easy to compute. The variational wavefunction formulated
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in this thesis was developed also with this motivation.

The variational Monte Carlo method is a combination of the variational theory with the Monte
Carlo technique for evaluating expectation values. In the variational theory the energy expectation
value is estimated with a given trial state |1, > as a function of a set of variational parameters ~.
Once the optimal 7, for which the estimated energy has the minimum is found, the other physical

quantities can be calculated.

The variational Monte Carlo method use the random walk in the system configuration space
to construct the probability distribution by which the average physical quantities will be com-
puted. The random walk is generated by Metropolis algorithm for importance sampling where the
probability of accepting a step from configuration C to configuration C’ is given by

C— o min 1 [2LE0]
P(C — (") = min !’1, 5(C)

where ¥.(C) =< %,|C > is the trial state and |C' > is the state of the system with a certain

configuration C, say electrons localized at some fixed positions. The variational expectation value

(1.2)

of an operator O is defined as:

_ <0, >
U A

Inserting the complete set of states 3"~ |C >< C| = 1 in the nominator and the denominaror. the

(0) (1.3)

expectation value can be written as:

Se IO [<59%2]
2c [P(C)?
By the Metropolis algorithm the probability distribution given by the probability density (1.2) is

(0), = (1.4)

generated:
|[9+(C)I? -
P(C)= =5 . (1.5)
= S e
The expectation value can be now written as:
< ClO[py >
=>» P(0)—————r"—. (1.6)
2O

The sum over configurations in Monte Carlo method is then replaced by the sum over configurations

sampled by the Metropolis algorithm:

< Cm |0W"y (1.7
M,:;l (Cm) 0

where C,, is the m-th configuration created by the random walk and M is the total number of
configurations. Since the probability is positive definite there is no sign problem. The statistical
errors can be significantly reduced by taking a sufficiently large number M, which guarantees

statistical independence among samples.
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Variational Monte Carlo has a very important zero variance property: as the trial function

approaches an exact eigenstate of the Hamiltonian H, the variance
o =< (H - E,)? > (1.8)

vanishes, where E, =< H >,. This means that an exact eigenstate has no statistical fluctuations
and £, becomes the eigenenergy of the Hamiltonian for any configuration |C' >. On the other hand,
a too bad trial wavefunction results in an appreciable variance. Thus in the actual variational Monte
Carlo computations, it is convenient to improve the trial wavefunction by minimizing the variance
instead of the energy. We should moreover notice that the minimum of op does not mean the

minimum of the variational energy.

1.4 Structure of the thesis

The thesis has two parts: the first one concerns the variational approach to strongly correlated
systems using a variational wavefunction defined for all considered models by the linear spin-wave
expansion; in the second part the method of integration over boundary conditions is applied to
calculate the conductivity of the electrons for the Hubbard model in the honeycomb lattice. In the
first part the variational Monte Carlo was used, whereas the second one contains the results from

exact diagonalization by the Lanczos method.

The spin-wave variational wavefunction was applied to several different problems. from one-
dimensional chains to hard-core bosons and ¢-J model. The results show that this wavefunction
can be very successfully applied to the study of strongly correlated systems. It is practically the
exact numerical solution for the hard-core bosons, by this state the Ji-J; model can be described
even in the strong frustration regime where the spin-wave theory fails and in the ¢-J model it is

competitive with the Luttinger liquid state, at least when hole doping is not too small.

In this thesis the integration over boundary condition technique was applied for the first time in
the calculation of an important quantity such as the conductivity. The results are relevant to explain
the recently observed surface charge density waves, showing that the observed conductivity in the

low-temperature phase can be interpreted as a consequence of strong electron-electron interactions.

The thesis is organized as follows: in Chapter 2 the variational wavefunction is introduced. The
formalism is developed considering the spin-wave expansion for the generalized XXZ model. The
variational state is of the Jastrow type where the long-range behavior of the Jastrow potential is
determined by the linear spin-wave analysis. The formalism can be rather easily applied to other

spin systems and the resulting wavefunction is simple and computationally undemanding.

In Chapter 3 the physics described by this variational state is studied for one-dimensional systems.
The proposed state correctly describes the spin-1/2 Heisenberg model in spite of the fact that one-

dimensional chains do not have true long-range order and the spin-wave expansion for such system



8 § 1. Introduction

is not properly defined. The state is tested on the exactly solvable Haldane-Shastry model showing
that it represents the exact ground state. The variational state is also applied to the spin-1 case
showing a phase transition by changing the strength of the Jastrow potential.

Chapter 4 is devoted to the variational study of the J;-J; model, the frustrated Heisenberg model
on the square lattice. The variational calculation was done by using the state directly obtained
from the spin-wave expansion and by the procedure which use the constraints coming from the sum
rules for the structure factor. The order parameter is determined applying the finite-size scaling

analysis indicating that long-range order is destroyed for frustrations over J/.J; = 0.41.

A very successful application of the spin-wave variational wavefunction to the hard-core bosons
is presented in Chapter 5. The system has long-range order and spin-wave expansion is appropriate
for this system. However, it is surprising how accurate is the spin-wave state: it has an overlap
square with the exact ground-state wavefunction bigger than 99.8%. The hard-core boson structure

factor and momentum distribution function is compared with the spin-less fermions.

Variational calculations for the #-J model is presented in Chapter 6. The ground state energy
obtained by the spin-wave variational state is compared to the Luttinger liquid variational estimate.
The variational state, constructed as a product of fermionic state and hard-core boson wavefunction.
describes a Fermi liquid state. The computation is done for doping § ~ 0.3 and doping é ~ 0.1. For
larger doping we show that the Fermi state is more stable than the Luttinger liquid one, whereas

for small doping the two variational energies are no longer substantially different.

Chapter 7 is dedicated to verify a scenario for the behavior of the conductivity on the honeycomb
lattice. The simple Hubbard model is used to demonstrate that the effects of strong correlations
actually can produce the peak of conductivity which is consistent with the metallic behavior of the
system. This calculation is an extension of the integration over boundary condition technique to

the calculation of the electron conductivity.




2 Derivation of the ”spin-wave”

variational wavefunction

2.1 Introduction

The low-lying energy states of spin systems coupled by exchange interactions are wavelike modes.
The waves are called spin waves and the unit of energy of a spin wave is called magnon. Spin waves
have been studied for all types of ordered spin arrays, including ferromagnetic, antiferromagnetic,
ferrimagnetic, and less common spiral arrays. We will focus our study to the antiferromagnetic
systems, first presenting a general method for derivation of the variational wavefunction based on

the spin-wave expansion.

The simplest model describing the dynamics of the spin systems is the isotropic Heisenberg

Hamiltonian:

H=J) 5-5;. (2.1)

The sum is running over the pairs of nearest-neighbor sites < ¢,j > of the d-dimensional lattice. For
antiferromagnetic interactions J > 0 and a negative J < 0 describes the ferromagnetic interactions.

The spins S, are quantum spin operators obeying the commutation relations:
(S, 88 = iS7éu (2.2)

where the superscripts «, § and 5 stand for z, y and 2z components or any cyclic permutation of
them. We will consider the finite lattices of L sites in d = 1 and d = 2, but an extension of the
method to higher dimensions is straightforward. In our units, the lattice spacing a and Planck

constant A are taken to be a = h = 1.

The system of classical spins, i. e. fixed-length classical vectors, has the minimal energy in the
state where all spins are parallel for J < 0, or neighboring spins antiparallel for J > 0. The ground
state of classical spins for the antiferromagnetic coupling is known as the Néel state and for the
ferromagnetic one as the Nagaoka state. If we introduce the spin rising St and spin lowering 5~

operators

St = SF+isY, (2.3)
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S¢o= Sp—as), (2.4)

the Hamiltonian (2.1) can be written in a very instructive form of two terms, the spin-flip term
and the Ising term:

H=J > [ (SFS; +8787)+ 8287 . (2.5)

<t,j>

Since the spin-flip term exchange the spins on the neighboring sites, the Néel state is not an
eigenstate of the quantum Hamiltonian, whereas the Nagaoka state is indeed the quantum ground
state for J < 0. A natural question to ask is when we can consider the Néel state as a satisfactory
approximation for the ground state of the quantum antiferromagnets and whether or not long-range

antiferromagnetic order of spins exists.

In the limit S — oo the spin commutator is much smaller than the square of the spin variables and
the quantum spins become classical. In fact, Anderson [9] and Kubo [10] have shown that already
the first order in the 1/5 perturbation expansion from the Néel state describes very accurately the
ground state of the quantum antiferromagnets in d = 3. The physical picture is that for large 5 we
expect 5% to make at each of lattice sites only small deviation from the classical values £S5 which
can be treated in the harmonic approximation, similarly to the lattice vibration. But the zero-point
motion of the quantum spins considerably reduce the sublattice magnetization in lower dimensions.
In two dimensions any finite temperature excites enough spin waves to destroy long-range order of
spins, whereas in one dimension the quantum fluctuations suppress the magnetization even at zero

temperature.

A convenient way to develop the 1/5 spin-wave expansion is to represent the spin operators in

terms of bosons using the Holstein-Primakoff transformation [11]. For a ferromagnet one use the

expressions
S5 = S—dla, (2.6)
ala 172
Sf o= \/55(1 - -)j—-si\) a , (2.7)

Nc,)
1
fl

V254t azTaz v :

whereas for an antiferromagnet on a bi-partite lattice this has to be defined slightly different. In

addition to above expressions valid for sublattice A, for sublattice B one defines:
Sf = —S+blb,, (2.9)

1/2
V25b] (1—2&) : (2.10)

Il

St 25

St

Il

AN
\/2_5(1 25) b . (2.11)




2.2. Linear spin-wave theory 11

Here the a; and b, are boson destruction operator which satisfy the usual commutation relations
= [br,b]]=6 2.12
lar, ;] = by, b;] = b - (2.12)
Substituting in above expressions the expansion of f(n;) = /1 — n;/(25), where n; = (Lfal = b}bg,
in powers of 1/.5:
flm)=1-F—-m— - (2.13)

the Hamiltonian in the spin-wave representation can be obtained. In the linear spin-wave approxi-

mation one retains only the first term in Eq. (2.13) approximating f(n;) ~ 1.

For the sake of generality, instead of the Hamiltonian (2.1) we consider the X X Z Hamiltonian

with general couplings between spins:

M= = JEISTST + 5YSY) + J5;57 851 (2.14)
t.J

Within the X X Z-model notation, the isotropic Heisenberg Hamiltonian is obtained taking J;'} =

~J7; for the ferromagnetic case, whereas for the antiferromagnet case ij’ = J7,, after changing

the sign of the spin-rising operator on the one of sublattices by means of the usual transformation
S;F = (=1)!S;F. The isotropic condition is obtained by the continuity for [.J*| — J.

As a basis of the Hilbert space of general spin Hamiltonians we can take the product of the
eigenstates |57 > of the operator of the z-component of the spin 57:

{Si}y >=[]157 > - (2.15)
l

Since the operator of z-component of the total spin 57, = 3 5 commute with the Hamiltonian
l

(2.14) and its eigenvalues are constants of the motion, we can choose to work in the subspace of
given value of the z-component of the total spin. For antiferromagnets Marshall [12] has proved

the ground-state wavefunction is nodeless on the bipartite lattice and characterized by S5, = 0.

2.2 Linear spin-wave theory

Assuming that the couplings ]f Jy and J7; allow a stabile ferromagnetic solution on the zy-plane, we
can apply the linear spin-wave theory to the Hamiltonian (2.14). For convenience the ferromagnetic

order parameter is set along the z-axis:

Sf = S—adla, (2.16)

S -



12 § 2. Derivation of the "spin-wave” variational wavefunction

The spin commutation relations (2.2) in above linear spin-wave representation are obeyed up to
the order 1/5. Note a little bit uncommon choice of the direction of the order parameter. but
the advantage of the present orientation will be realized soon after the variational wavefunction is

introduced.

In the bosonic representation the Hamiltonian reads:

T T T > 1 | T ~ - ;
H=-5">JY+ SZ [Q(L:-faiJiv;-’ + a:-ra]-(—Ji’Jy +JE) - 5(&3&3 +aiai)(JE T . (2.19)
1,7

1,J

Introducing the Fourier transformation of the bosonic operators:
‘ 1 .
a, = — Z:e""’R‘aJr (2.20)
7 Lo
VL4
1 ‘R .
a, = —-—Ze“? ta; ; (2.21)
VL4

and couplings

g = YRR (2.22)
i
T (g) = %Z et(BimFy) gz (2.23)
]
Hamiltonian (2.19) can be written in a compact form:
H= SZ [an;aq + %—(a;aiq + aga_,)], (2.24)
q
where
D, = 277(0) - F*¥(q) + T*(q) , (2.25)
o= () + T(0)) - (2.26)

The quadratic form of the bosonic operators in Eq. (2.24) is usually obtained in the linear spin-wave

theory and it can be easily diagonalized by the Bogoliubov transformation
a;r = uqﬂg +v,8-4 . (2.27)

The transformation functions are given by

D, + ¢ R
= 2.28
. D, —¢
vy = —sign(ng)y/—5—, (2.29)
q

&g = D? - 773 . (2.30)
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The diagonalized Hamiltonian now reads:
1
H=28 [eBlB, + 5(ea = D)l , (2.31)
g

where ¢, is the normal-mode excitation energy and %(eq — D,) is their zero-point energy.

For ¢ = 0, the linear spin-wave Hamiltonian factors D, and 7, become equal up to a sign, and the
spin-wave excitation energy €, vanishes. The Bogoliubov transformation is then not well defined
and for this reason this mode will be called ”singular mode”. On an infinite lattice this problem
is not important because ¢ = 0 is just a point in a continuous spectrum, but for a finite lattice
we should pay a special attention to this singular mode contribution and handle this wavevector
carefully. In Ref. [13] Sorella and Zhong have shown by a careful analysis that this singular ¢ = 0
mode can be written as the projector of the spin-wave ground state onto the subspace where the

z-component of the total spin vanishes. This projection will be denoted as Ps; =o.

2.3 ”Spin-wave” variational wavefunction

The ground state |t)gs > of the spin-wave Hamiltonian (2.31) is defined as the vacuum of the
spin-wave magnons ,:
Bqlbgs >=10 . for all ¢ (2.32)

Using the inverse transformation

B, = ugag — van_q , (2.33)

it can be easily proven that |gs > has a Gaussian form:

, 1 2agtat ‘
|vgs>= Psz =0 || —€™ " TUF>, (2.34)

° u

g#0 ¢
which represents the ground state of the quantum harmonic oscillator Hamiltonian (2.31). Here
|F > is the z-axis ferromagnetic state [F >= [[;|Sf = § >. Because of the linear spin-wave
approximation, the Hamiltonian (2.24) connects the physical states satisfying the constraint CL}al <
25 with states having the number of bosons at a given lattice site bigger than it is allowed in the
spin operators’ original Hilbert space, namely a;a, > 25. The constraint a}al < 285 is obviously

violated in the wavefunction (2.34) and we need an improved state.

Instead of the harmonic oscillator wavefunction, which is the ground state of the linear spin-wave
Hamiltonian of the original model, we can introduce a variational state |1y > which is defined in
the correct Hilbert space and only in the spin-wave limit when § — oo it reduces to the harmonic

oscillator form (2.34):

1 2 z Q=

52 5905452

|y >= Psz =o€ 1 |F >, (2.35)
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where 57 is the z-component Fourier transform of the spin operator

1 : ,
Si=—=3 eTiRigE (2.36)
17 I 1
The unknown function g, can be determined by requiring that the Schrédinger eigenvalue equation
H|Yy >= El|yy > (2.37)

is satisfied in the large spin limit.

The exponent in the expression (2.35) can be seen as a classical Jastrow factor with the two-body
potential

o 2 ; ‘
v(R) = = ehy, (2.38)

acting on the classical configurations
|C; >=1575; ... 51>, -§<S§<6§5. (2.39)

Namely, in the ferromagnetic state [F' > each site has the maximum eigenvalue of the spin z-
component:

F>=]]ISf=9> . (2.40)
{

In the basis of the spin z-component this state can be written as (see e. g. [14])

S7=S
, 1 74 25 , o
]Sf:5>=2—s > (S_Sz)15;> . (2.41)
Sf:—S !
After projection, the ground state is given as a sum over the classical configurations (2.39)

Ps: =o|F >= ) ¢|Ci > . (2.42)

K3

The sum runs over the whole Hilbert space. For the nonfrustrated case, the coefficients ¢; are
all positive, and configurations due to the projection satisfy 3, 57 = 0. Since ¢; > 0 for all /. the
Perron-Frobenius theorem ensures that the |4y > is not orthogonal to the true ground state for any
finite S and therefore it will necessarily collapse to it as § — oo, provided that Schrodinger equation
is (2.37) is verified. For frustrated case, we expect that the ”spin-wave” variational wavefunction

remains a good approximation of the ground state.

We expect that our variational wavefunction is not only valid when there is true long-range order,
but also in the one dimensional cases. For example, the one-dimensional spin S = 1/2 isotropic
antiferromagnetic Heisenberg model, as there is no long-range order represents a very bad case for
the application of the linear spin-wave approximation. Nevertheless, the ground state energy agrees
within 2% with the exact value obtained by the Bethe ansatz, as already noticed by Anderson in
the seminal paper of the spin wave theory [9].
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Once the physics of the ground state is correctly described by this wavefunction obtained from
the self-consistency criteria in the eigenvalue equation, we can expect that also the long-distance
spin-spin correlations are correctly determined. For the mentioned example of the one-dimensional
S = 1/2 Heisenberg antiferromagnet, we will see in Chapter 3 that the long-range order present in
the wavefunction P550r=0|F > is readily destroyed by the long-range Jastrow potential v(R) ~ log R,

consistently determined in the large-S limit of the eigenvalue equation (2.37).

In order to determine the unknown function g, or equivalently to solve (2.37) in the limit § — oo,
we have to perform large-S limit of Eq. (2.35) and using (2.18) after a simple Gaussian integration,
see Appendix A, we obtain the following form of the variational wavefunction:

1
B) - 1 o a;faf_q
[Yv >x Psz =oe 770 %

|F> . (2.43)

The function g, is given by matching the two expressions for the ground-state wavefunction (2.34)
and (2.43):

'Uq 1 Dq - nq 5
= ==l =y /=1 . 2.44
9 Vg — Uq 2 [ Dq + 74 ( )

The Jastrow g, is singular only for ¢ — 0 and in this limit it behaves as —go/|g| where go is a
constant, e. g.go = V/d in the case of the nearest-neighbor model. The small wavevector limit
determines the long-range behavior of the Jastrow potential (2.38), for example in one dimension
we obtain the logarithmic potential between spins, recovering the wavefunction used by Hellberg
and Mele [15] to study the Luttinger liquid.

In order to study the physics of the spin systems described by this variational wavefunction, it
will be applied to one (for the cases spin § = 1/2 and § = 1) and to two dimensions (§ = 1/2). As
was already stressed, in one dimension the linear spin-wave theory is a rather bad approximation,
the investigated cases are used to compare the variational state with the exactly known results and
to establish the reliability of the wavefunction. The application in the two-dimensional cases brings

more interesting physics, especially for the hard-core bosons and the J; — .J, Heisenberg model.

2.4 Summary and discussion

We have presented a quite general method for deriving the variational wavefunction for the anti-
ferromagnets based on the spin-wave expansion. The wavefunction has a Jastrow form where the
long range behavior of the potential is determined by the soft magnon modes. The wavefunction
has no variational parameters at all, but it is reasonable to introduce at least one to compensate
error made by linear spin-wave approximation. A natural choice is to treat the Jastrow potential at
nearest-neighbor sites as the parameter because the energy is very sensible to short-range correla-
tions. The more sophisticated variational calculation could be performed considering the structure

factor at the ¢ — 0 limit and forcing the long range behavior of the wavefunction to be consistent
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with the sum rules in the one-magnon approximation. An example of such calculation is done in
Chapter 4.

The particular form (2.35) of the variational wavefunction has been first applied by Suzuki
and Miyashita [16]. However it can be considered a generalization to discrete models of Jastrow
wavefunction used some time ago for the helium. The same form of the variational wavefunction
was used by Huse and Elser for a variational study of the two-dimensional spin § = 1/2 Heisenberg
model [17] with the long-range Jastrow potential described by a set of variational parameters. Using
a rather involved method based on the paired-magnon analysis Manousakis [18] derived the correct
long-range behavior of the Jastrow potential for this model on the square lattice. His wavefunction,
of course, coincides with the one introduced here because the long-distance behavior of the Jastrow
potential are derived in both methods from the magnon zero-point motion. However, the method
described here can be very easily applied for a large class of spin systems, whereas the Manousakis
paired-magnon analysis is difficult to extend to general spin models, other than the square lattice
spin §' = 1/2 Heisenberg. Thus, the present method is enough simple to be used in a complicated

model and robust to grasp the important physics of quantum antiferromagnets.




3 One-dimensional applications

3.1 Introduction

The variational state introduced in Chapter 2 is based on the assumption of spontaneously broken
symmetry in the spin system and appearance of long-range order. It is generally expected that
when the temperature in a spin system is lower than the typical spin-coupling energy, the thermal
excitation of higher energy levels which reduce the spin correlations, becomes sufficiently week
to allow that the system has a non-vanishing magnetization even when it is not in an external
magnetic field. At this critical temperature continuous SO(3) symmetry in the spin space is broken
down to SO(2) symmetry and the long-range order between spins appears. This spontaneous
symmetry breaking is accompanied with the appearance of massless excitations — magnons well
described by the spin-wave theory. But if the space dimension is low, that is d = 1 or d = 2,
the quantum fluctuations coming from the zero-point motion can considerably contribute in the
reduction of the magnetization. As Mermin-Wagner theorem shows [19], for a large class of one and
two dimensional spin systems with short-range interactions the spontaneous ordering is possible only
at zero temperature. However, in one dimension the quantum fluctuations could be strong enough
to prevent the ordering even at T = 0. The spin-wave calculation for the isotropic Heisenberg
model shows that the reduction of the sublattice magnetization by quantum fluctuations diverges

indicating that the Néel state is unstable in one dimension.

The spin-wave theory demonstrates that quantum fluctuations destroy long-range order in one-
dimensional quantum antiferromagnet independently of the value of the spin §. Actually. the
S = 1/2 one-dimensional Heisenberg model can be exactly solved by the Bethe-ansazt and the
low-energy excitations are gapless. However, Haldane suggested [6, 20] that for integer-spin chains
there is a finite gap and correlation functions decay exponentially whereas for half-integer spin
chains gapless excitations can exist with power-law decaying spin correlations. This conjecture
relied on the different topological structure of the corresponding continuum limit theory. In the
last few years there is a considerable number of numerical and experimental confirmations of the

Haldane surmise (for a review see [21}).

The lack of the quantum ordered state prevents the spin-wave theory to be applicable for one-

17
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dimensional systems. Nevertheless it is an interesting question how the variational wavefunction
introduced in Chapter 2 describes the ground state of antiferromagnetic chains. Here we will study
the spin S = 1/2 and the spin S = 1 Heisenberg chains. We have found that the variational
state correctly describes the power-law fall-off of the spin-spin correlations of the S = 1/2 chain.
The 5 = 1 chain exhibits very interesting phase transition, but it was impossible to conclude the

presence of the Haldane gap phase.

3.2 Spin S =1/2 chains

The linear spin-wave Hamiltonian functions (2.25) and (2.26) for the isotropic Heisenberg chain

have form D, =1 and 7y = — cos ¢. The corresponding Jastrow wavefunction is
1 2 1
==(l—-Jjcot~|)=—+—4---, (3.1
with long-range behavior
) 2 1, 2 47 1 ;202p 4 (27( )
= LSy =-21 —* TR Zog (2R . 3.
fmv(R) = g7 ;( FNG A Regone PRI T (3.2)

The variational state (2.35) can be represented by a classical system of charged particles on
the lattice interacting by the Jastrow potential and infinite on-site repulsion. For § = 1/2 each
site contains one positive or negative charge and the projection onto the subspace with vanishing
z-component of the total spin corresponds to zero total charge. A similar variational state with
logarithmic interaction between classical hard-core gas was investigated by Hellberg and Mele [15].
As was shown in this paper and related comments [22], the long-range Jastrow with a logarith-
mic interaction describes the Luttinger liquid state, or the power-law large-distance behavior of

correlation functions.

A Luttinger-liquid type of analysis can be applied to the system described by these long-range

variational wavefunctions. The spin-spin correlation function ¢(R) behaves like:

< S55ShE > T (3.3)
The exponents p, and u, are given by the coefficient in the logarithmic Jastrow potential:
S (3.5)
= = e, 3.5
: Uz 290

In order to change the strength of the interaction we can introduce a factor v to the Jastrow
potential of the variational wavefunction: g, — vg,. This factor appears in front of the logarithmic
Jastrow (3.2) and changes the exponents of correlation functions to p, = 1/u, = 7/(2vg0). To




3.2. Spin § = 1/2 chains ‘ ' 19

7 < 5§57, > < S3S,>

I 2y
M= 2 P p

1.0 | 1.59£0.03 | 1.5708 | 0.64 £ 0.09 | 0.6366
1.111.43+£0.01|1.4280 | 0.6+0.1 | 0.7003

Table 3.1: The power-low exponents for the spin § = 1/2 chains. The Luttinger liquid analysis gives

pe = 1/pe = m/27.

verify the behavior (3.4) and (3.3) of the spin-spin correlation functions ¢(R) we have performed
variational Monte Carlo calculation on the chains of size up to L = 68. For the small chains we
have compared the variational estimates for < §55% > correlation function with the value obtained
by the exact sampling of all configurations in the Hilbert space. The results are the same within

the error bars of the variational estimate.

The very precise results for small chains enable to use the finite size correction term in the data
fit [23]

L b
logc(g)zulogL-l—a-}—f , (3.6)

where p is the power-law exponents. a and b are finite-size fit parameters. The fit is shown in
Fig. 3.1. We used two values for 4 and the obtained results are in very good agreement with the
Luttinger liquid prediction u, = 1/u; as can be seen in Table 3.1. The in-plane and out-of-plane
correlations clearly demonstrate that the variational state has power-law decay and that the order
present in the classical state is completely destroyed. The agreement of the predicted exponents
confirms that our method determines a very reasonable wavefunction and extends the validity of

the spin-wave analysis to the one dimensional spin systems.

A good check of the method is an application to an exactly solvable model where we can trans-
parently see the behavior of both the wavefunctions, the ground state of the Hamiltonian and the

present variational wavefunction.

Let us consider the exactly solvable Haldane-Shastry model [24, 25] defined by the Hamiltonian:

H=> J(n—n')(SE5% + SYSL + AS;Sq) (3.7)

n.n’

where the spin coupling .J(n —n') decays with the inverse square of distance d(n — n') between sites

n and n’ .
Jn—-n)= ——— . 3.8
J(n—n') T E— (3.3)
With periodic boundary condition we can take for d the chord distance
d(}n—n')=£|sin%(n—n’)| . (3.9)

The wavefunction (2.35) is the exact solution of the Haldane-Shastry model for the particular
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Jastrow potential
o(R) = log sinz(%}—z-) . (3.10)

In order to determine this potential in spin-wave approximation we must determine the Fourier
transform of the couplings (2.22) and (2.23):

J*(q)

(g = ;lz-quod(O,w) : (3.12)

—%(71‘ - ¢)*mod(0, ), (3.11)

By applying Eqs. (2.25), (2.26), and (2.44) the Fourier transform of the Jastrow potential can be
easily obtained:

v, = —;gq = -2 <7r ; ¢ _ 1) mod(0, ) , (3.13)

1. e. its inverse Fourier transform asymptotically converges to the exact solution (3.10) in the
thermodynamical limit. Thus, for this example of an exactly solvable spin model, the variational
state is asymptotically exact. This is very encouraging to investigate the spin S = 1 model where

a gap phase should appear in the isotropic case.

3.3 Spin S =1 chain

As for the previous S = 1/2 case we consider the isotropic Heisenberg chain with § = 1 spins.
Apart from the prefactor, the function gq is insensitive to the actual value of the spin. But the
variational state changes drastically compared to the S = 1/2 case. The states in the § = 1 Hilbert
space are represented not only by two opposite charged particles, as is in the § = 1/2 case, but the
holes corresponding to Sf = 0 should also appear. The holes are completely decoupled from the

system of charges because of zero charge.

Therefore it is not difficult to realize that the § = 1 model corresponds to the one dimensional
lattice gas model with charges 57 = £1 and empty space corresponding to the holes. The Coulomb
gas model with logarithmic interaction has been encountered several times in the literature and its,
probably complete, phase diagram has been established [26]. However, the mapping of the present
variational wavefunction model to the Kane and Fisher one is not direct. The Coulomb gas model
is defined on a continuum and in the low charge-density limit, whereas our model is on a lattice
and we are interested in the large density of charges. Thus, the conclusion from the Kane-Fisher
study can not be safely transfered to our model. Therefore we have studied the properties of the
variational state numerically by the variational Monte Carlo calculation of the spin correlation

functions.

Introducing the variational parameter v as a prefactor in the Jastrow potential we can change the
strength of the interaction between the charges and study the possible phases. The phase diagram
is characterized by the out-of-plane spin correlation function, shown in Fig. 3.2. For large v there
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is a dielectric phase that reminds the Haldane phase with an hidden order parameter. Here the
order is not hidden and the variational wavefunction is quantitatively meaningless. When the 7
is lowered the system goes to the new phase where the charges are confined and spin correlation
follow a power-law decay. This suggests that for small 7 the spin § = 1 chain remains gapless, as

is in the spin § = 1/2 case, and the ground state is characterized by quasi-long-range order.

The disordered phase corresponds to the power-law behavior in the phase diagram of the spin
§ = 1 chains obtained by Nijs and Rommelse [27]. They have found that antiferromagnetically
coupled Heisenberg spin chains have a phase similar to the one of the present model. for small
enough J? coupling. In the Coulomb gas model correlation functions in both phases — the ordered
dielectric phase and the disordered plasma one — have a power-law decay. From the variational
Monte Carlo calculation is very hard to obtain estimate with small enough error in the ordered phase
because of the very low acceptance ratio in the sampling of the variational wavefunction distribution.
Therefore, our numerical data does not obviously show that the ordered phase is gapless or there is
a finite correlation length as expected from the existence of the Haldane gap, see Fig. 3.3. After the
phase transition, for large v, the new phase ground state cannot be probably classicallv described
by the antiferromagnetic state and the spin-wave expansion used in the derivation of the variational
state is no longer valid. This means that the ”spin-wave” variational wavefunction is not a proper

choice for this state.

3.4 Summary and discussion

The introduced scheme for derivation of the spin-wave variational wavefunction was applied to
one-dimensional systems. The strong quantum fluctuations in one-dimensional spin chains destroy
long-range order and prevent the spin-wave theory, depending on the existence of the broken-
symmetry ground state, to be applicable. Nevertheless, for such one-dimensional systems, the
method leads to a state which reasonably describes the spin S = 1/2 Heisenberg model. The
obtained power-law exponents for the correlation functions are consistent with previous findings
that the isotropic Heisenberg model in the long-wavelength limit has a Luttinger liquid character.
The exactly solvable model introduced by Haldane and Shastry of S = 1/2 spins coupled with
interaction which decays as the inverse square distance has the ground state given exactly by the
proposed variational wavefunction in the thermodynamical limit. The spin S = 1 Heisenberg chain
exhibits phase transition from the clearly power-law phase to the ordered phase for which we are

not able to conclude between gapless and gap-full state.

These one-dimensional examples encourage us to apply the method to two-dimensional systems.
Two-dimensional quantum antiferromagnets have still quite strong quantum fluctuations to reveal
interesting phases, such as disordered spin-liquid phases. We will show that our approach, even
though is based on spin-wave theory is at least valid to study the instability of the classical Neel
state. The method will be rather successfully used in the next chapters for the frustrated Heisenberg
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model on the square lattice and for the hard-core bosons. In the latter case the variational state is
almost the exact ground state.




3.4. Summary and discussion 23

~25 =
A »
N -
o —35F -
v - C
o —4 =
L - -
_4.5:_Il!lll'!l!llll——llll|ll||l|l‘|l
L y=1.0L 7=1.1
—3.4 =
/\ - -
N L. -
' L L
i
+0 —3.6 n -
m —~ —
V b -
g 38 r n
_1||lll|[ll!llll_lllll|I|llll 1

3 35 4 3 35 4
log (L) log (L)

Figure 3.1: The in-plane spin correlation function (lower figures) and out-of-plane (upper figures) for two
values of the interaction strength parameter 7. Data obtained by variational Monte Carlo calculation are
represented by squares and triangles represent the ones from exact sampling of all configurations of the

wavefunction. Lines represent the fit by the finite-size formula.



24 § 3. One-dimensional applications

/2>
o
o0

o o
N o))

o
N}

correlation function <S:

Figure 3.2: Spin S = 1 out-of-plane correlation function as a function of the interaction strength parameter

7 for chains with L = 20 (dashed line), L = 40 (doted line), and L = 80 (full line). Lines are guide to the

eye.
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4.1 Introduction

A very interesting case where the developed spin-wave variational wavefunction can be applied is
the two-dimensional frustrated spin S=1/2 Heisenberg model on the square lattice. The model is
defined by the Hamiltonian
H=J Y S-S+ 5> 55, (4.1)
<ug> [i.4]
where the symbols < ¢,7 > and [¢,j] mean that the summations run over the nearest-neighbor and
next-nearest-neighbor sites, respectively. Each bond should be counted only once. In what follows

we put J; =1 and a = Jy/J;.

The attention to this particular model has been recently renewed to understand the nature of the
high-temperature superconductor ground state. The ground state of most of undoped copper-oxide
superconductors is well described by the spin-1/2 antiferromagnetic nearest-neighbors Heisenberg
model on the square lattice. A good understanding of this model is now achieved [28]; it is well-
established that the model has the conventional antiferromagnetic order in the ground state though
a rigorous proof is still missing (for the last obtained limits see e. g. [29]). On the other hand,
multi-band Hubbard model calculations show [30, 31] that, even in the undoped case, small but
finite frustration J; is present in the C'uO; planes and by doping can be increased [32]. Apart
from interests for the frustrated Heisenberg Hamiltonian as a simplified model for doped high-
temperature superconductors, understanding of the frustration in the spin systems is of a rather
more general relevance. The strong correlation effects in quantum antiferromagnets may lead to
new phases and reveal inherent characteristic of many-body systems. In the J;-Jo model the
quantum fluctuations destroying the classical order are enhanced by the frustration and the low
dimensionality giving an example for studying a transition between the magnetically ordered and
the quantum disordered phase. A complete understanding of this model, ground state phases and
transitions, would provide a better insight to the behavior of systems where the critical regime is

driven by quantum fluctuations.

For the Jy-J; model there was a considerable number of analytical and numerical studies, but

26
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Figure 4.1: The classical ground states for « < 0.5 (a) and o > 0.5 (b), where @ = J»/J;. The arrow
represent the orientation of the classical spins in the lattice site. The classical state for « > 0.5 has a
continuous degeneracy due to the independence of the relative orientation of the local magnetization in the

two sublattices. The one shown is not special.

a satisfactory understanding of its ground-state properties is still not reached [21]. The classical
ground state has the transition point at a = 0.5; the phase for @ < 0.5 is represented by a
standard two-sublattice Néel state whereas if & > 0.5 the two sublattices become decoupled and
a four-sublattice antiferromagnetic state is stable, where the order parameters in sublattices can
have an arbitrary orientation with respect to one another. These states are represented in Fig.
4.1. Inclusion of the quantum fluctuations, which are in the spin-1/2 case very strong, offers the
possibility to destroy long-range order and to open a window in the phase diagram of a spin-liquid
phase without conventional antiferromagnetic order for a parameter region around a ~ 0.5. A
simple linear spin-wave analysis already reveals such tendency, however the next-order in the large-
S expansion shows divergences [13] leaving an open question how to sum up all the terms of the
spin-wave expansion. The proposed variational wavefunction maybe a good starting wavefunction

to understand the model.

There are at least two important issues concerning the ground-state phase diagram of the model.
The first is the location of the phase-transition boundary. Some theoretical [33, 34] and numerical
[35, 36, 37] estimates give the critical value close to . = 0.4 whereas the last exact diagonalization
data [1] indicate the transition at a. = 0.34. However, in the Schwinger-boson mean-field calcu-

lations [38] a smaller value c; = 0.15 was found, whereas larger values around a. = 0.6 are also
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obtained by self-consistent theories [39, 40, 41] and quantum Monte Carlo calculation [42]. The
second issue is related to the question of existence and nature of the magnetically disordered phase
in the strongly frustrated region. The main candidates are the magnetically disordered spin-Peierls
dimer state and the chiral state. The first state is preferred by numerical studies [35, 36, 37], some
analytical approaches like series expansion [43], and the 1/N expansion technique [44]. The other
one was motivated by spontaneous time-reversal symmetry braking in high-temperature supercon-
ductors [45, 46, 47].

From our starting point we cannot say much about the nature of the ground state after the
antiferromagnetic order is lost and phase transition is turned over, but we can determine the
critical point a. and the behavior of model parameters with increasing frustration as the ground
state energy, the spin-wave velocity and the spin stiffness constant. Namely, starting from the
antiferromagnetically ordered state we construct the variational wavefunction using the linear spin-
wave theory and by monitoring the order parameter, the staggered magnetization, we can arrive at
the phase transition point where the initial physical picture of the ground state is no longer valid.
In order to reach other side of the critical point and to describe the new state which is set down, a
different approach, such as Green function Monte Carlo, would be more appropriate and we should
restrict our goal to the first question of the quantum phase transition in this model.

4.2 Spin-wave theory

Using the method developed in Chapter 2 we can construct the variational wavefunction for the
J1-J2 model. The first step is to apply the linear spin-wave theory to the Hamiltonian (4.1). This
Hamiltonian is a particular case of the more general Hamiltonian studied in Chapter 2 and the

derived formulae yield the following expressions:

Dy, = 1-oal—cosgzcosgy), (4.2)
N, = —(cosqy +cosgqy)/2, (4.3)

which via Eqs. (2.35) and (2.44) define the Jastrow potential and the variational wavefunction for
the frustrated Heisenberg model:

2 ; 1 — a(l — cos gy cosgy) + (cos g, + cosqy,)/2
- == igR _ Y y Y
v(R) L ; ‘ [1 \/l — a1 = cos gy cos q,) — (cos gz + cos gy )/2| (4:4)
% 5™ o(R - R)SiS
[¢V > = Pstzotzoe R,R IF > . (4.5)

By means of this wavefunction our aim is to measure variational approximations of the ground-state
energy and the order parameter on finite lattices. The variational calculation is performed by the
standard Monte Carlo method.
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The order parameter is given by the staggered magnetization

‘ i .
1,,2:__________2 .G g 16
Mr L+2) - < 8:-85; > Gij (4.6)

where (;; is the phase factor between two sublattices:

1, if 7 and j are on the same sublattices;

—1, if ¢ and 7 are on the different sublattices.

The unusual form of the normalization prefactor 1/[L(L + 2)] is used in order to get an entirely
size-independent quantity in the case of a perfect Néel state [48]. In the thermodynamic limit
this choice is obviously equivalent to the usual prefactor 1/L? but it has an advantage to suppress
overestimated contributions from the terms 7 = j in the sum (4.6) present in the small cluster.
This plausible argument has been already used in the recent exact diagonalization study [1] and to

compare results with the presented ones, it is more convenient to use the same notation.

Supposing that, for small enough frustration, the system has long-range antiferromagnetic order
in the ground state, the large-distance, long-time behavior of the model is described by the quantum
nonlinear sigma model [49] in the (2+1)-Euclidean dimensions, with the effective action depending
on gradients of the order parameter in both space and time:

szﬁ/jdr/d?R[(v-ﬁ)ui(@-? : (4.8)

2 Jo ' 2 or ‘

The three-component vector field 7 = 7(R,T), with constraint fi? = 1, describes the orientation
of the staggered magnetization around the position R. The integration over the imaginary time
variable 7 should be extended to 3 — oo because we are interested in the ground state properties of
the system. The space integrals are carried out up to the maximum wavevector A. The spin stiffness
p, and spin-wave velocity ¢ are effective parameters which should be extracted from the microscopic
dynamics described by the Hamiltonian of the model. These two parameters, together with the
expectation value of the order parameter, completely describe the low-energy, small-momentum
physics of the system [50]. The renormalization group flow [49], characterized by a dimensionless
coupling constant g = ¢/(Aps), shows that at zero temperature there is a quantum phase transition
point at g. = 47 (one-loop value). The Néel order persists up to g. and for g > g. there is a

quantum disordered phase with a finite gap in the excitation spectrum.

Quantities characterizing the system in the thermodynamical limit can be estimated by the finite-
size scaling analysis of the results obtained for a set of finite clusters. Within the assumption that
the leading size dependence of observables is controlled by small-momenta magnons, the correction
formulae for the ground state energy and the staggered magnetization of the finite-size antiferro-
magnetic systems can be derived [31, 52, 50]. The ground state energy Egs of the L-site cluster is
given by

Ecs/L = 60+B#+'“ : (4.9)
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and the staggered magnetization by:

M2 =m2[l+ a—ee ... 1.10

Here eg and myp are the ground state energy and order parameter in the thermodynamic limit,
respectively. In the chosen normalization the perfect Néel state has mg = 0.5. The prefactors &
and J are functions of the shape of the cluster, specifically they depends on the form of the cluster

and the boundary conditions, numerically they are of the order 1.

A careful finite-size spin-wave analysis of the model by Sorella and Zhong [13] has shown that
fluctuations have an important rule for the strongly frustrated regime. The break-down of the
1/5 expansion appears well before the classical critical point o = 0.5. For completeness and easy

reference we will report here some of their results. The ground state energy is given by
Lo = S?Eq + SEsw + Eint (4.11)
where E.; and Esy are the classical and the spin-wave energy, respectively:

Eqy = -2L(1-a), (4.12)
Esw = =2 Z(Gq - D), (4.13)
q

where ¢, = |/ Dg - 77;’3. The spin-wave interaction energy is given by:

By = —-g(cf - aC3)+2C, (4.14)
2 / -
¢ = ‘L‘z (Ug"‘nquq”q) ) (+.13)
q
2 /
Cy = —EZ (1 — cos g, cos qy)v(f , (4.16)
q

where v, and u, are defined by Egs. (2.29) and (2.28). Primes on sums denote exclusion of the

singular modes. The expression for the magnetization reads:

[ L
ﬂ/_[z = m[(5—03)2-{-0((01-*02)04-%-05] 5 (4.17)

_ 1 ' 1—01(1—COSQ:CCOSQy) 2_
C3 = LEq: [ €q ! L’ (+18)
o = }_Zz(l—cosqgcosqy)nq, (4.19)
L~ €
. = & Z'"3 1.20
=l G (4.20)

The normalization in Eq. (4.17) is changed with respect to the one of Ref. [13] in order to be
consistent with Eq. (4.6).
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In the following expressions for the spin-wave velocity and spin stiffness the infinite-size limit of
('} and Cy should be used:

A 1 - on] |

¢ = 25[ 21 — 20 —ﬁ((l—a)C{ ) acC) ’)] , (4.21)
mQC

ps = —5 . (1.22)

K
oo) ((c0)
) 1 ci™ _¢f N
- |(25- T2 1.2:
§ 51 - 20) [( mo) + O T " 5a) (4.23)

The infinite size staggered magnetization mg is obtained taking the limit L — co in Eq. (4.17).

4.3 Sum-rule consistent variational calculation

The form of the variational wavefunction (4.5) follows from the requirement to properly include
the zero-point motion of the spin-waves into the variational state. The long-wavelength spin waves
then determine the long-range behavior of the Jastrow potential, which is in two dimensions:
lim o(R) = -2 | (4.24)
R—co TR
where ¢p is the constant in the expansion of the function g,:

o4, (4.25)
g

9q =
The system described by the variational state (2.35) can be equivalently represented as the system
of hard-core bosons on the lattice having the same Jastrow potential Eq. (2.38) where 5 operator
corresponds to the boson density operator pr. The spin-wave excitations of the spin system have a
correspondence with the density fluctuations of the boson system. In the analogous way as in the
spin system, the zero-point motion of phonons produces the long-range tail of the bosonic Jastrow
wavefunction, as have been shown by Reatto and Chester [53, 54]:

mc .

Py — (196
Rh__I}IOO v(R) yry R (4.26)

where ¢ is the sound velocity, m mass. and p density of bosons. Bosons on the lattice have “"mass”
m = 2 and S, = 0 state of spin system corresponds to p = 1/2. The influence of the long-range
behavior on the spin-wave velocity can be used to improve the variational wavefunction using the

sumn rules.

Following Liu and Manousakis [55] we can define the dynamical structure factor:

S(gw)=>_ | < nl87[0 > |*8(w — (En — Eo)) , (4.27)

where |n > represents the complete set of the eigenstates of the Hamiltonian (4.1) with energies

E,, and |0 > being the ground state. The integrals of S(g,w) give three useful sum rules which
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can be easily proved using standard methods [56]:

S(q) = / §(q,w)dw =< 0|55, 10 > | (4.28)
0

e 1 z P-4 I

/0 wS(g,w)dw = 5 < 0|[SZ,.[H, 5:1110 > (4.29)
= fil4 = 2(cos ¢z + cos gy)] + fo[4 — 4 cos gz cos g, ]
1 . [ S(q,w) _ | < nlSZl0 > |2

—_— = — = —_— 4.-

2e” %l—r—% 0 w dw (]].I_I% o En-Eo ’ (4:30)

where 5(g) is the structure factor, and fi, f, being the spin equivalent of the kinetic energy average:

1 ‘
fr = =7< 0SS+ 575H0 >, (+31)
| - 1, ¢ and ] are nearest neighbo.rs; (4.32)
2, 1 and j are next-nearest neighbors.

In the third sum rule e” is the second derivative of the ground state energy per site with respect to
the total magnetization of the system M = 1/L < 0[Y; §7|0 >. The argument of Ref. [55] for the
isotropic Heisenberg model can be extended to the frustrated case and it follows that the spin-wave

2(f1+ fa)e", (+4.33)

velocity and spin stiffness are given by

c

Namely, in the long-wavelength limit the right-hand side of the second sum rule gives (f; + f»)¢?
whereas the left-hand side, assuming that the sum rule is exhausted by a single magnon, can be
estimated by w;5(g). By the same assumption, the third sum rule gives S(q) = wy/2€e" and using
Wy = cq, the expression (4.33) for the spin-wave velocity follows. Noticing that the susceptibility
per site x for a field perpendicular to the staggered magnetization is defined by x = 1/¢€”, it follows
the relation for the spin stiffness (4.34). The susceptibility can be obtained by considering the
ground-state energy as a function of the total magnetization M.

In the derivation of the variational wavefunction there have not been introduced any variational
parameter at all. In order to improve the variational state we can modify the Jastrow potential to
give a lower ground state energy and to obey the sum rules. The minimal change which can fulfill
both requirements and would not spoil the important long-range behavior of the potential is to take
the values of the Jastrow at the nearest-neighbors and the coefficient gy as variational parameters.
Accommodating the Jastrow potential at the short distance to obtain the lower ground state energy
the long-range tail is not changed and the sum rule can be satisfied. In fact, if for a given value
9o we determine the curvature of the ground-state energy with the total magnetization M and the
averages fi and fy, then from Eq. (4.33) follows the spin-wave velocity ¢. Such obtained spin-wave
velocity should be consistent with the Chester and Reatto relation (4.24) and (4.26). This defines

a self-consistent procedure to obtain the variational parameter gq.
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The iteration process converges very fast and the stable value is obtained after few steps. ren-
dering the iteration calculation feasible in a reasonable time. The bare small-¢ limiting value is
renormalized between 10% and 20%. The self-consistency should be obtained for a series of values
for a in order to describe the full phase diagram for the antiferromagnetic state. To obtain the
complete result for one value of the frustration parameter a, including the self-consistency iteration
and the variational calculation of the energy and the order parameter we needed up to 10 hours of
the CPU time on the IBM RS6000/5380 computer.

The model parameters can be now calculated by two independent methods: using the finite-size
scaling analysis and by the sum-rule consistent procedure. Both methods are essentially based on
the one-magnon approximation and the results for the model parameters should not be too different.
After the phase transition the used approximation are no longer valid and a big discrepancy between
the two methods could appear. Our numerical results corroborate the consistency of the two
methods showing well agreement of the spin-wave velocity and spin stiffness data calculated by the

two independent ways, as could be seen from the next section.

4.4 Results of the variational calculation

The Jastrow potential in the momentum space g, (2.44) is singular for o = 0.5 not only at the
center of the Brillouin zone ¢ = (0,0). but also at the lines where ¢, = 0 or ¢y = 0. For a < 0.5 g4
is finite at these lines but it still remains much bigger than in the remaining points of the Brillouin
zone. In order to avoid a bias in the results from the inappropriate influence of the modes with
¢z = 0 or ¢, = 0 on the variational wavefunction, it is better to perform the variational calculation
on lattice with boundary conditions where the number of such modes is minimal. We have chosen
the set of tilted lattices of the Oitmaa-Betts type [57] of size L = (2n+1)*+1,n = 2.3,...,10 with
periodic boundary conditions. For these clusters ¢ = (0,0) appears to be the only singular point.
therefore they are a proper choice for the variational calculation with the spin-wave wavefunction.
An example of the lattice of the size L = 50 is shown in Fig. 4.2 and the corresponding Brillouin

zone is shown in Fig. 4.3.

Comparison of the variational ground-state energy and staggered magnetization with the spin-
wave results is shown in Fig. 4.4 and Fig. 4.5. For small frustration, the second order of the
finite-size spin-wave expansion gives almost the same results as the variational calculation. When
the frustration increases the variational results show an improvement with respect to the spin-
wave. The frustration strongly destabilize the 1/5 spin-wave expansion, e. g. the second order
contribution for the magnetization becomes meaningless soon after o = 0.3 whereas the variational

calculation gives reasonable results up to a = 0.45.

Besides the spin-wave theory treatment, it is possible to compare the variational results with the

recent exact diagonalization studies by Schulz, Ziman, and Poilblanc [1, 37]. The clusters in their
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Figure 4.2: An example of the clusters used in the variational calculation corresponding to L = 50 sites.

The whole plane could be covered by suitable translations of the denoted cell.

study (L = 16,20,32,36) are not a well suitable choice for our variational wavefunction which is
especially revealed for the I = 16 cluster where almost half of the g-points become anomalous in
the Jastrow potential. The L = 20 cluster has a special symmetry and we have not considered this
case. The comparison of the variational and the exact ground-state energy is shown in Fig. 4.6

and the one for the finite-size order parameter in Fig. 4.7.

The variational calculation, even with the plain wavefunction without adjustment of the nearest-
neighbor coupling yields the ground-state energy very close to the exact one. The difference between
exact and variational ground-state energy is not specially pronounced for the spin-wave very anoma-
lous L = 16 cluster because the energy is not very much affected by the long-range shape of the
wavefunction. The order parameter instead is more sensitive to the long-range Jastrow tail. There
is a big discrepancy between exact and variational data for I = 16 cluster whereas for the I = 36
case having relatively small portion of singular point the staggered magnetization differs less than
1% for the plain wavefunction, and less than 0.1% for data from the self-consistent calculation.
After the transition point, which is from the variational data a little over a = 0.4, the accordance

of data is lost and the new phase in not well described by the spin-wave variational state.

The finite-size staggered magnetization results indicate the phase transition for frustration over
o = 0.4. In Fig. 4.8 least square fit of our variational data with the finite-size scaling formula (4.10)
is shown. Data follow the scaling line very well up to the frustration o < 0.41. After a = 0.41
the scaling-law becomes poor and the infinite-size order parameter seems to vanish, indicating
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Figure 4.3: The first Brillouin zone for the lattice with L = 50 sites and periodic boundary conditions. In this
particular lattice symmetry the most of the points being singular for the Jastrow potential at J»/J; = 0.5

are avoided.

a phase transition. The resulting phase diagram is displayed in Fig. 4.9, the data represented
by triangles correspond to the plain variational wavefunction without any adjusting parameter,
whereas by squares we represented data from the wavefunction which is consistent with the sum
rules. The extrapolated value in the isotropic limit o = 0 is mo = 0.3354(3) which is close to the
exact diagonalization estimate [1] mo = 0.3245 and not very far from the best current estimates

from Quantum Monte Carlo calculations [58] mq = 0.307 and the spin-wave estimate mo = 0.3034.

The self-consistent modification of the long-range prefactor in the Jastrow potential moves the
critical point from a. & 0.46 to o, ~ 0.41. The exact diagonalization data [1] give the critical value
o being in the interval 0.31 — 0.48 depending on the combination of the clusters used in the finite-
size analysis, with a slightly better fit for o, = 0.34 which represents the suggested value for the
transition point. However, since in the smaller cluster the variational data and exact diagonalization
ones are in very good agreement, we are more confident of the infinite-size extrapolation obtained

at the variational level with size up to 442.

In the direct calculation of the spin stiffness by exact diagonalization Einarsson and Schulz [59]
obtained the critical point to be grater than 0.4 which is in agreement with our estimate of the

transition point.

Fits of the ground-state energy per site and extrapolated infinite-size value are shown in Fig. 4.10

and Fig. 4.11, respectively. The scaling law is satisfied better for the energy than the one for the
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staggered magnetization, because of the smaller finite-size correction terms for the energy. After
the transition the fit is considerably worse, as the assumption of the long-range order is probably
not applicable to the new phase. The isotropic-limit value eq = ~0.6625(7) is very close to the
best Green function Monte Carlo estimate eg = —0.66934 taken from Ref. [58]. The improvement
by varying the nearest-neighbor value in the Jastrow is very small, less than 0.5%. The difference
with respect to the spin-wave theory predications is much smaller for the energy than for the order

parameter. The same observation was found for the exact diagonalization observation.

The nonlinear sigma model parameters are obtained from the finite-size scaling analysis using
the formulae (4.9) and (4.10) where for the shape factors we have used the values [51] a = 0.6208,
and § = 1.4372. For a = 0 the fit gives the spin-wave velocity ¢ = 1.367(25) and the spin stiffness
ps = 0.170(5). The reliable results from Ref. [1] are ¢ = 1.28 p, = 0.125 and the spin-wave theory
results is ¢ = 1.65, and p; = 0.18. The present results are very close to the spin-wave predictions.
The agreement is even better for the values obtained from the sum rules consistency calculations,
where we obtained ¢ = 1.552(5) and ps = 0.175(4). From the direct calculation of the spin stiffness
(59] follows p, = 0.183(3) and ¢ = 1.67 which is very close to the spin-wave theory values and to
our estimates. The two methods of extracting the model parameters give consistent results. The
agreement is better for the spin stiffness than for the spin-wave velocity, as can be seen from Fig.
4.12 and Fig. 4.13. The spin stiffness data for frustrated case are very similar to the ones from
the direct calculation of Ref. [59], whereas for the spin-wave velocity there is bigger difference.
The estimates beyond the critical point become worse which is consistent with the existence of a

qualitatively different ground state.

4.5 Summary and discussion

In this chapter we have used the spin-wave variational wavefunction for the frustrated antiferro-
magnetic spin-1/2 Heisenberg model on the square lattice. The calculation was performed on tilted
lattices with size L = (2n 4+ 1)2 + 1 for n = 2,...,10. The variational state was improved using
the constraint coming from the sum rules for the structure factor S (¢) and the known long-range
behavior of the Jastrow potential coming from the zero-point motion of single-quasiparticle exci-
tations. Using the nonlinear sigma model formulae for finite size corrections to the ground-state
energy and staggered magnetization in the quantum antiferromagnet we estimated the parameters
describing the system in the ordered state and the phase transition position. The spin-wave ve-
locity and spin stiffness were determined independently by means of the scaling law and by the
one-magnon approximation of sum rules.

Probably the most important result is that the antiferromagnetic order is destroyed well before
the classical transition point. We found the critical frustration to be Jo/Jy = 0.41 £0.01. A very
similar phase diagram was obtained by the finite size scaling analysis of exact diagonalization data
[1] and by the direct calculation of the spin stiffness on the finite lattices [59], with critical cou-
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plings Jo/J; = 0.34 £ 0.04 and Jo/J; = 0.4, respectively. The linear spin-wave theory gives a very
similar result, whereas in the higher orders in 1/.5 expansion the J;/J; — 0.5 singularity seems to
be too strong and prevents reasonable extrapolations. For J, = 0, in the unfrustrated case, the
ground-state energy and the order parameter are in good agreement with the best converged results
by series expansion [60] and quantum Monte Carlo calculations [58]. Use of the variational wave-
function substantially improves the spin-wave expansion results for the strong frustration regime.
Comparison with the exact diagonalization data [1] up to the transition point gives a very good
agreement with some exception (L = 16), determined by the special symmetry of the cluster. The
model parameters obtained from the sum-rule consistent method are in agreement with the ones
obtained by an independent extrapolation of the finite size data. The present discrepancy is not

too big and can be accepted.

The spin-wave variational wavefunction have been proved to be very useful in the study of the
J1 — J model extending the linear spin-wave theory and overwhelming the difficulties coming from
the a — 0.5 singularity present in higher order. Its estimates of the order-disorder phase transition
point and the nonlinear sigma model parameters are consistent with the best exact diagonalization
data. The wavefunction can be improved using only two variational parameters for the nearest-
neighbor coupling and the long-range tail prefactor in the Jastrow potential. These features of the
wavefunction can be very successfully used in quantum Monte Carlo methods that need a good

starting guess of the ground state.
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Figure 4.4: Comparison of the ground-state energy per site obtained by the plain variational wavefunction

(squares) and by the sum-rule consistent method (triangles) with the spin-wave 1/S expansion results for
lattices of size L = 36. The full lines are guides to the eye. The error bars are smaller than the size of the

symbols.
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Figure 4.5: Comparison of the staggered magnetization obtained by the plain variational wavefunction Eq.
(4.5) (PV) and by the sum-rule consistent method Eqgs. (4.33) and (4.34) (SC) with the spin-wave 1/5
expansion results (SW) for lattices of size L = 36. Symbols for the exact diagonalization data (ED) mainly
cover the ones for the sum-rule consistent data. The full lines are guides to the eye. The error bars are

smaller than the size of the symbols.
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Figure 4.6: The ground-state energy per site obtained by the exact diagonalization [1] (full symbols) and
by the sum-rule consistent variational calculation Egs. (4.33) and (4.34) (empty symbols) for lattices of size

L = 16,32, 36. The error bars are smaller than the size of the symbols. The lines are guides to the eye."
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Figure 4.7: The staggered magnetization obtained by the exact diagonalization [1] (full symbols) and by the

variational calculation with the plain wavefunction Eq. (4.5) and by the sum-rule consistent method Egs.
(4.33) and (4.34) (empty symbols) for lattice-sizes L = 16,32, 36. The lines are guides to the eye: full lines
connect data for the plain variational wavefunction and dotted line data for the sum-rule consistent one.

The error bars are smaller than the size of the symbols.
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Figure 4.8: The finite-size scaling results for the variational estimate of the staggered magnetization M}
obtained by the sum-rule consistent variational calculation Egs. (4.33) and (4.34) for different frustrations

o = Ja/J;. The straight lines are least square fit of the data to the scaling law.
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Figure 4.9: The infinite-size staggered magnetization mq for the plain variational state Eq. (4.5) (triangles)
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and for the sum-rule consistent one obtained from Egs. (4.33) and (4.34)(squares). The full lines are guides
to the eye. The dotted and the dashed lines are the first and the second order spin-wave expansion results,

respectively.
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Figure 4.10: The finite-size scaling results for the ground state energy Egs obtained by the sum-rule consis-

tent method Eqgs. (4.33) and (4.34) (empty symbols) for different frustrations o = Ja/J1. The straight lines

are least square fit of the data to the scaling law.
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Figure 4.11: The infinite-size ground-state energy eo for the sum-rule consistent variational state (squares).

The plain variational state results cannot be distinguished from the improved ones on this scale. The full

line is a guide to the eye. The dotted and the dashed lines are the first and the second order spin-wave

expansion results, respectively.
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Figure 4.12: The spin-wave velocity ¢ from the finite size scaling (squares) and the sum rule calculation

(triangles). The full lines are guides to the eye.
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Figure 4.13: The spin stiffness from the finite size scaling (squares) and the sum rule calculation (triangles).

The full lines are guides to the eye.



5 Hard-core bosons

5.1 Introduction

Probably one of the most successful application of our spin-wave variational wavefunction (2.35) is
the case of the hard-core boson system in two dimensions. We consider the problem of N bosons

on the square lattice with L sites with the Hamiltonian:

M=t 3 (blb; +5b) —u D blbs (5.1)

<1,7>
where b}L, b, are bosonic operators:

[b;,0l] =1, (5.2)
which obey the hard-core constraint:

blb; < 1. (5.3)

The chemical potential y is defined by the average density p = N/L. The constraint of no double
occupancy represents the strong correlations between the bosons and it is difficult to treat by con-
ventional many-body techniques. If the usual Bogoliubov theory of interacting boson gas is applied
[61], the infinite on-site potential required by the hard-core nature of bosons gives a misleading

result as the sound velocity becomes infinite.

The constraint of no double occupancy for spinless fermions is obviously satisfied by the Pauli
principle and in this respect there should be a close relation between fermionic systems and hard-
core bosons. In one dimension the mapping of the fermionic system to a bosonic system is an
essential tool for the study of strongly correlated systems. One of the most famous example is the
Lieb-Schulz-Mattis solution [62] of the one-dimensional spin § = 1/2 XY model by means of the
Jordan-Wigner transformation. In this approach the spin system is mapped onto a free spinless

fermion system using the soliton-like operator

-1 1-1
. - . ., 1
i E S;'Sj i E (57 + 5)
e =1 .

K =e 1=1
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The naive extension of this approach to higher dimensions leads to highly nonlocal interactions
which are very hard to treat by standard methods. The new options for the two-dimensional systems
arrive from the works on the fractional statistics and the Chern-Simons term in the corresponding
field theory (see e. g. [63]).

Fradkin [64] have shown that the two-dimensional hard-core bosons can be mapped onto a svstem
of fermions with an attached local flux determined by the local density of particles. This solution
shows how to construct the mapping between fermionic and bosonic system but the resulting
Hamiltonians are still hard to deal exactly. Here a different approach will be applied. ILet us
consider the two-dimensional spin § = 1/2 XXZ model in the presence of an external magnetic
field h,:

M o= ) [-J(STST+SESY)+ J.5787] - Sk 57 (5.5)
<i,5> i
J oo - - > - .
<1,7> 1

where $;" = SF + iS5} and S; = S — 15} are spin-flip operators. They act on the ferromagnetic
state |F' > as the creation and the destruction operators of a spin flip. On the different sites they
commute [5;", 7] = 0, but on the same site anticommute {S;", 57} = 1, because we can not flip
spins twice on the same site. A natural representation of the spin-flip operators is by the bosonic

ones with the hard-core constraint:

sFo= o, (5.7)
S;o= by, (5.8)
Si = S—blb, . (5.9)

Thus, the model equivalent to the one described by the Hamiltonian (5.5) in terms of the hard-core

boson operators reads:

J , -

Hy==3 3 [bb; +blb,] + J. > blb;blb; — (Sh+ ZJ) ijbi +5%ZJL (5.10)
<t,y> <1,0> t

with constraint (5.3). Z is the lattice coordination number. If we take the limit J, = 0 the resulting

model is identical to the problem we are interested in, Eq. (5.1). This way of reasoning was used

more than forty years ago by Matsubara and Matsuda [65].

The J; = 0, h, = 0 limit of the X XZ model is usually referred as the XY model. The h = 0
limit corresponds to the half-filled N = L/2 bosonic system. For this model Kennedy, Lieb and
Shastry [66] proved that long-range order exists for the ground state in all dimensions grater than
one and all spins S > 1/2. In the bosonic language this result implies the existence of the Bose
condensate. Due to the proved long-range order, the variational wavefunction (2.35) should be
appropriate to describe the ground state of the Hamiltonian. It is however amazing how accurately
the spin-wave wavefunction works for the hard-core bosons. The variational estimation for the
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ground-state energy is extremely close to the exact one (the relative error is less than 2 - 107, but
more important is that the ground state has an overlap square grater than 99.8% with the exact
ground state. Thus, the spin-wave wavefunction yields practically an exact numerical solution of
this model.

It is interesting to compare the hard-core boson density correlation function with analogous
calculations for the two-dimensional ¢t — J model. This model was studied in an enormous number
of articles because of its close relation to the high-temperature superconductivity, particularly
as a main candidate to find the Luttinger liquid behavior in two dimensions. In one dimension a
Luttinger liquid systems has the spin and charge degrees of freedom separated: at low energies they
have independent elementary excitations with different velocities and characteristic wavevectors.
The high temperature expansion results for the t-J density correlation functions by Putikka et al
are very close to the one obtained here for the hard-core bosons. This means that the low-energy
charge degrees of freedom in the ¢ —.J model maybe represented by hard-core bosons only. implying

that the spin degrees of freedom could be possibly decoupled.

5.2 Derivation of the ”spin-wave” variational wavefunction

In Chapter 2 we have derived the form of the variational wavefunction for a quite general spin
Hamiltonian, but the case with the coupling to the external magnetic field was not included. This
additional term do not change conceptually the derivation scheme. However, the derivation of the
wavefunction has some subtle point and it maybe useful to outline the main steps. At the classical
level, the magnetic field orders the spins in the direction which points out from the XY plain where

magnetization lays for zero field. This introduces a little more involved expressions.

In units J = 2t = 1, the XY Hamiltonian is:
Hxy = — 9 (SFST+8YSY)—hS ) SF. (5.11)
<ig> i
Assuming that the system has a stable long-range order, the linear spin-wave theory can be applied
safely. For h = 0 the classical ground state is in the easy plane (z,y) and can be assumed that the

order parameter is along the z-axis. When h # 0, in order to have the classical 5 — > solution

parallel to the z-axis, the spin reference frame is rotated by an angle @ around the z-axis:

sy = 57, (5.12)
57 = cosfSF —sinfS; (5.13)
S7 = sin8SF + cos 657, (5.14)

where 5’{’, o = z,y, z are spin operators in the rotated frame. In the rotated frame we can use the

Holstein-Primakofl transformation:

5S¢ = S—-da, (5.15)
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Sy = §(a;+a1), (5.16)
SF = i -‘g(a§~a,), (5.17)

where a; is the spin-wave creation operator. For the linear spin-wave Hamiltonian we obtain the

usual quadratic form (2.24), where

Dy = =4-2(1+sin?8)y,, (5.18)
Mg = —2cos’fry, . (5.19)

The stability of the spin-wave Hamiltonian at the classical level requires that the order parameter

is canted by the angle # from the easy plane:
sinf = g . (5.20)

The magnetic field corresponds to the chemical potential of the bosonic system and should be
obtained from the relation p = 1 /2 — m between the density of boson p and the uniform magneti-
zation m =< 57 >. In the spin-wave theory the magnetization ranges in the interval —§ < m < §
whereas the boson density is a given constant in the interval 0 < p < 1. In order to satisfy the
proper correspondence the magnetization has to be scaled by a factor 25; m = 25(1/2 - p).

Applying the Helmann-Feynman relation, the magnetic field is determined from the relation:

1 8 .
LSf)h < Hxy >, (5.21)

with the angular brackets denoting the ground-state expectation value. The angle # in the linear

< Si>= 257(1 —-p)=

spin-wave approximation is given by the equation:

1 .
sinf = sinfy+ Esin 4y, (5.22)
sinfpb = 1-2p, (5.23)
. sm o 1—9 .
6 = —_— 5.24
e 27"\/ 1= sin? fyv, (5:24)
Y = §(cos gz + cosgqy) , (5.25)

and is shown in Fig. 5.1. The leading order ground-state energy in spin-wave expansion is given
by

Esw = —2L [%(1 ~ sin® 6o) + 5(1 - 9 (5.26)
where 8 =1/L Y, \/(1 = 79)(1 — sin® bg,).

The Jastrow potential v(R) is determined as the Fourier transform of

2 2 1—sin®6y,| o
”q*?gq—m[l'\/ﬂ*—}' (5.27)
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Figure 5.1: Dependence of the canting angle 6 on the density of bosons p in the first (5.23) and second order

(5.24).

In the limit of small wavevectors g, x 1/|g| yielding the long-distance behavior in the real space

1
v(R) < = (5.28)
(&) R

In the variational wavefunction (2.33) the projection into the subspace of zero magnetization

have to be changed to the finite magnetization determined by the density of bosons:

> ¥ o(Ri— B))SES;
v >= Pesz, e > (529)

where |F' > is the classical ferromagnetically ordered state in the original non rotated spin frame
1. 8 6 1 0 0
F>= — Z +sin =)ef -——co——-sin—T]vc>. 5.30
|F > I;[{\/'E(COSQ+SIRQ)ZT+\/§( 55 2)021) |va (5.30)
c}a creates a fermion of the spin |0 > in the site 4, and |vac > is the vacuum state Cio|vac >= 0.
The variational calculation is now easily performed because all spin configuration selected by the
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B 4x4 6% 6
N Esw Ly Eeract ¢ Esw By Fezact ¢
2 | -3.78905 | -3.78472 | -3.78478 | 0.99998 | -3.94798 -3.92025 | -3.92027 | 0.99995
3 | -5.31400 | -5.33198 | -5.33234 | 0.99990 | -5.78373 -5.75355 | -5.75369 | 0.99994
4 | -6.57696 | -6.62458 | -6.62584 | 0.99963 -7.51823 | -7.49372 | -7.49406 | 0.99987
5 | -7.56916 | -7.64784 | -7.65020 | 0.99937 -9.14706 | -9.13506 | -9.13577 | 0.99973
6 | -8.28344 | -8.38991 | -8.39407 | 0.99889 -10.66674 | -10.67273 | -10.67399 | 0.99954
7 | -8.71434 | -8.84053 | -8.84695 | 0.99820 | -12.07438 -12.10253 | -12.10451 | 0.99932
8 | -8.85838 | -8.99186 | -8.99978 | 0.99762 | -13.36753 -13.42080 | -13.42368 | 0.99906
9 -14.54403 | -14.62426 | -14.62822 | 0.99876
10 -15.60195 | -15.70995 | -15.71519 | 0.99840
11 -16.53959 | -16.67515 | -16.68189 | 0.99798
12 -17.35543 | -17.51740 | -17.52582 | 0.99750

Table 5.1: Spin-wave energy Esw, variational energy Ey, exact one E.

C=]<yv|gs > |* of the corresponding wavefunctions for various clusters and number N

. 2(L-N) .
projector have the same constant 2—L (cos % + sin ﬁ) ( (cos g- — sin

the Monte Carlo calculation.

2

4

2

ezact 10 units of J, and overlap square

of bosons.

N )
) which is irrelevant in

9.3 Variational estimate of the ground-state properties

In order to determine how accurate is the variational wavefunction, the expectation value for the
ground-state energy was calculated by variational Monte Carlo and compared with the exact energy
obtained by Lanczos diagonalization of the XV Hamiltonian. The exact calculation was feasible
up to 12 bosons on L = 36 lattice. The variational estimate is extremely close to the exact ground-
state energy as can be seen in Table 5.1. Not only the energy is well described by the variational
wavefunction, but also all relevant parameters should be correctly estimated because the exact
ground state wavefunction and the variational one have very big overlap. The variational state is
obtained from the linear spin-wave theory. There was no need to adjust the parameters so that
this variational state is relatively simple to implement and it is very convenient to use in the Green
function Monte Carlo calculations.

In the small density limit (6 — 7/2) the Jastrow potential is more singular in the small lq|
limit as it diverges like 1/|¢|2, instead of the normal 1/lg| behavior for § # 0. Nevertheless, for
fixed number of bosons the overlap between the exact ground state and the variational state is
increasing with size showing that the low density limit is fulfilled exactly by the wavefunction
(5.29) [61].

bosons, which is known to diverge logarithmically for large particle-particle distance, consistent

The Jastrow factor becomes the exact ground-state wavefunction of two hard-core
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with the 1/]¢|? limiting behavior of the Jastrow potential. The fact that this spin-wave state is
so accurate for any density, especially in the low-density limit provides a clear evidence that the
superfluid boson condensate in this strongly correlated system exists for all densities and extends
the validity of the rigorous proof for p = 1/2 in Ref. [66].

Having such an accurate and easily computable variational state it is also possible to determine
the ground-state properties of the hard-core boson system. We have calculated the momentum

distribution function n, and the density correlation function N(g), defined by the relations
ng = > e <bly >, (5.31)
1

N(g) = Y et <Apodp>, (5.32)
l

where Ap; = b]bl — p is the deviation from the average density p. The calculation was done on the
lattice of size I = 400 to have a good resolution in momentum space. The results are shown in Fig.
5.2 and Fig. 5.3. The data obtained on the big lattice are completely consistent with the one from
the exact diagonalization on the L = 36 lattice. On a lattice of such small size it is not possible to
have all the values for the density calculated for the big lattice and we used the closest available

ones.

The density correlation function is compared to its analog for the spinless fermion system on the

same lattice given by
iy 1 .
N(g)=p— 7 2 nlniyy (5.33)
k

where ng is the fermion momentum distribution function. The sum rule 1/L 37, N( q) = p —
p? is valid both for the hard-core bosons and the spinless fermions. In the small density limit
when the statistics is less important the bosonic and fermionic correlation function are almost
equal. When the density increases the edge of the Fermi surface makes the fermionic distribution
function more sharp at the characteristic Fermi wavevectors than the bosonic counterpart. With
increasing temperature one expects that the Fermi distribution is smeared and the correlation
functions become very similar to the bosonic ones. On the other hand, the bosonic correlation
functions cannot be dramatically affected by increasing the temperature because they are already
smeared at zero temperature. As expected, in the small wavevector limit N(g) ~ ¢. and the slope

of the fermionic correlation function is practically equal to the bosonic one.

The behavior of the density correlation function for the ¢ — J model resulting from the high-
temperature expansion [67] is essentially the same as for the hard core bosons. The relatively
small discrepancy spinless fermion correlation functions and the ones for the ¢t — J model almost
disappears when we compare the -J model with the hard-core bosons. In Ref. [67] the mean-field
approximation was used for the system of spinless fermions with a site dependent phase which
can be obtained from the mapping of hard-core bosons. This approximation gives unphysical q

dependence of the density correlation function in the ¢ — 0 limit whereas it should be linear from
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the Chester-Reatto argument used in the Chapter 4.

The momentum distribution function shows that a large part of degrees of freedom are frozen
in the condensate. The condensate fraction becomes smaller with increasing density when the
hard-core constraint is more important and n, deviates strongly from the free boson distribution.
The hard-core boson momentum distribution function is very different from the one for the spinless

fermions and does not show any particular change at the spinless fermion Fermi wavevector.

5.4 Summary and discussion

Using the mapping of the two-dimensional hard-core boson model to the spin § = 1/2 XY model
in presence of an external magnetic field we develop a "spin-wave” variational wavefunction which
gives an extremely accurate approximation of the ground-state. The success of the spin-wave state
relies on the existence of long-range order in the XY model. However, the analytical proof of the
long-range order exists only for half-filled N /L = 1/2 case, and the present numerical calculation
strongly suggests that the condensate exists for all densities. Thus, the spin-wave method for
determining the variational wavefunction for quantum antiferromagnets is shown to be very accurate
and successful when applied to the proper case where a true order exists. The existing mapping of
hard-core bosons and fermions with flux via J ordan-Wigner transformation actually does not lead

to a simpler problem, whereas the spin-wave approach gives a rather convenient scheme.

Regarding the question of the spin-charge separation problem, the hard-core boson density cor-
relation function is very similar to the one found in the high temperature expansion for the t — J
model. The charge degrees of freedom in the ¢ — J model can be represented by hard-core bosons,
and if the charge dynamics is completely described by such bosons, there is a possibility to have an
independent excitation carrying the spin, providing the frame for an anomalous two-dimensional
behavior. The spin-charge separation is one of the peculiar features of the one-dimensional Lut-
tinger liquid, but the extension of one-dimensional concepts to two dimension is not easy at all. As
it will be shown in the next chapter, if the Luttinger-liquid type state is directly transferred to two
dimensions, the competitive Fermi liquid state arising from the slave-boson representation of the

t — J model is more stable.
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Figure 5.2: The momentum distribution function of the hard-core bosons along the symmetric lines in the

Brillouin zone. Dotted lines denotes the spin-less fermion Fermi surface. Squares represent data for L = 400

site lattice, triangles for I = 36 site lattice for the closest available density. The condensate fraction Ng=o0/N

is also noted.
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Figure 5.3: Density-density correlation function for along the symmetric lines in the first Brillouin zone.
Squares are for hard-core bosons variational data and circles for the spin-less fermions at the same lattice of
L = 400 sites. Triangles are for the hard-core bosons data on the lattice of L = 36 sites with closest available
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6 t —J model

6.1 Introduction

It is well established that the zero temperature properties of certain one dimensional (1D) strongly
correlated systems, like the Hubbard and the ¢-J models, are described by the Tomonaga-Luttinger
liquid theory [68, 69]. The search for the Luttinger liquid behavior in two dimensions (2D) is, to
large extent, concerned with the t-J model. A motivation for studying the ¢-J model comes from the
Anderson hypothesis [70, 71] that some unconventional properties of the high-T, superconductors
can be explained by a separation of charge and spin excitations, characteristic for systems with the
Luttinger liquid ground state. A relevance of the 2D ¢-J model for the low energy properties of
electrons in C'u0; planes in copper-oxide superconductors was also established by Zhang and Rice
[5].

There have been few variational studies of the normal state of the #-J model [72, 73, T4]. mainly
concerning ordered trial wavefunctions incorporating effects of the large momentum transfer scat-
tering, whereas the long wavelength behavior were considered by Gros and Valenti [75. 76]. For
the ground state variational wavefunction in Ref. [75] the Jastrow-Gutzwiller type state of the

following form was used:

52 V(Ri=R;)pinj

!\If > = e Pdl‘IIO >, (61)
1
V(RZ - RJ) = T[(l - S)Iog [Rz - RJI - S(S<,',j>], (62)

where V(R; — R;) is the Jastrow potential and p; is the electron density operator. The Gutzwiller
projection operator P; projects out from the fermionic wavefunction |Wo> all configurations with
doubly occupied sites. This kind of variational wavefunction was previously investigated by Hell-
berg and Mele [15] for the study of the 1D ¢-J model because it embodies important features of
Luttinger liquid systems: an algebraic singularity in the momentum distribution function at the
Fermi surface and a long distance power-law fall-off of the correlation functions. The behavior of
the wavefunction (6.1) is controlled by two variational parameters in the Jastrow potential (6.2):
an effective temperature T" and a strength of the nearest-neighbor interaction . In the limit § = 0,
this wavefunction describes the pure Luttinger liquid, and for S = 1 it represents the Fermi liquid

54
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state with short-range correlations. The pure Gutzwiller state is realized for § = 0 in the limit
T — co. The Luttinger liquid character of the state with the logarithmic Jastrow potential (6.2)
was clearly demonstrated in Ref. [76], showing that the momentum distribution function is con-
tinuous at the Fermi wavevector. Moreover, the resulting 2D-phase diagram was in quantitative

agreement with the phase separation line obtained by the high temperature expansion [77].

The logarithmic form of the Jastrow potential appears naturally in the 1D case from a mapping of
the variational wavefunction onto a classical two-component hard core gas [78] where unlike charges
interact with the on-site infinite repulsive interaction, whereas like charges attract logarithmically

each other.

6.2 Variational wavefunction in the slave-boson formalism

In Chapter 5 an extremely accurate variational wavefunction for the two-dimensional hard-core
boson system was developed. This result will be used here to propose a new variational wavefunction

for an interacting fermion-boson system as the ¢-J model. In fact, the substitution c}; = f.T b;,

where f}a are fermionic and b; bosonic operators, leads to the slave boson representation of the
Hamiltonian (1.1):
H=—t S (flfiblb;+he)+7 Y S5, (6.3)
<ig>o <iyj>

where the constraint of no doubly occupied sites now reads
pl+pt=1. (6.4)

Here p{ =5, fifafia and p! = b:fbi are the fermion- and the boson-density operators, respectively.
A possible variational wavefunction for such system is a product of a fermionic and a bosonic

wavefunctions

T >= Py|¥p >®|¥p > . ' (6.5)

For the fermionic part |¥z>, the Jastrow-Gutzwiller state of the form (6.1) can be used, and for
the bosonic part the free boson wavefunction |¥g >= exp(}_; b})]O > can be taken. Note that after
the application of P; the number of bosons is fixed to Ny = L — N so that the overall factor in
the exponent of |[¥p> is irrelevant. Due to the constraint (6.4), bosons have to obey the hard-core
constraint p? < 1, and for the variational state we can take

1Y V(Ri=Rj)obs}
U >=¢ Pi|¥B > ®lvr >, (6.6)

where the Jastrow potential V(R; — R;) can be constructed following the spin-wave method devel-
oped in Chapter 2 and 5.

As a first approximation, we can assume that the motion of these hard core bosons can be

decoupled from the fermion one, namely that the bosons are moving in an effective hard-core
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bosons Hamiltonian with a renormalized hopping given by the expectation value of the fermionic
hopping operator < f; fjo>. The overall constant does not affect the boson wavefunction and we
are lead to study the ground state of the hard-core bosons system at the finite density p, = N3/ L.
The variational state for the bosons are given by expression (5.29). As was shown in Chapter 5 the
Jastrow potential for the large distance behaves like

V(R: — Bj) < 1/|Ri — Ryl (6.7)
hence its long-range behavior is different from the one in (6.2).

This form of the long-range correlations in the Jastrow is a consequence of long-wavelength
magnons in the spin-wave Hamiltonian, corresponding to acoustic plasmon excitations in the ¢-.J
model with the dispersion energy w, x |g|. The dispersion w, of these low energy excitations can
be obtained by the Feynman construction, i. e. by applying p, = L™Y/2Y; e~ p; to the ground
state [0 > of the Hamiltonian (1.1) yielding an estimate for w, which should be accurate in the
small-g limit:

. _ < 0]p—gHpg|0 >
T < 0lp—gpgl0 > .
where Eg is the ground state energy. Since the projector P; commutes with the density operator

- EO 3 (68)

and with the magnetic part of #, and the ground state has a definite space inversion symmetry,

we obtain:

o — SOllo—g, [H, pglll0 > _ 2Eo(1 = 7,)
! 2N, LN,

Ny =3, 9% <pop;> being the density correlation function. For small g, 1=, e %, and from the

(6.9)

linear dispersion of low energy excitations at small wavevectors follows N, o |g|. Such behavior of
N, leads to the obtained (6.7) long-range behavior of interactions by the Reatto-Chester argument
which essentially states that V, o 1—\1: [53, 54].

The fermion wavefunction |¢F> can be taken in the form [76]:

A ,
H(a’k + Bkcz'{cikl)lo >, Et‘li - —k 5 (6.10)

K Pe e+ /& + A2 '
where € = —2(cosk; + cosky), and Ap = A(cosk, — cosk,). This is the BCS superconducting
state with the d,2_,» order parameter. Near half-filling p/ = N/L ~ 1, the large momentum
transfer scattering in the magnetic part of M is dominant and such correlations are included in
|YF> taking A = 0.5. Away from half-filling, the (7, 7) momentum scattering is less important
and the kinetic energy is optimized for A = 0 and |¥r> reduces to the simple filled Fermi sea

lbF>= TI el 10>
k<kp,o

6.3 Comparison of the Luttinger and Fermi liquid states

In order to compare these two variational wavefunction, the one with the logarithmic Jastrow
potential (6.2) and the one with the hard-core bosons Jastrow potential (5.27), we performed a
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variational Monte Carlo calculation of the energy expectation value. We have chosen the same
lattice of 24 and 8 holes on 82 sites with periodic boundary conditions as in Ref. [76] to have a
clear comparison of data. The fermion wavefunction in the case of 24 holes was the Fermi sea. and
for the 8 holes cluster the BCS state with dg2_,2 pair correlations. In the case of superconducting
wavefunction w, has a gap on the Fermi surface and the previous argument to determine the
long distance behavior of the Jastrow potential is no longer valid. In fact, the difference between
logarithmic and hard-core bosons wavefunction estimates in this case becomes of the order of error

bars and cannot be clearly seen from the Monte Carlo data.

The logarithmic wavefunction has two variational parameters, the total energy minimum is ob-
tained for S = 0 [76]. The hard-core bosons wavefunction has no variational parameter but analo-
gously to the Hellberg and Mele treatment [15] we can include an extra parameter multiplyving the
Jastrow potential (5.27) by a factor 1/T". The Gutzwiller state is obtained for 1/T = 0.

The Jastrow prefactor in these wavefunctions lowers the kinetic energy with respect to the
Gutzwiller state, however the exchange energy is higher than the Gutzwiller one, though differ-
ences are quite small, around 1%. Differences between energies for considered wavefunctions are
even smaller, and to get clear contrast of variational data, we have calculated again the expec-
tation values for the logarithmic wavefunction, though they were already given in Ref. [76]. but
with larger error bars. Previously reported data and the ones calculated by us are in complete
agreement. The data for the lattice with 24 holes are shown in Fig. (6.1) and for 8 holes in Fig.

(6.2). The momentum distribution function

1 ‘o ( R
n(q) = :ﬁ Z EZQ(Rt_R]) < c;!’ocja > (611)

ZY]?J

is calculated for the half-filled lattice with L = 400 sites and periodic boundary conditions. showing
the finite jump at the Fermi surface. confirming the Fermi liquid character of the hard-core bosons

variational wavefunction, see Fig. (6.3).

The hard-core bosons wavefunction has both the kinetic and the magnetic energies comparable
with the logarithmic Jastrow ones. In the case of 24 holes the difference is a little bit larger than
for the 8 holes, but the hard-core bosons variational energy is always lower than the other one.
The fact that the hard-core bosons Jastrow potential gives not only a lower kinetic energy than the
logarithmic one, but also a more stable magnetic part of H means that the small wavevector scat-
tering in the projected kinetic energy is correctly taken into account, without spoiling correlations
in the rest of the wavefunction. Notice that for the t-model (given by the Hamiltonian (1.1) for

J = 0) one has a minimum for S # 0. but our variational wavefunction remains with lover energy.
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6.4 Summary and discussion

In conclusion, we have introduced a variational wavefunction with the Jastrow factor compatible
with a low-energy plasmon excitations with dispersion w,; & |¢| which we have dealt in spin-wave
approximation. This wavefunction describes a Fermi liquid ground state and we compared it with a
Luttinger liquid wavefunction [75, 76]. The obtained variational Monte Carlo estimates for the two
wavefunctions are comparable although the Fermi liquid one has a little lower energy. From this
calculation we see that in searching for a Luttinger liquid state in two dimensions it is very difficult
to translate a state directly from one dimension. Namely, though the Gros-Valent{ extension of the
Hellberg-Mele state has all features of the Luttinger liquid and it is stable against the Gutzwiller
state, a more reasonable long range Jastrow potential gives also a stable Fermi liquid state with a
lover energy. These observations are somehow consistent with exact diagonalization studies of the
t—J model by Long and Zotos [79, 80]. They have proved that spinless hard-core bosons have lower
kinetic energy than any other statistics of particles for the case of unfrustrated hopping. When
the spin correlations become important their numerical calculation shows that fermionic particles
have lower energy. This confirms our findings that the hard-core boson state is doubtlessly more
stable than the Luttinger liquid one for large doping, whereas for small doping difference in the
ground-state energy becomes quite small and the Luttinger liquid state is strongly competitive with

the Fermi liquid one.
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Figure 6.1: The variational Monte Carlo data for estimates of the kinetic energy per hole (a), the magnetic

energy per bond (b), and the total energy per site (c) of the logarithmic Jastrow wavefunction (squares) and

the hard core bosons Jastrow wavefunction (triangles). The lattice has 82 sites with 24 holes. The fermionic

part of the wavefunction is the filled Fermi sea (A = 0). The exchange parameter J = 0.25¢.
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Figure 6.2: The variational Monte Carlo data for the estimate of the total energy of the 8 holes cluster on the
same lattice as in Fig. 6.1 for the logarithmic (squares) and the HCB Jastrow (triangles) wavefunction. The
fermionic part of the wavefunction is the superconducting pair function (A =0.5). The exchange parameter
J = 0.25¢.
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Figure 6.3: The momentum distribution function for the hard core boson Jastrow wavefunction for the
half-filled lattice of L = 400 sites with PBC for wavevectors along the directions (1,0) and (1,1) of the

Brillonin zone. The variational parameter is 1/T = 1, the fermionic wavefunction is the filled Fermi sea
(A =0). '



7 Exact diagonalization study of

the optical conductivity

7.1 Introduction

In this chapter the optical conductivity of the Hubbard model on the honeycomb lattice will be
studied by a new method based on integration over boundary conditions. The method was recently
proposed by Valenti, Gros, Hirschfeld, and Stephan [81] and developed by Gros [82, 83]. The
exact diagonalization calculations have become today a very important tool in the investigation of
strongly correlated systems, as the Hubbard model or general spin systems. Although the memory
and computing speed of computers have enormously increased the exact diagonalization techniques
can never be pushed to very large systems because the computational effort grows exponentially
with the system size. By these methods results will be always plagued by the finite-size effects
which are taken into account in the analysis of data, but cannot be, in most of cases, completely
eliminated. All new ideas which allow a reduction and a better control of the finite size effects are

therefore welcome.

The method of integration over boundary conditions can considerably reduce finite-size effects
and the present calculation proves that for a very subtle problem, such as the evaluation of the
optical conductivity, it gives a rather reasonable result. Another big advantage of this technique
is that on finite clusters there is a quite small number of available density of particles, but the
integration technique practically expands the allowed values to the whole possible interval. The
technique is based on the assumption that an average over the results for all possible boundary
conditions is a good approximation of the integral over the Fermi surface in the thermodynamical
limit. The method is defined in such a way that for a non-interacting system the boundary-condition
averages provide the exact result for the infinite system. If the Fermi surface is not dramatically
distorted by interactions, it is reasonable to expect that the average boundary-condition results are

a good approximation of the infinite system also in the presence of the interaction.

A motivation for the study of the optical conductivity of electrons on the honeycomb lattice

has come from the very recent experimental observation of surface charge density waves [84]. The

61



62 § 7. Exact diagonalization study of the optical conductivity

lead atom arrangement on the (111) surface of a-germanium is reconstructed from (/3 x v/3)R30°
structure at high temperature to the (3 x 3) structure at low temperature. The theoretical (3 x 3)
surface is metallic and the first-principle density functional calculation also predicts the metallic
behavior for the low-temperature phase. The shape of the conductivity obtained by the electron
energy-loss spectroscopy, raised doubts about the ground state of the surface in the low temperature
phase. The optical conductivity of the high-temperature phase has a clear metallic behavior with
the Drude peak, whereas at low temperatures a maximum around 100 meV appears. The behavior
of the conductivity seen by the spectroscopy is probably due to the electron-electron interaction
which is not properly accounted in the local density approximation. The question we want to
address here is: could this strong electron correlation produce such behavior for the conductivity

in the low-temperature phase?

In order to investigate qualitatively the behavior of the conductivity in the presence of the
strong electron-electron correlation we will study the Hubbard model on the honeycomb lattice.
The Hubbard model is a simple model but we expect that it comprises the main physical picture of
the electron interaction. The honeycomb lattice underlies the arrangement of Pb atoms in the low-
temperature phase. The lead surface covering layer contains half electron per site which corresponds
to the quarter filled band. In order to get a reliable answer without approximations which are
necessarily made in the analytical treatment we performed exact diagonalization calculation by the
Lanczos method. However, clusters available by our computers resources are too small to obtain
results without strong size effects. The way out was to use the integration over boundary condition
technique. By the boundary condition averaging the finite-size effects are reduced and reasonable

data can be obtained from small clusters.

Our calculation shows that the unusual behavior of the optical conductivity and the peak for 100
meV can be explained within the Hubbard model. For U = 0 there exist bonding and antibonding
states with energy £, and —E,, respectively, shown in Fig. 7.4. In order to have a non-vanishing
optical conductivity at a given frequency w, an occupied bonding state of energy —FE, and momen-
tum ¢ must be connected by the current density operator with an unoccupied antibonding state
of energy E;, = w/2 and momentum —q in order to conserve the total momentum. The available
free-electron states at quarter filling can contribute to the conductivity only for frequencies « > 3t,
where ¢ is the hopping parameter. This threshold is far above the frequency where the peak in the
low-temperature surface phase appears. At this low density it is rather unlikely that the electron
correlations renormalize the bandwidth to shift the threshold to the observed w. On the other
hand, it is clear that the interaction create a small non-vanishing momentum weight for the states
close to the van Hove energy —t, and some signal at w ~ 2t can be expected. Nevertheless. it is

difficult to explain that the w ~ 3¢ peak is completely replaced by the new w ~ 2¢ one.

Instead a more clear and direct solution can be obtained by the simple assumption that the

electron system for strong enough interaction becomes ferromagnetic. In the ferromagnetic ground

- state the states at the van Hove singularity are eccupied and corresponding big weights results
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in a strong w = 2t conductivity response. However, if the ground state is paramagnetic, the
strong ferromagnetic correlations can produce components in the ground state wavefunction which
lead to the w = 2t conductivity peak. We anticipate here that we have not found evidence of
true ferromagnetic long-range order, but the picture emerging from the ground-state properties
calculation is in a qualitative agreement with the previous ferromagnetic scenario, as we have
an evidence that the ground state, though being a singlet, has strongly enhanced ferromagnetic

correlations at short electron-electron distance.

The suggested scenario is based on a naive band picture but the arguments are rather plausible

and the described physical picture is confirmed by the present numerical calculations.

7.2 Conductivity in linear response

We consider the Hubbard model on the honeycomb lattice with L sites defined by Hamiltonian

H=-t Z (vc%acR-i-no + C}%—FnocRa') + UZ"RT”RL ) (7.1)

ReAd .o R
where c}r%a is the creation operator of an electron of spin o =T, | at the lattice site R. n denotes
the directions of the bonds to the three nearest neighbors n; = -—%a’: + 3@@7, = ~%:i' — —\,/{QQ, and

n3 = ¢ The unit length is the nearest-neighbor distance. nr, = c};c,cRa is the electron spin density
operator. The sum R € A is restricted only to one of the two sublattices. We assumed the periodic

boundary conditions, but in Section 7.5 the general boundary conditions will be used.

The model can be represented in a more convenient way by mapping the honeycomb lattice to
so called "brick lattice”, i. e. the square lattice with some missing bonds [85], see Fig. 7.1. The
bonds in Eq. (7.1) are given in this representation by m = §, 72 = —§, and 53 = & i. e. the bonds

connected by 7y = —4 present in the square lattice are missing in the brick lattice.

We are interested in the response of the system to the uniform external electromagnetic field
described by a classical vector potential A,(R;,t), where t is time [86]. The U(1) coupling of
electrons on a lattice to the gauge field is described by introducing the phase factor in the hopping
term:

Hi=—t 3 (eieA,,(R.t)c;acRW n e—ieAn(R,t)C;_*_nacRU) +UY nping . (7.2)
ReAmn0 R
where we are using units where i = ¢ = 1. The expansion of the current in powers of A is given

by:
—OH 4

0A,(R.t)
where the current density j,(R) and the kinetic energy density k,(R) operators read

Jo(R,1) = = ejp(R) + €*k,(R)Ay(R, 1) + - - -, (7.3)

o
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Figure 7.1: Mapping of the honeycomb lattice (left) onto the brick lattice (right). The brick lattice is
obtained from the square one by cutting off the bonds denoted by dotted lines.

ka(R) = =13 (chyChine + ChinsCry) - (7.5)

The term proportional to e is usually referred as the paramagnetic contribution and the one pro-
portional to e? as the diamagnetic contribution to the current. Using the standard linear response

theory [87] for a vector potential
Ay(R, 1) = Re (Ay(q,w)e/0R=D) (7.6)
the expression for the current response is obtained:

<Tolgw) >= e <ky > Ag(q,0) + €3 Ay, 0) Ay(g,w) (7.
77/

~1
-1
~—

where Aqppr is the current-current correlation function:

1 1 1
i 7 <J (—q) > . (7.8
H_E0+w+i63n(€7)>+L<]n(Q)H_EO__w_~i6JU( q)> . (7.8)

Here, Eq is the ground state energy, and angle brackets denote the ground-state average. Due to

1 . .
Appi(q,w) = 7 < Jn(=9)

the translation invariance, the average ground state kinetic energy is independent of lattice site and
we have denoted < ky(R) >=< k, >.

In the linear response approximation the conductivity is defined as the response to a uniform,
q = 0, time dependent electric field

En(g=0,w) =i(w+18)4,(q = 0,w) (7.9)
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through the relation:
< Jplg = 0,0) >= [o1(w) + ioa(w)]E(g = 0,w) - (7.10)

The conductivity is independent of the direction n because it is a second order tensor and the
symmetry point group of the lattice has the only one, the identity, irreducible representation [88].
The real part of the conductivity for w > 0 has two contributions:

o(w) = Dé(w)+ o™ (w), (7.11)
2 1 | < Pnlin(q = 0)|tho > |2 - 15
D = —7we’ |<k;>+~+ , (7.12)
" %;O E, — Eo
. s 2 y junung 2 .
o) = T 3 LI Lo (B - ) (7.13)

n0

¢ comes from incoherent

The Drude weight D contains the delta function contribution whereas oin
contributions at finite w. |¥, > is a complete set of the Hamiltonian (7.1) with energies E,. The
insulating or the conducting character of the ground state is determined by the infinite-size limit

value of the Drude weight. For a metal D goes to a finite value and vanishes for an insulator.

7.3 Free electron conductivity

The U = 0 limit of the Hamiltonian (7.1) corresponds to the problem of free electrons in the
honeycomb lattice. In the brick lattice representation, see Fig. 7.2, they are described by the

Hamiltonian:

Hg = —t Z (c}fggcR_l_m + cTR+nacRJ) . (7.14)
ReAno

The spin degrees of freedom are decoupled therefore we can consider only one of them and spin

index will be dropped in the following discussion.

Since the honeycomb lattice is a bipartite Bravais lattice with two sites per unit cell, it is
convenient to define new electronic operators af and b} which create an electron on the sublattice

A and B, respectively:

t { a}r%, R € sublattice A; (7.15)

Cp =
R b%, R ¢ sublattice B.

After the Fourier transformation defined by:
t oo 2N iRt 7.16
ap = I Ze ag (7.16)
q
2 i o
b% = \/;ZEQR(J;, (7.17)
q
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Figure 7.2: The brick-lattice representation of the honeycomb lattice. The tilted square denoted by dashed

lines is the L = 10 sites cluster used in the Lanczos calculations.

where ¢ are wavevectors from the magnetic Brillouin zone, the Hamiltonian can be written as:

Ho = 3 (ealb, +¢bla,) (7.19)
q
€ = —2tcosg, — te'r = ,gqleiﬂﬂq . (7.20)

Notice that the current and the Hamiltonian do not commute

[in, Hol = 4it* ) " sin g, sin ¢g(ala, ~ bb,) (7.21)
q

and thus, contrary to the square lattice free electrons or the continuum limit, all the states con-
tributed to the conductivity are not exhausted by the Drude weight. Since the incoherent part of
the conductivity is not vanishing, the conductivity at finite w must be also computed.

This Hamiltonian (7.19) could be easily diagonalized by an unitary transformation:

CBT =

1 ; N
; 75(@2 + €]y (7.22)
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;3;( = —(af - ei‘”‘?b;) . (7.23)

\/72' q

The operators a;r and ﬂ;f create an electron in the state with the energy Eéa

) = l€g| (anti-bonding
state) and Eéﬁ) = —l|¢,| (bonding states), respectively. The plot of the constant energy curves is

shown in Fig. 7.3. Density of states is given by

P fUEsggEan ) Bl € 1,34 ;
DoS(E) = 5 o (7.24)
ﬂw(f-w[)z(;EHst)K( Eroeewa ) 1E1€(0:4

where K is the complete elliptic integral of the first kind. The density of states has the Hove
singularity at energies E = +1 when it behaves like DoS(E) ~ —1/(47%t)In(1 — |E[). At the top
of the bonding band and the bottom of the anti-bonding band, when £ — 0, DoS5 ~ |E|/V/37%2,
leading to the vanishing density of states at the Fermi level for half-filling. The van Hove singularity

in the density of states appears at filling v = 3/8, see Fig. 7.4.

The current density operator (7.4) in y-direction for an uniform field reads
Jy =2t Z sin qy(agbq + bgaq) =2 Z sin gy[cos c,oq(agaq - ﬂ;ﬂq) + isin cpq(ﬁgaq - agﬂq)] . (7.25)
q g

The ground state for filling v < 1/2 is given by

o >= [ Bllvac>, (7.26)
g<kr

where |vac > is the vacuum state with no electrons. Using the diagonal representation of the

Hamiltonian, the current-current correlation function can be easy obtained:

1 ) 1 ) 41 sin? g, sin? @ N
XX(W):E<¢0|]yH~EO_w_i6,]y|'§bD>:—_l—_l— Z E—E—;—_—y—;—.—lg-, (4.2()
g<kp

where B, = t\/ (2cosqy + cosgg)? + sin? ¢;. The corresponding kinetic energy density is given by

<k >= —Qt/ d%q cos qy(2cos gy + cos qz) (7.28)
Y g<kp (27)2 E, . -

The expressions for the Drude weight and the incoherent part of the conductivity in the infinite

size limit can be now easily obtained:

D - e’t / 24 2 cos ¢, (2 cos g, + cosgz)  2sin’ qgcg)sin2 | (7.29)
2T Jq<kp E, Eq
. 2te? [’ in? 2/4 —dcostq, — 1)
Gznc(w) — __t_%/ v dqy SIN”™ gy 1— w / COS™ Gy , (730\,
‘ Tw? Jgpen | cos gy 4 cos gy

where the limits of the second integral are defined as zeros of the equation E,(gz = 0.¢qy) = «/2.

These analytical expressions will be used to check numerical results obtained by the integration
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Figure 7.3: The Fermi surface curves for densities n = 0.1[0.1]1.0in the magnetic Brillouin zone [g.|+|g,| < 7.
The Fermi surface for n = 0.5 is denoted by arrow. The square points denote bottom and top of the

anti-bonding band at (0,0) and (0, £7), respectively.

over boundary condition technique. Integrating over w expression (7.11) an useful sum-rule could

be derived [89]:
2

/L dwo(w) = == < ky >, (7.31)
0

which relates the total weight of the conductivity to the kinetic average. This sum-rule is valid even

for interacting system and can be used as a check of the numerical calculation of the conductivity.

7.4 Computation of the conductivity by the Lanczos algorithm

The Lanczos algorithm constructs a tridiagonal representation of the Hamiltonian for which the
numerical diagonalization is a relatively easy task. The orthonormal vectors from the tridiagonal
Hilbert space basis {|¢, >} are defined recursively starting from a properly chosen normalized
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0.5 | -

Figure 7.4: Schematic picture of the free electron bands at quarter filling n = 0.5. In processes contributing
to the optical conductivity momentum is conserved. For non-interacting system the minimal frequency for
response is determined by the Fermi energy w = 2Ep. The van Hove singularities are at densities n = 0.75

and n = 1.25.

initial state |¢o > and following the recursion procedure [90, 91, 7]:
/Bn+1[¢n+1 >= HI@n > _an|¢n > ‘“ﬂnl@bn—l >, n= 07 1725 .- -aﬂ’-[ ’ (732)

where coefficients «,, B, are given by

Il

Qn

< Ol H|pn >, (7.33)
,Bn+1 = < ¢n+1‘H|¢n >, ('-‘--34)

¢_1 >= 0. The diagonalization process in the Lanczos basis is

with initial conditions Gy = 0,
distinguished from other diagonalization procedures by a rapid convergence to the ground state.
The number of required Lanczos steps M to obtain an accurate approximation of the ground state
is usually much smaller than the dimension of the Hilbert space. In principle, all eigenvalues and

eigenvectors of the tridiagonal matrices obtained after applying enough Lanczos steps will converge
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to the spectrum of the Hamiltonian. However, due to the finite precision computer arithmetic. the
orthogonality of the basis vectors |¢, > after many Lanczos steps is lost. The orthogonal basis can
be reconstructed, by Gram-Schmidt orthogonalization procedure, but it demands a lot of computer
time for a physically relevant problem. The loss of orthogonality in the Lanczos basis leads to the
generation of "ghost eigenvalues”: not all the eigenvalues obtained from the recursion process are
belonging to the Hamiltonian spectrum. A simple method to deal with the ghosts in the spectrum
is the following: at a given Lanczos iteration step the ”ghosts” can be recognized and eliminated
by monitoring the spectrum of the corresponding matrices derived from the Lanczos tridiagonal

one by dropping out the first row and the first column [91].

From the expressions (7.12) and (7.13) it follows that we can obtain not only the ground state
energy and wavevector, but also the weights | < ¥, |j,]10 > | of the current density. The calculation
of the conductivity in the Lanczos algorithm can be performed as a two-step process. In the first
step the ground state |19 > is obtained by starting the Lanczos iteration from a random initial state
|¢o >, then in the second step a new Lanczos recursion procedure is started with the particular
state |¢g >= Jylo > /| < ¥nlsyYo > |2, The weight for the nth state is then obtained from the
nth coefficient in the Lanczos basis representation of the ground-state eigenvector. Since any state

|1n, > of the spectrum after M recursion steps has the Lanczos basis representation

M
[Un >= > Camldm >, (7.35)

m=0

where |¢,, > are defined in (7.32) with |¢o >= |¢~70 >. The weights are given now simply by

] < ﬁ’nljyld)O > I2 = Icn,OIZ < ¢0|]J]ylw0 > . (’_36)

The calculation of the weights very much depends on the accuracy of the ground-state wavefunc-
tion. In fact the error in |19 > obtained from the first step will be transfered to the initial state
|po >= Jylo > /| < ¥uljy|tho > |? of the second step. Thus, the excited states |4, > obtained from
M;o > are not exactly orthogonal to the ground state and the weights are not correctly represented
by the coefficients ¢, . The accuracy of the ground state can be systematically improved by per-
forming several Lanczos iteration processes with small number M of iterations. Each new Lanczos
recursion in this process of improving the convergence of the ground-state eigenvector should be
started with the previous estimate of the ground state. The process must be repeated until the

required accuracy is obtained.

For a given interaction U it can happen that the ground state is degenerate, or close to a
degeneracy. This dramatically effects the results for the conductivity if the proper convergence of
the ground state wavefunction is not achieved. This effect usually gives artificially big weight to
low-energy states leading to an incorrect peak in the conductivity. In the integration over boundary
conditions method this peak can be removed considering its intensity as a function of the number
of the boundary condition phases, since of course a true degeneracy occurs only for a few particular

boundary condition, whose incorrect contribution is suppressed after the average.
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In order to obtain reasonable results for the conductivity it is not necessary to find accurate
values for all excited states |1, > but the Lanczos diagonalization process can be stopped at some
M and the convergence for the conductivity tested by plotting o(w) as a function of M. If the
number of Lanczos steps is smaller than the dimension of the Hilbert space, the higher levels still
have not converged but these levels in the infinite systems belongs to a continuum of excited states

and low levels can safely represent all the continuum of the spectrum.

The incoherent part of the conductivity is given by the sum over poles at frequency w = E, — Eg.
The ¢-function features will be present in any finite size calculation because of the Hilbert space
is finite. The thermodynamic limit is obtained by smearing the é§ functions in Eq. (7.13) with

Lorentzians of a given small width A [92]

1 A
(w) = ————= .37
( ) Tw?+ A2 (7.37)
and taking A — 0 limit after the infinite-size limit. For a finite system this smearing gives a

reasonable representation of the incoherent part of the infinite-size conductivity if the resolution
of the energy levels in the Lanczos spectrum is much smaller then A. The convergence of the
results have to be checked by plotting o(w) as a function of the Lorentzian with A. The average
over boundary conditions represents a very useful method to improve the resolution of the energy
spectrum, as each boundary condition considered contribute to the total average spectrum with

different energy levels.

From our exact diagonalization of lattices up L = 16 site, the ground state of the Hubbard
model on the honeycomb lattice at quarter filling is paramagnetic. The Hilbert space has in
principle ( ]\%) X ( J\?l) states which could be further reduced using the symmetries of the lattice. The
implementation of these symmetries in the computation is rather tedious and we have tried first to
compute the conductivity for the L = 16 lattice with periodic boundary conditions without using
any symmetry. This lattice is the largest one allowed by our computer memory but the results are
strongly influenced by the small size of the lattice. For this lattice at quarter filling the occupied
states do not represent well the Fermi surface of the infinite size system. The highest occupied level
lays at the van Hove singularity whereas in the thermodynamic limit the Fermi level is much lower
in energy. This leads to a strong peak at w = 2t even for a very small U, as can be seen in Fig.
7.5. This is not changed when U increases. Though the position of the peak is moved to a lower
frequency, probably because of a reduction of the band width, the w ~ 2t peak remains a dominant

feature.

Hence, the behavior of the conductivity as a function of the electron-electron interaction cannot
be examined on this simple small lattice calculation. We will show in the next section that the
integration over boundary condition method represents a very successful tool to solve all the prob-
lems associated with the finite size effects. Using the integration over boundary condition method

the problems associated with the finite-size effects can be treated in a very successful way.
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Figure 7.5: The conductivity at quarter filling calculated by the Lanczos algorithm on the L = 16 site lattice
for increasing U. The w = 2t peak appears due to the occupied energy levels at the van Hove singularity.

The infinite-size system has Fermi level below the van Hove energy. ¢ functions smearing is A = 0.5.
7.5 Integration over boundary condition method

The Hamiltonian for the Hubbard model (7.1) was written for periodic boundary conditions. and
we have to generalize it for a general boundary conditions. Consider a two-dimensional finite lattice
with the real space periodicity defined by two vectors T; and Ty

R=R+

T

i

N

'~]
e

=R, (7.38)

where 75 is the translation by the vector 7:. All the lattice sites can be obtained by translation
of a finite number of sites described by the considered finite cluster, e. g. see Fig. 7.2. Assuming

general boundary conditions, a state of the system | > acquires a phase y; under translation by
TT

1

Til0(R) >= [W(R+ T)) >= ™ |p(R) > . (7.39)
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The kinetic term of the Hamiltonian. in order to be consistent with these boundary conditions. ac-
quires extra phase factors in the hopping amplitudes only at the boundary of the considered cluster.
For numerical calculations it is more convenient to introduce the general boundary conditions in
such a way that the phases (x1,Y2) appear as simple parameters of an equivalent Hamiltonian
with periodic boundary conditions. This can be achieved by a gauge transformation of the electron
operators:

C})"—?e CR7

The free electron Hamiltonian can be now considered as a problem with periodic boundary condi-

tions and phase-dependent hopping matrix elements:

Ho = Z (,tR,R+7TCI‘20'cR+770' + t}‘%,R-}-nc}'%-*-nacRa) P (T—ll)
Ry.o

where the phase depends only on the difference R - R

thp = —tel®R-R) (7.42)
SE-R) = (G1+Gy)-(E-R). (7.43)

Here él, G, are the reciprocal lattice vectors:
T, Gj = xibij - (744)

6; ; is Kronecker symbol. The phases y; can be chosen from the interval 0 < y; < 27; periodic and
antiperiodic boundary conditions are corresponding to (X1, x2) = (0,0) and (7, 7),respectively. For
the I = 10 site lattice shown in Fig. 7.2, the periodicity vectors are Ty = (3,1) and T = (—1.3)
and the phases of hopping matrix elements are ®(2) = (3x1 — x2)/ L, ®(£§) = £(x1 + 3x2)/L.

In the integration over boundary condition method one calculates the ground-state energy in the
grandcanonical ensemble for a given number Ny of the boundary condition phases (x1.Y2) and
then take the average [82, 83]:

1 o
eo(p) = _\/ Z [Eo( Nmin(X1, X2); X1, X2) — #Nmin] (7.43)
1:X2

where Eo(N;x1,X2) is the ground-state energy for the cluster of N electrons with the boundary
condition phase (x1, Xz2), ¢ is the chemical potential and Nmin(X1, x2) denotes the electron number
which has the lowest grand canonical ground-state energy Eo— puN for the fixed boundary condition
phase (x1,x2)- The canonical ground-state energy is obtained by the Legendre transformation with

respect to the number of electrons in the cluster.

Many physically interesting quantities could be now calculated by averaging over the boundary

condition phases, e. g. the conductivity for a given density n = N/L is given by:

o(n) = —

. _ 746
N 0 (Nmin(X1, X2)) (7.46)

X1,X2
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The method can be successfully applied to quantities which require only one integral over the
Fermi surface. Fortunately the conductivity is one of them. In this thesis we have generalized
the integration over boundary condition method to calculate this important quantity and it will
be shown that the conductivity actually coincides with the exact thermodynamical one for the

non-interacting case.

For a non-interacting system the method gives an exact results in the limit Np, — 0. 1. e.
the finite size corrections vanish identically. Namely, the method is defined in such a way that
the free-electron Fermi surface obtained by the prescribed procedure for a large number of phases
coincides with the Fermi surface of the infinite size system. When the interaction is included it is
reasonable to assume that the phase average values are still a good approximation of the infinite
size quantities. The boundary phase average results for the two-dimensional Hubbard model at a
finite U are consistent with quantum Monte Carlo data [83] which confirms the reliability of the
method.

We want to emphasize another advantage of the method: even considering very small clusters,
any particle density n can be chosen by a properly tuned chemical potential x. On a small cluster
with fixed boundary conditions only few values of the density are available which can be a very

limiting drawback for the numerical study of a system.

7.6 Numerical calculation of the conductivity

Since the conductivity is calculated using the Hamiltonian with a generic duasi—periodic boundary
conditions, also the current density operator should be modified consistently with respect to the
periodic boundary conditions case derived in Eq. (7.4). From Eqgs. (7.3) and (7.41) it follows that

the current density operator is given by the following expression:
. . , + * + .
Jn(B) = i) (1RR4nChsCRAno — UR,RenCRensCR) » (r.47)
g

where the hopping matrix element tg g4, depends on the boundary condition phase according to
Eqs. (7.42) and (7.43).

The cluster of L = 8 sites seems to be the most convenient choice for the calculation of the
conductivity by average over the boundary condition phases. The dimension of the Hilbert space
is small enough to render the calculation feasible in a reasonable time and its symmetry group
contains the all symmetry elements as of the infinite honeycomb lattice. At this small lattice
clusters there are however extra symmetries that cause an important drawback in the numerical
exact diagonalization, because the number of almost-degenerate states is quite large and it is
difficult to obtain the satisfactory ground-state wavefunction by the Lanczos algorithm, as we have
discussed before in section 7.4. This drawback can significantly slow down the calculation if there

are many almost-degenerate states. Therefore it is more convenient to choose clusters with less
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symmetries. The cluster of L = 6 sites is rather small and it was used for testing the method in the
non-interacting U = 0 case. For more interesting interacting case, in order to estimate the error
due to the finite-size effects, we have calculated the conductivity also for a cluster of L = 10 sites.
The convergence for the conductivity was achieved usually with less than 150 Lanczos steps for the
L = 6 cluster, depending on the dimension of the Hilbert space and the interaction U. For the small
Hilbert spaces of the L = 6 cluster, the Lanczos algorithm gives, of course, the complete spectrum.
The conductivity for the L = 10 cluster was obtained by the integration over N,, = 20 x 20 phase
points, where due to the symmetries, the spectrum is different at only 220 phase points. The L = 6
cluster calculation was done by averaging over N,h = 40 X 40 phases, here only 840 phase points

have different spectrum.

In Fig. 7.6 the ground state energy density and the chemical potential for U/ = 0 obtained

by the boundary condition phase averaging are compared with the exact results from analytical

expressions
F3
n = dE DoS(E), (7.48)
-3t
m
eo(p) = dE DoS(E)E . (7.49)
-3t

The numerical data are in a perfect agreement with the exact results, only the points near the van
Hove singularity at densities n = 0.75 and n = 1.25 are not well represented due to a finite phase
mesh and a huge degeneracy of the states. The results for the U = 0 conductivity are shown in
Fig. 7.7. The boundary condition averages represent very well the infinite-size conductivity, even
at the van Hove singularity n = 0.75. Note that the incoherent part of the U/ = 0 conductivity at
half-filling n = 1.0 is finite in the limit w — 0 due to the cancellation of the factor 1/« with the
linear behavior of the density of states for £ — 0.

The incoherent part of the conductivity at quarter filling n = 0.50 for the interacting system is
shown in Fig. 7.9 for the L = 6 cluster case and in Fig. 7.10 for the L = 10 case. The conductivity
in both the cases shows the same features showing that the finite-size effects are well controlled.
When U increases, the U = 0 peak at w = 3¢ is diminished until the w = 2¢ peak prevails for
U > Tt. The w = 2t peak is a little bit increased and shifted to a slightly smaller w when U goes
over 7t. A small part of weight in the conductivity is redistributed to the region starting from

w = U corresponding to the upper Hubbard band.

The obtained behavior of ¢(w) can be explained by the strong ferromagnetic correlations in
the ground state. If the ground state is ferromagnetic, then the Fermi level would cross the van
Hove singularity and large contribution to the conductivity from the w = 2¢ transitions would
appear. However, the ground state is always paramagnetic, but with increasing electron-electron
interactions strong ferromagnetic correlations appear in the ground state, at least at short electron-
electron distance, but with no true long-range order. Qualitatively one can assume that the short-

range ferromagnetic correlations affect the conductivity in the same way as the true long-range
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ones do. When U increases over the critical value the peak is moved to lower w due to the band

renormalization, but is remains a dominant feature of the conductivity.

The increase of the incoherent part of the conductivity should be accompanied with the decreased
Drude weight because of the the sum rule (7.31). The results for the Drude weight D are shown in
Fig. 7.11. They confirm the scenario for the appearance of the 2t peak. D has a quite pronounced
drop between U=5 and U=6 which is the value when the w=2t peak emerges in the incoherent
part of the conductivity. When U further increases the Drude weight is not dramatically reduced

indicating that the systems remains in the metallic regime.

The spin-wave variational wavefunction described in Chapter 2 shows that the short-range cor-
relations have a ferromagnetic character. Namely, the positive sign in the Jastrow prefactor corre-
sponds to enhanced ferromagnetic correlations. This Jastrow function has an overlap around 85%
with the exact ground state obtained from the exact diagonalization. However, we have calculated
the total spin square < §2 > by the "spin-wave” variational wavefunction and obtained that it
is always a singlet in the thermodynamic sense limj_o, < S2 > /L? — 0, but with short-range

ferromagnetic correlations.

Our results for the conductivity show that the finite-size effects are considerably reduced by
the boundary phase averaging and reasonable data can be then obtained. The current matrix
elements were calculated by the Lanczos procedure which, occasionally, does not give the correct
ground state, causing distorted weights for the conductivity. In fact, the small peaks in Fig. 7.10
for U = 1 and U = 2 are coming from a poorly converged ground state wavefunction due to the
nearly degeneracy. There are a finite number of boundary condition phases for which the ground
state was not enough accurately determined, however with the increasing number of phases their
contribution are neglectable. This effect can be clearly seen in Fig. 7.12. When the number of
phases is increased, the peak at small w is decreasing, whereas the shape at w > 1 is roughly the
same. Hence, these small peaks at « — 0 can be safely neglected. The comparison of the results
from different phase meshes helps us to determine which peaks will be present in the infinite-size

limit and which can be attributed to the small size of the system or to the finite precision arithmetic.

7.7 Summary and discussion

The method of integration over boundary conditions was applied to the calculation of the conduc-
tivity in the Hubbard model on the honeycomb lattice at quarter filling. The obtained behavior of
the conductivity shows that the strong electron-electron correlations can shift the main peak from
the w = 3¢ to w = 2t. In the band picture scenario this happens because of strong ferromagnetic
correlations in the ground-state wavefunction which gives a finite weight for transitions from bond-

ing to antibonding band near the van Hove singularity. This answers the question of the ground
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state nature of the surface layer set by the charge density wave transition found on the Pb-Ge
surface. The low temperature phase of the surface could be metallic and the seen behavior of the

conductivity by the electron energy-loss spectroscopy can be attributed to the electron correlations.

The method represents a big improvement over a simple calculation of the conductivity at fixed
boundary conditions. The finite size effects are much reduced by this technique so that calculation
on the available small clusters are meaningful to accurately determine the infinite-size limit. We
have shown that the method gives an essentially exact result for the non-interacting system. Con-
sidering the conductivity as a function of the number of boundary condition phases, the finite-size
effects still present in the results for an interacting system can be identified. Up to now the method
was used in few calculations of some properties of the Hubbard model in one and two dimensions.
Poilblanc and Dagotto [93, 94] have calculated the conductivity for the ¢-J model using some range
of the boundary condition phases which is similar to the present method but the one used here has
the advantage to be exact in the " = 0 limit and it offers the possibility to consider any value of
the electron density. The present work is the first study of the conductivity by this technique and

shows that the method is powerful and accurate.

Another argument for the proposed physical scenario for the conductivity peak at «w = 2t can
be taken from the variational study of the ferromagnetism by Hanisch et al [95]. They obtained
a mean-field phase diagram of the Hubbard model on the honeycomb lattice, showing that the
paramagnetic state is unstable against the ferromagnetic one at quarter filling for U ~ 5.5¢ which
agrees with the conductivity behavior we have obtained. Around the same value of U the dominant
peak in the conductivity changed from w ~ 3¢ to w = 2t. However, the ferromagnetic phase
with the true long-range order obtained at the Hartree-Fock level is dramatically suppressed by
the quantum fluctuations as, already at the variational level [95], the critical U required for the
ferromagnetism is pushed to U/t > 50, consistent with our exact diagonalization calculation for
U/t < 20 where the ground state was always a singlet. It is interesting that the conductivity
remains qualitatively consistent with the Hartree-Fock picture. This is probably because relevant
short-range ferromagnetic correlations really appears at this small U value, as confirmed by our
"spin-wave” variational wavefunction with short-range ferromagnetic correlations. This variational
study predicts the ferromagnetic ground state at quarter filling for very strong interaction {" > 50t
which is consistent with our calculation for U < 20¢ where the ground state was always singlet.

however the spin-wave variational wavefunction for U = oo predicts the ferromagnetic ground state.
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Figure 7.6: U = 0 ground-state energy density ey and chemical potential x obtained by the boundary
condition phase averaging (squares) and from analytical expression (line). The numerical data actue;lly
cover the analytically obtained line. The van Hove densities n = 0.75 and n = 1.25 are poorly represented.

Averaging was done over N,; = 1600 phase points of the I = 6 site cluster.
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Figure 7.7: Free electron conductivity for densities n = 0.25, 0.50, 0.75, and 1.00 obtained by the boundary
condition phase averaging (full lines) and from the analytical expression (dashed lines). Averaging was done

over Npi = 1600 points of the L = 6 site cluster.
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Figure 7.8: Free electron Drude weight versus densities obtained by the boundary condition phase averaging
(squares) and from analytical expression (full line). Averaging was done over Npp = 1600 phase points of
the L = 6 site cluster.
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Figure 7.9: Conductivity at quarter filling n = 0.50 for increasing U obtained by the average over the
boundary condition phases. Averaging was done over Npp = 1600 points for L = 6 site cluster. ¢ function

smearing is A = 0.1
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Figure 7.10: Conductivity at quarter filling n = 0.50 for increasing U obtained by the average over the
boundary condition phases. Averaging was done over Npp = 400 points of the L = 10 site cluster. § function

smearing is A = 0.1
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Figure 7.11: Drude weight versus U for quarter filling n = 0.50 obtained by boundary condition phase
averaging. Averaging was done over Npp = 400 phase points of the L = 10 site cluster. Line is a guide to

the eye.
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Figure 7.12: Conductivity at quarter filling n = 0.50 for U = 1.0 obtained by the boundary condition phase

averaging over different number of phases. The calculation is done for the I = 10 site cluster.



8 Conclusions

In this thesis we have developed a scheme to derive the variational wavefunction for quantum
antiferromagnets using the linear spin-wave expansion. The method was applied to one and two
dimensional spin systems, hard-core bosons and t-J model. The same technique is applicable
to many other spin Hamiltonians. with or without frustration, including triangular and Kagome’
lattice, anisotropic models, etc., where it can yield accurate results with a relatively modest compu-
tational efforts. This wavefunction can be used as a very convenient trial state in quantum Monte
Carlo calculations. It correctly describes quasi-long-range order of spin-1/2 chains, whereas for
spin-1 chains it describes a very interesting phase transition from disordered to ordered phase in

one dimension.

From the application of the variational wavefunction to the frustrated Heisenberg model on
the square lattice we concluded that the wavefunction can be successfully used in the frustrated
regime where contributions from second order spin-wave expansion exhibits irregular behavior.
In this respect, the variational wavefunction represents a very successful attempt of the spin-
wave expansion summation. The variational state was further improved by adjusting the Jastrow
potential long-range tail with the sum-rule constraints. The finite-size scaling analysis have shown
that the order parameter vanishes for frustrations Jp/Jp > 0.41 indicating the phase transition

from the antiferromagnetic ordered state to a quantum disordered state.

The hard-core bosons, being the system with true long-range order, is the case where all virtues
of the spin-wave variational wavefunction appears. The comparison with the exact ground state
obtained by exact diagonalization on small clusters shows that the variational state is practically
indistinguishable from the exact ene. Moreover, with increasing size of lattice the overlap increase
with fixed number of bosons. The hard-core boson structure factor agrees remarkably well with the
high-temperature expansion calculation for the ¢-J model. This provide a framework to decouple
charge and spin degrees of freedom: if the charge dynamics is described by holons having hard-core

features, the spinon can have a completely different dynamics.

However, the Luttinger liquid concept in two dimensions is still a controversial question. When
the Fermi liquid variational wavefunction is compared to the Luttinger liquid one, it is not obvious

that the latter one is necessarily more stable. We have shown, at the variational level. that the

85
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Fermi liquid state constructed by our spin-wave variational wavefunction has lower energy than the
Luttinger liquid counterpart, at least for large enough doping. It means that a direct transfer of
the Luttinger liquid wavefunction to the two-dimensional case is not the well established and some

more subtle state could also be appropriate for this model.

Finally, from the study of the optical conductivity in the Hubbard model on the honevcomb
lattice, two important conclusions can be derived. Regarding the implemented technique of inte-
gration over boundary conditions, we have shown that the method can be used for computing an
important dynamical quantity such as the electronic conductivity of a strongly correlated svstem.
It is therefore very promising to use the average over boundary conditions to reduce the finite-size
effects. The successful application of this new method has provided a confirmation that the be-
havior of the conductivity of the Pb-Ge surface low-temperature phase could be described by the
presence of strong electron-electron interactions. Essentially, the strongly enhanced ferromagnetic
correlations at short electron-electron distance, with no true long-range order, cause a shift of the

conductivity peak to lower frequencies as has been seen in the spectroscopy data.



Appendix A
Large-spin limit of the ”spin-wave”

variational wavefunction

We want to demonstrate that the Jastrow factor of the variational wavefunction (2.35)
1 2 —
exp[= ngqS SZNF >, (A1)
in the limit § — oo takes the simple Gaussian form of the harmonic oscillator ground state:
1 A
exp[iz:fqaga_q”F >, (A.2)
q

where f; = —g,/(1—g,). Using the Hubbard-Stratonovich transformation, the Jastrow factor (A.1)

can be written as:

exp {1 > z,gq : _q} H/ [—lzq12\/2-g7(~q5" +2;52,)

Using the well-known formula exp(A + B) = exp(A)exp(B) exp(—1/2[A, B]) and the spin-wave
representation of §7 = ——i\/S/Q(ag — a_,) the exponential factor under the integral gives

| > . (A.3)

29, , *
exp{ —gi(zqsg *S_Q)} = exp(gq|2 i )exp |4 [ V9q(z,0a -|—2an ]e\p{ i/Gq(zga_y + 23a,)
(A1)

The ferromagnetic state |F > is a vacuum for the spin-wave operators a,|F >= 0 and the last
exponential factor in the above expression applied on the |F > vanishes. After the integration over

the auxiliary fields z, we obtain the Gaussian form:

H/ [dz] e'(p —|z, (1 — gq) + 1/Fq(2, a + 7 al )] |F >= exp {—r%aga*_q} |F > . (A5)
q

The S — oo limit was taken implicitly assuming that the S. spin operator can be represented by

a simple combination of the spin-wave excitation operators.
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