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Introduction

At present, we know about four fundamental interactions. Three of them, electro-
magnetism, the weak and the strong interactions are very successfully described by
a theory called the “standard model”. This theory seems to be in accord with ex-
perimental observations. There is so far only one unobserved particle predicted by
the standard model and needed for its consistency, namely the Higgs boson. If it is
found, which should happen within the next decade, there will be no questions left
open within the standard model that require an answer. The fourth interaction, grav-
ity, is in less good shape theoretically. Classically, it is described by Einstein’s theory
of General Relativity. When one tries to quantize it one gets into serious difficulty.
Quantum gravity has serious internal inconsistencies. Indeed, the loop corrections
in quantum gravity lead to an infinity of new parameters that cannot be absorbed
mto the unique parameter of the theory, namely Newton’s constant. Strictly speak-
ing that means that any physical quantity we compute in quantum gravity depends
on an infinite number of parameters, hence the theory is non-renormalizable. The
strongest point in favor of string fheory is that it seems to solve these problems. It
is the only promising candidate for a consistent theory of quantum gravity, however
with the drawback of not being testable within the capacity of present particle ac-
celerators. This does not mean that there is a proof that all theoretical problems
of quantum gravity are solved, nor that it is known that no other possibilities exist.
There are other problems associated with quantum mechanics and gravity. One of
the most intriguing problem is the so called information-loss problem. Indeed, it has
been proposed that the existence of black holes would force us to give up unitarity of
the S-matrix. A related problem is that of black hole entropy. Bekenstein and Hawk-
ing have shown that a black hole has thermodynamics properties: it has black body
radiation with a certain temperature, and it behaves as if it has a certain entropy
proportional to the area of the horizon. String theory has made interesting contri-
butions to both problems. First of all string theory does indeed change the short
distance physics. It has been shown that in certain string theories the unknown or



infinite corrections are in fact finite and calculable. Furthermore it has been possible
to obtain a description of states of special black holes, so that the correct entropy
can be obtained. String theory does not just contain gravity, it comes inevitably with
a large number of other particles and interactions. These have the same features as
the standard model. Unfortunately, the particles and interactions predicted by string
theory are far from unique (for a general review of string theory see for example
[1, 2, 3, 4]).

During the last few years considerable progress in the understanding of non-
perturbative phenomena in String Theory has been achieved. The key to this de-
velopment is the use of duality symmetries, which relate the strong coupling regime
of one theory to the weak coupling regime of a second (possibly different) theory. This
fact, together with the powerful non-renormalization theorems of extended supersym-
metry, often allows one to obtain non-perturbative information about one theory by

doing perturbative computations in a dual weakly coupled theory.

An extra bonus of these developments has been the realization that all known
string theories are just different vacua in the moduli space of a (yet poorly understood)
fundamental theory, called M-theory [5, 6].

Most of the dramatic successes of the past fiew years in this field, rely on the obser-
vation that certain solitonic objects that carry charges under the so called Ramond-
Ramond (p + 1)-form gauge fields, and that are extended along p spatial directions,
have a very simple conformal field theory description as (p + 1)-dimensional hyper-
surfaces on which an open string can end (hence the name Dirichlet p-branes) [7].
For the simplest cases in type II theories these configurations preserve half of the 32
spacetime supersymmetries. As a result of the open string quantization, the collective
field theory describing the low energy dynamics of these extended solitons turns out
to be a maximal supersymmetric Yang-Mills theory in (p + 1) dimensions with 16
supercharges. Therefore, questions concerning possible bound states of these solitons
(which are BPS states preserving some amount of spacetime supersymmetry) and
related multiplicities, can be rephrased as questions about the vacua of the corre-
sponding supersymmetric Yang-Mills theories. It is well known that a good deal of
information about these issues is contained in the supersymmetric Witten index, or,

for two-dimentional SCFT’s, more generally, in the elliptic genus.

A very important application of these ideas has been the microscopic derivation
of the Bekenstein-Hawking entropy formula for certain black-holes, precisely in terms
of the number of bound states of a system of D-branes [8].



This thesis is devoted to test U-duality [6], a generalization of electromagnetic du-
ality which combine S-duality and T-duality, in string theories with 16 supercharges,
obtained by orbifolding/orientifolding IIB string theory. It turns out that there is a
variety of models of this type which are related by U-duality, and this puts highly
non-trivial constraints on the effective field theory describing bound states of branes
in various cases. In these tests a crucial role is played by BPS states [9] (i.e. states
preserving half and one quarter of the space-time supersymmetry) in theories with
16 supercharges. They are expected to be stable which allows us to follow them from
weak to strong coupling regimes, providing us with highly non trivial consistency
checks of the U-duality relation between various models. Typical examples of BPS-
states are fundamental strings carrying winding and momentum charges along circles
and solitonic configurations representing bound states of D-branes. Below D = 6
the spectrum of BPS states include both electric and magnetic charges arising from
strings and five-branes wrapping the internal manifold. These are generalizations of
dyonic states arising in N' = 4 Yang-Mills theory (for groups of rank greater than
1) and generically preserve one quarter of the supersymmetry. In the case where
the dyon can be realised in terms of bound states of D1/D5 branes, the spectrum
of masses, charges and multiplicities of the dyonic excitation should arise from an
index computation in the effective gauge theory describing the system. This project
has been recently carried out for type IIB theory on T* and K3, where the effective
field theory of the system is expected to flow in the infrared to a CFT related to the
symmetric product of 7* and K3 respectively [10]. In these cases one can also get
informations about states which carry longitudinal momentum, preserving 1/8 of the

bulk supersymmetry.

This thesis is organized as follows: In the first chapter we briefly review some fea-
tures of ten dimensional string dualities with one example in six dimensions, namely
type IIA on K3 and hetrotic on 7%, BPS bounds and D-brane physics which will set
the background and notations for the later discussions. In chapter 2 [11] we study the
BPS spectrum of D1/D5-brane bound states in several orbifold /orientifold type IIB
string vacua with sixteen unbroken supercharges. Orbifold/Orientifold group actions
will be always acompained by shifts allowing us (according to the adiabatic argument
[12]) to follow carefully BPS states along “U-duality” chains. Orbifold conformal
field theories involving symmetric product spaces are proposed as a description of the
infrared limit of the corresponding low energy gauge theories describing the D-brane
bound state. Bound state degeneracies are then computed by an elliptic genus for-
mula associated to orbifoldings of symmetric product spaces. The results reproduce



in each of the cases the multiplicities of fundamental strings carrying both winding
and momentum on the U-dual side. In chapter 3 [13] we express the infinite sum of
D-fivebrane instanton corrections to R2? couplings in N = 4 type I string vacua, in
terms of an elliptic index counting $-BPS excitations in the effective Sp(NN) brane
theory. We compute the index explicitly in the infrared, where the effective theory
is argued to flow to an orbifold CFT. The form of the instanton sum agrees com-
pletely with the formula predicted from a dual one-loop computation in type ITA
theory on K3 x T?. The proposed CFT provides a proper description of the whole
spectrum of masses, charges and multiplicities for —;—- and —Z—— BPS states, associated to
bound states of D5-branes and KK momenta. These results are applied to show how
fivebrane instanton sums, entering higher derivative couplings which are sensitive to

%-BPS contributions, also match the perturbative results in the dual type ITA theory.

In appendix A we discuss the orientifold projection on Chan-Paton factors for the
D1-D5 system in the presence of shifts. In appendix B we derive symmetric product
partition functions for free fields acted upon by a Z, orbifold. In appendix C we
include some details of a genus 1 modular integral relevant to the computation of
the low energy couplings in section 6 of chapter 2. Finally some conclusions and

discussions are included.
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Chapter 1

Low energy effective actions

1.1 Perturbative string theories

String theory is a theory describing the evolution of a one-dimensional object, called
“string”. As the string propagates in space-time, it sweeps out a world sheet that is
the generalization of the world line of a particle. We can have open strings, which have
endpoints, and closed strings, which have the topology of a circle. The world sheet
is parametrized by two parameters, o and 7, the latter is a sort of time coordinate
for an observer sitting at the position o along the string. The description requires
specifying the position X*(o, 7) of the string in the target space at given values of o
and 7. Despite all all its beautiful features the bosonic string theory has a number
of shortcomings. The most drastic one is the presence-of tachyons which indicate the
instability of its vacuum. A solution to this problem was provided by the introduction
of world sheet supersymmetry that relates the string coordinates X#(o, 7) to fermionic
coordinates *(o, 7). The latter are two component world-sheet spinors. This theory

is called superstring theory and is described by the action

S = -:g— /E d*ovVh [hP 0, X s X, — 1" p*Dath,] , (1.1)

here v/h is the square root of the absolute value of the determinant of the world-
sheet metric h,g. 7' is the constant of proportionality, required to make the action
dimensionless. Setting & = ¢ = 1 gives T the dimension of (length)™2. We can
show that T is actually the tension of the string, which is related to the Regge slope
parameter of open strings by 2ma/T = 1. The symbol p® represents two-dimensional
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Dirac matrices. The action (1.1) is invariant under global Poincare transformations,
local two-dimensional reparametrization and under conformal (or Weyl) rescaling of
the world-sheet metric hgg — Ahgs. Due to conformal invariance, the stress energy
tensor T,g is traceless. Upon quantization one however finds an anomaly Ty # 0. The
cancellation of this conformal anomaly puts strong constraints on the dimension of the
space-time in which the string moves, leaving only D = 26 and D = 10 for the bosonic
and fermionic strings respectively. Elementary particles arise as the infinite tower of
string vibrational modes. The massless spectrum contains, besides the standard gauge
particles and matter, a spin two particle (the graviton). In the low energy limit o/ — 0
the massive string states can be integrated out leaving an effective supergravity theory
in terms of the massless spectrum of physical states. The interactions are described by
joining and splitting of strings during their evolution in space-time. A generic string
scattering process is given by a sum over all possible Riemman surfaces weighted by
g%, where g is the string coupling constant and x is the Euler number of the Riemann
surface. There are five known consistent superstring theories in 10-dimensions. They
are known as type IIA, type IIB, type I, Es X Eg heterotic and 5 O(32) heterotic string
theories respectively. Let us give a brief description of the degrees of freedom and the
spectrum of massless states in each of these theories. We will work in the light-cone
gauge which has the advantage that all the states in the spectrum are physical.

Type II string theories: The world-sheet theory contains eight scalar fields
which represent the eight transverse coordinates of a string moving in a nine dimen-
sional space and eight Majorana fermions. It is useful to regard these eight Majorana
fermions as sixteen Majorana-Weyl fermions, eight of them having left-handed chi-
rality (left-moving) and the other eight having right-handed chirality (right-moving).
The type II string theories contain only closed strings, hence the spatial direction
of the world-sheet is a circle. The eight scalar fields have periodic boundary condi-
tions as we go around the circle, whereas the fermions can have either periodic R
(Ramond) or antiperiodic NS (Neveu-schwarz) boundary conditions. To get a con-
sistent string theory we need to combine different types of states, with periodic and
anti-periodic boundary conditions on the fermions, ending with four sectors. Once all
the sectors are included, modular invariance (which is simply the requirement that
equivalent Riemman surfaces describing interactions of closed strings, should give the
same string answer), requires a suitable projection [14] (GSO) on the spectrum of
states, leading to a sum over possible boundary conditions on the fermions. The
projection is implemented by keeping only those states in the spectrum constructed

from an even number of left-moving fermions and and even number of right-moving
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fermions. There is an ambiguity in assigning to the ground state either even or odd
fermion number. Consistency of string theory leaves us with two possibilities. De-
pending on whether the GSO projections in the left- and the right-moving sector are
identical or different, we have type IIB or type IIA string theory. States from the
Ramond sector are in the spinorial representations of SO(1,9), whereas those from
the Neveu-Schwartz sector are in the tensorial representations. Since the product of
two spinorial representations gives us back a tensor representation, the states from
the NS-NS and R-R sectors are bosonic, and those from the NS-R and R-NS sectors
are fermionic. Since the two theories differ only in their R-sector, the NS-NS sector
states are the same in the two theories. They constitute a symmetric rank two tensor
field G;; (the graviton), an anti-symmetric rank two tensor field BY°, and a scalar
field ¢ known as the dilaton. The R-R sector massless states of type IIB string the-
ory consists of a scalar x, a rank two anti-symmetric tensor field B, and a rank
four anti-symmetric tensor field Cy,; (with a self dual field strength). On the other
hand, the massless states from the R-R sector of type ITA string theory consist of a
vector Ay, and a rank three anti-symmetric tensor Cryr. These theories are invariant
under ten dimensional N' = 2 supersymmetry. For the type IIB theory the super-
symmetry generators satisfythe chiral A/ = 2 superalgebra and for type IIA theory
the non-chiral ' = 2 superalgebra. These massless content determine completely
the low energy effective actions of the theories known as IIA and IIB ten dimensional
supergravities.

Heterotic string Theories: The world sheet theory of the heterotic string the-
ories consists of eight scalar fields, eight right-moving Majorana-Weyl fermions and
thirty two left-moving Majorana-Weyl fermions. We have NS and R boundary condi-
tions as before, as well as GSO projection involving the right-moving fermions. Unlike
in the case of type II string theories, in this case boundary conditions on the left-
moving fermions do not affect the Lorentz transformation properties of the states.
Thus bosonic states come from states with NS boundary condition on the right-
moving fermions and fermionic states come from those with R boundary condition
on the right-moving fermions. There are two boundary conditions on the left-moving

fermions giving rise to consistent string theories.

e SO(32) heterotic string theory: In this case either all the left-moving fermions
have periodic or anti-periodic boundary conditions. The GSO projection keeps only
those states in the spectrum which contain even number of left-moving fermions. The
massless bosonic states in this theory consist of a symmetric rank two field G, an
anti-symmetric rank two tensor field BY?, a scalar field ¢ and a set of 496 gauge

13



fields filling up the adjoint representation of the gauge groﬁp SO(32).

e Fy x Fg heterotic string theory: In this case we divide the 32 left-moving fermions
into two groups of sixteen each and use four possible boundary conditions, 1) all
the left-moving fermions have periodic boundary conditions, 2) all the left-moving
fermions have anti-periodic boundary conditions, 3) all the left-moving fermions of
the first group have periodic boundary conditions and all of the second group have
anti-periodic boundary conditions, 4) all the left-moving fermions of the first group
have anti-periodic boundary conditions and all of the second group have periodic
boundary conditions. In each sector we also have a GSO projection that keeps only
those states in the spectrum which contain an even number of left-moving fermions
from the first group and even number from the second. The massless bosonic states
in this theory consist of a symmetric rank two field Gy, an anti-symmetric rank two
tensor field BYS, a scalar field ¢ and a set of 496 gauge fields filling up the adjoint
representation of the gauge group Eg x Eg. The spectrum of both these theories is

invariant under the chiral ten dimensional A/ = 1 supersymmetry.

Type I string theory: The type IIB superstring, with the same chiralities on
both sides, has a symmetry that exchanges the left- and the right-moving sectors
in the world sheet theory. This transformation is known as the world sheet parity
transformation . Type I theory can be tho"ught as the quotient of type IIB theory
by this world sheet parity [15]. We can “gauge” this symmetry by keeping only those
states in the spectrum which are invariant under this world sheet transformation to
obtain an unoriented closed string theory. In the NS-NS sector, this eliminates the
rank two antisymmetric tensor field BY?, leaving the rank two symmetric tensor field
G;; and the scalar field ¢. The fermionic NS-R and R-NS sectors of type 1IB string
theory have the same spectra, so the Q-projection picks out the linear combination
(NS-R)+(R-NS). From the R-R sector, the Q-projection selects the rank two antisym-
metric tensor BY;, eliminating the scalar x and the rank four anti-symmetric tensor
Ci . However, the resulting theory is not consistent. To have a consistent string
theory built from this unoriented closed string, we should include open string states
in the spectrum. The end points of the open strings are taken to be free (Neumann
boundary conditions) and carry a non-dynamical gauge index in the fundamental
representation of U(N) in the oriented string case and the adjoint representation of
SO(N) or Sp(N) for the unoriented case. The open string theory that couples to
the unoriented closed string theory must also be unoriented for the consistency of
the interactions. The tadpole cancellation requirement leaves, however, the SO(32)
as the only consistent gauge group. The spectrum of massless bosonic states in the

14



resulting theory, together with G;;, B, and ¢ of the closed string sector, consist of
496 gauge fields in the adjoint representation of SO(32) gauge group coming from the
open string sector. This spectrum is also invariant under the chiral ten dimensional

N =1 supersymmetry.

1.2 String duality conjectures

As was described above, neglecting non supersymmetric projections, there are five
consistent string theories in ten space-time dimensions. We can also get many different
string theories in lower dimensions by compactifying these five theories on appropriate
manifolds M. Each of these theories is parametrized by a set of undetermined scalar
expectation values known as moduli !. String dualities provide us with equivalence
maps between different string theories. These equivalence relations map, in general,
the weak coupling region of one theory to the strong coupling region of the second
theory and vice versa. If a duality transformation is a symmetry of a string theory, it
should than be a symmetry of the corresponding low energy effective action. At two
derivative level these actions are completely determined by their supersymmetry and

their massless spectrum.

Let us consider in the following some examples of duality conjectures. We will
work in the string frame, where a factor of e??, appears in front of the Einstein

kinetic term.

1.2.1 Type I-heterotic duality

The massless bosonic states in SO(32) heterotic string theory come from the NS
sector, and contains the graviton Gjp;, the dilaton ¢, the rank two antisymmetric
tensor field BY?, and the gauge fields A% (a =1, ...,496) in the adjoint representation
of SO(32). The low energy dynamics involving these bosonic fields is described by the
N = 1 supergravity coupled to SO(32) super Yang-Mills theory in ten dimensions.
The basic action is given by [6, 16, 17, 18]:

1, 1
ghet — / d05/Ge2¢ [R +4(Ve)* - 1 F* - EHZ} ; (1.2)

!The string coupling constant g = e?, the shape and size of M, and various other background
fields.
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where R is the Ricci scalar, Fr; denotes the non-abelian SO(32) gauge field
strength, and Hysk is the strength associated with the B}VJS field.

Let us now turn to type I string theory. The massless bosonic states come from
three different sectors. The closed string NS-NS sector gives the graviton Gy, and
the dilaton ¢. The closed string R-R sector gives an anti-symmetric tensor field Bfy.
Finally, the open string NS sector gives gauge fields A% (a = 1,...,496) in the adjoint
representation of SO(32). The low energy dynamics is again described by the N=1
supergravity theory coupled to SO(32) super Yang-Mills theory. The action is given
by:

5T = /dlox\/@ [e"w (R+ 4(Ve)*) — ie“i’F2 — %ﬁz} , (1.3)

where now Hjsx is the field strength associated to the Bﬁj field.

Notice the absence of any dilaton dependence in the H kinetic term. The latter is
coming from the R-R sector of the closed superstring. The dilaton and gauge kinetic
terms, on the other hand, are weighted by e=2% and e~ %, since they come from the
sphere and the disk world-sheet surfaces respectively. It is easy to see that the two
actions (1.2) and (1.3) are identical provided we make the identification:

on=—¢1, Gh, =e MG, AL=A Bt =B, (1.4)
This led to the hypothesis that the type I and SO(32) heterotic string theories in

ten dimensions are dual.

Recalling that g = e? is the string coupling, from (1.4) we see that g, = 1/gr1,
leading to the hypothesis that the strong coupling limit of type I string theory is
related to the weak coupling limit of SO(32) heterotic string theory and vice versa.

1.2.2 1IB self-duality in D=10

The massless bosonic fields in type IIB string theory come from two sectors. The
NS-NS sector gives the graviton Grjy, an anti-symmetric tensor field BNS, and the
dilaton ¢. The R-R sector gives a scalar field x some times called the axion, an
anti-symmetric tensor field B, and a rank four anti-symmetric tensor field Cf7x
whose field strength is self-dual. It turns out that there is no simple covariant action

describing the low energy limit of this theory, but there are covariant field equations,
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which are in fact just the equations of motion of type IIB supergravity. It is often
convenient to combine the dilaton and the axion fields into a complex scalar field A

as follows:

A=yx+ie?. (1.5)

The equations of motion are covariant (they transform into each other) under
SL(2, R) transformations [19, 20, 21, 22]:

aX+b B, d ——c) <B£L>
— , > = e
cA+d B, b a B

G]] — G[J, C?:/'KL — C’;:]KL’ (16)

where a, b, ¢, d are real numbers with ad — bc = 1. The existence of this SL(2, R)
symmetry in the type IIB supergravity theory led to the conjecture that an SL(2, Z)
subgroup of it, obtained by restricting a, b, ¢, d to be integers, is a symmetry of the

full type IIB string theory.

Theories obtained by modding out (compactified) type IIB string theory by a
discrete symmetry group, where some of the elements of the group involve 2, are
known as orientifolds. The simplest example of an orientifold is type IIB string
theory modded out by 2. This corresponds to type I string theory [15]. The closed
string sector of type I theory consist of () invariant states of type IIB string theory.
The open string states, on the other hand, are the analogs of twisted sector states in
an orbifold, which must be added to the theory in order to make it finite.

Type II theories has another discrete symmetry denoted by (—1)f% (type 1IB
modded by (—1)f% coincides with type ITA theory in D=10). It changes the sign of
all the Ramond sector states on the left-moving sector of the world-sheet. Acting on
the massless bosonic sector fields, it changes the sign of x, Bf;, and C};,;, and leaves
Gr7, BYN? and ¢ invariant.

4 0 1
The combined action S (—1)ft S=! where S is the element <1 0 > of SL(2, Z),

on the massless fields, turns out to be identical to that of Q. Since the action of S
on the massive flelds is not known, it can be defined in such a way that the action of
S (=1)F2 S~ and Q are identical on all states. This gives [23]

S(-nfrst=q. (1.7)

17



In the next chapter we will use these symmetries to construct a series of five-

dimensional dual pairs by orbifolding/orientifolding type IIB theory.

1.2.3 Heterotic/Type-II duality in D=6

Heterotic string theory compactified to six dimensions on a four dimensional torus
T4 and type IIA string theory compactified on the four dimensional hyperkahler
manifold of non trivial SU(2) holonomy K3 enjoy both N = 2 supersymmetry in six
dimensions. At generic points of the moduli space (i.e. G — U(1)**) both theories
have the same massless spectrum, containing the A/ = 2 supergravity multiplet and
twenty vector multiplets [23].

The six-dimensional tree-level heterotic effective action is given by:

. 1 po s
Sheterotlc _ / dGIE \/___‘d—e?—ée‘u’ {R-}— 48”(}56u¢ - EH#VPHLLVP'" (18)

1, - | N
——Z(M'"l)ijF;“,Fj“” + gTT(BMMWM_l)] :
wherei=1,2,...,24 and

I:Iu,,p = d,B,, — L ALng + cyclic.permut. . (1.9)

The moduli scalar matrix M is,

G™! G™C Gyt
M=|CiG! G+C'G\C+YYY C'G'Y'+Y* |, (1.10)
YG™! YGTIC+Y 1+ YGYE

where 14 is the sixteen-dimensional unit matrix, Gag is the internal metric,
C,s=B Lyryr
op = Bap — 5¥a ¥ - (1.11)

with L;; the O(4,20) invariant metric and the Y! moduli are the six dimensional
internal gauge fields backgrounds which belong to the Cartan subalgebra of the ten-
dimensional gauge group SO(32) (Wilson lines).

The tree-level type IIA effective action is given by [24]:

SHA = [ d8z\/—det Gee ™™ | R+ 4V*V 0 — _HMVPHLWP+ (1.12)
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1
+8Tr (8, Mo* M~ }-% V—det G(M~ )UFJ,,FJ“”—I-E / d°ze™* By, Fl Ly,
where I =1,2,...,24. L is the O(4,20) invariant metric
0 1, O
L=11, 0 o0 |. (1.13)
O 0 —116

To see that there is a simple transformation that relates (1.8) and (1.12) it is useful
to go to the Einstein frame by performing the Weyl rescaling G,, — €®G,,, the
heterotic action becomes:

_¢ . R
Shet / &z V/—G [R — O pdup — —%——H“”"HW,,— (1.14)

- . 1 - N
—%(A{“l)ijF;UFJ“” + gTr(auMa“M‘l)] :

and the type IIA action in this frame is given by

1
SHA — / d%zv/—G {R ~ 0 40, b — E6—2“5HW’Hw,p— (1.15)
1 drar—1 i g uy 1 Crouar—1 1 6. LVOOTE i 7 Y
*Ze (.Z\/[ )ijF#yF -+ —8-T7"(8M]\/[8 M ) + I"6‘ d’ze BI-WFpULijFTE .

Notice that the heterotic H,,, contains the Chern-Simons term (1.9), while the
type IIA one doesn’t. The type ITA action instead contains a parity odd term coupling
the gauge fields and B,,. Both effective actions have a continuous O(4, 20, R) sym-
metry which is broken in string theory to the quantum T-duality group O(4,20, Z)
[25].

The actions (1.14) and (1.15) are identical provided we make the following iden-
tifications [26, 27]:

wi o

¢h:;¢IIA , Gho=GIA | oyt =NTA Al =AllA (1.16)

oTE

le
o260 fr1TA Cuvp 17h
Hﬂup - 6 \/:—é Hcr're ’
The effective action of type ITA theory on K3 has a string solution which is singular

at the core. The zero mode structure of the string is similar to the perturbative type-
ITA string [28]. There is also a string solution which is regular at the core. This is a
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solitonic string and analysis of its zero modes indicates that it has the same (chiral)
word-sheet structure as the heterotic string [29]. The string-string duality map (1.17)
exchanges the roles of the two strings. The type-IIA string now becomes regular
(solitonic), while the heterotic string solution becomes singular.

- Upon compactification of the two theories to four dimensions on a two dimensional
torus T2, heterotic-type ITA duality translates into S <> T interchange [30]. As a
consequence, fundamental string winding of the type ITA string theory is mapped
to NS5-brane charge of the heterotic string and vice versa. Moreover, electrically
charged states are interchanged with magnetically charged states.

1.3 BPS states and Bounds

Analysis of the low energy effective action as sketched above, provides us with a crude
test of duality. Indeed, most of the duality conjectures were arrived at by analyzing
the symmetries of the low energy effective actions. A step further is based on the
analysis of the spectrum of BPS states. These are states which are invariant under
some fraction of the supersymmetry transformations. These states are very special

for various reasons [31}:

i) Although they are massive, they form multiplets under extended supersymmetry

which are shorter than the generic massive multiplet.

ii) At generic point in moduli space they are stable because of energy and charge

conservation.

iii) Their mass formula is supposed to be exact if on uses “renormalized” values

for the charges and moduli.

A common feature to all N = 1,2 supersymmetries, describing the low energy
limits of the discussed string theories, is that they admit “central” extensions in their
associated superalgebra [9]. These central charges depend on electric and magnetic
charges of the theory as well as on expectation values of some moduli. Some times
supersymmetry representations are shorter than usual. This is due to the fact that
some of the supersymmetry generators are “null”, so that they cannot create new
states. The vanishing of some supercharges depends on the relation between the
mass of the multiplet and the central charges appearing in the supersymmetry algebra.
The BPS states are the lowest lying states and they saturate the so-called BPS bound
which, for the point-like states, is of the form:



M > maz(|Z|) (1.18)

where maz(|Z|) stands for the maximal eigenvalue of the central charge matrix
Z.

Consider type IIB string theory compactified on a circle. Since, the total number
of supersymmetry generators in this theory is 32, a generic long supermultiplet is
216 = (256)* dimensional. This theory also has BPS states breaking half of the space-
time supersymmetry. For these states we have 2% = 256 dimensional representation
of the supersymmetry algebra. They are known as ultra-short multiplets. We can
also have BPS states breaking 3/4 of the space-time supersymmetry and realizing a
212 = 16 x 256 dimensional representation. They are known as short multiplets.

These BPS states can be realized as point-like soliton solutions of the relevant
effective supergravity theory. There are also BPS versions of extended objects (BPS p-
branes). In the presence of the latter, the supersymmetry algebra can acquire central
charges that are not Lorentz scalars [32]. These extended objects are charged under
some anti-symmetric tensor Z,, ,....,,, and the central charges have values proportional
to these charges. The BPS condition would relate these charges with the energy
densities (p-brane tensions) of the relevant p-branes. Such p-branes can be viewed as
extended soliton solutions of the effective theory. In all cases the BPS condition is
the statement that the soliton solution leaves part of the supersymmetry unbroken.

There are several amplitudes that in perturbative string theory obtain contribu-
tion from BPS states only. In the case of sixteen conserved supercharges (N = 4
supersymmety in four dimensions), all two derivative terms as well as R? terms are
of that kind. In the last chapter we will study in some detail the R? [13] coupling in
the context of type IIA on K3 x T2-heterotic on T dualtity.

1.4 D-branes and RR charges

Dp-branes are extended objects in p spatial dimensions defined by the property that
open strings can end on them [33, 34|, see Figure 1.1. Open strings can have two

“obvious” kinds of boundary conditions,

0, X* = 0 Neumann(N)
8,X* = 0 Dirichlet(D), (1.19)
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where the Neumann boundary condition amounts to conservation of momentum at the
boundary, while the Dirichlet boundary condition means that X*#(0,7) and X*(m,T)
are fixed. One may consider situations where p space-like coordinates have Dirichlet

boundary conditions, and the remaining 9 —p having Neumann boundary conditions
X50,7) = X (m,7) = viI=p+1,---9,

where V! is some fixed vector. Hence the open string endpoints are free to move
in the p + 1 directions X 0 ...X? while they are fixed in the remaining directions
XP+l... X9 Tt is obvious that translation invariance is broken in the directions
XP+L... X9 This can be understood in terms of objects that are present in space.
These objects are called Dp-branes. Note that if we take Neumann boundary condi-
tions in all directions, the endpoints of the open string will be free to move in all space
directions. This is what we normally mean by “open strings”. From the point of view
of perturbative string theory, the positions of the D-branes are fixed, corresponding
to a particular string theory background. However the massless modes of the open
strings connected to the D-branes can be associated with fluctuation modes of the
D-branes themselves, so that in a full non-perturbative context the D-branes are ex-
pected to become dynamical p-dimensional branes. In one of the most important
papers in the recent string revolution [7], it was pointed out by Polchinski that D-
branes are charge carriers for the RR fields of type 11 superstring theories. Generally,
a Dirichlet p-brane couples to RR p + 1-form field through a term of the form

Ly / AP (1.20)
Zpt1

where the integral is taken over the p + 1-dimensional word-volume of the p-brane.
The D-branes break half of the space-time supersymmetry, considering that €1, €r
are the space-time supersymmetric parameters in type II string theories, originating
in the left-and the right-moving sector of the world-sheet theory respectively. Then
¢; and ep satisfy the chirality constraint

.. .T%; =e;, 0. . .T%pg = er. (1.21)

Where & = +1(—1) in type IIB (ITA) and I'* are the ten dimensional gamma matri-
ces. The open string boundary conditions together with the corresponding boundary
conditions on the world-sheet fermions give further restrictions on the supersymmetry

parameters of the form [7]:
€r, :Fp+l"'F96R. (122)
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Figure 1.1: D-branes are extended objects on which open strings can end.

The compatibility of (1.21) with (1.22) then implies that p should be odd (even) in
type IIB (IIA) string theories. In type IIA theory there are Dirichlet p-branes with
p=0,2,4,6,8 and in type IIB there can be Dirichlet p-branes withp = —1,1, 3,5, 7, 9.
The D-branes with p > 3 couple to the duals of the RR fields and are thus magnetically
charged under the corresponding RR fields [34].

Let us see now how the dynamical degrees of freedom of a D-brane arise from
the massless string spectrum in a fixed D-brane background [35]. In the presence
of a D-brane, the open string vector field Ay, with M = 0,---9, decomposes into a
U(1) gauge field A, on the world-volume of the brane with p a p + 1-dimensional
index, and 9 — p scalar fields X®. The fields X® describe fluctuations of the D-brane
world-volume in the transverse directions. In a purely bosonic theory, the equations
of motion for a D-brane are precisely those of the action [36] 2

S =-1, / dp+1§e“¢.\/det(-—GW + By, + 2w/ F,,), (1.23)

where G, B and ¢ are the pullbacks of the ten dimensional metric, antisymmetric
tensor and dilation to the D-brane world-volume, while F, w18 the field strength of

the world-volume U(1) gauge field A,. ¢ is some coordinate system on the D-brane

world-volume, the tension [34] 7, = Z;E = glﬁ(fm—\}?)_ﬁ and g the string coupling

’In the full supersymmetric string theory, this action must be extended to a supersymmetric
Born-Infield action. There are in addition, Chern-Simons terms coupling the D-brane gauge field to
the RR fields, of which the leading term is the (1.20) term discussed above.
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constant. The inverse string coupling appears because the leading string diagram
which contributes to the action (1.23) is the disk diagram. Making a certain number of
assumptions, the form of the action (1.23) simplifies considerably. Assume that: i) the
background 10-dimensional space-time is flat, so that gyy = Tunv = (=4 +). ii)
the D-brane is approximately flat so that we can identify the world-volume coordinates
on the D-brane with p+1 of the 10-dimensional coordinates (static gauge assumption)
the pullback of the metric to the D-brane world-volume becomes

Gy = Ny + 8,X°0,X° + 0((0X)*),

iii) By, vanishes, 2ra/F), and 0,X® are small and of the same order. Then we see

that the low-energy D-brane world-volume action becomes

2
S=—TVp ; /dp“é(FwF“” 4+ -9, X" X%+ O(F*),  (1.24)

- 49%/1\/[ (2ma)?

where V,, is the p-brane world-volume and the Yang-Mills coupling is given by

Gym = %(ZW\/&—')%?

The second term in (1.24) is just the action for a U(1) gauge theory in p+1-dimensions
with 9 — p scalar fields. In fact, after including fermions, the low-energy action for a
D-brane becomes precisely the U(1) SYM action in p+1-dimensions. In the case when
we have N parallel Dp-branes, labeling the branes by an index (i=1,---N), there are
massless fields living on each D-brane world-volume, corresponding to a total gauge
group U(1)". In addition, however, there are fields corresponding to strings stretched
between each pair of branes A%[ . Because the strings are oriented, there are N* — N
such fields. The mass of a field corresponding to a string connecting branes i and
j is proportional to the distance between these branes. Witten has pointed out [37]
that as the D-branes approach each other, the stretched strings become massless and
the fields give the right degrees of freedom of the gauge field components and adjoint
scalars of a supersymmetric U(N) gauge theory in p + 1-dimensions.

Generally, such a SYM theory is described by the dimensional reduction to p+ 1-
dimensions of the ten dimensional non-abelian Super Yang-Mills theory where all
fields are in the adjoint representation of the gauge group. The N =1 SYM action
is given by

1

1  _
S=—— / dOETr(— = F F™ + 2T D),
Iy M 4 2
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where ) is a 16-component Majorana-Weyl spinor of S O(i, 9) and
F,, =0,A, — 0,4, —i[A,, A
The covariant derivative D, of ¢ is given by
D,y = 0,9 — 1[A,, Y.

We thus conclude that the low energy physics of N Dirichlet p-branes living in flat
space in type II theories is described, in the static gauge, by the dimensional reduction
to p+ 1-dimensions of ' = 1 SYM theory in ten dimensional with gauge group U(N).



Chapter 2

D1/D5 systems in N = 4 string

theories

In this chapter we will systematically discuss various aspects of the D1-D5 system
in the context of a class of theories with 16 supercharges. These are obtained by
orbifolding/orientifolding type IIB theory with freely acting Z, actions, which involve
shifting along some compact direction together with the action of Zy elements such
as Q, the world sheet parity, or the “fermionic parity” (—)Fr, with Fy, the spacetime
left-moving fermion number or Iy, the reflection of the 4 coordinates of a T,

The presence of the shift generate theories that, compared with type I theory
have the simplifying feature of avoiding the presence of open string sectors. In the
case where the Z, includes the world-sheet parity operator  [38]. Moreover, via the
adiabatic argument [12, 23], these actions are expected to commute with S-duality.
Therefore some subgroup of the full U-duality group is still at work, relating in a non-
perturbative way various brane configurations. In particular we can relate the D1-D5
system in one theory to a fundamental string with winding plus KK momentum in
another theory. Also, we obtain non-trivial relations for the three-charge systems in
different backgrounds.

We will derive CFT descriptions for the D1-D5 systems in the various cases and
test them against the U-duality predictions. We are interested in the counting of
BPS states. As we have already mentioned in the introduction the information about
multiplicities and masses of these states is encoded in the Witten index or more
generally in the elliplic genus. Since the elliptic genus do not depend on the coupling
constant, we can take the limit wich is more convenient for our purposes. We will
consider the infrared limit of our theories. We will find agreement for the two-charge
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states but generically disagreement for the three-charge states. For the latter states,
we will point out a similar problem in the case of type II on K3.

This chapter is organized as follows: in section 2 we will describe the various
type IIB orbifold/orientifold backgrounds and the U-duality relations among them
and the corresponding charges, that will be relevant to our subsequent analysis. The
discussion here will be general for the case where the shift is transverse to the D-

branes, but we will partially cover the longitudinal shift case too.

In section 3 we will derive the effective field theory for systems of D1-branes, D5-
branes and D1-D5 branes and show that they involve symmetric products of 7% with
appropriate Z, orbifold actions, depending on the background under consideration.
For theories which involve orientifolding, the resulting D1-D5 CFT is of type (4,0).
In section 4 we will derive elliptic genera for symmetric products involving fields with
the above extra Z, orbifold actions. In section 5 these results will be used to show
that the predictions of the proposed CFT’s agree with those of the perturbative string
partition functions of the U dual theories, for all two-charge cases, in particular the
D1-D5 case. In section 6 we compute the moduli dependence of low energy couplings
involving the gauge fields arising from KK reduction in various backgrounds.

2.1 U-duality chain of type IIB orbifold /orientifolds

2.1.1 Transversal shift

In this section we construct a series of five-dimensional U-dual models with sixteen
unbroken supercharges. We adopt Sen’s fiberwise construction procedure [23] to gen-
erate lower dimensional dual pairs from the self-dual (under a subgroup of the full
five-dimensional U-duality group that we will still call U) type IIB theory on 7%. The
compact directions are taken to be 12345. We will further compactify on an additional
S of radius Rg in the 6th direction, to accompany various Z orbifold/orientifold ac-
tions with a shift of order two along S*, denoted by o,,. In the case of a geometrical
shift by half winding which we will consider first, this will result in a factor (—1)s
in the corresponding lattice sum, ps being the momentum in the Xg direction. This
will make the construction applicable via the adiabatic argument [12].

We start by defining a U-duality chain that maps into each other the various
charges in the perturbative and solitonic spectrum of the toroidal type IIB parent
theory. Under these duality transformations, perturbative symmetries of the under-
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lying theory such as Q (worldsheet parity operator), (—)* (left moving spacetime
fermion number) and I, (reflection in the (2345) plane) are mapped into each other.
A prototype of such a duality chain is displayed in table 1.1:

A—§—+B—TE¥3+C—S——%D

N S12345 D12345 Dy B
F D, Dr934s N S12345
n h D h

(=)L QI Q (=)
1y Iy 1y Iy

(=) Q QI (=)™ 14

Table 1.1: D1(D5)-p to fundamental strings

For the time being different columns, labeled by A, B,..., represent equivalent
description of type IIB theory on T5 but in the future they will stand for a triplet
of models obtained by orbifolding/orientifolding the toroidal theory by one of the
three perturbative symmetries displayed in each column (accompanied by a Z, shift
aps). Different columns are connected by S or Tijk... elements (the indices indicating
the direction along which T-duality is performed) of the U-duality group. Winding,
momentum, NS5-brane and D-brane charges are denoted by Fi, Py NSijkim, Dij...
respectively with the indices specifying the direction along which they are oriented.
We will focus on two-charge systems which admits always a U-dual perturbative

description in terms of winding-momentum charges.

A bound state of N Dl-strings and & units of KK momentum p; at step C, for
example, is mapped through S (Step D) to a fundamental string wrapped N times
on the 15 circle and carrying k units of momentum. Similarly a D5-p bound state at
C is mapped at step A to a fundamental string bound stateFy —p1. A D1D5 bound
state, on the other hand, can be mapped again to a fundamental string-momentum
bound state through the more involve chain of dualities:



To345

c -2, p B, g S, p Dms, g S, g

Dy By ) P P 2
' Disyss N S12345 N S12345 Di345 Dy F
D1 D1 Fy D, Di23as N S19345
g () ()P g or, ()P
I I, (=)Fr I, QI Q (=P
QI (=)t I I Iy I

Table 1.2: D1-D5 to fundamental strings

Let us now come back to the step A in table 1.1, and consider the orbifolding of
type IIB on 7% x Sy by each of the three Z,’s generated by (—)TtI0p,, 140, and
(=) 0y respectively. We will refer to these theories as I, ITp and I1Ir. Accordingly
we will denote by I, IT and III the theories obtained by orbifolding Qo,,, I,o,, and
40,4 Tespectively. In all the above cases the shift along X is transversal to the D1,
D5 branes which are wrapped along X;,..., Xs.

The fiberwise construction procedure [23] states that a dual pairs can be defined
(under certain adiabatic hypotheses [12]) by modding out the parent theories by two
dual actions, i.e. two symmetry elements in the same line in the U-duality chain
above. The inclusion of the shift makes the adiabatic argument applicable. Notice
also that the shift o,y is invariant under all the elements of the U-duality group

involved in the above chain.

From table 1.2 we see that D1-D5 bound states in column C are mapped to
fundamental string states in column H, where theories Ir, IIr and IIIr can be
considered. However, we see that exciting KK momentum on the DI1-D5 system

amounts to excite NS5-brane charges in H.

On the other hand the duality chains above also provide stringent constraints on
the three-charge systems (D1 — D5 — p) of our three theories:

e by comparing column C with column B we see that D1 and D5 charges are
exchanged, with theory I left invariant, while theories I and ITI are exchanged.

e by comparing column C with column F we see that D1 and p charges are
exchanged, with theory I left invariant, while theories 7T and 1] are exchanged.
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e by comparing column B with column G we see that D5 charges and KK mo-
mentum p are exchanged, with theory IIT left invariant, while theories I and I are
exchanged.

As we will see, these relations will put severe constraints on the multiplicity for-
mulae for the three-charge systems and hence on the effective filed theory governing
them.

2.1.2 Longitudinal shift

One may ask the question of what happens if the shift is longitudinal to the D-branes,

i.e. instead of o, we have oy, .

Consider theory II at step C. After S duality, at step D the twisted sector con-
tains half-integral winding modes localized at fixed points. At step E these become,
in the twisted sector, half-integral momentum modes localized at fixed points. In
going from E to F we expect a non-perturbative phase op, for the states carrying
D;-brane charge. This cannot be the whole story however. This is clear from a com-
parison of the perturbative spectrum of states at step E and F: in the former case,
integer (untwisted states) and half-integer (twisted states) momentum modes come
with different multiplicities due to the winding shift (see formulas (2.48) below with
Fy — p1), while in the dual description the distinction between even and odd modes
would not exist, since the above non-perturbative phase leaves invariant the whole

perturbative spectrum.

An insight about the correct map can be gained from a careful analysis of the fun-
damental string partition function at step E. Model 11 at this step istype IIB/(—)* Iop,.
As we mentioned a shift in F} implies that states in the twisted sector carry half-
integer momenta and are localized at fixed points. Under S duality to step F, these are
mapped to open string states living on the D5-branes (“twisted sector” with respect
to QI), sitting at orientifold 5-planes at 16 fixed points. There are to begin with 16
pairs of D5-branes, each pair at a fixed point, giving rise to the gauge group SO(2).
However, due to the presence of half-integer momentum modes pq, we conclude that a
Z, Wilson line along the circle on X; must be turned on at step F, thereby breaking
completely SO(2)!8. If we do a further T-duality along X; we then have type I’ on
T5/Z, with 32 4-branes distributed on the 32 fixed points and a completely broken

gauge group.
After four T-dualities to step G this result, together with the fact that D5 branes
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sit at sixteen different fixed points of Iy, translates into a type I theory on T° with
five Wilson lines turned on to break completely the gauge group. Finally under S
duality, we get a perturbative description of the D1-D5 system of model IT in terms of
fundamental heterotic string with a gauge group completely broken by Wilson lines
at step H. We will refer to this model as model IV.

We will comment later on the difficulties involved in trying to extend the longitu-
dinal shift case to models I and IT1.

2.2 Effective World Volume CFT’s

In this section we will try to obtain the effective field theories for pure D5 branes,
pure D1 branes and D1-D5 system for each of the models described in the previous
section, as already stated these theories are related by U-duality.

2.2.1 Transversal Shift

We first discuss the case when the shift is transverse to the brane system. In all the
Ihodels we are considering we have Zy orbifolding of tyep IIB theory compactified
on T* x S' x S where the Z, is generated by an element of the form go with g
being a combination of {2 and the reflection of 7% and o is a shift along the last S*
factor. We are considering the system of D1 and D5 branes where the D5 brane is
wrapped on the 7% and the first S! factor and the D1 brane is wrapped on the first
St factor. If we have @, DI branes and Qs D5 branes in the quotient space, then
in the covering space there will be two identical sets of (Q1,@s) systems which are
placed at X® and X°® + 7Ry (see Figure 2.1) with the world volume theory on the
two sets being identified via the Z action g. Let ®; and ®, be the world volume
fields on the two systems at X® and X°® + 7w Rg respectively, then the identification
is given by ®; = §®,;, where § is the Z, action induced by ¢ on the world volume
fields. This essentially means that the effective world volume theory is described by
just one set of fields (say ®;) since the other set is not independent. This would just
be the field content of a single set of (Q1, @s) system in type IIB theory compactified
on T* x S x S* with Rg being the radius of the last S'. Where then does one see the
effect of Z, orbifolding of the underlying IIB theory? To understand this, note that
among the fields ®, there is one which corresponds to the center of mass position of
D5 branes along the X°® direction. We shall denote this field by X5. As one changes
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Figure 2.1: two sets of (Qs, Q1) placed at X% and X+ 7Rs.

the value of X® the entire system of the two sets of branes moves along this direction.
In particular when one moves X 6 51l the way to X°®+mRs and the remaining fields o,
to §®,, then this system is equivalent to the original system (in a description where
one uses ®, as the independent fields). Thus there is a 7, gauging on the effective
world volume theory defined by the action §.o with o being the shift on the center of
mass world volume field X®. Now we will apply these general considerations to the
cases of pure D5 branes, D1 branes and D1-D5 system for the three models I, II and
IIT respectively:

D5 brane world volume theory

The low energy effective world volume theory on D5 branes in I1IB theory is just
the 6-dimensional (1,1) supersymmetric U(Qs) gauge theory. Let X° X1, ..., X5 be
the directions along the D5 brane world volume, of which the 4 directions X?,..., X°
are compactified on a torus. We can now carry out a dimensional reduction so that
the fields depend only on X° and X* [39] . Let us denote the various sets of indices by
p,v=0,1,4,7=2,...,5and a,b=6,...,9. The world volume fields on the D5 branes

IThroughout this paper we will assume that the radii of this torus are of the order of the string
scale so that in the low energy effective action one can ignore the KK modes for D5 branes as well
as the winding modes for the D1 branes.



are Ay, A;, X which are in the adjoint representation of U(Qs) and their fermionic
partners 1. Sometimes for brevity of notation we will denote by 4,;, M = 0,1, ...9 all
the bosonic fields. Let us denote by g1, g2 and g3 the Z, actions Q, s34 and Qo345
respectively. The induced action g, on the world volume fields is easily seen to be:

Jo : X6 — x* +7Rel, A; — —A;, U — Togast) (21)

To understand the action §;, let us reconsider the system of D5 branes. We have
a total of 2Q)5 D5 branes in the covering space, where Q5 of them are sitting at the
center of mass position X® and the remaining Qs at X®+ 7 Rs. Thus in the resulting
system U(2Qs) is broken to U(Qs) x U(Qs). The gauge fields can then be represented
in terms of Q5 X @5 blocks:

[ Ay 0 v o0

where Ap; and A), are the U(Qs) gauge fields on the two sets of branes. These two
gauge fields are of course not independent of each other; they should be related by
the Z5 action in the underlying string theory. The shift exchanges the two sets of
branes and therefore exchanges A, with A’, while the { projection acts on the Chan

Paton indices according to

Ay = £0:41 Q5. T =TT 00, 2.3
M

with €25 in terms of @5 x @5 blocks is

0 1

and =+ sign means — for M = 0,...,5 and + for M = 6,...,9. In the above IV =
Tg12345. More explicitly the above projection implies

A=A, (2.5)

We can now ﬁake the independent set of fields to be Ay and ¥, however the Z,
action which takes the values of these fields to that of A%, and ¢’ will give rise to a
configuration which is indistinguishable from the original one. Thus the induced Z,

gauging on the set of fields Ay and v is given by

GriAy— -4, Ao —AL X, = XE 4 nRs0s, ) — —TMyt (2.6)
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Finally since g3 = g1 - g2 it follows that the induced action g3 is given by:
f]g : Ali - ——Ai, Az — —I—A:, Xa - XZ —+ 7TR65,15, ’(ﬁ — "‘Poﬂbt (27)

Tn the Coulomb branch the moduli space is given by taking diagonal matrices [52]
for A;, X, and 9 upto the Weyl group which is the permutation group Sos acting on
the Q5 eigenvalues. In particular the diagonal entries in X, describe the transverse
positions of each of the D5 branes. We can move any one of these branes along X
direction by an amount 7 Rg and simultaneously change the field on that brane by the
action of § and this system would be indistinguishable from the original one. Thus
the conformal field theory describing the Coulomb branch is

(R x S x T*/Z5)% [ S, (2.8)

where S! denotes the circle along X direction and T* (dual of the original T* [43])
appears from the Wilson lines and we will coordinatize it by A? ..., A5 . Note that the
Z, action does not commute with the permutation group, and in fact the full orbifold
group is the semi-direct product of S, with Zf 5. This may seem a bit puzzling since
Sq, is the remnant of the U(Qs) gauge symmetry of the system before going to the
Coulomb branch. The point is that at the level of U(Qs) gauge theory where one
ignores the massive string modes coming from the stretched strings between the D5
branes at X® and their images at Xg + mRs, this Z2Q 5 symmetry is broken. However
it is easy to see that this should be a symmetry of the theory when one includes
these massive states that transform in the (Qs, @s) representations of U(Qs) x U(Qs)
gauge symmetry. In the infrared limit in the Coulomb branch when one ignores all

the massive off-diagonal modes the theory has manifest ZQQ5 symmetry (see Figure
2.2).

In the three cases the Z, actions are:
X X (2.9)
Noting further that I'p; defines the world sheet chirality of the fermions, (7 is just
(=1)% times the reflection along 2,3,4,5 directions. Thus
1= (—1)" Loausop (2.10)

Note that for Qs = 1 the effective theory we have obtained is just the orbifold of 1IB
by Z, generated by §; in the static gauge. Indeed from the U-duality map table (1.1),
we recognize this as the fundamental side D5-KK system in string theory defined by
Q2 projection.
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Figure 2.2: we can move independently one brane from one set of branes.

From (2.1) g is easily seen to be Iy3450,, which again for Q5 = 1 describes the
corresponding fundamental theory. And finally g being given by the products of §;
and §o is (—1)" o,

Note that Z, orbifolding breaks the (8,8) supersymmetry of the parent IIB system
down to (4,4) for models I and II while it breaks to (8,0) for model ITI. This is to be
expected since by T-dualities along 2,3,4 and 5 directions, D5 brane in the IIT model
is mapped to D1 brane in model I which is just a type I like theory.

D1 brane world volume theory

One can follow the above reasonings also for D1 branes. The only difference is that
() projection now gives an extra minus sign also for 2, 3,4 and 5 directions since they
are transversal to the D1 branes, instead of longitudinal as in the D5 brane case. It is
easy to see that this just exchanges §; with g3 while leaving the g, unchanged. Once
again for ¢; = 1 this reproduces the fundamental side (under column D), for these
three cases. Moreover this is also consistent with T-duality since by four T-dualities
along 2,3,4 and 5 directions the D5 brane is exchanged with D1 brane and model I
is exchanged with model I717.

We summarize the various Z, actions for pure D5 and pure D1 brane systems in

the following table:
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Model D1 - KK D5 - KK
I (R4 X T4)N/SN (R‘l X T4)NI/SN/
II (RExTHN/Sy  (R*x TN /Swe
111 (}%4 X T4)N/SN (]%4 X T4)NI/SN1

Table 2.1: D1-p, D5-p bound states

where tilde, hat and bar represent the I; and (=)™ and (=)Fr I, accompanied by
a shift in the Xg direction respectively.

D1-D5 system

Now let us add @Q; D-strings to the system of Qs D5 branes. D1 branes are
along X! direction while D5 branes are along X 1 ..., X? directions. In the covering
space again this system would split into two sets of D1-D5 system sitting at X° and
X% + 7Re. For each of these two sets, the 1+1 dimensional common world volume
theory is just a supersymmetric sigma model on the moduli space M of ¢}; instantons
of N =4 U(Qs) gauge theory on T* times the center of mass fields corresponding to
the common transverse directions R® x S! [8, 40]. This is exactly the model appearing
in the type IIB context. Since each of the Z; actions on the D5 brane world volume
gauge fields described above leaves the self-duality equations invariant it follows that
it induces an action § on the instanton moduli space M. Following the logic described
above, it then follows that the effective world volume theory is the Z5 gauging of the
theory in the type IIB case where the Zs is generated by g.0.

In the infrared the (4,4) supersymmetric sigma model on M x R® x S' would
flow to a (4,4) SCFT. It is conjectured that this SCFT is a symmetric product space
RAxT*x (T*)N /Sy [8, 40]. There has been much critical discussion of this conjecture
in the literature [41, 42], and it is generally believed that this is true only for @5 =1
case. For other values of Qs with Q; relatively coprime, this CFT with N = Q1.Qs
perhaps describes the system at some point in the moduli space of the IIB theory
on T* (with suitable RR fields turned on), which is related to the trivial point by a
U-duality that maps (Qs, Q1) system to (Q1.Cs, 1) system [41]. Moreover for @5 = 1
the various factors appearing in the CFT have a clear interpretation: the D-flatness
condition sets all the bifundamental fields coming from 1-5 open string states to zero,
leaving behind only the Cartan directions of the 1-1 U(Q,) adjoint states. The latter
have the interpretation of the positions of the D-strings inside T*. Thus the factor
(T*)@1/Sg, represents the positions of the @ instantons, while the center of mass
factors B* and T* represent the transverse position of the D5 brane and its U(1)
Wilson lines on the T* (so more precisely this should be the dual torus). In our case,
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of course since the transverse direction along X5 is compactified on a circle, R* should
be replaced by R3 x St.

With the physical interpretation of the various fields appearing in the SCFT being
clear, we are now in a position to deduce the induced Z, action on the instanton mod-
uli space for each of the three models. Let us denote by A; for ¢ = 2, ..., 5 the four U(1)
Wilson lines of the D5 brane gauge field and by Xi(e) for £ =1, ...,Q; the positions of
the Q1 instantons on T*. Finally we denote by X, for a = 6, ...,9 the coordinates of
center of mass transverse position S* x B. The little group SO(4) = SU(2) 4 xSU(2)y
acts on the tangent space of S* x R?. In the IIB theory the resulting SCFT has (4,4)
supersymmetry. The left and right moving supercharges come with definite chiralities
with respect to the little group SO(4) [10]. Specifically the left moving supercharges
are two SU(2)4 doublets while the right moving ones are two SU(2)y doublets. The

supermultiplets then are

bosons Left moving fermions Right moving fermions
Xo=Xyy Ya Yy
A; Yy Va
x® gf) ”ﬁf)

g1 leaves X, (being the center of mass position) and Xz-(e) invariant since these
are the positions of D1 branes in T*. It however takes A; to —A; since Q projects
out the U(1) gauge field [34]. To understand its action on the fermions, the easiest
way is to use the fact that in this theory the D1-D5 system should preserve (4,0)
supersymmetry. As a result ¥4 and w)(f) should remain unchanged while 1y must
pick a minus sign. On the right-moving fermions the action is exactly the reverse of it
i.e. ¥y and 7,[3%) should pick a minus sign while 94 should remain unchanged. This is
because X® and A; are D5 brane fields and as we have seen (2.6) that §; acts on the
fermions by T'(™ which equivalently measures the chirality with respect to SO(4)g.
Thus SU(2)4 and SU(2)y doublets must appear with opposite signs. On the other
hand Xi(e) are the D1 brane fields and on the fermions §; acts as I'p;. Thus the left
and right moving fermions appear with opposite signs. To summarize §;, maps

(X0, X 04,00, Ga) = (X + 7Rs6a5, X2, 004, 60, h4)
(A;, Yy, %):’QZY) - “(AMPYJPAalbY) (2.11)

In model II the induced action is more straightforward to see. In this case D1-D5
system preserves the full (4,4) supersymmetry of the parent IIB system. Thus it is
sufficient to specify the g, action on the bosonic fields. Since g, is the inversion I35,
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it follows that it gives negative sign to A; and Xi(e) and all their fermionic partners.
Finally §; is just obtained as product of g1.g2- We summarize these different actions
in the following table:

Model D1-D5
I Rt x T4 x (TN /Sy
II RY x T4 x (TYN /Sy

11 R x T4 x (THYN/Sw
Table 2.2: D1-D& bound states

Here the hat, bar and tilde represent the same actions as in table 2.1, the difference
being that these Z’s act diagonally with respect to Sy (i.e. they commute with Sy).

2.2.2 Longitudinal Shift

We now consider the shift along the common world volume direction X;. The general
discussion in this case is very similar to the transverse shift case. If ® denotes the set
of world volume fields in the type IIB theory case, and g the induced Z; action then
the fields satisfy the condition:

(I)(Xl + 7TR1,X0) = g@(Xl, X()) (212)

Taking the interval of X; to be mR;, what this condition says is that the fields on
which § acts as -1 are anti-periodic along X direction and the ones on which the
§ action is +1 are periodic. This means that the SCFT’s are again given by tables
2.1 and 2.2, where the tilde, hat and bar refer to the twist along o direction. These

actions are moreover diagonal with respect to the permutation group Sy and Sy.

Another way to see that the above proposal must be correct is to start from the
effective field theories in the transverse case and consider the threshold corrections
due to the single (i.e. minimal unit) D1 or D5 instanton obtained by wrapping the
time directions of these systems on the Xp circle by a length mfg (i.e. half winding).
The resulting amplitude is just the one loop amplitude in the orbifold sector given
by the insertion of the operator §. This is because in the path-integral formulation,
it is in this sector that there is a half winding corresponding to the shift along the
time direction. On the other hand by a modular transformation, we can exchange
7 and o, and the resulting path integral should be interpreted as that of the field
theory living in the single D5 brane aligned along directions 23456 or a single D1
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brane along direction 6 with longitudinal shift along Xg. This field theory is just the
twisted sector (§ twist along o direction) of the Z, orbifold of R* x T%. Putting N
copies of these together in the Coulomb branch should reproduce the conjecture of
the previous subsection. In the case of D1-D5 system the same argument applies in a

more straightforward way since there is only a single copy of the center of mass R*.

There is however one apparent puzzle we would like to discuss here. Consider
N D1 brane in model I. The Q projects the U(NN) gauge group to SO(N) so that
SO(N) gauge fields are periodic while the remaining ones that are in the symmetric
tensor representation of SO(V), are anti-periodic. Now let us put D5 branes. Gimon-
Polchinski [44] consistency condition would at first sight imply that the projection
should be symplectic. This would produce a doubling phenomenon i.e. one would

need even number of type IIB D5 branes.

There are two ways of seeing Gimon-Polchinski consistency condition [44]. One of
them involves a consideration of the Dirac charge quantization condition. This was
one way to see how in the usual type I theory the presence of a single D-string requires
Db5-branes to be paired (with respect to IIB counting), i.e. the fact that in the 1-5
sector there is a factor of 1/2 due to the Q projection. Now let us see what happens
in the case under consideration. Consider the D5 brane to be longitudinal to the
direction X; along which the shift acts. Then the Poincare dual B field which enters
in the Dirac quantization condition would refer to D-string which is transversal to X7;.
But in this case we have actually 2 D-strings (one sitting at say X; and the other at
X1 +7Ry). So the quantization condition is satisfied just with one D5 brane wrapped
on the circle with circumference 27 R;. Similarly if one takes D-string longitudinal to
X, then its Poincare dual involves D5 brane that is transverse to X; in which case
again we have 2 D5 branes, showing that it suffices to have just one D-string.

The other way is to consider the action of Q22 on the open string states. In the
usual Type I theory, Gimon-Polchinski [44] showed that on the 1-5 open strings §2?
picks an extra minus sign, due to the fact that these states involve a twist field along
the four directions longitudinal to the D5 brane and transversal to the D1 brane.
Including the action of 2 on the Chan-Paton indices we have

Q% t o, > —(Y' v NaplBv > (VY o (2.13)
where «, 8 and p, v are the Chan-Paton indices on D1 and D5 branes respectively and
v and ' are {2 actions on the D1 and D5 brane Chan-Paton indices. Due to the extra
minus sign above one concludes that if «y is symmetric then v must be anti-symmetric
and vice versa. So if one system is projected onto Orthogonal group then the other
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must be projected onto Symplectic group.

In our case however € is accompanied by the shift o1. Thus g = Q.07 and we
can take both systems to have Orthogonal projections provided 0? = —1 on the 1-5
string states. This means that 1-5 string states will carry half-integer momenta along
the X circle. Since 1-5 states are bi-fundamentals this can be thought of as turning
on a Z, Wilson line in one of the systems along the circle.

An equivalent way of formulating Gimon-Polchinski condition is perhaps in terms
of the consistency of the closed string couplings to the brane system. Here the basic
requirement is that in the closed string channel, the sum of Annulus, Mobius strip and
Klein bottle should be a perfect square for each closed string state [45]. In Appendix
C, we show that even when we take Orthogonal projection for both D1 and D5 branes,
this condition is satisfied provided 1-5 string states have half-integer momenta along

X, circle. This is the same condition we found in the previous paragraph.

This result might seem a little surprising, since D1-D5 system can be thought of as
YM instantons in the D5 brane world volume [8, 40]. It is known that in the context
of ADHM construction [46, 48], SO(N) instantons have Sp(k) symmetry where &
is the instanton number, and vice versa. This is indeed the result for standard Q
projection. In our case however  is accompanied with a shift. What this means is
that we are looking for U(NN) instantons in the 4 directions spanned by X, ....Xs,
and the moduli of the instantons are slowly varying functions of X; in such a way
that

A X+ 7Ry) = —g AL (X1)g p=2,3,4,5 (2.14)

where g € U(N) is slowly varying function of X;. The periodicity condition (upto a
possible Wilson line h € U(N)) as X; — X + 27 R, implies

g.g=nh (2.15)
For orthogonal and symplectic projections h = +1 and h = —1 respectively and
in these two cases we can take g to be +1 and the symplectic matrix J respectively.

In the latter case of course N must be even.

Let us now see how this condition is translated on the ADHM data (here we will
take the 4-dimensional space where instanton is sitting to be R* since the discussion
of the doubling phenomenon should not depend on whether the space is T* or RY).
The ADHM data for U(N) [46] consists of a (IV + 2k) x 2k matrix A defined as

Ajia = Grga + b3 i Taa (2.16)
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where 7,4 = z,0%; and the indices A = u + j§ with v running over N indices and

1,7 running over k indices. A satisfies the quadratic constraint
. -
AiaBags = 951 (2.17)

where f a k x k hermitian matrix.

The self-dual gauge fields are then given by
A, =U8,U (2.18)
where U is an (N + 2k) x N matrix which satisfies the equations

OU =1, AU =TUA =0 (2.19)

From the above it follows that the projection operator UU = 1 — AfA.

The symmetries of these equations are
U— BUg, v A — BA(C X 12)(2)7 (220)

where g is a local U(N) transformation while B and C are independent of X, and
are in U(N + 2k) and GL(k) respectively. Using this freedom in defining the data
we can set by, = 0 and bf; = d;;05. Then the instanton moduli are contained in
the matrix a which, as follows from eq.(2.17), satisfies the constraint that af; is in
the adjoint representation of U(k), where a* is defined via ajp:6 = af;05,. There
are also 3k? D-term constraints quadratic in a that follows from (2.17) but they will
not concern us here. With this canonical choice for A the global symmetry group
U(N + 2k) x GL(k) reduces to U(N) x U(k). Explicitely this corresponds to taking

C in eq(2.20) to be in U(k) and

D
B = 2.21
( C™! X 1ayo ) ( )

with D € U(N). Note that the moduli af; transforming in the adjoint representation
of U(k) are part of the 1-1 string states that define the position of D1 brane inside
D5 brane, while a, ;4 = wy s are the 1-5 string states that are bi-fundamentals of
U(N) and U(k). The spinorial index & just refers to the fact that the bosonic 1-5

string states are spinors of the SO(4) acting on X?,...X5.

However at this point we still have two U(N) actions: the local U(N) action on
U on the right and the global U(N) action on the left. The instanton gauge field
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A, which live in the D5-brane sees only the local action, while the ADHM data w
sees only the global action. In order to relate this system to the D1-D5 system we
must identify these two U(N) actions. The basic point is to choose a particular gauge
for the instanton solution that fixes the local U(N) symmetry. We will choose the
singular gauge [47] which is described as follows. Writing U as an N x N block
V and 2k x N block U’, the condition UU = 1 — AfA implies VV = 1 — wfw.
Given a solution for V, V.g will also solve this equation for g being a local U(N)
transformation. Choosing the singular gauge amounts to taking V to be one of the
9¥ matrix square roots of the right hand side (1 — w fw)Y2. With this choice it is
clear that a transformation w — Dw implies V — DV D~" and the two U (N)’s are
identified.

Let us now return to the Z, projection condition (2.14). With the two U(N )
actions identified, this condion on ADHM data becomes:

w(Xy +7Ry) = gw*(X1)(C %X 02)

a, (X1 +7mR)) = C'a;(X1)C (2.22)
where C € U(k). Here we have used the fact that z = o92*02. Repeating this
equation twice we find

w(Xy + 27R;) = —(g-g")w(X1)(C"C),

a, (X1 +27R,) = (C*C)rau(X1)(C70) (2.23)
As stated earlier Orthogonal and Symplectic projections of U (N) correspond to g = 1
and g = J respectively. Similarly the Orthogonal and Symplectic projections of U (k)
are given by choosing C =1 and C' =J respectively. The above equations show that
if both the groups are projected to Orthogonal or Symplectic groups then w which
represents 1-5 string states are anti-periodic as X, — X + 27 Ry, while if they are

projected in the opposite ways the w are periodic. This is exactly the condition we

found using Gimon-Polchinski consistency condition.

Tt is instructive to consider k = 1 since in this case we can explicitely solve the
ADHM constraints. The result is[47]:

O(v—2]x[2] SU(N)
Wyua = G , G € ——rrr—r 2.24

where p is the scale of the instanton. One can then solve for U satisfying equation
(2.19) and obtain the gauge field as

0 0 i,
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where AiU(Q) is the standard SU(2) single instanton gauge field in the singular gauge
with scale p and position a*:
PP7 (X —a)o°

A = R (226)

The moduli of the instanton are the position a,, the scale p and the gauge orien-
tations contained in G. These moduli are now slowly varying functions of X; in such
a way that the Z, projection condition (2.14) is satisfied. It is easy to see that this
condition implies that

(X1 +7Ry) = d*(Xy), p(X1 +7mRy) = p(X1),
G(Xl +7FR1) = gG*(Xl)CTQ (227)

Repeating this twice and the eq.(2.24), we find the condition w(X;, + 27R;) =
—(997)w(X1).

Taking the orthogonal projection for U(N), namely h = 1, we recognize from
above that the ADHM data w, which represents the 1-5 string states are anti-periodic
as X7 — X + 27 R;. Note that the above equations also show that the Z, projection
acts trivially on the instanton position a, and scale p as expected.

To conclude, assuming the Orthogonal projection on D1 branes, one can get a
consistent D5 brane with Orthogonal projection carrying the minimal unit of charge

allowed by the Dirac quantization condition.

2.3 Partition functions and symmetric product

spaces

In this section we derive a general formula for the character valued string partition
function of a symmetric product CFT involving fields carrying non-trivial spin charac-
teristics. More precisely we will consider the orbifold CFT defined as the symmetric
product SyH = HY /Sy, with H describing the Hilbert space of closed string ex-
citations with either periodic or antiperiodic boundary conditions around the two
cycles of the worldsheet torus. We label the boundary condition data by the spin
characteristic [ig}, with go, ho thought as a set of pairs {gy, hy = 0, 3} describing the
holonomies of a given field ® around the worldsheet loops

@(O‘l —+ 1, 0’2) = 627rig¢®(0_170_2) @(0’1, o9 + 1) = 627Tih¢@(0'1, 0'2) (228)
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The results generalize the more familiar symmetric product formula [49] to the case
where some of the fields carry a spin characteristics different from the odd (g = hy =
0 in our notation) and can be associated to sectors of a diagonal Z orbifold of the
more familiar symmetric product spaces. As we have seen in the previous section
such CFT’s naturally arises in the study of D-brane bound state physics for type IIB
orbifolds/orientifolds involving Z,-shifts in the winding-momentum modes.

The derivation of the partition function follow with slight modifications the lines
of [49] (see also [51]). We start by specifying the character valued string partition
function for single copy of the Hilbert space H

“ [ZO} (Hlg, G,y) = Ty gbo o/ ghome/2y’8 j7s
0

with the sum running over A, A, 4, 2. The supertrace runs over string states in H with
boundary conditions specified by [gz], g = e describe the genus-one worldsheet
modulus, Lo, Lo are the Virasoro generators. Jj, J§ are Cartan generators of a given
SU(2)r x SU(2)g current algebra to which y and ¢ couple respectively.

Our task is to evaluate the supertrace (2.29) for a Hilbert space constructed by
considering N copies of the Hilbert space H modding out by the permutation group
Sy. This can be done following the standard non-abelian orbifold techniques devel-
oped in [49, 50]. The string partition function is written as the double sum

1
Zgp= 5 A0 (2.30)
gh=hg 9:h [g]
over orbifold twisted sectors labeled by the conjugacy classes [g] of the permutation
group Sy

n n

o] = [J@)" with Y LNy =N, (2.31)

L=1 L=1

and over the conjugacy classes [h] of the centralizer
n
Co=|] 8w x 27" (2.32)
L=1

The integers C, » counts the number of conjugacy classes [h] in C, and ensures that
the sum over [h] correctly projects onto orbifold group invariant states. In writing

(2.30) we have used the fact that traces of elements in the same conjugacy class [h]
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leads to the same result. We will write elements in [h] as

H H M)t e HSNL zle Z MrE = Ny, (2.33)

L=1M=1 M=1

with t an element in Zp,™* for a given choice of Ny ’s.

Orbifold group sectors are then parametrized by the integers {N.} (partitions of
N), {rs} (partitions of Ni) and {t} (elements of Z"*). In particular the number of
such [h]’s is given by

Con = [ [ Lo MTierky! (2.34)

LM
We can label the NV copies of field in SyH by the quintuple of integers (L, 1, M,m,q)
running in theranges L = 1,2....n, 1 = 0,1,....L—1 M = 1,2, ...np,, m = 0, 1, ..M~
1 and i = 1,2...r% respectively. Writing ZY elements as t = (L) boundary
conditions for a field @;”;i (dependence in L, M are implicitly understood) along the

cycles of the worldsheet torus can be written as

‘I);n;i(gl-l—l,@) = mg"s@ﬁi(al,@)

O (01,00 +1) = MOV (g1, o) (2.35)
After iterating (2.35) one is left with the quasiperiodic functions

O (o1 + L,0n) = %D (01, o)

@?;i(ﬂl + 55,00+ M) = GQWi(5g¢+Mh¢)¢';n;i(gl’ 02) (2'36)

with s; = fo 01 Smzi mod L. The contribution to the orbifold string partition func-
tion of a given sector specified by {Nz, 7%, sm.} can therefore be written in terms of
the result for a single copy in a torus with the induced complex structure 7 = %’i‘ + 7

and spin characteristics (2.36), i.e

L

rk i goL = = M =M
(M) f(jL)NL :Ez[gosﬁMhJ (@, @, v, §) (2.37)

Sy

with ¢; = = g2miTi — q ¥ e2miT
Plugging this basic trace result into the sum over orbifold sectors specified by
(2.31,2.33), yields0
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E H 1 1 goLL } ~ M -M
———"-”————Z[ (Q' 4,y Y )
TL TL L iy Gy ’
(NohArk ) {sfy DM Mrirk L [gosy + Mho
- L Ilﬂﬁ%ﬂ
(N} {rh} LM T
L

L-1 Th
1 goL X g N SMA MB onis(A-A) ME-ME
— E AANLDGgT §L ™ 2.39
X(L SZOO{QOS_"MhO]( ? ] )q q e y y ( )

with C [ig] (A AL, 17) the expansion coefficients (2.29) defined for a single copy of H.

Before going on it is worth to spend some words on the BPS content of this
formula. We have seen in the previous section that quite often the proposed CFT
describing excitations of the D-brane bound states involve fermionic zero modes. The
trace over these modes leads to the vanishing of the quantity inside the brackets
in (2.39) corresponding to the fact that bound state excitations organize themselves
into supermultiplets of the unbroken supersymmetry. Sectors with ¥, = 1 correspond
then to states in the shortest BPS supermultiplet and the counting formula for these
states simplifies to [51]

ZBPS \:197,(;:\ (SNM|Q7 67 Y, g) =

1 goL ] ~ o 7 MA _MA onis(A_A) ME~MI

— AN DG qF Mt (A=8)  ME g 2.40
N T [ggs + Mhg ( ) (2.40)
with N = LM, s = 0,1, ..L—1. This restriction of the more general formula presented

below will be enough in most of our future considerations.

Coming back to the general expression (2.39) one can now perform the sum over
s in (2.38). It is easy to see (see the appendix B for similar projective sum manip-
ulations) that this leads effectively to a projection onto states satisfying the “level

matching condition”

B=8cz4s (2.41)

with § = 0,1/2 depending on the different orbifold group sectors and boundary
conditions. Introducing as in [49] a generating function for the symmetric product
formulas (2.38)

N

with p¥ = pMris and N summing up to infinity, one can write the final result in the
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compact form

g 0,9) = [ [ NV
Z[ho}(p7Q7Q7yay): (1—quLquy) C+{909}AAEZ)
0

% H 1- (_)ghoqu%q%yegé)—c_{gog}(a,d,e,é) (2.43)
=gp

The products run over all possible L, A, A\, £, £ satisfying the level matching condition
(2.41) with & explicitly indicated in (2.43). The coefficients Cy {g} are defined by

s (s} = 5(c[§] € ﬂ) (2.44)

and count the number of states in the the g-twisted sector of the original (the single
copy) CFT with + eigenvalues under the Z, orbifold group action. The choice Jo =
ho = 0 correspond to the case studied in [49] where all fields are periodic in both ¢
and 7 directions and the sum over s results into a projector onto (2.41) with § = 0.

Specifying to ground states in (let us say) the right moving part of the symmetric
product CFT, formula (2.43) reduces to

o, .
Z[O (0. 0,5,9) = [0 - p ay'5HCld
] Lk
0 o
Z LJ (0,0,05,9) = JJQ—ptdy )+ 1+ pietytyh=0- O (2.45)
2 L.k
N
5y ~ 1
Z[g 0, 8,9) = [ -0yt C+0H(1 — p-ighytyh)=C+5)
- L.k
x (1 — p?lgF=ayfgl)=0-10 (1 — p?b-lgh-iytgh-O-13)
1
9 -~ 1
Z M (r 0,00, 0) = ] —p?atytst) -+ (1 — pPLighyty)~Orls}
2 L.k

F N -1 k=L g-B\—c_{i
x (1 + p*Lg k-1 3yti0) C{0} (1 4 pPL-1gk 3yfg8)=C- (3}

where the arguments of the expansion coefficients Cu{g}(kL, ¢, ), with £ integer or
half-integer, L even and odd, appearing in (2.45), have been omitted. The net effect
of a non-trivial holonomy (go, ho) # (0,0) is then to correlate the parity of excitations
in the CFT under the Z; orbifold group action with the parity of the permutation
group orbifold sector and the level of the SCFT specified by L and k = % respectively.
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2.4 D1/D5 bound states versus fundamental strings

In this section we evaluate the elliptic genera encoding multiplicities and charges of
D1/D5 two-charge bound state systems and compare the result with the ones expected
from a U-dual description in terms of winding-momentum modes of fundamental
strings. We will also comment about the three-charge system in the three models
under consideration. The computation is always performed in the infrared, where
the associated gauge theories describing the low energy bound state dynamics are
conjectured to flow to one of the orbifold symmetric product CFT’s in tables 2.1 and
9.9. There is an important difference between the orbifold CFT’s proposals in the
two tables for the two and three-charge systems. In the case of bound states of pure
D1(D5)-branes with KK momentum modes, the position in R* is described by the
center of mass of N copies of R*’s in the symmetric product CFT. This leads to a
subtlety in the counting of BPS excitations since not all states contributing to the
elliptic index correspond to normalizable ground states of the gauge theory [52]. A
careful analysis [52] reveals that among all the states with the right supersymmetry
structure to reconstruct a short supermultiplet (r; = 1 in (2.40)) only involves those
coming from the long string sector [g] = (IV) that represent truly one-particle states.
BPS charges and multiplicities can therefore be read off from formula (2.40) with
M =1,L = N. This is not the case for the symmetric products associated to D1D5
bound states (table 2.2), where all intermediate strings contributing to (2.45) are
needed in order to reproduce the fundamental string degeneracies. The position of
the bound state is now specified by a single coordinate in R

2.4.1 Fundamental string partition functions

Before going on in the study of the spectrum of D-brane bound states let us evaluate
the elliptic index in the fundamental sides of the duality chain. T'wo-charge D-brane
bound state will be systematically mapped to a fundamental string carrying both
momentum (p;) and winding modes (F) with no extra charges turned on in one of
the three type IIB orbifold theories generated by (=)™ Liop,, (=)Fra,, and Lioy,. We
refer to these theories as I, IIr and I1Ir respectively. op, represents a Zo-shift in
the momentum mode along direction a, with a = 1,6 in the case of a longitudinal

and transverse shift respectively.

The partition function for the BPS states of the fundamental string is defined
by the supertrace (2.29) restricted to the right moving ground state sector. After
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performing the spin structure sum these can be written as

1 E9i(y) < 2 91(9) [0]
Zi(q,y,7) = = = . Ty |92 22T
1-(4,9,9) 2 By (y7) 9 (i) 44\ Y s “Lllg
05(7) m 93 (%) H (7). (3
4y2 22T + 162247, 2] + 162224 4 | 2 2.46
Tao) BT e ol T ) (240
v g2

- 1 - 0
Z11:(0, 9, 9) = 3 [y (ﬂ%(y)ﬁ%(y)rl,l [O]

Dy (y) 0 (yg=1)ne

T )| + 0 2] + B H) (2.47)

2
292(g 92 0
?J: 1 (@/)~ 1 Tua <y_2_ _1(6_?2/21“1’1 [O}
(Y)Y (yg—1) n

el gl oieal) oo

with yy = y% — y‘% and a similar definition for §i. I'y4 is the lattice sum over

- 1
ZIIIF(Q7y7 y) - '9— 1‘9

winding-momentum modes on T* and

(Pa,wa)E(Z,Z+9)

I'ia
1s the shifted lattice in the direction where we have a shift o,,. The hat in the
¥-functions in the denominators denotes the omission of their zero mode parts, i.e.
D1(0) = 13, 95(0) = 19,(0) and 95,4(0) = 934(0). The completely untwisted sector,
common to all three models, corresponds to type IIB partition function on 7°. In the
case of a transversal shift an extra I'; ; [J] lattice sum, common to all orbifold group

sectors, should be included.

Multiplicities for fundamental string states carrying k units of momenta and N
units of windings can be read from (2.46-2.48) once the level matching condition
(Nr = cr)

EN = Np —cp, (2.50)
is enforced, with N 1, NRr the oscillator level and ¢y, cg the zero point energies.

The fourth fundamental theory that will be relevant in the longitudinal shift case
is the toroidal heterotic string with gauge group SO(32) completely broken by Wilson
lines. A possible choice of Wilson lines (in a fermionic representation) can be taken
to be

Ar s (), ()
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Ay ( (+)8a (—>8’ (+)8= (“)8 )

As 0 (1), (=), (1), (5)se (), (5)) (2.51)

Alternatively one can represent this model as a Z3 orbifold of the heterotic string on
TS, where the Z, generators act simultaneously as a shift in one of the five circles and
on the SO(32) lattice by a shift specified by (2.51). The fundamental string partition
function can then be written as

- 1 Y22 1 16 16 16 0
= — = ~ —(9 9 G T
Zv(eu,9) = 5 30010 i 5 (9 + 95"+ 9°) Tss |

0 0 i
19898 s 5 u 49898 Ts 5 H 9398 Ty H ) (2.52)

where a sum over ¢ = 0,2 5 with ¢ = 1,2.5 is always understood. We denote by
Is 5[91] the lattice built out from five copies of (2.45) with twists specified by gi, hi.
Notice that between all the Z5 orbifold group elements only the ¢;-projection (for a

fixed ¢;) leads to a non-trivial result in the ¢;-twisted sector.

2.4.2 D1(D5)-momentum bound states

In this subsection we compare the CFT results (long string sector) for multiplicities
of BPS excitations, i.e. A = 0 in the pure D1(D5)-p bound state systems with the
predictions from the fundamental string partition functions (2.46-2.48) in the dual
theory. The partion function is evaluated using the CFT proposals in table 2.1. As
explained before, only the longest string sector, M = 1in (2.40) in the orbifold CFT is
relevant to a counting of one-particle states. The results generalize a similar analysis
in [51].

In the transversal shift case the CFT proposals for a description of a pure D1-p
or D5-p systems are associated to the untwisted sector of diagonal Z; orbifolds of
(R* x T*)N/Sy. Specifying to the long string in (2.40), with go = 0,70 = =, one is

left with .
(Zlong l:0:| -+ Zlongl: :| Z C+{O} le I [) qk L 1_’ (253)

(SN

where C1{g}(kN, ¢,0) are the expansion coefficients for a single copy (N =1or
N’ = 1) in table 2.1. We have performed the sum over s = 0,...N — 1 that projects
the sum onto states satisfying the level matching condition & = % ¢ Z. Charges
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and multiplicites for a bound state of N D1 or D5 branes carrying %k units of mo-
menta p; are then described in each theory by the corresponding expansion coefficients
C.{0}(kN, £, ). Noticing that the N = 1 or N' = 1 CFT’s, and therefore their C.{0}
coefficients, in table 2.1 coincide in each of the cases with their fundamental descrip-
tions. We conclude that the D1(D5)-p proposed CFT’s reproduce the multiplicities
of untwisted states (even windings) with even momenta in the corresponding funda-
mental theory (2.46-2.48). This is precisely what one would expect from the duality
map, since the image of the pure bound state, ps = Fg = 0, carries no windings, no

momenta along the shift.

A similar result can be found in the longitudinal shift case o,,. Now the long

string sector in (2.40), with go = £, hy = 0 leads to

Zlong’: } > C+{ HEN, 6,8 ¢F yt gt > +C{5 Ny, D ytyt  (2.54)

kEZ k€Z+3

This is again in complete agreement with (2.46-2.48). Even(odd) fundamental wind-
ing states are mapped to bound state involving an even(odd) number N or N’ of
D-branes and their multiplicities are described by Cy according to whether the level
k (momentum in the fundamental side) is integer or half-integer.

2.4.3 D1-D5 bound states

In this subsection we consideif D1-D5 bound state systems. In order to compare
multiplicities of excitations of the bound state with those of fundamental strings
(pure F} — p;) one should restrict the attention to ground states A = A = 0 in both
left and right moving side of the CF'T. Once again the results obtained in the presence
of transversal shifts results can be expressed as Z, orbifolds

Z(p,y:9) = Zcm[ } (¥, 9) Zsym m (1,9, 7) (2.55)

h01

of the type IIB result

i ??(qlp)ﬂ?(ﬂlp) | (2.56)
V1(y7|p) 01 (vi~p)n® (p)

associated to the symmetric product space R* x T% x (T*)"V/Sy. We denote by Z,,
the contribution coming from the center of mass, while Zsym Will be associated to the

0 i 0 3 3
Zem M (0, v, 9) Zsym M (p,v,9) =v2 5>
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symmetric product of the T%’s torii. Plugging the CFT data
T ZCiOON (yyiy v3)
- 1
T Z CI(0,0,4,0y' 5" = 5 B2y 71 v2)
6

_ 1 _
T Z CL(0,0,4,0) y' 7" = 5 (B2 y2 =73 92) (2.57)

in the symmetric product formulas (2.45) yields the following for the partition function

results
0 1 03(7lp) 9% (y|p)
qu 00,0 = 3 V0 G v ) 510
0 1 5. 79%@1 ) (y|P)
2y 009 = 327 s )
92(7lp) 93(y|p)

0
Zrm [1 (2.58)

- 1
_}(p7y:y) :F)_ 2 —2%—
2 -

B (y7lp)d (v~ |p) F3(0|p)

where the contributions from the center of mass factors Z1 (v, 7) = v2 4%, Zon(y, ) =

cm.

ZH(y, ) = y2y272 3 have been included.

Together with (2.56) the results (2.58) for the D1-D5 bound state degeneracies
(2.58) reproduce the multiplicities (2.81) for untwisted fundamental strings with pg =
0 as required by the U-duality chain 1.2.

Finally let us compute the D1-D5 bound state spectrum on T4 x St/ I,0p, with op,
a longitudinal shift. The relevant CFT data is now given in terms of the expansion
coefficients for T* where now the fields are antiperiodic

- 7 1, B
3 cl03(0,0,6D ' = 5 @2y2 £ Tivi)

Zcf{%}(o,o,e,@yf@" = 16
4

> U 0,0,6D8' = 0 (259)
8

and Z,,, = 16 y25%. Plugging in (2.45) we are left with

1 1 778
Zr [2] (p,v,9) = 16929% —————
0 By (yi) D (yg~)n? ¥4(0)
1 1
- L BOBO (260

B (y5)d: (yg—")m'®
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This is in complete agreement with the degeneracies of heterotic fundamental string
states (2.52) coming from the twisted sector once the level matching condition (2.50)
is imposed. Notice that the expansion of (2.60) reproduce both signs in (2.52), p;
even or odd, according to whether we expand in integer or half-integer powers of p.
That only states in the twisted sector (odd windings) are relevant to the comparison
is due to the fact that the proposed CFT are valid only for a single fivebrane the latter
is mapped to a single unit of winding mode in the fundamental string descriptions.
One can however, test multiplicities in the untwisted sector (with p; = 1) by going
from step C to step B after four T-dualities under which the D1 and D5 charges
are exchanged within model II. The CFT description of those D1-D5 states is, of
course, the same as before and multiplicities are again given by (2.60). The funda-
mental string multiplicities on the other hand lead to apparently two very different
results depending on whether we consider states with F} odd (twisted sector) or even
(untwisted sector). In the former case one finds again (2.60) in agreement with the
duality predictions. The multiplicities for even Fi, on the other hand, can be read
from
- 1 y2y? 1

20y = 5 (om o0 - 592) 2o
Fortunately expression (2.61) coincides with (2.60) after simple manipulations of ¥-
identities. The fact that the heterotic dual model treats on the same footing winding
and momentum modes as required by the U-duality chain to models B and C, can
be considered as a further support to the consistency of the whole picture.

One can try to apply a similar analysis to the D1-D5 systems in models I and
IIT with a longitudinal shift, but one immediately runs into problems. The ground
states of the natural CFT proposals in table 2.2 are in these cases either tachyonic
or massive and a naive application of the elliptic genus formula leads to non-sensible
results. A proper description of these (4,0) D1-D5 systems remains as one of the

exciting directions for a future research.

2.4.4 'Three-charge systems

We will restrict the discussion of three-charge systems to the transversal shift case,
since, as we mentioned before, the CF'T description of models I and III in the longi-
tudinal shift case is problematic, due to the presence of tachyonic states.

To extract the multiplicities for three-charge systems from our elliptic genera, we

restrict the right-moving part on the ground state (A = 0) and excite the momentum
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on the left-moving part (which is non-supersymmetric in models 1 and IIT). The
resulting elliptic genera will be of the form:

Z(p, 0,00 = Y Zcm[ } (4,9, %) Zsym m (P, ¢, ¥, 7) (2.62)

h=0,%

Notice that the ¢° term in Z corresponds to the partition function of the fundamental
sides for the D1-D5 systems and it is given in (2.58) for the three theories. Denoting
this by Zg(p), it is convenient to rewrite Z in (2.62) as:

o~ |0 A 0 N
Z(p,¢,9,%) 221 Zcml: } (¢,9,9) ZF M (D, > §) Zsym M (p,q,, %) (2.63)

where, as before, the hat denotes omission of zero modes.

We have already stressed in section 2 of this chapter that U-duality puts severe
constraints on the multiplicities in the three-charge cases. From table 1.2, by com-
paring columns F and G, we see that models T and III get exchanged together D1
and D5 charges. The CFT’s we have proposed trivially satisfy this symmetry, since
in this case N = 1 in table 2.2 for the two corresponding CFT’s and therefore both
give R* x T* x T*.

A less trivial constraint comes from comparison of columns C and F: in this case
the 3-charge system (D1, D5, p) of model II is mapped to (p, D5, D1) in model III.

Let us consider the case of a single D5-brane in theories II and III: we see from
table 1.2, looking at columns C and F, that Il is mapped to III and D1 is mapped to
KK momentum and viceversa. This means that the full elliptic genera corresponding
to models II and III must get exchanged if we exchange ¢ with p. Notice that we
are comparing a N = (4,4) theory (model II) with a A" = (4,0) theory (model III).
Although in the previous discussions we have set A = 0 while keeping y, ¢ arbitrary,
actually the quantity that is invariant under deformations of the SCFT (the elliptic
genus) is obtained by setting § = 1. However, in order to soak up the fermionic
zero modes we will take two derivatives in ¥ and then set § = 1. This will put the
right-moving sector (which is supersymmetric in both theories) on the ground state.

The resulting expressions are:

i m (0.01) = ;y g2 ) (yla) 93(ylp)9=(0lp) 5

) 0
; 5 : 6
92(ylq)02(0lg) D2 (ylp)n®(p) [ }(p ¢,y), (2.64)
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and

0

J (b,0,9) = 292 42 U3(v10)%20l0) 1"(p)05(vlp) me (p,a,y), (265)

(
2" R ylon(e) ylp)920lp)

VASE [

with, omitting indices,

2[8](p,q,y= II

2 n,m>1

moIN SC[3](nmy
(1 +p"q yl>2 [t (2.66)

1— pnqmyl
(2.66) follows from (2.45), using the identities:

> CL0(m, LD = =Y C_0(m,1,I)

:c{

The U-duality requirement that, under (p,q) exchange (2.64) is exchanged with
(2.65) implies

W= O oy

](m,l) .

0

1
2

0

Crr L } (m,l), form>1. (2.67)
2

|

This requirement is not satisfied by the proposed CFT’s for theories II and III.

Notice that in terms of theta functions:
0 5(ylg
Cn{ ](m,l) C]myl w4t
% 3 J3(0lg
(¥l
(0]

0 92
ZC}][ [l:l (m, Z) qm yl = 45;—-——— (268)
m,l 2 2

from which it follows that Cy;[%](m,1) = Crzr[2](m, 1) for m odd.

Partition functions for symmetric product CFT’s have well defined modular prop-
erties as functions of ¢ in a power series expansion in p. However, the other way
around is in general not true: it is true for model I (and for D1-D5 in the toroidal
case), but not for models IT and III. So. it seems that the U-duality requirement of
mapping the elliptic genus in one theory to the one in the dual theory is not satisfied
by our CFT’s.

To make this point somewhat more general, let us consider the partition function
(2.63), after a (p, q) exchange. We will get an expression Z:
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Z(0,¢,9.9) = Y, Zem m (0,v,9) Zr m (@9, 5) Zsym m (p,q,v,5)  (2.69)

h:O,%

" where we have used the symmetry of Zsyu under (p,q) exchange? . Now let us
expand Z to first order in p: this corresponds in the dual model to N =1, and using
(2.45), gives:

. } 0 . -, S g
Z(p, ¢y, 9) =D ) ZFM (09,9 Cem(L, LD YT+ C, L. OT Y T) + -,

h=0,1 n>0

) (2.70)
where the C’s are as usual the coefficients of the g-expansion of the corresponding
partition function. From this equation it is clear that only in the case Cem(1) = C(0)
the above formula will have a well defined modular properties.

This problem also affects the seemingly well understood case of the (4,4) CFT
R: x (K3)Y /Sy, describing the D1-D5 system in type IIB on K3 x S*. Using type
I1/heterotic duality in 6 dimensions, one can relate type IIB on K3 x S* to type 1IB
on St x T*/I,, while exchanging D1 and KK charges. Thus for D5 charge 1, this
amounts to exchanging (p,¢) (at order 7°) in the corresponding elliptic genus. Notice
that in this case Zp(p) is just the bosonic oscillator part of the heterotic string and
clearly Zsyu(p, q) is symmetric under (p, q) exchange [49, 53, 10]. However it is also
easy to see, for instance, that the coefficient of ¢* of the elliptic genus does not have a
well defined modular property as a function of p. Finally, the same problem is present
in the longitudinal shift case for the model II that we have studied before, although
Z(p, q) is not (p, q) symmetric in this case.

2.5 One-loop effective gauge couplings

In this section we study the (T, U) moduli dependences of one-loop threshold correc-
tions to F2*4 gauge couplings in low energy effective action associated to the four
dimensional string compactifications with sixteen supercharges under consideration.

(T,U) are the Kahler and complex structure moduli of a T? along directions 1 and

2This symmetry is not there for the case g = 1 /2, which corresponds to the longitudinal shift
case, second and third expressions in (2.45)
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6. Aim of this section is to extract this information for some definite combinations
of the eight field strengths:

}%z' = Ou(Gu— Bu]i):t (2.71)

arising from KK-reduction of the six-dimensional metric and antisymmetric tensor to
D =4, with 4 = 1,6 and + standing for (anti-)self-dual four-dimensional two forms.
We will also map the one-loop results to two-charge D-instanton contributions in the

non-perturbative descriptions defined by table 1.1.

We will introduce a complex (Euclidean) notation for spacetime super-coordinates

7t = %(XD-HXB’) ZQ:%(XIJM'XQ)
v = —}gwuz‘w) x2=%(¢l+i¢2) (2.72)

with barred quantities given by the complex conjugates.
The moduli dependence will be extracted from the string amplitudes:

k-2

Aokys = (H V(p1, &)V (P2, &) (2.73)

=1

where for simplicity we choose a kinematical configuration where half of the vertices
carry momentum p; and the other half ,. In addition all the vertices will be chosen
with definite (anti-) self-duality properties. The computation and notation follow
closely [54].

The vertex operators for the gauge field strengths (2.71) are given by
Vi(p,§) = /dQZ £ (OXH — ipxx*) (0X" — Zp)b:(z) X

Va(p, &) = / d*2€,4(0X" — ipxx’) (OX* — ipy ™) ePX (2.74)

Notice that each vertex carry at least one power of space-time momentum Dus
and therefore to the order of momentum we are interested in we can keep only linear

terms in p,,.

More precisely, the representative of such couplings in the three models are indi-
cated in the table below:
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where Fi & are defined in (2.71) and 0% is a shift of order 2 along the 6th direction..

The couplings in the table are special in the sense that they receive (at each
step in the above table) contributions only from right moving ground states (“BPS
saturated”). This can be seen by noticing that the insertions exactly soak up the
fermionic zero modes in the right moving part of the string amplitude (formulas
(2.81) below). This will be understood in most of our discussion.

In the model IIr this corresponds to the case where the eight right moving
fermionic zero modes (once the sum over spin structure have been performed) are
soaked up by exactly four insertions (FFz)? of right moving gauge fields. Similarly,
in the models I and IIIp four right-moving insertions of F; and F are needed in
order to get a non-trivial result. Vertex operators can therefore be replaced by the
effective ones (self-dual components)

—‘Ijr(Pl) = iplﬁLTz /d2a(Z15Z2 — %) + .
Vi (ms) = P / Po( 7207 — %) + -
Valp) = ip1 Prs /dga(ZlaZ2 — )+
‘73(@) = Py Prry /d20(22621 - %) + - (2.75)

where we have grouped the components P} = 8X*, Pp = 0X* with 7 = 1,2 into -
a two-dimensional vector and 8 = X (8,, — 70,,). Similar expressions are given for

anti-self-dual components, replacing 7%, %2, % by their complex conjugates.

From the expressions for the effective vertex operators in (2.75), we see that their

insertion in the correlator (2.73) amounts to insert factors PL R

Since the vertices are quadratic in the quantum fluctuations one can exponentiate
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them into a generating function
S — TV —5 T d*r n g ! g
ga,ii(”’ 'u)) = <e S0V VR> = / —;_;3;-— %_; q" C [h} (77,,2 S) Fd,d L};} (ﬂ-v,ﬁ-w) (276)

with Sy the free string action, ¢ = €*™" (7 the genus-one worldsheet modulus) and
U4, Wy are sources for the eight U(1) gauge fields. Scalar product is defined as usual
by ab= a1by + asby, while dot product stands for a - b = a; by +a-b_. In the right-
hand side we have introduced the notation vy = '5!:131; and a similar definition for w4
with ﬁL replaced by ﬁR Vertex insertions are defined by 7, Wi-derivatives of (2.76).

Finally we denote as before by C[¢](n, £) with £ = (£,0,£4,,0,) = (£*,07, 6}, 47)
the coefficients in the expansion of the partition function which includes Wilson lines:

670 = g [or e gty 2 2 5
= C {ij{ (n,0) ¢" 45y G- (2.77)

© is the Z, orbifold generator, y = ™=, §j = ™+, and similarly for y., 7. replacing 7+
by w.. Lgy, Lo are the Virasoro generators and J§’s are four SU(2) Cartan generators
to which the corresponding gauge field couples. Therefore we see that (2.77) has the
structure of a helicity supertrace [55, 4]. The four possible twists along the o and
7 directions will be denote by [Z] with g,h = 0, % Primes denote omission of the
bosonic zero mode contributions which have been displayed explicitly in (2.76). Fyqis
a'y2Ty 4 lattice sum for the completely untwisted sectors in the models I, I11r and
all sectors in the model IIp, while reduced to a I'y lattice for all non-trivial twists
in models Ir,IIIr. Since we are interested only in the (7, U) moduli dependence
of the first torus we will always work in the orbits where neither momentum nor
winding modes are excited in the I'y 4-lattice. The effects of introducing half-shifts in
44 lattices have been extensively studied in [56]. The perturbed lattice sum can be
written as the sum

7Ty - 2
F2,2[g:| (£-0,8,- W) = E nlig}e_QUZl(lU)M(—l)[
h R

w2 [Tdet+(evt 202y (7 )=(tew? tw?)ma( ) )] (2.78)

over worldsheet instantons

X! ot my nq ol . L B
<X6>:M(02)E(m? nz) <02> m€EZ+bg, 1 €Z+bh, (2.79)
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where now the entries in M are integer or half-integer depending on the winding
(momentum) shift vector @ (5). Finally the lattice sum is weighted by the n[j] phase

n[ﬂ _ e—4wia‘ggh~27rid‘(hﬁz—gﬁ) (2.80)

We will consider only shifts involving either a pure momentum or pure winding i.e
ib=0. |
Evaluating the partition functions (2.77) in the three orbifold models described,

above one is left with (after spin structure sums):

N T PR | KL KON S T S

# 1] (¢,) 5 (s 9 (w51 (W2 = ) (08 — 0 7)

be17 _ ﬁ@(wﬁ@)a Y
-h-(q ) 61(y§)ﬁ1(y@“‘)ﬁ[i]“(0)(y )

Gritp ] : = = ?9%(@/)29[,91]2@) 3 ~*% - f% ? 2.81
) (@ 1 (y7)0 (v~ )9 [3](0) ) (250

The hat on the Y-functions in the denominators denotes as before the omission of
their zero mode parts, i.e. ¥;(v) = 29 (v), B (v) = $92(v) and Ds3.4(v) = 93.4(v).

Notice the modular invariance of G(v, w) under the SL(2,Z) transformations

SN L i N R . JW%M<5q> (2.82)
rT+ 8 T+ 5 T+ S T p

The modular integral (2.76) can then be computed following the standard trick

[57], that consists in trading the sum over the M, matrices in (2.78) by sums over

SL(2,Z) representatives integrated in unfolded domains. We will concentrate here

in the contributions of non-degenerated orbits (det M # 0) for which representatives

M:(m1 m) (2.83)

0 (%)

can be chosen to be:

where m; € Z + big and ny € Z -+ byh The integral (2.76) is then unfolded to the
whole upper half plane.

The modular integral (2.76) is evaluated in appendix C. We keep only the leading
order in an expansion around Ty — oo of the integral (2.76) associated in the dual
picture to the classical contribution of the D-instanton background. Higher orders
can in principle be traced as quantum fluctuations around the instanton background

as in [58], but this analysis is beyond the scope of this work.
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To leading order in 1/T; the result reads
I(CL, b) — Z e‘)m(mlngT-l—n Lo LAY X WY D) ,P(a b) +he. (284)
n,mi,na,t ’'s
with T = Ty + iy, U = Uy + illy, 2 = v3 — Uvl, v = wi — Uwl. P(a,b) is a
projection factor defined in Appendix B.

The contribution coming from anti-instantons is given by replacing T, U with T U
and is denoted in (2.84) by h.c..

The final result can then be written as:
I(a,b) =In Z(a,b)Z(a,b) (2.85)
with

2(1,0) = [J(1 - p™ bt g5 )0 51 0

"f,..
x [J(1-p™q kg lge i) o- (et

2(0,1) = H(l _ pm g gt lgl gt O (5 Y me
~ 'ZZ,\ “,ZZ* my m
X H 2m1q yety yf*y* )C—{ 5 H(kma,f) (286)

where p = €T and g = eQWiU and we have defined the induced sources § = > with
similar definitions for §,4, and 7,. ‘Similar expressions with T, U replaced by T, U
describe the anti-instanton contributions Z(a,b). Notice that Z(1,0) and Z(0,1)
in (2.86) get exchanged under the simultaneous exchange of the momentum(b,)-
winding(a;) shifts and k-m; modes, as required by T-duality.

This formula is rather more general than what we really need. Still, depending
on the model, a certain number of j-derivatives should be taken and then the right
moving source 0 should be set to zero (7. = 1:7* = 1). Notice however that already
at this stage one can recognize in Z(0,1) the symmetric product formula (2.45) for
the longitudinal shift elliptic genus. We then conclude that the contributions of D-
instantons, as computed in [59, 51, 58] always reproduces the threshold corrections of
the fundamental string theory, provided that the orbifold CFT describing the D1(D5)-
brane- KK momentum bound state is constructed as a symmetric product of N copies
of the fundamental theory in the twisted sector (basic unit of winding).

After acting in (2.86) with the appropriate number ® of w-derivatives (see [10] for

3 At least one, in order to get a non-trivial result
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similar manipulations) one is left with:

20,0 = 33°() ”“’10[ ] e, 6,0 ™ % 5§
2(00,1) = 5 Z [ } kma, £, 8 p™® g o 7 (2.87)
where ' L gm oo
Z(a b) = mézaﬁ Z(CL b) Gu=1,=1 (288)
with m = 2,n = 0 for the model Ir, m = n = 2 for the model JIr and m = 0,n = 2

for the model I/Ir. The sum run over ﬂ,@ integers, g,h = 0, %, my € Z + byg and
k € Z + aig. Finally, the coefficients C [i] (A,E,Z) are similarly defined in terms of
the expansion coefficients of (2.81) by

C m A, L0 => (- aic ﬂ (A, 4,2,2,,20,), (2.89)

Lol

and correspond to the expansion coefficients of the chiral supertraces appearing in
(2.81)
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Chapter 3

Fivebrane instantons and higher
derivative couplings in type I

theory

In this chapter we will consider instanton corrections to higher derivative couplings
in toroidally compactified type I theory down to four dimensions. The only sources
of non-perturbative corrections (to the kind of couplings we will consider) in these
string vacua are associated to Euclidean D5-branes entirely wrapping the T®-torus,
whose BPS excitations can be properly described, as we will see, by an N = (4,4)
orbifold CEF'T. Less supersymmetric instanton configurations would have too many
fermionic zero modes to be soaked up by the vertex insertions (typically R?), while
D-string instantons leads to N = (8, 0) effective sigma models [52], where the vertex
insertions can soak at most four of the eight left moving fermionic zero modes.

We will study in detail the R? couplings and comment about the generalizations to
other four and higher derivative “BPS” saturated terms. These couplings are special
in that they receive corrections only from states saturating the BPS bounds and they
have been extensively studied in many contexts [60]-[61]. Here we will concentrate in
the non-perturbative part of the corrections to D = 4 effective lagrangians in type
[ vacua with sixteen supercharges. The instanton sums will be always expressed in
terms of an elliptic genus in the effective Sp(IV) gauge theory, which encodes the
information about masses, charges and multiplicities of 3 BPS excitations in the
corresponding D5-brane system. We will compute the “quasi” topological index and
show that the form of the instanton corrections to the associated couplings agree
with the predictions from the duality to type IIA on K3 x T2. Interestingly, the CFT
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description of the infrared limit of the D5-brane world-volume theory reproduces
the right multiplicities even for ;-BPS states, associated to D5-KK bound states.
We exploit this result in order to show that instanton corrections to certain higher
derivative couplings, sensitive to these states, agree once again with the fundamental

type IIA results?.

This chapter is organized as follows. In section 2 we compute D5-instanton cor-
rections to R2-couplings in type I theory on 7%, and compare the result with the
perturbative one obtained in the dual type IIA theory. In section 3, we briefly discuss
the extension of such results to other higher derivative terms, which are sensitive to
1 BPS contributions.

3.1 7R? couplings in type ITA on K3 x T?/type I on
T4 x T?

Worldsheet/spacetime instantons in type ITA theory on K3 X T? /type I theory on T®
are mapped to each other under the triality map?:

Tiza = Su =51 (3.1)

The subscripts ITA, H, I refer to the type IIA, Heterotic and type I theories, while

the complex moduli®

Vi
Sy = a+ ZES

R
S; = a+i—. (3.2)

g
describe the complexified Kahler structure of the T' 2 torus in the type ITA side, and the
four dimensional complexified string couplings in the heterotic and type I string vacua
respectively with Vs the T%-volume. More precisely, a = Buserss, where B is defined

by dB =* dB, B being the second rank, antisymmetric tensor in the corresponding
string theory, and g = e? the ten-dimensional string coupling.

In this section we will show how the perturbative, world-sheet instanton contri-

bution to the R? coupling in the type IIA theory, can be directly reproduced in type

1The couplings under consideration are closely related to those studied in [61].
2see discussion after (1.17) in chapter 1.
3 All quantities having dimension of a length will be understood in units of 27V
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I theory, using the effective six dimensional N/ = 1 gauge theory of D5 branes, in the
limit where it flows to a two dimensional N = (4, 4) orbifold Conformal Field Theory,
after dimensional reduction on a four-torus.

3.1.1 One-loop R? couplings in type ITA

Let us start by recalling the results for the moduli dependence A (T,U) of R2-
couplings in type ITA theory on K3 x T? [60, 56] *. Perturbative corrections to R>
terms in (2, 2) string vacua are expected to arise only at one-loop level, and depend
only on the T'(U) complex modulus describing the Kahler(complex) structure of the
T torus in the type ITA(IIB) string compactifications. The type IIA result can then
be written as [60, 56]
d*r
OrAg(T) = | —0rBy, (3.3)
F T2
where By, is an index counting the number of %—BPS string states (the helicity su-

pertrace). The index can be defined as [56]

4\ 1 6 .
By =((M+2r)") = <2> ) Oox(In),oo = 57 B0 Z(0,0)] g - (B9)

in terms of the helicity supertrace generating function
Z('U, 'l_}) — Tl"’ qLo-—ﬁ q—EQ——EEZ eQWi(UAL—ﬁAR) . (35)

Ar(ry being the left(right) moving helicity operators, and the prime on Tr means the
omission of the space-time bosonic zero mode contributions, and ¢ = e?™*". One can
see that Z (v, 7) receives in general contributions from both BPS and non-BPS string
states. This is not the case for the chiral supertrace x(v|7), introduced in (3.4). In-
deed, the insertion of two Ag’s in (3.5) precisely soaks up four right-moving fermionic
zero modes (after spin structure sums), while massive bosonic and fermionic right
moving excitations cancel against each other by supersymmetry, giving as a result
the holomorphic function x(v|7)°. This chiral supertrace encodes all the information

about BPS multiplicities and charges, and we will refer to it as the “elliptic genus” of
the corresponding conformal field theory. Specializing to the case of type IIA string

*We will follow the notations and normalizations of [56].
5The chiral trace x(v|T) can be considered as the generating function for the asymmetric super-

traces introduced in [61].
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theory on K3 x T2 ¢, we get, after summing over the spin structures,

2/v 2 4 192 u 2
Z(v,0) =8 (&(v) 19177(62) Z 297‘2(((2)) PP (3.6)
where ) .
e(w) = S B0 (3.7)

7w 61(v)
is the contribution of the spacetime boson coupled to the helicity. Substituting (3.6)
in (3.4), one finds [56]
By = 36 Tas. (3.8)

The Iy lattice sum can be written as

I Q2T detM o= 5t la e 2)f (3.9)

Fz,z = € ’

T2
MeGL(2,2)

where the sum runs over all possible world-sheet instantons

()= (%)= ) (22): ba

with worldsheet and target space coordinates o', o and X 4 X5 respectively. The
modular integration in (3.3) can be performed using the standard trick [57], where
integral over the fundamental domain are unfolded to the strip (degenerate orbits
DetM = 0) and to the whole upper half plane (non-degenerate orbits DetM = 0) and
the integrand is a certain SL(2, Z) representative. The final result is [60, 56]

Age(T) = —361og (T2 In(T)|*) - (3.11)

Using the duality relations (3.1) we can rewrite this in terms of the type I variables:

Ag(S) = —36log (S |n(S)|") = —36log Sz + 1275,
+72 Z Z -J\l/f [ezm‘Ns + e—Q’riN‘q]. (3.12)
N=1 \ M|N

where N|M stands for the partitions of N (N = LM with N, L, M € Z). The first
term in (3.12) corresponds to a logarithmic divergence in the weak coupling limit
Sy = ’% — 00, the second term come from a disk diagram contribution and the rest

8Tn practice, we consider the T*/Z, orbifold limit of K'3 as the result will be valid for all values
of the K3 moduli.
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is an infinite sum of D-instanton corrections. The logarithmic divergent term in (3.12)
is attributed to an IR divergence, but a complete understanding is still missing (see
[63, 64] for details).

It has been shown in [65] that R? couplings receive a non-vanishing one-loop
contributions from the Klein bottle, annulus and Moebius stipin type I theory. The
absence of a one-loop term in the perturbative formula (3.12) suggests that the R?
result in type ITA should correspond to a combination of R? together with other four
derivative couplings in the type I side. For instance, the authors of [65] have shown
that a suitable combination of R? and FFZ can account for the discrepancy. One
can see that four-derivative couplings involving the dilaton field will lead again to
one-loop expressions similar to the closely related R>-terms, that make them sources
of new terms which potentially account for the perturbative discrepancy. Moreover,
the duality relation G4 = V,e™®G], suggests that, in the translation of the type ITA
R2-term into type I variables, four-derivative couplings constructed out of the dilaton
and volume modulus should indeed be relevant. Our instanton computation will not
give a definite answer to this question, but it will support the potential relevance of
these latter contributions. The comparison with the perturbative formula will then
account only for the form of the instanton sums, leaving an overall coefficient to be
accounted for by the right combination of four derivative terms in the type I dual to

the type ITA R? coupling.

A similar formula (with S; replaced by Sy in (3.12)) describe the instanton
corrections in the heterotic side. The correct weight of the NS5-brane instanton
action e*™V5# were reproduced in [63] from the classical action of heterotic NS-
fivebranes wrapped on the T° torus, however it is hard to see how the determinant
factor ) N + can be computed with our current understanding of the NS-fivebrane
physics. Fortunately, type I spacetime instantons are associated to the more tractable
D-branes, for which a CFT description is at our disposal [7].

3.1.2 D5-brane instanton corrections to R2-couplings
We are interested in computing the two-graviton correlation function

(VoVo)ps—inst (3.13)

in the background of N Euclidean D5 branes wrapping the T spacetime torus. We
take for the spacetime torus the limit in which the volume of a 7% torus in 7 becomes
very small (R; ~ Vo, i = 6,7,8,9) keeping R4, Rs fixed. In this limit the D5-brane
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theory decouples from gravity o/ — 0. We will reduce the six-dimensional world-
volume theory to two dimensions with light cone coordinates X+ =X+ X5

The classical part of the computation in the D5-instanton background closely
follows the one for the heterotic NS-fivebrane [63] with obvious modifications. The
low energy effective action describing N spinless Euclidean D5-branes wrapping once
the T spacetime torus can be written as [34]

Snps = NTs / ds¢ [e"‘ﬁv det G + i1§456789] 4=

. 21V, Uz 9 u v
—2miN S + = / d*zhy, » D XID:XY + .. (3.14)
t=1
where V, is the volume of the small T* torus, U the complex structure of the large
T?-torus, Ts = a;_')lg&‘,‘g the fivebrane tension 7, S; is the complexified string coupling
constant given by (3.2) and hy, the quantum fluctuation (G = 7w + h,,) around
the flat metric, p, v = 0,1, 2,3. We choose the static gauge X® = £ (a =4,5,..,9) for
the fivebrane coordinates, where the six-dimensional pullback metric G is identified
with the spacetime torus metric. The last term in (3.14) represents the coupling of

the graviton to the instanton background with covariant derivatives
1
D. X! = 9, Xl — —lipyst”)’wst
L o
Dth“ = 62Xt“ — Zp,,Sﬂ”“St (315)

in the (4,5) plane with complex coordinates z = 4+ UE, 0, = 312—(854 + U, )8
Quantum corrections around this background are described by an Sp(IV) gauge theory
defined by the quantization of the massless modes of unoriented open strings ending
on the D5 branes.

The computation of the scattering amplitude (3.13) is very similar to the per-
turbative computation in the one-loop worldsheet instanton background of the last
section, with the worldsheet parameter 7 replaced by the complex structure U of the
target space (4,5) torus. Graviton insertions can be expressed as derivatives of the
instanton action (3.14) with respect to the metric fluctuations h,, 1 = 0,1, 2,3, bring-

ing down the needed (4,4) fermionic zero modes Sgem, the right power of momenta to

"Notice that the Ty, Ts tensions of type I D-branes are %-the corresponding tension in type IIB.
As already discussed in chapter 2, the electric-magnetic quantization condition implies then that D5
branes come always in pairs to account for the extra factor of /2 [44]. N here counts the number

of type I D5-branes which halves the number in the parent type IIB theory.
8Strictly speaking, our analysis will be performed in the Minkowski world-volume with time like

coordinate £5. At the end we will go back to the Euclidean plane by analytic continuation.
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. . ViU3
reproduce the R? kinematics and an overall g

we adopt the canonical normalization S; = —\/%SCm + .... for the fermionic center of
mass (Zf;l 5105t = SemOSem + ...), which is responsible for the additional factor of

Flz-. The final result can then be written as

factor. Unlike in references [51, 58],

2772
inst V4 U2

_ _ ! VZ i —2miNS
& = e (e Setass= ¥y = 7\%Z:Biws(ez NS 4 e=2miNSy  (3.16)
N

in terms of the £-BPS index B, (3.4) of the Sp(N) gauge theory. The prime in
(3.16) means that the trace does not include the fermionic zero mode part already
taken into account by the vertex insertions, while the spacetime bosonic zero mode
contribution cancel the U3 factor in the numerator. The overall 35 factor in (3.16)
has been reabsorbed in BJ'PS in order to make more transparent the comparison with
the ITA perturbative result. Finally Sgass = —2miN.S(2miNS) represents the classical
(anti)instanton action.

The rest of this section will be devoted to the computation in the BY¥P5 index of
the Sp(IN) gauge theory. For future reference, we will be slightly more general than
what we really need, by determining the whole BPS elliptic genus x(v|r). We will
follow the strategy of [52, 51]. As we have already discussed in chapter 2, the elliptic
genus, being invariant under any deformation of the gauge theory, in particular under
variation of the string coupling constant, can be evaluated in the regime which is
more convenient for our purposes. We will compute it explicitly in the infrared limit,
where the theory is expected to flow to an orbifold conformal fixed point.

The low energy effective action associated to a system of N parallel D5-branes in
type I theory can be obtained from the more familiar U(2N) gauge theory describing
2N D5-branes in the parent type IIB theory. Type IIB D5 brane fields ® are projected
onto 2N x 2N matrices satisfying the symplectic condition [66]

® = +0aTQ! Q =0y x 1y (3.17)

where +(—) stands for the DD(NN) directions and o; are the Pauli matrices. In
addition, anomaly cancellation requires the inclusion of 32 D9-branes and the cor-
responding open string sectors. The resulting two-dimensional field content after
dimensional reduction on 7* is defined by all possible open strings ending on the

Db5-branes, and is given by

69



Sector Bosons Fermions Sp(N) x SO(32)

55 NN A, N(2N +1),1
5-5 NNy o4 AA el N@N+1),1
55 DDy XA né’*’ nA’Y N(@2N -1),1
59 ND A4 o o 2N, 32

Here the subscript F refers to the 4 directions transverse to the D5-brane whereas [
refers to the 4 directions corresponding to the T* along which the dimensional reduc-
tion is performed. The corresponding isometry groups SO(4)g and SO(4); decompose
according to SO(4)p = SU(2)4 x SU(2)y and S0(4)r = SU2)aw x SU(2)z- Aais a
two-dimensional Sp(NV) gauge field and -+(—) refer to left-(right-) moving fermions.
Fields in the same row are related by N = (4,4) supersymmetry. We will consider a
generic type I background involving Wilson lines on T*, which break SO(32) down to
U(1)%. In the strong coupling limit g — 00 the Coulomb branch of the above gauge
theory, the off-diagonal fields get infinite masses and can be integrated out (see [52]
for a detailed analysis) leaving a free (up-to a Weyl group orbifolding) conformal field
theory in terms of the Cartan components’

GA A AR ﬁA’ o3 X AN

XAY,U_ ) ,r}AY Iz X /\N

with My an N x N matrix with diagonal entries. The Weyl group of Sp(N) is given by
the semi-direct product Sy x Z2', with Sy permuting the Z,'s factors, and Zs’s acting
as s, and therefore reflecting the fields proportional to o3 while leaving invariant the
ones proportional to the identity Ip. The breaking of the Sp(IN) gauge group down to
Sy x Z&¥ can be understood in two steps. First by giving generic expectation values
to the diagonal entries in X (D5-brane positions) we break the group to Sp(1)N with
the Weyl group Sy permuting the branes. One can then further break each Sp(1)
to its Weyl subgroup Z, by turning on the SU(2) Wilson lines a?A. Alternatively,
one can start from the type I theory and perform four T- dualites on the small 7
directions. The Q-projection goes under the T- duality map to Iy, introducing 16 5-
orientifold planes whose charges are locally cancelled after the inclusion of D5-branes
symmetrically distributed over the 16 fixed points. Carrying out the same steps as
before on this effective Sp(IV) gauge theory, we are left with the N D-string sigma
model moving on (R* x T*/Z5)" /Sn

9We assume to be away from loci in the moduli space where (5-9) fields can become massless due
to cancellations between SO(32) and Sp(IV) Wilson lines [39].
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The resulting CFT can then be written in terms of a second quantized string
theory describing N copies of a type IIA string moving on the target space

M= [R*xT%/2,)" /Sn (3.18)

The orbifold partition function as we have seen in chapter 2, is given by a sum over
twisted sectors labeled by the conjugacy classes of the Sy x ZI¥ orbifold group. In
particular the sum over conjugacy classes in the permutation group Sy runs over the

decompositions
[9] = ()M (2)......(s)" (3.19)

with >, sN, = N. However, as it has been shown in [52], only sectors belonging to
the conjugacy classes of the kind [g] = (L) (with N = LM) will lead to a non trivial
contribution to x(v|r). Sectors with strings of different lengths [g] = (I;)™ (Iy)™

with [, # [, will always contain additional right moving fermionic zero modes leading
to vanishing contributions to x(v|7). The elliptic index x(v|7) can then be computed

using the formula [51] for the N-symmetric product: °

L E(Mu|U)03(220) 6:(**10) .
xw (v|U ZZM ) >4 P00 (3.20)

L]\/[s 0 1=2,3,4 71

where all modular functions are evaluated at the induced space-time complex modulus
U= M_li_ﬁ The relative M~2 factor is determined by modular transformations in
the untwisted sector [51, 58], once the overall N? factor brought down by the vertex
insertions is taken into account. Let us recall how these relative factors arise in

M (see

the present canonical normalization. One starts from the trace Tryntwistea( L)
Appendix B) in the untwisted sector where one can unambiguously compute the
partition function using the operator formalism. After a modular transformation
7 — —2, to the g = (L)M-twisted sector we are left with the partition function for M
copies of strings of length L (¢ — ¢T) weighted by an L?¥ factor. The projection by
Zyr permutation elements removes the additional fermionic zero modes, apart from
the center of mass zero modes, leading finally to an (<&)? factor from the uncompact
bosons and an M2-factor from the right moving fermionic Zy-trace. After including

the overall N? factor we are left with the M2 result claimed above.

Substituting (3.20) in (3.4), one can see that oscillator contributions from massive

19Alternatively one can compute the helicity generating function Z(v,?) using the more general
formula [67] by taking the logarithm of the first Z[J] in (2.45) and then derive the BPS index from
(3.4).
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fermionic and bosonic modes cancel against each other leaving the %-BPS index

ND5 __
BNPS = 36— Z L =36 Z i (3.21)
N|L N|M

Apart from a factor of two, the type I result (3.16) in terms of this By 1ndex exactly
reproduce the instanton sum in the formula (3.12). The extra factor of ¥ 15, coming
from the coupling of the metric to the instanton background (3.16), is cancelled by
a similar factor coming from the spacetime measure and the metric used in the R?

_ ViGu

contractions, once the duality map G o = ZZer s taken into account.

One can easily extend the previous results to other four derivative couplings in
the D = 4 type I effective lagrangians. We can consider for example F* terms with
F the U(1) gauge fields coming from the reduction of the metric on the T? torus
(Fu = OpGup, with 1 = 4, 5). The analysis follows closely our previous one for
the R? computation, with an effective coupling of the gauge field to the instanton
background given in this case by

2y _
TS (s + Ub) DY+ (s — Uhun) DaX{] + . (322)

t=1

Snps = —2miNS +

The four vertex insertions provide then the (4, 4) fermionic zero modes needed to get
a non trivial answer and the four powers of momenta to reproduce the F* kinematics.
In addition each F, (Fs) insertion carries an additional %(%%2) factor from (3.22)
(for simplicity we take a rectangular spacetime torus, i.e. U = ill). The result
exactly reproduces the contributions from non-degenerate orbits to the one-loop for-
mula for similar F* terms in type IIA. In particular, we can see that the N-instanton
contribution to F2F2 is N? times the result previously found for R? (3.16). Therefore
the mixing of R? and F2FZ cannot account for the absence of the one-loop term in
(3.12), without destroying the agreement at the non-perturbative level. On the other
hand, one can easily see that four derivative couplings involving the dilaton, men-
tioned in section (2.1), have the same N dependence of the R? term, making them
potential candidates to account for the perturbative discrepancy and the factor of 2

in the non-perturbative contribution.

Finally, we would like to stress that the result (3.20) is stronger than what we
really need. Indeed, as we have discussed, chouplings in type I theory receive
contributions only from the 3-BPS states (3.21). However, one can see that even
the degeneracies of %-BPS states, are correctly reproduced by the CFT elliptic genus
(3.20). Indeed according to the type IIA /type I duality map, a fundamental type
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ITA string with winding N and momentum % is mapped in the type I theory to a
bound state of N D5 branes and k Kaluza-Klein momenta. The masses of the two
objects agree according to (3.2). Multiplicities and charges for the bound states can
be read from the longest string sector in the CEFT elliptic genus (the only orbifold
sector representing a true one-particle state as shown in [52]). Restricting to this
sector, i.e. L =N, M =1 in (3.20), yields

xv(v|T) = =

The sum over s projects onto states satisfying

Ni —c

k
N

€Z

Il

which reproduce the level matching condition on the fundamental side (3.6) after
putting right moving modes in their ground state (Ng — cg = 0) and identifying &
with the KK momentum along the direction where the string wraps. The bound state
degeneracies are defined by the coefficients in the expansion of (3.23) in powers of
q&%Lﬂ In particular the ground state multiplicities (¢° order) count the number of
ultrashort supermultiplets associated to bound states of N D5-branes, while degen-
eracies in the excited left moving part of the CFT (coefficient of ¢* with & > 0) are
associated to bound states of N D5 branes with k units of Kaluza-Klein longitudinal
momentum, which sit in intermediate supermultiplets. The expansion clearly coin-
cides with the one for the fundamental string (3.6). We then conclude that the whole
spectrum of masses, charges and multiplicities of 3- and $-BPS excitations in the
Db5-brane system agree with U-duality predictions. In the next section we will give

an application of these results.

3.2 ﬁ-BPS saturated couplings in type I theory

In this section we consider higher derivative couplings which are sensitive to i—BPS
contributions. Instanton corrections to type I thresholds will again translate into
an infinite sum of one-loop contributions coming from T2-wrapping modes of type
ITA fundamental strings running in the loop, the novelty being in the fact that now
1-BPS fundamental strings will be the relevant ones. With slight modifications the
type ITA perturbative computation follows from the ones appearing in [61] that can be
consulted for details and a more complete discussion. We will consider in particular
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the (4-+k)-derivative couplings OF0F L FE, with Fur = (Gl + Bu):) the left
moving combination of U(1) gauge fields arising from the reduction of the metric and

antisymmetric tensor on T2

The relevant string amplitude is given by
Ay, = (VFVz) (3.24)

with vertex operators
) 1 3 1 Q.20 O pX
Vi = (Gu:+ By;) | d°z | 0X* — prSfy”pS 07 — Zp,,S"y S | e
" 1 == 1 = s =\ .
Vi = (Gus+ Bus) / & (ax# = Zppsw”f’S) (az - Zpasfy”S) ¥ (3.25)

At the order in momentum we are interested in, one can see that the left- moving
part in the vertices (3.25) enters only through their zero mode part. Indeed, after
soaking up the (4, 4) fermionic zero modes the remaining extra k powers of momenta
are necessarily cancelled out by the right moving pieces of the vertices (3.25) and
therefore the left moving part reduces effectively to the pr,pr bosonic zero modes
of 8Z and 8Z respectively. The right moving part can then be replaced by the first

order in the momentum effective vertex
1
Ve = Fuurs [ &2 (X#0X* = 157S) (3.26)

The A, string amplitudes then reduce to a correlation function of & effective vertices
(3.26), which exponentiate to [54, 68]

ue = 05,07, (oot 2 ]y
L L L'2 Ok V0
= d2 1 2 2
— 0FLOF LT} / T;Téﬁ S qilelgErlpg fi(r) (3.27)

(vapR)

with f.(7) holomorphic indices generated by the oscillator contribution Xosc(U|T) tO
the type ITIA elliptic genus x(v|7) = Xosc(v|7)['2,2 through

Flr) = X (0170 3.23)

We have again denoted by a prime the omission of the fermionic zero mode trace in
(3.27). We can now follow the results of [65, 61], where the modular integral in (3.27)
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has been performed for an arbitrary holomorphic function f,(7). The result can be

written as
k
- [ 1 /12U (TQUQ)k ok ok
= — | —= 1 =0,
AT IR <WV T2> 2 ) R T s g @ ene

where d(n) are the coefficients in the g-expansion fr = 3 d(n)¢" and

2 _onVab(miTat 2-Us) —9mi
Ia,v) = —e Pt te) g mamig
Vb
v
b = —
\/— !TLQ-*— 4U2
. Tlo . i _CZ_—'E
¢ = TLQ’ITLlTl nmlUl Zl/(ml +m1U2) (329)

The expansion in T4’ of the above formula translates into a series of perturbative
corrections (subleading orders in S%) around the instanton background. We will
consider in the following only the leading order in this expansion. The analysis of
subleading quantum corrections to this result can be done following the techniques
in [58]. At this order v derivatives hit the terms proportional to v7% and set the
remaining v-dependent terms to zero. The « derivatives hit the exponential leading
to an overall (wnym;Ty)* factor. Altogether we are left with

k .
- [t 12U g2mimami T & noU + 1y
. = —/ = —_— e h.
A OFLOFL Ty <7F T ) Z Namy nafe my et

m1,N1,Nn2 -

- peirinemT gk v/ 2U. neU +n
— ;€ [ 2 2 1
= OFL0F.FF g v (w\/il—’g' N — > . +h.c+ ... (3.30)

where h.c. stands for hermitian conjugation and dots for the higher orders in T3
expansion. It is now straightforward to compare this result with the corresponding
string amplitudes in the instanton background. Indeed, the partition function for the
N Db5-instanton in the presence of a background (3.26) is described by the elliptic
genus (3.20), whose v-derivatives coincide with the result for fundamental strings

(3.30) after obvious identifications.

The presence of perturbative corrections around the instanton background is a
new feature of these higher derivative couplings, to be contrasted with the R? case.
It would be interesting to compare (along the lines of [58]) the fundamental and D-
instanton results for these quantum corrections, where the Born-Infeld nature of the
instanton couplings are strongly tested. Notice in particular that insertions of Fj
gauge fields appears already at a quantum level. A complete analysis of the quantum
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subleading terms would determine the moduli dependence of the additional couplings
in the effective lagrangian.

Also notice that for the case ¢ = 4, the result (3.28) is proportional to I'y,.
Indeed f4's5 is nothing but the helicity supertrace Bg = StrA® for type IIA string
theory on K3 x T2, where ) is the 4-dimensional physical helicity. Bg in this case is
therefore only sensitive to short multiplets [63], the intermediate ones give vanishing
contribution to this helicity supertrace, however this accident will clearly not repeat
for the remaining supertraces generated by x(v|7).
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Conclusions

The main goal of this thesis has been the understanding of the CFT’s governing
D1-D5 brane systems in a class of models with 16 supercharges as well as for type
I on T*. These models were obtained by orbifolding/orientifolding type IIB theory
with freely acting Z, elements. Our proposed CFT’s involved symmetric products
of T* with additional Z, actions, whose precise form depends on the background in
consideration. For backgrounds involving €2 projection, the CFT’s turn out to be
N = (4,0).

We have worked out elliptic genus formulae for these modified symmetric products
and shown that the resulting multiplicities for D1-D5 bound states were in agreement
with those of winding-momentum states in U-dually related theories.

There remain however several open problems, which we have already anticipated
in the Introduction and discussed in section 5 of chapter 2.

Probably the most challenging one concerns the issue of three-charge systems. As
stressed in chapter 2, our CFT’s predict multiplicities which agree with U-duality
in the two-charge cases, i.e. in the CFT’s of D1/D5 brane system when we restrict
to the ground state (A = A = 0) and in the case of D1(D5)-KK momentum. In
general, problems arise when we excite momentum, that is when we let A # 0. This
corresponds to exciting states which preserve 1/4 of the 16 bulk supercharges (in the
(4,0) case the momentum is excited in the right-moving, non-supersymmetric sector).
As we have noticed in Section 5 of chapter 2, U-duality in this case puts constraints
which generically are not satisfied by the proposed CFT’s, and this happens in the
case of the D1-Db-KK system in type IIB on K3, too.

Of course, one could cast doubts on the correcteness of our CFT’s for the D1-D5
system, though in fact our “derivation” is on the same level of rigour as that giving
the more familiar (and well tested) symmetric product of 7* for the toroidal type II
case. Moreover, as repeatedly stressed, the K3 case presents similar problems.

Another problem could be related to the peculiarity of the case @5 = 1. As
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we noted in Section 3 of chapter 2, for Q5 = 1 the bifundamentals in the D-term
equations are vanishing, only the adjoints describing the positions of D1 branes are
non trivial, as if one had a system of @1 free D1 strings. In that case the moduli
space would be rather the symmetric product of R* X T* (with some additional Z,
action), as noted also in [42]. However this does not seem to solve our problem and

actually is in contradiction with the two-charge counting.

Perhaps there is a more general physical mechanism behind these discrepancies.
One may correctly say that, in general, there is no guarantee that 1/4 BPS states in
theories with 16 supercharges should be stable throughout the moduli space. Indeed
it is believed [71] that in A/ = 4 Yang-Mills theory in four dimensions 1 /4 BPS dyonic

states do indeed decay after crossing regions of marginal stability in the moduli space.

One can analyze the problem in string theory also. That is, one can study the
locus of marginal stability for 1/4 BPS states using the corresponding mass formula
for N =4, D = 4 string theory:

M? =

1/4:E\}—-—S—(Pe+SPm)'(P5+5Pm)+2ﬁ3P%*(Pe'Pm)2 (331)

where P., P, are electric and magnetic charge vectors, whose dimension depends on
the model in consideration (its number of vector multiplets), and S is the complexified
string coupling constant. It is then easy to see that the condition of marginal stability
is given by a single real equation which defines a locus of real codimenson 1 in the
full moduli space. The moduli space is thus divided in two regions and in going from
one to the other one necessarily crosses the region of marginal stability. Therefore,
any U-duality transformation which maps one theory in one region of moduli space
to another theory in the other region, is not guarantee to preserve the multiplicity
of the corresponding 1/4 BPS states'!. In addition, one can also see that when
decompactifying from D = 4 to D = 5, one necessarily sits on the locus of marginal
stability.

However we are facing a more subtle problem: indeed the contradictions be-
tween symmetric product CFT’s and U-duality expectations that we have discussed
in Section 5 do not arise for generic 1/4-BPS states, but only for those carrrying
D1 — D5 — KK charges and in (4,0) cases the two-charge (D1 — D5) systems are
themselves 1/4-BPS.

11 A nother well known example where this phenomenon occurs is of course V' = 2 SU(2) Yang-

Mills theory, where the region of marginal stability is topologically a circle enclosing the strong
coupling region in the two-plane of moduli, and perturbative 1/2 BPS states decay when going from
the weak coupling to the strong coupling region (72, 73]
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It would be very interesting to find a physical explanation of this problem but we

leave this for future investigations.

Another very interesting direction would be the study of the D1-D5 brane system
in type I string theory. '

 In the last section of chapter 2 and chapter 3 we have considered instanton cor-
rections to four and higher derivative couplings in D = 4 string vacua with sixteen
supercharges. We restricted our attention to couplings for which the Euclidean D5-
brane wrapping the T° torus represents the only source of instanton corrections.
D-string instantons have been extensively studied in [74]-[58] and are fairly well un-
derstood. The couplings we have considered are also special in the sense that they
are sensitive only to states sitting in short and intermediate multiplets of the N' =4

supersymmetry.

We have worked out the details of the instanton sums for R? thresholds in toroidal
compactifications of type I string theory. The instanton sums translate, under the
duality map, into a sum over wrapping modes of fundamental type IIA strings on
the T2 part of K3 x T?. We argued that the relevant 6-dimensional Sp(IV) gauge
theory flows in the infrared to an orbifold conformal fixed point, after dimensional
reduction to 1+1 dimensions. The elliptic genus for the orbifold CFT was computed
in this limit and shown to reproduce correctly the whole spectrum of % BPS masses,
charges and multiplicities, as required by type I/type IIA duality. As a consequence,
the whole infinite sum of instanton corrections to four derivative couplings agree with
the expected result from the ITA fundamental string side.

The proposed CFT’s reproduce also the right multiplicities for ;11—~BPS states as-
sociated to bound states of D5 branes and KK momenta in the type I theory and
D1(D5)-KK in orbifold/orientifold type IIB theories, providing several more examples
of higher derivative couplings where the worldsheet/spacetime instanton correspon-

dence works properly.
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Appendix A: SO(N) x SO(k) D1-D5 gauge theory:

In this appendix we determine the spectrum of open string states living on D1-D5
brane intersections in “type I” like vacuum configurations where the orientifold group
action is accompanied by a shift longitudinal to the worldvolume system. Our aim
is to show that, unlike the more familiar type I theory where consistency of the
underlying open string theory requires that {2 projection acts with a relative sign
between the D1 and D5 gauge groups [44], in the presence of a longitudinal shift
SO(N) x SO(k) Chan-Paton assignments are allowed. We adopt the open string
descendant techniques systematized in [45] '*. Being interested in open string theories
describing excitations of D-brane bound states rather than vacuum configurations
we relax (and generically violate) tadpole cancellation conditions. The discussion
is illustrated for model I with orientifold group generated by lo,,, but with minor
modifications can be adapted to describe the T-dual model III associated to {2140, .
These vacuum configurations are often called “type I theory without open strings”,
since the Klein bottle tadpole is removed by the presence of the shift and therefore
the inclusion of D9(D5)-branes with their corresponding open string excitations is no
longer needed [38]. Although we are mainly interested in the study of pure D1D5
systems, with a little of effort, we can (and we will) include also D9-branes in our
analysis. Besides aesthetic reasons the inclusion of D9-branes will help the comparison

with more familiar results.

We start by describing the D1-D5-D9 system in the presence of the standard type
I orientifold (09)-plane. We orient D1 and D5 branes along (01) and (012345) planes
respectively. For an homogeneous notation it will be convenient to start by wrapping
the whole system on a S* x T* x T* torus, with directions (1) x (2345) x (6789),
~and only at the end take the volume of T* to infinity. The Annulus, Moebius strip
and Klein bottle amplitudes associated to such brane configuration can be written as

12For a quick review and applications with notations closer to the one presented here see chapter
2 of [69] and chapter 3 of [70].
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K = = poo(2it) Py(t) Pa(t) Ba(t)

A = z [,000 <?§) <M2 Py(t)By(t) + &2 P4(t)vff;(t) + N W4(t)W4(75))
+2kN p 40 (g) Wa(t) + 2kM ppo (g) Py (t)2M N pey <Z—§>J Pi(t) (A1)
M = % {—-M Poo (g + %) Py(t)Py(t) + k pos (g + —%) Py(t) — N poc (g + —;—ﬂ Pi(t)

where A, B and C in pg, refers to h projection of the g-twisted chiral traces with
twists oriented along the planes (2345), (6789) and (23456789) respectively. After
performing the sum over spin structures these traces can be written as

2 é—-l—g
19%19 [§+h] 1
- 4 h== for gh=A,B
Pgh 776 192[15+g] g 5 r g
1+

o

<
ey
—
03[ ha |~
+ +
> <
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Pgh = g,h= 5 for g, h=C (A.2)
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=
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+ +
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The integers N, k, and M refer to the numbers of D1, D5 and D9 branes respectively.

Finally momentum and winding lattice sums are given by

—Tra'f‘-.é- 232'
Pty=5 ¢ T F® W)=Y e (A.3)

m;EZ4 n;cZd

The basic requirement satisfied by the string amplitudes (A.1) is that after the ex-
change of o and 7 directions they admit an interpretation in terms of closed strings,
exchanges between boundaries (D-branes) and crosscaps (O9-planes). More precisely,
the sum of closed string amplitudes should reconstruct the whole square

(Ble™ |B) (A.4)

with
|B) = |09) + M |D9) + k |D5) + N |D1). (A.5)

and |09), |D9), |D5) and |D1) representing the “boundary” state for the correspond-
ing branes.
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Rewriting (A.1) in terms of the closed string variables £x = 2o la=2 0y =5
one is left (at the origin of the 7 x T* lattice sum) with [ dx
by 25 . bod even E
Ko = + [Xo + xv + xs + xc (1) vivals Wy (5)
- 95 ) /¢
Ay = 5 [xol3 + xvIZ + xsIz + xclt] (if) Wl(‘z')
— “ . ~ even g
Moy = —5 [xolo + xvIv + xsls + xclc] (i) v/v1vats Wi (‘2‘) (A.6)

Wever is defined like (A.3) with n; restricted to be even. We have introduced the

linear combinations of pg, traces

Xo + + + + Poo
11+ + - -
Xv | _ 1 PoA (A7)
Xs 41+ — = + PoB
Xc + - + - Poc
and of the Chan-Paton dependent combinations

lo + + M+/v1v404
IV + - - V14

- . ) A8
Is + - + - (A-8)
Ic + + - uals

with vy, va, By the volumes of S*, 7%, T*. The relevant modular transformations con-

necting the two expressions (A.1) and (A.6) can be easily read from (A.2)

1 . i1 _ it 1
pOO(‘Z”EZ) = (af)_zipoo(w‘g) Poo(é—t + —2") =1 4Pco(j + 5)

1y _2 . R it 1
POh(—m) = 4(af) pho(zaé) p0h<§¥ + -2-) = —t P0h<‘2‘ + 5)

L : i1 it 1
pOC’(“@) = 16,000(’1,01£> poc(% -+ 5) = pOC’(’é‘ -+ 5)

1
Pa() = vale) Wa(ad) (4.9)

with h = A, B and « a factor of 2 depending on the one-loop surface.

Rewritten in the basis (A.7) one can easily recognize in Ko+ Ao + M, given by
(A.6) the different terms in the square (A.4). Notice that unlike tadpole cancellation
conditions the requirement that the whole amplitude reconstruct a square is a restric-
tion in the structure of the entire tower of massive closed string amplitudes. Indeed
this requirement together with the choice of Orthogonal gauge group for D9-branes
is enough to fix completely the Moebius strip amplitudes once the Klein bottle and
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annulus amplitudes are given [45]. In particular the relative sign between the € pro-
jection on D5 and D1(D9) Chan-Paton factors is crucial in order to reproduce the

square.

Let us consider a similar system in the “type I” theory with the shift. First let
us notice that closed string states in (A.6) with odd windings only enter the annulus
amplitudes. This can be attributed to the fact that only even winding modes can be
reflected by the standard O9-plane. The situation get reversed if we now accompany
the worldsheet parity operator with a o, momentum shift along the circle. This
is done by replacing the lattice sum P;(¢) in the Klein bottle and Moebius strip
amplitudes (A.1) by

el ™
P = Y (ome (A.10)
mi1€Z
In the closed string channel this translates into the replacement
even £ odd ¢

and therefore now only odd winding modes are reflected by the orientifold plane. we
can see that combining this with a non-trivial Wilson line turned on in the D5 brane
gauge group one gets the desired result. The Wilson line can be included by replacing
the lattice sum P, (t) accompanying the Annulus terms linear in & by

|,

R

Wi(t) = Y emHmm) S (A.12)

nicZ

The Klein bottle and Annulus amplitudes can then be written in the closed string

channel as
~ 2° , ~ rroad L
Ko = + [xo+xv+Xxs+xc] (1) vivads WP™(5)
L 2—5 . even ¢
Ay = -5 [Xofg + xvly + xsls + XC’Ié'} (if) W (5)
273 ) 14
+t5- [xol2 + xvIG + xslf + xcly] (id) Wfdd(‘z“) (A.13)
The complete square is now reconstructed by
— 2 ] ~ ¢
Mo = —3 xols + xvic + xslo + xclv] (i) /v1v404 Wfdd(g) (A.14)

which differ from the ones in (A.6) by the parity of closed string windings W% and
in an overall flip of the sign of k. This leads in the open string channel to the lattice
sum (A.10) and the gauge group SO(M) x SO(k) x SO(N).
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Appendix B: Symmetric product orbifold CFT:

In this appendix we give an alternative derivation of the elliptic genus formulae (2.45)
for the case where the Hilbert space H involved in the symmetric product admits a
free field theory (orbifold) description. We follow closely [51].

The oscillator contributions of a given worldsheet field ® with boundary conditions
(2.28) to the string partition function is given by

o0
Zose [ﬂ (q,y) = [ J(1 — @ hoyreqnoe)ee (B.1)
@ _
n=1
with €; = —1 for bosonic components and €, = 1 for fermions. The string partition

(2.29), can then be written as a product over fields ® of such contributions in the left
and right moving part of the string, times a (in general non-holomorphic) zero mode

contribution
_D = = 5 -
2P| Hlaav9) =75 [[ Z0Zose | 7| (@ 0) 20Z0sc |37 |(@5)  (B2)
ho . hy hs

For complex bosonic and fermionic degrees of freedom this zero mode contribution

can be written as

0 11
ZO[O] (0.y) = ¢ =g
boson

Zo[i‘i’] (y) = ¢
®.J boson

0 w, —wy
Zo[o] (g,y) = q¥= (Y +y % —2)
fermi

Zo[zd)] (g,y) = ¢* (B.3)
¢J fermi

with similar expressions for the right moving components in term of bar quantities

and P; replaced by Pg. In the following we will display only holomorphic formulas
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since the analysis of the antiholomorphic part follows similarly. The boson in (B.3) is
understood to be compact, for non compact components we should of course simply
omit the lattice sum in (B.3). w, stands for the charge of the field ¢ under J§ and
X¢ represents the contribution of a complex boson with spin characteristics gg, hyg to

the zero point energy
1 1
= 1—94) B.4
Xo = —15 T+ 596(1 — 94) (B.4)
Orbifold group sectors and the IV copies of the field ® are labeled following the
notation of section 4. Since the ¢ and h twists commute we can diagonalize them
simultaneously. In this basis one can write

- 1
2wl

g = e
h o= i) (B.5)

Let us now evaluate the basic trace (2.37). For the time being we will concentrate
on the non-zero left moving contribution Zug [Z‘i] (g,y). After simple manipulations

of the product formulae one is left with

(M)TJI‘J”Z 0 N : H H 627r7§(—%’}}i—i+%+h¢) yw¢qn—g¢—l/L)e¢,
(L) ’ i,l,mn=1
— H H 2m (sigp+Mhgy) y]\/de, (q T eQTrzL )n g¢L)
7 n=l1
9¢ M 27rz— M
_ 7 i B.6
H OSCLS#MhJ(q e, yM) (B.6)

The result is in agreement with (2.37). One can follow similar manipulations to show
9oL

that the zero mode contribution to Sy can again be reexpressed as Z; [%s 2 Mh¢] (q%‘ e2mi

This is clear for the lattice sum and the fermionic zero mode trace following similar
manipulations as before, while for the zero point energy this can be read from (B.4)
(let’s say in the (L) -twisted sector) leading to a contribution ¢X=» with

iy l l
XL,M = qusZ{ﬁ“‘(gqb“f“L)(l“g ‘f)}

- 3L - D) ®.7)

as expected.

This concludes our derivation of (2.37) in this restricted context. Following the
subsequent steps in the main text one is lead straight to the symmetric product
formulae (2.45).
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Appendix C: Modular integral with shifts:

In this appendix we evaluate the modular integral (2.76).

/ o [g}( )F22[ ](U w) e (C.1)

with d = 2(6) in the case of models Ir,I1Ir (IIr) and I's2 [9](£- ¥, £, - @) defined by
(2.78).

We start by reabsorbing (d + 2)/2 powers (the number of w-insertions) of 73 in
the rescaling of the left moving source W — % Equalities in the next are understood
once d+2/2 w-derivatives are applied to the end result and sources W are set to zero.

After performing the gaussian integral over 7 we are left with

(U2T2)% /Oo drs b —fm—ﬁ (U2T2>% f —bo—2vPB7
g_...:C e 0 ‘T2 ::C —e 0 v 02
i | Jo o 7/ Imil VB (©2)
with
_ 1 9| ~|9 )
C = 5 Zn[h}C’LJ (n,£'s)
M
bo = ——27rz'T1m1n2 - 27Ti£(n2U1 + TL1)
m
U.
= 2mil - [AT — v (noUy + ma)] — 2mids - wn {ml — 2 (n+myl- vl)]
mng
B = mniTyls + 2mingls - (wiUy — wy) + mUsTo (L, - w)?
7T Us ?
y = m: U; 1+ ;2 (n+mql- v)] (C.3)

We are interested in the leading order in a 1/7 expansion of (C.2), associated in the
dual theory to the semiclassical approximation around the D-instanton background.
In this limit all subleading w-dependent terms in the exponential can be discarded
since they lead to irrelevant contributions once they are hitted upon by w-derivatives.
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To leading order in 1/75 the result can be written as

1 oni[Tminet+ BnoUstnob-i—milu-i
ga7g: Z ’—7’—2;—‘6 7T'L[ minzg mlno 2 1 ]‘7575_*_ I'L.C. (04)
m1,n2,9

where © = v, — v5 and ¥ = w,U — w, are induced source terms and h.c. denotes the
hermitian conjugate results coming from anti D-instantons. Jj represents the shift

dependent sum

Il

1 27mi(2-ny —2a1 b1 gh—aihmi-+aigni) g !
Tz E g M M MR AT TR I O n,4°'s). C.5
@b 2my| — h ( ) (C.5)

Our next task is to evaluate (C.5) in the cases of winding (a; = 1) or momentum
(by = 1) shifts. The domains of 771, 7 are specified by (2.79) while n is integer in the
untwisted and both integer and half integer in the twisted sectors. Using the identity

|

and performing the geometric sums one can write the final result as

1

[mers) = el mers (C6)

DO NI

1 1 :

Tio = %(CM +A(—)mlc[d)(n,e'5)73§%+-};C{g] (n,0's) Pa?
Lo . [L 0 2

Tor = 5(0[%} +(_)m—lcm +20{1})(n,£'s)P§_ (C.7)
27 13 2 m

with P% a projector onto state with > eZ+ 0.
my

Plugging (C.7) in (C.4), introducing the quantum number &k = >~ € Z +a;g and

performing the remaining m1, ny sums one is left with the final result (2.86).
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