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INTRODUCTION

K

A holomorphic map from the unit disc A C C into a domain D C C" is a complex
geodesic for the Carathéodory (or for the Kobayashi) pseudodistance if it is an isometry
with respect to the Poincaré distance w on A and the Carathéodory (or the Kobayashi)
pseudddistaﬁce on D. The notion of complex geodesic was introduced by Vesentini in 1979
to study the automorphism group of the unit ball of L*(M, u), where (M, p) is a measure
space ([Vesentini 1979]).

Complex geodesics turned out to be a useful tool not only in the investigation of the
automorphism group of complex domains, but also in several other Questions concerning
complex analysis and complex geometry. At this concern, a few significant results will
be now mentioned. It has been proved that the image of a complex geodesic of a convex
bounded domain D C C" is the fixed point set of a holomorphic endomorphism of D ([Vigué
1984 b]). Complex geodesics are a main tool in the proof of some results which generalize
the classical Schwarz Lemma to the case of holomorphic mappings between domains in
C™, which are isomeétries for the Kobayashi or for the Carathéodory metric at one point
(see, for example, [Vigué 1985b| and [Graham 1989]). Also, some characterizations of the
unit ball of C* by its automorphism group involve complex geodesics (see, for example,
[Rosay 1979]). Abate used complex geodesics to generalize Schields’ Theorem and Julia-
Wolff-Carathéodory Theorem to strongly convex domains ([Abate 1989a]). In [Lempert
1981], a relation between complex geodesics and the complex Monge-Ampére equation on

a convex bounded domain has been found and investigated.

As far as existence of complex geodesics on a given domain D C C” is concerned, it may
well happen that there does not exist any holomorphic isometry ¢ : A — D with respect to
w and the Carathéodory pseudodistanée cp. For example, this is the case for the annulus
A={zeC|1< |z <r}, r>1 ([Vesentini 1981]). On the other hand, Lempert
proved that in a convex bounded domain D C C", for any two distinct points, there
exists a complex geodesic for the Kobayashi distance on D whose image contains the two
points ([Lempert 1981]). The method used by Lempert consists in characterizing complex
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geodesics for the Kobayashi distance as “stationary maps” and in proving existence and
uniqueness of stationary maps in strongly convex domains with C® boundary.
We recall that a stationary map on a domain D C C™ is a holomorphic map ¢ : A — D
such that: | ’

(a) pe 01/2(1"’-_5);

(b) ¢(0A) C OD; |

(c) there exists a function p € C/2(8A,R*) such that the map

0A — C"
§ = Ep(&) v(p(§))

extends to a map @ € Hol(A,C*)NCY2(A,C"), where v(z) is the unit outer normal
vector to 8D at z € 8D and C'/?(By, B,) denotes the set of 1/2-Hdlder maps from
the metric space B; to the metric space Bs. ' .
Thus complex geodesics of a domain D C C" are naturally related to the “shape” of the
boundary 9D.
The characterization of complex geodesics for the Kobayashi distance as stationary maps
allows a different description: a subset of a strongly convex domain is the image of a com-
plex geodesic for the Kobayashi distance if, and only if, it is a one-dimensional holomorphic
retract of the domain ([Lempert 1982]).
This result has a remarkable consequence; in fact, it has been used to prove that on a
convex domain the Kobayashi and the Carathéodory distances coincide. Therefore, on a
convex domain we may speak about complex geodesics tout court.
A different approach led Royden and Wong to state that, on any convex domain, com-
plex geodesics for the Kobayashi distance are exactly the stationary maps, regardless of
regularity hypotheses on the boundary ([Royden—Wong 1983]).
In [Pang 1993], the techniques used by Lempert have been developed to prove that on a
strongly pseudoconvex domain a complex geodesic for the Kobayashi distance is necessarily
a stationary map. Examples show that the converse of this statement does not hold.
The explicit computation of complex geodesics of a giveh domain has been performed only
in some classes of convex domains, e.g. convex complex ellipsoids £(p1,...,pn) = { 2 €
C* | |21|?P* + ... + |zu|?P» < 1 }, where p; > 1/2 for all j = 1,...,n ([Gentili 1986 b},
[Blank et alia 1992], [Jarnicki-Pflug-Zeinstra 1993], [Jarnicki-Pflug 1995]) and some of their
possible generalizations ([Zwonek 1995 a], [Visintin 1995]).
The technique used in the cases quoted above consists in determining explicitly the statio-
nary maps. The fact that the domains under investigation are Reinhardt domains allows
to find the outer factors and the inner factors of the components of a stationary map.
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In this dissertation, we investigate the question of determining the complex geodesics of
an arbitrary convex bounded Reinhardt domain, with the aim of giving a characterization
of complex geodesics suitable for their explicit computation. A closely related problem
we deal with concerns the comparison between the balls defined on a domain D C C" by
the Minkowski functional of D and the balls defined by the Carathéodory distance cp. In
‘order to solve this problem, which has already been studied in some cases (see, for example,
[Schwarz-Srebro 1996] and [Zwonek 1996]), the knowledge of explicit formulas for complex
geodesics seems to be crucial. : ‘ ,

A closer inspection of procedures used in [Gentili 1986b)], [Jarnicki-Pflug 1995] and in
[Visintin 1995] shows that, on any convex bounded Reinhardt domain, a simpler char-
acterization of stationary maps holds, namely, in this dissertation we have proved the
following (see [Visintin 1998]) -

" Theorem 1 Let D C C™ be a conver bounded Reinhardt domain. Let up be the Minkowsk:
functional of D. Let ¢ = (1,...,0n) : A = D be a non-constant holomorphic map such
that p; 0 for all j = 1,...,n and that the boundary values ¢*(§) belong to D for a.a.
£ € OA. Let M; be the inner factor of p;. Moreover, suppose that the unit outer normal
vector to OD is defined at ©*(£) for a.a. £ € DA.

Then ¢ is a complez geodesic if, and only if, there exist Qo, Q1 ..., Qn € A, T1,...,77 >0
such that
1 -@€]* _ Opo "
1. ~ = 1 N 1 ¢ x .a.
(L.a) T EP Ol (i@l - - 1en(©DIe; () for a.a. £ € 0A

forallj=1,...,n;
(L) Qo= Ti0y 1+ ol =D (1 +]eyl?).
, ©og=1 =1

If rj > 0, then there exists 6; € R such that

, A—a: \ ¥
(1.c) A M;(X) = et ( 1 ) AeA,
J ‘1 —C\!j)\

where s; € { 0,1 } and s; =1 implies a; € A.

This result makes completely clear the influence of the “shape” of D on the structure of
the family of complex geodesics in the case of a convex bounded Reinhardt domain D.
The “core” of a complex geodesic on a Reinhardt domain lies in the outer factors of its

components; in fact, the inner factor of a component of a complex geodesic is either a

Mobius transformation or whatever inner function.
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Remark that Theorem 1 can be used not only to find the family of all complex geodesics of a
‘given convex bounded Reinhardt domain explicitly, but also to study its general structure.
In [Kaup-Umpeier 1976], by using Lie group theory, it has been proved that if two bounded
balanced pseud‘oconvex domains D;, D; € C" are biholomorphic, then there exists a
biholomorphic map % : D; — D such that ¢(0) = 0. The Carathéodory metric can be
exploited to prove that this fact implies that D and D, are Iinearly equivalent.. It would be
interesting to find a proof of the Kaup-Upmeier Theorem involving complex analysis, and
we believe that complex geodesics and Theorem 1 are suitable for this purpose. Complex
geodesics and Theorem 1 again seem to be, a powerful tool to study the group of the
automorphisms of a given convex bounded Reinhardt domain.

At this concern, we would like to point out that recent results on the geometry of Te-
ichmiiller spaces (see [Abate Patrizio 1997]) suggest the use of the family of complex
geodesics to obtain a deeper knowledge of the geometric structure of the Teichmiiller
spaces themself. 4

As we already pointed out, the knowledge of explicit formulas of complex geodesics is useful
in studying a geometric property of the Carathéodory distance on a domain D C C7,
namely the natural question of the comparison between the balls defined on D by the
Minkowski functional pp of D and those defined by the Carathéodory distance c¢p. The
Carathéodory ball with centre at z € D and radius arctanhr, for r € (0,1), is defined as -
follows

B; (Z,r)={2z€ D] cp(z %) < arctanhr }.

If D C C" is a bounded, convex and balanced domain, then the norm ball with centre at
w € C" and radius s > 0 is defined as

Bp(@,8)={z€C" | up(z— @) <5}

The interest on this question follows from the fact that on the unit disc A C C, every
Carathéodory ball is an Euclidean ball. Moreover, on any convex bounded and balanced
domain Carathéodory balls centred at the origin and norm balls centred at the origin
coincide. ‘

- The question of comparing Carathéodory balls and norm balls not centred at the origin has
been discussed for some homogeneous domains, such as, for example, the Euclidean ball
B,, C C™ (the only Carathéodory balls which are also norm balls are those centred at the
origin, [Rudin 1980]) and the polydisc A™ C C” (the only Carathéodory balls which are -

also norm balls are those centred at a point z = (Z1,...,2,) such that |z1| = ... = |Z,]).
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As far as non-homogeneous domains are concerned, the convex complex ellipsoids have
been considered. It has been proved that the only Carathéodory balls which are also
~ norm balls are those centred at the origin if the Cbmplex ellipsoid under discussion is
- E(p1y...,Pn), where p; > 1/2 and p; # 1 for all j = 1,...,n ([Schwarz-Srebro 1996],
[Zwonek 1996]). Moreover, it has been found that Bz, . /2’1)((0,@)2),7’) is a norm ball for
any (0,ws2) € £(1/2,1) and for any r € (0,1) ([Zwonek 1996]). '

Since it seems hard to generalize the methods used in the works quoted above to compare
‘ Carathéodory balls and norm balls on an arbitrary Reinhardt domain, then we used a

different approach to prove the following general result (see [Visintin 1997])

Theorem 2 Let D C C™ be a strictly convex bounded Reinhardt domain with C boundary.
Let Z € D be such that at least two of its components are non zero. Then

B2, (5,) # Bo(@,)

foralwe D, re(0,1),seR".

In order to determine whether a Carathéodory ball B} (Z,r) centred on some axis of a
domain D is a norm ball, it seems necessary to know the formulas for the family of all
complex geodesics through the centre e D. By using such formulas, in this dissertation,
the following result on a class of convex bounded Reinhardt domains, which naturally
generalizes complex ellipsoids, has been proved (see [Visintin 1997])

Theorem 3 Let 0 < a <1 and p = (p1,...pn) be such that p1 > 1, ps > 1, p; >1/2 for
allj=3,...,n. Let '

.- : n
Dop =< 2€C" | |21]?P* +2a|z1[P*|22]P? + |22]?P2 + Z |27 < 1
. Jj=3

Let Z,W € Dy p, Z# 0, 7 € (0,1) and s € RT. Then
B:Da,p (37 T) = BDa,p (ﬁ! S)

if, and only if,
Da,p = g(pla s 7pn)

where py, = 1 for ezactly one k € {1,...,n}, p; =1/2 for all j # k, Z; =0 for all j # F,
and
~ 1—-7r2 _

w = z and s = 1_lzk|2'
o 1—1r2|z|?

TI-rEP



In particular, this result completely solves the question in the case of convex complex
ellipsoids, because Dy p = £(p).

In what follows, we briefly describe the content of this thesis.

In the First Chapter, we present the main prOpérties of the Carathéodory and Kobayashi
pseudodistances and pseudometrics, which are among the most important invariant pseu-

dodistances and pseudometrics defined on complex domains.

The Second Chapter is devoted to complex geodesics. After the definition and the first
properties, we survey the work of Lempert, Royden and Wong on this matter ([Lempert
1981, 1982], [Royden-Wong 1983]).

By generalizing a result proved in [Gentili 1986 b], we give a better insight on the function

p appearing in the definition of stationary map. In particular, we get the following

Theorem 4 Let D C C™ be a convex, bounded and balanced domain. Let pup be the
- Minkowski functional of D. Let ¢ : A — D be a holomorphic map such that ¢* (&) e 0D
for a.a. € € OA and that the unit outer normal vector to 8D is defined at ©*(£) € 6D
for a.a. £ € OA. Then ¢ : A — D is a complex geodesic if, and only if, there exist
he HY(A,C"), h#0, 1o >0 and ao € A such that

5O =i -aP P2 @) foran geon,

j=1,...,n.

In the last paragraph of the Second Chapter, we give a brief account of known results

concerning uniqueness of complex geodesics, which is important in many applications.

In the Third Chapter, we prove Theorem 1 concerning complex geodesics on convex
bounded Reinhardt domains and present some of its consequences.

In particular, we prove that each component of a complex geodesic in a strictly convex
bounded Reinhardt domain may have at most one zero in A (Corollary 3.1.4). We also
prove that if one considers some particular families of convex bounded Reinhardt domains,
then the knowledge of the complex geodesics of one particular domain of the family suf-
fices to determine the complex geodesics of all other domains belonging to that family
(Proposition 3.1.6).

In the Fourth Chapter, as an application of Theorem 1, we compute the complex geodesics
of some classes of domains explicitly. The first éxample concerns the complex geodesics
of convex complex ellipsoids, which were already known. In the second example, which
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is taken from [Visintin 1995], we determine the complex geodesics of the generalization of
complex ellipsoids defined in Theorem 3. The last example concerns the complex geodesics
of another class of convex bounded Reinhardt domains in C2.

The Fifth Chapter is devoted to the discussion and the proof of Theorem 2'and Theorem
3 on the comparison between Carathéodory balls and norm balls.

In the Sixth Chapter we present some examples and some results on complex geodesics
on pseudoconvex domains. We remark that on such domains existence and uniqueness of
complex geodesics may well fail.

As a consequence of Theorem 1 and of the forementioned result obtained by Pang, we
get that a complex geodesic on a strongly pseudoconvex Reinhardt domain necessarily
satisfies conditions (1.a), (1.b), and (1.c). An explicit example showing that the converse
of the above statement fails to hold is exhibited.

Finally, in the Appendix we have collected some classical results and definitions which
are used throughout this work, namely the Factorization Theorem for H? functions on A,
some results on regularity of Minkowski functionals, the various notions of convexity and

pseudoconvexity and the Maximum Principle for subharmonic functions.

Acknowledgments. The author is grateful to Prof. Graziano Gentili for his constant
support during the last years. The author would also like to express her gratitude to Prof.
Peter Pﬂug' for many helpful mathemathical conversations and for his kind hospitality at
Hochschule Vechta.






First Chapter

PRELIMINARY RESULTS ON

IN‘V_ARIANT DISTANCES AND METRICS

A classical general problem in complex a,nalysisv is to decide whether two given complex
domains are biholomorphic. One of the major results concerning this question is the Rie-
mann mapping theorem, which says that any proper simply connected domain in C is
biholomorphic to the unit disc A (this result was stated in [Riemann 1851] and proved in
[Osgood 1900]). Therefore a purely topological property suffices to determine the holo-
morphic structure of a planar,domain. It is hopeless to try to extend this result to higher
dimensions, as the unit ball and the bidisc in C?, though topologically equivalent simply
connected domains, are not biholomorphic ([Poincaré 1907]). Sb, since topology seems to
have a poor influence on the holomrphic structure of an arbitrary complex domain, we
may ask how geometry is involved in such questions.
An idea is to define distances and metrics on complex domains which are invariant under
biholomorphic mappings and then to examine how geometric properties of domains reflect
on the holomorphic structure.
Recall that a pseudodistance on a domain D C C" is a function d: D xD — [0, 00) such
that

- d(z,2)=0;

- d(z,w) = d(w, 2);

- d(z,w) < d(z,v) + d(v, w)

for all z, w, v € D.
A pseudodistance is a distance if d(z,w) = 0 implies that z = w, for all z, we€ D.

A Qseﬁdometric on a domain D C C" is a function §: D x C* — [0, 00) such that
- 8z Av) = |A|d(z0)



forall ze D, v € C"” and A € C.
A pseudometric is a metric if §(z;v) = 0 implies that v = 0, for all z € D.

1. The Poincaré metric

Historically, the first invariant metric to be defined was the Poincaré metric on the unit
disc A, which is given by (see, for example, [Abate 1989 a], [Jarnicki-Pflug 1993], [Vesentini
1984])

0]
e = T g
for all v € C and all £ € A. This metric was investigated in [Riemann 1854] as an example
of what we now call a metric of constant Gaussian curvature (—4). Then in [Beltrami
1868 a, b] it was used to devise the disc model of the Lobagevski hyperbolic plane. Last,
but not least, Pbin_caré began to deal with “his” metric in 1882 in connection with the
study of Fuchsian groups ([Poincaré 1882]).

The Poincaré distance is, by definition, the integrated form of the Poincaré metric, i.e.

(s, 6) = inf{ [ @ £ € a6 }

where A(€1,&2) ={ f:[0,1] = A piecewise C! curve : f(0) — &1, f(1)=¢&; }. It turns
out that ([Abate 1989 a], [Jarnicki-Pflug 1993], [Vesentini 1984])

1 + 51: 2
— 1 -
w(&1, &) = arctanh ._5_1.:_5_2_ S 1-€,6
1- &162 2 1— §1:§2
1_5152

The classical Schwarz-Pick Lemma implies that the Poincaré metric and distance satisfy

the “contraction properties” we are looking for, namely, we have the following

Proposition 1.1.1 Let f: A — A be a holomorphic mapping. Then

(F'(Ese) < (Ve

W(F(62), £ (&) < wlcr,€2)

for all &, &, & € A. If, moreover, either there ezists £ € A such that

(P10 = (e,
10



or there ezist &1, &2 € A such that

(f(fl) f(€ ))—w(§1,€2)

then f is an automorphism of A.

Therefore, in particular, every automorphism of A is a w-isometry, i.e. an isometry for the
Poincaré distance w. Indeed, it can be proved that the Poincaré distance is the only distance
on A (satisfying some natural regularity conditions) invariant under Aut(A) ([Vesentini
1984], [Dineen 1989], [Jarnicki-Pflug 1993]). Moreover, the group of all isometries for the
Poincaré metric consists of all holomorphic and antiholomorphic automorphisms of A
([Vesentini 1984], [Jarnicki-Pflug 1993]).

In [Vesentini 1982a] it has been proved that the Poincaré distance is a logarlthmlcally
plurisubharmonic function.

Let us look closer at the geometry determined on A by the Poincaré distance. An open

Poincaré disc of centre &, € A and radius r > 0 is defined by

Bu(€or) = {E€ A [w(6,6) <7 ).

It has been proved that a Poincaré disc coincides with an Euclidean disc. Precisely, we
have the following ([Vesentini 1984], [Abate 1989-a], [Jarnicki-Pflug 1993])

Lemma 1.1.2 Let &, € A and r > 0; then

Bultor) ={ € | ¢~ -——Eﬂg—l—zso -l b

where R = tanhr.

Therefore, in particular, the Poincaré distance induces on A the standard topology and
(A, w) is a complete metric space.

In the sequel we will consider analogous questions for the invariant pseudodlstances we
are going to define on arbitrary complex domains and in that case the answers will be not

so straightforward.

2. The Carathéodory and the Kobayashi pseudodistances

The first generalization of the Poincaré distance is due to Carathéodory and dates back
to the Twenties ([Carathéodory 1926, 1927, 1928]). Given a bounded domain G C C?,
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Carathéodory used the set of holomorphic functions from G into A and the Poincaré
distance to define a new pseudodistance. ‘

Let D C C™ be an arbitrary domain, i.e. a simply conncted open subset of C". The
Carathéodory pseudodistance is defined as follows (see, for example, [Jarnicki-Pflug 1993],
[Dineen 1989], [Abate 1989 a])

ep (7 w) = sup{ w(f(z), f(w)) | | € Hol(D,A).}

for all z, w € D. It is checked that cp is a pseudodistance.

Remark that the definition of the Carathéodory pseudodistance is meaningful for domains
in complex normed spaces of infinite dimension ([Franzoni-Vesentini 1980]) and for complex
manifolds ([Kobayashi 1970, 1976]). -
The simplest example we can produce to show that the Carathéodory pseudodistance
between two distinct points in'a domain can be zero is C: in fact, Liouville Theorem
implies that cc = 0. However, it can be proved that if D C C* is (biholomorphic to) a
bounded domain, then cp is a distance ([Jarnicki-Pflug 1993], pg. 28).

A domain D such that c¢p is a distance is called c-hyperbolic.

Proposition 1.2.1 Let D, CC" and Dy CC™ ‘be domains and f € Hol(Dy,D3). Then

cp, (f(2), f(w)) < cp, (2, w)
“forall z,w € Dy and all f € Hol(Dy,D3). Moreover,
A = w.

Therefore, every holomorphic mapping is a contraction for the Carathéodory pseudodi-
stance. In some sense, we can say that the Carathéodory pseudodistance has a built-in
Schwarz Lemma. In particular, a biholomorphic mapping is an isometry with respect to
the Carathéodory pseudodistance, just as we wished.

It turns out that the Carathéodory pseudodistance is a continuous logarithmically pluri-
subharmonic function ([Kobayashi 1976], a proof is supplied in [Vesentini 1982a]). Thus,
in particular, the standard topology of a domain is finer than the topology induced by the
Carathéodory pseudodistance. If D C C" is (biholomorphic to) a bounded domain, then
¢p induces the standard topology ([Jarnicki-Pflug 1993]).

It is clear that c-hyperbolicity is a necessary condition for c¢p to induce the standard
topology on D. As far as sufficiency of this condition is concerned, it turns out that if
D is a planar domain, then c-hyperbolicity implies that cp induce on D the standard
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topology; but, for any n > 3, a c-hyperbolic domain D C C" such that the standard
topology of D is strictly finer than the cp- topology has been constructed ([Jarnicki-
Pflug-Vigué 1991], [Jarnicki-Pflug 1993] pg. 30, see also [Vigué 1984 a], where an example
of a complex analytic space bearing this property is given). On the other hand Sibony, in
[Sibony 1975], proved that if the closed Carathéodory balls (see below for the definition)
are compact in a c-hyperbolic domain D C C", then ¢p induces the standard topology
on D. ’ ‘

Let

B (20,7)={2z€D |cp(z,2) <7}

be the open Carathéodory ball with centre at z, € D and radius r > 0, and
B.,(20,7)={2z€D |cp(z,2) <7}

be the closed Carathéodory ball. If B, (z,,7) denotes the closure of Be, (2,,7) with re-
spect to the standard topology of D, then one may ask whether B, (2,,7) and Be,(20,7)
coincide. The answer is that, in general, '

Be, (20,7) € Bep(20,7).
Note that it may well happen that

(1.2.1) Bep(#%0,7) # Bep(20,7).

In fact, for any m > 2, a bounded strongly pseudoconvex domain D C C?, with real
analytic boundary, has been worked out in such a way that, for some z, € D and some
r>0, (1.2.1) holds ([Jarnicki-Pflug-Vigué 1992], [Jarnicki-Pflug 1993], pg. 41).

Let dp be a continuous distance on a domain D C C". If any sequence {2z, }nen C D,
which is a Cauchy sequence with respect to the distance dp, converges to a point z € D
with respect to the standard topology of D, then the domain D is said to be dp-complete.
If all dp balls are relatively compact with respect to the standard topology of D, then
the domain D is said to be dp-finitely compact. ‘

Remark that dp-finitely compactness implies d p-completeness.

It turns out that a bounded strongly pseudoconvex domain D C C" is ¢ D-ﬁnitély compact.
Also, any convex bounded domain D C C" is cp-finitely compact.

In [PAlug 1984], it has been proved that any bounded pseudoconvex Reinhardt domain
containing the origin is c-finitely compact.

We refer the reader to [Jarnicki-Pflug 1993] for a detailed discussion about the above
questions. '
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Since the Carathéodory pseudodistance on a domain D is defined by means of holomorphic
mappings from D into A, it is natural to look at mappings from A into D to see whether
they can be used to define another invariant pseudodistance on D. This was done at the
end of the Sixties by Kobayashi ([Kobayashi 1967 a, b]).

Given a domain D C C", a “natural” definition should be

kp(z,w) = mf{ w(€,n) | f € Hol(A,D) f(€) =z f(n) = w}

for all z, w € D. Such a definition is meaningful, since the set { f € Hol(A,D) | z,w €
F(A) } is not empty and therefore kp(z,w) is a non-negative real number.

The function kp is symmetric, i.e. Ep(z, w) = kp (w, z), but, in general, it does not
satisfy the triangle inequality, as the next example shows.

Example 1.2.2 Let, for ¢ > 0,
D.={(2,w) €C? | 2] <1, |w| <1, |2w| <€ }.

Let P=(1/2,0),Q = (0, 1/2) and O = (0,0). It has been proved ([Lempert 1981]) that
if € is sufficiently small, then

%Dg (P7 Q) > EDE (Pa O) +7‘;De <O7Q)

The Kobayashi pseudodistance on a domain D C C" is defined to be the largest pseu-

dodistance which is smaller than %D. It turns out that (s'ee, for example, [Jarnicki-Pflug
1993], [Dineen 1989], [Abate 1989 a))

kp(z,w) = inf ZkD(Zj,Zj+1) lneN {z=2z,...,w=2,41} CD
j=1

The Kobayashi pseudbdista,nce can be defined for domains in complex normed spaces of
infinite dimension ([Franzoni-Vesentini 1980]) and for complex manifolds ([Kobayashi 1970,
1976]) as well.

" There is a remarkable case in which kp coincides with kp, namely ([Lempert 1981))

Theorem 1.2.3 Let D C C" be a convex domain. Then
kp = kp.

Since the above result was proved by Lempert, then, for any domain D C C", we will
call %D the Lempert function of D.
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The main properties of the Kobayashi pseudodistance are analogous to the properties of
the Carathéodory pseudodistance o

Proposition 1.2.4 Let D; CC" and D, C C™ be arbitrary domains. Then

sz (f(Z),f(’lU)) < le (z’ w)
forall z,we Dy and all f€ Hol(Ds1,D,), and
kA = Ww.

A domain D C C" is said to be taut if for any sequence { f, }» C Hol(A, D) there exists
‘a subsequence { fn; }; such that either { fn ; } converges uniformly on compact subsets -
“to an element of Hol(A, D) or, for each compact subset K; C A and each compact subset

K, C D, one has that fn; (K1) N Ky = 0 for all sufficiently large j ([Wu 1967]).

It turns out that a bounded taut domain is necessarily pseudoconvex. Viceversa, a strongly

pseudoconvex domain is taut. Every bounded convex domain is taut ([Abate 1989 a],
[Jarnicki-Pflug 1993)).

The Kobayashi pseudodistance is a continuous function, while the Lempert function is
only upper semicontinuous in general. However, the Lempert function of a taut domain is
continuous ([Jarnicki-Pflug 1993]). V

A domain D is called k-hyperbolic if kp is a distance. Contrary to what happens in
the Carathéodory case, k-hyperbolicity implies that the Kobayashi distance induces the
standard topology ([Barth 1972], [Royden 1971]). Taut domains are k-hyperbolic ([Kiernan
1970]).

Harris, in [Harris 1979], proved that a convex domain in C"” is k-hyperbolic if, and only
if, it is biholomorphic to a bounded domain. _

Every c-complete domain is k-complete too. It has been proved that a k-complete domain
is necessarily taut. It turns out that the converse of this statement fails to hold ([Jarnicki-
Pflug 1991 a]). For a convex domain, c-finitely compactness is proved to be equivalent to
k-hyperbolicity. See [Jarnicki-Pflug 1993] to have an exhaustive discussion on Kobayashi

completeness and related questions.

The Carathéodory and the Kobayashi pseudodistances are generalizations of the Poincaré
distance which both contract holomorphic mappings. In general, we call Schwarz-Pick

system of pseudodistances a system which assigns a pseudodistance to each domain.in

each normed complex linear space in such a way that (see [Harris 1979])
- the pseudodistance assigned to A is w;
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- if dy and dp are the pseudodistances assigned to the domains D; and Ds, respec
tively, and if f € Hol(D;, Dy), then, for all z, w € Dy,

d2(f(2), f(w)) < da(2,w).

This definition provides a convenient setting for comparing different invariant pseudodis-
‘tances. It has been proved that the Carathéodory and the Kobayashi pseudodistances
are the “smallest” and the “largest” Schwarz-Pick systems, respectively, i.e. it has been
proved that ([Harris 1979]) '

cp <dp <kp

. whenever {dp} is a Schwarz-Pick system.

3. The Carathéodory and the Kobayashi pseudometrics

Beside Schwarz-Pick systems of pseudodistances, it is likewise important to study holo-
morphically contractible pseudometrics which are generalizations of the Poincaré metric.
In what follows we define the Carathéodory and the Kobayashi pseudometrics, which
are the infinitesimal versions of the Carathéodory and the Kobayashi pseudodistances, )
respectively. | '

The Carathéodory pseudometric has been introduced by Carathéodory himself in [Cara-
théodory 1928], but it has not been studied extensively until the Sixties, when the works
by Reiffen [Reiffen 1963, 1965] appeared.

Let D C C" be a domain. The Carathéodory pseudometric is deﬁned as follows (see, for
example, [Jarnicki-Pflug 1993], [Dineen 1989], [Abate 1989 a])

vp(z;v) = sup{ (df (2)v) () | f € Hol(D,A) }

for all z € D and all v € C*. We refer to [Franzoni-Vesentini 1980] for the study of the
Carathéodory pseudometric on domains of complex normed spaces of infinite dimension.
One checks that vp is a pseudometric. Moreover, for all z € D, the function vp(z;.) is
a seminorm on C", ie. ' ‘

vp (2 Av) = |Alvp (25 v)
vp(z;v + w) < vp(2;v) + 7o (25 W)

for all v, w € C* and all A € C. If yp(z;.) is a norm for all z € D, then we say that

D is y-hyperbolic. It turns out that bounded domains are fy—hyperbohc ([Jarnicki-Pflug
1993)).
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The Carathéodory pseudometric is a locally Lipschitz logarithmically plurisubharmonic
function ([Franzoni-Vesentini 1980], [Vesentini 1982 b]).

Proposition 1.3.1 Let D; C C" and D, C_I C™ be domains and f € Hol(Dy, Ds), then

D, (f(2);df (2)v) < vp, (2;0)

for all z € Dy, v € C*. Moreover, on A the Carathéodory pseudometric coincides with

the Poincaré metric, i.e. |
10(z0) = (o)
forall z€ A andall veC.

The inner Carathéodory pseudodistance for a domain D C C" is the integrated form of |
the Carathéodory pseudometric, i.e. ([Harris 1979])

()= { [ a0l 0)at | £ € Blayw) |

for all z, w e D, where B(z,w)=1{ f:[0,1] = D piecewise C* curve : f(0) =2z, f(1)=

w }.

The inner Carathéodory pseudodistanceé form a Schwarz-Pick system, therefore
ep < ¢ < kp.

Let A={£€C|1/r<£&<r}forsome 7> 0. It has been proved that ([Jarnicki-Pflug
1990]) ’

ca(l,—1) < c4(1,-1).
Notice that the annulus A is among the domains for which the Carathéodory metric and
the inner Carathéodory distances are explicitly computed ([Simha 1975], [Jarnicki-Pflug
©1993)). »

Another example of this phenomenon can be found in [Vigué 1983], where it has been
proved that

N en((0,0),(2,)) < ch((0,0), (2,2))
for the domain D = { (z,w) € C? | |z|+|w| < 1, |zw| < 1/16 } and where 1/8 < |z| < 1/4.

Tt turns out that c% is a continuous function. If D is c*-hyperbolic (ie. if ¢} is a
distance), then ci, induces on D the standard topology ([Jarnicki-Pflug 1993]).
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It has been proved that, given a domain D C C™ ([Harris 1979])

: ~ : cp(21,22) _ .
(1.3.1) o Hm Tl 7D (205 v)
21722 .

zZ1—=2
—rv
21 ~z2]]

for all 2z, € D and all v € C"* such that |[v|| =1.
Whenever a pseudodistance dp on D and a pseudometric ép on D are related as in
(1.3.1), we say that dp is the derivative of dp.

The infinitesimal version of the Kobayashi pseudodiétance was defined by Royden in [Roy-
den 1971], on any domain D C C", as follows (see, for example, [Jarnicki-Pflug 1993],
[Dineen 1989], [Abate 1989 a]) ‘

kp(z;0) =inf{ (A | f € Hol(A, D) : f(€) =z df(§)A=v}

forall z € D and all v € C". Besides the usual reference to [Franzoni-Vesentini 1980] for the

infinite dimensional case, we mention [Venturini 1996] where the Kobayashi pseudometric

is defined on complex spaces too.

The fact that xp is a pseudometric on the domain D results directly from the deﬁnition;
but, in general, kp(z;.) is not a seminorm: for example, in [Kaup 1982] it has been noticed
that the Kobayashi metric at the origin of the domain D = { (z,w) € C? | |2| < 1, |w| <
1, 2|zw| < 1} is not a seminorm on C2.

The following properties hold

Proposition 1.3.2 Let D; C C* and Dy C C™ be doﬁains. Let f € Hbl(Dl,Dz).
Then ' .

KD, (f(Z), df(z)v) < kp, (z; 'U)
for all z € Dy, v € C*. Moreover, the Kobayashi pseudometric on A coincides with the
Poincaré metric, i.e.

kp(z;v) = (V).

In general, the Kobayashi pseudometric is an upper semicontinuous function ([Royden
1971]); it is continuous on taut domains ([Jarnicki-Pflug 1993]).

It can be proved that the Kobayashi pseudodistance is the integrated form of the Kobayashi
pseudometric ([Royden 1971], [Royden 1974], [Vesentini 1982b)), i.e.

o) = { [ kolr@: /@) £ € B }

18



for all z, w € D, where B(z,w) = { f:[0,1] = D piecewise C curve : f(0) =
2z, f(1) = w }. This result is fundamental to prove the following property ([Jarnicki-Pflug
1993]), which does not hold in the Carathéodory case (cf. (1.2.1))

~Proposition 1.3.3 Let D C C" be a k-hyperbolic domain. Then
BkD (ZO) T) = ij_) (z07 T)

for all z, € D and all v > 0 i.e. the closed Kobayashi balls coincide with the closure of
the open Kobayashi balls.

The Kobayashi pseudometric need not to be the derivative of the Kobayashi pseudodi-
stance. For example, in [Venturini 1989 a] it is proved that the Kobayashi metric at the
origin of the domain D, defined in Example 1.2.2 is not the derivative of the Kobayashi
distance kp, provided that e > 0 is sufficiently small.

Analogously to Schwarz-Pick systems of pseudodistances, one can define a Schwarz-Pick
system of pseudometrics as a system which assigns a pseudometric to each domain in each
complex normed linear space in such a way that ([Harris 1979])

- the pseudometric assigned to A is the Poincaré metric;
- if 61 and &5 are the pseudometrics assigned to the domain D; of the space N;
and to the domain Dy of the space Nj, respectively, and if f € Hol(D1, Ds), then

02(f(2); df (2)v) < d1(7;0)

for all z € Dy and all v € N;.
The Carathéodory and the Kobayashi pseudometrics form the “smallest” and the “largest”
Schwarz-Pick systems of pseudometrics ([Harris 1979]), i.e.

vp <6p < kp

whenever { dp } is a Schwarz-Pick system of pseudometrics.
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Secbnd Chapter

COMPLEX GEODESICS

A holomorphic map from the unit disc A C C into a domain D C C" is a complex
geodesic for the Carathéodory (or for the Kobayashi) pseudodistance if it is an isometry
with respect to the Poincaré distance on A and the Carathéodory (or the Kobayashi)
pseudodistance on D. The notion of complex geodesic was introduced by Vesentini in
1979 to study the automorphism group of the unit ball of L? (M, i), where (M, pu) is
a measure space ([Vesentini 1979]). Actually, we should mention that already in the
Twenties Carathéodory considered the image of a complex geodesic (for the Carathéodory
pseudodistance) under the name of “metrische Ebene” ([Carathéodory 1927]) and that
Kritikos exploited them to study the automorphism group of the complex ellipsoid £ =
{ (21,2) € C? | |z1| + |22 < 1} ([Kritikos 1927)).

Complex geodesics turned out to be a useful tool for the investigation of several questions
concerning complex analysis and complex geometry.

The characterization of complex geodesics in convex domains as one-dimensional holomor-
phic retracts entails equality of Carathéodory and Kobayashi distances on such domains
([Lempert 1982]). | |

It has been proved that a subset of a convex bounded domain D C C" is the fixed point
.set of a holomorphic endomorphism of D if, and only if, it is a holomorphic retract of
D ([Vigué 1985a]). As a consequence, a relation between fixed point sets and irriages of
complex geodesics in convex bounded domains is obtained (see also [Vigué 1984b]). In
particular, these results allow to characterize completely those subsets of a convex bounded
domain D C C? which are the fixed point set of a holomorphic endomorphism of D: the
empty set, a single point, the image of a complex geodesic, D itself ([Vesentini 1982 a]).

Kndwledge of explicit formulas for complex geodesics on a complex domain D allows to
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compute the Carathéodory (or the Kobayashi) metric on D ([Blank et alia 1992], [Jarnicki-
Plug 1993], example 8.4.8). |

By means of the existence and uniqueness of complex geodesics in strictly convex bounded
and balanced domains D C C", Vigué gave conditions under which a holomorphic endo-
morphism ¢ : D — D is necessarily a linear automorphism of D ([Vigué 1991]).

Also, some results in the same vein of the Schwarz Lemma had been obtained: if D; C C*
is a convex taut domain, Dy C C" is a domain and ¢ € Hol(D;, D) is such that
YD, (p(2); dp(2)v) = vp,(z;v) for one point z € Dy and all v € C*, then ¢ is a bi-
holomorphic map ([Vigué 1985b]). The same result holds if D; is taut, Dy is strictly
convex and bounded and ¢ is a holomorphic isometry for the Kobayashi metric at one
point z € D, ([Graham 1989], see also [Venturini 1989 b]). Inspired by the techniques used
in [Vigué 1985b] and in [Graham 1989], Abate and Patrizio proved analogue results for
holomorphic mappings between Teichmiiller spaces ([Abate-Patrizio 1997]).

Complex geodesics can be used to prove some characterizations of the unit ball of C" by
its automorphism group. For example, a theorem due to Rosay states that if D C C"
is a domain with C? boundary and Aut(D) is transitive, then D is biholomorphic to the
unit ball B, C C* ([Rosay 1979], see [Wong 1977] and [Lin-Wong 1990] for more general
results).
Complex geodesics are involved in some characterizations of circular domains in C* ([Aba-
te-Patrizio 1992]) and of the polydisc A™ C C™ ([Stanton 1980]) in terms of properties of
Carathéodory and Kobayashi metrics (see [Stanton 1983] for a similar result concerning
the unit ball of C™).

Abate used complex geodesics to generalize Shields’ Theorem (by proving the existence of

a common fixed point of a family of commuting holomorphic endomorphisms of a strongly
convex domain D C C*) and Julia-Wolff-Carathéodory Theorem (by giving sufficient con-
ditions for a holomorphic endomorphism of a strongly convex domain D C C* with C?
boundary to admit angular derivative at a point z € 9D) to strongly convex domains
([Abate 1989b, 1989a, 1990] and [Abate 1991] for a further generalization of the Julia-
Wolff-Carathéodory Theorem to strongly pseudoconvex domains).

Complex geodesics played a rdle in a result by Krantz and Burns on boundary rigidity for
holomorphic endomorphisms of bounded strongly pseudoconvex domains in C* with C?
boundary ([Burns-Krantz 1994], see also [Huang 1994, 1995]).

In his fundamental work [Lempert 1981], Lempert found the relation between complex
geodesics and the complex Monge-Ampére equation on a convex bounded domain and
exploited his results on existence and uniqueness of complex geodesics to improve Feffer-
man Theorem on smooth extension of biholomorphic mappings between smoothly strongly
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pseudoconvex domains: Lempert proved.that a biholomorphic map between two strongly
pseudoconvex domains with C* boundary, k& > 6, extends to a diffeomorphism of class
C*=* between the closures of the domains (see also [Lempert 1986]).

The above account would only let feel the flavour of the various fields in which complex
geodesics have been used. It is influenced by author’s own-taste and it is not meant to be
complete. ' ‘

1. Complex geodesics

Let D C C™ be a domain. Let dp be the pseudodistance assigned to D by a Schwarz-Pick
“system. For every holomorphic map ¢ : A — D, one has that

dp(p(§), o(n) < w(&,n)

for all £,n € A. If there exist £1,&; € A such that

dp(p(&1), p(€2)) = w(&1, €2),

then ¢ is called a complex geodesic for dp at (&) and p(&s). When ¢ is a complex

geodesic for dp at ¢(&;) and ¢(&2) for all £1,&2 € A, we say that ¢ is a complex geodesic

for dp.

A complex geodesic for ¢p is necessarily a complex geodesic for the pseudodistance assigned
to D by any Schwarz-Pick system; in particular, it is a complex geodesics for kp.

A complex geodesic ¢ : A — D for dp is necessarily injective and, if dp is a distance,
©(A) is closed with respect to the dp-topology ([Vesentini 1981]).

This fact implies, in particular, that a bounded non simply connected domain D C C does
not admit any complex geodesic for kp. 7

Let ¢ : A — D C C™ be a complex geodesic for dp. Since any automorphism g of A is an
isometry for the Poincaré distance, then the holomorphic map pog: A — D is a complex
geodesic too and @ o g(A) = p(A). It can be proved that if ¢ : A — D and ¢ : A — D are
complex geodesics such that ¢(A) = ¥(A), then there exists an automorphism f of A such
that ¢ =9 o f ([Vesentini 1981]). Therefore, every time we will discuss about uniqueness
of complex geodesics we will mean uniqueness up to a composition with an automorphism
of A, i.e. complex geodesics with the same image will be identified.

If 0p is the pseudometric assigned to D by a Schwarz-Pick system, then a holomorphic
map ¢ : A — D is called an infinitesimal complex geodesic for ép at @(&,) if

6p(p(&); dw(o)v) = (v)e,
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for all v € C. An infinitesimal complex geodesic ¢ : A — D for §p is, by definition, an

infinitesimal complex geodesic for dp at p(£) for all € € A.

Notice that an infinitesimal complex geodesic for the Carathéodory pseudometric is neces-
sarily an infinitesimal complex geodesic for the Kobayashi pseudometric.

The fact that the Carathéodory pseudometric is the derivative of the Carathéodory pseu-
dodistance together with Montel Theorem and Schwarz-Pick Lemma allow to prove the
following result ([Vesentini 1982 a))

Proposition 2.1.1 Let D C C* be a domain. Let ¢ € Hol(A, D). Then the following
facts are equz’valent’ '

(a) there exist £1,&3 € A such that ¢ is a complex geodesic for cp at p(£1) and o(&2);
(b) © is a complez geodesic for cp; |

(c) there exists £, € A such that ¢ is an infinitesimal complex geodesic for vp at v(&,);

(d) ¢ is an infinitesimal complex geodesic for vp.

Therefore, in the Carathéodory case, the notions of complex geodesic and infinitesimal

complex geodesic coincide and, moreover, in order to know whether a given holomorphic
"map is a complex geodesic for cp it suffices to check equality at a single couple of points

only. ‘ _

As far as complex geodesics for the Kobayashi distance are concerned, the situation goes

as follows ([Venturini 1989 b])

Proposition 2.1.1’ Let D C C" be a domain. Let ¢ : A — D be a compler geodesic for
kp at o(&1) and ¢(&2), for some &1,&2 € A. Let S be the arc of the Riemannian geodesic
for the Poincaré metric joining €1 and &3 in A. Then

(a) ¢ is a complezx geodesic for kp at @(n1) and @(n2) for all n1,m2 € S;

(b) ¢ is an infinitesimal complez geodesic for kp at (&) for all £ € S.

Proposition 2.1.1 and the Hahn-Banach Theorem yield the following ([Vesentini 1981])

Proposition 2.1.2 Let D C C" be a conver and balanced domain. Let up be its Minkowski
functional. Let z € D be such that up(z) > 0. Then the holomorphic map

A-—=D

A=A z

1o (2)

is a complex geodesic for cp.

Therefore, in particular, for each point z in a convex balanced domain D, there exists at
least one complex geodesic for ¢cp whose image contains the origin and z.
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If v : D — D is an automorphism and ¢ : A — D is a co;nplex geodesic, then 9 o ¢

is a complex géodesic too. Conéequently, if a convex balanced domain D has “enough”
automorphisms, then for any two points of D we can find a complex geodesic whose image

" contains them. A

Since for most domains we do not have a deep knowledge of the automorphism groups

and, above all, complex geodesics are intended as a tool to study also the automorphisms

of a domain, then we should look for another way to study the question of existence of

complex geodesics.

By the Schwarz-Pick Lemma, we get the following characterization of complex geodesics

for the Carathéodory pseudodistance ([Jarnicki-Pflug 1993], [Reiffen 1963)). '

Proposition 2.1.3 Let D C C" be a domain. Then a holomorphic map ¢ : A — D is a
complex geodesic for cp if, and only if, there exists a holomprphic map v : D — A such
that v o p = IdA.

If ¢ : A — D is a complex geodesic for ¢p, then it is a complex geodesic also for kp and

en(0(E), o(m) = Fn(0(€), o(m) = kp(@(€), v(n) = w(E,n)

for all £,7 € A. Therefore on the image of a Carathéodory complex geodesic the Carathéo-
dory pseudodistance coincides with the Kobayashi pseudodistance and with the Lempert
function. '

For any two points z and w in a taut domain D C C" there exists a holomorphic map
¥ : A — D such that %(0) = z, ¥(§) = w and kp(z,w) = w(0,&). If, moreover, cp = kp,
then by Proposition 2.1.1 for any z,w € D there exists a',_,complex geodesic (for cp)
@ : A — D such that z,w € p(A). This fact and Proposition 2.1.3 yield the following
([Vigué 1985 al) '

Proposition 2.1.4 Let D C C" be a taut domain. Then the following conditions are
equivalent

(a) cCp = ED; ‘

(b) for any z,w € D there ezist holomorphic maps ¢ : A — D and f : D — A such that
z,w € p(A) and fop = Ida.

These results, however, are not satisfactory because it is not at all an easy question to
decide whether the Carathéodory pseudodistance coincide with the Lempert function.
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2. Complex geodesics in convex domains.

Up to now, the most comprehensive results on this matter are due to Lempert and concern
the existence (and uniqueness) of complex geodesics for the Kobayashi distance on (striclty)
convex domains. | ‘ ’

- In the fundamental work [Lempért 1981] it is proved that for any two distinct points
of a convex bounded domain D there exists a complex geodesic for kp(= kp) whose
image contains them. Moreover, Lempert gives a characterization of complex geodesics (in
strongly convex bounded domains with C® boundary) which can be used to find explicit
formulas for complex geodesics.

Recall that on a convex domain the Kobayashi distance and the Lempert function coincide
(Theorem 1.2.3).

Let D C C" be a strongly convex domain with C® boundary. The starting point of
Lempert work is the observation that an infinitesimal complex geodesic ¢ : A — D for Kp
at (z,v) € D x C™ is a solution of the extremal problem

sup{ |¢/(0)] | g € Hol(A, D) : g(0)=z g'(0)=Av A>0}.

Considerations from calculus of variation led Lempert to believe that a holomorphic map
¢ : A = D is an infinitesimal complex geodesic for xp if, and only if,

(a) ¢ € Hol(A,D)N CY2(A,D);

(b) v(84) C 8D; | |

(c) there exists a function p € CY/2(8A, RY) such that the map

aA — C"
§ = E&p&)v(p(d))

extends to a map @ € Hol(A,C*)NCY2(A,C*), where v(2) is the unit outer normal
vector to D at z € D and C'/?(By, By) denotes the set of 1/ 2-Holder maps from
the metric space B; to the metric space Bs. :
For the moment, we call stationary a holomorphic map ¢ : A — D satisfying conditions
(a), (b) and (¢).
Strict convexity of the domain and condition (c¢) allow to prove that a stationary map
¢ : A — D is the unique infinitesimal complex geodesic for kp at (¢(0), ¢’(0)).
Once it has been noticed that the composition ¢ o fiA > D of a stationary map
¢ : A — D with an automorphism f of A is again a stationary map, one gets the following
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Proposition 2.2.1 Let D C C™ be a strongly convez domain with C® boundary. A sta-

tionary map ¢ : A — D is the unique infinitesimal complex geodesic for kp at (¢(§), ¢'(€))
for all £ € A.

Analogoﬁsly, one can prove that

Proposition 2.2.2 Let D C C* be a strongly conver domain with C* boundary. A sta-
tionary map ¢ : A — D is the unique complez geodesic for kp at ¢(&) and ¢(n) for all
&,m€eA.

One of the deepest results of Lempert concerns the relation between the regularity of the
boundary of the domain D and the regularity up to the boundary of A of a stationary
map, namely '

Proposition 2.2.3 Let D C C" be a strongly convexr domain with Ck boundary, k > 3. Let
¢ : A — D be a stationary map. Let p € CY2(dA,RT) and & € Hol(A,C*)NCY?(A,CM)

be the mappings related by the equation §(£) = £p(&) v(p(€)) for all £ € A, which exist
by the definition of a stationary map. Then @, § € C*~2(A,C").

Let us define we z = (w,z) = > 7, wjz; for z, w € C*, where (, ) is the usual Hermitian
product on C". It turns out that, if ¢ : A — D C C™ is a stationary map, then ¢'(§)e (),
£ € A, is a positive constant function on A. This fact helps to prove that a stationary map
imbeds A into C* and implies that, given a stationary map ¢, the corresponding mappings
p and @ are determined up to multiplication by a positive constant. Therefore, with the
above notations, one can choose p(§) = (§<p'(§) ® W) - ,for all £ € AA.

The uniqueness result in Proposition 2.2.1 implies that the images of two sta%ionary maps
either coincide or consist of a single point, but a stronger statement has been proved, that
is ‘

Proposition 2.2.4 Let D C C" be a strongly conver domain with C* boundary. Let
0 # Y : A — D be two stationary maps. Let z = ¢(0) = 1(0). Then p(A)Nyp(A) ={ 2z }.

The main result, namely the existence of stationary maps, is proved by using a method
which involves the perturbation of domains.

Theorem 2.2.5 Let D C C* be a strongly convez bounded domain with C% boundary.
Then for any two point z,w € D there exists a unique stationary map ¢ : A — D for z

and w.
Propositions 2.2.1 and 2.2.2 and Theorem 2.2.5 yield existence and uniqueness of complex
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geodesics for kp and infinitesimal complex geodesics for kp in any strongly convex domain
D C C* with C® boundary. By an approximation process, one gets we the following

Theorem 2.2.6 Let D C C™ be a convez bouhded domain. Then ‘

(a) for cmy two points z,w € D there exists a complex geodesic for kp ¢ : A — D such
s that z,w € p(A);

(b)  for any point z € D and any vector v € C" there exists an infinitesimal compler
geodesic for kp ¢ : A — D such that z = ¢(0) and v = A ¢’(0) for some A > 0.

It turns out that complex geodesics for the Carathéodory distance on a strongly convex
domain with C? boundary are continuous up to the boundary of A (in [Jarnicki-Pflug 1993]
it has been proved that the same result also holds for strongly pseudoconvex domains with
C? boundary)

Proposition 2.2.7 Let D C C" be a strongly conver domain with C? boundary. Let
p:A—Dbea complez geodesic for cp. Then ¢ € Cl/Z(Z, D).

As far as complex geodesics with prescﬁbed boundary data are concerned, in [Chang-Hu-
Lee 1988] and in [Abate 1989 b] the following result is proved

- Theorem 2.2.8 Let D C C" be a strongly convex domain with C3 boundary. Then for any
two points z,w € D there ezists a unique (up to automorphisms of A) complex geodesic
@0 : A — D for kp such that z,w € p(A).

The infinitesimal version of this result is more involved, namely ([Chang-Hu-Lee 1988]) -

Theorem 2.2.9 Let D C C" be a strongly convex domain with C** boundary. Let z € 8D,
iv € TR(OD) with v e v(z) > 0. Then there exists a unique (up to automorphisms of A)
infinitesimal complez geodesic ¢ : A — D for kp such that (1) = z and ¢'(1) = v.

If the boundary of the domain is sufficiently regular, then the following characterization
holds

Theorem 2.2.10 Let D C C" be a strongly conver domain with C°® boundary. Then a
holomorphic map ¢ : A — D 1is a complex geodesic for kp if, and only if,

(a) @€ Hol(A,D)nCHY/2(A, D);

(b) ©(0A) C OD;

(c) there exists a continuous function p € CY2(0A,RT) such that the map
8A — C"
£ = &p(8) v(p(€))
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estends to a map & € Hol(A,C™) N CHY/2(A,C).

This result allows to prove a characterization of complex geodesics for the Kobayashi
distance which was more or less immediate in the Carathéodory case, namely ([Lempert
1982)) '

Theorem 2.2.11 Let D C C” be a strongly convex domain with C’3' boundary. Then a
holomorphic map ¢ : A = D is a complex geodesic for kp if, and only if, there ezists a
holomorphic map v : D — A such that 1 o ¢ = Ida.

Given a complex geodesic ¢ : A — D, the mapping v : D — A appearing in the above
Theorem is determined by the equation (z — ¢(¥(2))) @ @(x(2)) = 0 for all z € D, where
@ is the holomorphic map defined in Theorem 2.2.10.

A subset S of a domain D C C" is called a holomorphic retract if, and only if, there exists
a holomorphic map r : D — D such that (D) C S and r(z) = z for all z € S. Theorem

2.2.11 can be rephrased by saying that the images of complex geodesics on strongly convex
domains with C2 boundary are exactly the one-dimensional holomorphic retracts.

By an approximation process, Theorem 2.2.11 yields the following

Theorem »2.2‘.12 Let D C C™ be a convex domain. Then
Cp = kD : and YD = KpD.

Therefore, on a convex domain, we can discuss about complex geodesics tout court.
Recall that if, on a given taut domain D C C", the Carathéodory and the Kobayashi
distances concide, then one gets the existence of complex geodesics (Proposition 2.1.4).

In [Dineen-Timoney-Vigué 1985] it has been proved that the Carathéodory and the Koba-
yashi distances on any convex domain of a locally convex space coincide.

As a consequence of Theorem 2.2.5, Lempert obtained the following result about the
regularity of the Kobayashi distance

Theorem 2.2.13 Let D C C" be a strongly conver domain with C* boundary, k > 6.
Then the Kobayashi distance :

kp:DxD—{(zz2)|2€D}—>R"
is a C*=* function.

By using a different approach Royden and Wong obtained a characterization of complex
geodesics in a convex bounded domain D without any regularity assumption on the boun-
dary of D ([Royden-Wong 1983]). '
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The dual Minkowski functional of up is defined as follows

fip (w) ci—elfsup{ Riw(o)z) | ze C*—{0} } max { Re(w-z) | z€ 0D }

for all w € C™.
The result stated by Royden and Wong is the following

Theorem 2.2.14 Let D CC™ be a bounded conver domain with 0€ D. Then a holomorphic
mapping ¢ : A — D is a complex geodesic if, and only if,

(a) | ©* (&) € 0D fqr a.a. £ € 0A

and there exists h € H*(A,C*), h £ 0, such that

B Re(0©0n©) =in (10 for a.a. £ € OA

%

It has been proved that for any w, € C*—{0} the following equation holds (cf. [Jarnicki-
Pflug 1993, Remark 8.2.3])

Re (w, ® z?) = jp(w,)

if, and only if, W, is an outer normal vector to 8D at z,.

The Minkowski functional up of a convex bounded domain D C C™ such that 0 € D turns
" out to be differentiable almost everywhere (with respect to the Lebesgue measure of 6D)
on 0D, and therefore such a domain has a unique outer normal vector to 8D at almost
allw € 0D (see Appendix). Thus the following theorem gives a satis‘factory description of
complengeodesics in a convex bounded domain

Theorem 2.2.15 Let D e C™ be a bounded conver domain with 0€ D. Let ¢ : A — D be
a holomorphic map such that ©*(§) € 0D for a.a. £ € OA and that the unit outer normal
vector to 0D is defined at p*(£) € 8D for a.a. £ € OA. Then ¢ is a complez geodesic if,
and only if, there exist h € HY(A,C*), h £ 0, and p: 0A — Rt such that

(@ O =pOF2(€)  foraageon
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‘3. A class of functions in H'(A)

In [Gentili 1986 b] it is proved the following

Lemma 2.3.1 Let f € HY(A) be such that

_f_;(_&) eR for a.a. £ € BA,

then there exist o € C and r € R such that
fO)=a+ri+ar? | AEA.

If, in particular, F*(€)/€ € RY for a.a. £ € OA, then 7 > 2 || and there exist 7, > 0 and
‘a € A such that \ ‘ -
o FA) =ro(A—a,)(1 —a, A)

forall A € A.

In the sequel we will use the following generalization of this result

Lemma 2.3.2 Let f € H(A) be such that

Re (ﬁg—)) >0 for a.a. £ € 8A,

then there ezist « € C and k € H*(A) such that Re (k(X\)) > 0 for all A € A and that
FO) =a+ k() —aX? A€ A.

Proof: Let f(A\) = @+ g(\), where g is such that g(0) = 0. Therefore v(A) =g(\)/r e
- H'(A). By using this notation we have '

N _

- ,
D) + @b()\) A€ A.
Since, by hypothesis, Re (@/& + ¥*(£)) > 0 for a.a. £ € 0A, then

Re (f% + w*(ew)) = Re (@ e® +v*(e)) = Re (a & +9"(c)) > 0
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for a.a. @ € R. The function k() = a A+9(A), A €A, belohgs to H1(A) and Re(k*(¢)) > 0
for a.a. £ € OA. Therefore, by the Poisson integral representation formula, Re(k(A\)) > 0
for all A € A. Finally, since k(A) = a A+ f(A\)/A — @/), then -

f()\)za'+Ak(A)—a)\2. e A.

QED

We remark that the proof of Lemma 2.3.2 closely fcﬂlows that of Lemma 2.3.1.
Notice that, if f(£)/¢ € Rt for a.a. £ € A, then

§+ k*(€) — af = af — af + k*(€) = —2iIm(al) + k*(6) € R
for a.a. & € A and this happens if, and only if,
Tim(k*(€)) ~ 2Tm(rg) = 0

for a.a. £ € OA. Therefore k(A\) —2aA=c€R forall A € A and so f(A\) = @+cA+a Al

4. Complex geodesics in convex balanced domains

The aim of this Section is to find out as much information as possible on the function
p: 0A — Rt appearing in Theorem 2.2.15.

Let ¢ : A — D be a complex geodesic; then Theorem 2.2.15 1mphes that there exist
h € HY(A,C"), h#0, and p : A — R such that

R4 OGO =K Z2@ OO  i=Len

for a.a. £ € OA. Summing up these equations we get

(2.4.2) %Z ©)p1(0) = aza’“’ “(€) @3(€)
j=1

for a.a. £ € AA. Since, by convexity of D and the fact that 0 € D,

Re (Z 90D = (¥"(€)) ¥; (5)) Re ((*(§) = 0,¥(¢7(€)))) > 0

j=1
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then
Re [ 33 mi©)w3©) | >0
£ 2

for a.a. & € AA. By Lemma 2.3.2 we have that there exist « € C and k € H'(A),
k:A—){SEClRe§>O},suchthat

Zh AN\ _a+Ak(,\) —a\?

j=1

for all A € A. Hence we have the equation
(243) B+ K€ - T = —2iIm(@E) + £(©) = ) 1 T2 (5" (€)) #5(6)
j=1 =Y

for a.a. £ € 0A, which is equivalent to the following real equations

T2 )% (5))

i=1

Re (k"(€)) = p(¢) Re (

_zxm(ag)+1m<k*(s>>=p<§)1m(_ F2€) m)

| for a.a. £ € OA. Therefore

_ Re(k(9)
Re (T5-1 %22(0°(6) ¢5(9))

for a.a. £ € A, where the function k satisfies the condition

Im (7, %2(¢°(€) 5(9))
Re (X7, 22 (¢*(6)) 3(0))

(2.4.4) p(€) =

Im (£*(¢)) = Re (K*(¢)) + 2Im(@¢)

for a.a. £ € OA.

In particular,

mlr—-l

Z (€)e}(6) eRT

J
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for a.a. £ € OA.

Let us notice that if D C C" is a (convex bounded) domain symmetric with respect to the
origin 0 € C* (i.e. such that if z € D then —z € D) then up(tz) = |t|up(z) for all z € C"
and all t € R. In this case

:li(”D(t z)) = g

2 (jlun(2)) = ;—,umz) |

for a.a. 2 € C* and all t € R — {0}. Therefore, for t = 1 we get

for a.a. z € C* and the function p : JA — R+ appearing in equation (2.4.4) becomes

p(§) = 2Re (k" (£))

for a.a. £ € OA, where k € H'(A) is such that Re (k(\)) > 0 for all A € A and that there
exists o € C with

m (k*(6)) = 2 (Im (Z % (4 (e) go;f@)) Re (k*(€)) +1m<as))
g=1 ~™
for a.a. £ € OA. |

We collect these results in the following

Theorem 2.4.1 Let D € C" be a bounded conver domain with 0€ D. Let ¢ : A — D be
a holomorphic map such that ©*(&) € 8D for a.a. £ € OA and that the unit outer normal
vector to 0D is defined at ©*(§) € OD for a.a. £ € OA. Then ¢ : A — D is a complex
geodesic if, and only if, there exist h € HY(A,C*), h#£0, k: A - {£€C|Re£ >0},
k€ HY(A) and o € C sich that :

a 1 * Re (k" (€)) OkD ( ‘ or a.av. oA

@ O R @ nE) 0 Y for a0 £
Jj=1,...,n, and

(b) . )

Im(k*(£)) = (3 B2 (7€) ¢3() Re (k*(€)) + 2 Im(@¢)" for a.a. £ € BA.

Re(3 51 %’i"” (#*(€)) ¥5(£))
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If, moreover, D is symmetric with respect to the origin 0 € C™, then

e | P24 | = for aa. € € 08,

=1

Finally, let us suppose D C C" be a convex bounded and balanced domain, i.e. the domain
D is such that pp(Az) = |M\pp(z) for all z € C* and all A € C.
We have

2 (up(r2)) = Z A2

d A
o (Plun(2)) = Q—IA_I“D(Z)
for a.a. z € C" and all A € C. Therefore, for A = 1, we get

n

Y e 2 (2)2 = Sup(2)

i=1

for a.a. z € C".

Let ¢ : A — D be a complex geodesic. Since ¢*(€) € 9D for a.a. £ € A, then equation
(2.4.2) becomes in this case

i

S h3(€)93(6) = 5 p(6) up(#" () = 5 () > 0
j=1
for a.a. £ € OA. Therefore, by Lemma 2.3.1

© (2.4.5) i hi(A)@;(A) = 1o(A = ao) (1 — TpA) AeA
j=1

for some 7, > 0 and «, € A, and consequently
p(§) = 2.7'011 — Tt for a.a. £ € HA.

So, we can state the following

Theorem 2.4.2 Let DEC™ be a conves bounded and balanced domain. Let ¢ : A — D be
a holomorphic map such that ¢*(€) € 8D for a.a. £ € OA and that the unit outer normal
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vector to 8D is defined at ¢*(¢) € OD for a.a. £ € OA. Then ¢ : A — D is a complex
geodesic if, and only if, there exist h € HY(A,C*), h#£ 0, 1, > 0 and o, € A, such that

(a) %—h;-‘ (6) = roll — @[ %-‘;—l?-(so*(s)) for a.a. £ € 0A

J

Example 2.4.3 As a simple consequence of this Theorem we can find a large family of
complex geodesics through the origin of a convex bounded balanced domain D C C". Let
z € 0D be such that there exists v(z). Then the holomorphic map

w:A—D
A Az

is a complex geodesic in D. :
First of all, since, pp(Az) = |A|pp(2), then p(A) C D and ¢*(0A) C 8D. One has that

\ 0 Opp
(2.4.6 —pup(Az) = |A\|—+—
(2.46) 5 o) = G2 ()
for all A € C. Therefore the unit outer normal vector v(p*(€)) is defined at p*(€) for all € €
OA. Thus the hypotheses of Theorem 2.4.2 are verified and we can look for h € H1(A,C"),
h # 0 and o, € A satisfying condition (a). ; |
Since ¢(0) = 0, then, by equation (2.4.5), we have o, = 0. It turns out that

8 dup

5;:;”13 (Az) = —sz

(Az)A
for all A € C. By equation (2.4.6) it follows that

Bup \ \_ Maup,
8Zj (AZ) B A 8zj (Z)

~ for all A € C — {0}. Therefore ¢ satisfies condition (a) in Theorem 2.4.2 as soon as we
define r, = 1 and '

hi(\) = %‘;? (2) A€ A
7

forallj=1,...,n.

We remark that the same result follows from the Hahn-Banach Theorem without assuming
the existence of the unit outer normal vector v(z) to 8D at z (cf. [Vesentini 1982a]).
However, we believe that this approach will be useful also in the study of those complex

geodesics which do not pass through the origin.
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5. Uniqueness of complex geodesics

Since uniqueness of complex geodesics is important in many applications, in what follows
we give a brief account on this question |
Let D C C™ be a strictly convex bounded domain. Let z,w € D. Suppose that there exist
two different complex geodesics ¢o, @1 : A — D such that

0o (0) = ¢1(0) = z

©o(r) = p1(r) = w

for some r € (0,1). For all t € [0, 1], define the holomorphic map @; = t@1 + (1 — t)po. By
convexity of D, it turns out that ¢; : A — D. Moreover, since

CD(‘pt(O)v ‘Pt("')) = CD(zv ’LU) = w(ov 'l"),

. then ¢; is a complex geodesic. The boundary values of a complex geodesic cannot belong to
the interior of D, therefore we can improve a little Theorem 2.2.6 by stating the following
([Dineen 1989])

Theorem 2.5.1 Let D C C™ be a strictly conver bounded domain. Then for any z,w € D |

there exists a unique (up to automorphisms of A) complez geodesic through z and w.

As far as uniqueness of complex geodesics through the origin of a convex bounded balanced
domain D C C" is concerned, the notion of complex extreme point comes on stage.

Let D C C" be an arbitrary domain. A point z € D is called a complex extreme point if
w = 0 is the only vector such that z + éwe D for all £ € A.

Notice that if D is a strictly convex domain, then every boundary point of D is a complex

extreme point of D. However, the domain & = { (z1,22) € C* | |21] + |22| < 1 } is not
strictly convex, nevertheless every boundary point of £ is a complex extreme point of g
A boundary point w = (w1, ..., wy,) of the polydisc A™ = { z € C* | maxj—1,.n|2]| <1}
is not a complex extreme point whenever |w;| < 1 for some j =1,...,n.

In [Vesentini 1982 a] the following result has been proved

Proposition 2.5.2 Let D C C* be a convex bounded balanced domain. Let [ip be the
Minkowski functional of D. Let z € D. Then the holomorphic mapp
Tp:A—=D

A
A A——
1p(z)
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is the unique (up to automorphisms of A) complex geodesic for cp whose image contains
0 € D and z if, and only if, p(A) ﬂ oD contams a complem extreme point of D

Further investigation about the relation between non-uniqueness of complex geodesics and
complex extreme points has been carried out in [Gentili 1986 a). Let D C C* be a convex
bounded balanced domain. Let xp be the Minkowski functional of D. Let z € D. Define
M(z) to be the family of all convex balanced subsets P of C* such that z + P C D. The
Zorn Lemma implies that there exists a maximal element (with respect to inclusion) M (z)
of the family M(z). The “amount” of complex geodesics through the origin and z depends
on the “size” M (z) as the following result explains ([Gentili 1986 a])

Proposition 2.5.3 Let D C C™ be a convexr bounded balanced domain. Let up be the
Minkowski functional of D. Let z € D. If, either h : A - M (M (Z)) 1§ a holomorphic
map having at least two zeroes in A, or h : A == M (
that h(0) = 0, or h : A — tM(

holomorphic map

#(z) 18 a holomorphic map such

s (z)) is a holomorphic map and t € (0,1); then the

w:A—D
A A

uDz(z) + h()

is a complex geodesic. ‘

A consequence of the above result is the following: if there exists a point z, € 8D on the
boundary of a convex bounded balanced domain D C C™ such that M(z,) # { 0 }, then _
there are complex geodesics of D which are not continuous on A.

In [Gentili 1985] it has been proved that, in some sense, non-uniqueness of complex
geodesics is a “global” property, namely

Proposition 2.5.4 Let D C C" be a convez bounded domain. Let o : A — D be a complex ‘
geodesic. Then the following facts are equivalent:

(a) there exist A\ # A2 € A such that ¢ is not the unique complex geodesic through o(A1)
and o(A2); .

(b) there exists Ao € A such that ¢ is not the unique complea: geodeszc tangent to ¢'(Ao)
at the point ©(Xo);

(c) forall & #mn e A ¢ is not the unique complez geodesic of D through ¢(&) and ¢(n);

(d) for all X € A ¢ is not the unique complez geodesic of D tangent to ¢’ (A\) at ¢()).
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Third Chapter

HOW TO COMPUTE COMPLEX GEODESICS

IN REINHARDT DOMAINS

We have seen that, for any two points in a convex bounded domain, there exists a complex
geodesic whose image contains them. As far as explicit examples are concerned, a satisfac-
tory description of the complex geodesics through the origin of a convex balanced domain
has been obtained ([Vesentini 1982 a], [Gentili 1986 a]) and effective formulas for the whole
family of complex geodesics have been worked out in some cases, e.g. convex complex ellip-
soids and some of their possible generalizations ([Blank et alia], [Gentili 1986 b}, [Jarnicki-
Pflug 1995], [Jarnicki-Pfulg-Zeinstra 1993], [Zwonek 1995a], [Visintin 1995]). However,
a general method to determine explicitly the family of all complex geodesics of a given
convex bounded domain is not available at the morment. ,

In this chapter, we generalize and extend to an arbitrary convex bounded Reinhardt domain
the particular procedures used to solve the question of describing complex geodesics in the
cases quoted above.

The main statement proved is Theorem 3.2.1, which characterizes complex geodesics by
means of a system of equations involving the module at the boundary of the single com-
ponents and the unit outer normal vector to the boundary of the domain.

This result gives a method (simpler than that furnished by Theorem 2.4.2) to check whether
a holomorphic map from the unit disc A into a convex bounded Reinhardt domain is or
not a complex geodesic, and can be used to find explicit formulas for complex geodesics in
such domains. Moreover, some of its consequences give a better insight of the behaviour
of complex geodesics. For example, we have proved that each component of a complex
geodesic in a strictly convex bounded Reinhardt domain may have at most one zero in A
and that, for some particular families of convex bounded Reinhardt domains, the knowledge
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of the complex geodesics of one domain of the family suffices to determine the complex
geodesics of all other domains belonging to that family.
1. Complex geodesics in Reinhardt domains

Let D be a convex and bounded Reinhardt domain. Let us recall that D is a Reinhardt
domain if, and only if, the following condition is satisfied:

if (21,...,2n) €D then (e®z,...,e%2,)eD forall 6;,...,6, €R

A convex Reinhardt domain is obviously a balanced domain, therefore Theorem 2.4.2
applies to this case too. '
By the definition of Minkowski functional it immediately follows that

(*) D is a Reinhardt domain if, and only if,

“D(('Zla . 'b'>zn)) = :U'D((,ZIL s |ZnD)

for all z € C™;

(#x) if D is a convex Reinhardt domain and (z1,...,2,) € D then (A1 21,...,An 2p) €
D for all Ay, ..., A, € A; therefore up((A1 21,5 A0 2n)) < pp((21,...,2,)) for all z € C
and for all A,..., A\, € A. ' -

By (*) we can compute, for a.a. z € C,

5 p((2 1) = gtin (s anl) = Gl anl)
and .
ou ou 1
Sip(2) = Zazf(nzj Za]jw xanz, 52 3[%,(1@1 NENIET
Therefore
.11 3 Gl el = (2
7 9l

for a.a. z € (C— {0})™. By (x*) it follows that

91D 1, .
a]zjlﬂ 1|7,[ 'nDZO
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for a.a. z € C". The following result clarifies the behaviour of the partial derivatives
Oup/0|z!.

Lemma 3.1.1 Let D C C" be a convex bounded Reinhardt domain. Let Z € 0D be such
that v(Z) is defined, 2 oie l(”) =0 and z; # 0.

Then D is not strictly convex at zZ € dD.

Precisely, (Z1,...,%j—1,t 2 + (1 = £) Zj, Zj+1,- - -» Zn) € 8D for all t € [0,1] and all |z;| <
|21 |

Proof: Convexity of pp implies

up(z) 2 pp(2) + Re((z - 2,v(2)))

for all z € C*. Let z = (21,...,2,) be such that z; = Zzj for all k¥ # j and |z;| < |7j].
Therefore pup(z) < pp(z) =1,ie. z€ D. Let w(t) =tz+ (1 —1)Z = (Z1,...,Zj—1,t 25 +
(1 —t)Zj,Zj41,- - -, 2n) for all t € [0, 1]. Obviously w(¢) € D and

pp(w(t) > 4o (Z) + Re (Z EOICOR zk>) = up (%) =1
k=1
for all ¢ € [0,1]. Therefore

1=pp(?) < po(w(t)) =tpp(2) + (1= tup(3) <1

and so w(t) and z are in 8D.
' QED

Let us define the holomorphic maps

P :Ct —»Cv?

(21, +s2n) > (21, .-, 26y -, 2Zn)
and
L:Cl o
(zla- vy Bk—1y Rk+1s - - '7zn) = (zly‘"'azk—laoazk—l-la o "zn)

Lemma 3.1.2 Let D C C* be a conver bounded Reinhardt domain. Let w: A — D be
a holomorphic map such that ¢, = 0. Then ¢ is a compler geodesic in D if, and only if,
Pioy is a complex geodesic in Py(D).
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" Proof: Let ¢ : A — D be a complex geodesic in D such that ¢, = 0. Since Iy : Px(D) — D,
then, for all \, € € A, '

(X, €) = en(e(N), () = en((Txo Peop) (A), (Iko Prow) () <

< ¢ (D) (Pow) (A), (Prow)(€)) < w(A,€).

Therefore Pyoyp is a complex geodesic in Pg(D).
Viceversa, let Pyoy be a complex geodesic in Py (D). Since Py, : D — Py(D), then, for all
)‘75 € Aa ; )

WA €) = cp, (D) (Prow)(A), (Prow)(€)) < enl(p(N), v(§)) < w(X,§),
i.e. ¢ is a complex geodesic in D.
QED

By this Lemma, it suffices to study the complex geodésics @ : A — D of D such that
pj#EO0foralj=1,...,n.
The general situation goes as follows.

Define the holomorphic map
I, :C ! Cm
(Zly sy Bk—=1s ZkF1y v s Zn) = (Zla s 03 Rk—15Ck; Zk41y - - - z’n.)

where ¢ € C is a complex constant.

Let D C C* be a domain and D,, d--'c'”—-fDﬁ{ze(C” | 2z =cx }

Lemma 3.1.2" Let D C C" be a domain. Let ¢ : A — D be a holomorphic map in D
such that pg = cg, i.e. ¢ =1, o Pyop. Then '

(a) if ¢ is a complez geodesic in D, then Py, o ¢ is a compler geodesic in Py (De,);

(b) if Pyo is a complex geodesic in Py(D,,) (or in Py(D)), then ¢ is a complez geodesic
in D¢, (or in D).

Proof: (a) We have
w(A, &) = cp(e(A), ¢(€)) = e ((Le, © Pr ° )N ey 0 P 0 0(€)) <

< cpy (., ) (Pl (), Pu(p(€))) < w(A,€)

for all A\, € € A.
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(b) A computation leads to
(X, €) = epy(Dey) (Pr(e(N), Pe(p(€))) <

cp., (P(A), 9(§)) S w(A€)
- QED

If D is a convex Reinhardt domain, then Py (Dk) = Py(D), where Dy = Dy, , and Lemma

3.1.2 can be seen as a consequence of Lemma 3.1.2".

2. Characterization of complex geodesics in convex bounded Reinhardt
domains

The following Theorem characterizes the complex geodesics ¢ = (p1y--y0n): A = D of
a convex bounded Reinhardt domain D such that ¢; # 0, for all j = 1,...,n, and that the
unit outer normal vector v(¢*(€)) = (V1(¢*(£)), ..., vn(®*(£))) to 0D is defined at ©0* (&)
for a.a. £ € OA. Remark that, by Lemma 3.1.2, and since the unit outer normal vector '
v(z) is defined at almost all points z belonging to the boundary of a convex domain, then
neither the former assumption nor the latter is very restrictive.

In the proof of the Theorem we will use the Factorization Theorem for holomorphic func-
tions belonging to HP(A) (see Appendix).

It turns out that the moduli of the outer factors of the ¢;’s solve a system of equations
involving v(p*(€)), ©(£) and functions such as r;|1 — @;&|?/|1 — @)%, where r; > 0,

S Qj, Q0 € A. ‘

As far as the inner factors M;’s of the ¢;’s are concerned, one has that, if v;(p*(€)) # 0 for

a.a. £ € A, then M; is either constant or a Mébius transformation. If, on the contrary,

vj(p*(€)) = 0 for a.a. £ € DA, then we have no information on the inner function M;.

Finally, condition (b) ensures that ¢*(¢) € 8D for a.a. £ € 9A.

Theorem 3.2.1 Let D C C* be a convez bounded Reinhardt domain. Let o = (p1,...,¢n):
- A = D be a non-constant holomorphic map such that ¢; # 0 for all j = .1, ...,n and that
the boundary values ©*(£) belong to 8D for a.a. & € OA. Let M; be the inner factor of
¢;j. Moreover, suppose that the unit outer normal vector to 8D is defined at p*(€) for a.a.
€ € 0A.

Then ¢ is a complez geodesic if, and only if, there exist cto, 1, ..., 0n € A, ry,...,tn >0
such that ‘

@ B ) @] fereageon
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forallj=1,...,n

: n
(b) p = Z 0
i=1

Jj=1
If rj >0, then there exists §; € R such that
; . A—a \ %
i — 16 J
(c)» | M;(X) =€ (——————~——1 — @-A) A €A,

where s; € { 0,1 } and s; = 1 implies a; € A.

Proof: Let ¢ : A — D be a complex geodesic such that ¢; Z0 forall j=1,...,

. n
1+ faof? =Y " ri(1 + oy ).

n. Then,

by Theorem 2.4.2, there exist h € H}(A,C"), h# 0, r, > 0 and «, € A, such that

1 . B;J,D (E)
—h; =To|l — G 2 ) - n
5‘1(6) = To|1 — T 3 ]I(l%(f)l - ler (6)1)21 @)
for a.a. £ € OA. Since 5
KD
m(lle, sy ‘Zn]) 2 0
for a.a. z € C", then we have that

(3.1.2)
Oup

§15(©65(0 = T -3l 52 161OL - en@Dles @) 2 0

for a.a. £ € OA. It is not restrictive to suppose 7, = 2.
Let H; be the outer factor of hjp;. If

8MD o —
3|z]l(|901(§)| len @) =0

ji=1,...,n

for all £ in a subset A of positive measure in A, then |H;(£)| = 0 for all £ € A. Therefore
((Rudin 1974], Thm. 17.18) it must be H;(\) = 0, for all A € A. Since ¢; # 0, then
hj(A) = 0, for all A € A, and we have no information at all on the inner factor of ¢;.

Notice that in this case we have that necessarily

0
S (1O leion =0
for a.a. & € 0A.
On the other hand, if 5
ruD *
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for a.a. £ € A, then, by Lemma 2.3.1,

L

hi(A) pj(A) =7 (A—a;)(1—a; A) AEA

for some 7; > 0 and some a; € A. Therefore in this latter case both ¢; and h; has at
- most one zero at o, € A and their singular factors are identically equal to 1.

Let us set r; = 0 for those j € {1,...,n} such that 2 otz 1(]<p1(§)| ek (€)]) = 0 for a.a.
¢ € 0A. By using this convention, we have the equation

Zn:Tj A=) (1 - =N—ao)(1—T,\) forall A€ A.

It follows that either a, € A or o = o, € OA for all j = 1 ,n. Moreover, we get the
conditions : '

> ores=a er(l +log[2) = (1 + [aol®).

=1 =1

Finally, system (3.1.2) becomes

: , |
rill - @€l = 1 - Gkl a[“’;l(l O, [ ODle;(©)] 2 0 j=1,..m

for a.a. £ € OA.

Viceversa, let ¢ : A — D be a non-constant holomorphic map satisfying conditions (a),
(b) and (c).

By (a); (b) and equation (3.1.1) it follows that ¢*(£) € 0D for a.a. £ € 9A.

We will prove that ¢ satisfies condition (a) in Theorem 2.4.2.

Ifrj = 0 we set hij(A) =0, A € A.

Now, suppose r; > 0.

By Theorem 2.1 (e) (Appendix), it follows that there exists 0 < 3; < oo such that

D (@), loh D) < B
32|

for a.a. £ € OA. Therefore the function

9(6) = 51~ 3ot L GO O

defined for a.a. £ € A belongs to L>®(8A) and we can set ([Rudin 1974}, Thm. 17.16)
H; as the outer function determined by

H7©)1 = 9(6) = 311~ okl SR (i ) h(E))
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for a.a. £ € AA. Tt turns out that H; € H®(A).

Ifs;=11let
' hi(A) = e~ H;(\) A€ A.
If s; =0and a; € A let -
A—aj :
. — —1i6; J i
hi(A) =e 1—=, AHJ()\) A€ A.

Finally, if s; = 0 and o; € OA let
hj ()\) = —g o HJ(/\) A EA.

By (i) and the definition of h; it follows that

1
1) 5 (©)] = 57511 - T €

for a.a. £ € OA. Therefore the outer factor of h;p; is %rj (1-a; A2, XA € A. Moreover, by
the definitions, one has that the inner factor of h;y; is either the Mobius transformation
B()\) = 15\:—(1_‘"%, A€ A, if aj € A, or the constant —a; if a; € OA. Therefore, in any case,
we have thaq% | )

hi(A) @5 (N) = 5ri(A — @) (1 -2 A)
for all A € A. Finally, by (a) it follows that

—h*(é) 7€) = 7‘311-%5]2 17"011 @kl 3!]l(|901(€)l, -5 [n (E) D13 (6]

for a.a. £ € OA and all j = 1,...,n. This equation is equivalent to condition (a) in
Theorem 2.4.2. '

QED
Lemma 3.1.1 and Theorem 3.2.1 immediately yield the following

Corollary 3.2.2 Let D C C* be a strictly convex bounded Reinhardt domain. Let ¢ =
(p1,.--,0n) : A = D be a non-constant holomorphic map such that p; # 0 for all
J =1,...,n and that the boundary values ©*(§) belong to D for a.a. £ € OA. Let Q;

be the outer factor of ¢;. Moreover, suppose that the unit outer normal vector to 8D is
defined at ©*(§) for a.a. £ € DA.

Then ¢ is a complex geodesic if, and only zf, there exist aip, Q1,...,0m €N, T1,...,7n > 0,
01,...,0, € R such that, forall j=1,...,n,
oo A= \ Y 1 ™ exp(it) + A X -
. — 10 J il AN | * 3 A
;i(A) = e (1 —Ej/\) exp {QF[W oxp(it) — A og |QF (exp(it))| dt AEA,
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where:

(¢) sje{0,1}
(b) s; =1 implies a; € A;
(c) the following equations are satisfied

l1—a@;¢]?  Oup

©) e = g2 QIO QGONGOl  foraagean,
forallj=1,...,m
(c.2) Qa, = eraj 1+ o = er(l + | ?).

j=1 j=1

Therefore the inner factor M; of a component ¢; = M; Q; of a complex geodesic of a
strictly convex bounded Reinhardt domain is deeply related to the corresponding outer
factor Q; : if M; is not a constant, then it is a M&bius transformation whose zero is the
a; appearing in equation (c.1) of the above Corollary. ,

On the other hand, if D is a convex, but not strictly convex, bounded Reinhardt domain,
then the inner factor M; of a component ¢; = M; Q; of a complex geodesic of D can be
whatever inner function, provided that v;(¢*(£)) = 0 for a.a. £ € OA. In particular, we
can state the following (cf. [Pflug-Zwonek 1996])

Corollary 3.2.3 Let D C C" be a convez bounded Reinhardt domain. Let o= (p1,...,¢n):
A — D be a complez geodesic such that ¢; 0 for all j =1,...,n and that the unit outer
normal vector to 0D is defined at ¢*(§) for a.a. £ € OA. Let

p; = 55 M; Q;

be the factorization of ¢;, where S; is a singular inner function, B; is a Blaschke product
and Q; is an outer function. Let Z; be the zero set of B;. Let Zj C Z; and define EJ- as
the Blaschke product whose zero set is Zj. Then the holomorphic map @ = (¢1,...,%n) :

A — D whose components are
| . % =8} B;Qj,
where s; € {0,1}, for all j =1,...,n, is a complex geodesic.

Now, let f: (RT U {0})”’—> R* U {0} be a separately non-decreasing function, i.e. such
that ‘ '

def ’
fJ(:E) = f(xlv' oy Lj—1, T, Tj41,y -+ .,:E,n)

47



is a non-decreasing function for all (z1,...,2;-1,%j31,...,2n) € (RF U{0})* . Let p =
(P1,...,pn) € (RT)™ and define ‘
fp(z)’—“f(lzlfpl,--.,lzn[p" | for all z e C".
Suppose that the Reinhardt domain
={zeC" | fplz) <1}

is convex and bounded. Thé Minkowski fun
equation
1

Te (upfp(

The convexity of Dy, implies that, for a.a. 2

ctional up,  of Dy, is determined by the

€ C*, we can compute

0 1
0= lzD ) =
ot e LIRS
afp( 1 ) 9 ( 1 )
Zily vy |2m zk| ) =
Zaizkn i, @) (ko D ) G oy
85, ( 1 )< 1 Oup,, 1 8[zkl>
= 21 P S — 2} 2k| + .
Zalzkr iy @) b D )\ = e S T P o )
Therefore, for a.a. z € Dy, we have that |
(3.1.3) OlDsp () — a'z” )
3|zji Zk_l agz,,| (z)lzkl

Let g € (RT)™ be such that D; q is convex 2
the following equation holds

Fol, .
(C—{oh)" if

2B/ = f(

then we have that z € 0Ds, N

(€ —{oh)™.

Let us compute

afq — EL ‘ a1
and Bf
a p1/q1 zpn/qn) L
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ind bounded. Since, for all z € (C — {0})",
217, - [2n lp”) = fo(2),

P1/Q1

and only if, (27 22T ¢ 0D¢ g N

oy 1209 g5 25

4 9fp
p;j 0|z

(2)|25] P39




Therefore, for a.a. z € 8D, N (C - {0})™, we have that

a“qu p1/q
19 (4 an/q-n z.pj/%' —
_—Blz]I ( 3 “n )! J|

R

S R e
af .
> 61sz (e
Zk =1 pg 3lzk!( z)|2x]

)

,—,-';-gl—éf—(z)lzgl 1

= n_ Z %(Z)l‘zkl
2 k=1 aizkl( 2) |zl Zgzl 1%2 ( 3 k-]a—’f?'-(Z)Iz l
=1 Olzg] ¢
.0 L
- o
j j > k=1 Pk BIZkl (Z)|Zk|

Now, let Let ¢ = (¢1,...,¢n) : A = D¢ p be a complex geodesic such that @; # 0 for all
J =1,...,n and that the unit outer normal vector to 8Dy, is defined at p*(¢) for a.a.
§ € OA. Let ¢; = M;Q;, j = 1,...n, where M, is the inner factor of @; and Q; is the
outer factor of ;. Define the holomorphic map Y(A) = (P1(A), ..., ¥n(N)) for all X € A,
where 1;(A) = M;(A)Q;(A)Pi/% . It turns out that 1) : A — Dy 4. By Theorem 3.2.1, there

exist ao, Q1,...,0n € A, 71,:..,7, > 0 such that
[1 — aJﬂ al‘l’Dfp * ‘ * *
= : ce , for a.a. £ € 0A
e~ i (A O e ODIe ©) or a.a. &

forall j =1,...,n; and that

n n

ao:ZTjozj 1+]a0]2=2rj(1+faj|2).

=1 =1

Let us compute
3Mqu

9|z — L2 (191, Wn D3 (€)=

— 8'U'Df,q
0|z

Q1O P/, .. QAP ™)|Q3 (©)IPi/ % =

2 Q1)) QAN
T QO ROk
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|1 —@;é)? 1

R 1 B o2

IS

= =r;|l — @ —
P S

/

By Lemma 2.3.1, it follows that there exist 7, > 0 and 8, € A such that

n

(3.1.4) 3 L1 - GRel? = roll — Botl?.
k=1 Pk '

By setting a; = q -L we have that

Oup 1-

—g]ijﬁﬂu«pr(s)t,...,w;(f)l)iw;(s)t: o 1oL
Moreover, equation (3.1.4) implies that

Bo = aja 1+ 187 =D as(1+ oy

j=1 j=1 '

Therefore, by Theorem 3.2.1, 9 : A — Dy 4 is a complex geodesic and we can state the
following (cf. [Jarnicki-Pflug 1995])

Proposition 3.2.4 Let f : (RTU{0})" — RTU{0} be a separately non-decreasing function.
Let p,q € (RT)". Let the Reinhardt domains Dy p and Dy q be conver and bounded. Let.
© = (01,...,0n) : A = D, be a complez geodesic such that ; Z0 forallj=1,...,n
and that the unit outer mormal vector to 8Dy is defined at ¢*(§) for a.a. € € OA.
Let ¢; = M;Qj, j = 1,...n, where M; is the inner factor of ¢; and Q; is the outer
factor of @;. Define the holomorphic map v = (wl,-. coytn) + A = Dy q where ¢;(N) =
M;(NQ;(A\)Pi/%. Then ¢ : A — Dj 4 is a complez geodesic.

Thus, if f : (RT U {0})* — Rt U {0} is a separately non-decreasing function and if
A={pe (R")" | D;p is convex }, then in order to determine the complex geodesics of
the domains D £.p» P € A, it suffices to choose one particular p € A and find the complex
geodesics of D P by Proposition 3.1.6, given the complex geodesics of D %’; one can build
up the complex geodesics of Dy for any p € A and viceversa.

This method can be useful when f is a homogeneous polynomial, because in this case
D1 8:1: 2L (£)z; = deg(f) f(z) (cf. equation (3.1.3) and the proof of Theorem 4.1.1).

Another simple consequence of Theorem 3.2.1 is the following result
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Proposition 3.2.5 Let D C C" be a conver bounded Reinhardt domain. Suppose that the

unit outer normal vector erists at z = (21,...,2,) € 0D. Define the holomorphic map
w:A—=D
A (AWPrzy, .., APz,

where p; € {0,1} for all j =1,...,n and at least one of the p;’s is 1. Then ¢ is a complez
geodesic in D.

Proof: We will apply Theorem 3.2.1 to prove that ¢ is a complex geodesic in D.
By (xx) it follows that ¢(A) C D and by (x) we have that ¢(0A) C D. Since

0
a{‘j(lm(g)t e @D )] = 3“!<|zu,-.,lznl>!zy|

forall ¢ € 0A,all j=1,...,n and

Z 5|z31 ([zl! S lza)zil = pp(2) =1,

then the map ¢ satisfies conditions (a), (b) and (c) of Theorem 3.2.1. In fact, it suffices to
define

- Opp
Tj=m(lzll -,lzle)le!,
a,=0a;=0,8;=pjandf;=0forallj=1,...,n

QED
It is interesting to point out that, already in 1927, Kritikos was able to prove that, for any
(o € A, the map

: A= {(z1,22) | |21]| + |22l < 1}

A= (2o, (1= |20])A)

is a complex geodesic.
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Fourth Chapter
EXPLICIT COMPUTATION OF COMPLEX GEODESICS

This chapter is devoted to the explicit coinputation of complex geodesics in three classes
of examples in order to show how Theorem 3.2.1 can be used.

The first class of examples to be considered is that of complex ellipsoids.

1. Complex geodesics in convex complex ellipsoids

We recall that the complex ellipsoids are in the class of domains whose complex geodesics
have been explicitly found ([Gentili 1986 b], [Jarnicki-Pflug 1995), [Jarnicki-Pflug-Zeinstra
1993)). _ .

Let p= (p1,...,pn) € R?,p; > 0forall j = 1,...,n. By definition, the bounded Reinhardt

domain
def
Ep) =4 z=(21,...,2,) €C" | E(|z1],..., |zn|) = Z[zj|2pj <1
. j=1

is said to be a complex ellips{:»id.
One can easily check that £ (p) is convex if, and only if, p; > 1/2 forall j = 1,...,n. Since
OF 0 0lzj| _

E L
—(lzllw"y{zn’): _““.‘|'(l21!,...,lznl) =p; IZjIZ(pJ 1)2_7,
J .

0z; 0|z 0z;

then the unit outer normal vector to & (p) is not defined at (z1,...,2,) € 0E(p) if, and
only if, z; = 0 and 1/2 < p; < 1 for some j € {1,...,n}. Therefore Theorem 3.2.1
characterizes all complex geodesics ¢ = (¢1,-..,95) : A — E£(p) such that ¢; # 0 for all -
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j =1,...,n. Recall that by Lemma 3.1.2 it suffices to study complex geodesics of the last
type only. ‘
We can state the following

Proposition 4.1.1 Let p; > 1/2 for j = 1,...,n. Let ¢ = (p1,...,0n) : A = E(p) be
such that ¢; #0 forall j =1,...,n. ‘

Then ¢ 1is a complex geodesic if, and only if, there emist a, € A, ai,...,a, € A,
1y yTn >0, 01,...,0, € R such that '
o A=\ 1y (11— A\ P
0s) =exn(it) (7o) ri' o (1555 e

j=1,...,n, where s; € {0,1}, s; = 1 implies a; € A and

n T
ay =Y rja T+ o> =D (14 [y ).
=1 =1 »
Moreover, the case s; =0 for all j € {1,...,n} and o = a1 = ... = an € A is ezcluded.

Proof: By Proposition 3.2.4, it suffices to prove the statement for one particular complex
ellipsoid: we choose the unit ball B, = £(1,...,1). By Corollary 3.2.2, we have that a
non-constant holomorphic map ¢ = (¢1,...,¢n) : A = By, such that ¢*(§) € 0B, for
a.a. £ € OA and that ¢; #Z 0 for all j = 1,...,n, is a complex geodesic if, and only if,

there exist oo, 01,...,0n € A, T1,...,7, > 0 such that
1 -a@;¢]* _ ous ; 2
. = L * O * = * .a. A
e = ( CHORCH QAR A for a.0. £ €
j=1,...,n, where Q; is the outer factor of @; and the fbllowing equations are satisfied

n

Q= erozj' 1;+ lao[2 = er(l + !ajlz)'

7j=1 j=1
Then we have that L@
_ /2l Ty
G =r" T

As far as the inner factor Mj of p; is concerned, since |@}(¢)| > 0 for a.a. { € 0A and
for all j = 1,...,n, then M; is either a constant exp(if;) or, only if a; € A, the Mobius

transformation
A - 5

1—a;\

M;(X\) = exp(if;) AEA
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for some 6; € R. .
If oo € OA, then a1 = ... = o, = a, € OA and ¢ should be constant. This is a
contradiction, since a complex geodesic cannot be a constant map.
Also if s; =0forall j € {1,...,n} and o, = 01 = ... = a, € A, then ¢ is a constant
map and therefore this case must be excluded.

o QED
Notice that there are complex geodesics on £(p) which are merely Holder continuous up
to the boundary if £(p) # B, and that the only strongly convex complex ellipsoid is the
~ unit ball B,,. Thus, in order to have that all complex geodesics are C* up to the boundary
of A, strongly convexity is a necessary condition in Proposition 2.2.3 even if the boundary
of the domain is smooth. ‘ ‘ \
By using this explicit characterization of complex geodesics in £ (p), in [Chang-Lee 1993]
it has been proved the following

Proposition 4.1.2 Letpj >1/2 forallj=1,...,n. Let z=(1,0,...,0) € 8E(p). Then
(a) for z € OE(p) — {Z} there is a complex geodesic passing through z, and z ezcept when
p1>1and 0< |z <1;

(b) for z € E(p) there exists a positive number o depending on |z1| such that, if

Z?:z |2;|?Pi < «, then there exists a complex geodesic through z and z;

(c) for any E(p) with p; > 1 there exists z € OE (p) such that there are at least two distinct
complez geodesics through z and z; .

(d) for any E(p) with py > 1 there exists z € E(p) such that there are at least two distinct
’ complez geodesics through z and z. : '

This result shows that strongly convexity is a necessary hypothesis in order to have exis-
tence and uniqueness of complex geodesics with prescribed boundary data (cf. Proposition
2.2.8).

2. Complex geodesics in other classes of domains

For n > 2 and a > 0, let us consider the homogeneous polynomial

n
fa(z1, .. Zn) =m%+2aw1$2+x§+2m§
Jj=3
and define’

n
Dop=Dsp=1{ 2€C" | |21 + 20|z |22 + |22 + D |27 < 1
j=3
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The case a = 0 is known, since Do, = £(p) = { z € C" | Y1z <1}isa complex

ellipsoid.
The domains D, p, are always bounded and they are convex 1f for example, p; > 1, p2 > 1,
Dj - for j =3,...,n and ’
v (2p1 — 1)(2p2 — 1)
0<a<a(p,ps)= .
0<a<a(py,pe) \/ paS—

It can be easily seen that a (p1,p2) > 1 for every (p1 p2) € [1,00) X [1 00), whence DaP
is convex and bounded Whenever 0<a<l1l,p> 1, p2 > 1 and pJ — for j = 3,.
From now on we will consider the convex case only.

Proposition 4.2.1 Let 0 < a <1, py > 1, p2 > 1 and p; > % for j = 3,...,n
Let ¢ : A — C™ be a holomorphic map such that ¢; # 0 for all j = 1,...,n. Then
¢ is a complez geodesic in Dy p if, and only if, there emist oy, € A, a1,...,0, € A,
Ti,--+,Tn €RT, 01,...,0, € [0,27] such that, for all X € A,

A\ 1 )y 1/171(1—050\)2/”1 ~
<;01(}‘)—-‘33’(1)(291)< 51/\> 27/ <—_“::‘X)"i7;; 1()‘)

A — o 2/p2
w2(A) = exp (i63) ( &2 ) ol/(2p2) . 1/:02_(—2)__ Q2()

— T\ ( - & )\)1/192
; A= \7 1) (1A e ;
(,DJ()\) = exp (Zgj) m Tj - m ].Z 3,...,77,
. 7 o

where:

(a) s; € {0,1}, forallj=1,...,n

(b) s =1 implies aj € A, for all j=1,...,n
(c) and the following equations are satisfied

@) G =en{s [ ZEAEY L oguemna)  £=12

for all A € A;

1
a?(rg|l — @2€|? — m|1 —@1€]?) + 271|1 — @2 + ag(§)

2 @)=

for all £ € 0A;

1 A |
a?(r1|1 — @1€]? — ra|l — @f|?) + 2721 — @b |2+ ag(€)

(c.3) g2(8) =
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for all £ € OA,

(6.4) g(ﬁ) = \/(12(7‘211 — 56_26‘2 - ’l"1|1 - 515[2)2 + 47‘1|1 — alf‘z’l'zll - 6225[2

for all £ € OA;

' n n
(c.5) 0 = eraj 1+ ol = Z'rj(l + |-
’ j=1 j=1
Moreover the case sj =0, ap = a; for all j =1,...,n is ezxcluded.

Proof: By Proposition 3.2.4 it suffices to prove the assertion in the case p = 2 =
(2,2,...,2).
Let ¢ : A — C* be a non-constant holomorphic mapping such that ¢; # 0 for all j =

1,...,n. By Theorem 3.2.1, ¢ is a complex geodesic in D, 3 if, and only if, there exist
T1,...7n > 0 and a,, 01, ..., an € A such that, for j = 1,...,n
1—a;&)? | Oup, . '
GGG for 8.0, € € DA
Go 3
Since 2 a|z '2 (le3(©)], -5 |en(€)]) > 0 for a.a. € € 0A and lpjl £#0foralj=1,...,n
then r; > 0 for all j =1,...,n. After some computations, we get the system

|1 — @€ = |1 =@ (|05 ()1 + alws(©)1) 11 (6)1?
(421) rall — @]? = |1 — @ I* (|95 (6)1* + a @i (€)1?) w3 ()]
rill = aEl =1 -t 5 (O i=3,....n

where the following relations hold

n
Q= Z'rjaj 1+ |a? = er(l + |a]?)
j=1 =
If o, € OA, then a1 = g = = ay, = o, and ¢ should be constant, which contradicts

the hypothems Hence o, € A. System (4.2. 1) enables us to find |p}| for all j =1,.
and to know the outer factors of all the components of ¢. After some computations, one

gets ‘
272 |1 — @ &t

[P = 1Q1(E)* = 91(§)  foraa. {€dA

TR
211 _ ~.cl4
wior =10 = 2 g oraa ceon
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| 1—af|? |
2Ot = Q%) =r; !
l(pg (5)‘ IQJ (‘g)l Tj 1— a—oé for a.a. g € 0A
(where Q; denotes the outer factor of ;) and
' 1
= € 0A
2O = B P il - ae) FIn —meP rag®
1
gz(g) = &€ 0A

a?(r1|1 —@1€]? — ra|l = @€[?) + 272[1 — @2€|? + a g(¢)
9(8) = Va2 (21 = Gl 2 — 1|1 - Tl P)? + dri[l - wéProfl —GfP €€ 0A.

As far as the inner factor M; of ; is concerned, since r; > 0, then it follows that M; is
either a constant exp(i6;) or, only if a; € A, the M&bius transformation
A— e 7]

A
l—a’_j/\‘ A€

M;(X) = exp(iv;)

for some 0; € R.
QED

This result holds whenever D, ;, is convex. In fact, the proof works for any p: performing
similar computations, one can find that each component of a complex geodesic has no
singular factor and at most one zero in A, moreover a system analogous to (4.2.1) allows

to find the outer factors of the components of a complex geodesic in D, 5.

Now, let a = (aq,...,a,) € R” and let

n

fa(:cl, cey Top) = Z(:cjz + 25T T 4n + 93}?+n)

. n
: ga($1, R ,-'L'Zn-i-l) = Z(aﬁ + 2052 Tj4n + :E?-I-n) + wgn-}—l'
Jj=1

It is easily seen that Dy, , and Dy, , are convex (and bounded) if 0 < a; < 1, (j =
L,...,n), and p; > 1, (j = 1,...,2n), pant1 > 3. By using the same techniques of
Proposition 4.2.1, one can prove the following results

Proposition 4.2.2 Let a € ([0,1])™. Letp € ([1,00))2", let ¢ : A — C?™ be a holomorphic
map such that p; £ 0 for all j =1,...,2n. Then ¢ is a complex geodesic in Dy, p if, and
only if, there exist ap € A, @1,...,02, € A, 11,...,T2n > 0, 01,...,00, € [0,27] such
that, for j = 1,...,n,

‘. ~ oy Ay 85 1/(2p;) 1/7; (1 —@;\)2/Ps =~
@ i) = o) (2528) g e AZEAD g,
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(b)

. A—Qiin Sitn n 1—@ianA /Pi+n -
(pj+n(/\) = exp (29j+n) (Ti-a—;:.i):) 21/(2P3+n) ;-/i-l::-i- ((1 — Z:-)\)E/pj_i_n J—i—n()\)
' i i o

for all A € A, where:
(¢) s;€{0,1}, forallj=1,...,2n;
(d) s; =1 implies oj € A, forallj=1,...,2n;

(e) and the following equations are satisfied

1 /” exp(it) + A 1

37 | o) =X 7 1og(ge(exp<zt>)>dt} (=1, 2

(1) GelN) = exp{

for all A € A,

1
a2(rjinll — @j4nb]? — 5|l — @E|2) + 2751 — €)% + a5 §;(€)

(e2) - gi(6) =

’ 1

(3)  94n(8) = aZ(r;|1 = €12 = rjnll = Tjnél?) + 2754n|1 — @kl + a; 5;(8)

(e4) 3(6) = VO]l = Tl = 15l1 = G2 4 4|1 = T 7jn|L — Tyn€?

forall£ € OA, forj=1,...,n

2n 2n
(e.5) o= ercxj 1+ o) = er(l + |a;]?).
Moreover the case s; =0, ap = o for all j =1,...,2n is excluded.

Proposition 4.2.3 Let a € ([0,1])". Let p € ([1,00))?" x [1,00), let o : A = C***1 be a
holomorphic map such that cpj 20 forallj=1,...,2n+1. Then ¢ is a complex geodesic
in Dy, p if, and only if, there exist ¢, € A, @1,...,Q2,41 € A, r1,...,Tone1 € RT,
01,...,00m11 € [0,27] such that, the first 2n components of ¢ are given by formulas (a)
and (b) in Proposition 4.2.2 such that equations (e.1), (e.2), (e.3), (e.4) hold, and

A — Qont1 >S2n+1 Tl/(2p2n+l) (1 — aZn-{-l)‘) L/pants

Vont1(A) = exp (102n+1) (1 o) 2n+1 I3\

where
(a) s;€{0,1}, forallj=1,....2n+1;
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b) s; =1 impliesa; €A, forallj=1,...,2n+1;
J J J

and the following equations are satisfied

2n+1 . ' 2n+1

=) T It =D i+ feyl?).
=1 i=1
Moreover the case sj =0,a,=aj forallj=1,...,2n+1 is excluded.

Finally, we will use Theorem 3.2.1 to determine the complex geodesics of the following
class of convex bounded Reinhardt domain of C?

f
D= { 2= (21,2) € C | F(lz), |2al) & [a[Pr + |22 + 2?2 < 1 }

where p; > 1 and p, > 1. Since

oF

oF OF L _m
82’1 B

(Z) = %—lzllpl—z”gl and E‘;;(Z) 2 |22 lPQ—z(l"{" 2 |z2‘P2)32,

then the unit outer normal vector to 8D is not defined at (z1,23) € 8D if, and only if,
either z; = 0 and p; < 2 or 25 = 0 and p> < 2. Therefore Theorem 3.2.1 characterizes ajl\l
complex geodesics ¢ = (p1,92) : A — D such that ¢; # 0 # 3. We are going to prove
the following

Proposition 4.2.4 Let p; > 1, p2 > 2 and D = { (z1,22) € C? | F(|z1], |22]) = |21]P* +
|22[P2 + |22|%P2 < 1 }. Let ¢ = (p1,92) : A = D be such that g1 % 0 Z .

Then ¢ is a complex geodesic if, and only if, there exist ap € A, a1, a9 € A, 71,75 > 0,
01,02 € R such that

[ A—a; \¥ 1 /™ expl(it) + A " |
i) = exp(i05) (£ =) e {5 [ SRS oglgj el } Aea

7 =1,2, where:

(a) s;€{0,1}, forj=1,2;

(b) s; =1 implies aj € A, forj=1,2;
(c) and the following equations hold

(c.1) Oy =T1Q1 + Ty 09 1+ !aolz =ri(1+ [allz) +7ro(1+ [aglz),

rifl —@EP(5 |1 - @t + 4|l - mé2 - Q)

(c.2) QI = 2(]1 — @ol|2 + r1|1 — @l |2)? ;
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oy = TR QE)
((33) ‘QZ(&)‘I) - 2(“'—605‘24’7’1!1_-&2&12)’

(c.4) Q) = V1 — @t|* + 42 |1 — @1 — @t 2 + 111 — T ]?);
for a.a. £ € OA. Moreover, the case s1 =82 =0 and a, = a1 = as € A is excluded.

Proof: For all z € C2, the Minkowski functional up(z) is defined by the equation

i (upl(z) (lzl; lzzl)) =1.

| pr(|z1)/up ()P
PP Jup ()P + (1 + 2 (|20] /up (2))P) palza P p ()72

One computes

ou _
-W—f]@) = up(2)

@g(z _ (14 2(zl/pp(2))P)p2(|22| /e ()P

Olze| " prlza|P/pp(2)Pr 7t + (14 2 (|22] /D (2))P2) p2l|22|P2 /D (2)P2 1.

- By Theorem 3.2.1, a nonconstant holomorphic map ¢ = (¢1,92) : A — D, such that
©* (&) € 0D for a.a. £ € DA and that 1 # 0 Z 2, is a complex ‘geodesic if, and only if,
‘there exist Bo, a1, a2 € A, a1, a2 > 0 such that

o Lmme HO
1=B,62 ~ pilQI@P + (1 +21Q3@P)pl@; €)=

' ’(4-2-2> for a.a. £ € 0A

JImmE? 1420030l
1-BEP  PIQIOF + L+ 25O mlBEF

where @); is the outer factor of ¢; and if the following equations are satisfied

(4.2.3) for a:a. £ € 0A

Bo = a1 a1 + az 0 1+ 18o|* = a1(1 + |o1]?) + a2(1 + |az|?).

As far as the inner factor Mj of ¢; is concerned, since |Q}(§)| > 0 for a.a. £ € A, for
j = 1,2, then M; is either a constant exp(#6;) or, only if a; € A, the M&bius transformation

A—O!j

AEA
1—aj)\ <

M;(3) = explid)
for some 6; € R. Remark that ¢*(£) € 0D for a.a. £ € 0A if, and only if,

(4.2.4) QIO + Q3O +1Q5E)P =1 for aa £ € dA.

61



‘Now, we suppose that ¢ : A — D is a complex geodesic. We will exploit equations (4.2.2),
(4.2.3) and (4.2.4) to determine Q; and Q». Set r; = a;/p; for j =1,2.
Dividing equation (4.2.2) by equation (4.2.3) we get

M- me? Q1) R
Rl -mif -~ A 2|G@PaEm A teon
Therefore
= 2 ‘ '
Qop =T s @P)is© P foraa. € € 0A.

2|1 — Té|?

Now, we can solve equation (4.2.4) for |Q%(£)| obtaining

1Q3(8)IP* = —1 = 3of]" + Q(¢) for a.a £ € OA,

C2(|L — @2 + 1]l — @é?)

where

QE) =+~ a‘ost?‘ + 47y |1 — @f|2(]1 — @E|2 + 1|1 —@i€[?)  for a.a. £ €0A

and a, € A is such that

Gp —T1 Q1 + T2 G2 1 -+ I(Iolz -:'7'1(1 -+ ]allz) + 7‘2(1 + ia2|2);
consequently
’ 1—a@ €251 — @, €12 +4r|1 —a€]? —
Qi) = TP OR - TP +anl - @EP - Q) e cpn

2(|11 — @€ |? + 1|1 — @2¢?)?

Now, it suffices to recall that an outer function is determined by the modulus of its bound-

ary values to get that

‘ o A—a; \¥ 1 [™ exp(it) + A .
(A) = 0 J — — 1 p t))| dt A€ A.
i) = expity) (225 ) " exp { 5 [ 2L 10g 5 exit) e
Remark that if o, € OA, then a, = a; = ay € JA. Therefore ¢; and Q2 should be
constant and s; = s = 0, but this is a contradiction, since ¢ is nonconstant. For the same
reason we must exclude also the case s; = s =0 and a, = a1 = oy € A.
. Viceversa, if ¢ : A — D is a nonconstant map defined as
A

.\ 5P 1 ™ . A -
00 = exp(iy) (2225 ) " exp {1 [ Z2DEX g s oplatiae ) A€
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=12, where Qo € A, 0,00 €A, 71,79 > 0, 91,92 eR, s; € {0, 1} where s; = 1 implies
aj € A and where the following equations hold

Qo =T101 +To 02 1+ |04o|2 =r1(1+]ea]?) + ra(l + |aa]?),

ril — @2 (5|1 — @2 + 4|1 — mé]? — Q(E))
T~ ot + il — 3l

o i-mP Q)
Q2N = S =5t + T - 5t P

= \/Il — |t + 47 |1 — T |2(|1 — @€ |2 + 71]1 — @i€|?) for a.a. £ € 0A,

Q1) = for a.a £ € OA

for a.a £ € A

then it is easy to check that ¢ satisfies equations (4.2.2), (4.2.3) and (4 2.4). Therefore, by
Theorem 3.2.1, it is a complex geodesic.

QED
As for other possible-applicatibns of Theorem 3.2.1, the only bounds stay in the imagination
of the reader and in the capability to solve systems of partial differential equations.
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Fifth Chapter

CARATHEODORY BALLS AND NORM BALLS

IN CONVEX BOUNDED REINHARDT DOMAINS

Let D C C" be a domain. Define
B:_(%,) = Be, (%,arctanhr) = { z € D | cp(2,%) < arctanhr |

as the Carathéodory ball with centre at Z € D and radius arctanhr, for r € (0,1). The
boundedness of D implies that Bz, (Z,7) C D (cf. Proposition 1.3.3).

Now, if D C C" is a bounded, convex, balanced domain, the yp-norm ball with centre at

- @ € C" and radius s > 0 is defined as follows

’
i

Bp(ﬁ,s)::/{ze(C” | up(z —w) < s }.

We will simply say “norm ball” instead of “up-norm ball”, when this does not give rise to
misunderstanding.
Since, by Proposition 2.1.2,

cp(0,2) = w (0, pp(2)) = arctanh (up(z))
for all z € D, then one has that
‘ sz (07 T) = BD(07 7')

for all 7 € (0,1), i.e. Carathéodory balls centred at the origin and pp-norm balls centred
at the origin are the same.

The qﬁestion arises, for which norms the balls not centred at the origin are, as well, of
‘both kinds. '
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In the case of the unit disc of C, by Lemma 1.1.2, we have that every Carathéodory ball
(Poincaré disc) is a norm ball (Euclidean disc). o

In dimension greater than one the situation is quite different: in the case of the Euclidean
ball B, ={2€C* | || 2z 2= > e |z;|> < 1 } every Carathéodory ball not centred at
the origin is an ellipsoid and not an Euclidean ball ([Rudin 1980]); while a Carathéodory
ball with centre at z = (Z,...,2,) € A" in the polydisc A" = {2 € C" | || 2 [lo=
maxj=1,..,n{ |2j|} <1} is a || . [|eo-norm ball if, and only if, |Z1| = ... = |Z,|. Also in the
case of the set M of all n x n complex matrices with spectral norm < 1 considered as a
subset of (an, it has been proved that there is a set of Carathéodory balls (depending on
n? + 2 real parameters) which are spectral norm balls ([Schwarz 1990]).

Remark that B,, A™ and M are homogeneous domains, and this fact suggests a way to
handle the question: it suffices to study the image of a Carathéodory ball centred at the
origin by an automorphism of the domain and check in which cases this image is a norm
ball.

As for non-homogeneous domains, the case of convex complex ellipsoids &(p1,...,Pn) def
{zecC| Z?:l EARE <1 }, where n > 2 and p; > 1/2 for all j = 1,...,n, has been
discussed. :

" Let us consider the following assertion:

(%) - the ohly Carathéodory balls which are also KE(ps,...,pn)-IOTIM balls are those centred
at the origin.

At first, it has been proved that statement (x) holds in £(1/2,1/2) C C2 ([Schwarz 1993})-
and in £(1/2,...,1/2) C C*, then it has been generalized to the case E(p/2,...,p/2) CC"
where p > 1 is not an even integer ([Srebro 1995], [Zwonek 1995 b, [Schwai"z-Srebro 1996]).
Afterwards this question has been treated for general convex complex ellipsoids and it has
been shown that if p; # 1 forallj =1,.. .,n, then the only Carathéodory balls which
are also pg(p, .. p.)-norm balls are those centred at the origin; besides, an example has
been found, to point out that this is not the general rule: if n = 2, p; = 1/2 and p; = 1,
then B;“s(l/m)(((), ws),r) is a norm ball for any (0,w2) € £(1/2,1) and for any r € (0,1)
([Zwonek 1996]).

This last result is drawn exploiting a particular family of complex geodesics through (0, ws)
and the fact that for every (0,wz) € £(1/2,1) there exists an automorphism ¥ of £(1/2,1)
such that ¥((0,0)) = (0, wy).

The proofs of statement (*) are obtained by contradiction and rely essentially upon:

(a) - the existence of some particular families of complex geode_sics, namely the linear ones
through the origin and those which are “parallel” to some axis;
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(b) - the following result: let f(z) = Y ;_; bjlzj|* for z € C* and b € (RT)™; if z and
w are such that f(z + e*w) is constant for all ¢ € R, then w; # 0 implies z; = 0 (this
statement fails to hold if p; =1 for all j = 1,...,n and this is the reason why this kind of
proofs does not include the case of the Euclidean ball).

Here, we will consider the question for a class D of convex bounded Reinhardt domains
of C", which are a generalization of complex ellipsoids. We prove that in this case a
Carathéodory ball in D € D is a norm ball if, and only if, D is a complex ellipsoid
E(p1,...,pn) such that py = 1 for exactly one k € {1,...,n}, pj = 1/2kf0r'aﬂj #* k
and the centre lies on the zx-axis. 1

In particular, we completely solve the question for convex complex ellipsoids too.

At first, we prove that, in any strictly convex bounded Reinhardt domain with C!-
boundary, a Carathéodory ball not centred on some axis cannot be a norm ball. Since
the assertion in (b) is not so easy to generalize, we tried a different way: we considered a
“large” subset of the boundary of the domains we are to discuss about as a real (2n—1)-
manifold S with its real tangent spaces. If a Carathéodory ball is also a norm ball, then
we can define a smooth non constant curve a(t) in S, whose tangent vector o (t) must
be orthogonal to Tor) S. Computdtions show that last condition leads to a contradiction.
This method does not work if one tries to prove that a Carathéodory ball centred on one
axis cannot be a norm ball, nevertheless it allows to show that a Carathéodory ball not
cetred on some axis cannot be a norm ball in the case in which the domain is the Euclidean
ball. » ' ;

As far as Carathéodory balls centred on an axis are concerned, the families of complex
geodesics quoted in (a) do not suffice to get a contradiction.

In this case we exploit the explicit formulas of other families of complex geodesics passing
through the centre of the Carathéodory ball B (Z,r) in order to prove that B} (z,r) can
be a norm ball only if D = &(p1,...,pn) where p; = 1 for exactly one k € {1,...,n},
pj=1 /2 for all j # k and the centre lies on the zx-axis.

Moreover if, say, D = £(1,1/2,...,1/2) and z = (’51,0?...,0), then the formulas of all

1-r2 1|5
=252 % =22 )

We remark that to obtain the results of this chapter we do not use the existence of automor-

complex geodesics through Z allow us to check that B} (z,7) = Bp

phisms that shift the origin along the z;-axis in the complex ellipsoid & (1,1/2,...,1/2).
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1. Carathéodory balls and norm balls

Let D C C” be a convex bounded Reinhardt domain. Let z = (21,...,2n) € D, ie. let z
be such that up(z) < 1. There exists one, and only one, positive real number p;(z) > 0
such that

I‘['D(Zl: . .,Zj-}_,/.Lj(Z),Zj+1, . -';Zn) =1

The fact that up is a non-decreasing function of |z;] implies that 1z;] < pi(z).

The following lemma gi\;es a sufficient condition for the centre and the radius of a Carathé-
odory ball to determine the centre of a norm ball; the same condition turns out to be
equivalent for the Carathéodory ball and the norm ball at issue to coincide, as Lemma
5.1.2 states (cf. [Zwonek 1996]).

Lemina 5.1.1 Let D C C™ be a strictly convez bounded Reinhardt domain with C* bound-
ary. Let 0B; (z,r) C 0Bp(w,s) for some Z, w € D, r € (0,1), s € RT. Then

~ ~ 1—r?
(5.1.1) wj =v;z; where v;= PPN EAEY
| -2y
forj=1,...,n.
Proof: Let

A;={ E€C| Frror,Fjor,E,Fjur, . Fa) € OB (Fi7) } =
——:{ £€C|ep((Z1y..12j-1,6,Zj41, .- -1 2n), 2) = arctanhr }
Since, by Proposition 3.2.5, the map
A —D
£ (21,5 25-1,815(2), Zjt1, - - -, Zn)

is a complex geodesic, then

4 _{éeciw(ua(”) u;(“)):amtanhr}

and by Lemma 1.1.2,
Aj:{ﬁ-——{j-{—njew [ HER}

where o
1—-r2 : “E(lz”)‘
EJ: A — and 77‘=————-—“'7 T g (~)>O
2 172 T J r2 121 J
1-r e 1= 6

68



By hypothesis, if £ € A; then (Z1, ... ,Zj_l,ﬁ,%'jﬂ_l, cey2n) € BBD(ﬂJ', s), i.e.
(512) ‘ uD((zla"')Zj—17€72j+17"-)2n) “’l?),) = 8.

- where £ = &; + njew, n; # 0 and @ is arbitrary in R. Therefore,

d ~ ~ 0 ~ ~ ~
E@‘ND((ZI? - Zj—1, &5 T mje 9,2j+1, oy Zn) — W) =

b 1 = o - _ o Im(n (€ — T)e”)
=——((Z1,...,2i—1,& + 1€, Zix1,.. ., Zn) — W > —— = )
| mm“1 ’Jh§ e 2 >|@—%+WW1

for all € R. Now, strict convexity of D implies that
b= ¢ 1—72 5

_ »2_1%]

1=

QED
Remark that this result also holds for complex ellipsoids £(p) with 1/2 < p; < 1, because

o . . .
—a—l’fz‘—sﬁ(zl, ..., zn) fails to exist only if z; = 0.

" Lemma 5.1.2 Let D C C" be a strictly conver bounded Reinhardt domain with C-
boundary. Let Z,w € D, r € (0,1), s € R*. Then 0B}, (%,7) € 0Bp(w, s) if, and only if,
B:D(Z,,T) = BD(IE, 8).

Proof: It is clear that B., (Z,r) = Bp(®W, s) implies that 0B.,(z,) C &Bp(w, s), therefore
it suffices to prove the other implication.
First of all, we prove that Z € Bp(w, s) and that w € B}_(Z,r).

With the same notations as in the above lemma, we have that, for any j = 1,...,n,

pp(Z— ) <pp((F, - 5-1,6 %41, 20) — W) =5,

since
_J@; _|?;
R - ] C) SR e~ W S (1 — 5 = e 25
§—wj; =mne” = 5 152 T uj(z)e”, zj —w; = (1-v;)z = S 5P | 2
1— 23 1—r2 30
PHEE pji(2)?

and 7|z;| < |Z;| < pj(Z). Therefore z € Bp(w, s).
Now, by contradiction, let us suppose that w ¢ B (%,7). This means that cp (w,2z) >

arctanhr and hence that there exists ¢ € (0,1) such that tZ+ (1 —t)w € 0B, (z,7) C
0Bp(w,s). It follows that

up(t(F =) = up(EZ+ (1 - )T — @) = s,

69



but
uD(t (z— ﬁ)) <qu(E— 'E) <s
because z € Bp(w, s). Contradiction. |
Let us prove that B} (z,7) = Bp(w, s). '
Let z € B} (Z,r) and consider a complex geodesic ¢ : A — D such that ¢(0) = Z, ¢(7) = z
and 7 € (0,1). The hypothesis implies that 7 < r. Let us define the function

m:A—>R
X = up(p(N) — @)

which is subhafmonic. Since
@(eier) € 0B, (z,7) C 0Bp(w,s),

then m(er) = pp(p((e®r)) — @) = s. The subharmonicity of m and the inequality
m(0) = pp(Z — W) < s imply that m(A\) < s for all |\| < r and, in particular, we get that
m(7) = pup(z = W) < s, i.e. z € Bp(w,s).

Finally, let w € Bp(w,s). By contradiction, let us suppose that w ¢ B?_(Z,). Since
w € B, (z,r), there exists ¢ € (0,1) such that tw + (1 — t)w € 8B}, (%,7) € 8Bp(W, s).
Hence we have that ’

pp(t (w—) =pp(tw+(1-t)& — ) =s,
but this contradicts the hypothesis, since
,U,D(t(w - ﬁ)) < uD(’w - {17) <vs.

Therefore w € B (2, 7) and the proof is complete.

QED
Now, let z = (Z1,...,2,) € D C C* be such that z; = 0 for some k € {1,...,n} and
consider the projection

P, : Cr—>Ct
(21, y2n) = (215 oy By e ooy 2n)

where 2 means that z; is missing. Let ¥ = (¢1,...,%r—1, Yrs1-..,%n) : A = Px(D) C
C"~1 be a complex geodesic such that ¥(0) = Py (3)..
Then the map ¢ = (1, Ye=1,0,%k41...,%n) : A = D is a complex geodesic of D
such that 9(0) = Z and therefore

cp(2,2) = cp,(p) (Pe(2), Px(2))
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for all.zz (zl,...,zk_l,O,zk.H?...,zn) e DnN{ zeCn | zz =0 }. Thus
B:pk(p> (Pk(%),T) = Pk(B:D(E7 Tl))

If 2= (21, -y 2ke1y Zktls - - - » #n) € Pi(D) then (z1,...,25k-1,0, 2841,.-.,2n) € D, there-
fore pp ((21,- -+ 26=1,0, 2541, - - -, 2n)) < P (D) (P (2)). This inequality implies that

Bp, (0)(Pe(2),5) € Pi(Bp(Z, 5)).

If z € D then Py(2) € Py(D), therefore

e, 0y (Pr(2)) < pp(2).

In particular, LD ((zl, ey 25—1,0, 241, - .,zn)):: 4P, (D) (Pk(z))
Now, if

w=(w1,...,Wk—1,Wk+1,---,Wn) € Px(Bp(%,9)),

| then

. (wl,...,wk_l,O,wkH,...,wn)EBD(Z,s)
and therefore w € Bp, (p)(Px(2), ). Hence
Py(Bp(%5)) C Bp,(p)(Pi(2), 5),

and finally,
Py(Bp(%,8)) = Bp,(p)(Pr(2), 8).

Thus we can state the following

Lemma 5.1.3 Let D C C" be a convezr bounded Reinhardt domain. Let B (Z,7) =
- Bp(w,s) C D for somez € D, r € (0,1), s € Rt. Ifz; = 0, then BZPk(D)(Pk(E),r)»z
Bp,(p)(Px(2), 5)- ‘ '

2. On the centre of coinciding balls

We can now prove that there are no Carathéodory balls which are also norm balls if the

centre does not lie on some axis

Theorem 5.2.1 Let D C C™ be a strictly conver bounded Reinhardt domain with C*
boundary. Let Z € D be such that at least two of its components are non zero. Then

BZD (Ea T) 36 Bp ({Ea 3)
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forallwe D, re(0,1), s € RT.

Proof: By contradiction, let us suppose that B (z,7) = Bp(w,s) for some w € D,
r €(0,1), s € R*. By Lemma 5.1.1 we know @ as a function of Z, and by Lemma 5. 1 3 it
is not restrictive to suppose that H j=1 zg # 0.

Let .
A={§€C|§ZGBB;"D(Z,7‘)}:{EECicD(gi,%'):arctanhr}.
The map ‘
' A—D
1
2
: gﬂD(E)

is a complex geodesic , therefore
A={€¢eC|w(pup(@),up(z)) = arctanhr } =

={é=r+7’|0cR}

where

= Lt and T=r L-up(@)® 1
1 —72up(2)? 1-7?up(2)? up(2)

By hypothesis, £ € A if, and only if, £ Z € Bp(w, s), therefore we have a curve

> 0.

B:R— BBD({E, .S')

0 — (T—{-;Few)z

which is non constant since 7 # 0.
Thus up(B8(0) — w) = s for all § € RT. Let us compute

. ~ \ 16
%.UD(_(T +7e¥)z - @) = Z Okp = (1 + 7€)z ~ w) Im(72; (TZJ w;)e®) _

d 3[ 2] |TZ; — W; + TZz;€%|
LD ey TP )
=2 gy (T O g e =

J=1

for all § € R Since uD(A') < 1 and |Z] < p;(Z), then 7 — v; > 0 and so we get a

contradiction.
QED
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This Theorem also holds for complex ellipsoids &(p) with some 1/2 < p; < 1 because
(7 +7e®)z; — w; = 0 if, and only if,

“and it is easﬂy seen that this equation can hold only if # = +x. Analogously, we have the
following '

Corollary 5.2.2 Let 5 € Dg p be such that at least two of its components are non zero.
Then ‘

B, (3,r)# Bp,,(@,5)

for allw € D, p, 7 € (0,1), s € RT.

3. Carathéodory balls and norm balls in the domains D, C C* when n > 2

From now on we restrict our attention to the domains D,p.

By Coroﬂary 5.2.2, it suffices to study the Carathéodory balls centred on some axis.

In this section by exploiting the formulas for the complex geodesics of the domains D, p,
we can completely understand the situation when our domains are in a space of dimension
greater than 2.

Theorem 5.3.1 Let n > 2, let Dy p C C* be convex. Let z € Dyp and k € {1,...,n}, be
such that Z; = 0 for all j # k and zx # 0. Let us suppose that

B:, (%7)=Bp,,(i,s)

for some w € C*, r € (0,1), s € R". Thena = 0, pp =1 and p; = 1/2 for all j # k, i.e.
Dop = E(p1,---,pn) is a conver complex ellipsoid. '

Proof: Let Z = (0,...,2,...,0) € Dg,p and suppose BZ p(Z, r) = Bp, (W, s) for some
weC, re(0,1), s€RT. By Lemma 5.1.1 and recalling that pz(z) = 1 we know that

| | PR el
S 1—r2F T

Moreover, since f,p (22) =1 if and only if up, , (1z) =1, then from equation (5.1.2) we
get

T 1- T2[§k|2
(5-3-1) ; — W.
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The hypothesis B7 . (z,7) = Bp, , (@, s) implies that

(532) s G(go(r) _ a,),) -1

for all complex geodesics ¢ : A — D, ,, such that ¢(0) =
By Proposition 4.2.1 we know explicitly all complex geodesu:s @ : A = Dyp such that
pjZO0forallj=1,...,n and ¢(0) =Z. k
In order to obtain all complex geodesics ¢ : A — D, ;, such that ¢(0) = 7 it suffices to
consider r; > 0 for all j # k (where the notations are those used in Proposition 4.2.1). In
fact, if r; = 0, then ¢; = 0 and the projection <,0 (cpl, ey @jseeyon) 1 A = Do C
Cr—1 is a complex geodesic in Da,p , because it satisfies Proposition 4.2.1. This implies
that ¢ is a complex geodesic in D, 5.
Now, let & > 2. '
Let us consider the complex geodesics ¢ : A =+ D, ;, such that ¢(0) =%, sy =0andr; >0
for one and only one j # k (where the notations are those used in Proposition 4.2.1). In
this case

Qo = T O 1+r,§|ak|2:7‘j+rk(1+|ak|2)

' gok(O) = exp (i6k)r}, L/(2k)

and equation (5.3.2) becomes

2pk
=1.

1 —ar 1/p 1— 72
1 — rgogr 1-— TZIZkP

If o = 0, we get r; =1 -1 =1— |2%|?P* and equation (5.3.3) becomes

2p 2p 1—z]2 \ %P )
() a-mrm+ ()7 (Fap) A =1

7\.20; 1 1
5.3.3 (—) - %, | 2P
( ) S Tj 11 — 7L, Ol ,’-,2 + 2Dk Izki

— 12|z, 2

Hence, for all j # k,

(5.3.4 (L) = (AP Lo
: s 1— |22 1 — |Z]2P*

If a € A one gets
rj = (1= [Zl?P*)(1 — |Z|**|axl?)
~ and by using equation (5.3.4), one can write equation (5.3.3) as follows

1— szklgklzpk (1- ‘JzklZPk)(l - [§k|2pk|ak|2)
EALE 1 — [z [P @ r?

L
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2pi

nglzpk 1 — @r 1/pk 1—r2 .
82Dk 1-— I’ZkIZpkakT 1—172 lgklz =
(5.3.5)
. 9
e [ 1w NP 1oe2 T - P esl?)
§2Pk 1— |z |?Pragr ) 1 —17r2|Z)? 11— Z|%Pragr|?

In particular, if o = r € (0,1) one computes

€ i 7 ) 1€ el 7 ) O 71 il )

1 = = =
|1 — [z 2P r2]2 o L[z

Now, since the left side of equation (5.3.5) is always non-negative, then the same must
hold true for the right side of it, hence it must be 72P* — r2 > (0. This means that p; < 1;
and by recalling the convexity of our domains, we get 1 /2 < pr, < 1. One can check that
for all py, € [1/2,1] the left side of equation (5.3.5) has a zero oy € (0,1) and this implies
that, as function of oy € (—1,1), the left side of equation (5.3.5) is not smooth, unless
pr, = 1, while the right side of equation (5.3.5) is smooth for all p € [1/2, 1].k

So far, we have proved that, in our hypothesis, pr = 1.

Therefore equation (5.3.4) becomes

1— 272\ 71— 2[5
1— |22 SR

for all j # k and hence p; = 1/2 for all j # k.
If p1 = p2 = 1/2, then the convexity of Da,p implies @ = 0 and so Dy p = £(p).
As for the cases k = 1 and k = 2, it suffices to consider just one of them.
So, let us suppose that z = (z1,0,...,0) with z; # 0.
The discussion of the case k > 2 works to prove that, for £ = 1, it must be p; = 1 and
pj =1/2 for all j > 3.
In order to determine ps, let us consider the complex geodesic ¢ whose only non-zero
components are
w1(A) =71
p2(A) = A p2(2)-

Equation (5.3.2) in this case yields

P 2p
1= 217 |21 4 20 7P |5 [P (g) 2 (ua(2)P2 + (g) 2 (12(3)) 2.
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Therefore |
(5.3.6) | - - |
(1 - rzizllz)“ . (C)Pz _ (M)pz _ —arP|Z Pt 4+ /1 - (1 - a2)7-2p1i§1|2271'
1—[z]? —a|7|P + /1 (1 — a?) [z P

s p2(2)

Now, we want to check that it is possible to choose one complex geodesic such that s; = 0,
a1 =0,72 > 0and r; > 0 for one index 7 > 3 only. This choice gives the following complex

geodesics
, o 1 ~ -
©1(A) =exp (291) \/57'1 , = Zz1
\/az(rz —11)+2r1+a/a?(ra —r1)2 +4ri7s
: N 1
QOQ()\) =€Xp (292))\25%’5 7’;2 1

2p2

(0,2(7‘1 - 7’2) +2r3+4+a \/02(7’1 - 7"2)2 +47r ’!‘2)

@i (A) =exp (i) Ar;
71+ T2+ Ty = 1.

The condition ¢ (0) = 2 is equivalent to the following equation

1

5.3.7 A =21 '

One checks that this equation is satisfied if r; = |21| and ro = 0. If a # 0, equation (5.3.7) -

can be solved for 7, and we ’obtain
@’z ra = (11 — |72 %) (r — (1 - a®) |7 %),
Thereforé, when a # 0,
ra= f(r) = (1 ~ [ P) (s~ (1 - )P,
a? |z1] :

Since £(|71]2) = 0 and f'(|7%1]2) = ;zé—lp(ZIEﬂz — (2 —a?)|z1]?) =1 > 0, then there exists
a right neighborhood of |21|?, say U, such that for all 7; € U we have ro = f(r;) > 0 and
0 <ry+r2=r1+ f(r1) < 1. In this situation we can define r; = g(r;) =1—711 — 12 =
1 —r1 — f(r1) so that the function ¢,, : A — D, , defined as follows

((p'r'l)l (A) = El
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(907'1)2(/\) = exp (292) A 2511’_2 ’r;; 1 -
(a2(T1 —12)+2r2+a \/CLQ(Tz —r1)24+4r; 7'2) 2p2
(or,); () =exp (i;) Ar;
(or)e(A) =0  for all k+#7,1,2

(where ry € U, r; = f(r1) and r; = g(r1)) is a complex geodesic of Dqp such that

©r, (0) = Z. Equation (5.3.2) applies to all complex geodesics such that ¢(0) = Z, hence
also to ¢r,. Set y = (1](¢r,)2(r)])” and compute

fap (*zf((som)(r) - V15)> = |

- — [T\P2 7\ 2P2 7\ 2P;
6as)  =rEP2erEl (5) v+ (5) T (5) =1

We recall equations (5.3.6) and (5.3.1) for (£)* and (%) respectively. Recall also that,

S

since ¢, (exp (i0) € 0D, p for almost all § € R, i.e.
B2+ 2afly+9? 15 =1,

one gets

y=—alz|+ /11— a7 ;.
Therefore (5.3.8) is an equation in r;, which does not depend on 1, and so r; = g(r1) =
1—7r — f(r1) should give the same value for all r; € U. But this is a contradiction.

Therefore a must be 0. Equation (5.3.6), then, implies ps = 1/2.
QED

Let us consider now a complex ellipsoid £(p) such that py = 1 for one index k € {1,...,n}
‘and pj = 1/2 for all j # k. Let Z € £(p) be such that 2, # 0 and z; = 0 for all
j # k. One can check that, in this situation, equation (5.3.2) is fulfilled for all complex '
geodesics ¢ : A — £(p) such that ¢(0) = Z. This fact implies that 0B},  (z,7) C

Ce(p)
=12
BBg(p)(l__erlr;kPE, 11_';’27’%‘2 r), which, by Lemma 5.1.2, is equivalent to the condition

- 2 .
B, ®) (z,r) = Bg(p)(l_ﬁfglr;ktg z, 11_:[2212!2 r). Therefore we can state the following

Theorem 5.3.2 Let E(p,...,pn) C C* withp; > 1/2 for all j = 1,...,n. Let 7 €
E(p1,---,pn) and k € {1,...,n} be such that 2, # 0 and z; = 0 for all j # k. Let pr, =1
and p;j = 1/2 for all j # k. Then

> 1"‘7'2 ~ 1-]2]‘;[2
:E(Pl ,,,,, Pn)(Z) T) = Bg(pl,--v,pn) (1_ rzlgklz ) 1 _ Tzizklz



for allr € (0, 1).
As a particular case of our results we can state the following

Corollary 5.3.3 Let E(1y---,pn) © C* withp; > 1/2 forallj = 1,...,n. LetZ €
E(p1,-..,Pn) be such that Zx # 0 for ezactly one k € {1,...,n}. Let us suppose that

* ~

BCg(Pl xxxxx Pn) (z, T) = Bg(pli"'ypn)(w’ S)

for some we C*, r € (0,1), s € R*.
Then pp =1 and p; = 1/2 for all j # k.
- Moreover, if pr =1 and p; =1/2 for all j # k, then

. (z 1-r? 1|5
:E(Pl ,,,,, o) (Z,'f') = Bg(pl,...,pn) (1 — T2|2k|22’, 1_ r2‘2kl2r

for all T € (0,1).

We remark that this result holds for n = 2 too.

4. The case in which D, , C C?
It remains to consider the case
(5.4.1) : _ B(’;Da’p (z,r) = BDa,p(t’E, s)

for convex domains D, p C C? for ¢ > 0 and Z = (21,0) or Z = (0, 22). |
First of all, let us remark that it suffices to discuss the case B, . (z,7) = Bp, ,(w, s) for
zZ = (z1,0).

The aim of this section is the proof of the following

Theorem 5.4.1 Let D, C C* be conver. Let Z = (%1,0) € Dy p. Let
BZDa’p (27 /,-) = BDa,p ('&7’ S)
for some W € Dy p, r € (0,1), s € RT. Then
Dap=£(1,1/2).

By Corollary 5.3.3 it suffices to consider the case a > 0.
So, let us suppose that (5.4.1) holds for some a > 0 and some z = (1, 0).
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" By Lemma 5.1.1 and recalling that u1(2) = 1 we know that w = T“TTITVZ = 11%. Moreover

from equation (5.1.2) we get Z = 111” |11 Recall that equation (5.3.6) holds in this case
too:
(5.4.2)
(r)pz _ (1 — r2|31|2)p2 _—arPZ P+ /1= (1= a?)r?z; |2 (ug(ra)pz
s 1— |z —a|Z|P + /1= (1 - a?)[7 P p2(%)
Hypothesis
~ 1- 7'2 - 1- !lez
5.4. ’ - B: =B
( 3) €Dqo,p (z"r) Da,'p (1 - T2|21|2 1- 7'21251]2

for some a (such that D, p is convex), some r and some |z;| implies that

(5.44) for (300) - 12)) =

o2 (r)]P2 =11

for all complex geodesics ¢ = (1, 2) : A — D, such that ¢(0) = Z, and in particular
for those ones such that ¢; has no zeroes in A, namely

~ 1 _ 1
= $2P1 lQOI(T) - 1/12112:01 -+ Za;p—llgal(r) — Vlzl‘plga‘h%('r)],pz + =

' 2/p1
21 51/(2p ) 1/p1 (1 —a1))
(5'4'5) 901()‘) |z1 [ =2 h (1 B Tlal}\)l/pl I(A)

1

(1 _ 7'1621)\)1/1’2 Q2(A)

(5.46)  pa(X) = A28 (L~ 1) (1 — 7y | ) /72

where, a1 € A, r; € (0,1) and
1 [T exp(it)+A 1 '
_ i S A =1,2
()\) exp{zﬂ_ /;7, exp(it) — X 22 — log (ge(exp(it))) d } ¢ ,

1
a?((1—r1) (1= riloaf?) = ri|l = @f]?) + 2|l — @] + ag(§)
1
a?(r|l —@él2P— (1 —r) 1 —rifar?) +2(1 —r1) 1 —r1]eal?) +ag(é)
9(8) = /a2((1 —r1) 1 —r1]aa|?) — rifl —@€?)2 + 4r |l —@é2 (1 —r1) (1 — 71 ]aa?).

Moreover we require

91(§) = €A

92(8) =

(5.4.7) l01(0)] = 2420 r1/7 (31 (0)| = B
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Notice that the left side of equations (5.4.4) and (5.4.7) can be viewed as C* functions of
the variables o; € (—1,1) and 1 € (0,1). Therefore we define

F(ry, a1) = |p1(0)% — |77
and

G(Tlv Cl’]_)

L |pa(r) 2P - 1.

~ 1 - 1
lo1(r )-V121|2p1+2f15[901(?")—Vlzllm;;;l%(?")ipz o

2?1

where ¢1(r) and @2(r) are the values attained in A = r by the holomorphic functions
defined by equations (5.4.5) and (5.4.6). o

Using this notation, we can say that the hypothesis (5.4.1) implies that the function G
should be zero for all (r1, 1) € (0,1) x (=1,1) such that F(ry,o;) = 0.

Ifoa,=0and r, =7 = |Z1Pr (|21 P + a(uz(ﬂ)pi’) where we remind that (u2(2))P? =
—a|z1|P* + /1 — (1 — a?)|z1]?P1, we obtain the complex geodesic o(A) = (Z1, A pa(2)).

Moreover, one computes

0
—6-/‘,_‘1—F<’I’1, Of]_)

g (% — g1 (1-a?) (1+ g(l—-2r1)))

('Fl 10)

‘We also have E?Z{F(Tl? a1)|(#,0) = 0. Therefore we can apply the Implicit Function Theo-
rem to the C! function F' and find a neighborhood U of a; = 0, a neighborhood V of #;
and a function f : U — V such that

F(f(alj,al)zﬂ Va, €U

‘Moreover ‘ l
_gj__ _ aal (o) g ;’_f

1 g Bm t(f(al),al) 1 la;=0
Since F(f(a1),01) = Oforalla; € U, then also G(f(al),al) =0 for all a; €U.
Therefore

=0

'dTélG(f(al),Oll) =0 Ve eU
In particular

d
daq

0G
67'1

oG

0oy

of

(,’,1 0) 6011

_ o6

= =0
(7‘.1,0) aal

(Fl )O)

——G(f(a1), )

a1—0

a1=0-
After a long computation one gets that 53(%](,:170) = 0 if, and only if,

%I—z%mzﬂ)pl ((rl22)™ + apz(rZ)P2 ) u2(2)™ (alz ™ + pa(2)72) = |
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= /.1:2’(7'%’)132 (a(rlzll)Pl + pa(rz PZ)IEIIPI (151|p1 + am@)pz)_

Therefore we can state the following
Lemma 5.4.2 Let D, , C C? be conves, let a > 0, Z = (21,0) and r € (0,1). Let

1‘-"!'2 ~ 1—’21]2
_7-2]21[2 ’1_7.2|§1|2 '

BCDa,p (Z,’I‘) = BDa,p (1

Then
1= (A GIEDP IR + auGD™) _
D 1a(r2)P ()P + 1o (r2)P)
- aP) B (EP + an?)
(548) TTRP mEGEP el
hold.

The above result will be used in the sequel together with the following

Lemma 5.4.3 Leth C C" be a convex bounded domain. Let Z € D and r € (0,1). Let
v : A — D be a complex geodesic such that ¢(0) = Z. Then the holomorphic map

Py A f)BcD('zv, 7)
A= o(rA)

is a complez geodesic in B, (Z,1) such that 1,(0) = Z.

Proof: By Proposition 2.1.3 a holomorphic map ¢ : A — D is a complex geodesic if,
and only if, there exists a holomorphic map @ : D — A such that @ o ¢ = Ida. Let

w € B¢, (Z,r) and compute

w(0, p(w)) = w(B(), p(w)) < cp(Z,w) <w(0,7).”
Therefore |@(w)| < 7. Thus, we can define the holomorphic map

¥: B, (3r) = A

1.
w ;cp(w).

On the other hand, the holomorphic map

Yo: A—=D
A= (T )
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is such that 1, (A) C Be, (Z,7); in fact, for all A € A, we have

CD(¢<P(0)’ @b‘P(A)) = CD(Z 90(7' )‘)): w(o’r/\) < w(07'r)'

Finally, let us compute % o Yo(N) = J((p('r ) = L5(p(rA) = ir)
A — B, (Z,7) is a complex geodesic in B, (Z,7) such that ¢,(0)

A. Therefore 9, :

zZ.

I

QED
The next result will help us to simplify the dicsussion of equation (5.4.8)

Lemma 5.4.4 Let D, , C C? be conver, let a > 0 and Z = (31,0). Let

].—-'7'2 ~ 1“‘|21|2
= z, po T).
1 2GR 1= 25

(5.4.9) B;‘Dw (Z,r) = Bp, , (
Then py = 2.

Proof: The hypothesis (5.4.9) allows us to define the biholomorphism
t:Dgp —%B:Da‘p (z,7)
(Z]_, 212) —> (821 + 121, .5‘2,’2)

whose inverse is . :
-_— . * ~
K=1"":Bg, (Z,r) = Dqap

1 . 1
(w1, wz) — (g(’wl - 1171), gle) .

Now, by Lemma, 5.4.3 and using the biholomorphic map «, starting from a complex geodesic
¢ for D, p such that ¢(0) = Z we can define a complex geodesic 9, (for D p) such that
¥, (0) = rZ, namely

Yo(A) = (%(%(M) —v121), %902(7"/\)) :

Notice that 1, is defined on a disc of radius 1/r > 1.

Now, since (1121, ) = Lor® 7 =Bl ) e oB 1or® % A28l 1) the hy-
’ 141, 1—r2[51 2% =125 2 Bep, , \1-r2[z1[2° T-r2[z12 ' )?

pothesis (5.4.9) implies the existence of a complex geodesic ¢ : A — Dy such that

©(0) = 2 = (£1,0) and ¢(r) = (v17z1,s). The corresponding complex geodesic ¢ =
(¢1,%2) =1, : A = D, defined as above is such that

(5.4.10) $(0) =rz = (r£1,0) and (1) = (0,1).

According to Proposition 4.2.1, there exist a, € A, a1, 03 € A, r1, 79 € RT, 61,02 € [0,27]
such that

— 0, A—on\” 1/(2p1) . 1/p1 (1 —@ )P ~
P1(A) = exp (161) (Ija.—l):) 2 T WQI(A)
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P2() = exp (i6s) ( A— Qg )3 91/(2p2) 1/1[;2(_1_:242_)\‘)1/1’_2 é 0

1= (1= Gon) /P
where '
1 i Al .
G = [ ZUBEY Loy (uespi)) ) £=1.2
1
MO = Gl mt il w2l - mEE T ag®
1
92(5):

‘ A
PO T o By 1y B ey e o B

9(€) = Va2 (ra]l — @l — 111 - mg?)? +4mfl - agPrall —@t* £€0A

Qo = T101] + T2Q 1+l =r1(1+ |oa|?) + r2(1 + |az?).

For j=1,2,s;€{0,1} and 5; =1 1mphes a; € A. Moreover conditions (5 4. 10) must be
satisfied. : ;

First of all, 15(0) = 0 implies s, = 1 and ag = 0. Since %; is holomorphic on Ay,
condition 11 (1) = 0 implies that 1 (A) = (1 — A\)¢(X), where ¢ is a holomorphic function
defined on Ay,,; then ' ‘

81 — /D1 | ’
exp (i01) ( A= oz1)\ ) 21/p1) 1/ E___fl_iil/:_ 0100 = (1 - V(W) VA€ A.

* We know that ([Rudin 1974])

— 51 — @ N2/
exp(z'el)(’\ al) g/ e (LT TR 5, 0] =

i
te 1— A (1 - a@o\)/m

A—E€dA

_ g1/, 1/p111 S ST

1wt/
for almost all £ € OA. Therefore
1 — @ &|2/m w
G.411) g/ /e L BET g eurom — 1 gl )

for almost all ¢ € AA. Now, both the left and the right side of equation (5.4.11) are
continuous function on A, therefore equation (5.4.11) holds for all £ € dA. Since g1(€) # 0
* for all £ € A, then it must be a; =1 (and s; = 0).

Thus

o1/(2p) y3/p1 (1-X)2/m

T_—A—)WQI(A)‘ =1 =N VieA

exp (i61)
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and

21/ 1/ |1ll f!g @) = 1 ~&l19(©) VE €A,

Last equation can be written as follows

1 1 -
91/(2p1) p1/P u-—wmgl(f)”@m) = [1—¢["*/Pg(8)].

Since g1(1) is well-defined and positive, being 7, < 1, then it must be 2 /p1=1.
| QED

By combining Lemmas 5.4.2 and 5.4.4 we can now prove Theorem 5.4.1.

Proof of Theorem 5.4.1: By Lemma 5.4.4, p; = 2, and equation (5.4.8) (of Lemma 5.4.2)
in this case becomes

(1= @) (7)) + o/ T= (L= A1)

2
- A (=a(rlzal)? + V1= - a?)(rm))y1- 1 -?)(rn)*

(1—a®)7|* +ay1- (1 - a?)[7]* .
(—al1]? + V1= (1 - a?)[z]*)y/1- (1 - a?)[z[*

(5.4.12) =(1- %)%

k]

Let us consider the function

(1-a?)z? +ay/1— (1 — a?)z? _
(maa? +v/I= (L= a)s%) /1= (1 - a2)5"

Qz) = (1 - z?)

_a+2z?/1—(1—a?)zt
V1= (1-a?)z4(1 + z2)
defined for = € (0,1). Let us compute

2z((1 - (1 - a?)z*) (/1 — (1 — a?)zt - a) + a(l — a®)z?(1 + :v2))

Q(z) =
@) R e e

It is easy to check that Q'(z) < 0if a > 1 and that Q'(z) > 0 if a < 1. Therefore the
function Q is injective if a # 1, while if a = 1 the equation (5.4.12) is always satisfied.
Then equation (5.4.12) is satisfied (for all 7 € (0,1) and z1 € A) if and only if a = 1.
Now, if py = 2 and a = 1, equation (5.4.2) becomes

(1 - 'r2|%'1|2>p2 _1-r%7)?

1]z 11—z
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which is satisfied if and only if py = 1.
It is staightforward to notice that Dy (21) = £(1,1/2).

QED
Finally, we summarize the results of this chapter in the following

Theorem 5.4.5 Let D, , C C be conves. Let Z,W € Dop, 2 # 0, 7 € (0,1) and s € RY.
Then

B, p(E, r) = Bp, (W, )
if and only if
‘ :Da’p =5(p1,...,pn)
where py, = 1 for exactly one k € {1,...,n}, p; =1/2 for all j # k, Z; =0 for all j # k,

G2 = and s
o e— an = 71T
1 —-—Tzlék’z 1 - T?'éklz
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Sixth Chapter
COMPLEX GEODESICS IN NON-CONVEX DOMAINS

1. Complex geodesics in balanced pseudoconvex domains

The question of existence and uniqueness of complex geodesics for the Carathéodory (or
for the Kobayashi) pseudodistance on non-convex domains is far from being understood,

nevertheless there are some interesting partial results.

Example 6.1.1 Let ([Lempert 1982])
D={(21,22) €C* | (1 + ) (1 + |22) <25 }.

The point Z = (2,2) € 0D is a “non-convex” point, i.e. D does not admit a supporting
hyperplane at z. Let w = (1,1). As a consequence of the Schwarz Lemma, it follows that
the map

‘ p:A—=D

A= AZ

is the unique extremal map for kp at 0 and @, i.e. kp(0,%) = w(0,1/2). Lempert has
proved that if one assumes that there exists a holomorphic retract S containing 0 and w,
then it should be S = ¢(A). Moreover, it has been proved that if there exist a holomorphic
retraction 7 : D — S, then D should admit a supportirig hyperplane at z and this is a
contradiction. _

Therefore, on an arbitrary'domain one cannot try to characterize complex geodesics for
~ the Kobayashi distance as holomorphic one-dimensional retracts.

Since complex geodesics for the Carathéodory distance are characterized as one-dimensio-

nal holomorphic retracts, then the above example shows also that on an arbitrary non-
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convex domain it may happen that there does not exists any complex geodesic for the
Carathéodory distance through two given points.
On the other hand, let
' w:A—=D _
A = (V24X,0)

and let
r:D — A

(1, 2) = (-1\/2—_?1,0)

One checks that r o ¢ = Ida, therefore ¢ is a complex geodesic for cp. Notice that the
points (e*1/24,0) are “convex” points of 8D.

The situation above is typical of balanced pseudoconvex ddmains, in fact we have the
following results ([Venturini 1990])

Proposition 6.1.1 Let D C C™ be a balanced pseudoconver domain. Let D be the convez
hull of D. Let pp and pp be the Minkowski functionals of D and D respectively. Then
(a) a holomorphic map ¢ : A — D C D such that ©(0) = 0 is a complez geodesic for cp

in D if, and only if, ¢ is a complez geodesic for cp and in this case we have that

tp(p(A) = up(p(N))

for all A € A and that
wp(#'(0) = pp(#'(0);
(b) the holomorphic map
' w:A—D

Ao A—

up(z)

where z € D is such that pp(z) > O,.'z's a complex geodesic for cp in D if, and only if,
uo(2) = up (2).

Proposition 6.1.2 Let D C C* be a balanced pseudoconver domain. Let D be the conver
hull of D. Let up and pp be the Minkowsk: functionals of D and D respectively. Then
(a) there exists a complex geodesic for cp passing through 0 € D and z € D if, and only
if, up(2) = pp(2); |

(b) there exists an infinitesimal complex geodesic for yp ¢ : A — D such that ¢(0) =0
and ¢'(0) = v € C* if, and only if, up(2) = pp(2z) = 1.
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Moreover, we have the following characterization of balanced convex domains among ba-

lanced pseudoconvex domains

Proposition 6.1.3 Let D be a balanced pseudoconver domain. Let pp be its Minkowsks
functional. Then the following facts are é@z’valent

(a) D is conver;

(b) the Kobayashi pseudometric at the origin £p(0;.) 5 the derivative of the Kobayashi
pseudodistance;

(c) for any v € C™ such that pp(v) =1 there exists a complex geodesic forcp ¢ : A = D
such that (0) = 0 and ¢'(0) = v;

(d) for any v € C* one has that kp(0;v) = vp(0; v).

In particular, a balanced pseudoconvex domain biholomorphic to a convex domain is ne-

cessarily convex.

The above Propositions are obtained as consequences of the following ([Venturini 1990])

Theorem 6.1.4 Let D C C" be a balanced pseudoconver domain. Let D be the convez hull
of D. Let up and pyp be the Minkowsk: functionals of D and D respectively. Let z € D.
Then one has that

ED(Oa z) =kp (O) z)

if, and only if,
| up(2) = pp(2);

and in this case one has that
Cp (O> Z) = sz(O) z)'

In general, one can compute the Lempert function on a balanced domain as follows
([Jarnicki-Pflug 1993])

Proposition 6.1.5 Let D C C* be a balanced pseudocdnvez domain. Let pup be the
Minkowski functional of D. Let z € D. Then one has that

p(0,2) = w(0, up(2)).

Now, let D C C" be an arbitrary domain. Let z € D. The Carathéodory indicatrix at 2z
is defined as follows ‘

C.(D)={veC |1plzv) <1}
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Analogously, the Kobavashi indicatrix at z is defined as follows

K.(D)={veC" |kp(zv) <1}
In [Barth 1983] a remarkable result on the indicatrices of the Carathéodory and the
Kobayashi at the origin of a balanced domain has been proved, namely

Theorem 6.1.6 Let D C C™ be a balanced domain. Then
(a) D C Ko(D) C Co(D); ,

(b) if D is convez, then D = Cy(D);

(c) if D is pseudoconvez, then D = Ky(D).

A simple consequence of this theorem is the following

Corollary 6.1.7 Let D C C* be a balanced domain. Then
(a) if D is conves, then yp(0;v) = pup(v) for all v € C";
(b) if D 1is pseudoconvez, then kp(0;v) = pp(v) for all v € C™.

Now, we can produce an example of a domain D (balanced and pseudoconvex) such that
there exist an infinitesimal complex geodesic ¢ : A — D for kp at 0 € D which is not a
complex geodesic for kp at any couple of points in p(A). ‘

Example 6.1.8 Let
D ={ (Zl,Zz) € C? 1 |z1] < 1, IZz[ <1,|z122] < 2 }

where 0 < € < 1/2. Let us define the holomorphic map

p:A—=D
A= Aleg, e).

~ One has that ¢(0) = 0 and that ¢’(0) = (¢, €). Since D is a balanced pseudoconvex domain,
then Corollary 6.1.7 implies that

kp(p(0);¢'(0)) = £p(0; (¢,€)) = up((e,€)) =1

and therefore @ is an infinitesimal complex geodesic for kp at the origin 0 € D. On the other
hand, (since (g, ¢) is a “non-convex” point of D, then) one has that p5((e,€)) < up((e,€))
and therefore, by Theorem 6.1.4 and Proposition 6.1.5,

kp (0, A(e,€)) < kp (0, A(g, €)) = w(0, AuD((s,e)jlz w(0, A)
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for all A € A. Thus ¢ is not a complex geodesic for kp at any couple.of points in @(A).

2. Complex geodesics on pseudoconvex domains

~ We have seen that on an arbitrary balanced pseudoconvex domain complex geodesics may
not exist. On the other hand, the following example shows that, sometimes, many different
complex geodesics passing through a given point with the same direction can exist as well.

Example 6.2.1 Let, for any ¢ > 0 and any m € N,
Dim ={ (21,22) € C | |a1* + |2af* + £ |2i™ — 25> < 1 }-

In [Sibony 1979] (see [Jarnicki-Pflug 1993]) it has been proved that for any m € N there
- exists £(m) > 0 such that, for each ¢t > t(m), there are at least m different infinitesimal
complex geodesics ¢ : A — Dy, for vp, ,, such that go(O) (0,0) and ¢'(0) = a(1,0) for
some a > 0. | |

Besides some examples, there are few results concerning the existence of complex geodesics
on strdngly pseudoconvex domains and, as far as we know, they rely upon the fact that one
can embed in a “nice” way a strongly pseudoconvex domain in a strongly convex domain.
For example, in [Burns-Krantz 1994] the following result on the existence of complex
geodesics for the Carathéodory distance on a strongly pseudoconvex domain whose image
lie arbitrarily “near” the boundary is proved (see also [Huang 1995])

Proposition 6.2.2 Let D C C" be a strongly pseudoconver domain with C* bouhdary,
k>6. Letz € OD. Then there exist w € D and an open nezghborhood W C D of w such
that for every w € W there exist holomorphzc mappings

wA-)D ",bw-D_}A7

which are C*=% up to the boundary, such that

(a) o(0)=w |

(b) e(1)=2

(c) Ywopuw=1Ida.

Moreover, given any neighborhood U C C* of Z, one can assume that both W and ¢, (A)
lie in DNU.

We have seen that on strongly convex domains with C® boundary complex geodesics are
characterized as stationary maps. This is not the case on a pseudoconvex domain, never-
theless in [Pang 1993] the following result is proved
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Theorem 6.2.3.Let D CC" bea strbngly pseudoconver domain with smooth boundary.
Let ¢ : A = D be a holomorphic embedding of A into D of class C? up to the boundary of
A. Let ¢ be an infinitesimal complez geodesic for kp at ©(0). Then ¢ is a stationary map.

A strongly pseudoconvex domain D C C* with smooth boundary is taut and therefofe for
any z € D and any v € C" there exists an infinitesimal complex geodesic for kp ¢ : A — D
such that ¢(0) = z and ¢¢'(0) = v for some ¢ > 0. The above Theorem gives a system to
find such an infinitesimal complex geodesic for xp: one should determine the stationary
maps ¥ : A — D such that 9(0) = z and ty49’(0) = v for some t,, > 0, then the desired
infinitesimal complex geodesic ¢ is the stationary map 1 such that the corresponding ¢y, is
minimum (cf. [Pflug-Zwonek 1996], where this technique is used to compute the Kobayashi
metric for the non-convex complex ellipsoids £(1,m) C C?, with 0 < m < 1/2).

The example below is due to Sibony and shows that a stationary map need not to be an
infinitesimal complex geodesic for the Kobayashi pseudometric.

Example 6.2.4 Let (see [Pang 1993])
Q={(e1,22) € C | a1’ + |22 ~ tRe(z} ) < 1}

where ¢ > 0. One checks that the defining function of Q; is strictly plurisubharmonic near
- 0A x {0} for any ¢ > 0. The holomorphic map

‘ A=

» A= (A0)

is proved to be a stationary map for all £ > 0.
‘Let ¢ < 1. In this case, the domain §; is contained in the domain Q = {(z1, 22) € C? | |21] <
1 } and ¢ is a holomorphic retract of Q. Therefore ¢ is a holomorphic retract of Q; and
then ¢ is a complex geodesic for cq,.
On the other hand, if £ > 1, then ¢ is no more an infinitesimal complex geodesic at ¢(0)
neither for the Kobayashi pseudometric. In fact, let s(X) = ((1 + cs?)A,s)2), for all
A€ A, where c=(t —1—¢)/2 and € > 0. If ¢ is sufficiently small, then it turns out that
ps(A) € ;. One computes that ¢}(0) = (1 + c¢s?,0), which has bigger magnitude than
©'(0) = (1,0) whenever s # 0. '
We can use this example also to see that it is possible to have a smooth family of infinites-
imal complex geodesics for the Kobayashi pseudometric tangent to the same direction at
a given point.
In fact, for ¢ = 1, the holomorphic maps ¢, (\) = (), s A%) map A into Q; for small s. Since
~ ps(0) = (0,0) = ¢(0) and ¢}(0) = (1,0) = ¢’(0), then, for small s, @, are infinitesimal
complex geodesics for kg, tangent to (1,0) at the origin 0 € Q;.
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Since Theorem 3.2.1 on complex geodesics on convex bounded Reinhardt domains is proved
by exploiting the characterization of complex geodesics on convex bounded domains as
stationary maps, then, as a consequence of Theorem 6.2.3, we can state the following

Theorem 6.2.5 Let D C C" be a bounded Reinhardt strongly pséudaconvea: domain with
smooth boundary. Let ¢ : A — D be a holomrphic embedding of class C* up to the
boundary of A and such that ©j ,#. 0forallj=1,...n. If @ is an infinitesimal complex
geodesic for kp at ¢(0), then there exist oo, a1,...,0n € A, r1,...,7n > 0 such that

— .12 o '
@ I P el @Dli©]  foratl g0a

J
forallj=1,...,n;
' n ) n
(b) a0 =) 1j0 Lol =Y ri(1+ |oyl?).
- = i=1 -
If r; > 0, then there exists 6; € R such that
M;(\) = et Az 7 forall Xe A
J 1—a;A ’

where s; € {0,1} and s; =1 implies a; € A.
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APPENDIX

1. Factorization Theorem

Let A = { &€ C||¢ <1} be the open unit disc of C. For any 0 < p < oo, the
symbol HP(A) denotes, as usual, the Hardy space consisting of all holomorphic functions
h € Hol (A,C) from A into C such that || & ||,< oo, while the symbol HP(A,C") denotes
the set of all holomorphic mappings h = (h1, ha, ..., hn) : A = C™ such that h; € HP(A)
forall j = 1,...,n. Given h € H*(A) (or h € HI(A,C”’)), by h* we mean the boundary
value of h, which is defined almost everywhere on A ([Rudin 1974]). Finally, LP(0A),
0 < p < 00, stands for the set of all complex Lebesgue measurable functions h defined on
OA for which || h ||,< co. '

Theorem 1.1 Let 0 < p < co. Let ¢ € HP(A) be non identically 0. Then log| ¢*| €
- LY(8A), the function

()\) = exp {2171_‘/7r %I;—EZ%—;; log | ¢* (exp(it))] dt} AeA

is in HP(A), there exists M, € H®(A) such that |M3(A\)| =1 a.e. on A and

p(N) = M,(N) Qu(N)  VAeA.

The function @, is called the outer factor of ¢ and it depends only on the modulus of
the boundary values of . A function M € H*®(A) such that [M3(A)| = 1 a.e. on JA
is called an inner function. It can be proved that every inner function is of the following
form ([Garnett 1981]) ' |

M(\)=cBA\)S() VieA

where c€ A, B is a Blaschke product and S is a singular function, i.e.

m — Qg o
B(A) = A agolakl——‘am AeA
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where {4} is a sequence of points in A such that D 7° (1 — |ax|) < oo and m is a
nonnegative integer, and

S(A)zexp{—/_‘ﬂwdu(t)} AeA

- exp(it) — A

for some ﬁnite positive Borel measure p on 0A which is -Singulaf with respect to Lebesgue
measure. It can also be proved that S*()\) = 1 for a.a. (with respect to Lebesgue measure)
A € A and that S*(\) = 0 for a.a. (with respect to u) A € 0A.

2. Minkowski functionals

Let DCC™ be a convex domain containing the origin 0€ C* and let up be its Minkowski
functional (cf. [Rudin 1973], for example)

N 1
#D(Z)C}éfinf{t>OIzzED}<oo zeC".

It turns out that D = { z € C* | up(2) <1 } and that 8D = { 2 € C* | up(z) =1 }.
Moreover, one has that pp is a norm if, and only if, D is bounded convex and balanced.
One easily checks that the Minkowski functional of a convex domain containing the origin

is a convex function. We quote some results from the theory of convex functions which are
be of interest ([Rockafellar 1970])

Theorem 2.1 Let f: R® — R be a convez function. Then
(a) f is continuous and the following limit
def flz+ty) - fla)

(.. daer 4.
f($7y) - tg%i_ t

ezists for all z,y € R™; moreover, if f is differentiable at z, then f'(z;y) = (V£(z),y)
for all y € R™, where (.,.)) is the usual scalar product in R"; :
(b) f is differentiable at x € R™ if, and only if, the n two-sided partial derivatives %:—_(ac)
exist at T and are finite;

(c) f is differentiable almost everywhere on R™ and the gradient mapping x — V f(z) is
continuous where it is defined; '

(d) if f is differentiable at z,, then the direction of V f(z,) is the unique outer normal
vector to { z € R™ | f(z) < f(zo) } at zo; moreover, in this case,

@) > F@o) + (V@) o —o)

96



or all x € R™; conversely, if there is a unique vector z* € R™ such that
Y

F(x) 2 f(zo) + (=", 7 — zo))

for all x € R™, then f 1is differentiable at x,;
(e) if 0 #S CR™ is closed and bounded, then there exists 0 < < co such that

(f'(zo;y),x) < Bl |

for all z, € S and all z € R™.

Since | \
i #p(82+ V) —pp(sz) _ . KD (z+ £v) — up(2)

t—0 t t—0 -z-

for all s > 0, then, by Theorem 2.1 (b), we have that up is differentiable at 2, if, and only’
if, it is differentiable at s z,. Therefore we can state the following k

Lemma 2.2 Let D C (C”‘ be a convexr domain such that 0 € D. Then up s continuously
differentiable almost everywhere on 8D.

If z, € 0D is such that there exists a uniquely determined unit outer normal vector v(z,)
to 0D at z,, then

(o) =20 (L2 (a0, G2 )

-1
Where n zo = H ( e (zo), . %‘;S Zo )Il and Re((z — 2,,v(2,))) < 0 for all z € D,
where (.,.) is the usual Hermitian product in C”.

3. Convexity and pseudoconvexity

A domain D C C" is said to be convex if z,w € D implies that t z + (1 — t)w € D for all
t€[0,1].
A domain D C C" is said to be _strictly convex if z, w, -21-(z + w) € 8D implies that z = w.
A domain D C C" has C’“-boundafy, k=1,2,...,00,w, if there exists a C* function
p: C" — R, which is called a defining function for D, such that:

(@ D={zeC"|p(z) <0}

() OD={zeC |p(z)=0};

(c) the complex gradient vector (&5’1—( ) BV a—%&(z)) is not v\‘fa,nishing for all z € 8D.

n
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Let D C C" be a domain with C*-boundary. The real tangent space to 8D at z € 8D is
given by ~

R _ -
T, (0D)=< weC"”|Re ]Ezl 6—Zj(z)wj =0

while the complex tangent space to 0D at z € 0D is given by

n
TE(OD)={ weC | Z %(Z)wj =0
g=1""

A domain D C C™ with C? boundary is said to be weakly convex at z € 8D if

n azp n 82p .
Re 2 525 0m (2)wjwy | + E 5% 0% (z)w;wg > 0

for all w € TR(AD).

A domain D C C* with C? boundary is said to be strongly convex at z € D if the above
inequality is strict for all w € TR®(0D) — {0}. ,
One can prove that a Weakly convex domain is convex ans that a strongly convex domain

is strictly convex.
A domain D C C* with C? boundary is said to be strictly linearly convex at z € D if

. 9% 9%
L > .
j,kz=l aZj 6'51;; (Z)wj Wk = chZ:_—l 8Zj 8zk (z)ijk

for all w € TE(8D). |

A strongly convex domain is strictly linearly convex, but not viceversa ([Lempert 1984],
in [Jarnicki-Pflug 1993] an example of a non-convex strictly linearly convex domain is
exhibited). | |

A domain D C C™ with C? boundary is said to be (weakly) pséudoconvex at z € 9D if

for all w € TS (D).
A domain D C C™ with C? boundary is said to be strongly pseudoconvex at z € 4D if the

above inequality is strict for all w € TC(0D).
A convex domain with C? boundary is pseudoconvex.
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The following result is due to Narasimhan (see [Krantz 1992])

Lemma 3.1 Let D C C™ be a relatively compact domain with C? boundary. Let z € 8D
be a point of strong pseudoconvezity. Then there exist a neighborhood U C C* of z and a
biholomorphic map ¥ on U such that (U NOD is strongly convez.

In [Fornaess 1976], Narasimhan Lemma has been improved as follows

Theorem 3.2 Let D C C" be a strongly pseudoconver domain with C? boundary. Then
there exist an integer m > n, a strongly convexr domain 2 C C™, a neighborhood D of D,
and a ono-to-one imbedding U : D — C™ such that |

(a) ¥(D) C |

(b) ¥(0D) C 9%

(c) ¥(D-D)cCm -

(d) (D) is transversal to O

Sibony has given an example of a weakly pseudoconvex domain that cannot be mapped
properly into any weakly convex domain of any dimension ([Sibony 1986]).

We refer to [Krantz 1992] for a detailed discussion on convexity and pseudoconvexity.

4. Subharmonic and plurisubharmonic functions

A function u : 2 C C — [—~00,4+00) defined on an open set 2 is called subharmonic if
(@) wis upper semicontinuous, that is the set { A € Q | u(A\) < s } is open for every
seR | - ‘
(b) for every compact set K C € and every continuous function h on K which is
harmonic in the interior of K and is such that hgx > ugk, then it holds that h > u
on K.
A function u : D C C* — [—00, +00) defined on an open set D is called plurisubharmonic
if

(a) wu is upper semicontinuous;
(b) for every z,w € C", the function A — u(z + Aw) is subharmonic on the set
{reClz+AweD}.

A function u: D C C* = (O +00) defined on an open set D is said to be logarlthmmally

plurisubharmonic if log« is a plurisubharmonic function.

The following result gives an analytic condition on C? functions which is equivalent to

plurisubharmonicity
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Theorem 4.1 A function u : D C C* — [—o0,+00) of class C? is plurisubharmonic if,
and only if,

n azp
Wy >
Z RN (2)w;Wg > 0
J k=1 )

forall z € D and all w € C".

Theorem 4.2 (Maximum Principle for subharmonic functions)
Let D C C™ be a bounded domain. Let u: D — [—o0, +00) be a non-constant plurisubhar-
monic function. Then
u(z) < sup ¢ limsupu(w)
£cdD w—E¢

weD

for all z € D.

Proposition 4.3 Let ¢ : D; C C"* — Dy C C™ be a holomorphic map. Let u :
Dy — [—00,+00) be a plurisubharmonic function. Then wo ¢ : D1 — [—0o0, +00) is a

plurisubharmonic function.

Proposition 4.4 Let u: C* — RT U0 be a seminorm. Then p is o plurisubharmonic

function.

See [Dineen 1989] or [Hérmander 1979] for further results on plurisubharmonicity.
A domain D C C" is called pseudoconvex if the function — logdist(.,dD) is plurisubhar-
monic, where
: D)= i -
dist(2,0D) = inf {|lz-w]}

for all z € D.
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