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Chapter 0

Introduction
0.1 Outline |

The six Painlevé equations are known since the beginning of the century [Fu, Schl, G]. They appear
for the first time in the project of classifying ODEs on the basis of the singularities they admits. The
singularities of the solutions of an ODE are fized, if they do not depend on the initial data, or movable,
otherwise. The singularities other than poles are called critical points. A linear ODE has only fixed critical
points; indeed any singularity of a solution coincides with a singularity of the coefficients. A nonlinear ODE
admits also movable singularities. A first order equation admits only poles (of any order) or algebraic branch
points; Moreover, Fuchs [F] proved that the only equation without movable critical points of the form

uy = F(u,t),
where F' is rational in u and locally analytic in ¢, is the Riccati equation:
ug = a(t) + b(t)u + c(t)u?,

with a(t), b(t), c(t) analytical.
Painlevé, Gambier and others (see [I] for a complete review) proved an analogue of the Fuchs result
for the second order ODE of the form
U = F(t,u,ut),

where F is algebraic in u, rational in u; and locally analytic in ¢. In this case the solutions admits poles,
algebraic and logarithmic branch points and essential singularities.

The requirement that an ODE has no movable critical points is known as the Painlevé property. Painlevé
and Gambier found fifty equations satisfying this property. Six among them, the so called Painlevé
equations, turned out not to be integrable in terms of known functions. Their solutions were called Painlevé
transcendents. (We list in Appendix 0.A the six Painlevé equations).

At the end of 70s these equations were included in the framework of the theory of integrable systems [ARS,
FN1, JMU]. Indeed, there are several connections between Painlevé property and integrability. In this work
we will analyze two of these connections: namely the relationship between ODEs with Painlevé property
and the self-similar reductions of completely integrable PDEs, and the analogy between Inverse Scattering
Transform (IST) method (involving completely integrable PDEs) and Monodromy Preserving Deformation
method (involving ODEs with Painlevé property).

Starting from the work of Flaschka, Newell [FN1], and the Japanese school [JMU] on one side and of
Ablowitz, Segur, Ramani [AS,ARS] on the other, this twofold connection between equations with Painlevé
property and partial differential equations solvable via Inverse Scattering Transform (IST) has been developed
in great detail.

Here we will recall some basic facts about these two topics.

0.1.1 Self-similar solutions

A completely integrable PDE is an infinite dimensional Hamiltonian system (see Sect 0.2 for details).
Let us concentrate our attention on a particular kind of solutions of PDEs, namely the so called self-similar
solutions: although the properties we enunciate hold for every soliton equation, we sketch here, as an example,
the case of the modified Korteweg—de Vries equation (mKdV).
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The mKdV equation
U = 6U2Uz — Uzzz

is completely integrable and admits the self-similar solution
u(z, ) = (3t) " 3w(2), z=xz(3t)73.

This follows from the observation that, if u(z,t) satisfies KdV, then so does ku(kz, k3t), i.e. a self-similar
solution is invariant under such a scaling. In this case, the function w(z) satisfles the second Painlevé
equation

i

w =2w3+zw—1—a,

where a is an arbitrary integration constant.

This, and the analogous cases of KdV and Sine-Gordon equations are analyzed in detail in Chapter 4.
Coming back to the general case, the fact that, in all known examples, the reductions obtained in this way
possess the Painlevé property, led Ablowitz, Ramani and Segur [ARS] to formulate the so-called Painlevé
conjecture, which formalizes this relationship, asserting that every ODE arising as a similarity reduction of
a PDE solvable via the IST method (i.e. completely integrable), has the Painlevé property.

In this work we will concentrate our attention on the Hamiltonian aspect of the problem: the starting
PDE is an (infinite dimensional) Hamiltonian system and its Hamiltonian structure is well known (see [F'T]);
on the other hand, also the reduced ODE of Painlevé type can be read as a Hamiltonian system, and for the
simplest examples of these restrictions the Hamiltonian structure is known. For instance, the Hamiltonian
description of the classical six Painlevé equations was found by Okamoto, [O]. Whereas the relationship
between the starting PDE and the reduced ODE is clear and has been investigated quite a lot (see, for
instance [AC,AS]), the relationship between the starting Hamiltonian structure and the reduced one has not
been investigated. This work will give a contribution in understanding this relationship.

Our first result (see Chapter 2) is a universal construction of the reduced Hamiltonian structure
starting from the Hamiltonian structure of the original hierarchy of PDEs.

This is all about the reduction from PDEs to ODEs of Painlevé type. Now we will briefly discuss the
analogy between spectrum preserving deformations and monodromy preserving deformations.

0.1.2 IST and MPDE

As it is well known, completely integrable PDEs can be obtained as spectrum preserving deformations of
differential linear operator and this is at the basis of the IST method. On the other hand, ODE of of
Painlevé type can be obtained as Monodromy Preserving Deformation Equations (MPDE) of differential
operator with rational coefficients. We recall here some basic facts about both these methods.

Completely integrable PDEs are characterized by the fact that the initial value problem can be exactly solved
via the inverse scattering method. The latter was initially employed by Gardner, Greene, Kruskal and Miura
[GGKM] to solve the initial value problem for the KdV equation. The generalization of this technique is
applied to other infinite dimensional evolution equations and it is known as IST method.

The idea was to solve the KdV equation with initial condition

u(z,0) = f(z),

where f(z) decays sufficiently rapidly as |z| — co, by relating it to the Schrédinger operator
d2
L= _E:ZI_Q +U((E,t).

If one deforms the potential u(z,t) in ¢, such a deformation preserves the spectrum of L iff u(z,t) satisfies
the KdV equation.



Indeed, imposing A; = 0, the KdV equation can be read as compatibility of
Lv = vgg +u(z, t)v = Av

with
v = (ug +7)v — (2u + 4X\)vg.

The latter equation represents the time evolution of the eigenfunctions of L, where v is an arbitrary constant
and ) is the spectral parameter. The eigenvalues of L and the behavior of the eigenfunctions determine the
scattering data of the problem.
The IST method consists in three steps: firstly (direct problem) one constructs a map from u(z,0) to the set
of the scattering data S(),0) of the problem at the time ¢ = 0. As a second step one let the scattering data
evolve, and finally (inverse problem) one construct the map from S(A,t) to u(z,t).

The basic idea is to shift the evolution from the space of potentials u(z,t) to the space of monodromy
data, where the dynamic is quite simple.

The method has been put in a more general framework (see, for instance, [AC] for a complete reference):
one may consider the two linear systems
d¢

= X(z,t)¢ (0.1a)
and a5
= =T, ¢, (0.1b)

for a vector ¢ and n x n matrices X,T. In this case the compatibility gives
Xt - T:E = [T:X])
this integrability condition turn into a completely integrable PDE: for Instance, if ¢ = (¢1, #2)T, and one

chose as operators
=i u
X= ( u i.f)

T — 4483 — 2iu3¢ 422y + 2ifug — Ugq + 2u°
= | 4620 — 2ifuy — ugy + 203 4ig5 4 24u2¢ )

and

the compatibility condition coincides with the mKdV equation, and this means that the scattering data of
the problem are preserved if u, as function of ¢, satisfies the mKdV equation.

We will use this example to introduce the MPDE framework: we recall that, performing a self-similar
reduction of mKdV one obtains the second Painlevé.

Indeed, following [FN1] one can consider self-similar solutions of the system (0.1) itself: if ¢(z,%,¢)
satisfies (0.1), then so does ¢(kz, k3t, k=1¢). One defines, in the case of self-similar u, ¥(z, &) = ¢(z, 3, €),
so that

¢(z,t,€) = 9(z, ),
where ¢ = £(3t)3. 1 satisfies

dy &

o= X(z,t)y (0.2a)
and

@f- = T(z,t)y, (0.20)
with



and 5 - d
o —i(4C% - 20® +2) Qv+ 2 + ¢
T\ 4u-2e 4+ iU -7 +2))

The compatibility of systems (0.2) gives the second Painlevé

d2
E;g=2v3+zv+a.

In the case of IST, the compatibility of (0.1a) and (0.1b) entails the invariance of the scattering data.
Here the compatibility of (0.2a) and (0.2b) still entails some invariance, but the preserved objects are the
monodromy data of the linear operator with rational coefficients 7. What is a scattering data is well known,
here we briefly recall the definition of monodromy data. Let us consider in the complex domain a differential
equation with rational coefficients

d
~ = A(2)y(2) (03)
z
where
At ai1 @12 .. .. Qin
y — y2 , A(Z) — a91 . . . Qon
Yn Anl . e v Qpn

An arbitrary solution y(z) of (0.3) is locally holomorphic but globally multivalued; the poles of A(z)
are singularities of the solution. Fixing a basis y®, ...,y in the n-dimensional space of solutions we
construct the fundamental n X n matrix

Y(z) = @™,....y™)
satisfying the matrix version of (0.3)

dY (z)
dz

= A(2)Y (2).

The fundamental matrix solution is in general a multivalued analytic function. The branch points of the
solution are the singular points for the operator A(z). We are interested, in particular, in the so called
Fuchsian systems, i.e. systems of the form

d® < 4
E“;z—ai@'

Near the point z = a; a fundamental matrix of solutions Y;(z) exists such that
®;(2) = Wi(2)(2 — a;)™

where /ij is the diagonalization of Ay, and W;(z) converges for small |z — a;|. Such kind of singularities is
called Fuchsian.

If one continues ®;(z) along a path encircling the point z = a;, the columns of the resulting matrix
are linear combinations of the columns of ®;(z); hence there exists a matrix M; such that

B;(z) = 0;(2)M;.

The matrix M; is called monodromy matrix around the point z = a;.
Also the point co is Fuchsian; the general solution can be expressed as

2o = 0(5) "7
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where W converges at |A\| = oo and A, is the diagonalization of Aeo

The matrices M; are the monodromy data of the system. We will describe in more detail the problem
in Chapter 6, where we will introduce also the so called irregular singularities, which give rise to the Stokes
phenomenon. In this case we have additional monodromy data. This brief recall is enough to explain what
a MPDE is, i.e. the equation describing the deformations of the operator A(z), as a function of the singular
points, which preserve the monodromy data.

In particular, the linear system (0.2b) has a regular singular point at zero and an irregular singular point at
the infinity.

The monodromy data of the system, describing the behavior of the solutions near the singularities,
remain unchanged under deformation of v satisfying PII.

A central point in the IST method is that the scattering map connecting the space of potentials u(z), and
the space of scattering data is a Poisson map, i.e. it preserves the Hamiltonian structure (in particular it is
possible to choose, in the target space, a combination of the scattering data forming a system of action—angle
variables).

The starting PDE is a Hamiltonian system on an infinite dimensional space, w.r.t. the linear Poisson
bracket we will describe in detail in Section 0.2. The time evolution of the scattering data, on the other
hand, is still an infinite dimensional Hamiltonian system and the associated Poisson bracket is quadratic
[ZF]. The understanding of this structure was a fundamental step for the subsequent development of soliton
theory, and of his quantum version: the Poisson structure on the space of the scattering data can be read as
the semi-classical limit of quantum group [AC].

The analogy between the two processes of scattering and monodromy transform suggests that, also in
the MPDE case, the complete understanding of the Hamiltonian structure should be important: in particular,
the analogue of the scattering map, the monodromy transform, i.e. the map associating the monodromy
data to the linear operator with rational coefficient, plays an essential role. In the case of Fuchsian systems
it has been proved [R] that MPDE, i.e. the Schlesinger system (see 6.2.2), is the semi-classical limit of the
Knizhnik—Zamolodchikov equation. However, the Hamiltonian nature of the monodromy transform has not

‘been understood in full generality ( cf. [FN2], where a very particular case was under investigation).

0.1.83 Main results

This work contains three main results: concerning the reduction of PDEs to ODEs of Painlevé type, we prove
that the finite dimensional Hamiltonian structure of the ODEs is obtained from the Hamiltonian structure
of the starting hierarchy of PDEs, via scaling reduction, i.e. a reduction on the set of stationary points of a
time—-dependent first integral. Particularly, we construct the time-dependent Hamiltonian functions of the
reduced flows. In the time-independent case this procedure coincides with the well known stationary-flow
reduction discovered by Bogoyavlenskii and Novikov [BN]. As an application we present the case of PI, PII,
PIII, PVI and also certain higher order systems appeared recently in the theory of Frobenius manifolds [D1].

As a byproduct of these investigations we discover a very general Lagrangian formalism of the procedure of
reduction of an evolutionary system

u(z): = F(z,t,u(z), ug(z),. .. ,u™ ()

on the manifold of stationary points

of a local integral

I= /L(a:,t, w(z), us(x), ..., ul™ (z))dz.

5



Namely, we prove that this restriction is again a Lagrangian system with the Lagrangian function A, such
that :

dA _ dL

de ~ dt’

As we have already explained, scaling reductions of evolutionary PDEs can be recasted into the form of
MPDE for certain linear differential operators with rational coeficients. So, after completing the description
of a natural Hamiltonian structure of these equations, our work goes in the direction of understanding the
Hamiltonian nature of the monodromy transform. This question was formulated in [FN2| and solved in
an example of a MPDE of a particular second order differential operator. However, the general algebraic
properties of the arising class of Poisson brackets on the space of monodromy data remained unclear. The
technique of [FN2] seems not to work in the general case. The authors of the papers [AM,FR,KS Hi| consider
the important case of MPDE of Fuchsian systems in the general setting of symplectic structures on the moduli
space of flat connections (see, for instance, [Au]). They do not write, however, the Poisson bracket on the
space of the monodromy data in a closed form. MPDE of non-Fuchsian operators and the Poisson structure
on their monodromy data were not considered in these papers.

The next result is a solution of the problem of computing the Poisson structure in the monodromy
data coordinates in the presence of irregular singularities. We derive explicit formulae for an important
example of operators with one regular and one irregular singularity. The MPDE of which play a central role
in the theory of Frobenius manifolds [D1]. In the particular case of MPDE for the operator of order 3 they
coincide with PVI.

0.1.4 Plan of thé work

The work is structured as follows: after recalling, in Section 0.2, some basic facts about the Hamiltonian
structure of the completely integrable PDEs, in Chapter 1 we briefly summarize the method of reduction of
evolutionary flows on the manifold of stationary points of their integral, introduced by Bogoyavlenskii and
Novikov [BN]. In Section 1.2 we consider this reduction method to a non necessarily Hamiltonian evolution
equation. ’

Chapter 2 contains the generalization of this procedure to scaling symmetries. The reduced flow is
a time-dependent Hamiltonian system, and in Theorem 2.1 we give the relationship between the infinite-
dimensional Hamiltonian structure and the reduced one.

Chapter 3 is devoted to a Lagrangian approach to the problem: after describing the general framework,
in Theorem 3.1 we give the procedure of reduction and we construct the reduced Lagrangian function. In
Section 3.2 we establish the relationship with the Hamiltonian approach. As an application we study the
Lagrangian reduction of KdV on the manifold of the fixed points of the 7-th flow.

Chapter 4 contains the application of the theory to the scaling reductions from KdV, mKdV and
Sine-Gordon equations respectively to Painlevé I, Painlevé II and III. These examples are studied both from
the Hamiltonian and the Lagrangian point of view.

In Chapter 5 we study the n-waves equation and his scaling reduction to a system of commuting
Hamiltonian flows on the Lie algebra so(n). The reduced system is a non-autonomous Hamiltonian system
w.r.t. the Poisson structure of so(n). In particular, for n = 3, adding an additional symmetry condition,
one arrives at Painlevé VI equation.

In Chapter 6 we derive the same non-autonomous Hamiltonian system on so(n) as monodromy
preserving deformation equation for a linear operator with rational coefficient and we construct the
monodromy map from so(n) to the space of the monodromy data of the operator. Here the MPDE is
still Hamiltonian w.r.t. a quadratic Poisson bracket which we explicitly construct.

0.2 Infinite dimensional Hamiltonian structures

Let us consider the phase space 9% of smooth maps of the circle into some smooth n-dimensional manifold.
Actually we can forget about the boundary conditions when dealing with local functionals only. We denote

6



by § the space of smooth functionals on 9 of the form

Fu) = [ f(@,0(e), ux(o), .., ™ (2))do

where the densn;y f depends only on a finite number of derivatives of u. On the space § the variational

derivative is defined by
e 5F
Explicitly,
§F of of
- = - 1 —
du'(z) Ou'(z) Z( ) dm ou' (k) ()’

Orme can define on 9 the (formal) Poisson brackets
i i E J (k)
{u' (@), @} =w" (z,9) = ZA

where A;: depends on z and on a finite number of derivatives of u. This induces on § the Poisson bracket

§F 4 6G
{7 ’G}:/ M(@P 5uf(m)d‘”’

where

A Hamiltonian system on 91 has then the form

0H

= {u'(z),H} = Pijmm—).

In particular, we consider so called Gardner—Zakharov-Faddev bracket p? = g4 d%. In this case a
Hamiltonian system has the form

) = u(e) ) = T3 0.9

ith Poi bracket
with Poisson bracke SF 4 sC

{76} = / Su(z) dz du(z) Fulm) =

Let us consider a first integral
I= /L(m,u(m),um(m‘), o u™yde,
The generalized Euler-Lagrange equation
"y
, bu(z)
is an ODE of order 2n which fixes the 2n—dimensional manifold & of the stationary points of the first integral

I. The functional L is the Lagrangian of the z—flow defined by (0.3). If L is non-degenerate, then it defines
also on & the natural system of canonical coordinates

=0 (0.3)

g =ul Y, i=1,2,..,n
I
P = S



and equation (0.3) can be put in the Hamiltonian form

which, in terms of the canonical coordinates takes the form:

et

0.A Appendix

We tabulate here the six Painlevé equations:

d?w

PI. E;:6w2+z

PII: %=2w3+zw+a

PIII %2;’2‘,—’ (dw)Q—é(d—w>+%(aw2+ﬂ)+vw3+g
PIV: d;f;’—:%<%>2+¥+4zw2+2(z2—a)w+g

[+

?w 1 1 dw\? dw (w—1)2 B
PV a**(aa*m)(az) (dz>+*‘2““‘<“"”+a)
dPw 1/1 1 1 1 1
pyr. E¥_I(Z4 -
! dz? 2<w+w—1+w— )( ) (z z—1+w-—z>

w(w - 1)(w — 2) Bz  y(z-1)  dz2(z-1)
P e i )




Chapter 1

On reduction of an evolutionary system
on the manifold of stationary points
of its integral

1.1 Reduction of Hamiltonian evolutionary flows

For what concerns the scaling reduction as source of nonlinear ODEs with Painlevé property, we
will read it in the framework of the Hamiltonian reductions developed in particular by Bogoyavlenskii and
Novikov [BN].

Let us consider a completely integrable PDE with one spatial variable and a symmetry, i.e. a first
integral of the PDE. Due to commutativity, the submanifold of the stationary points of the symmetry is
invariant w.r.t. the evolution equation. Bogoyavlenskii and Novikov discovered that the restriction of the
initial PDE to the finite dimensional invariant submanifold is a Hamiltonian system of ODEs. Actually, they
proved this result for the more general case of an integrable Hamiltonian hierarchy of PDEs with one spatial
variable. Due to the commutativity of the flows of the hierarchy, the submanifold of stationary points of any
flow, or of any of their linear combination, is invariant w.r.t. any of the flows of the hierarchy. In this case
the restriction of any of the flows to the finite dimensional invariant submanifold is a Hamiltonian system
of ODEs w.r.t. a natural Poisson bracket. Bogoyavlenskii and Novikov also found a universal scheme to
construct the Hamiltonians of the reductions in terms of the Hamiltonians of the original hierarchy.

The fact that the reduced flow is Hamiltonian is well established and in literature it is possible to find
various different approaches to the problem; in particular, in {GD], [R] Hamiltonian systems of Lax type
are considered, in [Al] a different parameterization of the manifold & is given, a bihamiltonian approach is
developed in [T], [FMT].

We will concentrate our attention on the mentioned framework developed by Bogoyavlenskii and
Novikov, in order to describe the Hamiltonian structure in terms of the infinite dimensional one. Here we
summarize the scheme of procedure.

The starting point is the generic element of a hierarchy of commuting Hamiltonian flows:

w_d o,
dt,  dz du(z)

with I, = [ L, (u(z),uz(z), ..., ul™) (z))dz.

We will describe the reduction procedure of the k-flow on the finite dimensional manifold of the stationary
points of the j—th flow:

du d oI,

dt, ~ dx bu(z) -

where I, = [ L (u(z), us(z),. .., u) (z))dz.
The manifold is invariant w.r.t. all the flows of the hierarchy, due to the commutativity

dd_4d4d
dt, dt, ~ dt, dt,’

The equation defining the stationary manifold can be rewritten as

o, _
su(z) ~

9



for constant a, this implies that the functional

I;a) = /Lju)dm = /[Lj + au]dz

61
du(z)

must satisfy

=0.

This Euler-Lagrange equation plays a crucial role in the present approach: it is an ODE of order 2n; and it
defines a (2n; + 1)-dimensional submanifold &; foliated in a family of 2n;-dimensional symplectic manifolds

(a)
S, , parametrized by the values a.
But the equation gives also a system of canonical coordinates on s ; » the so—called Ostrograndskii

coordinates. The reduced z—flow on Sj is automatically given; it turns out to be Hamiltonian and the
Hamiltonian function is obtained from L via Lagrange transform.

This touches upon a fundamental point, namely the privileged status of the z variable. Indeed one consider
u as a function of z, while the times #; play the role of parameters. We will attempt to put all them at the
same level, firstly (Chapter 2) allowing the symmetries to depend on times, secondly (Chapter 3), facing the
problem from a Lagrangian point of view.

Coming back to the starting problem, Bogoyavlenskii and Novikov proved that the reduced ¢;-flows are all
Hamiltonian and gave the algorithm to produce the Hamiltonian functions (—Q:)])

oI, d oI, Q(a)
6u( Y dz du(z) kgt

Notice that this definition makes sense because of the commutativity of the flows of the initial hierarchy: in

fact 4 oI
(L1} = / ) dz du z)d ¢ =0

implies the existence of a function Q ;, which depends on the derivatives of u up to order 2n — 1 (where n
is the maximum between ng and nj), such that

o, d oL, _d,
su(z) dz du(z)  dz ° ™7

and Q; k ] = Quj + o 5 3. We will analyze in more detail the result of [BN], summarized in

Theorem 1.B: Let us consider the Hamailtonian flow Xi:

du d &I
dt  dz du(z)’ (1.1)

where Iy = [ Li(u(z),u(z)g, ..., u(z )("1))dz and the Hamiltonian stationary flow X:

—_— — =0, (1.2)

where I = [ L(u(z),u(z)s, yu(z)™)dz and n > ny.



The flow X1 reduces on the manifold of the stationary points of the X flow and the reduced flow is
Hamiltonian, with Hamiltonian function (—Q(E)) defined via the relation

51 i 6L d
(M(@”)E@(@”%Q ’ (1.3)

where a is a constant.
Proof: The proof can be found in [BN] (TH.1); here we only sketch the scheme of procedure: as a first step,
one describes the manifold defined by the generalized Euler-~Lagrange equation

1"
du(z)

=0 (1.4)

which follows from (1.2), with I “ = J(L + au)dz. On this manifold one introduces a system of canonical
coordinates obtained via generalized Lagrange transform (here one supposes that the generalized Lagrangian
L is non-degenerate). In these coordinates the Euler-Lagrange equation is a Hamiltonian system and it
describes the reduced z—flow. Rewriting the identity (1.3) in canonical coordinates and using the fact that

n > ni, one immediately obtains that Q(u) and the Hamiltonian H of the reduced z—flow commute. Using
(1.3) it is straightforward to write also the first step of the inductive proof by means of which one obtains

dp, _ Q" _ @
dt - 6q,~ - {qu }1
dg; _ 0Q" _ (a)

for 1=1,2,...,n.

1.2 Reduction of more general evolutionary flows

The generalization of this result to the case of n < n is developed in [Mo], where it is also proved that the
starting flow must not necessarily be Hamiltonian. The proof presented in [Mo] contains some rather obscure
points and a unjustified assumption. Hence before generalizing this theorem to the case we are interested
in, i.e. the time dependent one, we propose here a slightly different proof.

Theorem 1.1: If the generic k—th element of a hierarchy of commuting evolution equations:

g{f = Fk(u(m)vuz(m)7 """ 7u(mk)(m>)7

admits a first integral I = [ L(u,ug, .‘.,u(ng))da:, such that

ol

Fule) =

then it is Hamiltonian on the manifold & of the stationary points of the symmetry with Hamiltonian function
(—Qr), which is the reduction on & of the function (—Qg) such that

(&%) Fp = %Qk (1.5)

11



Proof: We prove the theorem in three steps: first we describe the submanifold & of stationary points of the
integral I, where we introduce the system of canonical coordinates, in accordance with [BN] and [Mo]; then
we construct the functional Q, satisfying the identity (1.5) and its reduction Qr on the manifold &. Here
the commutation relation between (—Qy) and the Hamiltonian function H of the reduced z—flow is obtained.
Finally we prove that the restricted t,—flow is Hamiltonian on &, with Hamiltonian function (—Q%) -

1. The set & is the 2n,—dimensional manifold of the solutions of the Euler-~Lagrange equation

51
O 0. (1.6)

It is invariant under the k~th flow and it naturally carries a system of canonical coordinates:

g, =ul, (1.7a)
oI
p, = Su’ (1.70)

for i = 1,2, ....,ns. Here it is necessary the non-degeneracy of the generalized Lagrangian L.
Inverting relations (1.7), one can express the derivatives u,ug, ..... ,u(??+=1) in terms of the canonical

coordinates p; and g;; explicitly:

’u’(nA) = (qns)m = gl(Q17"' 7QTL,apn,>
w+1) = g5(g,,...,Gnys Py Pro—1)

u(2n8—1) = gn(ql’ .t 'yqn,7pn,)' e 7p1)'

OH . _48I
(pl)m_"éq_l':_‘ﬂ
(P)e+3E=0  i>1 (1.8)
(‘Zi)ﬂi_%goa

where H is the generalized Legendre transform of L:
o O
- 2 @
L+ Zl MOk

which, in terms of the canonical coordinates takes the form:

dg,
dz’

n,
H=-L+ Zpi
1
The first identity in (1.8) allows us to explicitly express the higher derivatives u{™ for m > 2n, in terms of
the p;, ¢; and p{’ with I =1,...,m —2n, + 1
u(2ns) = g’n+l(Q17 yooelngsPrngy oo -2 Py (p1)z)

On G (p,)z+ %;’j_ = 0, and system (1.8) is a canonical Hamiltonian system, with Hamiltonian function H,

giving the reduced z—flow.

12



2. Now we will show that also the t—flow, When reduced on & is Hamiltonian with Hamiltonian
function (- Q x)- To this end we first observe that Q ka is a function of v and of its z—derivatives up to order
(my + n,), so that it can be rewritten in terms of (p;,¢;) and p{” up to order [ = my —ns + 1.

We denote by f a function f(u(z),...,u(z)?)) reduced on &; notice that, if j > 2n,, then the
reduction can be done using the relation

(p,)e = —gf (1.9)

The function F does depend explicitly only on the p; and g;, for i = 1,...,n,. In fact differentiating (1.9)
one obtains the derivatives p{” in terms of the canonical coordinates (p;, gi)-

We rewrite explicitly the equation (1.5) for the function @Q,:

(e + 52 S <

0Q, =~ 8Q L 3Qk
E'__‘(p)z+2'—k(,)(p) )a:+
' i=1 a(pl) ' =2 i=
(a)

0Q, 0Q, (z+1) 0Q, 6H O0H
= %k (p), il . 1.10
dc | o, ) z_:z 9p, 0a. Z 50, op, (10

At this point we need the
Lemma 1.1: On the submanifold G the following relation holds:
aQx \ _ . -

(5@1)(j)> =0 Vi > 1. (1.11)

Proof: See Appendix 1.A

From Lemma 1.1 it follows that, on the submanifold & (where (p,); = —%’:—), eq. (1.10) reduces to:

e 5 = Q=0 (1.12)

Z 8Q, 6H Z 8Q, 0H
Op, Og,
This completes the second step in the proof of the theorem.

8. Now we will construct the Hamiltonian system inductively; to this end we need a further lemma:
Lemma 1.2: The fundamental relation

dq1 . a@k

TR (1.13)

holds.

Proof: See Appendix 1.A

For simplicity, here and in the following we omit the “tilde” sign: @, will indicate the reduced function on
6.
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Now, we assume that dt = —%Qp—k— = —{q.,Q,} and we prove inductively (the calculations are the

same as in [BN]) that the same rglatlon holds for ¢, ,. Indeed,

in 1 dq —
g = (G {q,,Q }=~{{2,,Q.}, H}.

Using the Jacobi identity and the commutativity we get

dg, .
= = —{g;,1, @} 1=1,2,...,ns — L.
dt,

Now we prove g—fki = —{p,, @, } by induction, starting from pp,.

This comes from the commutativity of the flows

d d d d
dt, do ™ T dzdt,

d [d _ 8H
d dz dt_ \ Opn,
i’: 0H 8@, 62H d
Opn,0q, Op, 8p% dt,

explicitly:

7 Pn, =

i oH an O*H d
Opn,0g, Op, 8p2 dt

On the other hand, using the Jacobi identity and the commutativity, one can write

Zi%(ii?) = ({42, Q. 1, H} =
_——{Qn,:{Qk,H}}-—{{qn“H}Qk}:
= { ,Q }=

Pn,

Z oH_0Q, , 0°H 0Q,
< Opn,0q; Op, Bp L Oqn,”

Comparing the two expressions and noticing that 2 3 p2 # 0 because of the non-degeneracy, we get

dpns

_ _0Q,
‘(%:‘ - —'{pﬂka}

aqns

- Let us now suppose that %i- = {p,, @, } and deduce the same for p,_,. Indeed,
k

d(i (Zf > 2{8;'3:‘ H} = —{{ank}7H} =—{{p., H},Q, =

= 9H 0Q,  9*H 0Q, O*H 09,
4 9¢.0q; Op;  0q.0pn, Ogn,  0g.0p;_, Og

i-1

14



and

d (dp,\ _  d (0H

dt, \dz ) ~ Bq,
s 0°H dg,  O*H dp,, O*H dp_, _
— 0q,0q, dt,  9q,0pn, dt,  9¢.0p,_, db,

RS H 8Q,  8*H 0Q,  O*H dp._,
B 7 quaq,- apj 5‘1‘3}%3 ans 8q1'6p;—x dtk ’

8°H : . dp;_,
where Pa.9p, T = 1. Comparing the two expressions we get —;

. 9@
T 0q;,

dp, 0Q, .
B /) =1,2,..,n
dth aqt {pz, k}’ 7 k) ’n

1.A Appendix

Proof of Lemma 1.1: We observe that the recursive relation

Qs B 0 d [ 8Q%
(5@1)0-1)) 8(p,)0) < ’“) dz (5@1)@))
holds for j > 1. Indeed

7o (%) ~ 2 (@) @+ 2 (Gapym ) o0+

ezt 8%Qy ; 8Qs
* Z < d(p1)M0(p, )(”)(pl)gu(3(101)(”"1))'

(5(—5%{7“2-7)) ch(a(aQ)k(j))

But Q depends on (p,)") up to a finite order, then

B \_y
(gom) =0 =1

When we reduce on &:

Proof of Lemma 1.2: The expansion of %Qk in powers of (p,); near the pomt reads

() + [z (99)) (oo 55) v - —Ii)

The zero order term is

5+ hence it follows that

Q.E.D.

Q.ED.



and the first order coefficient is
d (4, \]|_[d(_ 8 0Qs
o (&%) = [& ()] + (5)
d ™ 6@1;: ~ me—ns+1 anﬁé(pl)(i))
B le{ 6(p, )kaﬂ dp, g (3(171)(“ opr )’ (114

where the only non zero term is 22% by virtue of Lemma 1.1. Then we obtain the power series expansion
y So, by

of -d%Qk up to the first order:
BQk (( e+ 8H>

this, compared with the left—-hand side of eq. (1.10), gives the requested relation.

Q.E.D.
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Chapter 2

Scaling reductions of evolutionary systems:
Hamiltonian formulation

2.1. Scaling symmetries and their Hamiltonians

In the Introduction we presented the reduction from a PDE to an ODE with the Painlevé property. It
is based on the existence of the self-similar solutions. In other words this means that certain solutions
are invariant under the so called scaling transformations. Hence we reformulate the problem in terms of
symmetries: a self similar solution is a fixed point for a given symmetry. We will call such kind of symmetry
scaling symmetries. Obviously, a scaling symmetry does depends upon both the space variable and the time
(or the “times”, in the case of a hierarchy of PDE).

We will develop in detail, in Chapter 4, some example; here we briefly sketch the idea for the mKdV
equation

Ut = 6uUy — Uges.

It admits the self-similar solution
u(z,t) = (3t) Fw(z), z=az(3t)75.
Such a solution satisfies the evolution equation
TUg + Stug +u = 0,

which can be read as a Hamiltonian stationary flow

_ _d
Us = TUy + tug +u = a;m =
for I = [(Zt(u* +u2) + y-g-"”—)da:. This means that the set of self-similar solutions coincides with the set &
of the fixed points for the scaling symmetry I.

One may ask what happens when reducing the initial PDE on &. The case is analogue to the stationary
flow reduction, apart from the time—dependence. In fact, one may still reduce the initial t—flow on &, where
it is represented by a non-autonomous Hamiltonian system. In the following we will give the proof of this
fact, together with the prescriptions to construct the time-dependent Hamiltonian function.

Notice that, on &, it is possible to choose a particular system of coordinates, the scaling coordinates,
in which the reduced flow is an ODE of Painlevé type; in particular, for the example of mKdV, it coincides
with Painlevé II. We will discuss these and other examples in Chapter 4.

In this Chapter we extend the Bogoyavlenskii-Novikov scheme to finite dimensional invariant submanifolds
specified by scaling symmetries of the hierarchy. Of course any of the flows is a symmetry but there are
more general symmetries. They can be represented as linear combinations of the flows of the hierarchy,
with coefficients depending explicitly on z and on the time variables. These more general finite dimensional
manifolds are invariant w.r.t. only some part of the equations of the hierarchy. We will show that the
restriction of these flows on the finite dimensional manifolds admits a natural description as Hamiltonian
system with time dependent Hamiltonian.

First of all we recall some facts about the time dependent symmetries (see [GOS], [SM]).

Given an evolution equation
Us = f(mauza e 1“'('7))
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a local symmetry is defined by
- &y =0
us = gz, t, ug, ..., u"’)
under the commutativity condition
dg _ df
dt ~ ds
If the evolution equation has the Hamiltonian form

du d &I

dt ~ dz du(z)’

for the functional I, = [ L, (z,u(z),us(z), . ..,ul™(z))dz and also

_ 4 0Ly
"~ dz du(z)

Usg =g(z,t,uz,...,u(m))

then the condition on g to be a symmetry is

{Il,f(s)} — Bt =0.

If one considers a part of a hierarchy, the local symmetries may depend on more than one time. Explicitly
for the KdV hierarchy there exist three types of local symmetries: the shift along any of the times

Us = Ut,,

the Galilean symmetry
us = 1+ 6tjuy + 10t0ue, + ... +202m + Vtpue,

and the scaling symmetry
Us = 2u + TUg + 3trUy, + Staug, + ... + (2m + Dipnuy,, .

They commute with the z—flow and with the first m time—flows of the hierarchy. In a more general way, we
consider any linear combination of these symmetries, with constant coefficients. This corresponds to a linear
combination of the flows of the hierarchy, with coefficients depending on z and on the first m times.

In terms of Hamiltonian functions this means that we are considering a symmetry defined by:

d
= = {u(@), I} =0,
where [ = fL(u,uz,...,u(n’),m,tl,tz,...,ts)dz and L is a linear combination of the densities L,, with

coefficients depending on x and on the times:

L= c(zt,ty,...,t )L (z,u(@),us (2),... 0" ()

=0

We call such a kind of symmetry a scaling. It defines a 2n;-dimensional submanifold & in the space of the
solutions of the system.

18



2.2 Self-similar solutions of evolutionary systems and time—dependent Hamilto-
nian formalism

In this Section we generalize Theorem 1.1 to the case of scaling symmetries. The procedure scheme is similar,
indeed Lemma 1.1 and 1.2 hold also in the time dependent case. The main difference consists, obviously, in the
fact that the Hamiltonian functions of the reduced flows do not commute, the commutativity being replaced
by a zero—curvature relation, which takes into account the time dependence. Our results are formalized in
the following Theorem 2.1. We postpone the comments to the end of the chapter.

Theorem 2.1: If the generic k—th element of a hierarchy of commuting evolution equations:

d
dTu = Fp(z,u(z), ug (x), ..., ul™)(z)),

admits a nondegenerate scaling symmetry

I= /L(u,um,...,u(n’),r,tl,tz,...,ts)d:c,

then it is Hamiltonian on the manifold & of the stationary points of the symmetry with time dependent
Hamiltonian function (—Qy), which is the reduction on & of

n
~ _dgi
= Az - ;—— 2.1
Qk k sz iy’ (2.1)
g=1
where p;,q; are the canonical coordinates on &, expressed in terms of u, ug, .. .,u(zns_l), and
dL  dAg
- 2.2
diy, dz ( )

Proof: The proof is articulated in three steps: we first describe the submanifold & of stationary points
of the symmetry I, where we introduce a system of canonical coordinates; then we deduce, on &, a zero-
curvature equation for (—@Qy) and the Hamiltonian function H of the reduced z—flow. Finally we prove that
the restricted ¢, ~flow is Hamiltonian on &,with Hamiltonian function (~Qy). ~

1) The manifold & is the 2n,—dimensional manifold of the solutions of the Euler-Lagrange equation

oI '
= 2.3
du(z) (2.3)
It is invariant under the k-th flow and it naturally carries a system of canonical coordinates:
g =ul Y, i=1,2,...,n (2.4a)
or

obtained via generalized Lagrange transform (here we suppose that the generalized Lagrangian L is
nondegenerate). Observe that the p;’s depend on z and on the times t,,%,,..,t,. From now on, we will
indicate simply them with ¢.

Inverting relations (2.4), one can express the derivatives u, ug,. .. ,ul??=1) in terms of the canonical
coordinates p; and g;, x and ¢; explicitly:

ulne) = (qmJ ):z: = gl(:r,ta a,--- ans7pns)
u(n,-}-l) = 92(3;) taqﬂ cee3Qn, apns7pns—1)

u®me=) = g (2,4,0,, ., Gnys Pras - Dy)-
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Observe that (2.4) gives the identities:

(p)s + 22 =41
(p)+afzo i>1 (2.5)
(Q)E’QEEO

where H is the generalized Legendre transform of L:

L+Z(5 u u®

which, in terms of the canonical coordinates takes the form

H=—L+ipidq‘
1

dz’

The first among identities (2.5) allows us to explicitly express the higher derivatives ul™) for m > 2n,

in terms of z,t, p;, ¢; and p{” with[=1,...,m — 2n, + 1:

’u’(2n5) = gn+1($,t,q1, vy lngyPngy - - -

)
U =9m—n,+1($at:qu~-;Qnaapn,>--

On G it reduces to (p, )z + g;g_ =
1
function H, giving the reduced z-flow.

. 1p17 ey
0, and the system (2.5) is a canonical Hamiltonian system, with Hamiltonian

.0y (1))

(m—2n+1)
(p.) )-

Now we will show that also the ¢;—flow reduces on & with Hamiltonian function (—Qk)

Indeed we first observe that Q( is a function of m t, v and its z—derivatives up to the order (mg +ns),

then it can be rewritten in terms of z, ¢, (ps, qz) and p{ up to the order [ = my —ng + 1.

We denote by f a function f(x,t,u( ),

., u(z)9)) reduced on &; notice that, if j > 2n,, then the

reduction can be done using the relation
8H'"™
- ) 2.6
(p.)e =~ (26)
Then f does explicitly depend only on the p; and ¢, for i = 1 ,ns and on the time t*. In fact,
differentiating (2.6) one obtains the derivatives p\" in terms of the canonical coordinates (ps, g;).
2) We consider the derivative
dL 8L Z oL dg; Z OL dp; _
dty *atk £ 0g; dty, op; dty
H o :
Z OH dg; Lo (2.7)
dq; dtk dfzdt

analogously, noticing that Ay depends on z,t,(pi, ;) and p{

' up to the order | = my — ns + 1, we have:

e 0, S0 S TS s
Zfzpz Zf;: i_: d(j:;tzk N
Mi—ng+1
ey it & Bga)
nggf; Tpdf;; qu(pl)ﬁ%gk(pl)z (2.8)
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Then equation (2.2) gives:

0H 0Qy Z 0Qy 0H Z 0Qy 0H 8Q;v 0k )y, +

-é?;-*- Bz 8¢; apz Jp; 6(]1 Op1

Mk—"Ns +1
0Qr_d e dql OH dgy _
- Z d(p,)d d:z:( P) + ( ) Oqr dty

OH _dg oHY _ d
5t T ar, <(P1)m + 551‘) = =@k (2.9)

We observe that Lemma 1.1 holds also in the time-dependent case, i.e. the relation

which can be rewritten as

(6(;0 )5 Qk) =0 V5 > 1. (2.10)

holds. Hence, on the submanifold &, eq. (2.9) reduces to:

O0H (9Qk 80, 6H Qs 0H
6tk z 0g; Op; Z Op; 8‘11

This is a zero—curvature equation:

« (—-Qr) OH _
{(-Qu), H} + =5 = 5 =0,

3) Lemma 1.2 can be generalized to the time-dependent case and gives

dQ1 BQk
—_— = - . 2.11
&, = o, 210
Indeed, the expansion of d—dz-Qk in powers of (p, ), near the point ig?— has still the expression
d d [ OH OH\?
— =)+ ®< e + ——) :
(%) + [z (@) (604 550 ) +o(00:+ 5
In this case the zero order term is not zero, but
d_ OH
(a;Qk> = o
by virtue of the zero—curvature equation. The first order coefficient is
d [d d( @ 5521)
o ()] = & (o) + (5
d - an me—n,+1 ( 6Qk"5(pl)(i)>
_ _ , , 2.12
{ (3(191) Qk)} dp, 2 8(p,)®  Opm (2.12)

=2

where the only non zero term is %%—’i, by virtue of Lemma 1.1. Then we obtain the power series expansion
1
of d—dek up to the first order:
OH 80 O0H
( 1)1! .

atk + apl * %
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This, compared with the left-hand side of eq. (2.9), gives the relation (2.11).
For simplicity, here and in the following we omit the ” hat” sign: @, will indicate the reduced

d )
function on &. Now, we assume that q‘ = 6ka

relation holds for ¢,,,. The scheme of the procedure is the same as in Theorem 1.1, the only differences
being the contributions of the partial derivatives in ¢ and z. Indeed,

= —{¢,,Q,} and we prove inductively that the same

dq;., dg, d aQ
* = (= e . —_ — . H —_ . ~ Ik .
dtk (dtk )l' dx{Qan} {{ank}7 } {q“ T }
Using the Jacobi identity and the zero—curvature relation we get
dg, 0H .
dt:l = - '5{;:(1;}"{%4‘17Qk}7 i=1,2,..,ns - L
Here the term {3, q,} is zero for every i # n, since (%) = —Z22 Indeed L depends on u and on the
k k
derivatives of u up to the order ny. This means that, restricted on &, it depends on q,,4,,...,qn,+1- Then,
there is no dependence on the p, for i # n,. Finally we get
8H 8L
il —{(= 0
{8tk:qn3} {(atk):Qns}# ;
OH )
{m,qi} =0 i<,
Hence we have proved that
dg, ,
EE: =—{¢,Q.}, i=1,2,....,ms.
= —{p,, @, } by induction, starting from p,.
This comes from the commutativity of the flows
d d d d
dt, dz ™ dzdt,
explicitly:
d (d _d (oH\ _
dt, \dz n. T dt, \Opn, )
_ 8 0H i 0H 0Q, K 6°H d
T 8%, Opn, 4~ 0pn,Oq, Op,  OpE, db, ™

=, OH 8Qk 0*H d
{q’“’at - Zapnsaq B, | OpZ di,”

On the other hand, using the Jacobi identity and the zero—curvature equation, one can write

d (dem,\ 8 dg,
dz \ dt, )~ Oz dt,

- {{Qn,ka}vH} =

0Q, , _
Oz b=

:_{qnu{Qk:H}}“{{qnuH}Qk} —{q‘n,a

(o o}~ {5 @) =

@}_i 0H 8Q,  9°H 9Q,
Opn,0q; Op, ~ Op}, Oan,”




Comparing the two expressions and noticing that # 0 because of nondegeneracy, we get

dpns _ _ an
dt, { n“Q } Qns )

- Now we suppose that o _ ., @.} and we deduce the same for p,_,. Indeed,
di, P, k i—1

i(%) :{8Qk H}-}-E—an —_

dz \ dt, dg,”’ oz 8g,
9Q,

:—{{ank}’H}—{pn }:
-~ (. HLQ, }+{p,,zf}

_ ”{5 0°H 0Q, O°H 8Q, 0°H 0Q,
P "8t 8q,0q; 8p,  8q.,0pn, Oqn,  0q.0p._, Oq._,

a (dp. __ d (0H
dt, \dz ) 8y,
9 8H "~ O°H dq,  O*H dp,, O*H dp_, _

94, 8q, 4 0q.0q, db,  0q.0pn, di,  Oq.0p._, dt,

and

"il 8H 8Q, O°H 08Q, 0°H dp_,
aQaan' 8pj aQiapn, 6qna 8(]{6])1.,1 dtk ’

{p“ at

82H . . dp; ., _ 0Q,
where z-75-"— R 1. Comparing the two expressions we get & = Ba,

; hence it follows that

I, _ 00, _
dt,  Og,

—{p.,@. }, 1=1,2,...,n;

2.2 Concluding remarks

Q.E.D.

Summarizing, we start from a partial differential equation of order m on the functional space 9, describing
the evolution of the function u(z) in the time ¢ and a first integral I = [ Ldz, where the density L is of

order n in z and depends on t. The scaling symmetry I satisfies the Euler-Lagrange equation

(2.13)

This is the Lagrangian system, with Lagrangian L, giving the evolution evolution of u(z) in z. It is an
ordinary differential equation of order 2n. If L is nondegenerate, the space of solutions is a 2n dimensional
manifold &, which naturally carries a system of canonical coordinates. In these coordinates, system (2.13)

is Hamiltonian, with Hamiltonian function H, obtained from L via Legendre transform:

= dg;
H=-1L 24
+D P

q=1
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Following the scheme of [BN], one may reduce on & also the equation of the evolution in ¢; it results to be
Hamiltonian and the Hamiltonian function can be constructed as in (1.5):

(5—%) d1;(tz) %Q'

3 dl;(:) must be a total derivative.

Indeed, the definition of a first integral % = 0 implies that ‘5(1 =

du
But also, as Theorem 2.1 states, one may adopt a slightly different perspective: from the fact that I is a

first integral, one deduces that %’;i must be the total derivative in z of a functional A. Obviously there exists

a relation between @ and A, precisely
)

d X
—Q=-A+ Zpi%.
=1

We will take it as definition of Q. This because it looks very similar to the definition of the Hamiltonian
function H of the z—flow.

Here a symmetry in = and ¢ seems to show up: one could be tempted to read the definition of ¢ as a Legendre
transform and hence to read A as the Lagrangian of the ¢-flow. But this is not completely true: indeed the
coordinates g; and p; are obtained from the Lagrangian L, so that they are not, a priori, good coordinates
for A. In the next chapter we will perform a change of coordinates on &, in order to read A as Lagrangian
function.
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Chapter 3

Scaling reductions of evolutionary systems:
Lagrangian formulation

3.1 General framework

The basic idea is to develop a reduction method dealing on the same footing with all the times of a hierarchy,
included the “time” z. The starting point is an evolution PDE

u(z)s = F(z,u(T), us (), ... ,u(m) (z)), (3.1)
in the space 91 described in Section 0.2. The first step of our construction is to read u as a function of z and
t and to consider equation (3.1) as a definition of u(™ (z,t) in terms of x,u(z,t), Uz (z,t), ..., w™ (2, 1)
and u¢(z,t).

This corresponds to consider as “coordinates” in 901, instead of u(z,t) and its derivatives in z:
Uy Ugy Ugzy - - -
(here and in the following u indicate the function u(z,t)), the system
U, Uz, Y g Uy, ,ugmﬁl),utt, L
By virtue of the reversibility of (3.1) in u(™)(z,) it is possible to perform this “change of variables”. If one

introduce the vector
= (u,ug, ..., ul™b),

the new system of “coordinates” in 901 is given by %(xz,t) and its derivatives in £:

U, Uty Ugty - - -

At this point one takes a first integral of eq (3.1), i.e. a functional

I= /L(z,t,u(a:),um(a:),...,u(”)(m)) dz (3.2)
in the space 91, such that
87
—0. 3
du(z) 0 (3-3)

This FEuler-Lagrange equation defines a finite dimensional manifold &, i.e. the set of the fixed points of
I. Indeed the Euler-Lagrange equation (3.3) is an ODE of order 2n, so that the space of the solutions is
a 2n—dimensional manifold; & is modeled on this space, having as coordinates certain combinations of the
initial values, i.e. of the first (2n — 1) z—derivatives of u(z) evaluated at zo.

In Lemma 3.2 below, we rewrite the definition of the manifold & in terms of @(t), @ (t), . . . and of a functional

J= /A(z,t,ﬂ(t),ﬂi(t), N .,a<ﬁ)(t)> dt,
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where A can be calculated from L (see eq. (3.4)), and the order 3 of derivation in ¢ depends on the ratio
between m and n, as we will show in detail in Section 3.3.

In Theorem 3.1 we will prove that A <a:, t,a(t), ae(t), . .., ad (t)) is the generalized Lagrangian for the t—flow

reduced on &. Indeed equation (3.1) can be rewritten in form of a Euler-Lagrange equation:

6J
sa(t) 0.
for the vector
6J [ 4aJ oJ oJ
du(t) o\ du(t) Sug(t) T Sulm=1(1)
where e

5 oA
5u0 ) amwﬁz( dt Fulea)”

In the multiindex (i, a) the Latin character indicates the order in the z—derivative, the Greek indicate the
order in the ¢t-derivative.
Explicitly, equation (3.1) reads

dA «d OA
ga " 2 G

oA «d  OA
Oug +Z(-1) dt™ gyl

cx

oA

Su (m——l) +Z( 1 dt dulm—1,0) — =0.

We will formalize these facts in the following Theorem 3.1; here we give an idea of the proof, ignoring all the
calculations, that we will concentrate in Lemma 3.1 and 3.2, the proof of which is postponed in Appendix
3.A.

The proof is performed in four steps: firstly we define the new system of “coordinates” in 91, and
we give some useful relations between the new and the old “coordinates”. As a second step we rewrite the
Lagrangian density L(u(z)) in terms of the new “coordinates” and we construct, starting from L(u(t)) the
Lagrangian density A (a(t)).

The third step consists in recovering the relation between performing the variation of L (in z) and of
A (in ). The most relevant relation is that given in Lemma 3.1. This relation is necessary to rewrite the
Euler-Lagrange equation (3.2), defining &, as a condition on A. The explicit form of this condition is given
in Lemma 3.2.

Finally we prove that, under this condition, i.e. after performing the reduction on &, the starting
evolution equation (3.1), reads as an Euler-Lagrange equation for A

The method of Hamiltonian reduction described in Chapter 2 allows us to put a canonical system of
coordinates {pi, ¢;} on & (see formula (2.4)). These coordinates are obtained from L via generalized Lagrange
transform, so that they are, in a certain sense, adapted to the z—flow. This means that in these coordinates
the reduced z—flow is a Hamiltonian system. Theorem 2.1 also gives the explicit form of the Hamiltonian
function

H=-L+ Zpi(%')w

The method of Lagrangian reduction which we describe in this Chapter, still allows us to define a system of
canonical coordinates: we will call it {p;,d;}. These coordinates are obtained from A, i.e. they are adapted
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to the t—flow; in fact we will prove (see Section 3.3) that, in these coordinates, the reduced ¢{-flow is a
Hamiltonian system, with Hamiltonian function

-Q=-A+ Zﬁi(@i)t-

When rewritten in terms of {p;,¢;}, the Hamiltonian @ coincides with the Hamiltonian function @
constructed by Bogoyavlenskii and Novikov.

In this sense the alternative definition of @ given by us in Theorem 2.1:
-Q=-A+ zpi(Qz‘)t:
i

is a Legendre transformation, if one uses the right system of canonical coordinates (see below).

3.2 Lagrangian reduction

Theorem 3.1: If the generic k-th element of a hierarchy of commuting evolution equations:

dit‘i = Fy(u(@), up (), ooy ul™) (), (3.3)

admits o first integral
I= /L(x,tk,u(a:),uw(sc),...,u(n)(m))dx,

then it reduces on the manifold & of the stationary points of the first integral to a Lagrangian motion in tg,
for the time dependent Lagrangian function Ay, defined by:

dL _ dAy

o= e 3.4
diy, dz ( )

Proof: (in the following we will use the shortened form t; = t, the same holds for every time of the hierarchy
and we consider the case m < n < 2m. The same holds in the case (o — 1)m < n < am, as we will show in
Section 3.3). We prove the theorem in four steps:

1. Change of “coordinates” Let us suppose that the evolutionary equation (3.3) depends on u(z) and on

its z—derivatives up to finite order m, and that this equation is invertible in u(™) . In this case we can read
(3.3) as a definition of u(™ in terms of u,ug,...,u™ V) and us:

ul™ = f, <u,uz, .. ,u(m“l),ut) (3.5)

Differentiating eq. (3.5) in = one obtains all the z—derivatives of u of order greater then m in terms
of u, ug,...,u(™ 1) and their t-derivatives:

( -1
ulm+1) :fl(u,um,...,u(m ) ut, Ugt - - -, Uge)
' - -1 (m~—1)
) um 1):fm-—1(u:ua:1"*au(m ) U, Ugy - - Uy )
- (m-—1
u(?m) :fm(uaumy"'au(m 1)7ut1uzi'~'aut )1utt)
 (metn) _ (m—1) (m—1) (n—m)
L u = fa(t,Ug, ..., 0 y Uty Ugt - - -, Uy s Uty Ugtts - - - 5 Ugy :
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Explicitly, the first relation has the form

Aulm  Hylm Hu(m)
(m+1) 2% ° X% . m
u Oz + E et Bum-1 " Bu

and in general, using the multiindex notation introduced in Section 3.1,

gulm+i-1) 7=l 2 g5, (m+i-1)

D PP D vt

lm+i) = Ic+1,ﬁ)7

where the higher order o in the ¢t—derivative is fixed by (o — 1)m < j < am.

This completes the construction of the map from

m—1 n 2m—1 2m
U, Ugy -, ul ),u(m),...,u( ),...,u( ) um
to the new system of “coordinates”
—1 (m—1) (n—m)
u,uI,...,u(m ),ut,.‘.,ut y Utt, Uty - -+ 5 Uy P

Here below we list some noteworthy relationships between the two system (they will be useful in the
following):

ulm  fylm) Hulm) _ Aulm)
ugm) = + 5o U + au(m_l)ugm U4 s (3.6a)

d Au(d _ Bu (i+1) Auld  Gulm (3.60)
dz But - Bu(m 1) But '

d (Bu i) ) Bu(”l) Aud
— = - (3.6¢)
dz\ou®/  8ul®  ouY

d [ ou® Bu(ﬁ“l) oul® ou®  fulm (3.6d)
dz \ 9u® ou® Gulk-1)  fulm=1) gyk) ’

d [ du (1) Bu(l

—_ = . 3.6
dt( duy ) Ou (3.6¢)

2. Lagmngmn densities: The Lagrangian L defining the symmetry, depends on u, ug, ...

derivative & G L depends on u,ug, ..., ul™. In terms of the new “coordinates” one may rewrite L as

fl(z,t,u,uz,,,.’u(m_1),uh”.
and
E_E = E—Z + 79_? wr .+ oL
dt )\ ot o Jut o+ G
8L \ (m =
+(au<m) uf™ () + iy
T o
-}_<(97_L(")>u‘(5 )(”"--autt, . ug‘ m))
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(m 1)+

>U§m+1) (U, e 7uttyuztt) 4.4

"), so that its

(3.7)

(3.8a).



Of course, (3.8a) coincides with

db _oL oL 0L _ (m-1), OL 0L _ (n-m)
@ "ot T T T pum ™ Bug " T G

where

oL (oL +i oL \ 8ul¥
ot~ \ ot ouk) | ot

8L (8L
5u® \ou® ) T

k=m
a.z): > (aaé)) “ i=0.mel
Ju k=mti NTY duy

From the fact that I is a first integral, it follows that there exists a functional

A(z,t,u,um, v u™ gy ,u£m~1),utt, . ,ugg_m_l)),
such that . )
| ai _ i
dt ~ dz’
where
dh 8A  8A oA
oo, vt o L m-1)
T 5z + Buum s 6u(m‘2)u +
dA oA oA -
(m) (m=1) il (m~1)
P (U, ugy ... u ,Ust) + 5utUZt+ ceet auim_mut +
N oA oA (em
—=U UyoooyUst) + —Ugtt + ...+ —F——=U .
P ( tt) B, et P

(3.8b)

(3.9a)

(3.9b)

(3.9¢)

(3.10)

3. Variations: Our aim is to reduce equation (3.3) on the space & of the stationary points of I = [ Ldz.

This finite~dimensional manifold is defined by the Euler-Lagrange equation

6r

du(x)

This is a variational equation in the old “coordinates” u,uy, ...; how can we define the same manifold & in
terms of the new “coordinates”? We must express E‘S—(% in terms of A and its variations. To this end we

recall that d"
oI oL i oL
5u(z)  Bu 2 g5 gatr

and we first express the terms
SL

ould) (z;)

for § > 0 in terms of A and the the new “coordinates”, namely:

Lemma 3.1: The following recurrence relation holds:

oA  d afx)ﬁ( i3 +i SL Newdth
oul) At \gu)) ~ \5uED(a)) T - 5u(z) ) Bu® T

=m+1

29

(3.11)



Proof: see Appendix 3.A

The proof of Lemma 3.1 is based on the comparison of (3.8) and (3.10) and their partial derivatives w.r.t.
ui’ ) and ug). With a similar technique, and using equation (3.11), one can proves the fundamental

Lemma 3.2: The (generalized) Fuler-Lagrange equation

of
Su(z) 0
is equivalent to the condition:
dA d( oA
) =0 3.12
au(m—l) dt (8u§m—l) ) 0 ( )

Proof: see Appendix 3.A

Introducing the functional

J= / A (z t,ult), ug(t), .., u™ D (), u (D), ..., ulp™ (t)) dt,

equation (3.12) reads
§J

SumI (G

Notice that the object in the left hand side is the last component of the vector

6 [ d0J &J éJ
oa(t) — \ou(t)’ dug(t)’ " sulm=1(t) /)

4. Reduced evolutionary equation: Here we prove that all the components of the vector ﬁ’t—) are zero. This
can be done recursively, by mean of
Lemma 3.3: The following recurrence relation holds:

6J 57 oum™  d /6

‘ = — — — - i =1,...,m—1. 3.13

Suli=1(¢)  Sulm=1)(¢) Gu®  dz <5u<z) (t)) ! e (3.13a)

Proof: see Appendix 3.A

Indeed, Lemma 3.2 states that the (m — 1)-th component

virtue of (3.13a), all the components of 3%(% vanish on &.
This is the Euler-Lagrange equation for the Lagrangian

M(—,f_Jl)—(ﬂ is zero when reduced on &, hence, by

N (m~1) (m—1) (n—m)
Az, t,u,ug,. .., u Uty ooy Uy Uty - - Uy ).
Q.E.D.
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Remark: Equation (3.13a) can be rewritten as

oA d( A + & d2 8A N
Ouli—1) dt augi_l) 8'11.(1‘ -

_[_ oA _df 0Ah \Joum™ d[oA d(BA\ & (oA (3.138)
T | oulm-1) gt 3u§m—1) ould)  dz |[ou®  dt 6u£i) dt? Bug) ' '
fori=1,...,m —1. And The Euler-Lagrange equation reads
5%;;—%-3—%:0 i=n-—-m,...,m—1 (5.14)
2 . .
- &) e =0 i=0.n-m-1

3.3 Relation with the Hamiltonian reduction

Theorem 3.1 provides an alternative definition of the space &, and of the relative system of canonical
coordinates:

g, =q, =ul"l i=1,...,m

qm—(-‘i = (qi)t = u(l_l) = 17 ,— M

pi:m{%@ i:l,...,m (315)
t -

p~m+t = au(?z‘l\ll) 1= 17 y—1m

We consider now the Hamiltonian (—@) of the reduced ¢t-flow, defined in Theorem 2.1
(2)
@=A- le’ gt =4 - Z 6u(7.+1)

At the end of the Chapter 2 we noticed how this expression looks very similar to a Legendre transform, but
it is not; here we will show that actually the Legendre transform of the Lagrangian A gives the Hamiltonian
Q , Where Q is written in the coordinate system relative to A.

Firstly we rewrite @ in the coordinate system (3.15):

5 (st ()

m—1 n o ‘
6r Auli—1) ()
“X;[( D x)) 2 (6u<ﬂ’>(z)) 5ul) ]“ i

j=m+1
n—m—1

i i ﬁ duli—1) (1)
+ 2 Z+ (M(a’)(;g)) ) it

(3
i=0 j=m-4itl Ouy

Q=i+

Using Lemma 3.1 we get

R ) m—1 5J . n—m-—1 3[\ i N n
-Q=-A+ E 5 u + E a0 ul) = —R + E 9i(Gi)t, (3.16)

U i=0
for A(SL‘, t, giy (gl)ta RN (Qn—m)t)-
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3.4 Concluding remarks

The case considered in Theorem 3.1 is the more general one. Indeed, for (¢ — 1)m < n < am, the Euler—

Lagrange equation defining &:

o7
=0
du(z)
into the new “coordinates”, is a differential equation in w,...,u(™=1 . . yr=me)

The Lagrangian L transforms into

~ m—1 (m—1) n—m,a—1

Lz, t,u,ug, ..o u™ ) uy, o ul Ut . ul )
and we can define the new Lagrangian

N -1 (m—1) —m—1

Aty ug, .o ul™ Y Juy, o uy S Ut - ., uPTm L)Y,

The proof of the theorem is the same, one has only to consider the identities

& (dL\ _ 8 (dA
oulB) \ dt | — oultd) \ dz

fori=1,....m—-1landf8=1,...,a.

In particular, the manifold & is defined by

oJ

Sulm—1,a~1) (t) =0

and it naturally carries the canonical system of coordinates

cjﬁm“:u(i‘l’é) i=1,....m; B8=0,...,a—2
Qo iymis = uli-le=1) i=1,...,n—(a—1)m
N 8J

B = 56, i=1,...,n

(3.17)

(3.18)

In the following we will consider in detail the case a = 1, i.e. n < m, which occurs in the applications we

are interested in (see next chapter). In this case L and L coincide and

dt - ot ou ¢ e Bu(n) £
The new Lagrangian is
A(l‘, t’ U, Ug, .. ,u(m—l), (U)t; e ,Ugn_l))
with
dL _dA _9A  9A A - o

& " de Oz o T aumn eyt Tt g

In this case Lemma 3.1 reduces to the following recurrence relation:

o1 OA
suld(z) auﬁ"‘”

1=1,...,n
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(3.19)

ul™. (3.20)

(3.21)



and the proof is based on the identity

0 (dL d [dA
—_— =] == = i =0,...,n— 3.22
(&) =5 (@) s=0mmt B2

9 (dL\ _ oL
ouP \d ) ~ ul

observing that, for ¢ > 1,

In fact, L does not depend on ugi), and

9 (@)_i<m>+ A
suld \dz )~ dz\gu{/ = oui™""

In particular the first step, i = n, follow directly from the fact that the only dependence of uén) in both
(3.19) and (3.20) is the one explicitly shown, so that

6L _ _O0A (3.23)
duln) 6u§n~1)
On the other hand, from (3.22) for the index ¢ = 0, one obtains the fundamental relation
6I oA oul™
= 3.24
du(z)  Oulm=1) fuy ’ (3.24)
and, since 357(:) is always nonzero, the condition that defines the submanifold & is

OA

futm=s =

The relative system of canonical coordinates is given by:
G, = ul=D),
S _ _8A
P = pul-D
Fori=1,...,nm.

The reduced ¢—flow is Lagrangian, with Lagrangian A.

Indeed, from the identity
0 (dL\ _ 0 aA 1 1
ud\dt ) Bud\dz) T T

and using the Lemma, one obtains on the subspace &:

{%:0 i=n,...,m—1

aA d OA — ;o
au(i)—a—t(‘ézzt?)')-—o z—O,...,n—l

which is the Euler-Lagrange equation for the Lagrangian A(z,?,u, g, . .. ,u(m_l) JUty e ,u,E”’”).
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3.5 Example: KdV with ¢; fixed

We will give below an example of how does Theorem 3.1 works for the first non trivial case, n = m. We
study the Lagrangian reduction of the KdV equation

Ur = BUUL — Ugzz (3.25)

on the stationary manifold of the t7—flow.
The Lagrangian density of the t;—flow, reduced to the normal form (here I mean that L does not
contains total derivatives), depends on the z—derivatives of u(z,t) up to order n = 3, and has the expression

1
L = 7u® + 35u%u2 + Tuul, + —2-(u(3))2, (3.26)

The submanifold & of the stationary points defined by the Euler—Lagrange equation for L gives the n+m =6
derivative in terms of the first five, explicitly

u® = 14uu® + 28u U5 — T0U U, + 21uiz - 70uui + 35u. (3.27)
From the relation
dL _ dh
dt  dz
one construct the Lagrangian Au, t,,. .. ,u(s)). By direct calculation

A=—u®y0® 4 %(u(4))2 — lduugu® + 10’u(u(3))2 + 1duzUgsUgzs+
—70u2u,u® — (u®)? 4+ 77U (ugg)? + TOuLZ Uz — 35utug,+
—%%‘; + 280u3u2 + 35u’. (3.28)
The evolution equation (3.27) is the definition of ugqq in terms of (u, Uy, Ugzg, ue), explicitly:
Ugpe = OUUL — Ut.
Differentiating this relation in z one obtains
u®) = Butigy + 6u2 — Ugs
u®) = 18u uzs + 36u? — 6uns — Uggy
u(® = 18u2 + 180un2 + 36uugy — 30upus — 12uuge + Uy
which is a map from the “coordinates”
U, Ug, Ugg, u, u® w0 4O
into

U, Ug, Ugg, Ut, Ugt, Ugzt, Utt, - - -

The Lagrangian L depends on u, Uy, Ugy, Uzgs; in the new “coordinates”
X 1
5 2,2 2
L(u, tg, Ugg, us) = Tu® + 53uu? + Tuul, — 6uuyug + 5%

Its derivative %{i looks like

di. 8L oL oL oL oL
— ==+ == T Ugt + o Uggt +

i ot o™ b, Bu.s E

Utt.
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And there exist a functional A depending on u, Ug, Ugg, Ut, Uz, Ugzt, €Xplicitly

. 1 1
A =35u° + 4u’u? + -éui — 6ulug; + 5“2::"’
—35utug, — 27.Lu:éumz + 8utgilyy + 11u2ui$+

3 2 2
—Ugy + 6UUG Uzt + 220 UgUs + FUgUggUt — UggpUs + dUny

such that . A X . . R
db_dh _Oh oA L O e 2oy
dt  dz B8z Ou ° Oug Yoz 3umu

+ aAu + oA Uzzt + oA u(3)
5 zt 6Uzt Tzt ;) oot t
where oL
i 0
L
%L-; = 35u* + 106uu? + Tu2, — 6uyu;
oL = 106u%u, — Buu,
Oug
6‘?;; = lduty,,
—8£ = —6uu; +u
6ut - T i
and
AA
B 0
dA
5 = 210u° + 12022 — 1400Puss — 202 ugy + Sugttisg + 22un2, + 6ugtsg: + 4duugus + du?
aA 3 3 2
EW = 8u ug + 2u; — 12uyuqs — dUUgUszg + OUULg: + 220U + Uz Uy
oA _ 4 2 2 2 '
e = —35u” — 2uu; + 8uug + 220 Ug, — 3ug, + duguy
dA
— = 220%ug + dugtgy — Uggt + SUUs
But
AA
Buns = —6ui + Ugt + Uy
dA
I = Buty — Ut

Lemma 3.2 states that the condition % = 0, which defines the submanifold &, is equivalent to the condition

oA _d( 8A \ _,
8Umz dt Bumt -

explicitly:
up = 35ut + 2uui — 220U, + 3u§m + 2ugus — 2Ulgy.
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The Euler-Lagrange equation for A reads

8A  d, OA
S T @ aumt) = gy — 35u* — 2un? + 22uug, — 3ul, — 2ugus + 2uug =0
oA d, A
Bu -5 3%7:) = 8u3uz + 2ui — AUUg gy — 2ulgr: + 22U Uy — dUggUs — Uger = 0
oA  d ,8A
0 Et_(a_u;) = 2100’ + 120202 — 140uPuse — 202Uy + Yugtlizs + 22uu, +

+ 2uzumt - 4’&? - 22u2uzt + Ugztt — 8uutt = 0. (329)

In this case L is nondegenerate, so that on & we can define the system of canonical coordinates

g=ul"D =123
= _0A
Di = augwn 1=1,2,3

which reads

G=u
Ga = Ug
g3 = Ugg

L= 220Uy + dUgUsg — Uzt + SUUL
Do = —6u§ + Ugt + SUlgy

D3 = Buug — uy

We will now solve the problem from the Hamiltonian point of view: starting from L and following Theorem
1.1 one construct the canonical coordinates {p;,¢;} on &:

gl =u
g = Ug
g3 = Ugg
of 9 (5)

P = 3 = T0u ug — 14uzuzy — 14uugee +u

T
p2 = (SZI = lduty, — u@®

Tz

oI v

b3 = 5uzm; — Ugzz

and the Hamiltonian function
3
Q=A-> pila)e
i=1

By direct calculation one obtains

35
Q = 35u8 — 14Ou3ug - ~2—-ui — 35utugy + TOuu Uy, — 7“2“32” - uiz + 841 U U gy +

1
~ 18UgUgpUszs — 10uul,  + 6uiu(4) + Bung ul® — 3(11(4))2 — Buugu® + uggeul®

4
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and in canonical coordinates
35
Q = 35¢% + 2804342 — 5 g3 — 35q¢iqs + T0q193gs — 21giqs+
3 2 1, 2 3
- g3 ~ 6q1g2p1 — 6g5p2 + 8q1q3p2 — 5P~ 70¢7q2p3 — 4q2q3p3 + p1p3 + 4q1p;.
The corresponding Hamiltonian system reads

¢1 = 6q1q2 — p3

G2 = 6q5 — 813 + P2

s = T0q gz + 4q2qs — p1 — 8q1ps

P1 = 2104} + 840¢2q3 — 140¢ g3 + 70g2gs — 42¢1¢% — 6g2p1 + 8¢3p2 — 140q1g2ps + 4p3 .
P = 560g3qs — 7043 + 140g1g2g3 — 6q1p1 — 12¢2p2 — T0¢7ps — 4g3p3

ps = —35q; + 700105 — 42¢7¢° — 303 + 8q1p2 — 4g2ps

Rewriting this system in coordinates {5;,q;} one obtains exactly (3.29).

3.A Appendix

Proof of Lemma 3.1: we prove the Lemma in two parts:

e firstly we prove the relation

A n i (G-1)
94 z ( §I >6u ) i=0,...,n—m—1. (a.1)
Ouy"

au(l) Pty 57_1,(9)(3;)

For convenience we can explicitly rewrite eq. (3.8a), using (3.9):

dL (/8L = BL \ uld)
(%) =1(%) Y (25) 5|+

TR
oL 8L \ duld ()
2 (auw) > (8u(j)> aum}“t *
_ =
U & L \ uld) (i)
+ 3| 2 (o) pom ) (@2

=0 “j=m-+i

Notice that the arguments of in the square brackets depend on u and its a:—derlvatlves upon the order m — 1
and on u; and its z—derivatives upon the order n—m, so that the dependence on u; @ for n—m+1 <i<m-1
and on utt), for every j is only the explicit one. Analogously

dA  [6A oA Bul™ i ,
b Bt B W e wd
iz [ax HPMC } Z Bu <z—1> *

(m) mol A (m)
_*{ A Ou }Ut Z{BA 8A ou

(
a0 Bu ® T 5amD gu %

i=1

n—1m

+ B’Uém—l) (z 1
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The i-th step of (a.1) is obtained from the obvious identity

——-————a E—Z o di i=1 n—m
ould \dt ) gud \dz o

Indeed, from (a.2) and (a.3), it follows that

8 /dL n ould .
Bu “’( ) ; (3’“’))6 @’ (o4

and R )
8 [dA d [ OA OA
2o () = (o) * e (@)
In particular, at the first step, ¢ = n — m one obtains the basic relation
oA ( oL ) gu™ ( o > Bul™) (@6)
ful 0~ \Gu ) e =\ (@) ) gl '

Substituting (a.6) into the further step of the recurrence, one finds

oA oI ouln—2) N oI Au(n=1)
8u£'g—m—2) - Ju(n—l)(w) augn—m—2) (51.1,("')(33) augn—m—Z)

and so on. This gives relation (a.2).

e The second step is the proof of the relation

oA ( or ) n ( oI ) ouli-i
= - + - ‘ 1=n—m,...,m—1, (a.7)
3u§1) Suli+1)(z) j=§l—l duld(z)) Guld

which is a part of (a.1), indeed, for ¢ > n — m, the partial derivative aa‘}i, vanishes. Very much as in the
Uit

previous case, equation (a.7) follows from the identity

o (4L _ o (di
811,” dt - 8utt dz

Using (a.2) one can rewrite the left hand side as

8 /dL n oul®
= . 8
Bug ( ) j=m <3u(’>> Oy (a.8)
On the other hand, from (a.3), one has
d (dA d [ OA OA  Bul™
_ — T -+ — s (a.g)
Ouy \ dz dz \ Ouy Sulm 1) Qu,

where

d (oA _d }n: ( or )6“(j-1)
dz Butt - dz 511,(])((E) é?ut '

j=m-+1
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We develop the right hand side, recalling (3.6b):

d [ou® Hulith) Au®  gylm)
_( Ouy ) T T 0w, BumD) dug

obtaining

d [ 8A i
a‘:é(%;)-.i

d S\ BulY v B\ oud B oI ) um) Bu(m)}
dz 6u(j)(:z) 55 T\50(@) ) B \5u0 (@) ) 3atmD ou,
Bu(m n oI d< oI ) 5u(j)+
d:v 6u(m+1 () )] Ou J_m ‘< Suld)(z) Sulitll(z) ) | Ouy
Sulm  gylm)
5 mJ@um .
_ u(m) n BL \ Bu 3 oI dul™) 6u(m)}
du m+1) Oug .= Ould) ) Ouy suld)(z) ) dulm=1) du; |
Inserting in (a.9) and equating it to (a.8) we obtain
3L _d oI Aulm) _ 8A  oulm _( o ) ulm  Julm)
ulm) dz \ Sulm+D(z) )| Our fui™ ) Ouy dul(z) ) Oulm=1) Qu;

But the term

(m) | i
agm is nonzero by definition, so that

oA ._( 5T >+ i < oI )aw—n
5U§m‘1) — \bulm)(z) P suld (z) ) Bulm=1)’

which is the first step of the recurrence (a.7), and so on.

e Finally, since (a.1) for 1 > n — m coincides with (a.7), it remains to prove it for i« < n —m. These
relations can be obtained from (a.2) and (a.7) together with the identity

LN WENE IR
8u§z) dt augi) dil? H PPN .

Indeed, starting from the index ¢ = n — m and using (3.9), one may write

9 E_E) _d(_ 9L \, oL _
augn-—m) dt - dt augn—m) Hu(n—m) =

d/ 8L ou™ BL "/ B0\ Guld
s dt (W”) augﬂ-"ﬂ) - (amn—m)) +J§n (5;@7) Fui—m (a.10)

8 (éﬁ>_i< oA )+ oA oA
augn——m) dz dz 6u§n—m) augn—m-l) 6u§m_1?'

Performing the same steps as in the previous case, one obtains

oA 4/ B8h N\ _( &I . i 5T\ ouliD
5u§“"m—1) dt aug"”m“l) — \ulr=m)(z) Rt Suld(z) ) Guln—m-1)

j=m

On the other hand
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which is the first recursive step of (a.1).

Q.ED.

Proof of Lemma 3.2: We prove the Lemma by mean of the equivalence

which follows from the identity

Indeed, expanding, one has

o (dby _d
6’!.&1; dt -

d n
=EZ(
j=m

_adld
T dtldz

¢ oL
dt 5’U,t

oA

o (dL\ _ @ (dA)
-6—’1—1; dt 8ut

ot _
du

3L \ Buld oL i
&m)&h+(aﬁ+23(

oA

..-‘...
3Utt) ou

A au<m>} (

gm—-l) 8ut

oI\ _ [ _6A _i( . }awm)
Su(z)) — [Oulm=D  dt\ g™ )] Oue

5[7 Sud) _
ou@ ) du

7))+ (o)

where the last equality follows from the equivalence of (a.8) and (a.9). Expanding the right hand side

o (db_4dfd
Qu, \ dt | dz|dt

On the other hand

o (dA_d(oay
Ous \dz /]~ dz \ Ous

oA n _ci( OA >]8u(m)
6’U¢t dt auﬁm_l) (9’U.t

+ oA _d_ Hulm +
(9’U,l(§m—1) dt Ouy

Comparing (a.11) and (a.12) one obtains

af(ony_a(on
dz | \ Oug Bugy

6/92 = 3L \ fuld
= Bl kel 11
+(6u)+§<auw> Bu (a.11)
oA ulm™ oA oul™ L_or d Oumy
Hulm—1) Out augm—l) Ju au§m~l) dt Oug N
_d (oA, _0A au<m>+
T dz \ Ou Sulm=1)  Hu,
73 - ( 31 )au(j"l)]au(m) aA d(@u(m)>
T | ——— : + = . (a12)
[<6u(m)(:c)) j=§r;{-1 ouldd(z) ) ulm=1) | du fu{™ 1 dt \ Ou
. oA\ _d/ 8A \]ou™ _
fum=D ) " dt\gu(m D )| Bur
8L\ < [ 0L \ ould oI & BT\ Bul=D ] outm
_ (9L (= . 13
(au)J“,;(aw 5u [(6u<m><w>>+j:§+l (00@) a3 @19

But Lemma 3.1 states that

(5r) - &(

o))~ () -

ST\ ouli-y
1(5u(j)(w)> ou ’



so that

i () -

L)) -4 SLN_df s (G N]ouiTh
dt \Oug ) |~ dz \ bug(z) dz P Suld) (z) fu
d au(J_l)
+ _;_1 (5u(3)(m )dm( u > N

)45 ()l
~ dz \ Sug(z) dz P duld) (z) ou

61 ould  puli—1) gylm—1)
+.Z <<5u9) )( du  Oulm1) du )

j=m+1

Substituting in (a.13) we get
(G2) -4 oum _ T (0L 4 3,
ulm=1) dt 3u§m—1) Oug ou dug(z)
d oI Auld)
" Z [(aw) - 8'5(6u<f+1><m>>] u
n 6] 8u(]) au(j—'l) au(m_l)
j=§l <5u(j)(:c)>< oy GutnD  Bu )+

. ( SN 3 T )c‘?u(j“l)]@u(m)
Sulm)(z) P sul(z) ) Bulm=1] Ou

Il

All the terms cancels but

oA \ _d( 8A \]ou™ _[(BL\ d [ 3I
Bulm—1) dt Bugm_l) Bu; |\ du dz \ du,(z)

Q.E.D.
Proof of Lemma 3.3: Relation (3.13) follows from the identities
8 (dL 8 (dA
= ()= (= i=1,...,m— 14
6u(i)<dt> aum(dm) i=1...,m=1 (a.14)
and . )
Au; \ dt dui \ dz

Starting from (a.14), we can write
8 (di\ _d a )_ii au<j>+_d_ oL
au \dt ) ~ dt ' di & ou® — dt \ ful®) )’

o (dhy_d(oA\ oA  0A ou™ = OA d(ou™
ou@ \dz ) ~ de\ou® )~ oul=1) 7 gulm=1 Jul " g, (m=1) di \ dul® )’
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which give
d i oL ou  (BL\] _ d ( 8A Oh A oum oA d(oumy Lo
d | 22 \6u ) 3u® " \3u® )| T & \5u® ) 5ulD T 5ultnD 5ul gm0 d \ Bu® ) "

On the other hand, in (a.15)

0 (dL\ oL  d(oL) _ (3L +i u<i>+_d_(3f,>
gul? \ dt ) ould  dt\ gy B Bu( (9u(3 Suld)  dt \ gy, [¥)

j=

0 (dA\ _d/oAN oA 8A out™
oul? \dz )~ dz \ gu{) oul™  gu{m) oul®
which give

oL . Z 8L \oul) _ d (L Ll
Bu® 9u@ ) 9u® ~ " dt augi) dt
Performing the derlvatlve w.r.t. ¢t and substituting into (a.16) one gets

d2<6f;>+dd<61\)+ﬁ oA d{ oA Bu(m]
dt? \ gu? dz dt \ gu? dt gy {1 dt [ gyu{mY) Ould)
_d (8A oA A Jul™ oA d (oul™
T @ \5u ) T 5D T 5D gu® T gm0 di \ Bu® )’

_ B (oL _df(oAN_droaN] [ OA 4 oA ],
dt2 8U§l) - d(L' au(i) dt aué’b) au(i_—l) dt augi__l)

and

oA oA 4 A Oulm
Bugi) Bugi_l) augm—l) duli)

which gives

. { oA d oA }au@_ (a.17)
Qulm=1)  dt 3u£m"1) oud
The left hand side of (a.17) is zero if i > n —m.
Ifi<n—m, -
. n k) - -
5= 2 o) o lagr & )] @19
Indeed, using (a.1), and relation (3.6b), which we rewrite here below,
d [ ou® Qulk+l)  gyk)
E(ﬁui“) - 3u§i) © Bul-D
one obtains
A A e oI \oukD 4 & 51\ gutkl)
Buagz_l) " % (aiﬁ?) - k:Zi;m (5u(k) ($)> Zugi_l) - dz L:;H (5@‘(’“) (33)> 86u§i)
"N [d( 8 \]oukD - 51\ ou®) ST\ Qulitm-n
=X {EE 5u® @;))] ORI (au<k>(z>> ol <6u(i+m> <z>) D
- AT O 5T Bulm+d
- 2 )5 [ (mmee) | -
_ i ( oL >8u(’°)
W ou®) ] g,
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where the last identity follows from the fact that

Hu (k)

Bu,(&l) B

0

if k —1 < m. In (3.6), this implies
. Sulktm) gy lk+m+i)

oul? T aulFt)

Finally, substituting (a.18) into (a.17) gives (3.13)

Oh _d( oA \ &/ 6A \]_
Hui-1) di augi—l) de2 auﬁi‘l) -

[ 8A  d/ BA dutm — d a]x__c_z_<a[x>+
T loutmD dt\gy{mY )] auld do [8u  dt \ gyf)
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dt?

(

oA

8u§?

)}

Q.E.D.



Chapter 4

Applications to Painlevé equations

In this Chapter we study some applications of Theorem 2.1 and Theorem 3.1. to show how the finite
dimensional Hamiltonian structure of Painlevé equations comes from an infinite dimensional structure via
the above procedure.

4.1 PI as scaling reduction of KdV

At the beginning we study the problem following the scheme illustrated in chapter 2, this means that
we focus our attention on the Hamiltonian structure of the problem, then we will apply the framework of
Theorem 3.1.

We consider the KdV equation
U = Buly — Uggs. (4.1)

i.e. the t = ¢,~flow in the KdV hierarchy (1.2); it admits the nondegenerate scaling symmetry

I

2
o = /(u3 + %m- + 2uz + 6tu?)dz, (4.2)

which depends on z,u,us,t. We note that L = [L, +4zL_, + 12¢tL J,where I_, = [L_,dz = [ ﬂ,}ldm and
I, = [ Lydz = [ “{2)dz are the first Hamiltonians of the KdV hierarchy.

Theorem 2.1 states that the t—flow is Hamiltonian on the manifold & of the stationary points of the symmetry,
i.e. & is the 2—-dimensional manifold of the solutions of the Euler-Lagrange equation

oI
du(z)

= Uy — 3u’ — 2z — 12tu = 0. (4.3)

It is invariant under the t—th flow and it naturally carries the system of canonical coordinates:
g=u
p= 3{{: = U,

8H — _8I
{Pm+€;=‘m

Notice that the identities

4.3
Qz"%%f, ( )

hold, where H is the generalized Legendre transform of L:
H=—L+ ——u,.

The first of identities (4.4) allows us to express the higher derivatives ul™ for m > 2 in terms of z,t, p, ¢
and p®» with [ =1,...,m -2+ 1.

On 6 p, + g—q’i =0, and the system (4.4) reduces to the canonical Hamiltonian system
1

{pm=3q2+2x+12tq
4z =p =0,
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for the Hamiltonian function ;

p
H:——L+u§;==—2——q3—2qar:——615q2 (4.5)
giving the reduced z—-flow. This system is equivalent to the second order ODE in the variable g :

"

q =-3¢° -2z —12tg —a. (4.6)

The space & is the set of the stationary points of the scaling symmetry (4.2); this means that & carries a
“natural” system of canonical coordinates {w;,m;}, given by the self-similar function of u, i.e; combinations
of u,z,t in the variable z(z,t) invariant w.r.t. the scaling. We'll call them scaling coordinates. In this case

w=7%+t
lTm=2p

with z = z — 6¢2.
In terms of the scaling coordinates the system reads

{ dr — _ 99
dz ow
dw _ 89
dz — Om’
for the Hamiltonian )

H= % — 8w — dwz + 813 + 4tz.
The system is equivalent to the ODE: .

w =6w®+z, (4.7)

that is exactly Painlevé I. The Hamiltonian $ differs from the usual PI Hamiltonian for the terms in 2,
that do not enter in the Hamiltonian system.

We now construct the time dependent Hamiltonian function (—@Q), that is the reduction on & of
d
-Q=-A fp;j—%,
where p, q are expressed in terms of u,u,, and A(z, t,u,um,ﬂm, Ugzz), calculated from
dL _ di
dt dz’
has the form

9 1
A= 6t(4u3 — 2Ulgg + ui) + 23:(3u2 - Ugg) + iu‘l + -z—uim + 2up — 3ulugy + Guui — UgUpzs-

By direct calculation one obtains

2 2
Q = 12t(2u® + %ﬁ - UUgg) + % — 3ulugg + 2“4 + 2ug + 2z(3u® — uge), (4.8)
This reduces on & to )
Q= 12t(%— — ¢% — 6tg® — 2zq) + 2p — 227 (4.9)

Theorem 2.1 states that (—Q) is the Hamiltonian for the reduced t-flow,i.e., in terms of p and g

S — 09
{q =-2(6tp+1) = -5 410)

p=-12t (3¢> + 20 + 12tg) = 32,
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Notice that system (4.10), written in terms of the scaling coordinates w and z, gives the same Painlevé L.

Remark: In this case the evolution equation is Hamiltonian and it can be written in the form

d oI,
ug = {u(z), 1} = o

where I, = [ L, dz with density
2
u:l:
L1 = ’11,3 -+ "'2—

On the other hand the scaling symmetry defines the stationary flow

—Cﬁi = 12tu, +us +2=0.
ds
which is Hamiltonian: J 461
U
& - W =g, =0

The s-flow and the ¢-flow commute, but the Hamiltonian generating the scaling depends explicitly on

the time ¢, so that the relation
dl,, I I oI, —0
dt - { (37 1} + at -

holds. Hence we have an alternative way to define the reduced Hamiltonian @, following Theorem 1.1:

dL. 9l d 8L

d
=0 Gudz ou

In this case the relation (4.2) follows as a consequence.

System (4.10) i.e. the reduction of the t—flow on &, can be obtained from the Lagrangian point of view;
indeed one can consider the evolution equation (4.1) as the definition of ugs, in terms of (u, Ug, Ugg, Ut ),
explicitly:

Uggs = OUUL — Us.

Differentiating this relation in = one obtains

ul® = Butgy + 6u — ugy

u®) = 18uztUgq + 36u? — Buny — Ugy:
which is a map from the ”coordinates”

U, Ug, Ugg, w0, u® u®) 4O
into
U, Ug, Uz, Ut, Uzt, Uzst, Utt, - - -

The Lagrangian L depends on u,u, and hence its derivative %% looks like

dL _ 9oL oL . 0oL
dt ot ou T By, et
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And there exist a functional A depending on u, Uy, Ugy, Uy such that

%—%-%.,_?_‘/}u +_a_j}_.u +—@—u(3)+?—1}—u
dt ~dr 8z  Bu ° Bugy 0 Ougg ou;

Here, in terms of the new coordinates

9 1
A= 6t(4’u3 — 2UUgs + ui) + 2ac(3u2 - Ugg) + oyt + -—uim + 2ug — 3ulugg + Ugls,

2 2
L= L, and
oL 9
—5{ = 6U
B_L = 3u? + 2z + 12tu
ou
oL u
Oug,
dA
5; - 611,2 - 2’U,zz
OA 5 s
T = T72tu* — 12tug, + 122u + 18u° — 6uuy,
U
oA _ 12tug + uz + 2
Oug
oA = —12tu + Ugq — 2z — 3u?
Mgy
oA _
8Ut o

The condition % = 0, that defines the submanifold &, is equivalent to the condition

A

=0
Olgs

Hence we have an alternative definition of the space &, and an alternative way to defines the canonical
coordinates:
g=u
{ _ OA _

P= 5y, = Uz

Theorem 3.1 states that the reduced t—flow is Lagrangian ,with Lagrangian A, in this case it is easy to verify
it, indeed, on &,

o = —12tu + g — 22 — 3u® =0

2 =12tus +us +2=0

%% - % (5%%) = 72tu? — 12tugy + 12zu + 18u® — Butgy — uge = 0,

where the first equation is the definition of the submanifold & itself, the other two reproduces (4.9), indeed

they can be rewritten as
uy = —12tugy — 2
Uzt = —12¢(3u? + 2z + 12tu)
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4.2 PII as scaling reduction of mKdV
One can repeat the same procedure as in section 4.1 starting from the mKdV equation
Ut = 6u2uz — Uggz-

It admits the nondegenerate scaling symmetry
2
I= /(-‘;it(u“ +ul) + y-;-)d:z:,

which depends on z,u, u,,t. We notice that L = 3tL, + 1‘—;—3—
Here & is the 2-dimensional manifold of the solutions of the Euler-Lagrange equation

&1

1 3
= Ugy — — (6L = 0.
e u (6tu” +uzx) =0

3t

It naturally carries the system of canonical coordinates:

g=1u
p:—'S—I-—=3tum.

dUg

As in the previous case we read the Euler-Lagrange equation as a reduced z—flow with Hamiltonian

where H is the generalized Legendre transform of L:

61

=L+ —uy
H +6uzu

= —L + 3tul.
The system is equivalent to the second order ODE in the variable q :

1
Qez = 2(]3 + g{qx-

The scaling coordinates are now

w=(3t)"q
= —P_
(31)F
in the variable z = —ig, and the system transforms into
(3t)

dr _ _89)

dz = dw

dw _ 89

dz — 8w’
for the Hamiltonian

H==(r* —w*) - z2w?,

The system is equivalent to the ODE:

that is exactly Painlevé II.
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where

We now construct the time dependent Hamiltonian function (—=Q), that is the reduction on & of
dg
—0 = —A +p-=t
Q +r
A= t(6u6 — 6ulugg + 18u2ui “+

By direct calculation one obtains

3 1
Euiz - BUZUEM) + x(§u4 + iui - uuw) + Ulg.
8 3 2 3 4 1,
Q = 6t(u’ — u'ugy + Zu”) + z(-éu — Ulgg + —2—um) + Ulg,
which on & reduces to ) ) )
5= 2P o g —

Q=3(gp — 1)+ 3P4

and is the Hamiltonian for the reduced t-flow . In fact

(4.16)
L o2 2
6l ”

(4.17)
{ =% - h=-%
P (4.18)
I ? 3, — 9Q
p=%-% -2 =%,
Notice that also the system (4.18), written in w and z, gives Painlevé II.
Remark: The evolution equation is Hamiltonian and can be written in the form
d 4l
= I -1
w = {u(z), i} dz du’
where I, = [ L dz with density

1
L1 = 5(’11,4 + ’U,i)
On the other hand the scaling symmetry defines the Hamiltonian stationary flow

d oI,
— = gUy + U U= ———+
ds

dz du =0

We now deduce system (4.18) from the Lagrangian point of view, reading the evolution equation (4.11) as
the definition of uzqg in terms of (u, Uy, Ugs, Us), explicitly:

Differentiating this relation in z one obtains

{ u® = 6uug, + 12uul — g

u®) = 36utgtgs + 36utus + 1203 — 6ulur — Uggt
which is a map from the ”coordinates”

Uggz = 6’(1,2’(13; — Ut

into

U, Ug, Ugg, u(?:), U(4), u(s) , u(® ) -

Uy Ug, Uz, Ut Ugt, Upat, Utt, -
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Here

2 3 3 1
A = t(6u® — 6ulug, + Sul, — Buglces + Sugus) +z(sut + “u2 — Ulgg) + Ullg.

2 2 27
and oL 3
oL _ 9 4 2
5 2(u +ul)
?——Ii = 6tu® + uz
ou
oL
= 3tug
Bu. 3tu.
% = g(u4 +ul) — ulgy
oA 5 2 3
— = 36tu’ — 18tu U, + 62U° — TUgy + Uy
ou
u, = Tug + u + 3tug
oA = 3tug, — 6tu® —uz
Ouge
oA
— = 3tu,
E)ut v

The condition g—é = (, that defines the submanifold &, is equivalent to the condition

OA

= 3tUgy — 6tud —uz =0
e

Hence we have an alternative definition of the space &, and an alternative way to defines the canonical
coordinates:

g=u
p:;:;)a-%zi’.tuz

On &
aiﬁm = Stugy — 6tud —uz =0
66111 =zugy + 3tus +u =20
‘g—ﬁ - %(g%) = —18tulugg + 36tu’ + 6zu® — Tugg — 2ug — Stug = 0,

where the first defines the submanifold, the second one gives the motion of v and the third the motion of
Uz, hence one can rewrite them as

Jtus = —~TUy — U

{ 3tugs = ug — 2usz — z—;{-‘-,

which coincides with (4.18).

4.3 PIII as scaling reduction of Sine-Gordon

A particular case of Painlevé III equation can be obtained as reduction of the Sine-Gordon equation

oo

— i dIl
N I (4.19)
. I .
Vg = Ugg — SiN u:—ﬁ,
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via the scaling

B = gy tuy = S =0
ds — TV Uz = 5y = 51 (4.20)
92U = p(ugy —sin ) + tvg + ug = ——52 =0,
where I, = [ L,dx, I, = [ Ldz, with the Hamiltonians
1, 2
L = i(v~ +u;) —cos u
and .
L= —2—(112 +u2) — zcos u+tvuy = zL, + tvu,
w.r.t. the Poisson bracket 56 5f 6
g g
= - dz.
e} / @ 5@ ~ @) su@)
The scaling reduction equation means
8T oI
(s) — () O,
du(z)  dv(z)
which defines the submanifold &:
v

with the canonical coordinates s
{pzzum+tv= L2y
qg=1u
in G.
The equation defining & can be written as an Hamiltonian system in canonical form describing the
reduced z-flow:

(@) =&
where 5
H= zaﬁp— 7 +x cos gq. (4.22)
In terms of the scaling coordinates w =
{W; Zp

in the variable z = ”2?2, the Hamiltonian system transform into

{@:_@

dz dw

dw _ 99

dz T Bn
for the Hamiltonian )
T
= ——— —CO0S W.
5 4z
The system is equivalent to Painlevélll:

2w + 2w —sin w = 0.

Let us now construct the time dependent Hamiltonian function (—@Q), that is the reduction on & of

_ dg
-Q=-A+p—,
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where 1
A = zugzv + t(§(112 +u2) — cosu).

By direct calculation one obtains

1
Q= 7&(5(1)2 —u2) — cosu)
which on & reduces to
- 1 p2
Q = —t ('2"%5—'_—3:—2 — CO8 q).
This is the Hamiltonian for the reduced ¢-flow . In fact
R P - 09
q-v_—gum——tﬁf—ﬂ__?’_?z (4.23)
p=v-+zU; +tvp =t sin g = %%

Note that also the system (4.23), written in w and z, gives Painlevé IIL.
Remark : We now deduce system (4.23) from the Lagrangian point of view, reading the evolution equation
(4.19) as the definition of v in terms of u, explicitly:

U = Ut
Ugg = V; +8INu = ugy +sinu

Differentiating this relation in z one obtains

Uz = Ugt

Vggy = Vgt — VCOSU = Ut — UL COSU

Uggr = Uttt + UgCOSU

which is a map from the ”coordinates”

U, V, Ug, Vg, Uzz, Vzzs - - -

into
U, Ug , Ut , Ugt, Utt, Uzt - - -
Here 1
A = zugu; + t(i(uf +u2) — cosu)
and 1
L = tugus + z(i(u? +u2) — cosu)
which give
oL 1
prl i(ug +u2) —cosu
oL = —sinu
du
oL tuy +
= TU
an t T
oL
_— = tum -+ TUs
But
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and

%% = —;—(uf +u2) — cosu
% = —tsinu

ou

AA

u. = U + tuy

OA

57])—; = TUg + tUs

The condition (—‘5% = 0, that defines the submanifold &, is equivalent to the condition

=zus +tuy; =0

Oug

Hence we have an alternative definition of the space &, and an alternative way to defines the canonical
coordinates:

qg=1u_
{p:%:xuz+tut

dA d (BAY _ ; —
___(a_m)‘"t Sinu — Tugr — up — tuy = 0,

{%\::mut-i*tum:O
du dt

where the first defines the submanifold, and the second
—tsinu — TUgs — Ut — tugr = 0

coincides with (4.23).
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Chapter 5

- Self—similar solutions of n—waves equation
and Hamiltonian MPDEs

5.1 n—waves equations and their symmetries

Let us consider the equation
Ut — Vg — [1,v] =0, (5.1)
where
u=[y,a] v=[y,b] a=diag (a},...a™) b= diag (b,...0") (5.2)

and v is a function of z, t.
Following [DS] it is possible to rewrite (5.1) as an infinite dimensional Hamiltonian system on the
space 9 of functions of z with values in Mai(n,C) with the inner product

(u,v) = /”ﬁ (u(z)v(z))dz.
On the space § of functionals

F= /f(a:,u,uz,....u(k)) dz

one can define V_F € I by
d
&—EF(U +ew)|,_, = (V F,w)

and the Poisson structure P with the Poisson bracket

(F.G}u) = (V.F,[V.G, %

— +u] (5.3)

The n-waves equation (5.1) is a Hamiltonian system w.r.t. this Poisson structure:

d d
ug = Pdl, = [V I, — +u] = [—v, —

5.4
dz dz +ul, (5:4)

where L
I = /lez = —§/T7' (uv)dz

that in components of v gives

L= / ; ;(akb_i o Uik Uki )AT = /; Zk:[(bi —bp)(ai — k)Y Ve ld (5.5)

For (n = 3, w" = —u) one can reduce to a particular case of P VI equation (see [D], where the
Hamiltonian structure for this particular case of P VI is derived from the Hamiltonian structure of the
n-waves equation.), imposing the scaling

du = tu; + zug +u=0. (5.6)
ds

54



It admits the Hamiltonian form

du d
22 = I, — = 5.7
7 = Vulie), 7 +u] =0 (5.7)
where . . b
- — 2 dp = i LAV
Iy = /Lda: =-3 /T’I‘ (tuv + zu)dz = /};Xk:(tak — — —i)ulkukzdcc
and
V. I = ~tv — zu, (5.8)
or, in terms of :
I(s) = /Z Z[(bt - bk)(ai - ak)t -+ (a'i - a‘k)zz]%k 7kid$ (59)
‘ ik
We emphasize the fact that the t—-flow and the s-flow commute, so that
oI,
{4, 1,} - = 0.

By substituting:

/[Tr(Vull[VuI(s), ;; +u]) + %Tr(uv)]da: =0.

Then there exists a function Qe (z,t,u,v) such that

\ d uv d
T‘i’(—-'l){—tv — TU, E + u] + E—) = "E;Qm.

By direct calculation (see Appendix A) we obtain

1 1
Qu = 5Tr(auw +tv?) = - Z[(aj —a,)(b, = b))z + (b, = b,)%t]v,;7,.
1‘1.7

As in the previous examples, Q(t) is the Hamiltonian for the reduced t—flow. We now describe this
flow.
We start by rewriting the system

ug—vp — [u,v] =0 (5.10)
tus +2u, +u =0

in terms of v, i.e. we solve
[v,a]l = [72,0] + (v, al, [, B]]

under the condition ; i
Yo = LT

This gives
[y, az + tb] + [v,8] = [[v, az], [7, 0]

but, because of the commutativity of b with itself,

%[7, az + tb] = [[v, az + bt],[v, b]]. (5.11)

Then we identify &, with the space of matrices
g = [y, 0z + bt] = uz + vt,
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— -1 _ -1 ; ; .
so that u =ad ,,, ad " q, v = ad,, 4pnad; "q, o1, in terms of the matrix elements:

q4; = [(aj - a’i)m + (bz - bi)t]’yia‘

On & the equation (5.11) has the Lax form~

gt = [Qav] = [Q?a’d(nx+bt)a’dl:lq]

with the Hamiltonian function

H

1 1
@ = §Tr(qv) = 5’_[‘r(zmw + tv?).

This coincides with @ ,,.

(5.12)

One may change the role of z and ¢. This means that one considers the system (5.1) on the space of functions

'U(t):
Vg : u107 (2 H

where Iy = [ Hodt = —1 [ Tr(uv) dt and one integrates in the variable ¢. The scaling (5.8) can be read as

an Hamiltonian equation

dv d
IS- = [VuI(s), —C-l—t- -+ ’U] =0,
where 1
Iig) = /Ldt = ~§/Tr (zuv + tv?) dt
and

V, ) = —tv—zu

Commutativity of the flows is equivalent to

oI
(s) _ n.
{IO’I(S)}"‘ oz =0;

in our case

/ (Te(V, Io[V, I(s), % +o]) + %Tr(uv)]dt =0.

Then there exists a function Q,,(z,?,u,v) such that

d uv d
Tr{—u[—tv — zu, 7 + U] + —2—) = —EZEQ(M.

By direct calculation (see Appendix A) we obtain

1
Qy = iTT(tU'U + zu?),

in components:

1
Quy = 2 Z[(a‘j —a)(b, —b)t+ (a, - ai)zm]%i%’i

7

Now we study the z—flow on the reduced manifold defined by the scaling equation :

the system (5.10) gives

ur —vg — [u,v] =0
tvy + zUg + v = 0.
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(5.14)

(5.15)

(5.16)
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In terms of v this becomes

%[7, az + tb] = [[v, az + bt], [7, a]],

that is a Lax equation on G,:
qz = [q,u] = [Qa a’d(ax+bt) ad:lq]
with Hamiltonian function 1 1
H, = §Tr(qu) = §Tr(a:u2 + tuw).

This coincides with @ .

In fact one can rewrite the scaling as a zero—curvature equation in two ways:

Z—zzqzwt[u,q]:o
and ‘
% =g +[v,q] =0.
Therefore one may rewrite them in terms of ¢ as
% = [g,0d7},,, ad.d]
and

¢t = lg,ad . ,, ad,q].

5.2 Commuting time—dependent Hamiltonian flows on so(n)

We can do exactly the same using the coordinates
t; = za; + tby,

and the corresponding derivatives E(Z-,’ with

d d
dr ; azgt:
and J p
it ; b,
The starting equation is now
E‘:—kui - -C-i—t—uk - [ui,uk] =0
where

ui =7, B] (W) = Y lik = Ve Ou
and (B;)m = 6ixdr;. We impose the scaling

d d
a—;uk = ;ti-dzuk + up =10
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For every k one can define, on the space §, of functionals

du dmu
F.“/f(tk)U7—th;"“"-d_t§{) dtk

with d
Zi_EF(Uk + 6'LU)1£=U = (vuk F, w)7

a Poisson structure P with the Poisson bracket

{F,G}u) = (V,, F[V.,G, Ef_ + )

The n-waves equation (5.22) is Hamiltonian w.r.t. the Poisson structure PY in §:

d d d
_ 4 = [y, 2 , 5.24
g = Ve T g sl = [us 7+l (5.24)
where 1
I, = /Lidtk = ———2— /Tr (’U,,;’u.k) dty,. (525)

On §, we can reduce to P VI equation imposing the scaling (5.23), which admits the Hamiltonian
form

d d d
2 = el =[— AU —— = .26
dsuk [vukf(s),dtk +ug] = ;tjuj, @, +ug] =0 (5.26)
where 1 )
I = /Ldtk = —§/I‘thjujukdtk = 3 /TE(Z tjujug + tkui)dtk (5.27)
J j#k

The commutativity of the flows is equivalent to

8](5)
{Ii7I(s)}_ 6t¢ =O;

in our case

d 1
/ (T0(V,,, TV, oy gy + ) + T (ue)ldts = / B4 Q. d.

By direct calculation (following the scheme in Appendix A) we obtain

1
Q(‘-) = 5ﬁztjujui = Z(ti - tj)’Yij’in (5.28)
J

i

The scaling equation defines the submanifold &;. One can consider on &, the system of coordinates
given by the matrix elements of ¢:

g=[v,>_ tE]=[Ul,
J
where U is the diagonal matrix diag(t1,...,tn); explicitly
gij = (t5 — L), (5.29)
As in the previous cases, @, is the Hamiltonian for the t;-flow on the reduced manifold.
Starting now from §;, ¢ # k, we can reduce on the same submanifold & and construct the Hamiltonian

function Q.
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Indeed, the scaling (5.23) for every k produces on &, the Lax equation
gr = [g,ur] = 0, (5.30)
with Hamiltonian functions

Hy = —Tr (qui) = —Tth wjus = 5 Z %qf% (5.31)
J

These coincide with the @ ,, constructed above. Observmg that v = adU 1q one can rewrite

*
uy, = ad, adj’q.

In the case qT = —q egs. (5.30) are the Monodromy Preserving Deformation equations for the linear
differential operator
d
A=—-U-2=
dA ,\

that give Painlevé VI, for n = 3, and the higher—order analogues, for n > 3.

5.A Appendix
Let us consider the following explicit expressions:
I = -—;— /Tr (uwv)dz
VI =-
Igy = —% /Tr (zu? + tuv)dz

Vi = —tv—zu
{It,I(s)} = (—v, tus + Tuy + u) =

- /_Tr (tvug + tvfu, v] + Tvu, + uv)de

oI
—éﬂ =1 = —l/Tr (uv).

oI
{Ie, I sy } — (s) = /Tr tvvg + to[u, v] + Tvug + lu’u)dx (A.1)

2
In (A.1) the relations
Tr v [u,v] =0

Tr (vvg) = T (v?)
1d
Tr (zvug + %uv) —z-a—m-”_[‘r (zuv)

hold. In fact, in terms of ,; one can write

zvuz Z Z bk - U3 i ak)vik (’Ym)ki =
= Z Zx (b; — b)( al_c - ai)(')’z)ki%k =
b k

= Tr (zvzu),
which implies
%Tr (zuv) = 2Tr (zvug) + Tr (wv).
Then:

oI 1/ 4d
) = 2 _
{It, Iy } Bt 3 / der (zuv + tv”) dz
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Chapter 6

Poisson structure on the Stokes matrices

As we said in the Introduction, many authors were inspired by the parallelism between the technique of
soliton theory based on the spectral transform and that of the MPDE theory based on the monodromy
transform. in previous Chapters we discussed the fact that, in both cases, one deals with certain classes of
Hamiltonian systems, namely, with infinite-dimensional Hamiltonian structures of evolutionary equations and
of their finite-dimensional invariant submanifolds in soliton theory, and with remarkable finite-dimensional
time-dependent Hamiltonian systems in the MPDE theory.

We also recalled that one of the first steps in soliton theory was understanding of the Hamiltonian
nature of the spectral transform as the transformation of the Hamiltonian system to the action-angle variables
[ZF). Further development of these ideas was very important for development of the Hamiltonian approach
to the theory of solitons [FT] and for the creation of a quantum version of this theory.

In the general theory of MPDE it remains essentially an open question to understand the Hamiltonian
nature of the monodromy transform, i.e., of the map associating the monodromy data to the linear differential
operator with rational coefficients. This question was formulated in {FN2] and solved in an example of a
MPDE of a particular second order linear differential operator. However, the general algebraic properties
of the arising class of Poisson brackets on the spaces of monodromy data remained unclear. The technique
of [FN2] seems not to work for more general case. The authors of the papers [AM, FR, KS, Hi] consider
the important case of MPDE of Fuchsian systems in a more general setting of symplectic structures on the
moduli space of flat connections (see, e.g., [Au]) not writing, however, the Poisson bracket on the space
of monodromy data in a closed form: MPDE of non-Fuchsian operators and Poisson structure on their
monodromy data were not considered in these papers.

This Chapter is based on the paper [Ug], where we solve the problem of computing the Poisson
structure of MPDE in the monodromy data coordinates for one particular example of the operators with
one regular and one irregular singularity of Poincaré rank'1

d Vv
Alz) = o U >
where U is a diagonal matrix with pairwise distinct entries and V is a skewsymmetric n x n matrix.
Recently MPDE of this operators proved to play a fundamental role in the theory of Frobenius
manifolds [D, D1]. The Poisson structure of MPDE for the operator A coincides with the standard linear
Poisson bracket on the Lie algebra so(n) 3 V. The most important part of the monodromy data is the
Stokes matrix (see the definition below). This is an upper triangular matrix S = S(V,U) with all diagonal
entries being equal to 1. Generically S determines other parts of the monodromy data. It turns out that,
although the monodromy map
V=S

is given by complicated transcendental functions, the Poisson bracket on the space of Stokes matrices is given
by very simple degree two polynomials (see formula (6.22) below). The technique of [KS] was important in
the derivation of this main result.

We hope that this interesting new class of polynomial Poisson bracket and their quantization (cf. [R,
Ha2]) deserves a further investigation that we are going to continue in subsequent publications.

6.1 Systems with irregular singularity

6.1.1 Stokes phenomenon
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In this Section we will concentrate our attention on the linear systems

dy Vv

where U is a diagonal n X n matrix with distinct entries wi,us,...,un and V = (vi;) € so(n,C), with
nonresonant eigenvalues (uy, ta, - - -, 4n) (-e. p; — pj € Z \ 0). The solutions of the system (6.2) have two
singular points, 0 and co.

e Near the Fuchsian point z = 0 a fundamental matrix of solutions Yy(2) exists such that
Yo(z) = W(2)2? = [Wo + Wiz,.. ]2°, (6.3)

where 6 is the diagonalization of V, 8 = Wy 'VW, = diag(u, 2, - - -, in), and W (z) converges for small
|z]. _

If one continues Yy(z) along a path encircling the point z = 0, the columns of the resulting matrix are
linear combinations of the columns of Y5(2); hence there exists a matrix My such that

Yb(z) = Yo(Z)MQ.

The matrix My is called monodromy matrix around zero. In our case My = exp(2mif).

e At 0o the solution has an irregular singularity of Poincaré rank 1. This means that it is possible to construct

a formal series r r
T(z)=1+-2+-24...
(2) t—+a+

where V = [['1, U]+ diagonal, i.e. T1 = (v;5) = (24=) for i # j, and to define certain sectors &; in which

Uj—uUi
a fundamental matrix of solutions Y; exists with asymptotic behavior

Y; ~ Yoo = I'(2)eY, (6.4)

for |z| = oo in &;. This means that I'(z) is the asymptotic expansion of Y;e™=U.
In different sectors one has different solutions, and this fact is known as Stokes phenomenon. The

matrices connecting the solutions in different sectors are called Stokes matrices.

A complete and detailed description of the phenomenon can be found in [BJL1], [Si], [IN],[Ue}; here we will
concentrate our attention on the particular operator A(z) = £ — U — % (see also [D]).

=

Following [D] we define an admissible line for the system (6.2) as a line [ through the origin on the z-plane
such that

Rez(u, —u;)|zet #0  Vi# .

We denote the half-lines
I, =z:argz=1 I_=z:argz=19 —m,

where 1) is a fixed real value of the argument.
The line [ lies in the intersection & U &_. of the two sectors
Gr: Yv—m—e<argz<¢Y+e

and
Gr: Yy—e<argz<y+m+e

Here € is a sufficiently small positive number.
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Theorem 6.’1 : There ezists a unique solution Y (2) analytic in the sector &, with the asymptotic behavior
Y1 (2) ~ Yoo
the same holds for Yr(z) in Gy
Proof: See [BIJL1].
S4+ and S_ are the Stokes matrices connecting the two solutions in &, resp. in &_, i.e.
YL(2) = Yr(2)S+, 2€64
and |

Yi(z) = Yr(2)S-, z€e6_.

From the skew-symmetry VT = —V it follows
S_=5T.

Moreover, one can prove that, given an admissible line, it is possible to order the elements u;, i.e., to
perform a conjugation
A(z) = P71A(2)P,

where P is the matrix of the permutation in such a way that the Stokes matrix S = S is upper triangular.

Remark: The full set of monodromy data for the operator A consists of the Stokes matrix S but also of
the monodromy matrix at the point 0 and of the matrix C' connecting the solution (6.3) near zero with a
solution near the infinity:

Yo(z) = Y(2)C.

The monodromy data {5, My, C} satisfy certain constraints described in [D1]. Particularly,
Cc71sTT'SC = M.

So, in the generic case (i.e., the diagonalizable and nonresonant one) under consideration the diagonal entries
of My e?™#1, . ., e?™#= are the eigenvalues of ST7'S and C is the diagonalizing transformation for this
matrix. The ambiguity in the choice of the diagonalizing transformation does not affect the operator A. So,
the "—("{——1—) entries of the Stokes matrix S can serve as local coordinates near a generic point of the space of
monodromy data of the operator A (see details in [D], [D1]).

6.1.2 Monodromy Preserving Deformation Equations

MPDE describe how should the matrix V be deformed, as a function of the “coordinates” w,, in order to
preserve the monodromy data. MPDE are the analogue of the isospectral equations in soliton theory. The
MPDE for the operator A(z) = & — U — ¥ are obtained (see [Ue], [D]) as compatibility equations of the
system (6.2) with the system

oYy

8uz~
where V; = [E;,T1] = —ad,, ad;'V and (E;)f = 6¢6;. These equations admit the Lax form

= (ZE{ + %)Y,

! (6.5)
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One can write the MPDE as a Hamiltonian system on the space of the skewsymmetric matrices V' with the
standard linear Poisson bracket for V = (vqs) € so(n):

{Vab, Ved} = VadObe + UbcOad — Vbddac — Vaclbd- (6.6)

Indeed, the Lax equation (6.5) can be rewritten as

oV
= H'L' V) 3
o = (VH(V0)
for the Hamiltonian function R
H = % i 6.7)
G T

In this case, the Poisson bracket is linear but the dynamic of the problem is very complicated; in the following
we will show how, very much as in the case of isospectral equations, it is possible to find a different coordinate
system (the entries of the Stokes matrix) in which the dynamic of the evolution is trivial, but the Poisson
structure is quadratic. The technique developed here consists in building up the monodromy map V — S
passing through an auxiliary Fuchsian system. The MPDE for the system (6.2) can be represented also as
MPDE for an appropriate Fuchsian system

dX__ = A;
ﬁ_;}\—ux’

i

which we shall describe in the next section. The basic idea to construct the Poisson bracket on the space of
Stokes matrices is to include the map from V € so(n) to S € S into the following commutative diagram of
Poisson maps

so(n) — S
) i (6.8)
A/G — MM/GL(n,C)

where A/ is the space of residues {A4;} of the connection 4 = Y"1, Xf—-l—;t'd,\ modulo the action of the gauge

group G, as we will explain in section 6.2.2, and 9/GL(n,C) is the sp:atce of the monodromy data of the
Fuchsian system (section 6.2.3), i.e. the space of n-dimensional representations of the free group with n
generators.

6.2 Related Fuchsian system
6.2.1 Fuchsian system

One can relate the system (6.2), with one regular and one irregular singularity to a system with n +1

Fuchsian singularities:
k23

dd® B;
o A Y )
dA ;/\—ui ’ (6.9)
where
Biz-Ei<V+—;-]l>, 1i=1,...,n
and

BOO=V+—§-]1.
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Such a relation is well known in the domain of differential equations, see, e.g. [BJL], [Sch].
Now we will briefly describe the monodromy data of the system (6.9).

In this case u; is a Fuchsian singular points and, as in (6.3), the general solution near u; can be expressed
as
) B;

;N =W (NA -y 7,
where W (A= Wéﬂ + ()\—u,-)Wlm +... converges for small |\—u,| and B; = —3E; is the diagonalization
of Bj .
We denote M; the monodromy matrix along the path v; encircling the point u; w.r.t. the basis @ we
define in (6.10) below. The matrix M; is conjugated with the matrix exp(2miB;).
Also the point oo is Fuchsian; the general solution can be expressed as

(e0) 1,8
() =W ()\)(X) , (6.10)
where W' (\) = Wy~ + YA~ + ... converges at [\| = co and Boo = diag(} + p1,..-, 5 + ptn) is the

diagonalization of Be,. Indeed, the following relation holds in the space of the residues :

—ZBFBOO:%JHV.

=1
In this basis the monodromy matrix My, = —e?>™®. We assume that the loops 71, ..., ¥n and Ye are chosen
in such a way that

6.2.2 Monodromy Preserving Deformation equations

We now want to deduce the MPDE for the system (6.9). This amounts to find how can the matrix B; be
deformed as function of u1,us, ..., u, in order to preserve the monodromy matrices My, ..., Mp, M. The
answer is given by

Theorem 6.1 (Schlesinger): If the fundamental solution near infinity is normalized as in (6.10) and A
is a constant diagonal matriz with nonresonant elements, then the dependence of the A; on the position of
the poles of the Fuchsian system

dd < A;
awi};)\—ui@

is given, in order to preserve the monodromy, by

%’35- = u,-iuj [Ai=Aj] iF]
94; -3 [A1,45]

Ouj 1#E] ui—uj ?

Proof: it can be found in [Si].

Note that system (6.9) does not satisfy the hypotheses of the Schlesinger theorem, because B =
(V + 11) is not diagonal.
In order to apply the Schlesinger theorem it is sufficient to perform the gauge transformation

B A; = Wi B;W, (6.12)
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where W is the matrix of eigenvectors of V normalized in such a way that

Wy
6ui

= adgadj'V. (6.13)

Indeed, substituting ® = Wy, the system (6.9) transforms into

d U}
% =3 X (6.14)
i=1 °

and the Schlesinger system follows from the compatibility of (6.14) with

aX AI'
811,,; - -/\ —'Uq;X

(See [D]).

The Schlesinger system can be rewritten in the Hamiltonian form

dA;
T = 1o 51}
with the Hamiltonians Te(A; 4y)
%= T
ki 0k
w.r.t. the linear Poisson bracket
{(A05, (A7)q} = 85 (85 (Aa)5 — 65(45)8)- (6.15)

This corresponds to taking, for every wu;, the residue A; € gl(n,C) with the natural Poisson bracket on
gl(n,€). The residues relative to different singular points commute. In other words (see [KS],[FR],[A])
this corresponds to read the matrices A; as residues of a flat connection (with values in the Lie algebra
g = gi(n,0)) on the Riemann surface with n + 1 punctures:

n
A
A=) ——d

i=0 *

(in our case ug = co). On the space of flat connections modulo gauge transformations it is defined the
Poisson bracket

{A" (), 4" (1)} = —f:bé—(uu):_f(y)

1

where f:b are the structure constants of g w.r.t. the basis {e_} and

a

A=Y A=A e,

3
U

=0
This Poisson bracket gives (6.14).

Now we can perform the first step in the construction of the map between V and S, that is we pass from
so(n) to the space A/G, where

A={V,Ay,...,As| > A =0}

i=0
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is the family of the residues of A()\) and G is the gauge group.
Lemma 6.1 :The map V € so(n) — (V,A1,...,A,) € A/G is a Poisson map. (Cf. [Hal],[Hi])

Proof: We must compare the Poisson brackets on the two spaces. In s0(n) one has the natural coordinates
{vap}, with the Poisson bracket (6.6). The natural coordinates in the quotient space A/S are the traces of
the products of the matrices 4;, so that we consider the brackets

{Tf(AiAk) (A A} ={(A)p(A )  (4))5(ANEY =
A (AN (AR)S, (ADE} + (A5 (AD)F{(AR)S, (A7)51+
+(Ak) (A)5{(A)E, (AD} + (Ar)a(ANH(A z)b»(Aa)d} (6.16a)

and
{Tr(4:V), Tr(A'V)} = {(A')z?Va", (4))5Vs'} =
= (0§ (A)e{Ve, V' + VaVE{ (4 (49)3}- (6.16)
On A/§ by direct calculation, using the bracket (6.15), one obtains
{Tr(AiAr), Tr(A; A} = 0 Tr (A Aj Ay — ApAjA;) + 0 Tr( A A Ay — AgALAs) +
-+ 511'1‘1‘(A}VA]A1 - AzAjAk) -+ (SijT[‘(AkAlAi - A,;AlAk) =
=2 <5leI‘(AiAjAk) + (5ijI'(A¢AlAk) + 5ilTr(AkAin) -+ 6¢jTI‘(AkAlAi)>6.17)

Indeed, 4; = —E;(V + $1) implies
TI'(A,;AjAk) = —TI‘(AkAin) = VijVskVks- (618)

On the other hand, Tr(4;4;) = hence

1.]7
{Tr(A; Ag), Tr(A; A1)} = vigvji{vik, vi}
= 4(0k1vijVikVks — OkjVik VIV + OuVikVkjVji + 84jVik VkIVis ) (6.19)

where we have used the bracket (6.6). By means of (6.18) it is easy to check that it coincides with (6.17).

The same can be done for equation (6.16b). Indeed, using the bracket on the A; matrices and observing
that

Tr(Az-AjV)z —TI‘(VAin) = Z VijVkiVjk,
k#i]
one finds

On the other hand Tr(4;V) = — 3, vi;, that gives

{Tr(A,,V), TI‘(A]'V)} = 42 kaivlj{vki,vlj} = —4kaivkjv¢j

ki 1] ko

which coincides with (6.16b). Q.ED

Lemma 6.2 : The MPDE for the system (6.2) and its related Fuchsian system coincide.
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Proof: It follows immediately from Lemma 6.1 by a straightforward calculation using (6.13), that MPDE
for the Fuchsian system (6.14) after the gauge transformation (6.12) coincide with (6.5). Actually, one can
see that the pull back of the Hamiltonian

f’jj - _ Z Tr(AjAk) —_ z TI'(BjBk)

¢ uj — uy uj — Uk
ki J

k#j

is exactly equal to Hj, as defined in (6.7).

6.2.3 Poisson structure on monodromy data

In this section we will perform the second step of our construction, that is we will map the Poisson
structure of A/G into the space of monodromy data of the Fuchsian system; this is shown in the following
well-known (see, e.g., [Hi])

Theorem 6.2: The monodromy map
A/G = I/SL(n,C)

where M = { Mo, My, ..., Mp|M1 M, ... My My = 1}, is a Poisson map.
To actually compute the Poisson bracket on the space of monodromy data, i.e., on the space of n-dimensional

representations of the free group with n generators we will use, following [KS] (Th. 4.2), the following
technique. We construct the skewsymmetric bracket

{(M,-)s, (M»g} - iw((MjMi)gas T (MM;)36 — (M)5(M;)3 <Mj>g<Mi>z) i<i (620a)
{(Maz, (M»;} _ iw((Mf)ié‘é - (Mmaz)- (6.200

on the space 9 of the monodromy matrices. As it was proved in [KS], when restricted to the space
of representations 9t/SL(n,C), this bracket defines a Poisson structure on the quotient induced by the
monodromy map. Observe that the eigenvalues of the matrices M; are the Casimirs of the Poisson bracket,
i.e., the functions Poisson commuting with all others (see [KS]).

6.3. Poisson structure on the Stokes matrices

6.3.1 Connecting the monodromy data of the two systems

In the previous section we have seen that the space of monodromy data of a Fuchsian system carries a natural
Poisson structure. In this section we will show that this structure induces a Poisson bracket on the space of
Stokes matrices of the related system we studied in chapter 1. To this end we consider the relation between
the monodromy matrices My, Mo, ..., M, of the Fuchsian system and the Stokes matrix S.

In section 6.2.1 we claimed that the two systems

dY 1%
E = (U+ —Z—)Y

and

e~ A
E)\-ﬁg)\—uiq}
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are related, in the sense that, (see Lemma 6.3), the MPDE for the operator A(z) = £ — U — ¥ can be

dz
represented also as MPDE for the operator A(\) = & — S0 | 2i.

i

For a detailed analysis of the transform connecting the two system see [D1]; here we will concentrate
our attention on the relation between the monodromy data of the two systems.
Following Theorem 6.2, we are interested in the quotient of the space of the monodromy data of the Fuchsian
system w.r.t. the GL(n,C) conjugations. So, we can choose a particular basis of solution of the system and
work with the corresponding monodromy matrices.

Theorem 6.3 : Suppose that (S +ST) is nondegenerate; then there exists a unique basis of solutions (which

depends on the particular choice of the branchcuts in the complez A-plane) {@m (N} of the Fuchsian system
(6.9), such that

- Near u; the solution has the behavior

) 1 i
P~ 0.
a /ui _ A a

- the monodromy matrices are reflections, i.e., going around the singularity u; the solutions transform
as

q)(i) = _@(1‘)
q)(J) N @(J) _ 2gij¢(*)

where G = (gi;) = %— (S + ST) is the Gram matriz of the following invariant bilinear form w.r.t. the chosen
basis
i i o7 i
gis = (@“,q)( )) g (U—)\)@( )’
Invariance means that g;; does not depend on X neither on uy, ..., Un.
Proof: See [D1], Th.5.3.

Remark: ¢ and Y7, are related by the Laplace transform

e -z B\
Y1), (z) = @7 (N)erFdA
( a ( 2_\/7? 7(” a
where () is a fixed path in the A-plane; analogously for Y.
In the {@m (A)} basis the i-th monodromy matrix M; has the form
1 0 0 0
0 1 0 0
Mi=| _9gi —2gs ... -1 ... —2gu |’
0 0 0 1

297;j = 2g]'i = 84§ for i < 7.
This is a reflection w.r.t. the hyperplane normal to the vector 3",

The Coxeter identity ([B]) gives
MiM,.. . M,=-S"15T.
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Lemma 6.3: The following relations hold (all the indices are pairwise distinct)

Tr(M;M;) =n — 4+ s3; (6.21a)
Tr(MpM;M;M;) =n — 4 + (sk; — 8458i)° (6.21b)
Tr(M;M;MyMg) =n — 8+ s?j + 53, + s?l + s?k + s?l + 82, — S$i;SikSik+

‘ — SikSilSki — SjkSjiSkl — 5ijSiS51 + SijSilSjkSki- (6.21c)

Proof: The fact that the M; are reflections and that S + ST = 2G geometrically reads into

~2Cos a5 = 8j5
where a;; is the angle between the two hyperplanes normal to 3“ and 7.
On the other hand, the products M;M; are rotations by the angle 2a;; and this provides the relation
(6.21a), indeed '

Te(M;M;) =n — 2+ 2cos(205) =n — 4 + s3;.

To obtain relation (6.21b) we observe that the product M;M; M; is still a reflection, w.r.t. the mirror normal
to the vector Mi(ém). This means that the product My M;M;M; is a rotation by the angle 23, where

€}

~2cosf = (Mi(@ ),@“’) =@ - 5,0, 8"

) = Skj — 5ijSik
so that Tr(MyM;M;M;) =n—2+2cos(28) =n — 4+ (sk; — $iSik)°.

Finally, (6.21c) can be obtained directly in the case of the 4 x 4 reflection matrices M;. Indeed, for
ordered indices 1, 7, k, [, the Coxeter identity gives

M MMMy = =S54, Shu,

1

where
1 si; sk Su
I I ST
Sa=19 o 1 Skl
0 O 0 1

An easy calculation gives the result.

The same result holds also in dimension n > 4. Indeed, one can observe that, for every n, the product of four
matrices acts nontrivially in the 4-dimensional subspace spanned by the vectors normal to the mirrors of the
reflections M;, My, My, M;. It is equal to the identity in the orthogonal complement to the 4-dimensional
subspace. )

Q.E.D.

6.3.2 Poisson bracket

Combining all the above facts, we can conclude our construction proving the following main

Theorem 6.4: 1. The following formulae
{sik,sa} = %‘(231:1 — 8ikSil) i<k<l (6.22a)
{Sikysjk} = E%E(?Sij - Siksjk) i <j <k (6.22b)
{sik, Skl} = %(Sikskl - 23,’1) 1< k<l (6.220)
{sir, 81} =0 i<k<j<l (6.22d)
{sit, 81} =0 i<i<i<k (6.22¢)
{Sik) Sjg} = ’i?T(SijSkl - silskj) 1< 7 < k<l (6.22f)
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define a Poisson bracket on the space S of Stokes matrices.
2. The monodromy map
so(n) =+ S

associating the Stokes matriz S € S to the operator A = ad; -U - —Z—, V € so(n), is a Poisson map.

3. The eigenvalues of S™*ST are the Casimir functions of the Poisson bracket.

{. The Poisson bracket (6.22) is invariant w.r.t. the action of the braid group Bp on the space of
braid matrices.

Proof: 1. As a first step we explicitly write the restriction of the bracket (6.20) to the space of
representations. By direct calculation one obtains

{Te(M:iMy), Te(M;My)} = {(My)g (My)?, (M;)(M)¢} =

= (M;)3(M;)5{(My)b, (M)%} + (M;)§ (M;)2
+ (Mi)8 (M) (Mi)g, (M)3Y + (Mi)5 (M)3

{(Me)5, (M)} +
{(Mi)g, (M;)g} (6.23)
where we mean summation over repeated indices; using (6.21a), one can rewrite the left hand sides of (6.23)

as
{Tr(]\/[iMk), Tl'(Mle)} = {n -4+ S?k, n—4-+ S?l} = 4S¢k8ij{8ik, Sij}. (6.24)

Now one has to distinguish between three essentially different cases, in correspondence with the different
order of the indices.

si<k<j<lori<j<l<k:

Fori < k < j < 1 all the addenda in the right hand side of (6.23) involve a Poisson bracket of the
form (6.20) with correctly ordered indices. Here we write explicitly only the first one:

i Tr (Mz‘MleMk + MiMleMj - MiMl]V[ij - MiMijMl> .

The others have a similar form, and it is easy to see that they cancel pairwise (the first with the second and
the third with the fourth).

The same happens when i < j < [ < k, since the only difference is a change of sign in the two last
elements. Hence it follows

(Te(M;My), Te(M; M)} =0 i<k<j<l (6.25a)
(Te(Mi M), Tr(M; M)} =0 i<j<l<k (6.25b)

Using (6.21b) one immediately obtains equations (6.22d/e)

0 i <j<k<l

Here the different order of the indices induces a change of sign in the second addendum, which becomes
equal to the first. Equation (6.23) gives

{TI‘(M,;M]C),TI"(MJ'MI)} =21:7TTI‘(M.L'M]']\/IINI}; + MiMleMj - MiMzMjM/c - MiMijMl>
=4im51551(Si5 Skt — SilSkj),
where the last equality follows from Lemma 3.1. Using eq.(6.24) we obtain immediately eq. (6.22f)
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si=j<k<lori<j=k<lori<j<k=l
If two indices coincide, for instance i = j < k < I, the other two cases are analogous, we find

{To(M; M), Te(M; M)} = {(M:)§(Mi), (Mi)5(M1)g} =
= (My)g (M )d{(Mk)a)(Ml) }+ (Mi)g (M
(Mk)a d{ )b> (Ml) } + (Mk) (

Bor (Mo)g}H+

De{ (M,
De{(M)5, (Mi)g}-

The first and the third addendum cancel, the last is zero (because M? = 1), and it remains:

{(Te(M; My), Te(M; My)} = 24 ((Tr(MfMle) - ’Dr(MiMkMiMl))
= 2in[(n -4+ s%l) —(n—4+ s,zc, + 82,83 — 258k 5u)]

= 2imsip it (25K — SikSit),

where the second equality follows from (6.21a) and (6.21b). Using (6.24) this leads to (6.22a/b/c).

2. It follows from the commutativity of the diagram (6.8), where all the arrows are Poisson maps

3. As we have said above, the eigenvalues of the monodromy matrices are the Casimir functions
for this Poisson structure. Particularly, applying to M., we obtain, due to (6.11), the needed statement.
Practically it is more convenient to use the coefficients of the characteristical polynomial det(S1ST — ul)
as the basic Casimirs.

4. Recall [D], that the natural action of the braid group B, with n strands on the space of Stokes
matrices is generated by the following transformations corresponding to the standard generators oy, ...,
On—1

o; S KzS Kz'
where the matrix K; = K;(S) has the form
Kii = —siiv1, Kiy1 =Kipi=1, Kig1i41 =0.

Other matrix entries of K; vanish. According to [D] this action describes the structure of analytic
continuation of the solutions of MPDE. Our Poisson bracket is obviously invariant w.r.t. analytic
continuation.

Q.ED.

Example 1. n = 3. In this case the space of Stokes matrices has dimension 3. Denoting z = 512,
Yy = S13, 2 = Sog we obtain,

{z.y} = Z.—W(2z - zy)
{y.2} = 225~ y2)
{z,z} = -E-(Zy — 2I).
Our Poisson bracket coincides, within the constant factor —%, with that of [D].
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' Example 2. n = 4. For convenience of the reader we write here down, omitting the constant factor
-, the Poisson bracket on the six-dimensional space of the Stokes matrices of the form

1 p g r
01 =z
S=10 0 1 g
0001
{p,q} = (27 — pq) {z,y} = (22 — zy)
{p,7} = 2y —pr) {y,2} = (2z — yz)
{g,r} = (22— gr) {z,2} = (2y — 2z)

{z,p} =(¢—2zp) {g,z}=@2p—-qz) {nz}=0
{y,p}=@r—yp) {gy}=20pz—-rz) {ry}=02p—ry)
{p,2} =0 {z,a}=Q@r~2q) {r,z}=(2q¢—rz) (6.26)

The Casimirs of this Poisson bracket are
Cr=—4+p*+@¢+r?+2% +9? + 22 —pqz—pry—qrz-zyz%—p}‘mz
and
Cy =6—2(+p* + ¢ +r2 + 2% +y* + 2%) + 2(—pgz — pry — qrz — zyz) — 2(pgyz + qrey) +p*r? + ¢?y* +riz?
On the 4-dimensional level surfaces of the Casimirs the Poisson bracket (6.26) induces a symplectic

structure. These surfaces and the symplectic structures on them are invariant w.r.t. the following action of
the braid group By:

o1 - (P,(LT,%ZI,Z) = (*paﬂc_PQay"PT,q,T,Z)
gg : (p>Q7T)m)y7Z) = (q—pw7par7 —xyz_xyay)
g3 : (p1Q7ram7yvz) — (p,T—qz,q,y—xz,m,—z)
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