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“We shall not cease from exploration and the end
of all our exploring will be to arrive where we started
and know the place for the first time. ”

T. S. Eliot






Abstract

The possibility of a nonzero cosmological constant has been invoked several times in the past, both
for theoretical and observational motivations. It has been often discarded by particle physicists, due
to the huge difficulties in justifying a value of vacuum energy tiny enough to allow the universe to
survive more than 107%! s after the Big Bang. At present, the cosmological constant problem is still,
probably, the most ununderstood issue of the physics.

However, in recent times, it has again come into vogue, and again as a consequence of a number of
observational evidences. Despite their apparent simplicity, the results of observations of more than 40
distant type 1A supernovae seem to converge on the astonishing evidence that the present expansion
of the universe is accelerating; this fact, together with many other experimental evidences of a low-
density universe, and with the most recent CMB data indicating that the universe is very near to
the flatness, has opened again the difficult question of what is the unobserved energy component that
would balance a low-density universe with a flat one.

At the same time, a new branch of cosmology has been opened, involving scalar fields as candidates for
such ”"missing” energy. Motivated by the difficulties of cosmological constant models and by the most
recent observational case of an accelerating universe, many alternative scenarios have been proposed:
amongst them, the Quintessence scenarios, which are the subject of this thesis.

In these models, the “missing energy” should reside in a dynamical scalar field rather than in a pure
vacuum state; the dynamics of the field plays an important role, since the field energy density can
adjust in a way that it comes to dominate at late times.

The most important and distinctive feature of a scalar field vs. a cosmological constant, is that a field
will develop fluctuations, that interact gravitationally with those of matter. To obtain the correct
predictions of their impact on the Cosmic Microwave Background radiation and on the evolution of
perturbations, the formalism of linear perturbation theory must be widely used.

In this thesis we will focus on some basic issues connected with the attempt to build predictions on
the cosmological impact of such scalar fields, following the results discussed in refs. [173, 174, 10, 15].
The first chapter is introductory and aims at giving an overview of the current observational evidences
from which the case of a positive non-zero vacuum energy arises, motivating the consideration of the
cosmological constant problem. In Chapter 2, the gauge-invariant formalism of linear cosmological
perturbation theory is described, with particular attention to quantities such as the gravitational
potentials, entropy and curvature perturbations, which are used in the following of the thesis.

In Chapter 3 we recall some basic ideas on the mechanisms that generated the observed Cosmic
Microwave Background of radiation, whose small but detectable anisotropies contain a large amount
of information on the history of the Universe. In particular, CMB anisotropies turned out to be a
very rich ground of investigation for discriminating between Quintessence and cosmological constant
scenarios.

These chapters set the framework for the results that will be presented in the following chapters,
containing the original work of the thesis.

In Chapter 4, focusing on scalar-type perturbations, we settled the analytical initial conditions that
must be imposed on the components of cosmic fluid involving a minimally-coupled scalar field, in order
to produce purely adiabatic or purely isocurvature initial conditions on super-horizon scales. Thus,
an interesting comparison with the “standard” pure CDM flat model is performed. The distinctive
imprints of Quintessence on large scale structure and on CMB anisotropies, both of polarization and
temperature, are extensively analyzed.

Chapter 5 extends the concept of Quintessence to a larger class of scalar fields, having an explicit
coupling with the Ricci scalar in the Lagrangian. These more general models, here named “Extended
Quintessence”, are shown to enrich the phenomenology with respect to the simple minimally-coupled



Quintessence. In fact, the predictions for the CMB anisotropies show new distinctive features, directly
related to the presence of a non-zero coupling of the field with the gravitational sector of the Lagrangian
and, ultimately, with the time-variation of the gravitational constant.

A problem of “fine tuning” is however inherent both to cosmological constant and quintessence models:
in order to have today an amount of vacuum energy comparable with that of matter, the vacuum energy
density should have been initially vanishingly small.

A way out to such fine tuning problem is possible in Quintessence scenarios, where one can select a
subclass of models which admit “tracking solutions”. This means that the present value of scalar field
energy density, once fixed, can be determined starting from a very wide set of initial conditions, even
though the tracking solutions are not perfect attractors and do not solve the problem of why the field
energy density should have this value just today.

Chapter 6 considers tracking behaviors in Extended Quintessence scenarios and presents a description
of the rich phenomenology that arises from the corresponding dynamics; in particular, we show that
the coupling with the Ricci scalar can act initially as an effective potential pushing the field in the
tracking trajectory (“R-boost”). The dependence of the phenomenology on the sign of the coupling
constant is also described.

Finally, Chapter 7 presents the conclusions and faces the future observational perspectives, on the
light of the most recent data from MAXIMA and BOOMERANG-98 balloon experiments and of the
future satellite missions MAP and Planck.
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Chapter 1

The missing energy problem

1.1 Introduction

One of the great developments of the 1980’s was the creation of a ”Standard” Cold Dark Matter model
(sCDM) of Cosmology, based on ideas arising from Particle Physics, with energy density contribution
in matter ,, = 1, no cosmological constant and a near-Zel'dovich spectrum of primordial fluctua-
tions [25]. This model brings together the idea of inflation [99, 144, 5] and the picture of large scale
gravitational collapse [168] .

For many years, such cosmology has been regarded as the most attractive one; however, in the last
decade, observational cosmology has made tremendous strides, and the standard CDM model proved
unable to simultaneously match a series of observational evidences on different scales. Matching its
predictions to COBE measurements of the microwave background, one finds that the amplitude of
fluctuations on 8A~! Mpc scales (where h is the Hubble constant today in units of 100 km/s/Mpc) do
not match those observed (measured through rich galaxy cluster abundance). Furthermore, not only
the amplitude, but also the scale dependence of the fluctuation spectrum in the sCDM differs from
the measured galaxy correlation function [165].

These failings of sSCDM have led to many attempts to improve it, while keeping its basic features
intact; the latter are associated with its theoretical motivation from inflation. On one hand, all sim-
ple inflationary models predict that the universe is flat, i.e. its curvature is zero or negligibly small.
Meanwhile, the inflationary paradigm is the only known solution to the horizon and flatness problem:
if Qypta1 #1, the canonical prediction of inflation would be incorrect and we would have to understand
how inflation, or another theory, might address the fine tuning required to solve the flatness problem
without actually restricting in a flat universe today. On the other hand, in recent times, a growing
evidence for a low-density universe has come from many independent sources: the recent trends in
cosmology push towards a value of £2,, ~ 0.3, a value suggested from many independent estimates
on various scales. Dynamical estimates of the mass density on the scale of galaxy clusters suggest
that €, = 0.2+ 0.1 for the matter that clusters gravitationally [39]. Other independent observations
appear to converge to the evidence that we are living in a low-density universe.

Furthermore, the most recent CMB data [138] from BOOMERANG indicate that the universe is ac-
tually very near to the flatness, according to the inflationary paradigm.

These observational evidences motivated a revival of the cosmological constant; the cosmological con-
stant, indicated with A, was originally introduced [72] in order to allow static homogeneous solutions
to Einstein’s equations in the presence of matter, and then it turned out to be unnecessary when the
expansion of the universe was discovered [114]. However, the cosmological constant has had a very
long and tortured history ever since, being periodically invoked by cosmologists as an explanation of
a set of observations, and then quickly forgotten when the observational case evaporated.

Detailed reviews on the effects of A in cosmology can be found in [40, 188, 65, 52].

We are now in a situation that at least suggests the presence of a vacuum energy component in the
universe; first, a cosmological constant would be one way to resolve the discrepancy between the low
observed value of Q,;; and Q0 = 1 as predicted from inflation.

7



8 CHAPTER 1. THE MISSING ENERGY PROBLEM

A second motivation for the cosmological constant revival has been the need to have the age of the
Universe, tg, exceeding the age of globular clusters in our galaxy; the limits on g are holding at about
13 Gyt or more [119], and when combined with current estimates of the Hubble expansion parameter
Hy =~ 65.2 & 1.3km/sec/Mpc [182], give rise to an observed value of the "expansion-age” parameter
Hyty ~ .9, significantly higher than that predicted by the sCDM. Preserving the flatness of the Uni-
verse, its age could be enhanced by lowering the matter content in models involving a component
whose equation of state is different from matter and radiation, for example models including a cosmo-
logical constant.

Most importantly, quite strong evidence for a positive cosmological constant comes from the analysis
of high-redshift type 1A Supernovae [171, 172, 89, 182], that placed a constraint on the difference
Qp, — Qp [140] through the measure of the ”deceleration parameter”. The surprising result is that the
sCDM is strongly ruled out by the Supernovae data, that instead appear to favor a positive cosmo-
logical constant at a quite high confidence level.

If this result is confirmed, we should be currently entering a period of cosmological inflation, that is
typically interpreted as evidence for a cosmological constant.

Despite the apparent successes of the cosmological constant models, they still face several difficulties
on their own. At the present, no one can explain why the vacuum energy density of the universe,
pa = A/87G should be of the order (10™3¢V)4, as it must be to have a cosmological impact (Qp ~ 1);
instead, on dimensional grounds, one would expect it to be many orders of magnitude larger, of order
m%, or perhaps miygy. A vacuum energy density of order (10-3eV)* appears to require cancela-
tion between large numbers to very high precision. In addition, it implies that we are observing the
universe just at the special epoch when Q,, ~ Q. The unnatural size of A suggested by the data
gives rise to the question of whether the data supports some other form of energy density as well: we
might plausibly assume that some as yet not understood physical mechanism sets the ultimate vacuum
energy of the Universe to zero, but we are faced with figuring out how to explain ”missing-energy”
values of as much as 70 or 80 percent of critical density.

Motivated by the difficulties of the cosmological constant models, alternative scenarios were pro-
posed in the last years, in which the residual energy density is assumed to reside in the potential
energy of some classical scalar field. As far back as ten years ago, Ratra and Peebles [178] consid-
ered a cosmology where the scalar field energy density becomes dominant at the present cosmological
epoch, finding asymptotically stable equilibrium solutions in which the scalar field energy density
dominates the dynamics. The most recent models that involve scalar fields as candidates for the dom-
inant energy component of the present epoch of the universe are often named ”Quintessence” models
[178, 177, 221, 82, 54, 51, 8, 249, 115, 173, 174, 37, 10, 231, 189, 104, 229] and are a continuation of
the original ideas of a ”dynamical” vacuum energy [178, 177, 232, 229, 162, 181, 48, 43, 85].

In Quintessence scenarios, the "missing energy” is then associated with the evolution of a scalar field
according to its equation of motion: the ”quantum-mechanical” vacuum energy is still assumed to be
zero, and hence the energy density associated to a Quintessence field is something very different from
a "pure” vacuum energy. However, a Quintessence field can mimic a cosmological constant when its
kinetical energy is negligible with respect to the potential energy, so that its equation of state ap-
proaches -1; such conditions are verified whenever the field is slowly rolling down its classical potential
(in a manner analogous to the inflaton field in slow-rolling inflation scenarios), making the potential
energy very slowly changing. By this mechanism, a self-interacting scalar field that is presently relax-
ing towards the minimum of its potential is one way to provide acceleration to the cosmic expansion.
More generally, the "missing energy” can be described in terms of an unspecified equation of state
that is different from that of matter and radiation [107, 37, 217]: indeed, the growing evidence of an
accelerating Universe from Supernovae testifies that the dominant material in the Universe is charac-
terized by an equation of state that satisfies p 4+ 3p < 0.

We will refer to Quintessence denoting any component whose properties are well described in terms
of the dynamics of a scalar field; furthermore, we assume that such a field couples to ordinary matter
only through gravity.

Due to the strongly relativistic nature of such component, the characteristic scale of clustering pro-
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cesses for a scalar field is just the horizon, [178] giving a further similarity with a cosmological constant
in the undetectability of quintessence energy concentrations on scales smaller than the horizon. The
interesting feature of the ”quintessence” component is just that, contrary to the cosmological con-
stant, it is time-varying and spatially inhomogeneous, so that it can develop fluctuations which can
be relevant in the perturbation growth and can leave a characteristic signature in the CMB and in
large scale structure.
We wish to outline the importance of these fluctuations on the light of the future MAP and Planck
satellite missions [155],[156], that will allow a determination with very high accuracy of the level of
primordial anisotropies imprinted on the last scattering surface: the evolution of the CMB photons is
sensitive to the history of the universe, allowing a comparison of CMB observations with Quintessence
predictions that could help to discriminate between different models, with a large improvement on
current knowledge.

We will now introduce the background equations in FRW cosmologies and review the experimental
evidence that leads to the necessity of reconsidering the presence of a substantial vacuum energy
component.

1.2 The FRW background equations

In modern cosmology, the universe is described as a perturbed Friedmann-Robertson-Walker (FRW)
~ one. This means that the unperturbed spacetime is spatially homogeneous and isotropic, so that the
background metric is assumed to be

d32 = guyda:“dajy = a2’yw,d£[,’#d.'L‘V y (11)

where a(t) is the cosmic scale factor, and the signature is (—,+,+,+).- We used units so that ¢ = 1.
The conformal time 7, defined by d7 = dt/a(t), corresponds to the metric component vy = 1; space
and time do not mix (yg; = 0) and the purely spatial part (denoted by latin indexes) in spherical
coordinates is

dr?
T-K2
where K is the spatial curvature that is positive (negative) for a closed (open) universe; for K = 0,
Y takes the form of the ordinary Minkowski metric.
Putting dx = dr/v/1 — Kr?, the metric 1.1 assumes the form

vijdatde? = + r2(d6? + sin® 0d¢?) (1.2)

ds® = a?dr? — a®[dx® + r2(x)(d6? + sin? 0dp?)] . (1.3)

In the above,
sin(x) if K=1 closed
r(x) =sinn x =< x ifK=0 flat (1.4)
sinh(x) if K=-1 open

The metric and fluid evolution are determined by the Einstein equations [71],

G =8nGT,, (1.5)

The cosmological constant A is a dimensionful parameter with units of (length)~2 that enters as a
possible additional term in the equations of General Relativity (GR):

1
Ruy = ~5 Ry + Mgy = 87G T (1.6)

In the FRW spacetime, the energy-momentum tensor of the background matter has a perfect fluid
form,

T/w = (p +p)u,uuu + PGuv (1.7)
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where the time-dependent pressure and energy density, p and p, respectively, include also the cosmo-
logical constant, if present, and u* = (a=1,0,0,0). The Hubble expansion rate of the universe, H, is
given at any time by L
a

B=Ca
Its value at the present time ¢y is denoted by Hy.
In this thesis, we often make use of the conformal Hubble constant, expressed in terms of the derivative
with respect to the conformal time,

(1.8)

_lda

=
The background equations, which follow from the Arnowitt-Deser-Misner energy constraint and the
Raychaudhury equation respectively, are

(1.9)

a 2 87TG 2 ACL2
H—H?: = —4xGa®(p+p) + K (1.11)

where the overdot means conformal time derivative.
From these equations we can derive the conservation equation

§+3(1+w)%=0, (1.12)

where w = p/p expresses the fluid equation of state. Let us define

Q _ 87Gpumo Q = A = K
M="3gz = “Tamg KT aH]

1.3 Evidence for a low density universe

1.3.1 Cluster evolution

Structure formation proceeds by gravitational collapse of small amplitude perturbations into larger
and larger ones. The homogeneity of the CMB tells us that at early times fluctuations had very small
amplitude: then, the linear perturbation theory is expected to work very well for fluctuations on the
largest scales, because they have only recently entered the horizon and thus only recently they have
started to collapse. For smaller scales, nonlinearities begin to be important; the scale for this crossover
today is ~ 10h~'Mpc. Let us briefly describe the qualitative effects of a cosmological constant on
linear perturbation theory.

A cosmological constant corresponds to an energy density which is smooth; that is, it doesn’t clump
or change on any scale. Thus, for a given Qg, increasing the cosmological constant contribution de-
creases {1,,, the matter available for gravitational collapse. Consequently structure grows more slowly
in a universe with larger Q for fixed Qg. In the limit that the energy density from nonrelativistic
matter is subdominant, the expansion of the universe prevents structure from growing. In other words,
universe would expand faster than the perturbations can collapse, as can be seen directly by looking
at the equations governing the growth of density perturbations (see, e.g. [163, 52], ).

In a universe in which there is not a precisely critical density of matter, small density fluctuations on
large scales cease to grow due to gravity once either the total density begins to deviate significantly
from that associated with a flat universe, or when the density in a cosmological constant term begins
to dominate over the density of matter. Thus if the universe is A- dominated or curvature dominated,
large scale structure formation should have ceased, and vice versa for a flat matter dominated universe.
The difference is significant: the probability of finding a rich cluster at a redshift of 0.7 is perhaps
100 times smaller for a flat CDM universe than for a universe in which the growth of large structures
stopped some time ago [86, 161, 11, 12, 225]. Indeed, normalizing to the rich cluster abundance seen



1.3. EVIDENCE FOR A LOW DENSITY UNIVERSE 11

today at 8 A~ Mpc, o, for a fixed Qx, a high-Q, universe has earlier cluster formation. Observations
are compared with theory, using Press-Schechter or N-body calculations in order to determine the
expected mass distribution, and then the mass is related to the X-ray temperature: the latter is one of
the most uncertain steps . The numerically calculated cluster number evolution can then be compared
to current data [73, 222, 179, 23, 103, 80, 97]. The deepest complete X-ray sample available is that
from the Einstein Medium Sensivity Survey (EMSS) [76]. Although the statistics and uncertainties
are not yet good enough to determine ,, precisely [53, 222] the measured abundance of rich clusters
summarized in [13, 38] seem to converge to an evidence that rules out the flat CDM model; Eke et al
[73], using just X-ray temperature data, conclude that Q. ~ 0.45 £ 0.2.

Future X-ray and optical surveys, such as CHANDRA [45] and XMM will allow an improved deter-
mination of cluster properties.

1.3.2 Gravitational lenses

Gravitational lensing of quasars by intervening galaxies measures the volume of space back to a given
redshift, assuming constant comoving density of lensing objects. As a consequence, the number of
multiply imaged QSOs found in lens surveys is sensitive to . The current situation with the data
is as follows. For Q3 = 0, the analysis of surveys for multiply imaged quasars give a 20 upper limit
Qp < .66 [130, 131, 150]. Using radio selected lenses to reduce possible systematics errors [79], Falco
et al. find Q) < .73 at 20 . Combining the radio and optical data they find Qj < .62 at 20 for their
most conservative model. This limit could perhaps be weakened if there were significant extinction
by dust or rapid evolution of the lensing galaxies, but there is much evidence that these galaxies have
~little dust [205, 143, 191]. The errors should improve significantly with the observations such as the
CASTLe survey [96].

Models of gravitational lensing must, however, explain not only the observed probability of lensing,
but also the relative probability of showing a specific image separation; the analysis of Chiba & Yoshii
[50], that use new models of the evolution of elliptical galaxies, gives Q25 = 0.7¢5, but Kochaneck et
al. [132] show that the available evidence disfavors the models of Chiba and Yoshii.

Another constraint on A from simulations is a claim that the number of long arcs in clusters is in
accord with observations for an open CDM model with Q,, = 0.3 but an order of magnitude too low
in a ACDM model with the same 2, [18]. This apparently occurs because clusters with dense cores
form too late in such models. These results are not altered by the inclusion of cluster galaxies [154, 84].
Since this is a potentially powerful constraint, it deserves to be better understood and checked in the
future.

1.3.3 Galaxy peculiar velocities

The large-scale peculiar velocities of galaxies correspond via gravity to mass density fluctuations about
the mean, and depend also on the mean density itself. Two catalogs of galaxies have been analyzed for
these velocities: the Mark III catalog [239, 245] of about 3000 galaxies within a distance of ~ 70h™!
Mpec, and the SFI catalog [29] of about 1300 spiral galaxies in a similar volume.

Combining the results in these catalogs, Zehavi & Dekel [247] quote the constraint Qmhgin® ~
0.58+0.12 in the case of a flat cosmology, where the error corresponds to a 90% confidence range. Tak-
ing the index n of the mass-density fluctuation spectrum to be n = 1.040.1 [28] gives 2, = 0.55+0.14
at 68% confidence range.

A different method for estimating the matter density field, modulo an assumption about biasing, is to
compare peculiar velocity data obtained from distance indicators such as Tully-Fisher, and from red-
shift surveys. Through this method, the quantity 8 = f(Q,)/b is obtained, where f = dInd;n/dIna ~
Q%6 and b is a linear bias parameter. A number of recent results [59, 56, 239, 240] suggest a low matter
density, but strong constraints on ), cannot be rigorous due to the incomplete understanding of bias.
A particularly simple way to deduce a lower limit on £, from the POTENT peculiar velocity data
was proposed by Dekel & Rees [62], based on the fact that high-velocity outflows from voids are not
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expected in low-Q models; data on just one nearby void indicates that Q, > 0.3 at the 97% C. L.

1.3.4 The CMB anisotropies

One of the most powerful cosmological probes is the CMB anisotropy, the imprint of the recombination
epoch on the celestial sphere. As we shall see in detail in chapter 3, the temperature fluctuations on
the sky can be decomposed into spherical harmonics, and the amount of anisotropy correspondent
to a multipole [ is expressed through the power spectrum; each multipole moment corresponds to
angular separations on the sky of order ~ 180°/l. Even though the dependence of the spectrum on
the cosmological parameters is rather complicated, the location of the first acoustic peak (an increase
in power due to acoustic oscillations of the cosmic fluid at recombination [235]) is strictly connected
with the overall geometry of the universe: the positive (negative) curvature of the universe makes the
photons trajectories converge (diverge), projecting the same physical scale on smaller (larger) angles
in the sky, with respect to a flat universe. Since the first acoustic peak is nearly at the horizon scale at
recombination o< H,., that is mostly determined by the microphysics, the geometric effect dominates
on the observed location of the peak, which can be related to the total energy density parameter by
[112, 120, 125]:
lpeak ~ 220Q71/2

So, the first acoustic peak measures the angular diameter distance to the last scattering surface.

The most recent data from MAXIMA and BOOMERANG balloon flights indicate that the peak is
located at [ ~ 200, favoring a flat universe [60, 101, 138, 14]. Further data will be available in the next
years, from the MAP and Planck satellites [155],[156]. CMB anisotropies are complementary to the
supernovae results: while the supernovae results at z ~ .5 measure Q,, — 4, the location of the first
peak measures their sum; the two approaches lead to confidence contours that are nearly orthogonal
in the plane Q,, — Q4 . Combining these results is a promising tool [237, 211, 212, 89, 145, 216]. The
region of overlap of the constraints from the 1998 BOOMERANG [138] flight and supernovae is in the
vicinity of (S, 24) = (0.3,0.7) .

1.3.5 Type 1A Supernovae

At present, one of the most promising techniques for measuring Q,, and {25 on cosmological scales uses
high-redshift type 1a Supernovae (SNe la); they are excellent probes, being the brightest supernovae,
with a nearly uniform intrinsic luminosity (M ~ —19.5, comparable to the brightness of the entire
host galaxy [32]).
Plausibly, SNe la are optimal Standard Candles : since they occur when an accreting white dwarf
passes the Chandrasekhar limit and undergoes a detonation explosion, the physics of this process is
nearly independent on the evolutionary status of the host galaxy; the Chandrasekhar limit is a nearly-
universal quantity, so the resulting explosion luminosity will be.
Thus, the spread in the SNe la intrinsic brightness appears to be relatively small.
Furthermore, there is a strong relation between the width of the light curve and the absolute luminosity
of the supernova, that allows in principle an accurate determination of the luminosity distance dr, via
the distance modulus

m — M = 5logy,[dr.(Mpc)] + 25

with dy, the luminosity distance

zl

z d
dp = 1 i —_—
L = Ry +z)smn/0 FoHo B (o)

Thus the curve for dy(z) versus z measures cosmological parameters . Using a method pioneered
by Perlmutter et al. [170], two groups have independently claimed to measure the redshift-distance
relation out to redshift 0.5, probing for cosmic deceleration or acceleration. The combined results have
indicated high confidence for a positive nonzero cosmological constant. The first seven high redshift
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Figure 1.1:-Hubble diagram (distance modulus vs. redshift) from the High-Z Supernova Team. The
lines represent predictions from the cosmological models with the specified parameters. The lower plot
indicates the difference between observed distance modulus and that predicted in an open-universe
model.

SNe la analyzed by the Supernovae Cosmology Project, with redshifts in the range 0.35 < z < 0.65,
gave for a flat universe Q,, =1 — Qx = 0. 94+8 gg or equivalently Qy = 0.061‘3:32 (< 0.51 at the 95%
confidence level), consistent with a near critical density universe [170]; although the first seven SNe 1a
seemed to disfavor the cosmological constant, the further discovery in 1997 of a Supernova explosion
at z=0.83, and its photometric analysis, suggested that we may live in a low mass-density universe
[171].

The results from the first 7 supernovae were overturned in 1998, when the analysis of 42 type 1a
Supernovae at redshifts between 0.18 and 0.83 allowed to fit the SNe magnitude-redshift diagram with
more data, up to larger redshifts. The surprising result was that the data were strongly inconsistent
with A = 0: for a flat cosmology, the Supernova Cosmology PrOJect estimated Q,, = 0.28%9 82 (1
sigma statistical) T0-0% (identified systematics).

Figure 1.3.5 shows the results for m — M vs. z for the High-Z Supernova Team [90, 192, 182, 89], while
figure (1.3.5) shows the equivalent results for the analysis of 42 high-z supernovae by the Supernova
Cosmology Project (SCP) [171, 172].

These data can be converted into limits on Q. and Q, , assuming that the energy density of the
universe is dominated by matter and vacuum components. Results are showP in Fig. 1.3.5 and in Fig.
1.3.5.

Both teams seem to favor a positive cosmological constant, ruling out both a ﬂat. CDM universe and
an open universe with zero cosmological constant. Even more remarkably, the favored region, for a
flat universe, is precisely in the range favored by other constraints, such as those from large scale
structure .
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The importance of such results leads to the question of what confidence level we should have with
respect them; possible systematics errors which have been studied include extinction [2, 3, 4, 201, 210]
and evolution [68, 185], selection effects, weak lensing [106, 126], the width-brightness relation used
for calibration [175, 184, 100] and sample contamination [183].

All these effects have been carefully taken into account by the supernovae teams, and are thought
to be unimportant, though the main concerns about the interpretation of the data are evolutionary
effects and dimming by dust.

A specific evolution concern is that the rest frame rise-times of distant supernovae may be longer
than nearby ones [184]; on the other hand, a direct comparison between nearby supernovae and
the SCP sample shows that they are rather consistent with each other [6]: Spectra of high and low
redshift supernovae have been compared with good agreement, and the distribution of faint and bright
supernovae appears similar over a variety of redshifts and environments.

Other than evolution, the leading concern about the reliability of the SNe results is obscuration
by dust; while the ordinary astrophysical dust would obscure preferentially the blue light, causing
reddening, spectral measurements revealed that there is very little reddening seen in either the far
or near SNe. There are models which predict this [102], [2, 3, 4, 201, 210], invoking a kind of ”grey
”dust that would cause much less reddening than the ordinary one: it could in principle provide
an alternative explanation for the fact that the high-redshift supernovae are observed to be dimmer
than expected in a critical-density cosmology. But this hypothetical grey dust is, in turn, severely
constrained by observations of the cosmic far-infrared background [4]. New insights will be probably
gained when data on z > 1 SNe is collected: at such redshifts, the dust scenario predicts considerably
more dimming than the A cosmology.

In conclusion, the possibility of extinction by dust for SNe la cannot be ruled out, but it is hard to
place it in a coherent picture.

As so much relies upon SNe 1A being standard candles, these questions are crucial. It remains to be
seen if further data taken at high redshift will confirm these results, and more importantly confirm
the assumption that the evolution is negligible for such supernovae.

1.3.6 Power spectrum

Structure formation begins and ends with matter dominance, and is characterized by the horizon
scale at the cross-over from radiation to matter dominance; predicting the power spectrum of matter
density fluctuations requires an assumption on the correct theory and a specification of a number of
cosmological parameters [164, 58, 17, 122, 44, 24, 91]. In the context of the ACDM class of models, two
additional constraints are available on €,,. The spectrum shape parameter I' ~ Q,,h ~ 0.25 £ 0.05,
implying Q,, ~ 0.4 +0.1.

Measuring the amplitude of the power spectrum of fluctuations at redshift z ~ 3 from the Lyman «
forest gives Q,, = 0.34 + 0.1 [226, 55]. Broadhurst & Jaffe [35] used a set of Lyman galaxies at z ~ 3
finding a constraint of the form 2, = 0.20 £ 0.10 + 0.342,.

Measurements of the Lyman « forest are promising because they probe the power spectrum on smaller
scales at a redshift before the development of non-linearities, allowing a direct comparison with the
linear power spectrum.

1.3.7 Cluster dynamics

The traditional method to estimate the mass density of the universe is to "weigh” a cluster of galaxies,
divide by its luminosity and extrapolate the result to the universe as a whole, assuming that clusters
are representative samples of the universe. Studies applying the virial theorem to clusters dynamics
have obtained values around Q. = 0.2 & 0.1 [39, 63, 12].
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1.3.8 Cluster baryons vs. Big Bang Nucleosynthesis

Recent observations of the deuterium fraction in primordial hydrogen clouds illuminated by the light
of distant quasars [219] suggest that D/H = 3.4 & 0.3 x 107°; if this value reflects the primordial
abundance, then Big Bang Nucleosynthesis [193, 36] with three light neutrinos gives Qph~2 =0.019 £
0.002 .

When compared with observations of the baryon fraction on large scales today, this seems to rule out
the possibility of a flat universe.

X-ray observations of galaxy clusters, the largest bound structures known in the Universe, suggest that
baryons exist in these systems in the form of hot X-ray emitting gas. White et al. [234] emphasized
that X-ray observations of the baryon abundance in clusters can be used to determine {2, if clusters
are a fair sample of both baryons and dark matter as they are expected to be based on simulations
[78] The baryon fraction estimated from cluster observations [77, 233, 87], also taking into account
the stellar fraction [146], results in [224] fraryon = (0.067 = 0.008)h~3/2 [157, 158].

The fair sample hypothesis implies that

__
f baryon

so that, using h = 0.65 £ 0.08, the constraint on Q,, would be Q. = 0.25h"1/2 =0.3+£0.1.

Om

1.4 The cosmological constant problem

The Friedmann equation 1.11 that, according to GR, governs the expansion factor of the universe a(t),
includes A as a source of the universe dynamics; this equation implies that we must have

1=Qm+0O7+Qx . (1.13)

Now, it is an observational question whether a nonzero cosmological constant is required to achieve
consistency in equation 1.13; this is the cosmological constant problem from an astronomer’s point of
view.
Since vacuum energy influences the evolution of the universe, from the absence of excessive changes
with respect to the usual Friedman model one may deduce that [Qa| = |pvec/pc| < 1. Here p. =
3HZm%,/8m =~ 10~2g/cm® ~ 10747GeV* is the present value of the critical energy density. So we can
conclude that

[P’uac’ < 10_47G6V4 (1.14)

There is a continuous discussion, if 4 is zero (or unnoticeably small) or it may be close to unity so that
its effects on universe evolution are significant. In the previous section, we treated such observational
problems quite extensively .

On the other hand, to a particle physicist, the word "vacuum ” has a different meaning than to an
astronomer, denoting the ground state (state of lowest energy) of a theory rather than the ”empty
space”.

The cosmological constant defines a length scale; while in cosmology there is no preferred choice for
what this scale might be, if one sees at A as measure of the energy density of the vacuum, interpreted
as the ground state of a theory, it is possible to consider the scales of various contributions to A.
The classical action for a single scalar field with potential energy V(¢) is

5= [dsvg [égwauqbayqs ~V(¢)

In this theory, the ground state would be characterized by 8,4 = 0 (i.e., no kinetic and gradient
energy contributions); correspondingly, the potential will be minimized by a value ¢o of ¢, and the
energy-momentum tensor of the field,

1 1
Tw/ = iau(f’aud) + §(gapaa¢ap¢)guu - V(¢)9NV
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reduces to T, = —V(¢0)guv, and the vacuum energy of the system is represented by V' (¢o); since
there is no reason in principle why V' (¢g) should vanish, the vacuum energy-momentum tensor can be
written as Ty = —PyacGuw-

The vacuum can therefore be thought of as a perfect fluid with

Pvac = —Puac - (115)

Setting pyge = pa = E%AG" one can identify the cosmological constant with the energy of the vacuum .
In general, the ground state must be Lorentz invariant; as a consequence, the energy-momentum
tensor of vacuum must be proportional, in any locally inertial frame, to the diagonal Minkowski
metric, resulting in a perfect fluid having equation of state 1.15; this is the only equation of state that
causes pygc t0 remain constant under an adiabatic expansion of its volume. In contrast to the classical
scalar field system, a "bare ” cosmological constant Ay would enter the action of GR as

16 g /d‘lz\/— (R—2A¢)

i.e. Ag could be thought of as a constant term in the Lagrange density of the theory. Classically, then,
the cosmological constant is the sum of a bare term and the potential energy of the lowest energy
density of a scalar field.

Quantum mechanics adds another contribution, namely the zero-point energies of vacuum fluctua-
tions.

It was realized in 1967 by Zel’dovich [248] that quantum field theory generically demands that cosmo-
logical constant, or vacuum energy, is non-vanishing, as a consequence of the Heisenberg uncertainty
principle, that allows particle-antiparticle pairs spontaneously to appear and disappear. It is very well
known from quantum mechanics that the ground state energy of harmonic oscillator is not zero, due
to the uncertainty principle: a similar phenomenon takes place in quantum field theory because any
quantized field represents a collection of oscillators with all possible frequencies.

As an example, let us consider a scalar field ¢ (i. e. a spinless boson) of mass m. For this system, the
vacuum energy is obtained putting the system in a box of volume L?, summing the contribution from
each mode of the field, and letting L go to infinity [22]; for periodic boundary conditions,

1, 5 [ dk

Correspondingly, the ground state energy of this system is given by the expression [42, 228, 67, 65]

Ey kA
Pvac = hm 0 3 = hlg:g (1.16)

As the cutoff ky.e approaches infinity, py.. becomes divergent. If there is a symmetry between
bosons and fermions, such that for each bosonic state there exist a fermionic state with the same
mass and vice versa, then the energy of vacuum fluctuations of bosons and fermions would be exactly
compensated, giving zero net result [248, 94, 223, 230]; however, supersymmetry is not exact and such
compensation is not complete: the masses of bosons and corresponding fermions are different, and
one is able to cancel out only the leading divergent term. Supersymmetric theories with spontaneous
symmetry breaking ensure also the compensation of the quadratically and logarithmically divergent
terms, by canceling out the zero point energies of particles of different spin; however, the predicted
finite contribution to the vacuum energy, that must be nonzero, should be

SUSYN 4
Puac Mgysy »

where mgpgy is the scale of supersymmetry breaking. From the experiments, we are confident that
msysy > 100GeV, and the correspondent contribution to pyec should be > 108GeV, i. e. 55 orders
of magnitude larger than the permitted upper bound (1.14).
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In general, the divergence in 1.16 can be eliminated by discarding the very high-momentum modes,
estimating k,,q. as the energy scale up to which we trust our low-energy theory.

As in classical mechanics, the absolute value of the vacuum energy has no measurable effects in
quantum field theory; however, GR postulates that gravitation couples universally to all energy and
momentum, including that of vacuum (furthermore, we note that since gravity is the only force
for which this is true, the only manifestation of the cosmological constant would be through its
gravitational influence).

From this point of view, the net cosmological constant will be the sum of independent contributions,
from the bare cosmological constant, from the potential energies of scalar fields, and the zero-point
"virtual ” fluctuations of each field.

For what concerns the vacuum fluctuations, the natural cut off should be chosen at the energy limit
that we believe correspond to the validity of the theory. For example, it is widely believed that the
Planck energy E* ~ 10'° GeV marks a point where conventional field theory breaks down due to
quantum gravitational effects. Choosing kmez = E*/h as the cut off scale, we obtain from eq. 1.16

Puae =~ 1074GeVAA™3 ~ 10%g/cm?® . (1.17)

Compared with (1.14), the vacuum energy contribution in (1.17) is larger than the observational bound
by ~ 120 orders of magnitude.

In theories with spontaneous symmetry breaking, the source of vacuum energy is the potential
energy of the scalar (Higgs) field of the theory; in the course of the universe cooling down, a phase
transition took place [128, 129], changing the amount of energy corresponding to the "minimum” of
the potential.

In the broken-symmetry phase of the Weinberg-Salam electroweak model, the electroweak phase tran-
sition would predict a contribution to the vacuum energy today of order

PV ~ (200GeV)* ~ 100GeV* .

This contribution should add to those from any other, yet unknown, phase transition in the early
universe, such as those that would come from the GUT at Mgyt = 1016GeV :

pSUT ~ 10°Gev? .

There exist some other contributions which, though smaller than these, are still huge when compared
with the bound (1.14): it is an experimental fact that vacuum state in quantum chromodynamics
(QCD) is filled by non-perturbative quark (or chiral ) condensate [92] and gluon condensate [198],
that contributes with ~ 1073 — 10~4GeV*. Compared with (1.14), this allows to conclude that there
must exist some mysterious agent that is able to compensate their vacuum energy with the accuracy
of 10744,

The impressive discrepancy between the observational bound on the vacuum energy, and the value
expected from particle theory, is known as the ”cosmological constant problem” .

In the absence of a recognized symmetry principle protecting its value, no theoretical reason for
making the cosmological constant zero or small has been found. One could postulate that a bare
cosmological constant, opposite in sign and exactly equal in magnitude to the zero-point energy,
conspires to cancel out the ‘net’ vacuum energy, but given the large number of elementary particle
fields, this would be an extreme case of fine-tuning. For this reason, a large part of the particle
physics community has been pushed towards a different point of view, i.e. that the cosmological
constant is zero, due to some mechanism that is not yet understood. The Quintessence models have
been proposed in order to alleviate the theoretical problems of the cosmological constant, with the
necessity to explain the observational evidences of a nearly flat [138] and accelerating universe. Such
models are the subject of this thesis.

1.5 Quintessence

The difficulties faced by cosmological constant models motivated the proposal of several alternative
scenarios; amongst them, the so-called “quintessence” models, which are the subject of this thesis,
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propose that the “missing energy” could reside in the potential and kinetic energy of a dynamical scalar
field, rather than in a pure vacuum state. This “dark energy” candidate is a time-varying, spatially
inhomogeneous component with negative pressure, that interact only gravitationally with matter. For
the purposes of our investigation, we model Quintessence as a field evolving in its potential: if the
potential is sufficiently flat at late times, the consequent slow-rolling motion can mimic a cosmological
constant that decreases with time. We assume that the field is only very weakly coupled to matter,
therefore there is no creation of matter or radiation: the decrease in the potential energy of the field
as it rolls down the potential is simply converted to kinetic energy.

Assuming that the fundamental vacuum energy is zero, the effective vacuum energy is simply stored
in the potential of a scalar field, so that at any epoch, it will be dominated by the heaviest fields which
have not yet relaxed to their vacuum state; at late times, these fields must be very light.

The key differences between a quintessence and the “true” vacuum energy are that the field equation
of state w = pressure/density is larger than -1, whereas vacuum energy density has w precisely equal
to -1, and that the former is generally time-dependent. This results in different predictions for the
expansion rate. Furthermore, the quintessence is spatially inhomogeneous, resulting in a direct imprint
of quintessence fluctuations on the CMB and large scale structure.

Scalar fields in cosmology are ubiquitous; both the cosmology of weakly coupled scalar fields and
their theoretical motivations have been much studied since the advent of the idea of inflation.
However, the definition of Quintessence is different from that of an inflaton field: indeed, Quintessence
needs not to participate to the inflationary phase, i.e. it may not to be the same field as the inflaton.
Only, this field has an energy density that survives the inflation and can come to dominate the entire
energy density today. We note also that if the scalar field were to dominate early enough (like the
canonical Hot Dark Matter, the almost massless neutrino, does) it would suppress growth of baryonic
structures on small scales, because the Universe expands faster than the perturbation can collapse.
This is the reason why it is generally assumed that the Universe has only recently become dominated
by the scalar field energy density.

Much work has already been done, since the pioneering idea of Ratra and Peebles [178]. However,
this thesis contains a rather large amount of original work.
As soon will become clear, the development of linear perturbation theory is an essential tool for the
study of the perturbation evolution even in Quintessence scenarios. We devote Chapter 2 to the devel-
opment of the necessary formalism, while Chapter 3 deals with the features of the Cosmic Microwave
Background of radiation and of its anisotropies; this is a rather qualitative description, that should
help to understand both the importance of CMB observations and the cosmological role of a. dynamical
vacuum energy on the overall geometry and dynamics of the universe.
The following chapters contain the original work, which follows refs. [173, 174, 10, 15]. In chapter
4, we consider the problem of the initial conditions and behaviour of the perturbations in scalar field
cosmology with general potential.
We use the general definition of adiabatic and isocurvature conditions to set the appropriate initial
values for the perturbation in the scalar field and in the ordinary matter and radiation components.
In both the cases of initial adiabaticity and isocurvature, we solve the Einstein and fluid equation
at early times and on superhorizon scales to find the initial behaviour of the relevant quantities. In
particular, in the isocurvature case, we consider models in which the initial perturbation arises from
the matter as well as from the scalar field itself, provided that the initial value of the gauge invariant
curvature is zero.
We extend the standard Boltzmann code, modifying the CMBFAST to include all these cases, and
we show the predicted power spectrum of the CMB temperature and polarization anisotropies, as
well as the matter power spectrum containing the evolutionary history of matter perturbation. The
comparison with the standard pure CDM model is performed.
In Chapter 5, these results are generalized to a larger class of Quintessence models; indeed, we consider
Quintessence cosmologies in the context of scalar-tensor theories of gravity, where the scalar field ¢,
which is assumed to provide most of the cosmic energy density today, is non-minimally coupled to the
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Ricci curvature scalar R. We named such models ‘Extended Quintessence’ cosmologies. It turns out
that the role of Quintessence is now not only to provide the time and space variation of the cosmo-
logical constant, but also to act as a source of time variation of the Newton’s constant.
We investigate two classes of models, where the gravitational sector of the Lagrangian is F'(¢)R with
F(¢) = 4% (Induced Gravity, IG) and F(¢) = 1+ £¢? (Non-Minimal Coupling, NMC). Tt turned
out that new distinctive features, due the coupling with the Ricci scalar, arise in these models and
are visible in the CMB anisotropies power spectrum, allowing a comparison with “simple” (minimally
coupled) Quintessence scenarios. ‘
One of the main advantages of Quintessence (and Extended Quintessence) on the cosmological con-
stant, resides in the dynamics: the dynamics of the scalar field plays an important role, because it can
adjust in a way that the scalar field energy density becomes dominant at the present time.
However, the existence of a considerable amount of vacuum energy in the Universe, as observations
seem to imply, brings together two fundamental problems. The first regards the fact that we are right
now in the phase in which the vacuum energy is starting to dominate over matter, and is often called
the “coincidence” problem. The second is a “fine tuning” one: the vacuum (or the Quintessence) en-
ergy density should have been vanishingly small at the initial time, in order to have today an amount
of vacuum energy comparable with that of matter.
It has been shown that in Quintessence scenarios it exists a possible way out to the fine tuning prob-
lem; in fact, one can select a subclass of models which admit “tracking solutions”: this means that
the observed amount of scalar field energy density today can be reached starting from a very wide set
of initial conditions.
In Chapter 6, we extended the tracking phenomenology to non-minimally coupled scalar fields (“Track-
ing Extended Quintessence”); in this scenario, considering inverse-power law potentials of the field,
we analyzed the background and perturbation evolution, pointing out observable effects on CMB and
Large Scale Structure. Finally, Chapter 7 is devoted to the conclusions and comments on the future
detection perspectives. ‘

In the next Chapter, we will introduce the most important tool for the study of Quintessence
cosmologies: the linear perturbation theory.



Chapter 2

Linear perturbation theory

This chapter is a review of the cosmological perturbation theory that is the basis for what will be
treated in the next chapters. We introduce the perturbations of metric and matter quantities in a
gauge-invariant formalism, and then we write the perturbed Einstein equations in the synchronous
and conformal Newtonian gauges. The notation of Kodama & Sasaki has been respected as far as
possible. For a complete exposition, we refer to [133, 160, 148].

2.0.1 Perturbing the FRW metric

The most general perturbation to the metric (1.1) may be written as

guu = 0’2(7/141/ + h,uu) 5 ) (21)

where hy,(z) is the perturbation tensor, whose role is of fundamental importance for the whole
cosmological linear perturbation theory. The linear theory of perturbations is valid as long as h,, (z) <
Yuv(z); the strong evidence of CMB homogeneity, resulting in fluctuations of the order 67/7" ~ 1075,
allows us to assume the validity of the linear approximation starting from the very early universe at
least to the epoch of decoupling between matter and radiation. As we shall see, the linearity condition
will be extremely helpful in trying to solve the Einstein equations for the coupled system composed of
metric and fluid. Indeed, it is known that, in general, perturbations of various quantities relative to
both metric and fluid, can be decomposed into three types of components, of scalar type, vector type
and tensor type, respectively. A perturbation is of scalar, vector or tensor type, depending on the
transformation properties under rotations of the spatial coordinate system. As showed in [133], in a
FRW spacetime, in the linear regime, scalar, vector and symmetric second-rank tensor equations can
be decomposed into independent sets of equations relative to components of each type only. Therefore,
the Einstein equations that describe the linear evolution of each type of perturbation components can
be studied separately ([133],{160], [16],[74]). Each of these components can be conveniently expanded
in a complete and orthonormal set of harmonic functions, that satisfies the equation

lig = ~k2Yk(m) ’ (2.2)

where | stays for covariant differentiation with respect to the metric ;;, while —k* represents an
eigenvalue of the Laplace operator V2. The eigenmodes Yk(m) may be of scalar (m = 0), vector
(m = £1) and tensor (m = +2) type; we will omit the indices k indicating the specific eigenfunction,
since different modes do not couple. To help the visualization of this expansion basis, it is useful to
give a specific representation for the eigenmodes; assuming flatness for the background FRW metric
and choosing a specific orthonormal basis so that the polar axis coincides with k, &1, é, és=Fk, a

convenient expression for the eigenmodes in (2.2) is

YO = exp(ik- %), (2.3)
Y;(:tl) = —%(Al + Zég)z exp (’l];; : f) ; (24)

23
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3 -
v = —\/g(él +165); % (61 = iég)jexp (ik - T) (2.5)
These functions are completely defined by the following conditions on trace and divergence:
+1) |i +2) |i +2) i

Scalar quantities can be expanded in terms of the set Y0 of harmonic functions; divergenceless vectors
are expanded by Y*!, while divergenceless and traceless second rank symmetric tensors are expanded
by the set Y(#2). On the other hand, the scalar part of vectors, likewise the scalar and vector part of

tensors, can be expanded in terms of the following functions, derived from the Yy (™)
Yi(o) = —%YIEO) (scalar part of vector) , (2.7)
1 1
Yig.o) =1z |§?) + gyin and ;Y (scalar parts of tensor) , (2.8)
2
Yigil) == (Ylf]ﬂ) + Yj(lzfl)) (vector part of tensor); (2.9)

These harmonic functions are the basis for the development of the metric and fluid perturbations; by
a spatial transformation, the components of the perturbed metric tensor goo,goi, gi; transform as a
scalar, a vector and a tensor, respectively, so that the most general linear perturbation of the FRW
metric (2.1) can be written as follows:

hoo = —240Y©) (2.10)
hei = —BOY® — pOy® _ p-Dy (-1 (2.11)
hij = 2H 7Y O + 280 YD 1 28 v 0+

4205 YD 4 28RV + 2BV (2.12)

where the coefficients A, B0, BED H }JO), HC(FO ) Hr}il), Hz(qﬂ) are independent functions of time. The
function A is usually interpreted as the amplitude of perturbation in the lapse function, defined as
the ratio of the proper-time distance to the coordinate-time distance between two neighboring constant
time hypersurfaces. In the next section, we will develop in spherical harmonics the perturbations of
the stress-energy tensor, in order to relate perturbations through the Einstein equations.

2.0.2 Perturbing the stress-energy tensor

For writing down the linearized Einstein equations, the first step is to choose a convenient set of
variables that will represent the perturbed state of the matter; usually, the algebraically independent
components of the energy-momentum tensor are chosen as such variables. Let us denote with a tilde
the perturbed quantities; we will indicate with 4# the time-like eigenvector, with unit norm, of the
energy-momentum tensor, and the proper density p as the corresponding eigenvalue:

ThY = —put | wbu, =—1 . (2.13)

Density and isotropic pressure transform as scalars, while the spatial velocity of the fluid, v* = i%,
transforms as a vector that vanishes in the unperturbed state; using the harmonic functions previously
defined, one has the following perturbed quantities:

p=pl+6YO] | F=pl+mY®] , vi=o@yOiy pEDY (E) (2.14)

From eq.(2.10)-(2.12) and from the normalization condition on the 4-velocity, one has, to the first
order,

iy = a(w® — BOYO 1 gu&ED _ pED)yEY g0 (1 4+ AYO) (2.15)
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In the perturbed energy-momentum tensor one can separate out the spatial stress tensor 7, orthogonal
to u#, as follows: )
TH = putd, + 7F (2.16)

The unperturbed state of the matter is described by the non-zero components of the energy-momentum
tensor T}, namely 7§ = —p and 7] = pd] , while the most general perturbation to the stress
energy tensor, obtained from (2.16), is:

§T = —p-6- YO | (2.17)
0TE = —(p+p) (0 = BO)yY @ i 4 (&) - pEDyED 4 (2.18)
579 = pr D67 4 prDy 0 7 4 prlEDy D I

e (.19

3

Thus, in general, a perturbation in the stress-energy tensor can be described by ten functions of time,
namely 6, 7, 71'&9) , ﬂéail) : 7T(Ti2) L v(0) p(ED,

In particular, scalar perturbations, that will be used in this thesis, can be described by four metric
functions and four matter functions, some of which can be eliminated using the gauge freedom implicit

in the perturbed Einstein equations.

2.1 Gauge transformations and the gauge invariant formalism

To implement the relativistic perturbation theory, it is necessary to treat the question of gauge freedom;
indeed, a perturbation of the physical spacetime can only be defined with respect to a hypothetical
unperturbed background. Changing the correspondence between the perturbed world and the unper-
turbed background also changes the values of the perturbations introduced in the previous sections; a
gauge choice, consisting in fixing the constant-time hypersurfaces and a spatial grid on these surfaces,
is not unique, and should be performed before making any interpretations regarding perturbation
evolution. Due to the freedom in the choice of a gauge, one could change the correspondence between
the perturbed and the unperturbed world: this will be accompanied by a gauge transformation in a
perturbed quantity, which will be different from a genuine coordinate transformation even though,
formally, it can be expressed as a coordinate transformation too.

Once a gauge is fixed, the difference between quantities at the same coordinate values (in the perturbed
and unperturbed world) is interpreted as a perturbation of this quantity. However, this may give rise
to "unphysical” modes, in the sense that perturbations could appear in a particular gauge just as a
consequence of the particular time slicing, for example, rather than coming from a pure physical effect.
This ambiguity is generally resolved by measuring the perturbation in different coordinate systems
(i.e., in different gauges), to remove the ambiguity. Obviously, since there is a one-to-one mapping
between gauges whose coordinate are completely fixed, measurements of observable quantities will
give the same results; differences arise only if the coordinate system is not entirely fixed, as is the case
for the synchronous gauge, to be defined in the next subsection.

Let us now formalize the properties of the perturbations under gauge transformations. In the passive
approach, one could consider a physical space-time manifold M with some coordinate system z#. The
"background” model is defined by assigning to all functions @ (scalars, vector or tensors) on M a
previously given function Q°(z#), that must be intended as a fixed function of the coordinates. In a
second coordinate system Z* the background functions Q°(z#) will have the same functional depen-
dence on Z*, and the perturbation 6@ of the quantity @ in the system of coordinates z* is defined
as

§Q(p) = Q(z*(p)) — Q°(z"(p))
for any point p of the manifold with coordinates z#(p). Similarly, in the second system of coordinates,

the perturbation of @ is B .
5Q(p) = Q(z"(p)) — Q°(z*(n))
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Here, Q(zZ*(p)) is the value of @ in the new coordinate system at the same point p of M and Q% (z*(p)
is the same function of 7* as Q°(z#(p); the gauge transformation 6Q(p) — JQ(p) is associated with the
change of variables z# — Z#. In the active approach, the correspondence between the physical space-
time and the background space-time is determined by the relation between the coordinate systems
fixed on the two, say z* and ccg respectively; the system of coordinates z* can be viewed as induced by
a diffeomorphism D on the background, such that D : zi’ — z#; let us denote as Q(z#(p)) a function

evaluated on a point p of the physical space; we define the perturbation 6Q as

5Q(p) = Qp) — Q°(D™(p)) (2.20)

where Q0 is defined on the background space-time. A second diffeomorphism D: zj, — Z* induces a
different set of coordinates on the physical space, and a different perturbation

§Q(p) = Qp) — Q%D ~'(p)) (2.21)

where Q is the value of @ in Z# coordinates. . In this approach, one could interpret the gauge trans-
formation §Q(p) — 0Q(p) as it originates from the change of correspondence D — D, to which we
associate the coordinate transformation z# — Z* on the perturbed space-time. For infinitesimal co-
ordinate transformations, Z* = z# + (¥. The most general gauge transformation can be therefore
treated as a coordinate change and, making use of the expansion in Laplace operator eigenmodes, one
has:

F=T7+TY®,

7=t 4 Oy @i pEDyED 4 (2.22)

where L®, L&D and T are arbitrary functions of time. The metric perturbation hy, is not invariant
under this change of coordinates; indeed, this transformation will reflect in a change of the metric

tensor as follows: 908 B
= _ - HA €T :
9w (@) = Gpo (%) 5-p 5 - (2.23)

In order to compare perturbations at points having the same coordinates, the quantities in the frame
with space-time grid z# are expanded around Z*, and it is simple to obtain the following gauge
transformations in the metric perturbations:

A0 — 40 _p QT ,
a

BO = BO 4 [ p g7 | BED = pED 4 jED

70 _ g _Ero_ o
L HL 3 a
A9 = g9 4 k1O | BEY = gED 4 kLED | BED = BEP (2.24)

With the same procedure, we obtain the link between perturbations of the stress energy tensor in the
two frames related by the transformations (2.22):

= a _(0 0 1+wa
d=06+3(1 +w)ET’ Tr_(L) =7r(L)+3c§—ZU—ET ,
5O =@ 4 FO | 5ED = pED) 4 [ED
(0)

B ) C R S (2.25)

From now on, we will concentrate on scalar type gauge transformations and we will omit the index
©) from the amplitude of metric and matter scalar perturbations. The gauge transformations are
therefore

F=r+TYO® =g+ LY
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To first order, the quantities describing the perturbed metric become
A=A-T-21,
a

B=B+L+kT,

Ay =Hy— g0 %
3 a
Hp=Hp+kL . | (2.26)

It is possible to construct two independent gauge-invariant quantities by means of linear combina-
tions of (2.26) that eliminate the dependence on the two functions T' and L. An example of such
combinations is given by the Bardeen’s invariants ® and ¥:

1 la 1. .
.@“HL+§HT+ZE<B_-];HT>’ 5 (2.27)
la 1. 1/7. 1.
\Ij:A_I-EE (B—EHT)*FE(B—%HT) . (2.28)

Any linear combination of ® and ¥ and their time derivatives, whose coefficients are chosen as arbitrary
function of time, is a gauge invariant quantity too.

The quantities ¥ and ® have a deep physical meaning; in order to understand it, we will link them
to fluid quantities. Let us consider the time slicing (i.e. the family of constant time hypersurfaces)
associated with a given choice of time coordinate in the perturbed spacetime, and let V# be the
time-like unit vector field normal to the constant time hypersurfaces; the covariant derivative of any
time-like unit vector field can be decomposed as

0
Vi = wpw + o + §P;w —a,V

where
P, = gut+V,V,, (2.29)
Wy = PP (Vas — Vi) (2.30)
0 = V¥, , (2.31)
1 1
awss§m%ﬂnﬁ+%m~§%@, (2.32)
a, = VM;VVV (2.33)

The quantities wyy, 0,0, and a, are the vorticity, expansion rate, shear and acceleration of the time-
like unit vector filed V# respectively. The unit vector field V# normal to constant time hypersurfaces
of the perturbed space is

V0=a11-AY®) | Vi=_ByOr (2.34)

and the quantities defined above can therefore be computed with the help of the perturbed Christoffel
symbols, resulting in

(-D/.u/ =0 5 (235)
é=3%u+nﬁﬂﬂ, (2.36)

0'60 = O:bi = O ,O'Tij = akagYigo) 5 (237)
=0, aj=—-kAOY® (2.38)

where

1 (a? .
=+l (—> B+ () (2.39)
3\ a a
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o, =k*Hr— B . (2.40)

We see that in the unperturbed background, 6 reduces to the expansion rate of the spatial volume
per unit proper time, while the shear &, vanishes because of the spatial isotropy: this allows us to
interpret X as the amplitude of the perturbation in the expansion rate and o4 as that of the shear,
while A(® is the amplitude of the acceleration: in the Newtonian limit, it is generally interpreted as
the conventional gravitational potential.

It can be shown (see [133]) that the perturbation in the intrinsic curvature of the constant time
hypersurfaces, with respect to a flat unperturbed background, is given by:

42
= RY®© 2.41
0R=— (2.41)
where H
R =Hp+ —31 . (2.42)

With the use of the definitions (2.27),(2.40), (2.42), we can express ® and ¥ as linear combinations
of R and oy:
d=R-k"(a/a)o, (2.43)

T = A0 — gYa/a)o, — k7 oy (2.44)

It is straightforward to assign a physical meaning to ® and ¥ in a particular time slicing, namely that
specified by the condition o, = 0 ("Newtonian slicing”): from eq. (2.43) it follows that ® reduces,
in that time slicing, to the amplitude of perturbation in the intrinsic curvature of the space; on the
other hand, as we will see, the perturbed Einstein equations in the gauge-invariant formalism can be
written in such a way that ¥ can be interpreted as the amplitude of perturbation in the gravitational
potential. In order to write Einstein equations in the most simple form, it is useful to introduce two

gauge invariant geometrical quantities,
d [ra\~* d 2 H

A=A— a’l__._ [<E> a'R} =A - a,’l__ (%) (HL + —;:)} (2.45)

a Hr

dr | \a dr
B:k(%)_lRmag =B+ (5 k(Hy + )~k Hr (2.46)

a

Now, let us introduce gauge-invariant quantities for the matter variables. Under a gauge transfor-
mation, the spatial velocity perturbation, density perturbation, isotropic pressure perturbation and
anisotropic perturbation transform respectively as

t=v+1L ; S=5+(1§w) (9>T ;

_ c? a _
L =7+ =31 +w)=-T , Tp=mrr ,
w a
where ¢ = p/p.
Therefore, we can construct two gauge-invariants from matter variables,
2
S

=y — %5 (2.47)

II= Tr . (2.48)

The gauge invariance of T', together with its vanishing for adiabatic perturbations, allows to give
a gauge-invariant meaning to the concept of adiabatic perturbations: I' will be interpreted as the
amplitude of an entropy perturbation.
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The most important gauge invariant quantities that can be constructed from matter variables are
defined as follows:

V=v—k'Hy and A=6§+3(1+w)(a/a)k™ (v—B) (2.49)

From eq. (2.40), we see that in the Newtonian slicing o, = 0 the gauge invariant V has a direct
physical meaning, reducing to V' = v — B: since B is the amplitude of a perturbation in the shift
vector, defined as the rate of deviation of a constant space-coordinate from a line normal to a constant
time hypersurface, V represents the matter velocity relative to the normal line observers. On the other
hand, the gauge invariant A represents the density contrast in the slicing such that the fluid four-
velocity is orthogonal to constant time hypersurfaces. When A and V are used as the fundamental
variables representing the perturbed state of matter, the Einstein equations can be written in a
rather simple form; another useful variable that refers to the density contrast is represented by the
combination:

Ay=6+3(1+uw)R ; (2.50)

in a flat slicing, i.e. in a slicing where the perturbation of the scalar curvature vanishes in the constant
time hypersurfaces, A4 is just the density contrast.
Now, let us come to the linearized Einstein equations

SGE = 8nGOTYH | (2.51)

that can be written in terms of the gauge-invariant quantities defined above: the time-time, longitu-
dinal time-space, trace space-space and longitudinal traceless space-space components of the Einstein
equations, in the Fourier space, are:

-9\ .
5G8=8wG&m%+3(g>,4—gk3=-§g§¥pAg (2.52)
6GY = 87 GOTY — kZ—A + 4nGa?(p + p)B = —4nGa?(p + p)V (2.53)

5G§~ = 87rG5T; — trace part and traceless part

The trace part gives:

. i . . 2 2 8
ZA+ {2a—£l— (_‘f) +3 <E> }A = 4rGa’p (I‘ + C—SAQ) - -E—C—;—azpl'l (2.54)
a dr \a a w 3
and the traceless part:
A+ k'la_Q%(azB) = —87Gk%a’pIl . (2.55)

From the definition of ¥ and ®, eq. (2.55) can be rewritten as
T+ & = —8rGak~2pll (2.56)

At this point, it is useful to note that, whenever the anisotropic stress can be neglected, equation
(2.56) can be expressed, in a zero-curvature space, in the same form as the usual Newtonian Poisson
equation for the gravitational potential induced by some energy density perturbation A:

1
FW@:M@A; (2.57)

this supports the interpretation of ¥ as the relativistic generalization of the Newtonian gravitational
potential, as we anticipated above.

A further manipulation allows us to express equations (2.54) and (2.55) in terms of the matter variables
only:

A—3w%A=—{L+wMV—ﬂ%wH, (2.58)
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2
Cs w

A T
14+w +1+w

2k w
kU — ——T1 . .
+ Tt w (2.59)

V+iv=k
a

The latter two equations could also be obtained by the fluid equation of motion
§(Th,) =0 . (2.60)

These are the equations describing, in a gauge-invariant form, the temporal evolution of density and
velocity fluid perturbations; we can see that fluid perturbation evolution depends on many contribu-
tions, of both geometrical and physical origin. The second term in the left-hand side of eq. (2.58)
represents the adiabatic change in the density contrast generated from the cosmic expansion; analo-
gously, the second term in the left-hand side of eq. (2.59) is of cosmological origin, representing the
adiabatic slowing-down of velocity due to the universe expansion.

: N 2 2.2
A—{3(2w—c§)—1} Z—A+3{Ew2—4w—%+3cg] (g) +k3cs}A=S (2.61)

where
& . ) a\? k%,
S = —k*wl — ZEwH + < 3[(w? + ¢2) — 2uw] (E) + 5 21T . (2.62)

From eq. (2.61) we see that an entropy perturbation I' and an anisotropic stress perturbation II can
act as sources for density perturbations.

This is quite important for the case in which a multi-component system is investigated. That is
the subject of the next section; as we shall see, in most of realistic situations, the appearance of IT
and I" is a consequence of some intrinsic structure of matter; in particular, this is true for multi-
component systems. Entropy perturbations can be generated if the different matter components are
distributed nonuniformly in space but with uniform total energy density and hence uniform curvature
at the beginning. Such perturbations are often called isocurvature perturbations. An example of
entropy perturbations is an inhomogeneous distribution of baryons in a radiation background, with
the energy density excess in baryons being initially compensated by a deficit in radiation energy. In
traditional isocurvature models, the initial density balance comes at the expense of number density or
"entropy” fluctuations between matter and radiation. In isocurvature scenarios, structure formation
proceeds by such initial stress fluctuations between matter and radiation, which push the matter into
gravitationally unstable configurations.

Instead, for adiabatic perturbations, the source term in 2.61 vanishes, and the equations become
homogeneous; in the adiabatic scenario, conventional models for structure formation utilize such initial
density fluctuations that then grow by gravitational instability. We will come back to these scenarios
in chapter 4. Before to go on, we wish to observe that the terms “isocurvature” and “isothermal”
fluctuations are often used interchangeably in the literature, even if they are not precisely equivalent.
So long as an isocurvature mode is super-horizon sized, it must be characterized by zero total density
perturbations, because causality precludes the super-horizon redistribution of energy density (it can
be converted into an energy density perturbation once it enters the horizon). Using the fact that the
total energy density perturbation must remain equal to zero on super-horizon scales, it is possible to
relate the photon temperature fluctuation to the perturbations Sx; in the ratio of the number density
of each species X4 to the number density of photons [134]. The resulting temperature perturbation is
proportional to the ratio of the energy density of each species to that of photons, and is negligible at
early times, when radiation dominates: hence the name “isothermal” .

The two definitions are nearly coincident at early times, when a very little temperature fluctuation
compensates for energy density perturbations in the fluid components.

2.2 Extension to a multi-component fluid

The formalism described above is useful when the energy density of the universe is dominated by
a single fluid component. However, when the matter can be considered as a mixture of many fluid
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components. The gauge-invariant fluid perturbation defined above are still meaningful, but they must
be regarded as representing the state of matter as a whole, i.e. the average properties of the perturbed
system. In a multi-component system, the energy-momentum tensor of the single component (denoted
by an index "a”) will not generally be conserved:

T@m;y = Qa)u (2.63)

Howe{fer, since the total energy-momentum must obey the conservation law, the source terms Q(a) L
appearing in the single-component energy-momentum divergences in eq. (2.63) must cancel,

T:;V = ZT&M;V =0 = Z Q(a)# =0 (2.64)
Qa a
Since we assumed that for the single component

Tlu = (Pla) + Pa))upu” +p@)dy (2.65)

with u# = (a~%,0), then the equation of motion in the unperturbed background will acquire a source
term

. @
Pla) = =3~ (P(a) + P(a) + Qa) (2.66)

where Q (), = (—aQ(4),0).

Now, let us consider the gauge-invariant perturbation variables that we can construct for each
component. The relations with gauge-dependent ones are the same as those of the total matter.
Again, the 4-velocity and the proper energy density of each fluid component are defined in terms of
the eigenvector and the corresponding eigenvalue of the energy-momentum tensor,

T(a)y iy = —Ba)ify (2.67)

and equations (2.17),(2.18),(2.19) are still satisfied, by simply attaching the suffix (a) to each variable.
Therefore the Einstein equations (2.51) remain the same by defining

pé = Zp(a)a(a) ) (268)
(@)
(p —l—p)’U = Z(p(a) +p(a))v(a) ) (269)
()
prL = Zp(a)m;(a) ; (2.70)
(@)
PIT =Y P(a)TT(a) 5 (2.71)

()
where of course p = 35 (4) P(a) a0d P = X (a) P(a); also the total sound speed can be defined in terms
of the ones from the single species as

2= Pa)Coa)/P - (2.72)
(a)

For what concerns the perturbations of each single species, their gauge transformations are identical
to that of v, §, 7, and mr, with the only difference coming from the exchange terms @)(,),; restricting
ourself to scalar gauge transformations,

e = Yo+l (2.73)
. a

da) = 8@ +3(1+w(@)=1-qw)T (2.74)
_ Sc%a) a
TLe) = Tie) Tt w()(l“l_w(a))(l—Q(a));T : (2.75)

@) = TT(a) (2.76)
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where
a
4oy = Q/ (35%1)) (2.77)

h@y = Pla) + D) (2.78)

The gauge invariant variables that can be constructed from these gauge-dependent quantities are

Vi = v -k 'Hr , (2.79)
a, _
A = o) +3(1+we)(l —qe) -k Yo = B) (2.80)
O)
Ty = 7o) — —2=0a) , (2.81)
(a) @ 7 @
My = 7@ (2.82)

We can observe that A, is the density perturbation of the a-component relative the hypersurface
representing the rest frame of the a-component, therefore it can be useful for describing of the intrinsic
perturbations of the single component; however, a more intuitive expression of the total-matter gauge
invariant density perturbation can be obtained by introducing the gauge invariant density perturbation
A(q) of the single components in the total matter rest frame,

& _
Ag(a) = O(a) + 3(1 + wig)) (1 - q(a))gk Yw-B) . (2.83)

Finally, we are able to relate, in the gauge invariant formalism, the total matter perturbations to those
relative to the single components:

pA = Za:p(a)Ac(a) (2.84)
= %:Pw)A(a)Jr%;Q(a)V(a) ’ (2.85)
Vo= Y Ve s (2.86)
o' = pi“im +plre (2.87)
pll = }a:p(a)ﬂ(a) ) (2.88)
where

plime = ;p(a)F(a) : (2.89)

PTret = 3 (cla) = €)0P() =
= ;(C?ar%)p(a)ékc(a) (2.90)
c; = Z%(l——q(a))c%a) : (2.91)

a

The gauge invariance of I'¢ is a direct consequence of the gauge invariance of I' and I'j,; the latter
is an intrinsic entropy perturbation of a fluid component, while the physical meaning of the relative
entropy perturbation can be better understood by

1 h a h b
plre = "2' Z ""(_)hL)'(l - q(a))(l - Q(b))(c%a) - C(Qb)) x
a,b
Ag(a) Be(h)

(1 +we)(l—q90q) O +wey)l-qp)
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1 Aoy B
= =3 OO ) S +

2 a,b h
:\ —1
m aXb: %; (%) (¢t — () (@) — Q@) (2.92)
where N is the numbér of components and
Ay Ay

S(a)(b) = (293)

1+ w(a)) 1+ w(b)) ’
Equation (2.87) is of fundamental importance, since it shows that the total entropy perturbation has
two contributions of different origin: the internal entropy of the single fluids adds to a relative entropy
contribution, that originates from the differences in the dynamical properties of the single fluids, in
particular the sound velocities. Most importantly, the extension of the formalism to a multi-component
fluid implies that, generally, entropy perturbations will arise in any multi-component system. At
the end of sect. 2.1, we already noted that entropy perturbations can act as sources for density
perturbations (see egs. 2.61 and 2.62); furthermore, by writing down the dynamical equations for
the quantities S(g)), it s possible to show that, in a multi-component system, entropy perturbations
can be (and, generally, are) inherited from purely adiabatic perturbations: they are coupled with
each other, once the scale of the perturbation enters the horizon and sub-horizon causal dynamics has
begun.

2.3 Gauge-dependent methods

For practical applications of perturbation theory, it is often necessary to fix the gauge in order to set
the initial conditions on the perturbation variables or to interpret the results obtained.

In order to specify a gauge, we must fix the space-time coordinates; let us concentrate on scalar-type
perturbations. The choice of the time slicing for the perturbed spacetime is given by imposing a
constraint on one of the gauge-dependent variables whose change under the gauge transformations
2.22 is expressed only in terms of 7', as is the case for A,v — B, R, K, and og; for each time slicing,
the gauge freedom associated to the spatial coordinates is eliminated by imposing a condition on a
quantity whose change under the gauge transformations 2.22 involves only L.

In the following, we will review two typical gauge conditions, namely the synchronous and the New-
tonian gauges, which will be used in this thesis.

2.3.1 The Conformal Newtonian gauge

As seen, the most general form of a metric perturbed by scalar fluctuations at a given Fourier mode
kis

goo = —a’[l+24e*7], (2.94)
goj = a’Bikje*® (2.95)
gij = a2{5ij -+ [ZHL(;Z‘J'(—-.ZIZ’]%J' -+ 51‘]'/3)]6%'1} . (2.96)

The choice of the gauge allows to eliminate two out of the four metric terms. In the Newtonian gauge,
B = Hp = 0, and it is traditional to label the Newtonian potential A = ¥ and the space curvature
perturbation Hy = ®. From 2.43 and 2.44, we see that the coordinate frame here corresponds to
zero-shear hypersurfaces where the expansion appears isotropic. Inside the horizon, the analysis of
perturbations reduces to the standard Newtonian treatment, helping our physical intuition.

The first-order perturbed Einstein equations in this gauge are given by the following system:

— k20 + 32 <—ci> + 9’-\1/) = 4wGa*§TY(Con) (2.97)
4 a
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k2 (,_i; a) = (p+ P)6(Con) (2.98)
—£i>+%(xif+2<i>)+ (252—52;)\11 — ]f;(@Jr@) ' (2.99)
47
= 3642573 (Con) ’ (2.100)
E(T + ®) = —127Ga®(5 + P)o(Con) . (2.101)

The label ”Con” is used to specify the gauge. The variables 6 and o are defined as
_ - o1 .
(p+ PO =6T) , (p+Po=—(kikj—304)%;

and El = T’ - (SZT,iC /3 denotes the traceless component of TZ This o is related to the anisotropic
stress H in 2 88 by o = 2I1P/3(p + P).
This gauge will be mostly used in chapter 3 for the description of the physics of CMB anisotropies.

2.3.2 The synchronous gauge

The gauge condition (i.e. the choice of the perturbed spacetime slicing) completely fixes the frame in
which perturbations are measured. As we anticipated, ambiguities due to unphysical modes of pertur-
bations can only arise if the coordinate system is not entirely fixed, as is the case for the synchronous
gauge, in which the space-coordinates are specified by the condition that the lines of constant space-
coordinates are orthogonal to the constant time hypersurfaces, that is A = B = 0. Given any initial
system of coordinates z# it is always possible to find a coordinate transformation to the synchronous
gauge z# — z# + (#. To do this, one sets A = B = 0 in (2.24) and solves for 7 and z’; however,
this does not completely fix the synchronous coordinates. It can be shown (see, e.g., [160] ) that,
under a residual transformation of 7 and z*, the synchronous-gauge conditions are maintained; this
residual coordinate freedom in synchronous gauge leads to the appearance of unphysical modes that
render the interpretation of synchronous gauge calculations difficult (see [176]). Gauge modes can
be avoided by completely fixing the coordinates. The definition of Newtonian gauge already does so,
while a synchronous coordinate system, defined by a set of freely falling observers, requires a further
specification of this set through the initial conditions [148, 133, 160].

The components gog and go; of the metric tensor in the synchronous gauge are by definition unper-
turbed; the line element is given by ds? = a?[—dr? + (6;; + hij)dzidzI]. Since we are interested here
only on scalar-type perturbations, the metric perturbations can be parametrized as

1

hij(x,7) = / R [f{if{jh(k,f) + (kk; —§5Z~j)6n(k, 'r)] , (2.102)

with k = kk; here, h = 6H, denotes the trace of h;;, and n = —Hp — -
Note that the synchronous potentials A and 7 in k-space are related to the gauge-invariant variables
® 4 of Bardeen (1980) and ¥ of Kodama and Sasaki (1984) by the relation

B, =0 = {h+6n+ (iz—l—6ﬁ)] , (2.103)

T2
and to ®x of Bardeen (1980) and ® of Kodama and Sasaki (1984) by
@H_<1>——n+k2 [h+6] : (2.104)

An important gauge-invariant quantity that can be constructed from ¥ and related to h and 1 through
2.103 is

¢= %(H—1¢v+xp)/(1+w)+@ . (2.105)
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As shown in [147], in the comoving gauge ¢ takes on the physical meaning of a curvature perturbation.
Now, let us come to the equations describing the evolution of perturbations in the synchronous gauge.
The scalar metric perturbations are characterized by the two ”potentials” h(k,7) and n(k, 7) in the
Fourier space k. The linearized Einstein equations in this gauge give the following system [148]:

la

E%n — 555 = 4rGa?0TY(Syn) , (2.106)

K5 = 4nGad®(p+ P)0(Syn), (2.107)

b+ 2§h 2%y = —8rGa6TH(Syn), (2.108)

b+ 64 + 2%(5 +69) — 2k%n = —24nGa?(5+ P)o(Syn) . (2.109)

Despite the difficulties related to the gauge modes, the evolution equations and their solutions are
simplified in this gauge, so we will adopt it in this thesis, when dealing with a system including scalar
fields. The conformal Newtonian gauge will be instead used in chapter 3, in order to have an easier
physical intuition of the anisotropy formation processes.

2.3.3 Conclusions

In this chapter, the most important tools of the linear cosmological perturbation theory have been
defined. In principle, once one has specified the background metric, the composition of the cosmic
fluid together with the state equations relating pressure and energy density of each component and the
initial conditions, the equations exposed above may be integrated to evolve the cosmological system
in time; note that one can do this while the perturbations are small with respect to the unperturbed
quantities, in other words in the linear regime. Unfortunately, at the present the universe is not in the
linear regime on all the scales; non-linearity is evident on the scale of stars and galaxies, as the result
of recent non-linear growth of the perturbations that, on a larger scale, are still in the linear regime;
this is strongly supported by observations of the universe in its remote past, through the CMB, that
reveals perturbations in linear regime on all scales. A general study of the physics of CMB will be the
subject of the next chapter.
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Chapter 3

The physics of the CMB: an overview

3.1 Physical foundations

Observations of the cosmic microwave background (CMB), a thermal sea of photons at 2.725+0.001 K
[83], is the cornerstone of the modern cosmology. The discovery of the CMB came in 1964, when Pen-
zias and Wilson [169] detected it as an anomalous noise coming from all directions, consistent with
the thermal emission of a ~ 3K blackbody spectrum.

This was interpreted as the relic radiation in the expanding universe by Dicke et al. [64], strongly
supporting the Hot Big Bang paradigm: in the Hot Big Bang model, the universe was once hot and
dense, and it has been expanding and adiabatically cooling ever since. When the universe was ~ 10°
years old, at a redshift of about 10® from us, its temperature was around 3000K (kT= 0.25¢V), so
that the CMB photons were hot enough to ionize hydrogen. Before this epoch, the dominant in-
teraction process was Compton scattering off free electrons; due to the high electron density in the
early universe, the Compton mean free path was much smaller than the particle horizon at that time,
making the universe opaque to radiation. The photons were tightly coupled to the electrons, which
in turn were tightly coupled to the protons by Coulomb interactions: in some sense, electrons ”glue”
the baryons to the photons by Compton scattering and by electromagnetic interactions, so that the
resulting dynamics involve a single photon-baryon fluid (tight coupling approximation). As a conse-
quence, perturbations in number, and hence in energy density, of photons and baryons, were forced
to evolve together. Furthermore, as we shall see analytically, scattering isotropizes the photons in the
electron rest frame, resulting in a coupling between the electron velocity and the CMB dipole.

Since scattering does not change the net energy or photon number in the CMB photons to lowest
order (in the Thomson limit, energy exchange only occurs to O(T./m.)), spectral distortions to the
blackbody do not arise in linear theory.

As the temperature drops below 3,000 K, the free electrons trapping the photons vanish as atomic
hydrogen, setting the photons free, and the majority of them have interacted only gravitationally with
matter since that time. The sphere surrounding us at z* ~ 1000 (which represent the position at
which the photons seen today as CMB radiation last interacted directly with matter) is called the last
scattering surface.

Soon after the CMB discovery it was realized that the presence of fluctuations at the last scattering

epoch would necessarily induce angular anisotropy in the CMB intensity: as neutral hydrogen formed
(recombination), the photons last scattered, leaving fluctuations in the CMB frozen in at z*, unless
the universe suffered reionization at high redshift.
These anisotropies were indeed discovered in 1992 by the DMR experiment performed by the satellite
COBE [202}; such small variations in the CMB temperature across the sky, detected at the level of
1075, encode a wealth of cosmological information that can be extracted from a detailed knowledge
of the CMB physics.

The fundamental ingredients needed for describing the evolution of CMB anisotropies are two:

37
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relativistic kinetic theory and perturbation theory. Kinetic theory describes the properties of the
CMB photons radiation transport in a perturbed metric; the metric is perturbed as a consequence of
gravitationally unstable density fluctuations, that evolve according to relativistic perturbation theory,
treated in chapter 2. These two mechanisms yield a complete system able to describe the formation
of CMB anisotropies in any model where structure formation proceeds by gravitational instability.
Conceptually, relativistic kinetic theory is identical to the non-relativistic one, since the phase space
distribution is still conserved along geodesics, save for a collision term due to scattering:

df _9f 0Ofds* Ofdp ﬂd_’ﬁ___cm (3.1)

dt — ot * ozt dt | Opdt O di

where ¢ are the direction cosines of the photon momentum p. In curved spaces, the terms 4* do not
vanish due to the curving of the geodesics.

As the CMB photons decouple from the baryons, they free stream taking with them three different
imprints of the region from which they last scatter, namely the peculiar gravitational potential, the
radial peculiar velocity and the density fluctuations (primary effects):

e Photons last scattered in a potential well will experience a gravitational redshift as they climb
out of it; '

e Photons last scattered by matter whose peculiar velocity is towards or away from us will receive
a Doppler shift;

e Photons emanating from an overdense region will have a higher temperature, simply because
denser regions are intrinsically hotter; regions of compression and rarefaction at this epoch result
in hot and cold spots respectively in the CMB.

Actually, the free-streaming of photons after last scattering can be perturbed by many line-of-sight
effects of different origin: processes affecting the CMB photons, and occurring on their way from the
last scattering surface to us, i.e. in the redshift range 0 < z < 103, are called secondary effects.
Amongst the various secondary effects, the gravitational ones are directly connected with the baryon
content: even if the baryons, after recombination, have essentially lost their ability to interact with
the CMB photons through Thomson scattering, they will continue to affect them gravitationally. Any
time variation in the gravitational potential along the photon trajectories will reflect in an additional
gravitational redshift (Early and Late Integrated Sachs-Wolfe effect).

Other mechanisms of secondary anisotropies can arise if the baryons become reionized; this may
happen locally, for instance confined to hot clusters of galaxies (SZ effect) or globally, throughout all
of space.

The temperature distribution that we can measure in the microwave sky is also affected by tertiary
sources of anisotropies, as the extragalactic radio and IR point sources [27], local emission from the
Solar System, atmosphere, noise, etc., and Galactic emissions, associated with dust, free-free emission
from ionized gas [180], and synchrotron emission [139] from relativistic electron (see e.g. [33], [209]
for reviews). Although these are of course not CMB fluctuations in the conventional sense, reliable
parameter estimation from CMB data requires accurate knowledge of their properties (see [31], [105],
(9], [213], [214], [215)).

The combination of all these effects results in temperature differences on the last scattering surface
that appear to the observer today as anisotropies in the sky: looking at the anisotropies of the
CMB radiation on various angular scales, one can extract information on the physical processes that
characterize different epochs of the history of the universe.

Since the horizon at z* subtends an angle < 1° in the sky, the scales smaller than one degree reflect
the status of CMB when the photons were tightly coupled to the electrons; on the other hand, the
anisotropies on larger angular scales will reflect the status of the perturbations that, at recombination,
were still outside the horizon.

But much information on the physics of the photon-baryon fluid can also be obtained by the analysis
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of the polarization pattern of the CMB radiation (see [123], [124], [135], [244], [236]). Indeed, Thomson
scattering of temperature anisotropies at the last scattering epoch also generates a linear polarization
pattern on the sky. The dependence of Thomson scattering cross section on polarization can be read
off by the relation (see e.g. [46]): V
dop o
g XEé
where € (¢') are the incident (scattered) polarization directions in the electron rest frame. This makes
the scattered radiation peaked in the direction normal to, with polarization parallel to, the incident
polarization. If the incoming radiation were isotropic, orthogonal polarization states from incident
directions separated by 90° would balance, so that the outgoing radiation would be unpolarized. Con-
versely, if the incident radiation field possesses a quadrupolar variation in intensity or temperature,
the result is a linear polarization of the scattered radiation. A reversal in sign of the temperature
fluctuation corresponds to a 90° rotation of the polarization, which reflects the spin-2 nature of po-
larization; when developing the radiation field into spherical harmonics Y}},(8, ¢), the orthogonality
of spherical harmonics guarantees that no other moment can generate polarization from Thomson
scattering, so that the polarization pattern can be simply read off from the quadrupole moments
(I =2.m =0,+1,+2) of the CMB anisotropies.
The reason why we should be concerned with the polarized component of the CMB anisotropies is that
polarization probes the epoch of last scattering directly, as opposed to temperature fluctuations which
may evolve between last scattering and the present. Indeed, in the tight-coupling regime, Thomson
scattering randomizes the photon directions in the electron’s rest frame, destroying any quadrupole
anisotropy: a quadrupole is produced at times near decoupling, as the free streaming of photons begins
(see sec. 3.5); at later times, the number density of free electrons which can Thomson scatter has
dropped to negligible levels, and no further polarization can be produced if no reionization occurred.
In fact, as we shall see in detail in sect. 3.4, “primary” polarization is only produced as the radiation
can free-stream, i.e. as a quadrupole moment can be produced without suppression by scattering. As
a consequence of this, it is significant on scales that are within the horizon at recombination.
This localization in time of the polarization by Thomson scattering reduces the problem of under-
standing the CMB polarization patterns to understanding the quadrupolar temperature fluctuation
at last scattering, and is a very powerful constraint for reconstructing the sources of anisotropies.
We note at this point that a further source of polarization is produced in reionized scenarios; such sce-
narios are motivated by the observations of the quasar spectra, because the light of quasars absorbed
(and reemitted) by the neutral hydrogen in the intergalactic medium [98] shows that the Universe is
in a very high state of ionization already by the redshifts of the most distant quasars, at z ~ 5. While
reionization suppresses temperature anisotropies on scales smaller than the horizon size at rescattering
(the suppression is more dramatic for earlier reionization), it can produce more polarization, due to
the fact that the differential optical depth for Thomson scattering becomes again non-vanishing, as it
was before recombination. The non vanishing of the differential optical depth couples again photons to
free electrons, generating quadrupole temperature anisotropies that are sources of polarization [153].
The effect of reionization on the CMB polarization is to produce significant “secondary” polarization
on large scales (i.e. on the scales smaller than the horizon at rescattering), much above the character-
istic scales of the acoustic peaks: the power spectrum of polarization anisotropies is boosted to smaller
values of [ in reionized scenarios, when compared with the standard one (no reionization), and it is
easily distinguishable from it, allowing to obtain important hints on the history of the universe.
In this chapter we will review the main physical processes from which CMB anisotropies originate,
and we will describe their imprint on the angular power spectrum. A more detailed discussion can be
found in [109], [111], [112], [108], [113].

: (3.2)

3.2 The Boltzmann equation

In order to describe in greater detail the physical mechanisms that are responsible for the observable
anisotropies, we have to describe the evolution in time (denoted by 7 throughout this chapter) of the
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spatial () and angular () distribution of the radiation under gravity and scatter processes; this is
performed by the Boltzmann equation

9 fin,3,8) = T +n'T}; = C(T) + Glhy) (3.3)

where the vector T(n, Z,7) = (©,Q + iU, Q — iU) encapsulates the perturbation to the temperature
© = 6T/T and the polarization (Stokes @ and U parameters). Q and V' are the only Stokes parameters
needed, since Thomson scattering cannot generate circular polarization.

The term C(T") accounts for collisions (here Compton scattering of the photons with electrons), while
G (huw) accounts for gravitational redshifts.

In eq. (3.3) we used the fact that &* = n; and that in a flat universe photons propagate in straight
lines, n; = 0.

To examine the scattering, we will first perform computations in the electron rest frame: we indicate
by #' and # the propagation directions of the incoming and outcoming radiation, respectively; we adopt
spherical coordinates centered on the scattering point Z, in which the scattering plane is spanned by
the angle @ with respect to the polar axis coincident with fi. Thus Q is the difference between the
radiation components with polarization along &y and &g directions; U is the same difference in the
(89 + 24)/v/2 and (&g — ép)//2 directions.

In the next two subparagraphs we shall give a brief description of the terms in this equation.

3.2.1 Metric and scattering sources

The gravitational term G in (3.3) is easily evaluated from the Euler-Lagrange equations of motion for
a massless particle in a perturbed FRW background, and from the requirement that {u]z = 1, where
ut is the four velocity of an observer that is at rest with respect to the Friedmannian expansion; the
photon energy (frequency) is defined in the comoving frame by

v = —puut = p, (3.4)
where p* is the photon momentum. The linearly perturbed time derivative of equation (3.4) is

g = ——Z— — -;«n’njhij — 'n,zh()i - %’I’Llhgoli N (3.5)
where 7 is as usual the photon propagation direction [112]. Since the shift in amplitude in (3.5) is
independent of the frequency, it perturbes the whole CMB spectrum. The first term does not affect
temperature perturbations ©, since it is the ordinary isotropic expansion effect: it simply implies that
in a Friedmannian unperturbed background the temperature of the Planckian spectrum is redshifted
as T o« 1/a because of the cosmological expansion of the spatial metric. The second term has a similar
origin and is due to stretching of the spatial metric. The third and fourth term are the frame dragging
and time dilation effects.

Also, since different polarization states undergo the same gravitational effect, @ and U are not
affected by gravitational terms. Thus the gravitational term in (3.3) is

- 1. .. . 1 .
G(T) = (in’njhij + ntho; + inlhooﬁ,(),o) . (3.6)

Let us now come to evaluate the collisional term in (3.3).

It is known from optics [30] that the component of the radiation with polarization perpendicular to
the scattering plane is diffused without power loss, while the parallel polarized component picks up a
factor cos? 8 where 3 is the scattering angle, cos 8 = 7’ - fi; each component has its own temperature
perturbation, indicated as ©, and ©) respectively. The temperature perturbation is © = ©) + O,
while from the definition of the Stokes parameters, @ = ©)—©; the value of U is obtained by rotating
around the photon propagation direction by 45°. Therefore, indicating with in and out respectively
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the quantities before and after the scattering process, the latter leaves unchanged the () polarization
component,

@+ out = @+ iny (37)
while reduces the ()|) one,
@H out = @” in COS2 B (3.8)
Also, from the Thomson scattering geometry, it is easy to see that
Uput = Uin c0s B, Qout = Qin — O] s sin’ B . (3.9)

The relation between ffout and T;n follows from these equations; it is convenient to cast it in a matrix
form:

cos? B+1  —(1/2)sin?B  —(1/2)sin? B

ST, = —~(1/2)sin® B (cosB+1)2/2 (cosB—1)%/2 | Tin (3.10)
—(1/2)sin? B (cos B —1)2/2 (cos B+ 1)%/2

where S is the scattering matrix. The overall normalization is fixed by photon conservation in the
scattering. This equation completely describes the scattering process in the electron rest frame; since
we will be concerned with the Fourier expansion of all perturbations, it convenient to relate these
scattering frame quantities to those in the frame defined by k = é3, i.e. to the frame where the polar
axis is aligned with the wavevector k. This can be done with rotational algebra; the details can be
found in [112]. Qualitatively, this transformation implies one should perform a first rotation from the
k frame to the scattering frame; after scattering, a second rotation returns to the k frame. These
rotations transform 7T as the product of a matrix, denoted by P, and a vector, P(f,#/) - f(ﬁ’ ).
Integrating over incoming angles, we take into account the scattering out of and into a given angle,
and the collisional term in (3.3), in the electron rest frame, is

é(f)rest = —7Lf(ﬁ) +7 / %P(’FL 7! )T(’I’L ). (3.11)

Tout

ll

'J;oo

Note that the number of photons involved in collisions during an infinitesimal conformal time interval
is represented by the differential optical depth 7 = n.ora(n), where n, is the free electron number
density and o7 is the Thomson cross section.

The transformation from the electron rest frame into the background frame yields a Doppler shift
fi-Up in the temperature of the scattered radiation, where U'p is the peculiar velocity of electrons (and
baryons); with the help of spherical spin s harmonics algebra [112], the final result for the collisional
term may be written as

- — =

2
C(T) = —+1(m) + 10 4 Z P (1, #)T(#) (3.12)

where the vector f describes the isotropization of photon distribution in the scattering frame, and is
given by

, q i
I(h) =T(R) — ( = @(n )+ - 7p,0, 0) : (3.13)
with
Y2m*’y2m _\/§2Y2m*'Y2m _ %_ZYQm*’YQm
pim — ~/6 YZm*’ LY 3 2Y2m*’ LY 3 _2Y2m*' SY , (3.14)

_\/6 YQm*’ _2Y2m 3 ZYZm*’ _2Y2m 3 __2]/2771*’ “2}/2m

where the primed harmonics have to be interpreted as functions of #' (spin s spherical harmonics
definitions and properties are summarized in [112]).

In this way, the anisotropic behavior of the Thomson scattering is completely contained in the pm)
matrix; the form of this matrix shows that , as expected, polarization is generated through quadrupoles
anisotropies in the temperature and vice versa.
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3.3 Normal modes evolution

All the treatment developed so far regards each Fourier mode separately; since the temperature and
polarization distributions depends both on the position 7 and on the direction of propagation of the
photons, it is useful to expand them in modes which account for both the local angular and spatial
variations. Since each eigenmode evolves independently in linear perturbation theory, each Fourier
mode can conveniently be decomposed into angular moments by using the product of spin-weighted
harmonics and plane waves [112], [241], [95]; for a flat space, we will use the following basis:

4r

m __ (_ "\
Gl = (=0 771

Y™ (i) exp(ik - 7) (3.15)
with spin s = 0 describing scalar spherical harmonics and s = £2 describing tensor spherical harmon-
ics.

The expressions of the spatial modes for a curved background (K # 0) may be found in [108].

The notation 7z has been used to point out that, for each E mode, all the quantities in (3.15) are
expressed in the k-frame.

Denoting by 1 the conformal time and expanding temperature and polarization distributions in the
modes just defined, one has:

3 -
o) = [ S oM RErEEA), (3.16)
I m=-2
(Q£iU)(n,7,7) = / dS’ZZ > (B £iB{™) 0, F)2GT (7, ) (3.17)
1>2m=-2

In the expansion (3.17), El(m) and Bl(m) represent polarization with electric (—1)! and magnetic
(—1)"*! parity respectively, while the temperature has electric parity type only; since they corresponds
to polarization states with @ and U interchanged, El(m) and Bl(m) represent polarization patterns ro-
tated by 45°.

Note that the angular expansion is made on spin s = 0 harmonics for the temperature perturbation
and on s = +2 for the polarization one.

As we shall see, since in linear perturbation theory different perturbations modes do not mix, the
m = 0,%1,4+2 modes are stimulated by scalar, vector and tensor perturbations in the metric respec-
tively.

Having found the source terms of the Boltzmann equation (3.3), we can rewrite it as a coupled sys-
tem of equations that must be satisfied independently by the amplitudes of the normal modes of the
temperature and polarization Tz( ™ = (@(m) E(m) B(m))

Concerning the gradient term nzT[z in (3.3), it has the effect of multiplying the intrinsic angular depen-
dence of temperature and polarization distribution by a term 47 - k=i 47 /3 kY?; as a consequence,
the Clebsh-Gordan relations will couple the I,1 4 1 terms of the expansions (3.16) and (3.17), giving
an infinite hierarchy of coupled /-moments that transmit power from sources at low multipoles up the
[-chain as time progresses:

- (m) ok[™ ~(m) _ ok} (m)} Lam) |, om)
o = k[Ql_lel_l 50|~ 76 +5™ (3.18)
S(m) k" m)  2m m) 2k (m)} B
B F {21 —7 P 11+ 1)Bl o+ 3t
B +[E§m) +\/gp<m>5l’2] 7 (3.19)
o(m) ok® Lm) | 2m  _my 2k (m)] . (m)
B - B _2M_ptm) _ 2041 pm)y o p(m) .
! '421—1 ! +1(z+1) ! TRt I (3:20)



3.4. THE TIGHT COUPLING REGIME 43

‘We have defined

(12 —=m?)(I% — s%) 12
m o __ . _
oH "\/ 2 ! k2+(|ml—l—1)KK’ (8.21)

where the second factor is present only in the K # 0 case: the quantity /(2 + (jm|+ 1)K is a
generalization of the wavenumber in curved backgrounds.

The term in square brackets in eq. (3.18) is the free streaming effect, independent on scattering as
well as on gravitational sources: as the radiation free streams, gradients in the distribution produce
anisotropies that are transferred down the hierarchy when kn > 1, as the result of the geometrical
projection of fluctuations on the scale corresponding to k at a distance n which subtends an angle
given by [ ~ kn (see sec. 3.5)

The main effect of scattering comes through the term T'@l(m), and implies an exponential suppression

of anisotropies with optical depth in the absence of sources.
The source terms Sl(m) account for gravitational and residual scattering effects: in Newtonian gauge,
the sources of temperature fluctuations are given by

sV =10 —& , s = o4k, 5 =+PO (3.22)
SV = v, S = sPM | §P =3P _F (3.23)

where 1
P = — [of™ — VBES™] . (3.24)

Massless neutrinos obey equations of the same form of (3.18), without the Thomson scattering terms.
As we shall see in the next section, the presence of @60) in eq. (3.22) represent the fact that the
scattering does not destroy an isotropic temperature fluctuation; the Doppler effect enters the dipole
(I = 1) equation through the baryon velocity, while P(™) contains the anisotropic nature of Compton
scattering, and involves the quadrupole moments of the temperature and E-polarization only.

In the next section, we will review the behaviour of the photon-baryon fluid under these evolution
equation, with particular attention to scalar-type perturbations.

3.4 The tight coupling regime

As discussed in section 3.1, before recombination, Thomson scattering between photons and electrons
and Coulomb interactions between electrons and baryons are so efficient, to make the mean free path
for a photon (1/7) much smaller than the effective horizon H~'. Therefore photons and baryons are
better described as a single entity, the photon-baryon fluid; this condition is known as tight coupling.
The evolution equations can be expanded in powers of the photon mean free path over the wavelength
and over the horizon scale.

The zeroth order expansion of the polarization (I = 2) equations (3.20) gives

V6

= -2, 5" =0. (3.25)

B

The lowest order in k77! of equations (3.18) becomes

— 2 — m?
o) - Ik gt T (g
9 T 9_ T
(x2) _ _AH (x2) _ _1H
o N = (3.26)

Combining (3.26) and (3.25), we see that polarization fluctuations are generally suppressed with re-
spect to metric or temperature fluctuations, because they are proportional to the quadrupole moments
in the temperature which are suppressed by scattering. As an immediate consequence of the tight



44 CHAPTER 3. THE PHYSICS OF THE CMB: AN OVERVIEW

coupling approximation, the angular dependence of the radiation field at a given point can only pos-
sess a monopole (corresponding to temperature) and a dipole (corresponding to a Doppler shift from
a peculiar velocity) component, and the radiation is unpolarized.

A quadrupole is subsequently produced at decoupling as free streaming of the photons begins: there-
fore, polarization can be sourced by scattering only as the optical depth decreases, but this also
corresponds to a lower fraction of photons affected, so that polarization is, in almost all cosmological
models, at a level of few percent of the temperature anisotropy.

The degree of linear polarization is then directly related to the quadrupole anisotropy in the photons
when they last scattered [121], [124], [196]: the polarized fraction of the temperature anisotropy is
generally small, since only the photons that last scattered in an optically thin region could have pos-
sessed a quadrupole anisotropy. This fraction depends on the duration of last scattering, and for the
standard thermal history it is ~ 5 — 10%.

We are ready to write down the equations for scalar perturbations in a flat universe. From the [ = 0,1
scalar (m = 0) components of the system (3.18), we obtain: :

ol = _g@g@ ~ &, (3.27)
. 2
6 = kef’ +v - e —+©f —v)) (3.28)

A comparison with the expressions of photon perturbations in the Newtonian gauge (eqgs. 2.97-2.100
) allows us to recognize in the equations above the continuity and Euler equations for the photons in
flat space (see [242]), with the identifications

12 (o)

5, =40 , o =0, x{) = =6f

: (3.29)

Therefore, 6(()0) is the isotropic temperature fluctuation, and @go) is interpreted as the amplitude of
the photon dipole or bulk velocity. From eq. (3.26), it is easy to see that the anisotropic stress mr,,

proportional to the quadrupole moment, is of the order &/ +®§°); this correspond to the fact that since
scattering makes the photons isotropic in the baryon rest frame, the anisotropic stress is negligible to
the lowest order in 1/7 in the tight coupling approximation.

Aside from the velocity divergence source term in the continuity equation (3.27), there is a term
dependent on the metric: this is due to the gravitational redshift effect of time dilation, analogous to
the cosmological redshift: the presence of matter curves or stretches the space taking the wavelength
of the photon with it. In the Euler equation, the Newtonian potential ¥ acts as a source of the dipole.
Gradients in the potential also induce gravitational blue and red shifts as the photons fall into and
climb out of potential wells (¥ < 0). This is countered by photon pressure from @(()0), so that, as
the temperature rises, so does the pressure which opposes the fall of a photon into the potential well,
setting up acoustic oscillations in the fluid.

The baryon continuity and Euler equations take on a similar form,

o) = o) 4 kw4 % CIRE (3.31)
i . a T + +
R EHC AR R {C i o

where

pB+pB _ 3pB . 1
R= a if ~0, = =P, 3.33
o ¥p, ~dp, LPB Py = 30y (3.33)

The altered form of the coupling term in the baryon Euler equation, that picks up a factor 1/R, follows
from momentum conservation in Thomson scattering. The effective momentum density of a general

fluid X is indeed (px +px)vx; since p, = % py and pp K pp, conservation implies %p,,®§m) = vaJ(Bm);
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therefore, the baryon Euler equation is similar to eq. (3.28), correcting for the R factor.
The lowest order in 1/7 of equations (3.31) and (3.32) allows to write

,Ul()O,:l:l) _ @gO,il) , (3.34)

so that when the optical depth to scattering is high, the photons become isotropic in the electron-
baryon rest frame.

As shown above, the tight coupling approximation allows us to drop the viscosity term; then, eliminat-
ing the baryon velocity from the photon evolution equation, we obtain, to lowest order, the following
equation for @f)o) ([167], [109]):

d Lo, Koo _ K d :
%[(1+R)®0 ]+§®0 ——-—3—(1+R)\If—%[(1+R)<I>] . (3.35)

If we ignore the time variation of the baryon-photon momentum ratio, this is the equation of a forced
oscillator: the change in momentum of the photon-baryon fluid is determined by a competition between
the pressure restoring and the gravitational driving forces. The effective dimensionless mass of the
fluid is given by mess = 1 + R, accounting for the inertia of the baryons. Baryons also contribute
gravitational mass to the system, resulting in the appearance of meg in the two gravitational terms
on the right hand side; however, they do not contribute significantly to the restoring pressure: in
the tight coupling regime, photons contribute pressure and baryons contribute inertia to the single
photon-baryon fluid ([207], [110]).

As an illustrative simple example, let us first consider the unrealistic case of static potentials ¥ and
® and of constant R; equation (3.35) then reduces to

.. 1
6y + Kcef) =~k (3.36)
where ¢, is the sound speed in the photon-baryon fluid,
. — 1
*T VB30 +R)

Equation (3.36) describes a simple harmonic oscillator under the constant acceleration provided by
gravitational infall, and the immediate solution is

1 .
0 (n) = [O8(0) + mes ] cos(krs) + E@gw(m sin(krs) — mess® (3.37)

where 7 is the sound horizon at the time 7,
K /
ran) = [ eslman’ (3.38)

The two initial conditions 980) (0) and 980)(0) govern the form of acoustic oscillations, representing
the adiabatic and isocurvature modes respectively, as we shall see.
Equation (3.37) implies, through the photon continuity equation, that

0 (1) =3[08 (0) + mey s Tlcs sin(krs) + 3k O (0) cos(krs) (3.39)

In egs. (3.37) and (3.39) lie the main acoustic and redshift effects dominating primary anisotropy
formation.
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3.4.1 Gravitational infall and redshift

In the early universe, photons dominate the fluid and B — 0. In this limit, eq. (3.37), for the adiabatic
mode, is that of an oscillator whose zero point has been displaced by gravity,

0 (n) = [0 (0) + T] cos(krs) — T . (3.40)

The zero point is the state at which gravity and pressure are balanced; a displacement —V yields
hotter photons in the potential well, since gravitational infall increases the number density of photons
as well as their energy through gravitational blueshift. However, the gravitational blueshift is precisely
canceled out when the photons climb out of the potential well at last scattering, therefore the effective
temperature perturbation is @g") (m+9¥ = [@(()0) (0) + ¥]cos(krs). Larger scales (lower k) oscillate
more slowly, owing to the finite time sound takes to cross the potential fluctuation.

The phase of oscillation at last scattering epoch (n*) is =~ kr}: at this time, different scales will be
caught at different phases of their oscillation: the wavenumber that reaches its first compression by
last scattering is k4 = 7/r¥, and corresponds to the sound horizon at that time. If there is a spectrum
of k-modes, there will be a harmonic series of temperature fluctuation peaks with k, = nn/rs(n*) :
odd peaks thus represent the compression phase, whereas even peaks represent the rarefaction phase.
The scales larger than the horizon at recombination will not have evolved significantly, yielding an
effective temperature fluctuation which directly reflects the primordial perturbations: this combination
of the intrinsic temperature fluctuation and the gravitational redshift is the well known Sachs-Wolfe
effect [187].

For shorter wavelength fluctuations, the harmonic series of temperature peaks is based on the sound
horizon r¥, which is most sensitive to the expansion rate of the universe before last scattering, which in
turn depends primarily on the ratio of matter to radiation in the universe. Because the latter is fixed
by the CMB itself, the sound horizon is mainly determined by the matter density today, Q,h2. As it
is evident from (3.37), sub-horizon scales are dominated by acoustic oscillations, with the dynamics
frozen on super-horizon scales. Since the horizon scale at decoupling subtended approximatively 1° in
the sky, we expect to see oscillations on sub-degree scales, and not above. These sub-degree oscillations
indeed determine the oscillatory behavior of CMB anisotropies on small angular scales; these in turn
generate a sequence of peaks into the angular power spectrum (the sets of coefficients C; defined by
the spherical harmonics expansion of the two point correlation function, see sec. 3.7) as [ goes into
the sub-degree region, [ > 200 from (3.57): such peaks are called acoustic peaks and are extremely
popular in the literature since, as we shall see in sec. 3.7. the power spectrum of CMB anisotropies
completely characterizes the underlying cosmological perturbations, if they are Gaussian.

On the other hand, vector perturbations lack pressure and do not generate acoustic oscillations; this
is easily seen by looking at equations (3.32), (3.18) and (3.34):

d (e —v

It is easy to see that in absence of a source, the quantity in (3.41) is constant in the radiation dominated
era, while it decays as a~! in the matter dominated era.

3.4.2 Baryon drag

Though pressureless, the baryons contribute to the inertial and gravitational mass of the fluid; this
lowers the frequency of the oscillations by decreasing the sound speed, but more importantly, also
causes a greater gravitational compression of the fluid in a potential well, with respect to the case
R = 0: the baryon dragging of photons into the potential wells produces a further displacement
of the oscillation zero point. Since the redshift is not affected by the baryon content, this redshift
remains even after last scattering, enhancing peaks from compression over those from rarefaction. If
the potential and the baryon contribution were constant, the fluid will oscillate as

ol 4 v = %\1/(1 + 3R) cos(kry) — RU | (3.42)
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with compressional peaks a factor of (1 + 6R) larger than the }¥ Sachs-Wolfe plateau; in reality,
this effect is modified due to time evolution in the baryon content: for slow changes, the oscillation

amplitude varies as me_f1]{4 o« (14 R)~Y4, slowly decaying with time.

3.4.3 Doppler effect

Since the turning point are at the extrema, the fluid velocity oscillates 90 degrees out of phase with
the density, as it is evident from eq. (3.39); its motion relative to the observer causes a Doppler shift,
imprinting oscillations which are less prominent than, and out of phase with, the intrinsic temperature
oscillations. The Doppler effect adds a smoother component to the anisotropy that makes the acoustic
peaks rather less prominent for low-baryon content universes. Whereas the observer velocity causes
a pure dipole anisotropy on the sky, the fluid velocity causes an r.m.s. spatial temperature variation
on the last scattering surface from its line-of-sight component. In the absence of baryons, the velocity
contribution is equal in amplitude to the temperature effect; but because the line-of sight restriction
eliminates the face-on contribution, projection effects smooth Doppler features more strongly than
temperature features. This implies that the peak structure of the anisotropy is due mainly to the
intrinsic temperature.

Baryons increase the prominence of the peaks by decreasing the relative contribution of the Doppler
effect: as the baryons increase the effective mass, the velocity decreases as the inverse square-root
of the mass. Note also that, since velocity oscillations are symmetric around zero, they enhance the
baryon drag effect.

3.4.4 Driving effects

Whenever the non-relativistic matter is not the dominant dynamical component, the potentials ®
and ¥ become time-dependent: for example, when radiation dominates, pressure and entropy alter
the behaviour of the gravitational potentials. The effects of potential evolution can be separated into
those that occur before last scattering and those occurring afterwards, affecting the CMB photons
along their free-streaming trajectories.

As a simple example, consider adiabatic fluctuations, where the initial temperature (980) (0) is related
through Poisson equation to curvature fluctuations ®(0). Adiabatic fluctuations are fluctuations in
the energy density that can be characterized in a gauge invariant manner as fluctuations in the local
value of spatial curvature (see chapter 2). Because both the radiation and matter species participate
in the fluctuation, the fluctuation in the local number density of any species relative to the entropy
density, vanishes.

After horizon crossing, unless CDM dominates, the energy density perturbations decay with expansion,
and can no longer maintain a constant gravitational potential. The decaying gravitational potential
drives the first compression without a counterbalancing effect on the subsequent rarefaction stage,
enhancing temperature fluctuations. Furthermore, the dilation effect from a decaying space curvature
® also enhances the acoustic fluctuations. Since this effect only occurs for modes which cross the
horizon before CDM domination, the amplitude of this boost is sensitive to the matter-radiation ratio
of the universe.

The situation is rather different for isocurvature scenarios; isocurvature fluctuations correspond to
fluctuations in the form of the local equation of state, with no fluctuations in the local curvature;
instead, there is a non-zero entropy perturbation 2.47.

So long as an isocurvature mode is super-horizon sized, it must be characterized by zero curvature
(and density) fluctuations, because causality precludes the re-distribution of energy density on scales
larger than the horizon; once an isocurvature mode becomes sub-horizon sized, fluctuations in the
local pressure can "push ” energy density around and convert an isocurvature fluctuation into an
energy density perturbation (see eq. 2.61). Curvature fluctuations are therefore zero outside the
horizon, and grows by causal processes as the fluctuation crosses the horizon; the driving mechanism
of isocurvature perturbations causes a phase shift in the acoustic oscillation which is typically ¢ ~ m/2:



48 CHAPTER 3. THE PHYSICS OF THE CMB: AN OVERVIEW

such a phase shift can be measured by determining the locations of the peaks, allowing us to learn
important properties of particle physics in the early Universe.

3.4.5 Silk damping

The photon-baryon fluid is imperfect because the photons random walk through the baryons with a
mean free path Ag given by Compton scattering: as the photons diffuse, hot and cold regions mix and
the generation of viscosity and heat conduction in the fluid dissipates fluctuations through the Euler
equation. To the first order in k/7, the Euler equation becomes (3.28)

kR? . : . 16 k2

6l = 1+ RO — k[0 + (1+ R)¥] + == ; (3.43)
T 45 T
The expansion a/a terms have been dropped under the assumption that the damping effect discussed
here involves times much smaller than the expansion rate. Using the continuity equation (3.27), one
gains an intuitive expression for (3.43):

2 2 9 5
00 * 57 [(1+R)2+151+R & +3(1+R)®0 7Y%, (3.44)

which is a damped forced oscillator. Again the damping behavior is evident if we consider the case in
absence of metric fluctuations. The acoustic amplitude for scalars damps as exp[—(k/ ksjm))z], where

1 r 1 fmdn R2+16(1 + R)/15
(n) - 6Jo T (1+ R)?

- - [T . (3.45)
k)

This severe damping is known as Silk damping (see [112] and references therein). Fluctuations are
damped nearly exponentially as the diffusion length Ap ~ V' N)¢ overtakes the wavelength of the
fluctuation mode. Note that the scale at which it occurs 1 /kgn) grows when the mean photon free
path 77! grows: at last scattering, the ionization fraction z. decreases due to recombination, thus
increasing the mean free path of the photons A¢ o 7.

Of course, these equations depend on the particular cosmological scenario adopted, but the general
occurrence is that the CMB anisotropies under the Silk damping scales, that subtended about 10" on
the sky, are severely damped. The diffusion scale kp = Ap /27 can therefore be used as a probe of the
ionization history and the baryon content.

3.5 The free-streaming and projection effects

As the universe drops below a temperature of around 0.1 eV, almost all free electrons are converted
to neutral hydrogen; the rapid Thomson scattering ceases for lack of scatterers and the radiation
decouples. At this point, the radiation propagates freely until the universe reionizes at some redshift
greater than 5. As anticipated, during the tight coupling epoch the radiation field can only possess
a monopole and a dipole component, and it is unpolarized: any higher multipole moment is rapidly
damped away by the scattering, and is subsequently produced at decoupling, as the free streaming of
photons begins.

A single Fourier mode of the radiation field can be described by the temperature distribution function
©(k, u,n), where p is the angle between the wave vector and the propagation direction; the free
streaming of the photons is described by the Boltzmann equation 3.3, in which the collision term has
been neglected:

O +iku® =0 .

If the free streaming begins at time n*, then the solution at a later time is simply

O(k,n, u) = O(k,n", u) exp(—iku(n —n)) . (3.46)
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We can reexpress the u dependence as a multipole expansion
[e.e]
Ok, m,u) =Y (i)' Oulk,n)Pi(p) ; (3.47)

using the identity
0.0}
eizcos(qS) — Z(2n + 1)Z'”jn(z)Pn(COS¢)

n=>0
the free streaming becomes
Oi(n, k 1d Mos s
Q) 0y + 010+ 000 B 1 bk + (8= B)ikan) | (349
2A+1 kd "

where j; is the usual spherical Bessel function and An = n* — 7. In eq. (3.48), we neglected diffusion
damping.

Since j; peaks at | ~ kA, the free streaming just projects the physical scale k ~ A~! onto am angular
scale as @ ~ A/An. Then, the total power in the {th multipole is then obtained by integration over &

modes (cfr. sec. 4.106),
2 |©1(mo, k)|
Cr== [ B dink
T r / (21 +1)? &

Since free streaming merely represents a projection, the generalization to non-flat universes is made
by replacing the comoving distance An with the comoving angular diameter distance:

rg = | K|~/ sinh (|K|"/* An) for K <0
TQZK_l/QSin KM A for K >0 .
U
Putting this together, the acoustic peaks occur at

lj = kjlre(n’)|

making evident that the dominant factor in the peak locations is the curvature of the universe, which
can make the same physical scale subtends a much smaller (larger) angle on the sky.

3.6 Integral solutions

A formal integral solution to the Boltzmann equation (3.3) may be obtained by considering the prop-
erties of source projection

®§m) (770 k) 7(no,7') (m) (l m) '
S = ' k,no — :
T / dn'e” ZS (k,mo —7') (3.49)
(m)
By (o, k) /B / dn/ =0 P ()™ (5 po — ') | (3.50)
20+ 1
B{™ (0, k) / (m)
p ) _ _-\/g/ dny' e~ (o) plm) 8™ (kymo — 1) (3.51)
20+ 1 0
where 1 is the present conformal time and ]l(l m) (m), ,Blm contain the spatial curvature K and are
combinations of the Bessel functions and their derwatlves

Here
n0
) = [ ) (3.52)
n
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is the optical depth between 7 and the present.
In the context of our analysis of scalar perturbations, let us express the properties of the temperature
angular decomposition; integrating by parts eq. (3.49), the integral solutions can be rewritten as

0\ (n, k)

bl . .
Y [(70f) + 7w + & — 6); + 00 + PO (3.53)
20+1 0

Notice how the sum @go) + U acts as the effective temperature, accounting for the gravitational
potential wells at last scattering; we can also recognize the Doppler effect coming from the baryon
velocity. Most importantly, eq. (3.53) outlines that in the free-streaming trajectories of the CMB
photons from last scattering surface to us, i.e. when optical depth is negligible, an important source
of secondary anisotropies arises: it is just contained into the potential time variation in (3.53). The
differential redshift from ¥ and dilation from & must be integrated along the trajectory of photons,
so that time variations of the metric fluctuations leads to additive anisotropies. This effect is the so
called integrated Sachs-Wolfe (ISW) effect. It can be differently classified, depending on the origin
of the potential time variation; the early ISW is the direct analogue of the acoustic driving effect of
3.4.4, save for the fact that the photons are in the free streaming rather than in the tight coupling
regime: since the gravitational potentials cannot decay in the matter-dominated era, the early ISW
arises only if the Universe is not completely matter-dominated at last scattering. Unfortunately, an
analytical derivation of this effect is difficult because it cannot arise either in the tight coupling regnne
or in the weak coupling one.

For adiabatic models, the potential decays after horizon crossing if radiation dominates making an
important pressure contribution. For isocurvature scenarios, it grows from zero to a maximum near
sound horizon crossing and then decays due to radiation pressure [111]. Due to the later time of
generation (the equivalence epoch), the early ISW could affect scales larger than the acoustic peaks,
in particular scales that are inside the horizon at matter-radiation equality, even though it is cut
off above the matter-radiation equality scale, keg < ka. Therefore, the early ISW effect affects the
anisotropies on scales just larger than the first acoustic peak, broadening the rise and shifting the
location of the first peak to larger scales.

In some cosmological models, another source of time variation of the potential is related to the change
in the cosmic equation of state: as an example, in open models, or in cosmological constant models,
the universe enters a phase of rapid expansion once matter no longer dominates, making the potential
decay. The opposing effects from decaying over densities and underdensities will cancel if the photon
can travel across many wavelengths during the decay, so that this late ISW effect is suppressed below
the horizon at the decay epoch, kxa = 27/7kac (see [109]).

3.7 Power spectra

The CMB temperature anisotropies on the celestial sphere can be expanded in spherical harmonics
[26] :

00,8) = 7 (0,6) = Y ain¥"(6,4) . (3.54)
im

A similar decomposition is also true for perturbations of the polarization field; the temperature two-
point correlation function is

Go°(6) = (B(R)O(7)) (3.55)

where the average is over all pairs of points on the sky separated by an angle 6 ; of course, we can
compute the two-point correlation function also between different fields. Indicating generically with
X, X the quantities © and @ =+ iU, the two-point angular correlation function of the X, X fields
anisotropies at an angular scale 6 can be written in terms of their power spectrum (i.e. the C’XX )
g 5 20+1
cXX =< XaXa >aii=cos 6= Z —_“Gl XPZ(COS 0) . (3.56)
1

AN/ =cos §
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In (3.56), the quantities P} are Legendre polynomials.
This expansion is useful since from the functional form of the Legendre polynomials, it can be shown
that each C’lXX represents the amount of power at the scale

180
0 (degrees) ~ - - (3.57)
It can be shown (see [163]) that in a Gaussian theory the correlation function, also known as power
spectrum, is the only thing we have to know to describe the perturbations. Theories for the origin
of large-scale structure predict that the mass distribution in the universe is a single realization of

a statistically isotropic random field. In other words, the Fourier components d (k) of the fractional
density perturbation field are random variables that have expectation values <5 (E)> = 0 and covariance
given by

<5(1§)5(E')> = (2m)36p(k + E)Ps(k) . (3.58)

Here Ps(k) is the scalar power spectrum for the spatial mass distribution (density perturbations
produce scalar perturbations to the spacetime metric). Statistical isotropy demands that the power
spectrum depends only on the amplitude (and not the orientation ) of k.

Because the temperature perturbation and polarization of the CMB are due to density perturba-

tions, the aX that follows from the decomposition of X as in (3.54) must be random variables with

X\
ZEro mean < lm> = (0 and covariance given by

< al),(nal)r(mf >= C'lX)—(éuldmm/ , (3.59)

where now the average is taken over all possible configurations. The statistical independence of each
Im mode is a consequence of statistical isotropy.

Under these hypothesis, and assuming that the whole sky average (3.56) coincides with the one
n (3.59), one can obtain a simple relation between the coefficients C; in (3.59) and the expansion
coefficients in (3.16, 3.17); simply one can project the k—frame spherical harmonics in (3.16) and
(3.17) into a particular ¥} in (3.54); from the Gaussianity of the spectrum one obtains

dk & )
CXX_ 2z+1)2/ Z ’ng( (n, k)X z( Y, k) (3.60)

where X; and X stays for any of ©;, Fj or B.

Due to the opposite parity of Theta™, E™ (electric parity) and B/" (magnetic parity), C8 = CP® =0
if the physics that gives rise to temperature anisotropies and polarization is parity—mvarlant In this
case, the two-point statistics of the CMB temperature-polarization map are completely specified by

the four sets of moments, C’l@e, Ol@E, CZEE, C’lBB.
Nonzero CP2 or CFP would provide a signature of cosmological parity breaking.
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Chapter 4

Scalar field cosmology

4.1 Introduction

Scalar fields were introduced in Quintessence cosmologies with the aim of resolving the “missing en-
ergy” problem, described in chapter 1.

Differently from the cosmological constant models, which are able to preserve the spatial flatness re-
quired from inflation but still retain serious unsolved theoretical issues, Quintessence models propose
scalar fields as candidates for such missing energy. More generally, the definition of Quintessence refers
here to any energy component whose properties are well described in terms of a scalar field evolving
in a potential which couples to ordinary matter only through gravity.

As discussed in chapter 1, the Quintessence can mimic the behaviour of a cosmological constant when
it slowly evolves in its potential; in this scenario, the ”vacuum ” energy resides in the potential energy
of such a scalar field.

The most important difference with respect to the cosmological constant is that it is time-varying and
spatially inhomogeneous, so that it can develop fluctuations which can be relevant in the perturbation
growth and can leave a characteristic signature in the CMB and in large scale structure.

In this chapter, we model the Quintessence candidate as the scalar field associated with an ultralight
pseudo Nambu-Goldstone boson [104]; it possesses a global spontaneous symmetry breaking scale
f ~ 10'® GeV and an explicit breaking scale M ~ 1073 eV; such a field is taken to be acting at
present like an effective cosmological constant and dominating the energy density of the Universe [51].
In order to find the possible observational imprints of Quintessence on the CMB anisotropies and on
structure formation, it is necessary to apply linear perturbation theory, integrating the Einstein equa-
tions starting with the appropriate initial conditions. In this chapter we give a complete prescription
for describing adiabatic and isocurvature initial conditions if an additional component is present in the
form of a minimally-coupled scalar field; this can be acquired by giving the set of equations relating
all the fluid components needed in the two cases. In order to do that, we need the background and
perturbation equations, that we report in section 4.2.

Then, working in the formalism of the synchronous gauge, we present a generalization of the work of
Ma and Bertschinger [148], aimed to find the super-horizon-scale behaviour of perturbations at early
times, starting from initial zero entropy perturbations (adiabatic case) or initial zero curvature per-
turbations (isocurvature case). We express the gauge-invariant entropy and curvature perturbations
in terms of synchronous perturbations of baryons, photons, massless neutrinos, cold dark matter and
a minimally-coupled scalar field, as well as metric perturbations.

These results refer to the paper by Perrotta & Baccigalupi {173]. The results are then translated to
the conformal Newtonian gauge in section (4.6).

In section 4.7 we numerically investigate the growth of entropy and curvature perturbations start-
ing from different initial conditions, and we compare them with the corresponding behaviours in the
standard CDM model. We also plot, and discuss, the pure adiabatic and pure isocurvature CMB
anisotropies spectra, again making a comparison with standard CDM.
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4.2 Einstein and conservation equations

Let us briefly discuss the effects on the homogeneous FRW cosmology coming from the additional
contribution of an homogeneous, minimally coupled, real scalar field ¢. Neglecting interactions of ¢
with other fields than gravity, the dynamics of the field will depend, of course, on the potential in
which it evolves, as well on the global expansion of the universe. We assume that the field is forced
to evolve in a potential V(¢).

For the rest of this thesis, we will concentrate on models with total Q = 1 (spatial curvature K = 0)
and we work in conformal coordinates.

The Lagrangian describing the classical behavior of a minimally-coupled scalar field is given by the
well-known expression

L= —5VG10"0:00,6+2V ()] , (1)

and the scalar field energy density and pressure, associated to this Lagrangian, directly follow from
expression of the stress-energy tensor of the scalar field,

T = 6% — 5 (66 +2V)00 (42)

The contribution to the energy-momentum tensor from the scalar field corresponds to the non-zero
elements
T(% = Po and T%j = a2p¢l5ij . (4.3)

From (4.2) we have .
1 . .
Py = §E§¢2 +V(g); pp= @Qﬁz -Vi(e) . (4.4)

The above quantities evolve according to the Friedmann equation, in which we separate the contri-
butions of matter, radiation and scalar field to the total energy density p, putting the cosmological
constant equal to zero: the system composed by the metric and the fluids is then described by the
equation

o () =¥ ] 9

together with the conservation equations
pp = —3M(pgy +pg) - (4.6)
Pn +nHp, =0, (4.7

where p, is the energy density contributed by radiation (n = 4) or nonrelativistic matter (n = 3) and
V' = dV/d¢. Note that, from (4.4), the scalar field conservation law (4.6) is equivalent to the second
order Klein-Gordon equation of motion:

2V _1d

5= P (a?@) +a®V'(¢) = 0. (4.8)

¢+2Ho+a
One of the motivations that leads to the concept of Quintessence as a vacuum energy candidate is
that the scalar field could mimic a cosmological constant if its kinetic energy is negligible with respect
to the potential one. However, a substantial difference is that it admits perturbations around the
homogeneous solution of (4.8); a number of studies have assumed a ”smooth” (spatially uniform ),
time-dependent component with arbitrary equation of state, which does not respond to the inhomo-
geneities in the dark matter and baryon-photon-neutrino component [217, 199, 200, 231]. However,
such scenario is ill-defined and unphysical; the notion of a smooth component is gauge-dependent:
only if the energy density is constant in time and position is it gauge-invariant, but this only allows a
cosmological constant. We should therefore include perturbations of the scalar field, and, as we shall
see, the imprints on observable quantities such as the CMB anisotropies or the matter power spectrum
make the scalar field distinguishable from the pure cosmological constant. In linear theory, they are
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described by small fluctuations d¢ and 5¢ around the background values, driven by the equation of
motion

2PV 1
Fralae 50h=0. (4.9)

The density, pressure and velocity perturbations for the scalar field are described as usual by the
following quantities

8¢+ 2§5°¢ — V254 +a

Spp = —O0TY = ¢5¢+V’5¢, (4.10)
5p¢:§5:rgi = ¢5"5 -V'sp (4.11)

(pp +1p)0s = 0T] = ka“2¢5¢, (4.12)
pemy = 0, (4.13)

5= 0 gk P09 400 (4.14)

b 1P dPpstps  §
therefore, we define the differential ratio

bpy _ $0p — a®V'6¢ _ Do
Py  PIP+ a*V 6¢ P
that differs from the scalar field sound velocity
2 _ Dg
S (4.16)

by the term I'y describing the entropy contribution [133].
Tt is useful to describe radiation in terms of the coefficients characterizing the Legendre expansion
of the temperature and polarization brightness functions, Ap(k, 1, 7) and Ap(k, i, 7)

Az, ) = 3 ()@ + DAn(k, )R 1) | (4.17)
=0

Ap(l,8,7) = (i) @+ DAp(E )Pk 5) (4.15)
=0

Their evolution is completely determined by the Boltzmann equations; denoting by or the Thomson
scattering cross section and by n. the electron density, we have for photons:

b6y = ﬁ—;%eW - g-h : (4.19)

97 = k? (%57 - m,) +aneor(0y — 05) , (4.20)

%y = aeby— ShAy+ eh o+ 2 = Janeoron + Tson.or(Apoiy + Apay) s (421

Ay = 21’1 s AT ) — (+ DArginm] — ancoriq  (123) (4.22)
Apigy) = 2111 1[1AP(1 1y — C+DApgym] +

+ aneor §(AT2(7> + Apgy) + Apagy) (5,0 + %?—) -A plm} , (4.23)

where

3
57 = Arg , 97 = zl_kATl , Oy = §AT2 . (4.24)
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The perturbed stress-energy tensor for radiation contributes with the following non-zero quantities:

8T = —pyby s (4.25)

KT = %pfﬂy, (4.26)

5Ty = %p757+2§, (4.27)
(f{if(j———;;dij)fl; = '%P’yc’v- (4.28)

The expansion (4.17) also applies for massless neutrinos; their evolution equations in the synchronous
gauge are given by the following system:

b, = —26,-

6, = Kk (%5" - ay> : (4.30)
. . 8 3 4. 8,
Arawy = 200 = 170 — chArse) + Eh e (4.31)
- k
Ay = ~ZT+—1UAT(1—1)(U) — (+DArgnwy] @23). (4.32)

Pressureless Cold Dark Matter interacts only gravitationally with other particles and in the syn-
chronous gauge its peculiar velocity is zero; setting 6. = 0, the evolution of CDM density perturbations
is given by

5y = —%h , (4.33)

and the non-zero component of its perturbed stress-energy tensor is
6T = —pcbe - (4.34)

Taking into account the coupling between photons and baryons by Thomson scattering,
. 1.
0p = —0p— §h , (4.35)
. ) 4
g = 291, -+ CEkQCSb + —'?lanea;r(@,, — 91,) . (4.36)
a 3pp

and the perturbed stress-energy tensor for baryons contributes by

8Ty = —pods (4.37)

: 4
BT = 3P+0b - (4.38)

All these ingredients are to be implemented in perturbed Einstein equations (2.106)-(2.109), that can
be integrated once the appropriate initial conditions are fixed , which will be the content of the next
sections.

4.3 Initial conditions and superhorizon evolution

In order to start the numerical integration of the evolution equations wrote down in the previous sec-
tion, one has to impose appropriate initial conditions to the fluid and metric perturbations. Although
a general perturbation need not to be either entropic or adiabatic, it can always be expressed as a
linear superposition of adiabatic and isothermal components [163]. Also, it is useful to recall that
isocurvature perturbations may be present in this kind of model [159]. We explore both these condi-
tions in scalar field cosmology. In particular we search for the initial values of the field perturbations
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d¢p and d¢yo (initial real time derivative) that realize initial adiabaticity and isocurvature, together
with appropriate initial conditions on the other perturbed quantities. For this purpose, we will focus
on the initial fluctuation of the real time derivative of the scalar field perturbation, since the conformal
time derivative is always zero at a = 0 by definition (§¢ = a-d¢;). The same happens of course to the
initial conformal time derivative of the background scalar field ¢; if in general the latter has an initial
non-vanishing kinetic energy, so that ¢y = (dg/dt)e # 0, its conformal time velocity o is zero since
¢=a-

In the following, we will need to use the scale factor behaviour at early times, when a < 1. We
will often use the expansion of the scale factor in powers of the dimensionless parameter e:

Q
€=/ §_7_T_€_§_§__L7_ = Ho/ Q1 =CT1 , (4.39)

where p. and Hy are the present critical density and Hubble parameter respectively, and O, = Q,+Q,
is the total radiation density contribution at the present. Indeed, as it can be easily verified, AS the
scale factor a < 1 at early times, we can neglect the scalar field contribution in equation (4.5), which
admits the simple solution

- 1Om o 3
ale) = e+ i, e+ 0(e) . (4.40)
The expansion rate behaves as
19 1 rQm? 5
%_CL+4QT—E(m)e+og). (4.41)

Before continuing, it is worth reviewing some general results concerning the synchronous gauge be-
haviour of metric and density perturbations on superhorizon scales (we refer to the work of Ma and
Bertschinger [148], although they did not include the scalar field component ). We impose the initial
condition at an early time, deep in the radiation era, when photons and baryons are tightly coupled
and can be considered as a single coupled fluid; due to the large Thomson scattering opacity, the
! > 2 moments of the photon temperature brightness function (4.22) (in particular, the shear o,) and
the polarization brightness function (4.23) are driven to zero. Similarly, to the lowest order in k7,

one can ignore the [ > 3 moments of the neutrino temperature brightness function. Thus, equations
(4.19),(4.20), (4.29),(4.30) become:

. 4 9. . 1
oyt 50, +3h=0 %—Zﬁ%=07 (4.42)
. 4 2. 1,
6U+”3—9y+§h=0 y QV—Z "(5,/—"40'1/):0, (443)
2 : . ) 2 : .
'67-1—5(26’74-71-%-677):0 , UU—E(29U+h+6n): ) (4.44)

When we impose initial conditions, at € < 1, to get starting values for numerical integration, all the
k—modes are still outside the horizon, i.e. k <« aH = 1/7 (the last equality holds in a radiation
dominated universe). Our aim is to extract the analytical time-dependence of superhorizon-sized
perturbations at early times, once the initial conditions are realized: thus we find the early time form
of equations (2.106)-(2.109), (4.42)-(4.44), (4.9) and we find their solutions in successive powers of k7.
To set-up the growth of perturbations, we must assume that at least a single perturbation is nonzero
at initial time, in order to generate all the others.

4.4 Adiabatic initial conditions

The first necessary step in imposing adiabatic conditions is setting to zero the initial entropy pertur-
bation; ultimately, the origin of this result is that there is initially a single curvature perturbation
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(generated we suppose by inflation) and all later perturbations are inherited from it. The entropy
exchange between any two fluid species a and b is ruled by the gauge invariant quantity

da 0p

Sop = - ,
b= T w1+ w,

(4.45)

that must be set to zero initially [133]. The second requirement comes from setting to zero the first
time derivative of S,p; actually, Sy, obeys the following differential equation:

Sa.b = —kVap — 3HD s ) (446)
where I'y; is defined as w w
Tpp=-—Tf— ——T ,
BT T v w,  I4w (4.47)

T, being the gauge-invariant amplitude of the entropy perturbation of the fluid species a. The quantity
Vab = vq — vp is the gauge-invariant difference between the gauge-dependent velocity perturbations of
the species @ and b. In order to have adiabatic initial conditions, both these terms on the right hand
side of equation (4.46) are initially set to zero. Thus, for each pair of fluid components, we impose

Sap = Sap =0 . (4.48)

In particular, applying (4.48) to the scalar field and another component (that we leave unspecified
and label with z), will relate the initial values of §¢ and d¢ to the other energy component and metric
perturbations. The first condition in (4.48) gives: '

Oz
14wy

¢ + V'6p = ¢7 (4.49)

Taking S¢w = a - Spzt = 0 and using the Klein Gordon equation (4.8,4.9), we obtain

2 242
0y (l M——) —1—- [—%q_‘)tht - ( & >t¢t + % (6H(]§t + 2V — ﬁﬁ)] . (4.50)

T 6a2HV') T 6H 1 +w, 1+w, a2V’

Combining them together we find:

_ 1 L _ :
0 = 77 (¢t T ¢t5¢t> , (4.51)
09t = GH = 24/ (a2V") [*5"5”” B (1 +wm>t¢t T e, (6H¢t T2V a2V')] - (452)

The above expressions specify the general adiabatic conditions for the scalar field. Now, let us make a
link to previous works. In [148] the adiabatic initial values and early time behaviours of the matter and
the radiation components were found in the synchronous gauge; these results apply here too. Indeed,
as can easily be seen from the Einstein equations, the contribution of the scalar field fluctuations is
negligible at early times a < 1 with respect to the matter and radiation ones, by a factor a3 and a*
respectively. Thus the approximations and treatment developed in [148] is valid also here for what
concerns the ordinary fluid components, i.e. photons, massless neutrinos, baryons and dark matter;
the time-dependence of the resulting superhorizon-sized perturbations (k7 < 1) is found by expanding

the Einstein equations in powers of k7 and resolving the system of coupled differential equations to
obtain the leading-order terms :

4 4 2
(57 = 5,/ = g(sb = §5c = —gN(lCT)Q ; (453)
15+ 4R, 1 .4
—_—— 91/ = = e — , 9 = 3 .
"= 5T aE 0y = ~—oNk'7", 6.=0 (4.54)
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AN
O'»Y =0 , Op = m(k)7>2 y (455)
_ 9 _ 5+ 4R,
h=N(kr)*, n=2N — 00 r 2R, N(k7)?, (4.56)

where R, = p,/(py + py) and N is a normalization constant. Using these results, it is immediate to
see from (4.51, 4.52) that, imposing adiabatic initial conditions, the initial values of 6¢ and d¢; must
be set to zero. Note that this result hold provided that the time derivative of the unperturbed scalar
field does not diverge at the initial time, which we assumed throughout this thesis.

Adiabatic conditions can be strictly verified only at this initial time, due to the effect of the mutual
coupling between total density perturbations and entropy perturbations which appear in a generic
multi-component fluid. Starting from initial zero values and using (4.56), d¢ and 6¢> will evolve
according to the (4.9) which can be easily integrated once dropped terms of highest order in 7; this
gives the following behaviours at early times (a < 1):

1
6¢J = ——~—2——0—¢t0 NCk27'4 . (457)

5¢ = —%qﬁto NCE* T3, , (4.58)

having considered the lowest terms in 7, thereby approximating the time derivative of ¢ with its value
at the initial time ¢y . We have inserted these inputs into the standard CMB code and in Section
VII we shall expose some numerical results. Now, let us turn to the second class of initial conditions.

4.5 Isocurvature initial conditions

As anticipated at the end of section 2.1, entropy perturbations can and generically will arise in all multi-
component systems. They also generate scalar-type metric perturbations. For entropy perturbations,
the source term in eq. (2.61) does not vanish; we shall assume that at the initial time there are
no adiabatic perturbations, and the entropy perturbations are defined imposing the initial condition
T — 0 as t — 0. Instead of distinguishing between adiabatic and entropy perturbations, fluctuations
are often divided into isocurvature and adiabatic ones. The isocurvature initial conditions are defined
by the initial condition that the gauge invariant curvature perturbation (, given by eq. (2.105),
vanishes at the initial time; the definitions of isocurvature and entropy perturbations are coincident
(or they differ by a term proportional to the decaying mode of ).

Expressing ¢ in terms of the metric perturbations h and 7 through eq. (2.103), the appropriate
isocurvature initial conditions are then realized by the time growing solutions of the system (2.106)-
(2.109) in which ¥ and H 1 are zero initially. First, let us see that, if the variables describing
all the perturbations are regular enough to be differentiable at least four times at 7 = 0, then the
isocurvature initial conditions are simply imposed by setting the metric and radiation perturbations
to zero initially.

Isocurvature initial conditions: hg =1my =0y =0, =0y =6, =0, =0, =0. (4.59)

This can be easily seen by using essentially the Einstein equation (2.109); multiplying both the mem-

bers by a*, deriving once and factoring out the present critical density p, it takes the following

form:

2 d3 .9 . ; . 2 . 2 9. . .
a3 (h + 67)+4aa <h + 6n> + (2a + 2aa) (h + 677) —dk*aan—2k*a*n = —321Gp. (Qyoy + Qo) .

(4.60)
Since by hypothesis h and 7 are differentiable four times in 7 = 0, h + 67 admits the following early
time expansion

2 3

1d 1
(h-+60)0m%+= 3(h+6n)oT + =

d 1
h+6n)oT+ = 5 Y

(h+6n)(r) = —( S

(h+67])07‘ +0(7°), (4.61)
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since with the initial condition (4.59) its initial value is zero. At 7 =0 the only term that survives
in (4.60) is a(h + 67) since a3 = 87Gpc(Qy + 2,)/3. Then, by using equations (4.42,4.43,4.44) one

obtains:
487G

(h+67’7>0—5—pc (Q+Q,)=0= (h+61‘7)0 =0. (4.62)
In the same way, by differentiating (4.60) again one finds
(h+ 677)0 =0. (4.63)

Instead, it may be easily seen that d®(h + 6n)/d7® can be different from zero; in fact, differentiating
(4.60) three times would bring d®(h+67)/d73 o< k2427 which may be different from zero by hypothesis
(4.59). This means that, for 7 — 0, h+6n = O(73); since H = 1/7 to the lowest order, this is evidently
enough to make Uy = (’H‘l‘i/)o = (p = 0, showing that the initial conditions (4.59) imply isocurvature.

It is evident that the initial condition (4.59) can be realized in several ways, depending on which
matter component is initially perturbed, or, in other words, on which ¢, is initially different from
zero. In the present case a further degree of freedom arises from the presence of the scalar field, and
we will analyze separately two main situations: in the first case only one matter component (CDM or
baryons) is initially perturbed; in the second case the initially perturbed component is only the scalar
field. :

4.5.1 Isocurvature conditions from matter perturbations

Let us consider first the case in which an initial density perturbation, with amplitude d.9, resides only
on the CDM component. By integrating (4.33), one finds

50 = Be0 — %h . (4.64)

By hypothesis, this is the only initially perturbed quantity. All the others must to be set to zero at
7 = 0. Let us study the early time behaviour of the perturbations. Since all the modes are outside
the horizon at early times, we first neglect all the terms proportional to k in the Einstein equations;
then we expand all the quantities in powers of € defined in (4.39) and we calculate the leading orders.
In making this, we are assuming that all the perturbed quantities admit a Taylor expansion in 7 =0
of course. By making use of the above criteria and of equations (4.40,4.41), the Einstein equation

(2.106) becomes

10, o@) (14 10, o) i =
(1+4QT6+O(€) 1+2Qr6+0(€) eh =

_ 8nG
2
and it is immediate to gain the early time behaviour of h:

0 3. Q0ma . s
h—5coQT€ 85c0 o e+ 0(e”) . (4.66)

(9248y + 26, + Qedee + Qe + o) , (4.65)

From the arguments presented at the beginning of this section, up to the order €2 we have also
1
n=-—=h. (4.67)
6
Let us come now to the fluid perturbation quantities. As it is evident from the fluid equations, the 8

and o quantities are of higher order in k7 with respect to the purely metric perturbations h and 7.
Therefore, their early time behaviour can be written as follows:

4 P
by=6,=38=—3h, (4.68)



4.5. ISOCURVATURE INITIAL CONDITIONS 61

1 Q.
9729,,:91;: 5CDQC

The behaviour of &+ 67 is interesting even if of high order in 7, since it is directly related to the gauge
invariant curvature by (2.105,2.103) and it can be obtained by solving equation (2.109):

B +0(3), 0.=0, a,=0(). (4.69)

h+6n=="71°, | (4.70)

where we have defined
400092.(82y — 5QT)Ck2

362, + 240,

Note that h+ 67 oc 73, according to the isocurvature nature of the present case, as we described in the
beginning of this section. Also, (4.70) can be used to find the behaviour of o, by using again (2.109).

It remains to find the early time behaviour of the scalar field perturbation d¢. This can be done
by expanding d¢ in powers of € and looking at the perturbed Klein Gordon equation once the terms
proportional to k? have been neglected. The inhomogeneous term is — qSh h is of the order zero from
(4.66), and ¢ = a - ¢; is at least of the order ¢; thereby, to the lowest order in e, equation (4.9) is
satisfied by

T = (4.71)

Q, € . 1 Q

5¢=— ¢t05coQ ra 5¢=—§¢t0500@—;52

This completes the early time behaviour of all the perturbation quantities in this case of isocurvature
initial conditions. All these relations can be easily generalized to the case in which the initial perturbed
matter component is the baryonic one. In the next subsection we study the other interesting case: the
initial perturbed fluid component is the scalar field itself.

(4.72)

4.5.2 Isocurvature conditions from scalar field perturbations

Let us suppose that at the initial time a — 0 the only non-zero perturbed quantity is the scalar
field, in a manner such that the total gauge-invariant energy density contrast is zero, all the other
perturbations being zero. This means that at least one of the two quantities g9, g0 must be different
from zero initially; from (4.14), the corresponding expressions for d¢g and d¢; are

S0 = s (57 (550~ 22) + Vionlio| , de = 222 (L73)
In order to have isocurvature, for the other quantities we impose again the initial conditions (4.59).
The relevant difference with respect to the previous situation lies in the slower rise of the metric
and fluid perturbations starting from their initial zero values: they will grow according to (2.106)-
(2.109) and (4.42-4.44), the whole perturbation-growth-machinery being initially driven only by the
O(e*) contribution of the scalar field through the perturbed Einstein equations, while the perturbed
Klein Gordon equation starts its dynamics from the conditions d¢g # 0, d¢ = 0 and generates the
inhomogeneous term driving the evolution of h. From equation (2.106), together with (4.42-4.44), it
is easy to find the early-time behaviour of the metric perturbation h:

3 5 0 p¢
h=- (——45——-—) it + O(7°) . 4.74
1\, (%) (4.74)
Using the method applied in the previous sections, one finds the leading-order behaviours:
4 4 2
by=0,=30= 20 =—3ho T (4.75)
0,,0,0, x7°, 0,070, (4.76)

and, from (2.109), it can be seen that
T
b+ 6n = —6-2—76 , (4.77)
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where

_ ]1726’4 5¢0p¢ 2 125
T2 = 1709, + 89, (;;CQT > (‘EQ“ B “ﬁﬂr) ‘ (4.78)
From the above formulas we see that the perturbations regarding the metric and the ordinary fluid
components rise very slowly; indeed we found a substantial failure of this model in providing a sig-
nificant amount of perturbations. For this reason we will not consider this case in the numerical
integrations of section VII
It is interesting to find the behaviour of scalar field perturbation at early times, that moves it away
from its initial value d¢h; this contains corrections in (k72) together with a term proportional to T,
as can be verified by integration of (4.9):

5 = 8¢ + P12 + 56373 6@ 7t + 6978 4+ 69O 78 + O(+7) (4.79)

where the expansion coefficients are given by

1 1Q
@ _= 2 (3) _ ™12
o 65¢o Kk, 6¢ 30, Ck*d¢o ,
1 k* 1 /92 30
(4) — 2y m 254(2) _ m (3)
i 20°%0 <—6 c*v ) +35 (—Q> Cto¢® — -5 a Csp'® |

10 1 /Q,\2
(6) — _ L ¥mog 4y | 2 (m ) a2 g2 s4(3)
56 B QTCW +[80(Qr>,c k}éqﬁ ,

5Q 1 (Qn\? 3 (p0P0

56 = — L mesed) 4| = (—’"-) C% — k2| 6 — C?V"5p® — 2 (-‘L—) Codo .  (4.80

¢ san, % ta\e, ¢ o7 =3\, O P (430)

We considered the expansion up to the sixth order in 7 because, as we will see in the next section,
going to the Newtonian gauge changes the last coefficient.

In the next section we extend the results of sections IV and V to the conformal Newtonian gauge.

4.6 Results in the Conformal Newtonian gauge

As is well known, the synchronous gauge is a coordinate system corresponding to observers at rest
with respect to the collisionless matter component. These "Lagrangian coordinates” are defined by
the rest frame of a set of preferred observers. More physical intuition can be achieved in the conformal
Newtonian gauge, where the metric tensor is diagonal. Inside the horizon, the perturbation equations
reduce to the standard non-relativistic Newtonian equations. In this section we write the results of
section IV and V in the Newtonian gauge.

The connection between two gauges is realized in general by performing a coordinate transformation
relating the two frames. The link between the perturbations in the two gauges is expressed at the
same coordinate point instead of the same spacetime point; this is why in most cases it is interesting
to know the difference of the fluctuations in the two gauges [133].

First we write down the relations between the genuine metric perturbed quantities. In the New-
tonian gauge the perturbation to goo exists and it is represented by the potential ¥; the trace of g;;
is instead perturbed by ®. Their relations with A and n are

1 Ts . Qs .
\P=—2ﬁ[h+6n+a(h+6n)} , (4.81)

1 a /. .
o= (h+6n)—n. (4.82)
They can be easily expressed for ¢ < 1, k7 < 1 by substituting directly the expressions for 4 and 7
contained in sections IV and V.
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Now we concentrate on the transformations regarding fluids and the scalar field. They are contained
in the stress energy tensor, which transforms as
T””(:E) _ Fo livadls lird oo
O0zP O0z°
Using this, and taking care to compare the perturbations at the same coordinate point, the relations
between the quantities in the two gauges (synchronous and Newtonian labeled as s and N respectively)
for each fluid are:

(z) . (4.83)

5, = 5N——7'—§, (4.84)
0, = On—KT, (4.85)
ps = pn—pT , (4.86)
0s = ON, (4.87)
where .
_ h+ 67
T = ~ (4.88)

is the lapse between the synchronous and the Newtonian time coordinate. Regarding the scalar field, we
compute the Newtonian gauge expression of the amplitude fluctuation d¢ by using the transformation

Sps = 6y — T . (4.89)

In the following subsections we write the behaviour of the fluid quantities in the e < 1, k7 < 1
regime and in the Newtonian gauge, dropping the N subscript.

4.6.1 Adiabaticity

The leading orders for matter and radiation perturbations are

0y = —1—5%?% =0, = —3—65, = §5c , (4.90)
%=%=%=%=§¥éﬁ%, (4.91)
oy = 157§¥¥%Eif 202 . (4.92)

The scalar field perturbation amplitude is
5¢::fV72¢WESi§%ﬁ; : (4.93)

Note that in this case the scalar field perturbations faster grow in time (o< 72) than in the synchronous
gauge (o< 7%); as we point out below, this is not a feature of the isocurvature initial conditions.

4.6.2 Isocurvature from matter

Matter and radiation behave as

4 2. Q 27
5,), = 5,, = §5b = —gchQ—;NT - -k—217' . (494)
1 Q Il'r '
5(: = 560 — 55605—:‘67 - 3@2- 3 (495)

1. Q
%:@Z%:_E%ﬁ%%ﬁ+ 5
T

1172 9 :Isz
sy Ye "'2'

(4.96)



64 CHAPTER 4. SCALAR FIELD COSMOLOGY

o, = O(e) . (4.97)
The scalar field amplitude is given by

1 Q
o = —274‘¢t05c0§2‘:‘027'3 +

11673
2Kk?

b0 (4.98)

and shows that the gauge change does not touch the order of the leading power in 7, although it
modifies its numerical coefficient.

4.6.3 Isocurvature from scalar field

Matter and radiation behave as

_ _4_15¢0P¢ 4_4 Ty 4
67*61/_35}’“_5(,%%)67 2k27 5 (4.99)
3 /6 3Zo7% To7d
cHe T
0,=0,=0, 7, 0y cT. (4.101)

The scalar field amplitude is given by
Z
5 = o + 6672 + 563 73 4 64 4 5¢0) 75 4 (&/)(6) + -2—]:3@0) S +0(7) (4.102)

therefore, in this isocurvature case, the behaviour of d¢ is affected by the gauge change only at high
orders in 7, leaving the leading terms unperturbed.

In the next section we will numerically solve the linear cosmological perturbation equations with
the initial conditions sets developed in sections IV and V.

4.7 Numerical integrations and discussion

In order to obtain the anisotropies power spectra in temperature and polarization, as well as the
matter power spectrum today, we have to integrate with the proper initial conditions the equations
described above.

As we have seen in chapter 3, expanding the temperature and polarization anisotropies in multipole
moments gives rise to a hierarchy of coupled differential equations, where power is transferred from
lower to higher multipoles. To test a model up to a given angular scale §, one should solve the system
3.18-3.20 up to [ ~ 1/6: for a detailed prediction of the CMB spectra on small angular scales, this
would require the integration in time of a very large system of differential equations, with the cost of
a large computational time.

We found convenient to modify the existing code CMBFAST [197], based on the line of sight approach
to the CMB anisotropies. This method is based on the integration, along the photon past light cone,
of the formal integral solutions of the Boltzmann equation implemented with the perturbed fluid
equations, i.e. the integral solutions given by egs. 3.49, 3.50 and 3.51. This approach has the main
advantage to clearly express the integrand in egs. 3.49-3.51 as the product of a cosmological source
term, independent on the multipole moment [, and a geometrical one, independent on the cosmology:
the latter can therefore be computed once and stored in a file to be used in any cosmological model.
On the other hand, the source terms in the integrals are given by egs. 3.22, 3.23 and 3.24 and can
be easily computed, for each Fourier mode &, at any time. For scalar perturbation, the source terms
expressed in the synchronous gauge, for a flat universe, are given by:

5y h
SO = P2 SO =+ | 50 = ;pO 4 —g( 5 +31) (4.103)
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and, again,

175
PO = = [—1—50», - \/EEM . (4.104)
Such source terms evolve in time, following the evolution of the photons and baryons perturbations, as
well as the metric perturbations. As we can see, the introduction of a scalar field enters only implicitly
in the source terms, both through the background, which is now described by two equations (namely,
the Friedmann equation and the Klein-Gordon one) and the metric perturbation evolution ( because
the metric perturbations h and 7 contain all the perturbed fluid quantities, including the scalar field).
By inserting the Klein Gordon equation and its perturbed form into the numerical code, and including
the scalar field and its fluctuations in the Einstein equations, the correct evolution of the remaining
quantities is immediately obtained, and the correct values for the source terms 4.103 are recovered .

To check the accuracy of our integrations, beyond the internal checks of the integration routines,

we compared flatter and flatter quintessence potentials ( thus approaching the “true” cosmological
constant behavior) with the spectra corresponding to the cosmological constant case, finding a com-
plete agreement. In chapter 6 we will see a further improvement of this code, to recover cases in
which the quintessence field is coupled with the Ricci scalar. Also in this case, we verified that, as the
coupling parameter goes to zero, we recover the standard quintessence scenario.
Before going to the results, we must finally comment about the initial conditions for the background
values of the quintessence field and its derivatives; in fact, for a given value of {14 today, the starting
values of ¢ and ¢ at 7 = 0 are not unique; in particular, there exist particular trajectories, named
“tracking solutions”, which have attractive properties, that will be considered in chapter reftra. These
solutions are generally characterized by comparable values of the kinetic and potential energies of
the field along the trajectory. Here, instead, we consider the trajectories for which, starting with
initial null velocity, the field reaches today a given value of {0y with nearly vanishing kinetic energy.
Therefore, the case considered here can be regarded as the limit of tracking solutions for vanishing
Quintessence kinetic energy.

We performed the numerical integration applying our considerations to a scalar field model based
on ultra-light pseudo-Nambu-Goldstone bosons; the potential associated to this field has the form
[104]:

V(¢) = M*[cos(¢/f) + 1] (4.105)

Our working point corresponds to the parameter choice f = 1.885 X 10'® GeV and M = 1073 eV,
assuming an initial kinetic energy equal to the potential one. The starting values of the scalar field and
its initial time derivative are obtained by requiring that the present contribution is Q4 = 0.6, fixing
Hy = 70 km/sec/Mpc and 2, = 0.05. Furthermore, we have taken the primordial power spectrum to
be exactly scale-invariant.

Even though the main cosmological consequences of this kind of scalar fields have been analyzed by
many authors (see [51, 221]), here we use the formulas developed in the previous sections to accurately
compare the pure adiabatic and pure isocurvature regimes. Also we give particular emphasis on the
behaviour of entropy and curvature perturbations, again comparing their evolution starting from
isocurvature (from CDM) and adiabatic initial conditions; each case is compared with a pure CDM
model with the same background parameters. The comparison of Quintessence cosmologies with the
cosmological constant scenarios will be performed in chapter 6.

First, let us consider the power spectra of the microwave background anisotropies, both tempera-
ture and polarization. They are expressed by the expansion coefficients of the two point correlation
function into Legendre polynomials (see e.g. [163]) and admit the following expression in terms of the
quantities defined in the previous sections:

dk dk
0;—”=47r/—k—mﬂ(k,~ro)|2 ,CF :47r/7mm(k,m)|2 : (4.106)

The adiabatic case is shown in figure (4.7). The presence of the scalar field (solid line) produces an
increase of the power of the acoustic oscillations with respect to the CDM model (dashed line). This is
due to the fact that the universe is not completely matter dominated at decoupling: thus at this time
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the perturbations are growing faster than in the CDM models (we recall that density perturbations in
adiabatic models grow as a® and a respectively in the radiation in the matter eras) and this produces
an early integrated Sachs-Wolfe effect (ISW), found first in [51]. Also, the position of the first peak is
slightly shifted toward smaller angular scales due to the increase of the distance of the last scattering
surface (projection effect). Note how these features regard both the polarization and temperature
peaks. Finally, the temperature spectra shows that the ISW is active on the smallest multipoles due
to the dynamics of the scalar field in the present case; this is a distinctive feature with respect to the
cosmological constant [51].

Figure 4.7 shows the spectrum from isocurvature perturbations. While the projection effect is the
same as in the adiabatic case, now the situation regarding the amplitude of the acoustic oscillations is
inverted: the peaks are lower than the ordinary models, both for polarization and temperature. This
is due to the reduction of the matter/radiation ratio as we include ¢ by keeping Qo1 = 1; in fact, the
scalar field has no intrinsic dynamical effect at last scattering since matter and radiation components
were largely dominant. The opposite behavior of the anisotropies in adiabatic and isocurvature models
as one varies Q,h?% is well known (see e.g. [163]). To better see this point, we plot in figure 3 and 4
the power spectra for models having fixed Q,h? and Q.h? but varying Q,, = Q + Q. and h by means
of different 4. Thus we expect the same amount of perturbations in the CMB except for the effects
that are genuinely linked to the scalar field, being the projection effect and the ISW on the smallest
multipoles. This is precisely what happens for the spectra in figure 3 and 4. The dashed lines represent
again the curves for Qy = .6 as in figures 1 and 2; the solid and thin lines represents 1y =.5and .7
respectively. The spectra show remarkably the same features for polarization and temperature, even
if it should be noted how the former, arising from acoustic oscillations occurring just at decoupling, is
not influenced by the ISW effect, since it comes from the line of sight integration. All this shows how
the perturbation power at decoupling is not touched by the subdominant scalar field; the opposite
behaviours in the adiabatic and isocurvature cases is explained by the decrease of matter in favor of
scalar field. :

More insight on the perturbation behaviour may be obtained by looking at the time evolution of
some significant quantities; we look at one single scale, or wavenumber, roughly entering in the horizon
between matter and radiation equality and decoupling: =

k=8x10"2Mpc!. (4.107)

Let us begin with the gravitational potential ¥, shown in figure 5; the rapid increase (or decrease)
is associated, in the isocurvature and adiabatic case respectively, to the horizon crossing of the scale
examined. The amplitude of the gravitational potential variation at horizon crossing, in the scalar
field models, is higher for the adiabatic case and lower for the isocurvature one when compared with
the corresponding CDM models. These variations of the gravitational potential are the source of the
CMB anisotropies on sub-horizon angular scales (I > 200) through the acoustic driving effect and the
early ISW effect [110], and therefore follow the different behaviour in the two cases.

We concentrate now on two particularly significant quantities regarding both adiabatic and isocur-
vature regimes, the total entropy perturbation, defined below, and the curvature ¢ defined in (2.105);
we recall that these quantities are gauge invariant. The amplitude of the total entropy perturbation
is given by

Pl = plis +plrer = > (0pa — c20pa) + > _(ca — C3)0pa =
a a
= Z(épa — 26pa) (4.108)
a

where p is the total pressure and the sound speed must take into account the scalar field contribution
cé =1-2V'¢/py in the summation

2 __ za hacz

s h; I

C

(4.109)
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where
he=pa+Pe >, h=) he. (4.110)
a

While the T';,; term comes from the intrinsic entropy perturbation of each component, and it is
ultimately sourced only by the scalar field component due to the spatial and temporal variations of
the scalar field equation of state, the I'y¢; term arises from the different dynamical behaviours of the
components, and it is related to the S, quantities defined in eq. (4.45) by the relation [133]:

1

hoh
prrel = E Z U}L b(cg - C%)Sa.b (4.111)
ab

In figures 6 and 7 we plot I vs a (solid line and arbitrary units) using isocurvature CDM and adiabatic
initial conditions respectively. We note that in both cases I' — 0 as a — 0: in the last case, this is
an obvious consequence of the definition of what adiabatic conditions are; on the other hand, taking
isocurvature CDM initial conditions, we started with non-zero values of the Sy relative to the CDM
component and the other non-compensating components, but again I' — 0 as a — 0. This is because
at early times the cosmic fluid is radiation dominated, so that p oc 1/a* in (4.108); this kills T for
a — 0, since no radiation perturbations are present initially. Instead, the initial value of the first
time derivative of I is different from zero only selecting isocurvature initial conditions, since it takes
contributions directly from the Sy, terms [133]. The behaviours of entropy perturbations in both
cases have been compared with those in the standard Einstein-De Sitter model ©,, = 1 (dotted line),
with the same choice of € and Hy. The entropy perturbations remain nearly constant before horizon
crossing; at this time the perturbation starts its oscillations that are damped in amplitude when the
scale is well below the effective horizon. As an expected feature, note that in the scalar-field model
the peaks of the oscillations are shifted closer to the present when compared to the Einstein-De Sitter
case, as the epoch of matter-radiation equality.

In figures 8 and 9 we plot the evolution of the gauge-invariant curvature perturbation ¢ for isocur-
vature CDM and adiabatic initial conditions, respectively. At a < 1, this quantity is zero in the
isocurvature case and non-zero in the adiabatic one, being an explicit indicator of the nature of the
perturbations. Again the significant dynamics occurs in correspondence of the horizon crossing, and
the latter occurs slightly later then in the CDM model due to the presence of the scalar field.

Finally, note how in the isocurvature cases (figures 6 and 8) the amplitude of the oscillations are

lower than in the corresponding CDM models; as we mentioned above, this is due to the reduction of
the matter component in favor of the scalar field energy density. Most important, these graphs show
that this is the only possible cause of this effect, since at the times of oscillations for the scale exam-
ined, roughly between equivalence and decoupling, the scalar field is very subdominant with respect
to the other components.
We may comment on the fact that isocurvature scenarios suffer from various problems; mainly, they
give rise to an underproduction of large-scale structure relative to large-angle CMB anisotropies [70]
and to small-angle acoustic peaks amplitude which is too small when compared with recent mea-
surements of degree-scale anisotropies. However, entropy perturbations can arise in axion models
[218, 195], and in phase transitions which produce topological defects, such cosmic strings [127].

Concluding, the hypothesis of a cosmic vacuum energy stored in the potential of a scalar field
enlarges naturally the possibility to gain insight into high energy physics from the traces left in the
cosmic radiation and in the matter distribution. With upcoming CMB experiments [155][156], it will
be interesting to further study the cosmological imprints of these models, in the context of different
theories attempting to describe the hidden sector of high energy physics.
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Figure 4.1: Power spectra of the CMB anisotropies from adiabatic initial conditions. The background
parameters are Qp = .05, h = .7, three massless neutrino families and Q4 = .6, = .35 (solid line),
Qy = 0,92, = .95 (dashed line). Note the increase of the acoustic peak power in the scalar field model.
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Figure 4.2: Power spectra of the CMB anisotropies from isocurvature initial conditions. The back-
ground parameters are 0, = .05, h = .7, three massless neutrino families and Qg = .6,Q; = .35 (solid
line), Qg = 0,9 = .95 (dashed dotted line). Note the decrease of the acoustic peaks power in the
scalar field model, an opposite behaviour with respect to the adiabatic case.
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Figure 4.3: Power spectra of the CMB anisotropies from adiabatic initial conditions with different {24
and fixed Qph? = .0245 and Q.h% = 1715 (Q,h? = 0.196) as in figures 4.7 and 4.7. The background
parameters are Q,, = .4,h = .7 (dashed line), Q,, = .3,h = .81 (thin line), and Qp, = .5,h = .63
(thick line). The amplitude of the peaks is the same, while they are slightly shifted because of the
projection effect.
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Figure 4.4: Power spectra of the CMB anisotropies from isocurvature initial conditions with different
g and fixed Q,,h? = 0.196. The spectra show the same behaviours for varying {2, as in figure 3.
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Fignre 4.5: Gravitational notential (in arbitrarv units) at the comoving wavenumber k = 8 x 102
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Figure 4.6: Gauge invariant entropy behaviour (in arbitrary units) as a function of the time in adiabatic
models for scalar field (solid line) and pure CDM (dashed line) models. Note the shift of the horizon
crossing (corresponding to the oscillations) toward late times due to the effective cosmological constant.
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Figure 4.7: Gauge invariant entropy behaviour (in arbitrary units) as a function of the time in isocur-
vature models for scalar field (solid line) and pure CDM (dashed line) models. Note the decrease of
the oscillation amplitudes in scalar field models, due to the lack of matter with respect to the pure
CDM case.
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Figure 4.8: Gauge invariant curvature behaviour (in arbitrary units) as a function of the time in
adiabatic models for scalar field (solid line) and pure CDM (dashed line) models. Note that the
curvature is non-vanishing as a — 0.
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Figure 4.9: Gauge invariant curvature behaviour (in arbitrary units) as a function of the time in
isocurvature models for scalar field (solid line) and pure CDM (dashed line) models. Note that the
curvature is vanishing as a — 0.



Chapter 5

Extended Quintessence

5.1 Introduction

In the previous chapter, a minimally coupled scalar field has been introduced as a candidate for the
"missing energy” component of the universe. However, the choice of a minimally coupled field is
largely arbitrary, and certainly it is not the most general possible field in which the eventual ”vac-
uum energy” could reside. Indeed, in the context of generalized Einstein gravity theories, a coupling
between the scalar field modeling the Quintessence component, and the Ricci scalar R is not to be
excluded. In this chapter, we generalize Quintessence cosmologies to the large class of scalar-tensor
theories of gravity; in order to do that, we assume that the Quintessence field is non-minimally coupled
to the Ricci curvature scalar R.

Scalar fields coupled to gravity or matter are ubiquitous in particle-physics inspired models of unifica-
tion, such as string theory. In many models, the scalar field is massive; if the Compton wavelength is
of macroscopic scale, its effects are those of a ”fifth force”, characterized by the range A of a Yukawa
potential, e="/* /r.

Of course, one is not completely free in choosing the coupling constants in the Lagrangian of the
theory: indeed, the classical tests of gravity theories put severe constraints on the scalar field term
arising in the action. By far, the strongest constraint is the E6tvos-Dicke experiment [186].

In order to be consistent with the classical test of General Relativity the theory should be cast as a
metric theory with a scalar field of infinite range, or of long range compared to the scale of the solar
system.

To avoid having to require a coincidental similarity between different Yukawa couplings, one must
constrain to very small values any explicit coupling of the scalar field to ordinary matter [178].

The coupling between a Quintessence field and light matter has been explored in [41] and it is
subject to restrictions from the constraints on the time variation of the constants of nature. Recently,
the cosmological consequences of a coupling between Quintessence and matter fields have also been
explored (see, e.g.; [7]).

Due to the required flatness of its potential to achieve slow-rolling, the present mass-scale of the field is
extremely small (< Hp ~ 107%3¢V) and the force mediated by the scalar field is of long range (> Hy’ b.
For this reason, a hypothetical coupling between Quintessence field and other physical entities gives
rise to long-range interactions; in the case of coupling with the Ricci scalar, these long-range interac-
tions are of gravitational nature, giving rise to time variation of the Newtonian constant, so that the
coupling parameter is constrained by solar system experiments [49]. Recently, some authors [7], [220],
[61], considered scalar-tensor theories of gravity in the context of Quintessence models, studying the
existence and stability of cosmological scaling solutions.

Models in scalar-tensor theories of gravity involving scalar matter couplings have also been studied
[19]. This chapter is based on the paper by Perrotta et al. [174], and it describes the evolution of
cosmological perturbations in a subclass of these theories, where the scalar field coupled with R is
proposed as the Quintessence candidate. The role of such a field on CMB anisotropies and on structure
formation in the Universe is also discussed.

77
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Following the original paper by Perrotta et al. [174], we name such models ‘Extended Quintessence’,

in analogy with the ‘extended inflation’ models [137, 1, 227], proposed in the late eighties to rescue the
original idea of inflation based on a first-order phase transition. In those models a Jordan-Brans-Dicke
(JBD) scalar field [34] was added to the action to solve the ‘graceful exit’ problem of ‘old inflation’.
Of course, the similarity is not complete: in Extended Inflation a second scalar field - the ‘Inflaton’,
undergoing a first-order phase transition, was the actual source of vacuum energy during inflation.
Here, instead, we are supposing that our non-minimally coupled scalar field has its own potential
which gives rise to a time (and space) varying cosmological constant term dominating the present-day
energy density of the Universe.
The first proposal of using a non-minimally coupled scalar field to obtain a decaying cosmological
constant dates back to 1983, when Dolgov [66] suggested to exploit the effective negative energy
term contributed by the coupling of a massless scalar field with the Ricci scalar R to drive the overall
vacuum energy density to zero asymptotically. The main problem with such a simple model is that the
interesting dynamical range is achieved when the change in the effective Newton’s constant strongly
contradicts upper limits on solar system experiments (see [188]). Our model will differ from Dolgov’s
idea in that we will not assume that the non-minimal coupling term is the only cause of time variation
for the effective vacuum energy contribution. This allows us to easily achieve consistency with the
solar system experimental limits on the coupling constants.

In this chapter we present the background and perturbation equations in the most general form
and we consider their evolution for Induced Gravity (IG) and Non-Minimally Coupled (NMC) scalar
field models.

The Induced Gravity model was initially proposed by Zee in 1979 [246], as a theory for the gravita-
tional interaction incorporating the concept of spontaneous symmetry breaking; it was based on the
observation in gauge theories that dimensional coupling constants arising in a low-energy effective
theory can be expressed in terms of vacuum expectation values of scalar fields. This model was sub-
sequently incorporated in models of inflation with a slow-rolling scalar field [204]; in a modified form
it was the key ingredient of the Extended Inflation [137],[1],[227] class of models. More recently, it
has also been adopted in open inflation models [88]. In [246], a scalar field coupled to gravity by a
term proportional to R¢? in the Lagrangian, is anchored by a symmetry-breaking potential to a fixed
value which eliminates the potential energy in the present broken-symmetric phase of the world.”'We
propose here a different role for this scalar field, in the sense that we keep the same coupling with
the Ricci scalar as [246], but we allow for a larger class of potentials than the Coleman-Weinberg one,
also including potentials that do not possess a minimum and can therefore contribute to the present
Quintessence energy density.

The second class of theories to which we apply our treatment is that of non-minimal coupling of a scalar
field to the Ricci curvature, described extensively in curved space quantum field theory textbooks (e.g.
[22]).

The work is organized as follows: in Sec. II we present the relevant equations, defining the
dynamical system for the background as well as for the perturbations in non-minimally coupled scalar
field cosmologies; Sec. III is devoted to the definition of the IG and NMC models and to the analysis
of the background evolution; Sec. IV contains and discusses the results of the numerical integration.
Finally, Sec. V contains a brief summary of the results and some concluding remarks.

5.2 Cosmological equations in scalar-tensor theories of gravity

Our purpose is to describe a class of scalar-tensor theories of gravity represented by the action

5= [ @ 22 [116R) ~ Jo(®)6* 6~ V(®) + Blud] 5.

where R is the Ricci scalar, 8 is a constant needed to fix units and L f;,44 18 a classical multicomponent-
fluid Lagrangian including also minimally coupled scalar fields, if any. We disregard any possible
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coupling of our scalar field with ordinary matter, radiation and dark matter [57].

As in the previous chapter, we restrict ourselves to a flat FRW background; we are still using units
where ¢ = 1, but the convention concerning 87 G will be stated later, since it will depend on the choice
of a specific theory included in this general description. Instead, following [117], we will choose the
relation G, = Ty, to identify T),,. Greek indices will be used for space-time coordinates, latin ones
will label spatial ones. We use the signature (—,+, +,-+). By defining F = Jf/0R, the gravitational
field equations derived by the action (5.1) are

1

. — RF -2V .
Gu = Tw=— l:ﬂTJ,imd +w <¢,p,¢u 29/.w¢ o’ > + g,u.uf—"_—'“ + Fpp — gul/F;’g (5.2)

F 2
Here G, is the Einstein tensor, and all the other contributions have been absorbed in T)v; as noted
in refs. [116],[117], if one writes the gravitational field equation in this form, then T),, can be treated
as an effective stress-energy tensor, which allows us to use the standard Einstein equations by simply
replacing the fluid quantities with the effective ones. In particular, this is also true for the perturbed
Einstein equations, here treated in the formalism of the synchronous gauge.
The background effective quantities following from the definition of T),, are

1 w5, RF-—F¥ SHE
P = F (ﬁpflmd + 2a2¢ + 5 +V - a2 ) i (53)
1 w ., RF—f F  HF
p = F (/Bpfluzd -+ 2a2¢ 2 V+ CL2 + 012 ) b (54)
where the overdot denotes differentiation with respect to the conformal time 7 and H = a/a.
The background FRW equations read
1 a? :
H = 37 <a Bp fruid + ¢2 5 (RF — ) +a2V—37-lF> , (5.5)
¥ o 1 2
H=H = 5 (a*Bostuia + Pruuia) +wi? + F — 20F) (5.6)
while the Klein-Gordon equation reads
1
$+2Hp=—— ( $8 =’ f g +26Vs) . (5.7)

Furthermore, the continuity equations for the individual fluid components are not directly affected by
the changes in the gravitational field equation, and for the i—th component
pi = —3H(pi + pi) - (5.8)
In this background, the trace of (5.2) becomes
2 F o HF
—R= [:ﬁszmd-i—qu +2(f—RF —-2V)+3 ( + 2—- >] , (5.9)
recalling that Tfud = —pfiuid + 3Pfid- Note that R also appears in the right hand side of the
equation, unless f is of the form f(¢,R) = F(¢)R. Let us express Ricci scalar in terms of the
conformal expansion rate: 6
2

R=- (H? +H?) . (5.10)

Now, let us consider the perturbations to this background; as in chapter 4, we adopt the formalism of
synchronous gauge.
In terms of the effective fluid, the perturbed quantities can be written as [174]:

1 o 1 &2 H(SF +3p K2 Fh
5)0:‘1'5 /85Pfluid+w¢a2¢+2(¢ 2 (p 9 L )5F+6 2] (5.11)

—fo+2Vy)op—3
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1 ¢ 1 FPwy §F  MHEF  [(p—p 2K 1Fh
e s e A O A NP 75 A
(5.12)
_ Bpfiwia + priwid)Omia K —wdbd — 6F + HIF
(p+p)f= 7 - = (5.13)
_ B(pfiuid + Priwid)Ofruid | 2k F h
(p+p)o= 7 +ap 5F+3k2(n+6) . (5.14)

The perturbed Klein-Gordon equation reads

; we N i L2, (we) &, of=fst+2Ve _¢h o
6¢ -+ (3% + 'U(]f)) 5¢+ l]ﬁ -+ ("J—) @7 “+a (T>’ jl 5¢ = 6 + 'zzf,(pR(sR . (5.15)
Note the presence of the Ricci curvature scalar R in the f 4 term in the left hand side, as well as its
perturbation dR in the right hand one.

All these ingredients have to be implemented in the perturbed Einstein equations 2.106-2.109, that
can be integrated once initial conditions on the metric and fluid perturbations are given; we adopt
here adiabatic initial conditions for the various components, as described in chapter 4, and we perform
the numerical integration of the system above for two specific classes of scalar-tensor theories, that
will be defined in the next section.

5.3 Induced gravity and non-minimally coupled scalar field models

We will consider two main classes of non-minimally coupled scalar field theories; both can be obtained
by setting
f(¢R)=F($)R , w(¢)=1, (5.16)

so that many of the formulas in the previous section simplify; also we take 3 = 1 requiring that F' has
the correct physical dimensions of 1/G. Note that all this fixes the link between the value of F' today
and the Newtonian gravitational constant G: '

Fo=F(go) = 5 - (5.17)

Also, this allows to define a time variation of the gravitational constant in non-minimally coupled

theories,
Gy F;

G F’
(where the subscript ¢ indicates differentiation w.r.t. the cosmic time ¢) that is bounded by local
laboratory and solar system experiments [93] to be

(5.18)

G
—C-; < 107 per year . (5.19)

There is another independent experimental constraint coming from the effects induced on photons
trajectories [238]. As well known, by making the transformation ¢ — ®;pp such that

1 1. w :
SF($)R — =¢* ¢, — @yppR+ 2% 8B (5.20)
2 2 ®sBD

the condition wypp > 500 has to be imposed at the present time. It is easy to see that in our case

this takes the form

F
wyBp = E,—zo— > 500 , (5.21)

@0
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where Fy is the derivative of F' w.r.t. ¢ calculated at the present time. As we shall see, this constraint
turns out to be the dominant one for our models.

Now let us proceed to the definition of the IG and NMC models.

In Induced Gravity (IG) models the gravitational constant is directly linked to the scalar field
itself, as originally proposed in the context of the Brans-Dicke theory. We treat here this case by
setting

F(¢) =¢¢%, (5.22)
where £ is the IG coupling constant. In this case equations (5.17,5.19,5.21) become respectively
1
_ 2
¢0 W? (5 3)
0 <107 per year , €< L . (5.24)
¢ — ’ — 2000

The minimally coupled case is recovered from IG models in the limit £ — 0; because of equation (5.24)
this implies ¢y — oo, and it can be quite easily verified that these conditions reduce all the equations
written in the previous case to ordinary general relativity.

In non-minimally coupled (NMC) scalar field models the term multiplying the curvature scalar R
is made of two contributions: the dominant one, which is a constant, plus a term depending on ¢;
bearing in mind the constraint on F at the present time, from equation (5.17), this can be written in
the most general way as

F($) = g5+ F(9) = Fl¢o) - (5.25)
Then, we choose F' in equation (5.25) as

F(¢) =¢¢*, (5.26)

where again ¢ is a coupling constant ! and the constraints (5.19,5.21) become

167 GEpohrg < 107 per year 327TG§2¢(2) < (5.27)

500
Contrary to the IG case, we are now free to set ¢y, and the ordinary GR case is recovered by taking
¢ — 0. Having no restrictions about this point, in our numerical integrations we fixed ¢9 = Mp =
G~1/2, the Planck mass (in natural units). We will only consider here for definiteness the case £ > 0.
The most general case, regarding the background evolution only, is discussed in [49].

Let us just mention here that one can always map this kind of scalar-tensor theories of gravity
to canonical general relativity, by means of a conformal (Weyl) transformation, leading to the so-
called Einstein frame (see, e.g. the recent review in [81]), where the gravity sector of the action takes
the standard Einstein-Hilbert form. In the latter frame, the Quintessence field would be minimally
coupled with gravity, but it would show explicit couplings with all the matter components. This
mathematical technique is particularly useful if one is looking for scaling solutions [7]. We will not
adopt this procedure here, but we will make all our calculations in the present physical frame, also
called ‘Jordan frame’.

Let us now elevate ¢ to the role of Quintessence. This requires giving it a non-zero potential V (¢).
As mentioned in the previous chapter, several potentials have been proposed for the Quintessence.
In [51], the authors analyzed a cosine potential motivated by an ultra-light pseudo Nambu-Goldstone
boson, while in other works, trying to build a phenomenological link to supersymmetry breaking
models, inverse power potentials have been considered [206], [249],[142],[75]. As pointed out in [21],
inverse power potentials appear in supersymmetric QCD theories [208], [152]. Here we take the
simplest potential of the second class,

MS

¢ 3

'Note that we define here the coupling constant & with the opposite sign w.r.t. the standard notation for NMC
models.

V(#) (5.28)
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where the mass-scale M is fixed by the level of energy contribution today from the Quintessence.
We are now ready to make some preliminary investigation of the background model. We require
that the present value of Qg is 0.6, with Cold Dark Matter at Qcpp = 0.35, three families of massless
neutrinos, baryon content 2 = 0.05 and Hubble constant Hy = 50 Km/sec/Mpc; the initial kinetic
energy of ¢ is not important since it is redshifted away during the evolution, so we can fix an equal
amount of kinetic and potential energy at the initial time. Note that the physical meaning of our
starting time is not that of the Big Bang. The validity of our discussions doesn’ t applies to the
initial singularity; rather, we make the scenario begin at a time deep in the radiation era, and after
the end of the inflationary epoch, when each scale of cosmological interest was well beyond the horizon.

Let us introduce the next Section by fixing the compatibility of our models with the experimental
constraints (5.19,5.21). A first version of these results, valid only for NMC models, can be found in
[49].

First, we integrate equations (5.5,5.7) to compare with the experimental constraint of Eq.(5.19).
The results are shown in Fig.5.1, where |G;/G| at the present time is shown as a function of {. Both
for NMC and IG, the limit roughly is

£<3x107%. (5.29)

However, as we anticipated, the stronger constraint comes from Eq.(5.21); it is simple to see that in
our models Eqgs.(5.24,5.27) become

£<5x107* IG case (5.30)
£<5x 1073 (v/Geo)~' NMC case . (5.31)

In the next section we will explore the effects on the cosmological perturbations spectra of EQ models,
also considering values of £ beyond the above constraints, in order to better illustrate its effect on the
cosmological equations. Then, we will discuss how future CMB experiments like MAP and Planck
will be able to detect features of the present models within the range allowed from Eqgs.(5.30,5.31).

5.4 QR-effects on cosmological perturbations

Here we present the results coming from the integration of the complete set of equations of Sec. II. The
numerical integration of this set of equations has not been performed before, and we obtain several
new and interesting effects concerning cosmologies with a coupling between Quintessence and the Ricci
curvature scalar R, that we name ‘QR-effects’; we discuss them in the following subsections.

Let us now set initial conditions for the perturbation equations, referring to [173] for an extensive
treatment. We adopt isoenthropic (i.e. adiabatic) initial conditions; in the minimal coupling case they
are quite simple: everything is initially zero except for the metric perturbation 7. It is easy to check
that these conditions remain valid also in the present case. In fact, adiabaticity is imposed on each
fluid separately, by requiring that the entropy perturbations is equal to zero initially for each pair of
fluid components, including Quintessence [173]; these conditions do not depend on the coupling of a
given component with R.

As we anticipated, the scalar-tensor theories of gravity that we consider leave several characteristic
imprints on cosmological perturbations spectra. Also, both IG and NMC models, although for different
coupling constant ranges, show a remarkably similar behavior. For clearness, we shall treat first the
features related to the background evolution and successively the genuine QR-effects on perturbations.

5.4.1 QR-effects on the background: enhanced Hubble length growth
and Qmatter >1

Let us consider the Hubble length first. The integration of Egs.(5.5,5.6) with the potential (5.28) shows
that the time derivative of the Hubble length, H; '(z), increases at non-zero redshifts compared with
the ordinary Quintessence case, both for NMC and IG models. Therefore, fixing the Hubble length
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at present as we do implies that in the past it was smaller than in minimally coupled models. This
effect is clearly displayed by Fig.5.2, where the comoving Hubble length as a function of z is shown
(for simplicity we plot the IG case only, the NMC one being completely equivalent). This feature has
been already noted in the context of pure Brans-Dicke theories [141]. The sharp change in the time
dependence of H~! at small redshifts is due to the Q-field, that dominates the cosmological evolution
at later times. A

The source of the enhanced Hubble length growth in our models is the last term in the Einstein
equation (5.6); as we will show in a moment, this term is quite large and positive, being also responsible
for most of the features that we shall see later concerning the cosmological perturbation spectra.

A related interesting point is that our model predicts a small change in H which mimics a change in
the number of massless neutrinos at the Nucleosynthesis epoch (see [190] for an extensive overview).
At this time Quintessence is very subdominant and the cosmological evolution is governed by the

equation
2 ., Pfluid |

T 3F(¢)
since in our models F'(¢) < F(¢o) at any past time, the shift in the value of H 2 due the time variation
of the gravitational constant in EQ models is given by:

AH?  F()
H? — " F(¢)

(5.32)

, (5.33)

As a function the shift AN of the number of relativistic species at Nucleosynthesis, the above quantity
may be written as

F(¢)  TAN/4
1-— = _ |
F(¢o)  10.75 + TAN/4 (5.34)
Therefore, the shift AN9E predicted in our models is
AN - 614 F(00) = F(@) -

F(¢o) —2F(¢) -

It is worthwhile to note that for models satisfying Eq.(5.21), the predicted AN is at the level of
10%, thus being well below the current experimental constraints from Nucleosynthesis.

Let us consider now the effects of our scenario on the cosmological equation of state. The HE /F
term appears also in the effective fluid pressure in Eq.(5.3), causing the following interesting feature
in the behavior of the equation of state, shown in Fig.5.3. As it is evident, in the matter dominated
era p/p > 0 up to 1 + z =~ 5, when the Quintessence starts to dominate. Thereafter, the cosmic
expansion starts to accelerate because of the vacuum energy stored in the Quintessence potential.
Thus we have the apparent paradox that in the matter dominated era the total pressure is non-zero
and positive: this is not surprising since it can be brought back to the dynamics of the scalar field
itself in scalar-tensor theories of gravity. Corresponding to its positive value in the matter dominated
era, the equation of state at present, when Quintessence dominates, is slightly above its value for Q
models. In other words, we found that the Quintessence contribution to the equation of state in our
models, pgs/pg, does not change significantly in our case with respect to Q models; we found indeed

—1<2 <09 (5.36)
P
for all the cases considered. This is well within the range of values for which the Quintessence is
mimicking a cosmological constant [69], [89].

Let us now come t0 the Qpauer > 1 effect. This interesting and very peculiar occurrence can be
understood by looking at the behavior of the various components of the energy density in Eq.(5.5)
and is obviously connected with the effect on the equation of state just described. After dividing both
members by H?, the Friedmann equation takes the form

1= Qmatter(z) + Q1"0,(11'(1.752'071 (z) + Q¢(Z) ) (5'37)
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where it must be noted that Q4 is actually made of three terms, namely
2(2) = UK + Q)5 + Q)7 (5.38)

While Qg and Qf; are the generalization of the kinetic and potential energy densities in scalar-tensor
theories, the really new component is )
Qr _ _ Fy¢
Q" = T2 (5.39)
which, as we already noted, is negative if ng > 0. Its amplitude is fixed essentially by the dynamics of
the scalar field; as we anticipated, this term turns out to be important for the background evolution.
The reason is the following. In all the cases considered, the scalar field evolution is slow, so that ¢ and
the time variation of the potential in the Klein-Gordon equation can be neglected. Let us consider the
radiation dominated era for simplicity: @ = @pqq7, Where drqq is a constant. Therefore, it is immediate
to check that the approximate solution of the Klein Gordon equation is

d%adVab 4 4
¢ = initial — —95— (7"~ Tinitial) - (5.40)
In the ideal case where the scalar field evolves for a large time so that only the term proportional to T4
is important, we see that ¢/¢ o< 1/7 o< H; in this case the term in Eq.(5.39) would be of order unity.
In the real case these arguments are weakened since the scalar field does not have a perfect slow-rolling
dynamics, and it does not evolve enough to become much larger than its initial value; nevertheless
this qualitatively explains why we found Q ~ 1072 for models satisfying the constraints (5.21), and
for a time interval covering almost all the post -equality cosmological history.

Fig.5.4 shows the various contributions to the cosmic density parameters as a function of redshift.
The matter radiation equality epoch is clearly visible, as well as the matter dominated era, and,
finally, the Quintessence dominated era at very small redshifts. Also, the sum (identically equal to 1)
is shown, and it is immediately seen that in the matter dominated era one has

Qnaster > 1 - | (5.41)

As we already anticipated this is only an apparent paradox, because of the presence of the negative
energy component in the Einstein equation (5.5), explicit in Eq.(5.39). Figure 5.5 shows the various
contributions to the Quintessence energy density. As it can be seen, for the chosen value of the
coupling constant &, QQ reaches values of a few percent and is responsible for the condition (5.41).

This completes a rapld survey of the features regarding the cosmological background evolution.
Some of them have a relevant influence on the perturbatlon behavior, which is the subject of the next
subsection.

5.4.2 QR-effects on the CMB: Integrated Sachs-Wolfe effect, horizon crossing
delay and reduced acoustic peaks

The phenomenology of CMB anisotropies in EQ models is rich and possesses distinctive features.

In the top left panel of Fig.5.6, the effect of increasing & on the power spectrum of COBE-normalized
CMB anisotropies is shown. Note that we plotted cases also exceeding the limit (5.21), to make clearer
the perturbation behavior in EQ scenarios. The rise of ¢ makes substantially three effects: the low
£’s region is enhanced, the oscillating one attenuated, and the location of the peaks shifted to higher
multipoles. Let us now explain these effects. The first one is due to the integrated Sachs-Wolfe effect,
arising from the change from matter to Quintessence dominated era occurred at low redshifts. This
occurs also in ordinary Q models, but in EQ this effect is enhanced. Indeed, in ordinary Q models
the dynamics of ¢ is governed by its potential; in the present model, one more independent dynamical
source is the coupling between the Q-field and the Ricci curvature R. As can be easily understood
from the Lagrangian in equation (5.1), the scalar field ¢ evolves as dictated by the effective potential

1

Vers(¢) =V($) =5 F (SR . (5.42)
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As is clear from equation (5.10), R is positive in the matter dominated era, (a(t) ~ t*/3). Thus,
from (5.42), after differentiating with respect to ¢, both the forces coming from V.s; are negative,
pushing together the field ¢ towards increasing values. In conclusion, the dynamics of ¢ is boosted
by R together with its potential V. As a consequence, part of the COBE normalization at £ = 10 is
due to the Integrated Sachs-Wolfe effect; thus the actual amplitude of the underlying scale-invariant
perturbation spectrum gets reduced. This is the main reason why the oscillating part of the spectrum,
both for polarization and temperature, is below the corresponding one in Q-models.

There is however another effect that slightly reduces the amplitude of the acoustic oscillations. We
have seen in Fig.5.2 that the Hubble length was smaller in the past in EQ than in Q models. This has
the immediate consequence that the horizon crossing of a given cosmological scale is delayed. This is
manifest in Fig.5.7, where we have plotted the photon density perturbation in the Newtonian gauge
5,1;] ; we choose this quantity since it is simply 4 times the dominant term of the CMB temperature
fluctuations [108]. Its expression in terms of the quantities in the synchronous gauge is

I %@—Z . (5.43)
The scale shown in Fig.5.7 is chosen so that it reenters the horizon between matter-radiation equality
and decoupling. Both in the IG and NMC cases, it is evident that the oscillations start later than in
ordinary Q models. As well known, the amplitude of the acoustic oscillations slightly decreases if the
matter content of the universe at decoupling is increased [173, 51].

Finally, note how the location of the acoustic peaks, in terms of the multipole ¢ at which the
oscillation occurs, is shifted to the right. Again, the reason is the time dependence of the Hubble
length, which at decoupling, subtended a smaller angle on the sky. It is straightforward to check that
the ratio of the peak multipoles in Fig.5.6 coincides numerically with the the ratio of the values of the
Hubble lengths at decoupling in Fig.5.2 in EQ and Q models.

An interesting comparison could be done with the results of Chen and Kamionkowski [47], where the
CMB temperature and polarization patterns produced by a pure JBD field in a standard Cold Dark
Matter cosmology are proved to give rise to a similar dependence of the acoustic peak locations on
the wypp o 1/€ parameter.

These considerations remains identical for NMC models: in a large range of values of ¢, IG and NMC
models show remarkably similar features, yielding a genuine signature of scalar tensor-theories in the
cosmological perturbations spectra.

Fig. (5.6) summarize the most important results of this chapter, concerning the features that
appear in the CMB anisotropies and in the matter power spectrum in IG scenarios.

For a more detailed analysis of the power spectra consistent with the existing observational restric-
tions on &, we refer to the next chapter, where we will consider particular attractive solutions of the
background dynamics called tracking solutions.

5.4.3 QR-effects on matter perturbations: power-spectrum decrease and peak
shift

After decoupling, the different models considered in Fig.5.6 evolve until the present, when we snapshot
the matter power-spectrum in the bottom left panel.

Soon after their introduction, Q-models were considered more appealing than those involving a
cosmological constant term because of their capability to shift the power-spectrum toward larger scales
without increasing its overall amplitude, which would have required an antibias mechanism. We find
here that this effect is enhanced if a QR-coupling exists. This is evident in both the bottom right
panel in Fig.5.6. The spectra are COBE-normalized as it is evident in the top panel. For increasing
£, the spectra lose power. The reason for this behavior is that the CMB spectra include different
effects together with the true perturbation amplitude; on the large scales measured by COBE, the
matter perturbations add with the large Integrated Sachs-Wolfe effect; the greater is £, the stronger
the Integrated Sachs-Wolfe effect, the weaker the true perturbation amplitude, as we pointed out in
the previous subsection. This causes the power-spectrum decrease that is readily visible in the figure.
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The other effect is the slight shift of the location of the peaks toward larger wavenumbers. Again,
this is due to the time dependence of H —1. since it is smaller in extended Quintessence models than
in ordinary Quintessence ones, the horizon crossing is delayed for all the cosmological scales, for the
given value of Hy.

These are the most prominent features concerning the power-spectrum. In principle however, there
are terms in the cosmological perturbation equations that could make some relevant effects. We seek
them as terms that do not multiply fluctuations in the scalar field, since the latter are negligible from
the point of view of structure formation [173]. Looking indeed at Eq.(5.14), the last term in the r.h.s.
could play some role: it is the shear perturbation associated with the Quintessence and it should be
noted that it is not present in ordinary Q models. Looking at Eq.(2.109), it is immediate to verify
that this term produces a sort of excess friction in the dynamics of the quantity h+ 67 in addition to
the cosmological Hubble drag term 2% in the Lh.s.: we define it as

F
F= 7 (5.44)

Its relevance compared to H has been already discussed when we dealt with the QgR quantity of
Eq.(5.39). As it is evident in Fig.5.8, F is not so important during the evolution since it is only a few
percent of the Hubble drag during all the evolution. Although F clearly plays the role of a sort,d of
integrated shear effect, it is less important than those described at the beginning of this subsection.
These effects change the matter power-spectrum today in a way that we will better explore in a
future work. Here we make a first comparison with the known expectations concerning the spectrum

normalization at 84~ Mpc, os. Recently the cluster abundance in Q models has been analyzed [225].
An empirical formula for og in these models has been found as

oy = (0.5 — 0.10)Q1(m:0) | (5.45)

where

O=(m—1)+(h—065) , 7(Qn,©) =021 — 0.22];';2 +0.33Q, +0.250 ; (5.46)
¢ |

n is the spectral index (1 in our scale-invariant case), h is the present Hubble constant in units of
100kms™! Mpc~! and €,, the matter energy amount today. The existing experimental constraints
(see [225]) may be expressed as follows:

0sQ), =0.5+0.1. (5.47)
Our scenario is not significantly constrained by Eq.(5.47). For the models shown in Fig.5.6, we found

og = 0.525 for £ =2 x 1072
o3 0.623 for £ = 1072 (5.48)
og = 0.725 for ordinary Q models. ’ (5.49)

i

It is easy to verify that the constraint in Eq.(5.47) is satisfied for £ < 107%; the same limit for NMC
models is € < 2 x 1072, It is remarkable however that future experiments will be able to provide much
more accurate measurements of the matter power spectrum [194].

5.5 Summary and conclusions

In this chapter, we investigated the possibility for the Quintessence field to be non-minimally coupled
with the Ricci scalar.

When treating generalized theories of gravity, one must, first of all, ensure that the resulting theory
is compatible with the bounds from solar system experiments: we found that these constraints are
indeed satisfied if £ < 5 x 1074, for IG, and ¢ < 5 x 1073(v/G¢g) ™!, for NMC models.
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For these values of the coupling constant, we searched for the characteristic features that could dis-
tinguish these models from the “ordinary” Quintessence, described in chapter 4.

We found, in particular, that the Integrated Sachs-Wolfe effect, caused by the time variation of the
gravitational potential between last scattering and the present time, is enhanced as compared with
ordinary Q-models. This can be understood by considering the Klein-Gordon equation governing
the time evolution of ¢. It is easily seen that the coupling with R induces a new source of effective
potential energy; the latter is ineffective in the radiation dominated era, when R =~ 0, but becomes
important during matter and scalar field dominance, when it originates the effective potential

Vor = ——;—F (PR . (5.50)

It is therefore immediate to realize that the force dVgr/d¢ in the Klein Gordon equation simply adds
to the one coming from the true potential dV/d¢, having the same sign and therefore enhancing the
Integrated Sachs-Wolfe effect. As a consequence, part of the COBE normalization is now due to the
latter effect and the cosmological perturbation amplitude, including also the oscillating region of the
CMB spectrum, is reduced; this is evident in the CMB polarization and temperature patterns, as
well as in the matter power-spectrum today. Moreover, the acoustic peaks and the power-spectrum
turnover are displaced to smaller scales; the reason being that the Hubble length H~! grows more
rapidly in these theories than in ordinary Q-models, delaying - for a fixed value of Hy - the horizon
crossing of any scale larger than the Hubble radius at the matter-radiation equality, and slightly
decreasing the amplitude of the acoustic oscillations.

Another effect of coupling comes from the change of the fluid shear o arising in generalized Einstein
theories. From the Einstein equations it turns out that the new terms in ¢ induce an additional friction
to the growth of the gauge-invariant gravitational potential ¥, besides that due to the Hubble drag.
This makes the growth of U weaker, and, since in adiabatic models the acoustic oscillations are
essentially driven by this quantity, this results in a reduced amplitude for the acoustic peaks.

For what concerns large-scale structure formation, we also considered the effect of the extra term
in the fluid shear arising from the QR-coupling. It produces a sort of friction in the dynamics of
the metric perturbations, in addition to the genuine cosmological friction. Although interesting, we
found that this effect is negligible compared to the effect due to the Integrated Sachs-Wolfe effect that
changes the normalization to COBE data.

It is also remarkable that similar features occur both in IG and NMC models, suggesting the
existence of an extended Quintessence phenomenology that is the signature of a large class of scalar-
tensor theories in the cosmological perturbations.

This is a brief summary of the results we obtained in this class of Extended Quintessence models.
Of course, this work does not answer all the questions nor does it explore all the aspects, but the
results we obtained show distinctive and promising features at the point that we believe should be
seriously taken into account, especially in favor of the hints on the existence of scalar fields and on
their possible couplings with R coming from fundamental theories. An important problem to face is
which effects are caused by the fact that we require that the field coupled with R is a Quintessence, and
which instead come from the scalar-tensor theories themselves. The enhanced Integrated Sachs-Wolfe
effect appears to be mostly determined by the extra effective potential coming from the non-minimal
coupling; on the contrary, the effects at decoupling appear to be caused mostly by the true scalar field
potential, since at that time the Ricci scalar R is much smaller than it is now. However, all these
considerations, together for example with the exploration of other scalar field potentials and more
general gravitational sectors in the Lagrangian, would deserve future work.
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Figure 5.1: Numerical analysis of the time variation of the gravitational constant versus the QR
coupling constant in EQ models.
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Figure 5.2: Time behavior of the Hubble length in EQ models versus ordinary Quintessence.
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Chapter 6

Tracking Extended Quintessence

The possible coupling between Q and the Ricci scalar R was the subject of chapter 5, where the ob-
servable impact of such a coupling was throughly investigated. Within this ‘Extended Quintessence’
(EQ) model two sets of theories were studied: Induced Gravity (IG, originally proposed in [246]) and
Non-Minimal Coupling (NMC, see [22] for an extensive overview). In both models the term describing
the coupling between the Ricci scalar R and the Quintessence field ¢ in the Lagrangian has the form
F(¢)R/2, where F(¢) = £¢?; the difference between the two models is that in the NMC model the
Lagrangian contains also the ordinary gravitational term R/167wG, that is instead absent in IG. Both
models belong to the general class of scalar-tensor theories of gravity. The effects on Cosmic Microwave
Background (CMB) anisotropies, as well as on Large Scale Structure (LSS), have been described and
numerically computed for several values of ¢ > 0; they turned out to be similar for IG and NMC,
although for different values of the coupling constant. The main results were a modification of the low
redshift dynamics, enhancing the Integrated Sachs Wolfe effect (ISW), as well as a shift of the CMB
acoustic peaks and matter power spectrum turnover because of the dynamics of the Hubble length.
Predicting in detail the shape and the position of the acoustic peaks in a given cosmological model is
of course important in view of the formidable observations of the coming decade [151], but it is also
of great importance at present, because of the strong evidence in favor of the existence of subdegree
acoustic oscillations in the latest CMB data [60, 101].
Despite the fact that Quintessence models represent an improvement with respect to the theoretically
puzzling cosmological constant, they still leaves many unresolved issues. The existence of a consid-
erable amount of vacuum energy in the Universe, as observations seem to imply, brings together two
main conceptual problems. The first is the so-called “coincidence” problem, namely the fact that we
are right now in the phase in which the vacuum energy is starting to dominate over matter: if the
densities of matter and vacuum decrease at different rates, it appears that the conditions in the early
universe have to be set very carefully in order for the energy densities to be comparable just today.
The second is a “fine-tuning” problem, which arises from the fact that if the vacuum energy is con-
stant, as in the ‘standard’ cosmological constant scenario, then at the beginning of the radiation era
the Q energy density should have been vanishingly small compared with both radiation and matter.
Important recent works demonstrated that the Quintessence scenario can avoid such fine tun-
ings, while a cosmological constant fitting the data would be affected by both problems. Indeed,
in the Quintessence scenario one can select a subclass of models which admit ”tracking solutions”
[206, 224, 142]: following early work by Ratra and Peebles [178] and Wetterich [231], it was shown
how the observed amount of scalar field energy density today can be reached starting from a very
wide set of initial conditions, covering tens of orders of magnitude. In particular, the Quintessence
could have been initially at the level of the ordinary matter, thus being likely one of the products of
the decay of the vacuum energy responsible for the inflation era.
This result is obtained with the peculiar dynamics of tracker fields: their equation of motion possesses
attractor-like solutions which, nearly independently on the initial conditions, rapidly converge to a
common, cosmic evolutionary track.
In order to avoid misunderstandings, it is useful to stress in which sense tracking solutions are attrac-
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tors. We require that at present 4 has the observed value. This is obtained by tuning the potential
amplitude. Once this has been done, there is a huge set of initial conditions for the quintessence
energy density for which its present value is unchanged.

Here we face the extension of tracking phenomenology in EQ; we find important results, both for
background dynamics and perturbations, and we name this scenario Tracking Extended Quintessence
(TEQ). We consider a NMC model for the coupling between Q and R. We first analyze the back-
ground evolution, accurately studying the Quintessence dynamics in the radiation dominated (RDE)
and matter dominated (MDE) eras. Then, we compute the evolution of cosmological perturbations
pointing out important observable effects on CMB and LSS. In this chapter, section 6.1 contains the
analysis of tracking solutions; secs. 6.2 and 6.3 contain the description and a discussion of the effects
on CMB and LSS, respectively; sec. 6.4 discusses how these effects change if we vary the form of the
Q-field potential. Finally, sec. 6.5 contains a summary of our results and some concluding remarks.
We adopt here inverse power-law potentials, as originally suggested by Ratra and Peebles [178], and
found in some phenomenological supersymmetry breaking models [206, 224, 142, 75, 152]; with respect
to the previous chapter, we now take a more general inverse-power law potential, namely

4+
V(g) = M¢ ,

where the value of o > 0 will be specified later and the mass-scale M is fixed by the level of energy
contribution today from the Quintessence. Before going on, let us briefly define the quantities that
represent the Q energy density and pressure. As it is evident from equations (5.3) and (5.4), the net
energy density of the universe in scalar-tensor theories takes contributions from the scalar field, the
matter fluid as well as from the Ricci scalar itself; the latter source of energy density, i.e. the last
terms in the right-hand side of egs. (5.3) and (5.4), could be included into the Q energy density and
pressure, just because it comes directly from the scalar field coupling with K. Thus we define here the
generalized Q energy density and pressure, including all the NMC terms:

(6.1)

1 . SHE
Po =530 +V(d)——5 (6:2)
B 1 . F HF
Dy = 552‘2752 -V(e) + pri (6.3)

We will see how pg,ps may differ substantially from 5g,Ps, while in general they become nearly
identical in the MDE.

6.1 Tracking Extended Quintessence

The existence of tracking solution trajectories was first pointed out by Ratra and Peebles [178] and
Wetterich [231] independently. In [206, 224, 142], it was realized that they could be used to solve one of
the two problems existing in Quintessence scenarios, namely the fine-tuning on the initial conditions;
this is in favor of Quintessence compared with the ordinary cosmological constant models, which is
affected by both the coincidence and fine tuning problems.

Following the paper by Baccigalupi et al. [10], we adopt here the following choice of the cosmological
parameters: we require the present closure density of Quintessence to be Qg4 = 0.7, with Cold Dark
Matter at Qcopar = 0.253, three families of massless neutrinos, baryon content €2, = 0.047 and Hubble
constant Hy = 100h199 Km/sec/Mpc (with higp = 0.65 thus keeping Qh2y, = 0.020). In section 6.4
we will explore the dependence of our results on the potential index «. Here we adopt a = 2 . Note
that the case @ = 1 has been presented in the previous chapter, although the properties of tracking
solutions were not analyzed; as we will see, however, the dynamical relevance of tracking solutions
becomes more and more relevant, as the potential slope increases, so that the main results are not
essentially modified. To get a preview of our results, we plot in Figure 6.1 the evolution of the energy
density of the cosmic fluid components (radiation, matter and Quintessence) as a function of redshift,
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in some models that we are going to describe. The plotted curves are pr, pm and pg. The high, dotted
lines represent radiation and matter, which do possess the well known scalings pr ~ 1/ at, pm ~ 1/ad.
Equivalence occurs roughly at 1+ z¢q >~ 5 X 103. The other curves represent tracker solutions for the
Quintessence energy density pg. We will describe in detail each curve in the next subsections; let us
give here some general considerations. For each curve, the constant M in Eq.(6.1) has been chosen to
produce the required §24 today. The NMC dimensionless coupling constant is taken as

€] = 1.5 x 1072, (6.4)

so as to satisfy the experimental constraints (5.21), because in all the cases shown in Fig.6.1 the present
value of ¢ is ¢o ~ 0.35Mp, where Mp = 1/v/G. Also we study both positive and negative values of
€. The present value ¢ is reached starting from initial conditions ¢pey < ¢o and ¢pey which can vary
by several tens of orders of magnitude thanks to the capability of tracker solutions to remove any fine
tuning of the initial conditions. In fact, it can be immediately noted from the curves in Fig.6.1 that,
despite the huge range of initial values of the energy density, the Q component is going to dominate
today at the chosen level. The final aspect we wish to point out before going to a detailed analysis
of the dynamics in MDE and RDE, is that we plotted py in the figure, which is always positive, as it
is evident from its definition (4.4). This is not true for py defined in (6.2), because the NMC terms
may be negative, and in fact they overcome the kinetic and potential energy, as we will see below; this
feature was first found and discussed in [174].

6.1.1 TEQ-trajectories in the Radiation Dominated Era: R-boost

To understand what happens, let us study the Klein-Gordon equation during the Radiation Dominated
Era (RDE). The first feature to note is the behavior of the Ricci scalar R. The dominant fluid is
radiation, so that a ~ 7, and this could yield the wrong idea that R = 0 from Eq.(5.10). Actually this
is not true as it is evident from Eq.(5.9): the first two terms pjuiq — 3Pfiuia take zero contribution
from radiation, but there is a residual contribution p,,, from the subdominant matter component.
Thus, there is a divergence R o< 1/a3 as a — 0. Also, we will see in a moment that the other terms in
Eq.(5.9), as well as the dynamics implied by the overall factor 1/F' do not change this argument; in
conclusion the behavior of R in the RDE is

_ 8nGpmo _ 3H3(Qcpm + D)

a3 ad
This implies that on the RHS of the Klein Gordon equation (4.8) the term multiplying R diverges as 1/a
and has the same sign of ¢ since ¢ is assumed to be always positive. This generates a “gravitational”
effective potential causing an enhancement of the dynamics of ¢ at early times, that we name “R-
boost”. The field accelerates until the friction term 2H¢ reaches a value that is comparable to the
R-boost term on the RHS. After that, Q enters a phase of slow roll driven by the friction and the
R-boost terms only:

fora—0. (6.5)

2

Hp o 2 gF ¢ (6.6)
The slow roll holds until the true potential energy from V becomes important in the Klein Gordon
equation. This dynamics is manifest in Fig.6.2, where the absolute values of the four terms in the
Klein Gordon equation are plotted. The thin solid line is the potential term, that is subdominant until
1+ z < 1000. The heavy dashed line is the friction term and the solid heavy one is the R-boost term.
In a very short time the friction grows from zero (the initial Q velocity is here taken to be zero) until
it reaches the R-boost term, setting the onset of the slow rolling regime. The thin dashed line is the
Q acceleration, ¢, which is positive and decreasing initially; then, it becomes negative (deceleration)
at the cusp corresponding to 1 + 2 ~ 107, and again positive at 1 +z ~ 10% when the potential energy

becomes important and the tracker behavior in the MDE starts.
It is quite simple to write an accurate analytic form for the solution during the R-boost. By using

Eqs.(6.5,6.6), and the behavior of a in the RDE, a ~ /87Gpd/3 - 7, we easily get
¢ = ¢beg €xp [C(T - Tbeg)] ) (67)
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where 5
3H§(Qopm + )

N T ¢, (6.8)

With our choice of parameters, C ~ 7 - 1073¢ Mpc~!, which implies that the exponent in (6.7)
remains much smaller than one at all relevant times. Therefore,

¢ =~ qsbeg[l + C(T - Tbeg)] . (69)

The behavior expressed by Eqgs.(6.7, 6.9) corresponds to the dotted dashed line in Fig.6.1, which
mimics very tightly the R-boost solution. Indeed in this phase the Q kinetic energy density dominates
and Eq.(6.9) implies

C =

1¢  1¢5,C°
§¢‘t =53=5 g2 - (6.10)
The dot-dashed line in Fig.6.1 has been obtained by inserting the value of C and ¢pey at the onset of
the R-boost.

Note that the scaling as 1/a? is significantly different from a truly kinetic dominated phase in
minimally coupled models, for which we should have had 1/a®, from the continuity equation (4.6)
with pg ~ py. The reason why we have a different scaling of pg is that the NMC terms in py are
not negligible during all the RDE and the first part of the MDE, as we will show in a moment. Let
us conclude the description of the R-boost by estimating the time of its end. The latter occurs at a

redshift z,0: when the true potential energy becomes comparable with the kinetic energy (6.10):

%qslzzegcz(l + zpot)2 = V[¢(Zpot)] . (6.11)

Since the R-boost is a very high redshift process, it covers a very tiny time interval, and in prac-
tice ¢ does not move substantially from its initial condition ¢pe, during this phase. Therefore we
can take V[qﬁ(zpot)] o~ (gbbeg) in Eq.(6.11). Moreover, for our inverse power-law potential we have

V(@peg) = V(¢0)(do/dveg)?, and from the Friedmann equation today 87GV (¢0)/3 = QpH3. Putting
these ingredients together we can write an approximate formula for 1 + 2, giving the end of the

R-boost:
692 H3 42
1 ~ | =55 = 3000, 6.12
+ Zpot 8T GCQ(ﬁbeg ( ‘ )

where the precise number has been obtained by making use of the actual value of the parameters in
our case: it correctly corresponds to the R-boost end in Fig.6.1. Note that the end of the R-boost
actually occurs when the Universe has already become matter dominated.

Before concluding this subsection, let us return to the importance of the NMC terms in g, in
equation (6.2); as we already anticipated, we show now that they are dominant with respect to
kinetic and potential energy densities until the first part of the MDE. Indeed, the NMC term in gy is
——3’HF¢¢/a and scales roughly as 1/a3, since H goes like 1/a; on the contrary, the true potential V'
is roughly constant and the R-boost kmetlc energy scales like 1/a?; as we explained. Because of these
scalings, we expect that there exists a time Ty such that for 7 < 7ypc the NMC term is larger
than both the kinetic and potential energy, while it becomes subdominant after this time. In fact,
assuming that the time dependence of the field is as in the R-boost solution (6.9), a simple calculation
shows that the NMC energy density term — 3HF¢¢> /a? dominates py up to

3¢CHE,, (qﬂbeg)‘-"] v

TNMC = [ or 1+ zypc == 850, (6.13)

Q¢PrOHg ¢

that is long after matter radiation equivalence, as it is evident in Fig.6.1. Note however that this is
only an approximation, since Eq.(6.12) tells us that the R-boost solution is no longer satisfied at these
redshifts; anyway this clearly shows that the NMC terms become subdominant only after the onset
of the matter domination, so that the distinction between py and pg can be relaxed after 7yasc. Our
analysis is therefore approaching the MDE behavior of ¢, subject of the next subsection.
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6.1.2 TEQ-trajectories in the Matter Dominated Era

Tracking solutions have recently been obtained in the context of Induced Gravity models [220], whose
only difference compared with NMC is the absence of a constant term multiplying the Ricci scalar in
the gravitational sector of the Lagrangian, i.e. F(¢) = {¢*. We make two claims here. The first is
that the same tracker solutions also exist in NMC models, provided in the MDE the scale factor can
be expressed as a power of 7. The second is that for F(¢) ocx ¢’ the same solutions exist only if § = 2,
as assumed so far.

In fact, by looking at Eqs.(4.5, 4.8), it is immediately realized that the difference between the IG
and NMC models resides only in the 1/3F term multiplying the RHS in (4.5), since all the other terms
involving F' are derivatives with respect to either time or ¢. Tracking solutions in [220] have been
obtained by assuming that the scale factor in the MDE is the square of the conformal time 7,

7\ 2
a(T) = ax (——) , (6.14)
Tx

(7« is a generic time) so that Eq.(4.5) gets almost identically satisfied and disappears from the treat-
ment. Indeed we show that in NMC models both Eq.(4.5) and Eq.(6.14) hold true, simply because
matter is dominating and F(¢), playing the role of the gravitational constant in Egs.(4.5, 5.6), is
slowly varying. Since ¢pey K ¢p = 0.35Mp, it is easy to see that the variation of the value of F
throughout the whole cosmological trajectory is !

FO_Fbeg

~4.6x1072. :
7 6 x 10 (6.15)

To see this in another way, Fig.6.3 shows the behavior of #, indicated on the vertical axis as (1+2)H *,
where H = a;/a, in three important moments of the cosmological evolution, namely present (top),
decoupling (middle), and equivalence (bottom); the heavy, solid line represents TEQ with positive £,
the thin solid line is TEQ with negative &, the short dashed line, instead, is ordinary Q, and the long
dashed one is the cosmological constant, which is significantly different from Q and TEQ since it is
not dynamical. As is evident, opposite signs of £ imply opposite behaviors for H, especially at small
redshifts, compared with ordinary Q. At a given redshift, the shift in 7 is due to the behavior of
F(¢), which is less or more than 1/87G for positive or negative £, respectively, by an amount given
by (6.15).

Therefore, Eq.(6.14) holds with good accuracy, and all the solutions obtained in [220] for IG models,
as well as their stability properties, hold true also in our NMC case.

Let us come now to our second claim. We assume for a while a form F(¢) = £¢° and F(o) =
1/(87G) + £(¢° — qﬁg ), respectively. We are searching for power law solutions for the Quintessence

\7
B(1) = ¢s (;—) ; (6.16)
from (6.14) and (6.16), it is matter of simple algebra to check that Eq.(4.8) takes the form
¢  a’R ;4 Méte
(v*+37) & = =8i¢" " + %a pranl (6.17)

Also, from (5.10) the Ricci scalar in the MDE becomes R = 12/(a - 7). It is easy to see that this is
only satisfied if

B=2 and a:%—-Z. (6.18)

1t is also useful to point out here that, because of the small change in the value of F(¢$) throughout the entire
cosmological evolution, the well-known constraints on the variation of H at the epoch of nucleosynthesis are always
satisfied in our models (see e.g. [174] and references therein).
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This proves our second claim. If conditions (6.18) are satisfied, Eq.(6.17) gives ¢. in terms of v,n, o;
since it must be positive, the following additional condition is derived:

vy —126>0. (6.19)

In this regime, the Quintessence energy density scales as

a\ "¢ 3a
po=roe () = 2o (6.20)

and its pressure is

2
a+2°
For what concerns the stability of these solutions, we report here only a remarkable result [220];
solutions satisfying (6.18) are stable under time dependent perturbations if and only if the following
condition holds:

Py = —Py (6.21)

-1 -

—5 <0, (6.22)

holding for instance for any « > 0. In summary, for the class of solutions we are interested in, namely
those satisfying (6.14,6.17), the cases of interest here have been treated in [220]; we have shown here
that such solutions apply both to NMC and IG cases.

Let us describe now in detail the solutions we see in Fig.6.1. Let us focus on the minimal coupling
case first. The lowest, dashed line represents a minimally coupled case in which the behavior of the Q
component during RDE is equivalent to a pure cosmological constant. The kinetic energy density is
initially zero and remains largely subdominant with respect to the potential one. Thus ¢ “freezes” for
almost all the RDE, and leaves this condition only when its energy density reaches a fraction of about
103 of the critical one. Thereafter, Q joins the tracker solution in the MDE regime corresponding to

y=e=15, v (6.23)

that satisfies the constraint (6.19) with & = 0. The substantial motion of the field from the initial
condition to its final value occurs in this last phase.

The thin long-dashed line represents a case in which the initial kinetic energy density is dominant
with respect to the potential one, by 23 orders of magnitude. As it is evident, the field starts from
an energy density comparable with the matter one. In this case the kinetic energy is redshifted away
during the phase corresponding to the rapidly decreasing part of the trajectory in the figure; the
scaling is easily found from the continuity equation, with py = py. Then the field freezes again before
joining the tracker solution at 1+ z ~ 100. Note that because of this early stage of kinetic energy
dominance, the field freezes at a value slightly greater than the initial condition ¢pey = 1072; that
is the reason why the flat part of the curve lies slightly below that corresponding to the previous
case. Although not plotted in the figure, a roughly equivalent trajectory might have been obtained by
requiring that the initial potential energy density was comparable to the matter one. Note the very
large set of initial energy values from which the field reaches the present state.

Let us come now to the analysis of the tracker solutions in the NMC case. The heavy solid line has
been obtained for ¢ = 1.5 x 1072, The RDE is dominated by the R-boost: the field accelerates until
the gravitational effective potential is reached by the cosmological friction term in the Klein-Gordon
equation. The slow rolling sets in, and holds until the true potential becomes important, when the
field freezes. After this early phase, py and pg, after having been very different in magnitude and sign,
become indistinguishable, and join the tracker solution in the MDE reaching the required value today.

The heavy dashed line corresponds to a case in which the initial kinetic energy density is larger
by 23 orders of magnitude with respect to the potential one, thus starting from an energy comparable
with the matter one. As for the Q case, in this condition the field undergoes an era of kinetic energy
dominance until the latter is redshifted below the effective NMC potential energy and the R-boost is
set also in this case. The evolution of the field from this time on is the same as in the zero initial
kinetic energy case.
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The dot-dashed line is in fact the R-boost approximate solution (6.7). Note that it describes very
well the R-boost, and shows that the terms of order higher than the first in Eq.(6.9) become important
only now, when the R-boost is no longer active.

The last point we want to stress is that the heavy solid line is actually superposed with a solid thin
line, which describes a case identical, but for negative coupling constant, £ = —1.5x 1072, The reason
why these two trajectories agree so tightly is that during the R-boost the kinetic energy density,
which dominates pg, is the same regardless of the sign of £, see Egs. (6.7- 6.10). The only slight
difference between the two trajectories is when the R-boost ends and the true potential starts to drive
the dynamics of ¢. For positive &, ¢ is positive during the R-boost and later, while, for negative ¢,
¢ is negative during the R-boost. Although the curves describing py for positive and negative values
of ¢ look very similar, this is not true for the perturbations they generate, as will be discussed in the
next section.

6.2 Cosmic Microwave Background spectra

In this section we analyze the CMB temperature and polarization spectra of our TEQ model.

Before to consider the “Extended” case, it is interesting to see what happens for tracker solutions
with ¢ = 0, i.e. for minimally-coupled scalar fields in tracking regime. In Fig. 6.4 the CMB angular
power spectrum is plotted vs. the multipoles £’s and the present equation of state wg of a ¢ = 0
tracking quintessence. This is simply related to the potential amplitude by Eq.(6.21), even if at
present it is only approximatively true since the Quintessence is dominating cosmic expansion and the
tracking regime is being abandoned.

The cosmological constant is recovered as wy = —1. It is worth to note as the amplitude of the
acoustic peaks is reduced as an effect of the COBE normalization at low fs and ultimately, of the
ISW. In fact, for a given amount of vacuum energy density today (Quacuum = 0.7 for the plot in
fig. 6.4), the “dynamical” vacuum energy comes to dominate at earlier times as compared with the
cosmological constant, and the time variation of the gravitational potential is more severe, enhancing
the ISW effect [51].

For the same reason, the distance to last scattering surface is reduced in the “dynamical” vacuum
energy model, so that the same physical scale on the last scattering surface appears on larger angular
scales (i.e., lower /) as a projection effect, as described in Chap. 3. This explains the shift of the
acoustic peaks toward smaller multipoles, with respect to the A model.

In Fig.6.5 we plot the CMB spectra for the models discussed in the previous section; the top panel
describes temperature fluctuations; the bottom panel shows polarization spectra. The CMB spectrum
coeflicients are calculated from

dks dk
CF =4n [ Zlarh,m)P , OF =4x / ZlApelh, )l (6.24)

where the quantities Agy(k,70) and Apg(k,79) are functions of the photon and baryon perturbed
quantities, see e.g. ref. [173] for detailed definitions. The spectra have been normalized at the COBE
measurements at £ = 10.

The heavy, solid line in Fig.6.5 describes CMB spectra for the model corresponding to the same line
in Fig.6.1. The thin, solid line describes the same model, but for £ = —1.5x 1072, again as the same line
in Fig.6.1. The short-dashed line, in the left panels, represents a case of ordinary Quintessence with
the same potential and Q4 = 0.7. The long-dashed line, in the right panels, describes a cosmological
constant, A model, with Q) = 0.7. Before entering into the description of the various effects we
find, let us stress that the effects of TEQ are quite large, with respect to both ordinary Q and A
models. Also, the models plotted respect the experimental constraints discussed in Section II, having
wypp =~ 500 and G3/G =~ 10712 yr~!. We want to mention that the effects are here considerably larger
than what we obtained in the previous chapter. The reason is twofold: in [174] we did not follow the
tracker solution for the Q field, but for the shallower potential we considered there (o = 1) the size of
the effects we find here would have been smaller anyway (see the discussion in Section VI).
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First of all, let us consider the dynamics of Q at low redshifts. By looking at Eq.(4.8), it is easily
seen that at present Q obeys a sort of effective potential, caused by the true potential and by the
curvature-coupling term:

F(¢)R
Vess(6,B) = V() - DO (6.25)
At low redshifts when Q starts to dominate, the dynamics of the Hubble length is suppressed since the
universe is approaching a de Sitter phase. Therefore, by neglecting # in Eq.(5.10), we have R ~ 6H?.
Also, from the Friedmann equation we get (87G/3)V ~ Q,H?, and for inverse power-law potentials
of the form (6.1) we have dV/d$¢ = —aV/¢$. Thus the derivative of the effective potential (6.25) takes
the following approximate form:

dVerr (3aQ¢
dp 8rGe

for positive ¢, both terms push toward increasing values of ¢, and we can immediately understand
that the NMC term is comparable to the ordinary Quintessence one for

+ 6g¢) H?; (6.26)

OzQ¢

€l = 167Ggp?

(6.27)

Therefore, for £ = 1.5 x 1072 and a = 2, we expect to have a 10% extra force coming from the NMC
terms in Eq.(4.5). Just the opposite happens if £ is negative, since the terms in (6.26) have opposite
sign. Indeed what we see in Fig.6.3 is that for opposite signs of ¢, the change in the low redshift
dynamics. of ! is also opposite. Also, in Fig.6.2 it can be seen that at present roughly an order of
magnitude separates the gravitational effective potential from the true one.

The Integrated Sachs Wolfe effect makes the CMB coefficients on large scales, or small é’s change
with the variation of the gravitational potential along the CMB photon trajectories. Since the gravi-
tational potential is affected by the low redshift dynamics, we expect an increase or a decrease of the

ISW for positive and negative &, respectively. Indeed this is precisely what we see in Fig.6.5, looking
at the curves for £ < 10: positive or negative £ TEQ make the Cy larger or smaller than ordinary Q,
respectively.

The following simple calculation gives a good estimate of the amount of ISW in TEQ models.
Take a cosmological scale comparable with the Hubble horizon today, so to be unaffected by acoustic
oscillations. As it is known (see e.g. [108] and references therein), the ISW is simply given by the
change, between decoupling and now, of the quantity ¥ — ®, where ¥ and @ are the gauge-invariant
expressions of the gravitational potential and of the intrinsic spatial curvature, respectively; it can be
seen [108] that this results in a fraction of ¥ — @ calculated at decoupling:

0T
(—,1—_"> 08 (\Pdec — @dec) . (628)
ISW

In NMC theories W4, and @y, are slightly different from those calculated in minimally coupled
theories, because they receive a contribution from the time variation of the gravitational constant;
since ¥ and ® are proportional to G < 1/F, in the limit |Fye. — Fo| < Fp they change by an amount
(Pgeec — Pgec) - (1 — Fgee/Fo). This induces an ISW effect which is

oT Fy - F,
(’_—) & (‘Ildec - (pdec) : <1 + _9'_—_[12> .
T ) 1swNme Fy

Therefore, on the CMB power spectrum, the NMC contribution to the ISW can be estimated as

(6.29)

0Cp<10 C£<10 Cngm 0T/ T} swvmc — 6T/T)isw ~17. Fo — Fec
= ~ 12 e

- ~ 16mGEP2 ;  (6.30
Ceglo Cfslo (5T/T)§SW ™ f¢0 ( )

the last equality has been obtained in our particular model, where at decoupling ¢ <« ¢, so that
1 — Fyee/Fo ~ 8nGE¢E. Note again that, depending on the sign of &, the net effect can be an increase
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or a decrease of the CMB power. Indeed in Fig.6.3 we see that the above estimate is fairly well
respected: since in the present case ¢ ~ 0.35Mp on large angular scales Eq.(6.30) predicts an effect
of the order of 10%, as in the figure.

Let us come now to the evaluation of the effects on the acoustic peaks in the CMB spectrum.
There are essentially two effects, peaks amplitude and position, that we describe now.

The amplitude changes in the opposite way for opposite signs of . This feature can be understood
as a normalization effect: we have seen that positive and negative £ give rise to increased and decreased
ISW in TEQ with respect to Q models; correspondingly, when the spectra are normalized at £ = 10, a
decrease and increase of the acoustic peak amplitude occurs. As a consequence, the magnitude of this
effect is roughly at the level given by Eq.(6.30). For completeness, we report also another mechanism
that changes the acoustic peaks amplitude, which occurs at decoupling, instead of at low redshifts.
As is evident in Fig.6.3, the size of the Hubble horizon at a given redshift is different in TEQ with
respect to Q models. As we noted in [174], this implies that the horizon reentry for a given comoving
scale is delayed for positive ¢ and anticipated for negative {; therefore, with respect to the ordinary
tracking Quintessence, this implies a slight excess or deficit in CDM density when such scale crosses
the horizon, corresponding to a deficit and an excess in the radiation energy density. This slightly
suppresses the acoustic oscillations in the first case, and enhances them in the second.

Let us come now to the explanation of the acoustic peaks shift. The angular scales at which acoustic
oscillations occur are directly proportional to the size of the CMB sound horizon at decoupling, that in
comoving coordinates is roughly 7ge./ /3, and inversely proportional to the comoving distance covered
by CMB photons from last scattering until observation, that is 79 — 7gec [108]. Therefore, since the
spectrum multipoles scale as the inverse of the corresponding angular scale, we have

T0 — Tdec

Zpeaks X
Tdec

(6.31)
In our models, 79 and 74 shift essentially because of two reasons, namely the change in 7o due to
the domination of the Q component today, and the behavior the Hubble length H ! in the past. The
first feature mainly makes the Q and TEQ models different from a cosmological constant, since the
latter does not have the kinetic degree of freedom. The second feature is related to the fact that, for
a fixed value of the Hubble length today, in the past it possesses a behavior which is characteristic
of the particular model at hand, because of the time evolution of the effective gravitational constant
1/F(¢) (see Fig.3). Let us give a simple analytical formula for the acoustic peaks shift in TEQ models
with respect to ordinary tracking Q. First, it can easily be seen that the conformal time 7 can be
conveniently written as a function of the scale factor as follows:
@ da »
= — . 6.32

T 0 aa (6.32)
However, from the Friedmann equation (4.5), a scales as the inverse of V/F; therefore, small changes
§F < F induce a change da/a ~ —(1/2)0F/F, and consequently in the conformal time, which shifts

by an amount
5 _/a da NE/CL@E (6.33)
"7 Jo wal— (1 /2)0F/F] " " 2Jy aa F '

where we have defined the time change of I as follows:

OF _ F(¢) — Fo

= Fo (6.34)

Of course 0F'/F at any given time depends on various details, but let us make the simplifying assump-
tion that it is constant from the beginning until z = 2 and zero afterwards, empirically following what
we see in Fig.3. It is then immediate to deduce that 4., changes as

10F
0Tdec == Tdec * 3T (6.35)



106 CHAPTER 6. TRACKING EXTENDED QUINTESSENCE

Instead, for what concerns 7o we have

16F

5 (6.36)

O 0= Tz=9"
because, according to our simplifying assumption, 6F/Fa = 0 for z < 2. In conclusion, using Eq.(6.31),
and after some algebra, we get the shift in the acoustic peaks as a result of the time variation of the
effective gravitational constant:

TE Q
5lpeaks _ Zpea,l?.ts lpea.ks ~ _1__5__E (Tz:2 . 1> (6 37)
lpea,ks l;?eaks 2 F 70

Numerically we find 7,0/ =~ 75%; also, we already mentioned that the change of the value of F
during all the cosmological evolution can be written as 6F/F ~= —87¢ G#3. Therefore, for our specific
model Eq.(6.37) becomes :
al
—peaks o neGg? (6.38)
lpeaks
Note that, for our values of ¢ = £1.5 x 1072, the above shift is at the level of £6 x 10~ 3, which is in
quite good agreement with the results plotted in the left panels of Fig.4, that is &5 x 10“

This completes our description of the TEQ features on the CMB angular power spectrum. We
now turn to the analysis of what happens in the matter power spectrum today.

6.3 Matter power-spectrum

In Fig.6.6 we plot the matter power spectrum for the same cases shown in Fig.6.5. We can immediately
note differences regarding both amplitude and turnover position.

The A model has the highest spectrum. The main reason is the different growth of density pertur-
bations [51]. In both Q and A models the perturbation growth is suppressed at low redshifts due to
the domination of the vacuum energy, that tends to keep H constant therefore enhancing the cosmo-
logical friction in the perturbation equations, where almost everywhere the terms involving the first
time derivatives of the perturbations appear multiplied by the Hubble parameter. In Q and TEQ
models this effect is considerably enhanced due to the magnitude of H which is greater than in A
models at all redshifts, and in particular at the lowest ones, as it is evident from Fig.6.3. Another
independent cause that contributes to push the Q spectrum down with respect to the A model is the
COBE normalization. In fact, we have seen that the ISW effect is enhanced in Q models with respect
to A ones, and the normalization to COBE implies subtraction of power to the true amplitude of the
primordial cosmological perturbations.

Let us come now to the difference between Q and TEQ models. The dynamics of the field at
low redshifts is almost the same as in Q models, as it is evident again by looking at Fig.6.1. Thus,
the reason for the difference is to be sought in the COBE normalization. Indeed, by looking at the
low wavenumber region, which is the zone of non-processed scales, we see that the amplitude shift is
roughly at 10% and —18% level for TEQ with respect to Q for negative and positive ¢, respectively;
these numbers roughly agree with the ISW corrections that we estimated to come from the NMC
terms in the previous section.

Let us come now to the evaluation of the peaks shifts. As it is known (see for example [51]),
the scale of the matter power spectrum turnover is essentially given by the scale entering the Hubble
horizon at the matter-radiation equivalence. The latter age is the same for all our models:

1+ zgg = ‘;m;’ ~ 5500 . (6.39)
T

However, we must take care of what was the Hubble horizon at the equivalence, since the Hubble
radius follows different dynamics in the three cases that we are treating. In other words, the shift in
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the power spectrum turnover is given by

0kturn §H1
eq

kturn

In Fig.6.3 the different values of the Hubble horizon are displayed at the equivalence (bottom). The
Hubble horizon shift in Eq.(6.40) between the Q and A model is at the 18% level, which corresponds
well to the power spectrum shift that we see in Fig.6.6, where 0kiurn/kturn =~ —20%. The same
reasoning applies to explain the slight shift of the TEQ spectra turnover with respect to the Q one.
The Hubble horizon shift in Fig.6.3 for positive £ is 2.6%, in good agreement with what we get in
Fig.6.6, 2.3%; for negative £ we get 1.7% from both figures.

We can give a rough analytical estimate of this effect by reasoning as follows. At the equivalence
the Q energy density, both in Q and TEQ models, is negligible with respect to matter and radiation
as it is evident in Fig.6.1. Eq.(4.5) takes the form

2 . Pfluid
H =~ 5F(g) ° (6.41)

Since in our model F'(¢) is smaller or larger than F'(¢g) if ¢ is positive or negative, respectively, this
implies that the Hubble length H~! at the equivalence was different in TEQ models with respect to
ordinary Q. The amount and the sign of the difference can be estimated roughly as follows: from
Eq.(6.41) we have

SH? 20H
(—Eé—) ~ (T) co =1- 87TG ' Feq(ﬁbeq) . (642)
eq
Therefore, the matter power spectrum turnover shifts due to the NMC terms by the following amount:
6k §H™! 1 —8rGPF,
(_Wn> S B L e (6.43)
Kturn NMC H eq 2

simply by taking ¢e; < ¢o as it is today. In our models, the quantity in Eq.(6.43) is roughly 2%,
which agrees quite well with the numbers we obtain.

As concerns the shape of the power spectrum, there is no significant difference between the Q and
TEQ models, since this could arise only when the scalar field becomes important at low redshifts,
where however the dynamics in the two scenarios is very similar.

6.4 Variations in the potential slope

Varying the power « in the potential (6.1) implies varying the dynamics of py according to Eq.(6.20).
For increasing slopes of the potential, we expect that the low redshift effects are enhanced correspond-
ingly.

In Fig.6.7 we show tracking solutions for different exponents: dot-dashed line for o = 1, solid for
a = 2, long-dashed for o = 3. It can be immediately seen how the low redshift tracker branch possesses
different slopes, according to Eq.(6.20). Moreover, the R-boost is the same for all the slopes, again
according to the arguments made in Section II. But, for increasing «, the R-boost is abandoned earlier.
The reason is the mechanism that stops the R-boost itself, i.e. the fact that the Q potential energy
starts to dominate. But, this happens earlier for larger exponents in Eq.(6.1), since the potential is
steeper for ¢ < ¢p.

Another important aspect that we must address is the Q equation of state, wy = pgs/py, since
this is a parameter that is quite well constrained by the observations to be less than —0.6 today
[172, 183, 89, 69]. In fact, from Eq.(6.21) we see that small o makes the equation of state similar to
the pure cosmological constant case. The actual value that we find numerically is slightly different
from what Eq.(6.21) would predict, because today the tracker regime has been abandoned, since Q
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has started to dominate the cosmic evolution. For o = 1,2,3, we find wg = —0.75, —0.60 and —0.49,
respectively, for positive ¢, and wy = —0.78, —0.66 —0.59, respectively, for negative §.

Next, let us see what happens in the CMB. Fig.6.8 shows the behavior of the CMB temperature
(top) and polarization (bottom) spectra for the same values of a as in Fig.6.7; the left and right panels
are for positive and negative £, respectively. Solid lines, both heavy and thin, refer to the same cases
as in Fig.6.5; the dotted and dot-dashed lines describe models with o = 3 and 1, respectively. As
we mentioned above, the low redshift ISW effect is enhanced by increasing o, merely because the low
redshift dynamics is enhanced, as it is evident from Eq.(6.26). This is a known effect since it does not
involve the NMC terms directly, but instead is a characteristic feature of dynamical vacuum energy
models [166, 37, 82, 221]. The acoustic peaks region is suppressed correspondingly, by an amount
that is roughly increasing linearly with «, due to the COBE normalization at low £’s. However, as
can be easily noted in Fig.6.8, the strength of this effect is larger for positive { as compared with
negative values. The reason is that negative £ values tend to decrease the ISW effect, as it is evident
both in the effective potential (6.26) and in our estimate of Eq.(6.30). For what concerns the shift in
the position of the acoustic peaks, the different potential mainly influences the low redshift tracking
behavior, thus affecting mostly 79 in (6.31); since large « enhances the low redshift dynamics, the
peaks shift increases correspondingly, again as evident in Fig.6.8.

In conclusion, the increased dynamics obtained by increasing a has the indirect effect of enhancing
all the NMC effects. To see this, let us stress the part of the effects that come from genuine NMC
terms. To this aim we build tracking solutions corresponding to those that we show in Fig.6.7, but
for the ordinary Q case, and calculate the CMB spectra for them. We take the ratios Eq.(6.30), now
valid for all the #’s,

5C, CTEQ_ P

—_= et (6.44)

C cg
to quantify in detail the pure NMC effects in the spectra. These quantities, for the different values
of a treated in this Section, are displayed as a function of the multipole £ in Fig.6.9, temperature
(top) and polarization (bottom). The meaning of the curves is the same as in Fig.6.8. The effects are
larger for increasing values of . In the upper box we can note the large ISW effect due to the NMC
component only: it reaches roughly 30% by itself. Correspondingly, due to the normalization at small
2’s, the acoustic peaks region is suppressed or enhanced for positive or negative £, respectively, even
up to the 50% level. The enhancement of these effects, in particular the ISW one, for increasing o
in in agreement with our formula (6.30), since for increasing o the field reaches larger values today:
namely, for a = 1,2, 3, we have ¢y = 0.2,0.35 and 0.5 Planck masses for positive £, and similar values
for negative €.

The same phenomenology obtained for the temperature anisotropies is found for the polarization
(bottom panels); we will not plot the low £’s region, since even if the NMC effect is large, the absolute
value of the polarization multipole moments is significantly high only around degree angular scales.

6.5 Conclusions

In this chapter, we focused on the role of a Non-Minimally Coupled scalar field as a candidate for the
"missing energy ” component. It should enter in the Lagrangian of the world as

R R
s ti(P-4) 3, - (645)

where ¢ is a dimensionless coupling constant, ¢ is the Quintessence field, also indicated by Q, and ¢
is its value today.

As a first step, we investigated the cosmological trajectories in this scenario, focusing on the
redshift evolution of the Q emergy density. The Q potential is modeled as an inverse power law,
namely V(¢) = M**t®/¢>, where o > 0 and M is the energy scale chosen to have the amount of Q
energy today.
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In the radiation dominated era we find that the divergence of R at early times generates an
effective gravitational potential in the Klein Gordon equation, which drives the Q evolution in a sort
of gravitational slow rolling. We named this era E-boost. The dominant component in py during this
epoch is the kinetic component. The R-boost ends when this kinetic energy becomes comparable with
the true potential energy: we have estimated that this time corresponds to a redshift 1 + z,,; =~ 3000,
i.e. the R-boost lasts also for the earliest part of the matter dominated era.

In the matter dominated era we obtained scaling solutions in NMC theories, which extend the
validity of those studied in [220], for which py and the Q pressure py scale as follows:

_ ap\ ¢ _ 3a _ 2

Py = PQo (—a—> ) €= Pe= P (6.46)
This regime holds for almost all low redshifts, 1 + z < 100. At recent times, however, 1 + z < 3, the
Quintessence component starts to dominate and the expansion accelerates.

These results show that the Extended Quintessence is a tracker field, in the sense of the original
works on Quintessence tracker solutions [178, 206]. While the Quintessence potential energy density
has to be chosen to produce the observed {24 today, just as if Q was ordinary cosmological constant,
the initial amount of py can vary over a very wide range, covering more than 20 orders of magnitude.

We also investigate perturbation spectra in TEQ. The tracker dynamics imprints considerably
larger effects compared with ordinary Tracking Quintessence and the cosmological constant, both on
CMB and LSS. We gave quite accurate analytical formulas to describe these effects, that we summarize
here.

We have shown that in TEQ models the low redshift dynamics of the field is either increased or
decreased depending on whether £ is positive or negative, respectively. This leaves its imprints on the
large scale CMB angular power spectrum, where the signal is unprocessed by acoustic oscillations,
and is affected by the dynamics of the gravitational potential (Integrated Sachs Wolfe effect, ISW).
We derived a simple formula describing this effect, that allows us to compare the TEW effect on
the CMB with the hypothetical effect of "ordinary” (minimally coupled) Quintessence; it has been
possible to evaluate an effect running from 10 to 50% of that of a standard Q, as the potential slope
o increases from 1 to 3. Note that for negative £ the ISW is inverted, a feature that is quite unusual
in Quintessence models.

The amplitude of the acoustic peaks varies because of the same ISW effect, if the overall power is
normalized to COBE at £ = 10. There exists also another mechanism that changes the acoustic peak
amplitude, which occurs at decoupling rather than at low redshift. The Hubble horizon value at a
given redshift is different in Extended vs. ordinary Quintessence models, as already noticed in [174].
This is because in order to reach the same value today the Hubble parameter followed a different
dynamics in the past; we have shown here that the horizon reentry for a given comoving scale is
delayed for positive £ and anticipated for negative £. This implies a slight suppression of the acoustic
oscillations in the first case, and an enhancement in the second, as a consequence of the different
amounts of CDM when the baryon and photon densities are oscillating.

TEQ imprints also affect the position of the acoustic peaks. The angular multipoles at which
CMB acoustic oscillations are occurring are inversely proportional to the comoving size of the CMB
sound horizon at decoupling, proportional to 74, and directly proportional to the comoving distance
between last scattering and us, 79 — 74ec- Both these quantities are affected by the TEQ dynamics. The
CMB sound horizon is proportional to the Hubble horizon at decoupling, which, as we just mentioned
is different in the various models. The comoving distance between last scattering and us is also affected
by the TEQ low-redshift dynamics. We derived an analytical formula giving the shift in the positions
of the acoustic peaks, towards smaller or larger angular scales.

For what concerns the LSS effects today, the first point to make is that since at the COBE
scales, where we normalize our models, the CMB spectrum is affected by the ISW, the amplitude
of perturbations on LSS scales is suppressed if £ > 0 and increased if ¢ < 0, by an amount that is
approximately the opposite of the quantity in Eq.(6.30). Second, the turnover scale position kiyrp is
shifted, being inversely proportional to the Hubble horizon at the equivalence. The size of this effect
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Figure 6.1: Matter, radiation, Quintessence energy densities as functions of redshift. Dotted lines:
matter and radiation; heavy solid: Tracking Extended Quintessence; thin dashed: tracking minimally
coupled Quintessence; heavy dashed: initially highly energetic Tracking Extended Quintessence; thin
long-dashed initially highly energetic tracking Quintessence; dot-dashed: R-boost analytic.

can be simply estimated by the Friedmann equation, and it turns out to be sensitive to the tracking
behaviour of the scalar field.

CMB anisotropies have been shown here to be considerably affected by the dynamical properties
of the vacuum energy and by the Non-Minimal Coupling terms present in the Lagrangian. This is
an important novelty in the literature on Quintessence models, which deserves as much attention as
the dependence of the CMB spectra on the kind of dark matter, value of the primordial perturbation
spectral index, etc.. This is made possible by the fact that the CMB itself is more than a snapshot
of the early universe; its properties in fact are also determined by a line-of-sight integration over a
very long part of the cosmic evolution, which is then able to tell us about the time variation of the
gravitational constant and the dynamics of the vacuum energy.

With higher and higher accuracy achieved in CMB data, going from the encouraging present-day
ones [60, 101] to the anticipated formidable performance of the Microwave Anisotropy Probe and
Planck mission [151], we will be able to obtain exciting new insights into the structure of gravity as
well as the nature of the vacuum energy.
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Figure 6.2: Absolute value of the Klein Gordon equation terms: heavy solid: gravitational effective
potential; heavy dashed: friction; solid: potential; dashed: acceleration.
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Figure 6.3: Snapshots of conformal Hubble horizon evolution. heavy solid: Tracking Extended
Quintessence with positive &; short dashed: tracking minimally coupled Quintessence; thin solid:

Tracking Extended Quintessence with negative ¢; long dashed: cosmological constant. Top: present;
middle: decoupling; bottom: equivalence.
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Figure 6.4: CMB angular power spectra for minimally-coupled (£ = 0) quintessence with Qg = 0.7.
The power in the Cj is plotted vs. the multipoles and the equation of state of the scalar field. The
cosmological constant is recovered at wy = —1.
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Figure 6.5: CMB angular power spectra. Top: temperature; bottom: polarization. Heavy solid:
Tracking Extended Quintessence, positive ¢; thin solid: Tracking Extended Quintessence, negative &;
short dashed: minimally coupled tracking Quintessence; long dashed: cosmological constant.



6.5. CONCLUSIONS 115

T T T T T 1T T1TTT T T T T TTT T [

1000 |
7
O
[oN
=,
=
[am
100

0.001 0.01 0.1
k [Mpc1]

Figure 6.6: Present matter power spectra. Heavy solid: Tracking Extended Quintessence, positive
¢; thin solid: Tracking Extended Quintessence, negative ¢; short dashed: minimally coupled tracking
Quintessence; long dashed: cosmological constant.
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Figure 6.7: Matter, radiation and Quintessence energy densities for different potential slopes. Long
dashed: matter; short dashed: radiation; heavy solid: Tracking Extended Quintessence, o = 2; heavy
dotted dashed: Tracking Extended Quintessence, o = 1; heavy long dashed: Tracking Extended
Quintessence, o = 3.
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Figure 6.8: CMB angular power spectra for different potential slopes. Left (right): positive (negative)
€. Solid: Tracking Extended Quintessence, o = 2; dotted dashed: Tracking Extended Quintessence,
a = 1; short dashed: Tracking Extended Quintessence, o = 3. ‘
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Figure 6.9: CMB angular power spectra: relative difference between Tracking Extended Quintessence
and ordinary tracking Quintessence spectra (6C;/Cp = C’épEQ / CEQ — 1) as a function of the inverse
power of ¢ in the potential. Top (bottom): temperature (polarization); thick (thin) lines for positive
(negative) £. Solid: extended vs. ordinary tracking Quintessence, a = 2; dotted dashed for o = 1,
short dashed for o = 3.



Chapter 7

Summary and conclusions

The main thread of the work presented in this thesis in the investigation of cosmological models involv-
ing a scalar field as a candidate for the “missing energy”. Such scalar field, often called “quintessence”,
is proposed as an alternative to the cosmological constant scenario, which still retain many unsolved
theoretical difficulties.

The motivation for such investigation mainly arises from the observed magnitude-redshift relation of
type 1A supernovae, that recently opened the case for an accelerating universe.

In this thesis, we introduced quintessence scenarios by resuming, in chapter 1, the observational case
for a substantial vacuum energy component.

In order to accelerate the overall expansion, it is generally sufficient that the equation of state of the
dominant energy component is Wyacuum ~ — %— at the present time: therefore, the scalar field proposed
as a quintessence component can be described both by its energy density and negative pressure, related
to the shape of the potential in which we assume the field evolves, or by an appropriate equation of
state —1 < Wyacuum < — %, given by the pressure/density ratio.

A key difference between the proposed quintessence scenarios and the cosmological constant, is that a
scalar field evolves dynamically: therefore, in order to not violate the equivalence principle of General
Relativity, a scalar field develops fluctuations, since the notion of a smooth component is gauge-
dependent.

Therefore, we described in chapter 2 the formalism necessary for the description of perturbation
evolution in General Relativity. Though the definition of most important quantities is given in a
gauge-invariant formalism, the equations of interest are explicitly written in specific gauges, which is
necessary for the development of the present work.

In most quintessence scenarios, the “missing energy” component is described as an ultra-light self-
interacting scalar field, i.e. the scalar field is assumed to interact only gravitationally with matter.
Furthermore, since a scalar field is too much relativistic to cluster on subhorizon scales, it can only
influence the history of the universe through its dynamical effects on the background expansion, as
well as on the perturbation growth. The effects of a “dynamical” vacuum energy component can
be seek in the features of the observed CMB anisotropies; the relic radiation from the Big Bang is
detectable as the photons that are reaching us today, after having propagated from the last scattering
surface at redshift z ~ 1000. In their trajectories to us, the CMB photons are influenced by the
geometry and the thermal history of the universe, so that it is possible to characterize the imprint
that a quintessence component leaved on the last scattering surface by means of its geometrical and
projection properties. Since primordial anisotropies are the seeds from which structures grew, the
effect of a dynamical vacuum energy is also imprinted in the overall structure formation history, and
is plausibly depicted in the present matter power spectrum. ‘

In chapter 3, we described the main features of the Cosmic Microwave Background temperature
and polarization anisotropies, and the physical mechanisms that gave rise to them.

In order to predict the CMB anisotropies spectra that a quintessence scenario would produce, a
numerical machinery is needed. The numerical code produced by the author of this thesis, in col-
laboration with Carlo Baccigalupi, requires to specify initial conditions for the perturbations of the

119
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various components of the cosmic fluid. We didn’t face the problem of the generation mechanism for
the perturbations: we simply assume that they are present after an inflationary period, needed to
solve the horizon and flatness problems. In our treatment, the starting time doesn’t coincides with
the initial singularity associated to the Big Bang; rather, we consider initial conditions soon after the
inflationary expansion, after the Universe reheated. The quintessence scalar field doesn’t necessarily
coincides with the inflaton field: it just survives inflation, participating to the initial conditions on the
fluid, that hold deep in the radiation era, when all the scales of cosmological interest are well outside
the horizon. Even if a general perturbation needs not to be purely adiabatic either isocurvature,
the two situations can be studied separately: the introduction of a scalar field changes the standard
scenarios, properly because a new component should participate in the correct distribution of energy
between the fluid parts.

In the fourth chapter of this thesis, we analytically derived, in the synchronous and Newtonian

gauges, the conditions that the scalar field perturbations should obey in order to result in adiabatic
or entropy perturbations. In particular, in the isocurvature case, we considered models in which
the initial perturbation arises from the matter as well as from the scalar field itself, provided that
the initial value of the gauge invariant curvature is zero. Starting from these initial conditions, we
evolved the background equations and the linearized Einstein equations, obtaining the signatures of a
minimally coupled scalar field on the CMB anisotropies power spectrum. The so-obtained spectra have
been compared with the standard Cold Dark Matter (CDM) model; it turned out that the acoustic
peaks follow opposite behaviours in the adiabatic and isocurvature regimes: in the first case their
amplitude is higher than in the corresponding pure CDM, while they make the opposite thing for pure
isocurvature initial perturbations. The interpretation of these results has been discussed in terms of
the effects that the introduction of a scalar field has on the matter/radiation ratio at recombination,
since it turned out that the scalar field itself is not directly appreciable at very high redshifts.
The numerical integration allowed to obtain the time evolution of the entropy perturbations, of the
curvature perturbation and of the gravitational potential, and a further comparison with the pure
CDM model. Most of the differences arise because, in Quintessence models, the epoch of matter-
radiation equality is shifted closer to the present when compared to the Einstein-De Sitter case. We
showed as the hypothesis of a cosmic vacuum energy stored in the potential of a minimally-coupled
scalar field enlarges naturally the possibility to gain insight into high energy physics from the traces
left in the cosmic radiation and in the matter distribution.

However, restricting ourselves to scalar fields as candidates for the “dark energy”, it is clear that
a minimally coupled scalar field is not the most general possible field in which the eventual ”vacuum
energy” could reside. In the context of generalized Einstein gravity theories, it is possible to consider
an explicit coupling between the scalar field, modeling the Quintessence component, and the Ricci
scalar R in the gravitational sector of the Lagrangian of the system. We named such models ‘Ex-
tended Quintessence’, in analogy with the ‘extended inflation’ models where a Jordan-Brans-Dicke
scalar field was added to the action to solve the ‘graceful exit’ problem of ‘old inflation’.
‘Extended Quintessence’ cosmologies have the appealing feature that the same field causing the time
(and space) variation of the cosmological constant is also the source of a time variation of the Newton's
constant, as in the Jordan-Brans-Dicke theory.
We investigated two classes of models, in which the gravitational sector of the Lagrangian is F'(¢)R
with F(¢) = €42 (Induced Gravity, IG) and F(¢) = 1 + £4? (Non-Minimal Coupling, NMC), respec-
tively.
In both classes, the potential of the scalar field has been chosen as simple inverse-power; we derived the
corresponding constraints on £ that satisfy the existing solar system experimental constraints. Using
linear perturbation theory we then obtained the polarization and temperature anisotropy spectra of
the Cosmic Microwave Background (CMB) as well as the matter power-spectrum.
The perturbation behavior possesses distinctive features, that we named ‘QR-effects’: the effective
potential arising from the coupling with R adds to the true scalar field potential, altering the cosmic
equation of state and enhancing the Integrated Sachs-Wolfe effect. As a consequence, part of the CMB
anisotropy level on COBE scales is due to the latter effect, and the cosmological perturbation ampli-
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tude on smaller scales, including the oscillating region of the CMB spectrum, has reduced power; this
effect is evident on CMB polarization and temperature fluctuations, as well as on the matter power-
spectrum today. Moreover, the acoustic peaks and the spectrum turnover are displaced to smaller
scales, compared to ordinary Quintessence models, because of the faster growth of the Hubble length,
which - for a fixed value today - delays the horizon crossing of scales larger than the horizon wavelength
at matter-radiation equality and slightly decrease the amplitude of the acoustic oscillations.

The existence of a considerable amount of vacuum energy in the Universe, as observations seem to im-
ply, brings together two fundamental problems, the “coincidence” problem and the “fine tuning” one.
Contrarily to the cosmological constant, Quintessence scenarios can avoid the fine tuning problem: in
particular, the Quintessence could have been initially at the level of the ordinary matter. In chapter
6, we extended the tracking phenomenology to non-minimally coupled scalar fields; it turned out that
tracker solutions for these models, with inverse-power law potentials, possess an initial enhancement of
the scalar field dynamics, named ‘R-boost’, caused by the effective potential generated by the presence
of the Ricci scalar in the equation of motion of the field. After the initial gravitational boost, the field
slowly evolves until the true potential becomes dominant. An accurate analytic formula, describing
the scaling of the field energy density during the R-boost, has been given. At the end of the R-boost
phase, the field trajectories matches the tracker solution in minimally coupled theories.

We analytically obtained the scaling solutions in the matter dominated era, extending the validity of
those studied previously for theories without any coupling with the Ricci scalar.

We have shown that in tracking Extended Quintessence models the low redshift dynamics of the field
is either increased or decreased depending on whether ¢ is positive or negative, respectively. This
leaves its imprints on the large scale CMB angular power spectrum, where the signal is unprocessed
by the acoustic oscillations of the photon-baryon fluid before recombination, and is affected by the
dynamics of the gravitational potential (Integrated Sachs Wolfe effect, ISW) at low redshifts.

In the context of linear perturbation theory, we integrated the full set of the equations for the evolu-
tion of linear fluctuations in scalar-tensor theories of gravity, assuming Gaussian scale-invariant initial
perturbations. The Integrated Sachs Wolfe effect on the CMB angular spectrum causes a change in
the spectrum amplitude at £ < 10 as compared to the standard (minimally coupled) Quintessence.
Furthermore, we showed that the ISW effect is sensitive to the sign of the coupling constant, so that
the peaks amplitude in the CMB spectrum, compared to the simplest Quintessence models, changes
in the opposite way for opposite sign of the coupling constant.

Besides the ISW effect, that influences also the peak amplitude through the normalization, the horizon
cross for a given scale is delayed (anticipated) for positive (negative) values of the coupling constant,
and the Hubble horizon at recombination changes correspondingly. This results in a shift in the loca-
tion of the acoustic peaks, which we described analytically, towards smaller or larger scales depending
on the sign of the coupling constant.

We showed that even large scale structure is sensitive to the coupling of the field to the Ricci scalar,
in that the location of the turnover scale in the matter power spectrum is shifted by an amount that
depends on the value of the Hubble constant at the matter-radiation equality, and, ultimately, on the
value and sign of the coupling constant.

In this thesis, CMB anisotropies have been shown to be considerably affected by the dynamical prop-
erties of the vacuum energy and by the Non-Minimal Coupling terms that could be present in the
Lagrangian. This is an important characteristic related to the fact that the CMB itself is more than
a snapshot of the early universe; the features that we can observe today are are also determined by a
line-of-sight integration over a very long part of the cosmic evolution, when the photon free-streamed
towards us affected by the evolution of the gravitational potentials. For this reason, we expect that
future high-precision measurements of the CMB anisotropies will reveal us much about the time vari-
ation of the gravitational constant and the dynamics of the vacuum energy, helping to highlight the
nature of the vacuum energy that is pushing the universe in an accelerated expansion phase.
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7.1 Observations and future perspectives

As shown in this thesis, the CMB anisotropy is powerful tool to discriminate between cosmological
models, even including quintessence. The recent results from the first flight of the MAXIMA experi-
ment [101] and from the long duration Antarctic flight of BOOMERANG (BOOMERANG:-98, [60])
are in good agreement and have already been used to constrain a suite of cosmological parameters
within the class of inflationary adiabatic models [118, 14, 138]. As seen in chapter I, these results
strongly support a universe with a density very close to critical, making the case for a dark energy
even stronger as these data are joined with those from large scale structure. In [15], a Bayesian like-
lihood analysis of data from MAXIMA and BOOMERANG-98 has been performed in order to see
the implications on Quintessence models. This analysis applies to a minimally-coupled scalar field,
described by its present equation of state w, and its energy density in umits of the critical energy
density today, Q. In [15], the attention is restricted to the simplest case of quintessence potentials
having an inverse power-law form V o ¢~%, where « is related to the equation of state through eq.
6.21 in the tracking regime.

To rule out models in the 2-dimensional space of scalar field parameters (4, wg), the probability
distribution of these parameters has estimated by evaluating the likelihood of the data. The analysis
is restricted to inflationary adiabatic models with a flat geometry and a scale-invariant spectrum of
primordial fluctuations, neglecting reionization and without taking into account any massive neutrinos
and gravitational waves.

The Hubble constant has been fixed at Hy = 65 km s~ Mpc~!, while the physical baryon density £2,h>
is assumed to vary in the range 0.01 < Q;h? < 0.05: the results in [15] were obtained by marginalizing
(integrating) the likelihood over Q,h2. .

In fig. 7.1 the data points used in the analysis are shown, together with the best fitting spectra from
quintessence models; the latter are obtained by marginalizing the likelihood over Qph? (s0lid line), or
fixing it to the the Big Bang nucleosynthesis value QA% = 0.02 (dashed line).

The best fit to data is given by a model with Q4 = 0.5, wy = —0.75, Qph? = 0.03. Quite in-
dependently on the value of Q,h2, it turns out that pure cosmological constant models, although
compatible with the CMB data used in [15], are slightly disfavored as compared with quintessence
models; the likelihood contours in the Q4 — wy plane, plotted in fig. 7.1 give —1 < wg < —0.75 and
0.35 < Q4 < 0.60, at 1o confidence level.

Obviously, we are not yet in the position to severely constrain quintessence parameters from pure
CMB observations, nor to discard the cosmological constant in favor of quintessence, on observa-
tional grounds. In particular, it has been shown [115] that even an ideal, full-sky cosmic microwave
background anisotropy experiment may not be able to remove the degeneracy between the two. The
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degeneracy problem between A and quintessence arises for a wide range of potentials and initial con-
ditions; furthermore, degeneracy may remain even after considering classical cosmological tests and
measurements of large scale structure. The degeneracy problem placed the accent on the necessity
of combining various independent measures of the cosmological parameters; in particular, it will be
important to probe the anisotropies in the CMB up to smaller angular scales and, most importantly,
with increasing accuracy.

Plausibly, more information will be gained with future experiments, which will culminate with the
Planck ESA’s mission. It is now planned to launch Planck satellite in the first quarter of 2007. Planck
satellite will carry on a telescope with an aperture of 1.5 m, which is designed to image the anisotropies
of the CMB over the whole sky, with unprecedented sensitivity ( temperature fluctuations will be de-
termined with a precision of ~ 2 parts in a million') and angular resolution ~ 10’, together with a
very wide frequency coverage in order to remove foregrounds (see [9] for a recent method developed
for the foreground removal). In fact, thanks to the receivers on board, the Low Frequency Instrument
(LFI, tuned radio receiver array operated at 20K) and the High Frequency Instrument (HFI, 100 -
850 GHz bolometer arrays operated at 0.1K), Planck will produce calibrated maps of the whole sky
on 10 frequency channels, running from 30 to 857 GHz.

In Fig. 7.1, the angular resolution of Planck is compared with COBE resolution: the same pattern of
the CMB anisotropy is observed at the COBE/DMR (upper panel) and Planck (lower panel) resolu-
tion. The frequency channels of the two Instruments have FWHM running from 33’ (for the lowest
frequency channel at 30 GHz) to 4.5' (for the highest a7 857 GHz). The channels at 70 and 100 GHz
are optimal to get the cleanest possible view of primordial CMB fluctuations: at 100 GHz, the LFI
reaches an angular resolution of 10/, allowing to determine the CMB power spectrum up to multipoles
{ =~ 1000. Polarization measurements will be possible with an accuracy of a few pK, providing an
independent estimate of the cosmological parameters and helping in removing the degeneracies.
Galactic emission, dominating the astrophysical foreground noise on scale < 30’; is minimum around
60 GHz; the noise due to extragalactic sources, dominating on smaller angular scales, is minimum in
the range 100 — 200 GHz, where it is primarily due to radio sources. A combination of data from all
LFI channels will allow an accurate subtraction of contaminating foreground signals; the removal of
Galactic dust emission will be further improved using maps produced at higher frequencies by HFIL.
Besides the “primary science”, i.e. the study of the CMB itself, the multifrequency maps will also
allow to perform an accurate “secondary” science, relative to the study of the contaminating sources
of radiation, such as Galactic and extragalactic emissions; the accurately calibrated maps of Galactic
synchrotron and free-free will constitute a unique tool for investigating the distribution of the inter-
stellar magnetic field, the relativistic electrons and the ionized components of the interstellar medium.
At this point, it should be clear that Planck’s CMB observations will provide a major source of in-
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Figure 7.3: Comparison of COBE/DMR and Planck angular resolution: the same CMB pattern (here,
a simulation of the Standard Cold Dark Matter Model) is observed at the COBE/DMR (upper panel)
and Planck (lower panel) resolution.
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formation relevant to several cosmological and astrophysical issues, such as testing theories of the
early universe and the origin of cosmic structures. Other cosmological observations, such as the Sloan
Digital Sky Survey [194] that will provide an improved measurement of the mass power spectrum,
may not be as precise as those of the CMB anisotropies, but generally they do not share the same
degeneracy.

Finally, we wish to mention a space mission which is now being considered, that would increase
the discovery rate for Type la supernovae to about 2,000 per year, i.e. the SuperNova Acceleration
Probe (SNAP) Satellite [203]. Discovery of so many more supernova would help eliminate possible
alternative explanations, give experimental measurements of several other cosmological parameters,
and put strong constraints on possible cosmological models. The SNAP satellite would be a space
based telescope with a one square degree field of view with 1 billion pixels. Such a satellite would also
complement the results of proposed experiments to improve measurements of the cosmic microwave
background.

The work contained in this thesis is motivated by an observational evidence; if current observational
trends continue, determining the nature of the missing energy may be the biggest challenge of the next
decades. It is therefore fundamental, now as often in the past history of the Physics, that theory and
many independent observations proceed together, and we all are impatiently looking ahead to a time
when high precision measurements on different grounds will help to understand the mystery of this
strange energy enclosed in the vacuum.
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